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ABSTRACT

Riverbed sediment is a vital component of river ecosystems and plays an important role in many 
geomorphological and ecological processes. However, when re-suspension occurs, pathogenic bacteria 
associated with sediment particles may be released into the water column, thus creating a health risk to 
those who use such water for drinking, household and recreational purposes. The aim of this study was 
to investigate the presence of bacterial pathogens Salmonella spp. and Shigella spp. in the Apies River and 
to ascertain whether there was any level of genetic relatedness between river water and riverbed sediment 
isolates of these pathogenic bacteria. A total of 124 water and sediment samples were collected from a site 
located on the Apies Rivers upstream of the Daspoort Wastewater Treatment Works, Pretoria, Gauteng, 
South Africa, between August and November 2014. In order to detect and identify the target bacteria, 
samples were analysed by culture-dependent and culture-independent techniques (quantitative real-time 
PCR). Genetic relatedness was established using Sanger sequencing of the invA gene of Salmonella spp. and 
ipaH of Shigella spp. Results of this study displayed the presence of the target bacteria both in the water and 
sediment of the river. The phylogenetic tree of Salmonella spp. revealed a ≥ 99% and 99% genetic relatedness 
between river water and riverbed sediment isolates for Salmonella spp. and Shigella spp., respectively. The 
degree of genetic relatedness between sediment and water pathogen isolates suggests that these organisms 
could possibly have a common origin and that there could be possible movement of microorganisms 
between the water column and the sediments.
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INTRODUCTION

Many waterborne pandemics are associated with Shigella 
spp. and Salmonella spp. (Threlfall, 2002). The genus Shigella 
contains four species, namely S. flexneri, S. sonnei, S. boydii and 
S. dysenteriae. All four species are responsible for shigellosis or
bacillary dysentery, a disease that causes high fever, neurological 
disturbances and mucus-pyo-hemorrhagic dysentery 
(Sansonetti, 2001). The global burden of shigellosis has been 
estimated to be 150 million cases, with 1 million deaths per year 
recorded in developing countries (Parsot, 2005). Shigella spp. 
are normally found in water polluted with human excrement 
(Saha et al., 2009). The presence of Shigella spp. in drinking
water indicates human faecal contamination. This bacterium is 
of fundamental public health significance because of its great 
pathogenicity. Outbreaks of shigellosis have been associated with
water treatment failures (at times inefficient treatment) in water 
supply systems (Karanis et al., 2007). Such waterborne outbreaks 
often lead to a considerable number of individuals being 
simultaneously affected, and in most cases the outbreak subsides 
when the water supply is adequately treated (Pillsbury, 2010).

The genus Salmonella consists of two species, namely 
S. enterica and S. bongori, each of which contains multiple
serotypes. Most of the disease-causing serovars are from
Subspecies I, with the most important serovars in human

health being Typhimurium and Typhi (Lan et al., 2009). 
Typhoid fever is recognised as a devastating disease in several 
regions in Asia, Africa and South America, while the disease 
is rare in developed countries. In 2000, the global burden 
was estimated to be more than 21 million cases, with up to 
200 000 deaths (Crump et al., 2004). Enteric fever is widespread 
in poor nations, affecting around 12.5 million people yearly 
(CDC, 2005). Waterborne illnesses associated with Salmonella 
spp. are more commonly due to increased faecal pollution 
of water bodies (Levantesi et al., 2012). In South Africa, the 
MDG (Millennium Development Goals) 2013 report pointed 
out that some 3–5 million people still depend on untreated 
water from rivers and springs (UN, 2013). An epidemiological 
study by Niehaus et al. (2011), following an outbreak of 
food-borne salmonellosis after a school function in Durban, 
KwaZulu-Natal, reported that Salmonella enteritidis isolated 
from patients and food samples could not be distinguished 
phenotypically and genotypically. The authors suggested a 
point-source as the origin of the outbreak, with a possibility of 
continued transmission through the water supply.

Several studies have reported on the occurrence of 
Salmonella spp. (Tobias and Heinemeyer, 1994; Touron et al., 
2005) and Shigella spp. (Baums et al., 2007; Skariyachan et al., 
2015; Xiong et al., 2015) in different aquatic sediments, even 
when these were not isolated in the overlying water. A study by 
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Treatment Works (WWTW) effluent discharge point where the 
river is channelled through Pretoria Central and the National 
Zoological Garden of Pretoria.

Sample collection

Water and riverbed sediment samples were concurrently 
collected on a weekly basis from August to November, 
2014 from the sampling point located in the Apies River 
(immediately upstream of the Daspoort WWTP discharge 
point), resulting in a total of 62 water and 62 sediment samples. 
Water and sediment samples were collected using 1 L sterile 
containers as previously described by Abia et al. (2015b). 
Samples were transported to the laboratory in cooler boxes 
containing ice and analyses were performed within 3 h of the 
time of collection.

Culture-based enumeration of Salmonella spp. and 
Shigella spp.

For the culture-based isolation and enumeration of Salmonella 
spp. and Shigella spp., collected sediment samples were tested 
using the membrane filtration (MF) methods according to the 
procedure described in APHA (2001). Prior to the isolation and 
enumeration of these target pathogens, attached bacteria were 
dislodged from the sediments using the method developed by 
Abia et al. (2015a). Briefly, sediment samples were gradually 
transferred to a graduated 1 L Durham bottle containing 
900 mL of 1 × PBS until the 1 000 mL mark was reached, to 
obtain a 10% dilution (v/v). Thereafter the suspension was 
vigorously shaken manually for 2 min as described by Abia 
et al. (2015a), who point out that the water-displacement 
method is important to dislodge attached microorganisms 
from the sediment matrix. In addition, use of this method 
does not influence the growth of target bacteria in the 
subsequent membrane-filtration step. 100 mL aliquots, along 
with 10-fold serial dilutions of the resulting phosphate buffer 
solution, were then analysed using the membrane filtration 
technique according to standard methods (US EPA, 2002). 
Two 0.45 µm filters were used; one was placed onto xylose 
lysine deoxycholate agar (XLD) (Biorad, South Africa) and/
or Salmonella-Shigella agar (SS) (Merck, South Africa) and 
incubated at a temperature of 37°C for 24 h under aerobic 
conditions, and the other was preserved in 1 mL of 15% glycerol 
at 0°C for genetic analysis. Since the desired counts required 
were of the actual water and sediment samples, no enrichment 
step was needed to enhance and multiply the initial bacterial 
counts, as also performed by Wolffs et al. (2006) and Marathe 
et al. (2012). The abundance of cultured Salmonella spp. and 
Shigella spp. was recorded as colony-forming units (CFU) per 
100 mL of water or sediment. Colonies were counted based on 
their morphological features. The culture-based method was 
used for presumptive enumeration only. No isolate from this 
method was used for genetic analysis.

Total bacterial DNA extraction

The preserved filters were thawed and centrifuged for 1 min 
at 12 000 r/min; then total bacterial DNA from pellets was 
extracted using InstaGene matrix (BioRad, South Africa) 
for water samples and ZR Soil Microbe DNA MicroPrep 
(Zymo Research, USA) for riverbed sediment samples using 
their respective manufacturer’s instructions. The quality and 

Baudart et al. (2000) showed that Salmonella trapped in sediment 
particles accumulated in the riverbed during low water levels 
downstream of a river course and were re-suspended during 
storm events. In another study, the loads of Salmonella spp. were 
found to be high in water resources during severe or frequent 
disturbance events (Walters et al., 2007). The presence of these 
pathogenic bacteria of faecal origin poses severe threats to 
environmental and human health, particularly when sediments 
go through natural or human-induced re-suspension, resulting 
in them being transported toward downstream areas (Chapman, 
2013). The presence of pathogenic bacteria in riverbed sediments 
highlights the need to investigate the similarity between river 
sediment and water isolates at genetic level to better understand 
the microbial dynamics between these two matrices.

Real-time quantitative PCR (qPCR) has been used in 
monitoring studies to compare the data acquired by culture-
based techniques, which have been generally used for evaluation 
of bacterial pathogens in environmental samples (Mackay, 2004; 
Robertson and Nicholson, 2005; Kaushik and Balasubramanian, 
2012; Yamahara et al., 2012; Garrido et al., 2013). These molecular 
methods, when applied to DNA purified from environmental 
samples, permit the enumeration of pathogenic microorganisms 
even when dead or in a viable, but not yet cultivable, state (Noble 
and Weisberg, 2005; Lee et al., 2006; Rantsiou et al., 2013). 
Genetic approaches also provide additional information such as 
pathogenicity, especially if the genes targeted are those associated 
with the disease-causing abilities of the organism (Pathak et al., 
2012). As a result, qPCR has been used to enumerate bacteria 
in different sample types, including food (Elizaquível et al., 
2012), soil (Prévost-Bouré et al., 2011), wastewater (Sidhu et al., 
2013) and marine sediments (Luna et al., 2012; Schippers et al., 
2012). Despite these numerous applications, the use of qPCR in 
riverbed sediment studies is still in its early stages. Sediments 
may be problematic when it comes to the effective utilization of 
the qPCR methods due to the presence of inhibitory substances 
co-extracted with DNA, which can hinder the polymerase chain 
response, hence reducing the capacity to amplify target DNA 
(Vezzulli et al., 2009; Sidstedt et al., 2015).

The aim of the present study was to establish the genetic 
relatedness between Salmonella spp. and Shigella spp. isolated 
from water and those isolated from riverbed sediments of the 
Apies River using culture-based and culture-independent 
methods in a bid to understand genetic similarity among 
isolates of water and sediments.

MATERIALS AND METHODS

Study area

The Apies River and its tributaries have previously been 
described by Abia et al. (2015b). Briefly, this river is situated 
in the Gauteng Province of South Africa, and flows through 
the city of Pretoria. It falls within the Crocodile (West) 
Marico Water Management Area, within the Apies River 
basin. The Apies rises in the Fountains Valley in Pretoria 
and flows through Gauteng, North-West and Limpopo, 
where it ultimately joins the Pienaars River to the north of 
Hammanskraal (Tuwani, 2011). The Apies River has a total flow 
of approximately 500 m3/year, about 12% of which originates 
from wastewater treatment works around the river, such as 
Daspoort, Rooiwal and Mogwase Wastewater Treatment Plants 
(WWTPs) (Venter, 2007). For the purpose of this study, the 
sampling point was upstream of the Daspoort Wastewater 
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membrane filters. The membrane filters were then placed in 
a cuvette containing 1.5 mL of phosphate buffer. The cuvette 
was then vortexed for 10 min to dislodge bacteria from the 
membrane for DNA extraction. Bacterial DNA from water 
and riverbed sediments was extracted using commercial kits 
InstaGene Matrix (Bio-Rad, South Africa) and ZR Soil Microbe 
DNA MiniPrep kit (Zymo Research, USA), respectively. 
The extracted DNA was quantified using the NanoDrop
2000 spectrophotometer (Thermo Scientific, South Africa). 
For the purpose of qPCR, primers (synthesized by Inqaba 
Biotec, South Africa), listed in Table 2, were used where ipaH 
targeted the invasive plasmid antigen of Shigella spp. and invA 
targeted the invasive gene of Salmonella spp. The ipaH target 
gene is carried by all Shigella spp. as well as by enteroinvasive 
Escherichia coli (E. coli) (EIEC); thus it is used for the diagnosis 
of dysentery (Sethabutr, 1993). The invA target gene is located 
on the Salmonella pathogenicity island 1 (SPI1), which encodes 
proteins of a type III secretion system (Malorny et al., 2003). 
Reactions were run using SsoFast EvaGreen Supermix on 
the CFX96 Touch real-time PCR detection system (Bio-Rad, 
South Africa). All reactions were run in a total volume of 
20 μL, containing 10 μL of Supermix, 1 μL of each primer 
(final concentration 1 μM), 5 μL of template DNA and 3 μL 
nuclease-free (NF) water (Fermentas, Germany). The qPCR 
conditions were optimised in terms of the following thermal 
cycling parameters: 98°C for 2 min for the enzyme activation, 
followed by 40 amplification cycles of denaturation at 98°C 
for 5 s, annealing of primers with the genomic DNA (gDNA) 
template at 60°C for Salmonella spp. and 59°C for Shigella spp., 
and a primer extension at 72°C for 5 s followed by melt curve 

quantity of the isolated DNA was determined by means of 
the NanoDrop 2000 spectrophotometer (Thermo Scientific, 
South Africa).

Standard curve

Standard curves converting cycle threshold (Ct) values to 
bacterial invA and ipaH gene copy numbers were generated 
as follows: a double-stranded DNA oligomer gBLOCKS was 
synthesized (Integrated DNA Technologies, Inc., USA) to span 
the region of the invA and ipaH gene covered by the forward 
and reverse qPCR primers (Table 2) as listed in Table 1. The 
lyophilized gBLOCKS were reconstituted to prepare a 20 nM 
gBLOCKS stock solution that was 10-fold serially diluted and 
used in the range of 1 ng to 10 fg per reaction (Gunawardana 
et al., 2014) to produce 10 standards spanning the 20–2.0 × 
10−8 nM concentration range (6.8 × 1010–68 for Salmonella spp. 
and 7.4 × 1011–74 Shigella spp. copy numbers). The standard 
curves were always performed in duplicate. A graph of Ct values 
versus log10 (copy number) afforded linear calibration curves 
with typical R2 values of 0.981 for Salmonella spp. and 0.998 for 
Shigella spp.

Enumeration of total Salmonella spp. and Shigella spp. 
by qPCR

The qPCR assays were applied for the determination of the total 
abundance of Shigella spp. and Salmonella spp. in both river 
water and riverbed sediment samples. For each type of sample, 
a volume of 100 mL was filtered through 0.45 μm nitrocellulose 

TABLE 1
gBLOCKS oligomer for internal control and standard curve generation

Gene Sequence Length GC content fmol/ng

invA GGTGAAATTATCGCCACGTTCGGGCAATTCGTT 
ATTGGCGATAGCCTGGCGGTGGGTTTTGTTGTC 
TTCTCTATTGTCACCGTGGTCCAGTTTATCGTTAT 
TACCAAAGGTTCAGAACGTGTCGCGGAAGTCG 
CGGCCCGATTTTCTCTGGATGGTATGCCCGGTA 
AACAGATGAGTATTGATGCCGATTTGAAGGCCG 
GTATTATTGATGCGGATGCCGCGCGCGAACGGC 
GAAGCGTACTGGAAAGGGAAAGCCAGCTTTAC 
GGTTCCTTTGACGGTGCGATGAAG

288 51.39% 5.62

ipaH GGCCCGCAGATTTACTTCTCCATGAGTGACGGA 
CAACAGAATACACTCCATCGCCCCCTGGCTGAT 
GCCGTGACAGCATGGTTCCCGGAAAACAAACA 
ATCTGATGTATCACAGATATGGCATGCTTTTGAA 
CATGAAGAGCATGCCAACACCTTTTCCGC

161 49.69% 10.06

TABLE 2 
Oligonucleotide primers used in qPCR assay

Designation Sequence Tm (°C) Product size Reference

invA139Fa GTGAAATTATCGCCACGTTCGGGCAA 61.8
284 Rahn et al. 

(1992)invA141Ra TCATCGCACCGTCAAAGGAACC 59.9

ipaH Fb CGCGACGGACAACAGAATACACTCCATC 62.4
108 Barletta et 

al. (2013)ipaH Rb ATGTTCAAAAGCATGCCATATCTGTG 56.4

a: Salmonella spp. primer
b: Shigella spp. primer
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match in GenBank, EMBL, DDBJ (DNA Data Bank of Japan) 
and PDB sequence data. Similar type species with 97% 
resemblance (<3% diversity) to the sequences of isolates were 
selected as matching species. The invA of Salmonella spp. and 
ipaH of Shigella spp. sequences were aligned with Clustal X2 
(Larkin et al., 2007) and then were edited using BioEdit v.7.2.5 
software (Hall, 1999). The distances of relatedness for each 
invA and ipaH gene were calculated by the neighbour-joining 
method and phylogenetic trees were created by using MEGA 
(Tamura et al., 2004). Nucleotide distance matrices of invA and 
ipaH were calculated by the neighbour-joining method with the 
Kimura 2-parameter model of substitution on datasets of 500 
bootstrap replicates (Tamura et al., 2004). All locations having 
gaps and missing data were removed from the dataset using the 
complete deletion option.

All of the newly-sequenced bacteria were deposited in the 
DNA Data Bank of Japan (DDBJ) and the accession numbers 
are listed in the supplementary material.

Statistical analysis

The data were statistically analysed using Microsoft Excel 2010. 
Mean bacterial counts between the river water and riverbed 
sediments were assessed by two-way ANOVA to test for 
differences in the abundance of Salmonella spp. and Shigella 
spp., followed by Tukey’s test when significant differences were 
encountered (p < 0.05).

RESULTS

Salmonella and Shigella culture counts

A total of 124 samples (62 water and 62 sediment samples) 
were collected from the described sampling site on the Apies 
River for analysis of the abundance of Salmonella spp. and 
Shigella spp. The mean counts of Salmonella spp. in water 
and sediment were, respectively, 2.60 log10 and 4.82 log10 
CFU/100 mL. The mean counts of Shigella spp. in water 
and sediment were, respectively, 3.05 log10 and 4.87 log10 
CFU/100 mL. Culture counts of Salmonella spp. and Shigella 
spp. in water were respectively in the range of zero (9.6%) to 
2.98 log10 CFU/100 mL and 2.93 to 3.16 log10 CFU/100 mL, while 
in the sediment samples the counts were in the range of 4.70 to 
4.91 log10 CFU/100 mL for Salmonella spp. and 4.78 to 4.92 log10 
CFU/100 mL for Shigella spp. 

For the qPCR counts, the mean counts of Salmonella spp. 
invA gene copies in water and sediment were respectively 
3.52 log10 and 5.81 log10. The mean counts of Shigella spp. ipaH 
gene copies in water and sediment were respectively 3.55 log10 
and 5.59 log10. The number of invA gene copies of Salmonella 
spp. and ipaH gene copies of Shigella spp. varied from zero 
(3.2%) to 1.52 log10 CFU/100 mL and zero (9.6%) to 1.55 log10 
CFU/100 mL, respectively, in the water samples, while the 

analysis steps from 65 to 95°C in 0.5 s increments for 5 s. Cycle 
threshold (Ct) values were automatically calculated by the Bio-
Rad CFX Manager software (Ver. 3.0). Reactions were run in 
duplicate, using the isolated DNA extracted from both water 
and riverbed sediment. Purified DNA of Shigella dysenteriae 
(ATCC 11835) and Salmonella subsp. enterica serovar 
Typhimurium (ATCC 14028) obtained from the TUT (Tshwane 
University of Technology) Water Research Group bacteria stock 
collections were used as positive control. For each reaction and 
primer set, negative controls were run in duplicate, consisting 
of primers, PCR Supermix and nuclease-free water instead of 
gDNA template. The specificity of the assay was assessed by the 
analysis of the melting curve (Varga and James, 2005; D’Souza 
et al., 2009). Melting was performed from 54°C to 95°C and 
60°C to 95°C for Shigella spp. and Salmonella spp., respectively, 
at increments of 0.5°C/10 s. The melting temperature (Tm) was 
defined as the peak of fluorescence in the generated melting 
curve.

Genetic analysis of Salmonella spp. and Shigella spp. 
isolated from riverbed sediment and river water samples

Amplification DNA product for Sanger sequencing

For the amplification process, the following primer sets, as 
listed in Table 3, were generated using the PrimerQuest Tool 
software available at www.idtdna.com (IDT, USA) targeting the 
invA of Salmonella spp. and ipaH gene of Shigella spp.

Gel electrophoresis

For quality control purposes only, amplicons were run through 
gel electrophoresis of 1% (w/v) agarose gel stained with 
ethidium bromide, followed by imaging under ultraviolet light. 
The FastRulerlow range DNA ladder (Fermentas, Germany) 
was included in all gels as a size marker as well as positive 
control (DNA of ATCC cultures). These results were captured 
using a gel documentation system (Syngene, Cambridge, U.K.)

Sanger sequencing of the invA and ipaH gene

Following the gel image, all amplicons showing the desired size 
of Salmonella spp. and Shigella spp. were sent for sequencing at 
Inqaba Biotech (South Africa). The dideoxy Sanger sequencing 
in forward directions only was used with the primer sets listed 
in Table 3. For this procedure, Big Dye Terminator Cycle 
Sequencing Kit for ABI3130XL was used according to the 
manufacturer’s instructions and the gel was run on a 3130XL 
sequencer. Sequences were analysed by comparing them with 
known invA and ipaH sequences using the BLASTn (Basic 
Location Alignment Search Tool for nucleotide) algorithm 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to find the closest 

TABLE 3
Oligonucleotide primers for Sanger sequencing

Designation Sequence Tm (°C) Product size

Sal445Fa GTCACCGTGGTCCAGTTTATC 55.5 853
Sal1276Ra CCTCGCCATCTCGTAACAATAC 55.3
Shig937Fb GAGTGACGGACAACAGAATACA 54.5 977
Shig1894b CCGTAATCGGGTCACAGTTT 54.9

a: Salmonella spp. primer
b: Shigella spp. primer
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We analysed the invA gene sequences in Salmonella spp.; 
all fragments belonged to Salmonella enterica with diverse 
serovars. In water, the most abundant strains were Salmonella 
enterica subsp. enterica serovar Typhimurium at 62% of all 
the water isolate fragments, followed by 8% of the other isolate 
fragments, as shown in Fig. 4. The sediment isolates exhibited a 
more diverse Salmonella spp. community than the water, with 
both Salmonella enterica subsp. enterica serovar Typhimurium 
and Salmonella enterica subsp. enterica serovar Enteritidis 
having 21.4% of all the isolated sediment fragments, followed 
by Salmonella enterica subsp. enterica serovar Newport with 
14% and the other serovars with 7% each, as shown in Fig. 4. 
The only other strains found in water samples were Salmonella 
enterica subsp. enterica serovar Senftenberg and Abaetetuba, 
while the sediment samples were found to contain Salmonella 
enterica subsp. enterica serovar Agona, Abony, Cubana, 
Tennessee and Enteritidis. 

As can be seen in Fig. 2, both sediment and water isolates 
are in a phylogenetic tree with two primary clades. The first 
clade contains many fragments from water and sediment at 99% 
gene sequence similarity. The second clade has three fragments, 
one water isolate and two sediment isolates at 91% genetic 
similarity. Both water and sediment isolates are clustered 
together. Although the other observed similarity levels were 
secondary, no less than 53% sequence similarity was observed.

The ipaH gene sequences of Shigella spp. were analysed, and 
Shigella flexneri was found to be most abundant both in water 
and sediment, at 79% and 61%, respectively, of all sequences 
(Fig. 3). In water, two strains were identified as Shigella sonnei 
and Shigella dysenteriae with sequence similarities of 7% and 
14%, respectively, while in the sediments three other strains 
were isolated, namely, Shigella sonnei (23%), Shigella boydii (8%) 
and Shigella dysenteriae (8%) as shown in Fig. 5.

number of invA gene copies of Salmonella spp. and ipaH gene 
copies of Shigella spp. was ‘not detected’ (3.2%) to 5.82 log10
CFU/100 mL and zero (22.6%) to 5.86 log10 CFU/100 mL, 
respectively, in the sediment samples of the Apies River.

The contrast between qPCR and culture-based methods 
revealed that the abundances of Salmonella spp. (5.81 log10) 
and Shigella spp. (5.59 log10) in the riverbed sediment samples 
obtained by quantification of gene copies were consistently 
and significantly higher than those obtained using the culture-
based approach (Salmonella – 4.82 log10 CFU/100 mL; Shigella 
– 4.87 log10 CFU/100 mL) (p < 0.05; Fig. 1). In particular, loads
determined by qPCR of Salmonella spp. and Shigella spp. were
between 10 and 30 times higher than the loads obtained using
culture-based techniques.

Phylogenetic analysis of isolates

The evolutionary history was gathered using the neighbour-
joining system (Saitou and Nei, 1987). The phylogenetic trees 
with the sum of branch lengths = 1.12364635 (Salmonella 
spp.) and 2.25308283 (Shigella spp.) are shown in Fig. 2 and 3. 
The values of replicate trees in which the related taxa clustered 
together in the bootstrap test (500 replicates) are shown next 
to the branches (Felsenstein, 1985). The evolutionary distances 
were processed using the Kimura-2 parameter method 
(Kimura, 1980) and are in the units of the number of base 
replacements per location. The analysis involved 28 Salmonella 
spp. and 28 Shigella spp. nucleotide sequences and first, 
second and third codon positions were included. All positions 
containing gaps and missing information were eliminated. 
There was a sum of 2 072 (Salmonella spp.) and 717 (Shigella 
spp.) positions in the last dataset. Evolutionary analyses were 
performed using MEGA6 (Tamura et al., 2013).

Figure 1
Contrast between water and sediment mean Salmonella spp. and Shigella spp. counts using qPCR and culture-based approach
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Figure 3
Phylogenetic tree for ipaH gene of Shigella spp. isolates obtained from water (blue) and sediment (red)

Figure 2
Phylogenetic tree for invA gene of Salmonella spp. isolates obtained from water (blue) and sediment (red)
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In Fig. 3, three primary clades can be observed. All 
three clades have 99% similarity among the DNA sequences 
analysed; DNA sequence clustering was observed in both water 
and sediment samples at no less than 63% of genetic similarity. 

DISCUSSION

Pathogen concentrations

Salmonellosis and shigellosis continue to be a major public 
health problem worldwide, with 93.8 million and 163.2 million 
cases, respectively, reported annually (Majowicz et al., 2010; 
Kotloff et al., 2013). Many interrelated factors contributing 
to this incidence include increased urbanization, inadequate 
supplies of clean water, antibiotic resistance and increased 
regional movement (Boehmer et al., 2009). Real-time PCR is a 
generally used procedure that permits the precise quantification 
of a particular gene in ecosystem samples (Luna et al., 2012). 
This method can likewise be used for the determination of 
the bacterial loads, including microorganisms of faecal source 
(Noble and Weisberg, 2005). On the other hand, while this 
technique has been efficiently used for the quantification of 
pathogenic bacteria in seawater, soil, food and wastewater 
specimens (Ibekwe and Grieve, 2003; Haugland et al., 2005; 
Fukushima et al., 2007; Shannon et al., 2007), its application in 
riverbed sediment tests has still not been extensively researched 
(Cébron et al., 2008; Vezzulli et al., 2009). For the effective use 
of qPCR-based examinations on riverbed sediment samples, 
numerous scientific steps are required, particularly those 
required for minimizing the presence of inhibitory substances 
which are associated with nucleic acids (Vezzulli et al., 2009). 
Inhibitors should be removed from the sediment samples as 
these substances interfere with the extraction of DNA and 
prevent the amplification of the nucleic acids through the 
PCR. Therefore, extraction and refinement steps are of vital 
importance in sediment sample preparation, as high levels of 
organic matter, biological pollutants and trace metals act as 
PCR inhibitors through interaction with DNA or interference 
with the DNA polymerase enzyme (Fortin et al., 2004). 

When contrasting quantification by culture methods versus 
qPCR, results of this study revealed that qPCR produced higher 
values compared to the culture-based method. The real-time 
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PCR examinations gave much higher (up to 3 logs) estimations 
of pathogenic bacteria loads than those obtained using culture-
based techniques. Similar results were also observed by Luna 
et al. (2012) when they conducted qPCR techniques coupled 
with cultivable enumeration. The authors quantified E. coli, 
Enterococcus spp. and Salmonella spp. from harbour marine 
sediments using both culture-based and qPCR techniques. 
The qPCR technique revealed a higher concentration than 
the culture-based methods. They found that total E. coli and 
Enterococcus spp. (qPCR) counts were respectively 65 to 1 571 
and 11 to 51 times higher than that from cultured-based 
quantification. In a study by Su et al. (2013), the high bacterial 
counts were attributed to viable but non-cultivable bacteria 
that are found in the environment. In another study, it was 
found that high qPCR counts may also result from DNA of 
dead cells in the environment (Wolffs et al., 2005). Culture-
based methods are known to seriously underestimate the 
bacterial pathogen counts in seawater and marine sediment 
(Shannon et al., 2007; Luna et al., 2010). A similar higher 
sensitivity of the qPCR method when compared to culture-
based approaches has previously been reported in harbour 
sediment (Luna et al., 2012) and beach sands (Yamahara et 
al., 2009). These data are vital for an understanding of the 
potential dangers related to the presence of pathogenic bacteria 
in sediments. Since the presence of pathogenic bacteria can 
bring about human diseases with counts of as low as 1.7 × 
101 CFU/mL for Salmonella typhimurium (Srinivasan et al., 
1982) and 1 × 104 CFU/mL for Shigella spp. (Kothary and 
Babu, 2001), such a low identification breaking point makes 
the real-time PCR assay particularly valuable for surveying the 
microbiological nature of riverbed sediments. Although qPCR 
does not necessarily produce results comparable to culture-
based methods because qPCR measures a genetic, rather than a 
growth, endpoint, it remains clear that the sensitivity of qPCR 
is needed in analysing bacteria of public and environmental 
interest.

In a study conducted by Lindsay et al. (2013), the authors 
observed that at 4.38 log10 copies/mL of ipaH gene present in 
the stools of infants, a moderate to severe diarrheal infection 
occurred. Results in our study are substantially above this 
value; this may suggest that if Apies River water is consumed, 
this can lead to diarrhoeal infections in infants. Pathogenic 

Figure 4
Salmonella spp. diversity in water (A) and sediment (B)
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Shigella sonnei, Shigella boydii and Shigella dysenteriae. Shigella 
flexneri was the most predominant species found in both river 
water and riverbed sediments. With a bootstrap value of 99%, 
this may suggest that Shigella spp. isolated from river water 
and riverbed sediment are also strongly related at a genetic 
level. Skariyachan et al. (2015) found that where Shigella 
sonnei is isolated from sediment this is suggestive of natural or 
environmental sources of contamination in the overlying water.

CONCLUSIONS

Overall, results from this study indicate that the qPCR 
technique, being highly specific and sensitive, may present a 
powerful tool which can be routinely used for a true assessment 
of the pathogenic contamination of water and riverbed 
sediments. The phylogenetic typing characteristics of isolate 
sequencing show that pathogenic bacteria isolated from water 
and sediment samples were closely related (99%). This study 
recommends future studies to be conducted on multi-locus 
sequencing or whole genome sequencing techniques in order to 
emphasize the findings of this study. The presence of pathogenic 
Salmonella spp. and Shigella spp. is a matter of concern for the 
communities along the Apies River, who currently depend on 
this water sources for multiple purposes, including drinking, 
bathing, recreational and agricultural purposes. An urgent 
intervention is required by the local Water Service Authority to 
supply safe drinking water in order to prevent a severe outbreak 
of waterborne diseases within these communities.
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bacteria in sediments have been reported by Atiribom et al. 
(2007); these authors have reported the isolation of pathogenic 
organisms such as Aeromonas hydrophila, pathogenic E. coli, 
S. typhi and Vibrio from sediment and the surrounding areas of
the Kainji Lake, Nigeria.

Phylogenetic analysis

The Salmonella spp. isolated during this study included all 
Salmonella enterica with serovars including Typhimurium, 
Enteritidis, Pullorum, Senftenberg, Cubana, Montevideo, 
Abaetetuba, Abony, Tennessee, Newport and Agona. 
Salmonella enterica serovar Typhimurium was the most 
frequently detected in both water and sediment samples 
followed by Salmonella enterica serovar Enteritidis. The only 
serovar isolated in water was Salmonella enterica serovar 
Senftenberg, while many other serovars were present only in 
sediment; this includes: Salmonella enterica serovar Cubana, 
Abaetetuba, Abony, Tennessee and Agona. These results may 
suggest that sediments of the Apies River harboured more 
diversity than the water. All these pathogenic bacteria are 
linked to gastro-intestinal infections worldwide (Weinberger 
and Keller, 2005) and are reported to be multidrug resistant 
(Gordon et al., 2008). The Salmonella enterica isolated exhibited 
a 99% genetic relatedness which may suggest a common 
ancestry and origin between isolates from river water and 
riverbed sediment, as suggested by Grant et al. (2001); Boehm 
et al. (2002); Kim et al. (2004); Noble and Xu (2004) and 
Ekwanzala et al. (2017) – i.e., that faecal bacteria from these 
environments have a high level of similarity. In a recent study 
by Njage and Buys (2015) on genetic relatedness between 
commensal and pathogenic strains of E. coli from lettuce and 
irrigation water using the phylogenetic tree, they found high 
genetic relatedness despite the sites being 246 km apart.

The Shigella spp. phylogenetic tree analysis shown in Fig. 5 
revealed that four Shigella strains were isolated from water and 
sediments of the Apies River. These include: Shigella flexneri, 
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APPENDIX

All the newly-sequenced bacteria were deposited in the DNA 
Data Bank of Japan (DDBJ) with the following accession 
numbers: LC111465 (SALW1), LC111466 (SALW2), LC111467 
(SALW3), LC111468 (SALW13), LC111469 (SALW14), LC111470 
(SALW12), LC111471 (SALW11), LC111472 (SALW10), 
LC111473 (SALW9), LC111474 (SALS12), LC111475 (SALW01), 
LC111476 (SALW8), LC111477 (SALS1), LC111478 (SALS2), 
LC111479 (SALW7), LC111480 (SALS11), LC111481 (SALS10), 
LC111482 (SALW6), LC111483 (SALS9), LC111484 (SALS8), 
LC111485 (SALS7), LC111486 (SALS6), LC111487 (SALS5), 
LC111488 (SALS4), LC111489 (SALW5), LC111490 (SALS3) 
LC111491 (SALW4), LC111492 (SHIGW2), LC111493 (SHIGS1), 
LC111494 (SHIGW3), LC111495 (SHIGW4), LC111496 
(SHIGW1), LC111497 (SHIGS2), LC111498 (SHIGS3), LC111499 
(SHIGS4), LC111500 (SHIGW5), LC111501 (SHIGS5), LC111502 
(SHIGW6), LC111503 (SHIGW7), LC111504 (SHIGW8), 
LC111505 (SHIGS6), LC111506 (SHIGS7), LC111507 (SHIGW9), 
LC111508 (SHIGS8), LC111509 (SHIGW10), LC111510 
(SHIGS9), LC111511 (SHIGS10), LC111512 (SHIGS11), LC111513 
(SHIGS12), LC111514 (SHIGW11), LC111515 (SHIGS13), 
LC111516 (SHIGW14), LC111517 (SHIGW13) and LC11151 
(SHIGW12)
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