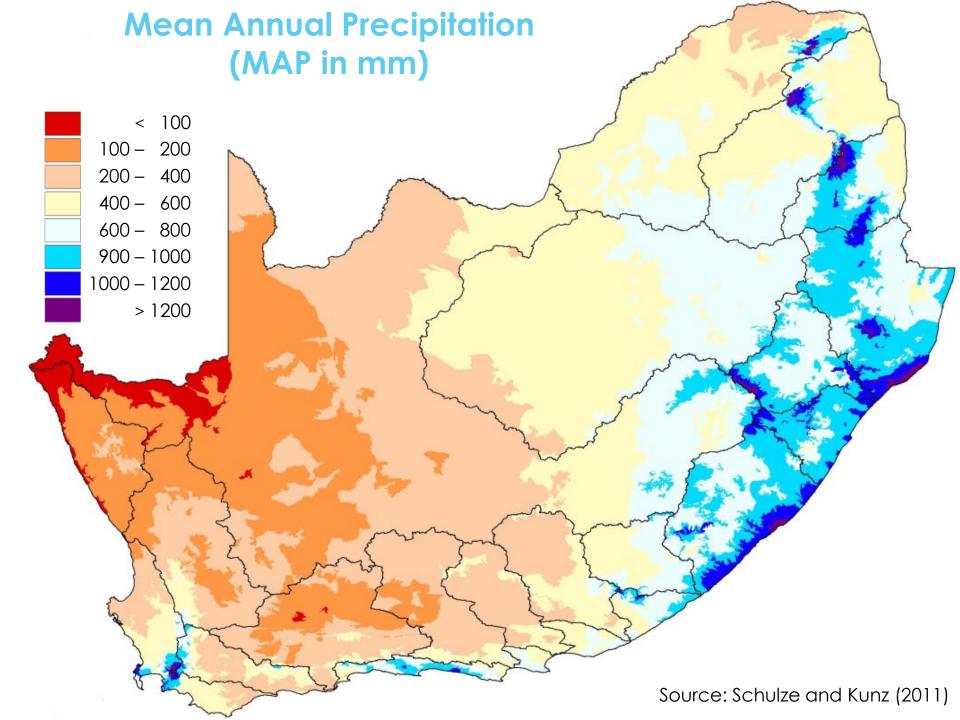
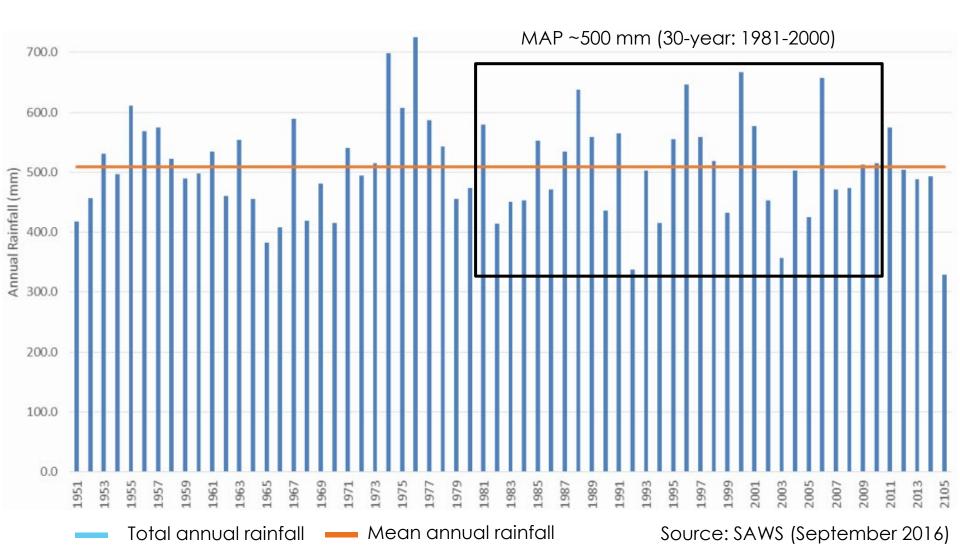

Water use and nutritional value of indigenous root and tuber food crops

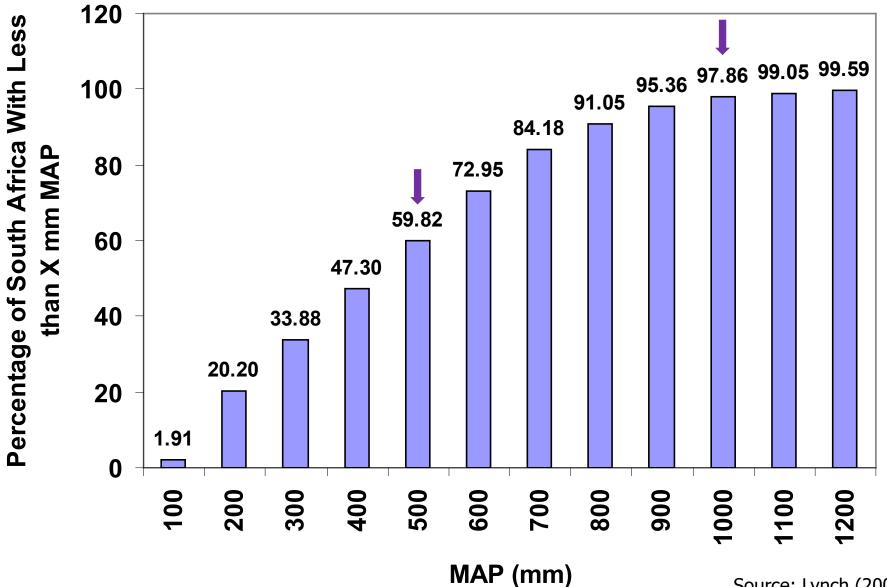

Richard Kunz Hydrologist (CWRR, UKZN in Pietermaritzburg)

WRC Dialogue on World Food Day "Our actions are our future - better production, better nutrition, a better environment and a better life"

15 October 2021

INSPIRING GREATNESS




South Africa is a water scarce country

- MAP ~500 mm (half world's average)
- World's 30th driest country

- Low and highly variable rainfall
- > Yet, 90% of crop production is rainfed

~60% of SA receives ≤ 500 mm of annual precipitation ~2% of SA receives > 1000 mm of annual precipitation

Source: Lynch (2004)

Water-stressed Catchments

Water allocation in strategic catchments

Expansion of irrigated crop production is highly unlikely

Catchment	Supply (Available)	Demand (Required)	Balance
Mkomasi	31	99	-68
Upper Thukela	394	425	-31
Bushmans, Buffalo	137	149	-12
Мооі	128	137	-9
Lower Thukela	79	93	-14
Mvoti, Mlazi, Lovu	86	118	-32
uMngeni	414	504	-90
South Coast	25	41	-16
Mzimkulu	16	50	-34
		â	

Source: DWS (2018)

Small Scale Farmers

Affected by numerous constraints

- Low and erratic rainfall
 - Dominant factor affecting crop production
 - Cannot easily be improved with irrigation
- Marginal, less fertile soils
- Limited access to information (e.g. production guidelines)
 - Unable to make informed decisions
- Low and unreliable yields
 - Food and nutrition insecurity
- Limited access to markets
 - Low infrastructural development

Small Scale Farmers

How can scientists help farmers?

- Need to fully understand their vulnerability
- Help revive and strengthen indigenous knowledge systems
- Produce knowledge that benefits both society and the economy

Enable farmers to grow crops that:

- are resilient to climate risks
 - drought and heat stress tolerant
- produce reasonable yields with less water
 - exhibit high crop (and nutritional) water productivity
- improve agro-biodiversity and dietary diversity
- promote the development of new value chains
 - e.g. biofuel production from crops

Small Scale Farmers

How can scientists help farmers?

- Need to fully understand their vulnerability
- Help revive and strengthen indigenous knowledge systems
- Produce knowledge that benefits both society and the economy

Enable farmers to grow crops that:

- are resilient to climate risks
 - drought and heat stress tolerant
- produce reasonable yields with less water
 - exhibit high crop (and nutritional) water productivity
- improve agro-biodiversity and dietary diversity
- promote the development of new value chains
 - e.g. biofuel production from crops

Underutilised indigenous food crops may be part of the solution

Benefits of Indigenous Crops

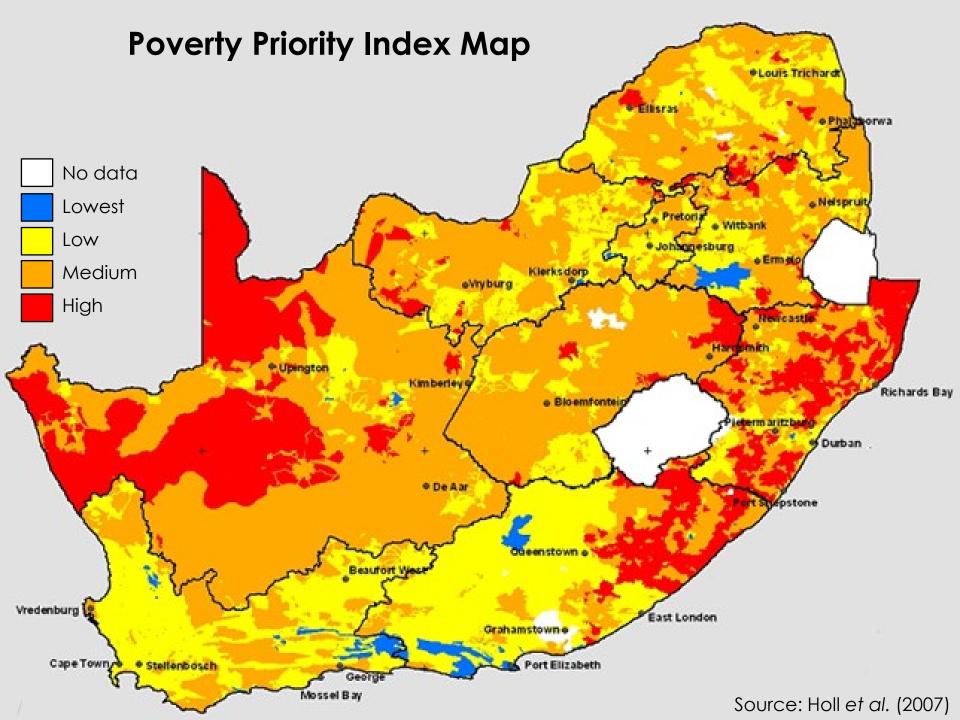
Why produce underutilised indigenous crops?

- Nutrient dense
 - Improve household nutrition security
- More resilient to climate risks
 - "Drought insurance" crops (drought and heat stress tolerant)
- Require few external inputs for production
- Produce reasonable yields where other crops cannot
- Reduce dominance of cereal-based cropping systems
- Revive agricultural production and alleviate poverty
 - Potential to be commercialised (and industrialised)

Benefits of Indigenous Crops

Why produce underutilised indigenous crops?

The following SDGs can be addressed:


Benefits of Indigenous Crops

Why produce underutilised indigenous crops?

The following SDGs can be addressed:

SDG	Description		
1	End poverty in all forms everywhere		
2	End hunger Achieve food security	Improve nutrition Promote sustainable agriculture	
3	Ensure healthy living	Promote well-being	
8	Promote sustainable economic growth and employment		
15	Halt and reverse:land degradationbiodiversity loss	Combat desertification	

Challenges

Indigenous crops exhibit vast potential, yet remain underutilised

- Why? Mainly due to lack of research focus
 - Historically, more attention given to cereal crops
 - Imbalance is being addressed by WRC

Main factors hindering indigenous crop production

- Lack of production guidelines
 - Iimits adoption of these crops and upscaling of crop production
- Lack of detailed physiological information
 - restricts use of crop models
- Absence of well-developed and supported value chains
 - no formal seed systems (value chains remain rudimentary)

Challenges

Indigenous crops exhibit vast potential, yet remain underutilised

- Why? Mainly due to lack of research focus
 - Historically, more attention given to cereal crops
 - Imbalance is being addressed by WRC

Main factors hindering indigenous crop production

- Lack of production guidelines
 - Iimits adoption of these crops and upscaling of crop production
- Lack of detailed physiological information
 - restricts use of crop models
- Absence of well-developed and supported value chains
 - no formal seed systems (value chains remain rudimentary)

Research investment is key to address and overcome these challenges

Background

WRC-funded research on underutilised crops

- More than 2 decades of research to date
- Goal: promote underutilised and indigenous food crops
- Three main research themes
 - (a) Drought and heat tolerance
 - (b) Water use and nutritional value
 - (c) Nutritional water productivity

Draft research agenda (Modi and Mabhaudhi, 2016)

- To guide future research funding related to underutilised crops
- Identified 13 priority crops based on:
 - drought, heat tolerance and nutritional value
- Highlighted significant gaps in knowledge on crop production

Background

WRC PROJECT NO. (AUTHORS)	PROJECT DESCRIPTION
1771 (Modi & Mabhaudhi, 2013)	Water-use and drought tolerance of selected crops, e.g. amaranth, groundnut, taro, millet
2171 (Nyathi et al., 2016)	Nutritional water productivity of traditional vegetable crops
2274 (Modi & Mabhaudhi, 2017)	Determining water use of grain and legume crops, e.g. sorghum, maize, cowpea, groundnut
2493 (Modi & Mabhaudhi, 2020)	Water use and nutritional water productivity of food crops, e.g. dry bean, groundnut, cowpea, sorghum
2717 (Mabhaudhi et al., 2022)	Model water use (present & future) and develop production guidelines for certain crops, e.g. taro, amaranth, groundnut, sorghum
2019/20-00088 (Kunz et al., 2024)	Water use of root and tuber food crops, e.g. cassava, sweet potato, taro, tannia, yam

4-year WRC-funded research project

R2 million (Apr 2020 to Mar 2024)

Principal investigators

- Prof Tafadzwa Mabhaudhi
- Mr Richard Kunz

Project's main goals:

- Contribute to the existing knowledge base of RTCs
- Promote the sustainable production of RTCs
 - by small scale farmers (poverty alleviation)
- Upscale production of RTCs from small to large scale

Specific objectives

- Conduct detailed review of:
 - crop water use and yield
 - nutritional and health benefits
- Identify major gaps in knowledge
- Then address these gaps through field work
 - Measure crop water use, yield and nutrient content
- To improve existing knowledge of crop and nutritional WP
- Model the water use and yield of RTCs

Develop land suitability maps and production guidelines

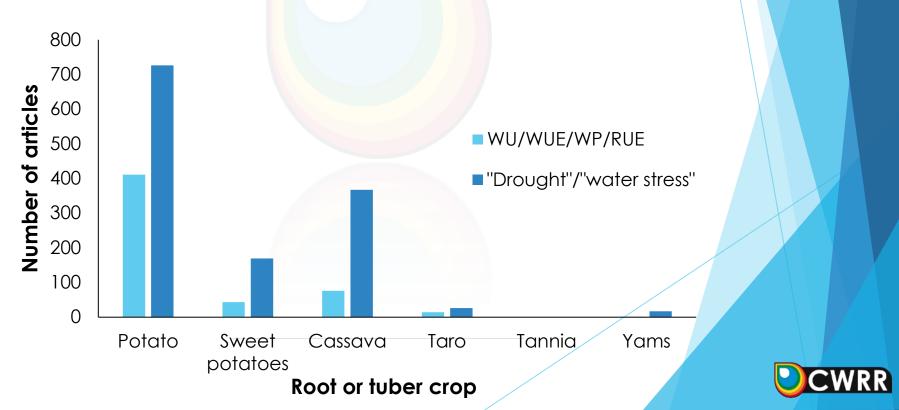
Specific objectives

- Conduct detailed review of:
 - crop water use and yield
 - nutritional and health benefits
- Identify major gaps in knowledge
- Then address these gaps through field work
 - Measure crop water use, yield and nutrient content
- To improve existing knowledge of crop and nutritional WP
- Model the water use and yield of RTCs

Develop land suitability maps and production guidelines

Literature Review

Classification of RTCs (Lebot, 2019)


- Belong to different botanical families
 - produce underground food
 - vegetatively propagated
- None are indigenous to SA
 - but have become indigenised
- Tannia and yam
 - remain mostly underutilised

Common	Botanical	Family name	IP	MP	KZN	FS	EC	WC
name	name	runniy nume						
Cassava	Manihot Esculenta	Euphorbiaceae	\checkmark	\checkmark				
Potato	Solanum Tuberosum	Solanaceae			\checkmark	\checkmark		
Sweet potato	Ipomoea batatas	Convolvulaceae	\checkmark	\checkmark	\checkmark			\checkmark
Taro	Colocasia Esculenta	Araceae		\checkmark	\checkmark		\checkmark	
Tannia	Xanthosoma spp.	Araceae						
Yam	Dioscorea spp.	Dioscoreaceae						

Literature Review

Availability of information (2000-2020)

- Disproportionate attention given to individual RTCs
 - most research on potato (not discussed)
 - least research on tannia and yams (not discussed)
- Focus on cassava, sweet potato and taro

Literature Review Cassava

Crop water use

- Large range (500–1750 mm) in optimum water requirement
- High drought tolerance
 - Deep rooting system
 - Should translate to high CWP/WUE
 - Similar CWP as sorghum

Edible vs industrial cassava

- Highlights the role of biotechnology and plant breeding research
- Edible cassava
 - ▶ Low starch, high protein, low cyanide, high Zn, Fe and vitamin A
- Industrial cassava
 - High starch, low protein, high cyanide (discourage animal ingestion)
 - > 27-37% of starch (fresh weight), compared to 15-28% for other RTCs
 - Bioethanol yield of 6000 L ha⁻¹ (vs 4900 L ha⁻¹ for sugarcane)

Literature Review Sweet Potato

Crop water use

- Large range (700-1500 mm) in optimum water requirement
- Short cycle crop (3-5 months)
- Moderate drought tolerance
 - Not during first six weeks of establishment
 - Decreases leaf area when water stressed

Common cultivars

- Staple type (e.g. A40)
 - White flesh and white/purple skin
 - Higher starch and dry-matter content
- Dessert type (e.g. A45, 199062.1)
 - Orange flesh and orange skin
 - Higher beta-carotene content

Literature Review Taro

Crop water use

- High water requirement (1750-2500 mm) relative to other RTCs
 - Due to genotype differences (upland vs lowland)
 - Requires further investigation to confirm high water use

Genotypes

- Upland taro (e.g. Umbumbulu landrace)
 - Eddoe type more drought tolerant than dasheen type
 - Better adapted to water-limited production (good stomatal control)
- Lowland taro (e.g. KwaNgwanase landrace)
 - Usually planted in low-lying areas (e.g. coastal areas of northern KZN)
 - Prefers waterlogged (i.e. swamp) areas

Upland taro more water use efficient than lowland taro

Literature Review

Main findings on crop water use and water productivity

- Disproportionate attention given to individual RTCs
 - Most for potato and cassava; least for tannia and yams
- When compared to cereal crops:
 - research on crop water use and water productivity is scarce
 - amount of water required for successful production is unclear
- Lack of credible information (evidence is anecdotal)
 - Will limit promotion and production of RTCs (especially in new areas)
- Drought avoidance mechanisms usually have high yield penalty
 - e.g. water stressed yam delays tuber initiation, thus reducing final yield
- Taro and sweet potato highlighted as priority crops

Literature Review

Purpose of literature review

- Highlight existing knowledge gaps
- Identify RTCs that are:
 - drought tolerant (e.g. cassava)
 - water use efficient (e.g. sweet potato)
 - nutrient dense (e.g. taro and yam)
- Help focus project's research efforts

	Cassava	Sweet potato	Taro
Drought tolerance	High	Moderate	Low
Growing period (days)	300-600	90-150	180-240
Expected yields (t ha-1)	11-21	4-10	4-24
Crop water use (mm)	500-1750	700-1500	1750-2500
Water productivity (kg m ⁻³)	0.19-0.24	0.65-0.95	0.53-0.71
Energy (kcal)	130-160	86-170	276-352

Root and Tuber Crops (RTCs)

Sweet

potato

170

90

4.8

0.4

3.7

69

28

Taro

352

86

7.8

0.8

3.0

68

25

R

Nutrient e energe stillen. DTC e preside		
Nutrient composition: RTCs provide	Highest	Cass-
 energy (kcal) from 	values	ava
 carbohydrates (mostly) 	Energy (kcal)	160
▶ protein	Carbs	83
1/3 the energy of wheat/rice	(%)	00
due to high moisture content	Protein (%)	2.0
more energy per unit land than cereals	Crude fat	0.3
due to high root/tuber yields	(%)	
good source of dietary fibre	Crude fibre (%)	1.8
Superior nutritional content of taro	Moisture (%)	67
High energy and protein content	Starch (g)	37
 High protein digestibility 		
 Farmers in Umbumbulu (KZN) 	_ /	
Sell produce to Woolworths & Pick 'n Pay		

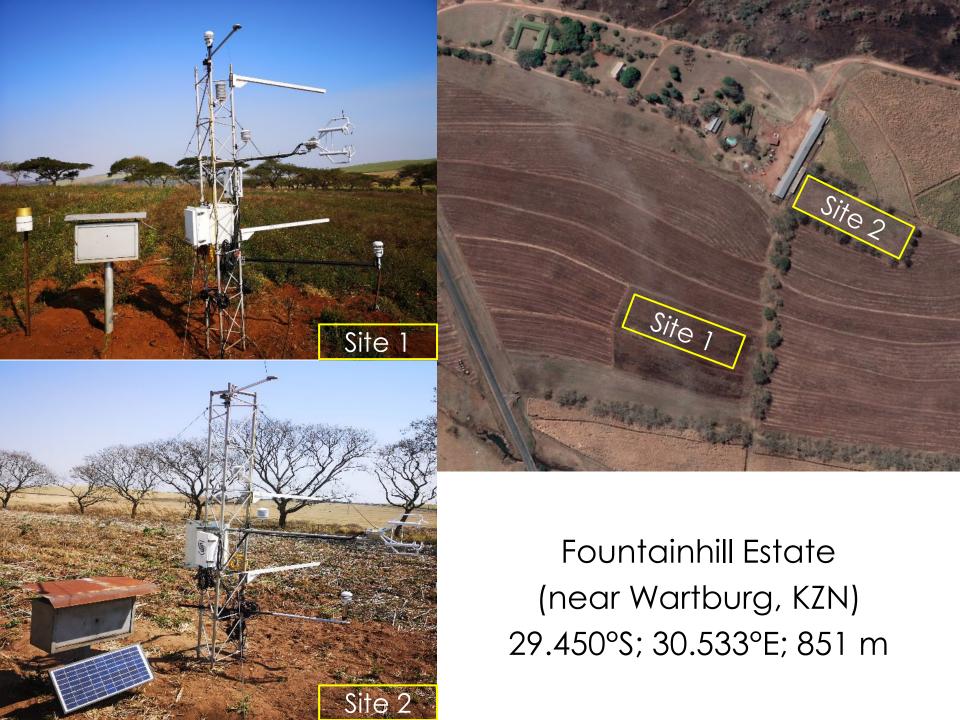
Root and Tuber Crops (RTCs)

 Mineral composition Taro is high in Ca, Mg, P & Na 	Highest values	Cass- ava	Sweet potato	Taro
 Sweet potato is high in K 	Zinc (mg)		8.4	2.6
 reduce blood pressure 	Manganese (mg)		4.9	1.9
	Calcium (mg)	33	48	132
Vitamin composition	Magnesium (mg)	21	111	415
Sweet potato is very high in vitamin A	Phosphorus (mg)	27	159	340
due to beta-carotene content	Sodium (mg)	14	55	1521
	Potassium (mg)	271	1242	340
Vitamin A deficiency in children				
Problem is SSA	Vitamin A (IU)	13	14187	
Cause of night blindness	Vitamin C (mg)	20.6	2.4	14.3
Addressed by eating sweet potato	Thiamine (mg)	0.09	0.08	0.18
orange fleshed varieties	Riboflavin (mg)	0.05	0.06	0.04
	Niacin (mg)	0.85	0.56	1.30

Specific objectives

- Conduct detailed review of:
 - crop water use and yield
 - nutritional and health benefits
- Identify major gaps in knowledge
- Then address these gaps through field work
 - Measure crop water use, yield and nutrient content
- To improve existing knowledge of crop and nutritional WP
- Model the water use and yield of RTCs

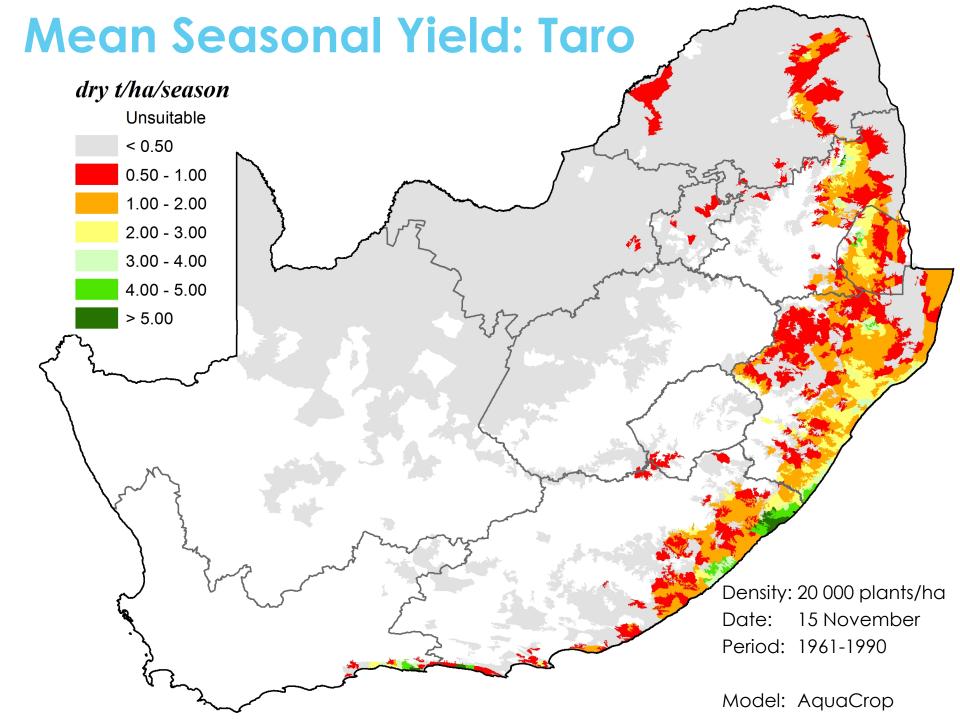
Develop land suitability maps and production guidelines

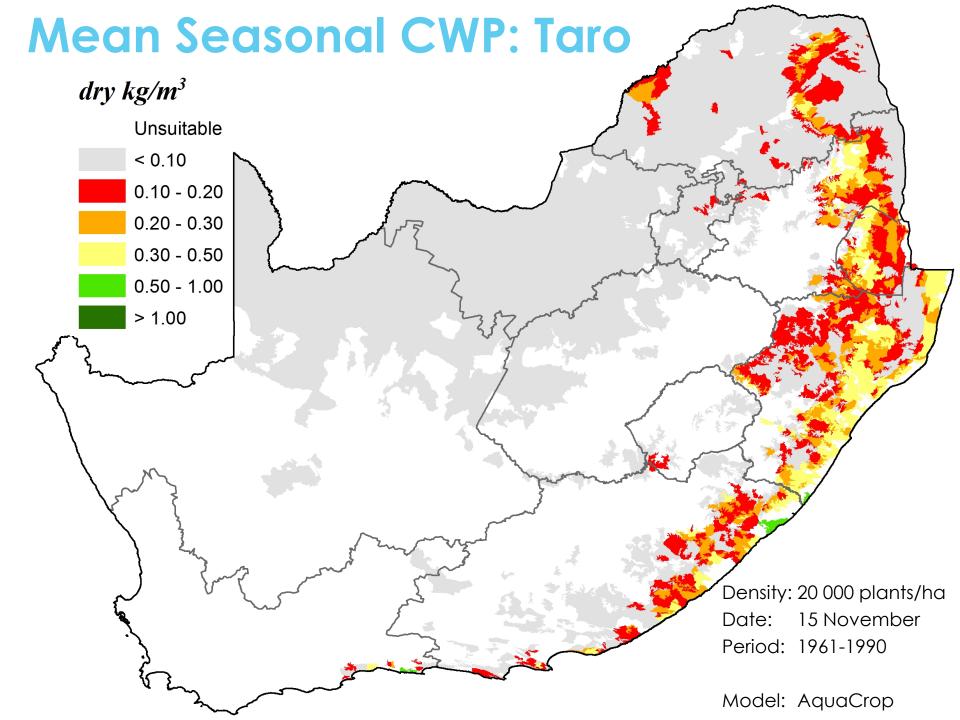


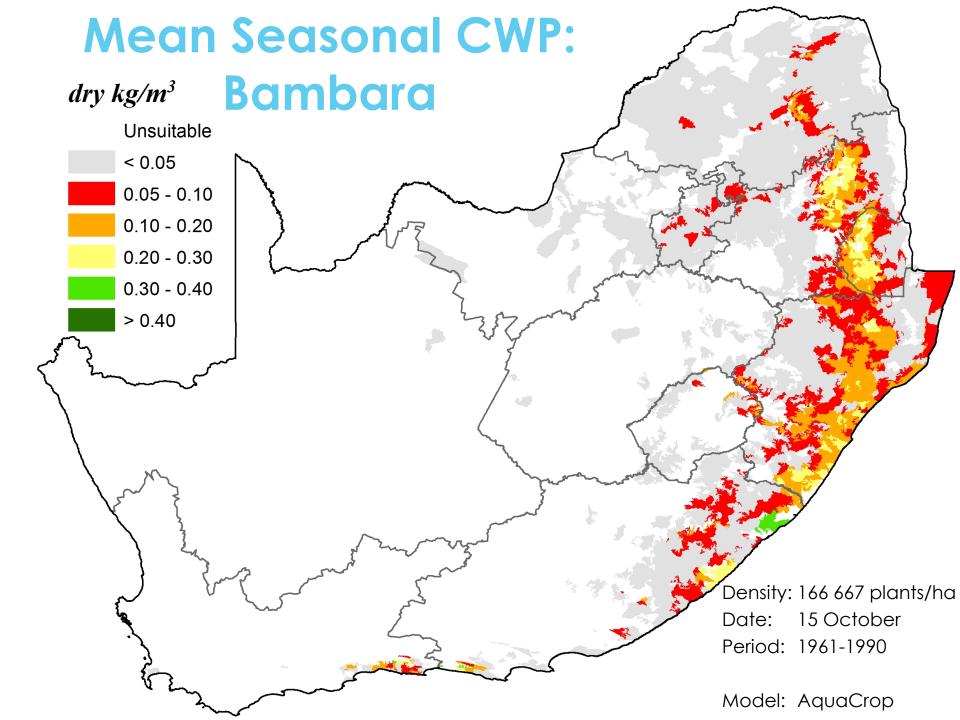
Way Forward

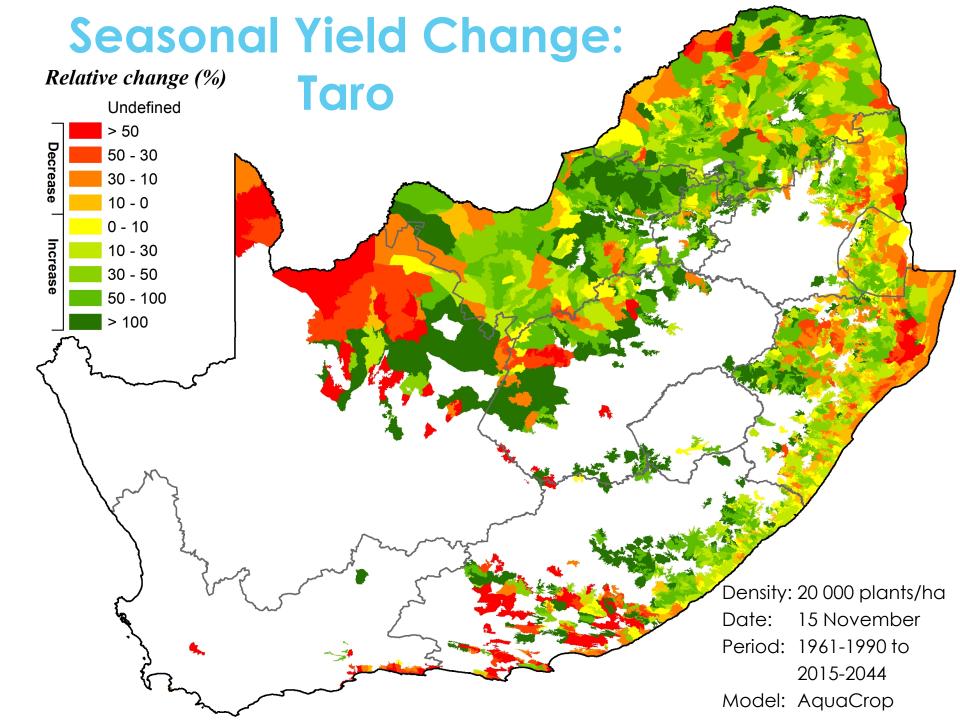
Field-based research

- Focus on upland taro (eddoe type) and sweet potato (orange flesh)
 - high nutritional value
 - potential to create new value chains in marginal areas
- Measure over the growing season
 - crop water use via eddy covariance and surface renewal
 - confirm crop water requirement (especially taro)
 - crop growth (LAI, chlorophyl content, stomatal conductance)
- Measure at harvest
 - yield of roots/tubers and leaves
 - calculate crop water productivity
 - nutrient content of roots/tubers and leaves
 - calculate nutritional water productivity




Specific objectives


- Conduct detailed review of:
 - crop water use and yield
 - nutritional and health benefits
- Identify major gaps in knowledge
- Then address these gaps through field work
 - Measure crop water use, yield and nutrient content
- To improve existing knowledge of crop and nutritional WP
- Model the water use and yield of RTCs


Develop land suitability maps and production guidelines

Background

WRC PROJECT NO. (AUTHORS)	PROJECT DESCRIPTION	
1771 (Modi & Mabhaudhi, 2013)	Water-use and drought tolerance of selected crops, e.g. amaranth, groundnut, taro, millet	
2171 (Nyathi et al., 2016)	Nutritional water productivity of traditional vegetable crops	
2274 (Modi & Mabhaudhi, 2017)	Determining water use of grain and legume crops, e.g. sorghum, maize, cowpea, groundnut	
2493 (Modi & Mabhaudhi, 2020)	Water use and nutritional water productivity of food crops, e.g. dry bean, groundnut, cowpea, sorghum	
2717 (Mabhaudhi et al., 2022)	Model water use (present & future) and develop production guidelines for certain crops, e.g. taro, amaranth, groundnut, sorghum	
2019/20-00088 (Kunz et al., 2024)	Water use of root and tuber food crops, e.g. cassava, sweet potato, taro, tannia, yam	

CWRR

The Important Role of RTCs

Better production

- Drought and heat tolerant (e.g. cassava)
 - resilient to climate variability and change
- More crop choices for farmers
 - improve agro-biodiversity in SA
- Tolerate low agricultural inputs and marginal soils
 - produce reasonable yields where other crops cannot

Better nutrition

- Nutrient dense (e.g. taro and yam)
- Alleviate malnutrition and hunger
- Improve dietary diversity in SA

The Important Role of RTCs

Better environment

- High crop water productivity (e.g. sweet potato)
 - more "crop" per "drop"
- High nutritional water productivity
 - potato (5626) > maize (3856) > wheat (2279) > rice (1989 kcal m⁻³)
- Strive towards most beneficial use of scarce water resources

Better life

- Revive, expand and improve agricultural production
- Increase profitability of smallholder farming systems
- Alleviate rural poverty and reduce inequality
 - especially in KZN and E. Cape
- Improve food and nutrition security
 - household and national level

If you have any unanswered questions, email:

kunzr@ukzn.ac.za

