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EXECUTIVE SUMMARY 

 

BACKGROUND AND MOTIVATION 

The focus of this project (K5/2717), funded by the Water Research Commission (WRC), was guided by 

recommendations made in a research agenda developed by Modi and Mabhaudhi (2016). This agenda 

was designed to promote the production of underutilised indigenous crops, with the goal of upscaling 

production from subsistence to commercial scale. It highlighted 13 drought tolerant and nutrient-dense 

crops that should be targeted and prioritised for future research, development and innovation (Modi and 

Mabhaudhi, 2016).  

 

Underutilised indigenous crops have an important role in improving agro-biodiversity in South Africa. 

Their suitability for low input agricultural systems and tolerance to drought and heat stress could 

improve the sustainability of rainfed cropping systems, especially in rural communities. Furthermore, 

underutilised indigenous crops are nutrient-dense and can provide essential minerals and vitamins 

required for healthy living. Thus, the promotion of underutilised indigenous crops under rainfed 

production will contribute to efforts to improve food and nutrition security in South Africa and build the 

resilience of rural farming communities to climate change impacts. 

 

In order to promote the sustainable inclusion and production of underutilised indigenous crops in rainfed 

cropping systems, production guidelines are required by both small- and largescale farmers. Such 

guidelines should consider the potential impacts of climate change on crop production. Rising 

temperatures will substantially increase evaporative demand, translating into higher transpiration rates 

and increased crop yields, if water availability is not limited. Higher temperatures will enhance crop 

development and result in shorter crop cycles. 

 

However, water availability mostly influences crop production, and projected changes in rainfall are less 

certain, with some parts of the country expected to become drier. Furthermore, elevated levels of 

ambient CO2 concentration can increase the rate of photosynthetic carbon assimilation in plants and 

thus, stimulate plant growth. However, the magnitude of this CO2 “fertilisation effect” remains uncertain, 

but is likely to be more beneficial for C3 than C4 crops. Higher CO2 levels can also induce stomatal 

closure, resulting in lower transpiration, decreased crop water use, and increased crop water use 

efficiency. Hence, it is difficult to assess if climate change may result in higher or lower crop yields in 

the future. 

 

One approach involves using mechanistic crop models to assess the integrated effects of changing 

rainfall combined with increased temperatures and CO2 levels on biomass growth, water use and yield. 

Results from crop simulations are useful for planning agricultural interventions that include underutilised 

indigenous crops and contributing to efforts to broaden crop choice options for farmers. This should 

help increase farmers' preparedness and increase their capacity to adapt to climate change impacts by 

improving their resilience to climate shocks. 

 

PROJECT OBJECTIVE AND AIMS 

This project was titled “Developing a guideline for rainfed production of underutilised indigenous crops 

and estimating green water use of indigenous crops based on available models within selected bio-

climatic regions of South Africa”, with total funding of R2 million. The 5-year project (April 2017 to March 

2022) aimed to promote the rainfed production of underutilised indigenous crops in South Africa by: 

1. developing production guidelines and land suitability maps for underutilised indigenous crops 

grown under rainfed conditions, and 

2. mapping climate change impacts on yield, water use and water productivity for selected 

underutilised crops under rainfed growing conditions. 
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Based on this, the final project report was produced in two volumes, with this report representing 

Volume 2 that highlights the potential impacts of climate change on four underutilised indigenous crops, 

viz. amaranth, bambara groundnut, sorghum and taro. These impacts were assessed using a crop 

water productivity model as described next. 

 

METHODOLOGY 

In this project, a crop simulation model called AquaCrop was selected and run to estimate the yield, 

water use efficiency and season length of the four underutilised crops under rained conditions. The 

model was run for the present period to represent historical conditions and two future periods. The 

reason for using AquaCrop is given next, together with a brief model description. 

 

Crop model selection and description 

 

AquaCrop was developed by the Food and Agricultural Organisation (FAO) of the United Nations to 

simulate the daily growth, productivity and water use of 16 herbaceous crops. The model was selected 

to meet the objective of this research project because it: 

 

• is well suited for assessing crop response to different climate change scenarios in terms of 

altered soil water content, temperature regimes and elevated atmospheric CO2 concentration 

(Steduto et al., 2012), and 

• has been extensively used in other WRC-funded projects to estimate various crops' yield and 

water use across southern Africa. 

 

AquaCrop’s growth engine is water-driven and is particularly suited to simulating yield response to water 

availability. The model estimates biomass production via a conservative, crop-specific water 

productivity parameter (WP) and accumulated crop transpiration (Tr). Crop yield is calculated using the 

harvest index approach (i.e. the harvestable portion of biomass). 

 

The WP parameter represents the rate of biomass production per unit of transpired water. It is 

normalised (as WP*) using reference evapotranspiration (ETO) to improve the model’s robustness and 

applicability across different climates. Adjustments are also made to WP that account for CO2 effects 

on plant growth. 

 

AquaCrop uses growing degree-days (GDD) as the thermal clock to account for the effects of 

temperature on phenology and crop growth. Stress coefficients (ranging from 0 to 1) account for water 

and temperature stress effects on plant growth. Therefore, minimum and maximum air temperatures 

are required as input simulates cold and heat stress. Like most crop models, AquaCrop cannot account 

for the effects of pests and diseases on crop growth. In addition, it indirectly simulates the effects of 

fertility on crop growth. 

 

Kunz et al. (2015b) noted that Version 4 of AquaCrop was particularly sensitive to soil moisture 

availability in the first plant growth stage. This issue was addressed in Version 6, which now assumes 

that sufficient reserves are available in the seed for leaf expansion to occur at its maximum rate just 

after germination. Therefore, crop yields simulated by Version 6 are typically higher than those 

produced by Version 4 of the model. In addition, the results from this study supersede those presented 

in past reports that used Version 4 (e.g. Mabhaudhi et al., 2016a; 2016b). 
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AquaCrop input files 

 

As noted above, AquaCrop requires daily values of rainfall, maximum and minimum temperature, and 

ETO data as determined using the FAO56 or Penman-Monteith method (Allen et al., 1998). The model 

also requires the volumetric water contents (at saturation, field capacity and permanent wilting point) 

and depth for each soil horizon. This input data was obtained from the climate and soils databases 

Schulze et al. (2011) developed for each of the 5838 quinary catchments (called altitude zones in this 

document). Recently, the climate database was modified as described by Kunz et al. (2020). The model 

also requires saturated hydraulic conductivity, which was estimated from volumetric water content 

equations provided by Saxton and Rawls (2006). 

 

AquaCrop was then run at the national scale of all 5838 altitude zones with 50 years of input climate 

data (1950-1999) to estimate crop yield, water use efficiency and season length for historical conditions. 

The model was also run for three 30-year periods representing present (1961-1990), near future 2015-

2044), and distant future (2070-2099) conditions. These climate projections were derived from six 

GCMs that were dynamically downscaled and bias-corrected (against observed data) forced by two 

representation concentration pathways (RCPs), viz. RCP4.5 and RCP8.5. The dynamic downscaling 

was undertaken by the CSIR using their regional climate model (called CCAM). 

 

A representative planting date and plant density were selected for each of the four underutilised 

indigenous crops. Since crop parameters were not developed in this project, they were obtained from 

previous studies that undertook calibration and validation of AquaCrop for specific crops. The availability 

of existing parameters largely determined which underutilised indigenous crops were focused on in this 

study. 

 

Reducing computational expense 

 

Owing to the computational expense of running AquaCrop multiple times with 30-50 years of daily input 

data, considerable effort was spent on minimising model run time. These efforts built on work originally 

described by Kunz et al. (2015c; 2020) and are described in detail in this report to assist others in 

improving model performance. This allows model users to consider additional modelling scenarios, 

since less time is spent waiting for model runs to complete. 

 

Mapping of results 

 

AquaCrop was run for all 5838 altitude zones using input climate projections for six CMIP5 GCMs that 

were dynamically downscaled and bias-corrected. Crop yield (Y), water use efficiency (WUE) and 

season length (i.e. crop cycle) were simulated for three 30-year periods, viz. present (PR; 1961-1990), 

near future (NF; 2015-2044) and distant future (DF; 2070-2099). The present period is deemed to 

accurately represent the historical period due to bias correction of GCM climate projections. The 

average and coefficient of variation (CV in %) were determined for each period and other useful 

statistics (e.g. standard deviation, range, etc.). To reduce the number of maps that can be shown, the 

mean seasonal values from each GCM were also averaged. This implies that equal weighting was given 

to each GCM. Maps highlighting the change in average value from 1) present to near future, 2) near 

future to distant future, and 3) present to distant future period were generated for each for the four 

underutilised indigenous crops, viz. amaranth, bambara groundnut, grain sorghum and taro 

(amadumbe). For example, the change in yield from PR to NF was expressed as 1) a percentage 

change (100∙(YNF – YPR)/YPR), and 2) ratio (YNF/YPR). For altitude zones where averaged values for the 

present (or near future) period are zero, the change cannot mathematically be determined. Such areas 

appear white on the maps and are labelled as “Undefined”. 
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For each period, Confidence Index (CI) maps were also produced by calculating and analysing the ratio 

(not %) of change for each GCM (e.g. YNF/YPR). The percentage CV was then calculated from the six 

ratios. A low CV (< 5%) implies that the individual GCMs give similar ratios and thus, implies a very high 

CI. On the other hand, a high CV (> 50%) implies a large discrepancy among the ratios and hence, a 

very low CI. Whilst the categories are somewhat subjective; they indicate relative confidence in terms 

of the agreement between the six GCMs. A similar approach has been used in other studies (e.g. 

Schütte et al., 2021a). 

 

RESULTS AND DISCUSSION 

To better understand the impacts of climate change on agricultural response, it is important to first 

consider the projected changes in rainfall and temperature expected over the country and highlight the 

importance of bias correcting GCM projections. 

 

Bias correction 

 

The dynamically downscaled climate projections from six GCMs were bias-corrected against observed 

(i.e. historical) data. A comparison of observed mean annual precipitation and temperature data with 

projected (average of six GCMs) values for the present period (1961-1990) showed strong correlations. 

Surprisingly, the correlation was stronger for bias correction of rainfall using a multiplicative correction 

factor when compared to bias correction of temperature involving an additive factor. These results 

highlight the success of the bias correction method and show that the present period can be used to 

represent historical conditions. 

 

Climate change projections 

 

In general, greater confidence (lower uncertainty) is associated with temperature projections than future 

rainfall scenarios. The highest increases in future temperatures are expected in the northern parts of 

the country near the Botswana border, with maximum temperatures increasing more than minimum 

values. Projected increases in maximum temperatures exceed 6°C, which will result in a substantial 

increase in evaporative demand. However, this will not translate into higher transpiration rates and 

increased crop yields simply because rainfall in the northern regions of the North West and Limpopo 

provinces is limiting, which is expected to worsen into the future due to decreasing projected rainfall. 

 

Rainfall in the Western and Northern Cape provinces is projected to decrease by 30% or more in the 

distant future, particularly along the border with Namibia and Botswana. In contrast, a 20% increase in 

rainfall is expected in the central interior region, especially to the west and south-west of Lesotho. 

Furthermore, current predictions also suggest that South Africa may experience decreasing rainfall in 

some areas and increased rainfall variability and frequency of extremes such as drought and floods. 

This could have a negative impact on current crop production areas. 

 

Issues with RCP4.5 

 

The climate change projections used in this study were derived as part of another WRC-funded project 

(K5/2833; Schütte et al., 2021a), which found that the rainfall maps produced for RCP4.5 were 

inconsistent with those produced in previous studies. It was concluded that the CSIR supplied the 

incorrect RCP4.5 dataset to project K5/2833. There was insufficient time and resources needed to 

correct this error, and thus, climate projections representing RCP8.5 were only used to assess the 

impact of climate change on crop response. Since RCP8.5 represents the “business as usual” scenario, 

it is important to note that the results obtained in this study do not span all possible future outcomes. 
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Climate change and crop yield 

 

Results for the potential impact of climate change on crop yield showed the following general trends: 

 

• For amaranth, yields in most areas north of the Free State and KZN borders are expected to 

decline by up to 30% in the near future, whilst a 10% yield increase may occur for most other 

areas. 

• Yield declines exceeding 50% for bambara groundnut may be expected across most Limpopo 

and eastern Mpumalanga and the north-eastern parts of KwaZulu-Natal and North West 

provinces. 

• Sorghum yields are expected to decline for most growing areas along the country's eastern 

seaboard, with the highest yield losses (> 50%) predicted for the Limpopo and eastern 

Mpumalanga provinces.  

• In contrast, taro yields should improve for most areas in Limpopo, North West and KwaZulu-

Natal (except in the north-east and along the coast) provinces. 

• The CO2 fertilisation effect may offset the negative impacts of climate change on crop 

production in southern Africa. 

• The Limpopo province appears to be least favourable for crop production in the near future, 

except for taro production. 

 

Expansion of cropping areas 

 

The present to distant future maps do not show the potential expansion in crop growing areas that may 

result from climate change. Furthermore, based on the low confidence (i.e. high uncertainty) associated 

with climate projections towards the end of the 21st century, the present to distant maps should not be 

used for decision-making purposes. Therefore, the CV of yield maps for present and near-future 

conditions were compared to assess the likely expansion in crop growing areas, which showed the 

following general trends: 

 

• Since the model simulated averaged non-zero yields for amaranth across all altitude zones, it 

was not possible to assess an expansion in growing areas. 

• For bambara groundnut, the expansion in growing areas occurs mainly in western 

Mpumalanga, southern Free State and in the Eastern Cape (northern regions).  

• No noticeable expansion in suitable growing areas for sorghum was simulated by the model 

from present to near future. 

• Taro exhibits a large expansion in areas deemed suitable for growth in the central interior. This 

is mainly due to a substantial reduction in areas deemed too cold to grow the crop in the present 

period. 

• Expansion of crop production from present to near future is most likely to occur in the 

Mpumalanga province. 

 

Climate change and WUE 

 

Relative to the present climate, amaranth’s WUE is expected to increase in both the near future and 

distant future. For the other three crops, changes in WUE mimicked the expected changes in yield, i.e. 

both increases and decreases for bambara groundnut, mostly decreases for sorghum and mainly 

increases for taro. 

 

Climate change and season length 

 

A warmer future climate will result in accelerated accumulation of heat units (i.e. growing degree-days), 

thus shortening the time to reach physiological maturity (i.e. shorter growing season). Adaptation 
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strategies include shifting to earlier planting dates and growing early-maturing cultivars with shorter 

season lengths. Crop season length is expected to shorten from the present to the near future, except 

in some altitude zones for bambara groundnut and taro. Towards the distant future, taro may experience 

the largest reduction (> 30%) in season length across most areas, compared to a 10-30% reduction for 

the other three crops. 

 

Confidence index 

 

The variability in simulations between the six GCMs is lowest (i.e. highest confidence) for season length, 

since it is mostly affected by temperature only. In contrast, confidence is lowest for crop yield and WUE 

(i.e. higher CVs), since these variables are mostly affected by rainfall. As noted earlier, greater 

confidence (lower uncertainty) is associated with temperature projections than future rainfall scenarios. 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

Limitations of study 

 

Maps based on distant future projections should not be used for decision-making purposes due to the 

low confidence in rainfall and temperature projections towards the end of the 21st century. Furthermore, 

results presented in this study must be interpreted on the understanding that no GCM provides “perfect” 

future climate scenarios. Furthermore, the results do not span all possible future outcomes due to the 

following: 

 

• Results were based on RCP8.5 climate projections only, as RCP4.5 scenarios were not used. 

• Six GCMs cannot fully represent the entire CMIP5 ensemble of over 70 GCMs. 

• The CMIP6 ensemble of GCMs project slightly drier conditions in the central part of the country, 

which none of the CMIP5 GCMs used in this study show. 

• The CO2 fertilisation effect may offset the negative impacts of climate change on crop 

production. However, crop response to elevated CO2 is not well-understood. 

• Soil fertility was assumed nonlimiting to growth, and the impact of weed growth was not 

considered. 

• AquaCrop cannot account for pest and disease incidence, which is expected to increase due 

to rising temperatures in the future, thus causing yield declines. 

 

Future research recommendations 

 

The approach developed and implemented in this study is by no means considered “exhaustive”. 

Therefore, this study should be repeated in the near future to include the following recommendations, 

to show a wider range of possible future outcomes: 

 

• at least two planting dates per crop, 

• two plant densities representing both commercial and smallholder farming environments, 

• climate projections for the RCP4.5 mitigation scenario, and 

• more than six representative GCMs from the CMIP6 ensemble. 

 

Due to the uncertainty of crop response to elevated CO2, climate change impact assessments should 

be conducted with and without the CO2 fertilisation effect. In addition, AquaCrop’s sensitivity to the fSINK 

parameter should be determined to justify additional research to obtain representative values for each 

crop. 

 

In April 2020, the WRC funded a project to update the altitude zone climate database, which involves 

extending the daily record by an additional 20 years. In addition, the spatial accuracy of the soils data 
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assigned to each altitude zone was recently improved. AquaCrop should be re-run with these latest 

input datasets to improve the accuracy and reliability of the simulated output. 

 

These recommendations will certainly increase computational expense, and thus, additional effort is 

required to further improve AquaCrop’s performance. It is suggested that the model is re-coded in the 

FORTRAN programming language to facilitate the development of a multi-threaded version, which 

should further improve performance. 

 

The size and scale of the maps presented in this report limit their usefulness and applicability. Therefore, 

it is recommended that the output files be disseminated to end users via an online data portal (e.g. 

Water Research Observatory). This will allow end-users to generate additional maps not presented in 

this study that better suit their specific needs. 
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1 INTRODUCTION 

 

1.1 Background and rationale 

 

Underutilised indigenous crops have an important role in improving agro-biodiversity in South Africa. 

Their suitability for low input agricultural systems and tolerance to abiotic stresses such as drought and 

heat stress could improve the sustainability of rainfed cropping systems in rural communities. The 

promotion of underutilised indigenous crops under rainfed production will contribute to efforts to improve 

food and nutrition security and build the resilience of rural farming communities to climate change 

impacts. Priority should be given to developing guidelines for the rainfed production of selected 

underutilised indigenous crops. These guidelines would go a long way in promoting the sustainable 

inclusion and production of underutilised indigenous crops in rainfed rural cropping systems. In 

developing these guidelines, consideration should also be given to the potential impacts of climate 

change on crop production. 

 

There is a high degree of certainty that temperature will increase with climate change, which will result 

in a substantial increase in evaporative demand. This should translate into higher maximum 

transpiration rates and increased crop yields if water availability is nonlimiting. Higher temperatures also 

infer that growing degree-days will accumulate faster, and thus, crop development will be enhanced, 

thus resulting in shorter crop cycles. However, projected changes in rainfall are less certain, with some 

parts of the country becoming drier in the future, whilst others are expected to be wetter. Hence, it is 

difficult to assess if climate change may result in higher or lower crop yields in the future. However, 

impacts of changing rainfall and increasing temperature on crop yield and water use do not consider 

the crop’s response to elevated CO2 levels. Crop response to elevated CO2 is dependent on changes 

in rainfall and temperature and changes in other variables such as soil moisture content and soil nutrient 

availability. 

 

Evidence from free-air CO2 enrichment (or FACE) experiments has shown that elevated levels of 

ambient CO2 concentration can increase the rate of photosynthetic carbon assimilation in plants and 

thus, stimulate plant growth. Although such benefits have been reported for both C3 and C4 crops (e.g. 

Leakey et al., 2009), this CO2 “fertilisation effect” is more beneficial for C3 (e.g. trees, forbs and 

temperate grasses) than C4 crops (e.g. tropical grasses) (Harle et al., 2007). However, the magnitude 

of the CO2 fertilisation effect remains uncertain (Ainsworth et al., 2008). This is due to variations in 

experimental design (e.g. free air enrichment vs semi-closed systems) and various environmental 

factors affecting crop response to elevated CO2. For example, water stress can increase the CO2 growth 

stimulation, whilst limited nitrogen availability usually decreases the response to elevated CO2 (Sun et 

al., 2009). In addition, higher CO2 levels can also induce stomatal closure (i.e. decrease stomatal 

conductance), resulting in lower transpiration, which decreases crop water use and increases crop 

water use efficiency, as well as improves soil water content. This increased efficiency in converting 

water into dry matter has been shown to raise above-ground and, in some cases, below-ground plant 

biomass. 

 

In water-limited conditions, such as those experienced in virtually all rainfed cropping systems in South 

Africa, the main benefit of increased CO2 levels is derived through the interaction of plant water use 

efficiency and soil moisture availability. In general, enhanced CO2 levels will improve the plant’s ability 

to withstand the stresses associated with reduced rainfall, although this will vary with species and soil 

conditions. In the more arid regions of the country where annual rainfall varies between 300 and 500 

mm, further decreases in rainfall due to climate change may offset the positive effects of enhanced CO2 

levels on plant growth. Low nutrient availability can further limit the response of plant productivity to 

raised CO2 levels (Harle et al., 2007). For these reasons, the potential impacts of climate change on 

crop production should be assessed using mechanistic crop models. Such models can assess the 
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integrated effects of changing rainfall combined with increased temperatures and CO2 levels on crop 

growth, yield and water use. 

 

The application of available crop models can aid in assessing the potential impacts of climate change 

on the rainfed production of underutilised indigenous crops in South Africa. Such information will be 

useful for planning agricultural interventions that include underutilised indigenous crops and contributing 

to efforts to broaden crop choice options for farmers. This should help increase the level of 

preparedness of rural farmers and hence, increase their capacity to adapt to climate change impacts 

by improving resilience. 

 

1.2 Project aim and objectives 

 

In November 2016, the Crop Science discipline within the School of Agricultural, Earth and 

Environmental Sciences at the University of KwaZulu-Natal in Pietermaritzburg was awarded a 

research project initiated and funded by the Water Research Commission (WRC). This project 

(K5/2717) was titled “Developing a guideline for rainfed production of underutilised indigenous crops 

and estimating green water use of indigenous crops based on available models within selected bio-

climatic regions of South Africa”, with total funding of R2 million. This 5-year project commenced in April 

2017 and terminated in March 2022 and aimed to develop production guidelines and land suitability 

maps for underutilised indigenous crops grown under rainfed conditions. Another aim of this project 

was to map climate change impacts on yield, water use and water productivity for selected underutilised 

crops under rainfed growing conditions. Based on this, the final project report was produced in two 

volumes: 

 

1. Land suitability mapping and production guidelines to promote the rainfed production of 

underutilised indigenous crops in South Africa. 

2. Climate change atlas highlighting potential impacts of climate change on the productivity of 

selected underutilised indigenous crops. 

 

Over the five years, ten reports were produced for the WRC, which have been integrated and 

synthesised to produce these two volumes. This report represents Volume 2 and highlights the potential 

impact of climate change on four underutilised crops, viz. amaranth, bambara groundnut, sorghum and 

taro. The specific objectives of the project related to this report are as follows: 

 

• To parameterise/calibrate and test/validate available crop models for selected underutilised 

crops under rainfed conditions in South Africa (Aim 2) 

• To use available crop models and climate change data to map climate change impacts on yield, 

water use and water productivity of selected underutilised crops for rainfed production under 

South African conditions (Aim 4) 

 

The information presented in this report (Volume 2) should help improve the resilience of rural farming 

communities to climate change impacts. Hence, the climate change maps will facilitate strategic 

decision making at all levels for crop choice and climate change adaptation strategies. It is envisaged 

that the climate change maps will also help to promote the sustainable inclusion and production of 

underutilised indigenous crops in rainfed cropping systems. 

 

1.3 Scope of the report 

 

In the past, underutilised indigenous crops were neglected (i.e. forgotten) by policymakers, researchers, 

breeders, producers and traders. Hence, these crops received little research attention, which prevented 

their full potential from being recognised. These crops have not been classified as major crops and are 

currently grown within traditional farming systems by subsistence and small-scale growers using 
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informal seed systems. Consequently, they have poorly developed and understood value chains. 

However, this situation is changing, albeit slowly. Over the past 25 years, increasing research attention 

has been afforded to underutilised crops through the vision and funding efforts of the WRC. In addition, 

agricultural-related policies have broadened their scope to include underutilised crops (DAFF, 2014). 

These efforts should help transform indigenous crops from underutilised to being produced at a 

commercial farming scale. 

 

Underutilised crops that exhibit high potential for expanding agricultural production in South Africa have 

already been identified (Modi and Mabhaudhi, 2016). The 13 identified crops have been targeted and 

prioritised for future research, development and innovation. Hence, underutilised indigenous crops are 

receiving increasing recognition because of their drought and heat tolerance. Thus, their potential role 

in mitigating risk in agricultural production systems and promoting food security (Mabhaudhi et al., 

2017). The maps presented in this report highlight the potential impacts of the changing climate on four 

underutilised indigenous crops. The main beneficiaries of the research represented in this report are as 

follows: 

 

• Small- and large-scale farmers, 

• Department of Agriculture, Land Reform and Rural Development (a merger between the Department 

of Agriculture, Forestry and Fisheries and the Department of Rural Development and Land Reform), 

in particular agricultural extension officers within the National Extension Support Services section, 

• Department of Human Settlements, Water and Sanitation (a merger between the Department of 

Human Settlements and the Department of Water and Sanitation), and 

• Department of Science and Innovation (former Department of Science and Technology). 

 

It is envisaged that the maps will support strategic decision making at all levels for choice of crop 

enterprise and climate change adaptation strategies. In addition, the maps should improve the service 

provided by agricultural extension officers to rural farming communities and emerging farmers regarding 

where indigenous crops can be cultivated (Volumes 1 and 2), how best to produce these crops under 

rainfed conditions (Volume 1), what yields can be expected as well as understanding the possible 

impacts of climate change (Volume 2). 

 

1.4 Structure of report 

 

Chapter 2 (methodology) of this report (Volume 2) discusses the methodology used to run the crop 

productivity model (AquaCrop) at a national scale. The section begins with a description of the crop 

model (Sections 2.1 and 2.2), how the input files required to run the model were developed (Sections 

2.3 and 2.4) and includes a detailed description of the necessary steps taken to reduce computational 

expense, i.e. minimise the time required to complete national model runs (Section 2.5). In Section 2.6, 

the approach used to develop the series of maps shown in this report is discussed. 

 

In essence, AquaCrop was run with one planting date and plant density deemed appropriate for each 

of the four underutilised crops. This was done using 50 years of observed input climate data 

representing historical conditions. In addition, the model was run using 30 years of projected climate 

data representing three time periods (present, near future and distant future) derived from six 

dynamically downscaled and bias-corrected GCMs. The GCMs were forced with two CO2 mitigation 

scenarios for Representative Concentration Pathways (RCP) 4.5 and 8.5.  However, RCP4.5 was not 

used for modelling after problems were found with the dataset (cf. Sections 2.3.8 and 4.3.2, including 

Chapters 7 and 8). 

 

In Chapter 3 (results and discussion), the success of bias correcting the climate projections is given in 

Section 3.1, followed by expected trends in rainfall and temperature that may affect crop yield response 

to climate change (Section 3.2). Maps showing impacts of climate change on crop yield, WUE and 
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season length are given in Sections 3.3, 3.5 and 3.6, respectively. The maps highlight the percentage 

change from present to near future, near to distant future and present to distant future. 

 

Similar maps expressing the change as ratios (i.e. present/near future) are given in Chapters 9, 10 and 

11 for yield, WUE and season length, respectively. The coefficient of variation among the ratios of 

change for the six GCMs was calculated to give a confidence index that reflects GCM agreement. These 

results are presented in Sections 3.3.4, 3.5.4 and 3.6.4 and Chapters 12 to 14. A brief discussion on 

how areas deemed suitable for crop production may expand in the future is given in Section 3.4. This 

project has generated a wealth of data to quantify the potential impacts of climate change on four 

underutilised crops, as discussed in Chapter 6 (data storage). Finally, the main findings of this study 

and its limitations are presented in Chapter 4, together with recommendations and future work. 
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2 METHODOLOGY 

 

In this project, AquaCrop Version 6 was run to simulate crop yields, water use efficiency and season 

length under rained conditions. An overview and a brief description of the model is given in Section 

2.1. Version 6 of the model underwent significant improvements compared to version 4, as explained 

in Section 2.2. The model was run at the national scale of all 5838 altitude zones. The derivation of 

historical and future climate files is discussed in Section 2.3, followed by a description of the crop 

parameter files used in this study (Section 2.4). 

 

Kunz et al. (2020) developed a more efficient method for running simulation models at a national scale. 

This means that model users spend less time waiting for model runs to complete, which allows them to 

consider additional modelling scenarios. A detailed outline of the performance enhancements made to 

achieve this efficiency is summarised in Section 2.5, which should allow others to implement (and 

benefit from) a similar approach. The section ends with a discussion of the approach used to develop 

the maps shown in this report (Section 2.6). 

 

2.1 AquaCrop model 

 

2.1.1 Model overview 

 

Kephe et al. (2021) identified most crop models that have been applied widely in agricultural 

management, viz. ACRU, DSSAT, SWB, EPIC, APSIM and AquaCrop. They noted that most studies 

assessing crop response in South Africa used the AquaCrop model. In addition, AquaCrop has been 

extensively used in other WRC-funded projects to estimate the yield and water use of commercial crops 

(e.g. canola, soybean, sugarcane and sugarbeet). Furthermore, the model has been successfully linked 

to the climate and soils databases that Schulze et al. (2011) developed for each of the 5838 quinary 

catchments (Kunz et al., 2015a; 2020). For these reasons, AquaCrop was chosen to meet the aims of 

this project. 

 

The FAO developed AquaCrop to simulate the daily growth, productivity and water use of 16 

herbaceous crops, as affected by changing water availability and environmental conditions. According 

to Steduto et al. (2012), AquaCrop can be used to perform the following: 

 

• assess the effect of water deficits on crop production, 

• compare the results of several water allocation plans, 

• optimise irrigation scheduling, 

• enhance management strategies for increased water productivity and water savings, and 

• assess crop response to different climate change scenarios in terms of altered soil water 

content, temperature regimes and elevated atmospheric CO2 concentration. 

 

AquaCrop is particularly suited to simulating yield response to water availability as it is a water-driven 

model. Hence, AquaCrop is an engineering-type water productivity model that represents a simplified 

interpretation of water stress effects on crop productivity. The structural components of the model are 

shown schematically in Figure 2.1. The basic concepts and fundamental calculation procedures are 

briefly described next. 
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Figure 2.1 The structural components of AquaCrop, including stress responses and the 

functional linkages among them (Steduto et al., 2012) 

 

AquaCrop’s growth engine is water-driven and estimates biomass production (B in g m-2) via a 

conservative, crop-specific water productivity parameter (WP) and accumulated crop transpiration (∑Tr) 

and as follows: 

 

B = WP·∑Tr Equation 1 

 

AquaCrop is based on the dual crop coefficient method, separating Kcb (basal crop coefficient) and Ke 

(soil water evaporation coefficient). In other words, the model differentiates non-productive consumption 

of water (soil water evaporation or E) from productive consumption, i.e. transpiration. Thus, AquaCrop 

segregates evapotranspiration into two components: Tr and soil water evaporation (E). This approach 

is especially useful during periods of incomplete ground cover when E is high.  

 

WP represents the biomass produced (g m-2 mm-1) per unit of transpired water (mm). Both Tr and WP 

are normalised using ETO to improve the model’s robustness and applicability across different climates. 

ETO is determined using the FAO56 (or Penman-Monteith) method described by Allen et al. (1998). The 

normalised WP is designated as WP* within the model as follows: 

 

B = WP*·∑(Tr/ETO) Equation 2 

 

WP* behaves conservatively, remaining virtually constant over a range of environments and is not 

affected by water stress (Steduto et al., 2009). According to Vanuytrecht et al. (2011), WP* is higher for 

C4 crops (typical range: 30-35 g m-2) than C3 crops (typical range: 15-20 g m-2). WP* is also a function 

of the ambient CO2 level and is expected to increase over time (due to rising CO2 levels). 

 

For most crops, only part of the biomass is partitioned to the harvested organs to give yield. Yield is 

correlated to biomass production (and photosynthesis) and, thus, is directly and indirectly affected by 

environmental conditions (Challinor et al., 2009). The yield (Y in g m-2) is the harvestable portion of the 

biomass (B), which is calculated using the harvest index (HI) as follows: 

 

Y = B·HI Equation 3 
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The harvest index is estimated on a day-by-day basis over the yield formation period, which also 

enhances the robustness of the model. No other partitioning among the various plant organs occurs, 

thus avoiding the complexity of partitioning processes that are the most difficult to model (Steduto et 

al., 2009). 

 

However, like most crop models, it cannot account for the effects of pests and diseases. AquaCrop 

does not directly simulate the effects of fertility on crop growth, nor can it simulate intercropping, which 

the APSIM model can (Kephe et al., 2021). Instead, it allows adjustment of default values pertaining to 

pivotal crop parameters (e.g. WP* and canopy cover) based on fertility categories that range from near-

optimal to poor. Compared to other crop models, AquaCrop requires a relatively small number of input 

crop parameters and readily available climate data [rainfall, maximum (Tx) and minimum (Tn) 

temperature, reference crop evapotranspiration (ETO) and ambient CO2 concentration], as indicated in 

Figure 2.1. Other inputs relate to soil characteristics and management practices that define the 

environment in which the crop will develop (Steduto et al., 2012). 

 

2.1.2 Crop response to stress 

 

Abiotic environmental stresses related to water and temperature can negatively impact canopy 

development, biomass production, and yield. The impact depends on the timing of occurrence, severity 

and duration. 

 

Water stress 

Water stress reduces transpiration which then decreases biomass production. The impact of water 

stresses on harvest index (and thus yield) can also be pronounced (either negative or positive), 

depending on the timing and extent of stress during the crop cycle (Steduto et al., 2009). Figure 2.1 

also shows the functional linkages between different stress responses in the model. The numbers 

represent water stress response functions for (1) leaf expansion, (2) senescence, (3) stomatal 

conductance and (4) harvest index. In AquaCrop, stress is described by means of a stress coefficient 

(Ks). In essence, Ks modifies its target model parameter and ranges from one (no stress) to zero (full 

stress). The shape of the stress curve is typically convex (but can be linear or concave), and the degree 

of curvature is set during model calibration. 

 

Temperature stress 

Franke (2021) reviewed the effects of increased temperature on crop growth and development, such 

as, inter alia, reduced photosynthesis, increased respiration, reduced net assimilation, higher 

evapotranspiration (assuming water is nonlimiting), shorter growing and grain filling periods. These 

combined effects typically result in reduced yields. Deterministic crop models generally have algorithms 

to simulate temperature impacts on net assimilation and phenological development, which is why such 

models are useful in assessing climate change impacts on crop growth. A review by Franke (2021) 

showed that DSSAT was used in half of the 20 climate change studies over southern Africa, followed 

by AquaCrop (20%) and LINTUL (10%). 

 

AquaCrop uses growing degree-days (GDD) as the thermal clock to account for the effects of 

temperature on phenology and crop growth. Minimum and maximum air temperatures are used to 

account for cold and heat stress, respectively. For example, biomass production is affected by cold 

temperature stress, whereas hot or cold temperature stress inhibits pollination, which then reduces the 

HI. In addition, temperature stress modifies the water productivity parameter, and thus, both biomass 

production and yield formation are affected by temperature stress (Vanuytrecht et al., 2014).  
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2.1.3 Crop response to elevated CO2 

 

To estimate crop response to elevated CO2, crop models utilise different simple and semi-complex 

methods. The majority of crop models assess atmospheric CO2 levels on (i) photosynthesis/production, 

and (ii) stomata/transpiration, whilst some also consider (iii) nitrogen dynamics (Vanuytrecht and 

Thorburn, 2017). More importantly, APSIM has been validated against FACE experiments for three 

crops (wheat, rice and pasture). However, other crops (e.g. barley, potato, maize, sorghum and cotton) 

have not been validated, despite the availability of FACE data. On the other hand, AquaCrop has been 

tested for a range of crops using data from several FACE experiments (Vanuytrecht et al., 2011). 

 

To account for plant response to rising CO2 levels, version 4.0 of AquaCrop was modified to include: 

 

• a downward adjustment of transpiration (due to increased stomatal conductance), and 

• an upward adjustment of WP* (due to the CO2 fertilisation effect). 

 

Hence, WP* in Equation 2 is adjusted by two dimensionless coefficients (fTYPE and fCO2) as follows: 

 

WP*adj = (1 + fTYPE∙fCO2 – fTYPE)∙WP* Equation 4 

 

The coefficient fTYPE ranges from 0 to 1 and accounts for the response to elevated CO2 levels being 

smaller for C4 crops than for C3 crops as follows: 

 

fTYPE = (40-WP*)/(40-20) Equation 5 

 

For C3 crops with a typical WP* of 15-20 g m-2, fTYPE is 1. For C4 crops, WP* ranges from 30 to 35 g m-

2, and thus, fTYPE is 0.50 and 0.25, respectively. 

 

The equation given by Vanuytrecht et al. (2011; Equation 6 on p 1755) to calculate fCO2 is different to 

that given by Raes et al. (2018; cf. Equation 3.11c on p 3-100), with the latter equation incorporating a 

weighting factor (w). This weighting factor ranges from 0 to 1 for CO2 concentrations below 369.71 ppm 

and above 550 ppm, respectively. The threshold of 369.71 ppm represents the averaged atmospheric 

CO2 concentration measured at Mauna Loa Observatory, Hawaii, in the year 2000. The threshold of 

550 ppm represents the CO2 level typically maintained in the FACE experiments. 

 

The fCO2 coefficient adjusts WP* when the atmospheric CO2 concentration (read in from the .CO2 file) 

differs from the reference value. Figure 2.2 shows measured ambient CO2 levels from 1950 to 2020, 

together with the RCP8.5 CO2 trajectory. A CO2 concentration of 550 ppm may be reached around 

2052, increasing to over 900 ppm by 2100.  The coefficient is dependent on the crop’s sink strength 

coefficient (fSINK), which varies from 0 (low CO2 responsiveness) to 100% (high CO2 responsiveness) 

depending on crop characteristics and field management. Vanuytrecht et al. (2011) provided specific 

values for certain crops, which are high (0.4-0.6) for root and tuber crops and low (0.0-0.2) for cereals. 

 

Vanuytrecht et al. (2011) referred to the adjustment factor (1 + fTYPE∙fCO2 – fTYPE) given in Equation 4 as 

fWPS. For C3 crops where WP* < 20 g m-2, fTYPE is 1 and fWPS = fCO2, fWPS increases steadily from 0.85 in 

1950 to 1.00 for the reference year and up to 1.11 in 2020 (Table 2.1). From 2020 onwards, fWPS 

increases steadily up to 1.85 towards the end of the 21st century. Therefore, WP* is adjusted upwards 

by a factor of 1.85 for C3 crops in the year 2100. For C4 crops where WP* is 30-35 g m-2, fWPS in 2100 

is lower (1.43 and 1.21). The fWPS values shown in Table 2.1 are based on an fSINK value of 50%, which 

is AquaCrop’s default value. 
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Figure 2.2 Atmospheric CO2 concentration measured at Mauna Loa in Hawaii from 1950 to 

2020, together with projected values from 2020 to 2100 as per RCP8.5  

 

WP* is also adjusted downward to account for the production of lipids or proteins synthesised during 

yield formation, as these products require considerably more energy per unit dry weight than for the 

synthesis of carbohydrates. In addition, WP* is adjusted downwards when soil fertility of soil salinity 

limits plant growth (Raes et al., 2018). For a similar assessment on how the APSIM model assesses 

crop response to elevated CO2, the reader is referred to Vanuytrecht and Thorburn (2017). 

 

Table 2.1 Adjustment coefficient (fCO2) applied to the normalised water productivity value 

within the AquaCrop model for RCP8.5 emission scenario 

Year 

CO2 concentration (ppm) WP* adjustment factor (fWPS) 

Observed 

(Mauna Loa) 

Projected 

(RCP8.5) 
WP* < 20 WP* = 30 WP* = 35 

1950 311.30  0.849 0.924 0.962 

1960 316.91  0.863 0.932 0.966 

1970 325.68  0.886 0.943 0.972 

1980 338.76  0.920 0.960 0.980 

1990 354.45  0.961 0.980 0.990 

2000 369.71  1.000 1.000 1.000 

2010 390.10  1.051 1.025 1.013 

2020 414.24  1.107 1.054 1.027 

2030  449 1.180 1.090 1.045 

2040  489 1.251 1.126 1.063 

2050  541 1.322 1.161 1.080 

2060  604 1.417 1.209 1.104 

2070  677 1.526 1.263 1.131 

2080  758 1.636 1.318 1.159 

2090  845 1.745 1.373 1.186 

2100  936 1.849 1.425 1.212 

 

2.2 AquaCrop model improvements 

 

In AquaCrop Version 6, the following improvements and new features have been made to the model: 

• Improved simulation of crop performance in dry environments 

• Improved water thresholds for stomatal closure for certain crops 
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• Effects of gravel in the soil profile 

• Simulation of weed infestation on crop production 

• Inclusion of dry beans as a new crop 

In addition to the above, the ratio of initial abstraction (Ia) to potential maximum storage (S) has been 

decreased from 20% to 5%. Hence, AquaCrop Version 6 produces more runoff than Version 4. The 

default curve numbers have also been updated in Version 6, due to the coefficient of initial abstraction 

changing from 20 to 5%. However, only the first two updates listed above are discussed next in more 

detail. This is due to their greater impact on simulated output from AquaCrop in this study. 

2.2.1 Simulations in dry environments 

 

Kunz et al. (2015b) noted that AquaCrop Version 4 was particularly sensitive to soil moisture availability 

in the first growth stage. They found that water stress at the start of the second growth stage reduced 

leaf expansion to such an extent that the crop died, and thus, no biomass or yield was produced. A 

workaround was to set the initial soil water level to field capacity, which is the default option in 

AquaCrop. However, this is unrealistic for rainfed farming conditions in South Africa. 

This issue has been addressed in Version 6, which assumes that sufficient reserves are available in 

the seed for leaf expansion to occur at its maximum rate just after germination. Any reduction of leaf 

expansion due to water stress is not considered until canopy cover is 25% above the initial value (CCO). 

This protection of the seedling avoids an instantaneous killing of the seedling too soon after germination 

(FAO, 2017). 

The main motivation to use Version 6 of the model in this project was the improvement in simulating 

the early development of the canopy cover under water stress. It is expected that the number of crop 

failures (i.e. zero yield) simulated by Version 6 of the model will be somewhat less than that outputted by 

Version 4. 

 

2.2.2 Water thresholds for stomatal closure 

 

FAO (2017) reported updates to crop parameters related to soil water thresholds for soybean, sorghum, 

potato and cotton. In particular, changes were made to the upper threshold for soil water depletion at 

which the stomata start to close and the shape factor for the stress-depletion relationship. 

 

2.3 AquaCrop input files 

 

2.3.1 Planting date and plant density 

 

Table 2.2 provides the planting window and the ideal planting date utilised for each underutilised 

indigenous crop. Plant densities of 33 333, 166 667, 44 444 and 20 000 plants ha-1 were selected for 

amaranth, bambara groundnut, sorghum and taro, respectively. For further information, the reader is 

referred to Volume 1 of this report 

 

Table 2.2 Planting date selected for each underutilised indigenous crop modelled in this 

study 

Crop  Planting window Ideal planting date Source 

Amaranth 1st Sep-30 Nov 15th Sep DAFF (2010a) 

Bambara groundnut 1st Oct-15th Dec 15th Oct DAFF (2011) 

Sorghum 15th Oct-15th Dec 15th Oct DPP/ARC (2006) 

Taro 15th Oct-15th Jan 15th Nov DAFF (2010b) 
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2.3.2 Soils data 

 

The minimum soil input parameters required by AquaCrop are depths of the A- and B-horizon (in m), 

the volumetric water contents (as %) at saturation, field capacity and permanent wilting point, as well 

as saturated hydraulic conductivity (in mm d-1). The latter was calculated from equations provided by 

Saxton and Rawls (2006). For each altitude zone, the area-weighted and averaged volumetric water 

contents, together with the soil depths, were derived by Schulze and Horan (2008) using the AutoSoils 

decision support tool (Pike and Schulze, 1995 and updates) applied to the ISCW soils database (SIRI, 

1987 and updates) for each of the land types that cover South Africa. 

 

2.3.3 Observed climate 

 

In this section, the development of the 1) historical and 2) future climate databases used in this study 

are described. For more detail on these two climate databases, the reader is referred to Kunz et al. 

(2020) and Wolski et al. (2021), respectively. The section begins with a brief description of the base 

datasets used to develop the historical climate database for the quaternary catchments and their altitude 

zones. 

 

2.3.3.1 Description of base datasets 

 

A comprehensive daily rainfall database for southern Africa was compiled by Lynch (2004) using data 

from 12153 daily rainfall stations.  Extensive error checking of the dataset and infilling of missing data 

was done by Smithers and Schulze (2000) and refined by Lynch (2004). Some stations exhibit 152 

years of record (from January 1850 to December 2001), whilst others have only a few months of reliable 

data. Kunz (2004) developed a useful utility to extract daily, monthly and annual data from the rainfall 

database. 

 

Similarly, a daily temperature database for South Africa was compiled by Schulze and Maharaj (2004), 

which comprises daily data from 1950 to 2000 for 973 recording stations that were infilled and quality 

controlled. This base dataset was then used to derive interpolated daily temperatures for each minute 

of a degree across the country, i.e. 437038 grid points. This was achieved by selecting two temperature 

stations that best represent each grid point, then applying a distance weighting factor (i.e. from the 

station to the grid point). Thereafter, a lapse rate adjustment was applied to account for the altitude 

difference between the temperature station and each grid point. 

 

2.3.3.2 Quaternary catchments climate database 

 

Rainfall 

The Department of Human Settlements, Water and Sanitation (DHSWS) delineated South Africa into a 

set of nested Primary, Secondary, Tertiary and Quaternary Catchment boundaries. At the quaternary 

level, there exist 1946 catchments. A representative driver rainfall station from the Lynch (2004) dataset 

was selected for each Quaternary Catchment (QC) to develop the Quinary Catchments Climate 

Database (QnCDB). In total, 1240 stations were selected to represent the 1946 QC, of which the 

majority are owned by SAWS (Table 2.3). 

 

As reported by Schulze et al. (2011), several criteria were used to select the rainfall driver stations as 

follows: mean annual precipitation (MAP), altitude, reliability of record, end year of record and distance 

of rainfall station from the centroid of each QC. Daily rainfall data for each selected driver station was 

extracted from the Lynch (2004) dataset using the Kunz (2004) utility from 1950-1999. 
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Table 2.3 Custodian of rain gauges selected for each quaternary catchment (Kunz et al., 

2020) 

Custodian SAWS ID Number 
Percentage 

of total 

SAWS W 1158 93.4 

ARC A 34 2.7 

SASA S 22 1.8 

SAWS/ARC AW 15 1.2 

Total 1240 100.0 

 

For each QC, monthly adjustment factors were derived to estimate catchment rainfall from driver station 

rainfall. This was done by comparing the driver station’s median monthly rainfall to that derived for each 

QC using spatial estimates of median monthly rainfall developed by Lynch (2004). The monthly 

adjustment factors are used to derive rainfall estimates deemed more representative of each catchment. 

 

Temperature 

A software utility was developed to automate the selection of a suitable temperature dataset for each 

QC, which used the mean altitude and centroid location of each QC. The utility selected a grid data 

point that was 1) within the same catchment boundary (if possible), 2) of similar altitude to the catchment 

mean, and 3) closest to the catchment centroid. For the grid data point (1’ by 1’ pixel) selected for each 

QC, daily temperature data was extracted from the Schulze and Maharaj (2004) dataset. 

 

Reference evapotranspiration 

Using the method described by Schulze et al. (2011), which is based on the FAO56 equation (Allen et 

al., 1998), reference grass evapotranspiration (ETO) was calculated from daily temperature and a 

default wind speed of 1.6 m s-1. Hence, the QnCDB consists of 50 years (1950-1999) of daily rainfall, 

temperature and ETO for each of the 1946 QCs. 

 

2.3.3.3 Altitude zones climate database 

 

Delineation of altitude zones 

For some purposes, even the QC boundaries are deemed too coarse, and thus, a finer delineation was 

deemed useful. Hence, three regions (upper, middle and lower) of similar altitude were delineated within 

each QC by Schulze and Horan (2011), based on natural breaks in altitude using Jenk’s optimisation 

method. As the regions are delineated by natural breaks in altitude, the upper region may comprise one 

or more discrete spatial units (i.e. polygons). For modelling, altitudinal regions consisting of more than 

one polygon are conceptualised as a single entity. 

 

Runoff from the upper region flows into the middle region, with the latter flowing into the lower region.  

The lower region typically flows into the lower region of the downstream QC. Since the altitude zones 

do not represent true quinary catchments, they are now referred to as altitude zones (AZs) and not 

Quinary Catchments (QnCs), as was adopted by Schulze and Horan (2011). 

 

Rainfall 

The rain gauge selected to drive each quaternary was again chosen for each of the three AZs. For each 

of the 1 240 rainfall driver stations, daily rainfall from January 1950 to December 1999 was re-extracted 

from the rainfall database developed by Lynch (2004). This was done to obtain the data quality code, 

which indicates if the daily rainfall value is observed (code=” ”), infilled (P for “patched”) or missing (M). 

Missing daily values were set to zero after comparison with data from neighbouring rain gauges. 

 

A total of 13 extreme daily rainfall events (> 400 mm) were identified, with the worst case being 900.5 

mm. A method was developed to automatically extract daily rainfall for the ten neighbouring stations 
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from the Lynch (2004) rainfall database. A manual comparison was then performed to validate each 

rainfall event, resulting in four extreme rainfalls being adjusted downward (Table 2.4). The rainfall code 

was changed to F, i.e. “fixed”. 

 

Table 2.4 Adjustments made to extreme rainfall values that existed in the quaternary 

catchments rainfall database (Kunz et al., 2020) 

SAWS 
ID 

Date 
Daily rainfall (mm) 

Original Adjusted 

0150620 W 1997/02/22 900.5 0.0 

0304446 W 1980/12/14 585.5 85.5 

0214485 W 1953/02/23 520.0 0.0 

0022148 W 1991/06/23 440.0 44.0 

 

For each AZ, monthly adjustment factors were then derived by comparing the driver station’s median 

monthly rainfall to that derived for each AZ using spatial estimates of median monthly rainfall developed 

by Lynch (2004). The monthly adjustment factors are applied to each daily rainfall value to improve the 

representativeness of the AZ. 

 

Temperature 

Recently, observed temperature data was determined for each AZ (Kunz et al., 2020). A summary of 

the procedure used is described next for the reader’s convenience: 

  

• The Schulze and Maharaj (2004) temperature database was screened to remove 275 

“duplicate” stations (at similar locations and altitudes), which reduced the number of stations 

from 973 to 698. 

• The distance from each rainfall driver station to surrounding temperature stations was 

computed with the altitude difference between the two locations (i.e. stations). 

• An algorithm then used these two metrics to determine the best temperature station to 

represent each rain gauge. In other words, a “pseudo” temperature station was assigned to 

each rain gauge. 

• Of the 698 unique temperature stations, 543 were chosen to represent all 1240 driver rain 

gauges. This means that the same temperature station was selected for up to 10 rain gauges. 

  

Ideally, 114 temperature stations had the same SAWS ID as the rain gauge, meaning that both rainfall 

and temperature were measured at the same weather station. Similarly, a total of 184 temperature 

stations were within 1 minute (~1.7 km) of the rain gauge, with altitude differences ranging from 1 to 

338 m. Approximately 95% of the selected temperature stations were situated within 30 minutes (~51 

km) of the rainfall driver stations, with the furthest station being 52.5 minutes (~89 km) away.  

 

Lapse rate adjustment 

The altitudinal differences between the temperature station selected to represent a particular driver rain 

gauge (DALT) are shown in Table 2.5, with the worst-case exceeding 950 m for two stations. A lapse 

rate adjustment was applied to account for the altitude difference between the pseudo temperature 

station selected for each rain gauge. This dataset was used for bias correction of GCM climate 

projections. Thereafter, a second lapse rate adjustment was applied to account for the altitude 

difference between the selected temperature station and the average altitude across each AZ it 

represents. This dataset was used to develop the Altitude Zones Climate Database, which was called 

the Quinary Catchments Climate Database in the past. 
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Table 2.5 Histogram of altitude difference from each rain gauge to the selected (best) 

temperature station (Kunz et al., 2020) 

DALT 

(m) 
Count 

Percentage of 

total 

Accumulated 

percentage 

< 50 524 42.26 42.26 

50-100 256 20.65 62.90 

100-150 148 11.94 74.84 

150-200 91 7.34 82.18 

200-250 65 5.24 87.42 

250-300 43 3.47 90.89 

300-350 25 2.02 92.90 

350-400 24 1.94 94.84 

400-450 20 1.61 96.45 

450-500 6 0.48 96.94 

500-550 14 1.13 98.06 

550-600 9 0.73 98.79 

600-650 4 0.32 99.11 

650-700 4 0.32 99.44 

700-750 4 0.32 99.76 

> 750 3 0.24 100.00 

Total 1240 100.00  

 

Reference evapotranspiration 

Daily solar radiation and relative humidity (maximum and minimum) values were then generated from 

the lapse-rate adjusted temperatures using the method described by Schulze et al. (2011). Due to the 

lack of wind speed data, a daily default value of 2 m s-1 was used, as suggested by Allen et al. (1998). 

Daily reference evapotranspiration values (ETO) were then calculated using the FAO56 version of the 

Penman-Monteith equation (Allen et al., 1998).  

 

Summary 

Therefore, the recently revised AZDB consists of 50 years of daily rainfall, temperature (maximum and 

minimum), reference evapotranspiration (FAO56 and A-pan equivalent), solar radiation, and wind run 

for each of the 5838 AZs. To date, this climate database has been used extensively in WRC Project 

No. K5/2491 (Kunz et al., 2020), K5/2833 (Schütte et al., 2021a) and more recently, this project 

(K5/2717). 

 

These AZs represent areas of similar topography within each QC and are not equal in area. They can 

be considered as relatively homogeneous response zones, with minimal variation in climate and soils 

across each region. Therefore, the AZs are particularly useful for agricultural-related assessments 

involving crop simulation models to determine, amongst others, crop water use, crop yield, water use 

efficiency and nutritional water productivity. 

 

2.3.4 Future climate projections 

 

2.3.4.1 CO2 concentrations 

 

The Intergovernmental Panel on Climate Change (IPCC) adopted the Representative Concentration 

Pathways (RCPs), which represent plausible pathways to reaching a specific radiative forcing trajectory 

over time. Four RCPs were chosen, as shown in Table 2.6, that map a broad range of climate outcomes 

as they span a range of radiative forcing scenarios into the future (Moss et al., 2010). 
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Table 2.6 The RCP scenarios adopted by the IPCC (Moss et al., 2010) 

RCP 

name 

Radiative 

forcing 

(W m-2) 

CO2  

concentration 

(ppm) 

Pathway 

2.6 ~3 ~490 Peak before 2100, then declines 

4.5 ~4.5 ~650 Stable after 2100 

6.0 ~6 ~850 Stable after 2100 

8.5 > 8.5 > 1370 Rises after 2100 

 

The RCPs range from RCP2.6 to RCP8.5, where RCP2.6 is the scenario with low radiative forcing that 

begins to decline after 2100, while RCP4.5 and RCP6.0 show a stabilisation of radiative forcing after 

2100. RCP8.5 is based on continuing increases in radiative forcing due to rising GHG emissions, 

despite the declines in emissions in the second half of the 21st century (IPCC, 2014), as shown in Figure 

2.3. 

 

 
Figure 2.3 Projected CO2 emissions per decade for each Representative Concentration 

Pathway or RCP (IPCC, 2014) 

 

When these RCP pathways are used as input to multiple Global Climate Models (GCMs), the projected 

increase in global mean surface temperature for the period 2081-2100, relative to the period 1986-

2005, is likely to be 1.1-2.6°C under RCP4.5 and 2.6-4.8°C under RCP8.5. The divergence in projected 

changes in temperature is only strongly evident from about 2050 onwards, as shown in Figure 2.4 

(IPCC, 2014). For this study, RCP4.5 and RCP8.5 (“business as usual” scenario) were initially selected 

to assess climate change's potential impacts on future crop production. 
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Figure 2.4 Global average surface temperature increases from 2006 to 2100, relative to 1986-

2005, as determined from the mean of multi-model simulations for RCP2.6 (blue 

line) and RCP8.5 (red line), including the range (shading) as a measure of 

uncertainty (IPCC, 2014) 

 

2.3.4.2 GCM selection 

 

GCMs provide predictions (or projections) of various climate variables over time. Currently, there are a 

plethora of future climate projections generated using a multi-model, multi-method and multi-scenario 

approach. Developing future climate scenarios begins with global simulations of future climates using 

GCMs under various scenarios of greenhouse gas concentrations (as described in Section 2.3.4.1). 

These global simulations are made available in the Climate Model Inter-comparison Project (CMIP) 

archives, which form the basis of the IPCC assessment reports (e.g. AR5). 

 

This study selected six GCM simulations from the CMIP5 archive, as described in the IPCC 

Assessment Report AR5 (IPCC, 2014). As shown in Table 2.7, the selection was based on their ability 

to provide a reasonable representation of the region's El Niño-Southern Oscillation (ENSO) 

phenomenon. The simulations span the period 1961-2100. 

 

Table 2.7 Details of the six GCMs selected for this study (Wolski et al., 2021) 

Abbr. GCM details 

ACC Australian Community Climate and Earth System Simulator (ACCESS1-0)   

CCS Community Climate System Model (CCSM4) 

CNR National Centre for Meteorological Research Coupled GCM v5 (CNRM-CM5) 

GFD Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL-CM3) 

MPI Max Planck Institute Coupled Earth System Model (MPI-ESM-LR) 

NOR Norwegian Earth System Model (NorESM1-M) 

 

For this study, GCMs forced by RCP4.5 and RCP8.5 were initially selected to assess the impacts of 

climate change on crop response. As noted previously, the RCP scenarios only diverge significantly in 

their projections after approximately 2050. Until 2050, the variation between the available GCM 

projections is greater than the difference between the RCP scenario considered. 
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2.3.4.3 Downscaling techniques 

 

Many GCMs fail to adequately capture the detailed spatial gradients and strong topographical forcing 

that influence South Africa’s climate (Hewitson and Tadross, 2011). In response to this weakness, 

downscaling techniques were introduced to translate changes in the atmospheric circulation from the 

large scale to finer scales, which would be more suitable for local climates (Tadross et al., 2011). Hence, 

downscaling bridges the disparity between the spatially coarse-scaled GCM output and the finer-scaled 

input needs of hydrological and agricultural simulation models. The advantages of using downscaled 

climate projections are well recognised, but it is important to note that downscaling introduces additional 

uncertainties, which are sometimes not adequately quantified. There are two types of downscaling 

techniques performed in South Africa: dynamical downscaling (with Regional Climate Models or RCMs) 

and statistical (or empirical) downscaling. These two techniques are discussed next in more detail. 

 

2.3.4.4 Statistical downscaling 

 

The Climate System Analysis Group (CSAG), based at the University of Cape Town, has produced 

statistically downscaled climate projections applicable to South Africa. In the past, CSAG used an 

approach based on Self Organising Maps (SOM) to perform statistical downscaling. The SOM approach 

classifies observed synoptic drivers of weather into different states and then characterised local station 

responses (observed rainfall or temperature) for each of the states. These statistical relationships were 

then applied to GCM projected fields to develop the downscaled projections. However, results emerging 

from recent projects (e.g. VALUE-COST) focusing on assessing the value of statistical downscaling 

have highlighted limitations and constraints of the SOM approach. 

 

Given the above, CSAG has temporarily moved away from the SOM approach and now uses a 

stochastic delta factor method, which is considered more conservative and more robust. This involves 

using a stochastic rainfall generator to modify observational time series of weather variables according 

to changes in means, variances, autocorrelations and spatial correlations between climate stations. The 

approach essentially preserves the GCM signal, but because of the stochastics involved, it provides a 

slightly better idea of the uncertainty of indices not explicitly accounted for in the process. The approach 

yields downscaled projections at a monthly time-step but not yet at a daily time-step. For this reason, 

statistically downscaled GCM data was not used in this project. 

 

2.3.4.5 Dynamical downscaling 

 

The CSIR approach applies the variable resolution Conformal-Cubic Atmospheric Model (CCAM) to 

downscale the coarse resolution GCM projections. This Regional Climate Model (RCM) was developed 

by the Commonwealth Scientific and Industrial Research Organisation, CSIRO (McGregor, 2005; 

McGregor and Dix, 2001; 2008). CCAM is coupled to a dynamic land-surface model called CABLE, i.e. 

CSIRO Atmosphere Biosphere Land Exchange model. The coupled model’s ability to realistically 

simulate present-day southern African climate has been extensively demonstrated (e.g. Winsemius et 

al., 2014; Engelbrecht et al., 2015). 

 

CCAM simulations were performed using supercomputers at the Centre for High-Performance 

Computing (CHPC) located at the Meraka Institute, CSIR. CCAM was forced with bias-corrected daily 

sea-surface temperatures (SSTs) and sea-ice concentrations from each of the six GCMs. Each GCM 

was forced with CO2, sulphate and ozone levels consistent with the RCP4.5 and RCP8.5 scenarios. 

The monthly bias correction is computed by subtracting the Reynolds (1988) SSTs (1961-2000) from 

the GCM SSTs. This procedure ensures that the intra-annual variability and climate change signal of 

the GCM SSTs are preserved.  
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The CCAM model produced dynamically downscaled projections at a 50 km spatial resolution. A 

multiple-nudging strategy was followed to obtain projections at 8 km resolution (~0.08° degrees in 

latitude and longitude), where CCAM was run in stretched-grid mode over South Africa. The higher 

resolution simulations were nudged within the quasi-uniform global simulations through a digital filter 

using a 600 km length scale. The filter was applied at six-hourly intervals and from 900 hPa upwards.  

 

2.3.4.6 Regional bias correction 

 

The CSIR applied a simple bias correction procedure to the 50 km dynamically downscaled climate 

projections obtained using the CCAM model forced by all six GCMs (Winsemius et al., 2014; 

Engelbrecht and Engelbrecht, 2015). Observed (i.e. historical) monthly averaged temperature and 

rainfall totals for the period 1961-1990 were used as the reference. A monthly correction factor was 

calculated as the ratio of observed monthly rainfall for 1961-1990 to the GCM rainfall for the same 

period. The simulated daily rainfall values over the full period (1961-2100) were multiplied by this 

monthly factor to bias correct each GCM. The daily minimum and maximum temperatures were bias-

corrected using a similar procedure, except the monthly correction factor was additive. This method 

preserves the inter-annual variability in the GCM data. 

 

2.3.4.7 Future trends 

 

Projections of changes in temperatures are relatively accurate owing to the GCM’s ability to model 

physical processes responsible for heating (Archer et al., 2018).  Unfortunately, their ability to estimate 

changes in rainfall and other climatic conditions is less certain, because of the large spatial scale (~200-

300km) at which the GCMs are applied (Garland et al., 2015). According to Archer et al. (2018), the six 

GCMs show a mean drying trend over South Africa by 2100 (see APPENDIX_B). The southwestern 

Cape emerged as a consistent area of rainfall decreases across all six downscaled GCMs. This drying 

trend is associated with a poleward displacement of the westerlies and frontal systems under low 

mitigation (e.g. Christensen et al., 2007; Engelbrecht et al., 2009). Five of the GCMs agree on drier 

conditions along the eastern coast and interior by 2100 (Archer et al., 2018). 

 

2.3.5 Extraction of CSIR climate projections 

 

This section explains the procedure for obtaining climate projections for each AZ in detail. For more 

detail, the reader is referred to Wolski et al. (2021). 

 

2.3.5.1 Data format 

 

Climate projections for six GCMs and two RCPs in NetCDF format were obtained from the CSIR. It was 

noted that climate values for both RCPs are identical for the period 1961-2004, as emissions do not 

diverge during this period. Each NetCDF file contained one month (up to 31 values) of daily data (6 

variables) for each 0.5° grid point centroid (latitude and longitude) across the country as follows: 

 

• time (day of the month),  

• latitude (of the grid point’s centroid), 

• longitude (of the grid point’s centroid), 

• rnd24 (precipitation in mm), 

• tmaxscr (maximum screen temperature in °K), 

• tminscr (minimum screen temperature in °K), 

• rhmaxscr (maximum screen relative humidity in %), 

• rhminscr (minimum screen relative humidity in %), and 

• u10 (wind speed at height 10 meters in m s-1). 
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2.3.5.2 “Downscaling” to station level 

 

The following approach was used to derive climate projections for each quaternary catchment using a 

Python script: 

 

• The closest GCM grid point (or pixel) was selected for each of the 1240 driver rain gauges. The 

same grid point was assigned to more than one driver rain gauge in some cases.  Hence, a 

total of 1207 GCM grid points were eventually selected. 

• A daily time series of GCM data was then extracted from each NetCDF file to represent each 

drive rain gauge. 

• Temperature values were adjusted to degrees Celsius, and the 10 m wind speed data were 

adjusted to a height of 2 m (u2). 

• For leap years, daily data did not exist for 29 February, and thus, climate variables were set to 

the average of values on the preceding (28 February) and following day (1 March). 

• The extracted and adjusted data was saved to a separated Comma Separated Value (.CSV) 

file, as illustrated in Figure 2.5. 

 

 
Figure 2.5 Example of a portion of a .CSV file containing data extracted for a representative 

GCM grid point (Wolski et al., 2021) 

 

2.3.6 Bias correction to station level 

 

When compared to observed rain gauge data, rainfall from the extracted GCM climate files exhibited a 

substantially larger number of rain days, with many rain days having very small rainfall depths (i.e. < 

0.1 mm). In addition, the GCM temperature values were lower than observed values for the period 

1961-1999. These anomalies indicated the need to bias correct the GCM rainfall and temperature data. 

This section presents the development, evaluation, and application of the rainfall and temperature bias 

correction methodology. It includes lapse rate adjustments to account for altitudinal differences between 

the temperature station and each altitude zone. 

 

2.3.6.1 Rainfall 

 

Wolski et al. (2021) evaluated various rainfall bias corrections techniques, ranging from: 

 

• simpler methods that aim to correct the mean and/or variance of the climate estimates, to 

• more advanced methods (e.g. quantile mapping that applies corrections at all quantiles such 

that the full distribution of values is corrected to match a reference distribution. 

 

date,rnd24,tmaxscr,tminscr,rhmaxscr,rhminscr,u2 

1961-01-01,0.0157187,27.3881,14.7181,72.5618,50.473,0.393950 

1961-01-02,0.314198,28.5357,18.4709,70.2625,45.6859,19.952495 

1961-01-03,0.769772,29.9881,17.7396,69.2279,39.3699,7.613547 

1961-01-04,0.8169,30.8818,18.3084,65.0065,35.8751,475.443473 

1961-01-05,2.19148,25.9408,17.5467,69.6831,57.4098,38.723450 

1961-01-06,0.0314281,26.1592,17.4553,71.2673,54.8369,101.074524 

1961-01-07,0.8169,25.8392,17.2877,72.4767,49.3578,91.0983489 

1961-01-08,0.125685,24.3158,16.1807,73.5642,56.6487,90.704549 

1961-01-09,1.32746,25.626,15.1904,73.4838,56.989,187.0533697 

1961-01-10,26.0777,20.8474,17.8971,73.0239,66.6987,71.408539 
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Quantile mapping (QM) approaches ensure that the corrected distribution of a particular variable 

matches the distribution of the observed variable by applying statistical transformations classed as 

either i) distribution-derived, ii) parametric, or iii) non-parametric. Of these, the latter class is preferred, 

which develops empirical (not theoretical) Cumulative Density Functions (CDFs) and percentile values, 

where values in-between discrete percentiles are approximated using linear interpolation. 

 

However, it can over-correct the magnitude of rainfall extremes compared to the uncorrected (i.e. GCM) 

data. To address this limitation, which relates to the assumption of stationarity, the Quantile Delta 

Mapping (QDM) method was selected. A 39-year moving window was used to calculate the CDF curve, 

based on the calibration period being 1961 to 1999. The QDM method was extensively tested and 

produced unrealistically high rainfall values in quantiles close to the 100th percentile. This problem was 

addressed by limiting the bias correction factors for quantiles above the 99th percentile to those for the 

99th percentile of non-exceedance. 

 

A Python script was developed to undertake the bias correction using the QDM method and a bias 

corrected time series of GCM rainfall values was created for each of the 1249 rain gauges in .CSV file 

format (Figure 2.6). The three variables stored in each CSV file are as follows: 

 

• obs_rfl (observed rainfall in mm), 

• rnd24  (original GCM rainfall in mm), and 

• rnd24_BC (bias corrected GCM rainfall in mm). 

 

 
Figure 2.6 Example of a portion of a .CSV file containing observed rainfall, raw GCM rainfall 

and bias corrected GCM rainfall (Wolski et al., 2021) 

 

An example of the QDM bias correction method is shown in Figure 2.7, where rainfall predicted by 

ACCESS1-0 GCM (RCP8.5) for the calibration period (1960-1999) was compared to observed rainfall 

from gauge 0002069 W. The effectiveness of the bias correction is demonstrated by the overall 

reduction in the number of small rainfall events (0-2 mm), with the majority of such events changed to 

zero rainfall. As described previously in Section 2.3.3.2, a unique set of 12 monthly adjustment factors 

derived for the driver rain gauge were applied to the bias-corrected GCM rainfall values to create a time 

series of catchment-specific daily rainfall values.  

 

Date,obs_rfl,rnd24,rnd24_BC 

1961-01-01,0.0,0.0157187,0.0 

1961-01-02,0.0,0.314198,0.0 

1961-01-03,0.0,0.769772,0.0 

1961-01-04,0.0,0.8169,0.0 

1961-01-05,0.0,2.19148,0.000324 
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Figure 2.7 Comparison of daily rainfall distribution (raw and bias corrected) for the 

calibration period (1961-1999) obtained from ACCESS1-0 GCM (RCP8.5) 

compared to observed rainfall for rain gauge 0002069W (Wolski et al., 2021) 

 

An analysis of the largest rainfall event predicted by each of the 6 GCMs for RCP8.5 is shown in Table 

2.8. The bias correction method adjusted the largest rainfall totals for the baseline period (1961-1999) 

to 525 mm, which was measured on 28 September 1987 by gauge 0305308 W situated at 

Kwambonambi (Zululand coast in KwaZulu-Natal). For other rain gauges located mainly between 

Kwambonambi and Richards Bay, the September 1987 flood produced several record rainfall events 

ranging from 192 to 449 mm. This suggests that the 525 mm event is likely to be correct. Five GCMs 

unpredicted the largest rainfall event, with daily totals ranging from 357 to 493 mm. For GCM MPI, the 

largest event was decreased from 607 to 525 mm. The largest adjustment was made for GCM CCS in 

the present period (1961-1990), where the largest event was increased from 333 to 525 mm (192 mm 

adjustment). 

 

Table 2.8 Largest daily rainfall value (uncorrected and corrected) obtained in each selected 

period for each GCM (RCP8.5) 

GCM 
Bias corrected 

(Y/N) 
1961-1999 1961-1990 2015-2044 2070-2099 

ACC 
N 

Y 

493 

525 

477 

525 

632 

507 

704 

611 

CCS 
N 

Y 

406 

525 

333 

525 

422 

486 

572 

572 

CNR 
N 

Y 

357 

525 

357 

525 

458 

502 

566 

503 

GFD 
N 

Y 

405 

525 

405 

480 

456 

598 

640 

543 

MPI 
N 

Y 

607 

525 

407 

498 

604 

490 

472 

464 

NOR 
N 

Y 

414 

525 

414 

449 

389 

515 

537 

506 

 

2.3.6.2 Temperature 

 

For the temperature station assigned to each rain gauge, the observed maximum and minimum values 

were lapse-rate adjusted to account for the altitudinal difference between the two locations. Of the 1240 

rain gauges that were assigned temperature stations, 156 were selected and compared to the GCM 
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temperature data from the nearest GCM grid point. The analysis showed that the GCM temperature 

data was biased and needed to be corrected. 

 

The observed temperature data from 1961-1999 was then used to undertake a localised bias correction 

of the extracted GCM temperature time series. The Quantile Delta Mapping (QDM) method (described 

in the previous section) was again applied, but with an additive correction factor for temperature (as 

opposed to a multiplicative correction applied for rainfall). Thereafter, a lapse rate adjustment was 

performed to account for the altitude difference between the selected temperature station and the 

average altitude across each altitude zone. 

 

The bias-corrected time series of GCM maximum and minimum temperature values for each 

temperature station was saved to a CSV file. Thus, a set of 1240 CSV files was created for each of the 

six GCM datasets and for both RCPs, which contained the following three variables: 

• date (yyyy/mm/dd),  

• tmaxscr_BC (bias-corrected GCM maximum temperature in °C), and 

• tminscr_BC (bias-corrected GCM minimum temperature in °C). 

 

An example of the QDM bias correction method is shown in Figure 2.8, where temperatures predicted 

by ACCESS1-0 GCM (RCP8.5) for the calibration period (1960-1999) were compared to observed 

temperatures rainfall from station 0002069 W. The first three ranges (on the left) demonstrate the 

correction applied to minimum temperature values. For this station, the GCM predicted much lower 

values than observed. Hence, the bias correction resulted in a substantial reduction in the number of 

days with minimum temperatures below ten °C and a corresponding increase in the number of days 

with values greater than 10°C. 

 

The distribution of maximum temperatures predicted by the GCM was relatively similar to observations. 

The bias correction of maximum temperatures increased the number of days with values less than 

20°C, and a decrease in the number of days in other temperature ranges. Overall, the bias correction 

improved the representation of daily maximum and minimum distributions over the calibration period. 

 

 

Figure 2.8 Comparison of daily temperature (maximum and minimum) distributions for the 

calibration period (1961-1999 obtained from ACCESS1-0 GCM (RCP8.5) 

compared to observed values for station 0002069W (Wolski et al., 2021) 
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To demonstrate the effectiveness of applying the QDM-based bias correction over the full GCM time 

series (1961-2099), annual mean temperatures were calculated from daily values. Figure 2.9 shows 

the magnitude of the correction made to the annual means. For this temperature station, all GCMs 

under-estimated temperatures across the historical calibration period and thus, the bias correction 

resulted in higher annual means. Furthermore, the bias is greater in the maximum temperatures than 

in the minimum temperatures. 

 

 
Figure 2.9 Comparison of annual mean temperatures (raw and bias corrected) for the 

calibration period (1961-1999) obtained from ACCESS1-0 GCM (RCP8.5) as 

compared to observed values for station 0002069W (after Wolski et al., 2021) 

 

2.3.7 Generation of climate files 

 

2.3.7.1 Lapse rate adjustment 

 

A lapse rate adjustment was then applied to the bias-corrected temperature to account for the difference 

in mean altitude across the altitude zone and the GCM grid (or pixel). The purpose of this adjustment 

was to estimate more representative (i.e. catchment-specific) temperature values for each altitude zone. 

 

2.3.7.2 Reference evapotranspiration 

 

Daily solar radiation and relative humidity (maximum and minimum) values were then generated from 

the lapse-rate adjusted temperatures using the method described by Schulze et al. (2011). Due to the 

lack of wind speed data, a daily default value of 2 m s-1 was used, as suggested by Allen et al. (1998). 

Daily reference evapotranspiration values (ETO) were then calculated using the FAO56 version of the 

Penman-Monteith equation (Allen et al., 1998).  

 

2.3.7.3 Combining the climate data 

 

The final step required generating climate files for ACRU and AquaCrop input. For each GCM, this 

involved reading the 1) bias-corrected rainfall, lapse-rate adjusted (and bias-corrected) temperatures 

and ETO data and combining the daily values to create an ACRU composite climate input file as defined 

by Smithers and Schulze (1995). The net result of all this work was the generation of 5838 climate input 
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files, i.e. one for each altitude zone. This was repeated for each of the 6 GCMs and both RCPs. Hence 

a total of 70056 files were created, each approximately 2.12 MB in size (145.4 GB in total). 

 

According to Raes et al. (2017), AquaCrop requires a climate (.CLI) file, which contains the names of 

the daily rainfall (.PLU), air temperature (.TNX), reference evaporation (.ETo) and atmospheric CO2 

(.CO2) files. The format of the .PLU, .TNX and .ETo files are similar, with five header lines that provide 

station details, but more importantly, the start date of the climate record. A utility was developed in 

FORTRAN to convert the climate data from ACRU format to that required by AquaCrop, which required 

the creation of 280224 files (70056 x 4 files totalling 159.8 GB). 

 

2.3.7.4 Summary 

 

The above sections highlight the complexity of creating input climate files for simulation models using 

output from six GCMs for two RCPs, which was not a trivial exercise. The total number of files read and 

written (i.e. created) in this process is summarised in Table 2.9. 

 

Table 2.9 Summary of number of files read and written in generating ACRU and AquaCrop 

climate input files 

Data file type Description 
Files 
read 

Files 
written 

Observed rainfall data 1240 stations 1240  

Observed temperature data 1240 stations 1240  

NetCDF 2 RCPs x 6 GCMs x 139 years x 12 months 20016  

Extracted GCM data 
2 RCPs x 6 GCMs x 1207 grid points 
(read twice: 1 x rainfall, 1 x temperature) 

28968 14484 

Bias corrected rainfall 2 RCPs x 6 GCMs x 1240 stations 14880 14880 

Bias corrected temperature 2 RCPs x 6 GCMs x 1240 stations 14880 14880 

ACRU composite file with: 
a) bias corrected rainfall 
b) lapse rate adjusted temperature  

2 RCPs x 6 GCMs x 5838 altitude zones 29760 70056 

ACRU composite file including: 
c) reference evapotranspiration 

2 RCPs x 6 GCMs x 5838 altitude zones 70056 70056 

AquaCrop .CLI, .PLU, .TNX and 
.ETo files 

2 RCPs x 6 GCMs x 5838 altitude zones 70056 280224 

Total 
251096 464580 

715676 

 

2.3.8 Issues with RCP4.5 

 

The GCM climate projections underwent two bias corrections applied at the following: 

1) monthly level by the CSIR, by comparison to CRU historical data for each 0.5° pixel, and 

2) daily level by UKZN, by comparison to historical data for each altitude zone. 

 

The above two bias-corrected GCM datasets for both RCPs (4.5 and 8.5) were then evaluated by CSAG 

(UCT, Cape Town). The evaluation focused on annual rainfall totals and mean annual precipitation 

determined for climate stations located in each of the nine designated Water Management Areas 

(WMAs) of South Africa, as shown in Figure 2.10. Daily rainfall data from each climate station was 

aggregated to hydrological years, from which an unweighted average of annual totals was calculated 

for all stations falling within each WMA. To compare the different datasets, 30-year moving averages 

of WMA-averaged annual rainfall were calculated. 
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Figure 2.10 Designated Water Management Areas of South Africa 

 

The dynamically downscaled climate projections produced by the CSIR’s CCAM model was bias 

corrected against the historical CRU (gridded) database at the monthly level. This 6-member ensemble 

was evaluated by comparing annual rainfall totals against members of the CMIP5 ensemble, which 

were averaged across each WMA. As shown in Figure 2.11 for RCP8.5, all six CCAM projections fall 

within the CMIP5 envelope containing 21 members. 

 

 
Figure 2.11 Comparison of annual rainfall totals derived for six CCAM-CRU datasets (RCP8.5) 

against the 21-member CMIP5 envelope and spatially averaged across each WMA 

(Wolski et al., 2021) 

 

However, Figure 2.12 for RCP4.5 clearly shows that the CCAM-CRU projections over the Limpopo, 

Olifants and Inkomati Usuthu WMAs extend beyond the range (or envelope) projected by CMIP5 (with 

21 members). The climate projections follow a different "trajectory" into the future compared to the CMIP 
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ensemble, but only in certain WMAs (not all). In other words, the trend in the raw and bias corrected 

rainfall datasets diverged in some WMAs. 

 

 
Figure 2.12 Comparison of annual rainfall totals derived for six CCAM-CRU datasets (RCP4.5) 

against the 21-member CMIP envelope and spatially averaged across each WMA 

 

The problem becomes clearer at the daily level, as illustrated in Figure 2.13. Two daily rainfall indices 

were calculated for climate station 0512481 W (located in the Limpopo WMA), namely 1) mean daily 

rainfall on rain days with more than 1 mm, and 2) the number of rain days > 1 mm. There is a clear 

systematic difference between the pre-2005 (historical) and post-2005 (future) period (2005 is the year 

in which the climate projections start) for RCP4.5 (blue line), whereas RCP8.5 maintains continuity 

between these two periods (orange line). 

 

  
(a) (b) 

Figure 2.13 (a) Mean daily rainfall and (b) number of rain days calculated on days with rainfall 

above 1 mm for station 0512481 W using the CCS derived projections for RCP4.5 

(blue) compared to RCP8.5 (orange) 

 

In APPENDIX_C, these two indices (mean daily rainfall mean rain days) were mapped for each of the 

six GCMs, as the ratio of the post-2005 to pre-2005 values. They clearly illustrate very strong future:past 

differences in RCP4.5, whereas RCP8.5 does not exhibit such differences. These figures show that the 

problem pertains to the entire country. The analysis at the WMA level only exposes the problem in some 

parts of the country. 
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The bias correction of rainfall and temperature undertaken by UKZN was applied to both the RCP4.5 

and 8.5 datasets. However, the problem resides with RCP4.5 only, meaning the UKZN bias correction 

is not the issue. This was confirmed by calculating the ratio of total annual rainfall calculated from the 

UKZN bias-corrected dataset to those for the CSIR bias-corrected dataset. As shown in Figure 2.14, 

the same pre- and post-2005 problems are evident. 

 

 
Figure 2.14 The ratio of UKZN- to CSIR-bias corrected total annual rainfalls for a selected 

location (0512481W) and GCM (CCS) 

 

Wolski et al. (2021) also showed that a) more severe patterns of changes in rainfall were noted for 

RCP4.5 than RCP8.5, and b) RCP4.5 rainfall maps show a wetting trend over KwaZulu-Natal, 

Mpumalanga and parts of Limpopo that is completely absent in the RCP8.5 maps. In addition, rainfall 

maps produced by Schütte et al. (2021b) for RCP4.5 are inconsistent with those produced in other 

studies (e.g. Engelbrecht, 2019; Engelbrecht et al., 2020). Wolski et al. (2021) concluded that the 

RCP4.5 dataset supplied by the CSIR to WRC Project No. K5/2833 was not the same as that presented 

in previous publications where the data were originally developed and described. The CSIR attempted 

to locate the correct RCP4.5 dataset to accompany the RCP8.5 dataset supplied to WRC Project No. 

K5/2833. However, this dataset could unfortunately not be located. It is believed that the correct RCP4.5 

dataset may have been accidentally deleted to urgently increase storage space on the CSIR data 

server. For more information, the reader is referred to Wolski et al. (2021). 

 

In addition, the CSIR were unable to re-run the CCAM model for RCP4.5 due to a lack of time and 

resources needed for this computationally expensive task, as the CSIR were at the time, busy 

downscaling CMIP6 GCMs. The use of CORDEX climate scenarios for RCP4.5 was also not possible 

as they would not be comparable to the CSIR’s RCP8.5 projections. Due to time constraints in this 

project, it was also not possible to re-run AquaCrop using CORDEX projections for both RCP8.5 and 

4.5. Hence, for this project, climate projections representing RCP8.5 were only used to assess the 

impact of climate change on crop response.  

 

2.4 Crop parameter files 

 

As noted in Section 1.3, 13 drought tolerant and nutrient-dense underutilised crops have been targeted 

and prioritised for future research, development and innovation (Modi and Mabhaudhi, 2016). 

Calibrated and validated crop parameter files for South African growing conditions exist for amaranth, 

bambara groundnut, sorghum, sweet potato, and taro. It is important to note that these crop parameters 

were developed as part of other WRC-funded research projects and, in some cases, have been 

published in peer-reviewed journals (Table 2.10). It is worth noting that the AquaCrop model has been 

calibrated and validated for other underutilised crops such as: 
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• cassava (Wellens et al., 2022), 

• cowpea (Kanda et al., 2021), 

• groundnut (Chibarabada et al., 2020), 

• pearl millet (Modi and Mabhaudhi, 2013), 

• potato (Razzaghi et al., 2017),  

• quinoa (Geerts et al., 2009), and 

• sweet potato (Beletse et al., 2011; 2013). 

 

Table 2.10 Source of existing crop parameter files for underutilised indigenous crops 

Crop  
Landrace/ 

cultivar 
WRC Project Source 

Amaranth 
Amaranthus 

cruentus 

K5/1771 

(Modi and Mabhaudhi, 2013) 
Bellow and Walker (2017) 

Bambara 

groundnut 

Jozini red 

landrace 

K5/1771 

(Modi and Mabhaudhi, 2013) 
Mabhaudhi et al. (2014b) 

Sorghum PAN8906 
K5/2491 

Kunz et al. (2020) 
Kunz et al. (2020) 

Taro 

Dumbe 

dumbe 

(eddoe type 

landrace) 

K5/1771 

(Modi and Mabhaudhi, 2013) 
Mabhaudhi et al. (2014a) 

 

For certain underutilised crops (e.g. bambara groundnut and sorghum), AquaCrop has been calibrated 

and validated elsewhere (i.e. international studies). However, “fine-tuning” of crop parameters was 

undertaken to match local conditions, thus ensuring that realistic yield estimates are obtained. 

 

2.4.1 Amaranth 

 

Bellow and Walker (2017) calibrated AquaCrop for amaranth (Amaranthus cruentus) using greenhouse, 

lysimeter and field experiments carried out at Free State University (Bloemfontein). Irrigated field 

experiments were conducted during the 2008/09 and 2009/10 seasons, while pot experiments were 

carried out in 2010/11 season. These datasets were collected as part of WRC Project No. K5/1771 

(Modi and Mabhaudhi, 2013). The pot and field data sets were used for parameterisation, calibration 

and validation of the model. The model was adequately calibrated for biomass and cumulative 

evapotranspiration (ET) under irrigation and rainfed conditions. Canopy cover was moderately 

simulated (RMSE = 20.8%; ME = 0.11; R2 = 0.577; d = 0.75; MAPE = 43.4%). During validation, the 

model was also able to adequately predict biomass (RMSE = 1.96 t ha-1; ME = 0.89; R2 = 0.92; d = 

0.91; MAPE = 24.1%) and ET (RMSE = 76.5 mm; ME = 0.76; R2 = 0.91; d = 0.91; MAPE = 37.61%). 

The prediction of soil water content by the model was moderate (RMSE = 50.62 mm; ME = 0.19; R2 = 

0.30; d = 0.67; MAPE = 40.09) but needs improvement. Bellow and Walker (2017) recommended that 

datasets from other agro-ecological regions be used to improve calibration and validation for this crop. 

 

Nyathi et al. (2018) also calibrated (2013/14 season) and validated (2014/15 season) for amaranth 

using data collected in Pretoria over two consecutive seasons. The experiments were conducted to 

assess the effect of two water levels (well-watered and water-stressed) on nutritional water productivity 

and calibrate and validate AquaCrop for repeatedly harvested leaves of amaranth. Data was collected 

as part of WRC Project No. K5/2171 (Nyathi et al., 2016). Total dry leaf mass was obtained from four-

leaf harvests during each season. For the calibration, statistical indicators suggested that AquaCrop 

was able to simulate canopy cover with acceptable accuracy for well-watered (RMSE = 0.06%; RSR= 

0.04; R2 = 0.99) and water-stressed (RMSE = 1.24%; RSR= 0.05; R2 = 0.98) treatments. In addition, 
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there was a strong agreement between measured and simulated soil water content for both treatments 

(1.43 ≤ RMSE ≤ 1.48 mm m-1; 0.07 ≤ RSR ≤ 0.10; 0.87 ≤ R2 ≤ 0.93). These statistics suggest that 

AquaCrop was calibrated satisfactorily. 

 

For the validation, AquaCrop simulated canopy cover better for the well-watered treatment (RMSE = 

1.26%; RSR= 0.12; R2 = 0.98), compared to the water-stressed treatment (RMSE = 1.65%; RSR= 0.79; 

R2 = 0.64). However, soil water content was adequately simulated for both treatments (1.44 ≤ RMSE ≤ 

1.56 mm m-1; 0.06 ≤ RSR ≤ 0.10; 0.80 ≤ R2 ≤ 0.88). For both calibration and validation, the model was 

able to simulate dry edible biomass well (0.02 ≤ RMSE ≤ 0.05 t ha-1; 0.09 ≤ RSR ≤ 0.79; 0.64 ≤ R2 ≤ 

0.98). Again, validation of the well-watered treatment produced better results than the water-stressed 

treatment. Nyathi et al. (2018) concluded that the model is limited in parameters for leafy vegetable 

crops. A crop module should be included in AquaCrop to account for sequential harvests in a single 

season. 

 

In this study, the crop parameters developed by Bellow and Walker (2017) were used. However, there 

were large differences in certain parameter values, such as the upper temperature limit (30 vs 40°C) 

and maximum rooting depth (1.75 vs 0.80 m) between the two studies, i.e. Bellow and Walker (2017) 

vs Nyathi et al. (2018). The latter study obtained a much better fit between observed vs simulated 

canopy cover (0.06 ≤ RMSE ≤ 1.24%) compared to the previous study (RMSE = 20.8%). 

 

2.4.2 Bambara groundnut 

 

2.4.2.1 International 

 

Karunaratne et al. (2011) calibrated and validated AquaCrop for irrigated and water deficient bambara 

groundnut. Crop measurements of canopy cover, biomass and pod yield obtained from glasshouse 

experiments (2006 and 2007 at University of Nottingham, UK) and field experiments (2007/08 in 

Botswana) were used to calibrate the model. Model validation was undertaken using independent 

datasets from glasshouse (2002 and 2008) and field experiments (2002/03 in Swaziland) for different 

landraces. Although AquaCrop simulations for four different bambara groundnut landraces showed 

good agreement with observed data, some landraces showed significant under-estimation. Since 

landraces that originate from various locations exhibit diverse adaptations to agro-ecological zones, it 

is difficult to develop one set of parameters to adequately represent all underutilised landraces. 

 

2.4.2.2 Local 

 

Since AquaCrop was previously calibrated for bambara groundnut by Karunaratne et al. (2011), a “fine-

tuning” of their crop parameters was conducted for South African (i.e. local) conditions. This work was 

undertaken as part of WRC Project No. K5/1771 (Modi and Mabhaudhi, 2013), with results published 

by Mabhaudhi et al. (2014b). For calibration purposes, controlled (pot), field and rain shelter 

experiments were conducted in 2010/11 at Ukulinga (University of KwaZulu-Natal, Pietermaritzburg), 

Hatfield (University of Pretoria, Pretoria) and the rainshelter facility owned by the Agricultural Research 

Council (ARC) in Roodeplaat. Validation was undertaken using Ukulinga and the ARC data in 2011/12. 

 

The calibration results showed a reasonably good fit for canopy cover and biomass with R2 of 0.94 and 

0.96, respectively. Therefore, the model was able to predict canopy cover and biomass reasonably well. 

Although the model over-estimated final biomass by 14% and yield by about 9% compared to 

observations, this was regarded as acceptable. The validation results also showed a good fit between 

simulated and observed canopy cover for the irrigated (R2 = 0.86; d = 0.96) and rainfed (R2 = 0.95; d = 

0.98) field trials. Therefore, the model showed a very good simulation for rainfed production. Using data 

from the rainshelter experiments, model validation showed a relatively good fit between observed and 
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simulated canopy cover under varying water regimes (R2 of 0.95, 0.90 and 0.81 for 100, 60 and 30% 

ETa, respectively). In all three cases, the model was shown to under-estimate canopy cover in the early 

and later parts of the season. 

 

The model predicted final biomass and yield very well for bambara groundnut grown under irrigated and 

rainfed field conditions, strengthening the model’s suitability for simulating yield response to water 

availability. However, the model over-estimated both biomass and yield in the rainshelter irrigation 

treatments, which may be due to the rainshelter’s microclimate being affected by periodic closing and 

opening of the shelter during rainfall events. Mabhaudhi et al. (2014b) concluded that model 

performance under rainfed conditions makes it particularly suited for extrapolation to marginal agricultural 

production areas in South Africa and the region. 

 

The crop parameter file for bambara groundnut was applied for assessing climate change impacts for 

the whole of South Africa (Mabhaudhi et al., 2016b). This study was done as part of the Climate Change 

Adaptation Handbook for South Africa (Schulze, 2016). Hence, the parameter values were not improved 

further as it has been calibrated, validated and successfully applied for South Africa. 

 

2.4.3 Sorghum 

 

2.4.3.1 International 

 

Araya et al. (2016) conducted a study in Southwest Kansas to determine optimum limited-irrigation 

strategies for grain sorghum (unknown cultivar). Experimental datasets for grain sorghum were used to 

calibrate and validate AquaCrop. Calibration was done using growth and yield data measured in 2005 

for the full and two deficit irrigation treatments. The inclusion of deficit irrigation treatments proved useful 

in estimating water stress factors. Crop phenological development was determined from field 

experiments. Canopy cover was estimated from LAI measurements for optimal growing conditions 

using the Beer-Lambert equation and an extinction coefficient (k) of 0.416. Since biomass data were 

not collected, WP* was calibrated using stomatal conductance and canopy senescence and adjusted 

to 30 g m-2 to improve model predictions. The reference harvest index was set to 0.46, the most common 

value obtained under optimal growing conditions in 2005. In total, 11 crop parameters were adjusted by 

Araya et al. (2016). 

 

Experimental data from the full and deficit irrigation treatments measured during the 2007 and 2010 

growing seasons were used to validate the model. The goodness-of-fit statistics for model validation 

showed that soil water content was adequately simulated (0.71 ≤ R2 ≤ 0.98; 0.66 ≤ d ≤ 0.94), together 

with biomass (0.44 ≤ R2 ≤ 0.80; 0.79 ≤ d ≤ 0.93), yield (0.26 ≤ R2 ≤ 0.85; 0.60 ≤ d ≤ 0.77) and crop 

evapotranspiration (0.91 ≤ R2 ≤ 0.94; 0.61 ≤ d ≤ 0.96). Araya et al. (2016) concluded that the goodness-

of-fit values for both calibration and evaluation datasets indicated that AquaCrop could be used to 

simulate biomass and yield and evapotranspiration of grain sorghum and soil water content. 

 

2.4.3.2 Local 

 

Hadebe et al. (2017) mentioned that local sorghum genotypes differ significantly in growth and 

development characteristics from the default sorghum in AquaCrop, and thus, specific crop parameters 

should be calibrated. Hence, using research funded by WRC Project No. K5/2274 (Modi and 

Mabhaudhi, 2017), they performed a partial calibration of AquaCrop for three grain sorghum genotypes 

using data collected during the 2012/13 season at Ukulinga. However, low yields were obtained due to 

low and erratic rainfall experienced over the late season, which caused relatively high water stress. 

Hadebe et al. (2017) validated their calibration using observations from field experiments conducted in 

the 2014/15 season. Once canopy senescence was triggered, AquaCrop simulated a rapid canopy 

decline, whereas, in reality, sorghum’s canopy decline is deemed moderate. This resulted in a slight over-
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estimation (≤ 7.8%) of time to physiological maturity by the model. However, Hadebe et al. (2017) reported 

that AquaCrop significantly over-estimated crop yield of all three genotypes. For the late (January) 

planting, biomass and yield were significantly over-estimated by the model. For these reasons, the 

parameters’ values obtained by Hadebe et al. (2017) were not used in this study. 

 

As part of WRC Project No. K5/2491, Kunz et al. (2020) performed a partial calibration of AquaCrop for 

grain sorghum by utilising 11 sorghum parameters published by Araya et al. (2016), together with 

measured parameter values defining phenological growth stages for cultivar PAN8906. The authors 

then simulated final biomass and yield, which was then compared to observations obtained from a 

rainfed trial at Swayimane (KwaZulu-Natal) in the 2017/18 season. The model over-estimated the final 

biomass and yield of PAN8906 by 36.8% and 32.0%, respectively. Kunz et al. (2020) then used crop 

parameters developed by Hadebe et al. (2017) and showed that the model over-estimated the final 

biomass and yield by 280.2% and 295.4%, respectively. They concluded that AquaCrop produced 

improved simulations of final biomass and grain yield using parameters suggested by Araya et al. (2016) 

compared to those provided by Hadebe et al. (2017). For these reasons, crop parameters developed by 

Kunz et al. (2020) were utilised in this study. 

 

2.4.4 Taro 

 

As part of WRC Project No. K5/1771 (Modi and Mabhaudhi, 2013), Mabhaudhi et al. (2014a) calibrated 

and validated AquaCrop for taro. Taro was calibrated using measurements from optimum conditions at 

Ukulinga (irrigated) and ARC’s rainshelter at Roodeplaat (100% ETa). Rainfed trials at Ukulinga and 

Hatfield were also used to fine-tune the calibrations. Validation was undertaken using data for rainfed 

taro obtained at Umbumbulu in 2007/08 and taro data from Ukulinga and the ARC in 2011/12. 

 

AquaCrop simulated canopy cover under irrigated conditions reasonably well (R2 = 0.79; d = 0.92) 

between predicted and observed canopy cover for taro under irrigated conditions. Simulated biomass 

and yield were respectively, 6 and 7% greater than observations. The results indicated the model could 

successfully predict the growth and yield of the taro landrace. The validation results showed the model 

could simulate canopy cover under irrigated conditions very well (R2 = 0.84) but was not as accurate 

under rainfed conditions at Ukulinga in 2011/12. AquaCrop was unable to simulate the sharp decline in 

taro’s canopy cover in response to water stress. However, an independent dataset obtained from Mare 

and Modi (2009) gave a very good fit for both biomass (R2 = 0.99; d = 0.99) and yield (R2 = 0.98; d 

=0.99). Using data from Ukulinga and Roodeplaat, the model was shown to simulate both final biomass 

(R2 = 0.90; d = 0.88) and yield (R2 = 0.96; d = 0.99) relatively well. The low RMSE values also indicated 

very good model performance under rainfed conditions, which further strengthens the model’s 

applicability in simulating rainfed or water-limited production 

 

The crop parameter file for taro was applied for assessing climate change impacts for the whole of 

South Africa (Mabhaudhi et al., 2016a). The latter study was done as part of the Climate Change 

Adaptation Handbook for South Africa (Schulze, 2016). Hence, the parameters were not improved 

further as it has been calibrated, validated and successfully applied for South Africa. 

 

2.5 Minimising computational expense 

 

2.5.1 Background 

 

This study required a relatively large number of model simulations to be performed, which is time-

consuming without access to a high-performance computing system. According to Jones (2018), model 

performance can be dramatically improved on most computers by: 
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• running the model on a desktop PC as opposed to a laptop computer,  

• dividing the simulation run into smaller tasks and spreading the smaller tasks across each 

processing core on the computer, 

• instructing the model to read inputs from and write outputs to a small virtual disk drive defined 

in the computer’s random-access memory (called a RAM drive), 

• post-processing model output whilst it is temporarily stored on the RAM drive, and 

• executing large runs in “batch” mode using scripts designed for Windows- or Linux-based PCs. 

 

For WRC Project K5/1874, Kunz et al. (2015b) developed a methodology designed to improve the 

performance of model simulations, which incorporated some of the suggestions listed above. For WRC 

Project K5/2491, Kunz et al. (2020) made further improvements, reducing the time required to perform 

large model runs. A detailed explanation was provided by Kunz et al. (2020) to allow researchers 

working on other WRC-funded projects to implement and benefit from similar speed improvements. A 

summary of the methodology followed in this study is provided next. 

 

2.5.2 Desktop PC vs laptop  

 

It is well understood that laptops are typically slower than desktop PCs. This is mainly due to cooling 

issues that result from the need to keep laptops as thin and light as possible (i.e. portable). Hence, 

CPU’s built into laptops have a reduced number of cores (and threads) compared to desktop PCs. 

 

Model runs were conducted on a high-end computer running the MS Windows operating system for this 

study. This PC has a Core i9 CPU with ten cores (20 threads) capable of handling AVX-512 instruction 

sets. This CPU can process twice the number of data elements than an Intel AVX2 CPU and four times 

that of an SSE-based CPU. The PC also has 32 GB of RAM, which is adequate for working with a RAM 

drive. 

 

2.5.3 Derivation of smaller tasks 

 

Since the high-end PC has 20 threads, two were set aside for use by the operating system, while the 

remaining threads ran AquaCrop as 18 simultaneous simulations. This meant that each CPU thread ran 

approximately 324 (i.e. 5838/18) altitude zones. 

 

2.5.4 Grouping of tasks 

 

National runs of AquaCrop on the high-end PC undertaken by Kunz et al. (2020) showed that each of 

the 18 individual tasks was completed at different times, ranging from 482 to 633 minutes. Further 

investigation revealed that this range was mainly related to the season length (crop cycle). Model runs 

for cooler zones at higher altitudes (e.g. zones 1297 to 1620) took 1.31 times longer than runs for warmer 

zones at lower altitudes (e.g. zones 1 to 324). Therefore, it was important to limit the crop cycle to a 

maximum of 12 months, particularly in altitude zones where insufficient growing degree-days exist for the 

crop to reach physiological maturity. 

 

2.5.5 Load balancing 

 

Although all 18 tasks were started concurrently, the slowest task finished 152 minutes after the fastest 

task. The time that each of the 5838 output files was written to the RAM drive was analysed to determine 

which altitude zones could be grouped together, so that all 18 tasks would complete in similar times. 

Hence, Task 5 was assigned 267 altitude zones, which takes a similar time to run as the 381 zones in 

Task 1 (Table 2.11). 
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Table 2.11 Load balancing of 5838 altitude zones, allowing 18 concurrent runs of AquaCrop 

to finish at the same time 

Task 
number 

Altitude zone number Number 
of runs Start End 

1 1 381 381 

2 382 715 334 

3 716 1057 342 

4 1058 1383 326 

5 1384 1650 267 

6 1651 1980 330 

7 1981 2304 324 

8 2305 2634 330 

9 2635 2935 301 

10 2936 3248 313 

11 3249 3567 319 

12 3568 3889 322 

13 3890 4209 320 

14 4210 4513 304 

15 4514 4840 327 

16 4841 5171 331 

17 5172 5507 336 

18 5508 5838 331 

 

2.5.6 Ram drive size 

 

For each altitude zone, AquaCrop requires input files containing climate data, soils data, crop 

parameters, and a project file that instructs the model when to start and end each seasonal simulation. 

AquaCrop outputs a file of monthly seasonal data, from which statistics are generated. Hence, a 

national run involving all 5838 altitude zones requires a total of 8 and 21 GB for the historical and future 

simulations, respectively (Table 2.12). Therefore, the decision was made to copy all input files (climate, 

soils, project) into memory (RAM) to speed up the model runs. 

 

Table 2.12 File size of input and output files required to run AquaCrop for the historical 

(baseline) and future climates 

Input/ 

Output 
File type 

File size (KB) 

Historical 

(1950-1999) 

Future 

(1961-2099) 

Input 

Climate 968 2748 

Soils 4 4 

Project 57 161 

Output 
Seasonal output 220 620 

Statistics 132 132 

Sub-total (KB) 1381 3665 

Total (GB) 7.69 20.40 

 

2.5.7 Automation procedure 

 

Kunz et al. (2020) reported that considerable effort was spent on automating the procedure whereby 

AquaCrop runs non-stop for all 18 tasks concurrently (i.e. parallel). The automation procedure was first 
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developed in 2015 using a UNIX emulator (called UWIN) running on MS Windows 7. In 2019, the 

automation procedure was modified to run on a different Unix emulator (called WSL) compatible with 

MS Windows 10. Approximately 8600 lines of code (in Unix and Fortran) was developed to automate 

the national model runs for AquaCrop. In addition, over 1400 lines of code were written to convert the 

climate input files from ACRU format to that required by AquaCrop (Kunz et al., 2020). 

 

2.5.8 Model run time 

 

Kunz et al. (2015a) reported that sequential runs of AquaCrop at the national scale for sorghum took 

61.8 hours to complete for grain sorghum. The improvements made by Kunz et al. (2020), where the 

model is run simultaneously on a RAM drive, has reduced the run time to approximately 12 hours. This 

represents a significant reduction in computational expense.  

 

2.6 Mapping of results 

 

To re-cap, the AquaCrop model was run: 

 

• to determine seasonal yield, water use efficiency and season length (i.e. crop cycle),  

• for four underutilised indigenous crops, viz. amaranth, bambara groundnut, grain sorghum and 

taro (amadumbe);  

• for all 5838 altitude zones, regardless of whether the zone is deemed suitable for crop 

production; and 

• using input climate projections for six CMIP5 GCMs that were dynamically downscaled with 

the CSIR’s regional climate model (CCAM), then bias-corrected against observed data from 

1961-1999. 

 

Despite the considerable effort in reducing computational expense by improving model performance 

(as described previously in Section 2.5), it was still not possible to run AquaCrop across all 5838 altitude 

zones with 139 years of climate input data for six GCMs. Therefore, the decision was made to run the 

model for the following three 30-year periods: 1961-1990 (present; PR), 2015-2044 (near future; NF) 

and 2070-2099 (distant future; DF). These three periods were also selected for WRC Project K5/2833 

(Schütte et al., 2021a). 

 

2.6.1 Change maps 

 

Yields were simulated for three 30-year periods, viz. present (PR; 1961-1990), near future (NF; 2015-

2044) and distant future (DF; 2070-2099). As discussed in Section 3.1, the present period is deemed 

to accurately represent the historical period due to bias correction of GCM climate projections. For each 

period, the average dry yield (t ha-1) and coefficient of variation (CV in %) of inter-seasonal yields were 

determined, as well as other useful statistics (e.g. standard deviation, range, etc.). To reduce the 

number of maps that can be shown, the mean seasonal yield from each GCM was also averaged. This 

implies that equal weighting was given to each GCM. 

 

Maps highlighting the change in average yield from 1) present to near future, 2) near future to distant 

future, and 3) present to distant future period were generated for each NUS. The yield (Y) change from 

PR to NF (for example) can either be expressed as a: 

 

• percentage change (100∙(YNF – YPR)/YPR), or 

• ratio (YNF/YPR). 
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For altitude zones where averaged crop yields for the present (YPR) or near future (YNF) period are zero, 

the change cannot mathematically be determined. Such areas appear white on the maps and are 

labelled as “Undefined”. 

 

2.6.2 Confidence maps 

 

At present, it is not possible to verify the GCM climate projections. This can only be done in the future, 

when looking back at the past. However, the climate projections from each GCM can be compared for 

similarities and differences, by calculating and analysing the ratio of climate variables for different 

periods. For example, the ratio of mean annual precipitation for the near future to the present period 

was calculated for each GCM, from which other statistics were derived (e.g. average, standard deviation 

and coefficient of variation) as shown in Table 2.13. 

 

Table 2.13 Average (ave), standard deviation (std. dev.) and coefficient of variation (CV) 

calculated from ratios of near future to present mean annual precipitation (MAP) 

from six GCMs for altitude zone 1, i.e. quinary catchment A10A1 (Schütte et al., 

2021b) 

GCM 

MAP 

(mm) 

MAP ratio 

(Near future to present) 

Present 

(1961-1990) 

Near future 

(2015-2044) 
Ratio Ave 

Std. 

Dev. 

CV 

(%) 

ACC 601 577 0.96 

0.98 0.07 7.37 

CCS 595 548 0.92 

CNR 575 579 1.00 

GFD 576 641 1.11 

MPI 562 563 1.00 

NOR 592 526 0.89 

 

A low coefficient of variation (CV in %) implies that the individual GCMs give similar ratios, while a 

higher CV implies a large discrepancy among the ratios. In this project, classes of CV values were used 

to provide a simple confidence index (CI), as shown in Table 2.14. Whilst the categories are somewhat 

subjective; they indicate the relative confidence in the climate projections in terms of the agreement 

between the six GCMs. A similar approach has been used in other studies (e.g. Schütte et al., 2021a). 

 

Table 2.14 Confidence index derived from the coefficient of variation (Schütte et al., 2021b) 

Coefficient of variation 

(CV in %) 

Confidence 

Index (CI) 

    <   5 Very high 

  5-10 High 

10-20 Medium-high 

20-30 Medium 

30-40 Medium-low 

40-50 Low 

    > 50 Very low 

 

Schütte et al. (2021b) reported that CI values for MAP ratios of the near future to the present period 

range from medium-high (arid west) to very high (east), i.e. CV < 20%. The latter is particularly so along 

the eastern seaboard of the country and the coastal (and adjacent inland) regions of the Eastern Cape. 

For the distant future relative to the present period, the confidence indices are lower, especially near 

the southern borders of Namibia (Northern Cape) and Zimbabwe (Limpopo). In essence, there is a 

reduction in areas with very high confidence and an increase in areas of medium or medium-high 
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confidence. In contrast, the CI for temperature (and reference evapotranspiration) is very high (CV < 

5%) across the entire country for both the near and distant future, relative to the present period.  

 

  



37 
 

 

3 RESULTS AND DISCUSSION 

 

To better understand the impacts of climate change on agricultural response, it is important to first 

consider the projected changes in rainfall and temperature expected over the country and highlight the 

importance of bias correcting GCM projections. 

 

3.1 Bias correction 

 

As noted in the methodology, the Quantile Delta Mapping method was used to bias correct dynamically 

downscaled climate projections from six GCMs against observed (i.e. historical) data from 1961 to 1999. 

A comparison of observed vs bias corrected mean annual precipitation (averaged from six GCMs) for 

the present period (1961-1990) shows a strong correlation with an R2 value of 0.993 (Figure 3.1). 

Similarly, respectively, R2 values of 0.935 (Figure 3.2) and 0.956 (Figure 3.3) were obtained for 

maximum, and minimum temperatures bias correction. Surprisingly, the correlation was stronger for 

bias correction of rainfall using a multiplicative correction factor when compared to bias correction of 

temperature involving an additive factor.  

 

These results highlight the success of the bias correction method and show that the present period can 

be used to represent historical conditions. Without bias correction, GCM projections for the present 

climate do not adequately represent historical conditions. This necessitated a different approach in 

representing climate change-related impacts in past assessment studies, where a common approach 

was to show a map of historical conditions, together with a change map as ratios of near future to 

present. For example, historical crop yields would need to be multiplied by this ratio to obtain estimates 

of future yields.   

 

 
Figure 3.1 A comparison of mean annual precipitation derived from historical (i.e. observed) 

data (left) and that averaged from six dynamically downscaled and bias corrected 

GCMs (right) for the present period 1961-1990, together with a correlation 

between the two datasets (bottom) (Schütte et al., 2021b) 
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Figure 3.2 A comparison of annual means of daily maximum temperature derived from 

historical (i.e. observed) data (left) and that averaged from six dynamically 

downscaled and bias corrected GCMs (right) for the present period 1961-1990, 

together with a correlation between the two datasets (bottom) (Schütte et al., 

2021b) 

 

 
Figure 3.3 A comparison of annual means of daily minimum temperature derived from 

historical (i.e. observed) data (left) and that averaged from six dynamically 

downscaled and bias corrected GCMs (right) for the present period 1961-1990, 

together with a correlation (Schütte et al., 2021b) 

 

3.2 Climate change projections 

 

3.2.1 Rainfall 

 

For each GCM, maps were developed that show relative changes (expressed in %) in projected mean 

annual precipitation (MAP) from present to near future (100∙MAPNF/MAPPR) and present to distant future 

(100∙MAPDF/MAPPR). These maps (not shown here) show similarities with reduced rainfall (i.e. drier 
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conditions) along the 1) west coast of South Africa, 2) northern regions of Limpopo, and 3) north-eastern 

areas of the Limpopo and Mpumalanga provinces. The projected drier conditions were more 

pronounced in the distant future (i.e. > 20% reduction in MAP). They increased in spatial extent to 

include most of the northern parts of the country along the border with Namibia and Botswana. However, 

increased rainfall (10-20%) is projected in the central reaches of South Africa, particularly to the west 

and north of Lesotho, especially for the GFD GCM. In the distant future, two GCMs (ACC and CCS) 

project increases in MAP in the north-eastern parts of Limpopo and Mpumalanga, whereas the 

remaining four GCMs project decreases. 

 

To reduce the number of maps that can be shown, the average change in MAP was determined and 

expressed in both absolute (in mm) and relative (in %) terms, as shown in Figure 3.4. It shows a 

reduction in rainfall in the western and northern parts of the country, especially towards the distant 

future. Along the east coast, the changes are mixed. In the central interior (west and north of Lesotho), 

more rainfall is projected in the near future and even more in the distant future. 

 

 
Figure 3.4 Averaged change in projected mean annual precipitation in absolute (mm on left) 

and relative (% on right) terms from present to near future (top row), present to 

distant future (middle row) and near to distant future (bottom row) (Schütte et al., 

2021b) 

 

3.2.2 Temperature 

 

There is a high degree of certainty that temperature will increase with climate change. The annual 

means of daily maximum and minimum temperatures represent broad indices of the environmental 

status of a location. GCM-based projections of maximum and minimum daily temperature in the near 

future (relative to the present climate) show increases of 1-2°C for most southern Africa. However, 

slightly higher increases of 2-3°C are projected for the country's northern parts near the Botswana 

border, more so for maximum than minimum temperatures (Figure 3.5). From the present to the distant 

future, projected changes range between 3°C at the coast to more than 6°C in the north-west for daily 

maximum temperatures, whilst minimum temperatures are also projected to increase by between 3°C 

at the coast and to up to 6°C in the north-west (Figure 3.5). Most of the warming is expected to occur 

from the near to distant future. 
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Figure 3.5 Averaged change in projected annual means of daily maximum (left) and 

minimum (right) temperatures (°C) from present to near future (top row), present 

to distant future (middle row) and near to distant future (bottom row) (Schütte et 

al., 2021b) 

 

3.3 Climate change and crop yield 

 

As noted in Section 2.6.1, maps were produced that express change from one time period to another 

as percentages and ratios. The percentage change maps are presented next in Section 3.3.1 to 

Section 3.3.3, whilst the ratio maps are given in APPENDIX_D1.  

 

3.3.1 Present to near future 

 

For each of the six GCMs, the mean seasonal yield was calculated for the present and near future 

periods. The six yield values were then averaged and used to calculate the relative change in each of 

the 5838 altitude zones. From Figure 3.6a, the model simulated non-zero yields in most altitude zones 

for amaranth (except for those in Lesotho), in contrast to the other three crops. This suggests that 

amaranth is more suited to a wider range of growing conditions than the other crops. However, the 

simulated yields may be very low (i.e. 0.01 to 0.10 dry t ha-1) and thus, economically unviable. 

 

In response to the projected warmer and drier climate conditions in the near future, amaranth yields are 

expected to decline by up to 10% across most of the Limpopo, Mpumalanga, Gauteng and North West 

provinces, including the northern regions of KwaZulu-Natal and Free State. In addition, yield declines 

of up to 30% may occur in certain parts of the Limpopo and North West provinces. For most KwaZulu-

Natal and Eastern Cape, yield increases up to 10% were simulated, with larger improvements up to 

30% in the western parts of the Free State and Eastern Cape provinces. 

 

For bambara groundnut (Figure 3.6b), yield declines exceeding 50% are expected across most 

Limpopo and eastern Mpumalanga and the north-eastern parts of KwaZulu-Natal and North West 

provinces. However, the central and western parts of Mpumalanga and Free State can expect yields to 

more than double (> 100% change) and certain parts of KwaZulu-Natal and Eastern Cape. A review by 

Franke (2021) of 20 climate change studies over southern Africa cited the work of Mabhaudhi et al. 

(2018) that showed yields of bambara groundnut (including potato and sugarcane) are expected to 

increase. The bambara groundnut study was undertaken using AquaCrop for only one location in 
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KwaZulu-Natal with climate scenarios from five CMIP3 GCMs (A2 CO2 trajectory). Hence, this work is 

superseded by that presented here. 

 

Sorghum yields are expected to decline for most growing areas along the country's eastern seaboard, 

with the highest yield losses (> 50%) predicted for the Limpopo and eastern Mpumalanga provinces. 

Yield increases may occur in the central parts of the Eastern Cape and western regions of the Free 

State (Figure 3.6c). In contrast, taro yields should improve for most growing areas in Limpopo, North 

West and KwaZulu-Natal (except in the north-east and along the coast) provinces. However, taro is not 

suited to the central and western parts of Mpumalanga, central and southern regions of the Free State, 

south-western KZN and northern areas of the Eastern Cape province (Figure 3.6d). The review by 

Franke (2021) showed that changes in sorghum yield across southern Africa are highly variable and 

exhibit inconsistent patterns. 

 

The results presented in this study for bambara groundnut, sorghum and taro supersede previous 

studies undertaken in 2016, which were derived using: 

 

• AquaCrop version 4.0, 

• an older version of the Altitude Zones Climate Database, 

• climate scenarios from four CMIP3 GCMs that were statistically downscaled and not bias-

corrected, and 

• different 20-year climate periods, i.e. 1971-1990 (present) and 2046-2065 (intermediate 

future). 

 

Kunz and Schulze (2016) reported increasing sorghum yields (ranging from 10 to over 100%) in the 

North West, Limpopo (southern and eastern), Gauteng, Mpumalanga (western), KZN (western) and 

Eastern Cape (northern and western) provinces. For the remaining areas along the eastern seaboard, 

no significant change in yield (±10%) was simulated. In contrast, this study predicts significant yield 

declines exceeding 50% for the North West, Limpopo and Gauteng provinces, and at least 30% lower 

yields in Mpumalanga, KZN and most of the Eastern Cape. 

 

The results presented in this study for taro also supersede those developed by Mabhaudhi et al. 

(2016a), who showed more than a doubling of yield for production areas along the eastern seaboard of 

South Africa. However, in this study, lower yield increases of 50% or less were simulated for the same 

areas, and significant increases in areas deemed suitable for taro production, particularly in the Limpopo 

and North West provinces. Similarly, the climate change impact assessment by Mabhaudhi et al. 

(2016b) for bambara groundnut is also outdated, which showed yield increases of up to 10% for most 

of Limpopo and KZN, as well as higher yield increases in western Mpumalanga and eastern Free State. 

This is in contrast to the results of this study that show yield declines exceeding 30% for Limpopo and 

eastern Mpumalanga, yet increasing yields over 50% in western Mpumalanga and eastern Free State. 

There is also a significant reduction in areas deemed suitable for bambara groundnut production, 

particularly in the Mpumalanga and Free State provinces. 

 

Besides the work undertaken in 2016, the authors are unaware of any other studies that assessed the 

impact of climate change on neglected and underutilised indigenous crops. Hence, this study represents 

the first assessment for amaranth and an updated assessment for bambara groundnut, sorghum and 

taro. Overall, yield declines in the Limpopo province are largely driven by drier conditions that may be 

expected in the near future relative to present conditions. Taro may benefit the most from projected 

changes in rainfall, temperature and reference evapotranspiration, followed by bambara groundnut, 

amaranth and sorghum. This implies that taro is more drought tolerant than sorghum. 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 3.6 Change in mean dry yield (as %) from present to near future for (a) amaranth, (b) 

bambara groundnut, (c) sorghum and (d) taro 

  

3.3.2 Near to distant future 

 

From the near to the distant future, a reduction in rainfall is projected for most of the country, except for 

the central interior (north-east and south-west of Lesotho). Maximum temperatures may increase by 3-
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5°C, compared to 2-4 °C for minimum temperatures. The drier and hotter climate is expected to 

negatively impact crop yield in general. 

 

Compared to the present to near future scenario (Figure 3.6a), areas highlighted in yellow that show a 

0-10% increase in yield have substantially reduced in spatial extent and indicate a yield decline by up 

to 10% (Figure 3.7a). This occurs mainly in eSwatini and the following provinces in South Africa: KZN 

central and coastal), Free State (central), North West (western) and Eastern Cape (north-eastern). 

Similarly, areas showing a 10-30% decline in yield have expanded, especially those in the North West 

(eastern) and Mpumalanga provinces. There is a decline in areas where the yield is expected to 

increase by 10-30%, i.e. for altitude zones located in the Eastern Cape (western) and Free State (south-

western). 

 

For bambara groundnut (Figure 3.7b), there is a marked increase in areas deemed suitable for crop 

production, especially in Mpumalanga and Free State. Most of these “new” areas show a doubling of 

yield (> 100%) from the near to distant future (dark green). Furthermore, there is a large reduction in 

areas where the yield is expected to decline by 50% or more (red). Hence, this crop is expected to 

benefit from climate change. 

 

Comparing Figure 3.7c with Figure 3.6c for sorghum revealed that certain areas have changed from 

a yield decrease to a yield increase. Examples can be found in the north-eastern regions of Limpopo 

and Mpumalanga, northern and eastern regions of Free State and north-eastern KZN. Overall, areas 

with more than a 50% decrease in yield have reduced spatial extent, particularly in the North West, 

Limpopo and Mpumalanga provinces. 

 

Similar to bambara groundnut, there is a marked increase in areas deemed suitable for taro production, 

especially in the Mpumalanga, Free State and Eastern Cape provinces (Figure 3.7d). Yields are 

expected to be more than double in these “new” areas in Mpumalanga and the Free State. However, in 

the western regions of the Eastern Cape and North West provinces, substantial reductions in yields 

were simulated, i.e. from increases to decreases in taro yield. 

 

Overall, amaranth may not benefit from climate change, whereas sorghum production may respond 

positively to climate change. Both bambara groundnut and taro could benefit the most, with a large 

expansion in areas deemed suitable for crop production in the Mpumalanga and Free State provinces. 

These areas are likely too cold for crop production up to 2044, especially in the higher altitude zones. 

Of the four neglected and underutilised species, taro seems to benefit the most from climate change, 

particularly towards the distant future. However, it is important to note that confidence in yield changes 

into the distant future is much lower than those for the near future due to increasing uncertainty in 

climate projections towards the year 2100. 
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(c) 

 

 
(d) 

Figure 3.7 Change in mean dry yield (as %) from near to distant future for (a) amaranth, (b) 

bambara groundnut, (c) sorghum, and (d) taro 

 

3.3.3 Present to distant future 

 

The areas that can support rainfed crop production are mostly situated along the country's eastern 

seaboard. In addition, Gauteng and the central to eastern regions of the North West and Free State 
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provinces can also support rainfed crop production. In other words, arable land located in the Limpopo, 

North West, Gauteng, Mpumalanga, KwaZulu-Natal and Eastern Cape provinces, where MAP exceeds 

450 mm, are deemed suitable for rainfed crops. For most of these areas, simulations for the distant 

future compared to the present indicate the following trends: 

 

• Amaranth yields could mostly decrease by up to 30%, especially in the northern provinces 

(Limpopo, North West, Gauteng and Mpumalanga), compared to a 0-10% yield increase in 

parts of the Free State, KZN and Eastern Cape (Figure 3.8a). 

• Bambara groundnut yields may be more than halved (i.e. > 50% reduction) across most of the 

Limpopo, including eastern parts of the North West and Mpumalanga provinces, whereas yields 

may more than double (i.e. > 100% increase) in the Free State and western parts of 

Mpumalanga and KZN (Figure 3.8b). 

• Sorghum yields may decline by at least 50% across the northern provinces of Limpopo, North 

West, Gauteng and Mpumalanga (central to western region), compared to yield increases up 

to 30% for parts of the Free State, western KZN and coastal areas of KZN and Eastern Cape 

(Figure 3.8c). 

• Taro yields may more than double over large parts of the northern provinces and the western 

regions of the Free State and KZN, compared to yield declines being simulated for most other 

areas (especially in north-eastern KZN south-western parts of the Eastern Cape) (Figure 3.8d). 

 

The present to distant future maps shown in Figure 3.8 highlight the overall trends in yield changes that 

may result from climate change for areas that currently produce a non-zero averaged yield (i.e. YPR > 0 

t ha-1). In other words, these maps do not highlight the potential expansion (or contraction) in crop 

growing areas that may result from climate change, which is discussed further in Section 3.4. As noted 

earlier, it is important to remember that confidence in yield changes into the distant future is much lower 

than those for the near future, due to increasing uncertainty in climate projections towards the year 

2100. The confidence in yield simulations is discussed further in Section 3.3.4. 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure 3.8 Change in mean dry yield (as %) from present to distant future for (a) amaranth, 

(b) bambara groundnut, (c) sorghum, and (d) taro 

  

3.3.4 Confidence index 

 

For each of the three climate periods (present, near future and distant future), the average and 

coefficient of variation were determined from the mean seasonal yields produced for all six GCMs. The 

GCM-averaged yields were then compared (as percentage changes and ratios) to produce the figures 

shown in Section 3.3.1 to Section 3.3.3. 

 

The coefficient of variation (CV) in yield represents the ratio of the standard deviation to the mean yield 

and is typically expressed as a percentage. In other words, the CV indicates the variability in the yield 

estimates. The higher the CV, the greater the level of dispersion around the mean, i.e. more variation 

in the yield values. Therefore, a low CV implies the yields are similar. For each crop, the variation in 

yield map for the near future was compared to that for the present period to determine if future yields 

are becoming more variable, which is expected.  

 

As shown in Figure 3.9, the variability (or dispersion) between the six GCM-based yields is very low 

(CV < 5%) for amaranth in the present period, which increases slightly (5 < CV < 10%) in the central 

interior (i.e. central to western region of the Free State and Eastern Cape provinces) and in eastern 

Limpopo. 

 

For bambara groundnut (Figure 3.10), the CV for present conditions is generally medium-low to 

medium (10 < CV < 30%) along the eastern seaboard, in areas where commercial forestry is currently 

produced. In the near future, variability becomes very high (CV > 50%), indicating much less agreement 

between the six yield values, especially in the Limpopo province and western Mpumalanga, as well as 

north-eastern parts of KZN and Eastern Cape. The yield variability remains very high in the North West 

and Free State provinces. 
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Sorghum’s yield variation (Figure 3.11) in the present future is generally medium-low (CV < 20%) 

across Mpumalanga, KZN and Eastern Cape provinces. The CV of yield in these areas increases 

slightly to 30% in the near future. However, yields become far more variable across most of the Limpopo 

province, with CVs increasing to over 50%. The variation in taro yield (Figure 3.12) increases from 

below 30% (present) to above 30% (future), especially in the Limpopo, Mpumalanga and KZN 

provinces. 

 

From the above, yield variability is generally higher in the Limpopo province than in other provinces, 

which is expected to increase (i.e. worsen) in the near future, especially for taro, sorghum and bambara 

groundnut. This is likely in response to increased variability in rainfall across Limpopo from the present 

to the near future. The CV of distant future yields are shown in Figure 12.1 (APPENDIX_E1) for each 

crop, which highlights even greater yield variability when compared to the near future maps. This 

indicates that rainfall variability increases into the distant future, along with increasing uncertainty and 

decreasing confidence in rainfall projections towards the year 2100. Hence, the distant future maps 

should not be used for decision-making purposes. 

 

 
(a) 
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(b) 

Figure 3.9 Coefficient of variation (CV in %) in mean yield for amaranth obtained from the 

six GCMs for the (a) present and (b) near future periods 

 

 
(a) 
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(b) 

Figure 3.10 Coefficient of variation (CV in %) in mean yield for bambara groundnut obtained 

from the six GCMs for the (a) present and (b) near future periods 

  

 
(a) 
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(b) 

Figure 3.11 Coefficient of variation (CV in %) in mean yield for sorghum obtained from the 

six GCMs for the (a) present and (b) near future periods 

 

 
(a) 
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(b) 

Figure 3.12 Coefficient of variation (CV in %) in mean yield for taro obtained from the six 

GCMs for the (a) present and (b) near future periods 

  

3.4 Expansion of cropping areas 

 

The present to distant future maps shown in this report highlight overall trends that may result from 

climate change in areas that currently produce a non-zero averaged yield. In other words, these maps 

do not highlight the potential expansion in crop growing areas that may result from climate change. This 

is another reason why the present to distant maps should not be used for decision-making purposes. 

 

In AquaCrop, a zero seasonal yield in the present climate period (1961-1990) indicates total crop failure. 

This usually occurs when the seedling dies shortly after emergence, due to climate conditions 

considered too dry (water stress) and/or too cold (temperature stress) to support initial plant growth. If 

zero crop yields are simulated for most of the 29 seasons spanning 1961/62 to 1989/90, the averaged 

seasonal yield will be very low (but not zero). If an averaged seasonal yield of 0 t ha-1 was produced for 

all six GCMs, then the mean yield would also be zero, and the altitude zone is not deemed suitable for 

crop growth at present. However, as the climate warms and/or becomes wetter towards the near future 

(up to 2044), the altitude zone may be deemed suitable for crop growth, and yields would increase. 

 

Hence, a comparison of the CV maps of yield presented in Section 3.3.4 for present and near future 

conditions can show the likely expansion in crop growing areas, except for amaranth as the model 

simulated averaged non-zero yields for all altitude zones in South Africa. For bambara groundnut, the 

expansion in growing areas (where the model simulated non-zero yields) occurs mainly in western 

Mpumalanga, along the Free State border with Lesotho and KZN, and in the Eastern Cape (northern 

regions). Certain altitude zones remain unsuitable for crop growth into the future (e.g. western parts of 

Mpumalanga and in the Eastern Cape, just south of the Lesotho border), whilst other zones become 

unsuitable when growing conditions are too hot and/or too dry (i.e. expansion of areas in white). 

However, their occurrence is minimal compared to the expansion of new growing areas. 
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For sorghum, the model simulated no noticeable expansion in suitable growing areas from present to 

near future, except in the higher altitude zones in Lesotho. As shown in Figure 3.12, taro appears to 

benefit the most from warmer climate conditions projected in the near future, with a large expansion in 

areas deemed suitable for growth in the central interior (i.e. Free State, Mpumalanga and Eastern 

Cape). 

 

3.5 Climate change and WUE 

 

For each GCM, water use efficiency (WUE) obtained for all 30 seasons were averaged to determine 

the mean seasonal value. Thereafter, the six values for each GCM were also averaged (i.e. each GCM 

assigned equal weighting) to reduce the number of maps shown. This exercise was repeated for each 

of the three time periods (i.e. present, near future and distant future). Maps highlighting the change in 

average WUE from 1) present to near future, 2) near future to distant future, and 3) present to distant 

future period were generated for each NUS. The percentage change maps are presented next in 

Section 3.5.1 to Section 3.5.3, and the ratio maps are given in APPENDIX_D2. The change cannot 

mathematically be determined for AZs where the averaged WUE for the present period is zero. Such 

areas appear white on the maps and are labelled as “Undefined”. It is worth noting that the spatial extent 

of the WUE maps is almost identical to the yield maps. 

 

3.5.1 Present to near future 

 

From Figure 3.13Figure 3.6a, the model simulated non-zero WUEs in most altitude zones for amaranth 

(except for those in Lesotho), in contrast to the other three crops. This suggests that amaranth is more 

suited to a wider range of growing conditions than the other crops. Amaranth’s WUE is expected to 

increase in the near future (relative to the present climate) by 10-30% for areas deemed suitable for 

crop production. For the other three crops (Figure 3.13b-d), changes in WUE mimicked the expected 

changes in yield as discussed in Section 3.3.1. 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure 3.13 Change in mean water use efficiency (WUE; as %) from present to near future for 

(a) amaranth, (b) bambara groundnut, (c) sorghum and (d) taro 

 

As noted in Section 1.1, higher CO2 levels can induce stomatal closure (i.e. decrease stomatal 

conductance), resulting in lower transpiration, decreasing crop water use, increasing crop water use 

efficiency, and improving soil water content. This increased efficiency in converting water into dry matter 

has been shown to raise above ground and, in some cases, below-ground plant biomass. 

 

3.5.2 Near to distant future 

 

From the near to the distant future, amaranth WUE is expected to increase by 10-30% for most areas, 

except for the North West and Mpumalanga provinces, as well as northern parts of the Free State and 

central and southern parts of Limpopo, where the increase is below 10% (Figure 3.14a). For the other 

three crops (Figure 3.14b-d), changes in WUE mimicked the expected changes in yield as discussed 

in Section 3.3.2, i.e. both increases and decreases for bambara groundnut, mostly decreases for 

sorghum and mainly increases for taro.  
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 3.14 Change in mean water use efficiency (WUE; as %) from near to distant future for 

(a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 

  

3.5.3 Present to distant future 

 

Simulations for the distant future compared to the present are shown in Figure 3.15. As noted in 

Section 3.3.3, the four maps do not highlight the potential expansion (or contraction) in crop growing 
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areas that may result from climate change, which is discussed further in Section 3.4. Despite this, the 

following trends were noted: 

 

• Amaranth WUE could mostly increase by 10-30%, compared to a 0-10% yield increase in parts 

of the Limpopo, North West and Gauteng provinces. However, increases in WUE from 30-50% 

may be expected in the south-western parts of KwaZulu-Natal and Free State and large parts 

of the Eastern and Western Cape provinces. 

• For the other three crops, changes in WUE mimicked the expected changes in yield as 

discussed in Section 3.3.3, i.e. both increases and decreases for bambara groundnut, mostly 

decreases for sorghum and mainly increases for taro. 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure 3.15 Change in mean water use efficiency (WUE; as %) from present to distant future 

for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 

 

Mabhaudhi et al. (2018) evaluated the impact of climate change on bambara groundnut using AquaCrop 

driven with climate scenarios from 5 CMIP3 GCMs (A2 CO2 trajectory). When compared to the past 

(1961-1990) period, the results given in Table 3.1 were obtained for the present (1995-2025), mid 

(2030-2060) and late century (2065-2095) periods. Rainfall decreased by 4.6, 12.3 and 19.1% for the 

present, mid and late century periods. Despite decreasing rainfall, the CO2 fertilisation effect may result 

in increased biomass (13.2-42.1%) and yield (12.5-37.5%), decreased crop water use (1.8-8.4%) and 

improved WUE (14.5-50.2%). 

 

Table 3.1 Percentage change in biomass (B), yield (Y), water use (ET) and water use 

efficiency (WUE) for bambara groundnut, relative to the past (1961-1990) period 

(after Mabhaudhi et al., 2018) 

Period B Y ET WUE Change relative to past (%) 

 (t ha-1) (t ha-1) (mm) (kg m-3) B Y ET WUE 

Past 7.6 1.6 785 0.20     

Present 8.6 1.8 771 0.23 13.2 12.5 -1.8 14.5 

Mid century 9.8 2.0 752 0.27 28.9 25.0 -4.2 30.4 

Late century 10.8 2.2 718 0.31 42.1 37.5 -8.4 50.2 

 

Kimball (2016) reviewed FACE studies that assessed the impact of elevated CO2 (eCO2) on biomass 

production, crop yield and evapotranspiration (ET). The photosynthetic rate, biomass accumulation and 

yield of C3 crops (e.g. wheat, legumes and potato) should increase due to eCO2, irrespective of water 

availability. For example, C3 crop yields increased by 15-30% for eCO2 levels of 550 ppm (Van der 

Kooi et al., 2016). The ET of C3 crops was reduced by 10% on average (maximum of 18%) when soil 

water was nonlimiting (Figure 3.16). Mwamlima et al. (2021) reported that low soil moisture (25% of 

crop water requirement or CWR) significantly reduced the photosynthetic rate and stomatal 

conductance of soybean cultivars (C3 plant) by 86.45% and 36.64%, respectively, compared to CWR 
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of 100%. Photosynthetically active radiation and sub-stomatal CO2 concentration also declined 

(P < 0.05) due to limited soil moisture availability, resulting in reduced (P < 0.05) soybean shoot growth 

and yield. Lower yields and reduced evapotranspiration (due to stomatal closure) will decrease WUE. 

 

On the other hand, C4 crops (e.g. sorghum) exhibit a more efficient photosynthetic mechanism than C3 

crops and, thus, will typically respond to eCO2 under water-limited conditions (not when water is 

nonlimiting) (Kimball 2016). Hence, C4 crops are expected to produce more biomass under eCO2 by 

using the limited available water more efficiently. For example, the yield response of sorghum to eCO2 

was negligible when water was nonlimiting, but increased to 30% when water was limiting (Figure 3.16) 

Kimball, 2016). 

 

  

Figure 3.16 Responses (o average; ─ range) of (a) crop yield and (b) evapotranspiration (ETP) 

to elevated CO2 (550 ppm) for optimal (ample water) and water stressed (low 

water) conditions (after Kimball, 2016) 

 

3.5.4 Confidence index 

 

As shown in Figure 3.17, the variability (or dispersion) between the six GCM-based WUEs is mostly 

very low (CV < 5%) for amaranth in both the present and near future periods. Thus, all six GCMs predict 

similar changes in Amaranth’s WUE, and thus, confidence is deemed high. For the near future period, 

the CV of WUE was lower than that for yield (cf. Figure 3.9 in Section 3.3.4). For the other three crops 

(Figure 3.18 to Figure 3.20), the CV of WUE is lower (i.e. higher confidence) in areas where crop 

production is more likely, compared to areas where cultivation is unlikely due to low and more variable 

yields. In addition, the CV of WUE is mostly similar for both the present and near future periods, but is 

higher in the near future (as expected), especially for sorghum 

 

The CV of amaranth’s WUE in the distant future is shown in Figure 13.1a (APPENDIX_E2), highlighting 

greater variability in parts of the North West, Free State and Mpumalanga provinces. For the other three 

crops (Figure 13.1b-d in APPENDIX_E2), confidence is much lower (i.e. higher CVs of WUE), and 

hence, the distant future maps should not be used for decision-making purposes. 
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(a) 

 

 
(b) 

Figure 3.17 Coefficient of variation (CV in %) in mean water use efficiency for amaranth 

obtained from the six GCMs for the (a) present and (b) near future periods 
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(a) 

 

 
(b) 

Figure 3.18 Coefficient of variation (CV in %) in mean water use efficiency for bambara 

groundnut obtained from the six GCMs for the (a) present and (b) near future 

periods 
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(a) 

 

 
(b) 

Figure 3.19 Coefficient of variation (CV in %) in mean water use efficiency for sorghum 

obtained from the six GCMs for the (a) present and (b) near future periods 
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(a) 

 

 
(b) 

Figure 3.20 Coefficient of variation (CV in %) in mean water use efficiency for taro obtained 

from the six GCMs for the (a) present and (b) near future periods 

 

3.6 Climate change and season length 

 

For each GCM, season lengths (i.e. crop cycle) simulated by AquaCrop for all 30 seasons were 

averaged to determine the mean seasonal value. Thereafter, the six values for each GCM were also 
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averaged (i.e. each GCM assigned equal weighting) to reduce the number of maps shown. This 

exercise was repeated for each of the three time periods (i.e. present, near future and distant future). 

Maps highlighting the change in average season from 1) present to near future, 2) near future to distant 

future, and 3) present to distant future period were generated for each NUS. The percentage change 

maps are presented next in Section 3.6.1 to Section 3.6.3, and the ratio maps are given in 

APPENDIX_D3. The change cannot mathematically be determined for AZs where the averaged WUE 

for the present period is zero. Such areas appear white on the maps and are labelled as “Undefined”. 

It is worth noting that the spatial extent of the WUE maps is almost identical to the yield maps. 

 

3.6.1 Present to near future 

 

For the near future (relative to the present period), amaranth’s season length is expected to reduce by 

up to 10% for most crop production areas in the Limpopo, North West and KwaZulu-Natal provinces. 

However, in western and central Mpumalanga and the eastern Free State, the crop cycle may be 

reduced by up to 30% (Figure 3.21a). For bambara groundnut, a reduction in season length of up to 

20% is expected in most areas. However, the reduction exceeds 30% in the interior regions of the 

country, e.g. western Mpumalanga and central Free State (Figure 3.21b). Sorghum’s season length 

may decrease by up to 30% (Figure 3.21c), whereas for taro, decreases are mainly 30% or less, except 

in the western parts of Limpopo, where they range from 30-50% (Figure 3.21d). 

 

These findings are expected since a warmer future climate will accelerate the accumulation of heat 

units (i.e. growing degree-days). Thus, each crop phenological growth state will be reached sooner, 

resulting in a shorter time to reach physiological maturity. Adaptation strategies include shifting to earlier 

planting dates and growing early maturing cultivars with shorter season lengths and a high harvest 

index. 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure 3.21 Change in mean season length (as %) from present to near future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum and (d) taro 

 

3.6.2 Near to distant future 

 

From the near (2015-2044) to the distant future (2070-2099), season lengths are expected to reduce 

further to continued warming. For example, Amaranth’s season length decreases by 10-30% for most 

crop production areas, except for north eastern KZN, eastern Mpumalanga, and the eastern and 

northern parts of Limpopo (Figure 3.22a). In other words, the 10-30% reduction region expands 

outwards from the interior towards the borders of neighbouring countries, as is the case for bambara 

groundnut (Figure 3.22b) and sorghum (Figure 3.22c). For taro, there is a substantial reduction in 

areas deemed too cold to currently grow the crop, particularly in western and central Mpumalanga, 

eastern and southern Free state and south western KZN (Figure 3.22d). This indicates that taro may 

benefit from climate change due to expanding potential crop growing areas. 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 3.22 Change in mean season length (as %) from near to distant future for (a) amaranth, 

(b) bambara groundnut, (c) sorghum, and (d) taro 

  

3.6.3 Present to distant future 

 

The present to future distant maps shown in Figure 3.23 highlight the large reduction in crop season 

length that can be expected due to the projected warming climate. For example, a 10-30% decrease in 
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the crop cycle may be expected for amaranth and sorghum. For taro, the reduction changes from 10-

30% (present to near future) to 30-50% (present to distant future). 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 3.23 Change in mean season length (as %) from present to distant future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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3.6.4 Confidence index 

 

The variability (or dispersion) between the six GCM-based season length estimates is mostly very low 

(CV < 5%) for amaranth (Figure 3.24), bambara groundnut (Figure 3.25) and sorghum (Figure 3.26) 

in both the present and near future periods. Thus, all six GCMs predict very similar changes in season 

length; thus, confidence is deemed high. However, the CV of season length for taro is higher (i.e. lower 

confidence) for taro (Figure 3.27) and ranges from 5-20% for most areas deemed suitable for rainfed 

crop production. 

 

The CV of taro’s season length in the distant future is shown in Figure 14.1d (APPENDIX_E3), 

highlighting greater variability (20-40%) in the northern parts of the Limpopo province. For the other 

three crops (Figure 14.1a-c in APPENDIX_E3), confidence is much higher (i.e. lower  CVs) when 

compared to taro. In general, confidence is higher (i.e. lower CV) for season length than WUE and yield, 

especially for bambara groundnut, sorghum and taro. 

 

 
(a) 
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(b) 

Figure 3.24 Coefficient of variation (CV in %) in mean season length for amaranth obtained 

from the six GCMs for the (a) present and (b) near future periods 

 

 
(a) 
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(b) 

Figure 3.25 Coefficient of variation (CV in %) in mean season length for bambara groundnut 

obtained from the six GCMs for the (a) present and (b) near future periods 

  

 
(a) 
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(b) 

Figure 3.26 Coefficient of variation (CV in %) in mean season length for sorghum obtained 

from the six GCMs for the (a) present and (b) near future periods 

 

 
(a) 
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(b) 

Figure 3.27 Coefficient of variation (CV in %) in mean season length for taro obtained from 

the six GCMs for the (a) present and (b) near future periods 
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4 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Summary of approach 

 

The AquaCrop model developed by the FAO was used to assess the potential impacts of climate 

change on crop response in South Africa. More specifically, the model was run for: 

 

a) four neglected and underutilised crops 

i. amaranth 

ii. bambara groundnut 

iii. grain sorghum and 

iv. taro (amadumbe) 

 

b) four time periods 

i. historical (1950-1999: 49 seasons) 

ii. present (1961-1990: 29 seasons) 

iii. near future (2015-2044: 29 seasons) 

iv. distant future (2070-2099: 29 seasons) 

 

c) six GCMs that were dynamically downscaled (using the CSIR’s CCAM model) and bias-

corrected against historical (i.e. observed) climate data 

i. ACC Australian Community Climate and Earth System Simulator   

ii. CCS Community Climate System Model 

iii. CNR National Centre for Meteorological Research Coupled GCM v5 

iv. GFD Geophysical Fluid Dynamics Laboratory Coupled Model 

v. MPI Max Planck Institute Coupled Earth System Model 

vi. NOR Norwegian Earth System Model 

 

d) two representation concentration pathways (RCPs) 

i. 4.5 

ii. 8.5 

 

In order to automate the national model runs, approximately 10000 lines of code (written in UNIX and 

Fortran) have been developed. Despite this high level of automation, the crop model was not run for 

138 consecutive seasons from 1961/62 to 2098/99 using projected climate data, simply because 

AquaCrop runs very slowly with large input climate datasets. Hence, the model was run for specific 

periods to reduce computational expense. Furthermore, the model was not run for RCP4.5 because 

anomalies were discovered in the climate projections. A single planting date and plant density were 

selected for each crop to further minimise computational expense. 

 

4.2 Summary of main findings 

 

From the climate change results and discussion presented in Chapter 3, it is important to highlight the 

following: 

 

• This study is based on climate projections from six dynamically downscaled GCMs driven by 

the RCP8.5 (low mitigation) scenario. 

• The RCP4.5 (high mitigation) scenario was not used in this study due to inconsistencies in 

climate projections compared to the RCP8.5 datasets. 

• Currently, it is not possible to verify GCM climate projections except to assess the GCM’s ability 

to model present climate conditions.  
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• Bias correction of GCM projections is necessary to improve the confidence for near future 

climate scenarios.  

• Bias correction allows the present period to represent historical conditions. 

• There is greater confidence (lower uncertainty) associated with temperature projections than 

future rainfall scenarios. 

• Rainfall variability and extreme events may increase into the distant future, along with 

increasing uncertainty and decreasing confidence in rainfall projections towards the year 2100. 

Hence, the present to distant future maps should not be used for decision-making purposes. 

• More rainfall is projected for the central interior (west and north of Lesotho) in the near future, 

whereas all other areas (particularly the Western Cape) may experience decreased rainfall. 

• Relative to the present climate, the maximum and minimum daily temperature in the near future 

will likely increase by 1-2°C for most southern Africa. 

• Changes in maximum temperature are predicted to be greater than those for minimum 

temperature. 

• For amaranth, yields in most areas north of the Free State and KZN borders are expected to 

decline by up to 30% in the near future, whilst a 10% yield increase may occur for most other 

areas. 

• Yield declines exceeding 50% for bambara groundnut may be expected across the majority of 

Limpopo and eastern Mpumalanga and the north-eastern parts of KwaZulu-Natal and North 

West provinces. 

• Sorghum yields are expected to decline for most growing areas along the country's eastern 

seaboard, with the highest yield losses (> 50%) predicted for the Limpopo and eastern 

Mpumalanga provinces.  

• In contrast, taro yields should improve for most areas in Limpopo, North West and KwaZulu-

Natal (except in the north-east and along the coast) provinces. 

• The Limpopo province appears to be least favourable for crop production in the near future, 

except for taro production. 

• For bambara groundnut, the expansion in growing areas occurs mainly in western 

Mpumalanga, southern Free State and in the Eastern Cape (northern regions).  

• No noticeable expansion in suitable growing areas for sorghum was simulated by the model 

from present to near future. 

• Taro exhibits a large expansion in areas deemed suitable for growth in the central interior. 

• Expansion of crop production from present to near future is most likely to occur in the 

Mpumalanga province. 

• The CO2 fertilisation effect may offset the negative impacts of climate change on crop 

production in southern Africa. 

• Relative to the present climate, amaranth’s WUE is expected to increase in both the near future 

and distant future. 

• For the other three crops, changes in WUE mimicked the expected changes in yield, i.e. both 

increases and decreases for bambara groundnut, mostly decreases for sorghum and mainly 

increases for taro. 

• A warmer future climate will result in accelerated accumulation of heat units (i.e. growing 

degree-days), thus shortening the time to reach physiological maturity (i.e. shorter growing 

season). 

• Adaptation strategies include shifting to earlier planting dates and growing early maturing 

cultivars with shorter season lengths and a high harvest index. 

• Crop season length is expected to shorten from the present to the near future, except in some 

altitude zones for bambara groundnut and taro. 

• Towards the distant future, taro may experience the largest reduction (> 30%) in season length 

across most areas, compared to a 10-30% reduction for the other three crops. 
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• The variability in simulations between the six GCMs is lowest (i.e. highest confidence) for 

season length, since it is mostly affected by temperature. 

• Since crop yield is mostly affected by rainfall and temperature, variability in simulations between 

the six GCMs is highest (i.e. lowest confidence).  

 

Crop simulation models will remain a primary tool for assessing potential impacts of climate change on 

crop yield, water use and water productivity. The main outcomes listed above vary spatially and for 

each crop, thus highlighting the importance of simulating individual crop response to increased 

temperature and CO2 levels and changes in rainfall that varies spatially in both magnitude and direction. 

Elevated atmospheric CO2 levels should positively impact photosynthesis and WUE, which override the 

negative effects of increased temperature (i.e. heat) stress, thus resulting in higher future crop yields.  

 

However, water stress is the major limitation in rainfed farming systems. Decreased rainfall in the future 

will result in higher water stress and reduced transpiration cooling, which can negate the positive effects 

of elevated CO2 and therefore, yields are likely to decline. For smallholder farmers producing crops in 

water-stressed environments with low nutrient availability, crop benefits from elevated CO2 are 

considerably reduced or even eliminated. Such farmers will be disadvantaged by higher temperatures, 

irregular rainfall and more extremes into the future. The maps presented in this report should help 

assess the likely impact of climate change on farming communities in South Africa. 

 

4.3 Limitations of study 

 

4.3.1 Distant future projections 

 

It is important to note that confidence in crop yield changes into the distant future is much lower than 

those for the near future, due to increasing uncertainty in climate projections towards the year 2100. 

Hence, trends identified from the present to near future maps should be used for decision-making and 

policy development. The near future to distant future (or present to distant future) maps should only be 

used as a rough guide in assessing the direction of possible change towards the end of the 21st century. 

 

4.3.2 Rejection of RCP4.5 scenarios 

 

As noted in Section 2.3.8, issues were found with the RCP4.5 projections developed by the CSIR using 

their CCAM regional climate model (RCM). Hence, these projections were not used to assess the 

impact of climate change on crop response. Although RCP8.5 represents the “business as usual” 

scenario, it is important to note that the results obtained in this study do not span all possible future 

outcomes. 

 

4.3.3 CMIP5 six-member GCM ensemble 

 

Dynamical downscaling is performed with RCMs that require output from GCMs to set (i.e. force) 

atmospheric boundary conditions. For this study, the CSIR’s CCAM model was driven using output from 

six CMIP5 GCMs deemed to best replicate (i.e. mimic) climate conditions experienced over southern 

Africa, particularly the ability to model the El Niño-Southern Oscillation (ENSO) phenomenon. It is 

understandable that a subset of only six GCMs cannot fully represent the entire CMIP5 ensemble of 

over 70 GCMs. From Section 2.3.8, it is clear that the downscaled projections for RCP8.5 do not span 

the whole CMIP5 ensemble, particularly for the Orange and Vaal WMAs, where CCAM rainfall 

projections represent the wetter end of the envelope. Therefore, CCAM projections for the Orange and 

Vaal WMAs represent a more optimistic view of the full range of possibilities that could be expected in 

these two regions. 
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4.3.4 CMIP5 vs CMIP6 GCM projections 

 

As this study was nearing completion, climate projections from CMIP6 GCMs became available. It is 

important to note that the CMIP6 ensemble of GCMs project slightly drier conditions in the central part 

of the country (especially for a 4°C rise in global temperature; cf. Figure 15.1 in APPENDIX_F), which 

none of the CMIP5 GCMs used in this study show. In other words, they do not capture the entire range 

of possibilities represented by the CMIP6 GCM ensembles. However, the six selected GCMs do fall 

within the uncertainty range of the latest CMIP6 ensemble, and thus, results from this study are 

compatible with the CMIP6 envelope of possible projections.  

 

For the Western Cape region (Figure 4.1), rainfall projections for the CCAM 6-member ensemble for 

RCP8.5 show a much drier distant future, which agrees with projections from both the larger CMIP5 

and CMIP6 35-member ensembles, as well as the CORDEX projections. Therefore, results presented 

in this study must be interpreted on the understanding that no GCM provides “perfect” future climate 

scenarios. The modelling results represent six possible futures, and again, they are unlikely to span all 

possible futures. 

 

 
Figure 4.1 Rainfall signal for past, present and future conditions obtained from different 

generations of GCMs (CMIP5 vs CMIP6) for the Western Cape province  

 

4.3.5 CO2 fertilisation effect 

 

From the review by Franke (2021) of 20 climate changes studies across southern Africa, 70% modelled 

the CO2 fertilisation effect on crop growth. The CO2 fertilisation effect is likely to increase crop yield, 

reduce water use and thus, higher water use efficiency, especially for C3 crops. The results presented 

in this study show substantial increases in crop yield in certain regions. Hence, the negative impacts of 

climate change on crop production in southern Africa may be offset by the CO2 fertilisation effect.  

 

Of particular concern is the fSINK crop parameter used in AquaCrop. Certain FACE experiments (e.g. 

Manderscheid et al., 2010) showed that root and tuber crops such as sugarbeet failed to optimally 

respond to elevated CO2 levels. For this reason, fSINK values were not altered, and the default value of 

50% was used for all crops in this study. However, Vanuytrecht et al. (2011) recommended that future 

research is necessary to better understand crop responsiveness to elevated CO2 to provide updated 

crop fSINK values and reduce uncertainty in modelling future agricultural production. Franke (2021) also 

recommended that FACE experiments should be a priority to improve the understanding of how climate 

change will impact crop performance in southern Africa. 

 

4.3.6 Biotic and abiotic stresses 

 

In this study, soil fertility was assumed nonlimiting to growth, and the impact of weed growth was not 

considered. AquaCrop cannot account for the effects of pests and diseases (cf. Section 2.1). However, 

pest and disease incidence is expected to increase due to the warmer climate conditions predicted for 
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the future, which will likely reduce crop yields. Furthermore, weed growth may be stimulated more by 

elevated CO2 than crop growth (Valero et al., 2013), leading to increased competition for light, water 

and nutrients.  

 

Besides water stress, nutrient stress can also become the overriding factor determining crop growth, 

and thus, crops are less likely to respond to elevated CO2. For example, nitrogen deficiency reduces 

radiation use efficiency, resulting in lower growth stimulation under elevated CO2 (Dier et al., 2018). 

Nitrogen deficiency can also lessen the improvements in WUE under elevated CO2 (Manderscheid et 

al., 2018).  

 

4.4 Recommendations and future research 

 

Much effort was spent producing simulated output that is considered reliable and error-free. 

Furthermore, the approach developed and implemented in this study is by no means considered 

“exhaustive”. Therefore, it is strongly recommended that this study is repeated in the near future and 

that the following recommendations are taken into consideration: 

 

• Kunz et al. (2020) showed that planting date had a greater impact on simulated yield than plant 

density. In this study, only one planting date was considered to reduce computational expense. 

In the future, at least two planting dates (in November and December) are recommended, as 

suggested by Kunz et al. (2020). 

• Similarly, only one plant density was simulated, and thus, future studies should consider two 

densities that represent both commercial and smallholder farming environments. 

• Climate projections for the RCP4.5 mitigation scenario should be modelled in future studies 

and results compared to those derived from the RCP8.5 scenario. 

• Ideally, this study should be repeated using representative GCMs from the CMIP6 ensemble, 

which represent the latest climate projections currently available. If possible, more than six 

GCMs should be included to better understand the range of possible future outcomes. 

• All climate change impact assessments should be conducted with and without the CO2 

fertilisation effect to also show a wider range of possible future outcomes. 

• As noted in Section 4.3.5, further research is required to quantify fSINK values for crops better. 

Future studies should consider fSINK values of 60-80% for root and tuber crops and 0-20% for 

cereal crops, as suggested by Vanuytrecht et al. (2011). This suggests that root and tuber crops 

(e.g. taro) may benefit more from the CO2 fertilisation effect than cereal crops (e.g. sorghum). 

• Allen et al. (2020) noted that due to fluctuating CO2 levels in FACE experiments, plant response 

is reduced when compared to constant CO2 levels. Therefore, future studies should consider 

applying a correction factor of about 1.5 needs to FACE results. 

 

The above-mentioned recommendations will certainly increase computational expense, and thus, 

additional effort is required to further improve the performance of the AquaCrop model. AquaCrop was 

coded using the Delphi programming language by the FAO. Recently, the model was re-coded in open-

source languages such as R (Rodriguez and Ober, 2019), MATLAB/Octave (Foster et al., 2017) and 

Python (Kelly and Foster, 2021). However, it is recommended that the open-source version of 

AquaCrop is re-coded in the FORTRAN programming language to further improve model performance. 

This will facilitate the development of a multi-threaded version that takes full advantage of all CPU cores 

on a PC and, thus, should run considerably faster. 

 

Since 2009, the WRC and former DAFF have funded numerous research projects where AquaCrop 

was run to simulate crop water use and yield using the historical climate and soils databases developed 

for all 5838 altitude zones (e.g. Kunz et al., 2015a; Mabhaudhi et al., 2016a; Mabhaudhi et al., 2016b; 

Kunz et al., 2020; this project). However, different versions of the climate database were used in these 

studies, which means the results are not comparable. Thus, the results presented in this study 



85 
 

 

supersede those obtained by Mabhaudhi et al. (20116a; 2016b) for taro and bambara groundnut. It is 

highly recommended that the latest versions of the altitude zone climate and soils databases (described 

in the next two paragraphs) are used to run AquaCrop for up to eight underutilised crops that AquaCrop 

has been calibrated for (i.e. amaranth, bambara groundnut, cowpea, grain sorghum, groundnut, pearl 

millet, sweet potato and taro. This will result in developing a single database of crop, yield, water use 

and water productivity data that can then be used to increase agricultural diversification in South Africa. 

As noted in Section 2.4.1, amaranth should be remodelled using the crop parameters values developed 

by Nyathi et al. (2018), which may provide better results than those obtained using parameter values 

developed by Bellow and Walker (2017). 

 

In April 2020, the WRC funded a project to update the altitude zone climate database. This involves 

extending the daily record beyond 1999 to 2019 (i.e. an additional 20 years). This will facilitate improved 

assessments of hydrological and agricultural responses to climate variability, since the additional 20-

year record accounts for anthropogenically induced changes in extreme climatological events that have 

occurred from 2000 onwards. As discussed earlier, it will provide an additional 19 seasons of crop 

simulations, highlighting the importance of the necessary speed improvements to AquaCrop. 

 

As part of ongoing efforts by the CWRR, the altitude zone soils database was updated in 2021. Soil 

water retention parameters were determined for five terrain units (crest, scarp, mid slope, foot slope 

and valley bottom) for both the A- and B-horizons using available information on soil type and clay 

content (Schütte and Schulze, 2019). The terrain units located within the 5838 altitude zones were then 

determined. This significantly improved the spatial accuracy of the soils data assigned to each altitude 

zone. 

 

The size and scale of the maps presented in Sections 3.3 to 3.6 of this report limit their usefulness and 

applicability. Therefore, it is recommended that the output data files described in Section 6.1.2 be made 

readily available to end-users. These data files could be disseminated using the Water Research 

Observatory (WRO), which is designed to house data related to agricultural water use (Van der Laan 

et al., 2021). A web-based application could be developed that simplifies the extraction of required data, 

thus making the data files more accessible and easier to use. Once downloaded from the WRO, end 

users (e.g. agricultural extension officers) could generate additional maps not presented in this study 

that better suit their specific needs. For example, maps identifying altitude zones with high water or 

temperature stress may prove useful in developing guidelines to improve crop yield. 
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6 APPENDIX_A: DATA STORAGE 

 

6.1 Data storage 

 

This research project has generated over 80 GB of compressed data in WinRAR format of input and 

output files pertaining to FAO’s AquaCrop model. This represents a wealth of simulated crop data 

generated from national model runs performed for each of the 5838 altitude zones (or quinary 

catchments). All simulated datasets described below are stored and archived on a fileserver located in 

the ICS Server Room on the University of KwaZulu-Natal’s main campus in Pietermaritzburg. The 

contact person is Richard Kunz (kunzr@ukzn.ac.za). 

 

6.1.1 AquaCrop input files 

 

The following AquaCrop input files were generated to meet this project's objectives. 

 

a) AquaCrop climate (.cli, .plu, .tnx and .eto files) files for each of the 5838 altitude zones based 

on 

i. observed (historical) climate data from 1950-1999 (024 files: 478 MB). This dataset 

was originally developed by WRC Project No. K5/2491 (Kunz et al., 2020). 

ii. projected climate data from 1961-2099 (144 files: 8070 MB) derived from six 

dynamically downscaled and bias-corrected GCMs for RCP8.5. These datasets were 

originally developed by WRC Project No. K5/2833 (Schütte et al., 2021). 

 

b) AquaCrop soils (.sol) files for each of the 5838 altitude zones (006 files: 2.2 MB), which were 

originally developed by WRC Project No. K5/2491 (Kunz et al., 2020). 

 

c) Four crop parameter files in AquaCrop growing degree-day format that were originally 

developed by various WRC-funded projects. 

 

d) Project (.prm) files for multiple model runs that instruct AquaCrop to run sequentially for the 

following time periods: 

i. historical - 49 seasons from 1950/51 to 1998/99 (  18 files:   9.6 MB) 

ii. present - 29 seasons from 1961/62 to 1989/90 (278 files: 14.1 MB) 

iii. near future - 29 seasons from 2015/16 to 2043/44 (278 files: 14.1 MB) 

iv. distant future - 29 seasons from 2070/71 to 2098/99 (278 files: 14.1 MB) 

 

6.1.2 AquaCrop output files 

 

The following AquaCrop output files were generated for each of the four neglected and underutilised 

crops and for each of the 5838 altitude zones. 

 

a) Monthly and seasonal files from planting date to physiological maturity date for each time 

period: 

i. 49 seasons (  18 files: 75.2 MB) 

ii. 29 seasons (278 files: 54.0 MB) 

 

b) Monthly and annual statistics for 24 AquaCrop output variables and three additional variables 

for each time period: 

i. 49 seasons (  18 files: 56.7 MB) 

ii. 29 seasons (278 files: 62.0 MB) 
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AquaCrop output variables: 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional output variables: 

 

    

                             

    

    

 

In total, 17 statistics were generated for each of the above-listed variables as follows: 

mean 

variance, standard deviation, coefficient of variation (CV), skewness, kurtosis  

minimum, maximum, sum 

number of observations 

percentile values (10, 20, 33, 50, 67, 80, 90) 

 

c) GIS-ready files to assist with mapping (i.e. extracted values for all 5828 altitude zones) for the 

following 

i. time periods: 

49 seasons (1 file: 0.4 MB) 

29 seasons (1 file: 0.4 MB) 

ii. GCMs: 

ACC, CCS, CNR, GFD, MPI, NOR 

iii.  Output variables and statistics: 

ETc mean, CV 

Cycle mean, CV 

TempStr mean, CV 

ExpStr mean, CV 

StoStr mean, CV 

BioMass mean, CV 

No. Variable Description Unit 

1 Rain Rainfall mm 

2 ETo Reference evaporation mm 

3 GD Growing degree-days °C day 

4 CO2 Atmospheric CO2 concentration ppm 

5 Irri Amount of water applied as irrigation mm 

6 Infilt Amount of water infiltrated into the soil profile mm 

7 Runoff Amount of water lost to surface runoff mm 

8 Drain Amount of water drained out of the soil profile mm 

9 Upflow Amount of water moved upward by capillary rise mm 

10 E Amount of water evaporated from the soil surface mm 

11 E/Ex Mean soil water evaporation relative to the maximum % 

12 Tr Amount of water transpired from the crop surface mm 

13 Trw Mean crop transpiration in weed infested field mm 

14 Tr/Trx Mean crop transpiration relative to the maximum % 

15 Cycle Length of crop cycle days 

16 WeedStr Average relative cover of weeds % 

17 TempStr Average temperature stress % 

18 ExpStr Average leaf expansion stress % 

19 StoStr Average stomatal stress % 

20 BioMass Above-ground biomass produced t ha-1 

21 Brelative Biomass relative to that for an unstressed crop % 

22 HI Harvest index % 

23 Yield Dry crop yield t ha-1 

24 WPet Crop water productivity kg m-3 

No. Variable Description Unit 

1 ETc Total amount of water evapotranspired from the crop mm 

2 cfa Number of seasons with crop yield = 0 t ha-1 integer 

3 CAY Monthly averaged crop coefficients fraction 
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HI mean, CV 

Yield mean, CV 

WPet mean, CV 

cfa sum    
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7 APPENDIX_B: PROJECTED CHANGES IN CLIMATE FOR RCP8.5 

 

 
Figure 7.1 Projected changes in annual average temperatures (°C) over southern Africa for 

the time period 2080-2099 relative to 1971-2000 under RCP8.5, based on CCAM 

(50 km resolution) downscaling of six GCMs (Archer et al., 2018) 
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Figure 7.2 Projected changes in annual average rainfall (10*m m day-1) over southern Africa 

for the time period 2080-2099 relative to 1971-2000 under RCP8.5, based on 

CCAM (50 km resolution) downscaling of six GCMs (Archer et al., 2018) 
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8 APPENDIX_C: CHANGES IN RAINFALL FROM PRE- TO POST-2005 

 

 
Figure 8.1 Ratio of mean daily rainfall per year in the post-2005 period (2005-2099) to the 

pre-2005 period (1961-2004) 
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Figure 8.2 Ratio of mean rain days per year in the post-2005 period (2005-2099) to the pre-

2005 period (1961-2004) 
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9 APPENDIX_D1: MAPS OF CHANGE IN YIELD EXPRESSED AS A RATIO 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 9.1 Change in mean dry yield (as ratio) from present to near future for (a) amaranth, 

(b) bambara groundnut, (c) sorghum, and (d) taro 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 9.2 Change in mean dry yield (as ratio) from near to distant future for (a) amaranth, 

(b) bambara groundnut, (c) sorghum, and (d) taro 
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(d) 

Figure 9.3 Change in mean dry yield (as ratio) from present to distant future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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10 APPENDIX_D2: MAPS OF CHANGE IN WUE EXPRESSED AS A RATIO 
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(d) 

Figure 10.1 Change in mean water use efficiency (WUE; as ratio) from present to near future 

for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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(d) 

Figure 10.2 Change in mean water use efficiency (WUE; as ratio) from near to distant future 

for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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(d) 

Figure 10.3 Change in mean water use efficiency (WUE; as ratio) from present to distant 

future for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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11 APPENDIX_D3: MAPS OF CHANGE IN SEASON LENGTH EXPRESSED AS A RATIO 
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(d) 

Figure 11.1 Change in mean season length (as ratio) from present to near future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 

  



114 
 

 

 
(a) 

 

 
(b) 

 

 

  



115 
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(d) 

Figure 11.2 Change in mean season length (as ratio) from near to distant future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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(d) 

Figure 11.3 Change in mean season length (as ratio) from present to distant future for (a) 

amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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12 APPENDIX_E1: VARIATION IN DISTANT FUTURE YIELD BETWEEN THE GCMS 
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(d) 

Figure 12.1 Coefficient of variation (CV in %) in distant future yield obtained from the six 

GCMs for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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13 APPENDIX_E2: VARIATION IN DISTANT FUTURE WUE BETWEEN THE GCMS 
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(d) 

Figure 13.1 Coefficient of variation (CV in %) in distant future water use efficiency (WUE) 

obtained from the six GCMs for (a) amaranth, (b) bambara groundnut, (c) 

sorghum, and (d) taro 
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14 APPENDIX_E3: VARIATION IN DISTANT FUTURE SEASON LENGTH BETWEEN THE 

GCMS 
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(d) 

Figure 14.1 Coefficient of variation (CV in %) in distant future season length obtained from 

the six GCMs for (a) amaranth, (b) bambara groundnut, (c) sorghum, and (d) taro 
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15 APPENDIX_F: CMIP6-BASED CLIMATE PROJECTIONS 

 

 
Source: 

https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_

Africa.pdf 

Figure 15.1 Projected changes in annual maximum (TXx) and minimum (TNn) temperatures, 

total annual precipitation and maximum daily precipitation (Rx1day) at 1.5, 2 and 

4°C of global warming compared to 1851-1900, based on CMIP6 multi-model 

ensemble means 
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