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ABSTRACT
In this study, hydraulic head and 111Cd interpolations based on the geo-adaptive neuro-fuzzy inference 
system (Geo-ANFIS) and empirical Bayesian kriging (EBK) were performed for the alluvium unit of 
Karabağlar Polje in Muğla, Turkey. Hydraulic head measurements and 111Cd analyses were done for 42 water 
wells during a snapshot campaign in April 2013. The main objective of this study was to compare Geo-
ANFIS and EBK to interpolate hydraulic head and 111Cd content of groundwater. Both models were applied 
on the same case study: alluvium of Karabağlar Polje, which covers an area of 25 km2 in Muğla basin, in 
the southwest of Turkey. The ANFIS method (called ANFISXY) uses two reduced centred pre-processed 
inputs, which are cartesian coordinates (XY). Geo-ANFIS is tested on a 100-random-data subset of 8 data 
among 42, with the remaining data used to train and validate the models. ANFISXY and EBK were then 
used to interpolate hydraulic head and heavy metal distribution, on a 50 m2 grid covering the study area 
for ANFISXY, while a 100 m2 grid was used for EBK. Both EBK- and ANFISXY-simulated hydraulic head 
and 111Cd distributions exhibit realistic patterns, with RMSE < 9 m and RMSE < 8 µg/L, respectively. In 
conclusion, EBK can be considered as a better interpolation method than ANFISXY for both parameters.
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INTRODUCTION

Earth scientists (hydrologists, geologists, biogeochemists, etc.) 
are interested in understanding the behaviour of hydrosystems 
(Kurtulus et al., 2011; Flipo et al., 2012). Usually they first do 
experiments/observations in the field at specific locations and 
then try to distribute these observations/measurements both 
in space and time using modelling techniques that are based 
on abstractions. As part of the hydrosystem, aquifer systems 
play a decisive role in its behaviour and act as a reservoir. 
Metals and metalloids in these kinds of reservoirs might be 
assessed as pollutants according to their abundance. In the 
case of using polluted water stored in reservoirs for domestic, 
industrial or irrigational purposes, harmful side effects will 
most likely be encountered. Recent studies have shown that 
groundwater heavy metal contamination often cannot be 
detected, especially in cities (Huang et al., 2014). Pollutant 
sources could be artificial or natural. Industrial, agricultural 
and domestic waste might be the sources if they are continuous 
and the concentration of waste is high enough to pollute the 
water. Geological units which are in contact with groundwater 
could also be the source as they dissolve with water. The 
accumulable-stable characteristic and toxicity of heavy 
metals in groundwater make them very important pollutants 
worldwide (Okbah et al., 2014). In order to avoid negative 
effects and to ensure environmental sustainability, hydraulic 
head and pollutants must be examined together. 

The state of an aquifer unit is characterized by the 
piezometric head or hydraulic head, measured as the water 
level in piezometers. The mapping of these point data is useful 
for many environmental applications, such as water resources 
management during high flow conditions. Estimations of 
hydraulic head distribution are frequently used to determine 
the capture zone of pumping wells. Hydraulic head maps 
are also important tools for earth dam monitoring (Rivest 
et al., 2008). They are also used to initialize distributed 
models, which are critical tools nowadays for managing 
water resources at the basin scale (Perkins and Sophocleous, 
1999; Billen et al., 2007; Flipo et al., 2007, 2012, 2014). As 
reported in Flipo et al. (2012) many inverse methodologies 
in hydrogeology use hydraulic head maps as a pre-requisite 
(24 publications among 45). The mapping of hydraulic heads 
requires synchronous measurements, usually achieved with 
synchronous snapshot campaigns. Synchronous snapshot 
campaigns are feasible for relatively small aquifer units 
(~100 km2), such as the Orgeval basin (Kurtulus et al., 2011; 
Kurtulus and Flipo, 2012; Mouhri et al., 2013). The larger the 
aquifer unit, the longer the measurement campaign, which can 
last several years for regional aquifer systems (>100 000 km2) 
and therefore introduce uncertainties in the final mapping 
result (Tóth, 2002). 

Understanding the temporal and spatial variations of the 
depth to groundwater is a prerequisite to achieve sustainable 
water use in a basin. Point measurements of water table levels 
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at the catchment scale (Johannet et al., 2007; Kurtulus and 
Razack, 2007; Lallahem and Mania, 2003; Minns and Hall, 
2004). It has been noted that ANFIS (Takagi and M. Sugeno, 
1985; Jang, 1993, 1995, 1996; Celikyilmaz and Turksen, 2009; 
Wang et al., 2009) exhibits better simulation performances 
than classical artificial neural networks (Nayak et al., 2004; 
El-Shafie et al., 2007; Firat, 2008; Pai et al., 2009; Wang et al., 
2009; Maier et al., 2010). Moreover, ANFIS has already been 
successfully used to interpolate hydraulic head distribution 
(Lin and Chen, 2004; Kholghi and Hosseini, 2009; Flipo and 
Kurtulus, 2011; Kurtulus et al., 2011; Kurtulus and Flipo, 2012; 
Tapoglou et al., 2014). 

A lack in the literature of comparison of ANFIS and EBK 
for interpolation of hydraulic head and a metal parameter 
provided the main motivation of this study. EBK and Geo-
ANFIS were tested and compared with each other in order to 
determine their performance and practicality for hydraulic 
head and 111Cd interpolation. 

EXPERIMENTAL SITE AND DATA 

The 25 km2 study area was located in Karabağlar Polje, near the 
Muğla city centre, in the southwest of Turkey (Fig. 1). Elevation 
ranges from 606 m to 717 m. Average annual air temperature is 
14.9°C, and mean annual precipitation is 1 222 mm. The study 
area is covered by a Quaternary alluvium unit with a thickness 
of 80–100 m (Fig. 1) (Atalay, 1980). Intensive agricultural 
activities and operations such as a drinking water treatment 
facility, lime quarry, sand and gravel quarry, industrial zone 
and swimming pool are situated in the area. Nevertheless, 
Kurtuluş and Sağır (2017) indicated that there is no 

are available, but what is needed are groundwater surfaces 
based on these measurements. Robust interpolation methods 
are needed to interpolate hydraulic head point measurements. 
Many such methods have been discussed in the literature 
(Kurtulus and Flipo, 2012). 

On the one hand, a technique often used in earth sciences 
and especially in hydrogeology is kriging (Cressie, 1990; 
Rouhani and Myers, 1990; Weber and Englung, 1994; 
Zimmerman et al., 1999; Brochu and Marcotte, 2003; 
Theodossiou and Latinopoulos, 2006; Lyon et al., 2006; 
Ahmadi and Sedghamiz, 2007; Abedini et al., 2008; Renard 
and Jeannée, 2008; Ta’any et al., 2009; Buchanan and 
Triantafilis, 2009; Pardo-Igúzquiza et al., 2009; Sun et al., 
2009; Canoğlu and Kurtuluş, 2017). A few authors have 
compared the efficiency of different interpolation techniques 
with kriging, cokriging, and kriging with external drift 
(Hoeksema et al., 1989; Boezio et al., 2006; Pardo-Igúzquiza 
and Chica-Olmo, 2007; Ahmadi and Sedghamiz, 2008; 
Bargaoui and Chebbi, 2008). Kriging using DEM information 
as an external drift seems to be the most efficient methodology 
for unconfined aquifer units (Desbarats et al., 2002; Rivest 
et al., 2008), which is in agreement with the high correlation 
between hydraulic head and soil surface in such systems (Tóth, 
1962). In a recent study, Finzgar et al. (2014) revealed the 
applicability of empirical Bayesian kriging (EBK) to investigate 
the spatial distribution of soil metal contamination. 

On the other hand, hydrologists have started to 
incorporate fuzzy logic and artificial neural network(ANN) 
concepts in their methodologies, with more than 500 papers 
published on this topic between 1999 and 2007 (Maier et al., 
2010), and especially for rainfall-discharge transformation 

Figure 1
Geological map of study area and location of wells (Geological information taken from  

General Directorate of Mineral Research and Exploration of Republic of Turkey)
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to environmental sciences such as hydrogeology, air, water 
and soil pollution (Goovaerts, 1997). Geostatistics is used to 
characterize the spatial structure of the variable of interest 
by means of a consistent probabilistic model. This spatial 
structure is characterized by the variogram, which describes 
how the variability between sampled concentrations increases 
with the distance between the samples. A variogram model is 
fitted to the experimental variogram for subsequent analysis. 
The interpolation technique, known as kriging, provides the 
‘best’, unbiased, linear estimation of a regionalized variable at 
unsampled locations, where ‘best’ is defined in a least squares 
sense, as it aims to minimize the variance of estimation error 
(Chiles and Delfiner, 1999). As for the classical interpolations, 
the estimation by kriging of the concentration at any target 
cell is obtained by a linear combination of the available sample 
concentrations. The kriging differentiates only by the way of 
choosing the coefficients of this linear combination. Those 
coefficients are called kriging weights and depend on:
•	 The distances between the data and the target  

(like other classical interpolators)
•	 The distances between the original data themselves 

(data clustering)
•	 the spatial structure of the variable

The basic tool used for kriging is the semi-variogram γ (Eq. 1), 
defined as half the expectancy of deviation between values of 
samples separated by a distance h. In this case it produces the 
spatial variability of the variable Z(x):

γ (h) =   1 _ 2   E [(Z (x) – Z*  (x – h)) 2 ] (1)

where: E[V] defines the mathematical average of the 
coordinates of the vector V. If Z’’(x) is the kriged value at 
location x, Z(xi) is the known value at location x1, λi is the 
weight associated with the data, μ is the Lagrange multiplier 
and y(xixj) is the value of variogram corresponding to a vector 
with origin in xi, and extremity in xj, the general equation of 
Kriging estimator is:

Z* (x) =  ∑ 
t = 1

   
n

      λ i  Z ( x i  ) (2)

In order to achieve unbiased estimations in kriging and 
to minimize the variance of estimates the following set of 
equations should be solved simultaneously (Chauvet, 1999):

 ∑ 
i = 1

   
N

     λ i  = 1

 ∑ 
i = 1

   
N

    λ j   γ ( x i  x j  ) – μ = γ ( x i  , x) i = 1, … N  (3)

groundwater pollution. The Jurassic Yılanlı formation, which 
is composed of dolomite, dolomitic limestone and limestone, 
underlies the Quaternary alluvium deposit (Kurttaş, 1997). 
Based on field observations, the Yılanlı formation has the most 
advanced karst features in the area and several dolines were 
also spotted where surface water flows and infiltrates the karst 
system during high-flow periods. A hydrogeological conceptual 
model of the study site and surroundings was created and a 
hydraulic connection between the area and Gökova springs 
(south of the study site) was revealed (Açıkel, 2012). The 
other geological unit, the Tertiary-Miocene aged Köprüçay 
formation, consists of conglomerate and limestone present to 
the south of the site. 

The depths of the studied water wells ranged between 8 
and 20 m and they penetrate only the Quaternary alluvium 
deposit. During a snapshot campaign in April 2013, hydraulic 
head measurement and water sampling were performed for 
79 water wells. Heavy metal analyses for several elements 
were done. Based on the preliminary statistical characteristics 
(e.g. normal distribution) of elements and the absence of 
certain elements at certain wells, 111Cd was chosen as the 
most suitable element to interpolate and for testing different 
interpolation methods; 38 data for 111Cd were available for use. 
In order to get an approximately similar spatial distribution to 
the 111Cd data, 42 data-points for hydraulic head were selected 
and analysed. Measured hydraulic head values were plotted 
against surface elevation with the objective of determining 
correlation (Fig. 2). High correlation between these parameters 
was expected for the alluvium aquifer, and for all of the 
measured 79 hydraulic head values, a highly correlation with 
111Cd was found (R2 = 0.93). When the higher elevation values 
are excluded, there is poor correlation (R2 = 0.24). According to 
these correlations, the studied aquifer is driven by the alluvium 
at the full scale. But in the areas at lower altitude where the 
dolines are situated, groundwater flow in the alluvium unit is 
affected by karst structures. 

INTERPOLATION METHODS 

Kriging

Geostatistics aims at providing quantitative descriptions of 
natural variables distribution in space and time (Matheron, 
1978; Journel, 1986; Chilès and Delfiner, 1999). Initially 
developed to address ore reserve evaluation issues in mining 
(Isaaks and Srivastava, 1989), it is now commonly applied 

Figure 2
Plot of measured hydraulic head vs. surface elevation
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Rule 1: If X∊A1 and Y∊B1 then:

  f  1  =  p  1 x +  q 1 y +  r 1  (6)

Rule 2: If X∊A2 and Y∊B2 then: 

  f 2  =  p 2 x +  q 2 y +  r 2  (7)

p1, q1, r1, p2, q2, r2 are defined in the first layer of the  
Geo-ANFIS (Fig. 3).

Each node i of Layer 2 calculates the firing strength w1 of the ith 
rule via multiplication:

 w 1  =  μ  A 1 
  (x) μ  B 1 

  (8)

Node i in Layer 3 calculates the ratio of the ith rule’s firing 
strength to the total amount of all firing strengths:

  
__

 W  1  =   
 W 1  __  Σ j  W j 

   (9)

Node i in Layer 4 calculates the contribution (weight) of the 
ith rule toward the overall output via multiplication:

  
__

 W  l  =   
__

 W  l    f i  (10)

Finally, Layer 5 is made on a single node that computes the 
overall output as the summation of the contribution from 
each rule:

f (x, y) =  Σ i    
__

 W  l  =  Σ i    
__

 W  l   f i  (11)

ANFIS uses a hybrid learning algorithm that combines the 
back-propagation gradient descent and least squares method to 
create a fuzzy inference system whose membership functions 
are iteratively adjusted according to a given set of input 
and output data (Jang, 1993). For each iteration, the back-
propagation method involves minimization of an objective 
function using the steepest gradient descent approach in which 
the network weights and biases are adjusted by moving a small 
step in the direction of a negative gradient. The iterations are 
repeated until a convergence criterion or a specified number 
of iterations is achieved. It has the advantage of allowing the 
extraction of fuzzy rules from numerical data and adaptively 
constructs a rule base.

Empirical Bayesian kriging

Empirical Bayesian kriging (EBK) first appeared in the 
literature several years ago (Pilz and Spöck, 2007; Pilz et 
al., 2012). EBK is a geostatistical interpolation method that 
automates the difficult aspects of building a valid kriging 
model. Other kriging methods require one to manually adjust 
model parameters, but EBK automatically calculates these 
parameters through a process of sub-setting and simulations 
(Chiles and Delfiner, 1999). The EBK method can handle 
moderately non-stationary input data estimates and then 
uses many semi-variogram models rather than a single 
semi-variogram. EBK accounts for the error introduced by 
estimating the underlying semi-variogram through repeated 
simulations (Finzgar et al., 2014). 

Geo-ANFIS

The adaptive neuro-fuzzy inference system (ANFIS) (Firat and 
Gungor, 2007; Jang, 1993, 1995, 1996; Pratihar, 2007; Takagi 
and Sugeno, 1985; Wang et al., 2009) is a modelling technique 
which assumes that input and output data are ill-defined with 
uncertainty that cannot be exactly assessed with probability 
theory based on a two-valued logic. It uses fuzzy set theory 
first proposed by Zadeh (1965). A fuzzy set is a set of elements 
with an imprecise (vague) boundary (Pratihar, 2007). A fuzzy 
set does not have a crisp boundary. That is, the transition from 
‘belonging to the set’ to ‘not belonging to the set’ is gradual and 
is characterized by membership functions. A fuzzy set A(x) is 
then represented by a pair of two things – the first one is the 
constituent elements x and their associated membership values 
μA(x) that is their degree of belongingness:

A (x) = { (x,  μ A  (x)), x ∊ X} (4)

where: X is the universal set consisting of all possible elements. 
The membership function μA ranges between 0 and 1. If the 
value of the membership function is restricted to either 0 and 
1, the fuzzy set is then reduced to a classical crisp set with a 
known boundary. As stated by Jang (1995), the fuzziness does 
not come from the randomness of the constituent members of 
the sets, but from the uncertain and imprecise nature of the 
abstract thoughts and concepts.

In ANFIS the relationship between input and output is 
expressed in the form of If–Then rules. ANFIS used for the 
present work is based on the Sugeno fuzzy model (Takagi and 
M. Sugeno, 1985) which formalizes a systematic approach to 
generating fuzzy rules from an input-output dataset. A typical 
fuzzy rule in a Sugeno fuzzy model has the format: If x∊A and 
y∊B then:

z = f (x, y) (5)

where: A and B are fuzzy sets in the antecedent and f (x, y) is 
a crisp function in the consequent. Usually f is a polynomial 
function.

The architecture of the Geo-ANFIS is composed of 5 
layers (Fig. 3). Each layer has a specific function. The first 
layer generates a membership grade of a linguistic label, 
which means that it defines the parameter of the membership 
function. For instance, consider a first-order Sugeno fuzzy 
inference system which contains 2 rules:

Figure 3 
Geo-ANFIS architecture for 3 inputs x, y. Layer 1: generates membership 
grades. Layer 2: Fuzzy rules. Layer 3: Calculates weights or rules named 

firing strengths. Layer 4: Product of the normalized firing strengths. Layer 
5. Fuzzy results transformed into a traditional output by summation.
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Model implementation 

Implementation of EBK

Exploratory data analysis, automatic variogram fitting and 
kriging were performed using ArcGis 10.2 software. The EBK 
method is based on 3 main steps: Firstly, a semi-variogram 
model is estimated from the observed data set. Secondly, a 
new value is simulated at each of the observed data locations 
by using the semi-variogram estimated in the previous step. 
Thirdly, a new semi-variogram model is estimated from the 
newly simulated data from the second step. By using Bayes’ 
rule, a weight for this semi-variogram model is calculated 
which shows how likely it is that the observed data can be 
generated from the semi-variogram. The second and third 
steps are repeated. This process creates a spectrum of semi-
variograms (Pilz and Spöck, 2007). New parameters are also 
needed for EBK, such as subset size which defines the number of 
points in each subset, overlap factor which specifies the degree 
of overlap between subsets and number of simulation which 
specifies the number of semi-variograms that will be simulated 
for each subset. 

Implementation of Geo-ANFIS

The neuro-fuzzy model was developed using the ANFIS 
procedures of MATLAB (Demuth and Beale, 2000). In this 
study, a code is written in Matlab 2012b for ANFIS using 
appropriate functions to calculate the best performance of 
the methods.

Before using the model to interpolate unknown outputs 
(hydraulic head and 111Cd), its actual predictive performance 
must be tested by comparing outputs estimated by calibrated 
models with known outputs. At each phase (training, 
validation and test), Geo-ANFIS performance is measured by 
the determination of the coefficient of goodness-of-fit (R2) and 
the root mean square error (RMSE). 

RMSE =  √
________

  E [   ( Z* (x) – Z(x) )  2  ]    (12)

where: E, Z* and Z are previously defined.
Input data are XY coordinates for the ANFISXY. The data 

are pre-processed by elimination of unrealistic values to obtain 

a more stable dataset. Predictions of hydraulic head and 111Cd 
are the Geo-ANFIS output.

The selection of appropriate input parameters is a complex 
task. At first step; numbers of training, validation and test 
data are decided by order: 60%, 20% and 20%. Assignment of 
data points to training, validation and test subsets is realized 
by random selection ability of ANFIS. Triangular (TriMF), 
Gaussian (GaussMF), Generalized bell (GbellMF), Spline-
based (PiMF), Trapezoidal (TrapMF) and their different types 
of curves (named as 2, 3, 4 and 5) were used as membership 
functions in Geo-ANFIS. Random simulation number was 
decided as 100 which provides 100 different data assignments 
to training, validation and test subsets for each type of 
membership function curve. For ANFISXY simulations, the 
number of rules is set to 3 for each input.

SELECTION OF INTERPOLATION MODELS

EBK process

X-Y coordinates, hydraulic head and 111Cd values were used 
as input to EBK. For the semivariogram cloud creation 
of hydraulic head; subset size, overlap factor, number of 
simulations, maximum neighbours, minimum neighbours and 
radius (m) are determined by order: 20, 2, 100, 15, 10 and 1 500. 
For the semivariogram cloud creation of 111Cd; subset size, 
overlap factor, number of simulations, maximum neighbours, 
minimum neighbours and radius (m) are determined by order: 
20, 2, 100, 15, 10 and 1500.

Geo-ANFIS model selection

The Geo-ANFIS model selection is based on available data. 
Using these datasets at each phase (training, validation 
and test), the Geo-ANFIS performance is measured by the 
coefficient of goodness-of-fit (R2) and root mean square error 
(RMSE). ANFISXY is run up to 2 000 iterations with 100 
random data simulations for 4 types of each membership 
function. 100 results for each type of membership function are 
analysed automatically to select the best ones. RMSE and R2 

values of training, validation and test subsets for the chosen 
types of membership functions for hydraulic head and 111Cd are 
given in Table 1. 

TABLE 1
RMSE and R2 values of training, validation and test subsets of the best types of membership  

functions for hydraulic head and 111Cd
Chosen 

Membership 
Function and 

Type

Number of 
iterations RMSE training RMSE 

validation RMSE test R2 training R2 validation R2 test

Hydraulic 
head (m) TriMF-2 2 000 0.14 2.15 1.96 0.99 0.82 0.92
111Cd (µg/L) PiMF-2 2 000 0.45 0.59 0.38 0.67 0.63 0.55
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TABLE 2
General descriptive statistics of Geo-ANFIS and EBK predictions

RMSE MAE Mean Median Standard
Deviation Kurtosis Skewness Minimum Maximum

H. Head (m)

Observed – – 624.34 625.00 4.01 3.64 −0.77 612.90 632.22
EBK 0.86 0.66 624.04 624.83 3.28 2.87 −0.70 614.33 630.92

Geo-ANFIS 8.38 7.54 616.65 617.35 4.51 4.69 −0.89 596.57 638.83

111Cd (µg/L)

Observed – – 2.23 1.99 0.42 1.75 0.66 1.70 2.91
EBK 0.03 0.02 2.34 2.24 0.42 1.57 0.29 1.71 3.14

Geo-ANFIS 0.34 0.28 2.22 2.14 0.74 2.89 0.55 0.55 4.19

Testing of models

Geo-ANFIS and EBK predictions are assessed together based 
on RMSE, mean absolute error (MAE) and descriptive statistics 
given in Table 2. Performance of EBK is slightly better than 
Geo-ANFIS for both parameters interpolated. RMSE and MAE 
of EBK hydraulic head prediction values are 0.86 m and 0.66 
m, whereas these values are 8.38 m and 7.54 m for Geo-ANFIS 
prediction. For EBK 111Cd prediction, RMSE and MAE values 
are 0.03 µg/L and 0.02 µg/L. Besides the statistical values 
of hydraulic head prediction, map patterns were taken into 
consideration.

INTERPOLATIONS OF HYDRAULIC HEAD AND 111CD

Hydraulic head and 111Cd interpolation maps using EBK on 
a 100 m square grid are given in Fig. 4 and Fig. 5. Hydraulic 
head and 111Cd distributions are calculated on a 50 m square 
grid for Geo-ANFIS and the maps are given in Fig. 6 and Fig. 7. 
Observed hydraulic head and 111Cd values are directly used as 
input both in Geo-ANFIS and EBK. The EBK model produced 
less dispersed values for hydraulic head and 111Cd with standard 
deviation of 3.28 m and 0.42 µg/L while Geo-ANFIS’s are 
4.51 m and 0.74 µg/L, respectively. RMSE between observed 
values and EBK prediction for hydraulic head and 111Cd are 

Figure 4
EBK interpolation, standard error, cross validation, error graph and semi-variogram cloud of hydraulic head
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Figure 5
EBK interpolation, standard error, cross validation, error graph and semi-variogram cloud of 111Cd

Figure 6
Geo-ANFIS prediction map, cross validation and error graph of hydraulic head
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Figure 7 
Geo-ANFIS prediction map, cross validation and error graph of 111Cd

Figure 8 
Map showing difference between Geo-ANFIS and EBK results for hydraulic head
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0.86 m and 0.03 µg/L while they are 8.38 m and 0.34 µg/L for 
Geo-ANFIS. EBK results are statistically the most consistent 
with the initial values. The Geo-ANFIS method prediction 
shows overestimation and underestimation for both parameters 
interpolated (Table 2). Also, the difference maps between EBK 
and Geo-ANFIS predictions for hydraulic head and 111Cd are 
given in Fig. 8 and Fig. 9.

CONCLUSION

In this study, two interpolation methods were tested to estimate 
hydraulic head and 111Cd distribution over the Karabağlar 
alluvium aquifer. Geo-ANFIS was used with 2 inputs as X-Y 
cartesian coordinates to interpolate hydraulic head and 111Cd. 
Both hydraulic head and 111Cd distribution results show that 
EBK performs considerably better than ANFISXY. Further, 
the prediction map generated by the Geo-ANFIS method 
doesn’t represent smoothed results, as compared to all other 
interpolation methods.

For hydraulic head, Geo-ANFIS concluded with a 8.38 m 
RMSE value, which is significantly high when compared to the 
observed data range of 19.32 m. Also, for 111Cd, Geo-ANFIS 

produced a 0.34 µg/L RMSE value while the observed data 
range is 1.21 µg/L. Geo-ANFIS performed better for 111Cd than 
hydraulic head. In this regard, using X-Y cartesian coordinates 
and elevation for ANFIS (ANFISXYZ) may perform better, 
especially for interpolation of hydraulic head. However, the 
EBK RMSE value is 0.86 m for hydraulic head and 0.03 µg/L 
for 111Cd. Hence, EBK gave better results for 111Cd as well as 
hydraulic head. 

In conclusion, EBK can be considered as better 
interpolation method than ANFISXY to interpolate hydraulic 
head and 111Cd in groundwater. However, Geo-ANFIS proved 
its applicability as an alternative method to interpolate 
hydraulic head and metal concentration (111Cd). 
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