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EXECUTIVE SUMMARY 

This report details various accomplishments and findings of the project entitled “Regionally Extensive 

Droughts and Climate Change in Southern Africa: Mechanisms, Reliability and Projections”, which was 

funded by the South African Water Research Commission from 2013 to 2017. The project had the 

following major objectives: to better characterise droughts over southern Africa; to identify the 

mechanisms that induce regionally extensive droughts (REDs) over southern Africa; to examine the 

capability of climate model in simulating southern African droughts; to project future characteristics of 

REDs under climate change; and to investigate reforestation impacts on the droughts. In addition, the 

project developed a drought monitoring system over southern Africa. 

Incorporating potential evapotranspiration into drought indices to obtain a better 

characterisation of droughts over southern Africa 

Southern African droughts are usually quantified with precipitation anomalies or the Standardised 

Precipitation Index (SPI), thereby neglecting the important roles of evapotranspiration in drought 

quantification. Furthermore, most drought studies over the subcontinent have been on local-scale 

droughts, with little attention on REDs that usually cause more devastating impacts. This project 

overcomes these shortcomings by using the Standardised Precipitation Evapotranspiration Index 

(SPEI) to identify droughts and using two techniques to characterise REDs over southern Africa. The 

first technique identified dominant drought modes and the second technique obtained major drought 

patterns. 

The results of first technique showed that about 50% of southern African droughts can be represented 

with four major drought modes (called DM1, DM2, DM3 and DM4). The core of DM1 is over the south-

western part of southern Africa; DM2 over Zimbabwe; DM3 over Tanzania; and DM4 over Angola. The 

results of the second technique revealed that southern African drought patterns can be generally 

classified into three groups: All-dry pattern (showing dry conditions over the entire southern Africa); all-

wet pattern (showing wet conditions over the whole region); and dipole pattern (showing wet conditions 

over a part of the subcontinent and dry conditions elsewhere). 

Comparing the results from the two techniques indicates that the second technique (i.e. drought 

patterns) gives a more robust description of RED characteristics than the first technique (i.e. drought 

mode), because the characteristics of all the drought modes fall under that of dipole drought patterns. 

We also found that while each drought pattern can occur in any season, some drought patterns have 

preference for seasons. Furthermore, some droughts patterns can persist from season to season, while 

others easily transit to another pattern in the following season. 

There are distinctions between SPEI and SPI results. SPEI results suggest a general shift in southern 

African droughts from all-wet patterns in the 1950s to 1970s to all-dry patterns in 1990 (possibly due to 

the climate change). However, this shift does not feature in the SPI results, suggesting that SPI may 

underestimate the influence global warming on southern African drought. 

Understanding the mechanisms by which remote and local forcing of drought are translated into 

climate moisture deficits 

Previous studies have identified some atmospheric teleconnections as the main drivers (remote and 

local) of southern African droughts. However, those studies quantified drought using only precipitation 

– meaning that their results may not account for the contribution of potential evapotranspiration (or 

temperature) to the link between atmospheric teleconnections and the droughts. Also, there is a dearth 

of information on the coupling between atmospheric teleconnections and REDs. Hence, to fill these 

gaps, this project examined the relationship between atmospheric teleconnections and REDs over 

southern Africa using SPEI to quantify the droughts. 

The results showed a strong dipole correlation between the El Niño Southern Oscillation (ENSO) and 

southern African droughts (SPEI). The correlation is up to +0.6 over the tropical area and about −0.6 

over the subtropical area. While the strong link is due to the influence of ENSO on both precipitation 
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and temperature fields, the influence is stronger on temperature than on precipitation. Although ENSO 

influences the four drought modes in southern Africa, the influence of the Indian Ocean Dipole (IOD) 

on DM2 is as strong as that of ENSO, and the influence of the Tropical North Atlantic Ocean (TNA) on 

DM3 is stronger than that of ENSO. Moreover, we found that only 20% of droughts patterns (all-dry and 

all-wet patterns) are solely induced by ENSO; other drought patterns are caused by complex 

interactions among the atmospheric teleconnections. However, all-dry drought patterns usually occur 

during El Niño events, while all-wet patterns occur during the La Niña events. 

Evaluating the capabilities of climate models to represent REDs and the driving mechanisms 

Climate models are fascinating tools for understanding the complexity of climate systems. They can be 

applied to study the past and future characteristics of droughts. However, for climate model results to 

be useful, the model should realistically simulate the past climate. Hence, this project examined the 

performance of some global climate models (GCMs) and regional climate models (RCMs) in simulating 

the characteristics of the REDs (and the influences of the drought drivers) over southern Africa. 

We found that contemporary GCMs give remarkable simulations of the observed characteristics of the 

drought modes (e.g. the spatial structure). However, they reproduce the characteristics better at a three-

month drought scale than at a 12-month drought scale. While about 70% of the GCMs simulate the 

characteristics of four drought modes well at three-month scale, only 60% of the models capture the 

characteristics of three drought models well at 12-month scale. Existing RCMs also simulate the spatial 

structure of the drought modes better at three-month scale than at the 12-month scales, but they capture 

the temporal variability of the drought modes better at 12-month scale than at three-month scale. They 

also simulate well the frequency of the drought patterns over southern Africa but perform poorly in 

reproducing the temporal variability of the drought patterns. 

Some RCMs simulate the ENSO influence on the southern African droughts well. In this regard, a 

variable-resolution global model shows the best simulation, possibly because the model does not have 

lateral boundary condition problem as other RCMs. However, we found that the simulated link between 

ENSO and southern African droughts is sensitive to the global data set used for the lateral boundary 

forcing. In some cases, the RCM downscaling of GCM simulations adds values to the simulated link, 

but in other cases it does not add values. The added value of RCM to the simulated link decreases as 

the capability of the GCM to simulate the link increases. This study suggests that downscaling GCM 

simulations with RCMs over southern Africa may either improve or depreciate the simulated ENSO-

drought link over the region. 

Understanding the potential impacts of climate change on REDs in southern Africa 

There is a concern that the anthropogenic warming may increase the severity of southern African 

droughts. However, most future projections over the subcontinent usually consider future changes in 

precipitation and temperature separately, without linking the changes to climate moisture balance to 

give a better indication of climate change impacts on droughts. The present study investigated the 

impacts of the anthropogenic warming change droughts over Africa, using SPEI (a climate moisture 

balance indicator) to characterise droughts. It focused on future changes in drought intensity, area 

coverage, frequency, modes, and patterns. The future projections are based on series of regional 

climate model simulations of two future climate scenarios (called RCP4.5 and RCP8.5). 

The models projected an increase in droughts intensity, area coverage, and frequency over southern 

Africa in the future under both RCP4.5 and RCP8.5 scenarios. However, the increase is more 

pronounced under the RCP8.5 than under RCP4.5. There are substantial differences in future 

projections of SPEI and SPI droughts. SPEI droughts are more intense, more frequent, and wider than 

SPI droughts. The model projections show no significant changes in spatial structure of the four drought 

modes, but more severe droughts are projected over the core areas of the drought modes, and the 

magnitude of the severity is higher for DM3 and DM4 modes than for DM1 and DM2 modes. The 

projections also show that all-dry drought patterns would become more frequent in the future, while all-
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wet drought patterns would become less frequent, but the frequency of dipole drought patterns would 

remain unchanged. 

Potential impacts of forestation on southern African droughts 

Some studies have suggested forestation as a viable climate change mitigation option (because of its 

biochemical benefits) without investigating the biophysical impacts of forestation. Despite its 

biochemical benefits, forestation may induce negative impacts on the regional climate, especially over 

southern Africa. To improve knowledge in this aspect, the project used a series of climate model 

simulations to investigate impacts of realistic land-use changes (i.e. forestation) over southern Africa 

on the regional climate in the future. 

The results showed that forestation increases the projected future warming over the forested area but 

reduces the warming elsewhere. In addition, it enhances rainfall over the forested area and lowers 

rainfall elsewhere. These changes are largely due to the albedo effect and dynamic effect of forestation 

on the atmosphere. The darker forest (relative to pre-existing vegetation cover) decreases the surface 

albedo and increases the amount of solar radiation absorbed at the surface. This produces extra energy 

in the system, which increases the amount of sensible and latent heat over the forested area, thereby 

increasing the temperature and rainfall, respectively. Hence, the study concluded that forestation would 

alleviate droughts over some areas and aggravate drought over other areas. 

Drought monitoring systems over southern Africa 

The Drought Atlas, a collection of past drought maps, is very useful for drought monitoring and 

forecasting. We can learn from past drought events and compare real-time droughts with similar past 

conditions. A previous study developed a Drought Atlas over South Africa in 2007 using SPI to define 

drought. The atlas is now almost a decade old, meaning that it does not include recent droughts 

patterns. It might also underestimate drought intensity because it does not include the influence of 

evapotranspiration in characterising the droughts. In addition, since the focus of the atlas is over South 

Africa, it may be unsuitable for representing REDs over southern Africa. Hence, as part of the project, 

we developed a drought monitoring system (http://hail.csag.uct.ac.za/droughtmonitor/home.php), which 

includes a new Drought Atlas over the entire southern Africa from 1951 to 2015. The system also 

provides the composites of drought patterns during the active phases of important atmospheric 

teleconnection (e.g. ENSO and IOD) and provides future projections of droughts over southern African 

countries (and any other area of interest) under two possible future climate change scenarios (RCP4.5 

and RCP8.5). 

Capacity building and publications 

Part of this project comprised a PhD thesis (Arlindo Meque; graduated) and two master’s theses 

(Evaline Ujeneza and Myra Naik; both graduated) submitted to the University of Cape Town. Some of 

the findings from the project are now published in three peer-reviewed papers (Meque and Abiodun 

2015; Naik and Abiodun 2016; Ujeneza and Abiodun 2015), while others are awaiting publication. 

The project outputs (i.e. computer codes and data) have been used in other three peer-review papers 

(Abbar and Abiodun 2016; Abiodun et al. 2016; Browne-Klutse et al. 2015) and in two PhD theses 

(Mariam Nguvava and Shakirudeen Lawal; both ongoing) at University of Cape Town and a PhD thesis 

(Abayomi Abatan; ongoing) at Iowa State University in the United States of America. 

The new Drought Atlas also provides teaching resources for two postgraduate courses (EGS4023F: 

Research Methods for Natural Science; EGS4024S: Climate Modelling) at the University of Cape Town. 

Recommendation 

Results of this project can be improved or applied in several ways. For instance, it can be improved by 

using more observational, reanalysis and simulation data sets that cover a longer time period. Using 

data sets with a longer time period (i.e. paleo-climate data sets) would give better information on 

whether the disappearance of the all-wet drought since the last few decades is due to the impact of 

http://hail.csag.uct.ac.za/droughtmonitor/home.php
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climate change or it is a part of natural climate variability. Performing the analysis with more data sets 

will help in quantifying the uncertainties in the results, hence making them more robust for policymaking. 

There is need for additional studies to investigate why the stretched-grid global climate model (SGCM) 

performed better than the limited-area climate models (i.e. RCMs) in simulating a link between ENSO 

and southern African droughts. The most plausible reason is that the lateral boundary condition problem 

may be a major bottleneck in simulating the link in RCMs, whereas there is no boundary condition 

problem in the SGCM. However, to establish this postulation, a climate model that can function as GCM, 

SGCM and RCM is required to study the influence of boundary condition problem on simulating the link 

between atmospheric teleconnection and southern African droughts. The results of such a study will 

assist the climate model development community (especially in southern Africa) to focus their efforts 

and resources on areas that will improve the simulations of southern African droughts. 

Although, the analysis of the project has focused on characteristics of REDs in past climate and in future 

climate projection, the analysis can be easily extended to forecasting of REDs at subseasonal to 

seasonal scales. The emphases of conventional seasonal forecasting systems in southern Africa have 

been on rainfall and temperature anomalies. Incorporating the methodology and results of this project 

into the current seasonal forecasting systems will make the systems provide more relevant and useful 

information for minimising drought impacts over the subcontinent. Lastly, the results of the project can 

also be applied in studying impacts of REDs on southern African river basins and in investigating how 

land-use management (e.g. land-cover changes) can be used to mitigate the impacts. 
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1 INTRODUCTION 

1.1 Motivation 

Drought is a natural hazard with severe socio-economic impacts in many southern African countries. It 

is a threat to water management, water-dependent activities and livelihoods in southern Africa. Impacts 

of drought are usually severe in communities where the socio-economic activities of the people depend 

on the of availability of water in surface and subsurface sources. Of particular concern are regionally 

extensive droughts (REDs), which produce widespread impacts that cannot be compensated by the 

redistribution of water, food and energy production from other parts of a resource system. 

Drought can have transnational and multifaceted impacts. In 1991 and 1992, drought-depleted 

groundwater reservoirs reduced the fresh water availability and forced people to use water from 

unprotected sources. As a result, many people suffered from cholera, diarrhoea and dysentery (Calow 

et al. 2010), and more than 90% of small inland dams in the eastern part of southern Africa dried up 

(Jury and Mwalifurwa 2002). The drought was also associated with widespread food shortages across 

the affected region. 

With more than 60% of southern Africa vulnerable to drought, changes in characteristics (such as 

frequency, intensity, duration and spatial extent) of large drought events would have serious 

consequences for regional water, food and energy security. The focus of previous studies on droughts 

has largely been within South Africa (e.g. Rouault and Richard 2003) with a minimal exploration of the 

coherence of REDs in southern Africa. Meanwhile, the devastating impacts of REDs in 1991 and 1992 

call for better understanding of the spatial and temporal characteristics of REDs. This project squarely 

addresses this need. 

Few studies have investigated the characteristics of droughts in southern Africa. Richard et al. (2001) 

showed that countries in southern Africa experienced more intense and more widespread droughts from 

1979 to 1988. Rouault and Richard (2003) established the existence of decadal variability in the spatial 

extension and intensity of droughts in South Africa and found that wet years had enhanced since the 

1970s. Rouault and Richard (2003) also found that the number of dry districts in South Africa had 

increased, but there was still a substantial decadal variability. However, all these previous studies used 

either rainfall anomalies or the Standardised Precipitation Index (SPI) to characterise the droughts. 

Since they did not include evapotranspiration in characterising the droughts, they might have under-

estimated the intensity and spatial coverage of the droughts. For instance, suppose a given area 

receives the same amount of rainfall during two different seasons under different temperatures, it is 

likely that the region will be drier during the warmer season due to a higher evapotranspiration. Vicente-

Serrano et al. (2011) introduced a new a multiscale drought index, namely, the Standardised 

Precipitation Evapotranspiration Index (SPEI), which accounts for the influence of potential evapo-

transpiration in characterising droughts at various scales. However, no study has used SPEI to 

investigate characteristics of southern African droughts. The present project fills that gap. 

The mechanisms that induce droughts in southern Africa remain unclear. Rouault and Richard (2005) 

suggested that the El Niño Southern Oscillation (ENSO) might play a crucial role on South African 

droughts because most of the severe droughts that occurred in South African during the period 1901–

2004 were associated with ENSO events. Richard et al. (2001) found that some ENSO events (e.g. in 

1997–1998) were not accompanied by droughts over southern Africa. Many studies argued that other 

general circulations may have a strong influence on southern Africa droughts as well (Fauchereau et 

al. 2003; Jury and Mwafulirwa 2002; Manatsa et al. 2008, Manatsa and Matarira 2009; Manatsa et al. 

2012). Nevertheless, no studies have investigated the mechanisms that induce REDs in southern Africa 

or considered whether the models associate REDs with the correct regional or global forcing. The 

present project examines the regional and global atmospheric features that induce the REDs in 

observations and climate models. 
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As many studies continue to show that drought severity can increase with temperature (Dai et al. 2004; 

Dai 2011; Sheffield and Wood 2008; Vicente-Serrano et al. 2010a; Washington and Preston 2006), 

there is a concern that the ongoing global warming may increase the severity of droughts in southern 

Africa. Climate change projections suggest a decrease in mean rainfall and an increase in evapo-

transpiration across much of subtropical southern Africa (e.g. Christensen et al. 2007; Engelbrecht et al. 

2009; 2011). A better understanding on how this may influence future characteristics of REDs over the 

regional will foster stronger collaborations among the Southern African Development Community 

(SADC) countries on how to mitigate impacts of REDs on socio-economic activities in the future. The 

present project is in that line. 

Hence, the aim of the project was to study the characteristics of REDs over southern Africa (using SPEI 

to identify the droughts), mechanisms that control REDs, and impacts of future climate change on 

REDs. We analysed observation and climate simulation data sets to achieve the aim. Overall, the 

project has five main objectives as listed in Table 1. 

Table 1: List of the project objectives 

No. Description Chapter(s) 

1 Obtain a better characterisation of droughts over southern Africa by using a 

drought index that is based on climate moisture balance and identify REDs  

2, 7 

2 Understand the mechanisms by which remote and local forcing of drought are 

translated into climate moisture deficits 

3 

3 Evaluate abilities of climate models to represent REDs and the associated 

mechanisms 

4, 5 

4 Understand the potential impacts of climate change on REDs in southern Africa 5 

5 Examine the potential impacts of droughts in southern Africa 6 

1.2 Basis 

One of the major obstacles in drought monitoring is the lack of a unique and universal definition for 

drought. This has led to a variety of drought indices in the past century. Droughts are generally classified 

into four types, namely, meteorological, agricultural, hydrological and socio-economic droughts (Mishra 

and Singh 2010). The drought indices are used specifically to assess one or two drought types. For 

instance, the Standardised Run-off Index, Palmer Reclamation Drought Index, Hydrological Drought 

Index, Surface Water Supply Index and Palmer Drought Severity Index (PDSI) are mainly used to 

monitor hydrological drought. The Vegetation Condition Index, Crop Moisture Index, and Drought 

Monitor are mainly used to monitor agriculture drought. The Percentage of Normal, SPI, Deciles and, 

more recently, the SPEI are used for meteorological drought. The socio-economic drought is a more 

complex concept to quantify; hence, no index has been defined to monitor it yet. 

The most used drought index is the PDSI (Palmer 1965). It employs precipitation, evapotranspiration, 

soil moisture and temperature in determining moisture supply and demand (Mishra and Singh 2010). 

Modified versions of the PDSI have been introduced and adapted to monitor different types of drought 

(i.e. Palmer Hydrological Drought Index in Karl 1986; modified PDSI in Heddinghaus and Sabol 1991; 

the self-calibrated PDSI in Wells et al. 2004; and the Crop Moisture Index in Palmer 1968). However, 

the major weakness of the PDSI is that its temporal scale is limited from nine to 12 months (Sivakumar 

et al. 2011; Vicente-Serrano et al. 2010a; Vicente-Serrano et al. 2011). 
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SPI, a multiscale drought index developed by Mckee et al. (1993), is another popular drought index for 

detecting meteorological and agricultural drought at the three- and six-month scales, as well as 

hydrological drought at the six-, 12-, 24- and 48-month scales (Hayes et al. 1999; Vicente-Serrano and 

López-Moreno 2005; Vicente-Serrano et al. 2010a; 2010b). SPI can detect wet and dry events occurring 

simultaneously at different time scales. However, the main shortcoming of SPI is that it uses only one 

climate variable, namely, rainfall for monitoring droughts (Sivakumar et al. 2011; Vicente-Serrano et al. 

2011). It assumes rainfall has a stronger influence on droughts than other climate variables such as 

temperature, wind speed, wind direction and potential evapotranspiration; hence, these variables are 

neglected. Meanwhile, other climate variables such as temperature, wind, and humidity have been 

shown to have equal, if not more important, influence on drought (Dai 2011). 

However, to overcome the shortcomings of SPI, Vicente-Serrano et al. (2010a) proposed a new drought 

index, namely, the SPEI, which depends on the potential evapotranspiration (PET). SPEI is a 

modification of the SPI. SPEI accounts for the effect of temperature variability in monitoring droughts at 

different time scales. As a result, SPEI has the capability to detect the temporal and geographical extent 

of droughts. This makes it a very good tool for drought monitoring and for accessing the future impact 

of global warming on droughts. The present project adopted SPEI in characterising southern African 

droughts. 

1.3 Outline 

This report first presents the spatial and temporal characteristics of REDs as observed over southern 

Africa (Chapter 2), then analyses relationships between the REDs and various large-scale atmospheric 

teleconnections (Chapter 3). It switches to the results of the climate models with Chapter 4 evaluating 

the capability of the models to simulate the characteristics of the droughts and the relationship between 

the droughts and the large-scale global climate indices. Chapter 5 projects the degree to which 

anthropogenic emissions may alter the characteristics of the droughts in the future climate, while 

Chapter 6 shows the potential impacts of land-use changes on droughts over the subcontinent in the 

future. Chapter 7 presents the new drought monitoring system over southern Africa. Concluding 

remarks and further discussions of possible implications of the results are given in Chapter 8. The lists 

of project outputs are included in the Bibliography. 
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2 CHARACTERISTICS OF REDs OVER SOUTHERN AFRICA 

2.1 Introduction 

Drought is a recurring extreme climate event characterised by below-normal moisture availability over 

a period of months to years. However, most previous studies on southern African droughts (e.g. Richard 

et al. 2001; Rouault and Richard 2003) have used either rainfall anomalies or the SPI to characterise 

droughts. Since they did not include evapotranspiration in characterising droughts, these studies might 

have underestimated the intensity and spatial coverage thereof. In addition, the emphases of the 

previous studies have been on droughts within South Africa, despite the devastating impacts of REDs, 

especially in 1991 and 1992. Hence, to fill these gaps, this study presents the characteristics of droughts 

over the entire southern Africa using the SPEI, a multiscale drought index based on the climate water 

balance (i.e. precipitation minus potential evaporation). 

All the results presented in this chapter are based on analysis of the observation data sets. The 

descriptions of the data sets and the methods used in analysing the data sets are given in Section 2.2. 

The results of the analyses are discussed in Section 2.3 and Section 2.4. Section 2.3 focuses on drought 

modes, while Section 2.4 concentrates on drought patterns. A concluding remark is given in Section 

2.5. For a more comprehensive and technical discussion of the results, readers are referred to Ujeneza 

and Abiodun (2014), Meque (2015), and Meque and Abiodun (2017). 

2.2 Data and Methods 

2.2.1 Data 

Two gridded climate observation data sets (consisting of monthly precipitation and temperature data) 

were analysed over the southern African region (0°E–45°E, 2°S–37°S; Figure 1). The first data set was 

obtained from the Climate Research Unit (CRU) version 3.0 (Mitchell and Jones 2005). The CRU data 

set is based on station data regridded to a 0.5° × 0.5° spatial resolution. The second data set was 

obtained from the University of Delaware (UDEL) (Legates and Willmott 1990). However, most of our 

analyses used the CRU data set. We only used the UDEL data set to examine the sensitivity of the 

results in some cases. 

 

Figure 1: The study domain showing the topography of southern Africa 
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2.2.2 Characterising droughts using the SPEI 

We employed the SPEI developed by Vicente-Serrano et al. (2010a; 2010b) to characterise droughts 

over southern Africa. The SPEI is similar to the SPI (McKee et al. 1993), which is one of the most 

common drought indices currently in use worldwide. However, while the SPI requires only monthly 

rainfall totals for computation, the SPEI requires potential evapotranspiration in addition to rainfall. The 

inclusion of potential evapotranspiration in the SPEI computation is believed to take the global warming 

effect into account, which yields better results in terms of drought identification. 

The SPEI been being used to study drought over different regions around the world (e.g. Abiodun et al. 

2013; McEvoy et al. 2012; Tao et al. 2014), including our study area (e.g. Araujo and Abiodun 2014). 

The index is usually obtained by fitting a log-logistic (Gamma or Pearson III) distribution to climatic water 

balance (D), which is the relationship between precipitation and PET. The value of SPEI typically ranges 

from −3 to 3 in depicting the intensity of dryness (drought; negative values) to wetness (positive values). 

For more details on how to calculate SPEI, readers are referred to Vicente-Serrano et al. (2010). For 

our study, the SPEI library (Beguería and Vicente-Serrano 2013) in the R software was used to compute 

the SPEI over each grid point in southern Africa at three- and 12-month scales using the Thornthwaite 

(1948) method, which uses monthly mean temperature for calculating PET. A more physically based 

method to calculate the PET (such as the Penman–Monteith) may be preferable, but the Penman–

Monteith equation requires more data (e.g., wind speed and solar radiation) for its computation; 

unfortunately, these data sets are not available over our study area. 

2.2.3 Identification of REDs 

To identify the REDs, we used two approaches to analyse the spatial coherence of the southern African 

droughts. The approaches are the Principal Component Analysis (PCA) and Self-Organising Maps 

(SOMs). Using two approaches helped us establish the robustness of the RED characteristics. 

However, for clarity sake, the REDs identified using PCA will be called drought modes while those 

obtained with SOMs technique will be designated as drought patterns. 

The PCA, which reduces the dimensionality of a data set and uncovers hidden structures in the data 

set, has been used in many studies to extract useful information from huge or confusing data sets (i.e. 

Giannini et al. 2008; Manatsa et al. 2012; Richard et al. 2001). PCA first computes the co-variance 

matrix of a standardised normalised variable (e.g. SPEI) and then computes the eigenvectors and 

eigenvalues of the co-variance matrix. The eigenvectors are therefore ordered according to the 

magnitudes of their associated eigenvalues. The first principal factor is the eigenvector that has the 

highest magnitude, and hence, represents the mode with the highest variance in the data set. Since 

PCA is a non-parametric method, it can be used on data with any distribution. In our study, we used 

PCA with the varimax rotated option to identify the spatial coherence (modes) in temporal variability of 

the SPEI. Previous studies (Jolliffe 1995; Jolliffe et al. 2003; Richman 1986) have been shown that 

rotated PCA increases physical relevance and interpretation of PCA. The rotated PCA was applied 

separately on the SPEI data, and the first four principal factors of the PCA (hereafter, PF1, PF2, PF3 

and PF4) were retained and discussed as the most significant drought modes (hereafter, DM1, DM2, 

DM3 and DM4, respectively). 

The SOM algorithm, a class of unsupervised neural networks, objectively clusters objects according to 

their similarity and, therefore, reduces the dimensionality of a given data set (Agarwal and Skupin 2008; 

Oettli et al. 2014). It is similar to the k-means clustering method (Everitt et al. 2011), but unlike in the 

k-means, the SOM algorithm creates an order between the units. For instance, Node 2 in a 3 × 4 SOM 

array is close to Node 1 and Node 3, showing a clear transition between them; but the same notion is 

not valid in the k-means clustering where the relationship between different clusters is not indicated 

(Agarwal and Skupin 2008; Wehrens 2011). Using the SPEI values as the input data, the SOM analysis 

was performed with the SOM_PAK 3.2 software (Kohonen et al. 1995). The SOM_PAK software was 

freely obtained from the Helsinki University of Technology (http://www.cis.hut.fi/research/som_pak/). 

Although the choice of the number of SOM nodes is subjective (Brown et al. 2010; Cavos 1999), we 

http://www.cis.hut.fi/research/som_pak/
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reasoned that 12 SOM archetypes (3 × 4) were adequate to describe the main drought patterns in 

southern Africa and, moreover, the same array was previously used for the same area of study by 

Tadross et al. (2005), Mackellar et al. (2010) and Maure (2013). 

2.2.4 Wavelet analysis 

We applied wavelet analysis to study the temporal characteristic of the drought modes. The wavelet 

analysis and spectral analysis are two widely used methods for studying the time series of climate 

variable in frequency domain (Farge 1992; Labat 2005). Here, we used wavelet analysis instead of 

spectral analysis because wavelet analysis has various advantages over the spectral analysis in 

preserving local, non-periodic, multiscaled features. For instance, wavelet analysis can be used to study 

variability at different scales and does not need a stationary series (Ideião and Santos 2005). It has 

been used to uncover periodic cycles in rainfall data (Jury and Enfield 2002; Jury and Mwafulirwa 2002), 

to compare different drought indices (Ntale and Gan 2003), to study interannual variability of sea surface 

temperatures (i.e. Rao et al. 2002), to examine the link between the variances of ENSO and monsoon 

(Torrence and Webster 1999), and to investigate the influence of ENSO and the Indian Ocean Dipole 

(IOD) on summer rainfall in Zimbabwe (Manatsa and Matarira 2009). In the present study, we used the 

wavelet analysis to uncover periodic cycles in the principal factor scores (i.e. time series) and used the 

wavelet coherence to study the link between each score and climate indices. 

2.3 Characteristics of Drought Modes Over Southern Africa 

2.3.1 The spatial characteristics 

The PCA results for the three- and 24-month SPEI, respectively, are presented in Figure 2 and Figure 

3. The loadings of the first four principal factors (i.e. PF1, PF2, PF3 and PF4) are presented to show 

the most dominant drought modes (i.e. DM1, DM2, DM3, and DM4). The principal factors jointly explain 

46% and 50% of the total variance in the three- and 12-month SPEI, respectively. However, the drought 

modes have different spatial-temporal structures. 

DM1, which explains 13.9% in the three-month SPEI and 19.1% in the 12-month SPEI, shows its core 

(highest positive loading: 0.8) over south-west southern Africa (i.e. over the border of South Africa, 

Botswana and Namibia) (Figure 2). This is the driest area in southern Africa with an annual rainfall of 

less than 400 mm (Richard and Poccard 1998). Various studies have reported drought occurrence over 

this area (Nash and Endfield 2002; Nicholson et al. 2001; Thomson et al. 2003; Usman and Reason 

2004). The correlation between DM1 (i.e. PF1 score) and the SPEI series over the area is high (r > 0.9). 

DM2 explains 12.2% and 9.5% variance in three- and 24-month SPEIs, respectively, and shows its core 

(highest positive loading: 0.8) over Zimbabwe but negative loadings (about −0.8) over the Western 

Cape. The correlation coefficient between DM2 and SPEI series over Zimbabwe is high (r > 0.8). 

DM3 explains about 11% variance in three- and 12-month SPEIs and shows its core (highest positive 

loadings: 0.8) over Tanzania but negative loadings (about −0.3) over the south-eastern part of southern 

Africa. The correlation between the DM3 and SPEI series over Tanzania is high (r = 0.88). 

DM4 explains about 9% and 10% variance in three- and 12-month SPEIs, respectively, and shows 

positive loadings (about 0.7) over Angola but negative loadings (about −0.3) over the south-eastern 

part of southern Africa. There is a strong correlation (r > 0.8) between the DM4 score and the SPEI over 

Angola. 

Since the principal factors are orthogonal, the temporal characteristics of the four drought modes differ, 

meaning that each drought mode is unique. This suggests that the drought modes may be driven by 

different sets of atmospheric processes. These processes are discussed in Chapter 3. 
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Figure 2: The spatial-temporal variability of SPEI (at three-month scale) over southern Africa. The left panels show 
the rotated PCA loadings for the SPEI (i.e. the spatial structure of the drought modes); the percentage of variance 
explained by each principal factor is indicated. The right panels show the corresponding principal factor score (i.e. 
the temporal structure of the drought mode) and the regional SPEI series averaged over the red box (principal 
factor region) in the left panel; the correlation (r) between the principal factor score and the SPEI series are 
indicated 
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Figure 3: The spatial-temporal variability of SPEI (at 12-month scale) over southern Africa. The left panels show 
the rotated PCA loadings for the SPEI (i.e. the spatial structure of the drought modes); the percentage of variance 
explained by each principal factor is indicated. The right panels show the corresponding principal factor score (i.e. 
the temporal structure of the drought mode) and the regional SPEI series averaged over the red box (principal 
factor region) in the left panel; the correlation (r) between the principal factor score and the SPEI series are 
indicated 
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To test the robustness of drought modes, we compare the SPEI drought modes with the PDSI drought 

modes in Figure 4. The figure shows a good agreement between drought modes obtained with the two 

drought indices (SPEI and PDSI). For example, the percentage of total variance of the four principal 

factors is almost the same in both cases and the structures of the drought modes are similar. The major 

difference is in DM4. While the peak of DM4 is located over Angola in the SPEI results, it is located 

over the Democratic Republic of Congo (DRC) in the PDSI results (Figure 4). 

 

Figure 4: A comparison between the drought modes (i.e. principal factors) obtained using SPEI (left panels) and 
PDSI (right panels) at a one-month scale 

2.3.2 Temporal variability and structure of the drought modes 

Each drought mode features decades of continuous dry and wet conditions (Figure 3). DM1 features 

wet conditions in most of the first three decades (1940–1979) of the study period and dry conditions in 

most of the last three decades (1980–2009). However, the peaks of the dry conditions (droughts) are 

in the 1940s, 1980s, 1990s and 2000s. 

Unlike DM1, DM2 frequently and uniformly alternates the wet and dry conditions over the study period 

(1940–2009). Hence, DM2 features short drought episodes in each decade. 
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With DM3, the main droughts (centred over Tanzania) occurred in the decades of the 1940s, 1950s, 

1960s, 1990s and 2000s. The wet and dry conditions over Tanzania are evenly distributed within the 

study period, but the droughts showed the highest intensities and longest durations in the first and last 

two decades (i.e. 1940–1960 and 1980–2000). 

Finally, with DM4 (centred over Angola), the main droughts occurred in the decades of the 1940s, 1970s 

and 1980s, with a near normal condition in the period from 2000 to 2009. 

Figure 5 presents the decadal drought frequency of the drought modes (i.e. the number of months per 

decade in which the core area of the drought mode experienced at least a moderate drought; 

SPEI < −1.0). The decadal drought frequency generally decreases from the 1950s to the 1970s and 

increases from the 1970s through the 2000s. However, there are some notable differences among the 

drought modes on the drought frequencies. For instance, with the three-month scale (Figure 5a), the 

drought modes featured their minimum drought frequency in different decades. While the minimum 

drought frequency of DM1 occurred in the 1950s, that of DM2 and DM3 occurred in 1960s and 1970s, 

respectively. The decade for the maximum drought frequency also differs. DM1 featured the maximum 

drought frequency in the 1990s, but DM3 and DM4 featured it in the 1980s and 2000s, respectively. 

The differences among the drought modes are more pronounced at 12-month scale than at three-month 

scale. Nevertheless, the general increase in decadal drought frequency since 1970 (at both three-month 

and 12-month scale) is consistent with the Intergovernmental Panel on Climate Change (IPCC) (2007) 

report, which attributed the increase to global warming. 

 

 

Figure 5: Decadal variation of the three- and 12-month drought frequency over the drought modes core area 
(indicated with red boxes in Figure 2 and Figure 3, respectively) 

Figure 6 presents the wavelet power spectra (WPS) and the global wavelet spectrum (GWS) of the 

principal factors scores (for three-month SPEI) to reveal temporal cycles in the temporal variability of 

the drought modes. The scores are characterised by different cycles with different power. In general, 

the most significant power is in the two- to eight-year cycles. There is also significant power in the less 

than one-year cycles; but, since these cycles represent the subseasonal to seasonal scale variations, 

they will not receive our attention in this study. 

In DM1 (Figure 6a), the GWS shows the highest variance for the 16-year cycle. This cycle continuously 

features high power (> 0.5 GWS) from 1940 to 1990 but has small power (< 0.5 GWS) after 1990, 
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suggesting that the cycle may play a weak role in the post-1990 DM1 droughts (Figure 4a). On the other 

hand, the two- to eight-year and 35-year cycles show significant power during the post-1990 droughts. 

The 35-year cycle shows significant power since 1975, while the two- to eight-year cycles show 

significant power in the 1940s, 1970s, 1990s and 2000s. Although, in GWS, these cycles have lower 

power than the 16-year cycle period, they may contribute significantly to the intensification of DM1 

droughts after 1990. 

The GWS and WPS of DM2 show similar structures to that of DM1, but with some notable differences 

(Figure 6b), especially in the structure two- to eight-year cycles. For instance, the DM2 GWS shows a 

local peak for the two- to eight-year cycles, and the DM2 WPS two- to eight-year cycles show significant 

power in the 1950s and 1980s, instead of the 1940s and 1970s in DM1 WPS. Nevertheless, the post-

1990 structure of the two- to eight-year cycles is the same in DM1 and DM2. 

The GWS and WPS of DM3 differ from those of DM1 and DM2. First, the GPS shows two peaks: a 

higher peak for the 32-year cycle and a lower peak for the two- to eight-year cycle. The two- to eight-

year cycle shows its most significant powers (> 2 GWS) before 1970 and its least power (< 0.5 GWS) 

after 1990. 

The GWS of DM4 shows a peak for the eight-year cycle, which exhibits continuous power anomalies 

between 1940 and 1990, and significant power for the two- to four-year cycles in 1940s and 1980s. 

 

 

 

(b) DM2 

(a) DM1 

(c) DM3 
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Figure 6: WPS (using the Morlet wavelet) of (a) DM1, (b) DM2, (c) DM3 and (d) DM4. Cross-hatched with line 
indicate the cone-of-influence. The thick black line contour is the 5% significant level 

2.4 Characteristics of Drought Patterns Over Southern Africa 

2.4.1 Spatial distribution 

Figure 7 presents the SOM classification (3 × 4 nodes array) of SPEI over southern Africa to depict the 

major drought patterns over the subcontinent. As expected of any SOM result, the nodes at the four 

edges of the array (i.e. Nodes 1, 4, 9 and 12) show the most extreme patterns, while other nodes feature 

patterns that provide a continuous transition among the four extreme patterns. Node 1 shows a 

widespread dry condition (negative SPEI) over the entire southern Africa, except along the tropical 

eastern coast (north-eastern Mozambique and eastern Tanzania) and south-western tip of South Africa. 

However, the core of the dry conditions (SPEI < −1.0) is over the Caprivi Strip (northern Botswana, 

north-eastern Namibia, south-eastern Angola and south-western Zimbabwe). 

In contrast to Node 1, Node 12 shows a wet condition (positive SPEI) over the entire southern Africa, 

and the core of the wet condition (SPEI > 1.0) is located over northern Botswana. Node 9 shows a 

dipole pattern, with dry conditions located north of 20°S and the wet condition located south of 20°S. 

The core of the dry condition extends from northern Mozambique to southern DRC, while the core of 

the wet condition is over the Drakensberg mountain ranges (in Lesotho). 

Node 4 is a mirror image of Node 9, except that the core of the wet condition extends from Mozambique 

to Tanzania while the core of the dry condition is over the northern part of South Africa. The most 

frequent drought patterns are Node 3 and Node 12, each accounting for about 11% of the data set. The 

driest drought pattern is Node 1 (i.e. the mean SPEI = −0.53) while the wettest drought pattern is 

Node 12 (i.e. mean SPEI = +0.53). 

In general, the drought patterns may also be broadly classified into three conditions: the all-dry patterns 

(Nodes 1, 2, 5, and 6), the all-wet patterns (Nodes 7, 8, 11 and 12) and the dipole patterns (Nodes 3, 

4, 9 and 10). To check the robustness of the RED patterns, we repeated the SOM analysis separately 

for each season, i.e., December-January-February (DJF), March-April-May (MAM), June-July-August 

(JJA) and September-October-November (SON). The classification of the drought patterns for each 

season (not shown) roughly remains the same as in Figure 7, especially the nodes at the four edges of 

the array (i.e. Nodes 1, 4, 9 and 12). 

We found a good agreement between the SOM drought patterns (Figure 7) and the PCA drought modes 

(Figure 2). All four drought modes (DM1, DM2, DM3 and DM4) in Figure 1 appear in the 12 drought 

patterns shown in Figure 6. For instance, the DM1 roughly corresponds to Node 2 and Node 11, the 

DM2 to Node 5 and Node 8, the DM3 to Node 4 and Node 9, and the DM4 to Node 6 and Node 7. 

Nevertheless, some of the drought patterns are missing in the drought modes. For instance, the patterns 

of Node 1 and Node 12, which depict dry and wet conditions (respectively) over the entire southern 

Africa, are not in the drought modes. In addition, Node 7 that features a wet/neutral condition is also 

missing in the drought modes. This may be because the PCA classification only accounts for 50% of 

(d) DM4 
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the SPEI variations over southern Africa. Hence, the drought patterns classification may provide more 

robust and more extensive characteristics of the REDs than what the drought modes provide. 

 

Figure 7: The SOM array (3 × 4 nodes) of the seasonal SPEI (three-month scale). Each node represents a drought 
pattern over southern Africa in 1950–2013. Negative SPEI corresponds to a dry condition while positive values 
correspond to a wet condition. In each panel, the node tag is on the upper left corner of the panel, the frequency 
of occurrence (%) of the node is on the lower left corner, and the mean SPEI (over southern Africa) is on the lower 
right corner 

2.4.2 Temporal variations of the SOM drought patterns 

Figure 8 shows the seasonal variation of the drought patterns (presented in Figure 7) and reveals that 

the drought patterns (except Node 5) can feature in any season. However, each drought pattern has 

preference for a season. Node 1 has preference for austral autumn (MAM; eight events), while Node 12 

has preference for austral winter (JJA; 12 events). Node 10 has its highest frequency in austral spring 

(SON; ten events), while Node 4 and Node 9 mostly occur in summer (DJF; six and eight events, 

respectively). Conversely, Node 5 does not occur in summer (DJF), Node 6 rarely occurs in autumn 

MAM (one event), while Node 10 and Node 11 hardly feature in austral winter (JJA; one event each). 

The decadal frequency of the drought patterns (Figure 9) suggests a general shift in drought patterns: 

from all-wet patterns (in the earlier three decades, i.e. 1950–1970) to all-dry patterns (in the last three 

decades, 1990–2010). For instance, there has been a positive trend (increase) in the decadal frequency 

of Nodes 2, 5 and 6 since 1960, but a negative trend (decrease) in the decadal frequency of Nodes 2, 

8 and 12. While Nodes 2 and 6 have been the most dominant drought pattern since 1990, Nodes 8 and 

12 have not occurred since 1990. However, there is no trend in the decadal frequency of the dipole 

patterns. Figure 9 also show that the drought patterns have their maximum decadal frequency in 

different periods. For example, Nodes 1 and 9 feature their maximum decadal frequency in 1990 (nine 

and six events, respectively), Node 11 in 1950 (nine events), and Node 3 in 1980 (nine events). 



14 

 

Figure 8: The seasonal variation of the drought patterns (shown in Figure 7). The total number of events for each 
drought pattern is indicated in the panel 

 

Figure 9: The decadal variation of the drought patterns (shown in Figure 7). The total number of events for each 
drought pattern is indicated in the panel 

2.4.3 Sensitivity to data sets 

To investigate the sensitivity of decadal variability results to data sets, we repeated the SOM analysis 

using another observation data set obtained from the UDEL (Legates and Willmott, 1990). The results 

for the UDEL data set (shown in Figure 10) are generally the same as for the CRU data set. For 

instance, the spatial distribution of the extreme drought patterns is the same as for the CRU data set 

(except for the different arrangement of the patterns), and the percentage frequency of the patterns is 

comparable with the corresponding patterns of the CRU data set. More importantly, the UDEL data set 

agrees with CRU data on the shift in southern African drought patterns, from all-wet patterns (in the 

earlier three decades, i.e. 1950–1970) to all-dry patterns (in the last three decades, 1990–2010). For 

instance, UDEL data shows that while Node 12 has been dominant since 1990, Node 1 has not featured 
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since 1990. The few differences seen between UDEL and CRU results might be due to the difference 

in time coverage as UDEL data covers 1950–2010 and CRU data covers 1950–2013. 

2.4.4 Sensitivity to drought indices 

To examine the influence of evaporation on drought patterns, we repeated the SOM analysis using SPI 

data (which uses only rainfall to monitor droughts). The SPI was computed according to Mckee et al. 

(1993) using the CRU rainfall data. The results (Figure 11) show that the drought patterns from SPI are 

similar those from SPEI (compare Figure 6 and Figure 11). For example, in agreement with SPEI, the 

SPI indicate that the drought patterns may also be broadly classified into three groups: the all-dry 

patterns (Nodes 3, 4 and 7), the all-wet patterns (Nodes 6, 9, and 10) and the dipole patterns (Nodes 

1, 2, 3, 5, 8, 11 and 12). 

In addition, the percentage contribution of each SPI drought pattern in Figure 11 is comparable to its 

corresponding SPEI drought pattern in Figure 7. However, the decadal variability of the SPI drought 

patterns differs from that of SPEI, at least in three ways. First, the SPI does not reproduce the general 

shift in the southern African drought patterns from all-wet patterns to all-dry patterns. Second, in contrast 

to the SPEI, SPI shows that the all-wet patterns (Node 9 and 10; Figure 11) have occurred more than 

ten times in the last decades. Third, SPI has not featured the driest drought pattern (Node 4; Figure 11) 

since 2000, whereas, SPEI has feature it seven times. The comparison of SPEI and SPI results 

suggests that the general shift in the southern African drought pattern may be due to influence of evapo-

transpiration on the drought identification; the shift is consistent with the impact of global warming on 

the southern African climate (i.e. Tadross et al. 2005). Hence, the comparison further provides 

compelling evidence that inclusion of temperature in drought monitoring (i.e. in drought index) may give 

a better understanding of the characteristics and dynamics of southern African droughts. 

 

(a) 
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Figure 10: (a) The SOM classification of drought patterns obtained with the UDEL data set (upper panel); and (b) 
the corresponding decadal frequency of the drought patterns. The labels are as in Figure 7 and Figure 9, 
respectively 

 

 

(a) 

(b) 
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Figure 11: (a) The SOM classification of drought patterns obtained with SPI; and (b) the corresponding decadal 
frequency of the drought patterns. The labels are as in Figures (1) and (3), respectively 

2.4.5 Persistence and transition of the drought patterns 

Figure 12 shows that the general shift in the drought patterns (i.e. from all-wet to all-dry patterns) 

features in all seasons, although it is most remarkable in austral winter (JJA) and least notable in austral 

summer (DJF). No season has featured an all-wet pattern (e.g. Node 12) in the last three years (2011–

2013), meaning that each season has experienced either a persistently dry condition or a dipole 

condition, or a transition between the two conditions during this period. This suggests that the 

subcontinent has been experiencing a nett drying condition over the period. 

At the interseasonal scale (Figure 12a and Figure 12b), although no drought pattern has persisted for 

a whole year, some drought patterns have persisted for more than a season (Figure 12a). In this regard, 

Nodes 7 and 4 have the longest length of persistency. They persisted for three seasons (DJF, MAM 

and JJA) in 1966 and 1986, respectively. However, Node 12 has the highest number of persistency; it 

persisted eight times (i.e. about 30% of its total occurrences). On the other hand, Node 10 has the 

smallest number of persistency (only once), making it is the most transient drought pattern. However, 

each drought pattern has particular drought patterns it can transit to and those it may not transit to 

(Figure 12b). The most common transition is from Node 10 to Node 11, and from Node 11 to Node 12. 

Each of these transitions occurred seven times in the past. Hence, there is a 30% possibility that 

Node 10 will always transit to Node 11, and about a 40% probability that Node 11 will always transit to 

Node 12. However, Node 10 has never transited to Node 4 or to Node 8, while Node 11 has never 

transited to Nodes 1, 2, 4, 6 or 9. In addition, there is a possibility for a two-way transition between two 

extreme drought patterns. For instance, there is one case of Node 1 transiting to Node 12 and five 

cases of Node 12 transiting to Node 1. 

At an interannual scale (Figure 12a and Figure 12c), Node 12 still has the highest number of persistency 

(six cases), but four nodes (Nodes 5, 8, 10, 11 and 12) have the longest period of persistency. Node 10 

persisted for three austral spring periods (1953–1955), Nodes 12 and 5 persisted for three austral winter 

periods (1953–1955 and 2001–2003, respectively), while Node 11 lingered for three austral autumn 

periods (1953–1955). 

(b) 
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Among the drought patterns, only Node 4 never featured any interannual persistency. However, the 

interannual transition among the drought patterns is less organised than that of the seasonal transition. 

The most common interannual transition is from Node 5 to Node 12; it has occurred six times in the 

past. The dynamics behind the transition and persistence of the drought pattern is not yet clear and is 

beyond the scope of present study, but a good understanding and application of the persistency and 

transitioning may help improve the seasonal and interannual forecasts of droughts over southern Africa. 

2.5 Conclusion 

In the chapter, we have discussed the spatiotemporal characteristics of southern African droughts. We 

used SPEI to characterise the droughts, rotated PCA to obtain the four dominant drought modes (or 

modes), and the SOM technique to classify the spatial distribution of the droughts into 12 major patterns. 

The results can be summarised as follows: 

• The PCA results revealed that about 50% of SPEI variance over southern Africa can be represented 

with four main drought modes. The drought modes (DM1, DM2, DM3 and DM4) feature their 

maximum variance over the south-western part of southern Africa (i.e. the common border of South 

Africa, Botswana and Namibia), Zimbabwe, Tanzania, and Angola, respectively. 

• The SOM analysis suggests that the drought patterns can be generally classified into three groups. 

The first group (all-dry patterns) shows a dry condition over the entire southern Africa, the second 

group (all-wet patterns) shows a wet condition over the whole region, and the third group (dipole 

patterns) shows both wet and dry conditions over the subcontinent. 

• The SOM drought patterns may give a more robust characteristic of the RED than the PCA drought 

modes; all the PCA drought modes fall within the dipole patterns of the SOM classification. 

• Although the drought patterns can occur in any season, some drought patterns have preference for 

seasons. While some droughts patterns persist from season to season, others easily transit to 

another pattern in the following season. 

• The decadal variability of SPEI drought patterns suggests a general shift in the southern African 

drought, from an all-wet condition in 1950s–1970s to all-dry condition in 1990 possibly due to the 

global warming. 

• There is a good agreement between the SPEI and SPI drought patterns, but the SPI drought patterns 

do not feature the general shift in the southern African drought, from all-wet condition all-dry, a 

general shift in the southern African drought, from all-wet condition in 1950s–1970s to all-dry, 

suggesting that SPI may underestimate the influence global warming on the droughts. 
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Figure 12: The persistence and transition of the SPEI drought patterns: (a) the seasonal and yearly occurrences of the drought patterns; (b) the interseasonal statistics; and 
(c) interannual statistics. In panel (a), the numbers (1–12) indicate the tags of the drought patterns; the letters (W, D and L) indicate the general description of the drought patterns 
(W = all-wet; D = all-dry; L = dipole); and the colours show the spatial mean SPEI for the drought patterns. In panel (b) and (c), the numbers indicate the number of time the 
drought patterns on y-axis transit to the drought patterns on the x-axis; and the colours indicate the percentage of the transition 

% 



 

20 

3 PHYSICAL MECHANISMS CONTROLLING REDs 

3.1 Introduction 

The cause of variability in southern African droughts remains controversial. While some studies 

suggested that the rainfall variability is mainly influenced by the ENSO (Fauchereau et al. 2003; 

Makarau and Jury 1997; Mason 2001; Misra 2001; Philippon et al. 2011), some studies found no 

relationship between the southern African winter rainfall and ENSO (Blamey and Reason 2007; Reason 

and Rouault 2005). Many studies have shown that other general circulations may as well have stronger 

influences on southern African rainfall. For instance, the IOD is said to have a strong relationship with 

seasonal rainfall over Zimbabwe (Manatsa et al. 2008) and southern African summer rainfall 

(Fauchereau et al. 2003; Manatsa and Matarira 2009; Manatsa et al. 2012). Jury and Mwafulirwa (2002) 

found that the quasi-biennial oscillation influences Malawian summer rainfall. Furthermore, Reason and 

Rouault (2002) and Reason et al. (2002) found a link between western South African winter rainfall and 

the Antarctic Oscillation (AAO) and central south Atlantic sea surface temperature (SST). The lack of 

agreement among previous studies on the causes of southern African droughts calls for more studies 

on understanding the atmospheric dynamics that modulate drought occurrence and severity over the 

region. The present study employs a drought index (that incorporates the influence of rainfall and 

potential evaporation) in investigating the influence of atmospheric teleconnection on the southern 

African droughts, with an emphasis on the REDs. 

In Chapter 2, we identified REDs over southern Africa using SPEI, and described the spatial and 

temporal characteristics of the REDs (i.e. drought modes and patterns). In this chapter, we discuss the 

physical mechanism that control REDs over southern Africa. The discussion is in three parts. In the first 

part (Section 3.2), we investigate the link between ENSO and spatial distribution of summer droughts 

(SPEI). In the second part (Section 3.3), we present the influence of teleconnections on the drought 

modes, and in the third part (Section 3.4), we discuss the role of the teleconnection on the drought 

patterns over southern Africa. The data and methods used to obtain the results are described in each 

section. A more comprehensive and technical discussion of the materials presented in this chapter can 

be obtained in Meque and Abiodun (2014), Ujeneza and Abiodun (2014), Meque (2015), and Meque 

and Abiodun (2016). 

3.2 The Link Between ENSO and Summer Drought in Southern Africa 

The CRU observation data set and the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim Reanalysis data set (ERAINT) (Dee et al. 2011) were analysed for the study. 

We calculated the SPEI separately for each data set over the study period. To assess the impact of 

ENSO on droughts across southern Africa, we used the Multivariate ENSO index (MEI) (Wolter and 

Timlin 2011) as a proxy of El Niño and La Niña years. The MEI data for the study period were obtained 

from the NOAA Earth System Research Laboratory website (http://www.esrl.noaa.gov/psd/enso/mei/

table.html). The MEI is a bimonthly ENSO index based on six variables (pressure, zonal and meridional 

winds, SSTs, surface air temperature and total cloudiness fraction) observed over the tropical Pacific 

region. Positive MEI values represent El Niño conditions, while negative MEI values indicate La Niña 

conditions. El Niño and La Niña years were identified as seasons in which the index was +0.5 above 

and −0.5 below, respectively. 

The MEI has been previously applied to study the connection between ENSO and drought in many 

parts of the world (e.g., Andrews et al. 2004; Hallack-Alegria et al. 2012) including our study region 

(e.g., Fauchereau et al. 2009; Boulard et al. 2013). Correlation analysis (Wilks 1995) is one of the most 

common methods used to study the relationship between two variables. We performed the correlation 

between SPEI values and MEI values. The correlation is performed between DJF MEI and SPEI values 

over southern Africa (Figure 13). Further analysis was performed over the three selected areas (see 

Figure 13): Limpopo area (LP: 27°–32°E, 20°–25°S), North-eastern South Africa (NS: 19°–25°E, 30°–

26°S) and over north-eastern highlands of Tanzania (TZ: 35°–39°E, 5°–2°S). 

http://www.esrl.noaa.gov/​psd/enso/mei/​table.html
http://www.esrl.noaa.gov/​psd/enso/mei/​table.html
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Figure 13: The simulation domain of Coordinated Regional Climate Downscaling Experiment (CORDEX) Africa 
showing the African topography (metres) and the southern African domain used in this study. The boxes inland 
(LP: 27°–32°E, 20°–25°S; NS: 19°–25°E, 30°–26°S; and TZ: 35°–39°E, 5°–2°S) indicate the three subregions (i.e. 
Limpopo area, north-eastern South Africa and north-eastern highlands of Tanzania, respectively) in which time 
series data is investigated 

3.2.1 ENSO and drought coverage over Southern Africa 

Figure 14 shows a strong correlation between ENSO and droughts over southern Africa in CRU and 

ERAINT data sets. In CRU (Figure 14a), the correlation between ENSO and SPEI shows a marked 

dipole pattern over southern Africa with positive values (r ≥ 0.6) over the eastern part of the tropical area 

(north of 15°S) and negative values (r ≤ −0.6) over the subtropical area (south of 15°S). The correlation 

is weak (r = ±0.3) over the western part of the tropical area. It is also weak over the south-western tip 

of southern Africa, possibly because this area experiences an austral winter mode (Reason et al. 2002; 

Reason and Jagadhesha 2005; Reason and Rouault 2005; Philippon et al. 2011; Vigaud et al. 2012). 

 

 

Figure 14: The coefficient of correlation between ENSO and drought (SPEI) over southern Africa in summer (DJF, 
1989–2008), as reported by (a) CRU and (b) ERAINT. The contours show areas where the correlation is significant 
at 95% using the t-test. The corresponding 850 hPa winds are shown in the background; the arrow at lower left 
corner indicates 10 m/s wind speed 
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When compared with CRU data, ERAINT (Figure 14b) replicates the dipole pattern very well, except 

that it shows a weaker positive correlation (r ≈ 0.5) over the eastern part of the tropical area than CRU 

data, and extends the positive correlation westwards into Angola, making the area of positive correlation 

wider than in CRU data. The biases in the ERAINT results may be attributed to the low resolution and 

convective parameterization scheme used in the reanalysis. It is difficult to link the wind pattern with the 

ENSO-drought correlation pattern, but generally, in the ERAINT, the area of negative correlation 

experiences easterly winds (from the Indian Ocean), while the area of positive correlation experiences 

north-easterly or westerly flow. 

3.2.2 The influence of ENSO on precipitation and rainfall 

Since precipitation and temperature are the two variables used in computing the drought index (SPEI), 

it is of interest to examine the relationship between ENSO and each of these variables. The correlation 

between ENSO and precipitation over the study area shows a good resemblance with that of ENSO 

and drought (compare Figure 14 and Figure 15). The general pattern shows positive correlations 

(r ≈ 0.5) over the tropical region and negative correlation (r ≈ −0.6) over the subtropical region. The 

significant negative correlation over central parts of southern Africa suggests that a warm ENSO event 

will induce lower rainfall over southern Africa, while a cold ENSO event will produce above-normal 

rainfall conditions, which is consistent with the findings from previous studies over the region. As in CRU 

data, ERAINT shows negative correlation over central parts of southern Africa. 

 

 

Figure 15: The coefficient of correlation between ENSO and precipitation over southern Africa in summer (DJF), 
as observed (CRU and ERAINT). The contours show areas where the correlation is significant at 95% using the 
t-test 

The CRU data shows a significant positive correlation between ENSO and temperature in DJF over the 

bulk of southern Africa (Figure 16). It is also a well-known feature that strong abnormally high 

temperatures (and sometimes heatwaves) are recorded over most of the southern African subcontinent 

during El Niño years (Lyon 2009; Richard et al. 2001). During El Niño years, the convergence zone that 

normally reaches 20°S in January during the austral summer is weakened and shifted to the east and 

north, resulting in dry conditions over the subcontinent (Mason 2001). The resemblance between the 

CRU data and ERAINT patterns is noticeable. Both show positive correlation over subtropical areas and 

negative correlation values over the tropical areas, but they show contrary correlations over a large part 

of the DRC, where ERAINT shows positive correlation coefficients. 
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Figure 16: The coefficient of correlation between ENSO and temperature over southern Africa in summer (DJF), 
as observed (CRU and ERAINT) and simulated [CORDEX regional climate models (RCMs)]. The contours show 
areas where the correlation is significant at 95% using the t-test 

Figure 17 compares the influence of ENSO on rainfall, temperature, and drought over the three selected 

areas (see Figure 13): Limpopo area (LP: 27°–32°E, 20°–25°S), north-eastern South Africa (NS: 19°–

25°E, 30°–26°S) and over north-eastern highlands of Tanzania (TZ: 35°–39°E, 5°–2°S). The Limpopo 

area is usually considered as the drought corridor in southern Africa (Usman and Reason 2004) 

because of the high dry-spell frequencies over this area in DJF. Reason et al. (2005) found a good 

relationship between ENSO and the dry-spell frequencies over this area. However, Figure 17a shows 

that the correlation between ENSO and temperature (r ≈ 0.7) over this area is stronger than the 

correlation between ENSO and rainfall (r ≈ −0.5). The same is true over north-eastern South Africa 

(Figure 5b), but the reverse is the case over Tanzania (Figure 17c). This suggests that the influence of 

ENSO on drought (r ≈ 0.6) over Limpopo and north-eastern South African areas may be more 

associated with enhanced evapotranspiration (i.e. warming) than with reduced rainfall; but over 

Tanzania, the influence is more associated with the reduced rainfall than with enhanced evapo-

transpiration. In other words, using only rainfall to quantify, predict, or monitor the influence of ENSO 

on drought over Limpopo and north-eastern South African areas may underestimate the influence on 

the drought. ERAINT results also show that the influence of ENSO on temperature (or on SPEI) is 

stronger than on rainfall over the two areas. 

 

Figure 17: The coefficient of correlation between ENSO and climate variables (rainfall, temperature and SPEI) over 
(a) Limpopo (LP), (b) north-western South Africa (NS), and (c) north-eastern Tanzania (TZ). The signs of the 
correlation coefficients are indicated on the bars 

3.2.3 Composite of SPEI, Precipitation and Temperature during El Niño and La Niña Events 

For a better understanding of the impact of ENSO on southern African droughts, we present the 

composites of SPEI, precipitation and temperature during El Niño and La Niña conditions. Within our 

study period (1989–2008), there were six El Niño events (1991/92, 1994/95, 1997/98, 2002/03, 2004/05 

and 2006/07) and six La Niña events (1995/96, 1998/99, 1999/2000, 200/01, 2005/06 and 2007/08). 
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Figure 18 shows the composite of SPEI for the La Niña events. The figure shows that the cold phase of 

ENSO (La Niña) is associated with positive SPEI (wet conditions) over the subtropical southern Africa 

and negative SPEI (dry conditions) over the north-eastern tropical area. This is consistent with Figure 

14 and agrees with previous studies that explored the composite of rainfall during La Niña events. La 

Niña events are associated with the occurrence of tropical temperate troughs (TTTs) (Harrison 1984; 

Todd et al. 2004; Todd and Washington 1999; Washington and Todd 1999), which are NW–SE oriented 

cloud bands. TTTs form as a result of interaction between tropical and mid-latitude systems and they 

are responsible for most of the convection and rainfall over southern Africa (Vigaud et al. 2012). They 

are more common during the November–February period and are associated with an increase in the 

intensity of the African Walker Cell, which in turn enhances moisture convergence over southern Africa 

(Ratnam et al. 2012). 

The ERAINT simulate that during La Niña years, the anti-cyclonic flow over the Atlantic Ocean is weaker 

and shifts westward (i.e. off the subcontinent). This will enhance more low convergence and 

precipitation over the subcontinent. The cold ENSO events are also associated with lower temperature 

over the bulk of southern Africa and higher temperature over northern Mozambique, Tanzania, north-

eastern Zambia and southern DRC (not shown). However, the reverse is the case with the warm phase 

of the ENSO condition (El Niño, Figure 19). El Niño event favours widespread dry conditions in the 

region, except over northern Mozambique, southern Tanzania, north-eastern Zambia and eastern DRC, 

where El Niño events produce wet conditions. The anti-cyclonic flow shifts eastward over the 

subcontinent, consequently inhibiting precipitation over the region (Figure 19). The warm ENSO 

produces higher temperatures over most parts of southern Africa and lower temperatures in the 

subtropical regions. 

 

 

Figure 18: The composite of drought index (SPEI) and wind anomalies at 850 hPa in December–January of La Niña 
years 

 

 

Figure 19: The composite of drought index (SPEI) and wind anomalies at 850 hPa in December–January of El Niño 
years 
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3.3 Atmospheric Teleconnections and Drought Modes Over Southern Africa 

This section presents the relationship between the six atmospheric teleconnections and the four drought 

modes (principal factors) described in Chapter 2. As explained in Chapter 2, the drought modes were 

obtained by performing the PCA on CRU SPEI data. The descriptions of the six atmospheric 

teleconnections used in the study are given in Table 2. 

Table 2: Description of the climate indices used in the study 

Abbr. Index name Period Data source 

AAO Antarctic Oscillation  1950–2009 Physical Sciences Division/NOAA 

IOD Indian Ocean Dipole 1940–1997 Japan Agency for Marine-Earth Science and 

Technology 

NAO North Atlantic Oscillation 1940–2000 CRU/University of Anglia 

QBO Quasi-Biennial Oscillation 1948–2009 Physical Sciences Division/NOAA 

TNA Tropical Northern Atlantic 1948–2009 Physical Sciences Division/NOAA 

TSA Tropical Southern Atlantic 1948–2009 Physical Sciences Division/NOAA 

ENSO El Niño Southern Oscillation 1940–2009 CRU/University of Anglia 

SSP Sunspots Count 1940–2009 Solar Influences Data Analysis Center 

Figure 20 presents the correlation between each drought mode and the global SST anomalies at three-

month scale. In Figure 20, positive correlation values over an ocean area means that a warm (i.e. 

positive) SST anomaly over the ocean area produces wet conditions (i.e. positive principal factor score) 

over the region of positive loading in the principal factor pattern (Figure 20), but produce dry conditions 

(droughts) over the region of negative loadings in the principal factor pattern. 

The reverse is the case for an ocean area with negative correlation values. Figure 20 shows that the 

relationship between principal factors and SST over the global ocean basins is seasonal. The 

relationship between DM1 and the Pacific Ocean SST exists in all the seasons, but it is most 

pronounced in summer (DJF, which is the dry season in the DM1 region) and least obvious in the winter 

(JJA, which is the wet season over the DM1 region). 

The same is true for the relationship between DM1 and the Indian Ocean SST, except that the 

relationship is least distinct in spring (SON). On the other hand, the relation between DM1 and SST is 

strongest in SON; in this season, the correlation coefficient is high (r > 0.5) over the eastern part of the 

South Atlantic Ocean. Nevertheless, the wavelength coherence analysis shows that the ENSO and 

Tropical Northern Atlantic (TNA) have the most significant influence on DM1 in the two- to eight-year 

period (Figure 21). The influence of the teleconnections on DM1 was very strong from 1960 through 

2000. Although, AAO also shows some influences in the two- to eight-year period; the influence only 

started in 2000 (now shown). IOD and TSA also show significant influence on DM1 but at the eight- to 

16-year period (not shown). Hence, the most dominant teleconnections influencing DM1 are ENSO and 

TNA. 
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Figure 20: The correlation between the scores of principal factors (PF1, PF2, PF3 and PF4; i.e. drought modes: 
DM1, DM2, DM3 and DM4, respectively) and global SST in different seasons. The core of each drought mode is 
indicated with a box, and the dry season panel for each principal factor is indicated with a blue box 

 (a) ENSO 
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(b) TNA 

 

Figure 21: The wavelet coherence (and phase shift) of DM1 drought mode with atmospheric teleconnections: 
(a) ENSO and (b) TNA. Downward arrows mean the teleconnection leads DM1, and vice versa. Left facing arrow 
means the teleconnection and DM1 are in phase, and vice versa 

The relationship between DM2 and the Pacific Ocean SST only exits in DJF (which is the wet season 

in the DM2 region) and in MAM, and that between DM2 and Indian Ocean SST also only exist in MAM 

and JJA (Figure 20). Manatsa and Matarira (2009) found a negative correlation between DJF SPI in 

Zimbabwe and SST over the Indian and Pacific Oceans. Such correlation does not feature in the present 

study. The reason for this discrepancy is because Manatsa and Matarira (2009) correlated DJF SPI 

with SON SST, while we correlated DJF DM2 with DJF SST. When we correlated DJF DM2 with SON 

SST, we obtained a negative correlation (not shown) as in Manatsa and Matarira (2009). DM2 shows 

strong correlation with Southern Atlantic Oceans SST in SON but weak or no correlation in other 

seasons. However, the wavelet coherence analysis shows that IOD and ENSO have the most 

significant influence on DM2 in the two- to eight-year period (Figure 23). TSA also has significant 

influence DM2 but in the > eight- to 16-year period (not shown). The influences of other teleconnections 

(used in study) are not significant. 

The relationship between DM3 and the global SST is only distinct in JJA and SON (Figure 20). DM3 

has negative correlation with the three-ocean basis in JJA and positive correlation with the Indian Ocean 

in SON. The wavelet coherence of the drought mode (DM3) with teleconnection indexes shows that 

TNA and ENSO have the most consistent influence on DM3 in the two- to eight-year period. Other 

teleconnections (such as IOD, North Atlantic Oscillation and AAO) also show some influence in the 

period, but the influence is weaker than those of TNA and ENSO. 

The influence of the SST on DM4 is mainly in MAM and JJA (Figure 20). While DM4 has a distinct 

correlation pattern with SST over the Pacific Ocean and Indian Ocean in MAM, its distinct correlation 

pattern over the Tropical Atlantic Ocean is in JJA. This suggests that while this drought mode may be 

influenced by the SST over the Pacific Ocean and Indian Oceans in MAM, it may be sensitive to the 

SST over the Atlantic Ocean in JJA, but not sensitive to SST over any ocean in DJF and SON. 

Nevertheless, the wavelength coherence analysis shows that this drought mode is poorly coupled with 

ENSO and other teleconnections. Among the teleconnections, AAO shows the most consistent 

coherence with DM4 in the one- to two-year period in 1985–1995 (Figure 24). Hence, the influence of 

global scale teleconnection on drought over DM1 region is weak. 
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Consistent with Section 3.2 above, the results indicate that ENSO influences droughts over most 

regions in southern Africa except the DM4 region. Nevertheless, the results show that influence of other 

teleconnection on droughts over drought modes (e.g. DM2 and DM3) may be as important as (or more 

important than) that of ENSO. For example, IOD is as important as ENSO in influencing the DM2 

drought mode while TNA is more important than ENSO influencing drought modes over DM3. However, 

it seems no teleconnections has significant and persistent influence on DM4 drought mode. 

(a) ENSO 

 

(b) IOD 

 

Figure 22: The wavelet coherence (and phase shift) of DM2 drought mode with teleconnections: (a) ENSO and 
(b) IOD. Downward arrows mean the teleconnection leads DM2, and vice versa. Left facing arrow means the 
teleconnection and DM2 are in phase, and vice versa 
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(a) ENSO 

 

(b) TNA 

 

Figure 23: The wavelet coherence (and phase shift) of DM3 drought mode with teleconnection (a) ENSO and 
(b) TNA. Downward arrows mean the teleconnection leads DM3, and vice versa. Left facing arrow means the 
teleconnection and DM3 are in phase, and vice versa 
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(a) ENSO 

 

(b) AAO 

 

Figure 24: The wavelet coherence (and phase shift) of DM4 drought modes (principal factors) with teleconnections: 
(b) ENSO and (b) AAO. Upward arrow means the teleconnection leads DM4, and vice versa. Left facing arrow 
means the teleconnection and DM4 are in phase, and vice versa 

3.4 Relationship Between Atmospheric Teleconnection and Drought Patterns in Summer 

Over Southern Africa 

This section examines the relationship between atmospheric teleconnections and each of the 12 

drought patterns presented in Chapter 2. In the examination, we focus on austral summer (DJF) 

because it is the rainy season for most part of southern Africa, and we consider the most important 

atmospheric teleconnections (or climate indices such as ENSO, IOD, AAO and BEN) for studying or 

predicting rainfall (or drought) over the region during this season. 

As an indication of the relationship between the drought pattern and atmospheric teleconnections, 

Figure 25 presents the frequency of overlapping between the drought patterns and the active phases 

of the teleconnections in summer. Node 1 and Node 12 show a substantial and consistent relationship 

with ENSO but not with other teleconnections (IOD, AAO, and BEN). For instance, 83% (five events) of 
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Node 1 occurrences coincide with the positive phase of ENSO (El Niño), while 100% (three events) of 

Node 12 occurrences happen during the negative phase of ENSO (La Niña). Although Node 1 also 

shows a substantial relationship with other teleconnections, the relationship is not consistent. For 

example, the pattern features well during the active phases of BEN (83%) but occurs in both positive 

(50%) and negative (33%) modes of the teleconnection. It also features well during the active phases 

of IOD (66%) but in both positive (33%) and negative (33%) phases. Node 12, on the other hand, shows 

no relationship with IOD, a weak relationship with BEN (< 34%), and an inconsistent relationship with 

AAO (< 34% in negative and < 34% in positive modes). No other drought pattern shows substantial and 

consistent relationships with ENSO or with other teleconnections. 

Node 6 and Node 8 exhibit a consistent relationship with ENSO (i.e. positive and negative modes, 

respectively), but the two nodes feature less than 29% and 34%, respectively, of their occurrences 

during ENSO events. Nodes 9, 10 and 11 have a substantial relationship with ENSO, but they appear 

in both positive and negative modes of ENSO. In some cases, two opposite drought patterns feature in 

the same phase of a teleconnection (i.e. Nodes 4 and 9 in positive IOD; Node 3 and Node 9 in negative 

AAO). This makes it difficult to relate any of these patterns with the teleconnection. Hence, the most 

consistent message from the discussion is that Nodes 1 and 2 are the only drought patterns solely 

induced by ENSO events. However, this does not indicate that all ENSO events will produce Node 1 or 

Node 12. 

 

Figure 25: The frequency of overlapping between the drought patterns (shown in Figure 7) and the active phases 
(positive: red; negative: blue) of atmospheric teleconnections (i.e. climate indices: ENSO, IOD, AAO and BEN) in 
DJF. The total number of each drought event is indicated with dashed 

Figure 26 presents the composite of DJF SST anomalies for each drought pattern. For Node 1, the SST 

pattern features a warm pool (positive anomalies) over the central Pacific Ocean. This SST pattern has 

been identified as the central Pacific ENSO (Kao and Yu 2009; Yeh et al. 2012), dateline ENSO (Larkin 

and Harrison 2005), El Niño Modoki (Ashok et al. 2007), warm pool El Niño (Kug et al. 2009), and 

El Niño Type 3 (EN3) (Hoell et al. 2014; Johnson 2013). However, in agreement with Hoell et al. (2014), 

the SST pattern is characterised with warm Indian and tropical Atlantic SST. 
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Node 4 is also associated with warm pool over the Pacific Ocean, but the warming is confined to the 

equatorial eastern Pacific Ocean. This SST pattern, which is usually called the eastern Pacific El Niño 

or canonical El Niño, is classified as El Niño Type 4 (EN4) by Hoell et al. (2014). It is accompanied with 

warm SST over the tropical Atlantic and tropical Indian Ocean. Hence, Node 1 and Node 4 drought 

patterns are caused by different flavours of El Niño events. 

 

Figure 26: Composite of SST (°C) anomalies associated with the SOM drought patterns (shown in Figure 7) during 
summer (DJF) in 1950–2013 

In contrast, the SST anomaly pattern for Node 12 features cold SST over the equatorial and central 

Pacific (i.e. La Niña event). This SST pattern, which features cold tropical Atlantic and Indian Oceans, 

is called La Niña Type 1 (LN1) in Hoell et al. (2014). Node 9 is also characterised with an SST anomaly 

pattern that shows maximum cooling over the central Pacific Ocean and features maximum warming 

over the southern Atlantic and southern Indian Oceans. The SST pattern corresponds to La Niña Type 4 

(LN4) in Hoell et al. (2014). Many authors (i.e. Hoell et al. 2014; Johnson 2013) have shown that LN1 

dominated the La Niña pattern prior 1990 while LN4 dominated afterward. This is consistent with the 

shifting of southern African droughts (from all-wet drought patterns to all-dry patterns; Figure 26), in that 

Node 12 that is associated with LN1 dominated prior 1990 but has not featured since 1990. Meanwhile 

Node 6 that is associated with LN4 has been becoming more frequent since 1990. 

Figure 27 presents the composites of DJF rainfall and temperature fields for the extremely different 

drought pattern (Nodes 1, 4, 9 and 12). A comparison of Nodes 1 with 9 shows that, in general, dry 

conditions (i.e. SPEI < 0) are associated with warming and rainfall deficit, while wet conditions (i.e. 

SPEI< 0) are induced by cooling and rainfall surplus. This agrees with the general relationship between 

rainfall and land surface temperature that an increase in rainfall will lower soil temperature (e.g. Lyon 

2009; Trenberth and Shea 2005). However, there are conditions that deviate from this norm. For 

example, Node 1 shows areas of surplus rainfall with dry condition (SPEI < 0) because of the associated 

warming. The warming (possibly caused by higher insolation or advection of warmer dry air) produces 

higher evapotranspiration that exceeds the rainfall surplus and thereby causes a water balance deficit 

(SPEI < 0) over the areas. For a similar reason, Node 12 features some areas of rainfall deficit with wet 

conditions (SPEI > 0) due to the associated cooling, which reduces the evapotranspiration and causes 

a water balance surplus (SPEI > 0) over the areas. For a better understanding of the dynamics behind 

the rainfall and temperature changes that induce the drought patterns, Figure 28 and Figure 29 present 

the composite of anomalies in vertical wind, moisture transport and moisture flux convergence for the 

extremely different drought patterns (Nodes 1, 4, 9 and 12) during DJF. 
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The pattern of vertical wind anomalies (Figure 28) for Node 1 is consistent with changes in the 

corresponding SST anomalies (shown in Figure 26), except over the Atlantic Ocean. The pattern 

features an increase in convection over the warm SST areas (i.e. over the eastern and central Pacific 

Ocean and over the central Indian Ocean), but the maximum increase is over the central Pacific Ocean. 

It also features a decrease in convection over the cold SST areas (i.e. over the western Pacific Ocean) 

and shows no changes over the Atlantic Ocean despite the warm SST over the ocean. Most importantly, 

the vertical wind pattern shows a decrease in convection over southern Africa, with a local maximum 

decrease at 0° and at 20°N. Figure 3.20 shows that the decrease in convection is associated with a 

moisture flux divergence over the subcontinent. The subsidence is consistent with the rainfall deficit and 

temperature increase, and hence with the dry conditions (SPEI <0) over the subcontinent. 

For Node 12, the vertical velocity pattern is almost a mirror image of Node 1 over the Pacific Ocean and 

Atlantic Ocean, but not over the Indian Ocean or over southern Africa. The pattern shows an increased 

convection that extends from the central Indian Ocean to southern Africa, and the maximum increase 

is over south Mozambique (Figure 29). This is consistent with the maximum moisture flux convergence 

over the area (Figure 29). Comparing Node 12 with Node 1, it seems that the increased convection in 

Node 12 only replaces the decreased convection at 0° in Node 1 pattern, but not at 20°S. 

Contrary to expectation, Node 12 also features a maximum decreased convection at around 20°N, as 

in the Node 1 pattern. The decreased convection is consistent with the moisture divergence over the 

area. Hence, there are only two major consistent changes in dynamics of Node 1 and Node 12 apart 

from the changes in vertical motion at 0°N. First, the nodes have opposite patterns of vertical motion 

over the Pacific Ocean (in agreement different mode of ENSO); second, they feature opposite regional 

temperatures (warm and cool, respectively) over southern Africa and over the surrounding oceans (i.e. 

both Indian and Atlantic Oceans). The link between these two dynamic changes is not clear and remains 

a subject of future study. 

For Node 9, over the Pacific Ocean, the vertical wind pattern resembles that of Node 12 though with a 

lower magnitude. But, over the Indian Ocean and southern Africa, it is a mirror image of Node 12. For 

instance, in contrast to Node 12, the Node 9 pattern features a decreased convection that extends from 

the Indian Ocean to Mozambique, and an increased convection that extends from south of 20°S over 

the continent to the Indian Ocean. The pattern is consistent with the location of moisture flux 

convergence (Figure 29), rainfall surplus, cooling (Figure 29), and wet condition (SPE < 0; Figure 26) 

south of 20°S over the subcontinent. It is also consistent with the location of the moisture flux divergence 

(Figure 29), rainfall deficit, warming (Figure 27), and wet condition (SPE < 0; Figure 27) north of 20°S. 

For Node 4, the magnitude of the vertical wind changes is weak over the Pacific Ocean, especially when 

compared with those of other nodes (Figure 29). The weak magnitude is not consistent with the 

corresponding SST pattern, which shows a strong canonical El Niño pattern (Figure 26). Nevertheless, 

the magnitude is higher over the Indian Ocean and southern Africa than over the Pacific Ocean (Figure 

29). In the vertical wind pattern, an enhanced convection extends from 30°S to 5°N and covers the 

Eastern Africa and western topical Indian Ocean, but convection is supressed south of 20° N over the 

subcontinent. The associated moisture flux field (Figure 29) shows a strong moisture flux convergence 

supporting the enhanced convection, and a weak moisture flux divergence in the area of the supressed 

convection. However, the location of the enhanced convection is consistent with the cooling and rainfall 

surplus over the wet areas (i.e. SPEI > 0), while the location of the supressed convection is consistent 

with the warming and rainfall deficit over the dry areas (SPE < 0). 
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Figure 27: Composite of rainfall anomalies (colour; mm/month) and temperature anomalies (°C) associated with 
the four extremely different drought patterns (i.e. Nodes 1, 4, 9 and 12, shown in Figure 7) during summer (DJF) 
in 1950–2013 

 

Figure 28: The composites of vertical wind (omega) anomalies (× 103 Pa∙s-1) associated with the four extremely 
different drought patterns (Nodes 1, 4, 9 and 12, shown in the Figure 7) 
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Figure 29: The composites of moisture flux (arrows; m∙s-1) and moisture flux convergence (colour; × 106∙s-1) for the 
extremely different drought patterns (Nodes 1, 4, 9 and 12, shown in Figure 7) 

3.5 Conclusion 

This chapter examined the relationship between southern African droughts and atmospheric 

teleconnections using three approaches. In the first approach, we followed the conventional way by 

calculating a spatial correlation between the ENSO index and the SPEI over the subcontinent. In the 

second approach, we used wavelet analysis to examine the temporal structure of the correlation 

between each drought mode and each atmospheric teleconnection. In the third approach, we obtained 

the number of times each drought pattern (identified in the previous chapter) overlapped the active 

phases of each atmospheric teleconnection. The results obtained can be summarised as follows: 

• The results of the first approach indicate the existence of a strong dipole correlation between ENSO 

and droughts (SPEI) over southern Africa, with the positive correlation values (up to +0.6) over the 

tropical area and the negative values (up to −0.6) over the subtropical area. The link between ENSO 

and droughts (SPEI) is due to the influence of ENSO on both temperature and rainfall fields, but the 

influence of ENSO is stronger on temperature than on rainfall. 

• The wavelet coherence analysis confirms that ENSO influences droughts over most regions in 

southern Africa, but it also indicates that the influence of IOD on DM2 drought mode is as important 

as that of ENSO, while the influence of TNA on DM3 is more important than that of ENSO. 

• The results of SOM analysis show that only 20% of drought patterns (Nodes 1 and 12) are induced 

solely by ENSO; other drought patterns are caused by complex interactions among the atmospheric 

teleconnections. Node 1 drought pattern occurs during El Niño events, while 100% of Node 12 occur 

during the La Niña events. 
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4 ASSESSMENT OF CLIMATE MODELS IN SIMULATING REDs OVER SOUTHERN AFRICA 

4.1 Introduction 

Climate models are viable tools for understanding the intricacy of the Earth’s climate system (including 

droughts). Using some equations (derived from physical, chemical and biological laws) to represent the 

Earth’s system processes, climate models can simulate past and future states of climate system over 

any time range from a few hours to many centuries (McGuffie and Henderson-Sellers 2005). Hence, 

climate model simulations can be analysed to study characteristics of droughts, investigate the 

mechanisms controlling droughts, and project impacts of future climate change on droughts. However, 

before applying a climate model simulation for these studies, it is essential to give a credible simulation 

of past climate, because the reliability of the simulation depends on how well the model reproduces the 

past climate. 

Many studies have applied global climate models (GCMs) to simulate and study characteristics of 

southern African droughts. For instance, Joubert and Mason (1996) used GCM simulations to show that 

drought may be less common over a bulk of southern Africa, with the exception of parts of South Africa 

and Mozambique where there is a likelihood of more frequent droughts. Lyon (2009) also indicated a 

drying trend over the region during the austral summer (DJF), though he concluded that the trend was 

model dependent. The results from these studies are far from perfect. The GCM simulations lack 

regional details due to their coarse resolution, which is typically around 200 km. Therefore, it is 

necessary to investigate characteristics of southern African droughts using RCMs, which generally have 

much higher resolutions (~40 km) than GCMs. However, the present study assesses and compares the 

capability of some GCMs and RCMs in reproducing the characteristics of southern African droughts 

and in replicating the influence of atmospheric teleconnections on the droughts. 

In the previous chapters, we identified and describe the characteristics of REDs over southern Africa 

(Chapter 2) and discussed the physical mechanism controlling the droughts (Chapter 3). In Chapter 4, 

we assess the capability of GCMs and RCMs in reproducing the observed characteristics of REDs and 

in linking them to the drivers. The assessment is presented in three parts. The first part (Section 4.2) 

shows how GCMs and RCMs reproduce the link between ENSO and drought distribution over southern 

Africa, and how downscaling of GCM simulations with the RCMs may improve (or depreciate) the 

simulation of the link. The second part (Section 4.3) shows how well the models reproduce the spatial-

temporal characteristics of the drought modes. The third part discusses the capability of the RCMs in 

simulating drought patterns. For a more comprehensive and technical discussion of the materials in the 

chapter, readers are referred to Meque and Abiodun (2014), Ujeneza and Abiodun (2014), Meque 

(2015), and Meque and Abiodun (2017). 

4.2 Model and Data 

In addition to CRU observation and ERAINT reanalysis data sets (described in previous chapter), GCM 

and RCM simulation data sets were analysed. The GCM simulation data sets are from the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al. 2012). Table 3 provides the information 

of the ten GCM simulations used in the study. The GCMs were selected because their outputs have 

temperature and rainfall data that covers the longest periods within the study period. However, the 

model data sets have different spatial resolution and cover different time periods. For uniformity, the 

simulation data were regridded to the same resolution as for the CRU data set, and only simulation data 

for 1956–2009 was used in the study. The RCM simulation data set are results of the CORDEX (Giorgi 

et al. 2009, Jones et al. 2011). The ten CORDEX RCMs used in this study (Table 4) were driven by the 

ERAINT and GCMs. Their simulations cover the entire African domain (Figure 30) with a horizontal grid 

spacing of 0.44°. The results of the ERAINT, GCMs and RCMs were compared with the CRU 

observation over the southern African region (Figure 13) and over three selected areas (see Figure 13): 

Limpopo area (LP: 27°–32°E, 20°–25°S), north-eastern South Africa (NS: 19°–25°E, 30°–26°S) and 

over the north-eastern highlands of Tanzania (TZ: 35°–39°E, 5°–2°S). 
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Figure 30: The simulation domain of CORDEX Africa showing the African topography (metres) and the southern 
African domain used in this study. The boxes inland (LP, TN and NS) indicate the three subregions in which time 
series data are investigated. The boxes inland (LP: 27°–32°E, 20°–25°S; NS: 19°–25°E, 30°–26°S; and TZ: 35°–
39°E, 5°–2°S) indicate the three subregions (i.e. Limpopo area, North-eastern South Africa and North-eastern 
highlands of Tanzania, respectively) in which time series data are investigated 

Table 3: A description of all GCMs used in this study 

Model Name Resolution Period Modelling Group Country 

GFDL-

ESM2M 

2.6° × 2.1° Jan 1956– 

Dec 2005 

NOAA/Geographical Fluid Dynamics 

Laboratory 

USA 

MIROC-ESM-

CHEM 

2.8° × 2.8° Jan 1850–

Dec 2005 

Japan Agency for Marine-Earth Science 

and Technology, Atmospheric and 

Oceanic Research Institute, National 

Institute for Environmental studies 

Japan 

MIROC5 1.4° × 1.4° Jan 1860–

Dec 2009 

National Institute for Environmental 

studies, Atmospheric and Oceanic 

Research Institute, Japan Agency for 

Marine-Earth Science and Technology 

Japan 

CanESM2 2.8° × 2.7° Jan 1950–

Dec 2005 

Canadian Centre for Climate Modelling 

and Analysis 

Canada 

BNU-ESM 2.8° × 2.8° Jan 1950–

Dec 2005 

College of Global Change and Earth 

Systems Science, BNU 

China 

GFDL-

ESM2G 

2.6° × 2.1° Jan 1956–

Dec 2005 

NOAA/Geographical Fluid Dynamics 

Laboratory 

USA 

CNRM-CM5 1.4° × 1.4° Jan 1955–

Dec 2005 

Centre National de Recherches 

Météorologique 

France 

FGOALS-s2 2.8° × 1.66° Jan 1960–

Dec 2005 

LASG, Institute of Atmospheric, Chinese 

Academy of Science 

China 

HadGEM2-

CC 

1.9° × 1.25° Jan 1950–

Dec 2005 

Hadley Centre for Climate Prediction and 

Research at the Meteorological Office 

UK 

Bcc_csm1 2.8° × 2.8° Jan 1850–

Dec 2012 

Beijing Climate Center (BCC), China 

Meteorological Administration 

China 
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Table 4: A description of RCMs used in this study. All models have a 0.44° × 0.44° grid resolution 

Model Name Modelling Group Country 

CCLM Potsdam Institute for Climate Impact Research (PIK) Germany 

CNRM Centre National de Recherches Météorologique France 

CRCM5 Canadian Centre for Climate Modelling and Analysis Canada 

RACMO2 Royal Netherland Meteorological Institute (KNMI) Netherland 

RCA35 Rossby Centre Regional Atmospheric Model – Swedish 

Meteorological Institute (SMHI) 

Sweden 

REMO Max Planck Institute for Meteorology, DKRZ, DWD, 

GKSS 

Europe 

REGCM3 International Centre for Theoretical Physics Italy 

WRF3 NCAR, NCEP, FSL, AFWA Worldwide 

PRECIS UK Meteorological Office UK 

ARPEGE Centre National de Recherches Meteorolo–Giques France 

4.3 Simulating the Link Between ENSO and Summer Droughts in Southern Africa 

4.3.1 The relationship between ENSO and drought (SPEI) 

This section evaluates how well the RCMs simulate the link between ENSO and droughts (SPEI) over 

southern Africa. Figure 31 shows a strong correlation between ENSO and droughts over southern Africa 

for both observations and simulations. 

In the CRU result (Figure 31a), the correlation between ENSO and SPEI shows a marked dipole pattern 

over southern Africa with positive values (r ≥ 0.6) over the eastern part of the tropical area (north of 

15°S) and negative values (r ≤ −0.6) over the subtropical area (south of 15°S). The correlation is weak 

(r = ±0.3) over the western part of the tropical area. It is also weak over the south-western tip of southern 

Africa. The RCM simulations show different patterns of the correlation between the ENSO and southern 

African droughts. In some RCMs (i.e. ARPEGE), the simulated correlation pattern is close to the 

observed (or ERAINT) pattern, but in other RCMs (i.e. CRCM) the pattern is different. 

Among the RCMs, ARPEGE simulates the best correlation pattern, although its result is closer to the 

ERAINT pattern than it is to the CRU pattern. The main shortcoming in the ARPEGE correlation pattern 

is that it shows a stronger correlation than observed over the entire southern Africa, even over the 

south-west, where CRU shows no correlation. However, the best performance of ARPEGE here is 

consistent with Kalognomou et al. (2013), who showed that ARPEGE consistently outperforms all 

CORDEX RCMs over southern Africa in all seasons. The good performance of ARPEGE in simulating 

the link between ENSO and southern African droughts may be because ARPEGE is a global stretch-

grid model. This may help the model to yield a better simulation of the Walker circulation, and to 

experience no shock at the lateral boundaries between the driving data (ERAINT) and RCM dynamics. 

RegCM3 also captures the general pattern of the observed correlation between ENSO and droughts, 

but its area of significant correlation is confined to the central area of southern Africa. The model fails 

to reproduce the negative correlation over Namibia and southern Angola, where it shows a positive 

correlation. Only HIRHAM and REMO show a good correlation over Namibia and southern Angola; 

other RCMs (including ARPEGE) either show a weaker correlation or show opposite correlation when 

compared to the observed pattern. Nevertheless, HIRHAM and REMO simulate poor correlation 

patterns elsewhere, especially over the eastern side of southern Africa. This agrees with a previous 

study (Haensler et al. 2011a) that showed that the REMO model has a better skill in the drier areas (i.e. 

the south-west) than in the more humid areas (south-east and north-east) of southern Africa. In the 

http://www.dkrz.de/dkrz/intro_s
http://www.dwd.de/
http://www.gkss.de/
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RCA model, the areas of significant correlation are scattered over southern Africa, but in WRF the area 

of significant correlation is displaced south with few patches over southern Namibia and Botswana. 

CRCM portrays the most striking correlation pattern; it shows no correlation to weak correlation over 

the entire southern Africa. Hence, among the CORDEX RCMs, CRCM shows the lowest capability in 

linking ENSO with the southern African droughts. Hernandez-Diaz et al. (2013) also reported that 

CRCM has cold biases over most areas in southern Africa. 

There is a good agreement between ERAINT and RCM 850 mb mean winds over southern Africa in 

DJF (Figure 31). South of 15°S, the wind pattern is characterised with strong anti-cyclonic wind over 

the southern Atlantic Ocean (i.e. west of southern Africa) and strong easterlies transporting warm, moist 

air from the Indian Ocean to the subcontinent. North of 15°S, the wind pattern is characterised by strong 

north-easterlies in the east and westerlies in the west, producing convergence flow at the centre. The 

major difference between ERAINT and RCM wind patterns is that the westerlies are stronger in the 

RCM (except HIRHAM) than in ERAINT. It is difficult to link the wind pattern with the ENSO-drought 

correlation pattern, but generally, in the ERAINT and RCM (except in CRCM), the area of negative 

correlation experiences easterly winds (from Indian Ocean), while the area of positive correlation 

experiences north-easterly or westerly flow. 

 

Figure 31: The coefficient of correlation between ENSO and drought (SPEI) over southern Africa in summer (DJF, 
1989–2008), as observed (CRU and ERAINT) and simulated (CORDEX RCMs). The contours show areas where 
the correlation is significant at 95% using the t-test. The corresponding 850 hPa winds are shown in the 
background; the arrow at lower left corner indicates 10 m/s wind speed 
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4.3.2 The influence of ENSO on precipitation and temperature 

We examine how well the models simulate the relationship between ENSO and the two climate 

variables (precipitation and temperature) used in computing the drought index (SPEI). The correlation 

between ENSO and precipitation over the study area shows a good resemblance with that of ENSO 

and drought (compare Figure 31 and Figure 32). The general pattern shows positive correlations 

(r ≈ 0.5) over the tropical region and negative correlation (r ≈ −0.6) over the subtropical region. The 

significant negative correlation over central parts of southern Africa suggests that a warm ENSO event 

will induce lower rainfall over southern Africa, while a cold ENSO event will produce above-normal 

rainfall conditions, which is consistent with the findings from previous studies over the region. As in 

CRU data, most RCMs show negative correlation over central parts of southern Africa. The ARPEGE 

best captures this well-known feature over southern Africa. In line with Figure 31, the HIRHAM and 

REMO models show a strong correlation over Namibia. The weakness of the CRCM in capturing the 

link between ENSO and droughts is also reflected in capturing the link between ENSO and rainfall. 

 

Figure 32: The coefficient of correlation between ENSO and precipitation over southern Africa in summer (DJF), 
as observed (CRU and ERAINT) and simulated (CORDEX RCMs). The contours show areas where the correlation 
is significant at 95% using the t-test 
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The CRU data shows a significant positive correlation between ENSO and temperature in DJF over the 

bulk of southern Africa (Figure 33). During El Niño years, the convergence zone that normally reaches 

20°S in January (i.e. during the austral summer) is weakened and shifted to the east and north, resulting 

in dry conditions over the subcontinent (Mason 2001). In comparison to the observations, the ARPEGE 

continues to show a high reliability in simulating the relationship between ENSO and temperature over 

southern Africa, but performs poorly over Angola, where ERAINT does not perform well either. 

 

Figure 33: The coefficient of correlation between ENSO and temperature over southern Africa in summer (DJF), 
as observed (CRU and ERAINT) and simulated (CORDEX RCMs). The contours show areas where the correlation 
is significant at 95% using the t-test 
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Figure 34 compares the influence of ENSO on rainfall, temperature, and drought over the three selected 

areas (see Figure 30): Limpopo area (LP: 27°–32°E, 20°–25°S), north-eastern South Africa (NS: 19°–

25°E, 30°–26°S) and over the north-eastern highlands of Tanzania (TZ: 35°–39°E, 5°–2°S). Over 

Limpopo (the drought corridor), the correlation between ENSO and temperature (r ≈ 0.7) is stronger 

than the correlation between ENSO and rainfall (r ≈ −0.5; Figure 34a). The same is true over the north-

eastern South Africa (Figure 34b), but the reverse is the case over the north-eastern highlands of 

Tanzania (Figure 34c). ERAINT results also show that the influence of ENSO is stronger on temperature 

(or on SPEI) than on rainfall over the two areas. All RCMs (except HIRHAM) simulate this characteristic. 

However, most RCMs (i.e. CCLM, HIRHAM, RACMO, REMO, RCA, CRCM and WRF) grossly 

underestimate the link between ENSO and drought (rainfall and temperature) over the three areas 

(Limpopo, north-eastern South Africa and north-eastern highlands of Tanzania). 

 

Figure 34: The coefficient of correlation between ENSO and climate variables (rainfall, temperature and SPEI) over 
(a) Limpopo (LP), (b) north-western South Africa (NS), and (c) North-eastern Tanzania (TZ). The signs of the 
correlation coefficients are indicated on the bars 

4.3.3 Composite of SPEI, precipitation and temperature during El Niño and La Niña events 

For a better understanding of the impact of ENSO on southern African droughts, we present the 

composites of SPEI, precipitation, and temperature during El Niño and La Niña conditions (Figure 35 

and Figure 36). Within our study period (1989–2008), there were six El Niño events (1991/92, 1994/95, 

1997/98, 2002/03, 2004/05 and 2006/07) and six La Niña events (1995/96, 1998/99, 1999/2000, 

200/01, 2005/06 and 2007/08). Figure 35 shows the composite of SPEI for the La Niña events. The 

figure shows that the cold phase of ENSO (La Niña) is associated with positive SPEI (wet conditions) 

over the subtropical southern Africa and negative SPEI (dry conditions) over the north-eastern tropical 

area. 
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The RCMs (except CRCM) show similar patterns as the observations, but the magnitude of the SPEI 

anomalies during the La Niña and El Niño events are weaker than the observed; only ARPEGE 

produces the magnitude of SPEI anomalies that is comparable with observation. Contrary to 

observation, some RCMs (e.g. REMO, PRECIS and RegCM3) simulate no changes in SPEI over the 

Drakensberg Mountains (around the Kingdom of Lesotho) during the La Niña and El Niño conditions. 

High elevation areas, such as the Drakensberg Mountains, usually experience higher precipitation with 

lower temperatures (i.e. lower PET) than the surroundings; this might reduce the severity of drought 

over the mountains, and some models might find it difficult to simulate this process. 

 

Figure 35: The composite of drought index (SPEI) and wind anomalies at 850 hPa in December–January of La Niña 
years 
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Figure 36: The composite of drought index (SPEI) and wind anomalies at 850 hPa in December–January of El Niño 
years 

4.3.4 The influence of boundary conditions 

This section investigates the sensitivity of the simulated link between ENSO and southern African 

drought to the GCM simulations used as boundary forcing. We used the RCA model to examine the 

influence of boundary conditions. The RCA was chosen because it was the only model available with 

different GCM forcing. However, as shown in the previous section, RCA also gives a credible simulation 

of the link when forced with ERAINT; hence, the model is also suitable for the sensitivity experiment. 

Figure 37 represents the GCM simulated links between ENSO and SPEI, Figure 38 shows the link after 

the GCM simulations are dynamically downscaled with RCA, while Figure 39 gives the added value of 

the downscaling to the simulated link when compared with observation. The added value (δ), which is 
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a measure of difference between GCM and RCM errors, was computed according to Di Luca et al. 

(2012; 2013) as: 

 ( ) ( )22

OBSRCMOBSGCM rrrr −−−= ………………………………………… (1) 

where, rOBS, rGCM and rRCM represents the correlation between ENSO and SPEI in observation, GCM, 

and RCM, respectively. A positive value of δ means that the RCA downscaling improves the simulated 

link, while a negative value indicates that the RCM downscaling does not improve the simulated link. 

With or without the downscaling, the correlation patterns for ERAINT are the same (Figure 37a and 

Figure 38a) and the added value of the downscaling is negative over most areas in southern Africa 

(Figure 39a), except over a small area in the northern part of Angola. Hence, downscaling ERAINT 

results with RCA adds no value to the simulated link between ENSO and southern African droughts. 

While the downscaling improves the simulated link for some GCMs (i.e. CCMA, CNRM and MIROC), it 

adds no substantial value to the simulated link for other GCMs (i.e. NOAA, MPI, NCC and MOHC). 

Without downscaling, the CCMA simulation fails to simulate the negative correlation over the central 

part of southern Africa and over the north-eastern part of South Africa and fails to reproduce the positive 

correlation in the north-eastern part of southern Africa (Figure 37b). The RCA downscaling corrects 

these biases (Figure 38b) and provides an added value of more than 0.5 over the areas (Figure 39b). 

CNRM simulation, on the other hand, fails to simulate the negative correlation pattern over the southern 

part of South Africa and over Mozambique (Figure 37c). It also fails to simulate the positive correlation 

over the north-eastern part of southern Africa (Figure 37c). Unfortunately, we do not have the necessary 

data to diagnose the reason for the poor performance of CNRM in simulating the link; however, it may 

be due to the boundary conditions or the convective parameterization schemes used in the model. 

The RCA downscaling corrects the shortcoming to an extent and provides an added value up to 0.2 

over South Africa and up to 0.6 over Tanzania (Figure 38c). MIROC fails to simulate negative correlation 

in the 20°–30°S zone and the positive correlation over Tanzania (Figure 37e). While the RCA 

downscaling corrects the MIROC bias in the 20°–30°S zone (with up to 0.8 added value), it does not 

improve the simulated link over Tanzania (Figure 38e). For the simulations of the remaining four GCMs, 

the RCA downscaling only provides added values over small areas, i.e. over Tanzania in NOAA (Figure 

39d), over the border of Zambia and Tanzania in MPI (Figure 39f), and the northern part of Angola in 

NCC (Figure 39g). However, it is important to note that the added value of RCA to GCM results 

decreases as the GCM bias (
OBSGCM rrbs −= ) in simulating the ENSO drought decreases. For instance, 

ERAINT is already very good in representing the link ( bs < 0.2, except over Congo) because of data 

assimilation; hence, RCA is not adding value (δ ≈ −0.4). On the other hand, CNRM is poor in simulating 

the link (bs > 0.6), the RCA added value is substantial ( bs > 0.8). 
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Figure 37: The coefficient of correlation between ENSO (i.e. Nino3.4) and drought index in ERAINT and GCM 
simulations 

 

Figure 38: The coefficient of correlation between ENSO (i.e. Nino3.4) and drought index in RCA simulations forced 
with ERAINT and GCM data sets 
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Figure 39: The added value (shaded) of the RCA dynamical downscaling to the simulated link between ENSO and 
droughts in southern Africa. The GCM biases in simulating the link are indicated with contours; the contour interval 
is 0.2 

Focusing on the drought corridor area in southern Africa, the RCA downscaling improves the simulated 

ENSO-drought link over the area in some cases and worsens it in other cases (Figure 40). However, 

none of the RCA downscaling reproduces the magnitude of the observed link. With ERAINT, the RCA 

downscaling weakens the simulated link because it reduces the influence of ENSO on both rainfall and 

temperature (Figure 40). In two cases (CNRM and MOHC), the downscaling produces a wrong sign of 

the correlation between ENSO and the drought index, even though the GCM produce the right sign. 

This occurs because the RCM compromises the sign of the correlation between ENSO and the rainfall 

over the area. In some cases, the downscaling improves the simulated correlation between ENSO and 

the drought index. This is because the RCM improves the simulation between ENSO and rainfall, or 

between ENSO and temperature, or both. However, downscaling MIROC and NOAA simulations gives 

the best ENSO-drought link over LP (Figure 40a) and NS (Figure 41a), while downscaling MPI and 

NOAA simulations gives the best ENSO-drought link over north-eastern Tanzania (Figure 42a). 
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Figure 40: The correlation between ENSO and (a) SPEI, (a) rainfall and (c) temperature (c) over the drought corridor 
(LP) in southern Africa for both GCM and RCA4. The dotted line represents the value of the CRU data 
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Figure 41: Same as in Figure 40 but over north-western South Africa (NS) 
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Figure 42: Same as in Figure 40 but over north-eastern Tanzania  
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4.4 Simulating the Drought Modes 

4.4.1 GCM results 

Figure 43 and Figure 44 compare the simulated drought modes (i.e. rotated PCA loadings of the three-

month and 12-month SPEI, respectively) with the observed. Note that the observed drought modes in 

these figures are similar to those in Figure 2 and Figure 3 (Chapter 2) despite the difference in the 

length of the data used. This further establishes the robustness of the four drought modes over the 

region. In general, the figures show that all the GCMs reproduce the observed principal factors well, 

though with some notable differences. 

With the three-month SPEI, all models show the best performance in reproducing DM1 and the worst 

performance in reproducing DM4. In DM1, the correlation (r) between the simulated and observed mode 

is 0.9 for all the GCMs. 

In DM2, five GCMs (BCC-CSM, BNUESM, CNRMCM, FGOALS and MIROCESMCH) show a lower 

correlation (r = 0.8) with observation, but other GCMs maintain the correlation (r = 0.9) as in DM1. 

In DM3, HadGEM3 and MIROC5 have the highest correction (r = 0.9), while BNUESM gives the lowest 

correlation (r = 0.6). The main shortcoming in the DM3 drought mode of BNUESM is that the mode 

features a dipole loading within the tropics, between the central and eastern part of southern Africa, 

contrary to the observed mode. 

In DM4, BCC-CSM and CanESM2 have the highest correction (r = 0.8), while CNRMCM gives the least 

correlation (r = 0.3) because it misses the location and orientation of the dipole mode of DM4. 

For all GCMs, the agreement between the simulated and observed drought modes in 12-month SPEI 

is weaker than in the three-month SPEI. For DM1, BNUESM and MIROC5 have the highest correlation 

(r = 0.8) with the observation, while CanESM2, GFDL2G and GFDL2G have the least correlation 

coefficient (r = 0.6). 

For DM2, CanESM2, GFDL2G and GFDL2G and HadGEM3 feature the highest correlation coefficient 

(r = 0.7), while BNUESM and FGOAL feature the least correlation coefficient (r = 0.3). 

For DM3, FGOAL and MIROC5 show the highest correlation coefficient (r = 0.8), while BCC-CSM show 

the least correlation coefficient (r = 0.3). 

For DM4, FGOAL has the highest correlation (r = 0.7), while GFDL2M has lowest correlation (r = 0.2). 

A closer look at Figure 43 and Figure 44 reveals that in all GCMs (except MIROC5, HadGEM2 and 

CNRMCM at both three- and 12-month scales and BNUESM at three-month scales), the drought mode 

with the lowest percentage of explained variance (among the selected four drought modes) has the 

lowest correlation coefficient. This suggests that the drought mode may not be the most comparable 

with observed drought mode, and the most comparable may not be among the leading four principal 

factors. Our emphasis in this study is to see how well the first four simulated drought modes in the 

GCMs agree with the observed. 

In general, the GCMs performance with respect to drought mode is encouraging. With the three-month 

SPEI, all the GCMs simulate the first three drought modes (DM1, DM2 and DM3) with a high correlation 

(i.e. r > 0.6), while 70% of the GCMs simulate all the observed drought modes with a high correlation. 

With the 12-month SPEI, all the models simulate the first drought mode (DM1) with a high correlation 

coefficient, and 60% of the models simulate at least three of the drought modes with a high correlation 

coefficient. It is not logical to compare the time variation of the simulated modes (i.e. scores) with the 

observed, because the simulations used in this study are obtained with coupled models in which the 

time variation may not synchronize with observation. However, the results here show that the 

climatology of the dominant drought modes in southern Africa is well reproduced in most GCMs. 
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Figure 43: The observed and simulated PCA loadings of three-month SPEI over southern Africa. The percentage of variance explained by each principal factor is 
indicated at the lower left corner of the panel. The spatial correlation between observed and simulated loadings for each model is shown at the lower right corner of 
the model’s panel 
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Figure 44: Same as Figure 43 but for 12-month SPEI 
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4.4.2 RCMs results 

Spatial variation 

The RCM simulated drought modes are compared with the observed at three- and 12-month scales (Figure 

45 and Figure 46, respectively). Note that the observed four modes obtained in this case differ from those 

obtained previously in Section 3.2.1. The period of availability of RCM simulation data sets is much shorter 

(1989–2007) than for the GCM (1956–2002). Hence, in order to accommodate the required dimensions for 

the PCA (time-number of grid cells), we reduced the area of the region of study (fewer grid cells). As a 

result, the drought mode named DM3 in our previous discussions, whose strongest features are over 

Tanzania, has been replaced by a new drought mode. In general, all models performed better at three-

month than at 12-month scale. 

As with the GCMs, all RCMs also performed better at the three-month scale than at the 12-month scale. At 

three-month scale, the first three drought modes are well simulated by all RCMs despite some differences 

in the performance of the models. 

For DM1, the correlation between the simulations and observation was between 0.6 and 0.9, with RCA35, 

REMO and WRF3 showing the least performance (r = 0.6). It was between 0.7 and 0.8 for DM2 and between 

0.7 and 0.9 for DM3. The RCMs struggled in reproducing DM4. In this regard, CNRM and RACMO2 (r = 0.5) 

performed worst, while CCLM, REGCM3, REMO and WRF3 performed best (r = 0.7). 

At 12-month scale, the performance of the models in simulating drought modes was generally lower than 

at three-month scale. For DM1, only three models captured spatial modes of the drought mode well 

(r > 0.5). WRF3 performed best (r = 0.8) while RACMO2 performed worst (r = 0.4). All the RCMs models 

reproduced DM2 at high correlations (r = 0.8 and 0.7), except RACMO2 (r = 0.5). For DM3, REGCM3 

showed the least correlation with the observed (r = 0.6) while CNRM, CRCM5 and REMO the highest 

(r = 0.8). For DM4, all models captured the mode well, except CNRM (r = 0.4). CCLM and RCA35 showed 

the highest correlation with observation (r = 0.8). 
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Figure 45: The observed and simulated PCA loadings of three-month SPEI over southern Africa by RCMs. The percentage of variance explained by each principal 
factor is indicated at the lower left corner of each panel. The spatial correlation between observed and simulated loadings for each model is shown at the lower right 
corner of the model’s panel 
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Figure 46: Same as Figure 45 but for 12-month SPEI
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Temporal variation 

Figure 47 and Figure 48 show the seasonal correlation of observed and simulated drought modes at both 

3 and 12-month scales, respectively. In both figures, the correlations are plotted versus the normalised 

standard deviation (i.e. Taylor diagram). The normalised standard deviation is obtained by dividing the 

standard deviation of simulated score with the observed one. The vertical and the horizontal lines represent 

the normalised standard deviation, while the top curve shows the variation of the correlation. Figure 47 and 

Figure 48 indicate that RCMs capture the temporal variability of drought modes better at 12-month scale 

than at three-month scale, despite the better performance of the models in simulating the spatial structure 

of the drought modes better three-month scale than at 12-month. 

 

Figure 47: Taylor plots of the correlation between observed and simulated PCA scores (from RCMs driven by reanalysis) 
of three-month SPEI over southern Africa. Positive correlations are represented by the circles while the squares stand 
for negative correlations 
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Figure 48: Same as Fig 4.18 but for the 12-month SPEI 

4.5 Simulating the Drought Patterns 

The section assesses how well CORDEX RCMs simulate the drought patterns. For the assessment, we 

aggregated the SPEI data from CRU, ERAINT and the then RCMs data sets, then used SOM to classify 

the aggregated SPEI data into 12 dominant patterns (nodes). The contribution of each RCM to each node 

is compared with that of CRU and ERAINT. 

4.5.1 The drought patterns 

Figure 49 shows that the observed and simulated drought patterns over southern Africa can be broadly 

grouped into three groups as discussed in Chapter 2 (Figure 7). These drought patterns are essentially 

identical to those obtained using CRU only. For instance, Node 5 from Figure 49 is characterised by 

negative SPEI values over the central southern Africa, which is roughly the same drought pattern presented 

in Figure 7. However, some differences between the drought patterns shown in Figure 49 and Figure 7 can 

be spotted. For example, the negative SPEI values in Node 12 displayed in this study do not cover much 

north of 10°S as shown in Figure 7. These differences are inevitable since the two studies use two different 

periods and the drought patterns presented here include observations model outputs. 
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Figure 49: Drought modes generated by a 4 × 3 SOM array using the combined SPEI values from the 12 data sets 
(CRU, ERAINT and then CORDEX RCMs). The mode number is shown on the top left corner of each panel and the 
frequency of the mode is shown on the lower left corner 

4.5.2 The seasonal distribution 

There are some discrepancies between observations and reanalysis data sets in terms of seasonal 

distribution of the drought patterns (Figure 50). In the observations, Pattern 3 is the most frequent (11 

events) followed by Pattern 12 (ten events), while in the reanalysis data set, Pattern 12 is the most recurrent 

(11 events) followed by Pattern 1 (ten events). Furthermore, in the CRU data set, Patterns 8 and 9 never 

occur during the austral summer period, whereas in the reanalysis, these patterns are reported in all 

seasons throughout the entire study period. 
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Figure 50: Seasonal frequency of the drought patterns during the 1990–2008 period for all 12 data sets including 
Observation, Reanalysis and ten RCMs participating in the CORDEX project 

The ARPEGE model is more in agreement with the observation than any other RCM (as shown in Figure 

51). It has the highest correlation coefficient (r = 0.58) with the observations and possesses the lowest root-

mean-square-error (α ≈ 0.75). The model outperforms the reanalysis data set (ERAINT), which shows a 

much lower correlation coefficient (r = 0.52) with the observations. Previous studies (e.g., Kalognomou et 

al. 2013) have also reported the good performance of ARPEGE over southern Africa. 

On the other hand, HIRHAM has the weakest correlation (r = 0.21) with the reference data (CRU), followed 

by the RCA model, which has a correlation coefficient of 0.25. Overall, the normalised standard deviation 

of all the models varies from approximately 0.5 to 0.75. The REMO model seems to exhibit the lowest 

amplitude of SPEI values while CCLM and RCA show the highest amplitude. ARPEGE an RAMCO are the 

only models not reporting Patterns 8 and 9 during the austral summer. Other RCMs capture the non-

occurrence of either Pattern 8 (HIRHAM and WRF) or Pattern 9 (REMO, PRECIS, RegCM and CRCM). 
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Figure 51: Taylor diagram for area-average monthly SPEI values over the entire southern Africa during the period 1990–
2008. The SPEI values from CRU (open circle along the x-axis) are used as the reference data 

Figure 52 shows that the reanalysis data set and ARPEGE model (Figure 52b and c, respectively) have the 

most comparable features with the CRU data set. All the data sets depict the major dry and wet events in 

southern Africa. For example, the three data sets agree that during the 1991/92 severe drought event, 

southern Africa was under the effect of Drought Pattern 1, which represents dry conditions across the entire 

region. All the data sets show that this pattern persisted for two consecutive seasons (austral summer and 

autumn) during the 1991/92 season, affecting the entire growing season in southern Africa. 

Furthermore, the data sets collectively reveal that Drought Pattern 1 has the highest probability of persisting 

in the following season whenever it occurs. However, there is inconsistency among the data sets. For 

instance, the three data sets disagree on the number of transient drought patterns. While CRU reports only 

three patterns (Patterns 2, 5 and 11), ERAINT shows eight (Patterns 3, 4, 5, 6, 8, 9, 10 and 11) and the 

ARPEGE model reports three patterns (Patterns 8, 9, and 10), which are completely different from those in 

the CRU data set. 
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Figure 52: Seasonal occurrence of the drought patterns in observation, reanalysis, and ARPEGE. Each number 
represents a drought pattern type 

We used phase synchronization to examine how well ERAINT and ARPEGE capture the changes in the 

drought patterns. Following Mistra (1991), the synchronization is calculated as: 

 

where n′ is the number of seasons the simulated (i.e. ERAINT or RCM) drought patterns that are out of 
phase with the observed drought patterns, and n is the total number of seasons under study. 

All the RCMs have poor phase synchronization with the observation. None of them show synchronization 

above 50% (Figure 53). The ARPEGE model features the highest synchronization (η = 46.7%) among all 

the models (including the reanalysis data set); RegCM3 has the worst (η = 10.75). Despite the weak phase 

synchronization, some models captured the general distribution of the wet and dry patterns as in the 

observation. For instance, during the 1996/97 season, CRU data set shows a persistence of Node 12 during 

the austral summer and autumn and REMO model shows a persistence of Node 11 during the same period. 

Given that Node 11 is also markedly a wet node, we can infer that the model captured the event. 

(c) CRU 

(b) ERAINT 

(a) ARPEGE 
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Figure 53: Synchronization (%) of nodes between 11 data sets (Reanalysis and ten RCMs) with the observations during 
the entire study period (1990–2008) 

4.5.3 Composite anomalies of SSTs 

Figure 54 presents the composite analyses of the SST anomalies for the two most common drought 

patterns (Node 1 and 12). The composites of SST anomalies for Node 1 are positive over the central 

equatorial Pacific Ocean. This is a typical characteristic of the so-called Central Pacific El Niño or El Niño 

Modoki or even EN3 (Hoell et al. 2014; Johnson, 2013). Conversely, the SST anomalies during the 

occurrence of Drought Pattern 12 are negative over the equatorial eastern Pacific, resembling the La Niña 

LN4 conditions described in Hoell et al. (2014). 

The ERAINT data set captures the SST anomalies associated with the two drought patterns. Most of the 

CORDEX RCMs show the same feature of SST anomalies associated with Drought Pattern 1 as the 

observation, with the exception of CCLM and REMO. The REMO model does not reproduce the SST 

anomalies associated with Node 1 while the CCLM model shows negative SST anomalies off the coast of 

Peru, which is contrary to El Niño conditions. With regard to Node 12, all CORDEX RCMs show La Niña 

conditions in the Pacific Ocean, with the exception of the WRF model that never captures this pattern. 
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(a) 

 

(b) 

 

Figure 54: Composite of SST anomalies (°C) associated with (a) Nodes 1 and (b) Node 12 during austral summer 
period for the CRU, ERAINT and the 10 RCMs 

4.6 Conclusion 

In this chapter, we examined the capability of GCMs and RCMs to simulate characteristics of southern 

African droughts and reproduce the link between droughts and some atmospheric teleconnections. The 

results obtained can be summarised as follows: 

• Only a few CORDEX RCMs simulate the influence of ENSO on southern African drought as observed. 

In this regard, the ARPEGE model shows the best simulation. The differences in the performance may 

be due to their lateral boundary conditions. The ARPEGE model is a variable-resolution model. This 

stretching capability would allow a better interaction between large-scale and small-scale features in the 

ARPEGE model, and consequently a better representation of the rain-producing systems in southern 

Africa. 
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• The RCA-simulated link between ENSO and southern African droughts is sensitive to the global data 

set used as the lateral boundary conditions. In some cases, using RCA to downscale GCM simulations 

adds value to the simulated link between ENSO and the droughts, but in other cases the downscaling 

adds no value to the link. The added value of RCA to the simulated link decreases as the capability of 

the GCM to simulate the link increases. This study suggests that downscaling GCM simulations with 

RCMs over southern Africa may either improve or depreciate the simulated ENSO-drought link over the 

region. 

• The GCMs give remarkable representation of the drought modes, but they perform better in reproducing 

the drought modes at three-month scale than at 12-month scale. About 70% of GCMs simulate all 

drought patterns well at three-month scale, while only 60% of GCMs simulate three of the drought 

patterns well at 12-month scale. 

• The RCMs also simulate the spatial characteristics of the drought modes better at three-month scale 

than at the 12-month scale, but they capture the temporal variability of the drought modes better at 12-

month scale than at three-month scale. 

• The RCMs give realistic simulations of the drought patterns over southern Africa, but they have difficulty 

in simulating the temporal variability of the drought patterns. However, ARPEGE model performs best 

in simulating the drought patterns and the temporal variability. 
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5 FUTURE PROJECTIONS OF REDs OVER SOUTHERN AFRICA 

5.1 Introduction 

There is a concern that the ongoing global warming may increase the severity of droughts in southern 

Africa, because many studies have shown that drought intensity increases with temperature (Dai et al. 

2004; Dai 2011; Sheffield and Wood 2008; Vicente-Serrano et al. 2010a; 2010b; Washington and Preston 

2006). For example, Dai et al. (2004) showed that in the period 1972–2004, the warming increased global 

dry areas by 20–38%. Dai (2011) found that the temperature increase of 1–3°C in 1950–2008 decreased 

the annual rainfall in most parts of Africa. The IPCC Fourth Assessment Report (IPCC, 2007) projected a 

continuous increase in global mean surface air temperature over the 21st century owing to the increase of 

anthropogenic greenhouse gas concentration (Meehl et al. 2005), suggesting an increase in drought 

frequency, severity and spatial extension in future, especially in southern Africa. However, most of these 

studies based their future projections on GCMs simulations (with coarse resolution) and characterised the 

droughts with precipitation anomaly only. To obtain more physically based drought projections, the present 

study used high-resolution simulations (from a CORDEX RCM) and a drought index (SPEI) that accounts 

for influence of the global warming on droughts. 

In previous chapters, we identified and described characteristics of REDs over southern Africa (Chapter 2), 

investigated the mechanism controlling the droughts (Chapter 3), and assessed the capability of some 

GCMs and RCMs in simulating the droughts and their links with atmospheric teleconnections (Chapter 4). 

In the present chapter, we project the future characteristics of southern African droughts under two climate 

forcing scenarios [Representative Concentration Pathway (RCP4.5 and RCP8.5; i.e. the mid- and high-

level emission scenarios, respectively)]. The characteristics considered here include drought intensity, 

coverage, frequency, modes and patterns. To identify the influence of temperature in characterising the 

future droughts, the SPEI projections are compared with those of SPI. To ensure the results are relevant 

for agriculture and water resources planning, the drought projections are provided at three-month, 12-

month, and 24-month scales. While the short-time droughts (three-month) are usefully for agricultural 

purposes, the longer time scale droughts (e.g. 12-month and 24-month) are needed for water resources 

managements. 

5.2 Model Simulations 

All climate simulation data sets were obtained by downscaling eight GCM projections over southern Africa 

using the Rossby Centre Regional Atmospheric Model (called RCA), developed by the SMHI in Sweden. 

RCA participated in the CORDEX project (www.cordex.org). RCA simulations were chosen for this study 

because the model has the largest number of simulations available in the CORDEX website. As discussed 

in the previous chapter (Chapter 4), RCA gives a credible simulation of southern Africa droughts and 

realistically reproduces the link between the droughts and atmospheric teleconnections. The description of 

the RCA simulations analysed for the study is summarised in Table 5. 

http://www.cordex.org/


 

67 

Table 5: Description of all GCMs downscaled in RCA simulations used for this study 

RCA 

Simulation 

 Forcing Global Data Set 

 Name and Institution Resolution 

R_ERAINT  The ERA-Interim reanalysis from the ECMWF 0.8° × 0.8°  

R_CCCMA  The CanESM2 GCM from the Canadian Centre for Climate Modelling 

and Analysis (CCCMA) 

2.8° × 2.8°  

R_CNRM  The CNRM-CM5 GCM from the Centre National de Recherches 

Meteorolo–Giques/Centre Européen de Recherche et de Formation 

Avancée en Calcul Scientifique 

1.4° × 1.4°  

R_GFDL  The NOAA-GDFL GCM from NOAA Geophysical Fluid Dynamic 

Laboratory 

2.5° × 2.0°  

R_HADGEM  The HadGEM2-ES GCM from UK Met Office Hadley Centre  1.9° × 1.3°  

R_ICHEC  The ICHEC-EC GCM from the EC-EARTH Consortium 1.25° × 1.25°  

R_MIROC  The MIROC5 GCM from the Atmosphere and Ocean Research Institute 

(University of Tokyo), National Institute for Environmental studies and 

Japan agency for Marine-Earth Science and Technology 

1.4° × 1.4°  

R_MPI  The MPI-ESM-LR GCM from the Max Planck Institute for Meteorology 1.9° × 1.9°  

R_NCCN  The NorESM1-month GCM from Norwegian Climate Centre 2.5° × 1.9°  

5.3 Droughts Intensity 

Figure 55 presents the interannual variation of the seasonal droughts, averaged over southern Africa for 

the past and future climates (1951–2100). There are notable differences in the SPEI and SPI projections 

(Figure 56). The SPEI projection suggests a continuation of a negative trend or a dry condition (that features 

toward the end of past climate) into the future under both RCP4.5 and RCP8.5 scenarios. On the other 

hand, the SPI projection shows neither trend nor any persistent dry condition for both scenarios, except for 

a weak negative trend in JJA and SON between 2050 and 2100. In addition, with SPEI, the projected 

droughts are more severe under RCP8.5 than RCP4.5. For example, by 2100, the model ensemble mean 

is about −0.8 (DJF), −1.0 (MAM), −1.5 (SON) and 2.5 (JJA) in the RCP4.5 scenario, but about −1.5 (DJF), 

−2.0 (MAM), −2.5 (SON) and 3.5 (JJA) under the RCP8.5 scenario. However, with SPI, there are no 

distinctions in the projected SPI values under the two scenarios. Furthermore, while SPEI indicates that the 

severity of future drought may exceed that of the 1996 drought, SPI suggests that the magnitude of the 

most severe future droughts may not exceed that of 1996 drought. These results are also true for both 12-

month and 24-month droughts (Figure 56). 
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Figure 55: Interannual variability of seasonal droughts, obtained using three-month SPEI (left panels) and SPI (right 
panels), over southern Africa in summer (DJF), autumn (MAM), winter (JJA) and spring (SON) of 1951–2100, as 
observed (CRU) and simulated (REF: past climate; RCP4.5_MEM and RCP4.5_MEM: ensemble mean for RCP4.5 and 
RCP8.5 scenarios, respectively; RCP4.5_MEAN and RCP4.5_MEAN: ensemble mean for RCP4.5 and RCP8.5 
scenarios, respectively) 
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Figure 56: Future projections of drought intensity over southern Africa under RCP4.5 and RCP8.5 scenarios. The 
drought intensity is obtained with SPEI (left panels) and SPI (right panels) at 12- and 24-month scales (ending in 
February) from RCA simulations (REF: past climate; RCP4.5_MEM and RCP4.5_MEM: ensemble mean for RCP4.5 
and RCP8.5 scenarios, respectively; RCP4.5_MEAN and RCP4.5_MEAN: ensemble mean for RCP4.5 and RCP8.5 
scenarios, respectively). CRU observations for present-day climate are indicated 

5.4 Drought Coverage 

Here we discuss interannual variation in the area covered by moderate drought over southern Africa for 

past and future climate using both SPEI and SPI (1951–2100). For both indices, a moderate drought is 

defined as a condition in which the drought index (SPI or SPEI) is less than or equal to −1.0. The drought 

coverage is expressed as the percentage of southern African landmass covered with drought (Figure 57 

and Figure 58). Figure 57 shows a good agreement between the results of SPEI and SPI especially in DJF. 

This implies that there may not be a significant difference in using SPEI or SPI to estimate drought coverage 

for this season. The two drought indices disagree in the other seasons, with the highest discrepancy 

occurring in JJA, when SPEI shows drought coverage of more than 60% and SPI shows less than 25%. 

The main reason for this discrepancy is that it is difficult to calculate SPI over southern Africa in JJA when 

the long-term mean rainfall over most of the region is very close to zero. However, with SPEI drought 

coverage, the ensemble mean shows a positive trend in all seasons, especially since 1990. 

The climate models project a general increase in the SPEI drought coverage, but there is no trend in SPI 

drought coverage. While SPI suggests that the percentage of drought area may not exceed 30% in 2100, 

SPEI indicates that, depending on the scenarios and seasons, the percentage of drought area may be up 

to 90%. However, for the SPEI drought area, the enhancement in the drought coverage is projected to be 
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higher in RCP8.5 scenario than in RCP4.5 scenario. For example, the projection shows that by 2100, the 

percentages of SPEI drought areas may be about 40% (in DJF), 50% (in MAM), 60% (in SON), and 80% 

(in JJA) under the RCP4.5 scenario, but about 60% (in DJF), 70% (in MAM), 80% (in SON), and 98% (in 

JJA) under RCP8.5 scenario. The difference between the drought indices features at the 12-month and 24-

month drought scale projections (Figure 57). For both drought indices, the projections suggest a general 

increase in drought coverage, but the increase is more discernible with SPEI than with SPI. While SPEI 

projects that future droughts coverage may be up to 80% of the subcontinental area, SPI indicates that the 

most widely spread future drought may not cover more up to 50% of the subcontinental area. 

 

Figure 57: Same as Figure 55, except for percentage of southern African landmass experiencing seasonal drought 
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Figure 58: Same as Figure 56, except for percentage of southern African landmass experiencing seasonal drought 

5.5 Drought Frequency 

The future projection shows an increase in frequency of SPEI drought event over the entire subcontinent 

for both RCP4.5 and RCP8.5 scenarios (Figure 59–Figure 63). Both scenarios show that the maximum 

increase occurs in JJA. However, the projection generally shows a higher increase in the drought frequency 

for RCP8.5 than for RCP4.5 and this is consistent with previous sections, which indicate that a larger area 

may experience droughts under RCP8.5 than under RCP4.5. However, the situation is different with SPI 

drought projections. With SPI drought, the models project a lower increase (than that of SPEI drought) and 

there are no substantial differences between the future projections under RCP8.5 and RCP4.5 scenarios. 
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Figure 59: Projected changes in number of seasonal drought (three-month SPEI < −1; number per decade) over 
southern Africa in 1931–2065 under the RCP4.5 scenario, with reference to 1971–2005 

 

 

Figure 60: Same as Figure 59, except for RCP8.5 scenario 
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Figure 61: Projected changes in number of seasonal drought (three-month SPI < −1; number per decade) over southern 
Africa in 1931–2065 under the RCP4.5 scenario, with reference to 1971–2005. The white area indicates no data 

 

 

Figure 62: Same as Figure 61, but for RCP8.5 scenario 
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5.6 The Drought Modes 

The drought modes for past and future climates (i.e. 1951–2100 under RCP4.5) have similar structures 

(compare Figure 63 and Figure 64). This suggests that the climate change may not substantially alter the 

structure and the spatial structure of the drought modes in the future. However, while the future drought 

modes are the same in both climates, there are some changes in the contribution of individual drought 

mode in the two climates. The direction of the changes varies with the drought modes and with the 

simulations. For example, while R_CCMA projects an increase of about 3% in DM3 contribution, R_NCC 

projects a decrease of about 1%. 

Figure 59–Figure 62 show the projected changes in drought intensity and frequency over the core areas of 

the drought modes. Consistent with the future projections of drought intensity, a future increase in drought 

intensity (SPEI and SPI) is projected over the core of each drought mode in both RCP4.5 and RCP8.5 

scenarios. However, the magnitude of the increase varies widely with the drought mode. For instance, with 

SPEI, while the ensemble mean projection is between −1.0 and 1.5 (RCP4.5 and RCP8.5 respectively) 

over DM3 and DM4 areas, it is between −0.5 and −0.2 over DM2 core. This suggests that the future impacts 

of climate change on the drought modes differ. The impacts may induce more intensive droughts in DM3 

and DM4 modes than in DM1 and DM2 modes. For this projection, the SPI results are consistent with those 

of SPEI, except that the magnitude of the increase in drought intensity is weaker with SPI. However, in 

contrast with SPEI results, SPI suggests that the climate change may increase the intensity of pluvial in the 

DM2 mode. In the mode, the ensemble mean projection for SPI is between +2 and +5 (RCP4.5 and RCP8.5 

respectively) in 2100. 

The RCA ensemble mean projects an increase in the frequency of drought (i.e. SPEI < −1.0) over core 

areas of the four drought mode for both scenarios (Figure 65–Figure 68), but the magnitude of the increase 

varies over the areas. And for each mode, the increase also varies with the forcing scenarios. For example, 

for DM1, the projected increase in drought frequency is about 3 events∙decade−1 in the two future periods 

(2046–2065 and 2081–2100) under RCP4.5 scenario, but it ranges from 3 events∙decade−1 (in the 2046–

2065 period) to 5.5 events∙decade−1 (in 2081-2100) under RCP8.5. On the other hand, for DM2, the 

projected increase ranges from 0.1 event∙decade−1 (in the 2046–2065 period) to 1.0 event∙decade−1 (in 

2081–2100) under RCP4.5, but from 1 event∙decade−1 (in the 2046–2065 period) to 2 events∙decade−1 (in 

2081–2100) under RCP8.5. However, there is a better agreement among the simulations on the direction 

of change in drought intensity for DM3 for DM2. 
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Figure 63: Drought modes over southern Africa, as obtained with PCA of 12-month SPEI for observed (CRU) and 
simulated RCA simulations (1951–2014). The percentage of variance explained by each drought mode (principal factor) 
is indicated at the lower left corner of the panel. The spatial correlation between observed and simulated mode for each 
model is shown at the lower right corner of the model’s panel. The green rectangle shows the core area of each drought 
mode 

 

Figure 64: Same as Figure 63, except for 1951–2100 under RCP4.5. CRU analysis is for 1951–2014 
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Figure 65: Future projections of drought over the core area of DM1 

 

Figure 66: Future projections of drought over the core area of DM2 
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Figure 67: Future projections of drought over the core area of DM3 

 

Figure 68: Future projections of drought over the core area of DM4 
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5.7 Drought Patterns 

Here, we examine how the future characteristics of DJF drought patterns may differ from the past. For this 

purpose, we combined DJF droughts (SPEI) from CRU observation (1971–2005) and RCA simulations 

(1971–2005; 2031–2065 under both RCP4.5 and RCP8.5 scenarios) as a data set, and then applied SOMs 

on the data set to classify the patterns into 20 groups based on their similarities. Figure 69 shows results 

of the SOM classification. The figure suggests that some common drought patterns in the past climate may 

disappear in the future climate, while some new drought pattern may emerge in the future. For example, 

Node 15 drought pattern (typifying mild all-wet condition), which occurred about 4 events∙decade−1 in the 

past decade, is projected to be less frequent under the RCP4.5 future scenario (< 1 event∙decade−1) and 

completely disappear under RCP8.5 future scenario. On the other hand, Node 1 drought pattern (showing 

severe all-dry condition), which never occurs in the past climate, is projected to be a common feature in 

under RCP4.5 scenario (2 events∙decade−1) and with a higher frequency under RCP8.5 scenario 

(3 events∙decade−1). However, the frequency of some drought patterns (Nodes 4 and 4, dipole patterns) 

are projected to remain unchanged in future climate under both RCP4.5 and RCP8.5 scenarios. 

(a) 
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(b) 

 

Figure 69: (a) The SOM classification of three-month drought patterns (SPEI) over southern Africa in past climate 
(1971–2005) and projected future climate (2031–2065) under RCP4.5 and RCP8.5 scenarios; (b) The frequency of the 
drought patterns during the present-day (1971–2005) and future (2031–2065, under RCP4.5 and RCP8.5 scenarios) 
climates. In (b), red makers indicate the CRU results, the black markers indicate model simulations, and the bars 
indicate ensemble mean of the simulations 

5.8 Conclusions 

This chapter projected future changes in the characteristics of southern African droughts. The projections 

focused on changes in drought intensity, coverage, frequency, modes, and patterns under two future climate 

scenarios (RCP4.5 and RCM8.5). Future climate simulations from an RCM that gives realistic 

representation of southern Africa droughts were analysed for the study. The analysis can be summarised 

as follows: 

• The projections indicate that impacts of global warming would increase drought intensity, area 

coverage, and frequency over southern Africa. The increase is more pronounced under the RCP8.5 

scenario than under the RCP4.5 scenario. However, there are also substantial differences in projection 

of SPEI and SPI droughts. The SPEI droughts are more intense, more frequent, and wider than the 

SPI droughts. 

• The model projects no significant changes in the spatial structure of the four drought modes over 

southern Africa. However, more severe droughts are projected over the core areas of the drought 

modes, but the magnitude of the severity is higher for DM3 and DM4 modes than for DM1 and DM2 

modes. 

• The projections suggest that all-dry drought pattern would become more frequent in the future, while 

the all-wet drought pattern would become less frequent, but the frequency of dipole drought patterns 

would remain unchanged under both RCP4.5 and RCP8.5 scenarios. 
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6 IMPACT OF FORESTATION ON DROUGHTS OVER SOUTHERN AFRICA 

6.1 Introduction 

The impacts of climate change are projected to be severe in southern Africa. For instance, a warming of 

about 2–3°C by 2050 is projected over the borders of South Africa and Botswana, and the warming may 

exceed 4°C over some parts of the interior by the end of the century (Archer et al. 2010; Boko et al. 2007; 

Hudson and Jones 2002; Midgley et. al. 2007). In addition, a drier condition is projected over many areas 

of southern Africa in the future (Haensler et al. 2011b; Ringrose et al. 2002). Forestation has been 

suggested as a reasonable, effective, and affordable climate change mitigation option because of its 

biogeochemical benefits (Lenton and Vaughan 2009). It can sequester atmospheric carbon dioxide (a major 

greenhouse gas) and offset fossil fuel emissions (Virgilio and Marshall 2009). Under the United Nations 

Framework Convention on Climate Change (UNFCC) and the Kyoto Protocol, many efforts have been put 

into implementing forest-related carbon mitigation projects. The Clean Development Mechanism and 

Reducing Emissions from Deforestation and Forest Degradation (REDD) have also created financial 

incentive to store carbon in forests. Therefore, forestation does not only offer emission reductions, but it 

also creates economic opportunities that may generate monetary returns through carbon trading markets. 

In addition, forestation may also offer ancillary benefits, such as more sustainable livelihoods for local 

communities or opportunities for environmental conservation (Canadell and Raupach 2008; Topfer 2001). 

Most of these efforts, however, often overlook the biophysical effects of forestation on regional climate. 

Studies have shown that the biophysical effects of forestation on climate can be harnessed in mitigating 

regional climate change. Using regional climate simulations, Chen et al. (2012) and Gálos and Jacob (2012) 

show that forestation may induce a nett cooling and reduce the severity of drought over the USA and 

Hungary, respectively. Abiodun et al. (2012) showed that forestation may reduce the projected warming 

over the forested region in West Africa. Despite these favourable effects, forestation may also induce 

negative impacts on the regional climate. For instance, Abiodun et al. (2012) showed that in West Africa, 

forestation may enhance the global warming north of the forested area. Swann et al. (2012) also showed 

that forestation in mid-latitude regions could produce regional warming and remotely modify atmospheric 

circulations. Hence, forestation may have both positive and negative feedbacks at different scales, and 

these feedbacks can modify the projected climate change signals. Despite the natural and commercial 

forestation activities in South Africa, no study has investigated the biophysical impacts of forestation on the 

regional climate in future. Hence, as part of the project, this study examined the potential impacts of 

forestation on future climate in southern Africa. 

In previous chapters, we identified and characterised REDs over southern Africa (Chapter 2), examined the 

mechanisms that drive droughts (Chapter 3), assessed the capability of climates models to reproduce the 

droughts and the drought-driving mechanisms, and projected future changes in characteristics of the 

droughts. In the present chapter, we used climate model simulations to investigate the impact of forestation 

on the southern African droughts. The model simulations are described in Section 6.2. The impacts of 

forestation on precipitation, temperature and droughts are presented in Section 6.3, and the major findings 

are summarised in Section 6.4. The materials reported in the chapter are published in Naik and Abiodun 

(2016) and Naik (2015). For more detailed and comprehensive results, readers are referred to these 

publications. 

6.2 Model Simulations 

Model simulations data sets were analysed for the study. The model simulation data sets comprise two 

GCMs and two CORDEX RCMs simulations. The two GCMs are the Met Office Hadley Centre Model 

(HADGEM2-ES, hereafter HAD; Martin et al. 2011) and the Max Planck Institute for Meteorology Model 

(MPI-ESM-LR, hereafter MPI; Giorgetta et al. 2013). The simulations for both GCMs (HAD and MPI) were 
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obtained from the CMIP5 and were used to provide the initial and lateral boundary conditions for the two 

regional models. The two CORDEX regional models are the International Centre for Theoretical Physics 

(ICTP) Regional Climate Model version 4.3 (hereafter, RegCM; Pal et al. 2007) and the Weather Research 

Forecasting Model version 3.1.1 (hereafter, WRF; Skamarock et al. 2008a; 2008b). 

Each RCM was applied to perform three experiments (Table 6). The first experiment (PRS) simulated the 

past climate, the second experiment (GHG) simulated the future climate without forestation, and the third 

experiment (FRS) simulated the future climate with potential forestation. The first two experiments (PRS 

and GHG) used the present-day land-cover patterns (Figure 70a and Figure 70c) in simulating the present-

day (1970—2004) and the future (2030—2064) climate, respectively. The future climate experiments (GHG 

and FRS) were based on increasing greenhouse gas concentrations under the intermediate-range RCP4.5 

scenario (Thomson et al. 2011). 

The forestation experiment (FRS) used land-cover patterns in which the biophysically suitable areas in 

Eastern Cape are forested (Figure 71b and Figure 71d). This represents a future climate with the influence 

of natural bush encroachment and human-induced forestation in Eastern Cape. The forestation area was 

delineated based on results of previous studies (i.e. Gush et al. 2002) that mapped the distribution of 

quaternary catchments and identified regions where the mean annual precipitation (exceeds 650 mm) as 

sufficient to sustain forestation. Each RCM simulation was initialised and forced with the corresponding 

GCM simulation (i.e. RegCM with HAD, and WRF with MPI). 

All simulations were run for 35 years (1970–2014 and 2030–2064), but the simulation of first year was 

discarded as spin up and the simulations of remaining 34 years (1971–2014 and 2031–2064) were 

analysed. We analysed the PRS simulation to evaluate the performance of the models in simulating the 

southern African climate, used the difference between PRS and GHG (i.e. GHG minus PRS) results to 

obtain the projected future climate change, and used the difference between GHG and FRS results ( i.e. 

FRS minus GHG) to assess the impacts of the forestation on the future climate. Only the results of the last 

analysis (i.e. FRS minus GHG) are presented in this report. However, the focus of the present discussion 

will be on impacts of forestation (i.e. FRS minus GHG). 

Table 6: Summary of the experiments performed with each regional climate model in the study 

Experiment Boundary condition forcing Land-cover pattern 

PRS Present day (1970–2005) Present day 

GHG Future (2030–2065) 

RCP4.5 

Present day (Figure 2a & c) 

FRS Future (2030–2065) 

RCP4.5 

Forestation and bush encroachment along the eastern 

margin of South Africa (Figure 2b & d) 

 



 

82 

RegCM         WRF 

  

Figure 70: Land-cover types used for the present-day and future climate simulations (PRS and FRS, respectively) in the study. The land-cover types in left panels 
(a and b) are used in the RegCM simulations, while those in the right panels are used in the WRF simulation. The top panels (a and c) show the land-cover types 
used in for PRS simulation, while the lower panels (b and d) show those used in FRS simulations; the circles highlight the forested area. In the legend, “NA” means 
that the colour is not applicable for the model but applicable to the other model 
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6.3 Potential Impacts of Forestation on Rainfall and Temperature 

The RCMs show that the forestation induces both warming and cooling over southern Africa, but the spatial 

distribution of the warming and cooling varies with the seasons, and slightly differs in the models (Figure 

73). Although both models indicate that the peak of the warming resides over the forested area in all the 

seasons, the magnitude of the warming is higher in MAM than in JJA and the warming covers a wider area 

in RegCM than in WRF. For instance, with WRF, the warming of 0.1°C is confined to the Eastern Cape 

area in all the seasons, but with RegCM, it extends to the central part of southern Africa in DJF and JJA, 

and to the Western Cape area in MAM. There is a better agreement between the models on the spatial 

distribution of the cooling, which is most visible over Namibia and Botswana in MAM; however, the 

magnitude of the cooling is higher in RegCM (about −0.2°C) than in WRF (about −0.15°C). The forestation 

also induces wet and dry patterns over the subcontinent. The spatial distribution of the wet and cooling 

follows that of the warming and cooling in some seasons but differs in other seasons. But, in general, the 

forestation induces wet conditions over the forested area, except in the RegCM simulation, where it induces 

a dry condition along the eastern coast in JJA and MAM. In MAM, both models agree that the forestation 

enhances rainfall over Botswana in MAM. In other seasons, WRF shows that the forestation still increases 

the rainfall over Botswana, but RegCM suggests that the forestation decrease rainfall over the country. 

Both models also agree that the forestation induces a dry condition over south-western regions of the 

subcontinent during MAM and over the southern regions of the subcontinent during JJA and SON, but the 

magnitude of the drying differs between the RCMs. The difference in the degree of warming or drying 

produced by the forestation in the models may be partly attributed to subtle differences in the characteristics 

of the vegetation that the forest replaced in the simulations (Figure 71). 

The impacts of the forestation on the rainfall and temperature fields can be linked to the biophysical 

influence of the forestation on the surface energy balance and on the atmospheric dynamics. For instance, 

the warming over the forested area can be attributed to the influence of forestation on the albedo (Table 7 

and Table 8). The forestation decreases albedo (i.e. by −0.02 in MAM), thereby increasing the nett solar 

radiation at the surface (i.e. by 4.60 W∙m−2 in MAM). The increase in the nett solar radiation enhances the 

sensible heat flux from the surface. While the increase in the sensible heat flux over the forested area is 

consistent with the warming over the area, the maximum increase in the sensible heat flux in MAM agrees 

with the region of peak warming during this season. In addition, the increase in rainfall over the forested 

can be attributed to both the albedo effect and the dynamic effect of the forestation. With the albedo effect, 

the increase in the nett solar radiation enhances the latent heat flux, but only in DJF (by 2.92 W∙m−2 ) and 

SON (by 3.52 W∙m−2 ), when the soil moisture is sufficient. This is consistent with the increase in surface 

moisture (i.e. specific humidity) and rainfall in the two seasons. With the dynamic effect, the increase in 

temperature and in surface friction induced by the forestation encourages convergence and cyclonic flow 

over the forested area, thereby producing more rain (Figure 73). This is supported by the decrease in 

surface pressure and increase in boundary layer height following the forestation. However, while the 

dynamic effect increases the rainfall in all seasons, the albedo effect only contributes to the rainfall increase 

in DJF and MAM. That explains why the rainfall increase is higher during DJF and MAM than in other 

seasons (SON and JJA). The simulated nett cyclonic flow around the forestation area is consistent with the 

enhance rainfall over the area. 

The reactions of the models to the forestation are similar over the forested area. For instance, the models 

agree that the decrease in albedo (following the forestation) would increase the nett radiation (i.e. additional 

energy) at the surface, although the increase is higher in WRF (≈ 13.1 W∙m−2) than in RegCM (5.0 W∙m−2), 

because the decrease in albedo is larger in the former (≈ -7.5%) than in the later (≈ −2.2%). 

Both models also indicate that forestation would enhance the Bowen ratio, meaning that the greater fraction 

of the additional energy is partitioned for warming the atmosphere rather than for moistening it. 
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Nevertheless, the models show different increase in the Bowen ratio (the value is higher in RegCM; hence, 

the fraction that goes for the warming is higher in RegCM than in WRF). The difference in the Bowen ratio 

may be attributed the dissimilarity in the way land-cover processes and parameters are represented in the 

models. However, due to the different the Bowen ratio, the models produce opposite changes in the surface 

air relative humidity. While RegCM suggests a decrease in the relative humidity (≈ −1.5%), WRF indicates 

an increase (+0.5%). Nevertheless, both models agree that the forestation would increase the annual 

rainfall, though the magnitude of the increase is lower in RegCM (≈1.34 mm∙month−1) than in WRF 

(≈12.9 mm∙month−1). The RCMs also agree that the forestation would induce a warmer boundary layer; but, 

due to the difference in the Bowen ratio, the warming is higher in RegCM (≈ 0.18°C) than in WRF (0.15°C), 

and the increase in boundary layer is higher in the former (≈ 56 m) than in the later (23 m). 

These results are consistent with those in Mackellar et al. (2008), where a cooling due to increase in surface 

albedo (from land-cover changes over southern Africa) was found to initiate a change in circulation through 

large-scale subsidence (as indicated by increased geopotential heights). As a consequence of this, 

moisture convergence reduced, and rainfall also decreased in some areas. In the present study, forestation 

produces opposite changes to those in Mackellar et al. (2008) because it decreases surface albedo. While 

the influence of forestation on temperature (i.e. warming) found in our study agrees with what Swann et al. 

(2012) found in mid-latitude regions, it contradicts what Abiodun et al. (2012) found over West Africa. With 

Abiodun et al. (2012), the forestation induced cooling over West Africa (despite the decrease in albedo 

following the forestation) because it increased evaporation, which in turn increased cloud amount and 

reduced incoming solar radiation and sensible heat flux. However, in agreement with all the previous 

studies, the results here suggest that the impacts of the forestation are not limited to the forested area. 

Through its influences on atmospheric circulation, the forestation remotely modifies the regional 

temperature and rainfall. 
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Figure 71: Projected future (2031–2064) changes in mean air temperature (shaded; °C) and 850 hPa geopotential height (contours: metres; the contour interval is 
2 m). The changes are relative to the period 1971–2004, as simulated by the GCMs (HAD and MPI) and RCMs (RegCM and WRF) 

  

GCMs RCMs 
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Figure 72: Projected future (2031–2064) changes in mean rainfall (shaded; mm∙month-1) and in 850 hPa winds (arrows), relative to the period 1971–2004, as 
simulated by the GCMs (HAD and MPI) and RCMs (RegCM and WRF). The bottom arrows are the wind speed scale 

GCMs 
RCMs 
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Figure 73: The simulated impacts of forestation (i.e. FRS minus GHG) on surface air (2 m) temperature (°C, shaded; first two left panels) and rainfall (mm∙month−1; 
last two right panels) for different seasons (DJF, MAM, JJA, and SON) in the period 2031–2064, as simulated by RegCM and WRF. The corresponding changes in 
850 hPa winds (arrows; vector difference between FRS and GHG) are overlaid on the temperature plots, while the corresponding changes in moisture flux (arrows; 
vector difference between FRS and GHG) are overlaid on the rainfall plots. The bottom arrows are the scales of wind speed and magnitude of the moisture flux 

  

Temperature Precipitation 
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Table 7: RegCM simulations over the forested area in each season (DJF, MAM, JJA, and SON): the mean (µ) and standard deviation (σ) of the climate averaged 
variables in the present-day climate (PRS); the projected future climate change (GHG–PRS, Δ); and the impact of the forestation on the future climate (FRS-GHG, 
ψ). The climate variables considered are temperature (Temp), rainfall (Rain), specific humidity (Q), relative humidity (RH), latent heat flux (LHF), surface downward 
shortwave flux in air (RSDS), nett shortwave energy flux (RSS), surface albedo (Albedo), sensible heat flux (SHF), surface drag force (Drag), maximum wind speed 
at 10 m height (Wind), moisture content of the soil layers (MRSO), planetary boundary layer thickness (PBL) and Bowen ratio. The significant climate change values 
(i.e. Δ > σ) are in bold. If a climate change value is significant, but the additional impact of forestation will make the overall future climate change signal not significant 
(i.e. Δ + ψ < σ), the impact of forestation value (ψ) is underlined. If the impact of climate change is not significant, but the additional impact of forestation will make 
the overall future climate change signal significant (i.e. Δ + ψ > σ), the impact of forestation value (ψ) is in bold 

Variables DJF  MAM  JJA  SON 

PRS 

  

 PRS 

  

 PRS 

  

 PRS 

  

µ σ Δ ψ  µ σ Δ ψ  µ σ Δ ψ  µ σ Δ ψ 

Temperature (°C) 24.59 0.52 1.72 0.19  23.87 0.49 1.81 0.21  20.07 0.78 5.62 0.16  22.44 0.84 2.35 0.19 

Rain (mm∙month−1) 73.79 42.92 10.10 3.49  31.63 25.87 −0.12 −0.23  17.76 20.64 13.75 0.04  51.98 29.37 0.62 2.06 

Q (g∙kg−1) 11.33 0.49 1.46 0.05  9.57 0.47 0.78 −0.12  6.61 0.48 3.75 −0.09  9.17 0.41 1.02 0.05 

RH (%) 84.85 2.53 1.12 −0.78  77.91 2.13 −1.95 −2.10  71.61 4.21 4.35 −2.06  80.05 3.31 −2.17 −0.99 

LHF (W∙m−2) 139.70 3.70 4.49 2.98  97.62 3.88 0.83 −7.06  63.87 4.37 34.58 −6.66  119.70 4.09 0.13 3.52 

RSDS (W∙m−2) 219.40 15.67 −9.92 −4.43  174.00 10.46 3.08 −2.79  142.50 8.67 34.54 −1.50  207.40 10.34 2.58 −1.96 

RSS (W∙m−2) 228.90 10.14 −6.37 3.83  170.90 6.85 1.32 4.37  135.10 4.78 37.19 5.34  209.50 6.37 0.99 6.42 

Albedo 0.08 0.00 0.00 −0.02  0.09 0.00 0.00 −0.02  0.09 0.00 0.00 −0.03  0.08 0.00 0.00 −0.02 

SHF (W∙m−2) 33.85 5.06 −5.88 1.09  9.43 3.48 1.10 5.52  −4.11 3.05 14.65 4.36  24.47 3.80 1.65 2.02 

Drag 0.07 0.10 0.00 0.04  0.12 2.05 0.01 0.20  0.04 0.02 0.09 0.09  0.19 0.34 0.04 −0.01 

Wind (m∙s−1) 1.97 0.75 −0.26 −0.50  2.05 0.68 0.03 −0.87  4.68 1.12 −2.60 −2.10  1.51 0.63 0.44 −0.68 

MRSO (kg∙m−2) 29.98 1.26 0.78 5.00  26.96 1.07 −1.16 3.13  24.35 2.34 1.46 2.89  28.61 1.76 −1.08 4.56 

PBL (m) 742.90 37.76 −43.71 47.94  646.40 31.31 10.53 72.43  665.70 45.87 −8.70 49.08  758.30 46.61 13.19 54.66 

Bowen ratio 0.25 0.05 −0.05 0.01  0.08 0.04 0.01 0.08  −0.08 0.05 0.17 0.08  0.21 0.06 0.03 0.02 
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Table 8: Same as Table 7, but for WRF simulation 

 

Variables DJF  MAM  JJA  SON 

PRS    PRS    PRS    PRS    

µ σ Δ ψ  µ σ Δ ψ  µ σ Δ ψ  µ σ Δ ψ 

Temperature 

(°C) 
17.14 0.48 1.37 0.20 

 
14.41 0.65 1.40 0.14 

 
10.51 0.63 5.30 0.12 

 
15.49 0.78 1.39 0.15 

Rain 

(mm∙month−1) 
208.20 35.23 −1.78 33.30 

 
89.96 42.68 6.67 7.69 

 
31.69 11.70 64.94 1.76 

 
117.20 25.85 4.84 8.81 

Q (g∙kg−1) 9.78 0.40 0.90 0.20  7.76 0.51 0.85 0.18  4.65 0.34 3.96 0.08  6.99 0.41 0.71 0.13 

RH (%) 80.21 9.52 −0.55 0.14  74.18 9.39 0.58 0.92  60.34 9.20 14.42 0.61  65.38 8.20 0.59 0.27 

LHF (W∙m−2) 124.30 3.73 2.42 9.16  78.44 3.92 1.04 7.09  39.00 2.60 40.48 5.94  77.14 4.12 2.57 9.74 

RSS (W∙m−2) 240.80 10.81 −0.09 11.60  166.20 10.42 −1.12 9.92  132.80 4.27 32.32 12.19  220.70 8.28 0.76 18.83 

Albedo 0.18 0.00 0.00 −0.07  0.19 0.00 0.00 −0.07  0.21 0.00 −0.03 −0.08  0.20 0.01 0.00 −0.08 

SHF (W∙m−2) 51.36 3.64 −0.58 4.67  23.75 3.18 −0.04 3.71  14.51 1.71 9.20 4.55  58.57 4.94 −1.27 8.86 

Wind (m∙s−1) 5.78 2.93 0.91 −0.93  9.07 3.13 −1.67 −1.38  24.25 6.21 −16.85 −3.53  6.97 5.58 −0.86 −1.37 

PBL (m) 540.20 22.62 −6.08 19.65  458.20 21.84 −11.78 14.81  489.10 21.87 −42.66 23.71  613.20 35.95 −17.78 33.92 

Bowen ratio 0.43 0.03 −0.01 0.00  0.33 0.04 0.00 0.01  0.48 0.10 −0.15 0.03  0.88 0.23 −0.03 0.00 
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6.4 Potential Impacts of Forestation on Summer Drought 

This section discusses how forestation can alter the projected changes in southern African summer 

drought in the future under the RCP 4.5 scenario. For the past climate (PRS), the RCMs models agree 

with CRU that the drought frequency over southern Africa ranges from about 1–2 events∙decade−1 

(Figure 74a and Figure 74b). 

 

Figure 74: The potential impacts of forestation on summer (DJF) droughts (i.e. three-month SPEI < 1.5). The top 
panel shows the observed (CRU; contour) and simulated (RegCM and WRF; shaded) drought frequency (number 
of event per decade) in the present-day climate. The middle row shows the projected future changes in the drought 
frequency (event per decade) under the RCP4.5 scenario (i.e. GHG–PRS). The bottom row shows the impact of 
the forestation (i.e. FRS minus GHG) on the projected future drought frequency event per decade); the forested 
area is enclosed with blue line 

With the elevated GHG concentration, both models project a future increase in the summer (DJF) 

drought frequency, and the spatial distributions of the increase are similar in the models. However, the 

magnitudes of the increase are generally larger in RegCM than in WRF (Figure 74c and Figure 74d). 

For instance, the largest increase, which occurs over northern Botswana, northern Mozambique, as 

well as the south-western regions of South Africa and Namibia, is about 5 events∙decade−1 in RegCM, 



 

91 

but about 1-3 events∙decade−1 in WRF. RegCM also shows a decrease in the drought frequency (about 

−2 events∙decade−1) over the north-eastern region of South Africa that is not simulated by WRF. With 

the forestation, the spatial distribution of the projected changes in the drought frequency differs between 

the models (Figure 74e and Figure 74f). For instance, WRF shows that the forestation decreases the 

drought frequency by about 5 events∙decade−1 over much of the forested areas and over South Africa. 

However, this does not occur in RegCM simulations over the forested areas and, over parts of South 

Africa, where an increase in the drought frequency of about one event/decade occurs. RegCM and 

WRF also differ in the drought signal over adjacent regions, such as the Kalahari Desert, Zimbabwe, 

and parts of Mozambique. Thus, although both RCMs show that forestation may alter the characteristics 

of drought frequency in the future, from the divergent response to forestation, it is not clear as to where 

the forestation might alleviate or enhance the projected drought signal over southern Africa. 

6.5 Summary and Conclusion 

This chapter applied two RCMs (RegCM and WRF) to investigate the potential impacts of forestation 

on future climate in southern Africa. Forced with GCM simulations, the RCMs were used in three 

experiments: PRS (present-day climate), GHG (future climate without forestation) and FRS (future 

climate with forestation). The study first evaluated the performance of the RCMs (using PRS), and then 

presented the projected future changes (GHG minus PRS) before discussing the impacts on the 

forestation (FRS minus GHG). The results of the study can be summarised as follows: 

• Both models give a realistic simulation of essential features of the southern African climate, but with 

some biases. The maximum bias in the temperature field (about 2°C in RegCM and about 4°C in 

WRF) occurs over the south-west of South Africa in summer, while the maximum bias in the rainfall 

field (about 75 mm∙month−1 in RegCM and about 50 mm∙month−1 in WRF) occurs over Zimbabwe in 

summer. 

• The RCMs project warming over the entire subcontinent in all seasons, in both models the maximum 

warming occurs over south-west of South Africa, but with RegCM the maximum warming occurs in 

SON (3.2°C), and with WRF it occurs in DJF and MAM (2.0°C). In summer, RegCM projects drier 

summer conditions over Mozambique in the future, but WRF projects the wetter summer condition 

over the same area. 

• Forestation enhances the projected warming and rainfall over the forested area but reduces them 

elsewhere. These changes are largely due to the albedo effect and dynamic effect of the forestation 

on the atmosphere. The darker forest (relative to pre-existing vegetation cover) decreases the 

surface albedo and increases the amount of solar radiation absorbed at the surface. This extra 

energy in the system increases the amount of sensible and latent heat, and increases the 

temperature and rainfall, respectively. 

• The RCMs project that the elevated GHG could increase in drought frequency in summer over 

southern Africa in future. Forestation could alleviate the occurrence of these droughts over some 

regions but enhance it over other areas in southern Africa. 

The potential biophysical impacts of forestation on future climate and extreme events have previously 

been illustrated over West Africa (Abiodun et al. 2012a; 2012b; Oguntunde et al. 2014). However, over 

southern Africa, while many studies have projected the future climate change, the influence of ongoing 

forestation activities in the region has previously not been included. This research provides a preliminary 

assessment of the potential climatic impacts of forests on the future climate in southern Africa. The 

results indicate, in the very least, a substantial sensitivity of the climate change projections to natural 

and commercial forestation activities and suggest that human management of forests could have some 

potential for regional climate regulation. However, our results illustrate that the impacts of forestation 

on regional climate are complex and that potentially unintended biophysical effects could occur. Thus, 

forestation projects in southern Africa should not only be viewed from the perspective of carbon storage 

alone. Rather, the biophysical effects need to be carefully weighed against the biogeochemical benefits 

(i.e. carbon sequestration).  
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7 DROUGHT MONITORING SYSTEM OVER SOUTHERN AFRICA 

7.1 Introduction 

Southern Africa has experienced severe droughts in the past few decades such as the 1991/92 

droughts) (Meque and Abiodun 2014). The socio-economic impacts of these droughts have motivated 

many studies on southern African droughts. While some of the studies focused on monitoring the 

droughts (e.g. Unganai and Kogan 1998a; 1998b), some attempted to understand the spatial and 

temporal characteristics of the droughts (e.g. Dube and Jury 2003; Jury and Mwafulirwa 2002; Mulenga 

et al. 2003; Ujeneza and Abiodun 2014), while others concentrated on how to improve the seasonal 

forecasting of the droughts (e.g. Jury et al. 1999; Landman and Mason 1999; Unganai and Mason 

2002). For example, Rouault and Richard (2003) developed a South African Drought Atlas to assist 

seasonal forecasting of drought over the country. A Drought Atlas can help improve drought monitoring 

and forecasting because we can learn from the past drought events or compare real-time drought 

pattern with similar past conditions (Rouault and Richard 2003). However, the Drought Atlas (developed 

in 2003) is now more than a decade old; hence, it may not account for some recent drought patterns. 

In addition, the Drought Atlas only covers South Africa, meaning that it does not show REDs over the 

subcontinent. Furthermore, the atlas used SPI to characterise the droughts, so it may underestimate 

the severity of the droughts as it has not considered the influence of temperature variability on the 

droughts. Hence, to address these shortcomings, the present project updates the Drought Atlas. It 

extends the atlas dates to 2015, uses SPEI that accounts for influence of both precipitation and potential 

evapotranspiration in characterising the droughts, and extends the atlas domain to cover the entire 

southern Africa. In addition, it includes future projections of the droughts under two possible climate 

change scenarios (RCP4.5 and RCP8.5). 

The atlas (Figure 75) is an interactive online system, publicly available at: http://hail.csag.uct.ac.za/

droughtmonitor/atlas.php. Depending on the user’s interests, the atlas can be used to obtain information 

on past droughts and projected future changes in droughts characteristics over southern Africa, some 

of which are discussed in the in previous chapters. The present chapter provides detailed guidelines on 

how use the system and shows sample maps from the atlas. The online drought system has three 

options: Drought Monitoring, Drought Atlas, and Future Projections (Figure 75). 

 

Figure 75: A screen shot of the project website portal 

http://hail.csag.uct.ac.za/​droughtmonitor/​atlas.php
http://hail.csag.uct.ac.za/​droughtmonitor/​atlas.php
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7.2 Drought Monitoring Option 

The Drought Monitoring option provides near real-time drought information over southern Africa at 0.5-

degree spatial resolution and on a monthly time resolution. The SPEI and SPI are used to characterise 

drought at time scales of three and 12 months. The SPEI calculation is based on the difference between 

precipitation and potential evapotranspiration, while the SPI is based on precipitation amount. The 

potential evapotranspiration is calculated with the Hargreaves method (PET) using maximum and 

minimum temperature. The calibration period for SPEI and SPI calculations is January 1971–December 

2000. Monthly mean rainfall from the Global Precipitation Climatology Centre and monthly temperature 

(maximum and minimum) data from data sets are used for the NOAA NCEP CPC GHCN_CAMS 

gridded data set. The database is updated during the first days of the following month based on the 

reliable sources of climatic data. 

The drought monitoring is suitable for near real-time monitoring and early warning purposes. The 

system produces spatial and temporal drought plots. The spatial option gives the spatial variation of 

drought index at three-month or 12-month scales. To retrieve this information, the user needs to specify 

the desired drought index (SPI or SPEI), drought scale (three-month or 12-month), the ending month, 

and the year of interest. An example of the spatial drought plot produced for a three-month SPI ending 

in February 2014 is shown in Figure 76. The information from this type of plot will indicate the drought 

hot spot, intensity, and coverage for the given period. From the plot one can deduce whether the region 

is experiencing patches of small-scale droughts or a RED. If it is a RED, a comparison of the map with 

those of previous months will provide information on temporal characteristics of the RED. For instance, 

it will show if the RED is expanding or reducing, moving or static, or if it is intensifying or weakening. 

Such information could help in seasonal prediction the drought coverage for the next month. 

 

 

Figure 76: A screen shot of the spatial drought plot from the project website 
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The temporal plot option displays variation of drought index at three-month or 12-month scales, 

averaged over a given rectangular area or over a selected country. To retrieve the information over an 

area of interest, the user will specify the needed drought index (SPI or SPEI), the drought scale (three-

month or 12-month), the longitude and latitude coordinates of the area, and the start and end of the 

period of interest. Figure 77 shows an example of a temporal plot for three-month SPI over a domain 

(15°E–24°W and 36°S–30°S) and a period (January 1952–December 2014). An example of a similar 

temporal plot for South Africa is shown in Figure 78. 

The information from this type of plot clearly shows the temporal characteristics of drought over a 

selected area. It will also show the drought intensity, peak(s), duration and frequency. It also shows 

changes to these characteristics of droughts over time. This information could help seasonal predictions 

of the drought behaviour in the next few months. 

 

 

 

 

 

 

Figure 77: A screen shot of the temporal drought plot over a rectangular area (Western Cape), as obtained from 
the project website 
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Figure 78: A screen shot of the temporal drought plot over a country (South Africa) as obtained from the project 
website 

7.3 Drought Atlas Option 

The Drought Atlas system generates drought maps for some special years or a composite drought 

pattern for selected years. The maps are generated based on some specified criteria, namely: 

• The most widely extensive southern African drought patterns. 

• Drought patterns during the positive and negative phases of ENSO. 

• Drought patterns during the positive and negative phases of IOD. 

• Drought patterns during the joint occurrence of IOD and ENSO. 

• Drought patterns during positive and negative phases of Subtropical Indian Ocean Dipole 

(SIOD). 

For example, Figure 79 shows a composite of drought during very strong ENSO (El Niño). Such maps 

give information on a drought pattern that may occur during a given teleconnection(s). This may aid in 

seasonal forecasting under similar conditions. 
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Figure 79: A screen shot of the atlas drought plot over southern Africa (composite of drought index for very strong 
ENSO years ) as obtained from the project website 

7.3.1 Southern African drought patterns during positive and negative phases of ENSO years 

This part presents overall impacts of ENSO on southern Africa drought patterns. ENSO is a periodic 

departure of the SSTs in the equatorial Pacific Ocean from the normal. A positive phase of ENSO (i.e. 

El Niño) is characterised by warmer-than-normal water in the equatorial Pacific Ocean, while a negative 

phase of ENSO (La Niña) is characterised by cooler than normal water in the equatorial Pacific Ocean. 

The composites of southern Africa drought patterns during very strong El Niño years (1983 and 1988), 

strong El Niño years (1958, 1966 and 1973), and strong La Niña years (1974, 1976 and 1989) were 

obtained at annual and seasonal scales. The resulting maps are shown in the Appendix. 

7.3.2 Southern African drought patterns during positive and negative of IOD years 

This part presents the average impacts of IOD events on southern Africa drought patterns. A positive 

IOD year is characterised by cooler than normal water in the tropical eastern Indian Ocean near 

Indonesia, and warmer-than-normal water in the tropical western Indian Ocean near Africa, while a 

negative IOD year is characterised by warmer-than-normal water in the tropical eastern Indian Ocean 

near Indonesia, and cooler than normal water in the tropical western Indian Ocean near Africa. 

To obtain the impacts of positive phase of IOD of drought patterns, 11 years with positive IOD (1961, 

1963, 1967, 1972, 1977, 1982, 1983, 1994, 1997, 2006 and 2007) were selected and the composites 

of the SPEI and SPI for the years were obtained at annual and seasonal scales. To obtain the impacts 

of negative phase of IOD of the drought patterns, a similar analysis was done but using ten years with 



 

97 

negative IOD years (1958, 1960, 1964, 1971, 1974, 1975, 1989, 1992, 1993 and 1996) were used. The 

resulting maps are shown in the Appendix. 

7.3.3 Southern African drought patterns during joint occurrence of ENSO and IOD events 

This presents impacts of joint occurrences of ENSO and IOD events. Some positive IOD events (not 

all) occur during the same year as an El Niño, and some negative IOD events (not all) occur during the 

same year as La Niña. It is rare for a positive IOD event to occur in the same year as La Niña (it occurred 

only once, in 2007, since 1950), and for a negative IOD event to occur during an El Niño year (it occurred 

only once, in 1993, since 1950). However, the relationship between ENSO and IOD is complicated and 

remains an active area of research. 

To show the influence of joint occurrence of the two phenomena on the southern African drought 

patterns, we obtained the composite for the drought patterns that occurred during the positive IOD and 

El Niño years (1963, 1972, 1977, 1982, 1994, 1997 and 2006), and for those that occurred during 

negative IOD and La Niña years (1964, 1971, 1974 and 1975). This is done for droughts at annual and 

seasonal scales. The seasonal scale droughts show seasonal variation of the droughts from three 

months before to three months after the peak of the ENSO event in summer. The resulting maps are 

presented in the Appendix. 

7.3.4 Southern African drought patterns during positive and negative SIOD years 

This part presents impacts of SIOD on southern African drought patterns. SIOD is a periodic SST 

oscillation in which the south-west Indian Ocean (i.e. south of Madagascar) is warmer and then colder 

than the eastern part (i.e. off Australia). A positive SIOD year is characterised by warmer-than-normal 

SST south of Madagascar and colder-than-normal SST off Australia. The reverse is the case for a 

negative SIOD year. 

To show the SIOD on the southern African drought patterns, we obtained the composite for the drought 

patterns during the positive SIOD years (1969, 1974, 1976, 1981, 1982 and 1999), and for those that 

occurred during negative SIOD years (1958 and 1964). This is done for droughts at annual and 

seasonal scales. The seasonal scale droughts show seasonal variation of the droughts from three 

months before to three months after the peak of the ENSO event in summer. The resulting maps are 

shown in the Appendix. 

7.4 Future Projections Plots 

The Future Projection Plots provides information on the projected future changes in drought 

characteristics over a given area or country. The future projection data sets used for this are obtained 

from CORDEX (http://www.cordex.org). Figure 80 gives an example of such projection over South 

Africa. This type of plot can help in preparation for future climate change. For instance, the projection 

in the plot suggests that drought is expected to worsen with the projected climate change. The projected 

increase in drought frequency and intensity could translate to into a variety of drought-related impacts 

that can affect key sectors of the South African economy. Effective drought monitoring is essential to 

improving preparedness for future drought. In addition, information from this map highlights the need to 

enhance our understanding of the differences between drought indices, especially if the research 

findings of similar studies are to provide valuable information for drought-related decision-making. 

http://www.cordex.org/
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Figure 80: A screen shot of the projected changes (for two RCP futures) in drought characteristics over a country 
(South Africa) as obtained from the project website 

The third section presents the future projection drought intensity and frequency over the entire southern 

Africa, and over ten southern African countries, namely: South Africa, Angola, Botswana, Madagascar, 

Lesotho, Mozambique, Namibia, Malawi, Zambia and Zimbabwe. Figure 80 shows a clear distinction 

between the future projections of drought from SPEI and SPI. With SPEI, an increase in intensity and 

frequency is projected over all the countries, although the magnitude of the increase differs over the 

counties. With SPI, an increase in drought intensity and frequency is projected over some countries 

(e.g. South Africa), while a decrease is projected over other countries (e.g. Zambia). 
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8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary of Products from This Project 

In the proposal for this project, three main products were envisaged: scientific papers, a public paper 

and a drought monitoring system. Detailed information for each of the envisaged products is given in 

Table 9. All these products have been delivered as envisaged. 

8.1.1 Scientific papers 

Scientific papers arising from this project are listed in Section 1.1 of the Bibliography. At the time of 

submission of this report, six papers have been published (three are directly from the project while the 

other three are extension of the project), one paper is under review, and two papers are in progress. In 

addition, work from this project has been presented in five talks and five posters at conferences and 

workshops. 

8.1.2 Public paper 

Results of from this work have been released as a public paper (http://www.droughtsa.org.za/images/

Background_to_current_drought_situation_in_South_Africa.pdf). In addition, public awareness of the 

project has taken other forms: 

• Two student interviews on southern African drought (Section 10.1.6). 

• Development and continuous monthly update of the drought information on the drought monitoring 

website. 

8.1.3 A drought monitoring system 

The new drought monitoring system is an improvement over the earlier drought system developed by 

Rouault and Richard (2003) in three ways: 

• The previous system used SPI to characterise droughts, but the present system used both SPI and 

SPEI to characterise droughts. While SPI is based on precipitation only, SPEI is based on the climate 

water balance (a function on precipitation, potential evapotranspiration and temperature). Hence, 

SPEI may give a better representation of impact of anthropogenic warming on the droughts. 

• The drought maps have been updated to include recent droughts. In addition, the new system has 

the capability to give near-time monthly drought maps. It also provides future projections of droughts 

under two climate forcing scenarios. 

• The horizontal domain developed of the drought monitoring system has been extended from South 

Africa to cover the entire southern Africa (and thus characterisation of REDs). Nevertheless, the new 

system still has the capability to provide drought information over a specific country over the 

subcontinent or over a targeted boxed area. 

Table 9: Main products from the projects 

Product Target Group Application 

Scientific papers The scientific community in all sectors 

involved in climate change and its 

impacts on hydrologic systems, 

particularly extremes; Working Group 

I and II of the IPCC 

Four scientific papers describing the 

results on the characteristics REDs, 

the mechanism controlling the 

droughts, capability of climate model 

in simulating the droughts and the 

future projection of the droughts 

http://www.droughtsa.org.za/​images/​Background_​to_current_drought_situation_in_South_Africa.pdf
http://www.droughtsa.org.za/​images/​Background_​to_current_drought_situation_in_South_Africa.pdf
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Product Target Group Application 

Public paper National Water Planning 

Departments; National and Provincial 

Disaster Risk Management Agencies; 

Municipalities; Poor Rural 

Communities; Informal Urban 

Communities 

One public paper describing the 

future characteristics of REDs in 

southern Africa 

Improved drought 

monitoring 

forecasting system 

Users of the SAWS, Climate System 

Analysis Group (CSAG), and CSIR 

seasonal forecast 

A seasonal forecast of drought 

occurrence, coverage and intensity 

8.2 Conclusions from the Project 

The studies reported in Chapters 2–7 have revealed some robust information on the characteristics and 

drivers of REDs in southern Africa, the capability of contemporary climate models in simulating the 

droughts, the potential impacts of future anthropogenic forcing (under RCP4.5 and RCP8.5), and the 

potential impact of forestation on the projected droughts in southern Africa. 

8.2.1 Characteristics of REDs 

• About 50% of SPEI variance over southern Africa can be represented with four main drought modes 

(DM1, DM2, DM3 and DM4), which centre over the south-western part of southern Africa, Zimbabwe, 

Tanzania and Angola, respectively. 

• The southern African drought patterns can be generally classified into three groups: An all-dry 

pattern, which shows a dry condition over the entire southern Africa; an all-wet pattern, which shows 

a wet condition over the whole region; and a dipole pattern, which shows both wet and dry conditions 

over the subcontinent. 

• The drought patterns give a more robust description of RED characteristics than what drought 

modes give, because the entire drought mode descriptions fall under dipole drought pattern 

descriptions. 

• Although each drought pattern can occur in any season, some drought patterns have preference for 

specific seasons. While some droughts patterns persist from season to season, others easily transit 

to another pattern in the following season. 

• There are some distinctions in SPEI and SPI drought patterns in the past climate. The SPEI drought 

patterns suggests a general shift in the southern African drought from an all-wet condition in 1950s–

1970s to an all-dry condition in 1990 (possibly due to the global warming), but in general, this shift 

does not feature in the SPI drought patterns, suggesting that the SPI may underestimate the 

influence global warming on southern African droughts. 

8.2.2 Drivers of the droughts 

• There is a strong dipole correlation between ENSO and droughts (SPEI) over southern Africa; the 

positive correlation is up to +0.6 over the tropical area and the negative is up −0.6 over the 

subtropical area. However, the link between ENSO and droughts (SPEI) is due to the influence of 

ENSO on both precipitation and temperature fields, and the influence ENSO is stronger on 

temperature than on precipitation. 

• While ENSO influences droughts over most regions in southern Africa, the influence of IOD on the 

DM2 drought mode is as important as that of ENSO, while the influence of TNA on DM3 is more 

important than that of ENSO. 
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• Only 20% of drought patterns (all-dry and all-wet patterns) are induced solely by ENSO, other 

drought patterns are caused by complex interactions among the atmospheric teleconnections. All-

dry drought patterns usually occur during El Niño, while all-wet patterns usually occur during the La 

Niña events. 

8.2.3 Simulations of the droughts 

• Contemporary GCMs give remarkable simulations of the spatial structure of the drought modes. 

However, GCMs reproduce the structure better at three-month drought scale than at 12-month 

drought scale. About 70% of the GCMs simulate all drought patterns well at three-month scale, while 

only 60% of the GCMs simulate three of the drought patterns well at 12-month scale. 

• CORDEX RCMs also simulate the spatial characteristics of the drought modes better at three-month 

scale than at the 12-month scales, but they capture the temporal variability of the drought modes 

better at 12-month scale than three-month scale. 

• The RCMs give realistic simulation of the drought patterns over southern Africa, but they perform 

poorly in simulating the temporal variability of the drought patterns. However, ARPEGE model 

perform best in simulating the drought patterns and their temporal variability. 

• Some RCMs simulate the ENSO influence on the southern African drought as observed. In this 

regard, the ARPEGE (a variable-resolution model) shows the best simulation, possibly because it 

does have lateral boundary condition problem. 

• The RCA model also gives a credible simulation of the ENSO influence on the southern African 

drought as observed. However, the RCA-simulated link between ENSO and southern African 

droughts is sensitive to the global data set used as the lateral boundary conditions. In some cases, 

the RCA downscaling of GCM simulations adds value to the simulated link, but in other cases it does 

not add value. The added value of RCA to the simulated link decreases as the capability of the GCM 

to simulate the link increases. This study suggests that downscaling GCM simulations with RCMs 

over southern Africa may improve or depreciate the simulated ENSO-drought link over the region. 

8.2.4 Future projections of the droughts 

• The RCA future projections (using ensemble simulations) indicate that global warming would 

increase droughts intensity, area coverage, and frequency over southern Africa. The increase is 

more pronounced under the RCP4.5 scenario than under the RCP8.5 scenario. However, there are 

substantial differences in projection of SPEI and SPI droughts. The SPEI droughts are more intense, 

more frequent and wider than the SPI droughts. 

• The model projects no significant changes in the spatial structure of the four drought modes over 

southern Africa. However, more severe droughts are projected over the core areas of the drought 

modes, but the magnitude of the severity is higher for DM3 and DM4 modes than for DM1 and DM2 

modes. 

• The projections suggest that an all-dry drought pattern would become more frequent in the future, 

while an all-wet drought pattern would become less frequent, but the frequency of dipole drought 

patterns would remain unchanged under both RCP4.5 and RCP8.5 scenarios. 

8.2.5 Impact of forestation on the droughts 

• Forestation enhances the projected warming and rainfall over the forested area but reduces them 

elsewhere. These changes are largely due to the albedo effect and dynamic effect of the forestation 

on the atmosphere. The darker forest (relative to pre-existing vegetation cover) decreases the 

surface albedo and increases the amount of solar radiation absorbed at the surface. This extra 

energy in the system increases the amount of sensible and latent heat, and increases the 

temperature and rainfall, respectively. 
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• The RCMs project that the elevated GHG could increase in drought frequency in summer over 

southern Africa in future. Forestation could alleviate the occurrence of these droughts over some 

regions but enhance it over other areas in southern Africa. 

8.3 Recommendation 

Results of this project can be improved or applied in several ways. For instance, it can be improved by 

using more observational, reanalysis and simulation data sets that cover a longer time period. Using 

data sets with a longer time period (i.e. paleo-climate data sets) would give better information on 

whether the disappearance of the all-wet drought since the last few decades is due to the impact of 

climate change or it is a part of natural climate variability. Performing the analysis with more data sets 

will help in quantifying the uncertainties in the results, hence making them more robust for policymaking. 

There is a need for additional studies to investigate why the stretched-grid global climate model (SGCM) 

performed better than the limited-area climate models (i.e. RCMs) in simulating a link between ENSO 

and southern African droughts. The most plausible reason is that while the lateral boundary condition 

problem in RCMs could be a bottleneck in simulating the link, there is no boundary condition problem 

in the stretched-grid global model. A climate model that can function as GCM, SGCM, and RCM is 

required to study the influence of boundary condition problem in simulating the link between 

atmospheric teleconnection and southern African droughts. However, results of such experiments will 

assist the climate model development community (especially in southern Africa) to focus their efforts 

and resources on areas that will improve the simulations of southern African droughts. 

Although the project analysis focused on characteristics of REDs in past climate and in future climate 

projection, the analysis can be easily extended to forecasting REDs at subseasonal to seasonal scales. 

The emphases of conventional seasonal forecasting systems in southern Africa have been on rainfall 

and temperature anomalies. Incorporating the methodology and results of this project into the current 

seasonal forecasting systems will make the systems provide more relevant and useful information for 

minimising drought impacts over the subcontinent. Lastly, the results of the project can also be applied 

in studying impacts of REDs on southern African river basins and in investigating how land-use 

management (e.g. land-cover changes) can be used to mitigate the impacts. 
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APPENDIX: ATLAS OF DROUGHT PATTERNS OVER SOUTHERN AFRICA 

 

Figure 81: The spatial distribution of annual drought (12-month SPEI, ending in February) over southern Africa for 
the period 1951–1970 

 

Figure 82: The spatial distribution of annual drought (12-month SPEI, ending in February) over southern Africa for 
the period 1971–1990 
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Figure 83: The spatial distribution of annual drought (12-month SPEI, ending in February) over southern Africa for 
the period 1991–2010 

 

Figure 84: The spatial distribution of annual drought (12-month SPEI, ending in February) over southern Africa for 
the period 2011–2014 
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Figure 85: The spatial distribution of annual drought (12-month SPI, ending in February) over southern Africa for 
the period 1951–1970 

 

Figure 86: The spatial distribution of annual drought (12-month SPI, ending in February) over southern Africa for 
the period 1971–1990 
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Figure 87: The spatial distribution of annual drought (12-month SPI, ending in February) over southern Africa for 
the period 1991–2010 

 

Figure 88: The spatial distribution of annual drought (12-month SPI, ending in February) over southern Africa for 
the period 2011–2014 
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Figure 89: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 1951–1970 

 

Figure 90: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 1971–1990 
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Figure 91: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 1991–2010 

 

Figure 92: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 2011–2014 
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Figure 93: The spatial distribution of summer drought (three-month SPI, ending in February) over southern Africa 
for the period 1951–1970 

 

Figure 94: The spatial distribution of summer drought (three-month SPI, ending in February) over southern Africa 
for the period 1971–1990 
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Figure 95: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 1991–2010 

 

Figure 96: The spatial distribution of summer drought (three-month SPEI, ending in February) over southern Africa 
for the period 2011–2014 
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Figure 97: The spatial distribution of the most widely extensive annual droughts over southern Africa as depicted 
by 12-month SPEI and SPI (ending in February 1995) 
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Figure 98: The spatial distribution of seasonal droughts before (top panels), during (middle panel), and after (lower 
panels) the summer of the most widely extensive drought (1995) over southern Africa, as depicted by three-month 
SPEI 

 

Figure 99: The spatial distribution of seasonal droughts before (top panels), during (middle panel), and after (lower 
panels) the summer of the most widely extensive drought over southern Africa (1995), as depicted by three-month 
SPI 
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Figure 100: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during very strong positive ENSO (El Niño) years (1983 and 1988) 
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Figure 101: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of very strong positive ENSO (El Niño) years (1983 and 1988) 

 

Figure 102: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of very strong positive ENSO (El Niño) years (1983 and 1988) 
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Figure 103: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong positive ENSO (El Niño) years (1958, 1966, and 1973) 
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Figure 104: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive ENSO (El Niño) years (1958, 1966, and 
1973) 

 

Figure 105: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive ENSO (El Niño) years (1958, 1966, and 
1973) 
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Figure 106: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong negative ENSO (La Niña) years (1974, 1976, and 1989) 
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Figure 107: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative ENSO (La Niña) years (1974, 1976, and 
1989) 

 

Figure 108: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative ENSO (La Niña) years (1974, 1976, and 
1989) 



 

129 

 

 

Figure 109: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong positive IOD years (1961, 1963, 1967, 1972, 1977, 1982, 1983, 1994, 1997, 2006 and 2007) 
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Figure 110: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive IOD years (1961, 1963, 1967, 1972, 1977, 
1982, 1983, 1994, 1997, 2006 and 2007) 

 

Figure 111: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive IOD years (1961, 1963, 1967, 1972, 1977, 
1982, 1983, 1994, 1997, 2006 and 2007) 
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Figure 112: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong negative IOD years (1958, 1960, 1964, 1971, 1974, 1975, 1989, 1992, 1993, and 1996) 
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Figure 113: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative IOD years (1958, 1960, 1964, 1971, 1974, 
1975, 1989, 1992, 1993, and 1996) 

 

Figure 114: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative IOD years (1958, 1960, 1964, 1971, 1974, 
1975, 1989, 1992, 1993, and 1996) 
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Figure 115: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong positive IOD and El Niño years (1963, 1972, 1977, 1982, 1994, 1997, and 2006) 
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Figure 116: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive IOD and El Niño years (1963, 1972, 1977, 
1982, 1994, 1997, and 2006) 

 

Figure 117: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive IOD and El Niño years (1963, 1972, 1977, 
1982, 1994, 1997, and 2006) 



 

135 

 

 

Figure 118: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong negative IOD and La Niña years (1964, 1971, 1974, and 1975) 
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Figure 119: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative IOD and La Niña years (1964, 1971, 1974, 
and 1975) 

 

Figure 120: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative IOD and La Niña years (1964, 1971, 1974, 
and 1975) 
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Figure 121: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong positive SIOD years (1969, 1974, 1976, 1981, 1982, and 1999) 
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Figure 122: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive SIOD years (1969, 1974, 1976, 1981, 1982, 
and 1999) 

 

Figure 123: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong positive SIOD years (1969, 1974, 1976, 1981, 1982, 
and 1999) 
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Figure 124: Composite of annual droughts (12-month SPEI and SPI, ending in February) over southern Africa 
during strong negative SIOD years (1958 and 1964) 
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Figure 125: Composite of seasonal droughts (three-month SPEI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative SIOD years (1958, and 1964) 

 

Figure 126: Composite of seasonal droughts (three-month SPI) over southern Africa before (top panels), during 
(middle panel), and after (lower panels) the summer of strong negative SIOD years (1958, and 1964) 
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Figure 127: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over southern Africa 

 

Figure 128: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over South Africa 
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Figure 129: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Angola 

 

Figure 130: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Botswana 
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Figure 131: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Madagascar 

 

Figure 132: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Malawi 
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Figure 133: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Mozambique 

 

Figure 134: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Namibia 
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Figure 135: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Lesotho 

 

Figure 136: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Zambia 
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Figure 137: Future projections of annual drought intensity and frequency (12-month SPE and SPI, ending in 
February) over Zimbabwe 


