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EXECUTIVE SUMMARY 

 
BACKGROUND 
 
The African population is one of the fastest growing in the world and the continent has a large 
potential for agricultural growth and development (Godfray et al., 2010). The definition of 
agricultural production strategies that will help prepare Africa for higher demand and 
worsening climate stresses must take into account various factors including political drive, 
infrastructure development, technical progress, social livelihood and economic growth. Apart 
from those, it is imperative to address climate change that directly impacts crop growth and 
food production in the long term, and in a similar measure climate variability that directly 
impacts year-by-year production. 
 
Agriculture is highly sensitive to climatic parameters and numerous studies show that Africa 
will be highly affected by long-term climate changes, mostly in a negative manner (Iizumi et 
al., 2013; Zinyengere et al., 2013), and adaptation is required (Challinor et al., 2014). In 
addition to the exploration of long-term adaptation strategies in response to climate change, 
there is a demand for shorter time scale coping mechanisms, which would make agricultural 
systems more resilient in the face of climate variability (vs. climate change). Despite a number 
of limitations to be clearly understood, the value of seasonal forecasts is evident (Fraisse et 
al., 2006; Hansen and Indeje, 2004; Hansen et al., 2011; Klopper et al., 2006; Meinke and 
Stone, 2005; Patt and Gwata, 2002). The proposed research is designed to harness seasonal 
forecasts and impact models’ numerical capacity to better prepare agricultural activities to 
climate variability. 
 
RATIONALE 
 
Repeated exposure to severe climate events combined with its financial and structural 
capacity to improve, makes of South Africa a major role player in exploiting climate and crop 
models’ capacity to digest enormous data sets into useful tailored information needed for 
decision making. Although models are only a partial representation of reality, their exploration 
capacity is useful and they are already intensively used at larger time and/or space scales 
(e.g. AgMIP, Rosenzweig et al., 2014). Technical challenges such as forecast skill or spatial 
representation make shorter time scale studies more demanding. However, these temporal 
and spatial scales are indispensable to provide appropriate information that farming 
communities are continuously requesting. International research projects have identified those 
efforts as a priority to respond to climate risk vulnerability. Although, there are currently no 
projects in South Africa (see for example foreign initiatives CCAFS-CRAFT or US-
AgroClimate), some solid regional studies have been performed at those scales, e.g. Archer 
et al., 2007; Ziervogel and Downing, 2004; Zuma-Netshiukhwi et al., 2013. 
 
OBJECTIVES AND AIMS 
 
The proposed research work directly follows on from a previous WRC project (Lumsden and 
Schulze, 2012), which explored the application of weather and climate forecasts in agricultural 
decision-making. This included applying weather and climate forecasts within hydrological 
models to produce hydrological forecasts. 
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This study explored, proposed and developed ways and approaches to leverage available 
seasonal forecast information, through robust climate-crop-water integrated assessment of 
agricultural and water systems, towards better farmers’ preparedness to climate variability. 
The project also applied shorter range weather forecasts in this objective. 
 
The number of partners involved in the project brings a large range of skills and expertise. 
Each aim is undertaken by the most relevant institution, with a clear effort towards regular 
community engagement. 
 
No. Aim  Report Sections 

1 To rigorously document and improve accuracy and skill in, short 
(1-3 days) and medium (3-10 days) range weather forecasts. 

Vol. 2 
Ch. 3 

2 To develop extended range (11 to 30 day) weather forecasts to 
facilitate fully seamless forecasting. 

Vol. 2 
Ch. 3 

3 To render seasonal forecast data available to crop models, 
including the seasonal production at selected locations in SA. 

Vol. 1 
Ch. 2,3 

4 
To integrate seasonal forecasts into crop models for seasonal 
production scenarios, including the seasonal production at 
selected locations in SA. 

Vol. 1 
Ch. 4,5,6,7 

5 To enhance the spatial and temporal resolution of seasonal 
climate forecasts. 

Vol. 2 
Ch. 3 

6 
To demonstrate the feasibility and evaluate the benefits of the 
climate-crop integrated approach virtually (models only with 
historical data) and in real conditions, at selected locations in SA. 

Vol. 1 
Ch. 8,9,10,11,12 

7 
To improve understanding of, and possible reduction in, 
hydrological forecast uncertainties and errors across different time 
ranges. 

Vol. 2 
Ch. 9 

8 
To develop and evaluate tailored hydrological and crop forecast 
products for application in decision-making across different time 
ranges in selected case studies in KwaZulu-Natal. 

Vol. 2 
Ch. 4,5,6,7,8 

 

9 
To summarise feedbacks, particularly on enablers and barriers, 
which can inform climate and agriculture experts and facilitate 
future climate-crop integration. 

Vol. 1 
Ch.13 

 

METHODOLOGY 
 
Stakeholder engagements from the inception to the end of the project tremendously helped to 
frame the research objectives and advancements, better fitting actual field constraints and 
farming communities’ priorities. These engagements clearly allow to present the projects’ 
advancement in the light of community feasibility and evaluating the benefits, barriers and 
enablers of the approach in the most grounded way possible. In addition to the smallholder 
farming communities engaged in Eastern Cape and Limpopo, stakeholders representing 
commercial perspectives were engaged in KwaZulu-Natal with respect to the application of 
hydrological forecasts in decision-making. 
 



 
 

v 
 

Integrating forecasts into hydro/crop models is one of the core research challenges of our 
project. Since it has been done on a long term climate change time scale, we know it is 
possible to couple seasonal forecasts with crop models. The challenge though comes from 
our intent to use the forecast-crop model combination as a tool to make crop-relevant weather-
based information, or a crop forecast, to provide farming communities with a month to several 
months lead time decision tool. In this project a particular look was taken at the integration of 
seasonal forecasts with crop models (see for instance Vol. 1 Chapters 4 and 5). The major 
challenge in the integration lies in the capacity of the integrated tool/approach to process and 
produce relevant and useful information at this decision level. 
 
Given the large workload and various ambitions and aims of the project, as well as the large 
number of partner institutions, the project execution was driven along two complementary 
directions: 
Volume 1 – A seasonal time scale, led by The University of Cape Town, and mostly focusing 

on smallholder farmers of Alice, Eastern Cape and Lambani in Limpopo, with the 
support of the University of Fort Hare and the University of Venda, respectively. 

Volume 2 – A seamless time scale, led by the University of KwaZulu-Natal and the CSIR, and 
focused mostly on commercial agriculture in KwaZulu-Natal, with the support of 
the University of Pretoria and the Agricultural Research Council. 

 
RESULTS AND DISCUSSION 
 
Volume 1 – Seasonal forecasts and smallholders 
 
Throughout the project, and the various themes and approaches tested and developed, 
various enablers and barriers were faced. As rigorous as we make this process we 
acknowledge the complexity and local dependency of the following observations. We ground 
these observations in our experience through and beyond the project, and present it in a way 
that intent to highlight wider and more generic issues. In this volume 1, we build on the “month 
to season forecast” integration to crop models and related engagements in the Eastern Cape 
and Limpopo Province. 
 
The scientific process started with grounding the research within two farming communities in 
Limpopo and Eastern Cape. The local partners and their network, as well as the direct 
engagement of the project team with the community, lead to better understanding of the 
community dynamics and aspirations. This local specific knowledge is related to two 
communities presented in Chapter 2 and Chapter 3 of this volume, and emphasise the 
heterogeneity of these communities, in terms of conditions and aspirations, as well as in terms 
of integration, acceptance and use of seasonal forecast information (see for instance Vol. 1 
Chapters 6 and 7). This baseline is necessary to any scientific progress, so to clearly define a 
baseline, toward the building of a process that can be scaled up within a variable environment, 
such as is the South African agricultural production scene. 
 
From this necessary understanding, the scientific process came to explore, understand, 
assimilate accessible numerical data and tools towards building approaches that ingest and 
digest seasonal forecast information, in order to reveal the most relevant possible information 
with decision potential, as well as facilitate its reception, understanding and use by farming 
communities. This would be the approach/methodological knowledge contribution of this 
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project, mostly arising from the crops models’ use (Chapter 4) with available seasonal 
forecasts (Chapter 5) and leading to the definition of (full or subset of) preferred crop 
management, per farm types, and with consistent response under varying seasonal forecasts 
(Chapter 12). 
 
As a result of a multi-partner project, partners who have varying skills and interests, the 
knowledge contribution did not stop here. Significant contributions were made in terms of 
Indigenous Knowledge in both Limpopo and Eastern Cape, specifically in terms of agricultural 
decision making, and seasonal time scale, which adequately fit within this project objectives 
(Chapter 9). In some extent these advances connect with the numerical approach from a 
reception and a localisation perspective. The former relates to the relation of seasonal forecast 
with indigenous indicators and consequently the better understanding and assimilation of this 
information. The latter relates to the potential to ground a possible recommendation into a very 
specific and very local context either by translation or by further use of indigenous indicators. 
Such perspective, when/if applicable only improve acceptance and use of seasonal 
information. 
 
This project also contributed to the highly relevant challenges of acceptance and use. This 
was addressed through the lens of Ecological Intensification (EI), with particular attention to 
the farm typology (Chapter 7). We discuss the particular potential of EI for small scale low 
input farmers, rigorously frame the strength or weakness of EI in that context, which directly 
feeds into acceptance and use of novel information/techniques (Chapter 10). 
 
The communication of the science process and products always had a predominant role, and 
the project attracted scientific interrogation towards better communication of specifically 
seasonal forecast information to rural communities (Chapter 11). 
 
Finally, a noticeable remote sensing effort was successfully lead, focusing on soil moisture 
and adaptive capacity mapping ambitions. The contribution builds on the significance of soil 
moisture as a decision parameter for farming communities and demonstrated the potential to 
use this approach with climate or seasonal forecast information (Chapter 8). Beside the 
knowledge contribution, this effort also points to a promising direction in the face of the field 
data scarcity often encountered in rural South Africa, many African countries and the 
developing world. Where numerical tools are very efficient and offer great accuracy where 
ground data is plentiful, these qualities are rightfully questionable where field data is scarce. 
A number of studies, supported by this one, suggested that the increased access and 
resolution of off-ground data sources could at least in part facilitate the use of data demanding 
approach, even where field data is scarce. 
 
In academic terms, the project substantially supported capacity building (APPENDIX I), and 
led to national and international research publications (APPENDIX II). 
 
Volume 2 – Seamless forecasts and sugarcane 
 
The Mhlathuze catchment case study developed weather and climate forecasts at time ranges 
including 7-day, subseasonal and seasonal. The methodologies for developing the 7-day and 
seasonal forecasts (using the CCAM climate model and statistical downscaling of globally 
available climate forecasts, respectively) are fairly mature, while the forecasts at the 
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subseasonal time scale represent a very new area of research. This time scale bridges the 
medium and seasonal time ranges, and thus there is a lot of overlap with these ranges in 
terms of the technical forecast development. The subseasonal forecasts were developed in 
CCAM as part of a separate seamless forecasting effort at the CSIR across all scales. 
 
The 7-day weather forecasts were applied in the ACRU model linked to the Delft-FEWS 
hydrological forecasting system to produce forecasts of inflow to Goedertrouw Dam, and crop 
water and irrigation demand in two dependent subcatchments where sugarcane is grown. 
Seasonal forecasts of the storage in Goedertrouw Dam were also developed, this being a key 
need for forecasts amongst sugarcane stakeholders that were consulted. In a further piece of 
work, the potential to develop seasonal forecasts of sugarcane crop yield and water 
productivity using the AquaCrop model was explored. 
 
The work done in the Mhlathuze case study was found to be technically challenging. These 
challenges included the hydrological modelling of the catchment, the development of the 
ACRU/Delft-FEWS forecasting system and attempting to produce seasonal forecasts of crop 
yield and water productivity with the AquaCrop model. 
 
In terms of modelling the catchment, the operation of the Goedertrouw Dam was difficult to 
capture given the complex system of river releases for downstream irrigation and 
urban/industrial abstractions. Data describing the operation of the system was fairly limited, 
and required a number of assumptions to be made. Thus, the overall time required to configure 
the catchment in ACRU was longer than expected. 
 
While the Delft-FEWS system is a powerful tool to enable hydrological forecasting (in terms of 
managing the large amounts of data associated with this activity), it is not a user-friendly 
system to configure. This situation is often found in modelling systems where there is a trade-
off between utility and user friendliness. Hence the development of hydrological forecasting 
was somewhat delayed in the project. This resulted in there being little time within the project 
to convey final results and explore the implication of these with stakeholders. However the 
technical capacity to use this software that has been developed in the team during the project 
has been very valuable, and will continue to yield benefits in future hydrological forecasting 
efforts.  
 
Another technical challenge experienced was in attempting to apply probabilistic-categorical 
seasonal climate forecasts in AquaCrop to produce crop yield forecasts. While there is value 
in utilizing a probabilistic climate forecast as uncertainty is quantified in the forecasts, models 
such as AquaCrop are not designed to utilize this kind of information, as they require a daily 
time series of weather information as input. It was thus not possible within the timeframe of 
the project to produce crop forecasts using AquaCrop. 
 
Despite the technical challenges, the results of certain aspects of the agrohydrological 
forecasting in the Mhlathuze were encouraging. This was particularly so for the 7 day forecasts 
of crop water requirements, where the correlations with simulated historical values were high 
(R2 above 0.8 for the two catchments assessed). Although the forecasts of Goedertrouw Dam 
inflows and net irrigation requirements at the 7 day time scale did not perform as well as those 
for crop water requirements, it is still believed they have potential to be useful in decision-
making. Further research is required to evaluate the benefits of such application. 
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Research into developing seasonal forecasts of storage in Goedertrouw Dam revealed that 
there is predictability in autumn storage using the method developed. This method involved 
correlating historical summer rainfall with autumn storage. This correlation was made after 
analysing seasonal cycles of rainfall and dam storage and determining the strongest 
relationships present in the data. The method is simple to apply and forecasts can be produced 
quickly. A demonstration of how the forecasts could be applied in decision-making was given. 
 
An alternative approach to producing seasonal dam storage forecasts would be to apply 
seasonal climate forecasts in ACRU. However, this would require downscaling of the seasonal 
climate forecasts to produce daily time series. This challenge was also encountered in the 
application of the AquaCrop model to produce crop forecasts. Methods are available to do 
this, such as through the use of historical analogue weather data or through the application of 
weather generators, however this adds another layer of complexity to the forecasting 
development process. The advantage of adopting this approach is that forecasts can 
potentially be developed for all seasons. The simulation-based approach also allows for 
exploring the potential to change the management of the dam, in response to forecasts.     
 
CONCLUSIONS 
 
This project is recognising water and its role in agricultural systems as complex systems 
evolving at the venture of various communities (e.g. academics or farmers), dealing with 
information of varying skills and relevance (e.g. skills of seasonal forecast or relevance of time 
scale), which must be communicated iteratively and facing communications challenges (e.g. 
language, concepts such as uncertainty, trust) and beyond. While importance and provision 
must be made for the inclusion of some extent of all those aspects, we believe the 
improvement of part of these aspects is taking a measurable role in the development of better 
managed agricultural systems, particularly under global (e.g. population increase, climate 
change) and national (e.g. wealth and food share, economic development) challenges. 
 
All the good work and knowledge contributions only briefly highlighted above, are 
accompanied by many limitations and constraints that keep challenging such effort in terms of 
adoption, operationalization and scaling up amongst others. As the skill of seasonal forecast 
is varying in space and in time, as the decision maker (farming communities) are exercising 
in varying conditions and with varying priorities and uncertainties, nuances and reservations 
must necessarily come as part of the information. We recognise the importance of this 
complexity, and we are confident that this project contribution to knowledge is measurable and 
of direct value to future efforts directed to the empowerment of rural farming communities in 
South Africa. 
 
This project demonstrated the value of using numerical tools, purposefully for the benefit of 
smallholder farming communities, with the imperative involvement of rural university and 
extension offices. This process, although clearly facing challenges for operationalization and 
scaling up, used the appropriate ingredients leading to future development. Amongst the 
multitude of ways this work can be taken forward, it seems evident that the success of national 
scale operationalization of this sort of approach must explicitly develop and involve the local 
university-extension link, which in turns will most likely reinforce the ownership of the 
combined numerical skills and local relevance. 
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The heterogeneity highlighted in this project is once again emphasized through the different 
audiences, decision makers, systems and consequently the responses to climatic factors. As 
much as better understanding, communication and integration of forecast information is useful 
for any decision maker, the capacity to produce such information and communicate it 
timeously is still technically very difficult, mostly due the large uncertainty involved, as well as 
the technical operationalization of the process, leading to low reliability of its execution on a 
regular basis. While the weather forecasts on (very) short time horizons remain accurate, its 
processing through modelling tool does not provide large added value while it requires large 
computation and interpretation efforts, if it is to improve the decision process. Although this 
remains a very interesting and promising research avenue for the future, the ambition to 
progress towards operationalization through better use of forecast information into the 
decision-making of agricultural practices, must account for the added value of the information 
produced, against its cost and reliability of production. At this time, operationalizing very short 
term climate-crop information is very demanding while its benefits for the farming communities 
are limited compared to the value of the original weather forecast. On the other hand 
operationalizing crop-based seasonal forecasts information, while being comparatively 
demanding to produce, offers measurable improvements of the use of seasonal forecast as 
well as sufficient time to produce it, communicate it, and hopefully integrate it to agricultural 
decisions. 
 
This recommendation obviously must be considered in the light of the user interest for the 
information. Likely commercial farmers with extensive access to numerical tools and internet, 
will be much likely willing and capable of receiving short-term processed information. On the 
other hand farming communities with limited access to such tools and information on a regular 
basis, are more likely to prefer seasonal time scale information, through the extension offices, 
which play a determinant role in communication, interpretation, understanding and most likely 
integration of this information. While production of useful information, desired information, 
must be continued, there is no doubt that local stakeholders must be involved, including 
academics in local university, extension services, as well as farming communities in order to 
make this information relevant and useful but also to allow for local interpretation, 
communication and use. As much as the process can be run remotely, and the heavy 
computation should benefit from high computation capacities at national, governmental and/or 
educational institutions, the communication, the interpretation and as much expertise as 
possible must lie within local universities, local government institutions, and ultimately support 
and encourage the extension offices in their communication with the farming communities. 
 
From a technical perspective, numerous ways exists to progress forward. We are confident 
that the combination of forecasts and water/crop modelling tools offer a tailored perspective 
on forecast information that allows for improved agricultural decisions. 
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CHAPTER 1.  PROJECT INTRODUCTION AND OBJECTIVES 
1Crespo O, 2Lumsden T, 3Francis J and 4Zhou L 
 
1 CSAG, EGS Dept., University of Cape Town 
2 Council for Scientific and Industrial Research 
3 IRD, University of Venda 
4 RVSC, University of Fort Hare 
 
1.1. Background 
 
The African population is one of the fastest growing in the world and the continent has a large 
potential for agricultural growth and development (Godfray et al., 2010). The definition of 
agricultural production strategies that will help prepare Africa for higher demand and 
worsening climate stresses must take into account various factors including political drive, 
infrastructure development, technical progress, social livelihood and economic growth. Apart 
from those, it is imperative to address climate change that directly impacts crop growth and 
food production in the long term, and in a similar measure climate variability that directly 
impacts year-by-year production. 
 
Agriculture is highly sensitive to climatic parameters and numerous studies show that Africa 
will be highly affected by long-term climate changes, mostly in a negative manner (Iizumi et 
al., 2013; Zinyengere et al., 2013), and adaptation is required (Challinor et al., 2014). In 
addition to the exploration of long-term adaptation strategies in response to climate change, 
there is a demand for shorter time scales coping mechanisms, which would make agricultural 
systems more resilient in the face of climate variability (vs. climate change). Despite a number 
of limitations to be clearly understood, the value of seasonal forecasts is evident (Fraisse et 
al., 2006; Hansen and Indeje, 2004; Hansen et al., 2011; Klopper et al., 2006; Meinke and 
Stone, 2005; Patt and Gwata, 2002). The proposed research is designed to harness seasonal 
forecasts and impact models numerical capacity to better prepare agricultural activities to 
climate variability. 
 
South Africa’s repeated exposure to severe climate events combined with its financial and 
structural capacity to improve, has a major role to play in exploiting climate and crop models 
capacity to digest enormous data into useful tailored information needed for decision making. 
Although models are only a partial representation of reality, their exploration capacity is useful 
and they are intensively used at larger time and/or space scales (e.g. AgMIP (Rosenzweig et 
al., 2014)). Technical challenges such as forecast skills or spatial representation makes 
shorter time scale studies more demanding. However, these time and space scales are 
indispensable to provide appropriate information that farming communities are continuously 
requesting. International research projects have identified those efforts as a priority to respond 
to climate risk vulnerability, however, there are currently no projects in South Africa, see for 
instance (CCAFS-CRAFT) or (US-AgroClimate). Some solid regional studies have been 
performed at those scales, e.g. (Archer et al., 2007; Ziervogel and Downing, 2004; 
Zuma-Netshiukhwi et al., 2013). 
 
The proposed research work directly follows on from a previous WRC project (Lumsden and 
Schulze, 2012), which explored the application of weather and climate forecasts in agricultural 
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decision-making. This included applying weather and climate forecasts within hydrological 
models to produce hydrological forecasts. This study explored, proposed and developed ways 
and approaches to leverage available seasonal forecasts information, through robust climate-
crop-water integrated assessment of agricultural and water systems, towards better farmer's 
preparedness to climate variability. Shorter time scales were also considered in the study in 
an attempt to develop a seamless approach. 
 

1.2. Contextualisation 

The proposed study provides (i) a deep exploration of local farming communities’ 
needs/expectations with regards to climate-crop seasonal forecasts; (ii) an advanced 
understanding of climate-crop integration for South African systems; and (iii) tested 
methodologies to produce agriculturally tailored seasonal forecast information. In the 
realization of these tasks, the project gives a critical importance to the development of long-
term relevant solutions, which is supported by a clear understanding of short (day, weeks, 
seasonal, inter-annual) and long (decadal, multi-decadal) term challenges through 
community-driven research. 
 
Unlike to global/continental integrated assessments that prove difficult to downscale with the 
appropriate local and regional characteristics, the final product of this smallholder-driven 
project provides local/district relevant information. This local relevance intents to facilitate 
project outputs replication towards the creation of provincial and national policies that better 
respond to community and district challenges. The achievement of methodological 
assessment in real-time conditions, emerges from regular connection with three communities, 
one in Limpopo, one in Eastern Cape and one in KwaZulu-Natal. Those engagements 
provided a unique platform for discussion between the research team and the local farming 
communities and authorities. Those exchanges both grounded local and national academics 
with field concerns and limitation, as they enabled for knowledge dissemination with farming 
communities and extension offices. Although this project focuses mainly on smallholder 
farming and seasonal time scales, it does also incorporate commercial agriculture and shorter 
time scales (short/medium range and sub-seasonal) through the KwaZulu-Natal case study. 
 

1.3. General approach 

1.3.1. Engagement with communities 

Stakeholder engagements from the inception to the end of the project tremendously helped to 
frame the research objectives and advancements fitting actual field constraints and farming 
communities’ priorities. The larger part of the approach annually engaged with two smallholder 
farming communities, one in Eastern Cape and one in Limpopo. Both provinces have been 
described as poor and most vulnerable to disasters (SALGA, 2011). Relationships prior to this 
project had already been developed through our collective, inter-university involvement with 
the South African Financial and Fiscal Commission funded project (FFC, 2014). These 
engagements clearly allow to present the projects advancement in the light of community 
feasibility and evaluating the benefits, barriers and enablers of the approach in the most 
grounded way possible. In addition to the smallholder farming communities engaged in 
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Eastern Cape and Limpopo, stakeholders representing commercial perspectives were 
engaged in KwaZulu-Natal with respect to the application of hydrological forecasts in decision-
making. 
 
The project recognises the long term nature of engagement with community, leading to 
building trust and strengthening exchange of relevant information. Consequently this project 
built on existing initiatives such as the establishment of the eDikeni water user association by 
the SA department of Water Affairs and Forestry in 2006, in Eastern Cape. Complementarily, 
the continued engagement supported through this project, and especially in in Limpopo and 
Eastern Cape, has explicitly be tuned to develop local universities connections with local 
communities and their extension officers. We believe it both serves the projects (better 
integration, for instance through languages), as well as it strengthen the long term 
engagement of communities with their most likely local university students and academics. 
 
1.3.2. Integrating forecasts into hydro/crop models 

Here lies one of the core research challenges of the project. It has been done so extensively 
on a long term climate change time scale, that we know it is possible to couple seasonal 
forecasts with crop models. The challenge though comes from the intent to use the forecast-
crop model combination as a tool to make crop-relevant weather-based information, or a crop 
forecast, to provide farming communities with a month to several months lead time prevision 
tool. 
 

 Numerical integration 

A number of technical solutions exist to integrate forecasts information with numerical impact 
models. In this project a particular look was taken at the integration of seasonal forecasts with 
crop models (see for instance Vol. 1 Chapters 4 and 5). The major challenge in the integration 
lies in the capacity of the integrated tool/approach to process and produce relevant and useful 
information. This project, once again confirms that usefulness varies from one location to 
another, due to seasonal forecasts skills, data availability for calibrating the models and other 
factors. This variability of conditions and farmer’s ambitions is addressed in this project 
through engagements, and resulted in the definition of farmer’s typologies (see Vol. 1 
Chapters 6 and 7). 
 

 Forecast lead times 

A common staple crop growing period takes about 3-5 months, and some of the critical 
management decisions are taken up to a few months before sowing. This project’s efforts 
target both very short (day to week) operational decision time scale, as well as intermediate 
(month to several months) tactical decision time scales. 
 

 Data time step resolution 

Process-based models strength lies in the step-by-step modelling of the modelled interacting 
processes. The time step used is a compromise of time/computing complexity and process 
description. AquaCrop, DSSAT and APSIM for instance use a daily time step, though they can 
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deal with monthly data as well, through the use of a weather generator for instance. In order 
to limit as much as possible the inner-processing of data from seasonal forecast to crop 
forecast, we preferred the use and production of daily time step resolution seasonal forecast. 
 
1.3.3. Institutional repartition of work 

Given the large workload and various ambitions and aims of the project, the project team was 
driven along two complementary directions. 
 
Volume 1 – A seasonal time scale, led by The University of Cape Town, and mostly focusing 

on smallholder farmers of Alice, Eastern Cape and Lambani in Limpopo, with the 
support of the University of Fort Hare, the University of Venda, respectively. 

Volume 2 – A seamless time scale, led by the University of KwaZulu-Natal and the CSIR, 
focused mostly on commercial agriculture in KwaZulu-Natal, with the support of 
the University of Pretoria and the Agricultural Research Council. 

 
The first direction lead to numerous advances using Alice in Eastern Cape and Lambani in 
Limpopo as case study, and this is reported in Vol. 1 Chapters 2 and 3 put in place the basis 
of the study reporting on site descriptions and engagements. Chapters 4, 5, 6 and 7 are 
reporting on the technical aspects allowing to connect crop models with seasonal forecasts, 
in a context of climate change and climate variability, with a clear ambition to improve the 
systems. Chapters 8, 9, 10, 11 and 12 report the different ways implemented at different levels, 
to improve the use of seasonal forecast information by smallholder farmers in these locations. 
Chapter 8 is reporting on the use of remote sensing data to map soil moisture and adaptive 
capacity in Eastern Cape. Chapter 9 is exploring the current use of local indigenous knowledge 
related to weather forecast In Eastern Cape and in Limpopo. Chapter 10 is studying the 
potential of ecological intensification in those areas. Chapter 11 is interested in the 
communication of seasonal forecast information to rural communities. Chapter 12 is 
advancing an approach to make cropping decisions in response to seasonal forecasts. 
Chapter 13 finally brings together concluding remarks related to seasonal forecasts use to 
help cropping decision making, specifically with smallholder farmers on the basis of Alice and 
Lambani case study in Eastern Cape and Limpopo. 
 
The KwaZulu-Natal case study (Vol. 2) was focused on the Mhlathuze catchment in the north 
of the province. The case study commenced in Chapter 2 with a description of the catchment 
and the stakeholder engagement undertaken in the project. In Chapter 3 the development and 
refinement of weather and climate forecasts is detailed. The configuration and verification of 
the ACRU hydrological model under observed climate conditions is then covered in Chapter 
4. Chapter 5 details the linking of ACRU to Delft-FEWS, a hydrological forecasting framework. 
Chapter 6 then presents the results of short to medium range agrohydrological forecasting, 
while Chapter 7 presents the results of seasonal dam storage forecasting. Chapter 8 explores 
the potential to produce seasonal forecasts of crop yield and water productivity for the 
Empangeni area. Efforts to understand and reduce uncertainties and errors in 
agrohydrological forecasting are then described in Chapter 9, before conclusions are drawn 
on the Mhlathuze case study (and more broadly) in the final chapter. 
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1.4. Aims 

The number of partners involved in the project brings together a large range of skills and 
expertise. Each aim is undertaken by the most relevant institution, with a clear effort towards 
regular community engagement. 
 

 
AIM 1 – TO RIGOROUSLY DOCUMENT AND IMPROVE ACCURACY AND SKILL IN, 
SHORT (1-3 DAYS) AND MEDIUM (3-10 DAYS) RANGE WEATHER FORECASTS 
(FEEDING INTO AIM 7 and 8) 
The aim to improve weather forecasts focused on the 1-7 day lead time which spans both the 
short and medium time ranges. This aim was linked to the KwaZulu-Natal case study where a 
variety of time ranges (short range to seasonal) were considered in the endeavour to develop 
seamless forecasting for application in agricultural decision-making. Although the aim was 
linked to the KwaZulu-Natal case study, the weather forecasting research was conducted over 
a much larger domain (southern Africa) given the synoptic scale of the processes that 
influence weather at a particular location. 
The conformal-cubic atmospheric model (CCAM) numerical weather prediction system was 
applied in the effort to improve short/medium range weather forecasts (Vol. 2, Section 3.1). 
These efforts focused on increasing the spatial resolution of forecasting and on making 
refinements to the cumulus parameterization and aerosol schemes. 
 

 
AIM 2 – TO DEVELOP EXTENDED RANGE (11 TO 30 DAYS) WEATHER FORECASTS TO 
FACILITATE FULLY SEAMLESS FORECASTING (FEEDING INTO AIM 7 and 8) 
The forecasts developed under this aim (as part of the KwaZulu-Natal case study) are more 
appropriately classified as “sub-seasonal” forecasts, rather than extended range forecasts 
which have a strict definition pertaining to the 11-30 day forecast period. The forecasts 
developed are for a 40 day period. This is in keeping with sub-seasonal forecasts which can 
range from 40 to 60 days into the future. CCAM, coupled to the CSIRO sophisticated dynamic 
land-surface model referred to as Atmosphere Biosphere Land Exchange model (CABLE), 
was applied in the effort to develop sub-seasonal forecasts (Vol. 2, Section 3.2). The sub-
seasonal time-scale holds the particular challenge of falling between the shorter range time 
scales, where initial conditions are the most important consideration in determining forecast 
skill, and the seasonal time-scale, where boundary conditions are crucial for model skill. As 
the sub-seasonal time range bridges the medium and seasonal time ranges, this effort is 
closely linked to forecast development efforts at those time ranges. Hence the work on sub-
seasonal forecasting is reported in the context of developing seamless forecasting and 
includes results across the different time ranges. 
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AIM 3 – TO RENDER SEASONAL FORECASTS DATA AVAILABLE TO CROP MODELS, 
INCLUDING THE SEASONAL PRODUCTION AT 2 LOCATIONS IN SA 
This aim, and forecasts used for the smallholder case study in Eastern Cape and Limpopo, 
does not include the improvement of the currently available seasonal forecasts. However, 
feedback on the enablers and barriers faced in the development of the climate-crop integrated 
assessment are provided to encourage seasonal forecast providers and agricultural experts 
to take those into consideration for future advancements (aim 9). Although the project intention 
was to use a South African seasonal forecast products, a lack of specific legal sharing 
framework, and the irregularity of forecast production, made this mostly impossible. Given the 
project ambition to provide an approach accessible to any user, we used free and accessible 
CFSv2 forecasts1. This effort was tailored for two communities, one in Eastern Cape and one 
in Limpopo (see respectively Vol. 1 Chapter 2 and 3), and particularly grounded through the 
annual engagement with local farming communities. 
 

 
AIM 4 – TO INTEGRATE SEASONAL FORECASTS INTO CROP MODELS FOR SEASONAL 
PRODUCTION SCENARIOS, INCLUDING THE SEASONAL PRODUCTION AT 2 
LOCATIONS IN SA 
After considering multiple process-based crop models, the project proceeded to calibrate 2 
DSSAT, and AquaCrop (see Vol. 1 Chapter 4). The DSSAT suite of model was taken forward 
and integrated with seasonal forecasts (see Vol. 1 Chapter 5). The capacity of DSSAT to 
simulate large numbers of conditions allows the exploration of large numbers of seasonal 
scenarios, combined with a number of possible agricultural actions, hence bringing out a 
notion of confidence and risk related to the presented climate-crop integrated assessments 
(see Aim 6). Engagements were once again, a major driver toward the calibration, validation 
and interpretation of the numerical approach. It translates for instance, through the farmer’s 
typologies defined in both Eastern Cape and Limpopo, specifically with a perspective 
emphasising the climate variability awareness (see Vol. 1 Chapter 6) and the potential to use 
Ecological Intensification (see Vol. 1 Chapter 7). 
 

 
AIM 5 – TO ENHANCE THE SPATIAL AND TEMPORAL RESOLUTION OF SEASONAL 
CLIMATE FORECASTS (FEEDING INTO AIM 7 and 8) 
Owing to changes in the composition of the project team, the methodology employed (Vol. 2, 
Section 3.3) moved away from the use of climate models run at SAWS, and instead utilized 
the output of coupled global models contributing to the North American Multi-Model Ensemble. 
However, statistical post-processing was still utilized (as originally envisaged) to downscale 
the global forecast data to a scale more appropriate for use in catchment-scale agro-
hydrological forecasting. More specifically, linear statistical procedures were applied to 
downscale and improve hindcasts (re-forecasts) from the coupled ocean-atmosphere models 
for the SADC region. This involved the use of Model output statistics to improve the raw climate 
model output through mean and variance bias correction. The enhancement of seasonal 
climate forecasts under this aim was directed at the KwaZulu-Natal case study. 
 

                                                 
1 http://cfs.ncep.noaa.gov/ 
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AIM 6 – TO DEMONSTRATE THE FEASIBILITY AND EVALUATE THE BENEFITS OF THE 
CLIMATE-CROP INTEGRATED APPROACH VIRTUALLY (MODELS ONLY WITH 
HISTORICAL DATA) AND IN REAL CONDITIONS, AT 2 LOCATIONS IN SA 
The richness of the human resources and skills collected in this project has allowed to use the 
combination of seasonal forecast information with crop models and other technologies, in 
ways not necessarily foreseen at the inception (i.e. indigenous knowledge). This variety of 
approaches and directions are all grounded in engagements with communities and tailored in 
return for those very communities, making the overall project ambition to improve 
preparedness to climate variability local specific and valuable. In Eastern Cape, it includes the 
mapping of soil moisture through remote sensing data (see Vol. 1 Chapter 8), the 
documentation and use of indigenous knowledge to improve seasonal decision making in 
Eastern Cape and Limpopo (Vol. 1 Chapter 9), as well as the exploration of ecological 
intensification acceptance and use, and the production of crop forecast for the 2017-2018 
growing season. 
 

 
AIM 7 – TO IMPROVE UNDERSTANDING OF, AND POSSIBLE REDUCTION IN, 
HYDROLOGICAL FORECAST UNCERTAINTIES AND ERRORS ACROSS DIFFERENT 
TIME RANGES (FEEDING INTO AIM 8) 
Research to understand and reduce uncertainty and error in hydrological forecasting in the 
KwaZulu-Natal case study (Chapter 9) focused initially on characterizing the error in the 
weather/climate forecasts that are used as input to the hydrological forecasting process. 
These assessments were approached from a hydrological perspective, which is different to 
how such forecasts are typically assessed by weather/climate scientists. Other work to 
address uncertainties and error focused on improved initialization of hydrological models for 
hydrological forecasting, and on the benefit of incorporating temperature forecasts into the 
hydrological forecasting framework. 
 

 
AIM 8 – TO DEVELOP AND EVALUATE TAILORED HYDROLOGICAL AND CROP 
FORECAST PRODUCTS FOR APPLICATION IN DECISION-MAKING ACROSS 
DIFFERENT TIME RANGES IN ONE OR MORE CASE STUDIES IN KWAZULU-NATAL 
The Mhlathuze catchment was chosen as a case study for the development of tailored 
agrohydrological forecasts. These forecasts were primarily aimed at irrigated sugarcane 
agriculture, as this is a major economic activity in the catchment, and is also a substantial 
water user. Therefore, any improvements to the management of water and crops in the sector 
that can be brought about by the availability of agrohydrological forecast has the potential to 
return economic and environmental benefits. These benefits would extend to the management 
of water in general in the catchment. 
In terms of developing tailored agrohydrological forecasts, engagement with stakeholders 
revealed the need for seasonal forecasts of the Goedertrouw dam, and the possible benefit 
that could be derived from developing shorter term forecasts of irrigation water demand for 
irrigation scheduling purposes. Agrohydrological forecasts were developed through the 
application of the ACRU hydrological model, coupled to the Delft-FEWS hydrological 
forecasting system. This involved modelling the hydrology of the Mhlathuze catchment, 
including dams and abstractions of water for various users (especially irrigation). Coupling 
ACRU to Delft-FEWS aided in applying ACRU in a forecasting context. The possibility of 
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forecasting seasonal sugarcane yields and water productivity using the AquaCrop model, was 
also explored. 
 

 
AIM 9 – TO FEEDBACK ENABLERS AND BARRIERS TO CLIMATE AND AGRICULTURE 
EXPERTS TO FACILITATE FUTURE CLIMATE-CROP INTEGRATION 
Throughout the whole project, and the various themes and approaches tested and developed, 
particular attention was given to the enablers and barriers faced. A rigorous collection and 
details about these enablers and barriers is presented. Relying on the research team wide 
range of expertise and their professional connections to relevant institutions across South 
Africa, those feedback are presented as recommendations for improvement and supported by 
the concrete advances of the project and its engagement with communities. Despite the simple 
methodology required to provide complete and useful feedback, they rely on regular and 
frequent questioning through the various steps taken for the realization of the project, 
understanding the reason of choices made along the way and the consequent 
recommendation to improve future advances in the field of climate-crop integration. 
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CHAPTER 2.  DESCRIPTION OF THE MHLATHUZE CATCHMENT AND 
ENGAGEMENT WITH STAKEHOLDERS  

1Morris F and 2Lumsden T 
 
1 CWRR, University of KwaZulu-Natal 
2 Council for Scientific and Industrial Research 
 
2.1. Catchment description 
 
The Mhlathuze catchment is situated in the north of KwaZulu-Natal and lies approximately 160 
km north of Durban and ± 35 km south of the St. Lucia Estuary (Figure 2-1). The Mhlathuze 
catchment forms part of the Usutu to Mhlathuze Water Management Area (WMA). The 
catchment has an area of approximately 4209 km2, with nine quaternary sub-catchments each 
between 250-650 km2 in size, and has three major towns namely, Richards Bay, Empangeni 
and Melmoth. The catchment has an altitudinal range of approximately 1612 m.a.s.l. in the 
upper reaches of the WMA which borders Swaziland and gradually drops in altitude to the 
ocean (Figure 2-1). Mean Annual Precipitation (MAP) of the catchment ranges from about 800 
mm in the upper and middle parts of the catchment, to approximately 1 400 mm near the coast 
(Figure 2-2), and has a Mean Annual Runoff of 938 million m3 with a Mean Annual 
Temperature range of 12 and 14°C in the west to 20 and 22°C at the coast. 
  
Some important vegetation types, notably the Ngongoni veld (upper, more undeveloped 
areas) and coastal forest and thornveld (coastal, developed areas) are found in the catchment. 
Important afromontane forests are found along the southern fringes of the catchment. Land 
use in the catchment is dominated by afforestation and irrigated crops (predominantly 
sugarcane and citrus), with most of the irrigated areas located on the banks of the main stem 
of the Mhlathuze River below the Goedertrouw Dam. The main commercial enterprises in the 
catchment are sugarcane (dryland and irrigated), maize and timber. There are approximately 
400 km2 of pine and wattle forestry plantations upstream of the Goedertrouw Dam. 
Subsistence farming in rural areas consists mainly of livestock farming. About 37% of the 
population is rural, 3% occupies farms and 59% are urban. 
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Figure 2-1 Location and altitudinal range of the Mhlathuze catchment in KwaZulu-Natal 

 
 

 
Figure 2-2 Mean Annual Precipitation of the Mhlathuze catchment 
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The main water supply system in the Mhlathuze catchment consists of the Goedertrouw Dam, 
with a capacity of approximately 300 million m3, the Mhlathuze weir, and the Thukela-
Mhlathuze Emergency Transfer Scheme, which pumps water from the Thukela River to the 
Goedertrouw Dam. The Goedertrouw Dam was constructed in the late 1970s to provide water 
for irrigation downstream. Upstream to the Goedertrouw Dam is the Mvuzane River inflow 
where the Thukela Transfer Scheme discharges into the Mvuzane River. The Thukela-
Goedertrouw Transfer System is used to augment the dam level when it drops as a result of 
high water demand. During the drought of 1994 the emergency augmentation scheme was 
put in place (commissioned in 1997) that has the capacity to deliver approximately 40 million 
m3/a at a rate of approximately 1.2 m3/s to the Mvuzane stream. The only second use of the 
scheme was necessary during the second half of the 2014 calendar year, as a result of 
minimum summer rainfall received and low raw water resources. In that year, KZN was 
officially declared to be in a drought. This drought had an adverse effect on the Mhlathuze 
Water systems with the Goedertrouw Dam dropping to below 65% for the first time since it 
was commissioned. The Thukela Transfer Scheme was then put into operation, supplying a 
total capacity of 0.94 m3/l. The transferred water is allocated for urban and industrial use 
(DWAF, 2000). 
  
The natural lakes in the catchment also contribute to the yield of the system. The latest yield 
estimate of this system, including the lakes, is 270 million m3/annum at a 1:100 assurance 
after allowing for the ecological water requirements below the Goedertrouw Dam and including 
the transfer from the Thukela River. Three coastal lakes are sources for abstraction in this 
strategic area: Lake Mzingazi, Lake Nsezi and Lake Cubhu. 
  
There are several large industries in the catchment namely Mondi’s Richards Bay and Flexton 
Pulp mills, Richards Bay iron and Titanium Works, Iscor, Tongaat Hulett, Alusaf and Felixton 
sugar mill. Richards Bay Minerals and Ticoris Hillendale Mine have extensive mining 
operations in the coastal dunes. Richards Bay and Ninians quarries are open cast quarries in 
the Mhlathuze catchment. 
 
Water scarcity remains the predicament in many area of South Africa, where different 
industries competes for water, demand for domestic water use, crops competes with other 
crops, for example sugarcane competes with other crop for water. It has become evident that 
dryland production unaccompanied with supplementary irrigation may lead to crop failure 
which contributes to economic loss. Thus, the importance of decision support initiatives with 
the utilisation of weather forecasts, climate predictions and crop simulation models are critical 
for the provision of a variety of scenarios based on given weather and climatic conditions 
(Lapola et al., 2009). Such provision facilitates the interpretation of the impact of sugarcane 
production, irrigation strategies on water resources, accessibility and profitability. 
  
The KwaZulu-Natal province is one of two provinces that are distinguished as having 
sugarcane as a major land use. However, the changing climate conditions lead to decision 
making becoming more complex as water restriction policies and water management rules are 
enforced, resulting in water becoming more scarce and very expensive (Schmidt, 2001). The 
Mhlathuze Catchment constitutes of five irrigation entities that utilise and facilitate the 
distribution and use of water below Goedertrouw Dam. These five irrigation entities are mainly 
utilised for sugarcane irrigation and several irrigated citrus farms. The irrigation schemes are 
listed in order of distance from the dam. 
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●    Nkwaleni Scheme 
●    Umfuli 
●    Heatonville 
●    Inkasa Irrigators 
●    Lower Mhlathuze Scheme 
  

Inkasa Irrigation Scheme (IIS) is predominantly constituted of small scale irrigators engaged 
in sugarcane production. Within IIS the most developed areas with significant sugarcane 
productivity are Biyela, Kwadlama and Mzimela.  
 
Agricultural productivity and in this case, sugarcane productivity is linked to appropriate 
irrigation strategies, which are also highly influenced by soil types, climate and water 
availability. The role of decision support tools becomes more significant in decision making 
amongst producers, and to inform policy makers. Lack of access to information and tools could 
be a limiting factor toward improved sugarcane productivity and poverty alleviation within the 
Mhlathuze catchment. It is therefore necessary to investigate the application of weather 
forecasts, climate prediction and agrohydrological models to develop forecasts that can 
potentially enhance tactical and operational decision making. 
  
2.2. Stakeholder engagement 
 
Stakeholder engagement in the Mhlathuze case study focused on ascertaining the needs for 
agrohydrological forecasting information in the catchment, and also on gathering information 
on crop and water resources management to ensure the representativeness of the 
agrohydrological modelling conducted in the study. The findings of this engagement is 
presented in different sub-sections below for the various aspects covered. 
 
2.2.1. Ascertaining the needs for agrohydrological forecasting 

As alluded to previously, the KZN case study was focused on the Mhlathuze catchment in the 
north of the province. The focus was mainly on applying weather and climate forecasts to 
commercial irrigated sugarcane, but did to some extent include small scale growers.  
 
To ascertain the needs for agrohydrological forecasting information for the sugarcane sector 
in the catchment, staff at the South African Sugarcane Research Institute (SASRI) were 
consulted during various small group meetings. SASRI is mandated to serve the agricultural 
research needs of the sugar industry, encompassing both commercial and small growers. The 
research staff consulted include Dr Abraham Singels (Principal Agronomist), Mr Matthew 
Jones (Systems Modeller), Mr Aresti Paraskevopoulos (Scientific Programmer) and Mr Phil 
Sithole (Agrometeorologist). During the course of these discussions it was established that a 
need exists for the development of seasonal forecasts of the storage volume of the 
Goedertrouw Dam. This dam has a full supply capacity of 301 million m3 and primarily supplies 
water for urban, industrial and irrigation purposes. The potential applications of seasonal dam 
storage forecasts are discussed under relevant headings below.  
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The needs for short to medium range (0-7 day) agrohydrological forecasts in the catchment 
centre on water demand forecasts for irrigation scheduling. A brief discussion on this is 
presented after the discussion on seasonal dam storage forecasting.  
  
2.2.1.1. Seasonal forecasts of the storage volume of Goedertrouw Dam 

Two potential applications of seasonal dam storage forecasts were identified in discussions 
with SASRI staff. The first of these include improving the irrigation water availability estimates 
that are assumed in the crop yield forecasts produced for the area. These forecasts are 
generated as part of the operational industry-wide crop yield forecasting system developed by 
SASRI. The second relates to the potential to improve on-farm allocation of irrigation water. 
Information related to these applications that was gleaned from discussions with SASRI, and 
from literature provided by Dr Singels, is presented in the following subsections. 
  
Application to crop yield forecasting 
   
The SASRI crop yield forecasts (Bezuidenhout and Singels, 2007) are generated at the scale 
of Homogeneous Climate Zones (HCZ) that have been delineated for the industry. The HCZ 
forecasts are then aggregated to the level of the sugarcane mills to which those HCZ are 
associated. Finally, the mill level forecasts are aggregated to produce a national forecast for 
the industry. 
 
The SASRI forecasts are used for a variety of purposes: 
 

● Mill operators use the forecasts to determine the annual mill opening and closing dates. 
The selected start date and duration of the milling season have an important influence 
on the quality of the cane that is crushed and the profitability of the milling. 

● At a national scale the forecasts are used to estimate crop payments from millers to 
growers and also to estimate tax rebates for communal small scale growers. In these 
situations, crop forecasts help to anticipate and streamline large financial transactions. 

● International marketers use the forecast prior to and during the start of the milling 
season to exploit price hedging, forward-sell surplus sugar at higher profit margins and 
cut expenditure on freight. 

● Potentially, the crop yield forecasts could also be used to develop more efficient 
haulage schedules and to tailor agronomic practices to the expected climate 

 
Seasonal climate forecasts are combined with a sugarcane yield model, CANESIM, to 
generate crop yield forecasts. CANESIM is configured to run in all the HCZ delineated across 
the sugar industry (there are approximately 48 HCZ). The Canesim model is a daily time step, 
point-based simulation model predominantly driven by water. For input, it requires soil 
available water holding capacity (TAM in mm) and daily temperature, rainfall and reference 
evaporative demand. The model accounts for partial canopy conditions and soil water content 
using a single layer soil profile. Yield is calculated as a function of transpiration (Bezuidenhout 
and Singels, 2007). The model has been validated at mill level and was found to produce 
excellent simulation results (Gers et al., 2001). 
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A map of the HCZ delineated for the sugar industry is given in Figure 2-3. There are three 
HCZ that are of relevance to the Mhlathuze catchment, i.e. they overlap the boundary of the 
catchment and the irrigated cane grown within the HCZ are supplied by water from the 
catchment. These HCZ are highlighted on the map. 
 
The names of the three HCZ that are relevant to the Mhlathuze are given in Table 2-1, together 
with the areas of rainfed and irrigated cane that are assumed to be in each HCZ for crop 
forecasting purposes. The three HCZ mostly supply cane to the Felixton mill (located in 
Empangeni HCZ), but the Empangeni HCZ also supplies a small amount of rainfed cane to 
the Umfolozi Mill (located north east of the Empangeni HCZ). 
 
Table 2-1 Homogeneous climate zones relevant to the Mhlathuze catchment and the 
areas of rainfed and irrigated cane within them that are assumed for crop forecasting 
purposes 
 

HCZ No. HCZ Name Rainfed Area 
(ha) 

Irrigated Area (ha) 

18 Heatonville 1330 4050 
19 Empangeni 8200 1100 
20 Nkwaleni 0 2950 

 
At present, very simple assumptions are made in the SASRI sugarcane yield forecasting 
system regarding the availability of irrigation water. It is assumed that water supply levels at 
the time of generating a forecast will persist for the remainder of the current summer (October 
to March) or winter (April to August). For the following summer, irrigation applications are set 
at 80% of the maximum permissible amount when current supplies are good or at 50% when 
current supplies are poor. For the following winter, irrigation applications are set to 50% of the 
maximum permissible amount when current supplies are good or to half the summer amount 
when current supplies are low.  
 
A way to improve the estimation of available irrigation water supplies in the SASRI crop 
forecasting system, would be to apply seasonal climate forecasts in a hydrological model to 
generate forecasts of water availability. For the three HCZ overlapping the Mhlathuze 
catchment, SASRI assume that irrigation water is sourced from the Goedertrouw Dam (located 
on the main stem of the Mhlathuze River). If the storage volume of the dam is forecast, then 
it may be possible to provide improved estimates of the water available for irrigation 
represented in the crop forecasting system (taking into account any water restrictions in place). 
The modelling of the dam, and the catchment supplying it, would need to take into account 
the other (non-agricultural) water users in the area.  
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Figure 2-3 Homogeneous climate zones in the South African sugar industry with zones 
relevant to the Mhlathuze catchment highlighted (source: SASRI) 
 
Application to on-farm allocation of water for irrigation 
 
Another potential application of irrigation water availability forecasts would be to support an 
on-farm irrigation water allocation tool developed by SASRI. This tool requires an indication of 
the availability of irrigation water at seasonal and longer time scales. The tool, which was 
developed concurrent to this project, aims to help farmers decide how to allocate water to their 
different fields, particularly in times when water is in short supply. The tool requires information 
such as the farm size, the fields on the farm, the soils, crop cycles and recorded and expected 
weather. Using a relatively simple crop model and an economic optimisation algorithm, the 
tool makes recommendations on how best to allocate water to the various fields on the farm. 
 
2.2.1.2. Short to medium range agrohydrological forecasts  

A need for short to medium range agrohydrological forecasts (e.g. 7 day forecasts) centres on 
crop water demand for irrigation scheduling purposes. More specifically, such forecasts could 
be focused on soil moisture, evapotranspiration or irrigation water demand. A soil moisture 
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forecast could further be useful in decisions relating to expected in-field trafficability of 
agricultural machinery. Within the context of sugarcane, soil trafficability is an important 
consideration in harvest scheduling. The harvesting of sugarcane needs to be carefully 
scheduled as any delays between harvesting of the cane and crushing it at the mill leads to 
rapid deterioration in the cane quality. 
 
Another possible application of short to medium range weather forecasts would be the 
prediction of wet/dry day sequencing. This information could potentially be useful in decisions 
related to pesticide and fertilizer applications, sugarcane burning and fire break burning. 
 
2.2.2. Obtaining information on crop and water resources management 

Communication with the SASRI extension officer for the Zululand North region, Mr Tshifhiwa 
Radzilani, yielded information regarding the crop and water resources management within the 
Mhlathuze catchment. In response to the selected questions regarding crop management, Mr 
Tshifhiwa indicated that crop cycles are practised for a period of 12 to 15 months within the 
catchment and irrigation water is sourced from a combination of the Goedertrouw Dam as well 
as the Mhlathuze river below the Dam, both of which forms part of the Mhlathuze Water Supply 
System. Water for domestic, agricultural and industrial purposes is abstracted directly from 
the Goedertrouw Dam to the canal and abstractions directly from the river to agricultural fields 
and farm balancing dams for storage. The methods of irrigation application scheduling involve 
a combination of direct and indirect soil water measurements such as the use of neutron 
probes, tensiometers, capacitance probes, and estimations through water budget calculators 
and the use of daily ET measurements from automatic weather stations and crop models. 
Various irrigation system hardwares are used within the catchment include dragline systems, 
semi-permanent irrigation systems, surface drip irrigation systems, sub-surface drip systems 
and centre pivots. 
 
Exact volume demands for other sectors were not known, however, what was known is that 
approximately 40% of the water from the dam and Mhlathuze river system has been allocated 
by Government for industrial and municipal purposes and the balance for agricultural use. 
Information on the annual volumes of water transferred into the Goedertrouw dam for the 
Thukela transfer scheme was unknown as well as how the annual volume of water from the 
scheme is distributed throughout the year. Additionally, information with regards to user/sector 
prioritization during periods of reduced water availability, for example during dry years, was 
unknown, as well as the timings of dam releases and the associated volumes. 
 
To compensate for the missing information the most recent study on the Mhlathuze catchment 
titled “Modelling support for Licensing Scenarios by the Department of Water Affairs (DWA) in 
2012, which was a follow-on study from the uMhlathuze Water Availability Assessment study 
(MWAAS) by DWA in 2009, was used. The study provided technical support to its Regional 
Office in the application of the model developed during the MWAAS to assist with water 
reallocation, provision of analytical support in the management of the water resources, and 
also to offer a support function in the water use licence evaluation process. The study focussed 
on a technical water resource analysis of the uMhlathuze, Amatikulu and Mlalazi river basins. 
A detailed surface water hydrology assessment was undertaken and a detailed Water 
Resources Yield Model (WRYM) was configured for the catchment. From the study, both 
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estimated and allocated volumes of total water use for the urban, agricultural and industrial 
sectors for the year 2013, as well as estimated annual volumes and timings of annual water 
transfers from the Thukela into the Goedertrouw Dam were obtained. These were used to 
improve the configuration of the ACRU model for agrohydrological modelling purposes. 
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CHAPTER 3.  REFINEMENT OF WEATHER AND CLIMATE FORECASTS 

 1Engelbrecht F, 1Beraki A, 2Landman W, 1Dedekind Z and 1Mpheshea L 
 
1 Council for Scientific and Industrial Research 
2 University of Pretoria 
 
3.1. Weather forecasts 
 
3.1.1. Description of the improved CCAM numerical weather prediction system 

The numerical weather prediction (NWP) model applied at the CSIR to address Aim 1 of the 
project (to improve short/medium range weather forecasts) is the conformal-cubic atmospheric 
model (CCAM), a variable-resolution global climate model (GCM) developed by the CSIRO 
(McGregor, 2005; McGregor and Dix, 2001, 2008). The model solves the hydrostatic primitive 
equations using a semi-implicit semi-Lagrangian solution procedure, and includes a 
comprehensive set of physical parameterizations. The GFDL parameterization for long-wave 
and shortwave radiation (Schwarzkopf and Fels, 1991) is employed, with interactive cloud 
distributions determined by the liquid and ice-water scheme of Rotstayn (1997). The model 
employs a stability-dependent boundary layer scheme based on Monin-Obukhov similarity 
theory (McGregor et al., 1993). CCAM runs coupled to a dynamic land-surface model CABLE 
(CSIRO Atmosphere Biosphere Land Exchange model). The cumulus convection scheme 
uses mass-flux closure, as described by McGregor (2003), and includes both downdrafts and 
detrainment. CCAM may be employed in quasi-uniform mode or in stretched mode by utilising 
the Schmidt (1977) transformation. 
 
CCAM may be applied at quasi-uniform resolution, or alternatively in stretched-grid mode to 
obtain high resolution over an area of interest. Figure 3-1 shows the model grid that was  
 

 
Figure 3-1 C192 quasi-uniform conformal-cubic grid, providing a horizontal resolution 
of about 50 km resolution globally (every 4th grid point is shown) 
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used for the quasi-uniform forecasts applied in the project (every 4th grid point is shown), of 
C192 resolution (about 50 km in the horizontal). CCAM’s ability to realistically simulate 
present-day southern African climate has been extensively demonstrated (e.g. Engelbrecht et 
al., 2009; Engelbrecht et al., 2011; Engelbrecht et al., 2013; Malherbe et al., 2013; Winsemius 
et al., 2013; Engelbrecht et al., 2015). 
 
For daily operational weather forecasting activities at CSIR the model is initialized with 
atmospheric conditions at 0000, 0600, 1200 and 1800 UTC, as obtained from the Global 
Forecasting System (GFS) made available by the USA’s National Oceanic and Atmospheric 
Administration (NOAA). The improved system for application in the project produces a global 
forecast at 50 km spatial resolution (previously the model had 50 km resolution only over an 
extended southern African domain). The variable resolution capabilities of CCAM 
subsequently allow the model to run at higher resolution over a selected region using the lower 
resolution forecast to provide boundary conditions in the far-field. In the new extended forecast 
system, this technique is applied to downscale from global 50 km resolution forecasts to 
forecasts of 8 km resolution over South Africa (compared to the old system that offered 15 km 
resolution over South Africa). The short-range forecasts are issued 7 days ahead.  
 
3.1.2. Results 

Hindcasts were performed to test the accuracy and skill of the new high resolution forecast 
system for 2013-2016. These included comparing the performance of different cumulus 
parameterisation settings in terms of the effect on the model’s ability to forecast rainfall totals. 
Similarly, the impact of including a prognostic aerosol scheme on forecast accuracy and skill 
was investigated. The latter investigation stems from the notion that a more realistic 
description of the availability of condensation nuclei may impact on the model’s ability to 
skilfully forecast rainfall. The model bias in forecasting rainfall over South Africa is shown in 
Figure 3-2, for the cases of three different cumulus parameterisation settings applied with and 
without prognostic aerosols. It is clear that the model has a general positive bias when 
forecasting rainfall over South Africa, with the bias exceeding 100 mm per year over much of 
the eastern interior. General negative biases are present over the Limpopo river basin, and 
over the winter rainfall region of the southwestern Cape. Moreover, two of the convection 
parameterisation biases (conv=1 and conv=2) result in the simulation of a spurious rainfall 
maximum to the west of Lesotho. The presence of prognostic aerosols in the forecast scheme 
does not have a significant effect on the bias calculated for the respective hindcasts. Overall, 
the hindcasts performed with conv=0 yield the most realistic representation of rainfall totals 
over South Africa. 
 
The model bias in simulating rainfall over Africa is shown in Figure 3-3. As before, the bias 
was calculated for the hindcasts performed at 50 km resolution globally. The figure reveals 
that a bias similar to the wet bias over South Africa also occurs over the subtropical North 
Africa. Over the latter region, the presence of aerosols significantly increases the wet bias. 
Moreover, the hindcasts exhibit a general negative bias over much of tropical Africa, which 
extends in the east to northern Mozambique. The enhanced positive bias that result over North 
Africa in the presence of aerosols suggest that conv=0 without the use of prognostic aerosols 
may currently be the preferred settings for the operational forecast system applied at the CSIR. 
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Figure 3-2 CCAM bias (mm) in simulating rainfall totals over South Africa for the period 
2013 to 2016, across three different cumulus convection schemes with a prognostic 
aerosol scheme applied (left), and across three different cumulus schemes applied in 
the absence of aerosol forcing (right). The hindcasts were obtained at 50 km resolution 
globally. 
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Figure 3-3 CCAM bias (mm) in simulating rainfall totals over Africa for the period 2013 
to 2016, across three different cumulus convection schemes with a prognostic aerosol 
scheme applied (left), and across three different cumulus schemes applied in the 
absence of aerosol forcing (right). The hindcasts were obtained at 50 km resolution 
globally. 
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A comparison between the 50 km and 8 km CCAM simulations is shown in Figure 3-4, for a 
region over northeastern South Africa. It can be seen in the corresponding observations that 
a rainfall maximum extends from Lesotho into the Mpumalanga and Limpopo Drakensberg. 
This feature is not present in the 50 km resolution simulations, but is well represented in the 8 
km resolution simulations. These results indicate the potential for the CSIR 8 km resolution 
forecasts to add value and skill over regions of steep topography in particular. 
 

 
 
Figure 3-4 CCAM average simulated rainfall totals (mm) compared to observations for 
northeastern South Africa. The simulated 50 km resolution totals (top right) can be 
compared to observations from weather stations (top left) and 8 km resolution 
simulations (bottom).  
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3.1.3. Conclusion 

The impact of varying cumulus parameterizations, introducing a prognostic aerosol scheme 
and  increasing the horizontal  resolution of CCAM have all been investigated in efforts to 
improve the short to medium range forecasting capability of CCAM. The accuracy (bias) 
associated with these model variations has been determined and documented, and has aided 
in developing an optimum model configuration for forecasting purposes.   
 
Two sets of CCAM 7 day forecasts were made available during the course of the project for 
agrohydrological forecasting in the Mhlathuze catchment. The first set consisted of 15 km 
resolution forecasts for the period 2013-2016 (all year round) for rainfall and maximum and 
minimum temperature. The second set were higher resolution 8 km forecasts for the same 
period (2013-2016), but only including rainfall (i.e. excluding temperature) for the summer 
(Dec-Jan-Feb) months. The first and second sets of forecasts were provided in text and 
netCDF formats, respectively.  
 
3.2. Sub-seasonal forecasts 
 
3.2.1. Background 

African climate exhibits a high degree of natural variability and is prone to the occurrence of 
droughts and floods. Recent severe droughts in the Horn of Africa and the Sahel (e.g. Lyon 
and DeWitt, 2012; Williams et al., 2012) are vivid examples of Africa’s vulnerability to climate 
variability. Moreover, the 2015/16 El Niño event and resulting heat-waves and drought over 
southern Africa emphasized how global warming and climate change may function to intensify 
the impacts of drought events over Africa. In fact, the austral summer (December to February) 
of 2015/16 has been the warmest ever recorded over southern Africa, and were associated 
with a high frequency of heat wave events that impacted significantly on crop yield, livestock 
mortality and human comfort. The multi-faceted repercussions of the 2015/16 southern Africa 
and the 2017 persistent Western Cape devastating droughts and how these type of extremes 
probably intensify over the region under global warming scenario (Engelbrecht et al., 2015) 
attests to the importance of having skilful and reliable early warning systems for the region. 
Weather and climate information across time scales are thus useful instruments to inform the 
planning, development, management and running of climate sensitive segments of the 
economy (Winsemius et al., 2014; Bett et al., 2017; Clark et al., 2017).  
 
This section describes the development of a seamless forecasting system that ranging from 
short weather forecast to climate change time scales using a single dynamic core at the 
Council Scientific and Industrial Research (CSIR) Natural Resources and the Environment 
(NRE), Climate Studies, Modelling and Environmental Health group by placing more emphasis 
on the extended range time scale. The seasonal forecasting, relatively matured, effort in South 
Africa goes back as early as the 1990s. Already then, a number of local institutions developed 
objective seasonal forecast techniques which were based entirely on statistical methods. A 
variety of forecasting systems were subsequently developed over the years, including systems 
that incorporated dynamical global climate models (e.g. Beraki et al.,2014, 2016) and 
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statistical downscaling models (Landman and Beraki, 2010). Local seasonal forecasting 
efforts and the use of atmospheric general circulation models (AGCMs) in South Africa from 
a historical perspective are recently reviewed by Landman (2014). This extensive modelling 
endeavour is motivated primarily by the fact that numerous (observational and numerical) 
studies over the past couple of decades (e.g. Klopper et al., 1998; Landman and Goddard, 
2002; Tennant and Hewitson, 2002; Reason and Rouault, 2005) conclusively shown the 
existence of potential predictability over the region, in the midst of strong hydrodynamical 
instabilities associated with mid-latitude baroclinicity, due to the tropical heat modulation on 
the mid-latitude circulation whose signature peaks during the austral mid-summer (Shukla, 
1981; Mason et al., 1996). The southern Africa regions climate is therefore driven by the slowly 
evolving components of the climate system (Palmer and Anderson, 1994; Barnston et al., 
1999). Most of the signature of these slowly evolving systems is believed to originate from the 
ocean and thus the interaction between the ocean and the atmosphere is of paramount 
importance in the context of climate predictions (Goddard et al., 2001). 
 
Despite weather forecast in the extended-range time scale has been a topic of considerable 
interest (e.g. Deque and Royer, 1992; Landman & Tennant, 2000; Tracton et al., 1989; Zeng 
et al., 1993) since first studied by Shukla (1981), its progress has stalled. The hiatus is 
presumably attributed to lack of reasonable intelligence in climate models. Because extended-
range forecast (ERF) is arguably the most complex part of Numerical Weather Prediction 
(NWP) since the physical basis for this time-scale is not as clear as for medium-range (3-10 
days) and seasonal forecasts. Theoretically, the underlying logic to exercise this type of 
prediction resides on the assumption that the time range 11 to 30 days is still short enough 
that the atmosphere retains some memory of its initial state and it is, presumably, long enough 
that the slowly evolving boundary conditions have an impact on the atmospheric circulation 
(Beraki and Olivier, 2009). To bridge the gap, the World Weather Research Programme 
(WWRP) and World Climate Research Programme (WCRP) launched a joint research 
initiative in 2013, the Subseasonal to Seasonal Prediction Project (S2S). The main goal of this 
project is to improve forecast skill and understanding of the subseasonal to seasonal time 
scale, and to promote its uptake by operational centres and exploitation by the applications 
communities (see Vitart et al., 2016). Nonetheless, most of the S2S community endeavours 
on the continent were concentrating mostly over the western and central Africa (e.g. Kamsu-
Tamo et al., 2014; Olaniyan et al., 2018). For the most part predictability for individual calendar 
months is the only recently published work on sub-seasonal time scales over southern Africa 
(e.g. Phakula et al., 2018) which suggests the S2S southern African region is still in its infancy. 
 
In pursuit of improving predictive skill effort stemmed from the work first initiated by Beraki and 
Olivier (2009) locally, the study revisits a numerical experimentation framework that uses ultra-
high resolution dynamical downscaling paradigm. These computationally intensive model 
simulations have been conducted at the Centre for High Performance for Computing (CHPC) 
of South Africa based in Cape Town. Dynamical downscaling for seasonal forecast (in 
operational context) was first attempted locally by Kgatuke et al. (2008) and more recently by 
Ratnam et al. (2016). As opposed to these previous studies, which used Limited Area Model 
(LAM), our study employs a stretched-grid model referred to as conformal-cubic atmospheric 
model (CCAM; McGregor, 2005a). The CCAM has been undergone a significant 
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improvements in dynamics and physics over recent years and is intensively used in climate 
change studies locally (e.g. Engelbrecht et al., 2015). 
   
3.2.2. Model description and experimental design 

3.2.2.1. AGCM description 

The climate model used in the study is the CSIRO (Commonwealth Scientific and Industrial 
Research Organisation in Australia) CCAM (McGregor, 2005a). This stretched grid 
atmospheric climate model is coupled to the CSIRO sophisticated dynamic land-surface 
model referred to as Atmosphere Biosphere Land Exchange model (CABLE). The CCAM 
AGCM (Atmospheric General Circulation Model), which is σ-coordinate model, employs a 
semi-implicit semi-Lagrangian method to solve the hydrostatic primitive equations (a 
nonhydrostatic version also exists). It uses an R-grid (reversible staggering for the wind 
components) for good gravity wave dispersion behaviour (McGregor, 2005b). The GFDL 
parameterizations for long-wave and short-wave radiation are used, with interactive cloud 
distributions determined by the liquid and ice-water scheme of Rotstayn (1997). A stability-
dependent boundary layer scheme based on Monin Obukhov similarity theory is used 
(McGregor et al., 1993), together with the non-local treatment of Holtslag and Boville (1993). 
The cumulus convection scheme uses a mass-flux closure, as described by McGregor (2003), 
and includes downdrafts, entrainment and detrainment. CCAM includes a prognostic aerosol 
scheme, and can be applied consistently with the emission inventories and radiative forcing 
specifications of the Coupled Model Intercomparison Project Phase Five (CMIP5). CABLE 
includes a dynamic river routing scheme adapted from the CSIRO Mk3.5 CGCM (ocean-
atmosphere Coupled Global Circulation Model).  
 
3.2.2.2. Driving CGCM description 

 
The CCAM-CABLE Model was forced with predicted sea-ice concentration (SIC) and sea 
surface temperatures (SSTs) acquired from the outputs of the SINTEX-F2v ensemble 
seasonal prediction system (Doi et al., 2014, 2016). It is based on the SINTEX-F2 CGCM 
(Sasaki et al., 2013, 2014, 2015). The atmospheric component is ECHAM5 (Roeckner et al., 
2003), and the oceanic component is the Nucleus for European Modelling of the Ocean 
(NEMO) system (Madec, 2006). The atmospheric component has T106 horizontal resolution 
(approximately horizontal resolution of 125 km at equator) with 31 vertical levels. The oceanic 
component employs the ORCA05 grid, which uses a tripolar grid with 0.58 zonal resolution 
and 0.58 cosine (latitude) meridional resolution with 31 vertical levels. The atmospheric and 
oceanic components are coupled with data exchanged every 2 hours, including SST, sea ice 
fraction, freshwater, surface heat, surface current, and momentum fluxes, by means of the 
Ocean Atmosphere Sea Ice Soil, version 3 (OASIS3; Valcke et al., 2004), coupler. We refer 
the reader to Doi et al. (2016) for complete description of the CGCM experimentation.  
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3.2.2.3. Retroactive forecasts design 

The AGCM retroactive experiment consists of 18 ensembles integrations of 6 months in 
length, which are built as a function of both atmospheric states (ICs) and boundary forcing 
(BCs; Beraki et al., 2016). This model configuration offers a better description of uncertainties 
that may arise from the initial and boundary forcings. The uncertainties that arise from the ICs 
are accounted for by taking 6 consecutive daily realistic atmospheric states back from the 
forecast date in each month and year. For the November hindcasts, for instance the 
atmospheric ICs cover the period from November 1 to 6 for 15 years starting from 2000 to 
2014. To minimize potential climate drift, the CCAM-CABLE is nudged at its surface to the 
SINTEX-F2 CGCM SSTs, using the spectral nudging method of Thatcher and McGregor 
(2009, 2010). Furthermore, all climate simulations are forced by the time-varying CO2 and 
ozone (O3) fields provided through the CMIP5 archive for the period 1870-2100. The 
atmospheric ICs are acquired from the NCEP (National Centers for Environmental Prediction), 
Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) II 
Reanalysis (R2) dataset (Kanamitsu et al., 2002). The NCEP/DOE atmospheric states are 
transformed to the CCAM CABLE quasi-uniform (C96) horizontal resolution (approximately 
105 km2) and 25 vertical sigma layers similarly to Beraki et al. (2014). 
 
Forcing the AGCM with all ensemble realizations of the SINTEX-F2 CGCM is presumably 
computationally inhibiting. This is due to a double fold increase in the AGCM integrations by 
the size of atmospheric ICs as it is also important to account for uncertainties arising from the 
atmospheric states. Hence, the prescription of the SST scenarios follows a manner that 
optimizes the representation of the uncertainty envelope and also taking into account 
computational constraints. The background error here is estimated from the standard 
deviation of the 6 CGCM ensemble integrations and subsequently added/subtracted to the 
ensemble mean anomalies. It is also worth noting that the SIC and SST anomalies are 
superimposed to the AMIP observed climatology to minimize the biases in the boundary 
forcings (Beraki et al., 2016; Ratnam et al., 2017).  In the CGCM experiment, as noted in Doi 
et al. (2016), uncertainties in ocean vertical mixing estimations, ocean physics is perturbed in 
two different ways by considering or neglecting ocean vertical mixing induced by small vertical-
scale structures (SVSs) within and above the equatorial thermocline (Sasaki et al., 2012). This 
similar paradigm also ensures the quantification of uncertainties of both initial conditions and 
model physics for forecasts. 
 
The most striking advantage of the CCAM is that, as noted earlier, it embraces a dynamic 
kernel and physics all cast on a cube-based grid and can be applied either at quasi-uniform 
horizontal resolution to function as a global climate model, (here we use C96 resolution 
approximately corresponds 105 km2), or in stretched-grid mode to function as a high-resolution 
regional climate model (RCM). In the current ultra-high resolution experiment, the CCAM uses 
C192 stretched-grid configuration which is a resolution approximately about 8 km2 over the 
Southern Africa where the centre of the panel is placed, while it has coarse resolution 
elsewhere, as shown Figure 3-5. To arrive at this high-resolution, the C192 experiment is 
constrained with the C96 integration of the AGCM in order to maintain numerical stability and 
achieve a balanced simulation consistent with the driving AGCM reinforced with spectral 
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nudging technique of Thatcher and McGregor (2010) while the RCM is allowed to freely 
develop self-dynamics coherent to the expected regional details. 
 
3.2.2.4. Verifying Observed data 

Climate Hazards Group InfraRed Precipitation (CHIRP) is quasi-global rainfall dataset. 
Spanning 50°S-50°N (and all longitudes), starting in 1981 to near-present, CHIRP(S) 
incorporates 0.05° resolution satellite imagery without (with) in-situ station data to create 
gridded rainfall time series for trend analysis and seasonal drought monitoring (Funk et al., 
2015). We use the version that doesn’t include station data (due to the quality concern and 
lack of homogeneity in in-situ observation coverage over the southern Africa sub-continent (J. 
Malherbe, 2018, personal communication).   
 

 
Figure 3-5 Example of C96 quasi-uniform global resolution (about 100 km; left) and 
C192 stretched-grid resolution zooming in over southern Africa (about 8 km; right) 
while coarse resolution elsewhere  
 
3.2.3. Results and discussion 

3.2.3.1. Climatological representation 

The results presented in this section are taken from the November initialized C96 (quasi-
uniform resolution; only for the seasonal time scale included) global and C192 regional (8k 
resolution over southern Africa) CCAM hindcast simulations for the 15 years from 2000 to 
2014. In this study, the lead time in a seasonal prediction context is defined from the starting 
month when the model is initialized (Beraki et al., 2006). While the S2S time scale is from day 
11 to 30 from the model initialization date (20 Nov to 9 Dec for each year). The Nov initialized 
hindcast which embrace the vicinity of mid-summer is to assess the performance of the model 
simulations since the region has profound tropical influence and noncable ENSO (El-Niño 
Southern Oscillation) signature (Shukla, 1981; Mason et al., 1996).  
 
Figure 3-6 compares the model climatological simulation and corresponding observation both 
for the ERF and seasonal time scales. For the former, the model and observation a good level 
of agreement on the climatological representation of daily rainfall accumulations. However, 
the model has a tendency to overestimate (underestimate) daily rainfall totals over the eastern 
part of South Africa adjacent to the eastern border of Lesotho and north-western part of the 
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domain. For the seasonal time scale, it is shown that the model C192 configuration tends to 
show better climatological representation on the southern Africa region (Figure 3-6(d)) relative 
to the C96 CCAM configuration Figure 3-6(e). The latter particularly extends the rainfall regime 
to southern Namibia and western South Africa. We also shown rainfall over the surrounding 
Oceans to gain better insight into how the mid-summer rainfall regime is captured in the model. 
Both model simulations overestimated rainfall over Indian Ocean and its surround noticeably 
over Mozambique Channel while underestimating precipitation climatology over the Central 
part of the model domain (eastern-Angola, southern-Zambia, northern-Zimbabwe and  
-Mozambique). Nonetheless, the model global precipitation pattern reasonably resembles the 
Climate Research Unit (CRU 4.1; Harries et al., 2013) and the Global Precipitation Climatology 
Project (GPCP; Huffman et al., 2001) global observed data (not shown). It is worth noting 
however that the findings presented here are based on the preliminary results of the numerical 
experimentation. More extensive model simulations that include 50 km global resolution with 
a different convective scheme, interactive aerosol dynamic scheme are underway.  
 

 

 
Figure 3-6 Daily Precipitation (mm/day) averaged over the 20 days spanning the date 
from 20 Nov to 9 Dec (2000-2014; a,b) and  DJF 2000/01 to DJF 2012/13 (c-e). The 
observation is taken from CHIRP satellite estimates and ensemble mean CCAM-CABLE 
as showing in the title of each plot. 
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3.2.3.2. Retroactive forecast skill 

The CCAM’s C192 performance is investigated for both the ERF for the noted period and mid-
austral summer one month lead. The verification is based on 270 (15 years × 18 ensemble 
members) model retroactive forecasts each consisting of 6-month integrations in order to 
establish forecast lead-times of up to 4 months. Each ensemble set emulates a set of 
operational forecasts issued on the 6 of November each year starting from 2000 to 2014. The 
model bias in the mean annual cycle was removed from the model forecasts prior to comparing 
the statistics, i.e. computing the anomalies of the model about its own drifted climatology as a 
function of different initialization time and lead-months (Wang et al., 2002; Schneider et al., 
2003; DeWitt, 2005; Beraki et al., 2014, 2016). 
 
The model evaluation is done probabilistically because climate prediction is assumed to be 
inherently probabilistic and applicably judges the model’s ability or weakness in an operational 
context. Figure 3-7 presents the ability of the model to discriminate events from non-events 
using the relative operating characteristic area (ROC; Mason and Graham, 1999).  
 

 
Figure 3-7 Southern Africa skill distribution as measured with ROC area daily 
accumulated rainfall (mm/day)  the CCAM 8 km horizontal resolution for ERF (top) and 
seasonal (bottom) time scales for (a,c) below- and (b,d) above-normal categories. Only 
statistically significant values at the 95% level shades are shown. 
 
 
It is noticeable that the model is skilful in discriminating below- and above-normal rainfall 
conditions over the southern Africa region where the tropical rainfall bearing system apparently 
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associated with the seasonal migration of the ITCZ (Inter Tropical Convergence Zone) and 
tropical temperate trough (TTT; Harrison, 1984; Washington and Todd, 1999; Tyson and 
Preston-Whyte, 2000; Reason et al., 2006; Manhique et al., 2011). However, the C96 
probabilistic skill is marginal (not shown) which suggests that the dynamical downscaling may 
be able to further augment the quality of forecast and potentially offer a better climate 
prediction strategy despite its computational cost. Furthermore, the extended-range time scale 
probabilistic skill is deeper for both categories over the summer rainfall region of South Africa 
relative to the corresponding seasonal probabilistic skill. The skill concentration decay toward 
as the simulation time progresses in time attests to the importance of resolution to shorter time 
scales and role of low frequency component of the atmospheric initial condition (Shukla, 1981) 
and longer time scales are presumably explained more by robustness of external forcings and 
their coupled interactions (such as ocean-atmosphere, land-atmosphere; Beraki et al., 2014, 
2016). The ROC applied to probabilistic forecasts indicates whether the forecast probability 
was higher when an event such as a flood or drought season occurred compared to when it 
did not occur. ROC scores for the rainfall categories for example represent the respective 
areas beneath the ROC curve that is produced by plotting the forecast hit rates against the 
false alarm rates. If the area would be≤0.5, the forecasts have no skill, and for a maximum 
ROC score of 1.0, perfect discrimination has been obtained. As in Beraki et al. (2014), the 
significance test is conducted using a variant of the Mann-Whitney non-parametric procedure 
that explicitly accounts for variance adjustment caused by incidents of ties (Mason and 
Graham, 2002; Wilks, 2011). 
 
3.2.4. Conclusion 

In this section, we have tested an ultra-high resolution stretched-grid climate model applied to 
a seamless forecasting system strategy that encompasses both the extended-range and 
seasonal time scales in an attempt to realize a skilful and informative probabilistic climate 
prediction system for the Southern Africa region. The primary motivation for pursuing this 
computationally expensive model configuration, lies in the fact that this level of detail (if 
rigorously skilful) is vital for various climate application endeavours, and may have far-
reaching positive implications. The numerical experimentation first employed CCAM (C92 
quasi-uniform) global simulations forced with the SINTEX-F2 CGCM predicted SSTs and 
SICs, constrained with time-varying CO2 and ozone and initialized with realistic atmospheric 
and land surface states. Subsequently, the CCAM C92 has driven the very same model’s 
C192 ultra-resolution regional configuration in order to achieve a result that is stable and 
consistent with the synoptic patterns of the driving GCM. Furthermore, a spectral nudging 
technique was applied to minimize the potential climate drift. The AGCM probabilistic forecasts 
for the austral summer season for daily accumulated rainfall were fairly skilful particularly for 
the extended-range time scale. The model was able to discriminate significantly wet and dry 
episodes over the southern Africa region that is particularly dominated by tropical rainfall 
bearing systems which are believed to embrace noticeable ENSO signature. Climatologically, 
the dynamical downscaling was also found to further improve the rainfall pattern simulated by 
its driving GCM. 
  
An output of the research was a 20 year (2000-2014) series of 40 day forecasts initialized on 
the first of November of each year and covering the period 1 November to 10 December. The 
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forecasts incorporated rainfall, maximum temperature and minimum temperature, and 
consisted of an 18 member ensemble and an ensemble mean.   
 
3.2.5. Recommendations and future plans 

The work presented here is based on the preliminary results of the numerical experimentation. 
More extensive model simulations are underway that include 50 km global resolution with a 
different convective scheme, interactive aerosol dynamic scheme in order to maximize the 
predictive skill of the 8 km configuration presented in this section. In addition, the result 
suggests that a bias correction technique and statistical remapping procedure may be needed 
to minimise the systematic model errors and deepen model intelligence. Nonetheless, since 
ultra-resolution dynamical downscaling is computationally expensive, its predictive skill should 
be compared against a baseline skill level achievable by a statistical downscaling technique 
to justify its deployment in a seasonal forecasting paradigm, though the potential skill 
enhancement demonstrated on the extended-range time scale suggests that even increasing 
to finer resolution may be beneficial for future consideration. 
 
The CSIR has been in the process of developing the next generation of seamless forecasting 
system with more emphasis for subseasonal to decadal time scales based on the state-of-the-
art Variable-resolution Earth System Model (VrESM). The VrESM will support the future 
climate modelling research drive of the CSIR to advance the South African scientific 
contribution and develop multi-disciplinary research capability in South Africa. The use of 
ESMs (the highest hierarchy in contemporary climate modelling science in terms of 
complexity) are not widely practiced at the seasonal to inter-annual climate time scales due to 
computational consideration and complexity. However, under a global warming scenario, 
seasonal and interannual climate variability may undergo some behavioural changes or 
adjustments and need to be explicitly accounted for in climate model simulations. It is primarily 
motivated by the advances made in climate research during the past decade, which have led 
to the understanding that modelling and predicting a given climate anomaly over any region is 
incomplete without a proper treatment of the effects of SST, sea ice, snow cover, soil wetness, 
vegetation, stratospheric processes, and atmospheric composition (carbon dioxide, ozone, 
etc.). The approach is highly relevant to the contemporary international research agenda and 
particularly the research thrust of the World Climate Research Programme (WCRP) Working 
Group on Subseasonal to Interdecadal Climate Predictions (WGSIP). 
 
3.3. Seasonal climate forecasts 
 
Statistical downscaling of seasonal values, for both averages (e.g. maximum temperatures) 
and totals (e.g. rainfall), have been found to improve the seasonal-to-interannual forecast skill 
of global climate models (e.g. Landman and Goddard, 2002). In this project, the effort to 
improve seasonal climate forecasts (Aim 5) involved applying linear statistical procedures to 
downscale and improve hindcasts (re-forecasts) from coupled ocean-atmosphere models over 
SADC. Detail on the methods applied over the region include model output statistics (MOS; 
Landman et al., 2012; Lazenby et al., 2014) and improving raw climate model output through 
mean and variance bias correction. 



 
 

33 
 

A collection of hindcasts from a coupled ocean-atmosphere model of the North American 
Multi-Model Ensemble (NMME, Kirtman et al., 2014), the GFDL-CM2.5-FLOR-B01, and from 
the ECHAM4.5-MOM3-DC2 (DeWitt, 2005) are used to statistically downscale to a higher 
spatial resolution than the resolution of these coupled models. The resolution of the models 
vary from about 1°x1° to 2.8°x2.8°, while the downscaling or recalibration is performed on 
gridded data at a resolution of about 0.5°.  The latter data is from the Climatic Research Unit 
(CRU) TS3.1 data set (Mitchell and Jones, 2005). The hindcasts are for monthly data from the 
early 1980s and are available for 12 ensemble members and for lead-times up to 11 months. 
We are using only 1- to 3-month lead-times hindcasts. The SADC area is from 15/17°S to 
35°S; 11°E to 41°E. 
  
The capability to produce high resolution forecasts was first demonstrated by presenting two 
types of maps. The first type is a set of examples that shows typical model skill after 
downscaling has been performed over a 30-year cross-validation period from 1982/83 to 
2011/12 for the December to February (DJF) season. The second type shows DJF 
downscaled forecasts for SADC that could have been made at a 1-month lead-time (i.e. 
forecasts issued in November) during the El Niño season of 2009/10 and of the La Niña 
season of 2010/11. 
  
Figure 3-8 shows the Spearman’s correlations between downscaled rainfall (left) and 
maximum temperatures (right) hindcasts over the 30 year period and the observed CRU data. 
The downscaled hindcasts have been cross-validated with a 5-year-out window design. Take 
note that the resolution of the downscaled results can be seen on the maps.  
 

 
Figure 3-8 Spearman’s correlations between CRU data and downscaled values (using 
ECHAM-MOM3 output as predictor in statistical downscaling model). The map on the 
left is for downscaled DJF rainfall totals, and the map on the right for DJF averaged 
maximum temperatures. These maps represent skill at a 1-month lead-time. 
 
Probabilistic forecasts for SADC for the 2009/10 (El Niño) and 2010/11 (La Niña) seasons are 
presented next. Forecasts from two approaches and for two coupled models are presented. 
The first approach involves statistical downscaling coupled model output to the CRU resolution 
and the second approach involves applying bias corrections to the coupled models’ rainfall 
forecasts. The downscaling is done by using the 850 hPa geopotential height fields of the 
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ECHAM4.5-MOM3-DC2 coupled model as predictor in a canonical correlation analysis (CCA) 
linear post-processing model, and the rainfall fields of the GFDL-CM2.5-FLOR-B01 coupled 
model in a separate CCA post-processing model. The probabilistic rainfall forecasts for the 
2009/10 season are shown in Figure 3-9. 
 

 
Figure 3-9. Probabilistic forecasts for 2009/10 DJF rainfall. Initialization month is 
November. The maps on the left and middle are forecasts obtained by statistically 
downscaling coupled model output to the CRU resolution. The map on the right is a 
forecast obtained by correcting biases of the GFDL coupled model. The bar at the 
bottom of each map shows the predicted probabilities for three categories (Below: ≤ 
the 25th percentile of the climatological record; Above: ≥ the 75th percentile of the 
climatological record; Normal: between the two outer categories). 
 
The 2009/10 DJF period was not a typical El Niño drought season over SADC. The 
downscaled rainfall forecasts of Figure 3-9 reflect this outcome, although the bias corrected 
forecast (map on the right of Figure 3-9) is more favourable for a wet season than is the case 
for the downscaled forecasts where predominantly near-normal rainfall totals are predicted. 
Rainfall forecasts for the 2010/11 La Niña season are shown in Figure 3-10. Here we see that 
the downscaled and bias corrected forecasts are in agreement and show enhanced 
probabilities for a wet DJF season. In fact, 2010/11 was a season of serious flooding over 
parts of SADC (Muchuru et al., 2016). 
 

 
Figure 3-10 As for Figure 3-9, but for 2010/11 
 
Our downscaling capability is also demonstrated for maximum temperatures. Figure 3-11 
shows the temperature forecasts for the two ENSO seasons. These examples show a typical 
ENSO pattern of hot conditions during El Niño and cool conditions during La Niña-enhanced 
probabilities for the above (below) maximum temperature category to materialize during El 
Niño (La Niña). 
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Figure 3-11 Downscaled maximum temperature forecasts for the two ENSO seasons. 
Downscaling is done by using the 850 hPa geopotential height fields of the ECHAM4.5-
MOM3-DC2 coupled model is input in a linear statistical post-processing model. The 
bar below each map represents the predicted probabilities for each category.  
 
The results presented here show that the capability to improve on the horizontal resolution of 
coupled ocean-atmosphere models has been developed in the project. Also demonstrated are 
two statistical methods of downscaling: from predicted low-level circulation to 
rainfall/temperature through linear methods, and bias correcting rainfall/temperature hindcasts 
of the coupled model. We focus on the bias correction approach since the NMME project do 
not make available low-level circulation data (e.g. 850 hPa geopotential height fields) for real-
time predictions. However, as is shown below, bias correction has the ability to provide skilful 
downscaling models. 
 
The above results are presented for a 30-year cross-validation period. Next we will 
demonstrate skill for the DJF season over a 20-year retro-active forecast period from 1993/94 
to 2012/13. The retro-active forecast and verification procedures applied here are very similar 
to those described before (Landman et al., 2014). Here the initial training period is over 13 
years from 1980/81 to 1992/93, and the training period is incremented for each hindcast over 
the 20 years by one year. Figure 3-12 shows the initial training (stand-alone red line) and 
hindcast period (red line and associated green line). This figure shows the deterministic retro-
active hindcasts for the grid-point indicated on the figure which is located just off the Limpopo 
River. Take note that the longer lead DJF rainfall hindcast (initialisation of the coupled model 
in September) has a slightly higher skill level (higher correlation) than the shorter lead hindcast 
initialised in November. Such an occurrence of seemingly more skilful hindcasts at longer 
lead-times may be a function of the relatively short verification period and is often the case 
when predicting variables such as rainfall for which forecast skill is marginal. This discrepancy 
is not seen for the high skill hindcasts for maximum temperatures shown in Figure 3-13. 
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Figure 3-12 Retro-active hindcasts for DJF rainfall at the grid-point lat-long indicated 
on the figure. The hindcasts and the observations are normalised values. The three 
categories as specified in the text are respectively shown as blue (above-normal), green 
(near-normal) and red (below-normal).  
 

 
Figure 3-13 As for Figure 3-12, but for maximum temperatures  
 
Seasonal maximum temperatures over SADC are highly predictable when compared with 
seasonal rainfall as well as with seasonal minimum temperatures (Lazenby et al., 2014). This 
result that maximum temperatures skill is superior to that of minimum temperatures is also 
found here for the grid-point near the Limpopo River (compare Figures 3-13 and 3-14). In fact, 
seasonal minimum temperature hindcast skill at the specific location is even lower than rainfall 
hindcast skill.  
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Figure 3-14. As for Figure 3-13, but for minimum temperatures 
 
Seasonal forecasts are of a probabilistic nature and so should be judged probabilistically. Here 
we present relative operating characteristic (ROC; Mason and Graham, 2002) scores over 
SADC for DJF rainfall (Figure 3-15), maximum (Figure 3-16) and minimum temperatures 
(Figure 3-17) at a one-month lead-time as calculated over the 20-year verification period 
presented in Figures. 3-12 to 3-14. ROC scores (the area below the ROC graph) is a function 
of hit rates against false-alarm rates. For good forecasts the hit rate will accumulate faster 
than the false-alarm rate, resulting in high ROC scores. For perfect discrimination (whether 
the hindcasts are discernibly different given different outcomes) the ROC score would be 1.0, 
and for no skill the ROC score would be 0.5 or less. ROC applied to probabilistic forecasts 
indicates whether the forecast probability was consistently higher when, for example, a flood 
or drought season occurred compared to when it did not occur. Although the ROC is a 
verification procedure recommended by the World Meteorological Organisation, it has been 
criticised because the reliability of the forecast probabilities is ignored. Although reliability 
estimates, along with other skill estimates are not provided in this report, these can be easily 
calculated for the 20-year hindcast period. 
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Figure 3-15 ROC scores for above- and below-normal DJF rainfall hindcasts as 
calculated over the 20-year period specified in the text. The ROC score at each grid box 
needs to be higher than 0.5 in order for a forecast system to be regarded skilful at the 
specific grid box. 
 
 

 
Figure 3-16 As for Figure 3-15, but for maximum temperatures 
 
 

 
Figure 3-17 As for Figure 3-16, but for minimum temperatures 
 
An indication of the relative levels of model skill in predicting seasonal rainfall, minimum and 
maximum temperatures over SADC have been presented here, albeit over a restricted subset 
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of DJF seasons. However, the project has generated hindcasts for all three-month overlapping 
seasons from Jan-Feb-Mar to Dec-Jan-Feb (12 in total) and for lead-times from one to three 
months. These hindcasts require temporal downscaling to be suitable for use in a hydrological 
model such as ACRU. 
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CHAPTER 4.  CONFIGURATION AND VERIFICATION OF THE ACRU 

MODEL IN THE MHLATHUZE CATCHMENT 
1Morris F, 2Lumsden T, 1Toucher M and 1Schulze R 
 
1 CWRR, University of KwaZulu-Natal 
2 Council for Scientific and Industrial Research 
 
4.1. Overview of the ACRU model 
 
The ACRU agrohydrological model is sensitive to weather, soils and land cover, and can 
simulate irrigation processes, catchment streamflow and reservoir water balances. It is thus 
suited to developing agrohydrological forecasts for the Mhlathuze catchment, including 
forecasts of the level of the Goedertrouw Dam. 
 
As a conceptual-physical soil water budget model, ACRU (Schulze, 1995 and updates) 
integrates various water budgeting and runoff producing components of the terrestrial 
hydrological system, as well as operational aspects of water resource management, all with 
risk analysis (Schulze, 1995; Smithers and Schulze, 2004). The model was designed as a 
daily time-step, two layer soil water budgeting model which has been structured to be sensitive 
to land use changes on soil moisture, evaporative rates and runoff regimes. The model has 
been considerably updated from original versions to its present status (Smithers and Schulze, 
2004) in order to simulate those components and processes of the hydrological cycle which 
are affected by the soil water budget, such as stormflow, baseflow, irrigation demand, 
sediment yield or crop yield, and to output any of those components on a daily basis (where 
relevant), or as monthly and annual totals of the daily values. A summary of the concepts of 
the ACRU model with respect to inputs, operational modes, simulation options and objectives 
is given in Figure 4-1, and Figure 4-2 represents a schematic of the multi-layer soil water 
budgeting by partitioning and redistribution of soil water, as conceptualised in the ACRU 
model. 
 
4.2. Disaggregation of the Mhlathuze catchment for ACRU modelling 
 
South Africa, Swaziland and Lesotho have been delineated into nested hierarchical 
catchments or hydrological unit boundaries by the South African Department of Water and 
Sanitation (DWS) for the planning and management of water resources. This hierarchical 
system of catchments range from primary, through to secondary and tertiary and finally to 
Quaternary catchments. A total of 1946 Quaternary catchments cover South Africa, Swaziland 
and Lesotho. Until recently, the quaternary catchments were the smallest operational units. 
With substantial datasets linked to these scaled catchments, they are used in a wide range of 
studies, for example, hydrological modelling, climate change and water resource 
management. However, the need for sub-quaternary level scale information was highlighted.  
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Figure 4-1 The ACRU agrohydrological model: Schematic of inputs, modes of 
operation, simulation options and objectives / components (Schulze, 1995) 
 
 

 
 
Figure 4-2 The ACRU agrohydrological model: Schematic of its multi-layer soil water 
budgeting and partitioning and redistribution of soil water (Schulze, 1995) 
 
Disaggregation of fourth level quaternary catchments into fifth level quinary catchments, which 
are hydrologically more homogenous catchments, was therefore performed. Following the 
altitudinally-driven delineation of hydrologically interlinked quinary catchments for South 
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Africa, Swaziland and Lesotho, the previously developed Quaternary Catchment Database 
was expanded to a Quinary Catchments Database. This database includes hydrological 
variables such as rainfall, potential evaporation, crop growth and transpiration parameters, 
soil attributes, stormflow response variables and daily and monthly temperature information. 
The weather variables are available for a 50 year period from 1950 to 1999. A total of 27 
Quinary catchments exist within the Mhlathuze catchment (Figure 4-3). 
 
The quinary catchments are numbered in a downstream order in a similar manner to the 
quaternary catchments. For example, in quinary catchment W12A3: 
 

● the letter W denotes the primary drainage region; 
● the number 1 indicates that the quinary catchment lies within the secondary drainage 

region number 1; 
● the number 2 indicates that the quinary catchment lies within the 2nd tertiary drainage 

region of the secondary drainage region number 1; 
● the letter A indicates the quaternary catchment within the tertiary drainage region; and 
● the number 3 indicates the lower quinary catchment within the quaternary catchment 

A (each quaternary catchment is divided into an upper, middle and lower quinary 
catchment). 

 
 

 
Figure 4-3 Quinary catchments in the Mhlathuze catchment 
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4.3. Input data to ACRU 
 
4.3.1. Observed weather and streamflow data 

In terms of weather data the ACRU model minimally requires inputs of daily rainfall and 
monthly means of daily maximum and minimum temperature (Schulze, 1995).  Daily rainfall is 
the most important input into the daily time step ACRU model as hydrological responses are 
most sensitive to this input. For forecasting purposes, it is necessary to obtain up-to-date daily 
rainfall input for each quinary catchment. This requires the selection of currently active rain 
gauges within and around the catchment. These stations would not necessarily be the same 
as the stations included in the Quinary Catchments Database, since some of the latter have 
been discontinued or are no longer the most suitable stations to represent particular quinary 
catchments. Sources of rainfall data for active stations within and around the catchment area 
include SASRI and South African Weather Services (SAWS) rain gauges. The final set of 
active rainfall stations selected to represent rainfall in the various parts of the catchment all 
had a record of greater than 10 years in length. These stations included a total of 13 SASRI 
and SAWS stations (Figure 4-4) for the study period from the 1 January 1997 to 31 May 2010. 
The selection was based on the reliability of the historical record, together with the altitude 
and proximity of the station to the relevant quinary catchment and/or streamflow gauge. 
Rainfall data for the period pre-2000 was obtained from the Lynch (2004) database (where 
data were available for active stations), while data post-1999 was obtained directly from the 
organisation managing the station (SASRI or SAWS). This ensured the longest record 
possible for the selected stations since records obtained directly from the data providers did 
not necessarily extend to the beginning of the station’s record. 
 

 
Figure 4-4 Active SASRI and SAWS rain gauges selected to represent rainfall in the 
Mhlathuze catchment 
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The ACRU model allows for the option to invoke rainfall adjustment factors (CORPPTs) on a 
month-by-month basis for a more improved representation of the rainfall in each 
subcatchment. These CORPPTs were calculated by dividing each quinary’s median monthly 
rainfall by the median monthly rainfall of the rainfall station representing that quinary (Table 4-
1). The median monthly rainfall of each quinary catchment was obtained from the monthly 
raster surfaces produced by Lynch (2004). 
  
Since daily A-pan and maximum and minimum temperature records were not available for the 
catchment after the year 2000, the option to use mean monthly totals of daily A-pan equivalent 
evaporation (unscreened) was invoked in the ACRU model. These mean monthly data are 
available in the Quinary Catchments Database. 
  
Observed daily streamflow data were available for four weirs within the catchment (Table 4-
2). Historical records extend as far back as 1948 and run to the present. Weirs W1H005 and 
W1H028 were selected as locations for the verification of the ACRU model (Figure 4-5). This 
was based on the aim to accurately simulate locations of key land uses as well as reservoir 
storage levels and water availability after abstractions below Goedertrouw Dam. 
 
Table 4-1 Selected rainfall driver stations for each catchment and the associated month-
by-month adjustment (CORPPT) 
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Table 4-2 Observed weir information within the Mhlathuze catchment 
 

Weir Quinary River 
Area 
(km2) Latitude Longitude Start Date 

W1H005 W12C2 

Mfulazane 
River at 
Golden Reef 45 -28.57207 31.39257 1948-08-11 

W1H028 W12B3 

Mhlathuze 
River below 
Goedertrouw 
Dam 1273 -28.76635 31.46666 1979-10-30 

W1H009 W12D3 

Mhlathuze 
River at 
Riverview 2408 -28.74817 31.74563 1960-11-02 

W1H032 W12F3 

Mhlathuze 
River at 
Umhlathuze 
Valley 2678 -28.80128 31.95539 1993-02-02 

 

 
 
Figure 4-5 Locations of weirs within the Mhlathuze catchment selected for verification 
analysis (W1H005 and W1H028). Other weirs in the catchment are also indicated 
(W1H009 and W1H032). 
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4.3.2. Land Cover 

Land cover plays an important role in the processes of plant and soil water evaporation. In 
ACRU modelling, relevant above-ground processes include evaporation of intercepted water, 
soil water evaporation and transpiration, while below ground processes include root water 
uptake and associated plant stress thresholds. 
  
Information on present land cover in the Mhlathuze catchment was sourced from the National 
Land Cover (2001) database. When initially extracting land cover information from the National 
Land Cover (NLC) database there were 40 land cover categories found in the catchment 
(Table 4-3). For modelling purposes it was decided to lump similar categories together so that 
the number of land cover units represented in the modelling would be more manageable. The 
lumped land cover categories included natural vegetation, forestry plantations, dryland 
sugarcane, irrigated sugarcane, subsistence farming, urban (formal), urban (informal), 
waterbodies, mines and estuaries. A map showing the lumped land cover categories in the 
Mhlathuze catchment is given in Figure 4-6. 
  
Information was also extracted from the Acocks Veld Type (1988) map of South Africa and is 
mapped in Figure 4-7 for the Mhlathuze catchment. This information was used to develop a 
second configuration of ACRU in the Mhlathuze catchment. This configuration simulates what 
streamflow would be in the catchment under natural (undisturbed) conditions. 
 
Subsequent to producing the map of land cover in Figure 4-6, the areas of plantation forestry 
in the catchment were disaggregated into the different tree species present in the catchment 
(acacia, pine, eucalyptus) to reflect their varying water use patterns. The breakdown of the 
areas of different land covers in each quinary catchment (including the distinction between 
forest species) is shown in Table 4-4 where sugarcane includes only dryland while commercial 
irrigated group included the irrigated cane and other irrigated crops The different land covers 
in a quinary catchment were represented as Hydrological Response Units (HRUs) in the 
ACRU model configuration. The hydrological attributes of land cover that ACRU requires 
include monthly means of crop coefficients, canopy interception loss (mm) per rainday and 
fractions of active roots in the topsoil horizon. In addition, the effective total rooting depth and 
fraction of Plant Available Water (PAW) at which plant stress sets in, are also required. 
 
For the estimation of canopy interception loss in ACRU, the monthly interception loss 
parameter (VEGINT) for each land cover was used. These values were obtained from 
Smithers and Schulze (2004). The option to enhance evaporation for forest canopies was 
invoked for the commercial forestry within the catchment. This is due to the faster rates of 
evaporation of intercepted water on forested surfaces as compared to the available energy 
from reference potential evaporation. 
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Table 4-3 Initial land cover categories extracted from the National Land Cover (2001) 
database 
Land Cover Categories 

Bare Rock and Soil (erosion : dongas / gullies) 

Bare Rock and Soil (erosion : sheet) 

Bare Rock and Soil (natural) 

Cultivated, permanent, commercial, dryland 

Cultivated, permanent, commercial, irrigated 

Cultivated, permanent, commercial, sugarcane 

Cultivated, temporary, commercial, dryland 

Cultivated, temporary, commercial, irrigated 

Cultivated, temporary, subsistence, dryland 

Degraded Forest & Woodland 

Degraded Thicket, Bushland, etc. 

Degraded Unimproved (natural) Grassland 

Forest (indigenous) 

Forest Plantations (Acacia spp) 

Forest Plantations (clearfelled) 

Forest Plantations (Eucalyptus spp) 

Forest Plantations (Other / mixed spp) 

Forest Plantations (Pine spp) 

Improved Grassland 

Mines & Quarries (mine tailings, waste dumps) 

Mines & Quarries (surface-based mining) 

Thicket, Bushland, Bush Clumps, High Fynbos 

Unimproved (natural) Grassland 

Urban / Built-up (residential) 

Urban / Built-up (residential, formal suburbs) 

Urban / Built-up (residential, formal township) 

Urban / Built-up (residential, hostels) 

Urban / Built-up (residential, informal township) 

Urban / Built-up (residential, mixed) 

Urban / Built-up (rural cluster) 

Urban / Built-up (smallholdings, grassland) 

Urban / Built-up (smallholdings, thicket, bushland) 

Urban / Built-up (smallholdings, woodland) 

Urban / Built-up, (commercial, education, health, IT) 

Urban / Built-up, (commercial, mercantile) 

Urban / Built-up, (industrial / transport : heavy) 

Urban / Built-up, (industrial / transport : light) 

Waterbodies 

Wetlands 

Woodland (previously termed Forest and Woodland) 
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Figure 4-6 Lumped land cover categories in the Mhlathuze catchment (after National 
Land Cover, 2001) 
 

 
 
Figure 4-7 Acocks Veld Types in the Mhlathuze catchment (after Acocks, 1988) 
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Table 4-4 Areas (km2) of the land cover HRUs represented in the ACRU model for each 
quinary (sub) catchment in the Mhlathuze catchment based on information from the 
NLC (2001) map of South Africa. Key physiographic data (area, MAP, average altitude) 
and weir numbers (where appropriate) are also given for each quinary catchment. 
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Evaporation in ACRU is represented as a combination of both evaporation from the soil 
surface (Es) and evaporation from the plant surface (Et). When Es and Et are described 
together, the term total evaporation (E) is used, where E = Es + Et. Vegetation water use is 
estimated as the product of reference potential evaporation (calculated from meteorological 
variables) and a set of crop coefficients. The crop coefficient Kcm is expressed as a ratio of 
maximum evaporation from a plant at a given growth stage to the reference potential 
evaporation. The fraction of plant available water (PAW) at which total evaporation is assumed 
to drop below maximum evaporation was set to 40% of the PAW. Monthly values of Kcm are 
required as input to the model. These monthly values are then transformed by the model into 
daily values using Fourier analysis. 
  
The fraction of root mass distribution in the topsoil (ROOTA) is required as an input into the 
ACRU model on a monthly time scale, from which the fraction for the subsoil is calculated 
internally. In the model, soil water is extracted from both soil horizons simultaneously. Under 
stressed conditions, if the top soil is below the stress threshold, the subsoil’s contribution to 
total evaporation is enhanced to compensate, and is above that computed for its root mass 
fraction. The opposite is true in conditions where the subsoil is below the stress threshold. 
  
Estimates of surface litter / mulch cover are required on a month-to-month basis as a 
percentage when the option to calculate E t and E s as separate entities is invoked. This layer 
retards soil water evaporation losses. The index of infiltrability of rainfall into the soil is required 
in the model on a monthly time scale and is dependent on groundcover characteristics and 
rainfall intensity. Monthly values of the different vegetation inputs required by the ACRU model 
(discussed above) are given in Table 4-5 for the vegetated land covers in the Mhlathuze 
catchment. These inputs were derived from the ACRU User Manual, various publications and 
from expert opinion. The Acocks land cover information for the catchment (Figure 4-7) was 
used to provide a breakdown of the ACRU vegetation inputs for the natural vegetation class 
appearing in the NLC map of the catchment (Figure 4-6). 
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Table 4-5 Monthly values of the vegetation inputs required by ACRU for each of the 
vegetated land covers in the Mhlathuze catchment 
 

Land Use Variable Monthly Values 

  J F M A M J J A S O N D 
Natural Vegetation 
Highland and Dohne Sourveld CAY 0.7 0.7 0.7 0.5 0.3 0.2 0.2 0.2 0.5 0.7 0.7 0.7 

 VEGINT 1.6 1.6 1.4 1.2 1.2 1.0 1.0 1.0 1.3 1.6 1.6 1.6 

 ROOTA 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 

Ngongoni Veld-Zulu Land CAY 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.7 

 VEGINT 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

 ROOTA 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 

Lowveld CAY 0.8 0.8 0.8 0.7 0.6 0.4 0.4 0.4 0.6 0.8 0.8 0.8 

 VEGINT 2.5 2.5 2.5 2.1 1.9 1.9 1.9 1.9 2.1 2.5 2.5 2.5 

 ROOTA 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 

Zululand Thornveld CAY 0.8 0.8 0.8 0.7 0.7 0.5 0.5 0.6 0.8 0.8 0.8 0.8 

 VEGINT 2.4 2.4 2.4 2.1 1.8 1.8 1.8 1.8 2.2 2.4 2.4 2.4 

 ROOTA 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 

Lowveld Sour Bushveld CAY 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.6 0.6 0.8 0.8 0.8 

 VEGINT 2.5 2.5 2.5 2.4 2.2 2.0 2.0 2.2 2.4 2.5 2.5 2.5 

 ROOTA 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 

 COIAM 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 

Coastal Forest and Thornveld CAY 0.9 0.9 0.9 0.9 0.8 0.7 0.7 0.8 0.9 0.9 0.9 0.9 

 VEGINT 3.1 3.1 3.1 3.1 2.5 2.0 2.0 2.5 3.1 3.1 3.1 3.1 

 ROOTA 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

 COIAM 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Commercial Forestry 
Eucalyptus CAY 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

 VEGINT 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

 ROOTA 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 

Pine CAY 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.7 

 VEGINT 1.4 1.4 1.4 1.4 1.3 1.2 1.2 1.3 1.4 1.4 1.4 1.4 

 ROOTA 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 
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Table 4-5 Continued 
 

Land Use Variable Monthly Values 

  J F M A M J J A S O N D 
Agriculture 
Permanent Irrigated (Citrus) CAY 0.8 0.8 0.8 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.8 0.8 

Commercial Agriculture VEGINT 1.4 1.4 1.4 1.2 1.0 1.0 1.0 0.8 0.0 0.0 0.8 1.4 

 ROOTA 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7 

 COIAM 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Sugarcane CAY 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

Commercial Sugarcane 
(RBAY+North) 

VEGINT 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

 ROOTA 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

 COIAM 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Subsistence Agriculture CAY 0.9 0.8 0.5 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.6 

 VEGINT 1.1 1.1 1.0 1.0 0.6 0.5 0.5 0.5 0.5 0.0 0.5 1.0 

 ROOTA 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.3 0.3 

Dryland temporary CAY 1.1 1.0 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 

commercial agriculture VEGINT 0.8 1.3 1.3 1.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 

 ROOTA 0.8 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

 COIAM 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 
 
4.3.3. Soils and drainage 

The ACRU model is a daily multi-layer soil water budget model operating with two soil layers; 
topsoil and subsoil. Processes of evaporation and transpiration take place within these two 
active soil layers resulting in root development and soil water extraction. The soil and drainage 
properties required by the model include; the thickness of the soil layers, permanent wilting 
point, drained upper limit, fraction of soil water to be redistributed daily from the topsoil to the 
subsoil and then from the subsoil to the groundwater store. The soils and drainage parameters 
used in ACRU are given in Table 4-6 for each quinary catchment. 
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Table 4-6 ACRU soil and drainage parameters for each quinary catchment in the 
Mhlathuze catchment 
 

Quinary DEPAHO DEPBHO WP1 WP2 FC1 FC2 PO1 PO2 ABRESP BFRESP 
W12A1 0.3 0.52 0.167 0.195 0.264 0.298 0.415 0.42 0.32 0.32 
W12A2 0.3 0.53 0.154 0.184 0.249 0.284 0.423 0.42 0.37 0.37 
W12A3 0.3 0.52 0.162 0.182 0.254 0.276 0.421 0.416 0.37 0.37 
W12B1 0.3 0.49 0.161 0.181 0.256 0.279 0.419 0.417 0.37 0.37 
W12B2 0.3 0.38 0.155 0.156 0.246 0.251 0.431 0.418 0.35 0.35 
W12B3 0.29 0.26 0.147 0.139 0.236 0.231 0.443 0.421 0.32 0.32 
W12C1 0.3 0.53 0.148 0.174 0.244 0.272 0.423 0.414 0.38 0.38 
W12C2 0.3 0.33 0.139 0.134 0.231 0.228 0.44 0.42 0.34 0.34 
W12C3 0.3 0.4 0.134 0.13 0.225 0.224 0.447 0.426 0.37 0.37 
W12D1 0.3 0.38 0.154 0.16 0.252 0.263 0.423 0.416 0.34 0.34 
W12D2 0.29 0.24 0.144 0.137 0.235 0.231 0.441 0.419 0.31 0.31 
W12D3 0.3 0.41 0.189 0.217 0.267 0.291 0.428 0.433 0.32 0.32 
W12E1 0.3 0.29 0.16 0.153 0.251 0.246 0.427 0.419 0.31 0.31 
W12E2 0.3 0.35 0.164 0.159 0.255 0.251 0.426 0.424 0.33 0.33 
W12E3 0.3 0.41 0.181 0.196 0.263 0.275 0.425 0.426 0.32 0.32 
W12G1 0.3 0.27 0.157 0.153 0.245 0.244 0.432 0.416 0.29 0.29 
W12G2 0.3 0.33 0.19 0.196 0.27 0.276 0.424 0.425 0.33 0.33 
W12G3 0.3 0.28 0.21 0.233 0.282 0.3 0.423 0.432 0.29 0.29 
W12H1 0.3 0.25 0.207 0.19 0.29 0.272 0.407 0.423 0.33 0.33 
W12H2 0.3 0.41 0.192 0.189 0.275 0.272 0.418 0.427 0.36 0.36 
W12H3 0.3 0.72 0.129 0.138 0.217 0.234 0.458 0.45 0.51 0.51 
W12F1 0.3 0.46 0.185 0.198 0.266 0.276 0.423 0.424 0.35 0.35 
W12F2 0.3 0.55 0.152 0.154 0.241 0.245 0.441 0.434 0.42 0.42 
W12F3 0.25 0.69 0.106 0.134 0.194 0.225 0.462 0.446 0.5 0.5 
W12J1 0.3 0.88 0.081 0.093 0.177 0.201 0.479 0.466 0.59 0.59 
W12J2 0.3 0.88 0.079 0.091 0.175 0.198 0.476 0.467 0.57 0.57 
W12J3 0.26 0.75 0.076 0.089 0.157 0.178 0.41 0.401 0.49 0.49 
Where: 

DEPAHO = Thickness (m) of topsoil of the soil profile 
DEPBHO = Thickness (m) of subsoil of the soil profile 
WP1 = Soil water content (m.m-1) at permanent wilting point for the topsoil 
WP2 = Soil water content (m.m-1) at permanent wilting point for the subsoil 
FC1 = Soil water content (m.m-1) at drained upper limit (DUL) for the topsoil 
FC2 = Soil water content (m.m-1) at drained upper limit for the subsoil 
PO1 = Soil water content (m.m-1) at saturation (i.e. porosity) for the topsoil 
PO2 = Soil water content (m.m-1) at saturation (i.e. porosity) for the subsoil 
ABRESP = fraction of soil water above DUL to be redistributed daily from the topsoil to 

the subsoil  
BFRESP = fraction of soil water above DUL to be redistributed daily from the subsoil to 

the groundwater store. 
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4.3.4. Dams and irrigation scheduling  

Farm dams and other reservoirs within the Mhlathuze catchment were identified through 
reference to literature, the WARMS (2013) database and Google Earth. Surface areas were 
obtained from both Google Earth and from a 1:50 000 topographic map sheet dating from 
1996-2002, and then compared in terms of changes over time (historical and current). Storage 
capacities of each farm dam in the catchment were calculated using an algorithm developed 
by Tarborton and Schulze (1992) which is based on the surface area of a dam. Surface areas 
and capacities of these farm dams were aggregated for each Quinary catchment. Monthly 
adjustment coefficients to A-pan equivalent evaporation to obtain reservoir equivalents were 
obtained from Schulze (1995) for the appropriate climate zone in South Africa. Domestic 
abstractions were not accounted for at this stage and dead storage percentages of dams were 
set at 10% of the full storage capacities. 
 
The NLC (2001) land use layer in conjunction with Google Earth, as well as literature values 
from previous studies and correspondence with a local extension officer within the catchment 
were used to identify areas under irrigation. Extensive irrigation areas exist within the 
catchment, especially just below the Goedertrouw Dam. These irrigation activities are 
managed by various Water User Associations who have fixed water allocations. The 
Mhlathuze catchment is constituted of five irrigation entities that utilise and facilitate the 
distribution and use of water below Goedertrouw Dam. These five irrigation entities are mainly 
utilised for irrigation of sugarcane and, to a lesser extent, citrus. The irrigator schemes are 
listed in order of distance from the dam. 
  

●    Nkwaleni Scheme 
●    Umfuli 
●    Heatonville 
●    Inkasa Irrigation Scheme 
●    Lower Mhlathuze Scheme 
  

The Inkasa Irrigation Scheme (IIS) is constituted predominantly of small scale irrigators for 
sugarcane productivity. Within IIS the most developed areas with noticeable sugarcane 
productivity are at Biyela, Kwadlama and Mzimela. The irrigation scheduling assumptions 
applied by SASRI in their sugarcane crop forecasting system (industry-wide) were reviewed 
to guide the selection of a strategy for this project. SASRI assumes a maximum net application 
of 35 mm over a minimum 7-day cycle. Maximum weekly applications are set to 42 mm. 
Irrigation is only applied when the soil water deficit reaches the prescribed level (50% of Total 
Available Moisture) and the current irrigation cycle has been completed. The irrigation amount 
equals the least of the maximum application, the current soil water deficit, or the weekly water 
supply if it exceeds 17 mm. To simplify this in the ACRU model, the irrigation schedule was 
set to 35 mm in a fixed 7-day cycle, with the cycle only interrupted after 10 mm of rainfall on a 
given day. Conveyance and farm dam losses were set to 19 and 10%, respectively, with spray 
evaporation and wind losses set to 15%. 
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4.3.5. Water user allocations and the supply and distribution system 

The main water supply system in the Mhlathuze catchment consists of the Goedertrouw Dam, 
with a capacity of approximately 300 million m3 at a full supply level. The dam can be 
supplemented by water from the Mhlathuze weir and from the Thukela-Mhlathuze Emergency 
Transfer Scheme, which can pump water from the Thukela River to the Goedertrouw Dam at 
a rate of approximately 37 million m3/annum. The Goedertrouw Dam was constructed in 1980 
to provide water for irrigation downstream. Upstream of the Goedertrouw Dam is the Mvuzane 
River inflow where the Thukela Transfer Scheme discharges into the Mvuzane River. The 
Thukela Emergency Transfer System is used to augment the dam level when it drops as a 
result of high water demand. Since the commissioning of the emergency scheme, it has not 
been in service because the dam level has consistently been high enough. During the drought 
of 1994 an emergency augmentation scheme was put in place (commissioned in 1997) that 
has the capacity to deliver 38 million m3/annum (equivalent to 1.2 m3/s) to the Mvuzane 
stream. Only second time use of the scheme was necessary was during the second half of 
the 2014 calendar year, as a result of very low summer rainfall received and low raw water 
resources, at which time it was necessary to officially declare that the province of KwaZulu-
Natal was in a drought situation. This drought had an adverse effect on the Mhlathuze water 
systems, with the Goedertrouw Dam dropping to below 65% for the first time since it was 
commissioned in 1980 
 
The natural lakes within the catchment also contribute to the yield of the system. The latest 
yield estimate of this system, including the lakes, is 270 million m3/annum at a 1:100 year 
assurance of supply after allowing for the ecological water requirements below the 
Goedertrouw Dam and including a transfer of 34 million m3/annum from the Thukela River. 
Three coastal lakes are sources for abstraction in this strategic area: Lake Mzingazi, which 
supplies Bayside Aluminium and the Mzingazi Wastewater Treatment Works (WTWs), Lake 
Nsezi, which supplies the Nsezi WTWs and supplements Richard Bay Mineral’s supply from 
other sources, and Lake Cubhu, which supplies the eSikhaleni WTWs. Values of allocated 
water amounts for various land uses together with the sources of water based on a study 
conducted in 2013 (DWS, 2015) are shown in  Table 4-7 and were used to approximate 
abstractions from the Goedertrouw Dam for the verification study. 
 
4.4. Verification  
 
The performance of the ACRU model was assessed for the upper reaches of the Mhlathuze 
catchment by comparing modelled and observed streamflow volumes for weir W1H005 for an 
historical time period. Objectives were set beforehand for an acceptable simulation in terms 
of fit and were based on recommended objectives by Smithers and Schulze (2004). These 
included a coefficient of determination (R2) value of 0.7 and above for daily values, and 0.9 
and above for monthly values. These values were based on suggested R2 values for a high 
rainfall, highly seasonal, summer rainfall hydrological regime. Other objectives included a less 
than a 15% difference between the sum of simulated (ΣQs) and observed flows (ΣQ o), as 
well as a less than 15% difference between standard deviations. There are observable 
discrepancies in some portions of the hydrograph, particularly the year 2004 where the model 
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predominantly over-simulates streamflow amounts. Overall, the model under-simulates 
streamflow for the beginning of the time series and then over-simulates post 2004 (Figure 4-
8). The statistical measures are shown in Table 4-8. Considering that two out of three of the 
objectives set for the verification of the model were met, the simulation for the Mhlathuze 
catchment was considered reasonable. The above results therefore suggest  
 
Table 4-7 Allocated water abstraction values for various land uses and sources of water 
within the Mhlathuze catchment 
 

Abstractions from Goedertrouw Dam 

Water User Source 

Water Allocated 
(million 
m3/annum) 

Domestic 

Urban and Light Industry 

Eshowe 
Mhlathuze Water Supply 
System 14.1 

Richards Bay 
Lake Mzingazi and Mhlathuze 
Water Supply System 0.5 

Esikhaweni 
Lake Chubu and Mhlathuze 
Water Supply System 5.9 

Nseleni 
Mhlathuze Water Supply 
System 2 

Vulindlela 
Lake Mzingazi and Mhlathuze 
Water Supply System 1.5 

Empangeni  
Ngwelezane 

Lake Nsezi and Mhlathuze 
Water Supply System 8.4 

Rural Water Use 

Below Dam 
Mhlathuze Water Supply 
System 2884 m3/day 

Stock Watering 
Mhlathuze Water Supply 
System 1.18 

       

Industry 

Richards Bay Minerals 

Lake Nhlabane and Mfolozi 
River and Mhlathuze Water 
Supply System 40 

Mondi Richards Bay 
Mhlathuze Water Supply 
System 28.5 

Mondi Felixton 
Mhlathuze Water Supply 
System 2.9 

Tongaat Hulett 
Mhlathuze Water Supply 
System 1.8 

       

Reserve 

Maintenance Flows-
Goedertrouw Dam 

Mhlathuze Water Supply 
System 54 

Drought Flows 
Mhlathuze Water Supply 
System 14 

Estuarine 
Mhlathuze Water Supply 
System 12 

       

Irrigation Water Boards 
Mhlathuze Water Supply 
System 88.5 
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that the ACRU model can be used to simulate streamflow for the upper reaches of the 
Mhlathuze catchment with a reasonable degree of confidence. This part of the catchment is 
similar in characteristics to the section that feeds into the Goedertrouw Dam. 
 

 
 
Figure 4-8 Total and accumulated monthly observed and simulated streamflow volumes 
for weir WIH005 for the period January 1997 to May 2010 
 
Table 4-8 Statistics of performance upstream of Goedertrouw Dam 

 
Mhlathuze (1997-2010) 

Total Observed Flows (mm) 687.72 
Total Simulated Flows (mm) 799.22 
%Difference between Totals 14.95 
Average Error in Flow (mm/day) -0.02 
Mean Observed flows (mm/day) 0.16 
Mean Simulated Flows (mm/day) 0.18 
%Difference  Mean 11.76 
Standard Deviation of Observed Flows (mm/day) 0.362 
Standard Deviation of Simulated Flows (mm/day) 0.356 
% Difference between Standard Deviation  1.67 
Correlation Coefficient: Pearsons r 0.68 
Regression Coefficient (Slope) 0.8918 
Regression Intercept 0.0188 
Coefficient of agreement  0.767 
Coefficient of determination (R2) 0.59 
Nash Sutcliffe Efficiency Index 0.48 

 
 



 
 

62 
 

Figure 4-9 Coefficient of variations and percentage errors between observed and 
simulated streamflow volumes for weir W1H005 from January 2000 to January 2010 
 
Monthly coefficients of variations for the simulated time series and percentage differences 
between observed and simulated streamflow volumes for weir W1H005 are shown in Figure 
4-9. According to the calculated statistics, the total monthly streamflow’s for the study period 
varied most from the average for the low flow month of October (CV 1.04). The model under-
simulates the overall streamflow volumes for the month by 31% followed by 23% in August. 
The model shows more accurate estimations for low flow winter months of June and July with 
the lowest over- and under-simulations of 1% respectively. Overall, the largest errors fall within 
the months of August, September and October, where the highest under-simulations by the 
model occur. 
 
4.4.1. Verification of Goedertrouw Dam Levels 

The performance of the ACRU model in simulating observed water levels at various stage 
heights of the Goedertrouw Dam was assessed in terms of its ability to simulate observed 
monthly volumes (Mega Litres (ML)) during drawdown and recovery phases in the study 
period. It was noted at the outset that the observed volume levels were not consistent over 
the study period, with seasonal (Table 4-9) and inter-annual (Figure 4-10) variations evident 
in the data. 
 
From Figure 4-10, it can be observed that the model is able to replicate periods of recovery 
and drawdown in water levels which correlate with periods of abstractions for land use 
activities downstream (releases), spillages or periods of drought. In terms of actual volumes, 
the model shows an overall under-estimation for the study period, particularly during the year 
2005. The statistical evaluation criteria used for evaluating the study period overall is shown 
in Table 4-10. Under-estimations in mean volume and variability are indicated by the RMSE 
of 20167.54 ML, the 7.14% difference in mean observed and simulated water levels and the 
1.67% difference in standard deviations. The measure of prediction accuracy represented by 
the Mean Absolute Percentage Error (MAPE) was 5.54%, while the relative quality of the  
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Table 4-9 Observed meteorological and reservoir characteristics for the Goedertrouw 
Dam 

Month 
Rain 
(ML) 

Goedertrouw Dam 
Levels (ML) 

Irrigation 
Abstractions 

Below Dam 
(ML) 

Evaporation 
(ML) 

January 1031.3 205353.8 221.0 10080.7 787.4 
February 930.8 214884.9 232.0 10105.9 896.0 
March 490.7 222469.1 275.7 6883.4 1038.6 
April 401.1 227884.1 245.9 7312.3 1153.1 
May 62.1 235578.4 246.9 7670.9 1282.8 
June 220.7 246487.1 211.6 5956.4 1583.7 
July 366.6 249678.5 236.9 9295.5 1544.5 
August 228.8 244777.0 249.9 6392.5 1419.9 
September 452.4 234749.7 240.7 6403.2 1417.7 
October 691.0 226555.4 230.3 4918.1 1059.6 
November 1251.5 219915.4 218.2 14270.8 933.0 
December 851.0 210810.8 256.3 15388.7 740.4 

 

 
 
Figure 4-10 Correlation between observed and estimated Goedertrouw dam levels for 
the period (2000-2010) and 95% confidence intervals 
 
model according to the AIC was 2103.29. The Coefficient of variation (R2) and Pearson 
correlation coefficient (PCE) values were 0.62, and 0.79, respectively. According to Figure 4-
10, all data points for the study period fell within the 95% confidence interval, with estimations 
being closer to observed values for volumes greater than 200 000 ML. 
 
The performance of the model on a monthly basis was also analysed via box plots (Figure 4-
11). Examination of Figure 4-11 shows that there is higher variability in the observed water 
levels in the summer months (November to March) as compared to winter months (April to 
October). Simulations follow the pattern of observed variability relatively closely, however, 
under-estimations of water volume variability are greater for summer months than for winter 
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months. Based on the medians, the month of June shows the lowest variability in simulations. 
The graph of cumulative frequency shows higher observed frequencies for lower dam levels 
of 5000 to 25 000 ML for the study period when compared to simulated water levels, whilst 
simulations show higher frequencies of full storage capacities when compared to the 
observations (Figure 4-12). 
 
Table 4-10 Statistics of performance for the Goedertrouw Dam levels (2000-2010) 
 
Goodness of fit statistics  
R² 0.62 
Adjusted R² 0.62 
RMSE 20167.54 
MAPE 5.549 
AIC 2103.29 
Pearson Correlation Coefficient 0.79 
Mean Observed 257040 
Mean Estimated 276074 
% Difference between Means 7.14 
Standard Deviation Observed 31796.08 
Standard Deviation Estimated 32332.37 
% Difference between Standard Deviations                           1.67 

 
 

Figure 4-11 Box plots of monthly dam levels for the period 2000 to 2010, observed 
(orange) and simulated (blue) 
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Figure 4-12 Cumulative frequency of simulated and observed Goedertrouw dam levels 
 
4.4.2. Conclusion 

This chapter aimed to verify historical simulations produced by the ACRU agrohydrological 
model. This was in anticipation of the model being used in a forecasting framework for the 
development of agrohydrological forecasts at short to medium range time scales, to support 
irrigated sugarcane production in the Mhlathuze catchment. Based on the above simulations, 
it is believed that the application of the ACRU model for forecasting inflows into the 
Goedertrouw Dam, as well as the levels in the dam, to support irrigation water availability 
estimates for sugarcane, is deemed viable. Land uses in the upper reaches of the Mhlathuze 
catchment vary considerably from those below the Goedertrouw dam and near the coast in 
Richards Bay. Contributions of streamflow to weir W1H005 through the Mfalazane River were 
from the dominant land uses of commercial forestry, subsistence agriculture and natural 
vegetation, as compared to the highly cultivated lands below the dam for citrus and sugarcane 
farming. 
  
The ACRU model performed reasonably well in the upper reaches of the catchment with a 
minimal daily under-simulation error in streamflow of 0.01046 mm per day. On monthly time 
scales, upstream of the dam, a higher confidence is associated with the model’s performance 
for the months of May, June and July, which showed the lowest coefficients of variations and 
percentage differences between simulations and observations. In July, simulations resulted in 
a 1% under-estimation of streamflow upstream of the dam. 
  
Simulations of dam level volumes, including periods of drawdown and recovery, were found 
to be viable, with a quantified average monthly error of 20167.5 ML. The ACRU model under-
estimated dam storage volumes. In the previous water balance study conducted for the 
Richards Bay area within the catchment, it was stated that allocated water requirements for 
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each water user in the catchment were set much higher than actual water usages (DWA, 
2015). This was to accommodate future climate and economic growth scenarios developed 
for the area. The absolute differences between simulated volumes and observations are 
lowest in the month of June and highest in the summer months of November to March. 
 
In general the ACRU model simulated higher frequencies of volumes lower than the Dam’s 
full storage capacities, but is able to explain 62% of the variation in dam level storage volumes 
for the study period. At a 95% confidence interval the ACRU model showed to be useful for 
estimating monthly dam levels. The ability to estimate inflows into the dam as well as dam 
levels after the consideration of allocated water abstractions for various water users below the 
dam allows for a level of confidence to be associated with the available water for irrigation 
scheduling. 
 
There are various limitations in the study. For example, the study period was relatively short 
owing to the inaccuracies associated with the historical streamflow data especially post-2007. 
These inaccuracies may be related to changes in weir maintenance, in rating table calculations 
for weir measurements or to changes in land uses with time upstream of the dam.  Records 
therefore may have not included potential low and high streamflows. Additionally, inherent 
errors in the climate record were observed.  General limitations associated with the use of 
hydrological models, such as in insufficient representation of key hydrological and operational 
processes within the catchment, are also another potential source of error. As with previous 
verifications of the ACRU model for various hydrological applications under a range of climatic 
conditions, it is important to highlight the necessity for site-specific verifications of the model 
for reservoir level estimations. Information on quantified errors and improved understandings 
of uncertainties associated with the modelling component within an agrohydrological 
forecasting framework for dam level volumes, is crucial for water managers who must make 
decisions about drought declaration and water use restrictions. 
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5.1. Background 
 
Generating agrohydrological forecasts requires performing a number of data intensive tasks. 
To streamline this process, a tool was developed to automate many of the steps involved. A 
literature review of hydrological and agricultural forecasting systems was performed to inform 
the development of the forecasting tool. This review had an emphasis on southern Africa and 
is presented in the beginning of this chapter. Following this, a brief overview of the forecasting 
tool for the Mhlathuze case study is presented. A generic framework for hydrological 
forecasting developed in the Netherlands (Delft-FEWS) was identified as the vehicle for 
developing the tool. A review of Delft-FEWS is presented in this chapter, and includes an 
overview and main outcomes of a Forecast Early Warning System Master course attended at 
the eThekwini Municipality. The configuration of the system for the Mhlathuze catchment is 
then presented at the end of the chapter. 
 
5.2. Review of hydrological and agricultural forecasting systems 
 
5.2.1. Introduction 

Southern Africa is inherently characterised by a highly variable climate both spatially and 
temporally, and is considered a highly vulnerable region in Africa (Reason et al., 2005; 
Washington and Preston, 2006; Ghile and Schulze, 2008). Apart from the highly variable 
climate, reasons for the high vulnerability across the region include the extremely agrarian 
economies (rainfed and irrigated) (IPCC, 2007; Manyeruke et al., 2013; Alemaw and 
Simalenga, 2015), severe water challenges (quantity, quality and distribution), high exposure 
(Shongwe at al., 2006; Malherbe et al., 2014) and low adaptive capacity, particularly among 
rural communities (Manyeruke et al., 2013; Turpie and Visser, 2013). 
  
Changes in the intensity, frequency and duration of weather extremes result in recurrent 
droughts, floods, tropical cyclones and other phenomena over the region (IPCC, 2012; 
Thornton et al., 2014; Malherbe et al., 2014; Engelbrecht and Engelbrecht, 2016). Projected 
increases in the frequencies and magnitudes of such events through to 2050, coupled with 
rising populations in the region, suggests that the vulnerability of weather sensitive sectors, 
particularly water resources and agricultural production (Waongo et al., 2015; Ghile and 
Schulze, 2008), are expected to rise in the future (Zhang et al., 2013; Kusangaya et al., 2013; 
Thiemig et al., 2014). 
 
Water resource managers and agriculturalists therefore need to be advised of likely climatic 
and hydrological conditions well in advance (Ghile and Schulze, 2008). With prior knowledge 
of likely  precipitation patterns, rainfall totals, onsets and cessation dates, mean, minimum and 
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maximum temperatures, distributions of wet/dry/cold/ warm spells and extreme events, as well 
as subsequent estimations of future hydrological states and fluxes for the region, the risk of 
economic losses can be reduced, profits increased, and improved short to medium and long-
term planning and decision making on security-related issues can be achieved (Klutse et 
al.,2015; Reason et al.,2005; Shukla and Lettenmaier, 2011; Mudombi and Nhamo, 2014). 
  
The climate science arena has shown remarkable advancements in weather and climate 
forecasting for the region which can be largely attributed to model sophistication and research 
orientated at improving the understanding of dynamic ocean atmosphere processes 
(Landman and Goddard, 2002; Engelbrecht and Engelbrecht, 2016; Malherbe et al., 2014; 
Beraki et al., 2015; Lazenby et al., 2014). A number of institutions and platforms in the region 
produce and provide forecasts for various forecast horizons. These include national 
meteorological services, university research groups as well as various global ensemble 
forecasting centres (Johnston et al., 2004).  
 
Both statistical and dynamic methods of hydrological and agricultural forecasting are 
undertaken in the region. Statistical forecasts work by extrapolating direct relationships 
between climate indices and hydro-climatic variables while dynamic methods involve the use 
of weather and climate measurements from stations, radar and satellites, combined with high 
resolution NWP model forecasts to drive hydrological and crop models of varying complexities 
and spatial dimensions (lumped, semi-distributed or distributed) to produce estimates of future 
agricultural and hydrological variable states. Studies dealing with floods and droughts are at 
the forefront of hydrological forecasting for the region and are focused on medium to large-
size transnational river basins such as the Okavango (Bauer-Gottwein et al., 2015; Milzow et 
al., 2009 Zhang et al., 2013), the Limpopo (Botswana, Mozambique, South Africa and 
Zimbabwe) (Trambauer et al., 2015) and the Orange and Zambezi (Meiere et al., 2011). 
However there is also a need to estimate the consequences of weather and climate variability 
with respect to agrohydrological variables such as streamflow amounts, reservoir levels, soil 
moisture contents and water availability for irrigation scheduling purposes. Such operational 
forecasts are either limited for the region or have been discontinued for reasons such as a 
lack of funding or local and institutional support, amongst others. 
 
Many agrohydrological forecasting systems are developed through international initiatives 
which aim for simplicity and robustness making optimal use of freely available global datasets 
for poorly gauged river basins. Additionally, most of the forecasting endeavours target either 
short (<3 days) or long-range (>2 weeks) forecasts, with increasing efforts focused on 
seamless data assimilation techniques using freely available global remote sensing derived 
products and ensemble predictions for improved hydrological and agricultural forecasts at all 
lead times. Moreover, only a handful of agricultural or hydrological forecasts are typically made 
available for the target end users, with most studies simplifying field conditions by not 
considering actual water users and abstractions in the catchments. Other focused areas of 
research include the interface between the production of weather and climate forecasts and 
the access, communication, translation and interpretations of the forecasts for key 
stakeholders (for example, water managers, smallholder and commercial farmers) (Archer, 
2003; Usman et al., 2005; Archer et al., 2007; Unganai et al., 2013). These studies have 
highlighted the need for an integrated approach between climate scientists, system scientists 
and the end users who provide vital feedback to improve the entire end-to-end forecast 
production. 
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5.2.2. General structure of forecasting systems 

Whether statistical (e.g. black-box model) or dynamic methods of varying complexities 
(conceptual or process-based models) and spatial dimensions (lumped, semi-distributed or 
distributed) are used for agrohydrological forecasting, all methods involve inputs (e.g. 
precipitation, surface air temperature, potential evapotranspiration) and outputs (e.g. 
streamflow, actual evapotranspiration, crop yields) (Tang et al., 2016; Devia et al., 2015). For 
statistical methods, climate indices are frequently used to directly forecast agrohydrological 
variables (Muchuru et al., 2015; Malherbe et al., 2014). For dynamical approaches, either an 
iterative or static approach is used, where the former allows for feedback between climate and 
application models but requires equal spatial resolutions between them, and the latter 
operates in a successive manner where climate forecasts are first produced, processed and 
translated for use in application models of differing spatial and temporal resolutions (Block et 
al., 2009). 
 
Within the southern African region dynamic methods of agrohydrological forecasting are being 
increasingly used and involve an initial reference or historical simulation, followed by a 
nowcast/real time phase and finally a forecast phase, with uncertainties being associated with 
each phase of the system (Thiboult et al., 2016) (Figure 5-1).These uncertainties relate to 
meteorological forcings used as input,  assumed initial hydrological conditions (e.g. soil 
moisture content, reservoir levels), other model inputs, process representation in models and 
observational data used in calibration and validation (Block et al., 2009; Thiboult et al., 2016). 
Both the quantification and reduction of these uncertainties are necessary for the generation 
of accurate and actionable forecast information for effective risk-based decision making 
(Ramos et al., 2013; Sene and Darch, 2011; Thiboult et al., 2016). 
 

 
 
Figure 5-1 Structure of a typical agrohydrological forecasting system 
 
Data assimilation (DA) methods are typically applied in forecasting systems to help reduce 
uncertainties and have proven to be promising for the ultimate improvement of forecast 
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accuracy and the quantification of uncertainty. Within a forecasting system, DA methods are 
applied for; model state updating, calibration purposes for model parameter estimation or 
optimization, and error updating to revise the forecast outputs (Liu et al., 2012). Typical DA 
methods include, for example, variational algorithms and extended or ensemble Kalman 
filtering. Additionally, these uncertainties may vary with catchment characteristics and the lead 
time of the forecast, however, it is commonly accepted that the greatest uncertainty stems 
from the forcing input data (Emerton et al., 2016; Liu et al., 2012; Fekete et al., 2007). 
  
According to Dutra (2012) there are two challenging criteria necessary for a forecasting 
system. These include statically homogenous long term observational data sets of more than 
30 years, and near real time updates of these data sets. For the region, these criteria are 
particularly challenging to achieve considering the numerous studies that highlight the uneven, 
sparse and declining observational station networks resulting in a dearth of climatological 
(rainfall and temperature) and observed discharge data (Alfeiri et al., 2012; Bauer-Gottwein et 
al., 2015; Ghile et al., 2010). There is a marked cluster of climate observation networks over 
South Africa (Malherbe et al., 2015; Coning, 2013). However, these direct methods of 
measurements suffer from inconsistencies at both spatial and temporal scales throughout the 
region (Tang et al., 2016; Di Baldassarre and Montanari, 2009). Weather related input data 
have been identified above as a critical component of forecasting systems and are reviewed 
in more detail in the following subsections.  
 
5.2.3. Historical and near real-time observational data 

In view of the sparse available gauging network, efforts are directed to combining data 
available from ground observations, remote sensing measurements and NWP model outputs 
within forecasting systems (Milzow et al., 2011).  
  
Remote sensing derived rainfall estimates from radar and satellite are being increasingly used 
over the region. Satellite estimates are more commonly used considering the lack or poor 
maintenance of available advanced high resolution radar systems over the region due to lack 
of local capacity, support and funding. The SAWS has the most advanced radar systems in 
the continent with a total of 14 operational systems across the country. The majority of the 
forecasting initiatives within the region are developed to make optimal use of global satellite 
and merged satellite/gauge public domain datasets. The advantage of such estimates is the 
capability of providing full spatial coverage over the region which can be used for validation, 
calibration and data assimilation within forecasting systems (Theimig et al., 2011). In addition 
to rainfall, these satellite derived data sources include evaporation, terrestrial water storage 
changes and soil moisture. These products are also now commonly investigated, especially 
for data assimilation and calibration purposes. While historical and near real time observations 
are used for calibration, validation or verification purposes, the forecasting component of the 
system requires reliable and skilful forecasts of the same forcing data at various  
 
5.2.4. Weather and climate forecast products 

Nowcasts are location specific and provide forecasts of the initiation, growth and dissipation 
of weather phenomena, such as heavy rainfall, hail, frost and lightning, and rely heavily upon 
satellite and/or radar systems (De Coning, 2015). Such warnings are the mandate of all 
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operational weather services. For the region, initiatives such as the Severe Weather 
Forecasting Demonstration Projects (SWFDP) by the WMO, delivers improved forecasts and 
warnings of severe weather and also engages with programmes that concern the real-time 
prediction of hydro-meteorological hazards such as the Hydrology and Water Resources 
Programme (HWRP) for developing synergies and linkages with Flash Flood Guidance 
System (FFGS). For the South African domain, real time satellite-based rainfall estimation 
tools operational at SAWS developed through the Nowcasting Satellite Application Facility 
(SAF) software include the Convective Rainfall Rate (CRR) which uses three Meteostat 
second generation (MSG) channels, together with input from NWP models to create a near-
real-time rainfall product, the Hydro Estimator (HE) which provides satellite precipitation 
estimations forecasts every 15 minutes using the MSG IR108 and the Unified Model (UM) as 
inputs (De Coning et al., 2015) with accumulation products of 1h, 3h, 6h, 24h, 10 days and 1 
month, operationally on a rolling time average basis. 
  
Weather forecasts for the Region are issued by the SAWS and the CSIR. CSIR use a variable 
resolution Conformal-Cubic Atmospheric Model (CCAM) for ensemble member forecasting 
(16 members), the highest spatial resolution being at 8 km (Landman et al., 2001, 
Bezuidenhout and Schulze, 2006; Ghile and Schulze, 2008). These include 7 day forecasts 
of rainfall, winds, thickness fields, instability indices, maximum and minimum temperature, and 
are issued daily through the Atmospheric Modelling Strategic Initiative (AMSI) of the CSIR's 
Natural Resources and the Environment (NRE) for South Africa. Short-range (4 day) forecasts 
of the same variables are also produced for the region. Weekly reports on drought, 
incorporating rainfall and temperature (minimum, maximum, heat waves and drought index), 
are also provided through SAWS. 
  
Long range (monthly and seasonal) forecasts for the region are produced by CSAG, SAWS 
and CSIR, and are incorporated into a multi-model forecast product. CSAG produces 
provincial ensemble mean seasonal forecasts using a non-standard version of HadAM3, the 
atmosphere component of the Hadley Centre Coupled Model (HadCM) developed at the 
Hadley Centre for Climate Prediction and Research in the United Kingdom. Other commonly 
used and freely available weather and climate forecasts for the region include those of 
ECMWF (SYS4), ECMWF-ENS, IRI, the Potsdam Institute for Climate Impact Research and 
the Australian Bureau of Meteorology. The SAWS ECHAM4.5-Modular Oceanic Model version 
3 (MOM3-SA) is the first OAGCM to be developed in Africa for seasonal climate prediction. 
 
5.2.5. Uncertainties in observational and forecast data sets  

It is crucial to evaluate the precision of observational and forecast data, products as well as 
the associated uncertainty before opting for specific applications (Ghile et al., 2010). Several 
studies have been conducted over the region with the aim of evaluating satellite derived 
products against local observations or proxies, as well as studies of inter comparison between 
the datasets (Cohen et al., 2012). Most studies conclude that these products are able to 
display useful information on rainfall patterns, especially at higher temporal scales, however, 
substantial errors in rainfall amounts which ultimately propagate through to derived forecasts 
are often observed.  For example, Ghile et al. (2010) aimed at evaluating the performance of 
the discontinued SIMAR products developed by SAWS on a 1-7 km spatial coverage and daily 
temporal scale which included rain gauges, radar, satellite and merged rain fields from a 
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hydrological perspective. This was conducted for a Water Research Commission project 
which aimed to use rainfall forecasts for agricultural decision making in selected catchments 
in South Africa. An analysis was conducted of the skill of these datasets for two high rainfall 
events and over a continuous period of 90 days in the Mngeni catchment (South Africa) in 
terms of the positional accuracy of the rainfall distribution estimates, as well as the direct 
evaluation of the discrepancy between daily estimates and reference data. Results showed, 
in general, that the relationship between all data sources and the reference data was low, with 
R2 values between 0.0-0.58 for rainfall totals, and 0.0-0.96 for streamflow simulations using 
the ACRU agrohydrological model. Raw satellite data showed over-estimates of 3.57 mm, 
which resulted in streamflow over-estimations of 5.01-5.18 mm. The overall finding was that 
the raw radar and satellite products cannot be used directly for operational hydrological 
forecasting applications. 
 
Most studies have justified further investigations into the use of these products for forecasting 
applications and have concluded that the satellite data cannot be used without modification 
and further processing beforehand ( Ghile and Schulze, 2010). In addition, an evaluation of 
such products is required from a hydrological perspective, as well as the ability to produce 
estimates relevant to crop forecasting, for example dry spells and extreme events such as 
frost, hail, etc. 
  
While historical and near real time observations are used for calibration, validation or 
verification purposes, the forecasting component of the system requires reliable and skilful 
forecasts of the same forcing data at various time horizons. Just like the satellite derived 
products over the region, weather and climate forecasts for the region have been shown to 
present their own challenges and uncertainties for use in application models for operational 
purposes. 
  
Forecasts are commonly validated against observed records in terms of sharpness, reliability 
and skill. However, studies have shown issues of temporal variability with deterministic NWP 
forecasts, and therefore need to be evaluated from a hydrological perspective. Ghile and 
Schulze (2008) evaluated the ability of three experimental NWP models (CCAM, UM and 
NCEP MRF) from a hydrological perspective to capture four selected rainfall events, as well 
as a continuous 92 day period record. Occurrences of rainfall were represented correctly over 
most of the study period, especially by the CCAM and the UM models, but with a tendency to 
respectively under- and over- estimate observations. Suggestions for improvement were 
made for the models, especially in terms of making the model spatial scales more compatible 
with the requirements of hydrological models for applications in small and medium sized 
catchments. 
  
Studies focused on developing operational forecasting systems have also focused on 
developing systems that have the ability to translate tercile-based seasonal forecasts into a 
form that can be used in application models. Common methods include those based on the 
analogue concept. For example, a GIS-based tool was developed to serve as an aid to 
process all the computations required to translate the seasonal climate forecasts into daily 
quantitative values suitable for application with hydrological or crop models (Ghile and 
Schulze, 2008). An important component of the tool was the translation of the categorical 
monthly and seasonal rainfall forecasts into daily quantitative values which was conducted 
using two methods viz, the Historical Sequence Method and the Ensemble Re-Ordering 
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Method. The first approach was designed to sample daily rainfall values from the same dates 
in selected analogue years, while the second approach randomly generates ensembles of 10 
members from selected analogue years for each forecast day, and uses the Ensemble Re-
Ordering Method as a post-processing step to reconstruct the temporal persistence of the 
synthetically generated daily rainfall data. These methods, however, assume that hydrological 
processes are stationary over time, and that they are realizations of an ergodic stochastic 
process. Despite the level of uncertainty associated with the hydrological and agricultural 
forecasting systems, various decision makers and end users require climate information for 
ground applications and decision making. 
 
5.2.6. Uncertainties in the application models 

The limitations of statistical methods of agrohydrological forecasting, have been long linked to 
the inability to realistically represent the complexity of a catchment particularly the lagged 
responses and dynamic hydrological processes. Robertson et al. (2013) explains this 
limitation when considering the issue of initial conditions in streamflow forecasting through the 
use of antecedent streamflow and rainfall. He mentions that antecedent streamflows do not 
immediately respond to antecedent rainfall but soil moisture and groundwater stores are first 
replenished which may lead to low forecasts due to the underestimation of initial soil moisture 
conditions. Simulation models such as Rainfall-runoff and crop models are considered 
particularly more effective tools in attempting to represent a catchments multiple variables, 
multiple space-time scales and multiple interconnected systems is regarded as an invaluable 
tool in simulating information for use in decision making for water resources planning and 
management and agricultural production at various lead times in agrohydrological forecasting 
(Brown, 2014; Warburton et al., 2012; Schulze, 2005). 
  
Apart from the observational and forecast weather and climate data, uncertainties in dynamic 
methods of agrohydrological forecasting include the assumed initial hydrological conditions 
(e.g. soil moisture content, streamflow, and reservoir inflows) from which the forecast is run, 
hydrological state variables as well as the  model parameters and structure (Block et al., 2009; 
Thiboult et al., 2016).  
 
The quantification, reduction and communication of these uncertainties are necessary for the 
generation of more accurate and actionable forecast information for effective risk-based 
decision making (Ramos et al., 2013; Sene and Darch, 2011; Thiboult et al., 2016). 
 
5.3. Overview of the ACRU Forecasting Tool 
 
The agrohydrological forecasting system of Ghile and Schulze (2008) alluded to in the above 
literature review was a product of a WRC project (Lumsden and Schulze, 2012) that was a 
precursor to the current project. Unfortunately, the forecasting system is no longer usable due 
to the ArcGIS software package no longer using the Visual Basic language in its programming 
environment. Other reasons why the system can no longer be used in its current form include 
changes in the available weather and climate forecasts, and the discontinuation of the SIMAR 
rainfall product. These problems were exacerbated by a lack of funding to maintain the system 
on an ongoing basis. Given this context, it was necessary to design a new forecasting system 
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for ACRU for application in this project. The design of this new system drew on the previous 
system and sought to avoid a recurrence of the problems in continuity.       
  
A theoretical framework for the new ACRU forecasting tool for the Mhlathuze case study is 
presented in Figure 5-2 in the form of a schematic diagram. The development of this schematic 
was informed by the above literature review, and includes the components typically found in 
an agrohydrological forecasting system. From an ACRU perspective, a key component 
requiring new development was the model initialization aspect. When performing a simulation 
with ACRU, stores inside the model (for example, the soil moisture store) start at default, or in 
some cases, user specified values. If the simulation is over a long enough period, the store 
values will equilibrate to realistic values, and the starting value used will become insignificant. 
However, in forecast simulations, it is unlikely that store values will have time to attain realistic 
values, therefore making it important to ensure that the starting value used for the stores is 
realistic. The process of selecting and specifying realistic starting values is referred to as 
model initialization. Correctly initializing an agrohydrological model is an important facet of 
restricting the error present in an agrohydrological forecast. In order to implement the 
forecasting system, it was decided to link ACRU to the Delft-FEWS forecasting framework. A 
review of Delft-FEWS and a description of the training that was undergone to use it, are 
described in the next few sections.  
 

 
Figure 5-2 Schematic of the ACRU agrohydrological forecasting tool 
 
5.4. Delft-FEWS Hydrological Forecasting Framework 
 
Delft Flood Early Warning System (Delft-FEWS) is a hydrological forecasting framework 
developed in The Netherlands. This framework, which is not to be confused with FEWS-NET, 
has its origins in flood forecasting. However, this framework is now applied at a range of time 
scales, including up to climate change time scales. The framework is generic in that any 
hydrological model can be plugged into the system, and it is highly customizable. This 
framework was evaluated as a potential vehicle to develop the ACRU forecasting tool. 
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A review of the Delft-FEWS system is presented next in this chapter. This is followed by an 
overview of the main outcomes from a forecast master class on the Delft-FEWS system 
attended by members of the project team. 
  
5.4.1. Review of Delft-FEWS 

There are two main types of data required for hydrological forecasts (i) measured or estimated 
values describing the real-time state of the hydrological system at the start of a forecast period, 
such as dam levels and soil moisture, and (ii) forecast climate driver variables, such as rainfall, 
evaporative potential and temperature.  It was anticipated that the most difficult part of being 
able to produce hydrological forecasts in this project, was not running the ACRU model, but 
rather the acquisition, processing and management of the forecast input variable and state 
variable datasets.  The project team identified the Delft-FEWS software, developed by 
Deltares, as a potential tool to assist with the acquisition, processing and management of data 
and to manage the workflows required to produce hydrological forecasts. 
  
This review of the Delft-FEWS flow forecasting system is based on a paper by Werner et al. 
(2013).  Additional information about Delft-FEWS can be found on the Delft-FEWS website 
(Deltares, 2016a). Delft-FEWS is described as open platform through which data and models 
can be flexibly integrated to construct operational forecasting systems.  The platform is open 
in the sense that it not based on hard-wired data sources, data formats and specific models; 
rather it provides a set of open interfaces that (i) enable integration of external models and 
algorithms and (ii) use of application specific data formats.  Thus, each implementation of 
Delft-FEWS can use data sources and modelling tools that are specific to the area and 
purpose of application.  In addition, the platform provides a data storage layer, a data access 
layer and tools to import, manipulate, view and export data.  The architecture of the Delft-
FEWS platform, where various different types of modules access the data storage layer 
through the data access later, is shown in Figure 5-3.  An example of the Delft-FEWS user 
interface is shown in Figure 5-4. 
  
The typical components and data flows of a Delft-FEWS forecasting system are shown in 
Figure 5-5. Data and information sources, such as in-situ measurements, remotely sensed 
estimates and forecasts, are imported by Delft-FEWS.  Standard or customised tools within 
Delft-FEWS are used to validate, transform, and interpolate these imported datasets to provide 
suitable datasets for modelling.  In some instances several measured and forecast datasets 
may need to be superimposed  
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Figure 5-3 Delft-FEWS architecture (Werner et al., 2013) 
 

 
 
Figure 5-4 An implementation of Delft-FEWS showing the user interface (Werner et al., 
2013) 
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Figure 5-5 Typical components of a Delft-FEWS forecasting system (Deltares, 2016b) 
 
Delft-FEWS has been developed using the Java programming language, making it platform 
independent, and thus able to run on both Windows and Linux operating systems.  It also 
makes extensive use of eXtensible Markup Language (XML) files for defining the model and 
data interfaces.  Delft-FEWS forecasting systems can be set up as (i) a standalone application 
on a single computer from which forecasts are run and analysed manually, or (ii) as a largely 
automated client-server application where data storage and processing takes place on one or 
more central servers which are accessed by forecasting staff from client computers. 
  
A demonstration version of the Delft-FEWS software is available on the website (Deltares, 
2016a).  The software is free for research and demonstration purposes, however, use in an 
operational context requires a support and maintenance agreement and it is not clear what 
the costs associated with this agreement would be. A support and maintenance agreement 
entitles the user to the latest version of the software. There is documentation describing the 
software and how to set up a Delft-FEWS forecasting system available on the website 
(Deltares, 2016a). 
  
Delft-FEWS seems to have been widely applied and Werner et al. (2013) state that since 
2002/2003 it has been applied in more than 40 operational forecasting centres internationally.  
Model adapters have been created for numerous models and data adapters exist for a large 
variety of data formats. 
  
The review of Delft-FEWS revealed it to be a promising tool for implementing an 
agrohydrological forecasting system and would: (i) potentially save the project team from 
unnecessarily developing software tools for the acquisition, processing and management of 
data, (ii) assist the project team in understanding the process of producing hydrological 
forecasts based on a variety of overlapping temporal historical and forecast datasets, and (iii) 
provide a foundation from which such an agrohydrological forecasting system could potentially 
be made operational subsequent to the project being completed.  Despite the perceived 
advantages of potentially using the Delft-FEWS software, learning how to use the software 
and implementing it was not anticipated to be a simple process.  As a first step, a model 
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adapter would be needed to enable the ACRU model to run within Delft-FEWS. A practical 
evaluation of the software was conducted next to confirm the suitability of the software. 
 
5.4.2. Evaluation of Delft-FEWS 

The introductory configuration course exercises that are made available with the Delft-FEWS 
software were completed as part of the evaluation of Delft-FEWS. The topics covered in the 
course include: 
 

● Understanding XML files 
● Setting up the locations of gauging stations 
● Changing controls on the FEWS Explorer (user interface) 
● Importing station time series and adding associated validation rules and thresholds 
● Adding pre-configured map displays 
● Interpolating station time series 
● Adding rating curves 
● Spatial averaging of station data 
● Importing NWP data 
● Plugging in a new hydrological model with pre-developed adapters and generating a 

flood forecast    
 
Some observations arising from undertaking these course exercises include the following:   
 

● The highly customizable nature of the software comes at a price, this being that it is 
not simple to configure. The configuration is done via numerous XML files which 
require effort to understand in terms of their structure, function and linking. The user 
interface controls the execution of workflow tasks once the system is configured, and 
does not play a major role in the configuration itself. 

● Being introductory in nature, the exercises focused mostly on applying default or pre-
determined options in the framework, with only minor customization being 
demonstrated.  

● The above point raised some questions regarding the customization of the software. 
Specific examples include: 
- Would it be possible to introduce downscaling methods that are not currently 

available in the software and how easy would this be to accomplish? 
- Can the ‘warm state’ option to initialize the hydrological model (based on model 

output from the previous forecast run) be modified to incorporate observations if 
these are available? 

 
During the evaluation of the Delft-FEWS framework it came to light that it is applied for flood 
forecasting purposes by the water and sanitation department at eThekwini Municipality. A 
workshop presentation on this application was attended and revealed that it has been applied 
very successfully in this context. 
 
The final decision on whether to apply Delft-FEWS involved a trade-off between the effort 
required to configure it and the effort required to develop new software with similar capabilities. 
Despite its lack of user-friendliness in terms of configuration, it is very powerful in terms of its 
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functionality. Another long term consideration was that applying the software in an operational 
context requires a support and maintenance contract. This would become important if the 
experimental forecasts developed in this research project were deemed suitable for 
operational implementation beyond this project.  
 
5.4.3. Forecast Early Warning System Master Class 

The Coastal Stormwater and Catchment Management Department (CSCM) at eThekwini 
Municipality have piloted the use of the Delft-FEWS software to set up and operate a flood 
warning and coastal management system for the municipality. CSCM worked closely with 
Deltares to set up the system, but as far as possible opted to build capacity in their own staff 
in setting up and operating the system. This approach has put eThekwini Municipality in the 
position of being able to encourage and assist other municipalities in South Africa with setting 
up their own disaster management systems. 
  
Two members of the project team, Mr Trevor Lumsden and Mr David Clark, were fortunate to 
be provided with an opportunity to attend a 3-day Delft-FEWS training course titled “Forecast 
Early Warning System Master Class”. The course, held from 1-3 August 2017 at Moses 
Mabhida Stadium in Durban, was organized and facilitated by the CSCM and the Municipal 
Institute of Learning (MILE). Technical expertise was also provided by two Delft-FEWS experts 
from Deltares. The course provided an ideal opportunity for the project team to gain a better 
understanding of how Delft-FEWS could be applied and an introduction to how to actually 
configure Delft-FEWS, import data and run models. A brief overview of what was covered in 
the course is shown in Table 5-1. Despite the course title, this was an introductory level course 
aimed at informing delegates of the capabilities of Delft-FEWS and providing a starting point 
for those delegates who might be wanting to setup Delft-FEWS systems themselves. Delft-
FEWS, together with the models run within it, is a powerful and versatile tool, but requires a 
high level of technical knowledge to implement and operate. 
 
After attending the Delft-FEWS master class, it was decided that the software would be applied 
in the project. The first step in doing this was to integrate the ACRU model into the software. 
This is described next. 
 
5.5. Integration of the ACRU Model into the Delft-FEWS Forecasting System 
 
Delft-FEWS is not a model, it is a system that facilitates data handling and model integration 
enabling users to build their own custom modelling systems. For each application of Delft-
FEWS, users decide which model or models need to implemented and the datasets required 
to run these models. External models are usually linked into and executed from DELFT-FEWS 
using the General Adapter module as shown in Figure 5-6. 
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Table 5-1 Overview of Delft-FEWS course 
 

Day 1 ● Background to the decision to use Delft-FEWS as part of the 
Municipality’s disaster management system. 

● Description of the advantages to other municipalities of applying Delft-
FEWS and how eThekwini Municipality could assist. 

● Introduction to the development of the Delft-FEWS software, its main 
features and examples of how and where the software has been applied 
internationally. 

● Sources of forecast meteorological data and identifying other data 
requirements. 

● Setup of the Delft-FEWS software on delegates laptops. 
● Hands-on introduction to the operation of Delft-FEWS using eThekwini 

Municipality’s configuration for the Palmiet River. 

Day 2 ●  Introduction to the basic configuration of Delft-FEWS. 
●  Introduction to configuring data imports. 
● Presentation on numerical weather predictions and the use of these. 
● Hands-on practice in running models in Delft-FEWS. 
●  Understanding the limitations of numerical models and model 

verification. 
● Hands-on practice in running models using Global Forecast System 

(GFS) data in Delft-FEWS. 
●  Overview of thresholds in Delft-FEWS. 

Day 3 ●  Identifying what is required from a Delft-FEWS implementation. 
● Setting thresholds for models in Delft-FEWS. 
● Introduction to field instrumentation and its use in modelling and for 

validation. 
●  Hands-on practice in using hindcast or historical data to initialise models 

run in Delft-FEWS. 
● Dissemination of results from Delft-FEWS for disaster management. 
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Figure 5-6 Linking and execution of external models in Delft-FEWS (Werner et al., 2013) 
 
For each model several files, in Extensible Markup Language (XML) format, need to be 
configured. One of these files is the ModuleConfigFile which specifies (i) which input variables 
are required by the model, the commands to be used by Delft-FEWS to execute the model, 
and (iii) which output variables from the model should be imported back into Delft-FEWS. Prior 
to running a model the user would execute one or more Delft FEWS Workflows to import the 
data required for modelling into a Delft-FEWS database. For each model implementation a 
Workflow in Delft-FEWS would be used to execute an instance of the General Adapter for the 
model and the following sequence of events would typically occur. 
 

1.  First the General Adapter would retrieve data from the Delft-FEWS database. 
2. The General Adapter would then write the data required by the model out to an 

intermediate file in the Delft-FEWS Published Interface (PI) XML format. 
3. The General Adapter would then execute a pre-adapter, previously created by the 

model user, to translate model input data from the PI XML format to the model’s native 
input format. 

4. The General Adapter would then execute the model, which would typically (i) read the 
pre-adapted input file and possibly other model input files, (ii) perform a simulation for 
a specified period, and (iii) write out model result files. 
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5. The General Adapter would then execute a post-adapter, previously created by the 
model user, to translate user specified model results from the model’s native output 
format to the PI XML format. 

6. The General Adapter would then read the model results in from an intermediate file in 
PI XML format and store them in the Delft-FEWS database where they would be 
available for viewing, analysis, reporting or use as input to another model. 

 
Delft-FEWS already contains pre-built adapters for a variety of models and also adapters to 
read and write a variety of commonly used data formats. One important point to note is that, 
although two or more models may be run from Delft-FEWS such that the output from one 
model is used as input to another model, these models are run in series. The implication of 
this is that any feedbacks, between different components of the modelled system represented 
by different models, cannot be modelled unless each model is run one time step at a time. 
  
Typically models users would not have access to source code for the model and thus a pre-
adapter and post-adapter is required to enable the transfer of data between Delft-FEWS and 
the model. However given that a member of the project team is involved in developing and 
maintaining the ACRU model, it was possible to omit the pre-adaption and post-adaption 
phases of linking and executing the model by adding functionality to the ACRU model to read 
from and write to the PI XML files directly. Two new classes were developed and incorporated 
into the ACRU4 version of the model: (i) the ADelftFewsPiXmlFileReader class which reads a 
PI XML file containing daily time series input data into ACRU and, (ii) the 
ADelftFewsPiXmlFileWriter which writes daily time series of ACRU simulation results to a PI 
XML file. These two new classes are shown in the Unified Modelling Language (UML) class 
diagram in Figure 5-7. The linking and execution of the ACRU model in Delft-FEWS in shown 
in Figure 5-8. A simple hypothetical configuration of Delft-FEWS and ACRU was used for 
testing and a Delft-FEWS Workflow was used to successfully run the ACRU model using 
historical time series of rainfall data imported into Delft-FEWS. A simulated streamflow time 
series was then imported back into Delft-FEWS. The successful development of classes within 
the ACRU model to read and write PI XML files, enabled the ACRU model be used as a model 
within Delft-FEWS 
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Figure 5-7 UML diagram of new ACRU classes developed to read and write PI XML files 
 
 

 
 
Figure 5-8 Linking and execution of the ACRU model in Delft-FEWS 
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5.6. Application of Delft-FEWS to the Mhlathuze Catchment 
 
5.6.1. Introduction 

This sub-section details the application of ACRU in Delft-FEWS in the Mhlathuze Catchment. 
Initially the focus was on producing a 20 year daily streamflow simulation using observed 
historical climate data. A screenshot view of the ACRU/Delft-FEWS configuration developed 
for this purpose, is presented. This configuration of ACRU in Delft-FEWS formed the 
foundation for applying the modelling system to produce agrohydrological forecasts. Additional 
configuration to enable forecast simulations is described.  
 
5.6.2. Configuration of Delft-FEWS in the Mhlathuze catchment 

Most of the configuration of Delft-FEWS is achieved through modifying a series of XML files 
in the directory structure of the software. Relatively little configuration is done through the 
graphical user interface (GUI) which is mainly used for operating a forecasting system once it 
is configured. The aspects of the configuration and the relevant XML files modified are outlined 
in Table 5-2. Some aspects of the configuration have been alluded to in the section on 
integrating ACRU into Delft-FEWS. The description of the configuration is not exhaustive. 
 
5.6.3. Screenshot view of Delft-FEWS configured for the Mhlathuze catchment  

The simulation of historical streamflow was focused on the catchment area of the Goedertrouw 
Dam in the upper section of the Mhlathuze catchment. There are three meteorological gauges 
in the area which is divided into 6 subcatchments for hydrological modelling purposes. The 
map display of the Mhlathuze catchment in Delft-FEWS is shown in Figure 5-9. The map 
shows the quaternary catchments in the Mhlathuze, the primary and secondary rivers, the 
meteorological stations and dams and lakes (including the Goedertrouw Dam). In the left hand 
side of the map display, there is a list box of the meteorological gauges and a single streamflow 
node, where the latter is a site immediately downstream of the Goedertrouw Dam. If items in 
this list box are highlighted, then the corresponding items are highlighted in the map (icons 
are surrounded by a box). In Figure 5-9 the meteorological gauges and the streamflow node 
(relevant to Goedertrouw Dam) have been highlighted. 
 
In the data display view of Delft-FEWS (not shown), the meteorological gauges and streamflow 
node can once again be highlighted in the list box on the left hand side of the display. Selecting 
these points of interest results in the corresponding point data being plotted on the right hand 
side of the display, with separate plots being produced for each parameter type (one for 
precipitation and one for streamflow). When positioning the cursor over these plots it is 
possible to zoom in and out of the time series (X) axis to view particular periods in more detail. 
When zooming in and out, the data visible in the tables to the left of the plots change 
accordingly. There are basic statistics presented at the top of the table that are re-calculated 
when zooming into a different period.  
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Table 5-2 Aspects of Delft-FEWS configured for the historical streamflow simulation 
 

Aspect Description XML File/s 

Location of 
points of 
interest 

Information about points of interest 
associated with observed and/or 
modelled data (e.g. meteorological 
stations, streamflow nodes) including 
their geographical coordinates. These 
can be specified individually or in sets. 
The information can be imported from 
CSV or shape files.  

Locations.xml 
LocationSets.xml 

Map display Configures the display of relevant 
geographical features, for example, 
catchment boundaries, rivers, dams, 
roads, towns. Also configures the 
scale bar, north arrow, map 
projection, zoom extents, etc. 

Explorer.xml 

GUI display Configures shortcuts, toolbars, 
options, web URLs, date/time format, 
time zone, sizing of panels, etc. 

Explorer.xml 

Parameters Describes the parameters that are 
associated with observed and/or 
modelled data (e.g. rainfall, 
streamflow). Description includes 
units, time interval, type (accumulative 
or instantaneous), precision. 

Parameters.xml 

Grouping of 
points of 
interest 

Specifies how points of interest (e.g. 
meteorological stations, streamflow 
nodes) are grouped for display (map 
view) or analysis (table, graph views) 

Filters.xml 
DisplayGroups.xml 

Location of 
ACRU files 

Subfolders are created where ACRU’s 
input and output files are stored. 
These subfolders are referred to in 
relevant modules of Delft-FEWS 
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Table 5-2 Continued 
 

Aspect Description XML File/s 

Location of 
imported and 
exported 
data 

Subfolders are created where external 
data are stored, either for importing to 
Delft-FEWS or for exporting from 
Delft_FEWS. These subfolders are 
referred to in relevant modules of the 
software 

  

Importing of 
external 
rainfall data 

A module was configured to import 
observed rainfall data from external 
sources (e.g. SASRI, SAWS) into the 
Delft-FEWS database. The module 
contains information on the relevant 
parameters, locations and data file 
structure. The mapping of parameters 
and locations between the external 
data files and the internal Delft-FEWS 
database is also specified.  

ImportCsvRainfall.xml 
idImportRainfall.xml 
ModuleInstanceDescriptors.xml 

Running of 
ACRU 

The General Adapter module 
described previously in the section on 
integrating ACRU into Delft-FEWS, 
was configured for use in the 
Mhlathuze catchment (it was named 
RunACRU4 in this instance). The 
mapping of parameters and locations 
between the Delft_FEWS database 
and the PI XML input and output files 
that ACRU reads and writes is also 
specified here. 

RunACRU4.xml 
IdACRU4.xml 
ModuleInstanceDescriptors.xml 

Workflows The modules that are configured in 
Delft-FEWS (for importing external 
rainfall data and running ACRU) are 
called from within workflows. While 
workflows can call multiple modules, 
separate workflows were created for 
each module for testing purposes. 
Since workflows can be embedded 
within other workflows, it will ultimately 
be possible to execute all modules 
and workflows in one seamless 
process  

ImportExternal.xml 
RunACRU4.xml 
WorkflowDescriptors.xml 
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Figure 5-9 The map display in Delft-FEWS, as configured for the Mhlathuze catchment. Points of interest have been highlighted in the 
list box on the left hand side and are therefore displayed with a box around them in the map. The points of interest (3 meteorological 
gauges and a streamflow node) are relevant to the Goedertrouw Dam in the upper section of the catchment. 



 
 

89 
 

5.6.4. Additional configuration to enable forecast simulations 

To enable forecast simulations to be performed the following additional configuration was 
performed: 
 

● Modules to import weather forecast data including rainfall and temperature 
● Modules to perform ACRU simulations for a forecast run (involving exporting of the 

weather forecast data in appropriate format and for the correct period, calling ACRU 
and importing model output for further analysis). Modules for different model scenarios 
were created. 

● Modules to sum forecast output over the period of simulation (e.g. 7 days) to allow for 
comparisons with observations or other simulations. 

● Display filters to generate data tables and plot graphs  
● Modules to export results for reporting purposes 
● Workflows to execute the above modules in an appropriate sequence 

 
There is a whole array of features in Delft-FEWS that can be configured. The features 
configured here were those considered to be important for the context of the project.  
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CHAPTER 6.  SHORT TO MEDIUM RANGE AGROHYDROLOGICAL 
FORECASTS 

1Morris F and 2Lumsden T 
 
1 CWRR, University of KwaZulu-Natal 
2 Council for Scientific and Industrial Research 
 
6.1. Background 
 
Short to medium term agrohydrological forecasting in the Mhlathuze catchment was focused 
on the inflows to Goedertrouw Dam, and on crop water and irrigation requirements for 
sugarcane in selected sub-catchments deriving their water from the Dam. It was decided to 
focus the dam-related forecasts on the inflows to the dam, rather than on storage in the dam. 
The reason for this was that the historical withdrawals from the dam are variable in nature and 
would be difficult for the forecast producer to predict in an operational context. In addition, 
ACRU is only able to accommodate mean monthly withdrawal amounts for non-irrigation 
related abstractions, and would not be able to represent withdrawals that are specific to a 
particular 7 day forecast period. In this situation it would be better for users of the forecasts 
(e.g. water managers) to account for the expected dam withdrawals for the forecast period in 
question. From the interactions with sugarcane stakeholders, the main need for forecast 
information in the catchment relates to water availability for irrigation (cf. Chapter 2). 
 
The specifics of the forecast methodology are described in the next sub-section and following 
this the results are presented. The analysis of results focuses on evaluating how good the 
forecasts are, and on assessing the impact of improved model initialization on the forecasts. 
These improvements are also discussed in the later chapter (9) on reducing uncertainty and 
error in forecasting. 
 
6.2. Methodology 
 
6.2.1. Locations and forecast variables 

The sub-catchments feeding the Goedertrouw Dam include quaternary catchments W12A and 
W12B. Forecasts of dam inflows therefore depend on accurate representation of conditions in 
these catchments. The sub-catchments in which forecasts of crop water and irrigation 
requirements were developed include quinary catchments W12D3 (inland) and W12F3 
(coastal). W12D3 is representative of the Nkwalini, Umfuli and Heatonville irrigation districts, 
while W12F3 is representative of the lower Mhlathuze / Empangeni irrigation districts. Both 
regions rely on water releases from the Goedertrouw Dam to supply their irrigation water. In 
the context of the forecasts developed in this chapter, crop water requirements are defined as 
the potential evapotranspiration of the crop. If a crop has access to an equivalent amount of 
water (through rainfall and irrigation), it will not be subject to water stress and maximum yields 
will be obtained. The irrigation requirement relates to the amount of water that must be added, 
in addition to rainfall, in order to meet the crop water requirement. In this context, net irrigation 
requirements were considered. In other words, this represents the water that must be made 
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available to the plant roots, and excludes the additional water that is required to satisfy losses 
due to wind drift, leaking pipes, etc. (the additional water is not available to the plant).    
 
6.2.2. Weather forecasts 

The weather forecasts used to develop the above agrohydrological forecasts were the 7 day 
rainfall and temperature forecasts produced at a 15 km resolution (cf. Chapter 3). Although, 
these forecasts were at a lower resolution than the 8 km forecasts produced subsequently, 
they had the advantage of including temperature forecasts (unlike the later set), and also 
extended throughout the year for the 2013-2016 period. The 8 km forecasts were produced 
for the same 4 year period, but only for the summer (Dec-Jan-Feb) rainfall seasons. The 
availability of forecasts throughout the year, and the inclusion of temperature variables, were 
considered to be more important in a sugarcane production context than having a very high 
spatial resolution. 
 
6.2.3. ACRU configuration 

The following changes were made to the configuration of ACRU relative to the detailed 
description given in Chapter 4 which focused on the verification of the model for historical 
conditions: 
 

● The method of estimating reference potential evaporation was changed to the 
Hargreaves and Samani (1985) equation based on daily temperature input. This 
allowed for temperature-driven evaporation estimates to be produced and for the 
benefit of the availability of temperature forecasts to be realized. Reference potential 
evaporation is a key driver in the estimation of crop evapotranspiration, and thus crop 
water requirements and irrigation demand. 

● Simulations based on observed climate were still required in the development of 
agrohydrological forecasts, as these represented a baseline against which forecasts 
could be compared if observations of the forecast quantities were not available. 
Furthermore, they were also used in providing initial values of key storages in the 
model at the commencement of forecast simulations. The rainfall stations previously 
used in representing rainfall in the catchment during the model verification process (cf. 
Chapter 4) were still used  Exceptions to this were for W12D3 and W12F3, where 
different stations that had available data for the period of interest (2013-2016), were 
selected. These station data were obtained from SASRI and included Nkwalini and 
Heatonville stations for W12D3, while Empangeni station was selected to represent 
W12F3. Temperature records from these stations were also used to represent 
conditions in the catchments. Temperatures in quaternary catchments W12A and 
W12B (and their component quinary catchments), were represented by SASRI station 
Entumeni. Temperature lapse rates were applied to these data to better represent the 
higher quinary catchments given that a fairly steep altitude gradient exists between the 
station and the upper catchments. 

● No adjustments were made to rainfall or temperature forecasts to better represent the 
relevant catchment areas, since unique CCAM grid points were located inside most of 
the sub-catchments.                  
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● For the forecasts of crop water and irrigation requirements a hypothetical soil was 
assumed to represent the cultivated areas of the relevant catchments. Key 
characteristics of this soil included the depth in which the majority of roots are found 
(1.0 m), the potential maximum rooting depth (1.5 m), the wilting point (0.16 m/m), 
drained upper limit (0.26 m/m) and porosity (0.5 m/m). Assumptions made regarding 
the values of key plant related variables included the crop coefficient (0.83) and daily 
interception loss (2 mm). 

● Irrigation was assumed to be applied throughout the year in a 7 day cycle, and was 
applied until the soil reached drained upper limit on the day of irrigation. Test 
simulations revealed that the maximum 7 day total of crop water requirement was 
approximately 60 mm. The capacity of the irrigation system was set such that it would 
be able to satisfy this maximum requirement. In ACRU, it is assumed that irrigation is 
only applied if the requirement is more than a third of the system capacity.  

 
6.2.4. ACRU model initialization 

When performing a simulation with ACRU, storages inside the model (for example, the soil 
moisture store) start at default, or in some cases, user specified values. If the simulation is 
over a long enough period, the store values will equilibrate to realistic values, and the starting 
value used will become insignificant. However, in shorter range forecast simulations (such as 
those developed in this chapter), it is unlikely that store values will have time to attain realistic 
values, therefore making it important to ensure that the starting value used for the stores is 
realistic. The process of selecting and specifying realistic starting values is referred to as 
model initialization. Initializing an agrohydrological model with the best available information 
is an important facet of restricting the uncertainty and error associated with an 
agrohydrological forecast. Stores in the ACRU model that could potentially be initialized 
include the following: 
  

● Baseflow store (accumulates water draining from the lower soil horizon and slowly 
releases it in the river as baseflow) 

● Soil moisture store 
● Dam store 
● Stormflow store (releases delayed subsurface flow into the river in the days following 

a storm) 
● Interception store 

  
Initial values for these stores could be estimated from (in decreasing order of preference): 
  

● Observations (if they are available) 
● Simulated store values based on observed weather (if up to date observed weather is 

available prior to generating a forecast) 
● Simulated store values based on forecast weather (i.e. store values output following a 

previous forecast run) 
 
In the context of the variables forecast in this chapter, the stores that are most critical to 
initialize include the baseflow store (for the catchments feeding the Goedertrouw Dam – 
relevant to inflow forecasts) and the soil moisture store (for the catchments feeding the 
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Goedertrouw Dam and the catchments selected for forecasting crop water requirements and 
irrigation demand). Owing to time constraints it was not possible to initialize all stores that 
could potentially influence the variables being forecast.  
 
Since observations of the critical stores were not available, values of the stores were estimated 
from a simulation based on observed climate (alluded to in 6.2.3). This simulation was 
conducted for the period 2009 to 2016. The period of simulation from 2009 to the start of the 
first forecasts (in 2013) allowed the model to warm up, and for the stores in the model to attain 
realistic values.  
 
The hotstarting feature of ACRU simplifies the process of initializing the model. When the 
feature is turned on, the model automatically takes its starting store values from a specified 
file (in this case a file output from the historical observed climate simulation run). It searches 
for the day prior to the first day of forecast simulation and reads in the values of the relevant 
stores. From that starting point, the forecast simulation proceeds. 
  
To investigate the impact of model initialization, forecasts were generated with and without 
initializing the store values. When the store values are not initialized, ACRU assumes the 
following for every forecast simulation: 
 

● Baseflow store = 0 m 
● Soil moisture of catchments = 50% of plant available water (can be altered by the user) 
● Soil moisture of irrigated fields = 50% of plant available water 

 
6.2.5. Delft-FEWS configuration 

The configuration of the Delft-FEWS system that ACRU was linked to for the purpose of 
generating agrohydrological forecasts, was previously described in Chapter 5. 
 
6.2.6. Observed data used to assess agrohydrological forecasts 

As the sugarcane crops represented in the forecast simulations were not based on actual 
crops where measurements of the relevant variables are available (crop water requirements 
and irrigation demand), it was not possible to assess the forecasts against observations. In 
this situation, the next best data set against which the forecasts can be assessed is the model 
simulation run based on observed climate.  
 
For the inflows to the Goedertrouw Dam, it is possible to derive a calculated times series of 
inflows based on the dam water balance and available measurements of the components of 
the balance. The dam water balance may be expressed as: 
 
final dam volume = initial dam volume + rainfall + inflows - evaporation - outflows 
 
Measurements of all the components of the water balance (with the exception of the inflows) 
are available from the Department of Water and Sanitation. Thus by rearranging the water 
balance equation it is possible to calculate the inflows. The necessary component data were 
obtained from DWS and the inflows calculated for the period of interest. The calculated inflows, 
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plus the inflows derived from the historical simulation, were then available for comparison with 
the forecast flows.   
 
6.2.7. Approach to evaluating the agrohydrological forecasts 

As alluded to in the above paragraphs, the approach to evaluating the agrohydrological 
forecasts involved comparing the forecasts to observations, and to the historical simulation 
run. These comparisons were made for 7-day totals of the respective forecast variables. The 
impact of initializing ACRU when generating a forecast was also assessed by comparing the 
forecast runs produced with and without initialization.  
 
6.3. Results 
 
6.3.1. Forecasts of Goedertrouw Dam inflows 

Forecasts of 7-day inflows to Goedertrouw Dam were assessed by comparing the observed 
inflows to forecast inflows produced using historical initial store values (hereafter referred to 
as initialized forecasts), as well as default initial store values (hereafter referred to as non-
initialized forecasts). The simulated inflows based on observed historical weather data were 
also compared to the observed inflows (Figure 6-1). The historical simulated inflows tended to 
over-simulate the observed high flows. There was also a large 7-day flow event in April 2015 
that the simulated time series did not capture. Baseflows tended to be under-simulated for 
much of the time period considered.  
 
Initialized (Figure 6-2) and non-initialized (Figure 6-3) forecasts were able to simulate high and 
low flow trends of the observed inflows, however, there were some observable discrepancies 
with regards to the magnitudes of inflow forecasts. Focusing on the 7-day inflows below 10 
million m3 (Figures 6-4a to c), allows for the differences in magnitudes to be more clearly seen 
for events in this range (i.e. the majority of events). Historical simulations and the initialized 
forecasts followed trends of high and low flows better than forecasts that were not initialized. 
Non-initialized forecasts are likely to only consist of stormflows since baseflow will not be 
simulated over a 7 day period without initialization of the baseflow store. This is reflected in 
the large number of 7-day inflows with zero flow. Overall, forecasts that were not initialized 
underestimated observed inflows while forecasts that were initialized overestimated most high 
flows. 
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Figure 6-1 Observed and simulated (historical) inflow volumes (m3) for the Goedertrouw 
Dam for 2013/04/23 to 2016/10/14 
 

 
Figure 6-2 Observed and forecast (initialized) inflow volumes (m3) for the Goedertrouw 
Dam for 2013/04/23 to 2016/10/14 
 

 
Figure 6-3 Observed and forecast (non-initialized) inflow volumes (m3) for the 
Goedertrouw Dam for 2013/04/23 to 2016/10/14 
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Figure 6-4 Observed inflows and a) historical simulations, b) non-initialized forecasts 
and c) initialized forecasts (7-day events below 10 million m3) 
 
Statistical measures of the forecast performances (relative to observations) are presented in 
Table 6-1. Average inflow errors showed that initialized and non-initialized forecasts 
underestimated observed inflows overall. Non-initialized forecasts produced larger average 
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inflow errors of 1097541.37 m3, while initialized forecasts produced lower errors of  
37262.24 m3. A maximum percentage difference between mean observed and forecast inflows 
of 67.20 were found for forecasts that are not initialized, while initialized forecasts showed a 
lower percentage difference of 2.28. Pearson correlation coefficients were found to be 
relatively low overall with a higher correlation of 0.2 for initialized forecasts, and a lower 
correlation of 0.1 for non-initialized forecasts. 
 
Table 6-1 Statistics of performance (relative to observations) for inflows into the 
Goedertrouw Dam 
 

Inflows (m3) 

Total observed inflows 1729543715.65 

Total forecast (non-initialized) inflows 567247403.20 

Total forecast (initialized) inflows 1690083002.90 

Total simulated (historical) inflows 1773579879.10 

Mean observed inflows 1633185.76 

Mean forecast (non-initialized) inflows 535644.38 

Mean forecast (initialized) inflows 1595923.52 

Mean simulated (historical) inflows 1674768.54 

Average Inflow Errors: forecast (non-initialized) -1097541.37 

Average Inflow Errors: forecast (initialized) -37262.24 

Average Inflow Errors: simulated (historical) 41582.78 

% Difference Mean: forecast (non-initialized) 67.20 

% Difference Mean: forecast (initialized) 2.28 

% Difference Mean: simulated (historical) -2.55 

Pearson Correlation: forecast (non-initialized) 0.10 

Pearson Correlation: forecast (initialized) 0.20 

Pearson Correlation: simulated (historical) 0.42 

 
 
The Pearson correlation between simulated (historical) inflows and observed inflows was also 
relatively low at 0.42. This correlation with observations is lower than the streamflow simulation 
performed at weir W1H005 (correlation = 0.68) on a different tributary of the Mhlathuze River 
(Chapter 4). It is also lower than the correlation obtained for the simulated historical levels 
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(correlation = 0.62) of Goedertrouw Dam (Chapter 4). The lower correlation obtained in this 
chapter might be attributable to a different catchment area (when comparing to W1H005), or 
to the more variable nature of streamflow (compared to dam levels). The relatively low 
correlation between simulated (historical) and observed dam inflows obtained in this chapter 
is also likely to be partly responsible for the low correlations between the forecast and 
observed inflows, as it reflects deficiencies in the model representation of the dam catchment 
area. These conclusions are based on the assumption that the observed inflow record is 
accurate. As described previously, this record was derived from the dam water balance and 
observations of the components of the balance. It was noted during the compilation of this 
record that there were days where the calculated inflows were negative in value. Although the 
7-day periods considered in the statistical comparisons excluded any periods containing days 
with negative calculated inflows, it nevertheless casts a measure of doubt on the accuracy of 
the calculated inflows. It is possible that there are components of the dam water balance that 
are poorly represented.           
 
6.3.2. Forecasts of crop water requirements  

Forecasts of 7-day Crop Water Requirements (CWRs) for the two selected quinaries are 
presented in Figures 6-5 and 6-6. There is no distinction made between initialized and non-
initialized forecasts since the variable initialized for the simulations in these catchments (soil 
moisture) does not influence CWR. As alluded to previously the forecasts are compared to 
historical simulations since there are no observations of the CWR available. Forecasts for both 
catchments follow closely to the trends and magnitudes in the historical simulations. Statistical 
performances for both catchments are presented in Table 6-2. Both catchments show an 
average overestimation of CWR’s, with the coastal catchment WI2F3 showing the lowest error 
of 0.84 mm. Both catchments showed a high agreement between forecasts and historical 
simulations with correlation coefficients of 0.81 and 0.88 for W12D3 and W12F3, respectively 
(Figure 6-7). 
 

 
 
Figure 6-5 Forecast and simulated (historical) crop water requirements for quinary 
catchment W12D3 
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Figure 6-6 Forecast and simulated (historical) crop water requirements for quinary 
catchment W12F3 
 
 
Table 6-2 Statistics of performance for crop water requirement forecasts in quinary 
catchments W12D3 and W12F3 (relative to the simulated historical time series)  
 

 Crop Water Requirements (mm) 

 W12D3-Forecast W12F3-Forecast 

Mean Errors -2.04 -0.84 

RMSE 5.92 3.61 

Agreement 0.94 0.97 
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Figure 6-7 Plots of forecast versus simulated (historical) crop water requirements for 
W12D3 (top) and W12F3 (bottom) 
 
6.3.3. Forecasts of net irrigation requirements 

Forecast and simulated (historical) 7-day Net Irrigation Requirements (NIR) are presented in 
Figures 6-8 and 6-9 for catchments W12D3 and W12F3, respectively. 
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Figure 6-8 Forecast (initialized and non-initialized) and simulated (historical) net 
irrigation requirements for quinary catchment W12D3 
 

 
 
Figure 6-9 Forecast (initialized and non-initialized) and simulated (historical) net 
irrigation requirements for quinary catchment W12F3 
 
Overall, initialized forecasts were found to follow historical simulations closely in terms of 
trends and magnitudes. Forecasts for the coastal catchment W12F3 showed closer 
associations in terms of magnitudes as compared to the inland catchment. Overall, non-
initialized forecasts for both catchments performed poorly. The non-initialized forecasts start 
at 50% Plant Available Water (PAW) which, combined with evaporation, results in low soil 
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moisture contents and creates irrigation requirements greater than 60 mm. Since a maximum 
irrigation system capacity of 60 mm in 7 days was used (see 6.2.3), this resulted in many 
irrigation applications being capped at 60 mm, thus producing a straight line on the graphs at 
this level.   
 
Statistical performances for NIR forecasts are presented in Table 6-3. The lowest mean errors 
were observed for initialized forecasts, with the coastal catchment showing an overall 
underestimation of 4.14 mm and the inland catchment W12D3 showing an overall 
overestimation of 10.3 mm.  Initialized forecasts for both catchments showed good 
agreements and correlations with the simulated historical time series. 
 
Table 6-3 Statistics of performance for NIR forecasts in quinary catchments W12D3 and 
W12F3 (relative to the simulated historical time series) 
 

 Net Irrigation Requirements (mm) 

 
W12D3-Forecast  
(non-Initialized) 

W12D3-Forecast 
(initialized) 

Mean Errors -24.6 10.3 

RMSE 26.24 16.89 

Agreement 0.45 0.58 

Correlation 0 0.53 

 
W12F3-Forecast  
(non-Initialized) 

W12F3-Forecast 
(initialized) 

Mean Errors 26.17 -4.14 

RMSE 27.55 11.03 

Agreement 0.31 0.55 

Correlation 0.12 0.59 

 
6.4. Conclusion 
 
Performances of forecasts for the Goedertrouw Dam inflows and the coastal and inland 
catchment CWR’s and NIR’s were analysed. Overall, initialized forecasts showed the best 
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performances. Large errors were seen in the non-initialized dam inflow forecasts, which can 
be attributed to little or no baseflow being generated (the baseflow store starts with a value of 
zero). These errors would be masked in times of large stormflows, as the latter would dominate 
the total streamflow. Forecasts of CWR’s and NIR’s performed well for both catchments for 
initialized forecasts when compared to historical simulations. This was particularly for CWR, 
where the highest correlations and lowest average errors were observed. This suggests that 
the CCAM daily maximum and minimum temperatures perform well for the Mhlathuze 
catchment. 
 
6.5. References 
 
HARGREAVES, G.H. and SAMANI, Z.A. (1985). Reference crop evapotranspiration from 

temperature. Transactions of the American Society of Agricultural Engineers, 1, 96-99. 
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CHAPTER 7.  SEASONAL FORECASTS OF THE STORAGE IN 
GOEDERTROUW DAM  

Landman W 
 
University of Pretoria 
 
7.1. Background 
 
Stakeholders in the sugar industry have indicated that obtaining accurate seasonal and longer 
term forecasts of water availability would be of great benefit in the Mhlathuze catchment, and 
elsewhere. In this regard, a statistical approach was adopted to developing seasonal forecasts 
of storage in the Goedertrouw Dam. Unlike the dynamical, simulation-based approach 
adopted for shorter time scales in the Mhlathuze case study, the statistical approach does not 
require daily input data in the development of forecasts. This avoids the need to apply 
downscaling techniques to obtain the necessary data at a daily time scale. In addition, the 
statistical approach does not require abstractions from the dam to be explicitly accounted for. 
Abstractions from the dam are variable, thus introducing uncertainty around their estimation. 
Further details of the statistical forecast methodology are given in the following subsection, 
after which the results are presented.  
 
7.2. Methodology and Results 
 
The observed data required to construct and test the seasonal forecasting model included 
monthly time series’ of rainfall and dam storage volumes. These data were obtained from 
DWS for the period 1981/82 to 2009/10. From these data, seasonal cycles of the rainfall in the 
catchment and of the water volumes in the dam were calculated (Figure 7-1).  

 
Figure 7-1 Annual cycles of the monthly rainfall (top) at Goedertrouw Dam and the 
monthly storage volumes (bottom) of the dam 
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From the graphs in Figure 7-1, one can see that the 3-month season of highest volume (bottom 
graph) occurs during March-April-May (MAM). This season was, as a result, chosen as the 
target season for which prediction models were to be constructed. Owing to the observation 
that the maximum volume season immediately follows the maximum rainfall season (top 
graph), one may be able to conclude that rainfall is the main driver of the dam volumes, and 
might be useful as a predictor of those volumes. This notion was tested next. 
 
Since MAM was the target season for which dam volumes were to be predicted, nine run-on 
seasonal rainfall totals over the given period were correlated with the MAM volumes. Table  
7-1 shows the rainfall seasons correlated with MAM volumes on the left, the Kendall’s tau 
correlations in the middle and associated levels of statistical significance on the right.  
 
Table 7-1 Rank correlations between seasonal rainfall totals over the given period and 
MAM dam volumes 

 
 
The NDJ rainfall season was best correlated with the MAM dam volumes. Normalized values 
for NDJ rainfall and MAM dam volumes are given in Figure 7-2.  The finding that NDJ rainfall 
correlates best with MAM volumes (marked with orange in the table) was then used to build 
three different prediction models. 
 
The first model used a simple linear equation (“y=mx+c”) that relates NDJ rainfall totals as 
predictor with MAM normalized volumes (top right graph of Figure 7-3). Following the work of 
Muchuru et al. (2016), global climate models’ output were also used as predictors of the MAM 
volumes. The first of these used the ECHAM4.5-DC2 coupled model’s 850 hPa geopotential 
heights (Muchuru et al., 2016), a useful proxy for rainfall totals, of the NDJ season as predictor 
in a multiple linear regression model (graph bottom left of Figure 7-3). The second of this type 
of model used the GFDL’s (GFDL-CM2p5-FLOR-B01 of the North American Multi-Model 
Ensemble) precipitation fields as predictor in a multiple linear regression model (graph bottom 
right of Figure 7-3). However, neither of these two models were able to outperform the simple 
linear model. It is noted that the lead-times of the latter  
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Figure 7-2 Normalised time series of NDJ rainfall and MAM dam volumes 
 

 
 
Figure 7-3 Cross-validation results from the three models predicting MAM dam 
volumes. Also included is the observed rainfall and dam volumes for easy comparison 
(top left graph). The rank correlation and its statistical significance between the two 
time series on each graph is shown near the top of each graph. 
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two models (predictions in October) were quite a bit longer than the lead-time of the simple 
model (predictions in February). For all three models, a 3-year-out cross-validation design was 
used for model testing. 
 
The simple linear model was subsequently used to demonstrate an operational utility of such 
a forecast system that could potentially be used by a manager of a dam. Probability of 
exceedance (PoE) forecasts were produced for the last five MAM seasons after training the 
linear model with data up to 2004. These MAM volume forecasts would only be produced in 
February after the NDJ rainfall totals have been recorded.  
 
A demonstration of how to use the PoE forecasts is given as follows: The climatological (long 
term) probability (represented by the thick black curve in Figure 7-4) for a storage volume of 
2.5 x 105 Ml is 45%. However for the 2007 MAM season (orange curve), that probability 
increases to almost 80%. In contrast, for the 2009 season (green curve), the probability 
decreases to about 30%. 
 

 
Figure 7-4 Probability of exceedance curves for five MAM seasons 
 
7.3. Conclusion 
 
A number of forecast models for peak-season dam volume predictions were constructed and 
tested for the Goedertrouw Dam in the Mhlathuze catchment. Predictability, albeit restricted, 
was demonstrated, especially with the use of a simple linear regression model that used NDJ 
observed rainfall over the catchment as a predictor of MAM storage volume. A scheme was 
also proposed to allow a dam manager to make use of seasonal forecasts to estimate 
probabilities for certain dam volumes being reached in a coming peak season. 
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CHAPTER 8.  EXPLORING THE POTENTIAL TO PRODUCE SEASONAL 
FORECASTS OF CROP YIELD AND WATER PRODUCTIVITY: A CASE 
STUDY INVOLVING THE AQUACROP MODEL AT EMPANGENI 

Zuma-Netshiukhwi G 
 
ISCW, Agricultural Research Council 
 
8.1. Description of the Empangeni site  

 
The Empangeni site is located at 28°45'10.9"S 31°53'39.1"E within the Mhlathuze catchment, 
and is characterised as having a sub-tropical climate. It contains 8200 ha of rainfed land and 
1100 ha of irrigated land. It has the potential for production of a variety of alternative crops, 
including horticulture, organic sugar, bio-diesel, essential oils, tea production, herbs and 
spices, assorted vegetables and grains. A Google Earth image of Empangeni and its 
surroundings, including cultivated agricultural fields, is presented in Figure 8-1. 
 

 
 
Figure 8-1 Google Earth image of Empangeni and its surrounding 
 
8.2. Description of the Aquacrop model 
 
A brief description of the Aquacrop model was included in Vol. 1 Chapter 4. The reader is 
referred to that chapter for details of the model. 
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8.3. Factors affecting sugarcane productivity at Empangeni 
 
Sugarcane productivity and juice quality are highly influenced by weather conditions dominant 
prior and during the crop growth stages. Sugarcane has essentially four namely: germination 
and establishment phase, tillering phase, grand growth period and ripening phase. Better 
understanding of progressive stages is critical as it aids in efficient water and nutrient 
management toward optimal crop growth. Furthermore, knowledge of phenological growth 
phases is indispensable for ensuring maximum cane yields and sugar recovery. 
 
Sugarcane productivity is highly suitable from sea level to almost 1000 m in altitude. It is 
categorised as a tropical plant, since it is a long duration crop occurring in the tropics and hot 
and humid climatic conditions throughout its life cycle. Like all plants, the critical climatic 
parameters that control sugarcane productivity are temperature, solar radiation and soil water 
availability. The goal of sugarcane producers is to maximize the production of good quality 
sugar. 
 
The optimal production of sugarcane requires the following climatic conditions: a long, warm 
growing season with high solar radiation and rainfall; a frost free season for ripening and 
harvesting; a rainfall amount that ranges between 1100 and 1500 mm with a good distribution 
throughout the season; temperatures that may differ for different crop phases, such as, at 
sprouting of stem cuttings a threshold range between 32°C to 38°C, temperatures above 38°C 
reduce the rate of photosynthesis and increase respiration, at ripening a range of 12°C to 14°C 
are required for the enrichment of sucrose; relative humidity above 80% favours rapid cane 
elongation however, a moderate value of about 50% with controlled water supply is favourable 
during ripening phase; it thrives in areas receiving 18-36 MJ m2, this C4 plant is capable of 
high photosynthetic rates and the stalk growth increases within the range of 10-14 hours 
daylight. It is estimated that around 6350 MJ m2 mean total radiation received in 12 months of 
sugarcane growth, about 60% of intercepted radiation occurred during formative and grand 
growth periods (Ramanujam and Venkataramana, 1999). 
 
Sugarcane is a perennial grass that is very efficient in harvesting radiation, that is, in 
converting the sun's energy into sugar and fibre. Climate at Empangeni is classified as warm 
and temperate with annual rainfall of about 1082 mm and an annual average temperature of 
21.5°C and Köppen-Geiger climate classification of Cfa. The highest average monthly 
temperatures (Figure 8-2) are observed in January (25.2°C) while the lowest average 
temperatures occur in July (17.7°C). The minimum monthly rainfall occurs in July with an 
average of about 44 mm, and the maximum monthly rainfall occurs in the month of March with 
an average of 143 mm (Figure 8-3). Therefore, given the outline of Empangeni’s climatic 
conditions and according to Köppen-Geiger climate classification, the Empangeni location is 
environmentally favourable for sugarcane production. 
  
According to the climate data utilised for the purpose of this investigation (sourced from the 
ARC data bank), which was recorded from 2004 to 2013, the decadal maximum average 
temperature was 27.8°C and the average minimum temperature was 16.6°C. This decadal 
climate data was utilised to analyse sugarcane productivity scenarios using the AquaCrop 
simulation model. The relative humidity for Empangeni ranges from 80% to 98%, which 
provides sufficient atmospheric moisture for sugarcane production. 
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Figure 8-2 Long-term monthly average temperature for Empangeni (ARC-ISCW 
databank) 
 

 
 
Figure 8-3 Long-term monthly rainfall for Empangeni (ARC-ISCW databank) 
 
Soil is the most important medium that all plants require for growth. Sugarcane requires fertile, 
deep and well-drained soils. Humic soils which range from 100 to 150 cm deep with good 
drainage are most appropriate for sugarcane productivity. However, sugarcane can 
successfully grow on diverse soil types ranging from clay loams, heavy clay and sandy soils. 
Salinity in sugarcane induces water stress, which results in premature wilting, scorching of the 
leaves, limited growth, and death of plant. 
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The major role of soil as a medium is to provide anchorage, nutrients, water to the growing 
plant from sprouting to harvesting phase of the plant. In well-drained, deep, loamy soil, a bulk 
density has to be in the range from 1.1 to 1.2 g m-3 and in sandy soils it has to range from 1.3 
to 1.4 g m-3. Ideally, the porosity should be 50% or higher. The criteria to define soils which 
are appropriate for sugarcane productivity are listed in Table 8-1. Poor soil physical conditions 
may be caused by intense mechanisation which leads to soil compaction, and is difficult to 
ameliorate for proper plant growth.  
 
Table 8-1 Criteria to Classify the Aptitude of Soils for Growing Sugarcane (Kofeler and 
Bonzelli, 1987)  

Characteristics Class 
Good Average Restricted Unfit 

Effective depth Deep Medium Shallow Too shallow 
Soil texture  Clayey Medium to clayey Sandy Too sandy 
Relief  Flat Rolling Too rolling Hilly 
Fertility  High Medium or low Too low Too low 
Drainage  Good Medium to 

accentuated 
or incomplete 

Incomplete Excessive or 
deficient 

Restraints to  
mechanization 

Absent Medium Strong Too strong 

Susceptibility  
to erosion 

Low Medium High Too high 

 
To amelioration the effects of soil compaction, it is imperative to consider the application of 
organic manure and/or growing green manure crops. Soil compaction causes reduction in 
porosity which impedes water infiltration and water storage, by increasing the bulk density and 
soil penetration resistance, thus resulting reduced nutrient intake and water uptake. 
Management of soil acidity is crucial, especially in high rainfall areas such as Empangeni. Soil 
acidity in sugarcane production affects the overall sugarcane growth, the quality of the 
produce, final yield and the sucrose content. It is crucial to select suitable cultivars for a specific 
area, since varieties differ in their reactions to soil acidity and salinity. When comparing growth 
phases, germination and early growth phases are more sensitive than later crop growth 
phases. Manipulation of the soil environment allowing soil recovery and proper soil drainage, 
together with growing salt tolerant varieties, provides amelioration measures for improved 
sugarcane productivity.  
 
8.4. Configuration of AquaCrop and simulations based on observed climate 
 
8.4.1. Climate 

From climatic daily data retrieved from automatic weather station located at Empangeni which 
is geographically located at the latitude of -28, 7 longitude of 31, 89 and the altitude of 105 m. 
The retrieved data was for the period from 1st February 2004 to 24th March 2014. The highest 
recorded temperature during this period was 42°C while the lowest recorded minimum 
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temperature was 16.5°C. The highest maximum relative humidity of 98.8% and the lowest 
minimum relative humidity of 63.8%.  AquaCrop simulation model generates three critical files 
using loaded climatic data, which are rainfall data, temperature and reference 
evapotranspiration (Figure 8-4). 

8.4.2. Plant growth 

Crop parameters are strongly influenced by planting and management practices adopted or 
preferred by a specific farmers. Such may be identified as type of planting method, planting 
density that refers to direct sowing or transplanting which determines the initial canopy cover 
and maximum canopy cover as well as the rate of or the time to 90% seedling emergence. 
The ideal time for planting under rainfed conditions in Empangeni is April to May, in provision 
for supplementary irrigation it is the ideal planting time is from February to April. The initial 
canopy cover was estimated at 0.54% at transplanting planting type with the canopy size 
transplanted seedling at 15 cm2 plant-1 which resulted to about 35714 plants ha-1 which is 
equivalent to 3.6 plants cm2. The row planting with row spacing of 1.40 m and plant spacing 
0.20 m. The crop development at canopy maturity which is CCx was estimated at 95%. It took 
the crop 64 days to reach maximum canopy, 330 to reach senescence and 365 days to reach 
harvest phase of the crop (Figure 8-5). The root development maximum depth was reached 
at 81 days with an expansion of 1.8 cm day-1 which is the average root zone expansion. The 
harvest index varied from about 67% and above starting from recovered transplant to harvest. 
Crop development can be defined in calendar days or growing degree days (GDD) which is 
the average temperature take away base temperature (GDD = Tavg – Tbase) which provides 
temperature in °C day, base temperature refers to the temperature below which crop 
development does not advance. 
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Figure 8-4 AquaCrop model imported climatic data for Empangeni 
 

 

Figure 8-5 AquaCrop growth stages in terms of calendar days for Empangeni 



 
 

119 
 

AquaCrop runs for planting date starting from 1 April 2004 show at a rate of 7 mm day-1 at 10 
days internal, at day 20 the water content is below the threshold for crop water requirement. 
Thus indicates that the soil water content is decreasing and has reached three coefficient 
phases. As the planting season progress the soil water content decreases even further and 
the crop canopy does not develop as it should due to water stress. Since water stress affect 
leaf expansion and triggers early canopy senescence. However, the simulation run for planting 
date 1 April 2004 to March 2005 indicated that climatic conditions were optimal for the crop to 
develop throughout the season, and the crop stress coefficient remained at 1. The crop canopy 
was at its optimum until the plantation reached its senescence phase. The biomass production 
reached 70.0 ton ha-1 with dry yield at 24.5 ton ha-1. During the planting period no triggers 
were observed for stomatal closure and early senescence (Figure 8-6). The growing degree 
days for the planting season amounted to 4837.0°C day with the reference evapotranspiration 
that accumulated to 1545.9 mm and rains of 577 mm, thus the evapotranspirative water 
productivity was 2.37 kg (yield) per m3 water evaporated. For the planting season 2005-2006, 
soil water stress was observed starting from day 275 until day 330 whereby a significant 
decline in the crop canopy occurred. This led to a decline in biomass and dry yield to 69.9 ton 
ha-1 and 24.5 ton ha-1, respectively, and the evapotranspirative water productivity increased 
to 2.50 kg (yield) per m3 water evaporated. The growing degree days for the planting season 
amounted to 4926.5°C day with the reference evapotranspiration that accumulated to 1540.6 
mm and rains of 650 mm, (Figure 8-7).  

 

Figure 8-6 AquaCrop simulation run output for planting date April 2004 to March 2005 
for Empangeni 



 
 

120 
 

 

Figure 8-7 AquaCrop simulation run output for planting date April 2005 to March 2006 
for Empangeni 
 

The planting season 2006 to 2007 showed an improved biomass and dry yield of 79.8 ton  
ha-1 and 27.9 ton ha-1 respectively. The growing degree days for the planting season amounted 
to 4756°C day with the reference evapotranspiration that accumulated to 1534.8 mm and rains 
of 799 mm. The evapotranspirative water productivity was observed to be 2.37 kg (yield) per 
m3 water evaporated. Due to even better and conducive climatic condition for planting season 
2007 to 2008, the biomass increased to 80.7 ton ha-1 and the dry yield escalated to 28.3 ton 
ha-1. The growing degree days for the planting season amounted to 4610.5°C day with the 
reference evapotranspiration that accumulated to 1445.4 mm and rains of 1267 mm. The 
evapotranspirative water productivity was observed to be 2.44 kg (yield) per m3 water (Figure 
8-8, 8-9 and 8-10).  

During the 2008 to 2009 crop season, indications were that the biomass produced reached 
70.5 ton ha-1 and the dry yield amounted to 24.7 ton ha-1, the growing degree days for the 
planting season amounted to 4645.0°C day with the reference evapotranspiration that 
accumulated to 1477 mm and rains of 774 mm. The evapotranspirative water productivity was 
observed to be 2.55 kg (yield) per m3 water, no significant daily stresses observed but about 
13% stomatal closure occurred in average crop cycle. The crop productivity in crop cycle 2009 
to 2010 remained at the biomass and dry mass of 76.9 ton ha-1 and 26.9 ton ha-1, respectively, 
without indications of daily stresses and in average crop cycle, but in day 318 a slight decrease 
in rains resulted to a decrease in leaf expansion by 3% and a stomatal closure of 5% was 
detected. In 2009-2010 crop cycle the growing degree days for the planting season amounted 
to 4610°C day with the reference evapotranspiration that accumulated to 1453.2 mm and rains 
of 844 mm. The evapotranspirative water productivity was observed to be 2.49 kg (yield) per 
m3 water (Figures 8-8, 8-9 and 8-10).  
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In 2010-2011 performed incredibly comparing to other years, since the crop cycle the growing 
degree days for the planting season aggregated to 4813.5°C day with the reference 
evapotranspiration that accumulated to 1416.7 mm and rains of 920 mm. The 
evapotranspirative water productivity was observed to be 2.56 kg (yield) per m3 water. The 
calculated biomass increased to 82.0 ton ha-1 with the dry yield of 28.7 ton ha-1, however 
according to AquaCrop the potential biomass is estimated at 83.0 ton ha-1. During crop cycle 
2011 to 2012, the calculated biomass production was 79.1 ton ha-1 with the dry yield of 27.7 
ton ha-1 with no stresses encounter, the accumulated growing degrees amounted to 4479°C 
day, reference evapotranspiration at 1408.9 mm and the annual rains of 924 mm, the actual 
produced biomass was equivalent to the potential biomass, thus resulted to the evaporative 
water productivity of 2.46 kg (yield) per m3 water (Figure 8-8, 8-9 and 8-10).  

Under optimal climatic conditions crop productivity is expected to increase significantly, crop 
cycle 2012 to 2013 obtained an increased productivity since the biomass of 82.1 ton ha-1 and 
the dry yield of 28.7 ton ha-1 was observed, with the accumulated degree days amounted to 
4547.5°C day, reference evaporation at 1440.6 mm and the annual rainfall of 1195 mm per 
annum. The optimal biomass produced was the same for the actual produced and the potential 
produce with the evaporative water productivity of 2.60 kg (yield) per m3 water. The crop 
growing cycle 2013 to 2014 was the last crop cycle under investigation, whereby a slight 
decrease in biomass productivity was detected, the biomass and the dry yield was 75.4 ton 
ha-1 and 26.4 ton ha-1 with evaporative water productivity of 2.56 kg (yield) per m3 water. 
Whereby the potential biomass was estimated to be 83.0 ton ha-1 to the actual biomass of 
75.4 ton ha-1, with the growing degrees reaching 4563°C day, reference evapotranspiration of 
1437.7 mm and the annual rains reaching 681 mm (Figure 8-8, 8-9 and 8-10). AquaCrop has 
clear distinction between biomass water productivity and ET water productivity which also 
referred to as water use efficiency (Raes et al., 2009). Water use efficiency which is also 
referred to as transpiration efficiency which describes the essential exchange between carbon 
fixation and the process of water loss that occurs in crops produced under rainfed conditions, 
since water evaporates from open stomata for CO2 attainment. The water use efficiency of 
crop is low as plants lose plenty of water than the comparable units of carbon fixed for 
photosynthesis process to occur within the green plants of the crops. There is a number of 
factors that affect the yield, such as, climatic parameters, soil properties, soil fertility status, 
irrigation, weeds, pests and diseases to mention a few. Biomass water productivity refers to 
the amount of biomass that is attained with a definite quantity of water transpired, expressed 
as kg m-3 of transpired water. As expressed in Figure 8-10, the relationship between crop yield 
and evapotranspiration provides ET water productivity. In comparison for two different planting 
dates, it shows that the water use efficiency was significantly higher for most crop cycles 
except for years 2004, 2006, 2007 and 2011. Therefore, planting date selection has a 
remarkable impact on the final biomass and dry yield produce (Figure 8-8).  
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Figure 8-8 AquaCrop simulation run biomass and dry yield for two planting dates 
 

 

Figure 8-9 Growing cycle annual rains and accumulated growing degree days for two 
planting dates 
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Figure 8-10 Comparison of biomass water productivity for two planting dates 
 

Planting dates selection is determined by the farmer’s farming conditions based on whether it 
is under rainfed or irrigated conditions. The farmers could opt for autumn or spring planting 
with consideration of sequential planting. For this investigation the simulation runs were based 
on the possibilities of early planting and to determine the impact of different planting dates. It 
is critical for sugarcane farmers to consider proper management activities for improved 
biomass productivity. Such management activities based on weed control, proper variety 
selection, green manure introduction, getting weather forecast and climatic predictions, insect 
and pests control, and testing of herbicides.  

8.5. The potential for seasonal forecasts of crop yield and water productivity: 
challenges and recommendations 

 
Agriculture has always been discernible by irregular variations in production because of the 
role played by factors such as weather and climate variability in determining crop yields. 
Therefore, understanding the significant needs, on crop requirements and dependable 
indications of coming crop production have substantial significance for commercial farming to 
be placed on more favourable bargaining position in the market. The need for advance 
knowledge of probable supplies remains a challenge, since farmers could utilise such 
information for financial advantage. Crop forecast relates to the magnitude of production 
based on known facts on a given date, assuming weather forecast and climate prediction 
conditions, and damage from insects or pests to be about the average of the previous years 
(Bezuidenhout and Singles, 2006). Crop forecasting remain the national value as likely supply 
situation for agricultural products exporting to other countries and as a means of assessing 
the level of competition to world market and allow anticipation of marketing difficulties. 
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Undeniably, it is worth mentioning that the significance of a crop forecasting information 
depends mainly on the importance of the role played agricultural commodity in the country’s 
economy. The countries rural agricultural productivity are vitally interested in estimated 
production of competing large-scale producers. The mostly used technique for crop 
forecasting yield per hectare (ha) is calculated from the condition figure based on data from 
years, between the percentage condition figure and the actual yield per ha. The closer crop 
forecasting made to harvest time the easier it is to obtain definite indication of possible crop 
yield. Weather data plays a critical role in devising crop forecasting, thus weather-climate-crop 
relationships remains a crucial factor, regardless of its complexity. 
  
Similarly, to other agricultural commodities, sugarcane industries are vulnerable to uncertainty 
associated with variable climate, which affects the value chain from cane growing to post-
harvesting and marketing (Everingham et al., 2016). According to Spinks (1956), industrial 
crop such as sugarcane, when the raw product is processed, accurate production statistics 
are available almost immediately on the completion of harvest, and therefore yield forecasting 
on sugarcane is little to no significance. Everingham et al., 2008 emphasize to the fact that 
accurate yield forecasts are essential for planning prior selling of annual harvest. In South 
Africa, sugarcane crops are grown under a wide range of agronomic and socio-economic 
conditions, which suggests to the complications and sophistications of approaches required 
for crop forecasting. 
  
AquaCrop 6 simulates the yield response to water on different types of crops as a function of 
water availability and consumption under rainfed, deficit and irrigation conditions. Plant 
production depends entirely on the soil water conditions and its interaction with the plant and 
management systems adopted. AquaCrop attempts to balance accuracy with regard to plant 
physiological processes and soil water budgeting processes, thus it is a water-driven. 
Parameters such as transpiration is calculated and converted into biomass water productivity. 
   
 
Simulations are performed on calendar time, whereby the model uses canopy ground cover 
to calculate transpiration and to separate out soil evaporation from transpiration. Thus, the 
model has no provision for weather forecast and seasonal climate prediction toward further 
statistical analysis for crop forecasting. In the AquaCrop mode, crop responses to water 
deficits are simulated with four modifiers that are functions of fractional available soil water 
modulated by evaporative demand (Ket et al., 2018; Steduto et al., 2008). These modifiers 
are based on plant water stress sensitivity canopy expansion, stomatal control of transpiration, 
canopy senescence, and harvest index. AquaCrop focuses on the use of a relatively small 
number of parameters to balance simplicity, accuracy, and potency on simulations. The results 
generated from AquaCrop are designed to fit the need of extension agents, agricultural 
specialists, economists and policy specialists who use simple models for planning and 
scenario analysis. 
 
Crop-weather relations in different studies have been studied as a means of crop yield 
forecasting. Like adopted by AquaCrop simulation model, this approach, is based on historic 
climatic data and the harvested yield of the same period. In such cases, the techniques is 
rather largely experiential and have no known measure of accuracy. However, zooming into 
sugarcane productivity, which is a unique multi-year crop, and can be harvested annually up 
to 6-7 years without replanting. After an annual harvest, the ratoons grow new stems that are 
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cut the following year. There has been evidence on some farms, whereby, sugarcane is 
harvested continuously over 9 months (Legendre et al., 2000). Such high amount of production 
creates a tremendous need to provide regular crop yield estimates. Complexity becomes 
eminent, since the daily harvest of cut sugarcane must be efficiently transported to a sugar 
mill for processing and ensuring continuous supply to the mills. Another methodology used for 
crop forecasting within the is to leverage Normalized Difference Vegetation Index methods 
which address some of the concerns of scouting and sampling, suffer from reduced reliability, 
accuracy, and scalability. Changing climatic conditions, soil types, varieties and farming 
management practices make it extremely difficult to estimate, accurately, yield for sugarcane 
over very large areas. Nevertheless, NDVI-based metrics and sugarcane yield has R2 values 
of 0.48-0.53 (Lofton et al., 2012).  
 
Further research is desirable to develop specific guidelines for distinguishing different canopy 
structures considering the fact that sugarcane is a multi-year crop, since within AquaCrop 
simulates crop canopy for a single planting season. In this study, the authors assumed that 
sugarcane is a seasonal crop and ignored the fact that ratoons re-grow continuously. The 
authors utilized variety reports to determine differences in canopy structure; however, 
numerical guidelines that take into account physiological characteristics of each variety, such 
as leaf angle or length of leaf to the first bend, would provide a more precise method of 
separating sugarcane varieties. In addition, due to limitations associated with NDVI and the 
lack of provision to utilize seasonal rainfall probabilistic data on AquaCrop, further research is 
recommended to investigate other methodologies or techniques to develop guidelines on 
sugarcane crop forecasting.  
  
The development of a comprehensive systems approach that is capable of running crop model 
simulations using historical climatic data, and capable of incorporating seasonal climate 
forecasts, to produce crop forecasts and improve risk management and decision-making 
capability across the sugarcane industry, is recommended. The challenge with incorporating 
seasonal climate forecasts is that they are frequently issued as a seasonal total (rainfall) 
and/or mean (temperature), whereas a model such as AquaCrop requires and daily climatic 
time series as input. This presented a challenge to this component of the project that could 
not be resolved within the time and resources available. 
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CHAPTER 9.  EFFORTS TO UNDERSTAND AND REDUCE 
UNCERTAINTIES AND ERRORS IN AGROHYDROLOGICAL 
FORECASTING 

1Morris F, 2Lumsden T, 1Toucher M and 1Schulze R 
 
1 CWRR, University of KwaZulu-Natal 
2 Council for Scientific and Industrial Research 
 
9.1. Background 
 
Aim 7 of the project had the objective of attempting to understand and possibly reduce 
uncertainties and errors in agrohydrological forecasts. The efforts to address this aim began 
with evaluating the 7 day rainfall and temperature forecasts (described in Chapter 3). 
Quantifying and appreciating the error in the weather forecasts is an important aspect of 
understanding the error in the resultant agrohydrological forecasts. The second effort in the 
theme of reducing error and uncertainty relates to model initialization. This is discussed next. 
Finally, the benefit of incorporating temperature forecasts into agrohydrological forecasting (in 
place of historical mean temperatures) is investigated as another effort to reduce forecasting 
errors. 
 
9.2. Evaluation of medium range numerical weather prediction rainfall and 

temperature hindcasts for agrohydrological forecasting 
 
Errors and uncertainties in agrohydrological forecasting originate from the meteorological 
forcings used as input to application models, other model input parameters, the assumed initial 
hydrological conditions (e.g. soil moisture content and reservoir levels) from which the forecast 
is run, model structure and processes represented as well as all related observational data 
used in calibration and validation (Block et al., 2009; Thiboult et al., 2016; Kusangaya et al., 
2016). Additionally, these uncertainties may vary with catchment characteristics and forecast 
lead time, however, it is commonly accepted that the greatest uncertainty stems from the 
observed and forecast input values (Emerton et al., 2016; Liu et al., 2012; Fekete and 
Vörösmarty, 2002) which are used to drive agrohydrological models and generate quantitative 
information. 
 
Evaluations of the forecasts are usually undertaken from a meteorological/climatological 
perspective which is different to a hydrological perspective in terms of how risks, uncertainties 
and errors are viewed (Pappenberger et al., 2008). For example, in terms of scale, 
meteorologists and climatologists focus on synoptic scales, while hydrologists are concerned 
with the scales at which decisions are taken and adaptation options should be made (Schulze 
et al., 2014; Pappenberger et al., 2008).  
 
Owing to these differences, the extent to which weather forecasts are beneficial in hydrological 
forecasting depends considerably on the ability of the Numerical Weather Prediction (NWP) 
model used to produce the forecasts being able to resolve scales and processes relevant for 
hydrological applications, and whether or not the surface hydrology in the catchment is 
dominated by rainfall. For agrohydrological applications, the evaluation of weather forecasts 
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is aimed at understanding the nature of the forecasts errors. For example, with rainfall, the 
ability of the forecasts to capture various threshold magnitudes (light vs heavy) as well as 
sequences of wet days and dry days above and below specific thresholds is important in terms 
of irrigation scheduling and in influencing antecedent soil moisture conditions. In terms of 
temperature, the ability of forecasts to correctly capture maximum and minimum temperatures 
and sequences thereof affects the estimations of second order derivatives such as potential 
evaporation and forecasts of temperature related warning indices, for example veld fire 
conditions, heat stress indices, heat waves and frost events. 
 
Accurate weather forecasts have the potential to reduce the uncertainty in the inputs to 
agrohydrological models, and can greatly improve the quality of the generated forecasts 
(Shrestha et al., 2013). This study therefore aims to evaluate medium range (7 day) rainfall 
and maximum and minimum surface temperature hindcasts generated by the variable 
resolution CCAM model for the Mhlathuze catchment in KwaZulu-Natal, South Africa. The 
evaluation is conducted from a hydrological perspective, with a view to informing the 
generation of agrohydrological forecasts from the CCAM forecasts. With an understanding of 
the associated errors and uncertainties related to weather forecasts, there can be an improved 
understanding of the errors and uncertainties associated with the generated agrohydrological 
forecasts. 
 
9.2.1. Observed data 

A representative weather station was selected per quinary catchment to compare its record 
with the weather hindcasts. This comparison was conducted at quinary catchment scale as 
this is the scale at which agrohydrological modelling and forecasting is to be performed. 
Requirements for the selection of representative “driver” stations per quinary catchment were 
based on the need for; high quality and reliable records, reasonable historical record lengths 
(i.e. more than 20 years), currently active stations (for operational forecasting purposes) and 
stations representative of both the mean altitude and annual and monthly rainfall of the 
catchment. The representivity of the driver stations in terms of annual and monthly catchment 
rainfall was verified by making reference to the gridded historical rainfall surfaces developed 
for the country by Lynch (2004). 
 
The observed daily rainfall and temperature (maximum and minimum) data for each quinary 
catchment were sourced from a total of 12 climate stations within and around the Mhlathuze 
catchment for the study period from 15/08/2013 to 15/10/2016. Driver stations included both 
automatic weather stations and raingauges from the South African Sugarcane Research 
Institute (SASRI) and the South African Weather Service (SAWS) (Table 9-1). Not all of the 
selected driver stations had daily temperature data. For these stations, daily maximum and 
minimum temperatures were estimated using data from nearby surrounding stations  with the 
same altitude that were too far away to represent  a quinaries rainfall. Published regional 
adiabatic lapse rates for monthly means of daily maximum and minimum temperatures (in 
°C/1000 m) were applied to the data from the surrounding stations to estimate temperatures 
at the driver stations (Schulze, 1995) 

  



 
 

129 
 

Table 9-1 Selected driver stations per quinary catchment 
 

Station 
number 

Station 
altitude 
(m.a.s.l.) 

Quinary Quinary Area 
(Km2) 

Quinary average 
Altitude (m.a.s.l.) 

0337382 W 770 W12A1 149.51 1257.29 

0303695 W 800 

W12A2 381.96 1026.68 
W12C2 243.85 639.21 
W12C3 165.90 374.10 
W12D2 50.91 328.69 

0303534 S 636 

W12A3 94.25 748.03 
W12B1 20.81 862.52 
W12B2 295.02 601.97 
W12B3 173.72 366.75 
W12C1 162.61 906.87 
W12D1 67.91 584.34 
W12E1 54.36 341.95 
W12E2 69.17 211.89 

0303711 S 581 
W12B1 78.64 862.52 
W12B1 90.45 862.52 
W12D2 62.59 328.69 

0304201 S 122 
W12D3 349.47 138.56 
W12G1 47.75 395.56 
W12G3 175.03 149.34 

0304015 S 118 W12D2 62.49 328.69 

0304705 S 102 
W12E3 126.26 91.26 
W12F1 26.63 107.90 
W12F2 56.24 63.80 

0304680 S 24 W12F2 39.08 63.80 

0305308 W 35 

W12F3 279.12 20.80 
W12J1 39.40 80.47 
W12J2 38.64 57.83 
W12J2 125.10 57.83 
W12J3 56.96 28.16 
W12J3 73.74 28.16 

0304073 S 201 W12G2 195.29 255.50 

0304700 S 117 
W12H1 31.72 178.20 
W12H3 260.24 56.58 

0305037 W 77 W12H2 195.29 111.26 
 
 
As the comparison of observed and forecast weather is to be conducted at quinary catchment 
scale, the observed rainfall station data were adjusted to better represent the areal rainfall 
over their respective quinary catchments. These adjustments were implemented as 12 
monthly multiplicative factors applied to the daily rainfall station data. These factors were 
calculated as the ratio of the spatially averaged median monthly catchment rainfall to the 
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equivalent median monthly rainfall at the station. The spatially averaged median monthly 
catchment rainfall was determined from the gridded historical rainfall surfaces (one arc minute 
of a degree resolution) developed for the country by Lynch (2004).   
 
Archived hindcasts of medium range (0 to 7 day) rainfall and maximum and minimum 
temperatures, produced at the Council for Scientific and Industrial Research (CSIR) for the 
period 15/08/2013-15/10/2016, were used in the study. (See Chapter 3 for the detailed 
description of the CCAM model). Typically, a quinary catchment falls over two CCAM grid 
boxes (Figure 9-1). 
 

 
 

Figure 9-1 CCAM grid box resolution and selected representative weather stations 
 
9.2.2. Method used to evaluate the skill of rainfall forecasts 

It must be noted that the number of quinaries controlled by the same station is hydrologically 
significant as it implies that each of the quinaries will be given the same value on a given day 
(Schulze, 2014). This is specifically for multiple quinaries with only one representative station 
within the area, for example the high altitude quinaries. Due to the limited number of selected 
driver stations, one driver station was selected for more than one quinary based on the 
selection criteria specified above. Additionally, a station only covers an area of 0.0005 km2 
within a catchment (Schulze, 2014) which is highly variable climatically and are also subjected 
to numerous random and systematic measurement errors. Nevertheless, ground observations 
have long been accepted as the most realistic representation of actual rainfall available. With 
this in mind, an error envelope of 1 to 10% above or below the daily weather observations are 
assumed to be “correct” forecasts for this exercise. 
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Comparisons were conducted per station by comparing the station adjusted rainfall values 
and the average forecast values per quinary. Average rainfall forecasts for each quinary (Fc) 
is computed by weighting each rainfall forecast (Fi) at the grid cell I by the fraction of the 
quinary area within the grid cell i and given by: 

  
 
Where Ai is the area of catchment within the grid cell i, Ng is the number of the grid cells 
covered partly or fully by the catchment. An initial evaluation of the 7 day CCAM rainfall 
forecasts was conducted for the Mhlathuze catchment as a whole. This evaluation was 
focused on determining the frequencies of daily forecast errors for different classes of error. A 
spatial analysis evaluating the quantitative errors per quinary catchment was then undertaken. 
An analysis of the differences between the observed and forecast time series’ in terms of the 
frequency of occurrence of events of varying magnitudes, was undertaken. The selection of 
the event magnitudes was based on a preliminary evaluation of the observed rainfall data 
during the study period, and also considering the general agricultural and water resource 
management needs listed in Table 9-2. Differences in the total number of selected wet and 
dry day sequences between the observations and forecasts for the study period were also 
evaluated. A rainday in this study is defined as one in which more than 1 mm of rainfall is 
observed. 
 
Table 9-2 Selected rainfall threshold magnitudes and associated agricultural and water 
resources management decisions (adapted from Lumsden and Schulze, 2012) 
 

Threshold Agricultural user need Water Resources management 
decisions 

No Rain - Light 
Rain (1 to 10 mm) 

Land preparations 
Crop production activities; 
Livestock management 
and movement  
Controlled burning  

Irrigation water allocations and 
scheduling,  
IFR low flow releases,  
reservoir management,  
water poverty release alleviations;  
estimations of antecedent soil 
moisture conditions,  

Moderate Rain  
(10 to 20 mm) 

Crop production activities 
Irrigation scheduling  

Antecedent soil moisture conditions, 
irrigation scheduling  

Heavy Rain  
(20 to 40 mm) 

Crop protection from 
damage 
Infield machinery removal  
Livestock protection  
Protection of topsoil from 
removal due to runoff or 
soil erosion.  
Protection from lightning 
and hail. 

Runoff and stormflow generation, 
Flood management; Reservoir 
inflows timings, Safety releases from 
reservoirs, landslides, Storm surge 
analysis in rivers  

Extreme Rain  
(>40 mm) 
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9.2.3. Method used to evaluate the skill of temperature forecasts 

Differences between the observed and forecast temperature values (daily maximum and 
minimums) were evaluated using the same method as the daily rainfall forecasts. An initial 
evaluation focused on determining the frequencies of daily temperature forecast errors for 
different classes of error for the catchment. This was followed by a spatial evaluation of 
quantitative errors per quinary catchment. For a maximum or minimum temperature forecast 
to be considered as “correct”, a maximum error allowance of 1°C (above and below) was 
assumed. An analysis of the differences between the observed and forecast time series’ in 
terms of the frequency of occurrence with which temperatures fall within defined threshold 
intervals, was then undertaken. The threshold intervals were selected based on perceived 
user needs and preliminary analysis of observed temperature data across the catchment 
(Table 9-3). 
 
Table 9-3 Selected maximum and minimum thresholds 

Maximum T Threshold (°C)  
Minimum T Threshold 

(°C) 
         27 to 32  <0 
        32 to 35  0 to 5 

          >35  
5 to 10 

10 to 20 
 
 
9.2.4. Verification scores 

No single evaluation score is adequate to evaluate the accuracy of NWP model forecasts, and 
therefore forecast errors per for the study period were evaluated using a total of five  commonly 
used continuous verification scores, as outlined in  Table 9-4  below. 
 
Table 9-4 Outline of selected verification scores 
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The selected scores were calculated for the entire time series for each of the variables (rainfall 
and maximum and minimum temperature). 

9.2.5. Results 

9.2.5.1. Rainfall 

The CCAM model was found to be accurate in forecasting more than half of the observed daily 
rainfall events during the study period in terms of occurrences and magnitudes. A total of 
10.91% were correctly forecast. The largest percentage of incorrect forecasts were found in 
the 10 mm over-estimation class equating to 67.41% followed by a total of 16.27% 
underestimations of 10 mm. Percentage frequencies of under- and over-estimations greater 
than 10 mm accounted for less than 5% (Figure 9-2). The average magnitude of forecast error 
over the catchment as a whole, represented by the RMSE was 7.507 mm with a mean 
difference of -1.36 mm between forecasts and observed values. A low linear association of 
0.1 is shown over the catchment as well as a low overall measure of agreement (0.16) and 
accuracy between forecasts and observations (Table 9-5). Spatial variations of the models 
performance per quinary were then evaluated. 
 

 
 
Figure 9-2 Frequencies of daily rainfall forecast errors for different classes of error 
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Table 9-5 Verification scores for the catchment as a whole 
 

Verification score Equation 

RMSE 7.507 

BIAS -1.36 

Spearman’s Rank correlation 
coefficient 

0.105 

Agreement index (𝑑𝑑) 0.16 
  

Accuracy 0.115 
  

 

 

 
 
Figure 9-3 Verification scores per quinary a) Accuracy, b) RMSE, c) Mean error and d) 
agreement index 
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Verification scores calculated per quinary in Figure 9-3 showed large spatial variations across 
the catchment. Quinary W12D1 showed the highest proportion (0.45) of observations equal to 
forecasts represented by the accuracy score for the study period. The lowest forecast 
accuracy score of less than 0.1 was shown in coastal low altitude quinaries W12J2 and 
W12J3. RMSE values per quinary showed a maximum of 10.64 mm for quinary W12H1 and 
a minimum of 2.44 mm for quinary catchment W12C2. Mean errors per day or bias showed 
an overall under-estimation across the catchment with only two quinaries (W12A1 and 
W12A3). Maximum over- and under-estimations of 1.64 and 2.46 mm were shown in quinaries 
W12A3 and W12H1 respectively.  A generally low overall agreement between forecasts and 
observed values per quinary was shown with the highest calculated agreement index of 0.25 
in quinary W12C1 and the lowest agreement index of 0.1 for quinary W12G2.  
 

 
 
Figure 9-4 Percentage differences between daily rainfall forecasts and observations in 
terms of the frequency of occurrence of events of varying magnitudes: a) Light Rainfall 
(1 to 10 mm) b) Moderate Rainfall (10 to 20 mm) c) Heavy Rainfall (20 to 40 mm) and d) 
Extreme Rainfall (> 40 mm). 
 
The ability of the CCAM rainfall forecasts to represent the frequency of occurrence of different-
sized rainfall events for the study period was analysed for each quinary catchment and 
represented as percentage differences from the observed frequency. Dark blue and dark 
brown colours indicate higher percentages of over- and under-estimations by the model, 
respectively (Figure 9-4a to d). The forecast occurrences of light rainfall magnitudes (1 to 10 
mm) significantly under-estimate the observed number of occurrences in the most high and 
middle altitude inland quinaries with underestimations reaching a maximum of 40% and 60%, 
respectively (Figure 9-4 a). For the low altitude and coastal quinaries the model has a 
tendency to over-estimate the frequency of events by over 60%. In three low altitude quinaries 
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(W12E3, W12F1 and W12F2), the forecasts were able to correctly (-1 to 1%) forecast the 
frequency of events for the study period. 
 
Lower percentage differences were found for the moderate rainfall category (10 to 20 mm) 
compared to the light category (Figure 9-4 b). However, similar spatial variations were seen 
in relation to altitude across the catchment. The frequency of occurrence for  moderate rainfall 
was under-estimated in the headwaters of the catchment by a maximum of 40%, while in some 
middle and low altitude coastal catchments frequencies were over-estimated by 10 to 20%, 
with only a single quinary catchment (W12B1) being correctly forecast for the study period. 
 
The forecast frequency of heavy rainfalls (20 to 40 mm) for the catchment showed similarities 
to that of the moderate rainfall category in terms of the deviation from observations (Figure 9-
4c). Additionally, forecasts for the heavy rainfall category showed the highest number of 
correctly forecast quinary catchments (W12A1, W12D3, W12G1, W12G2, W12G3),  
 
Forecasts of the frequency of extreme rainfall events (> 40 mm) showed a distinctly different 
spatial pattern across the catchment (Figure 9-4 d). Coastal catchments were under-estimated 
by less than 10% and a majority of the middle-altitude inland catchments were over-estimated 
by less than 10%. Similar to the heavy rainfall events, the quinary catchment with the highest 
altitude (W12A1) was correctly forecast. 
 
The frequency of forecast sequences of consecutive wet days across the catchments showed 
a predominant underestimation, with the largest deviations relative to observations being 
evident for two and three day sequences during the study period (Figure 9-5a to d). The 
relationship between altitude and errors in the rainfall forecasts continued to be evident. The 
CCAM model has a tendency to under-estimate the frequency of consecutive wet day 
sequences for the middle and high-altitude catchments, and overestimate frequencies for the 
coastal catchments. Percentage differences between forecasts and observations showed an 
increase for shorter sequences of consecutive wet days, with the maximum under- and over-
estimations observed for sequences of two days (deviations of over 60%). The model was 
found to perform best for forecasting sequences of four consecutive wet days, where the error 
(underestimation) for the upper high-altitude quinaries was less than 10%, and a total of two 
quinary catchments (W12A2 and W12H3) were correctly forecast (Figure 9-5 c). In contrast, 
for forecasts of three consecutive wet days, coastal catchments showed a slightly higher over-
estimation with deviations being in the range of 20% to 40%. The frequency of occurrence of 
sequences of two consecutive wet day with rainfall of over 10 mm per day, was then analysed 
(Figure 9-5 d). However, evaluation of the map revealed no clear spatial pattern in the 
differences between forecasts and observations across the catchment.  
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Figure 9-5 Percentage differences between forecast and observed frequencies of 
occurrence of sequences of consecutive wet days: a) Two consecutive wet days b) 
Three consecutive wet days c) Four consecutive wet days d) Two consecutive wet day 
sequences with rainfall >10 mm per day. 
 
The percentage difference between the forecast and observed frequency of consecutive dry 
day sequences showed a clear decrease in magnitudes (i.e. in both over- and under-
estimations) with an increase in the number of consecutive dry days (Figure 9-6a to f). The 
opposite spatial patterns were observed as compared to the number of consecutive wet days. 
Coastal catchments are under-estimated for all consecutive dry day categories (two to seven), 
with the highest under-estimations observed in the five day sequences (errors of over 60%). 
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Figure 9-6 Percentage differences between forecast and observed frequencies of 
occurrence of sequences of consecutive dry days:  a) Two consecutive dry days b) 
Three consecutive dry days c) Four consecutive dry days d) Five consecutive dry days 
e) Six consecutive dry days f) Seven consecutive dry days. 
 
 
9.2.5.2. Temperature 

Examination of the departure of the CCAM maximum and minimum daily temperature 
forecasts from the corresponding observations showed that, in general, there was a higher 
level of forecast accuracy for minimum temperatures. Both maximum and minimum 
temperatures showed higher frequencies of over-estimations within the range of 1 to 10°C 
than under-estimations within the same error category. Maximum temperatures, however, 
showed higher frequencies of over- and under-estimations relative to observations than 
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minimum temperatures. The frequency of errors greater than 10°C (for both maximum and 
minimum temperatures) were found to be below 5%, with maximum temperatures showing 
higher frequencies in all error categories. (Figure 9-7). 
 

 
     Error Classes 
 
Figure 9-7 Frequencies of daily maximum and minimum temperature forecast errors for 
different classes of error 
 
Daily differences between the observed and forecast maximum and minimum temperatures 
per quinary showed large spatial variability (Figure 9-8 a and b). The spread of the errors 
overall are larger for maximum temperatures as compared to minimum temperatures as 
shown by the larger IQR’s. Errors reach maximum over and underestimations of 17.77°C and 
10.81°C for minimum and maximum temperatures respectively. 
 
Maximum daily temperatures are predominantly over-estimated by 3.39°C on average. 
Overestimations are placed mainly over middle and inland catchments while average under-
estimations of 1.53°C occur over high altitude and low coastal catchments. Similarly minimum 
daily temperatures are predominantly underestimated across the catchment by 3.88°C on 
average placed mainly over the lower altitude catchments. In general, the spread of forecast 
errors show a decrease with altitude for both maximum and minimum daily temperatures. 
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Figure 9-8 Box plots showing the variation in the daily differences between observed 
and forecast maximum temperatures per quinary catchment 
 
The ability of the CCAM maximum temperature forecasts to represent the frequency of 
occurrence of different ranges of temperature for the study period was analysed for each 
quinary catchment and represented as percentage differences from the observed frequency 
(Figure 9-9 a, b and c). For the temperature range (27 to 32°C) an overall under-estimation 
across the catchment was found, with the largest errors (of over 60%) being evident in the 
coastal catchments. For the 32 to 35°C category, a distinct spatial pattern between the high 
altitude catchments and the middle and lower coastal catchments can be seen. In three high 
altitude catchments, the frequency of occurrence was correctly forecast for the study period 
while a general over-estimation (peaking at 40%) was observed in surrounding quinary 
catchments. In the highest altitude catchment W12A1, the frequency of occurrence was under-
estimated by less than 10%, while the lower altitude and coastal catchments were under-
estimated by less than 20% and 40%, respectively. For the critical extreme temperature 
threshold of more than 35°C, a large area of the catchment was characterized by over-
estimations of the frequency of occurrence, with the errors mainly being in the range of 20 to 
40%. The frequency of occurrence in the coastal catchments was under-estimated by a 
maximum of 40%, while in the highest altitude catchment the frequency was under- 
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Figure 9-9 Percentage differences between  maximum temperature forecasts and 
observations in terms of the frequency of occurrence of temperatures in the range of:  
a) 27 to 32°C, b) 32 to 35°C and c) >35°C 
 
estimated by less than 10%. The frequency of occurrence of extreme temperatures was 
correctly forecast in a total of four quinary catchments during the study period. 
 
With the exception of the middle-altitude quinary catchments, the Mhlathuze catchment lies 
within a frost free area (Schulze et al., 2016). Minimum temperatures below 0°C are not 
common. The frequency of temperatures in this range were over-estimated in the coastal and 
highest altitude catchment (W12A1) by a maximum of 10% (Figure 9-10a). The frequency with 
which temperatures in the range 1 to 5°C were forecast for the study period was over-
estimated by 10 to 40% for the middle-altitude and coastal catchments (Figure 9-10b). A larger 
portion of the lower altitude catchments were under-estimated for the 5 to 10°C minimum 
temperature interval (Figure 9-10c). A distinctly different spatial pattern was observed for the 
10 to 20°C minimum temperature interval, with a 10 to 20% under-estimation being evident in 
the coastal catchments, a 20 to 40% under-estimation in the middle catchments, and an over-
estimation in high altitude catchments of 20 to 40% (Figure 9-10d). 
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Figure 9-10 Percentage differences between minimum temperature forecasts and 
observations in terms of the frequency of occurrence of temperatures in the range of:  
a) <0°C, b) 0 to 5°C and c) 5 to 10°C and d) 10 to 20°C 
 
9.2.6. Discussion 

Rainfall 
The limitations of applying NWP models in forecasting rainfall in South Africa are well 
documented. The highly variable spatial and temporal rainfall patterns makes it one of the 
most difficult variables to predict (Davis-Reddy et al., 2016; Wolski et al., 2017; Davis, 2011). 
In the case of the CCAM model used in this study, the model was able to correctly forecast 
both the occurrence and magnitudes of daily rainfall over the Mhlathuze catchment for more 
than half of the study period. 
 
The limitations of applying NWP models in forecasting rainfall in South Africa are well 
documented. The highly variable spatial and temporal rainfall patterns makes it one of the 
most difficult variables to predict (Davis-Reddy et al., 2016; Wolski et al., 2017; Davis, 2011). 
In the case of the CCAM model used in this study, the model was able to correctly forecast 
both the occurrence and magnitudes of daily rainfall over the Mhlathuze catchment for more 
than half of the study period, distinct spatial patterns across the catchment in relation to 
altitude was shown. In general, most of the errors fell below 10 mm, with higher frequencies 
and magnitudes evident in over-estimations, than in under-estimations. In spatial terms, the 
model over-estimated rainfall in the lower altitude and coastal catchments, while in the higher 
altitude catchments rainfall was under-estimated. Although the errors were small, the 
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difference between the short and longest daily rainfall forecast lead times was higher in the 
high altitude catchments, than at the coast. This indicates a higher accuracy for daily rainfall 
forecasts at a shorter lead time in high altitude catchments. In contrast, coastal catchments 
showed lower accuracy 
 
The ability of the CCAM model to accurately forecast selected rainfall intervals showed similar 
results to studies evaluating the model from a purely meteorological perspective. For example, 
light rainfall occurrences over the catchment, defined as 1 to 10 mm in this study, showed the 
largest percentage differences between forecasts and observations when compared to other 
rainfall intervals. This is in accordance with the documented low skill of the model in predicting 
the occurrence of small rainfall values (i.e. 1 mm/day or less) over the country (e.g. Landman 
et al., 2009). Additionally, the frequency of the interval is largely under-estimated in the high 
altitude catchments and significantly over-estimated in the coastal catchments. The over-
estimation of light rainfall is often associated with the limitation of NWP models in representing 
low level stratiform clouds (Shrestha et al., 2013; Golding, 2000).However, the under-
estimations at a local catchment scale of light rainfall thresholds over high altitude areas found 
in this study are different to the overall over-estimations found by Landman et al., 2009 over 
the interior areas of the country. This highlights the relevance of the size of the selected 
verification area, which is typically different for meteorological and hydrological studies. 
 
The under representation of heavy and extreme rainfall events for the study period over the 
catchment largely influences the results, and suggests that the under-estimation of heavy 
rainfall thresholds in high altitude areas of the country such as the eastern escarpments is still 
evident on a catchment scale. These are major runoff producing storms and are particularly 
important to capture for the accurate estimation of water availability in a catchment. 
 
The ability of the CCAM model to forecast sequences of wet and dry days is particularly 
relevant in terms of representing antecedent soil moisture conditions. Representing 
antecedent soil moisture conditions is important for purposes such as hydrological model 
initialization and for forecasts related to future irrigation scheduling within the catchment. The 
model showed a higher capability of forecasting sequences of wet days beyond two 
consecutive wet days. The highest accuracy was for four consecutive wet days and the least 
accuracy was for two consecutive wet days. A similar increase in accuracy with longer 
sequences was observed for dry day sequences. The CCAM model was able to forecast 
seven consecutive dry days better than the shorter sequences, with the lowest accuracy 
observed for a two day sequence. Lower accuracy for two consecutive wet or dry days could 
have implications in terms of soil moisture estimations, which are important for crop growth 
stages such as germination. The ability to more accurately forecast longer sequences of 
consecutive wet or dry days has the potential to improve decision making in the context of 
irrigation water allocation and irrigation scheduling 
 
Temperature 
The implications on the secondary derivative estimations of temperature such as potential 
evaporation, can be large. The number of studies focused on the evaluation of daily maximum 
and minimum temperature forecasts over the country are significantly less than those focused 
on rainfall. When considering the capability of the CCAM model to forecast daily maximum 
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and minimum temperatures, in general, a lower accuracy was found for maximum temperature 
forecasts when compared to minimum temperature forecasts. The model over-estimates 
maximum temperatures over the high altitude catchments and under-estimates these 
temperatures towards the coast. Minimum temperatures are predominantly under-estimated 
across the catchment by a small amount (less than 10°C). 
 
The air temperature at 2 m above the ground is one of the main meteorological parameters 
forecast by NWP models, but this prediction is closely tied to the topographic position assigned 
by the model to each grid point. Air temperature is strongly affected by topography, and large-
scale models can be a source of strong bias in complex terrain. This can be the reason for the 
higher variability of the both maximum and minimum temperatures over higher altitude quinary 
catchments when compared to the coast. 
 
The model shows greater accuracy in forecasting the higher maximum and minimum 
temperature thresholds. For maximum temperatures, the highest accuracy is shown for the 
extreme critical temperature threshold of greater than 35°C, while for minimum temperatures 
the highest accuracy occurs for 10 to 20°C threshold. Opposite spatial patterns of over- and 
under-estimations occur between maximum and minimum temperatures, where maximum 
temperatures are over-estimated and under-estimated at the coast and high altitude 
catchments, respectively. In contrast, for minimum temperatures, the coastal areas are over-
estimated, while for inland areas there is an increase in the frequency of over-estimations with 
an increase in minimum temperatures. However, the opposite spatial pattern was observed 
for the highest minimum temperature threshold.  
   
The present study has enabled a better understanding as to how well the CCAM model is able 
to simulate daily rainfall and surface temperature in terms of spatial patterns and accuracy at 
a local catchment scale. It is known that NWP models are able to better predict large scale 
synoptic systems in comparison to local small scale weather generating systems. In the case 
of the Mhlathuze catchment there are various small scale influences that need to be 
considered. For the high altitude catchments which are the runoff generating areas of the 
catchment, small topographic features of the landscape play a significant role in influencing 
the local weather systems such as the predominant convective processes. At the coast, the 
influence of the warm Mozambique current causes a rise in temperature in the adjacent areas, 
as well as heavy rainfall due to the high rates of evaporation and the prevailing winds which 
are moist. The CCAM model is able to successfully capture the influences of these systems 
in terms of where to place the rainfall and temperature maxima and minima within the 
catchment overall, however, the maxima are over-estimated and minima under-estimated. 
Basing parameterization schemes at synoptic scales cause higher over- and under-
estimations of weather at the local catchment scales at which the forecasts are needed for 
decision making. Further analysis is necessary to understand the accuracy of the model’s 
forecast at higher resolutions, as well as at seasonal and monthly temporal scales, to 
understand the effect on future generated agrohydrological forecasts at a catchment scale. 
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9.3. Reducing uncertainty and error in agrohydrological forecasting through 
improved initialization of ACRU 

 
The need to initialize stores in an agrohydrogical model such as ACRU when producing 
agrohydrological forecasts has been explained in Chapter 6. The benefit of doing so for key 
stores in the model (baseflow and soil moisture) related to the simulation of dam inflows and 
irrigation requirements was also demonstrated. In the case of dam inflows, the initialization of 
baseflow and soil moisture stores in the catchment area resulted in reducing the error in 
forecasts by approximately 65%. This large reduction in error is likely to mainly be attributed 
to the initialization of the baseflow store, since this store commences at zero if it is not 
initialized. In this context it is highly unlikely that any baseflow will be produced over a 7 day 
simulation period, highlighting the critical need for initialization. 
 
The benefit of model initialization (in this case relating to the soil moisture store) when 
forecasting net irrigation requirements were also significant, with reductions in error of 58% 
and 84% for the inland and coastal catchments, respectively. Soil moisture is a key driver in 
the determination of irrigation requirements and therefore the benefits of initializing this 
variable are clear. 
 
A third scenario for model initialization that was not tested due to time constraints would 
involve the use of store values from a previous forecast run, rather than from a historical 
simulation run based on observed weather (as used here). This would represent a scenario 
where up to date weather observations are not acquired in time before generating a new 
forecast, resulting in the need to use store values output from a previous forecast run. The 
forecast error associated with such a scenario would be a relevant line of research in a future 
investigation.    
 
9.4. Assessing improvements in agrohydrological forecasting when incorporating 

temperature forecasts into the forecast methodology 
 
9.4.1. Methodology 

The assessment of potential improvements in hydrological forecasts when incorporating 
temperature forecasts into the forecast methodology was focused at the 7-day forecast range. 
This range was chosen as the relevant weather forecast data were readily available at the 
time of the assessment. The 7-day forecast period spans the short and medium forecast 
ranges (relevant to Aim 1 of the project). The 7-day forecasts include daily values of rainfall 
and maximum and minimum temperature for the 7-day period. The forecasts were generated 
at a grid resolution of 0.15 degrees. 
 
The potential benefit of incorporating temperature forecasts in the development of hydrological 
forecasts (produced by ACRU) was assessed in terms of improvements to forecasts of 
irrigation crop water demand. The focus on irrigation crop water demand was chosen due to 
its strong dependence on evaporation, and thus temperature. Therefore, any improvements 
to the representation of temperature are likely to be evident in the crop water demand 
forecasts. 
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To assess whether there is a benefit to applying temperature forecasts, irrigation demand 
forecasts generated using temperature forecasts were compared to irrigation demand 
forecasts generated using long term mean monthly temperature values. The latter source of 
temperature information is a readily available alternative to temperature forecasts, and was 
used in a previous WRC project (Lumsden and Schulze, 2012). The application of the two 
sources of temperature information was compared against the application of observed 
temperature data. A-pan reference evaporation (a key driver of irrigation demand) was 
calculated using the Hargreaves and Samani (1985) equations for daily (forecast and 
observed) and monthly (long term mean) temperature inputs. 
  
Sugarcane is a major irrigated crop in the Mhlathuze catchment (along with citrus to a lesser 
extent) and formed the focus of the irrigation crop water demand forecasts. Forecasts were 
developed for quinary subcatchments W12D3, W12H3 AND W12F3, these being the 
subcatchments where irrigated sugarcane is grown. 
 
Five discrete 7-day periods were selected from the 2013-2016 forecast data set for the 
evaluation. To minimize the influence of rainfall (which may or may not be accurately forecast), 
the selected 7-day periods had minimal (< 2 mm) rainfall in both the forecast and observed 
data sets. Rainfalls of less than 2 mm, whether concentrated into a single day or spread over 
several days, would be intercepted by the plant and not have any impact on the soil moisture 
and irrigation demand simulations. The 7-day periods were selected to be from October to 
March, when temperatures are warmer and levels of crop water demand are more significant. 
 
The configuration of ACRU referred to in Chapter 4 (based on the NLC data set) was used for 
the simulations discussed here. Variable values, assumptions and sources of information 
specific to the irrigation demand aspects are presented in Table 9-6.  
 
9.4.2. Results and discussion 

The irrigation demand simulations for the five selected 7-day periods are plotted in Figures 9-
11, 9-12 and 9-13 for quinary subcatchments W12D3, W12H3 AND W12F3, respectively. The 
simulations labelled as ‘Forecast Temperature’ and ‘Mean Temperature’ both use forecast 
rainfall, while the simulation labelled ‘Observed Temperature’ uses observed rainfall. As 
discussed previously, both forecast and observed rainfall totals for the 7-day periods are small 
(< 2 mm). 
 
The percentage difference between the ‘Forecast Temperature’ and ‘Observed Temperature’ 
simulations and the ‘Mean Temperature’ and ‘Observed Temperature’ simulations is 
calculated in Table 9-7.    
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Table 9-6 Variable values, assumptions and sources of information specific to the 
irrigation demand simulations 
 

Model 
Component Variable Values or Assumptions Source 

Weather 7-day forecasts of rainfall and temperature on a 0.15 
degree resolution grid CSIR 

 Mean monthly temperature per quinary subcatchment Schulze et al. (2011) 

 Observed rainfall and temperature (Stations 460, 478 
and 51) SASRI Weatherweb 

Crop Crop coefficient: 0.87 (mature crop Richards Bay) ACRU model 
database 

 Interception storage: 2 mm / event ACRU model 
database 

 Critical leaf water potential: -1100 kPa Van Antwerpen et al. 
(1996) 

Soil 
 

Total Available Moisture (TAM): 75 mm (W12D3), 60 
mm (W12H3), 60 mm (W12F3) 

SASRI, Schulze et 
al. (2011)  

(varies with 
subcatchment) 

Management depth: 1 m (W12D3), 0.64 m (W12H3), 
0.66 m (W12F3)  

Irrigation 
Scheduling strategy: Irrigation applied once every 7 
days. The amount applied is that required to restore 
soil water content to the starting level. 

 

 Soil water content at start: 80% of TAM  

 Water availability for irrigation is non-limiting  

 

Net irrigation demand excludes additional water 
required to satisfy spray evaporation, wind drift and 
conveyance losses, but includes water required to 
satisfy interception losses 
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Figure 9-11 Net irrigation demand simulations driven by forecast temperatures, mean 
temperatures and observed temperatures: Subcatchment W12D3 
 

 
 
Figure 9-12 Net irrigation demand simulations driven by forecast temperatures, mean 
temperatures and observed temperatures: Subcatchment W12H3 
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Figure 9-13 Net irrigation demand simulations driven by forecast temperatures, mean 
temperatures and observed temperatures: Subcatchment W12F3 
 
Table 9-7 Percentage differences between the ‘Forecast Temperature’ and ‘Observed 
Temperature’ simulations and the ‘Mean Temperature’ and ‘Observed Temperature’ 
simulations for the five 7-day periods and 3 subcatchments 
 

7-Day Period 
Commencing 

W12D3 W12H3 W12F3 
Forecast 

Temp. 
Mean 
Temp. 

Forecast 
Temp. 

Mean 
Temp. 

Forecast 
Temp. 

Mean 
Temp. 

2013-12-31 15.0 -10.6 7.1 -11.9 -2.4 -12.0 

2015-10-03 27.4 -23.2 32.2 -22.4 24.8 -16.0 

2015-10-17 0.3 -27.5 1.0 -28.3 -4.4 -27.7 

2015-12-29 -0.6 -18.4 -1.8 -16.8 -9.8 -18.5 

2016-03-26 8.0 -18.0 8.9 -18.0 -4.2 -23.9 
 
 
Examination of the plots in Figures 9-11-9-13 and Table 9-7 reveals that for most cases, the 
application of forecast temperatures produces a better irrigation demand forecast than the use 
of mean temperatures. The exceptions to this include the first 7-day period for Subcatchment 
W12D3 and the second 7-day period for all three subcatchments. This result suggests that 
the application of temperature forecasts aids in reducing the error in hydrological forecasts. 
However, by examining 7-day periods that have minimal rainfall in both the forecast and 
observed data sets, it is possible that the selection of 7-day periods was biased towards 
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periods when CCAM was simulating weather conditions well. Thus, the results may represent 
a best-case scenario of the benefit of incorporating temperature forecasts into the hydrological 
forecasting methodology. It is recommended that this analysis be extended to include wetter 
periods having similar forecast and observed rainfall totals. This would show whether the 
benefits of incorporating temperature forecasts are high for wetter conditions too, thus 
revealing insights into how robust the findings presented here are across different moisture 
conditions.  
 
It is noted that the application of mean temperatures always results in lower irrigation demand 
simulations than the use of observed temperatures. If temperatures tend to be warmer during 
dry periods, this could explain why the irrigation demand simulations based on observed 
temperatures were higher (than those based on mean temperatures) for the particular set of 
(dry) 7-day periods assessed in this analysis. 
 
It is possible that other types of hydrological forecasts (for example, streamflow forecasts) 
may show a lower benefit from the incorporation of temperature forecasts, compared to the 
irrigation demand forecasts presented here. This is because irrigation demand is highly 
dependent on evaporation, and thus temperature, while other variables (such as streamflow) 
are more indirectly dependent. 
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CHAPTER 10.  CONCLUSIONS 

1Lumsden T and 2Crespo O 
 
1 Council for Scientific and Industrial Research 
2 CSAG, EGS dept., University of Cape Town 
 
10.1. Volume 2 – SEAMLESS FORCASTS AND SUGARCANE 
 
The work done in the Mhlathuze case study was found to be technically challenging. These 
challenges included the hydrological modelling of the catchment, the development of the 
ACRU/Delft-FEWS forecasting system and attempting to produce seasonal forecasts of crop 
yield and water productivity with the AquaCrop model. 
  
In terms of modelling the catchment (cf. Chapter 4), the operation of the Goedertrouw Dam 
was difficult to capture given the complex system of river releases for downstream irrigation 
and urban/industrial abstractions. Data describing the operation of the system was fairly 
limited, and required a number of assumptions to be made. Thus, the overall time required to 
configure the catchment in ACRU was longer than expected. 
 
While the Delft-FEWS system (cf. Chapter 5) is a powerful tool to enable hydrological 
forecasting (in terms of managing the large amounts of data associated with this activity), it is 
not a user-friendly system to configure. This situation is often found in modeling systems 
where there is a trade-off between utility and user friendliness. Hence the development of 
hydrological forecasting was somewhat delayed in the project. This resulted in there being 
little time within the project to convey final results and explore the implication of these with 
stakeholders. However the technical capacity to use this software that has been developed in 
the team during the project has been very valuable, and will continue to yield benefits in future 
hydrological forecasting efforts.  
 
Another technical challenge experienced was in attempting to apply probabilistic-categorical 
seasonal climate forecasts in AquaCrop to produce crop yield forecasts (cf. Chapter 8). While 
there is value in utilizing a probabilistic climate forecast as uncertainty is quantified in the 
forecasts, models such as AquaCrop are not designed to utilize this kind of information, as 
they require a daily time series of weather information as input. It was thus not possible within 
the timeframe of the project to produce crop forecasts using AquaCrop. 
 
Despite the technical challenges, the results of certain aspects of the agrohydrological 
forecasting in the Mhlathuze were encouraging. This was particularly so for the 7 day forecasts 
of crop water requirements, where the correlations with simulated historical values were high 
(R2 above 0.8 for the two catchments assessed). Although the forecasts of Goedertrouw Dam 
inflows and net irrigation requirements at the 7 day time scale did not perform as well as those 
for crop water requirements, it is still believed they have potential to be useful in decision-
making. Further research is required to evaluate the benefits of such application. 
 
Research into developing seasonal forecasts of storage in Goedertrouw Dam (cf. Chapter 7) 
revealed that there is predictability in autumn storage using the method developed. This 
method involved correlating historical summer rainfall with autumn storage. This correlation 
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was made after analysing seasonal cycles of rainfall and dam storage and determining the 
strongest relationships present in the data. The method is simple to apply and forecasts can 
be produced quickly. A demonstration of how the forecasts could be applied in decision-
making was given. 
 
An alternative approach to producing seasonal dam storage forecasts would be to apply 
seasonal climate forecasts in ACRU. However, this would require downscaling of the seasonal 
climate forecasts to produce daily time series. This challenge was also encountered in the 
application of the Aquacrop model to produce crop forecasts. Methods are available to do this, 
such as through the use of historical analogue weather data or through the application of 
weather generators, however this adds another layer of complexity to the forecasting 
development process. The advantage of adopting this approach is that forecasts could 
potentially be developed for all seasons. The simulation-based approach also allows for 
exploring the potential to change the management of the dam, in response to forecasts,      
 
10.2. OVERALL PROJECT CONCLUSIONS 
 
10.2.1. A worthwhile effort 

From planning to the design and execution of this project, a long path was walked, which we 
believe was a worthwhile process. We started with a challenging research proposal, with 
measurable societal impact potential. This report argues the steps taken, demonstrates the 
knowledge contribution made, and emphasises the need for dedicated engagements. The 
project led to measurable scientific outcomes and youth driven capacity building, former and 
latter accumulating to a successful project, grounding a new vision to improve the integration, 
acceptance and educated use of seasonal forecast information by smallholder farmers. 
 
With a clear research ambition to leverage seasonal forecast information for the benefit of 
smallholder farmers in South Africa, and to do so using numerical tools such as crop models, 
the project positively contributed to a number of advances in knowledge. 

● Local relevance and heterogeneity of conditions 
● Optimal crop decision, per farm types, and across seasonal forecasts 
● Indigenous relevance for reception and assimilation of numerical information 
● Acceptance and Use, and Communication imperatives 
● Remote sensing, and unlocking potential of numerical tools where ground data is 

scarce 
● Empowerment of rural farming communities. 

 
This project is recognising water and agricultural systems, as complex systems evolving at 
the centre of various communities (e.g. academics or farmers), dealing with information of 
varying skills and relevance (e.g. skills of seasonal forecast or relevance of time scale), which 
must be communicated iteratively and faces communications challenges (e.g. language, 
concepts such as uncertainty, trust) and beyond. While importance and provision must be 
made for the inclusion of some extent of all these aspects, we believe the improvement of the 
part we deal with in this report, is taking a measurable role in the development of better 
managed agricultural systems, particularly under global (e.g. population increase, climate 
change) and national (e.g. wealth and food share, economic development) challenges. 
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This project demonstrated the value of using numerical tools, purposefully for the benefit 
smallholder farming communities, with the imperative involvement of rural university and 
extension offices. This process, although clearly still facing challenges for operationalization 
and scaling up, used the right ingredient of such future development. Amongst the multitude 
of ways this work can be taken forward, it seems evident that the success of national scale 
operationalization of this sort of approach must explicitly develop and involve the local 
university-extension link, which in terms will most likely be the owner of the combined 
numerical skills and local heterogeneity relevance. 
 
Despite a number of technological challenges that were encountered in the development of 
agrohydrological forecasts for commercial sugarcane production, the efforts in this activity 
showed some promise. The capacity that has been developed in this pursuit (through 
development and application of relevant tools, etc.) has been valuable, and should be 
maintained going forward to address the challenge of increasing climate variability. 
 
10.2.2. Enablers and barriers 

We do not expect to be exhaustive on the listing of challenging and enabling characteristic of 
such a large effort. The following table (Table 10-1) describes the major topics which had to 
be formally addressed in the application of seasonal forecasts to smallholder farmers. Some 
were foreseen (e.g. language during workshops), some were not and were included in the 
project (e.g. Indigenous Knowledge), some known or not are not part of this project but would 
arise from a continuation, for instance aiming at the up scaling of such an approach. 
 
Engagement likely is the element that has make this project well received with communities, 
and it is our hope that the network built through this project including local universities, 
extension officers and farming communities, will find the sufficient support to continue 
engaging and thus maintaining an active network which over time (longer than a project time 
frame) will benefit the good two way communication that is needed to slowly adapt agricultural 
systems to global challenges. 
 
10.2.3. Lessons and recommendations 

The heterogeneity highlighted in this project is once again emphasized through the different 
audiences, decision makers, systems and consequently the responses to climatic factors. As 
much as better understanding, communication and integration of forecast information is useful 
for any decision maker, the capacity to produce such information and communicate it at a very 
rapid time rate is still technically very difficult, mostly due the large uncertainty involved, as 
well as the technical operationalization of the process, leading to low reliability of its execution 
on a regular basis. While the weather forecasts on (very) short time horizon remain accurate, 
its process through modelling tool does not provide large added value to smallholder farmers, 
while it requires large computation demand, and appropriate  
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Table 10-1 Summary of enablers and barriers 
 

 Challenging characteristics Recommended enabling 
characteristics 

Data 

• At station scale, access 
inconsistent through time 

• At larger scale, consistency in 
space, and systems 
representation 

• Facilitation of renewable 
agreements 

• Remote sensing for scaling up 
and unlocking numerical tool 

Climate-crop 
integration 

• Multiple technical choices with 
related consequences 

• Embedded assumptions, 
uncertainty and hypothesis 

• Hardware capacity held within 
institution 

• Technical skills (climate and 
crop) 

Indigenous 
knowledge 

• Identification of knowledge 
holder 

• relevant/sufficient 
representation of IK 

• Group gathering/workshop 
offering preliminary contacts 

• The researcher goes to the 
farmers 

Remote sensing 
• Technical skills required 
• Specific communication 

challenges 

• Available and easy access 
• Large space and time coverage 
• Potential to unlock numerical 

approach where field data is 
scarce 

Heterogeneous 
systems 

• Local relevance, acceptance 
• High range of “systems” 

• Local characterisation 
• Building of local relevance 
• High level low resolution AND 

ground level high resolution, 
each in their own sphere 
(approach, actors, etc.) 

Engagement 
and 
Communication 

• Language 
• Various stakeholder types 
• Relevance 
• Network 

• Involvement of local 
universities and their 
academics and their students 

• Attracting full range of 
stakeholders (typically 
extension offices in between 
universities and farmers) 

 
interpretation to facilitate its efficient communication and integration in the decision process. 
Although this remains a very interesting and promising research avenue for the future, the 
ambition to progress towards operationalization through better use of forecast information into 
the decision-making of agricultural practices, must account for the added value of the 
information produced, against its cost and reliability of production. At this time, operationalizing 
very short term climate-crop information is very demanding while its benefits for the farming 
communities are limited compared to the value of the original weather forecast. On the other 
hand operationalizing crop-based seasonal forecasts information, while being comparatively 
demanding to produce, offers measurable improvements of the use of seasonal forecast as 
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well as sufficient time to produce it, communicate it, and hopefully integrate it to agricultural 
decisions. 
 
This recommendation obviously must be considered in the light of the user of the information. 
Likely commercial farmers with extensive access to numerical tools and internet, will be much 
likely willing and capable of receiving short-term processed information. On the other hand 
farming communities with limited access to such tools and information on a regular basis, are 
more likely to prefer seasonal time scale information, through the extension offices, and 
consequently better communicated, interpreted, understood and most likely to be integrated. 
While production of useful information, desired information, must be continued, there is no 
doubt that local stakeholder must be involved, including academics in local University, 
extension services, as well as farming communities in order to make this information relevant 
and useful but also to allow for local interpretation, communication and use. As much as the 
process can be run remotely, and the heavy computation should benefit from high computation 
capacities at national, governmental and/or educational institutions, the communication, the 
interpretation and as much expertise as possible must lie within local Universities, local 
government institutions, and ultimately support and encourage the extension offices in their 
communication with the farming communities. 
 
The work in the KwaZulu-Natal case study revealed that there is promise for the application 
of forecast information at a range of time scales, including short-term horizons tailored for 
commercial agricultural sector, usually with greater access and interest for computationally 
intensive forecast information and tools. For sugarcane production for instance, forecasts 
relating to water supply and demand were of the greater interest, since there is already an 
operational crop forecasting system in place. Improved water management (relating to, for 
example, irrigation and dam operations) has the potential to improve crop production and 
profitability. Recommendations going forward include expanding the seasonal forecasts of 
water supply to other seasons (beyond autumn) and the application of simulation modelling in 
this pursuit (in parallel with statistical modelling). Interest in seasonal forecasts of water supply 
extend beyond the sugar industry, with interest being expressed from other catchment’ water 
managers. Work conducted in this project to develop shorter (7-day) forecasts of crop water 
requirements will complement work from another WRC project (K5/2819), the latter being 
focused on producing this information in a smartphone app for the fruit industry. As 
recommended in a smallholder context, the application of remote sensing information in 
modelling would also benefit agrohydrological forecasting in the commercial agriculture 
context, as demonstrated by other services (e.g. FruitLook). 
 
From a technical perspective numerous ways exists to progress forward. We are confident 
that the combination of forecasts and water/crop modelling tools offer a tailored perspective 
on forecast information that allows for specific agricultural decisions. Following this numerical 
direction, we believe the use of remote sensing data and particularly the value thereof in areas 
where there is limited field data, is promising. The explicit use of indigenous knowledge could 
further benefit forecasting studies through an improved description of local systems, as well 
as to communicate changes and recommendations related to climate/agricultural systems. 
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