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EXECUTIVE SUMMARY 

Remote sensing and earth observation facilities have emerged as the most optimal non-

invasive method of monitoring crops, and they offer fast methods of monitoring and estimating 

crop productivity parameters. Remote sensing (RS) provides spatial and temporal information 

on crop responses to dynamic environmental conditions or information that relates directly to 

LAI. RS data has helped derive important crop parameters such as LAI, water use efficiency, 

chlorophyll, and biomass fraction of photosynthetically active radiation. However, most freely 

available Earth observation datasets, such as Landsat and Sentinel 2 multispectral images, 

are too coarse for mapping heterogeneous, fragmented smallholder croplands. They tend to 

mask out critical information required to characterise crop attributes. 

Meanwhile, unmanned aerial vehicle systems offer invaluable remotely sensed data suitable 

for estimating crop health, productivity, and water use in smallholder croplands. UAV remote 

sensing technologies offer maximum flexibility in terms of temporal resolution since the flying 

times are user-determined. Their ability to fly at low altitudes, portability and generation of very 

high spatial resolution data of up to 5 cm makes them more suitable for farm-scale research 

than satellite remotely sensed data. Drones, therefore, can play an important role in reducing 

risk and vulnerability while ensuring sustained crop-water productivity. The application of 

drones in agriculture in South Africa could contribute to food and water security and help the 

country achieve the Sustainable Development Goals (SDG) on alleviating hunger and poverty 

and providing enough clean water and sanitation to all by 2030, SDGs 1, 2 and 6 respectively. 

The focus is to use drones to systematically monitor crop development at the field level and 

provide agro-met information in real-time, improve water use efficiency and productivity and 

irrigation scheduling in smallholder farming. The project will assess crop health through high 

spatial resolution drones and NDVI analysis, monitor crop evapotranspiration, and develop 

high-resolution irrigated maps and datasets on water use, water productivity, potential yield, 

and potential yield evapotranspiration. These will benefit farmers in making on-field decision-

making and preparedness. 

The project aimed to systematically monitor crop development and provide agro-met 

information in real-time using drones. Specifically, to assess crop health by analysing real-

time NDVI derived from drone imagery and monitor crop evapotranspiration at the field scale 

for the farmer to make on-field decisions. The study was conducted in a maize crop field on a 

smallholder farm in Swayimane within the KwaZulu-Natal province, South Africa (29°31'24’’S 

and 30°41’37’’ E), covering an area of 2699.005 m2. Maize seedlings were sown on 8 February 

2021 and harvested on 26 May 2021, having a total growth cycle of 108 days. The study was 

conducted throughout the phenological stages of maize. Maize phenology is generally divided 

into vegetative stages (which range from emergence to tasselling according to the number of 

fully expanded leaves) and reproductive stages (which range from silking to physiological 

maturity according to the degree of kernel development). 

Pre-sampling of the maize smallholder field was conducted in Google Earth Pro, where the 

experimental field's polygon was digitized. The digitized polygon was then imported into 

ArcGIS 10.5, where it was used to generate sampling points. Sixty-three sample points were 

generated based on stratified random sampling within the digitized field boundary. These 

points were then uploaded into a handheld Trimble Global Positioning System (GPS) with sub-
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meter accuracy (1-100 cm). These locations were used to navigate to each sample point for 

field data collection. The maize plants at each sampling point were marked for consistent bi-

weekly measurement. Crop attributes, including chlorophyll content, leaf area index, stomatal 

conductance, equivalent water thickness, specific leaf area, and yield were measured from 

each sampling point. For image acquisition, A Mica Sense multi-spectral camera (Altum) was 

mounted on a UAV (DJI Matrice 300) to acquire multi-spectral images of the study area. The 

Altum consists of five spectral bands (Blue, Green, Red, Red Edge and NIR) with a radiometric 

thermal camera for the thermal region of the EMS, hence acquiring multi-spectral and thermal 

imagery in a single flight.  

In leveraging Google Earth Engine (GEE) with ultra-high spatial resolution data acquired using 

UAVs for mapping LULC in smallholder farms, with a specific focus on cultivated areas, results 

demonstrated that field boundaries could be accurately mapped based on random forest 

ensemble combined with the red edge and NIR derivatives. Furthermore, the UAV-derived 

LULC map is comparable to publicly available landcover maps for the region at capturing the 

spatial heterogeneity within the study area. 

In testing the use of UAV-derived multispectral data in the estimation of maize chlorophyll 

content over the various stages of phenotyping, results showed that optimal chlorophyll 

content prediction accuracies were produced during early vegetative growth stages (V5-V10 

and V12), late vegetative growth stages (V14-VT), and early reproductive growth stages  

(R1-R3). It was also observed that maize chlorophyll content was optimally estimated through 

UAV-derived NIR and red-edge wavelengths. 

Meanwhile, in evaluating the utility of UAV-derived VIs in concert with the Random Forest (RF) 

algorithm in estimating maize LAI across the growing season, results showed that the optimal 

stage for estimating maize LAI using UAV-derived VIs in concert with the RF ensemble was 

during the vegetative stage. The findings also showed that UAV-derived traditional, red edge-

based, and new VIs could reliably predict maize LAI across the growing season. The 

electromagnetic spectrum's blue and red edge and NIR sections were critical in predicting 

maize LAI. Furthermore, combining traditional, red edge-based, and new VIs was useful in 

attaining high LAI estimation accuracies. 

In evaluating the utility of multispectral and thermal infrared UAV imagery in combination with 

a random forest machine learning algorithm to estimate the maize foliar temperature and 

stomatal conductance as indicators of potential crop water stress and moisture content over 

the entire phenological cycle, results illustrated that the thermal infrared waveband was the 

most influential variable during the vegetative growth stages. In contrast, the red-edge and 

near-infrared-derived vegetation indices were fundamental during the reproductive growth 

stages for temperature and stomatal conductance. Maize foliar temperature was best 

predicted during the mid-vegetative growth stage and stomatal conductance during the early 

reproductive growth stage. 

The project also comparatively evaluated the utility of UAV-derived multispectral imagery and 

machine learning techniques in estimating maize leaf moisture indicators, equivalent water 

thickness (EWT), fuel moisture content (FMC), and specific leaf area (SLA) as proxies of crop 

moisture stress. This section conducted a comparative analysis between the support vector 
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regression, random forest regression, decision trees regression, artificial neural network 

regression, and the partial least squares regression algorithms in predicting leaf moisture 

content indicators (i.e. EWT, FMC, and SLA). The results illustrated that NIR and red-edge-

derived spectral variables were critical in characterising maize moisture indicators on 

smallholder farms. Furthermore, the best models for estimating EWT, FMC, and SLA were 

derived from the random forest regression (RFR) algorithm. Additionally, EWT and FMC 

yielded the highest predictive performance and were the most optimal indicators of maize leaf 

moisture. 

The project also evaluated the utility of UAV-based multispectral datasets for quantifying 

maize EWT and FMC throughout the phenological growth cycle of maize at five different 

phenological periods using the random forest (RF) regression algorithm. The findings 

illustrated that the NIR and red-edge wavelengths were influential in characterising maize 

moisture variability with the best models for estimating maize EWT and FMC resulting in a 

relative root mean squared error (rRMSE) of 2.27% and 1%, respectively. 

Regarding exploring the prospects of using UAV-derived multispectral data, Landsat, SEBS, 

METRIC-Efflux models and a cloud computing infrastructure in estimating maize 

evapotranspiration (ETc). Findings illustrated that maize daily ETc increases gradually from the 

begging of the growing season to the peak season, then decreases gradually in the late 

season. ETc estimates from both models were within an acceptable range, although SEBS 

had the highest estimates throughout the growing season compared to METRIC-Efflux. 

Furthermore, METRIC-Efflux and FAO-56 potential ET were almost equal.  

New knowledge and innovation 

The application of drone technology for crop management and monitoring is a relatively new 

field in South Africa. Thus, the project contributed toward the emerging use of drone 

technologies in South Africa for mapping field boundaries, health and crop water use, and 

efficiency. The project also assessed the prospects of converting and interpreting the 

information collected through drones into knowledge useful for decision-making, such as 

irrigation scheduling precision farming in the context of precision agriculture in smallholder 

croplands. Finally, the project contributed five articles published in high-impact factor journals. 

 

Capacity Building 

The project adequately addressed institutional and individual capacity building. The project 

recruited five master’s students and five postdoctoral fellows. Of these five master’s students, 

three completed, while two were continuing with their MSc studies during the writing of this 

report. Through this project, one honours student from UWC was supported. The Post-doctoral 

fellows were actively engaged in student supervision. They were also trained in 

conceptualization and project management skills. Some Post-doctoral fellows developed 

further the concept of drone applications in smallholder croplands. In this regard, three Post-

doctoral fellows were awarded new drone-based projects as New Project leaders by WRC. 

Furthermore, a technician and four post-doctoral fellows were being trained to attain their 

Remote Piloted Aircraft Pilot Licences (RPLs) through this project. Furthermore, a workshop 

to train the youth from the Swayimane community on drone applications. 
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Conclusion 

As a flagship project on utilising UAVs in agriculture, the project's findings underscore that 

these technologies can effectively map field boundaries and monitor crop health in 

heterogeneous smallholder croplands at optimal accuracies. Specifically, proxies of crop 

health (i.e. Chlorophyll content and leaf area index), as well as proxies of water use (i.e. 

stomatal conductance, foliar temperature, equivalent water thickness, fuel moisture content, 

specific leaf area, and evapotranspiration), were optimally estimated using drone acquired 

red-edge and NIR bands and their spectral derivatives. However, there is still a need to extend 

the research evaluating the relative contribution of drone technologies in monitoring other 

climate-smart crops in smallholder croplands. Specifically, there is limited literature on the 

utilisation of drones in mapping and monitoring neglected and under-utilised crop species, the 

impact of weeds, and water quality and quantity assessments in smallholder croplands. The 

successful implementation of drone technologies is a pathway towards offering detailed and 

spatially explicit information to smallholder farmers on local variations of cropland 

characteristics and facilitating on-field decisions for optimising productivity. 

 

Recommendations 

Numerous gaps remain regarding using drone remotely sensed data in mapping and 

monitoring crop health and water use efficiency. 

• More efforts must be exerted towards assessing the integration of UAV-derived data 

with Google Earth Engine and ancillary data in characterising farm boundaries. 

• There is a need to assess the utility of UAV-derived multispectral data in estimating 

crop health parameters and ecophysiological attributes such as the canopy chlorophyll 

content and crops' structural attributes about the fields' environmental attributes. 

• Following the exploratory nature of this project, there is a need to exert more efforts 

toward the estimation of evapotranspiration of crops using UAV-derived data. 

• Future studies could assess other techniques, such as the sap flows and atmometers 

on-site measurement of evapotranspiration in evaluating water use efficiency. 

• Research efforts are still needed to estimate water use and productivity, potential yield 

and evapotranspiration using drone remotely sensed data. 

• Variables such as soil moisture and precipitation need to be integrated into the 

characterisation of crop health and water use efficiency models. 

• Above all, future studies could evaluate the fusion of freely available remotely sensed 

data sets and UAV-acquired data in mapping and monitoring crop attributes in 

smallholder croplands.  
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1 INTRODUCTION 

The demand for agricultural products has significantly increased, with the estimated aggregate 

agricultural consumption anticipated to rapidly upsurge by 69% by 2050 (Alexandratos and 

Bruinsma, 2012; Nhamo, Matchaya et al., 2019). A global population surge will induce this, 

estimated to reach 9 billion people in 2050 (Alexandratos and Bruinsma, 2012; Nhamo, 

Matchaya et al., 2019). Meanwhile, agricultural production in sub-Saharan Africa has been 

threatened by water scarcity, unpredictable weather, and arid conditions (Lickley and 

Solomon, 2018; Nhamo, Matchaya et al., 2019). In South Africa, smallholder agriculture (less 

than two hectares) is predominantly rainfed, often resulting in crops experiencing water stress 

and moisture shortages due to inadequate rainfall (Rockstrom, 2000; Ubisi, Mafongoya et al., 

2017; Adisa, Botai et al., 2018). However, there are limited, spatially explicit, evidence-based 

frameworks and instruments for monitoring crop water stress in smallholder croplands, 

especially in those cultivating maize (Zea mays L.), predominantly for subsistence 

(Andersson, Zehnder et al., 2009; Lu, Xue et al., 2017). Since maize is a staple grain crop and 

one of the most widely cultivated crops in South African smallholder farms (Walker and 

Schulze, 2006), there is a need for spatially explicit methods to characterise the extent of 

fields, water and health deficiencies, yield and water use efficiency of maize to prevent yield 

losses and optimise the productivity of smallholder farmers (Brewer, Clulow et al., 2022).  

Optimisation of maize crop production in smallholder croplands could be enhanced by 

adopting modern technologies into the agricultural production system. For instance, 

unmanned aerial vehicles (UAVs), popularly known as drones, could offer advanced crop 

image data analytics and crop monitoring in real-time (Nhamo, Magidi et al., 2020). Unmanned 

aerial vehicles are remotely controlled aircraft mounted with GPS and specialised sensors to 

collect referenced and high-resolution images without cloud interference (Yao, Qin et al., 

2019). Using UAVs at the field or farm scale allows accessing near-real-time information 

spatially reference data suitable for monitoring crops at different stages throughout the 

cropping cycle (Yao, Qin et al., 2019; Nhamo, Magidi et al., 2020). Systematic crop monitoring 

offered by drones provides agrometeorological (agro-met) information to farmers (particularly 

smallholder farmers) in real-time, enabling them to make informed on-field decisions, such as 

when to plant, irrigate, apply nutrients and chemicals, etc., bringing climate-smart agriculture 

(CSA) and precision agriculture to the smallholder sector (an important sector for food 

security).  

The advantage of drones is that they offer low-cost imaging at high resolution and offer user-

determined revisit periods (Barbedo, 2019; Nhamo, Magidi et al., 2020). Thus, drones are 

appropriate and affordable tools for assessing crop phenology, stress assessment and crop 

health in near real-time (Barbedo, 2019; Nhamo, Magidi et al., 2020). Sequential monitoring 

of crops at the field level allows farmers to get information on crop status, allowing them to 

detect subtle changes that are not easily identified by the human eye (Tian, Wang et al., 2020). 

Subsequently, adopting drones in the South African agricultural sector, especially the 

smallholder farmlands, could optimise food production and address the serious water and food 

insecurity challenges exacerbated by the recurrence of extreme weather events, mainly 

drought (Nhamo, Mabhaudhi et al., 2019).  
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1.1 Main Objective 

The contractually specified objectives of the project were: 

1.1.1 General objective 

In this regard, the main objective of this project was to assess the utility of drone technology 

for monitoring the state of crops to improve water use productivity with precision agriculture 

and improved irrigation scheduling in smallholder croplands for four years.  

1.1.2 Specific Objectives 

• Specific objective 1: Review the literature on specialist drones for crop monitoring and 

crop-water models that use drone products. This included analysing drones' use to 

monitor crops, modelling yield and water use, and irrigation scheduling.  

• Specific objective 2: To assess crop health by analysing real-time NDVI derived from 

drone imagery. 

• Specific objective 3: To monitor crop evapotranspiration at the field scale for a farmer 

to make on-field decisions. 

• Specific objective 4: To develop high-resolution maps of agriculture fields and irrigated 

areas and datasets on water use, productivity, potential yield, and evapotranspiration. 

• Specific objective 5: To assess the impact of drones on water use, crop nutrition, and 

water productivity (yield and quality) for improved livelihoods of smallholder farmers. 

The contractual objective of this project was initially “to systematically monitor crop 

development and provide agro-met information in real-time using drones for improving water 

productivity and irrigation scheduling in selected irrigated farms of KwaZulu-Natal, South 

Africa”. Most smallholder farmers generally do not have irrigation systems in KwaZulu-Natal. 

In this regard, the project mostly covered the rainfed maize crop in smallholder crops. 

Generally, all contractual objectives were adequately addressed and, in some instances, 

exceeded. Specifically, specific objectives 1 to 3 are well exceedingly addressed. Although 

objectives 4 and 5 were satisfactorily addressed, numerous setbacks were encountered, 

specifically concerning the ground-truthing data in estimating evapotranspiration, water use 

and water productivity. This section was regarded as an exploratory study to assess the 

prospects of drone remotely sensed data in estimating evapotranspiration. We provide a 

detailed recommendation for future studies on estimating evapotranspiration, water use, and 

water productivity that could be conducted in data-scarce regions. 

1.2 Scope of The Report 

The report comprises a series of self-contained chapters with different authors. Each Chapter 

addresses at least one of the project's specific objectives as set out after consultations with 

the technical reference group members and the WRC project managers. The general 

methodology chapter was not included because the report is presented in a paper format. 

Each chapter is presented with its specific methodology. Due to the paper format followed, the 

report does not have a general methodology section since each Chapter has its specific 
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methodology. In that regard, there are inevitably overlaps or repetitions, especially in the 

methodology sections, within the ambit of the project report. This is because a seamless flow 

of methodological principles underpins the current scientific setting. This was considered trivial 

because some chapters are adapted from published articles critically peer-reviewed by 

international journals. 

The report is structured to address the project objectives of the study in a logical framework. 

Chapters 1 and 2 address the definition of the scope of the study and the first objective related 

to conducting state-of-the-art literature. Chapters 3-10 report on acquiring and using drone-

derived multispectral remotely sensed data in developing high-resolution maps of agriculture 

field boundaries, maize crop health, water stress and evapotranspiration throughout the 

growing season. 

A general overview of the report is provided below. 

Chapter 1 provides a general introduction, background, and conceptualisation of the entire 

study. It motivates the broad study as set out in terms of reference. It also sets out the project’s 

aims and specific objectives defined in the contract. 

Chapter 2 is a state-of-the-art literature review on prospects of Improving Agricultural and 

Water Productivity through Unmanned Aerial Vehicles. The chapter synthesises the use of 

UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. 

The review highlights the role of UAV-derived normalised difference vegetation index (NDVI) 

in assessing crop health, evapotranspiration, water stress and disaster risk reduction. This 

Chapter addresses the. This chapter addressed contractual-specific objective number 1. 

Chapter 3 explores and demonstrates the utility of using the advanced image processing 

capabilities of the Google Earth Engine (GEE) geospatial cloud computing platform to process 

and analyse a very high spatial resolution multispectral UAV image to map land use land cover 

(LULC) within smallholder farms. This chapter addressed contractual-specific objective 4. 

Chapter 4 predicted the chlorophyll content of maize over phenotyping as a proxy for crop 

health in smallholder farming systems. Specifically, crop chlorophyll content is assessed as 

one of the best-known and reliable indicators of crop health due to its biophysical pigment and 

biochemical processes that indicate plant productivity. In this regard, the study evaluated the 

utility of multispectral UAV imagery using the random forest machine learning algorithm to 

estimate the chlorophyll content of maize through the various growth stages. This chapter 

addressed contractual objective number 2. 

Chapter 5 estimated maize foliar temperature and stomatal conductance as indicators of water 

stress based on optical and thermal imagery acquired using a UAV platform. Specifically, this 

chapter evaluated the utility of optical and thermal infrared UAV imagery, combined with a 

random forest machine-learning algorithm, to estimate the maize foliar temperature and 

stomatal conductance as indicators of potential crop water stress and moisture content over 

the entire phenological cycle. This addressed specific objectives two and partly, 4. 

Chapter 6 is a comparative analysis which sought to (1) evaluate the performance of five 

regression techniques in predicting maize water content and (2) determine the most suitable 
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indicator of smallholder maize water content variability based on multispectral UAV data. This 

chapter specifically evaluated the utility of UAV-derived multispectral imagery and machine 

learning techniques in estimating maize leaf water indicators: equivalent water thickness 

(EWT), fuel moisture content (FMC), and specific leaf area (SLA). This chapter addressed 

specific objectives 3, 4 and 5. 

Chapter 7 assessed the prospects of monitoring multi-temporal maize leaf equivalent water 

thickness and fuel moisture content variability using UAV-derived multispectral data. 

Specifically, the chapter evaluated the utility of UAV-based multispectral datasets and random 

forest regression in quantifying maize EWT and FMC throughout the phenological growth 

cycle of maize. This chapter addressed specific objectives 3, 4, and partially, 5. 

Chapter 8 estimated maize leaf area index using UAV-derived multi-spectral data in 

smallholder farms as a proxy for productivity. To address this objective, UAV-derived VIs, in 

concert with the Random Forest (RF) algorithm, were utilised in estimating maize LAI across 

the growing season in a smallholder farm. This chapter addressed contractual-specific 

objectives 4 and 5. 

Chapter 9 sought to predict maize yield in smallholder croplands using UAVs derived from 

multi-temporal remotely sensed datasets in concert with the RF regression ensemble. The 

value of using the grain biomass, absolute plant biomass, grain biomass as a proportion of 

the absolute maize plant biomass, VIs and combined spectral data were evaluated. This 

chapter addressed contractual-specific objectives 4 and 5. 

Chapter 10 explore and assess the prospects of using Landsat, SEBS and METRIC-Efflux 

models and a cloud computing infrastructure in estimating ETc using UAV multi-spectral 

imagery. A comparative of the SEBS and the METRIC-Efflux model combined with UAV-

derived multispectral data and Landsat-derived VIs as a proxy of albedo was used to estimate 

maize crop ETc in smallholder croplands. FAO-56 potential ET was then used to assess the 

estimated ETc in this study. 

Chapter 11 provides a holistic discussion of the entire project and links all the separate studies 

to achieving the project objectives. The chapter also provides the conclusion and 

recommendations for future studies. 
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2 LITERATURE REVIEW 

 

Nhamo L, Magidi J, Nyamugama A, Clulow AD, Sibanda M, Chimonyo VGP & Mabhaudhi T 

 

2.1 Introduction 

Although agricultural production has increased substantially in recent years, the demand for 

agricultural products has also risen significantly, with estimates that aggregate agricultural 

consumption is expected to increase by 69% by 2050 (Tilman, Balzer et al., 2011; 

Alexandratos and Bruinsma, 2012). A surge in the global population mostly fuels the demand 

for food, fibre and feed, estimated to reach 9 billion by 2050 (Godfray, Beddington et al., 2010). 

The need to feed a growing population has resulted in the intensification and extensification 

of agricultural land, resulting in agriculture consuming about 70% of the available freshwater 

resources worldwide (Pimentel, Berger et al., 2004; Cosgrove and Loucks, 2015). One of the 

urgent challenges currently facing sub-Saharan Africa (SSA) is to increase crop yields and at 

the same time reduce the amount of water used in crop production, that is, ‘more crops per 

drop’ (Morison, Baker et al., 2008; Fan, Shen et al., 2011). The approach is more urgent in 

smallholder farming areas, which experience marginal production due to biophysical and 

management-related factors (Mungai, Snapp et al., 2016). In most arid and semi-arid regions, 

water is a scarce resource needing improved crop water productivity in agriculture (Du, Kang 

et al., 2015). Improved agricultural water management requires innovative and evidence-

based solutions throughout the agriculture system (Levidow, Zaccaria et al., 2014; Nhamo, 

Mabhaudhi et al., 2016). Unmanned Aerial Vehicles (UAVs), also known as drones, offer 

advanced crop image data analytics at high spatial and temporal resolution and crop 

monitoring in real-time, important elements in agriculture water management (Nhamo, van 

Dijk et al., 2018). 

Unmanned Aerial Vehicles are remotely controlled aircraft mounted with Global Positioning 

System (GPS) and specialised sensors to collect geo-referenced and high-resolution images 

without cloud interference (Watts, Ambrosia et al., 2012; Yang, Liu et al., 2017). Their use at 

the field or farm scale allows access to real-time agro-meteorological (agro-met) information 

and crop monitoring at different stages throughout the cropping cycle. Using drones in 

smallholder agriculture, particularly in regions facing water scarcity, could prove worthwhile as 

they allow improved water and food security (Nhamo, Mabhaudhi et al., 2019). Real-time 

monitoring of crops at the field scale and timely intervention throughout the growing cycle 

results in improved crop and water productivity. Systematic crop health monitoring and 

availability of agro-meteorological information in real-time would enable smallholder farmers 

to make informed, tactical and operational decisions, such as when to plant, irrigate, apply 

nutrients and chemicals, etc. The opportunities offered and made available by UAVs bring 

climate-smart agriculture (CSA) and precision agriculture to smallholder farmers (Adão, 

Hruška et al., 2017). The advantage of UAVs over satellites is that drones offer low-cost 

imaging at high spatial resolution and user-determined revisit periods (Manfreda, McCabe  

et al., 2018). Thus, UAVs are appropriate for assessing rapid changes in crop phenology, 
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stress assessment and crop health in real-time (Ballesteros, Ortega et al., 2014). Collective 

ownership of UAVs and the use of extension services could be an effective way to use drones 

by smallholder farmers who may not have the resources to own and maintain a drone, as well 

as the technical expertise required to operate, collect, process and interpret drone data. 

Sequential monitoring of crops allows farmers to detect subtle changes that are not easily 

identified by the human eye (Pongnumkul, Chaovalit et al., 2015). For example, multispectral 

drone imagery can assess crop health through NDVI (Normalized Difference Vegetation 

Index) or NDRE (Normalised Vegetation Red Edge) indices. NDVI enables an analysis of the 

intensity of solar radiation absorption in specific bands and the health condition of the 

monitored crops (Ishihara, Inoue et al., 2015). Traditionally, NDVI has been derived from 

imageries from satellite sensors such as Landsat, Pour l'Observation de la Terre (SPOT) and 

Moderate Resolution Imaging Spectroradiometer (MODIS), but the temporal and spatial 

resolutions of the resulting products have been too low for continuous crop monitoring. 

Unmanned Aerial Vehicles offer NDVI analysis of crops at 0.05 to 1 metre resolution, suitable 

for monitoring the condition of individual plants with optimal accuracy. Multispectral drones 

generally come with a complete crop scouting kit, including software, at a reasonable cost of 

US$10 000. The multispectral camera captures RGB, NIR NDVI, and NDRE indices, offering 

spectral capabilities that make UAV important and suitable for monitoring crop health and 

density, water stress and weed detection. 

Accurate and detailed geospatial drone data is also useful in disaster situations, where crop 

damage occurs due to extreme weather events. They precisely estimate the level of crop loss 

by comparing the pre-disaster and post-disaster imagery (Chou, Yeh et al., 2010). The pre 

and post-disaster information is important for insurance companies as they move towards 

ensuring smallholder farmers against extreme weather events (Greatrex, Hansen et al., 2015). 

Drones can provide evidence of damage through the development of index-based crop 

insurance, thereby reducing risk and vulnerability while contributing towards achieving the 

2030 Global Agenda on Sustainable Development (Carter, de Janvry et al., 2014). 

Satellite and UAV imagery serve the same purpose but differ significantly in spatial and 

temporal resolution. The scale and accuracy determine the choice of the two the user requires 

to achieve (Nhamo, van Dijk et al., 2018; Ruwaimana, Satyanarayana et al., 2018). Unlike 

satellite images taken at high altitudes, the high spatial resolution offered by UAVs at low 

altitudes allows plant analyses and the detection of anomalies. Although there are also high-

resolution satellites like QuickBird, RapidEye, WorldView and IKONOS, and hyperspectral and 

Light Detection and Ranging (LiDAR) remote sensing, these are very expensive and generally 

time-consuming in terms of processing (Sylvester, 2018). Their high costs and temporary low 

resolution are the major factors limiting their use in smallholder agriculture. The high altitudes 

and low temporal resolution of satellites make them only suitable over large areas where 

changes occur slowly (Huang, Chen et al., 2018), significantly limiting their use in smallholder 

agriculture, which is characterised by small land tenure that averages about 2 ha (Graeub, 

Chappell et al., 2016). Although the high level of spectral detail in hyperspectral images 

provides better capabilities to detect crop anomalies, they are very complex due to the high 

number of bands (Adão, Hruška et al., 2017). Although LiDAR imaging could offer similar 

services as drones, it samples positions without RGB and thus only creates monochromatic 

datasets, which could be difficult to interpret (Sevara, Wieser et al., 2019). 
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Furthermore, high-altitude sensors are susceptible to atmospheric energy attenuation and 

impurities. Meanwhile, UAVs can acquire images even during cloudy days at short flight 

preparation times, which has not been possible previously (Torres-Sánchez, Peña et al., 

2014). Drones are reducing the cost of remote sensing as new and affordable models are 

being introduced (Salamí, Barrado et al., 2014). This review discusses the importance of UAVs 

in agricultural water management and crop health as an alternative to improve productivity. 

 

2.2 Materials and Methods 

2.2.1 Methodological framework 

Figure 2-1 is a graphical representation of the methodological framework developed to explore 

the importance of UAVs in enhancing smallholder productivity and water management, 

focusing on smallholder agriculture. The increasing frequency and intensity of drought 

recurrence, as well as rising temperatures that result in increased evapotranspiration (ET) 

(climate change), are causing many regions and particularly arid and semi-arid regions, to 

experience worsening water scarcity challenges (Naumann, Alfieri et al., 2018; Nhamo, 

Mabhaudhi et al., 2019). In turn, water scarcity results in increased aridity and shifts in agro-

ecological zones and thus, affecting crop yields (Solh and van Ginkel, 2014). The challenge 

of depleting water resources requires innovative technologies to improve agricultural water 

management and enable smallholder farmers to improve productivity under water-limited 

conditions without increasing pressure on already strained water resources. Agriculture 

consumes about 70% of the available freshwater resources, which has become unsustainable 

(Cosgrove and Loucks, 2015). 

Firstly, we consulted the literature on the types, costs and effectiveness, opportunities and 

obstacles of utilising UAVs concerning established agricultural remote sensing techniques. A 

database consisting of published articles was created using the Web of Science, Scopus and 

Google Scholar using keywords such as “drones”, “unmanned aerial vehicles (UAVs)”, “UAVs 

application in agriculture”, “UAVs applications in agricultural water management”, “UAVs and 

remote sensing”, “UAVs and precision agriculture”, and ‘UAVs in disaster management”. To 

cover a wide range of relevant research, we supplemented papers about irrigated area 

mapping, irrigation scheduling, crop water stress, crop health detection, crop ET, water 

productivity and weed detection. Irrelevant papers were excluded by reading abstracts and 

conclusions. 

We note that the use of drones in science and research is growing exponentially. Publications 

related to drones started picking up in 2010, and since then, the drone industry has grown. As 

of 2016, the drone market revenue was US$6.8 billion and is projected to grow to US$36.9 

billion by 2022 (Gonzalez-Aguilera and Rodriguez-Gonzalvez, 2017; Shakhatreh, Sawalmeh 

et al., 2019). We also consulted the literature on regulations controlling the use of UAVs 

worldwide. We noted that most countries have or are developing laws governing the use of 

drones, and therefore relevant authorities need to be consulted before their use (Jones, 2017). 
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Secondly, within the consulted literature, we identified thematic areas on how UAVs are used 

to improve agricultural water management. The aim was to explore the opportunities offered 

by UAVs in enhancing agriculture and water productivity by identifying the limitations of current 

remote sensing products and methods. We looked into how UAVs can enhance mapping 

agricultural fields (particularly small-scale irrigated areas), crop stress and health at the field 

level, crop yield and evapotranspiration (ET) estimation, and crop water productivity. We gave 

detailed examples of how UAVs enhance different agriculture research fields from existing 

literature. The overall goal was to explore the role of UAVs in ensuring water and food security 

in the advent of climate change. 

While there have been previous studies on UAV applications, this review offers detailed and 

practical insights, from multidisciplinary perspectives, on how UAVs can enhance agricultural 

productivity and water management among smallholder rural farmers in times of water scarcity 

and the advent of climate change. The review further provides detailed comparisons between 

satellite and UAV-sensed products, highlighting how UAVs can particularly improve the 

accuracy of these products. The review emphasises how several UAV applications could be 

deployed to promote precision farming and climate change adaptation among often-poor 

smallholder farmers. This group of farmers is characterised by low access to climate 

information and services and technologies that enhance productivity and adaptive capacities. 

 

Figure 2-1: A methodological framework to explore the importance of UAVs in agricultural 

water management. 
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2.2 Types of agricultural UAVs 

There are two types of UAVs, fixed wing and multi-rotor or rotary wing (Figure 2-2), equipped 

with the necessary software, sensors and hardware to monitor crop health and conduct field 

surveys. The advantage of fixed-wing UAVs is that they have wider coverage, which could be 

ten times bigger than rotary-winged UAVs (Sandbrook, 2015; McEvoy, Hall et al., 2016). 

However, image quality is compromised due to the flying speed. Also, fixed-wing UAVs have 

a much simpler structure making them less complicated to maintain and repair (Sandbrook, 

2015). The simple structure of fixed-wing UAVs ensures more efficient aerodynamics that 

allows longer flight durations at high speeds, natural gliding capabilities with no power and the 

capability to carry greater payloads for longer distances on less power (Çetinsoy, Dikyar et al., 

2012). However, fixed-wing UAVs may require a runway or launcher for take-off and landing. 

They cannot stay stationary in flight mode like rotary-winged UAVs, making them unsuitable 

for stationary applications like crop inspection (McEvoy, Hall et al., 2016). 

Rotary-winged UAVs are best suited for close range and detailed surveying as the pilot can 

control its movements and functions, allowing it to hover over plants at a low altitude (Hackney 

and Clayton, 2015). The capability of a rotary-winged UAV to fly low and slowly allows the 

production of more accurate and high-resolution imageries for site-specific assessments (Hunt 

Jr and Daughtry, 2017). The main limiting factor of the rotary-winged UAVs is the small 

coverage per flight and low flight duration. However, these can be overcome by undertaking 

several flights per survey and changing batteries at intervals to allow for more time coverage 

(Sandbrook, 2015). One important advantage of rotary UAVs is their ability to take-off and 

land vertically, allowing them to be operated anywhere. The capacity of rotary UAVs to hover 

around a single place makes them well-suited for agricultural surveying and research 

(Shakhatreh, Sawalmeh et al., 2019). However, their complicated nature makes them more 

expensive to maintain and repair. 

 

 

Figure 2-2: Examples of (a) fixed-wing UAVs and rotary (b) winged UAVs. Fixed-wing UAVs 

have wider coverage, which could be 10 times bigger than rotary winged, but image quality is 

poor due to flying speed, and cannot stay stationary in flight mode. 

(b(a
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2.2.3 Regulations governing drone use in South Africa 

Most countries are passing regulations and laws governing the use of drones. Before flying a 

drone for any purpose, users are advised to inquire about their use with the authorities. In 

South Africa, for example, the responsible body for regulating drone use is the South African 

Civil Aviation Authority (SACAA), which requires that all UAVs weighing above 7 kg be 

registered (whatever the purpose) and that the pilot has aviation training from an approved 

training organisation (ATO) and have a Remote Pilot Certificate. UAVs weighing below 7 kg 

do not need to be registered for private use. However, all drone users must steer clear from 

and within 10 km of airports and other No Fly Zones and respect private property 

(www.caa.co.za/Pages). The most important things to note about drone use in South Africa, 

according to part 101 of Civil Aviation regulations, include: 

a) Must be SACAA approved and have a valid remote pilot licence and a letter of approval 

to operate the drone.  

b) The letter is valid for 12 months. These are not important for purchasing, but the dealer 

must highlight the regulations at the time of sale.  

c) Drones cannot fly more than 120 m above the ground nor within 10 km of an 

aerodrome.  

d) Drones cannot be flown within 50 m above or close to a person or crowd of people, 

structure or building without SACAA approval. Drones cannot be flown above security 

areas like power plants, prisons, police stations, national parks, etc.  

e) Drones cannot be used to transport cargo or make deliveries. 

2.3 Results and Discussions 

2.3.1 Mapping agriculture fields using UAVs 

Accurate geospatial information on agriculture is a critical requirement for planning and 

decision-making, particularly in countries intending to increase and improve smallholder 

irrigated agriculture (Cai, Magidi et al., 2017; Scott and Rajabifard, 2017). Satellite imageries 

have been used to produce coarse land use/cover maps. However, the advent of UAVs has 

improved mapping accuracy because of their high resolution and low cost, although at a 

smaller coverage (Sandbrook, 2015). The use of UAVs in mapping land use makes it possible 

to monitor smallholder farming fields that are generally too small to be detected by readily 

available moderate to low-resolution satellite imageries (Nhamo, van Dijk et al., 2018). 

Smallholder farming plots measure about two hectares in area per farmer (Graeub, Chappell 

et al., 2016). 

Smallholder farming areas are generally detected as one massive agricultural land (Figure  

2-3 (b)) by low to moderate-resolution satellites. Yet, their mapping accuracy is important as, 

for example, in southern Africa, they occupy about 80% of the cultivated land, contributing 

about 90% of the agricultural produce (Livingston, Schonberger et al., 2011). Therefore, 

mapping accurate and detailed agricultural fields is important for decision-making, especially 
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for addressing the climate resilience of agricultural livelihoods. High-resolution satellite 

imageries that could offer the same accuracy as UAV imagery are costly, which limits their 

use (Boyle, Kennedy et al., 2014). Unlike satellite imagery, UAV imagery is not limited by cloud 

cover. The temporal resolution (acquisition time) is user-defined and can be adjusted to local 

weather conditions (Ruwaimana, Satyanarayana et al., 2018). Unmanned Aerial Vehicles can 

be deployed repeatedly at flexible mission times and altitudes to acquire data on agricultural 

fields. Images acquired by UAVs offer an observation of single plants, patches and ultimately, 

patterns over the fields, something that was not possible previously with satellite imageries 

(Xiang and Tian, 2011). These advantages and ultra-high spatial resolutions make UAVs best 

suited for mapping crops planted in narrow rows at optimal accuracies. The main limiting factor 

of UAV imagery as compared to satellite imagery is their small coverage area per image.  

As the resolution of UAVs can be as high as 0.05 m depending on the flight altitude, they are 

appropriate for mapping small agricultural fields accurately. Figure 2-3 compares the accuracy 

of irrigated area maps derived from UAV imagery (Figure 3a) and satellite imagery (Figure  

2-3 (b). The maps are part of the Taung Irrigation Scheme in the North West Province, South 

Africa. Figure 3b was extracted from the irrigated area map for Africa developed by the 

International Water Management Institute (IWMI) from the MODIS satellite at 250 m spatial 

resolution (IWMI, 2015). Figure 3a is a map of the same area developed by authors from UAV 

imagery taken in 2018. The irrigation scheme is dominated by centre pivots, as shown in 

Figure 2-3 (a) (derived UAV imagery), yet Figure 2-3 (b) resembles the whole scheme area 

as cultivated. The irrigated area calculated from the UAV map is 40 647 ha, 17 000 ha less 

than the area calculated from the satellite map, which is 57 803 ha. Thus, satellite imagery 

overestimates land use areas. Although accuracy may improve with high-resolution satellites, 

there is always an overestimation of landuse area, especially at the field scale. Overestimating 

irrigated areas has the disadvantage of misinforming policy and decision-making. Accurate 

estimates are important for understanding the ecological footprint of food production and 

assessing the potential of irrigation development with limited land and water resources. 
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Figure 2-3: Comparing the (a) UAV and, (b) satellite imagery-derived crop maps. Figure (a) 

shows the real shape of the agricultural while (b) resembles the whole scheme area as 

cultivated, overestimating the cultivated area. (a) was developed by the authors using a drone 

and (b) was derived from the irrigated area map developed by IWMI in 2015, (IWMI, 2015) 

Various studies have also illustrated the robustness and capabilities of UAVs in mapping 

croplands (Torres-Sánchez, Peña et al., 2014; de Castro, Peña et al., 2017; Ma, Fu et al., 

2017; de Castro, Torres-Sánchez et al., 2018; Liu, Zhang et al., 2018; Mink, Dutta et al., 2018; 

Wahab, Hall et al., 2018). For instance, a study done in Córdoba and Seville in Spain illustrated 

the accuracy and capability of UAVs' remotely sensed data in characterising weeds between 

and within rows of sunflower and cotton crops across the growing season (de Castro, Torres-

Sánchez et al., 2018). In a related study, de Castro et al. illustrated the utility of UVAs in 

discriminating Cynodon dactylon grassweeds in the vineyards of Lleida in Spain (de Castro, 

Peña et al., 2017). These studies discriminated the weeds from crops with overall classification 

accuracy ranging between 71-80%. Thus, using UAV imagery at the field scale helps farmers 

make timely on-field decisions on when to apply pesticides and weeding. Although UAVs have 

been useful in agriculture, their use in Africa is still low, mainly due to scarce resources, as 

well as the dearth of skilled human resources to take up the utilisation and maintenance of 

UAVs (Mutanga, Dube et al., 2017; Wahab, Hall et al., 2018). 

2.3.2 Assessing crop water stress and health using UAV-derived indices 

Water Stress Indices (WSI) are useful crop parameters for mitigating drought impacts and 

irrigation scheduling. Remote sensing provides various products for acquiring ecological 

information from interpreting and analysing multi-spectral and hyperspectral image bands. The 
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interaction between electromagnetic energy and plants or vegetation differs depending on 

chlorophyll content, type of plant, and leaf area index (Fang and Ramasamy, 2015). 

Interpretation of spectral reflectance can reveal water and nutrient deficiencies, as well as 

information on plant health. During the growing process, a plant requires water, carbon dioxide 

and light for photosynthesis to produce sugar and oxygen (Mee, Balasundram et al., 2017). 

Besides these requirements, plants also need nutrients for plant cell and tissue development 

(Mee, Balasundram et al., 2017). Lack of these components leads to plant stress, and the 

symptoms are mainly observed through the defoliation of older leaves and a decrease in 

biomass. 

Therefore, one indicator of a healthy plant is the chlorophyll content in the leaves (Pavlovic, 

Nikolic et al., 2015). Chlorophyll absorbs visible light and reflects Near Infrared (NIR). Healthy 

plants with good photosynthetic activities can be analysed by comparing the reflectance of 

NIR and visible light (Mee, Balasundram et al., 2017; Xue and Su, 2017). These plant 

characteristics can be assessed through vegetation indices, which are the mathematical 

transformation of image bands used to qualitatively and quantitatively extract certain spectral 

properties such as vegetation cover, vigour and growth dynamics (Xue and Su, 2017). These 

vegetation indices are tailor-made to specific applications, each of which has its advantage. 

Thus, vegetation indices can enhance plant health classification and assessment algorithms 

(Hatfield and Prueger, 2010; Amani and Mobasheri, 2015). Vegetation indices also provide 

information on plant growth as healthy plants absorb more visible light and reflect more NIR 

(Hatfield and Prueger, 2010). Many vegetation indices use NIR and Red bands, and these are 

the Normalised Difference Vegetation Index (NDVI), Soil Adjusted (SAVI), Ashburn Vegetation 

Index (AVI), and Enhanced Vegetation Index (EVI), among others (Xue and Su, 2017). The 

commonly used vegetation index is the NDVI, which monitors and characterises canopy 

growth and plant vigour (Xue and Su, 2017). The NDVI is expressed as (Townshend and 

Justice, 1986):  

𝑁𝐷𝑉𝐼 =
NIR−Red

NIR+Red
   Equation 2-1 

where NIR is the Near Infrared band, and Red is the red band. 

NDVI values range between -1 and 1, with high NDVI values indicating healthy crops while 

low NDVI values indicating unhealthy crops and less vegetative vigour or more stressed crops 

(Boken and Shaykewich, 2002; Huang, Wang et al., 2014). Thus, NDVI is important for 

providing information on the variability of the health of crops, as well as in large-scale 

monitoring of plantations, assessing changes in the field, quantifying crop acreage and 

analysing crop loss (Boken and Shaykewich, 2002). NDVI also estimates plant attributes such 

as physiological status, yield production, crop distribution and irrigation mapping (Filella, 

Serrano et al., 1995; Aparicio, Villegas et al., 2000; Nhamo, van Dijk et al., 2018). Another 

modification of the NDVI used to assess changes in plant health is the SAVI (Soil Adjusted 

Vegetation Index) (Costa, Coelho et al., 2019). SAVI takes into consideration the variations in 

soil properties. SAVI tends to minimize soil brightness, and therefore, it introduces the soil 

calibration factor in the NDVI equation (Equation 2.1) to account for the first-order soil-

vegetation optical interactions. SAVI is defined as (Huete, 1988): 
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𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
) × (1 + 𝐿)  Equation 2-2 

where L is a constant surrogate for the leaf area index (LAI) (Panda, Ames et al., 2010; Xu, 

Lacey et al., 2018).  

To monitor changes in plant physiology, the NDVI-based crop growth curve is used where the 

data is captured at regular intervals. NDVI values are plotted on the graph to show temporal 

variations (Govaerts and Verhulst, 2010). Thus, spatio-temporal NDVI profiles show plant 

phenology (Huang, Wang et al., 2014). Time-series satellite images from UAVs acquired at 

short and constant intervals provide the necessary information on crop growth variation and 

water and nutrient deficiencies, as their temporal resolution is user-defined. They provide high 

spatial resolution at low altitudes, and adequate information to analyse individual plants or 

croplands (Govaerts and Verhulst, 2010; Yang, Liu et al., 2017; Khan, Rahimi-Eichi et al., 

2018). 

The crop water stress index (CWSI) is another index for assessing the level of stress in a plant 

by using the temperature extracted from the thermal band, as there is a correlation between 

CWSI and transpiration rate and soil water moisture (Fuentes, De Bei et al., 2012; Dalezios, 

Dercas et al., 2018). High-resolution UAV-derived NDVI can be combined with other indices, 

such as the CWSI and the Canopy-Chlorophyll Content Index (CCCI), to accurately delineate 

agricultural fields and monitor crop health (Cammarano, Fitzgerald et al., 2014). 

An analysis of crop water deficit or water stress monitoring is the basis for effective irrigation 

scheduling (Jones, 2004; Möller, Alchanatis et al., 2006; Ihuoma and Madramootoo, 2017). 

The CWSI identifies water stress in crops within 24-48 hrs before stress detection by visual 

observation (Ihuoma and Madramootoo, 2017). The water deficit index (WDI) is another water 

stress index which works the same way as the CWSI (Tanriverdi, Atilgan et al., 2017). In water 

stress indices, 0 indicates no water stress, and 1 represents maximum water stress 

(Tanriverdi, Atilgan et al., 2017). The crop water stress that signals the need for irrigation 

varies from crop to crop and is determined by factors of yield response to water stress, 

probable crop price, and water cost (Tilling, O’Leary et al., 2007). 

The accuracy of satellite-based remote sensing techniques has been hampered by the low 

resolution of satellite images that are readily and freely available (Pinter Jr, Hatfield et al., 

2003; Nhamo, van Dijk et al., 2018). However, the advent of multispectral UAVs has 

transformed and enhanced the accuracy of crop water stress estimates due to the high-

resolution and low-cost UAV images (Gago, Douthe et al., 2015). 

2.3.3 Estimating crop yield through UAVs 

High costs have generally limited the use of high-resolution satellite images to assess crop 

vigour and yields, particularly for hyperspectral images (Wahab, Hall et al., 2018). Other 

limitations of satellite remote sensing in crop yield estimation include the noise from cloud 

cover on images and the complex and heterogeneous nature of farming systems in 

smallholder farming areas, which are difficult to detect with low-resolution images. The 

application of UAVs has bridged the gap between satellites and the use of remotely sensed 

products in smallholder farmlands, and the high cost, labour-intensive, and time-consuming 
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conventional field surveys of crops on the other hand (Yang, Liu et al., 2017). Thus, the 

availability of low costs UAVs has opened up new possibilities to remotely sense crop status 

and yields even on complex smallholder farms.  

As already alluded to, high-resolution multi-temporal UAV images have enabled monitoring of 

crop development throughout the crop growing period, important information for farmers to 

plan and make crucial decisions (Shamshiri, Hameed et al., 2018). High-resolution UAV 

images provide more accurate information on crop biomass, yield and cropped area with 

acceptable accuracy for farmers and decision-makers to manage and monitor crops for 

optimum benefits (Shi, Thomasson et al., 2016; Hunt Jr and Daughtry, 2018). Studies have 

shown a high correlation between the vegetation spectral index extracted from satellite images 

and the green biomass and yield (Jin, Liu et al., 2017; Zhou, Zheng et al., 2017). Thus, 

combining vegetation spectral indices and green biomass can be used to estimate yield before 

harvesting. Crop yield is defined as crop production per unit area, and it is a product of the 

complex interaction between soil conditions (physical and chemical conditions), management 

(cultivar and spacing), and meteorological conditions (water and thermal) (Fan, Shen et al., 

2011). Crop yield estimation enhances preparedness, as it is part of early warning, providing 

decision-makers with timely information on crop deficit or surplus (Nhamo, Mabhaudhi et al., 

2019). 

Remote sensing has shown to be an alternative tool to estimate crop yield to traditional 

methods, as it offers more accurate and high-resolution crop data in a cost and time-effective 

manner. Traditional methods are costly, time-consuming and prone to errors, often resulting 

in poor crop yield assessment (Tilly, Hoffmeister et al., 2014). There are three remote sensing 

methods used to estimate crop yield: (i) based on empirical statistical models, (ii) based on 

water consumption balance models, and (iii) based on biomass estimation models (Basso, 

Cammarano et al., 2013; Meroni, Marinho et al., 2013). UAVs provide accurate crop height 

and biomass information timeously and at user-defined temporal resolution as they can fly at 

low altitudes, providing high-resolution multispectral imageries. Crop height and biomass are 

important components for assessing crops' growth rate and health (Vriet, Russinova et al., 

2012; Tumlisan, 2017). Plant height and biomass data are important to assess the effect of 

genetic variation on crops, crop development, and crop yield potential (Govindaraj, 

Vetriventhan et al., 2015). Thus, plant height and biomass are essential for optimising site-

specific crop management and yield predictions (Hunt Jr and Daughtry, 2018). 

The most used model for estimating crop yield is the Penman-Monteith equation, which uses 

biomass accumulation as a proportion of accumulated absorbed photo-synthetically active 

radiation (APAR) (Monteith, 1972). According to Monteith, crop yield is expressed as 

(Monteith, 1972): 

𝐶𝑌 = 𝜀 ∑(𝐴𝑃𝐴𝑅)(𝑡)(𝑡)( 𝐾𝑔𝑚−2)  Equation 2-3 

where CY is the crop yield, which is the accumulated biomass (kg m-2) in period t, ε in g M/J 

is the light use efficiency, t is the period over which accumulation occurs, and APAR is the 

absorbed photosynthetically active radiation. 
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Variability in plant light use efficiency (ε) is caused by varying nutrient and water levels (Craine 

and Dybzinski, 2013). Studies show that when crops are not water stressed, and temperature 

is optimal, ε is a relatively constant property of plants (Haxeltine and Prentice, 1996; Onoda, 

Saluñga et al., 2014; Slattery, Walker et al., 2018). UAVs mounted with multispectral sensors 

produce more accurate and reliable biomass and light use efficiency indices for accurately 

estimating crop yields. 

2.3.4 Modelling crop evapotranspiration (ET) using UAV remote sensing 

Crop ET or crop water use is the largest water loss from agriculture. Its accurate quantification 

is critical for improved agricultural water management, irrigation scheduling and knowledge of 

crop water requirements (Fereres and Soriano, 2006). Evapotranspiration has historically 

been estimated using various field techniques such as the soil water balance, weighing 

lysimetry, Bowen ratio, eddy Covariance and surface renewal. These techniques rely on 

theoretical derivations and major assumptions (Burba, 2013). In addition, they represent a 

point measurement and require footprint estimates to determine the surface area that the 

measurement represents (Burba, 2013). Scintillometry has recently overcome the difficulties 

to some extent by estimating ET over wider, heterogeneous landscapes but still relies on the 

other components of the energy balance, which are difficult to measure directly in 

heterogeneous landscapes (Perez-Priego, El-Madany et al., 2017).  

With the advent of satellite sensors and multispectral imagery of the earth’s surface, remote 

sensing has evolved as a technique that allows ET to be measured more efficiently and 

economically on a large spatial scale or field scale using the shortened energy balance 

equation (Allen, Irmak et al., 2011; Nouri, Beecham et al., 2013). Several models have been 

developed that include the Surface Energy Balance Index (SEBI), the Surface Energy Balance 

Algorithm for Land (SEBAL), the Mapping Evapotranspiration at high Resolution with 

Internalized Calibration (METRIC) and Surface Energy Balance System (SEBS). These 

models vary in their specific methodologies but generally use the visible, red and infrared 

bands of the earth's surface reflectance together with terrain and vegetation properties to 

determine ET, which is extrapolated between consecutive satellite overpasses using 

representative meteorological data. 

SEBI is a single-sourced energy balance model based on the difference between the dry and 

wet limits used to derive pixel-by-pixel ET from the relative evaporative fraction (Li, Tang et 

al., 2009). SEBAL uses visible, near-infrared and thermal-infrared reflectances to determine 

the instantaneous fluxes of the shortened energy balance equation (Jovanovic and Israel, 

2012). The SEBS model estimates the atmospheric turbulent fluxes and evaporative fraction 

through satellite earth observation and meteorological data (Su, 2002). The SEBS model 

requires three sets of data to run (Su, 2002); the first set consists of the land surface albedo, 

emissivity, temperature, fractional vegetation coverage, leaf area index and the height of the 

vegetation cover. The second set includes the air pressure, temperature, relative humidity and 

wind speed at a reference height. The third is longwave and shortwave downward radiation. 

These parameters can be derived by direct measurement, modelling, or parameterization. 

These input data for the model are incorporated into three-sub models to determine the 

components needed for the shortened energy balance, the stability factors and the roughness 
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length of heat transfer. The sub-models are then used to estimate the evaporative fraction, 

which is assumed constant for the entire day, as with the other models. 

The METRIC algorithm is a successor of the SEBAL model, but with slope and aspect 

influences included (Allen, Tasumi et al., 2007; Gokool, Chetty et al., 2016). The algorithm 

uses weather data (air temperature, wind speed, solar radiation, and relative humidity) and 

satellite radiance data at various bands as inputs for this model. Previous studies have shown 

that the METRIC algorithm produces more accurate results than any other ET model (Gibson, 

Jarmain et al., 2013; Mokhtari, Ahmad et al., 2013; Madugundu, Al-Gaadi et al., 2017). The 

algorithm is calculated as residual energy of the surface energy balance equation and 

expressed as (Allen, Tasumi et al., 2007): 

𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻  Equation 2-4 

where LE is latent energy consumed by ET, Rn is net radiation, G is the energy consumed by 

soil, and H is sensible heat flux (energy consumed in heating of air (all units are in W/m2) 

Initially, the METRIC model was developed using Landsat satellite imageries, but the advent 

of high-resolution UAV imagery has the potential to further improve the accuracy of ET 

estimation (Thorp, Thompson et al., 2018). The METRIC-UAV approach uses the thermal 

band sensed directly from the UAV’s multispectral camera. The thermal band is used to 

calculate surface energy balance, and the thermal information is used to estimate sensible 

heat flux (H), soil heat flux (G), and net radiation (Rn). Rn uses surface temperature to estimate 

longwave thermal emission by the surface. The approach uses high-resolution UAV images 

and is the same METRIC model developed by Allen et al (Allen, Tasumi et al., 2007). 

High-resolution UAVs are best positioned for estimating more accurate ET as they are 

equipped with sensors that provide multispectral reflectance of the earth’s surface as a 

substitute for satellite data (Thorp, Thompson et al., 2018). Many problems associated with 

satellite data used for ET models, such as course resolution, fixed satellite overpass times 

and cloud cover, are addressed using UAVs. ET changes rapidly according to microclimatic 

variables and soil water availability. The benefit of being able to determine ET at variables, or 

when required, intervals, using UAVs is a significant benefit over satellites, and it is potential 

for UAVs to become useful tools in monitoring crop water use (Elarab, Torres-Rua et al., 2015; 

Thorp, Thompson et al., 2018). 

2.3.5 Use of UAVs in estimating crop water productivity 

UAVs are transforming the agriculture sector by providing more accurate and precise data that 

was not readily available before. UAVs show their worth by providing the previously 

unavailable spatially explicit information required to understand and improve crop and water 

productivity. Improvements in agricultural water management, particularly crop water 

productivity, allow the agriculture sector to share water equitably with other competing sectors. 

Water productivity (WP) is a quantitative term which refers to the relationship between the 

volume of water utilised in crop production and the amount of crop produced expressed in 

kg/m3 (Igbadun, Mahoo et al., 2006; Liu, Williams et al., 2007). Thus, crop WP is a measure 
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of output from a given agricultural system in relation to the water it consumes and is expressed 

as (Kijne, Barker et al., 2003): 

𝑊𝑃 =
Agriculture benefit

𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 
  Equation 2-5 

where the agriculture benefit is the actual harvested yield expressed in units of mass like 

kilograms (kg/m3) or monetary value (income) of that yield expressed in dollars (US$/m3) or 

nutritional value (kcal/m3). Water consumed (the denominator of Equation 2-5) refers to water 

directly consumed by crops (Mabhaudhi, Chibarabada et al., 2016). WP is critical in 

understanding food and water relations while offering a footstool for assessing water use 

efficiency and water footprint integrated into the global food trade (Liu, Williams et al., 2007). 

Thus, WP can efficiently be determined through accurate crop evapotranspiration (ETc) 

measurements. There are other methods used to estimate WP, such as the quantity of water 

supplied to a field, but all water supplied to a field is not consumed by crops in its entirety as 

part of it will always find its way into the drainage system or is evaporated (Nhamo, Mabhaudhi 

et al., 2016). Water directly consumed by crops is efficiently measured through actual or crop 

ET (ETc) (Nhamo, Mabhaudhi et al., 2016). As already alluded to, ET is a better measure of 

water consumed by crops and is measured through ETc. Crop ET is the consumption of water 

through ET, which is incorporated into a product and cannot be readily reused (Molden, Oweis 

et al., 2010). 

UAVs are important in mapping accurate agriculture fields because of their high spatial 

resolution (Figure 2-3). The exclusion of other landuses provides accurate estimates of ETc. 

UAVs could provide adequate spatial and temporal detail for estimating ET, ultimately offering 

a plausible understanding of WP (DeBell, Anderson et al., 2015). The Land Surface Heat Flux 

model and drone-measured land surface temperature (LST) at high resolution are used to 

estimate ET. A drone mounted with a thermal camera and flown on a field of heat fluxes and 

hydrology by concatenating thermal images into mosaics of Land surface temperature (LST) 

and using these as input for the Two-Source Energy Balance (TSEB) modelling scheme, 

which partitions the fluxes into soil and canopy (soil evaporation and canopy transpiration) 

(Park, Ryu et al., 2017). 

Thus, UAV imageries can build high spatial resolution ET maps of up to 1 m. More accurate 

ETc is derived from ET maps developed using data acquired by UAVs at the field scale. The 

results of UAV-derived ET are then compared with measured ET to assess the accuracy of 

the modelled ET. Existing ET datasets have presented challenges when estimating crop ET 

because of their low resolution compared to small agriculture fields. For example, the ET data 

derived from the Global Land Evaporation Amsterdam Model (GLEAM) has a spatial resolution 

of 25 km. In comparison, those derived from the MODIS 16 and Satellite Application Facility 

on Land Surface Analysis (LSA-SAF) at a spatial resolution of 1 km are too coarse for 

characterising ETc and WP in smallholder plots of about two hectares in area (Graeub, 

Chappell et al., 2016). Also, studies have shown that most of these ET datasets tend to either 

overestimate or underestimate ET (Kim, Hwang et al., 2012; Ramoelo, Majozi et al., 2014). 

 



 

19 

 

2.3.6 Use of UAVs in agriculture disaster risk reduction 

Twenty-two percent of economic damage caused by natural disasters occurs in the agriculture 

sector, often resulting in yield reductions of about 20-40% every year (FAO, 2015). Most of 

the disasters that affect agriculture are climate-induced, including hailstorms, fires caused by 

heatwaves, cyclonic floods and winds, and droughts. The impact of these disasters can be 

reduced by systematically applying disaster risk reduction practices (Jayanthi, Husak et al., 

2013). For example, UAVs could be important in assessing pre-disaster conditions, immediate 

impacts after a disaster and pots-disaster analysis. Coupled with satellite images, which do 

not depend on ground infrastructure, UAVs can be used to develop index-based weather 

insurance that targets smallholder farmers (Castillo, Boucher et al., 2016). 

The Food and Agriculture Organisation (FAO) has used drones in The Philippines to reduce 

the impacts of drought and flooding (Sylvester, 2018). UAVs mounted with multispectral 

cameras can relay information about upland agricultural risks such as landslides and erosion, 

inform agricultural communities of the risks, and reduce the impacts. As already alluded, 

remotely sensed data from drones is important in estimating crop yield to precisely warn about 

the food situation (Singha and Swain, 2016). Such advanced information provides enough 

lead time for decision-makers to prepare. 

 

2.4 Recommendations 

The following recommendations are suggested based on the advantages of adopting drone 

use, particularly by smallholder farmers. Using drones can increase agricultural production, 

improve crop water productivity and build resilience. 

▪ The use of UAVs in smallholder agriculture could offer detailed and spatially 

explicit information to smallholder farmers by availing information on local 

variations of cropland characteristics and facilitating on-field decisions such as 

when to apply chemicals and irrigate, bringing precision agriculture to 

disadvantaged farming communities. Furthermore, UAVs-derived remotely 

sensed data could potentially be used together with freely available satellite 

remotely sensed data for designing robust methods of characterising croplands 

(Mutanga, Dube et al., 2017). 

▪ As individual ownership of UAVs by smallholder farmers could be beyond the 

reach of many because of limited financial resources, communal ownership could 

be an option, particularly for irrigation schemes. The operation of the UAVs can 

be done through an extension officer who could be trained to operate the UAVs 

and pass on the information to the smallholder farmers. 

▪ The availability of multispectral UAV images enhances the development of high-

resolution ET datasets. Existing satellite-derived ET datasets, such as GLEAM 

and MOD16, have coarse resolutions of more than 25 km and 1 km, respectively, 

which is not suitable for use in smallholder farming areas, which have an average 
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land tenure of about 2 ha (Cousins 2010, Nhamo; van Dijk et al., 2018). UAVs' 

user-defined spatial and temporal resolution offers significant benefits over 

satellites when estimating ET. 

▪ Multispectral UAVs are poised to revolutionise smallholder agriculture by tackling 

agricultural challenges and other tasks collectively, thereby bringing precision 

agriculture to previously disadvantaged farming households. Using UAVs in 

smallholder agriculture is an opportunity to empower women and the youth as they 

dominate the smallholder agriculture sector. 

▪ The operational flexibility of UAVs, their high efficiency and image quality, as well 

as high economic benefits and returns, make their application in agriculture not 

only conducive to resource conservation and environmental application but also 

very useful in agricultural applications for increasing crop yield and improving crop 

water productivity (Di Gennaro, Rizza et al., 2018; Simic Milas, Sousa et al., 2018). 

Increasing crop yield and improving crop water productivity are key factors to 

ensure food and water security in a drying environment and increasing demand 

from a growing global population. 

▪ With limited land for agricultural expansion and water resources, UAVs can turn 

smallholder farms that currently lack technology into smart farmlands by 

inspecting crops and generating data within a short space of time and at low costs, 

and surveying fields in near real-time to enable the precise application of inputs 

and irrigation scheduling (Wang, Lan et al., 2019). Three niche areas for UAV 

applications that allow converting farms into small but effective smart enterprises 

include: scouting for problems, monitoring to prevent yield losses, and planning 

crop management operations (Hunt Jr and Daughtry, 2017). 

▪ The impact of extreme weather events on smallholder agriculture demands urgent 

insurance mechanisms to enhance resilience to climate change. The high 

accuracy of UAV imageries and user-defined temporal resolution suits them to 

develop precise index-based crop insurance for the benefit of smallholder farmers 

and insurers. 

Some disadvantages of using UAVs include (i) the limited time and flight range which is a big 

disadvantage for large farms, (ii) High-end agricultural UAVs are usually costly for individual 

ownership, (iii) UAV use is highly controlled in most countries; and most cases need to be 

registered, (iv) UAV are weather dependant as they cannot be used during windy or rainy 

days, and (v) they require certain skills to operate them and use the imagery for any productive 

means (Hunt Jr and Daughtry, 2017). 

 

2.5 Conclusions 

Unmanned aerial vehicles have become important smallholder farming and agricultural water 

management tools. They are a source of high-resolution images acquired at user-defined 

temporal resolution at low altitudes, sufficient to effectively monitor crops in near real-time. 
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However, a lack of resources and skills to acquire and operate UAVs has limited their use in 

smallholder farming. This review recommends communal ownership of UAVs by smallholder 

farmers to reduce operational costs, as they have the potential to improve agriculture and 

water productivity. UAV remote sensing can transform smallholder agriculture by improving 

the mapping of small croplands, assessing crop water-nutrient deficiencies, improving crop 

water productivity and yield estimation, and improving crop evapotranspiration estimation with 

high accuracy. Applications of UAVs in smallholder agriculture could significantly improve 

input efficiency, environmental sustainability, and nutrition of farmers, as well as farm income 

and livelihoods. Although UAVs have the disadvantage of low coverage, this could be an 

important attribute for smallholder farmers as they can monitor the state of individual crops in 

real-time and act before the damage can spread, which is an effective way to maximise crop 

yield and quality. Water stress indices are not only important for irrigation scheduling, but they 

are also important for drought assessment and mitigation. As a result, water stress indices 

(CWSI and WDI) provide a better option for agricultural water management and climate 

change adaptation. The application of UAVs in smallholder agriculture would advance the 

importance of remote sensing in previously disadvantaged smallholder farmers by providing 

high-resolution images at the user-defined temporal resolution and by automating data 

collection, processing and analysis at low cost. This improves mapping accuracy, stress 

classification, irrigation scheduling and yield prediction for small croplands. UAVs are fast 

becoming key components of agriculture research and industry by being an important source 

of information of previously unavailable agro-meteorological data at the field scale. They are 

improving smallholder farmers' farming practices and, in the long term, could contribute to 

climate change adaptation and building resilience. 
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3 DEVELOPMENT OF HIGH-RESOLUTION MAPS OF AGRICULTURAL 

FIELD BOUNDARIES. 

 

Gokool S, Brewer K, Naiken V, Clulow A, Sibanda M and Mabhaudhi T  

 

3.1 Introduction 

The rapid expansion of the human population coupled with the impacts of climate and land-

use land-cover (LULC) changes are significant factors presently contributing to global food 

insecurity (Hall, Dawson et al., 2017). Since this situation is projected to progressively worsen 

in the future, improving food security with a focus on providing nutritious food that is produced 

in an environmentally sustainable manner is high on the political agenda of governments 

worldwide (Gomez y Paloma, Riesgo et al., 2020). Fan and Rue (2020) state that agricultural 

practices must undergo a major overhaul over the next few decades to meet the targets above.  

Smallholder farms which are typically less than 2 hectares in size, contribute an inordinate 

amount to food production relative to the area they occupy and, therefore, can play a pivotal 

role in tackling food security challenges (Wolfenson, 2013; Lowder, Skoet et al., 2014; 

Kamara, Conteh et al., 2019; Kpienbaareh, Sun et al., 2021). In many developing countries 

worldwide, smallholder farms are not only major contributors to agricultural production and 

food security but are also one of the main drivers of socio-economic growth (Kamara, Conteh 

et al., 2019). Despite their relative importance, smallholder farms generally lack the resources 

of their larger-scale commercial counterparts. Subsequently, their agricultural productivity 

potential is often not realized, resulting in these farms not effectively contributing to addressing 

food security and socio-economic challenges (Department of Agriculture and Fisheries, 2012; 

Kamara, Conteh et al., 2019; Nhamo, Magidi et al., 2020). To remedy this situation, 

smallholder farmers in developing countries require innovative, evidence-based, and low-cost 

solutions that can assist them in optimizing their productivity (Agidew and Singh, 2017; 

Nhamo, Magidi et al., 2020).  

Several studies have demonstrated the potential of using remote sensing technologies for 

agricultural applications. However, these applications typically use satellite-earth observation 

or manned aerial vehicles (Manfreda, McCabe et al., 2018). Satellite-earth observation 

datasets and associated products can provide information at various spatial, spectral and 

temporal resolutions. However, their application in smallholder farm settings is limited. The 

spatial resolution of open-access datasets or products is too coarse to capture the spatial 

heterogeneity generally found within smallholder farms. Whereas more advanced satellite-

earth observation systems and manned-aerial vehicles, which can capture data at finer spatial 

resolutions (metre to sub-metre spatial resolution), are often too costly for widespread 

smallholder agricultural applications (Cucho-Padin, Loayza et al., 2020).  

Furthermore, satellite revisits and repeat cycles coupled with the influence of cloud cover 

reduce the frequency at which data can be captured and processed (Manfreda, McCabe  
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et al., 2018; Nhamo, Magidi et al., 2020). Recently, precision agricultural practices facilitated 

by unmanned aerial vehicles (UAVs) have gained traction in the agricultural sector (Cucho-

Padin, Loayza et al., 2020; Radoglou-Grammatikis, Sarigiannidis et al., 2020; Delavarpour, 

Koparan et al., 2021). UAVs have been shown to hold vast potential for agricultural 

applications, as relatively low-flying UAVs can potentially capture very-high spatial resolution 

data at various spectral resolutions (depending on the optical properties of the onboard 

camera). Moreover, data can be captured at user-determined intervals with this data being 

less severely impacted by the effects of cloud cover, thus allowing for data to be captured 

more frequently than satellite-based approaches (Torres-Sánchez, Peña et al., 2014; 

Manfreda, McCabe et al., 2018; Bennett, Younes et al., 2020; Cucho-Padin, Loayza et al., 

2020).  

The features mentioned above and the relatively lower costs of UAVs have seen them emerge 

as a promising tool for smallholder agricultural applications (Salamí, Barrado et al., 2014, 

Cucho-Padin, Loayza et al., 2020). While there is a great deal of potential in using UAVs for 

smallholder agricultural applications, processing UAV data to derive meaningful outputs can 

prove challenging. UAV data processing can be computationally intensive and may require 

expensive specialised software and user expertise, which are not always readily available 

(Bennett, Younes et al., 2020). Advancements in geospatial cloud computing platforms such 

as Google Earth Engine (GEE) have provided a means to address these limitations by 

providing users with inter-alia high-level computational power and sophisticated image 

analysis techniques (Gorelick, Hancher et al., 2017).  

According to Bennett, Younes et al. (2020), with the increased use of UAVs for various 

applications and the growing popularity of utilizing cloud-based computing platforms for image 

analysis, it is important to develop reproducible and adaptable techniques that can be easily 

shared to facilitate more efficient analysis of UAV imagery for future applications. To this end, 

in this study, we aim to explore and demonstrate the utility of using GEE and multi-spectral 

UAV imagery to map LULC within smallholder rural farms situated within the KwaZulu-Natal 

(KZN) province of South Africa. The ability to accurately map the location and spatial 

distribution of crops and monitor their growth over time plays a pivotal role in agricultural 

management (Nhamo, Magidi et al., 2020). 

Quantifying spatio-temporal LULC dynamics within smallholder farms can play an important 

role in more effectively managing resources and enhancing the productivity of these farms, as 

changes in agricultural crop types, management practices, climatic influences, water use, 

efficiency, and vegetation health can be assessed in near-real time which can allow for quick 

and decisive management actions to be taken (Ketema, Wei et al., 2020; Kpienbaareh, Sun 

et al., 2021).  
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3.2 Materials and Methods 

3.2.1 Study site description 

The study site is located within Ward 8 of the rural community of Swayimane, which forms part 

of the uMshwati municipality situated within the KwaZulu-Natal province of South Africa 

(Figure 3.1). Swayimane is approximately 880 m.a.s.l and covers a geographic extent of 32 

km2. A generally warm climate with cooler, dry winters and warm wet summers is experienced 

within the study area (Lembede, 2017; Lucas, 2018). Mean annual precipitation ranges 

between 500 and 800 mm, with most rainfall received during the summer months as high-

intensity thundershowers (Basdew, Jiri et al., 2017). Mean annual temperatures range 

between 11.80 and 24.0°C.  

The community of Swayimane are largely dependent on subsistence farming to support their 

livelihoods. Farming consists of cropping and animal husbandry, with crops dominating the 

agricultural system, while animals are primarily used for land preparation. Farmers grow 

various crops with the most common including maize, amadumbe (taro), sugarcane and sweet 

potato. Although the study area is characterised by good rainfall and deep soils, these soils 

are depleted in some mineral elements essential to good and sustained crop production. 

Further compounding this situation is the influence of short-term droughts on crop 

performance. Due to the projected increases in the frequency of extreme events, threats to 

food security and livelihoods are an ever-present challenge that surrounding communities 

face.  
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Figure 3-1: Location of the study site within the KwaZulu-Natal province of South Africa 

Considering the socio-economic circumstances of this community in concert with the 

biophysical factors which influence crop production, this study site provides the ideal 

opportunity to demonstrate how the use of UAVs can be utilized to provide a relatively cost-

effective approach to provide spatially explicit information in near-real time, which can then be 

used to inform and guide operational decision making at a localised level to enhance crop 

production and mitigate the risk of crop failure in the future.  
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3.2.2 Data acquisition and processing 

The image for the study area was collected using a consumer-grade DJI Matrice 300 (M-300) 

UAV fitted with a Micasense Altum multispectral sensor and Downwelling Light Sensor 2  

(DLS-2). The Altum imaging sensor captures data in the electromagnetic spectrum's blue, 

green, red, red-edge and near infra-red regions (https://micasense.com/altum/). The Altum 

imaging sensor was configured to capture images with a 75% overlap across the study area. 

The study area boundary was digitised within Google Earth and saved as a “kml” file which 

was then imported into the DJI smart controller that had been connected to the internet 

following the creation of a DJI user account. The “kml file” was used to design an optimal flight 

path to acquire images covering the entire study area.  

The DJI Matrice 300 was configured to fly at an altitude of 100 m, sufficient to capture data at 

a 0.07 m pixel resolution for the entire study area. Light intensity changes during the day were 

accounted for through calibration before and after each flight mission using the MicaSense 

Altum calibrated reflectance panel (CRP). All captured images were then pre-processed using 

Pix4d software before further analysis. The UAV image pre-processing involved performing 

radiometric corrections and mosaicking the multiple images captured during the flight into a 

single orthomosaic. 

The orthomosaic image was then uploaded and imported into GEE for further processing. 

Training data for the image classification was acquired through visual inspection of the ortho-

mosaiced UAV image captured on the 28th of April 2021. Five broad LULCs were identified, 

and training data was collected by identifying pixels containing one of these classes (Table  

3-1). A total of 150 points were captured for each class, with 70% of this data being randomly 

selected for the training of the classification algorithm and the remaining 30% being reserved 

for validation of the classification accuracy. 

Table 3-1: A description of the LULC classes identified and categorized for mapping. 

Broad LULC class LULC present in each Broad LULC 

1. Buildings and 

Infrastructure 
Buildings, roads, water tanks and solar panels 

2. Bareground Bare soil, harvested crops, dirt roads 

3. Crops 
Maize, sugarcane, amadumbe, sweet potato and 

butternut 

4. Grassland Grassland 

5. Trees and Shrubs Intermediate and tall trees or shrubs 

All the spectral bands captured by the UAV on-board sensor, as well as nine indices (NDVI, 

greenNDVI, Red-edge NDVI, EVI, SAVI, Simple Blue and Red-edge Ratio, Simple NIR and 

Red-edge Ratio, Simple NIR ratio and Green chlorophyll index) for each of the training and 

validation points, were extracted and used as covariates to train the classification algorithm 

(Midekisa et al., 2017). To model and predict the five broad LULC, some of the commonly 

used machine learning classification algorithms i) Classification and Regression Tree (CART), 

ii) Support Vector Machine (SVM), iii) Random Forest (RF) and iv) Gradient Tree Boost (GTB) 

https://micasense.com/altum/
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available in GEE were deployed. Accuracy assessments (Overall accuracy, User accuracy, 

Producer accuracy, kappa coefficient) were then performed for each classifier using the 

training and validation datasets. The best-performing classifier was then selected to classify 

the image by combining the training and validation data into a single dataset (Shelestov, 

Lavreniuk et al., 2017).  

Once the best-performing classifier had been established and applied to the original image 

(0.07 m), the spatial resolution of the image was resampled in GEE using bilinear interpolation 

to produce lower-resolution images (0.50, 1.00 and 2.00 m). The classification process was 

then repeated using the best-performing classifier and these images to identify the optimal 

resolution (C1) for mapping LULC within the study area (Zhao et al., 2019). An additional 

feature of GEE is the ability to utilize certain classifiers to perform probabilistic classifications 

to determine the likelihood of a pixel belonging to a particular LULC class (Rebelo, Gokool et 

al., 2021). Considering the availability of this feature and ease of application within GEE, we 

also performed a probabilistic classification (C2) using the RF classifier and optimal spatial 

resolution image to distinguish agriculture from all other classes.  

The C2 classification provides less detail regarding the various LULC classes in the study area 

and is therefore limited in its potential applications (Rebelo, Gokool et al., 2021). However, 

distinguishing crops from other LULC classes can be quite useful, particularly when there is 

limited knowledge of the variety of classes present. To perform the C2 classification, the 

previously collected training data points were divided into two classes, i.e. crops and other 

(including all other LULC classes). These were then used to train the classification algorithm 

to determine the probability of a pixel being a crop within the optimal spatial resolution UAV 

image. Following the UAV image classification, pixels with a greater than 50% probability of 

being a crop were identified and used to separate crops from other LULC classes. A 

conceptual representation of the entire methodological process is provided in Figure 3 2 to 

better understand how the proposed methodology was executed. 
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Figure 3-2: A conceptual representation of the process followed to develop and test the LULC 

classification model. 

 

3.3 Results 

3.3.1 Identifying the best-performing classifier for the original UAV image 

The best-performing classification algorithm was the GTB classifier, marginally outperforming 

the RF classifier. The LULC classification using the GTB model achieved an overall accuracy 

(OA) of 87%, as shown in Table 3-2. The average class-specific producer (PA) and user (UA) 

accuracies for the GTB classification were 87.40% (± 8.35) and 87.00% (± 9.03). The 

buildings, infrastructure, and bareground classes were most accurately predicted within the 

GTB classification, whereas crops were the least accurately predicted. 
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Table 3-2: Classification accuracies for the original spatial resolution (0.07 m) based on 

various classification algorithms available in GEE.  

Accuracy Assessment 

 CART SVM RF GTB 

Overall Accuracy (%) 80.00 82.00 87.00 87.00 

Kappa Coefficient 0.75 0.77 0.84 0.84 

 
PA (%) UA (%) 

PA 

(%) UA (%) 

PA 

(%) UA (%) 

PA 

(%) UA (%) 

Buildings and Infrastructure 92.00 90.00 92.00 98.00 92.00 98.00 96.00 96.00 

Bare ground 94.00 94.00 100.00 91.00 98.00 90.00 96.00 96.00 

Crops 68.00 71.00 60.00 83.00 80.00 83.00 78.00 85.00 

Grassland 74.00 65.00 95.00 59.00 80.00 77.00 86.00 75.00 

Trees & Shrubs 69.00 75.00 67.00 82.00 83.00 83.00 81.00 83.00 

GTB Confusion Matrix 

 
Buildings 

and 

Infrastructure 

Bare ground Crops Grassland 
Trees & 

Shrubs 
UA (%) 

Buildings and 

Infrastructure 46 2 0 0 0 96.00 

Bare ground 1 48 0 0 1 96.00 

Crops 0 0 39 1 6 85.00 

Grassland 1 0 7 30 2 75.00 

Trees & Shrubs 0 0 4 4 39 83.00 

PA (%) 96.00 96.00 78.00 86.00 81.00  

OA (%) 87.00      

Random Accuracy (%) 20.00      

Kappa coefficient 0.84      

 

3.3.2 Comparison of the best-performing classifiers at different spatial resolutions 

The classification results for each of the different spatial resolution UAV images that were 

classified using the GTB classification algorithm are shown in Table 3-2 and Figure 3-3. The 

overall classification accuracy and kappa coefficient for each of these classifications were 

relatively high. However, the highest level of accuracy was achieved using a spatial resolution 

of 1.00 m (C1), whereas the lowest classification accuracy was obtained at a spatial resolution 

of 5.00 m.  

The C1 classification achieved an OA of 95%, with an average PA and UA of 95.20%. 

Buildings and infrastructure were most accurately predicted within the C1 classification, 

whereas crops were least accurately predicted. Since the 1.00 m spatial resolution UAV image 

was identified as the optimal resolution for mapping LULC within the study area, this image 

was then used to perform the C2 classification (Figure 3-4). 
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Table 3-3: Classification accuracies for the UAV images at differing spatial resolutions 

classified using the GTB classification algorithm.  

Accuracy Assessment 

Spatial resolution 0.07 m 0.50 m 1.00 m 5.00 m 

OA (%) 87.00 90.00 95.00 84.00 

Kappa Coefficient 0.84 0.87 0.94 0.80 

 
PA (%) UA (%) 

PA 

(%) UA (%) 

PA 

(%) UA (%) 

PA 

(%) UA (%) 

Buildings and Infrastructure 96.00 96.00 100.00 98.00 100.00 98.00 89.00 88.00 

Bare ground 96.00 96.00 98.00 100.00 98.00 98.00 68.00 89.00 

Crops 78.00 85.00 78.00 82.00 90.00 94.00 96.00 80.00 

Grassland 86.00 75.00 86.00 84.00 96.00 94.00 91.00 80.00 

Trees & Shrubs 81.00 83.00 87.00 85.00 92.00 92.00 80.00 84.00 

GTB Confusion Matrix for 1.00 m spatial resolution UAV image 

 
Buildings 

and 

Infrastructure 

Bare ground Crops Grassland 
Trees & 

Shrubs 
UA (%) 

Buildings and 

Infrastructure 43 1 0 0 0 98.00 

Bare ground 0 42 0 0 1 98.00 

Crops 0 0 46 1 2 94.00 

Grassland 0 0 2 46 1 94.00 

Trees & Shrubs 0 0 3 1 44 92.00 

PA (%) 100.00 98.00 90.00 96.00 92.00  

OA (%) 95.00      

Random Accuracy (%) 20.00      

Kappa coefficient 0.94      

 

3.3.3 Comparison of optimal spatial resolution classification against publicly 

available LULC maps for the region 

The C1 and C2 classification results were compared against the 2020 ESRI and 2020 South 

African National Landcover (SANLC) maps, among the most recent (moderate spatial 

resolution) publicly available LULC maps for the region. Comparisons between the C1 

classification and these maps (Figure 3-5) showed differences in the total number of LULC 

classes that are mapped and the area which they occupy within the study area. Focusing 

specifically on crops, the total area classified as crops for classifications C1 (0.03 km2) and 

C2 (0.02 km2) was relatively similar, occupying approximately 30 and 20% of the study area, 

respectively.  

Whereas the total area classified as crops within the 2020 ESRI (0.08 km2) and 2020 South 

African National Landcover (0.07 km2) datasets is relatively similar and more than two-fold 

larger than the area classified as crops for classifications C1 and C2. 
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Figure 3-3: A comparison of the classification results for the study area at different spatial 

resolutions. 

 

 
Figure 3-4: Results of the C2 classification used to distinguish crops from other LULC classes 

within the study area. 
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Figure 3-5: A comparison of the C1 classification for the study area against the  

2020 ESRI and South African National Landcover map. 

 

3.4 Discussion 

The machine learning algorithms available within GEE performed relatively well at mapping 

LULC within the study area. However, it should be noted that the training and evaluation of 

these algorithms were performed using a limited sample size that was collected entirely from 

visual inspection of the UAV True colour image. The collection of training data from visual 

inspection of the UAV image does promote ease of application and expedites the classification 

process. However, this may have contributed to misclassification, as some of the data points 

may have been incorrectly identified or may not have adequately represented the unique 

spectral properties for each mapped class.  

Subsequently, it is recommended that the sample size is increased and ground truth data be 

included in the training and evaluation process where possible so that a more accurate and 

objective assessment of the performance of these classification algorithms can be 

ascertained. Comparisons between the various classification algorithms showed that the 
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ensemble machine learning algorithms (RF and GTB) performed the best. This occurrence 

may have been due to the ability of these ensemble-machine learning methods to combine 

several predictive models to create a single model that can improve predictive performance 

by decreasing variance as well as bias and producing a model with greater accuracy than the 

single machine learning models (Abdi, 2020).  

Although the RF and GTB models performed better than the SVM and CART models, the 

accuracies presented here may not represent the maximum possible. These values will largely 

be influenced by the user-specified parameter choices for each algorithm (Abdi, 2020). While 

it was not within the scope of this study, Abdi (2020) recommends that an unbiased evaluation 

of each algorithm’s performance is undertaken through an equally robust hyper-parameter 

selection where possible so as not to introduce bias into the model’s performance. During this 

process, these algorithms should be evaluated with respect to their overall accuracy and ability 

to adequately represent each LULC class (Abdi, 2020).  

The classification accuracy of all LULC classes was generally greater than 75% across the 

different spatial resolution UAV images classified using the GTB classification model. The 

major source of inaccuracy in these classifications was the confusion between Crops, 

Grasslands and Trees and Shrubs. The confusion in this instance was largely unidirectional 

as a greater proportion of Crops were misclassified as either Grassland or Trees and Shrubs. 

This confusion may be a combined consequence of the training data used during the 

classification process and the relatively low spectral resolution of the UAV on-board sensor, 

making it difficult to distinguish between certain spectrally similar (Böhler, Schaepman et al., 

2018).  

Using higher spectral resolution data may allow for the unique spectral characteristics of the 

various LULC classes to be more adequately represented. Furthermore, this may also present 

an opportunity to map LULC within the study area in greater detail than the broad LULC 

classes mapped in this study. This, in turn, may allow the resultant landcover map to apply to 

a wider range of applications.  

Although the acquisition and use of higher spectral resolution imaging sensors may help 

address the spectral resolution limitations of this study, this is generally accompanied by 

higher costs. The fusion of high spatial resolution UAV imagery with freely available higher 

spectral resolution satellite imagery does present an alternate and more pragmatic approach 

to potentially address the challenges above. However, further testing is advocated before 

these are readily implemented (Adão, Hruška et al., 2017; Böhler, Schaepman et al., 2018). 

Despite the misclassification errors observed, the classification accuracy of crops for the 1.00 

and 5.00 m spatial resolution UAV images was greater than the 85% target accuracy specified 

by (McNairn, Champagne et al., 2009). The classified 1.00 m spatial resolution image 

produced the highest classification accuracies overall and for individual classes. While this 

image was not the highest spatial resolution image that could be used for the mapping of 

LULC within the study area, this spatial resolution was still unrivalled in its ability to capture 

the spatial heterogeneity within the study area when compared against the publicly available 

LULC maps for the region (Figure 3-5).  
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The results of the comparisons between the classification accuracies for the different spatial 

resolution UAV images that were classified were consistent with the findings of Zhao et al. 

(2019). They showed that using a higher spatial resolution image does not necessarily 

translate into improved classification accuracy. While the 1.00 m spatial resolution image 

produced the highest overall and individual class accuracies, this spatial resolution should not 

be viewed as a generalized optimal spatial resolution as this may vary for specific LULC 

classes or agricultural applications (Zhao, 2019). Instead, this spatial resolution can be used 

as a reference point for selecting an optimal resolution for future UAV-based applications 

within the study area.  

 

3.5 Conclusions 

Smallholder farms are major contributors to agricultural production, food security and socio-

economic growth in many developing countries worldwide. However, these farms generally 

lack the resources to maximize their agricultural potential. They cannot effectively contribute 

to addressing the food security and socio-economic challenges that many of these regions 

face.  

Recently, UAVs have been gaining traction in the agricultural sector. With the emergence of 

geospatial cloud computing platforms, there are now greater opportunities for many 

smallholder farmers in developing nations worldwide to integrate technological advances into 

their agricultural practices to optimize their productivity. The synergistic application of these 

technologies offers the opportunity to develop bespoke, innovative, low-cost solutions that can 

facilitate improved agricultural management within smallholder farms.  

Considering these developments, in this study, we aimed to demonstrate how GEE can be 

leveraged to maximize the potential of UAVs for mapping LULC in smallholder farms, with a 

specific focus on cultivated areas. The results of these investigations demonstrated that LULC 

could be mapped accurately using UAV imagery and GEE’s image classification procedures. 

Furthermore, the UAV-derived LULC map outperforms the region's publicly available 

landcover maps in capturing the spatial heterogeneity within the study area. While these 

investigations could have benefited from the availability of more training data or higher spectral 

resolution data, the overall results were quite promising. They can serve as a foundation for 

the development of improved land cover maps for the study area in the future, which in turn 

can facilitate improved agricultural management.  

Notwithstanding the limitations of the study, the use of GEE is particularly useful for processing 

and analysing UAV imagery for applications such as LULC mapping, as it seamlessly tackles 

computationally intensive tasks and provides a wide range of users with a repeatable and 

flexible approach that can be easily adapted and shared for various applications. The 

availability of such approaches is particularly beneficial to data-scarce and resource-poor 

regions, as it provides users with a powerful tool to guide support and decision-making. 
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4 PREDICTING CHLOROPHYLL CONTENT OF MAIZE USING UAV-

DERIVED MULTISPECTRAL REMOTELY SENSED DATA 

 

Brewer K, Clulow A, Sibanda M, Gokool S, Naiken V and Mabhaudhi T 

 

4.1 Introduction 

Smallholder agricultural systems contribute significantly to agricultural production, livelihood 

sustenance, and socioeconomic growth in developing nations (Kamara, Conteh et al., 2019). 

Specifically, in sub-Saharan Africa, smallholder farming practices are threatened by a decline 

in productivity and profitability due to climatic variability's recent and ongoing effects (Salami, 

Kamara et al., 2010; Vanlauwe, Coyne et al., 2014; Adisa, Botai et al., 2018). Maize (Zea 

mays L.) is one of the staple grain crops grown in South Africa and is extensively cultivated at 

a subsistence scale for household economic gain, food security, and feedlots (Tefera, 

Kanampiu et al., 2011; Adisa, Botai et al., 2018). Smallholder farmers typically cultivate maize 

under rainfed conditions to maximize production and produce healthy crop yields. Despite the 

goals of smallholder farmers to optimize yields, small-scale farming systems often face various 

challenges (Unganai and Murwira 2010; Adisa, Botai et al., 2018). Their dependence on 

rainfall poses a significant threat to crop yields, as reduced seasonal rainfall and severe 

weather impact the overall crop health, biochemical processes, and physical development of 

crops (Muzari, Gatsi et al., 2012; Okonya, Syndikus et al., 2013). Smallholder farms also lack 

the resources required to maximize their potential and are often faced with low unproductive 

yields significantly lower than the potential of the land (Walker and Schulze, 2006). Hence, it 

is imperative to provide smallholder farmers with innovative, effective, low-cost solutions to 

assist them in optimizing their productivity to produce increased and healthy yields (Shi, 

Thomasson et al., 2016; Nhamo, Magidi et al., 2020). Therefore, a deeper understanding of 

crop dynamics could assist smallholder farmers in identifying crop health issues at an early 

stage, allowing them to implement the necessary remedial solutions to ensure productivity. 

Literature has documented various indicators of crop health (Whitford, De Soyza et al., 1998; 

Nicholls, Altieri et al., 2004; Hernández-Clemente, Hornero et al., 2019); however, chlorophyll 

content has been identified as one of the most important and reliable health and productivity 

indicators (Flynn, Frazier et al., 2020). This is due to the biophysical pigment in the leaves and 

biochemical photosynthetic processes that suggest plant productivity (Terashima, Fujita et al., 

2009, Tahir, Naqvi et al., 2018). Hence, monitoring its concentration and variability in plants 

could aid in evaluating crop productivity through time (Zhang, He et al., 2019), which is 

significant towards detecting subtle crop changes and optimizing healthy yields in smallholder 

farming practices (Afzal and Mousavi 2008; Li, Liu et al., 2015).  

Advanced and objective tools such as remote sensing have been utilized for estimating and 

monitoring agricultural vegetative health and productivity for several years (Pinter Jr, Hatfield 

et al., 2003; Wu, Meng et al., 2014). For example, Sibanda, Mutanga et al. (2020) estimated 

the foliar chlorophyll content of grasses using field-based hyperspectral data, Delegido, 
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Verrelst et al. (2011) estimated the chlorophyll content of multiple crops using Sentinel-2 red-

edge bands, and Kooistra and Clevers (2016) estimated the chlorophyll content in potato 

leaves using vegetation indices derived from RapidEye satellite imagery. Such studies have 

illustrated remote sensing as a powerful tool in characterizing chlorophyll concentrations in 

different vegetation. Thus, at a farm scale, it may be useful to use chlorophyll as a proxy for 

crop health and productivity (Kanning, Kühling et al., 2018).  

Remote sensing techniques obtain the potential to monitor crop productivity and map its 

spatial distribution based on high-resolution images of varied wavelengths (Miao, Mulla et al., 

2009; Duveiller, López-Lozano et al., 2013; Nhamo, Magidi et al., 2020). Conventional 

applications of earth observation techniques use satellite-borne earth observation or manned 

aerial vehicles (Nhamo, van Dijk et al., 2018; Berra and Peppa, 2020). However, a major 

constraint of freely available satellite-borne data is its inability to fulfil the ever-increasing need 

for high spatial and temporal resolution data, which is necessary for monitoring small-scale 

crop properties throughout phenotyping (Psirofonia, Samaritakis et al., 2017). Moreover, 

manned aerial vehicles can overcome the issues of spatio-temporal resolution, but the 

associated costs are a major limitation to smallholder farms.  

In recent years, unmanned aerial vehicles (UAVs) have been globally recognized as 

innovative, low-cost, and effective precision technology for agricultural applications. UAVs 

offer state-of-the-art image data throughput analytics at very high resolutions (VHR) and have 

proven to be effective in overcoming the limitations of satellite imagery (Maes and Steppe, 

2019; Nhamo, Magidi et al., 2020). UAVs have great potential in small-scale agriculture as the 

low-flying altitudes capture VHR spatial and spectral data. High-resolution images are 

acquired by multispectral cameras mounted onboard UAVs, which offer near real-time data 

critical for monitoring subtle shifts in crop phenology and vigour. Moreover, UAVs can be 

deployed frequently at user-determined ground sampling distances and revisit times, 

impossible with conventional freely accessible satellite-borne sensors such as Landsat 8 

Operational Land Imager or Sentinel 2 Multispectral Instrument (Xiang and Tian, 2011). Thus, 

VHR UAV imagery can detect individual maize plants, canopy patches and, ultimately, 

phenological growth patterns over the fragmented smallholder fields. Therefore, accurate 

mapping and analysis of smallholder maize fields using a VHR UAV hold significant potential 

for providing data that could inform farmers on the health status of their crops through the 

phenological cycle.  

Specifically, multispectral chlorophyll data can be optimally assessed using UAV-derived 

vegetation indices (VIs) and a robust machine-learning algorithm. VIs are mathematical 

transformations of image bands used quantitatively to extract spectral properties such as 

canopy cover, plant vigour and phenological dynamics (Xue and Su, 2017; Khan, Rahimi-Eichi 

et al., 2018). The most common index used for plant health is the normalized difference 

vegetation index (NDVI), which is directly used to acquire information on the physiological 

health status of crops and crop growth changes (Boken and Shaykewich, 2002; Gitelson, Peng 

et al., 2014). Particularly, chlorophyll-specific VIs have proven to be more valuable than 

normalized VIs in some instances as they include a variety of combinations from bands which 

reflect highly in vegetation (Wu, Meng et al., 2014). Such indices include the canopy 

chlorophyll content index (CCCI) and the modified chlorophyll absorption ratio index (MCARI), 
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which have shown significant correlations to crop chlorophyll content (Haboudane, Miller et 

al., 2002; Raper and Varco, 2015). 

Furthermore, machine learning algorithms such as random forest, support vector machines 

and multiple linear regressions have proven to be instrumental in characterizing crop 

chlorophyll content and health status (Abdel-Rahman, Ahmed et al., 2013; Han, Yang et al., 

2019; Guo, Yin et al., 2020; Hassanijalilian, Igathinathane et al., 2020). The random forest 

ensemble has been widely proven to outperform the other two algorithms above (Yao, Yang 

et al., 2013; Ramos, Osco et al., 2020). Hence it is anticipated that using UAV-derived data 

(spectral bands and VIs) with the robust random forest regression could produce accurate 

results to quantitatively assess the chlorophyll content of maize as an indicator of health in 

smallholder farms. 

Thus, with maize being one of the dominant food crops grown across South Africa, it is 

necessary to assess its health in smallholder agricultural systems through a robust 

multispectral sensor. A multispectral sensor enables proximal remote sensing analysis of 

maize and can potentially predict chlorophyll content, which informs the crop's health status. 

In this regard, this study aims to investigate the potential of multispectral UAV-derived data to 

assess maize crop chlorophyll content using the random forest model simulation for an 

improved understanding of crop health and productivity in smallholder agricultural systems. 

Therefore, the objectives of the study were to (1) estimate chlorophyll content variations 

across the different maize phenological stages using UAV-derived data and (2) determine the 

optimal maize growth stage(s) for chlorophyll model prediction. 

 

4.2 Materials and Methods  

4.2.1 Study site description  

The research was conducted over four months from February 2021 to May 2021 in the rural 

area of Swayimane, KwaZulu-Natal (29°31’24’’S; 30°41’37’’ E) (Figure 4-1). Swayimane is in 

the uMshwathi Local Municipality, located approximately 55 km northeast of Pietermaritzburg. 

The small communal area covers a geographical extent of approximately 36 km2, and 

smallholder farming systems of the local community dominate land use. Common crops 

cultivated in the area include white and yellow maize, sugarcane, amadumbe (taro), and sweet 

potato. The smallholder farmers follow traditional farming methods of planting, maintenance, 

and manual harvesting of crops. Farm plots are rainfed, fertilized using livestock manure and 

hand-weeded by farmers. Alternatively, herbicide backpack sprayers are used by small 

growers to control weeds and grasses. The area is predominantly characterized by semi-

subsistence farming, which is a form of food security and livelihood sustenance. The produce 

is sold at local markets for economic benefits, which sustains farmers’ livelihoods.  

The favourable environmental conditions of the region support agriculture and crop production 

in Swayimane. The climate is characterized by warm wet summers and cool, dry winters, with 

an annual average air temperature of approximately 18°C. The mean annual rainfall ranges 

between 600 and 1200 mm, with the most rain occurring during the summer as thunderstorms. 
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During the research period, Swayimane had a maximum average air temperature of 24°C and 

total rainfall of 242.8 mm, amongst other weather data (Figure 4-2). Weather conditions were 

continuously monitored by the Automatic Weather Station installed at a Swayimane high 

school. Weather data was downloaded from the Swayimane weather website. The weather 

station is approximately 2 km from the smallholder maize farm, and as such, it is proximally 

adequate in capturing the weather conditions of the study site. The research was conducted 

on a 30 × 96 (2850 m2) smallholder maize field (Figure 4-1). The field was located on a slope 

with a ranging field elevation of approximately 850 m to 839 m.  

 

Figure 4-1: Location of the Swayimane study area, study site, and smallholder maize 

field. 
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Figure 4-2: Swayimane weather conditions throughout maize phenotyping 

 

4.2.2 Maize phenotyping 

Maize seedlings were sown on the 8th of February 2021 and harvested on the 26th of May 

2021, having a total growth cycle of 108 days (Table 4-1). Chlorophyll was examined at 

different growth stages of the maize phenological cycle. Maize growth is divided into 

vegetative stages (which range from emergence to tasseling based on the number of fully 

expanded leaves) and reproductive stages (which range from silking to physiological maturity 

based on kernel development) (Cakir, 2004;Zhao, Tong et al., 2012). Certain transitions are 

important for monitoring and informing smallholder farmers within the various stages. These 

are crop vegetative emergence (date of onset photosynthetic activity, termed VE), tasseling 

(date when maximum leaf area is recorded and maize tassels emerge, termed VT), the 

beginning of senescence (date when green leaf visibly begins to become brown-toned)  

(Table 4 1) (Du Plessis, 2003).  

It is worth mentioning that during the mid-vegetative stage, the field's western portion (lower 

elevation) appeared unhealthy. This may have been because this portion of the field was not 

weeded with the rest of the field during the early vegetative growth stage. However, the farmer 

applied herbicide during the mid-vegetative growth stage to remove grasses and weeds found 

between maize rows. Consequently, the herbicide impacted the health status of these crops 

and the maize suffered herbicide burn.  
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Table 4-1: Maize growth stages and characteristics 

Days after 

emergence 

Growth stage Description Pictures 

0 VE 

V
e

g
e

ta
ti
v
e

 G
ro

w
th

 S
ta

g
e
s
 

Germination and emergence. Planting 

depth 5-8 cm. 

 

7 V2 

21 V5 Plant population established. Growth 

point 20-25 mm below the surface. Leaf-

sheath and blades. Tassel initiation. 

 

32 V8 Ear initiation and early cob development. 

38 V10 

44 V12 Tassel, at the growth point, begins to 

develop rapidly. Active growth of lateral 

shoots and cob development from the 

sixth to the eighth node above the 

surface. Brace root development.  
 

49 V14 

 

56 VT Tasseling stage. Silks are developing. 

The demand for water and nutrients is 

high. All leaves are present. Pollination 

5-10 days. 63 R1 

R
e

p
ro

d
u

c
ti
v
e
 G

ro
w

th
 S

ta
g
e

s
 

 

70 R2-R3 Kernel development. Silking stage. 

77 

84 

91 R3-R4 Grain filling. Nutrients are transported to 

the cob.  Sugars are converted into 

starch.  

 

98 

105 

112 R5 R6 Physiological maturity and drying of 

kernels. Starch in kernels. End of mass 

gain. 

 

119 

160 R+ Ready for harvest. Optimal moisture and 

nutrients. 

 

4.2.3 Field data collection, sampling, and survey 

Field data collection was conducted throughout the maize phenological cycle. A 

meteorological tower (Figure 3a) was installed in the centre of the maize field monitoring NDVI 

through spectral reflectance sensors (SRS) (SRS sensors, Decagon Inc, Pullman, WA, USA). 

The SRS-NDVI sensors consist of a downward-facing and an upward-facing sensor. The 

upward-facing hemispherical sensor provided reference values of the sky radiance, which 
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normalized the downward-facing sensor values of maize foliar canopy irradiance. The SRS-

NDVI measured wavelengths of 630 nm (red) and 800 nm (NIR) continuously at 10-minute 

intervals and 30-minute intervals (EM50G, Decagon, Pullman, WA, USA). To calculate upward 

reflected NDVI, the two-band radiometer measurements of incident radiation within a 36° field 

of view (FOV), were used to measure the maize canopy reflected radiation (Figure 4-3). The 

SRS data was calibrated using the information from the incident red and NIR radiation 

collected by the hemispherical SRS and used to calculate a calibration constant α: 

𝛼 = 𝐼𝑟/𝐼𝑛  Equation 4-1 

where, 𝐼𝑟 is the incident red radiation (630 nm) from above and 𝐼𝑛 the incident NIR radiation 

(800 nm) from above, both obtained from the hemispherical sensor. Calibration of the values 

recorded by the Decagon sensors was then calculated: 

SRS NDVI =
𝛼𝑅𝑛−𝑅𝑟

𝛼𝑅𝑛+𝑅𝑟
     Equation 4-2 

where, 𝑅𝑛 is the reflected NIR radiation and 𝑅𝑟 the reflected red radiation (Anderson, Nilsen 

et al., 2016). 

The data collected was downloaded from the data logger to a laptop computer (ECH2O Utility, 

Decagon, Pullman, WA, USA) (Figure 4-3 (c)). The SRS-NDVI data was used to monitor maize 

NDVI values through phenotyping. Importantly, the SRS-NDVI measurements of maize were 

used in conjunction with the multispectral UAV-derived NDVI imagery to assess the accuracy 

and reliability of the UAV-derived data. Since the SRS-NDVI sensor measures the NDVI of 

maize within its FOV, the average NDVI value of the same FOV was clipped and extracted 

from the multispectral UAV image. The SRS-NDVI measurements used for comparative 

correlation were taken simultaneously as the UAV flight. Thus, the environmental variance 

was assumed to be negligible.  

 

Figure 4-3: (a) Automated in-field meteorological tower in the maize field, (b) meteorological 

tower mounted with SRS-NDVI and SRS-PRI sensors held 4-meters above the ground, (c) 

CR1000 data logger, Em50 datalogger and 12 V battery. 

At two-week intervals, in-field chlorophyll measurements of maize were collected from the 

early vegetative (V5) growth stage to the late reproductive growth stages (R6). Pre-sampling 

(a) (b) (c) 
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of the maize smallholder field was conducted in Google Earth Pro, where a polygon of the 

experimental field was digitized. The digitized polygon was then imported into ArcGIS 10.5, 

where it was used to generate sampling points. A total of 63 sample points were generated 

based on stratified random sampling within the digitized field boundary. These points were 

then uploaded into a handheld Trimble Global Positioning System (GPS) with sub-meter 

accuracy. These locations were used to navigate to each sample point for field data collection. 

The maize plants at each sampling point were marked for consistent bi-weekly measurement. 

A Konica Minolta soil plant analysis development (SPAD) 502 chlorophyll meter (Minolta 

Corporation, Ltd., Osaka, Japan) was used to measure the chlorophyll content of maize 

leaves. SPAD meter readings are portable, non-destructive measurements of the red (650 

nm) and infrared (940 nm) radiation leaf transmittance. The device instantly calculates a 

unitless SPAD value proportional to the chlorophyll concentration within the sample leaf 

(Uddling, Gelang-Alfredsson et al., 2007; Sibanda, Mutanga et al., 2020). Field measurements 

were conducted between 10:00 am and 2:00 pm, corresponding with the optimal day period 

for crop photosynthetic activity. During the early growth stages (where a six-leaf was present), 

the SPAD readings were measured on the newest fully expanded leaf with an exposed collar. 

After tasseling, the ear leaf (i.e. the leaf attached to the same node as the primary ear shank) 

was measured (Costa, Frigon et al., 2003). Readings were taken on one leaf per plant. The 

different locations of leaf measurement included: (a) the midpoint of each leaf blade, next to 

the main leaf vein, (b) approximately /3 down from the leaf tip, and (c) approximately 1/3 of 

the way down from the leaf tip. The three measurements were averaged per leaf and 

subsequently recorded. The SPAD meter was shielded from direct sunlight when conducting 

the chlorophyll readings. SPAD meter measurements were conducted simultaneously with 

UAV image acquisition. SPAD measurements were converted into chlorophyll content values 

using the equation derived by Markwell, Osterman et al. (1995) that achieved an R2 = 0.94: 

𝐶ℎ𝑙 = 10𝑴(0.265)  Equation 4-3 

Chl represents the chlorophyll per unit leaf area in µmol/m-2, and the S is the unitless SPAD 

value (Ling, Huang et al., 2011). The chlorophyll data was added to the 63-sampling points 

map in a geographical information system (GIS). The point map was overlaid with the 

multispectral UAV image of each sampling point's derived spectral reflectance values.  

4.2.4 UAV multispectral-thermal camera and platform 

The DJI Matrice 300 (DJI M-300) platform mounted with a MicaSense Altum camera and 

Downwelling Light Sensor 2 (DLS-2) was used to conduct aerial-based flights over the 

smallholder farms. The rotary-wing DJI M-300 series has vertical take-off and landing (VTOL) 

technology, making it well-suited for small-scale agricultural crop imaging (Figure 4-4 (a)). The 

DJI M-300 platform novelties include its 15 km transmission range, 7000 m maximum altitude, 

obstacle avoidance, flightpath planning and locational position tracker. The maximum flight 

time of the M-300 is 55 minutes (without payload), and it can reach a maximum speed of  

27 m/s, which surpasses most drone platforms on the market. Moreover, the MicaSense Altum 

camera is a multispectral and thermal imaging sensor that integrates five spectral high-

resolution narrow bands (blue, green, red, red-edge, near-infrared) with a radiometric 

longwave infrared thermal camera (Figure 4-4 (b)). The high-performance camera offers 
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synchronized multispectral and thermal image capture and uses a global shutter that provides 

a one-second capture rate for precise and aligned imagery (Hutton, Lipa et al., 2020). The 

multispectral bands have a sensor resolution of 2064 × 1544 at 120 m (3.2 megapixels per 

multispectral band) and a ground sample distance (GSD) of 5.2 cm per pixel at the height of 

120 m, suggesting the optimum flight altitude above the crop to receive high-resolution images 

(Table 4-2). The camera also has a 48° × 37° FOV, with an 8 mm focal length.  

 

Figure 4-4: (a) DJI Matrice 300 platform and, (b) MicaSense Altum multispectral-thermal 

camera. 

 

Table 4-2: MicaSense Altum camera specifications. 

Band Spectral colour  Band centre/range Ground sampling distance at a 

flying height of 120 m 

1 

2 

3 

4 

5 

6 

Blue 

Green 

Red 

Red-edge 

Near-infrared 

Thermal infrared 

475 nm 

560 nm  

668 nm 

717 nm 

842 nm 

8000-14 000 nm 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

81 cm per pixel 

Source : (https://micasense.com/altum/) 

 

4.2.5 Image acquisition and processing  

A shapefile of the maize field was digitized in Google Earth Pro and imported into the  

DJI M-300 smart console, which was used to design a flight plan covering the study area 

(Figure 4-5 (a)). The flight plan enabled a hands-free drone flight mission over the study field 

and adjacent areas. Before and after the flight, the UAV was calibrated using the MicaSense 

Altum calibrated reflectance panel (CRP). This included the user manually taking an unshaded 

image directly over the CRP to discern the lighting conditions of the specific flight date, time, 

and location (Figure 4-5 (b)). We conducted UAV flights every 2-weeks on selected days with 

clear sky conditions. UAV flights were conducted between 10:00 am and 12:00 pm as this is 

the time of optimal solar irradiance. This period also coincided with chlorophyll content 

measurements. Detailed flight conditions are presented in Table 4-3. 

(a) (b) 

https://micasense.com/altum/
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Figure 4-5: (a) DJI M-300 flight plan, (b) MicaSense Altum calibration reflectance panel 

 

Table 4-3: UAV flight specifications 

Parameters Specifications 

Altitude 

Ground sampling distance 

Speed 

Flight duration 

Composite images 

Image overlap 

100 meters 

7 cm 

16 m/s 

14 minutes 36 seconds 

321 

80% 

 

A total of 3576 images were stitched together and radiometrically corrected (Pix4Dfields 1.8.0, 

Pix4d Inc., San Francisco, CA, USA). The radiometric correction was conducted in Pix4Dfields 

using all the captured images, including the before and after flight CRP images. The 

radiometric calibration target (CRP) is a white balance card that provides the card's reflectance 

properties across the camera's electromagnetic spectrum wavelengths. This enabled the 

software to calibrate and correct the reflectance of the images accordingly in line with the 

prevalent atmospheric conditions during the image acquisition. The CRP also had an absolute 

reference, which obtained the absolute reflectance values and made comparing data from 

several flights possible. Once processed, a final orthomosaic and a digital elevation model 

(DEM) GeoTIFF image were generated. The orthomosaic was georeferenced in ArcGIS 10.5 

using ground reference points from Google Earth Pro. Images were referenced to the 

Universal Transverse Mercator (UTM zone 36S) projection. 

The maize reflectance data was extracted from the multispectral Altum image. This was done 

by overlaying the ground-truthed maize chlorophyll measurements and their GPS coordinates 

as a point map with the UAV multispectral image. The reflectance values were extracted for 

each coordinate and each UAV spectral band. The image was then used to compute 

vegetation indices (VIs) detailed in Table 4-4. VIs selected included various combinations of 

the multispectral bands specific to vegetation health and chlorophyll, such as the NDVI, the 

canopy chlorophyll content index (CCCI) and the red-edge chlorophyll index (CIrededge). These 

vegetation indices were derived from their performance in the research literature (Zhang and 

Zhou 2015; Naito, Ogawa et al., 2017; Xue and Su, 2017; Haghighian, Yousefi et al., 2020). 

(a) (b) 
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Table 4-4: Spectral UAV-derived vegetation indices used to predict chlorophyll 

content. 

Vegetation Index Abbreviation Equation Reference 

Normalized difference 

vegetation index 

NDVI (NIR − RED)/(NIR + RED) Xue and Su 

(2017) 

Green normalized 

difference vegetation 

index 

GNDVI NIR − GREEN

NIR + GREEN
 

 

Naito, Ogawa 

et al. (2017) 

Red-green ratio index RGR RED

GREEN
 

Qiu, Xiang et 

al. (2020) 

Normalized difference 

red-edge index 

NDRE NIR − RED EDGE

NIR + RED EDGE
 

 

Fitzgerald, 

Rodriguez et 

al. (2010) 

Corrected transformed 

vegetation index 

CTVI NDVI + 0.5

NDVI + 0.5
∗ (√NDVI + 0.5) 

Naito, Ogawa 

et al. (2017) 

Infrared percentage 

vegetation index 

IPVI 

(

NIR
NIR

+ RED

2
) ∗ (NDVI + 1) 

Haghighian, 

Yousefi et al. 

(2020) 

Soil adjusted vegetation 

index 

SAVI 
(

NIR − RED

NIR + RED + L
) ∗ (1 + L) 

L is a constant between 0 and 1. 

Xue and Su 

(2017) 

Optimized soil adjusted 

vegetation index 

OSAVI NIR − RED

NIR + RED + 0.16
 

Xue and Su 

(2017) 

Green chlorophyll index CIgreen (NIR/GREEN) −1 Zhang and 

Zhou (2015) 

Red-edge chlorophyll 

index 

CIrededge (NIR − RED EDGE) − 1 Zhang and 

Zhou (2015) 

Canopy chlorophyll 

content index 

CCCI NIR − RED EDGE

NIR + RED EDGE
/

NIR − RED

NIR + RED
 

Fitzgerald, 

Rodriguez et 

al. (2010) 

Chlorophyll vegetation 

index 

CVI 
NIR ∗ (

RED

GREEN2
) 

Vincini and 

Frazzi (2011) 

Modified chlorophyll 

absorption ratio index 

MCARI 1.5[2.5(NIR − RED) − 1.3(NIR − GREEN)]

√[(2NIR +  1)2 − (6NIR − 5√(RED)) − 0.5
 

Wu, Niu et al. 

(2008) 

 

4.2.6 Statistical analysis  

The random forest algorithm was used to predict maize chlorophyll content since it is 

renowned for its simplicity, robustness, and ability to perform well regardless of sample size 

(Dye, Mutanga et al., 2011; Luan, Zhang et al., 2020). The random forest ensemble is a 

machine learning algorithm that uses bootstrap aggregation to construct multiple trees on a 

subset of samples derived from the training data (Abdel-Rahman, Ahmed et al., 2013). 

Decision trees are grown to maximum capacity with a randomized subset of predictors (UAV-
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derived spectral data). Each node is split using random subsets of input variables (Adam, 

Mutanga et al., 2012). Furthermore, the random forest regression can identify predictor 

variables that are influential in the prediction model based on the sum of the reduction in Gini 

impurity across the feature nodes (Sibanda, Onisimo et al., 2021).  

Specifically, the RGtk2 and rattle packages in RStudio software version 1.4.1564 were used 

to develop the random forest regression model through numerical inputs. The outputs of the 

random forest model were optimized using the variable importance as they determine the most 

influential bands and VIs in prediction. Variables of low importance were removed throughout 

the analysis, and the random forest model was continuously modified for optimal prediction. 

The variable selection process reduces variable redundancy and multicollinearity issues, 

which affect the regression model's performance. The model was user-defined and fine-tuned 

to an optimal 500 trees and eight variables. These hyper-parameters were attained for 

numerous iterations.  

4.2.7 Accuracy assessment  

Accuracy assessments were performed to evaluate the predicted chlorophyll regression 

models. The accuracy metrics used were the coefficient of determination (R2), root-mean-

squared error (RMSE), and relative root-mean-squared error (RRMSE). The R2 measured the 

variation between the measured and predicted: foliar temperature and stomatal conductance. 

The RMSE assessed the magnitude of error between the field measurements and modelled 

outputs of foliar temperature and stomatal conductance. At the same time, the RRMSE 

evaluated the model's accuracy and was used to compare the performance of regression 

models across maize phenotyping. The RRMSE is calculated by normalizing each variable 

RMSE value's mean and expressed as a percentage, where lower percentages are 

considered more accurate (Taghizadeh-Mehrjardi, Mahdianpari et al., 2020).  

4.3 Results 

4.3.1 Descriptive analysis of UAV-derived data and ground-based maize data 

The automated time series of daily SRS-NDVI data over the phenological cycle was generally 

a smooth curve with fluctuations during the various vegetative growth stages and a significant 

decline in NDVI values after an unanticipated hailstorm (Figure 4-6). NDVI values increased 

rapidly from 0.1 in the early vegetative growth stages (DOY 42) to a peak of approximately 0.7 

in the early reproductive development stages (DOY 102). After that, a strong decline in NDVI 

was observed from the early reproductive growth stage (DOY 102) to the mid-reproductive 

growth stage (DOY 118), declining from an NDVI of 0.7 to 0.5 respectively. During the 

transition from the early to mid-reproductive stages, a hailstorm damaged the crop and 

resulted in a slight NDVI increase the day after the weather occurrence but was subsequently 

followed by a rapid decrease in NDVI values for the following days. Subsequently, the NDVI 

during the late reproductive growth stages fluctuated between 0.5 and 0.6. The SRS-NDVI 

data shows significant changes through the growth cycle of the maize crop, with increases 

corresponding to a time when rapid vegetative growth occurred and decreases corresponding 

to mid-to-late maize productivity.   
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Figure 4-6: Daily SRS-NDVI values of maize throughout the phenological cycle. Red points 

indicate the days we visited the field to conduct UAV flights. The blue point indicates the day 

of crop disturbance due to a hailstorm.  

 

4.3.2 Evaluation of UAV-derived data against ground-based NDVI and chlorophyll 

data 

The relationship between the ground-based SRS-NDVI data and the UAV-derived NDVI data 

for the various maize growth stages was linear (Figure 4-7 (a)). A strong positive correlation 

existed between the SRS-NDVI and UAV-derived NDVI (R2 = 0.98; p = 0.001). At low NDVI 

values, such as 0.30, the UAV-derived NDVI was higher than the SRS-NDVI. At mid-range 

NDVI values, i.e. 0.50, the UAV-derived NDVI and SRS-NDVI were almost identical. At higher 

NDVI values, such as 0.70, the SRS-NDVI was higher than the UAV-derived NDVI. Similarly, 

the average chlorophyll content measurements for each trip were compared against the UAV-

derived NDVI data to better understand the relationship of NDVI with maize chlorophyll 

concentration. Figure 4-7 (b) illustrates that SRS-NDVI values correlate well with chlorophyll 

content values, attaining an R2 = 0.78. High UAV-derived NDVI values generally corresponded 

with high chlorophyll concentrations. 

Specifically, the early maize growth stages yielded low NDVI values of approximately  

0.30-0.45 for a day of the year (DOY) 61. Similarly, the low NDVI value correlated with a low 

chlorophyll concentration of 74.5 µmol/m-2 on DOY 61. However, as the maize developed, the 

measured and UAV-derived NDVI values progressively increased to 0.54 on DOY 77, followed 

by 0.65 on DOY 90 and 0.67 on DOY 102. Likewise, maize chlorophyll concentrations 

increased to 461 µmol/m-2 on DOY 77, 573.6 µmol/m-2 on DOY 90, and 651.8 µmol/m-2 on 

DOY 102. After that, the measured and UAV-derived NDVI values in the mid and late 

reproductive stages decrease to 0.55-0.57 on DOY 118 and 0.49-0.54 on DOY 134, 

respectively. Similarly, the measured chlorophyll concentrations in these stages decreased to 

331.4 µmol/m-2 on DOY 118 and 183.5 µmol/m-2 on DOY 134.  
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Figure 4-7: Correlation of (a) in-field sensor SRS-NDVI and UAV-derived NDVI (b) measured 

maize chlorophyll content and UAV-derived NDVI across the maize growth stages. 

 

4.3.3 Descriptive statistics of chlorophyll content from SPAD 

The lowest chlorophyll concentration was attained during the early vegetative growth stage 

(V5-V10) at 13.5 µmol/m-2 (Table 4-5). The highest chlorophyll concentration was recorded 

during the early reproductive stage (R1-R3) at 3765.4 µmol/m-2. On average, the maize 

chlorophyll ranged from 58.85 µmol/m-2 to 2043.5 µmol/m-2. The average and median of maize 

chlorophyll across the growth stages were 362.9 µmol/m-2 and 259 µmol/m-2, respectively. The 

average standard deviation of chlorophyll values was 342.6, which indicated a large deviation 

of the measurements from the mean value of 362.9. 

Table 4-5: Descriptive statistics of maize chlorophyll content throughout the various growth 

stages 

Day of year 

(DOY) 

Chlorophyll content at 

various growth stages  

Minimum 

(µmol/m-2) 

Maximum 

(µmol/m-2) 

Mean 

(µmol/m-2) 

Median 

(µmol/m-2) 

Standard 

deviation 

61 V5-V10 13.51 

61.7 

130.4 

104.2 

26.8 

16.5 

255.5 

3242.6 

2792.4 

3765.4 

1555 

650.2 

74.5 

461 

573.6 

651.8 

331.4 

183.5 

60.2 

331.8 

390.2 

476.2 

234.1 

61.7 

54.2 

466.7 

497.7 

641.8 

301.8 

93.6 

77 V12 

90 V14-VT 

102 R1-R2 

118 R2-R4 

134 R4-R5 

Average value 58.85 2043.5 362.6 259 342.6 
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4.3.4 Random forest models of maize chlorophyll content 

The relationship between measured (SPAD-derived) and modelled (UAV-derived) chlorophyll 

content varied across the various maize growth stages. The model could optimally estimate 

the chlorophyll content throughout the various growth stages; however, the prediction of 

chlorophyll proved more accurate during the vegetative growth stages. During the early 

vegetative growth stage (V5-V10), the highest RMSE accuracy for the growth cycle achieved 

was 13.9 µmol/m-2, with an R2 = 0.80 and RRMSE = 11% (Figure 4-8 (a)). The mid-vegetative 

growth stage (V12) RMSE = 78.2 µmol/m-2, R2 = 0.79 and RRMSE = 14% (Figure 4-8 (b)). 

Whereas the late vegetative growth stage (V14-T) produced the lowest RMSE = 96.2  

µmol/m-2, R2 = 0.85 but obtained an RRMSE model accuracy of 8% (Figure 4-8 (c)). Similarly, 

the early reproductive development stage (R1-R2) obtained a low RMSE = 87.4 µmol/m-2,  

R2 = 0.89 but produced the highest RRMSE accuracy of 7% (Figure 4-8 (d)). The RMSE 

accuracies improved during the mid-reproductive (R2-R4) and late reproductive (R4-R5) 

growth stages to 76.2 µmol/m-2 and 31.3 µmol/m-2, respectively. However, the model produced 

the lowest RRMSE and R2 accuracies during the R2-R4 and R4-R5 stages at an RRMSE of 

28%, R2 = 0.75 (Figure 4-8 (e)) and an RRMSE of 25%, R2 = 0.78 (Figure 4-8 (f)), respectively. 

 

 

Figure 4-8: Linear relationships between measured and predicted maize chlorophyll 

content for vegetative stages (a) V5-V10, (b) V12, (c) V14 to VT, and reproductive 

stages (d) R1-R3, (e) R3-R4, (f) R5-R6 
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The early reproductive (R1-R3) growth stage generally produced the most optimal model 

performance, with an RRMSE = 7% and R2 = 0.85. The top VIs and spectral bands selected 

by the model for the early reproductive growth stage were the NDRE, NIR band, CIrededge and 

NDVI (Figure 4-9 (d). The late vegetative (V14-T) growth stage also yielded a high model 

RRMSE = 8% and R2 = 0.89 based on the NIR band, CCCI, red-edge band and NDVI amongst 

others, in order of importance (Figure 4-9 (c)). The variables above of importance for the R1-

R3 and V14-T stages were major contributors to modelling chlorophyll content, as there was 

a major step down in the importance of the other VIs and bands. Similarly, the mid-vegetative 

(V12) and mid-reproductive (R4-R5) have major stand-out importance variables of CCCI, red-

edge, green, NIR and NDVI, NIR, red-edge and CIrededge, amongst others, respectively. On the 

other hand, the early vegetative (V5-V10) and late reproductive (R5-R6) stages gradually 

decrease variable importance scores based on the CIrededge, NDVI, NDRE, NIR and red-edge, 

NIR, MCARI, OSAVI, amongst others, respectively. The variables obtaining the highest 

importance scores were generally derived from the NIR, red-edge and red wavebands.  

 

Figure 4-9: Variable importance scores of optimal chlorophyll content VIs and bands for 

vegetative stages (a) V5-V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1-R3, (e) 

R3-R4, (f) R5-R6 

 

4.3.5 Mapping the spatial distribution of maize chlorophyll content over the various 

growth stages 

The modelled chlorophyll concentrations ranged from 33 µmol/m-2 to 126 µmol/m-2 (Figure  

4-10). The chlorophyll content of maize was low during the early vegetative growth stage  
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(V5-V10) and then progressively increased throughout the various growth stages. In the late 

vegetative (V14-T), early reproductive (R1-R3), and mid-reproductive (R4-R5) growth stages, 

the chlorophyll concentrations were the highest. Subsequently, chlorophyll content was 

depleted during the late reproductive stage (R5-R6). 

 

Figure 4-10: Spatial distribution of chlorophyll content over the maize field for vegetative 

stages (a) V5-V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1-R3, (e) R3-R4, (f) 

R5-R6. 

 

4.4 Discussion  

This study aimed to predict chlorophyll content variations across maize phenological stages 

using UAV-derived VIs and the random forest algorithm. In doing so, we attempted to 

determine the optimal maize growth stage(s) for chlorophyll prediction. Clearly, chlorophyll 

concentrations varied over the phenological stages, and the model could discern the optimal 

chlorophyll growth stages. The chlorophyll variations of maize over the growing season are 

useful for estimating the health and productivity status of the smallholder field.  



 

52 

 

4.4.1 Estimating maize chlorophyll content across the growing season  

The findings of the study model performed well throughout the vegetative growth stages. They 

showed that the earliest vegetative growth stage yielded the highest RMSE accuracy of 13.9 

µmol/m-2, R2 = 0.80 (RRMSE = 11%) based on the CIrededge, NDVI, NDRE, NIR as the most 

influential variables (in order of importance). Specifically, due to their association with healthier 

plants, the red-edge and NIR regions were detected as crucial wavelengths in the model’s 

prediction of chlorophyll content. This is because the red-edge wavelength is sensitive to 

plants with a high chlorophyll content, nitrogen content, and biomass, and thus are better 

predicted using the red-edge (Delegido, Verrelst et al., 2011; Clevers and Gitelson, 2013; 

Sibanda, Mutanga et al., 2020). Additionally, the NIR region strongly influences the prediction 

of chlorophyll content, as it is sensitive to the high foliar reflectance induced by the pigment 

concentrations of plant canopy structures (Broge and Leblanc, 2001; Sankaran, Maja et al., 

2013). The studies of Sibanda, Mutanga et al. (2020), and Singhal, Bansod et al. (2019) 

demonstrated a similar association between the red-edge and NIR regions with chlorophyll 

content by achieving an R2 of 0.91 and 0.90, respectively. In this study, strong chlorophyll 

concentrations were associated with crop emergence and development, as the leaf area index 

was low, resulting in more dynamic photosynthetic rates of the crop, facilitating high 

reflectance in the red-edge and NIR sections. Furthermore, red-edge and NIR-derived VIs are 

notable regions that surpass the effects of atmospheric interferences, visible irradiance, 

variable background effects, and geometrical arrangement of a scene when compared to 

conventional bands (Curran et al., 1990; Goodbody et al., 2020). Thus, the red-edge and NIR 

wavelengths facilitated optimal maize chlorophyll prediction, as the low foliage density of the 

early vegetative growth stage did not saturate and cause spectral confusion of the sensor 

during image acquisition. 

Meanwhile, high chlorophyll concentrations are associated with the late vegetative and early 

reproductive growth stages, as maize reaches photosynthetic maturity and requires high 

productivity to begin fruit production (Rostami, Koocheki et al., 2008). Results from this study 

showed a similar trend, and the model prediction accuracies were most optimal during the late 

vegetative and early reproductive with an RRMSE accuracy of 8% and 7% and R2 values of 

0.85 and 0.89, respectively. Such results are attributed to the fact that the reflectance of maize 

leaf chlorophyll content during the late vegetative and early reproductive stages are stronger 

than other stages of phenotyping due to the high leaf area index and full canopy closure 

characterized by these stages (Walker and Schulze, 2006; Walker, Drewry et al., 2018). It has 

been documented in studies by Walker, Drewry et al. (2018), Dahms, Seissiger et al. (2016) 

and Costa, Dwyer et al. (2001) that during the stages of tasseling, silking and pollination, 

maize is characterized by a fully developed leaf canopy structure with a high leaf area index 

that promotes the detection of higher chlorophyll contents. Hence, the dense canopy 

architecture and absence of soil background effect created a homogenous scene of green 

pigment reflectance, which was optimal in the prediction of chlorophyll content over the 

smallholder field. 

Similarly to the early vegetative stages, the NIR and red-edge bands were significant variables 

of maize chlorophyll prediction due to these regions' favourable detection of high chlorophyll 

reflectance. The biochemical properties of a dense foliar canopy, the thick waxy cuticle, air 
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cavities, chloroplasts and mesophyll cell thickness all contribute to the high NIR ad red-edge 

reflectance, which is directly correlated with chlorophyll content (Mutanga, Adam et al., 2012; 

Sibanda, Onisimo et al., 2021). Thus, the high chlorophyll concentrations associated with 

these stages in the study are also associated with a healthier crop and further coincided with 

the SRS-NDVI values of approximately 0.65. In this regard, the high levels of chlorophyll 

content were favourable in model prediction. Hence these stages are the most accurate 

estimation.  

During the mid-reproductive and late reproductive stages, the model prediction accuracies 

were lowest, with an RRMSE of 28% and 25% and R2 values of 0.75 and 0.78, respectively. 

The low model prediction accuracies could be attributed to the adverse effects of a hailstorm 

that damaged the maize canopy structure, resulting in a lower crop chlorophyll content. The 

physical damage to the maize canopy exposed the underlying soil surface of damaged and 

decayed leaves. This resulted in spectral confusion due to the hybrid of soil and senescing 

leaf reflectance imaged by the MicaSense Altum camera, failing the model to discern the 

apparent chlorophyll variations. This is because the predominant brown tone of the senescing 

leaves and soil resulted in most bands and VIs being absorbed due to the low chlorophyll 

concentrations. 

In contrast, wavelengths such as the red band reflected much higher. Nevertheless, an 

apparent decline in NDVI values before the hailstorm was evident and associated with a 

decline in chlorophyll. This may be because, at this point in phenotyping, the crop channels 

its nutritional resources and energy towards fruit production (Walker, Drewry et al., 2018), 

resulting in a reduction of chlorophyll concentration which is also apparent in the results.  

4.4.2 Implications of the study  

Smallholder farmers constantly strive to maximize their small-scale crop production and 

produce healthy and productive yields. However, they are seldom the focus of innovation and 

lack resources, as it is always assumed that their scale of operations does not necessitate 

such. Thus, such findings demonstrate using precision agricultural technologies (i.e. UAVs), 

which can facilitate improved smallholder agricultural management. Specifically, UAV-derived 

data is near real-time, enabling quick and effective management that may improve crop health 

and productivity. Moreover, near real-time data is particularly useful when erratic weather 

conditions, such as hailstorms, occur. Such agrometeorological effects prove how South 

African smallholder farmers are subjected to the variability of weather and climate, which has 

consequences on crop growth, health, and the overall productivity of their farms. In such 

instances, UAV-derived could be used to perform rapid assessment of likely hail damage in 

near real-time, allowing farmers to make informed and effective decisions on agricultural 

management and provide early warnings for food insecurity. Therefore, near real-time UAV 

technology benefits smallholder agricultural systems as it allows for rapid and informed 

decisions to limit further crop health issues.  
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4.5 Conclusion  

Smallholder farming systems lack the resources to maximize their productivity and monitor 

croplands for healthy growth and development. In recent years, the synergistic use of UAV 

remotely sensed technology and crop health proxies such as chlorophyll content had 

facilitated a deeper understanding of crop dynamics. In this regard, the study tested the use 

of UAV-derived multispectral data by estimating maize chlorophyll content over the various 

stages of phenotyping. This was done using a random forest prediction model, which 

estimated the chlorophyll concentrations of maize in smallholder farms of Swayimane. 

Therefore, premised on the findings of the study, it is concluded that:  

• Optimal chlorophyll content prediction accuracies were produced during early 

vegetative growth stages (V5-V10 and V12), late vegetative growth stages (V14-T) 

and early reproductive growth stages (R1-R3), 

• Maize chlorophyll content was optimally estimated through UAV-derived NIR and red-

edge wavelengths.  

Since chlorophyll content has been widely illustrated as a proxy of crop health, the study's 

findings imply that UAV-derived data could be optimally utilized to characterize the general 

state of maize health in smallholder cropping lands, with significantly improved spatial 

accuracies. Such precision technology advancements are a low-cost, objective, and accurate 

technique that smallholder farmers can adapt to inform decision-making and agricultural 

management. Specifically, multispectral UAV technology is spatially explicit and provides near 

real-time data for understanding crop health through the biochemical indicator of chlorophyll. 

This technology potentially overcomes some of the limitations associated with satellite 

imagery. However, the study could have benefitted from higher spectral resolution data and 

additional testing data to improve the model performance. 

Nevertheless, the random forest model performed relatively well at predicting the chlorophyll 

content in smallholder farms. Therefore, multispectral UAV technology is a beneficial solution 

to smallholder agriculture. It provides farmers information on crop dynamics at user-defined 

spatial and temporal scales for improved management and productivity. 
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5 REMOTE SENSING FOLIAR TEMPERATURE AND STOMATAL 

CONDUCTANCE USING DRONE-ACQUIRED OPTICAL AND THERMAL IMAGES 

 

Brewer K, Clulow A, Sibanda M, Gokool S, Odindi J, Mutanga O, Naiken V, Chimonyo VGP 

and Mabhaudhi T  

 

5.1 Introduction 

In recent decades, agricultural production in sub-Saharan Africa has been threatened by water 

scarcity, unpredictable weather, and arid conditions (Lickley and Solomon, 2018; Nhamo, 

Matchaya et al., 2019). In South Africa, smallholder agriculture (less than two hectares) is 

predominantly rainfed, which often results in crops experiencing water stress and moisture 

shortages due to inadequate rainfall (Rockstrom, 2000; Ubisi, Mafongoya et al., 2017; Adisa, 

Botai et al., 2018). However, there are limited spatially explicit evidence-based frameworks 

and instruments for monitoring crop water stress in smallholder croplands, especially in those 

cultivating maize (Zea mays L.) predominantly for subsistence (Andersson, Zehnder et al., 

2009; Lu, Xue et al., 2017). Since maize is a staple grain crop and one of the most widely 

cultivated crops in South African smallholder farms (Walker and Schulze, 2006), there is a 

need for spatially explicit methods to characterize maize water stress to prevent yield losses 

and optimize the productivity of smallholder farmers. 

Maize requires 450 to 600 mm of water per season as it is sensitive to water stress, especially 

during the tasseling, silking, and pollination stages (Taghvaeian, Chávez et al., 2014). At 

physiological maturity, a single maize crop requires approximately 250 litres of water to 

produce approximately 15 kilograms of grain per millimetre of water consumed (Du Plessis, 

2003). Although additional factors like soil nutrients, light and humidity may affect growth, 

water stress is often the major limiting factor. The high variability of rainfall in South Africa 

often results in less water to sustain optimal crop growth and productivity (Carroll, Hansen et 

al., 2017; Haarhoff, Kotzé et al., 2020). These water deficits result in stomatal closure to 

reduce moisture loss through transpiration, increasing leaf temperatures due to limited 

moisture conductance to cool the leaf surface (Saseendran, Trout et al., 2015; Zhang and 

Zhou, 2019). Hence, the determination of foliar temperature and stomatal conductance are 

often used as proxies for near real-time detection of crop water stress (Jackson, Idso et al., 

1981; Dai, Dickinson et al., 2004; González-Dugo, Moran et al., 2006; Gerhards, Schlerf et 

al., 2019; Yun, Kim et al., 2020). Accurate quantification of maize foliar temperature and 

stomatal conductance across the growing season can assist smallholder farmers in adopting 

measures to mitigate losses and optimize yield. 

Traditionally, crop water stress has been determined using in-situ plant measurements, soil 

moisture content or meteorological variables (González-Dugo, Moran et al., 2006). However, 

these approaches are time-consuming, costly, and laborious (Jackson, Idso et al., 1981). 

South Africa is prone to vandalism and theft and thus unsuitable for continuous and real-time 

monitoring of crop water stress. Recently, studies have demonstrated that remote sensing 
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techniques using multispectral or thermal imagery can be used to monitor crop water stress 

(Sepulcre-Cantó, Zarco-Tejada et al., 2005; Veysi, Naseri et al., 2017; Zhang, Niu et al., 2019; 

Zhang, Zhang et al., 2019; Jamshidi, Zand-Parsa et al., 2021). According to El-Hendawy, Al-

Suhaibani et al. (2019), several multispectral sections of the electromagnetic spectrum are 

indirect water stress indicators. They are useful for quantifying crop water content through leaf 

biochemical attributes (El-Hendawy, Al-Suhaibani et al., 2019). Specifically, the visible (blue, 

green, red) and the near-infrared (NIR) wavelengths hold great potential for the prediction of 

water due to their absorption of water through leaf pigments such as chlorophyll (Pasqualotto, 

Delegido et al., 2018). Moreover, the thermal infrared portion of the spectrum is directly 

correlated to water content proxies, such as temperature and stomatal activity. It is thus 

proficient in the analysis of temperature attributes. The thermal infrared radiation ranges from 

8 µm to 14 µm on the electromagnetic spectrum. Its utility in remote sensing enables water 

stress detection due to its non-destructive and low labour inputs (Gerhards, Schlerf et al., 

2019).  

While traditional satellite-based remote sensing techniques have proven useful in quantifying 

water stress, several constraints limit their suitability for monitoring temperature and stomatal 

conductance at a farm scale. The spatial resolution of satellite earth observation data is 

generally too coarse to capture the spatial heterogeneity within smallholder farms. Moreover, 

broad-band thermal satellite imagery results in geometrical inaccuracies when co-registering 

to other portions of the electromagnetic spectrum with higher spatial resolutions (Prakash, 

2000). Thus, alternate approaches that can adequately capture spatial heterogeneity at 

localized levels are required to facilitate precision agricultural applications within smallholder 

farms. 

In recent years, unmanned aerial vehicles (UAVs) have become a popular farm phenotyping 

platform for precision agricultural applications (Hoffmann, Jensen et al., 2016; Messina and 

Modica 2020; Hu, Chapman et al., 2021). Very high-resolution (VHR) cameras attached to 

UAV platforms offer advanced crop image throughput analytics. They effectively overcome 

satellite imagery's limitations (Maes and Steppe, 2019; Nhamo, Magidi et al., 2020). The 

spatially explicit UAV images acquired by VHR cameras offer near real-time spectral 

information useful for detecting changes in crop phenology, foliar temperature, and moisture 

content (Park, Ryu et al., 2017; Zhang, Niu et al., 2019). UAV images can be continuously 

acquired under user-defined ground sampling distances and temporal intervals, which limit 

atmospheric perturbations such as cloud cover (Cucho-Padin, Loayza et al., 2020, Nhamo, 

Magidi et al., 2020). Therefore, accurate mapping and analysis of agricultural maize fields 

using a multispectral and thermal infrared UAV hold significant potential for providing data that 

informs smallholder farmers on potential crop water stress. 

Foliar temperature and stomatal conductance can be optimally assessed using a robust 

machine-learning algorithm that can derive a relationship using spectral bands and vegetation 

indices (VIs) to predict temperature and conductance. VIs are mathematical combinations of 

image bands that are ratioed for extracting spectral properties such as canopy cover, plant 

vigour and phenology dynamics (Kayet, Pathak et al., 2016; Xue and Su, 2017). VIs, such as 

the normalized difference water index (NDWI) and the normalized difference vegetation index 

(NDVI), have been identified as particularly useful in directly or indirectly quantifying water 

stress within vegetation (Zarco-Tejada, González-Dugo et al., 2012; Liang, Di et al., 2018; El-
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Hendawy, Al-Suhaibani et al., 2019; Zhang and Zhou, 2019). Furthermore, using these VIs in 

combination with machine learning algorithms has proven useful in characterizing crop 

temperature and water stress (Noi, Degener et al., 2017; Liang, Di et al., 2018). Considering 

the potential of utilizing UAV-derived data with machine learning, in this study, we aimed to 

analyze the utility of the UAV-derived data to predict foliar temperature and stomatal 

conductance. Specifically, we sought to predict maize foliar temperature and stomatal 

conductance using UAV-derived spectral variables (bands and VIs) to quantify potential water 

stress throughout the growing season within a smallholder farm. 

 

5.2 Materials and Methods 

5.2.1 Study site description  

Data for this study were collected over four months from February 2021 to May 2021 in the 

rural area of Swayimane, KwaZulu-Natal, South Africa (29°31’24’’S; 30°41’37’’ E) (Figure  

5-1). Swayimane is located in the uMshwathi Local Municipality and approximately 55 km 

northeast of Pietermaritzburg. The small communal area covers a geographical extent of 

approximately 36 km2. Common crops cultivated in the area include white and yellow maize, 

sugarcane, amadumbe (taro), and sweet potato. The smallholder farmers follow traditional 

farming methods of planting, maintenance, and manual harvesting of crops. Farm plots are 

rainfed, fertilized using livestock manure, and hand weeded. Weeds and grass are also 

controlled using backpack herbicide sprayers. This study examined a 30 × 96 (2850 m2) 

smallholder maize field located on a slope, with a field elevation ranging from 850 m to  

839 m.  

The area is predominantly characterized by semi-subsistence farming, which is a form of food 

security and livelihood sustenance. The favourable environmental conditions of the region 

support agriculture and crop production in Swayimane. The climate is characterized by warm 

wet summers and cool, dry winters, with an average temperature ranging between 12°C and 

24°C. Mean annual rainfall ranges between 600 and 1200 mm, with the most rain occurring 

during the summer occasioned by thunderstorms. During data collection, Swayimane had a 

maximum daily average air temperature of 24°C and total rainfall of 242.80 mm, amongst other 

weather data (Figure 5 2). Weather conditions were monitored continuously by the Automatic 

Weather Station installed at a Swayimane high school. Weather data was downloaded from 

the Swayimane weather website. The weather station was situated approximately 2 km from 

the smallholder maize farm. It was considered proximally adequate in capturing the weather 

conditions of the study site.  
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Figure 5-1: Location of the Swayimane study area, study site, and smallholder maize 

field. 
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Figure 5-2: Daily weather conditions in Swayimane throughout maize phenotyping 

 

5.2.2 The maize growth cycle and characteristics 

Maize seedlings were sown on the 8th of February 2021 and harvested on the 26th of May 

2021 (see Table 4-1), having a total growth cycle of 108 days and temperature and stomatal 

conductance examined at the various stages of phenotyping. The maize growth cycle is split 

into vegetative stages (emergence to tasseling based on the number of fully developed leaves) 

and reproductive stages (silking to physiological maturity based on the degree of kernel 

growth) (Cakir, 2004; Zhao, Tong et al., 2012). Within the various stages, certain transitions 

are significant for monitoring the potential occurrence of water stress. These are the 

emergence of crop growth (the first day of photosynthetic activity, termed VE), tasseling (the 

day when maximum leaf area is recorded and tassels appear, termed VT) and the 

commencement of senescence (the day when green leaf visibly loses colour) (Du Plessis, 

2003).  

It is worth mentioning that during the mid-vegetative stage, the field's western portion (lower 

elevation) appeared unhealthy. This may have been because this portion of the field was not 

weeded with the rest of the field during the early vegetative growth stage. However, the farmer 

applied herbicide during the mid-vegetative growth stage to remove grasses and weeds 

between maize rows. Consequently, the herbicide impacted the health status of these crops 

and the maize suffered herbicide burn.  

5.2.3 Field data collection, temperature, and stomatal conductance measurements 

Field data was collected throughout the maize phenological cycle. A 4-meter meteorological 

tower was installed at the centre of the maize field with two infrared radiometers (IRR) (Apogee 

SI-111, Apogee Instruments Inc., Logan, UT, USA) (Figure 5-3). The SI-111 IRR measures 
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surface temperature by converting the thermal energy radiated from the surface. The SI-111 

IRR obtains a spectral range from 8 µm to 14 µm, with measurement ranges from -60°C to 

110°C, and a manufacturer accuracy of ±0.5°C (Aragon, Johansen et al., 2020). The two IRR 

sensors were attached at a 23 and 45° half-angle field of view (FOV), with one centred on 

maize and the other obtaining an azimuth view perpendicular to the row direction. We 

programmed the datalogger (CR1000, Campbell Scientific, Logan, Utah, USA) to output 

average foliar canopy temperature, from 10-second measurements, at the following intervals: 

5-minutes, 10-minutes, 30-minutes, and 60-minutes. IRR measurements were also 

aggregated to acquire daily average temperature using the 10-minute data. 

The SI-111 radiometers were calibrated in a temperature-controlled chamber with a blackbody 

cone for the radiation source. This was conducted by holding the SI-111 IRRs in a fixture at 

the opening of the blackbody cone. The IRR sensors were thermally insulated from the cone, 

and each temperature was independently controlled. The IRRs are held at a constant 

temperature while the cone was controlled at temperatures below 12°C, above 18°C and equal 

to the IRR temperature. IRR temperature data were collected every 10°C until the IRRs and 

blackbody cone reached constant temperatures. IRR measurements of maize temperature 

were used to calibrate the handheld infrared thermometer (IRT) measurements that were used 

to develop the prediction model. Moreover, the IRR measurements were used to assess the 

thermal infrared UAV-derived temperature.  

 

Figure 5-3: (a) Automated in-field meteorological tower in the maize field, (b) 

meteorological tower mounted with SI-111 Apogee IRR sensors held 4-meters above 

the ground, (c) CR1000 data logger, Em50 datalogger and 12 V battery 

At two-week intervals, in-field maize temperature and stomatal conductance measurements 

were collected from the early vegetative (V5) growth stage to the late reproductive growth 

stages (R6). Pre-sampling of the maize smallholder field was conducted in Google Earth Pro, 

where a polygon of the experimental field was digitized. The digitized polygon was imported 

into ArcGIS 10.5 and used to generate sampling points. A total of 63 sample points were 

generated based on stratified random sampling within the digitized field boundary. These 

points were then uploaded into a handheld Trimble Global Positioning System (GPS) with sub-

meter accuracy. These locations navigated the field to each sample point during data 

(a) (b) (c) 
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collection. The maize plants at each sampling point were marked for consistent bi-weekly 

measurement. The 63 maize points were sampled on six occasions over phenotyping. 

A digital laser infrared GM320 handheld thermometer (IRT) was used to measure selected 

maize foliar temperatures. IRT measurements can range from approximately -50°C to 330°C. 

During the vegetative growth stages (where a sixth leaf was present) and the tasseling stage, 

the IRT temperature readings were measured on the newest fully expanded leaf with an 

exposed collar. After the tasseling stage, the ear leaf (i.e. the leaf attached at the same node 

as the primary ear shank) was measured (Costa, Frigon et al., 2003). Three foliar temperature 

measurements were taken and subsequently averaged per sampling point.  

Stomatal conductance was measured using an SC-1 leaf porometer (Decagon Devices, Inc., 

Pullman, WA, USA). Stomatal conductance is the measure of gaseous exchange (i.e. carbon 

dioxide intake) and transpiration (i.e. water vapour loss) through the leaf stomata and is a 

function of the size, density and opening of leaf stomata (Handiganoor, Patil et al., 2018). 

Leaves with open stomata allow for higher conductance levels and indicate productive 

photosynthetic and transpiration rates. While closed leaf stomata indicate potential plant 

stress. 

The SC-1 leaf porometer calibration was done before measurements under field conditions, 

as the leaf clip must be in thermal equilibrium with the environment. This included wetting filter 

paper with the distilled water provided in the sensor kit and then placing filter paper over the 

hole of the calibration plate. The sensor head was then attached to the calibration plate, where 

a 30-second measurement started. After the measurement, the sensor was equilibrated, and 

the sensor head was re-attached for another measurement.  

Calibration measurements were repeated up to 10 times until a stable measurement was 

achieved. Leaf porometer readings were carried out on the same leaf as the IRT temperature 

readings. During the mid and late reproductive stage, a fully matured maize leaf in full 

exposure to sunlight was selected. The sensor was placed in the middle of the leaf blade 

perpendicular to the midrib when conducting measurements. The SC-1 leaf porometer 

automatically measured the leaf stomatal conductance (in mmol/m2s) for a measurement 

period of 30 seconds whilst providing measurements of air temperature and relative humidity. 

Stomatal measurements approaching 0 mmol/m2s indicate stress, whereas values close to 

500 mmol/m2s indicate no stress.  

IRT (temperature) and SC-1 leaf porometer (stomatal conductance) measurements were 

consistently taken between 10:00 am to 2:00 pm throughout the various stages of the maize 

phenological cycle. The temperature and stomatal conductance data were added to the 63 

sampling points map in a geographical information system (GIS). The point map was then 

overlaid with the multispectral and thermal UAV imagery of each sampling point's derived 

spectral reflectance values. 

5.2.4 UAV: DJI Matrice 300 and MicaSense Altum  

The DJI Matrice 300 (DJI M-300) platform, mounted with a MicaSense Altum camera and 

Downwelling Light Sensor 2 (DLS-2), was used for aerial-based flights over the smallholder 
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farms. The rotary-wing DJI M-300 series has vertical take-off and landing (VTOL) technology, 

making it well-suited for small-scale agricultural crop imaging (Figure 5-4 (a)).  

The DJI M-300 platform novelties include its 15 km transmission range, 7000 m maximum 

altitude, obstacle avoidance, flightpath planning and locational position tracker. The maximum 

flight time of the M-300 is 55 minutes (without payload), and it can reach a maximum speed 

of 27 m/s, which surpasses most drone platforms on the market. Moreover, the MicaSense 

Altum camera is a multispectral and thermal imaging sensor that integrates five spectral high-

resolution narrow bands (blue, green, red, red-edge, and near-infrared) with a radiometric 

longwave infrared thermal camera (b). The high-performance camera offers synchronized 

multispectral and thermal image capture and uses a global shutter of up to a one-second 

capture rate for precise and aligned imagery (Hutton, Lipa et al., 2020). The multispectral 

bands have 2064 × 1544 at 120 m (3.2 megapixels per multispectral band) sensor resolution 

and a ground sample distance (GSD) of 5.2 cm per pixel at the height of 120 m. The thermal 

infrared camera has a 160 × 120 sensor resolution and a GSD of 81 cm per pixel at 120 m. 

The multispectral camera has a 48° × 37° FOV with an 8 mm focal length. While the thermal 

camera has a 57° × 44° FOV with a 1.7 mm focal length. 

 

Figure 5-4: (a) DJI Matrice 300 UAV platform and, (b) MicaSense Altum multispectral-

thermal camera  

 

Table 5-1: MicaSense Altum camera specifications.  

Band Spectral colour Band centre/range Ground sampling distance 

at a flying height of 120 m 

1 Blue 475 nm 5.2 cm per pixel 

2 Green 560 nm 5.2 cm per pixel 

3 Red 668 nm 5.2 cm per pixel 

4 Red-edge 717 nm 5.2 cm per pixel 

5 Near-infrared 842 nm 5.2 cm per pixel 

6 LWIR thermal infrared 8000-14000 nm  81 m per pixel 

 

(a) (b) 
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5.2.5 Image acquisition and processing  

A shapefile of the maize field was created in Google Earth Pro and imported into the  

DJI M-300 smart console, where it was used to design a flight plan covering the study area 

(Figure 5-6 (a); Table 4 3). The flight plan enabled a hands-free drone flight mission over the 

study field and adjacent areas. Before and after the flight, the UAV was calibrated using the 

MicaSense Altum calibrated reflectance panel (CRP). This included the user manually taking 

an unshaded image directly over the CRP to discern the lighting conditions of the specific flight 

date, time, and location (Table 5-5). We conducted UAV flights every 2-weeks on days with 

clear sky conditions. UAV flights were conducted between 10:00 am and 12:00 pm as this was 

the time of optimal solar irradiance. This period also coincided with the measurements of 

temperature and stomatal conductance. 

 

Figure 5-5: (a) DJI M-300 flight plan, (b) MicaSense Altum calibration reflectance panel 

 

Table 5-2: UAV flight specifications 

Parameters Specifications 

Altitude 

Ground sampling distance (multispectral) 

Ground sampling distance (thermal infrared) 

Speed 

Flight duration 

Composite images 

Image overlap 

100 meters 

7 cm 

109 cm 

16 m/s 

14 minutes 36 seconds 

321 

80% 

 

A total of 3576 images (per flight) were collected, mosaicked and radiometrically corrected 

(Pix4Dfields 1.8.0, Pix4d Inc., San Francisco, CA, USA). A radiometric correction was 

conducted in Pix4Dfields using all the captured images, including the before and after flight 

CRP images. The radiometric calibration target (CRP) is a white balance card that provides 

the reflectance properties of the card across the electromagnetic spectrum wavelengths 

captured by the camera. This enabled the software to calibrate and correct the reflectance of 

the images accordingly in line with the prevalent atmospheric conditions during the image 

acquisition. The CRP also obtained an absolute reflectance, making comparing data from 

several flights possible. Once processed, a final orthomosaic and a digital elevation model 

(a) (b) 
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(DEM) GeoTIFF image were generated. The orthomosaic was georeferenced in ArcGIS 10.5 

using ground reference points from Google Earth Pro and referenced to the Universal 

Transverse Mercator (UTM zone 36S) projection. 

The LWIR thermal infrared band was converted to absolute temperature values in Pix4Dfields, 

using the following equation: 

Temperature =  
LWIR Thermal Infrared (B6)

100
− 273.15  Equation 5-1 

The maize reflectance data was extracted from the multispectral and thermal infrared Altum 

image. This was done by overlaying the ground-truthed maize IRT temperature, stomatal 

conductance measurements, and their GPS coordinates in a point map with the UAV 

multispectral-thermal image. The reflectance values were extracted for each coordinate and 

each UAV band. The image was then used to compute vegetation indices (VIs) detailed in 

Table 5-3. VIs selected included direct and indirect water-related indices. These VIs were 

chosen based on their performance in the research literature (Yang and Du, 2017; Panigrahi 

and Das, 2018; Zhang and Zhou, 2019). 

 

Table 5-3: Spectral vegetation indices utilized to predict the foliar temperature and 

stomatal conductance  

Vegetation Index Abbreviation Equation Reference 

Direct water-related indices 

Normalized difference 

water index 

NDWI GREEN − NIR

GREEN + NIR
 

Yang and Du 

(2017) and Gao 

(1996) 

Indirect water-related indices 

Normalized difference 

vegetation index 

NDVI NIR − RED

NIR + RED
 

Panigrahi and 

Das (2018) 

Transformed 

normalized difference 

vegetation index 

TDVI 

√
NIR − RED

NIR + RED
+ 0.5 

Castellanos-

Quiroz, 

Ramírez-Daza 

et al. (2017) 

Normalized difference 

red-edge index 

NDRE NIR − RED EDGE

NIR + RED EDGE
 

Song, Birch et 

al. (2010) 

Normalized green-red 

difference index 

NGRDI GREEN − RED

GREEN + RED
 

Song, Birch et 

al. (2010) 

Green chlorophyll 

index 

CIgreen 
(

NIR

GREEN
) − 1 

Zhang and 

Zhou (2019) 

Red-edge chlorophyll 

index 

CIrededge 
(

NIR

RED EDGE
) − 1 

Zhang and 

Zhou (2019) 



 

65 

 

Vegetation Index Abbreviation Equation Reference 

Green NDVI GNDVI NIR − GREEN

NIR + GREEN
 

Song, Birch et 

al. (2010) 

Canopy chlorophyll 

content index 

CCCI NIR − RED EDGE
NIR + RED EDGE

NIR − RED
NIR + RED

 

Fitzgerald, 

Rodriguez et al. 

(2010) 

Chlorophyll vegetation 

index 

CVI 
NIR ∗ (

RED

GREEN2
) 

Vincini and 

Frazzi (2011) 

Enhanced vegetation 

index 

EVI 2.5(NIR − RED)

NIR + 6RED − 7.5BLUE + 1
 

Wiratmoko, 

Prasetyo et al. 

(2018) 

Soil-adjusted 

vegetation index 

SAVI (NIR − RED)(1 + L)

NIR + RED + L
 

Sishodia, Ray 

et al. (2020) 

Optimized soil-

adjusted vegetation 

index 

OSAVI 1.16 (NIR − RED)

NIR + RED + 0.16
 

 

Sishodia, Ray 

et al. (2020) 

 

5.2.6 Statistical Analysis 

The sampled data were randomly partitioned into training (70%) and testing (30%) datasets 

used to develop the predictive regression models. A random forest regression algorithm was 

used to predict maize foliar temperature and stomatal conductance (from spectral bands and 

VIs) since it is renowned for its simplicity, robust nature, and ability to perform well regardless 

of sample size (Dye, Mutanga et al., 2011; Luan, Zhang et al., 2020). The random forest 

ensemble is a machine learning algorithm that uses bootstrap aggregation to construct 

multiple trees on a subset of samples derived from the training data (Abdel-Rahman, Ahmed 

et al., 2013). Decision trees are grown to maximum capacity with a randomized subset of 

predictors (UAV-derived spectral data). Each node is split using random subsets of input 

variables (Adam, Mutanga et al., 2012). Furthermore, the random forest regression can 

identify predictor variables that are influential in the prediction model based on the sum of the 

reduction in Gini impurity across the feature nodes (Sibanda, Onisimo et al., 2021).  

Specifically, the RGtk2 and rattle packages in RStudio software version 1.4.1564 were used 

to develop the random forest regression model through numerical inputs. The outputs of the 

random forest model were optimized using the variable importance scores as they determine 

the most influential bands and VIs in prediction. Variables of low importance were removed 

throughout the analysis, and the random forest model was continuously modified for optimal 

prediction. The variable selection process reduces variable redundancy and multicollinearity 

issues, which affect the regression model's performance. The user optimised and fine-tuned 

the model to hyper-parameters of 500 trees, six variables for temperature and 500 trees, and 
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10 for stomatal conductance. These hyper-parameters were attained after numerous 

iterations.   

5.2.7 Accuracy assessment  

Accuracy assessments were conducted to assess the regression model's predicted foliar 

temperature and stomatal conductance performance. The accuracy metrics used were the 

coefficient of determination (R2), root-mean-squared error (RMSE), and relative root-mean-

squared error (RRMSE). The R2 measured the variation between the measured and predicted: 

foliar temperature and stomatal conductance. The RMSE assessed the magnitude of error 

between the field measurements and modelled outputs of foliar temperature and stomatal 

conductance. While the RRMSE evaluated the accuracy of the model and was used to 

compare the performance of regression models across maize phenotyping. The RRMSE was 

calculated by normalizing the mean of each variable RMSE value and expressing it as a 

percentage, where lower percentages are considered more accurate (Taghizadeh-Mehrjardi, 

Mahdianpari et al., 2020).  

 

5.3 Results 

5.3.1 Descriptive analysis of UAV-derived data and SI-111 IRR maize temperature 

data 

The IRR time-series data was used to plot the difference between IRR foliar canopy 

temperature (Tc) and air temperature (Ta) (Figure 5-6). The foliar canopy to air temperature 

difference (Tc-Ta) fluctuated throughout maize phenotyping, as ambient conditions of air 

temperature, solar radiation, and the influence of rainfall influenced foliar canopy 

temperatures. Hence, solar radiation and Tc-Ta followed a similar fluctuation trend. Days of 

low solar radiation or rainfall were associated with a lower Tc-Ta, and days of high solar 

radiation were generally associated with a higher Tc -Ta.  

The trendline through Tc-Ta over the maize growing season shows that a higher Tc-Ta was 

associated with the early vegetative stages, such as DOY 43 at 3.1°C, as well as mid-

reproductive and late reproductive growth stages, such as DOY 115 at 3°C and DOY 130 at 

2.7°C, respectively. The maximum Tc-Ta was recorded during the mid-reproductive stage on 

DOY 116 at 3.4°C. This was after a hailstorm that occurred on DOY 113, which increased the 

Tc-Ta and resulted in Tc-Ta remaining relatively high for the duration of phenotyping at 

approximately 1.9°C. A lower Tc-Ta was associated with the mid-vegetative and late 

vegetative growth stages, such as DOY 85 at -0.8°C and DOY 90 at -7.3°C, respectively. The 

lowest Tc-Ta was recorded during the late vegetative stage on DOY 92 at -8.6°C.  

Generally, the solar radiation and air temperature decreased as winter approached. However, 

the Tc-Ta increased as the winter season approached, suggesting reduced transpiration due 

to water stress during the mid-reproductive and senescence in the late reproductive growth 

stages. 
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Figure 5-6: Daily average Tc-Ta, solar radiation, and rainfall throughout the maize 

phenological cycle. Red points indicate field visits to conduct data collection. The blue 

point indicates the day of the hailstorm. 

A strong positive linear relationship (R2 = 0.94; p = 0.001) between temperature derived from 

the UAV-acquired thermal band and that measured in-field using the IRR temperature sensors  

(Figure 5-7) across all sampling dates. During the early vegetative growth stage, DOY 61, the 

IRR and UAV temperatures recorded a satisfactory correlation of approximately 29.7°C to 

30.8°C, respectively. The mid-vegetative stage, DOY 77, obtained a significant correlation of 

22.2°C and 21.2°C for IRR and UAV temperatures. 

Moreover, during the late vegetative stage (DOY 90) and the early reproductive stage (DOY 

102), maize IRR and UAV temperatures correlated substantially and were recorded at 

approximately 27°C and 24°C, respectively. However, the correlation during the mid-

reproductive and late reproductive stages, DOY 118 and DOY 134, deviated from the trendline 

due to the maize canopy disturbance by the hailstorm on DOY 113. Hence, IRR and UAV 

temperatures were recorded at 24°C and 26°C for the mid-reproductive stage and 24°C and 

23°C for the late reproductive stage. 
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Figure 5-7: Correlation of in-field IRR sensors and UAV-derived temperature 

throughout the maize phenological cycle 

 

5.3.2 Descriptive statistics of in-situ maize temperature and stomatal conductance 

measurements 

The IRR and IRT minimum and maximum temperatures of the 63 sampling points were used 

to illustrate the descriptive temperature statistics (Table 5-5). The average maximum IRR 

temperature for the entire phenological cycle was 32.2°C, and the average IRT temperature 

for the maize growth cycle was 32.6°C. This suggested an average temperature offset of 0.4°C 

between the IRR and IRT temperature measurements. The highest recorded IRR temperature 

occurred during the late vegetative growth stage of V14-T at 35°C, and the maximum IRT 

temperature was 39.1°C recorded during the V14-T growth stage. The average minimum IRR 

temperature for the entire phenological cycle was 18.3°C, and the average IRT temperature 

for the maize growth cycle was 20.9°C. This suggested an average temperature offset of 2.6°C 

between the IRR and IRT temperature measurements. 

The lowest IRR temperature value occurred during the R3-R4 growth stage at 16°C, whereas 

the lowest IRT temperature value occurred during the V12 growth stage at 15.5°C. The IRR 

maximum values were within 1.7 standard deviations of the mean, whereas the IRT maximum 

values were within 5.1 standard deviations of the mean. Similarly, with the minimum values, 

the standard deviation of the IRR and IRT temperatures were 1.9 and 3.2, respectively. The 

total mean coefficient of variation for the maximum IRR was 5.2%, whereas the maximum 

coefficient of variation for the IRT was 15.7%. Moreover, the minimum IRR and IRT 

temperatures had co-efficient variations of 10.4% and 15.5%, respectively. The IRR values 

suggest precise temperature estimates close to the mean value.  
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Table 5-4: Descriptive statistics of IRR and IRT foliar temperature throughout the 

maize growth stages 

Maize foliar temperature at the 

various growth stages 

Maximum (°C) Minimum (°C) 

IRR IRT IRR IRT 

DOY 61 V5-V10 34 32.7 17 21.5 

DOY 77 V12 33 23.4 20.5 15.5 

DOY 90 V14-T 35 39.1 17.1 23.1 

DOY 102 R1-R3 34 33.7 18.9 21.4 

DOY 118 R3-R4 33 34.3 16 19.3 

DOY 134 R5-R6 30 32.3 20.4 24.8 

Mean 33.2 32.6 18.3 20.9 

Median 33.5 33.2 18 21.5 

Standard deviation 1.7 5.1 1.9 3.2 

Co-efficient of variation 5.2 15.7 10.4 15.5 

 

The measured maize stomatal conductance varied at the different stages of maize 

phenotyping (Table 5-6). The average stomatal conductance over the maize phenotyping was 

206.9 mmol/m2. The lowest conductance value occurred during the early vegetative growth 

stage (V5-V10) at 42 mmol/m2, and the highest stomatal conductance occurred during the 

early reproductive development stage (R1-R3) at 556.5 mmol/m2. Higher stomatal 

conductance values characterized reproductive stages compared to the vegetative stages. 

However, the average stomatal conductance for the mid-reproductive stage (R2-R4) 

decreased to 172.6 mmol/m2 due to the crop stress from the hailstorm on DOY 113. 

Furthermore, the median value of maize stomatal conductance across the growing season 

was 194.6 mmol/m2, and the average stomatal conductance values were within 79.3 standard 

deviations of the mean value.  

 

Table 5-5: Descriptive statistics of stomatal conductance throughout the maize phenological 

cycle 

Maize stomatal conductance 

at the various growth stages 

Minimum 

(mmol/m2s) 

Maximum 

(mmol/m2s) 

Mean 

(mmol/m2s) 

Median 

(mmol/m2s) 

Standard 

deviation 

DOY 61 V5-V10 42 245.1 121.8 112.9 49.25 

DOY 77 V12 86.6 556.5 248.5 238.1 113.3 

DOY 90 V14-T 44.2 404.8 166.5 157.6 73.7 

DOY 102 R1-R2 182.7 480.1 298.9 290.1 79.3 

DOY 118 R2-R4 100.2 373.6 172.6 160.3 55.6 

DOY 134 R4-R5 74.3 483.1 233.3 208.5 104.8 

Average value 88.3 423.9 206.9 194.6 79.3 
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Importantly, foliar temperature and stomatal conductance had a significant inverse 

relationship, producing an R2 = 0.72 (Figure 5-8). The negative relationship between stomatal 

conductance and temperature further enhanced potential crop water stress identification. 

Such a relationship illustrated that when stomatal conductance was low, foliar temperatures 

were high, i.e. hot canopy. Furthermore, high stomatal conductance was associated with low 

foliar temperatures, i.e. cool canopy, suggesting optimal maize water productivity. 

For example, on DOY 77, the maize temperature was low at 20°C, and the stomatal 

conductance was high at 396 mmol/m2, illustrating potentially optimal crop conditions. On DOY 

61, the maize temperature was higher at 28°C, and the stomatal conductance was low at 122 

mmol/m2, indicating potential water stress. Thus, the inverse relationship between foliar 

temperature and stomatal conductance was useful in estimating crop water stress.  

 

 

Figure 5-8: Correlation of foliar temperature and stomatal conductance throughout the maize 

phenological cycle 

 

5.3.3 UAV-derived data: estimation of maize temperature and stomatal conductance  

For the prediction of maize temperature, the mid-vegetative stage (DOY 77 (V12)) yielded the 

most optimal modelled RMSE = 0.59°C and R2 = 0.81 (RRMSE = 2.9%) (Figure 5-9 (b)). The 

optimal variables for this model were the thermal infrared followed by red, NGRDI, CVI and 

NDVI, in order of importance (Figure 5-10 (b)). The mid-reproductive stages yielded an RMSE 

= 1.24°C, R2 = 0.76 and the poorest maize phenology RRMSE = 6.2%. Model prediction 

accuracies moderately improved in the late vegetative stages (DOY 90 (V14-T)) and the early 

reproductive stage (DOY 102 (R1-R3)) to an RMSE = 1.14°C, R2 = 0.79 (RRMSE = 4%) and 

RMSE = 1.02°C, R2 = 0.73 (RRMSE = 3.9%), respectively. The model from the late 

reproductive stage (DOY 134 (R5-R6)) obtained an RMSE = 0.7°C and R2 = 0.78 (RRMSE = 

2.6%) based on NDRE, OSAVI, CCCI, thermal infrared, and EVI, in order of importance 
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(Figure 5 10 (e)). The early vegetative stage (DOY 61(V5-V10)) exhibited a RMSE = 1.29 and 

R2 = 0.69 (RRMSE = 4.7%). 

In estimating stomatal conductance, the early reproductive stage (DOY 102 (R1-R3)) 

produced the most accurate model with an RMSE = 25.9 mmol/m2, the highest R2 = 0.85 (and 

the best RRMSE = 11.5%) based on NIR, NDRE, Thermal, CIrededge, and red-edge, in order of 

importance (Figure 5-10 (d)). Poor stomatal conductance accuracies were attained during the 

late reproductive stage (DOY 134 (R5-R6)) with an RMSE = 52.6 mmol/m2 and R2 = 0.78 

(RRMSE = 23.8%) using the thermal infrared, CCCI, blue, CIrededge, and CVI in order of 

importance (Figure 5-10 (f)). In addition, the late vegetative stages (DOY 90 (V14-T)) also 

yielded a poor model with an RMSE = 51.2 mmol/m2 and R2 = 0.64 (poorest RRMSE = 28.7%). 

The mid-reproductive stage (DOY 118 (R3-R4)) model produced a RMSE = 44.6 mmol/m2 and 

R2 = 0.7 (RRMSE = 25.6%). The mid-vegetative stage (DOY 77 (V12)) yielded improved model 

accuracies with an RMSE = 34.8 mmol/m2, the poorest R2 = 0.58 (RRMSE = 20.1%), whereas 

the early vegetative stage (DOY 61 (V5-V10)) produced an optimal RMSE = 26.5 mmol/m2 

and R2 = 0.73 (RRMSE = 22.9%). The early and mid-reproductive stages were characterized 

by the red-edge band and the CIrededge, respectively. The red-edge and NIR bands were clear 

stand-out and optimal model contributors. However, the model achieved higher R2 values 

during the reproductive stages and more optimal RMSE values during the vegetative stages. 
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Figure 5-9: Regression models displaying the relationships between measured and predicted 

IRT foliar temperature and stomatal conductance throughout the maize phenological cycle: 

(a) V5-V10, (b) V12, (c) V14 to VT, (d) R1-R3, (e) R3-R4, (f) R5-R6  
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Figure 5-10: Variable importance scores of optimal foliar temperature and stomatal 

conductance bands and VIs throughout the phenological cycle: (a) V5-V10, (b) V12, (c) V14 

to VT, (d) R1-R3, (e) R3-R4, (f) R5-R6  
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5.3.4 Mapping the spatial distribution of maize temperature and stomatal 

conductance over the various phenological stages. 

The modelled maize temperature ranged from 8 to 57°C (Figure 5-11). The maize field 

temperatures were high during the early vegetative growth stage. Subsequently, during the 

mid-vegetative growth stage, the field temperature moderately decreased and further 

decreased during the late vegetative stage to have the lowest field foliar temperatures. 

Likewise, in the early reproductive stage, the field was characterized by a generally low 

temperature, except for the field's eastern edge (high elevation). The maize temperature 

during the mid-reproductive stage increased due to the hailstorm damage. During the late 

reproductive stage, the hailstorm effects increased and further escalated field temperatures. 

 

Figure 5-11: Foliar temperature of maize over the smallholder field for vegetative stages (a) 

V5-V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1-R3, (e) R3-R4, (f) R5-R6. 

The spatial distribution of stomatal conductance was estimated based on the optimal models 

for each maize phenological stage. The stomatal conductance values ranged from 82.2 

mmol/m2 to 683.4 mmol/m2 (Figure 5-12). It can be observed that the stomatal conductance 

of maize was relatively low throughout the maize fields. However, high levels of stomatal 

conductance were identified during the early vegetative stage towards the southern portion of 

the field, the eastern part of the field during the late vegetative stage, and the eastern section 

during the mid-reproductive stage. The remainder of the stages, being the mid-vegetative, 

early reproductive, and late reproductive, were characterized by lower levels of stomatal 
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conductance. The late reproductive stage had the lowest conductance due to the hailstorm 

stress and crop senescence.  

 

Figure 5-12: Maize stomatal conductance over the smallholder field for vegetative stages (a) 

5-V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1-R3, (e) R3-R4, (f) R5-R6. 

 

5.4 Discussion 

This study aimed to predict maize temperature and stomatal conductance over the various 

maize growth stages using UAV-derived data in combination with the random forest algorithm. 

We aimed to determine the most optimal maize growth stage(s) for temperature and stomatal 

conductance model estimation. It was evident that maize foliar temperatures and stomatal 

conductance differed throughout phenotyping. The UAV-derived data could discern the 

optimal growth stages for characterising temperature and stomatal conductance as proxies 

for crop water stress. For this purpose, the foliar temperature and stomatal conductance data 

were used to understand the smallholder field's potential crop water stress and moisture status 

throughout the growing stages.  
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5.4.1 Prediction of maize water stress using foliar temperature and stomatal 

conductance  

The regression models were set to predict maize foliar temperature and stomatal conductance 

using the thermal infrared and multispectral UAV data. Generally, the random forest model 

performed relatively well in predicting maize foliar temperature and stomatal conductance over 

the various growth stages. Specifically, the random forest model achieved stronger prediction 

accuracies for foliar temperature than stomatal conductance over maize phenotyping.  

The maize foliar temperature was optimally predicted during the mid-vegetative growth stage 

(RMSE = 0.59°C, R2 = 0.81 and RRMSE = 2.9%) based on the thermal infrared, followed by 

the NIR, NGRBI, EVI and NDVI, in order of importance. It has been illustrated in the literature 

that crop leaves' water content is directly associated with foliar reflectance across the 

electromagnetic spectrum (Mangus, Sharda et al., 2016; Gerhards, Schlerf et al., 2019). 

Specifically, the foliar temperature was strongly detected by the thermal infrared as it can 

sense emitted radiant energy; hence, it is commonly used for evaluating crop water stress 

(Prakash, 2000; Zarco-Tejada, González-Dugo et al., 2012; Brenner, Thiem et al., 2017). 

Moreover, the NIR region was valuable in quantifying crop water status due to its strong water 

absorption ability to detect crop water stress based on reflectance variation (Das, Sahoo et 

al., 2021). Thus, the thermal infrared and NIR wavebands strongly detected the crop surface 

temperatures, hence their crucial role in predicting the maize temperature variability during 

vegetative growth stages.  

Specifically, during the vegetative stages, the maize canopy structure develops, thus exposing 

the underlying soil surface, which absorbs and retains thermal radiation (Zhang, Niu et al., 

2019). As a result, the high ambient soil temperatures influence the maize temperature, 

especially during early vegetative growth when there is maximum soil exposure. However, soil 

influence is reduced as the canopy structure develops, and crops generally experience lower 

leaf temperatures. Since stomata are generally more numerous on the underside of the leaf, 

they are influenced by the heat of soil, which reaches the underside due to convection (Nejad 

2011; Göbel, Coners et al., 2019). This reduces the stomatal conductance levels as the crop 

closes the stomata to retain moisture and subsequently experiences higher foliar 

temperatures (van der Vyver and Peters, 2017). Hence, the thermal infrared section was a 

strong predictor variable of foliar temperature due to its ability to overcome the influence of 

soil temperature during the stages of minimal canopy closure.  

Nevertheless, the temperature of a leaf, relative to the surrounding air temperature, is primarily 

influenced by the plant’s photosynthetic capacity, as well as the productivity of the internal 

structural leaf components such as the air cavities, chloroplasts, and mesophyll cell thickness 

(Peñuelas, Filella et al., 1993; Ustin and Jacquemoud, 2020). Thus, when a crop is water-

stressed, the molecular leaf networks transmit a signal to initiate physiological and biochemical 

changes that regularly result in increased foliar temperatures relative to the air temperatures 

(Bonada, Sadras et al., 2013; Hasanuzzaman, Nahar et al., 2013; Osakabe, Osakabe et al., 

2014). However, when optimal water is present, the Tc-Ta remains low as there are productive 

rates of transpiration and photosynthesis. Therefore, the sustained influence of the thermal 

infrared and chlorophyll-based VIs during vegetative growth stages suggested that the crop 

was optimally transpiring with no water stress. However, the relatively high maize leaf 
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temperatures measured in combination with the high Tc-Ta during the early vegetative stage 

suggested slight water stress at crop emergence.  

During the reproductive stages, the importance of the thermal infrared waveband decreased, 

and spectral wavelengths such as the red edge and NIR, as well as VIs derived from these 

sections, were found to be more important in facilitating the prediction of foliar temperature. 

This could be attributed to the fact that there was minimal soil exposure due to the fully 

developed canopy structure. More specifically, the red edge borders the absorption of 

photosynthetic pigments such as chlorophyll, which tend to be more vigorous in fully 

developed canopies (Ciganda, Gitelson et al., 2012; Bano, Aslam et al., 2015). Generally, the 

change in chlorophyll affects the photosynthetic rates, which indirectly alters the temperature 

tolerance and further the stomatal conductance of the crop, inherently indicating crop water 

productivity (Yordanov, Tsonev et al., 1997). Additionally, during these stages, a higher leaf 

area index facilitates multiple leaf scattering and reduced transmittance through the leaf due 

to stronger chlorophyll concentrations optimally identified by the NIR region (Ustin and 

Jacquemoud 2020; Sibanda, Onisimo et al., 2021). Hence, the significant contribution of 

chlorophyll-based indices from the red-edge and NIR sections, such as the CCCI, NDRE, and 

GNDVI, during the reproductive stages of temperature prediction. However, the hailstorm 

occurrence during the mid-reproductive stage damaged the maize canopy structure and 

exposed underlying soil, causing poorer model prediction due to the spectral confusion 

between soil and foliar temperatures. After the hailstorm, the Tc-Ta increased due to the 

canopy damage that caused increased crop temperatures. This increase indicated potential 

crop water stress during the mid-reproductive and late reproductive stages.  

Meanwhile, based on the red edge, maize stomatal conductance was optimally predicted 

during the early reproductive stage (RMSE = 25.9 mmol/m2, R2 = 0.85 and RRMSE = 11.5%) 

followed by the NIR, green, OSAVI and blue band, in order of importance. Literature has 

confirmed that the red-edge region is renowned for its relation to plant water stress and 

evapotranspiration (Ballester, Brinkhoff et al., 2019; Niu, Zhao et al., 2019; Vitrack-Tamam, 

Holtzman et al., 2020). This is because the red edge is layered with physiological and chemical 

processes that reflect the photosynthetic activity of the crop, which indicate stomatal 

conductance and the potential of crop water stress (Zarco-Tejada, Pushnik et al., 2003, 

Dobrowski, Pushnik et al., 2005). Specifically, during photosynthesis, the red edge overlaps 

the fluorescence emission, which affects the degree of reflection and corroborates the 

dependence of stomatal conductance on photosynthetic activity (Vitrack-Tamam, Holtzman et 

al., 2020). Moreover, denser canopies provide increased accuracy in estimates of 

photosynthetic capacity and stomatal conductance through the NIR region (Carter, 1998, 

Waring and Landsberg, 2011). Optimal stomatal activities are also associated with rapid 

chlorophyll development, which reflects highly in the red-edge and NIR (Ballester, Brinkhoff et 

al., 2019). Hence, the optimal influence of the red-edge and NIR wavebands and indices 

derived from these sections in estimating the stomatal conductance of maize in smallholder 

farms, especially during the reproductive stages. 

During the early reproductive stage, the crop was almost at peak biomass and obtained a high 

leaf surface area that promoted faster rates of photosynthesis and conductance to support 

fruit development (Yordanov, Tsonev et al., 1997; Dai, Dickinson et al., 2004). The measured 

stomatal activities were most prominent during this stage as a high foliar surface area was 
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generally associated with more stomata on the leaf (Li, Kang et al., 2004). Hence, transpiration 

rates are more dynamic, and the leaf stomata open, facilitating high productivity levels through 

optimal foliar conductance and cooling of crop temperatures (Gerhards, Schlerf et al., 2019). 

During the early reproductive stage, such processes indicated crop productivity and optimal 

moisture content, which influence a strong reflectance of the leaf tissue in the red-edge and 

NIR regions. Even though the crop was undergoing developmental processes during these 

stages that required high amounts of water (tasseling, silking, and kernel development), the 

maize measured an optimal foliar temperature and high stomatal conductance, suggesting 

crop water productivity and minimal crop water stress of the smallholder farm. However, the 

hailstorm, during the mid-reproductive stage disturbed the maize canopy structure and 

resulted in low measured stomatal conductance. Subsequently, this resulted in the thermal 

infrared being an important predictor due to damage of the canopy and exposure of soil. 

Furthermore, the high Tc-Ta indicated that the hailstorm damage-initiated crop water stress, 

as foliar temperatures increased and stomatal conductance was reduced in the mid-

reproductive and later reproductive stages. Similarly, this was also the case during the early 

vegetative stage, as stomatal conductance was low and Tc-Ta measured high. 

Finally, the prediction model proved that a combination of UAV multispectral and thermal 

wavebands and UAV-derived VIs could accurately predict maize foliar temperature and 

stomatal conductance. The variables of importance for foliar temperature and stomatal 

conductance were fairly similar in their contribution to the model development throughout 

maize phenotyping. Thus, this indicates that foliar temperature and stomatal conductance are 

independent yet interrelated functions, which holistically can be used to understand the 

potential of crop water stress. Therefore, timeously predicting maize foliar temperature and 

stomatal conductance allows smallholder farmers to make near real-time decisions that aid 

water-related crop productivity. 

5.4.2 Implications of the study  

Smallholder farming systems often lack the resources to initiate successful farming practices, 

as commercial agriculture tends to be the focus of contemporary innovation and development. 

Thus, the findings of this study imply that incorporating multispectral and thermal infrared UAV 

technology could facilitate in-depth analysis of near real-time crop water stress through 

temperature and stomatal conductance as proxies. In this regard, the study's findings are 

useful for informing smallholder agriculture management by suggesting the potential 

implementation of irrigation schedules at crucial water stages (i.e. tasseling, silking, and 

pollination). Moreover, the UAV-derived data identified stages of high temperatures and low 

stomatal conductance (i.e. early vegetative stage), suggesting a potential moisture deficit and, 

thus, the need for necessary interventional irrigation schedules to ensure optimal crop 

productivity and development. Specifically, irrigation during vegetative stages may aid optimal 

productivity and prevent early crop water stress.  

The hailstorm during the mid-reproductive stages caused damage to the maize canopy 

structure and led to adverse effects on crop growth and premature senescence. Subsequent 

in-field measurements of stomatal conductance reflected potential stress, as stomatal 

conductance values were much lower than typical values expected during this growth stage. 

Additionally, foliar temperature measurements were relatively high and indicated mild stress, 
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especially during the late reproductive stage. Such agrometeorological effects prove South 

African smallholder farmers are susceptible to weather events affecting crop water 

productivity. Thus, using UAV-derived data enables the identification of such occurrences in 

near real-time, allowing farmers to make rapid, informed, and effective decisions on 

subsequent crop management. This is crucial as it affects the food security and socio-

economic growth of smallholder farmers who rely on healthy and moisture-filled crop yields. 

Therefore, smallholder farmers benefit from the near real-time analysis of the UAV data and 

can ensure prompt remedial measures to prevent further crop stress.  

5.5 Conclusion 

Premised on the study's findings, it can be concluded that foliar temperature and stomatal 

conductance are adequate indicators to quantify proxies of water stress throughout the 

growing period. Foliar temperature yielded higher prediction accuracies as compared to 

stomatal conductance. Nevertheless, the random forest regression model optimally predicted 

both indicators throughout maize phenotyping. Specifically:  

• The UAV-derived multispectral data and thermal infrared waveband optimally 

estimated maize temperature during the mid-vegetative stage to an RMSE = 0.59°C 

and R2 = 0.81 (RRMSE = 2.9%) based on the thermal infrared, followed by the NIR, 

NGRBI, EVI and NDVI, in order of importance, 

• The multispectral and thermal infrared data optimally predicted stomatal conductance 

during the early reproductive stage to an RMSE = 25.9 mmol/m2 and R2 = 0.85 

(RRMSE = 11.5%) based on the red-edge band, followed by the NIR, green, OSAVI 

and blue band, in order of importance. 

Considering the study results, UAV technology is a plausible, flexible, and accurate earth 

observation technique useful for small-scale farming applications. This is because UAV-

derived data provides information at improved spatial resolutions to help smallholder farmers 

understand their crop dynamics and make informed farm management decisions. Specifically, 

using multispectral and thermal infrared UAV-data is a step towards attaining an agroclimatic 

smart, near real-time and high spatial resolution technology for assessing crop water stress 

through foliar temperature and stomatal conductance. However, the study could have 

benefitted from higher spectral resolution data and additional measured testing data for 

improved model performance. Nevertheless, the random forest model performed relatively 

well at estimating maize leaf temperature and stomatal conductance in the Swayimane area. 

Therefore, implementing low-cost, near real-time, and evidence-based solutions to 

smallholder agriculture facilitates improved interventions in these agricultural systems. 
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6 ESTIMATION OF MAIZE LEAF WATER CONTENT USING MACHINE 

LEARNING TECHNIQUES AND UNMANNED AERIAL VEHICLE (UAV)-BASED 

PROXIMAL AND REMOTELY SENSED DATA 

 

Ndlovu HS, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP and Mabhaudhi T  

 

6.1 Introduction 

Crop moisture stress is one of maize crop production's most drastic limiting factors (Avetisyan 

and Cvetanova, 2019). Maize (Zea mays L.) is an important grain crop mostly grown under 

rain-fed conditions and consumed by most of Southern Africa’s population as a staple food 

(Ngoune Tandzi and Mutengwa, 2020). Due to high population growth and increased food and 

nutrition insecurities, smallholder farmers now play a critical role in maize production and 

foster food security, particularly in developing nations such as South Africa (Sibanda, Mutanga 

et al., 2019; Agbugba, Christian et al., 2020). Despite their key role, smallholder farms 

constantly face the challenge of intermittent water stress and drought, resulting in significant 

yield losses (Gomez y Paloma, Riesgo et al., 2020). When stress occurs from the pre-

flowering to late grain-filling stages, it is often difficult to detect the onset and magnitude of 

intermittent water stress (Daryanto, Wang et al., 2016). In addition, spatial and temporal crop 

management, cultivar selection, soil and topography affect its extent and impacts on maize 

yield (Daryanto, Wang et al., 2016). As such, there are no clear cut spatially explicit methods 

of quantifying its water stress near-real-time in smallholder farms of the global south with 

limited resources. It is therefore imperative to develop optimal methods for quantifying maize 

water stress in a spatially explicit manner. This provides a key pathway towards effectively 

monitoring drought impacts and deriving useful information that can be used to inform irrigation 

decisions. 

When maize crops are in a state of moisture deficit, there is a decrease in leaf photosynthesis, 

stomatal conductance, leaf expansion and transpiration, resulting in impaired growth (Zhang, 

Zhang et al., 2019). Lack of water molecules results in the loss of turgor-driven cell expansion 

and primary productivity of maize crops, which has detrimental impacts on its growth 

(Pasqualotto, Delegido et al., 2018; Chivasa, Mutanga et al., 2020). Crop water deficits result 

in a decline in the quantity and quality of maize produce (Afzal and Mousavi, 2008) and 

considerably affect the phenotype, reproductive system and seed set (Afzal and Mousavi, 

2008). Strong and positive correlations have been observed between grain yield and leaf water 

content (Afzal and Mousavi, 2008; Zhang, Zhang et al., 2019). Therefore, knowledge of 

estimating maize leaf moisture conditions is necessary for crop monitoring and developing 

early warning systems to optimise agricultural production in exclusively rain-fed smallholder 

farms (Davidson, Wang et al., 2006; Zhang and Zhou, 2015). 

A variety of physiological indicators have been developed to quantify crop moisture stress. 

They include equivalent water thickness (EWT), fuel moisture content (FMC) and specific leaf 

area (SLA) (Liu, Peng et al., 2015; Zhang, Pattey et al., 2017; Zhou, Zhou et al., 2020).  EWT 
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is the ratio between a crop’s leaf area and the quantity of water per unit area (Yi, Wang et al., 

2014). EWT is an improvement of dry matter content as it takes into account the thickness 

and area covered by the canopy. FMC represents the quantity of water per unit mass of leaf 

dry matter. It is an effective indicator of moisture stress or drought conditions and is commonly 

used in wildfire monitoring (Chivasa, Mutanga et al., 2020). SLA is the leaf area ratio per dry 

mass unit (Gonzalez, Gallardo et al., 2009). SLA is a fundamental indicator of crop physiology 

and the variability of the crop’s photosynthetic capacity and growth rate (Ali, Darvishzadeh et 

al., 2017).  Although various studies have been conducted in monitoring crop water status 

(Zhang, Zhang et al., 2019; Zhou, Zhou et al., 2020), there is still a disagreement on the best-

suited indicator for maize moisture content prediction at a leaf level in small fields.   

Several methods have been developed for quantifying maize moisture content indicators 

(Ustin, Riaño et al., 2012; Zhang, Liu et al., 2018; Xu, Qu et al., 2020). Conventionally, 

variations in crop moisture status are measured through conventional methods such as visual 

assessment or in-situ measurements conducted by trained experts (Chivasa, Mutanga et al., 

2020). However, such techniques are laborious, costly and comparatively time-consuming, 

hence not feasible for continuous and time-efficient crop monitoring (Yue, Feng et al., 2018). 

Over the decades, satellite-borne earth observation technologies have proven to be effective 

in monitoring plant water status, variations in the physiology of water-stressed vegetation and 

indicating crop water requirements for improved irrigation efficiency (Sibanda, Onisimo et al., 

2021). For instance, Xu, Qu et al. (2020) used multispectral data derived from Landsat-OLI 

and MODIS datasets to quantify crop moisture content with an optimal R2 of 0.78. Additionally, 

Sibanda, Onisimo et al. (2021) utilized Sentinel-2 MSI to estimate canopy water content and 

FMC to an rRMSE of 20.8% and 18.45%, respectively, while Krishna, Sahoo et al. (2019) used 

the combination of hyperspectral sensors and partial least squares regression to estimate rice 

crop moisture stress with an R2 of 0.94. However, despite these successes, the application of 

satellite data in characterising moisture indicators at a farm scale is restricted by their relatively 

coarser spatial and temporal resolutions (Hussain, Gao et al., 2020). Although some sensors 

provide very-high-resolution (VHR) remotely sensed data, such as QuickBird and Worldview 

imagery, they are often costly and not ideal for monitoring maize moisture content on 

smallholder farms (Chivasa, Mutanga et al., 2020).  

In recent years, unmanned aerial vehicles (UAVs), known as drones, have received 

widespread attention in precision agriculture (Maes, Huete et al., 2018). UAVs, mounted with 

lightweight multispectral sensors capable of providing spatially explicit near real-time 

information, are valuable for crop physiology monitoring (Hussain, Gao et al., 2020). 

Additionally, UAV proximal sensors with a sub-meter resolution deliver rapid, cost-effective 

and accurate measurements required for detecting maize water status at a plot level (Chivasa, 

Mutanga et al., 2020). Compared with satellite imagery, UAV-based sensors can provide 

exceptionally high spatial and temporal resolution datasets. In addition, UAV platforms can 

hover over a specific area of interest. They can acquire imagery at lower altitudes, allowing 

for a finer ground sampling distance, hence suitable for better quantifying maize moisture 

content at a field scale (Chivasa, Mutanga et al., 2020). Various studies have utilized UAV-

based proximal sensing in environmental applications (Castaldi, Pelosi et al., 2017; Zhang, 

Basso et al., 2018; Wijewardana, Alsajri et al., 2019). For example, Han, Yang et al. (2019) 

used a DJI Spreading Wings UAV mounted with an RGB camera to estimate plant height of 

maize crops and attained an RMSE of 14.1 cm, while Zhang, Basso et al. (2018) utilised a 
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Phantom 3 UAV-based RGB image to investigate the optimal flight height for discriminating 

maize varieties. 

Additionally, studies have demonstrated the utility of UAV remote sensing approaches in 

maize yield prediction (Wahab, Hall et al., 2018), maize pest and disease detection (Castaldi, 

Pelosi et al., 2017) and crop physiology monitoring (Wijewardana, Alsajri et al., 2019).  

However, these studies were conducted in controlled experimental plots in the global north. 

Very few studies have been conducted in the global south, particularly in smallholder 

croplands with rain-fed maize and other crops. As a result, the potential application of UAVs 

equipped with high-resolution sensors for monitoring crop dynamics, such as maize moisture 

content, needs to be further investigated, especially in small, fragmented croplands of 

Southern Africa.  

The prediction of maize moisture content using proximal remote sensing approaches is 

derived from the reflectance behaviour of water molecules and dry vegetation matter in the 

near-infrared (NIR) and the shortwave infrared (SWIR) sections of the electromagnetic 

spectrum (Wijewardana, Alsajri et al., 2019). However, many of the available drone sensors 

widely used in assessing crop moisture content and health have either covered the visible 

section of the electromagnetic spectrum or included the NIR. Very few of these studies have 

assessed the utility of drone sensors covering the red edge, NIR and the thermal sections of 

the electromagnetic spectrum in characterising crop moisture content. Furthermore, a large 

and growing body of literature has demonstrated the optimal performance of vegetation 

indices (VIs) derived from water-sensitive sections of the electromagnetic spectrum as an 

instrument for the retrieval of crop water status (Colombo, Meroni et al., 2008; Pasqualotto, 

Delegido et al., 2018; Zhang, Zhang et al., 2019). For example, the Normalized Difference 

Water Index (NDWI), Normalised Difference Vegetation Index (NDVI), Green Chlorophyll 

Index (CIgreen) and the Red Edge Chlorophyll Index (CIrededge) have demonstrated significant 

correlations to crop moisture indicators (Zhang and Zhou, 2015; Zhang and Zhou, 2019). In 

this regard, combining the drone-derived red-edge, NIR and thermal bands with optimal 

vegetation indices was anticipated to yield accurate estimations of maize moisture content in 

smallholder farms. 

Regression techniques have been proposed for predicting vegetation parameters using 

remotely sensed data. These may be broadly categorised into conventional regression 

methods and machine-learning techniques (Yue, Feng et al., 2018). However, an example of 

a conventional regression technique is multiple linear regression (MLR).  A major limitation of 

conventional techniques, such as linear regression (MLR), is that they assume an explicit 

relationship between measured biophysical parameters and spectral observations, thus 

limiting their applicability to spatially complex datasets (Lu and He, 2019). Recently, machine 

learning regression techniques, such as support vector machines (SVM), random forest (RF), 

artificial neural network (ANN), partial least squares (PLS) and decision trees (DT), have 

gained popularity for their high-performance in computing, quantifying and understanding 

complex processes in agricultural applications (Liakos, Busato et al., 2018). Jin, Shi et al. 

(2017) applied the SVM model to estimate the leaf moisture content of maiden grass and 

achieved an exceptional model accuracy (R2 = 0.98). Sibanda, Onisimo et al. (2021) 

implemented the RF ensemble to predict the canopy moisture content of grasslands obtaining 

an R2 of 0.98 and RMSE of 9.8 gm-2, while Yue, Feng et al. (2018) applied machine learning 
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techniques, including DT, PLS and ANN in estimating the above-ground biomass of winter 

wheat. The above studies illustrate machine learning regression ensembles' robustness and 

prediction capabilities based on remotely sensed data. Although other algorithms have been 

used in remote sensing applications, a large and growing body of literature shows that SVM, 

RF, ANN, PLS and DT are the most widely adopted. This is attributed to their ease of 

implementation, robustness, especially in dealing with small sample sizes, optimal feature 

selection abilities, and high accuracies they yield. However, the literature indicates that no 

specific algorithm is suited for a specific context. There is, therefore, a need to assess and 

identify the most efficient algorithm that could accurately estimate maize foliar moisture 

content using UAV derived data in the context of smallholder croplands.  

Although UAV-based proximal sensing has become a powerful tool for estimating 

physiochemical variations in vegetation, only a few studies have been conducted on identifying 

the best method and moisture indicators to evaluate maize crop moisture stress at a farm 

scale. Therefore, operational and robust regression algorithms must be identified, tested and 

validated for their performance in predicting smallholder maize functional traits, such as 

moisture content. This study sought to investigate the potential of UAV-derived multispectral 

imagery and machine learning techniques in remotely estimating smallholder maize moisture 

content. The objectives of this study were to conduct a comparative analysis to (1) evaluate 

the performance of five regression techniques in predicting maize moisture content and (2) 

determine the most suitable indicator of smallholder maize moisture content. The anticipated 

results will help provide a technical approach for quickly and accurately monitoring changes 

in either EWT, FMC or SLA due to moisture variability to inform irrigation decisions and 

planning of smallholder maize crops. 

 

6.2 Materials and Methods 

6.2.1 Description of the study area 

This study was conducted at Swayimane (29° 52’ S, 30° 69’ E), a communal area within the 

uMshwathi Municipality, north-east of the city of Pietermaritzburg, South Africa (Figure 6-1). 

Swayimane is situated within the moist midlands mistbelt bioresource area, characterized by 

an average temperature ranging between 11.8°C and 24°C and a mean annual temperature 

of 17°C. The climate in the area is relatively hot, with wet, cool summers and dry winters. The 

area receives an annual rainfall that varies between 600-1100 mm. Swayimane experienced 

an average air temperature of 23.94°C and an average rainfall of 25 mm during the maize 

growing season 2020-2021 (Table 6 1). Swayimane is distinguished by arable clay loam soils 

and is ranked within the top 2% of the high-potential land in South Africa. Subsequently, such 

environmental conditions support the production of various grain and legume crops. 

Common crops produced within the study area are beans, sweet potato, sugarcane, spinach 

and maize. Swayimane is dominated by smallholder maize farms cultivated by the local 

community. Maize farmers depend primarily on traditional farming methods such as manual 

labour and livestock manure for fertilizer. Maize in Swayimane is cultivated at a subsistence 

scale and for additional income generation. Moreover, Swayimane is a good example of a 
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rural setup where organic farming is conducted on a semi-subsistence scale. This highlights 

the success of utilizing organic farming methods for optimizing maize yield at a minimal cost. 

Plot-level maize growth experiments were conducted in summer, the optimal growing season. 

The maize plot covered a spatial extent of 250 m2 and was primarily rain-fed. The maize crop 

was sown in mid-November 2020. When the project commenced, the crop was 86 days old, 

termed the reproductive phase of the growth cycle.  Specifically, the maize seedlings were 

intermediate between the kernel blister stage (growth stage R2) and kernel milk stage (growth 

stage R3). This stage was selected because the literature confirms that the early reproductive 

stages of maize are highly influenced by moisture and are most sensitive to water deficits 

(Ghooshchi, Seilsepour et al., 2008; Mi, Cai et al., 2018).  

  

Figure 6-1: (a) Location of the study area and (b) maize crop field in Swayimane, South Africa 
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Table 6-1: Bioclimatic conditions of Swayimane during the maize growing season 

Bioclimatic variable Data 

Total rainfall 25 mm 

Average Air temperature 23.94°C 

Average wind speed 1.68 m/s 

Average vapour pressure 2.55 kPa 

Average atmospheric pressure 917.64 mbar 

Source: On-site automatic weather station  

 

 

6.2.2 Field Sampling and moisture content measurements 

Field data collection was conducted on the 11th of February 2021 at the study site. An 

automatic weather station (AWS) was installed near the maize fields to acquire crop 

bioclimatic data. The AWS measured air temperature, relative humidity and wind speed. Wind 

direction sensors and a rain gauge measured the experimental plot's daily wind direction and 

rainfall. A stratified random sampling approach generated 104 sampling points within the 

maize field. This technique was selected to provide a representative sample of the study area. 

A Trimble handheld Global Positioning System (GPS) with a sub-meter accuracy was used to 

navigate to the randomly generated sample points within the field. Sampling fully developed 

leaves from the top of the maize canopy ensure reliable measurements of plant physiological 

characteristics, especially since these leaves receive direct sunlight and have maximum 

spectral reflectance (Mulla, 2013). Sampling young emerging leaves is unsuitable for plant 

analysis as it can exacerbate plant stress leading to plant mortality (Wahbi and Avery, 2018; 

Zhang, Niu et al., 2019). In this regard, the first fully developed leaf (first leaf below whorl) was 

collected from the top of the maize canopy at each sample point to measure leaf moisture 

content indicators. An LI-3000C Portable Area Meter combined with an LI-3050C Transparent 

Belt Conveyer Accessory with one mm2 resolution was used to measure the leaf area (A) of 

sampled maize leaves (Li-Cor, USA). The fresh weight (FW) of sampled maize leaves was 

obtained using a calibrated scale with a 0.5 g measurement error. Field measurements were 

conducted between 12:00 noon and 14:00 as this is the most optimal period for crop 

photosynthetic activity (Sade, Galkin et al., 2015). The sampled maize leaves were then dried 

in an oven at 70° C until a constant dry weight (DW) was reached (approximately 48 hours). 

The A, FW and DW were then used as input variables to compute maize leaf moisture 

indicators using the following equations: 

EWTleaf (gm-2) = (FW-DW) / A   Equation 6-1 

FMCleaf (%) = (FW-DW) / DW x 100% Equation 6-2 

SLAleaf (g-1 m2) = A/ DW   Equation 6-3 

The computed data for each crop moisture indicator was integrated with the GPS location and 

converted into a point map overlaid with the UAV multispectral images of the study area. 
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6.2.3 Model development and statistical analysis 

The UAV imaging platform used in this study measures reflectance in the spectrum's visible, 

red-edge and NIR regions. Hence we sought to evaluate all possible combinations of UAV 

spectral bands to accurately predict crop leaf moisture indicators. This study used the 

reflectance data from the Altum multispectral and thermal bands to derive VIs. Table 6-2 lists 

VIs selected for this study based on their direct and indirect correlation with plant water status 

indicators. As aforementioned, the prepared spectral data were then overlaid with the point 

data associated with measured maize moisture indicators to derive data used for the statistical 

prediction of maize moisture content.  

Table 6-2: List of vegetation indices (VIs) used in the modelling of crop moisture content and 

related source references 

6.2.4 Spatial analysis 

The sampled data were randomly split into training (70%) and validation data (30%). The 

former was used to develop the model, and the latter for assessing the accuracy of predictive 

models. A comparative analysis was conducted between the support vector regression, 

random forest regression, decision trees regression, artificial neural network regression and 

the partial least squares regression algorithms in predicting leaf moisture content indicators 

(i.e. EWT, FMC and SLA). According to Lary, Alavi et al. (2016), RF SVM, DT, ANN, and PLS 

are geosciences' most widely used machine learning algorithms. These non-parametric 

algorithms are robust, efficient, and can be parameterised and implemented easily (Liakos, 

Index  Full Name Formula Reference 

Direct water-sensitive spectral VI   

NDWI 

Normalised Difference 

Water Index Green - NIR / Green + NIR (Ozelkan, 2020) 

Indirect water-sensitive spectral VIs   

NDVI 

Normalized Difference 

Vegetation Index NIR - Red / NIR + Red 

(Ali, Darvishzadeh et al., 

2017) 

NGRDI 

Normalized Difference 

Green/Red Index Green - Red / Green + Red  

(Hoffmann, Jensen et al., 

2016) 

NDRE 

Normalized Difference Red-

Edge Index 

NIR - Rededge / NIR + 

Rededge (Zhang and Zhou, 2019) 

NDVIrededge 

Red-Edge Normalised 

Difference Vegetation Index 

Rededge - Red / Rededge + 

red (Zhang and Zhou, 2019) 

CIgreen Green Chlorophyll Index (NIR/Green) -1 (Zhang and Zhou, 2015) 

CIrededge Red-edge chlorophyll index (NIR/Rededge) -1 (Zhang and Zhou, 2019) 
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Busato et al., 2018; Yue, Feng et al., 2018). Above all, these algorithms have been used in 

literature and are renowned for their accuracy, facilitated by their ability to optimally select 

spectral features for accurate predictions (Lary, Alavi et al., 2016; Wang and Singh, 2017). It 

is in this regard that these algorithms were chosen for this study. Then, the variable selection 

was performed for each prediction model to identify the most influential variables in the 

prediction of the named indicators. Variable selection reduces issues associated with variable 

redundancy and multicollinearity, affecting regression model performance (Chivasa, Mutanga 

et al., 2021). Details on how each algorithm was used in this study are provided below. 

Support vector regression (SVR): initially developed for classification problems, it has 

proven to be an effective tool in regression problems (Wang, Cherkauer et al., 2016). As an 

intensive supervised learning technique, SVR is less sensitive to noisy inputs; thus, minimal 

estimation errors make the model more robust (Fan, Zheng et al., 2021). The greatest 

advantage of SVR is its robustness to outliers and capacity to perform well in high-dimensional 

datasets. Selecting the optimal hyperparameter settings of SVR is critical for optimising the 

model’s predictive power (Bae, Han et al., 2019). Three parameters were tuned for the SVR 

model, specifically, penalty parameter (C), precision parameter (ε) and kernel parameter (γ). 

In this study, the grid search and 10-fold cross-validation method, recommended by Shafiee, 

Lied et al. (2021), was performed on the training data and the SVR model was performed 

optimally at a C value of 8, ε equal to 0.5, and the γ kept at a default of 1. 

Random forest regression (RFR): is a machine learning ensemble that uses bootstrap 

aggregation and binary recursive partitioning to grow several independent regression trees 

(Abdel-Rahman, Ahmed et al., 2013). The strength of RFR lies in its ability to use bootstrap 

aggregation to build regression trees that are grown to their maximum sizes, with the results 

being combined by unweighted averaging to make predictions (Jeong, Resop et al., 2016). 

The RFR algorithm is renowned for producing high prediction accuracies and is easy and 

simple to implement (Sibanda, Onisimo et al., 2021). The quality of the RFR model depends 

on the proper setting of the RFR hyperparameters. The RFR model is generally optimized 

based on two parameters, namely Ntree, which is the number of decision trees to be 

generated and Mtry, the number of predictor variables tested for the best split when growing 

the trees (Belgiu and Dragut, 2016). To determine the Ntree and Mtry values that best predict 

maize leaf moisture content, the Ntree (the default value is 500 trees) values were tested from 

500 to 9500. In contrast, Mtry was tested from 1 to 25 using a single interval (Adam, Mutanga 

et al., 2012; Mutanga, Adam et al., 2012). The optimal hyperparameter values for predicting 

maize moisture content in the study were Ntree equal to 500 and a Mtry of 11.  

Decision tree regression (DTR): uses tree structures to build a regression model based on 

the structural patterns of the input data (Liang, Di et al., 2018). The DTR formally creates 

decision rules that guide the prediction of the relationship between the objective and predictor 

variables. The greatest advantage of the DTR model is its ability to avoid over-fitting, 

overcome missing data in explanatory and response variables and simple implementation 

(Pekel, 2020). In DTR, the hyperparameters were tuned using a pre-pruning technique, which 

stops the generation of a tree before it is fully constructed, to achieve optimal model 

performance (Bae, Han et al., 2019; Furuya, Aguiar et al., 2020). In this study, the fine-tuning 

process of the DTR algorithm was performed until no improvements were observed, and the 

model parameters were specified as follows; the minimum split, which is the minimum number 
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of values that must exist at a node before the split is attempted (Furuya, Aguiar et al., 2020), 

was fixed at 20 (Williams, 2011). The maximum depth at which the tree is allowed to grow was 

set to 30. Finally, the termination criteria for the regression tree was specified at 0.01 (Losing, 

Wersing et al., 2018). The hyperparameters of the DTR parameters are kept to their default 

values, except for the maximum depth, which is a fixed parameter for all the models (Williams 

2011; Hu, Siala et al., 2020). 

Artificial neural network (ANNR): has been widely applied in developing regression models. 

The quality of the ANNR model depends largely on the selection of the network structure, 

proper assignment of weights, and the training dataset of the model (Wang, Cherkauer et al., 

2016). The robustness of the ANNR is derived from the algorithm's ability to imitate the human 

neural system, allowing it to detect complex trends and patterns often unnoticed by other 

regression models (Yuan et al., 2017). Furthermore, the ANNR entails one or more hidden 

layers, in addition to the input and output layers, and discovers prominent features in the input 

data (Yeganefar, Niknam et al., 2019). As such, the hyperparameters of the optimal ANN 

model were determined to be ten nodes and two hidden layers. 

Partial least squares regression (PLSR): is a multivariate statistical technique characterised 

by robust information recognition and modelling capabilities (Yue, Feng et al., 2018). The 

algorithm combines the theory of multiple linear regression with the principal component 

analysis theory to effectively analyse the datasets with high dimensional and collinear 

predictors (Zhang, Liu et al., 2018). The PLSR is renowned as a powerful modelling technique, 

particularly in models with a large number of predictor variables and a high level of collinearity 

(Li, Zhang et al., 2014). 

To optimize the outputs of the above models, the variable importance scores were used to 

determine the most influential bands and indices for estimating leaf moisture content indicators 

(Ambrosone, Matese et al., 2020). The least important predictor variables were progressively 

removed, and the model was re-developed (Ambrosone, Matese et al., 2020; Bois, Pauthier 

et al., 2020). The Caret Package was used to develop the regression models in RStudio 

software version 1.4.1564. 

6.2.5 Accuracy assessment of derived maize moisture content models 

An accuracy assessment was conducted to evaluate the performance of regression models 

in predicting leaf moisture content indicators. The coefficient of determination (R2), the root 

mean square error (RMSE) and the relative root mean square error (rRMSE) were used to 

compare the accuracy of different models. Specifically, the R2 was used to measure the 

variation between measured and predicted maize leaf moisture content. RMSE was used to 

assess the magnitude of error between the field measurements and the modelled moisture 

content. The rRMSE was used to compare the performance of regression models across 

different algorithms and maize moisture indicators. To compute rRMSE, the RMSEs from each 

model were normalised using the mean of each variable and then expressed as a percentage 

(Li, Yang et al., 2021). The rRMSE has been widely used in literature to compare different 

variable predictions (Wocher, Berger et al., 2018; Sibanda, Onisimo et al., 2021); hence it was 

adopted in this study.  The optimal model for predicting leaf moisture content indicators was 

characterised by lower RMSE and RRMSE and a high R2 value. Additionally, the most suitable 
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indicator of maize moisture content was estimated by comparing the R2, RMSE and RRMSE. 

Similarly, the indicator that produces the highest R2 and the lowest RMSE and RRMSE will 

indicate a higher precision and accuracy in predicting maize moisture content. 

6.3 Results 

6.3.1 Descriptive analysis of maize crop moisture indicators and measured 

biophysical variables  

A wide range of variations was recorded in both biophysical variables and crop moisture 

indicators of maize crops. Table 6-3 represents the descriptive statistics of leaf FW, DW, Leaf 

area, EWT, FMC, and SLA. Averages for FW, DW, and Leaf area were 37.06 g, 6.94 g and 

0.09 m2, correspondingly, while the averages for crop moisture indicators, particularly EWTleaf, 

FMCleaf and SLAleaf were 356.52 gm-2, 81.27%, 29.86 gm-2 and 0.01 m2g-1, respectively. A 

Kolmogorov-Smirnov normality test revealed that all crop moisture indicators did not deviate 

significantly from the normal distribution curve. 

 

Table 6-3: Descriptive statistics of crop moisture indicators and biophysical variables 

Parameter 
Range 

Mean Median Std. CV% SEM* 
(min-max) 

Biophysical variables 

FW (g) 31.02-45.52 37.06 36.73 3.82 10.31 0.53 

DW (g) 3.22-8.76 6.94 6.95 1.02 14.69 0.14 

Leaf area (m2) 0.06-0.10 0.09 0.09 0.01 10.53 0.00 

Crop water indicators 

EWTleaf (gm-2) 290.91-473.18 356.52 344.14 42.42 11.90 5.88 

FMCleaf (%) 77.84-91.39 81.27 81.24 1.89 2.33 0.26 

SLAleaf (m2g-1) 0.0009-0.025 0.01 0.01 0.00 18.16 0.00 

*SEM is the standard error of the mean, Std. is the standard deviation, and CV is the coefficient 

of variation 
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6.3.2 Evaluation of maize moisture indicators and optimized regression models 

Table 6-4 illustrates the model accuracies in predicting leaf EWT, FMC and SLA based on the 

RFR, DTR, ANNR, PLSR and SVR regression techniques. The accuracies of the prediction 

models varied greatly for the crop moisture indicators.  

For example, when estimating EWTleaf, the DTR yielded the poorest model accuracy, with an 

RMSE of 25.16 gm-2 and R2 of 0.73. The accuracy in predicting EWTleaf improved slightly for 

the PLSR model (RMSE = 17.1 gm-2 and R2 =0.74). Similarly, the SVR and the ANNR models 

predicted EWTleaf at an improved accuracy of RMSE = 15.05 gm-2, R = 0.76 and RMSE =14.29 

gm-2, R2 = 0.84, respectively. The optimal algorithm for estimating EWTleaf was derived from 

the RFR model with an RMSE of 10.28 gm-2 and R2 of 0.89 (Table 6-4).  

Similarly, the ANNR model exhibited the lowest prediction accuracy in estimating FMCleaf 

(RMSE = 1.54% and R2 = 0.34). The PLSR followed this with an RMSE of 0.48% and R2 of 

0.45. The prediction accuracy increased significantly with the DTR and the SVR models with 

a corresponding R2 =0.65 and R2 = 0.69. The RFR model optimally predicted FMCleaf with the 

highest model accuracy of RMSE = 0.45% and R2 = 0.76 (Table 6 4). 

When predicting SLAleaf, the lowest RMSE of 0.0008 g-1 m2 and R2 of 0.6 was obtained using 

the PLSR model. The ANNR model improved the prediction by a magnitude of 8, i.e. R2 = 

0.68. The accuracy derived from the DTR and SVR in predicting SLA differed slightly with an 

RMSE = 0.0009 m2 g-1 and R2 = 0.7, and RMSE = 0.0005 g-1 m2 and R2 = 0.71. The optimal 

model for estimating SLAleaf exhibited an RMSE of 0.0004 g-1 m2 and R2 of 0.73 (Table). 

Table 6-4: Prediction accuracies of EWTleaf, FMCleaf and SLAleaf were derived using optimal 

models based on the RFR, DTR, ANNR, PLSR and SVR regression models 

 

6.3.3 Optimal models for estimating maize moisture content indicators 

Figure 6-2 illustrates the results obtained when all maize moisture content indicators were 

estimated based on the optimal regression models. The EWT leaf performed optimally to 

indicate maize moisture content with an rRMSE of 3.13% and an R2 of 0.89. The most optimal 

Model 
EWTleaf (gm-2) FMCleaf (%) SLAleaf (m2 g-1) 

R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE 

RFR 0.89 1028 3.13 0.76 0.45 1.00 0.73 0.0004 3.48 

DTR 0.73 25.16 7.67 0.65 1.08 1.35 0.7 0.0009 8.16 

ANNR 0.84 14.29 4.35 0,34 1.54 1.92 0.68 0.0007 6.60 

PLSR 0.74 17.1 5.15 0.45 0.48 0.60 0.6 0.0008 19.33 

SVR 0.78 15.05 4.76 0.69 0.70 0.89 0.71 0.0005 18.82 



 

91 

 

variables selected in estimating EWT leaf were NDVI, NIR, NDWI, CIgreen, NDVIrededge, Red, 

CIrededge, NDRE and NGRDI, in order of importance (Figure 6 2 (a)).  

Meanwhile, the FMCleaf based on the PLSR model performed better than the EWT leaf by 2.53% 

with an rRMSE of 0.6%. The most suitable predictor variables included NDRE, NIR, NDWI, 

CIrededge, NDVIrededge, red-edge, CIgreen, blue, thermal, NDVI, red and the green band (Figure  

6-2 (b)). Additionally, the FMCleaf SVR model produced a relatively high rRMSE of 0.89%. 

However, although the rRMSE of these FMCleaf models was high, there was a high variation 

between the measured and estimated FMCleaf values, with an R2 of 0.45 and 0.69, respectively. 

In comparison, the FMCleaf based on the RFR model exhibited an optimally high R2 of 0.76 and 

an acceptable rRMSE of 1%, making it the optimal FMCleaf model. 

The optimal model in predicting maize SLAleaf exhibited an rRMSE of 3.48% and R2 = 0.73. 

The variables with the highest influence in the SLA model were the NDVI, Thermal, NIR, 

NDRE, CIgreen, red-edge, NDVIrededge, CIrededge, NGRDI and the NDWI, in order of descending 

importance (Figure 6 2 (c)).  

The results revealed that the optimal indicators of maize moisture content based on the RFR 

models were FMCleaf and EWTleaf, followed by SLAleaf. Additionally, the UAV multispectral 

bands and derived VIs successfully predicted all maize moisture content indicators.  
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Figure 6-2: Relationship between the predicted and observed (a) EWTleaf, (b) FMCleaf and (c) 

SLAleaf of maize derived using optimal predictor variables and the model variable importance 

scores 
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6.3.4 Mapping the spatial distribution of maize leaf moisture content indicators 

The spatial distribution of leaf EWT, FMC, and SLA was estimated based on the optimal 

models. Figure 6 3 illustrates the spatial distribution of maize moisture content indicators. It 

can be observed that the moisture content of maize is relatively high throughout maize fields 

and seem to decrease towards the edge of the maize plot, with the exception of the FMC, 

which revealed small patches of lower maize moisture content within maize fields. 

 

Figure 6-3: Spatial distribution of (a) EWTleaf, (b) FMCleaf, and (c) SLAleaf of smallholder maize 

crops 

6.4 Discussion 

Smallholder farmers frequently need to optimize maize production; therefore, assessing maize 

water status through monitoring EWT, FMC and SLA could provide essential information for 

improving crop water use efficiency and enhancing maize productivity under water-limited 

conditions (El-Hendawy, Al-Suhaibani et al., 2019). The essence of this study was to assess 
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and identify a suitable indicator for maize moisture content and evaluate the predictive 

performance of robust algorithms in predicting maize moisture status. Thus, this study sought 

to investigate using UAV-derived remotely sensed data and machine learning techniques in 

estimating maize EWT, FMC and SLA. 

6.4.1 Estimating maize moisture content indicators 

Results in this study indicate that when estimating maize equivalent water thickness, an 

optimal estimation accuracy (rRMSE =3.13% and R2 =0.89) can be obtained based on spectral 

variables derived from the NIR section of the electromagnetic spectrum (NDVI, NIR, NDWI, 

and NDRE). Literature confirms that the quantity of water in crop leaves is statistically 

correlated with leaf reflectance across the spectrum (Mobasheri and Fatemi 2013; El-

Hendawy, Al-Suhaibani et al., 2019; Wijewardana, Alsajri et al., 2019). Specifically, the 

variation in water molecules present in the leaf cell strongly reflects solar radiation in the NIR 

region. Hence, this section of the spectrum is commonly used to quantity leaf water status 

(Pasqualotto, Delegido et al., 2018; El-Hendawy, Al-Suhaibani et al., 2019). Leaves which are 

characterised by high moisture status reflect highly in the NIR region due to multiple scattering 

within the leaf cell, which is primarily controlled by leaf cuticles, mesophyll thickness and 

intercellular air spaces and is directly linked to leaf moisture content (Romero-Trigueros, 

Nortes et al., 2017; Sibanda, Onisimo et al., 2021). 

Furthermore, the NIR section has been widely proven to be related to the leaf water absorption 

zone, hence its optimal influence in estimating the leaf EWT of maize in smallholder farms. 

Correspondingly, studies by Mobasheri and Fatemi (2013) and Riaño, Vaughan et al. (2005) 

successfully illustrated the use of leaf optical reflectance in the NIR  section of the 

electromagnetic spectrum in optimally predicting EWT with an R2 of 0.95 and 0.75, 

respectively. EWT also displayed high sensitivity to chlorophyll-based indices, especially 

CIgreen and CIrededge. This could be explained by the fact that changes in the level of 

chlorophyll in leaves, which alters crop greenness and leaf pigmentation, are closely related 

to water status (Jurdao, Yebra et al., 2013; Zhang and Zhou, 2015). As in this study, Zhang 

and Zhou (2019) noted that these chlorophyll-based indices presented a higher sensitivity to 

crop water indicators.  

Fuel moisture content (FMC) was optimally predicted to a model accuracy of rRMSE of 1% 

and R2 = 0.76. The results of this study show that FMC is particularly sensitive to the red-edge 

waveband and associated derivatives of these spectral channels. For instance, there was a 

significant influence of the red-edge, NDRE, NDVIrededge and CIrededge in the prediction of maize 

FMC. Such sensitivity of the red-edge band in predicting FMC can be explained by its positive 

association with crop biomass and chlorophyll content, which is also positively correlated with 

FMC (Sibanda, Onisimo et al., 2021). Generally, the variations in crop moisture content are 

largely associated with chlorophyll activity and leaf area index, which influence the reflectance 

of leaf tissue in the red-edge section of the electromagnetic spectrum (García, Chuvieco et 

al., 2008). This was the case in studies by Bar-Massada and Sviri (2020) and Cao and Wang 

(2017) that confirmed a variation in the reflectance of green leaves under water-stressed 

conditions in the red-edge band, making this wavelength a significant predictor of FMC. 
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Furthermore, NDWI, which is primarily derived from the NIR band, has a significant influence 

on the prediction of FMC. This VI is particularly important in predicting moisture content as it 

is sensitive to the variations of leaf reflectance induced by water molecules and dry matter 

content, hence, strongly correlates to plant water stress (Zhang and Zhou, 2015). A study by 

Sow, Mbow et al. (2013) demonstrated the importance of the NDWI in predicting FMC by 

achieving an R2 of 0.85. In this regard, the literature supports the relationship between FMC 

and the red-edge and the NIR sections of the electromagnetic spectrum (García, Chuvieco et 

al., 2008; Sibanda, Onisimo et al., 2021).  

Finally, the results of this study show that SLA could be estimated to have an rRMSE of 3.48%. 

R2 of 0.73 and SLA were particularly sensitive to the UAV-derived thermal, NIR and red-edge 

wavelengths. When crops are in a state of water deficit, there is an overall increase in crop 

surface temperature due to the closure of leaf stoma, which decreases the evaporation cooling 

effect (Gerhards, Schlerf et al., 2019).  The literature notes that the thermal band has been 

well-established as a key wavelength for early plant moisture stress detection (Mangus, 

Sharda et al., 2016; Gerhards, Schlerf et al., 2019). Again, NDVI was this study's most 

influential predictor of maize SLA. This could be explained by the fact that NDVI is proportional 

to chlorophyll content which is sensitive to changes in crop moisture content (Wang, 

Cherkauer et al., 2016). 

Furthermore, when crops are water-stressed, there is a decrease in chlorophyll absorption at 

the red wavelength and a decrease in reflectance at the NIR region due to the shrinkage of 

leaf thickness during the wilting process (Lim, Watanabe et al., 2020). In a similar study, Ali, 

Darvishzadeh et al. (2017) noted that NDVI was very effective in optimally estimating SLA (R2 

= 0.73 and RMSE = 4.68%). Wijewardana, Alsajri et al. (2019) confirmed that the combination 

of both the NIR and red wavelengths allows NDVI to be an invaluable predictor of 

photosynthetic activity and long-term water stress.  Also, SLA was sensitive to the NDRE, 

NDVIredege, and chlorophyll-based VIs. The influence of these red-edge-based VIs in 

predicting SLA stems from the fact that the variations in leaf thickness and area and leaf 

pigmentation due to moisture stress are promptly detected at the red-edge section (Easterday, 

Kislik et al., 2019). In this regard, the leaf photosynthetic capacity variations provide essential 

information about maize leaf water vapour and moisture content (Ali, Darvishzadeh et al., 

2017). 

Furthermore, results illustrate that all maize leaf moisture content indicators were optimally 

predicted using UAV-derived data. Accordingly, FMC and EWT yielded the highest predictive 

power of moisture content, while SLA was effectively estimated. The FMC and EWT are the 

ideal crop water indicators for monitoring moisture stress using field spectroscopy techniques 

(Yi, Wang et al., 2014; Liu, Peng et al., 2015).  

6.4.2 The performance of machine learning algorithms in predicting maize moisture 

content indicators 

Results in this study show that the RFR approach is the most suitable explorative tool to predict 

all maize moisture content indicators. For instance, RFR optimally predicted FMC, EWT and 

SLA, producing the highest prediction accuracy (rRMSE = 1%, 3.13% and 3.48%). The RFR 

algorithm can effectively establish the relationship between leaf reflectance and maize 
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moisture at a farm scale. The strength of RFR could be explained by the fact that the algorithm 

is not highly affected by noise in the data. Hence there is a reduced risk of producing overfitting 

models (Abdel-Rahman, Ahmed et al., 2013; Zhu, Liu et al., 2017). In a similar study, Sibanda, 

Onisimo et al. (2021) confirmed the robustness of the RFR model in modelling moisture 

content elements, particularly FMC, by achieving optimal R2s as high as 1 and an RMSE of 

16.4%.  

The SVR approach was also optimal in predicting maize leaf EWT, FMC and SLA. The 

strength of the SVR lies in its ability to circumvent outliers and exhibit a high generalization 

capacity to handle unseen patterns (Liang, Di et al., 2018). The results of this study reveal that 

the SVR is similar to the RFR in predictive power. This could be explained by the fact that the 

SVR and RFR ensembles optimally operate with a relatively small number of training samples, 

which is often the case for data acquired at a field scale after avoiding spatial autocorrelation 

(Wang, Cherkauer et al., 2016; Zhu, Liu et al., 2017). Research has indicated that the 

presence of spatial autocorrelation, defined as the systematic spatial variation of the mapped 

variable, could result in biased and statistically invalid results (Zhu, Liu et al., 2017; Liang, Di 

et al., 2018; Sinha, Gaughan et al., 2019). Therefore, the results of this study demonstrate 

that the model properties of RFR and SVR are well-suited for the estimation of smallholder 

maize moisture content. Generally, DTR did not perform well in predicting maize moisture 

indicators. This could be explained by the fact that DTR does not have features such as the 

bootstrapping in RFR and hyperplanes in SVR for effectively encompassing all the samples 

during the prediction procedure (Liang, Di et al., 2018). This can result in the DTR algorithm 

being conservative in its prediction procedure, exhibiting lower prediction accuracies. In this 

regard, very few studies have evaluated its predictive performance in the context of canopy 

and leaf moisture content. 

In comparison, the ANN and PLSR had poorer performance predicting maize moisture 

content. This could be because the ANN and PLSR are best suited for a large training dataset 

to produce credible results (Wang, Cherkauer et al., 2016; Yuan, Yang et al., 2017). As such, 

this study prompts future studies to investigate the optimal sample size required to produce 

accurate predictions of smallholder maize moisture content when using a combination of UAV 

imagery and machine learning techniques. Additionally, there are prospects to evaluate the 

ability of other empirical models and deep learning methods in accurately modelling maize 

water variability. 

 

6.5 Conclusion 

The present study tested the utility of UAV-based multispectral data in a comparative approach 

of estimating moisture content using RFR, SVR, DTR, ANNR and PLSR machine learning 

techniques and EWT, FMC and SLA of maize crops in smallholder farms. Based on the 

findings of the study, it can be concluded that:  

• EWT, FMC and SLA moisture content indicators of maize could be optimally 

predicted using NIR and red-edge derived spectral variables  
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• The RFR and SVR modelling techniques have a more robust capacity to predict 

moisture content indicators of maize in comparison to the DTR, ANNR and PLSR  

• FMC and EWT, in concert with the RFR approach, exhibited the highest predictive 

performance, therefore, are valid indicators of maize moisture content 

This study demonstrates that UAV-derived multispectral data can predict maize moisture 

variations of smallholder farms with exceptional accuracy, hence can complement and inform 

farms of drought-related water stress. However, there are research gaps that demand further 

inquiry, particularly on smallholder maize farms. Future studies should evaluate the utility of 

UAV-derived data and the optimal moisture indicators in characterising the variation of maize 

moisture content across different phenological stages. Furthermore, a key limitation of this 

study is the lack of the SWIR spectrum, which would be valuable as it is an essential water 

absorption band. Therefore, additional studies are necessary to evaluate whether UAV 

sensors that measure spectral reflectance along the SWIR section of the electromagnetic 

spectrum improve smallholder maize moisture content prediction. Finally, this study was site 

and crop-specific. Therefore, studies conducted across various climates, different smallholder 

crops and at a multi-temporal scale should be assessed to draw broad conclusions in 

characterising crop moisture stress. 
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7 A MULTITEMPORAL ESTIMATION OF MAIZE LEAF EQUIVALENT 

WATER THICKNESS AND FUEL MOISTURE CONTENT VARIABILITY USING 

UNMANNED AERIAL VEHICLE (UAV) DERIVED MULTISPECTRAL DATA AS A 

PROXY TO MOISTURE STRESS 

 

Ndlovu HS, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP and Mabhaudhi T  

 

7.1 Introduction 

Maize (Zea mays L.) is an important and eminent food security crop that is a valuable source 

of animal fodder, bio-energy and raw industrial material (Ge, Sui et al., 2012; Sah, Chakraborty 

et al., 2020). However, due to rainfall scarcity and variability, maize moisture stress is a serious 

abiotic threat to maize production (Ge, Sui et al., 2012; Ndlovu, Odindi et al., 2021). Literature 

shows that maize is commonly grown in regions that receive annual average precipitation of 

300-500 mm, which is below the critical level of water supply for achieving a good maize yield 

(Sah, Chakraborty et al., 2020). This is a serious concern, particularly in Southern Africa, a 

water-scarce region that only receives an average and seasonal precipitation of 450 mm per 

annum (DAFF, 2017; Nembilwi, Chikoore et al., 2021). Despite a semi-arid climate, more than 

85% of Southern Africa’s smallholder maize farms are rain-fed (Ngoune Tandzi and 

Mutengwa, 2020). According to Sah, Chakraborty et al. (2020), climatic conditions, specifically 

seasonal rainfall variability, are a significant limiting factor of maize moisture status, ultimately 

regulating maize production. Therefore, there is a need for innovative and sustainable 

approaches to monitoring maize moisture status throughout the growing season for 

developing early detection and warning systems of moisture stress for the adoption of relevant 

mitigation measures. 

Maize moisture stress results in numerous physiological and biochemical changes, including 

a reduction in crop metabolism, increased stomatal closure and decreased dry matter 

production and leaf area (Song, Jin et al., 2019; Zhang, Zhang et al. Subsequently, water 

deficit negatively impacts maize productivity, impairs crop growth and development, 

significantly reducing yield (Ghooshchi, Seilsepour et al., 2008; Ge, Sui et al., 2012). A study 

by Ge, Sui et al. (2012) and Avetisyan and Cvetanova (2019) noted that crop water status 

varies with crop development stages as well as the response of environmental conditions, 

metabolic activity and hydraulic adaptations (Okunlola, Olatunji et al., 2017). Ghooshchi, 

Seilsepour et al. (2008) indicated that the maize tasselling and silking growth stages are most 

sensitive to impacts of moisture variability, while Sah, Chakraborty et al. (2020) noted that the 

earlier phenological stages of maize are less subjected to water stress due to favourable 

climatic conditions. Therefore, the quantitative assessment of maize moisture content 

throughout the growth cycle offers valuable knowledge of maize growth and development and 

is a key pathway towards developing adaptive strategies for increasing smallholder maize 

resilience to water stress. 
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The most widely used physiological indicators of maize moisture content are equivalent water 

thickness (EWT) and fuel moisture content (FMC) (Mobasheri and Fatemi, 2013; Yi, Wang et 

al., 2014; Elsherif, Gaulton et al., 2019; Ndlovu, Odindi et al., 2021). EWT is a leaf water status 

metric defined as the ratio between the quantity of water and leaf area (Niinemets, 2001; 

Elsherif, Gaulton et al., 2019). Zhang and Zhou (2019) stated that EWT is closely associated 

with plant biochemical processes such as photosynthesis, plant metabolism and crop 

evapotranspiration. Hence it is a suitable indicator of moisture stress. FMC is defined as the 

proportion of water to dry matter (Matthews, 2013; Yi, Wang et al., 2014) and has been widely 

used for plant water stress, drought monitoring and as a measure of ignition and fire 

propagation potential (Yi, Wang et al., 2014; Ndlovu, Odindi et al., 2021; Sibanda, Onisimo et 

al., 2021). A study by Ndlovu, Odindi et al. (2021) confirms that EWT and FMC are valuable 

indicators of the maize water content of smallholder farming systems. These indicators 

demonstrated the highest correlation with spectral data. Therefore, quantifying maize leaf 

EWT and FMC can provide valuable information for the early detection of maize moisture 

stress and monitoring of maize physiology throughout the growth period to inform small-scale 

agricultural decision making.  

Conventionally, maize EWT and FMC variations relied on direct measurements and the visual 

assessment of maize physiology conducted by trained experts (Chivasa, Mutanga et al., 

2020).   However, these methods are extremely time-consuming, tedious, subject to human 

error and cannot sufficiently reflect spatial and temporal variability in maize moisture status 

(Zhang, Zhou et al., 2012; Mobasheri and Fatemi 2013; Jin, Shi et al., 2017). Furthermore, 

field data collection requires continuous measurements throughout the maize growth cycle, 

making implementation marginally feasible (Yue, Feng et al., 2018; Chivasa, Mutanga et al., 

2020). Meanwhile, a large body of literature has explored the potential of satellite remote 

sensing techniques in quantifying crop productivity, health and water status (Pasqualotto, 

Delegido et al., 2018; El-Hendawy, Al-Suhaibani et al., 2019; Krishna, Sahoo et al., 2019). For 

example, a study by Kamali and Nazari (2018) estimated maize water requirement using 

Landsat-8 data to an rRMSE of 0.73 mm/day, while Ambrosone, Matese et al. (2020) 

quantified soil moisture content of rain-fed and irrigated fields using Sentinel-2 multispectral 

imagery and achieved an optimal R2 of 0.80 and RMSE of 0.06 cm3cm-3. However, 

multispectral satellite sensors are restricted in their ability to accurately monitor variations in 

maize moisture content throughout the growing season as they are limited by coarse spatial 

resolution and a longer revisit time for plot-level maize observations (Krishna, Sahoo et al., 

2019; Chivasa, Mutanga et al., 2020). On the contrary, high-resolution multispectral sensors 

such as WorldView and new-generation hyperspectral datasets such as QuickBird provide 

viable options for continuous water stress detection of maize crops at the field scale (Chemura, 

Mutanga et al., 2017; Easterday, Kislik et al., 2019). Nonetheless, these datasets are limited 

by the high image acquisition cost and operational complexity for application in smallholder 

maize crops (Chivasa, Mutanga et al., 2020). Consequently, there is a need for methods that 

can provide spatially explicit datasets with a high temporal resolution to monitor changes in 

smallholder maize leaf moisture content throughout the growth period.  

Recent technological advances, particularly the Unmanned Aerial Vehicle (UAV), have 

heralded a new era in remote sensing, mapping and data analytics within precision agriculture 

(Hoffmann, Jensen et al., 2016; Maes and Steppe, 2019; Tang, Han et al., 2019). Using 

lightweight multispectral sensors mounted on UAVs offer great possibilities for continuous 
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near-real-time crop monitoring at a farm level (Chivasa, Mutanga et al., 2020). UAVs are 

unique in that they can provide high-quality remote sensing data at unprecedented spatial, 

spectral and temporal resolutions (Maes and Steppe, 2019; Ndlovu, Odindi et al., 2021). In 

addition, UAVs mounted sensors capture imagery at low altitudes and can hover over areas 

of interest, making them a desirable tool for monitoring changes in maize moisture content at 

different phenological stages (Tsouros, Bibi et al., 2019). Furthermore, UAVs provide a cost-

effective option to obtain frequent imagery at an ultra-high spatial resolution, often in 

centimetres, which is necessary for monitoring crop physiology at a plot level (Maes and 

Steppe, 2019). For example, in a comparative study between UAV-based data and satellite 

imagery, Matese, Toscano et al. (2015) confirmed that UAV-derived datasets could detect 

even the most subtle variations in crop physiological characteristics, a challenge even for high-

resolution satellite imagery such as RapidEye. A study by Tang, Han et al. (2019) 

demonstrated the value of UAV-derived multispectral data in predicting maize 

evapotranspiration with an R2 of 0.81 and RMSE of 0.95 mm/day. Nonetheless, the ability of 

UAV imagery to adequately discriminate maize moisture content variability across the growing 

season remains untested. Therefore, the potential application of UAVs equipped with 

multispectral sensors in characterising smallholder maize moisture status at different growth 

stages still requires investigation.  

Since the moisture content in leaf tissue is a critical influencer of crop survival, accurately 

monitoring crop water status using spectral reflectance measurements has been a key 

objective in environmental research (Pasqualotto, Delegido et al., 2018). The rationality of 

estimating maize moisture content stems from the fact that literature confirms the existence of 

a strong relationship between foliar water concentration and spectral absorption at specific 

near-infrared (NIR) and the shortwave infrared (SWIR) wavelengths of the electromagnetic 

spectrum (Chemura, Mutanga et al., 2017). For instance, water molecules in leaf tissue 

produce maximum absorption features along the NIR (750-1300 nm) section of the spectrum 

as a result of a decrease in leaf reflectance (Pasqualotto, Delegido et al., 2018; Krishna, 

Sahoo et al., 2019; Wijewardana, Alsajri et al., 2019). Furthermore, there are secondary 

effects of water absorption in the visible region of the electromagnetic spectrum (blue, green 

and red), which are influenced by internal leaf structure and water transmissivity (Mobasheri 

and Fatemi 2013; Chemura, Mutanga et al., 2017). This makes these sections of the spectrum 

sensitive to changes in water content and, therefore, a plausible proxy for crop water stress 

detection. To enhance the spectral characteristics of crop leaf reflectance, several studies 

have demonstrated using empirical models and vegetation indices (VIs) to predict crop 

moisture content (Xue and Su, 2017; Pasqualotto, Delegido et al., 2018). For example, studies 

have reported the Normalised Difference Water Index (NDWI) as a water content-sensitive 

index that can predict crop moisture throughout the growing season (Zhang and Zhou, 2015; 

Xu, Qu et al., 2020). Krishna, Sahoo et al. (2019) noted that even though the Normalised 

Difference Vegetation Index (NDVI) is optimal for crop chlorophyll content estimations, the 

index is highly correlated to the plant water status, hence, is also a valuable predictor of maize 

moisture content. Therefore, by understanding crop leaf reflectance across the 

electromagnetic spectrum, UAV-derived spectral datasets provide a viable approach to 

quantifying intra-species moisture content variability of smallholder maize crops throughout 

the growth cycle.  
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Considering that limited studies have evaluated the feasibility of using UAV-based proximal 

remotely sensed data in accurately monitoring maize moisture content across all phenological 

stages (Zhang and Zhou, 2019), there is a need to assess the value of UAV-derived data in 

mapping crop moisture content variability. Therefore, this study sought to evaluate the utility 

of UAV-derived multispectral imagery in estimating the spatio-temporal variability of 

smallholder maize leaf EWT and FMC across the growing season.  

 

7.2 Materials and Methods 

7.2.1 Study site description 

This study was conducted in Swayimane (29° 31’ S, 30° 41’ E), uMshwati Municipality, 

KwaZulu-Natal, South Africa (Figure 7-1). The study area experiences a sub-tropical climate, 

with a mean annual rainfall of 500-800 mm per annum and an average air temperature 

between 11.8°C and 24°C (Basdew, Jiri et al., 2017). Swayimane is located at an altitude of 

886 m above sea level and has a relatively flat topography. The soil of the study area is 

classified as deep and dark clay loam soils, which indicates high organic matter and soil fertility 

(Ndlovu, Thamaga-Chitja et al., 2021). The land in Swayimane is predominantly used for 

commercial and small-scale subsistence agriculture, with several crops including taro, sweet 

potatoes, spinach, beans, sugarcane and maize (Ndlovu, Thamaga-Chitja et al., 2021). The 

study area is situated within the moist midlands mistbelt bioclimatic region prone to berg winds, 

extreme clouds, flash floods, seasonal hail and occasional periods of drought (Mahomed, 

Clulow et al., 2021). The Umgeni Resilience Project has identified the area as a climate 

change hot-spot region (Keen and Winkler, 2020). Climate projections of the area indicate an 

increase in temperature and unpredictable variations in annual precipitation resulting in an 

increased risk of climate-driven events, including an increase in drought (Mahomed, Clulow et 

al., 2021). As such, it is an area of interest to climatologists and agronomists studying how to 

combat climate variability's impacts on smallholder agricultural systems.  
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Figure 7-1: Location of the study area in Swayimane, South Africa 

7.2.2 Experimental design and crop management 

The maize moisture content was continuously monitored through the maize phenological 

stages. Field measurements were conducted at two-week intervals for five growth stages: 8th 

leaf collar – 10th leaf collar (V8-V10), 14th leaf collar – tasselling (V14-Vt), silking – blister  

(R1-R2), blister – milk (R2-R3) and dough – dent (R3-R4). Figure 7-2 illustrates the biophysical 

condition of maize at the various phenological growth stages. The experimental plot was 50 

m long and 30 m wide, occupying a gentle topography. Maize crops were sown on the 8th of 

February 2021, and corn kernels were harvested on the 17th of May 2021. Cow urea and 

manure were applied as crop fertilizer before sowing, and a combination of manual hand 

weeding and herbicide application was conducted when the maize crops were 21 days old. 

The experimental plot relied primarily on precipitation for water supply. The study plots were 

not irrigated or applied fertiliser during the growing season. Figure 7-3 presents the bioclimatic 

conditions of the study plot during the maize growing period, derived from an automatic 

weather station located approximately 860 m from the experimental plot.  
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Figure 7-2: Biophysical conditions of maize across the phenological growth period 

 

Figure 7-3: Bioclimatic condition of maize across the phenological growth period 

 



 

104 

 

7.2.3 Field survey and measurements of maize moisture content 

Field measurements were conducted on the 18th of March (V8-V10), 31st of March (V14-Vt), 

12th of April (R1-R2), 28th of April (R2-R3) and 14th of May (R3-R4) in 2021. A stratified random 

sampling procedure generated 65 points within the experimental plot. This method is optimal 

for acquiring an unbiased representative sample of the experimental maize plot. A Trimble 

handheld GPS with a sub-meter accuracy was used to navigate these sampling points at each 

stage of the maize growth period. The third fully developed maize leaf from the top of the stalk 

was sampled at each sample point. Literature states that to obtain reliable maize physiological 

measurements, fully developed leaf samples should be taken from the top of the canopy as 

there is maximum reflectance of light energy. 

Meanwhile, the sampling of young crops can lead to plant stress, which can ultimately cease 

crop growth (Mulla, 2013; Wahbi and Avery, 2018). In this regard, maize leaf sampling was 

not conducted during the emergence stages, specifically from germination to the 5th leaf collar 

growth stage. Crop moisture content measurements were conducted under near-cloud-free 

conditions between 12:00 noon and 14:000 as this is the most optimal photosynthetic period 

of the day with radiation at maximum  (Sade, Galkin et al., 2015). A portable leaf area meter 

(LI-3000C) with one mm2 resolution was used to measure the leaf area (A) of sampled leaves. 

A calibrated scale was used to obtain the fresh weight (FW) of maize leaf samples, which were 

then dried in an oven at 70° C until a constant dry weight (DW) was reached (± 48 hours). The 

leaf equivalent water thickness (EWTleaf in gm-2) and fuel moisture content (FMCleaf in %) were 

then computed using the FW, DW and A of maize leaves based on the formula; 

𝐸𝑊𝑇𝑙𝑒𝑎𝑓 (gm−2) =
FW−DW

A
           Equation 7-1 

𝐹𝑀𝐶𝑙𝑒𝑎𝑓 (%) =
FW−DW

DW
𝑥 100    Equation 7-2 

Where FW is the fresh weight, DW is the dry weight, and A is the leaf area. The computed 

EWTleaf and FMCleaf were recorded in an Excel spreadsheet against the coordinate of each 

sampling point, which was later converted into a point map in ArcMap version 10.3.1.  

7.2.4 Selection of vegetation indices 

The six UAV-derived spectral bands were used to estimate maize EWTleaf and FMCleaf. These 

bands were also used to compute vegetation indices (VIs) to estimate maize moisture 

indicators. Studies have confirmed the ability of the visible and NIR channels of the 

electromagnetic spectrum to detect subtle variations in vegetation water characteristics 

(Chemura, Mutanga et al., 2017; Pasqualotto, Delegido et al., 2018). Based on existing 

literature, ten moisture content-related VIs were computed based on their correlation with 

maize moisture content indicators. Table 7-1 details the VI used to estimate maize moisture 

content. 
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Table 7-1: Selected vegetation indices (VIs) used for maize moisture content estimations  

Vegetation Index Equation Reference 

NDWI (Green - NIR / Green + NIR) 

(Miller, Schieber et al., 

2020) 

NDVI (NIR - Red / NIR + Red) 

(Krishna, Sahoo et al., 

2019) 

NGRDI (Green - Red / Green + Red) 

(Hoffmann, Jensen et 

al., 2016) 

NDRE (NIR - Rededge / NIR + Rededge) 

(Zhang, Zhang et al., 

2019) 

NDVIrededge (Rededge - Red / Rededge + Red) 

(Zhang, Zhang et al., 

2019) 

CIgreen ((NIR/Green) -1) 

(Zhang and Zhou, 

2015) 

CIrededge ((NIR/Rededge) -1) 

(Zhang and Zhou, 

2015) 

SR (NIR/Red) (Xue and Su, 2017) 

OSAVI ((NIR - Red)/(NIR + Red + 0,16)) (Xue and Su, 2017) 

 

7.2.5 Model development and statistical analysis 

The random forest (RF) regression provides a reliable and efficient method for performing 

complex and multi-dimensional environmental data analysis that would naturally be time-

consuming to observe (Lu and He, 2019). This study used the RF regression algorithm to 

predict maize leaf moisture content indicators (EWTleaf and FMCleaf) at different phenological 

growth stages of maize crops because of its simplicity and robustness (Sibanda, Onisimo et 

al., 2021). The RF ensemble is a machine learning technique that uses bootstrap aggregation 

and binary recursive partitioning to construct several independent trees using a random subset 

derived from the training data (Lu and He, 2019). The robustness of RF originates from the 

capacity of the algorithm to use bootstrap aggregation to build regression trees that are grown 

to their maximum sizes, which are then used to allocate an input variable (spectral bands and 

VIs) to a response variable (EWTleaf or FMCleaf) using unweighted averaging (Jeong, Resop et 

al., 2016). Additionally, the out-of-bag samples, which are samples that have been excluded 

from the bootstrap aggregation, are used by the RF ensemble to evaluate the generated 

regression model (Abdel-Rahman, Ahmed et al., 2013). However, a common challenge with 

regression models is multicollinearity which results from a high level of correlation between 

two or more predictor variables (Chivasa, Mutanga et al., 2021). As such, it is advisable to use 

only the most suitable predictor variables in building regression models (Jeong, Resop et al., 

2016). Variable importance selection was adopted to resolve potential collinearity and select 

the best and the fewest predictor variables for the RF model. RF can compute Gini impurity 

scores to identify predictor variables most influential in prediction (Sibanda, Onisimo et al., 

2021). Therefore, a higher Gini impurity score was identified as the most important predictor 

variable. The best predictor variables were then used to develop the final RF model of maize 
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moisture content at each growth stage. Before the analysis, the dataset of randomly split into 

training data (70%:46 samples) and validation data (30%:19 samples). The former was used 

to develop the regression model, and the latter to evaluate the model's predictive performance. 

7.2.6 Accuracy assessment and model validation 

The prediction accuracy of the derived RF models was assessed based on the coefficient of 

determination (R2), the root mean square error (RMSE) and the relative root mean square 

error (rRMSE). The R2 is a statistical measure of the variation between measured and 

predicted output. It also measures how well the response variable fits into the regression line. 

The RMSE assesses the error magnitude between field measurements and the modelled 

maize moisture content. Meanwhile, the rRMSE was used as a metric to compare the 

performance of EWTleaf to FMCleaf at the different maize growth stages. The optimal model for 

estimating maize moisture content indicators at different phenological stages was determined 

based on the highest R2 and the lowest RMSE and rRMSE.  

𝑅𝑀𝑆𝐸 = √
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑛
    Equation 7-3 

𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛 (𝑎𝑐𝑡𝑢𝑎𝑙)
× 100   Equation 7-4 

where predicted is the modelled variables and actual is the measured variables. Lastly, a map 

was generated illustrating the spatial and temporal distribution of the predicted maize EWTleaf 

or FMCleaf at every growth stage. The RMSE and the rRMSE were calculated based on the 

above formulas. 

 

7.3 Results  

7.3.1 Descriptive statistics and temporal variation in EWTleaf and FMCleaf during 

the maize phenological cycle 

Figure 7 4 illustrates the temporal variation of measured EWTleaf and FMCleaf throughout the 

maize growing season. As expected, there was a variation in maize EWTleaf and FMCleaf 

measured across the maize phenological season. Both maize EWTleaf and FMCleaf displayed 

a decreasing trend in moisture content as the growing season progressed. The lowest mean 

EWTleaf was observed during the late reproductive stages of maize development, particularly 

during the R2-R3 stage (96.45 ± 62.15 gm-2), while the highest EWTleaf was at the V8-V10 

growth stages (274.45 ± 43.25 gm-2) (Table 7-2). The R2-R3 growth stage had the lowest 

mean FMCleaf (48.59 ± 14.66%), while the greatest mean FMCleaf was observed at the R1-R2 

maize growth stage (84.48±2.23%) (Table 7-2). The results of a Kolmogorov-Smirnov 

normality test indicated that the distribution of the measured maize EWTleaf and FMCleaf were 

not significantly deviating from a normal distribution curve. Hence a Pearson correlation was 

conducted to examine the relationship between maize EWTleaf and FMCleaf, and rainfall. Based 

on the Pearson correlation test, there was a statistically significant correlation between maize 

EWTleaf and rainfall (R2 = 0.97, p < 0.05). Similarly, a correlation test between maize FMCleaf 

and rainfall indicated a statistically significant R2 of 0.77 (p < 0.05).  
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Figure 7-4: Temporal variation of maize EWTleaf and FMCleaf during the maize growing season 

 

Table 7-2: Descriptive statistics of EWTleaf and FMCleaf at the different phenological stages  

Maize 

growth 

stage 

Variable 
Range (min-

max)  
Mean Median Std. CV% SEM 

V8-V10 
EWT (gm-2) 169.35-462.73 274.45 270.47 43.25 15.76 5.45 

FMC (%) 73.72-90.91 81.72 81.63 2.32 2.84 0.29 

V14-Vt 

EWT (gm-2) 154.76-329.33 228.57 229.13 49.67 21.73 6.26 

FMC (%) 69.93-86.05 79.17 79.01 2.89 3.65 0.36 

R1-R2 
EWT (gm-2) 159.86-249.66 209.38 211.34 17 8.12 2.14 

FMC (%) 77.78-91.59 84.48 84.23 2.73 3.24 0.34 

R2-R3 
EWT (gm-2) 11.66-448.71 96.48 91.9 62.15 64.41 7.83 

FMC (%) 8.11-85.98 48.59 50 14.66 30.18 1.85 

R3-R4 
EWT (gm-2) 25.33-360.21 135.7 121.01 62.66 46.17 7.89 

FMC (%) 59.52-82.14 69.72 69.77 4.04 5.79 0.51 

 



 

108 

 

7.3.2 Estimating maize EWTleaf and FMCleaf throughout the maize growing season 

Table 7.3 illustrates the accuracies obtained in estimating maize EWTleaf and FMCleaf 

throughout the growing season based on UAV bands only, vegetation indices (VIs), and the 

combination of UAV bands and VIs. Generally, UAV bands resulted in relatively lower model 

accuracies at all maize growth stages. For example, when estimating EWTleaf, UAV bands 

exhibited the lowest accuracy at the V14-Vt and R1-R2 growth stages, yielding an RMSE of 

47.58 gm-2 and R2 of 0.53 and RMSE of 13.13 gm-2 and R2 of 0.59, respectively. Similarly, in 

estimating maize FMCleaf, the lowest RMSEs were obtained when using UAV bands at the  

R1-R2, R2-R3 and R3-R4 maize growth stage with RMSE of 1.13 gm-2 and R2 of 0.59, RMSE 

of 11.05 gm-2 and R2 of 0.53, and RMSE of 3.05 gm-2 and R2 of 0.57, respectively. 

The use of VIs improved model accuracies of maize EWTleaf and FMCleaf. For example, the 

EWTleaf model slightly improved by a magnitude of 6.43 from an RMSE of 47.58 gm-2 to 41.15 

gm-2 at the V14-Vt maize growth stage. Again, in estimating FMCleaf, using VIs improved the 

model accuracy from 11.05 gm-2 to 7.94 gm-2 at the R2-R3 growth stage. 
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Table 7-3: Estimation accuracies of EWTleaf and FMCleaf derived using UAV bands, vegetation indices and the combination of both 

Maize growth stage Predictor variables EWTleaf FMCleaf 

R2 RMSE rRMSE R2 RMSE rRMSE 

V8-V10 UAV bands 0.52 14.38 4.89 0.42 2.22 2.69 

Vegetation indices 0.6 14.98 4.91 0.44 2.35 2.85 

V14-Vt UAV bands 0.53 47.58 23.01 0.52 1.93 1.98 

Vegetation indices 0.7 41.15 19.9 0.56 2.15 2.76 

R1-R2 UAV bands 0.59 13.13 6.46 0.59 1.13 1.34 

Vegetation indices 0.78 11.17 5.5 0.76 0.9 1.09 

R2-R3 UAV bands 0.63 16.71 17.73 0.53 11.05 26.72 

Vegetation indices 0.7 37.21 50.67 0.73 7.94 18.71 

R3-R4 UAV bands 0.58 24.49 18.71 0.57 3.05 4.47 

Vegetation indices 0.66 40.39 32.95 0.67 2.68 3.94 
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The optimal models for predicting maize EWTleaf and FMCleaf at all growth stages were 

determined by combining UAV bands and VIs. For example, when estimating maize EWTleaf, 

the combined datasets exhibited the highest model accuracies with an RMSE of 5.31 gm-2 and 

R2 of 0.88 at the R1-R2 growth stage and an RMSE of 10.28 gm-2 and R2 of 0.89 at the  

R2-R3 growth stage. Similarly, when estimating FMCleaf, the highest model accuracies were 

obtained when UAV bands and VIs were used (RMSE of 0.88 gm-2 and 0.45 gm-2 at the  

R1-R2 and R2-R3 stages, respectively). 

Figure 7-5 illustrates the optimal models for estimating maize EWTleaf at each growth stage. 

During the early vegetation growth stages, maize EWTleaf at the V8-V10 phenological stage 

was predicted to have an RMSE of 13.03 gm-2 and R2 of 0.69. The top-most suitable predictor 

variables in estimating EWTleaf at this stage were NDVIrededge, thermal, rededge, NGRDI, 

CIrededge, NDVI, OSAVI, NDRE, NIR, red, NDWI, CIgreen and SR, in order of importance (Figure 

7-5 (a)). The V14-Vt exhibited the poorest prediction accuracy of maize EWTleaf during the 

vegetative stages (RMSE = 23.99 gm-2 and R2 of 0.76) using NDVI, CIrededge, red-edge, NDRE, 

NDWI, CIgreen, NIR, thermal, blue, NDVIrededge, NGRDI, green and red, in descending order of 

importance (Figure 7-5 (b)). The most optimal maize growth stage for estimating EWTleaf was 

observed in the early reproductive R1-R2 growth stage, which yielded the highest model 

accuracy across all phenological stages (RMSE of 5.31 gm-2 and R2 of 0.88) based on 

NDVIrededge, rededge, NIR, NDVI, NDRE, NGRDI, blue, CIrededge, NDWI, and CIgreen, red, 

thermal and green, in order of importance (Figure 7-5 (c)). Hereafter, a decrease in EWTleaf 

model accuracy was observed in all later stages of maize growth. For example, the estimation 

accuracy of EWTleaf decreased by 4.97 gm-2 to an RMSE of 10.28 gm-2 in the R2-R3 maize 

growth stage, compared to 5.31 gm-2 from the R1-R2 stage. Nonetheless, an R2 of 0.89 was 

attained from predicting maize EWTleaf during the R2-R3 growth stage. The influential predictor 

variables on that model included NDVI, NIR, NDWI, CIgreen, NDVIrededge, red, CIrededge, NDRE 

and NGRDI, accordingly (Figure 7-5 (d)). Furthermore, the maize EWTleaf model accuracy 

depreciated at the R3-R4 growth stage, yielding an RMSE of 12.66 gm-2 and R2 of 0.77). The 

optimal from this model were NDVI, NIR, NDWI, CIgreen, NDVIrededge, and red, CIrededge, NDRE 

and NGRDI, in order of descending importance (Figure 7-5 (e)). 
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Figure 7-5: Relationship between the predicted and observed maize EWTleaf at (a), V8-V10, 

(b) V14-T, (c) R1-R2, (d) R2-R3 and (e) R3-R4 phenological growth stage and the optimal 

model variable importance scores 
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Figure 7-6 illustrates the optimal models for estimating maize FMCleaf across all growth stages. 

The estimation of maize FMCleaf at the V8-V10 growth stage yielded a moderate RMSE of 

1.13%. However, it exhibited a low R2 of 0.66 based on NDVI, NDVIrededge, thermal, red, SR, 

rededge, NGRDI, green, NDWI, NIR, NDRE, OSAVI, CIrededge, CIgreen and blue, in order of 

importance (Figure 7-6 (a)). Meanwhile, at the V14-Vt growth stage, the maize FMCleaf ‘s 

yielded an RMSE = 1.44% and an optimal R2 = 0.73. The most suitable predictor variables 

included NDRE, rededge, CIgreen, NIR, NDWI, CIrededge, NDVI, NDVIrededge, thermal, green, blue, 

NGRDI and red, in order of decreasing importance (Figure 7-6 (b)). 

Meanwhile, the maize FMCleaf prediction accuracy significantly increased in the early 

reproductive stages of the maize growing season. For example, the R1-R2 maize growth stage 

yielded an RMSE of 0.88% and an R2 of 0.87 using NDVI, rededge, NDVIrededge, NIR, NDRE, 

CIrededge, blue, NGRDI and red, in order of importance (Figure 7-6 (c)). The optimal 

phenological growth stage for optimally estimating maize FMCleaf was the R2-R3 growth stage, 

which yielded the highest model accuracy with an RMSE = 0.45% and R2 of 0.76. This optimal 

maize FMCleaf model was derived based on the NDRE, NIR, NDWI, CIrededge, NDVIrededge, 

rededge, CIgreen, blue, thermal, NDVI, red and green predictor variables (Figure 7-6 (d)). 

Meanwhile, the later reproductive growth stages demonstrated the lowest FMCleaf prediction 

accuracies. Maize FMCleaf at the R3-R4 growth stage yielded the poorest prediction accuracy 

with an RMSE of 1.54% and R2 of 0.72. Finally, the most optimal variables that were selected 

in estimating maize FMCleaf at this growth stage were NDVIrededge, CIrededge, NDRE, NDWI, 

CIgreen, NDVI, red, green, NIR, NGRDI, red-edge, thermal and blue, in order of importance 

(Figure 7-6 (e)). 
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Figure 7-6: Relationship between the predicted and observed maize FMCleaf at (a), V8-V10, 

(b) V14-T, (c) R1-R2, (d) R2-R3 and (e) R3-R4 phenological growth stage and the optimal 

model variable importance scores 
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The results show that the prediction accuracy of maize EWTleaf and FMCleaf varies for each 

phenological stage across the growing season. For example, the maize FMCleaf outperformed 

EWTleaf with an rRMSE of 1.38% as opposed to an rRMSE of 4.79% (Figure 7.6 and 7.7 (a)). 

Similarly, the prediction accuracy of maize FMCleaf (rRMSE = 1.88%) was significantly higher 

than that of maize EWTleaf (13.29%) by a magnitude of 11.41% (Figure 7.6 and 7.7 (b)). Again, 

at the R1-R2 maize growth stage, EWTleaf exhibited an rRMSE of 2.72% while FMCleaf of maize 

had a higher prediction accuracy with rRMSE of 1.08% (Figure 7.6 and 7.7 (c)). Similarly, 

model accuracies for predicting maize FMCleaf were marginally higher than EWTleaf at the R2-

R3 growth stage, with an rRMSE = 1% and 3.13%, respectively. Nonetheless, EWTleaf at this 

stage produced the highest R2 of 0.89 compared to FMCleaf, which yielded an R2 of 0.76 (Figure 

7.6 and 7.7 (d)). Finally, FMCleaf produced an rRMSE of 1.91% at the R3-R4 maize growth 

stage, as compared to the rRMSE of 3.79%, exhibited by the maize EWTleaf model (Figure 7.6 

and 7.7 (e)). 

Figures 7-7 and 7-8 illustrate the spatial distribution of maize EWTleaf and FMCleaf across the 

five maize phenological growth stages. It can be observed that maize EWTleaf and FMCleaf 

were higher in the eastern region and decreased towards the western section of the 

experimental maize plot.  

 

Figure 7-7: Spatial distribution of modelled maize EWTleaf across the different stages of the 

growing season 
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Figure 7-8: Spatial distribution of modelled maize FMCleaf across the different stages of the 

growing season 

 

7.4 Discussion 

The emergence of UAV-derived data with a high spatial and temporal resolution presents a 

valuable tool for monitoring maize moisture content variability throughout the growing season 

(Chivasa, Mutanga et al., 2020). Reliable determination of spatio-temporal variations in maize 

moisture is necessary for the early detection of moisture stress and identification of moisture-

sensitive growth stages, necessary for developing precision agricultural management 

practices (Ghooshchi, Seilsepour et al., 2008; Zhang and Zhou, 2015 Wang, Cherkauer et al., 

2016).  

 

7.4.1 The influence of precipitation on maize moisture content variability 

The findings of this study revealed a decreasing trend between precipitation and maize EWTleaf 

and FMCleaf across the growing season. The reduction of maize moisture content across the 
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growing season, along with the reduction in precipitation received in the study area, implies 

that a decrease in precipitation results in a reduction in the amount of water available to maize 

crops (Geneti, 2019; Zhang, Zhang et al., 2019). This finding is supported by a large body of 

literature suggesting that climatic variables, such as rainfall, influence the amount of foliar 

moisture and crop growth and development (Zhang, Liu et al., 2018; Geneti, 2019; Bois, 

Pauthier et al., 2020).  Xu, Liu et al. (2012) argued that moisture availability is a serious 

challenge for rain-fed maize crops. The findings of this study agree with those of Mumo, Yu et 

al. (2018), who confirmed that a substantial decrease in rainfall resulted in maize moisture 

deficiency, drastically reducing rain-fed maize yield by 67.53%. 

Furthermore, the variation in maize moisture, specifically the decrease of maize EWTleaf 

following crop development, can be due to reduced leaf area due to moisture stress (Zhang, 

Liu et al., 2018). Literature has confirmed that when crops are in a state of water deficit, 

transpiration of the leaf surface is minimised by reducing leaf area expansion to maintain 

sufficient moisture levels (Gomez-del-Campo, Ruiz et al., 2002; Song, Jin et al., 2019). This 

finding supports the rationale of utilising EWTleaf and FMCleaf as surrogate measures of crop 

water stress. 

7.4.2 Estimation of maize moisture indicators from UAV-derived spectral reflectance 

Results of this study showed that optimal estimation of EWTleaf can be obtained at the silking 

– blister (R1-R2) growth stage of maize (R2 = 0.88, RMSE = 5.31 gm-2 and rRMSE = 2.72%) 

while for FMCleaf was the blister to milk (R2-R3) stage with an R2 = 0.76 and RMSE = 0.45% 

(rRMSE = 1%). Literature confirms that the early reproductive growth stages are best suited 

for detecting physiological characteristics, such as leaf moisture content, using proximal 

remote sensing techniques (Daughtry, Walthall et al., 2000; Prudnikova, Savin et al., 2019). 

This is because the transmittance spectra of the fully developed leaves and the canopy have 

minimal effects on the soil background and maximum reflectance of leaf properties (Daughtry, 

Walthall et al., 2000; Prudnikova, Savin et al., 2019). Furthermore, Prudnikova, Savin et al. 

(2019) argued that estimating crop physiology at the early seedling and emergence vegetative 

growth stages is not optimum because sparse vegetation cover increases the interference of 

open soil surface reflectance, hence reducing prediction accuracy.  

The findings of this study illustrate that vegetation indices (VIs) were the most optimal predictor 

variables of maize moisture content indicators compared to raw UAV-multispectral bands. This 

is not surprising since a large and growing body of literature has proven that the use of VIs 

derived from water-sensitive sections of the electromagnetic spectrum improves prediction 

accuracies and outperforms conventional bands in estimating crop moisture content indicators 

(Zhang and Zhou, 2015; Pasqualotto, Delegido et al., 2018; Zhang, Zhang et al., 2019). This 

is explained by the fact that VIs are derived from a combination of spectral channels which 

measure reflectance at different wavelengths of the spectrum with different strengths, hence 

their optimal performance compared to the bands-only model (Sibanda, Onisimo et al., 2021). 

Furthermore, VIs tend to enhance leaf reflectance while minimising the influence of solar 

irradiance, atmospheric noise, topology and soil background effects (Xue and Su, 2017, 

Prudnikova, Savin et al., 2019; Sibanda, Onisimo et al., 2021). This makes them more robust 

and sensitive to moisture and other plant foliar physiochemical elements. 
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This study demonstrated that maize moisture indicators were sensitive to VIs derived from the 

NIR and red-edge wavebands of the electromagnetic spectrum. For example, the estimation 

of maize EWTleaf was greatly influenced by NDVIrededge, rededge, NIR, and NDVI, while NDRE, 

NIR and NDWI had the highest predictive power in optimally estimating FMCleaf of smallholder 

maize crop. The influence of NIR-based indices stems from the fact that this section of the 

electromagnetic spectrum is highly correlated to the quantity of water in leaf cells (Pasqualotto, 

Delegido et al., 2018). Literature confirms that the variation in leaf reflectance of turgid 

vegetation along the NIR wavelength, as a result of the changes in water transmissivity and 

leaf internal structure, can be used to quantify crop moisture content and detect plants that 

are in a state of water deficit (Mobasheri and Fatemi, 2013; Chemura, Mutanga et al., 2017). 

Additionally, the sensitivity of the red-edge band in maize moisture prediction can be explained 

by the fact that the red-edge is closely related to leaf chlorophyll composition and when crops 

are experiencing moisture stress, there are declines in crop physiochemical characteristics 

such as foliar pigmentation and leaf area, which are directly linked to leaf water status 

(Easterday, Kislik et al., 2019; Sibanda, Onisimo et al., 2021). A reduction in moisture content 

decelerates the photosynthetic activity, reducing the chlorophyll concentrations as the leaf 

halts its stomatal activities while losing turgidity and pigment (Liu, Peng et al., 2015; Zhang 

and Zhou 2015). These transitions are then detected from the rededge spectrum, which tends 

to shift towards the long-wavelength section (Ndlovu, Odindi et al., 2021; Sibanda, Onisimo et 

al., 2021). This study's results agree with Liu, Zhang et al. (2016), who found that the changes 

in the vegetation moisture content were spectrally discernible in the NIR spectral reflectance 

section. In a similar study, Zhang and Zhou (2015) combined the NIR and rededge bands to 

form the NDRE, which became the most sensitive index to variations in maize moisture 

content (R2 = 0.75). Furthermore, the results of this study concur with Sow, Mbow et al. (2013), 

who used NDWI to predict vegetation FMC to an optimal accuracy of R2 = 0.85. 

Finally, the results of this study also revealed that chlorophyll-based indices such as CIgreen 

and CIrededge were important predictors of maize moisture content as they were among the 

most influential spectral variables on V14-Vt and R3-R4 stages when estimating maize EWTleaf 

and FMCleaf. Again, this can be explained by the positive correlation between leaf chlorophyll 

content and water status, as prolonged moisture stress ultimately reduces chlorophyll 

pigmentation of maize leaves, thus changing leaf absorbance and reflectance characteristics 

(Liu, Peng et al., 2015; Zhang, Zhang et al., 2019; Ndlovu, Odindi et al., 2021). In a similar 

study, Zhang, Zhang et al. (2019) concluded CIgreen and CIrededge to be among the most 

influential predictors of maize EWT and FMC as they are highly sensitive to crop water 

variation. Despite the apparent limitations of NDVI as stated in literature (Jackson, Chen et 

al., 2004; Xue and Su, 2017), this index was an important predictor of maize moisture 

indicators in this study. This is explained by the fact that the NDVI effectively indicates leaf 

photosynthetic capacity correlated to leaf greenness and water status (Wijewardana, Alsajri 

et al., 2019; Ndlovu, Odindi et al., 2021). The results in this study concur with those of Wang, 

Cherkauer et al. (2016), who successfully used NDVI to monitor maze water variability using 

a seasonal NDVI time series analysis, while Easterday, Kislik et al. (2019) noted that the NDVI 

could discriminate variations in vegetation moisture stress and accurately predict leaf water 

content to an R2 of 0.89.   
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7.4.3 Implications of the findings 

UAVs are fast becoming a key component of precision agriculture as they provide 

opportunities for mainstreaming climate-smart agricultural practices into smallholder farming 

systems for improved crop health monitoring and water resource management. Understanding 

the spatio-temporal variation in maize moisture can support smallholder agricultural decision-

making to facilitate the development of crop-specific management plans to increase maize 

resilience and reduce the susceptibility of smallholder maize farming systems to the future 

impacts of climate change. Furthermore, the methods used in this study could be adapted for 

monitoring the moisture content of other crops within smallholder farming systems. Future 

studies should assess maize moisture variability across various climates and evaluate the 

influence of other agronomical factors, such as soil structure and topographic effects on leaf 

moisture status. 

7.5 Conclusion 

This study sought to test the utility of UAV-based multispectral data in estimating leaf EWT 

and FMC of smallholder maize crops across the growing season. The results showed that the 

UAV-derived multispectral data could be useful in quantifying maize moisture variability at a 

high spatial and temporal resolution. Therefore, it can be concluded that: 

• UAV-derived multispectral data can optimally characterise maize EWT and FMC, foliar 

moisture, variations using the NIR and red-edge wavelengths of the electromagnetic 

spectrum, which demonstrated great sensitivity to the variation in maize moisture 

content 

• The phases between silking and milk reproductive growth stage are the most optimal 

growth stages for predicting maize moisture content using UAV-derived data 

This study demonstrates the potential of UAV-based proximal remote sensing techniques in 

providing near-real-time and spatially explicit information on maize moisture variability across 

the growing season. Finally, this study will serve as a proxy towards accomplishing sustainable 

development goal 15, life on land, which seeks to ensure sustainable food security, thus 

enhancing livelihoods and well-being.  
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8 ASSESSING THE PROSPECTS OF UAV ACQUIRED REMOTELY SENSED 

DATA IN MAPPING LEAF AREA INDEX AS A PROXY OF YIELD IN 

SMALLHOLDER CROPLANDS 

 

Ndlovu HS, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP and Mabhaudhi T  

 

8.1 Introduction 

Smallholder agriculture is a critical sector in Sub-Saharan African economies and sustains the 

livelihoods of most of the region's households (Gollin, 2014). According to Mango, Siziba et 

al. (2017) and Kamara, Conteh et al. (2019), smallholder croplands support about 70% of 

households and contribute about 15% and 2.5% to Africa's and South Africa's GDPs, 

respectively. Maize (Zea Mays) is the most important and widely grown grain crop in 

smallholder farms of Sub-Saharan Africa. In addition, the maize industry plays a significant 

role in the region's economy due to its contribution to the formal and informal food systems, 

thus supporting national and household food security (Ndlovu, Odindi et al., 2021). Due to the 

importance of maize, governments across the region closely monitor crop status to forecast 

productivity and food security. Often, trained extension officers perform physical crop health 

assessments at critical phenological stages and productivity. However, these assessments 

are time-consuming, expensive and at the officer's discretion. 

Further to this, due to the remoteness of smallholder farmers, the status and productivity of 

many maize fields are either estimated through extrapolation or not included in national 

assessments. Considering the importance of smallholder maize production in localized food 

systems and their potential to contribute to national food security, there is a dire need to 

explicitly generate monitoring frameworks for spatially optimizing assessments of maize . 

Under commercial maize production secondary traits such as leaf area index and chlorophyl 

content have been used to assess crop health and productivity. These traits could also be 

applied in smallholder systems.  

Generally, crop productivity is evaluated based on its constituents, such as Leaf area index 

(LAI), chlorophyll content concentration and yield. Amongst these constituents, LAI can be 

monitored to understand crop health status, canopy physiology and nutritional supply (Luo, 

Liao et al., 2020). LAI is defined as half the area of all leaves per unit of surface area, and its 

estimation has long been a research focus for understanding biomass characteristics (Dong, 

Liu et al., 2019). This is because LAI significantly influences the plant canopy physiological 

process, which is closely related to crop productivity. In addition, the total accumulation of LAI 

is strongly related to biomass accumulation and crop yield (Gitelson, Peng et al., 2014). 

Therefore, monitoring maize LAI in smallholder farms could help assess crop condition and 

variation across space and time for the detection of crop phenology and to model biomass 

and yield to optimize the productivity of smallholder farms. Furthermore, monitoring maize LAI 

is valuable for diagnosing and assessing crop deficiencies like water and plant nutrition, which 

are necessary for optimizing smallholder productivity (Tunca, Köksal et al., 2018). Hence, 

monitoring and estimating maize LAI is vital in enhancing productivity, combating food 



 

120 

 

insecurity, and addressing the sustainable development goals of reducing hunger and poverty 

(Jin, Azzari et al., 2019; Peng, Li et al., 2019).  

Crop LAI can be monitored and estimated through traditional methods like field surveys and 

point sample measurements (Tunca, Köksal et al., 2018). Despite the high accuracy 

associated with the traditional methods, they are time-consuming, labour-intensive and lack 

spatial representativeness (Martínez-Guanter, Egea et al., 2019). In contrast, remote sensing 

technologies have increasingly become popular in agricultural research as they offer fast and 

non-destructive ways of monitoring and estimating crop productivity parameters (Yao, Wang 

et al., 2017). Remote sensing (RS) provides spatial and temporal information on crop 

responses to dynamic environmental conditions or information that relates directly to LAI. Such 

RS data has helped derive important crop parameters such as LAI, water use efficiency, 

chlorophyll and biomass fraction of photosynthetically active radiation (Tumlisan, 2017; Peng, 

Li et al., 2019).  

There are numerous ways of using remotely sensed information to estimate LAI. The simplest 

is establishing an empirical relationship between the remotely sensed data, such as spectral 

bands and Vegetation Indices (VIs) and measured LAI (Gao, Yang et al., 2016). Hence, 

several earth observation sensors have been used to estimate maize LAI with optimal 

accuracy. These include the Landsat (González-Sanpedro, Le Toan et al., 2008; Su, Huang 

et al., 2019), moderate resolution imaging spectral radiometer (MODIS) (Kira, Nguy-

Robertson et al., 2017; Yu, Yin et al., 2021) and recently Sentinel-2 multispectral instrument 

(MSI) (Luo, Liao et al., 2020; Amin, Verrelst et al., 2021). Despite the optimal accuracies 

associated with the data from these satellite-borne sensors in LAI estimation, the trade-off 

between its spatial and temporal resolution limits its use in capturing crop LAI heterogeneity 

and dynamics at a farm scale (Martínez-Guanter, Egea et al., 2019). Yang, Gong et al. (2021) 

notes that medium spatial resolution products, e.g. Landsat and Sentinel-2 have the potential 

to miss observations at critical growth stages because of their long revisit time (16 and 10 

days respectively) as well as their coarser spatial resolution, which is inadequate for 

smallholder fields of less than 5 Ha. In this regard, there is still a need to assess other sources 

of spatial data which could be cheaper and flexible, while offering very high spatial resolution 

data suitable for capturing crop LAI at farm-to-field scales. 

The introduction of UAV remote sensing technology offers valuable remotely sensed data for 

estimating crop productivity constituents such as LAI (Martínez-Guanter, Egea et al., 2019). 

UAV remote sensing technologies offer maximum flexibility in terms of temporal resolution 

since the flying times are user-determined. Their ability to fly at low altitudes, portability and 

generation of very high spatial resolution data of up to 5 cm makes them more suitable for 

farm-scale research than satellite remotely sensed data (Gao, Yang et al., 2016). It is 

anticipated that the very high resolution (VHR) spatial resolution, combined with a 

multispectral resolution covering the red edge section of the electromagnetic spectrum (EMS) 

renowned for mapping LAI of plants, could optimize the estimation of maize productivity in 

smallholder croplands. UAVs have been widely used in crop monitoring. For instance, 

Kanning, Kühling et al. (2018) successfully estimated wheat LAI with an R2 of 0.79 and an 

RMSE of 0.18, while Yao, Wang et al. (2017) estimated wheat LAI to an R2 of 0.80 and an 

RRMSE of 24% using UAV imagery. Guomin, Yajie et al. (2020) used UAV-derived VIs to 

estimate maize LAI to an R2 of 0.83 and RMSE of 0.05. The proven compatibility of unmanned 

aerial vehicles with multi-spectral sensors enables daily LAI estimation at high resolution. 
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However, most of these studies have been conducted based on single images in experimental 

plots outside the third-world smallholder croplands. For an accurate estimation and outlook on 

a specific crop's productivity and yield, multitemporal images are required to understand the 

growth trajectory of the crop for informed decision making before the harvesting. Hence, there 

is need to assess the utility of UAV derived multispectral data in assessing the productivity of 

staple crops such as maize in smallholder croplands of regions such as southern Africa where 

hunger and poverty are rife and the need for optimizing crop production is imperative. 

The literature illustrates that combining VIs with robust machine learning algorithms improves 

the accuracy of crop productivity models. VIs depict biophysical parameters of the plant 

canopy, such as biomass, greenness and LAI and are calculated using the reflectance of two 

or more spectral bands (Zhang, Lan et al., 2009). VIs enhance the sensitivity to a specific crop 

parameter while suppressing the influence of other factors, such as leaf and canopy structure 

(Sun, Qin et al., 2019). Also, VIs counteract the impacts of soil background, atmospheric 

conditions, leaf pigment and inclination (Ngie and Ahmed, 2018). Several VIs have been 

proven to be strongly correlated with maize LAI (Sun, Qin et al., 2019) and yield. These include 

the soil-adjusted VIs (i.e. Soil Adjusted Vegetation Index and Optimized Soil Adjusted 

Vegetation Index) developed to reduce soil reflectance's impact at low LAI. In recent years, 

due to the advancement in sensor technologies, Indices such as the red edge band VIs as the 

Normalized Difference Vegetation Index (NDVI) based on the red edge (NDVIRE), the 

Normalized Difference Red Edge (NDRE), the Modified Simple Ratio Red Edge (MSRRE) and 

the red edge-based Chlorophyll Index (CIRE) have been developed (Dong, Liu et al., 2019). 

These VIs have proven effective in estimating LAI, especially from moderate to high LAI and 

are less influenced by canopy structures (Martínez-Guanter, Egea et al., 2019). Qiao et al. 

(Qiao, Gao et al., 2022), using red edge-based VIs derived from UAV imagery, estimated 

maize LAI to an R2 of 0.94, whilst Tao et al. (Tao, Feng et al., 2020) in their study concluded 

that combining red edge parameters with VIs significantly improves the estimation of LAI. 

Nevertheless, the effectiveness of these VIs using UAV image data remains largely 

unexplored.  

Hence, this study sought to test the value of using UAV-derived VIs in estimating maize LAI 

across the growing season and determine its relationship with yield. A robust algorithm, 

Random Forest (RF) regression, was used to achieve this. This algorithm was chosen based 

on its popularity in literature due to its ability to resolve overfitting problems and select a subset 

of variables that best explain crop attributes such as LAI and insensitivity to small sample 

sizes. Specific objectives of this study were (1) to reliably estimate LAI using a combination of 

traditional, new and red edge-based VIs in conjunction with the RF algorithm and (2) to 

produce a model for the estimation of maize LAI at each growth stage based on UAV images 

and field-collected LAI measurements. 

 

8.2 Materials and Methods 

8.2.1 Study site 

This study was conducted in a maize crop field on a smallholder farm in Swayimane within the 

KwaZulu-Natal province, South Africa (29°31'24’’S and 30°41’37’’ E), covering an area of 
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2699.005 m2 (Figure 8 1). A sub-humid climate with hot and humid summers and warm and 

dry winters characterizes the area. According to Miya, Modi et al. (2018), the area is 

characterized by a uni-modal rainfall pattern from November to March with an average 

precipitation of 900-1200 mm and an average temperature of 20°C. Major economic activity 

in the area is small-scale sugarcane and maize farming. 

 
Figure 8-1: a) Location of study site in Swayimane, KwaZulu-Natal, South Africa and b) The 

maize plot. 

 

The leaves with visible collars were used to discern the maize growth stage. Maize growth 

stages were divided into two sub-groups; that is, the vegetative (V) and reproductive (R) 

stages (Coelho and Dale, 1980, Ciampitti, Elmore et al., 2011) (Table 8-1). The V stages 

began with emergence denoted VE. This stage marks the emergence of coleoptiles from the 

soil (Ciampitti, Elmore et al., 2011). The following stages were subdivided numerically into V1 

to V3. V1, V2 and V3. The development of the first true leaf generally marks V2. 

Meanwhile, V3 is characterised by the establishment of the collar of the third leaf between 10-

14 days after emergence. The vegetative stages can proceed to V(n) Nth leaf collar depending 

on the crop variety. The final V stage is the tasselling stage, typically noted by establishing the 

tassel. The plant at the tasseling stage will have developed to a full height, and all leave will 

have emerged. The next stage will be the reproductive and kernel development stages, 

generally denoted using the letter R (Ciampitti, Elmore et al., 2011). The first reproductive 

stage is R1, silking. At this stage, silks emerge outside the husks with pollen shed at a rate of 

1- to 1.5 inches per day(Coelho and Dale, 1980; Ciampitti, Elmore et al., 2011). 

a) b) 
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The Blister stage follows this, denoted R2 at approximately 70 after emergence. At this stage, 

the blisters occur most between 10-4 days after silking. Small watery kernels will be developed 

while silks will be browning and drying out (Coelho and Dale, 1980). The milk stage (R3) 

occurs 18 to 22 days after silking. At this stage, the kernel develops a milky fluid inside. The 

milk stage occurs 91 days after emergence. The dough stage (R4) follows approximately 105 

days after the emergence. At this stage, the kernels have a pasty consistency. The dent (R5) 

occurs about 112 days after emergence. At this point, the cobs would have been developed. 

This stage can be identified using the milk or starch line (a line separating the solid and the 

liquid endosperms) which progressively gravitates towards the cob as moisture is being lost 

and the kernel matures(Coelho and Dale, 1980; Ciampitti, Elmore et al., 2011). The final stage 

is physiological maturity also referred to as the black layer (R6) and occurs approximately 160 

days after emergence. At the black layer stage, the milk line would have progressed to the 

base of the kernel and a black line would have developed at the kernel base (Coelho and 

Dale, 1980). 

 

Table 8-1: Maize growth stages. 

 Growth 

stage 

Name of growth 

stage 

Days after 

emergence 

Brief description 

Vegetative (VE) Emergence 0 Germination and Emergence 

 V1 First leaf collar   

 V2 Second leaf 

collar 

7  

 V3 Third leaf collar   

 V(n) Nth leaf collar 21-55 Plant population established, 

cob development, active 

growth: cob size determined 

 VT Tassling 56 Pollination 

Reproductive  R1 Silking 63  

 R2 Blister 70 Kernel development 

 R3 Milk 91 Grain filling: nutrients 

transported to cob 

 R4 Dough 105  

 R5 Dent 112 Physiological maturity and 

ready for harvest  

 R6 Maturity 160  
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8.2.2 LAI measurements 

A polygon map was generated in Google Earth Pro covering the maize field to estimate the 

maize LAI. The polygon was imported into ArcMap 10.6 as a keyhole markup language (kml) 

file and used to generate stratified random sampling points and determine the flight path. A 

total of 63 points were generated and used for this analysis. These sampling points were 

loaded into a Trimble handheld Global Positioning System (GPS) with an accuracy of 30 cm 

and used to locate the sampling points in the plot. At each sample point, a close maize plant 

was marked for ease of identification and used for further sampling. Five field surveys were 

conducted during the vegetative (V) and reproductive (R) growth stages, i.e.  V8-V10 (18 

March 2021), V10-V12 (31 March 2021), VT-R1 (12 April 2021), R2-R3 (28 April 2021) and 

R3-R4 (14 May 2021). UAV were acquired at each field survey. 

The LAI was determined by using the LiCOR 2200C Plant Canopy Analyzer. The LiCOR 

2200C has a fisheye optical sensor with five concentric rings centred at zenith angles 7°, 22°, 

38°, 52° and 68° measuring radiation above and below the canopy to estimate canopy light 

interception and transmittance at five angles. The LAI is determined by inverting the Beer-

Lambert law.  

8.2.3 Data analysis 

The UAV bands were used to calculate 57 VIs (Table 8 2). Specifically, traditional, red edge-

based and new VIs (nDVI) based on all combinations of the six spectral bands were calculated 

in geographic information systems (GIS). The UAV-derived VIs were then used to estimate 

maize LAI across the growing season. The UAV data used in this study are summarized in 

(Table 8-2). All vegetation indices were loaded in the model computation to estimate LAI, and 

the RF selected the optimal spectral features as described in section 2.5 below. We then 

assessed the correlation between LAI and observed yield data.  
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Table 8-2: UAV-derived VIs were used in this study. 

 Vegetation Index Abbreviation Formula Reference 

Traditional Normalized Difference 

Vegetation Index 

NDVI (NIR-R)/(NIR+R) (Aboelghar, Arafat et 

al., 2011) 

 Phenological Normalized 

Difference Vegetation 

Index 

PNDVI (NIR-(G+R+B))/(NIR+(G+R+B)) (Liu, Liu et al., 2019) 

 Red-Blue Normalized 

Vegetation Index 

RBNDVI (NIR-(R+B))/(NIR+(R+B)) (Li, Xu et al., 2020) 

 Enhanced Normalized 

Vegetation Index 

ENDVI ((NIR+G)-(2*B))/((NIR+G)+(2*B)) (Mditshwa, 2017) 

 Green-Blue Normalized 

Vegetation Index 

GBNDVI (NIR-(G+B))/(NIR+(G+B)) (Peng, Li et al., 2019) 

 Green-Red Normalized 

Vegetation Index 

GRNDVI (NIR-(G+R))/(NIR+(G+R)) (Peng, Li et al., 2019) 

 Generalized Difference 

Vegetation Index 

GDVI NIR-G (Ramos, Osco et al., 

2020) 

 Chlorophyll Index Green CIgreen (NIR/G)-1 (Stroppiana, Migliazzi et 

al., 2015) 

 Chlorophyll Vegetation 

Index 

CVI NIR*(R/(G*G)) (Stroppiana, Migliazzi et 

al., 2015) 

 Green Leaf Index GLI ((2*G)-R-B)/((2*G)+R+B) (Tumlisan, 2017) 

 Enhanced Vegetation 

Index 

EVI 2,5*((NIR-R)/(NIR+(6*B)-

(7,5*B))+1) 

(Potgieter, Apan et al., 

2007) 

 Enhanced Vegetation 

Index 2 

EVI2 2,4*((NIR-R)/(NIR+R+1)) (Zheng, Cheng et al., 

2019) 

 Enhanced Vegetation 

Index 3 

EVI3 2,5*((NIR-R)/(NIR+(2,4*R)+1)) (Sibanda, Mutanga et 

al., 2017) 

 Chlorophyll Index CI (R-B)/B (Yao, Wang et al., 2017) 

 Infrared Percentage 

Vegetation Index 

IPVI (NIR/NIR+R)/2*(NDVI+1) (Zhang, Zhao et al., 

2019) 

 Soil Adjusted Vegetation 

Index 

SAVI ((NIR-R)/(NIR+R+0,5))*(1+0,5) (Mditshwa, 2017) 

 Optimized Soil Adjusted 

Vegetation Index 

OSAVI (NIR-R)/(NIR+R+0,16) (Peng, Li et al., 2019) 

 Simple Ratio SR (NIR/R) (Peng, Li et al., 2019) 

Red edge based Normalized Difference 

Red Edge 

NDRE (NIR-RE)/(NIR+RE) (Sun, Qin et al., 2019) 

 Chlorophyll Red Edge CIRE (NIR/RE)-1 (Sun, Qin et al., 2019) 

 Canopy Chlorophyll 

Content Index 

CCCI ((NIR-RE)/(NIR+RE))/((NIR-

R)/(NIR+R)) 

(Al-Gaadi, Hassaballa 

et al., 2016) 

 Red Edge based 

Normalized Difference 

Vegetation Index 

NDVIRE (RE-R)/(RE+R) (Dong, Liu et al., 2019) 

New             - nDVI (RYi) – (RYj) / (RYi) + (RYj) This study 

*Where RYi and RYj are different Altum spectral bands, including the thermal band. 
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8.2.4 Maize LAI prediction 

Before predicting the LAI using UAVs acquired remotely sensed data, we assessed the 

magnitude of the relationship between field-measured LAI and field-measured yield of maize 

based on Pearson's product moments correlation after assessing the data for normality. We 

sought to evaluate whether a change in LAI (a proxy for biomass accumulation) could be 

associated with the change in yield. Before conducting the Person’s correlation test, the LAI 

estimates measured in the field at different stages were averaged to relate them with grain 

yield. Grain yield was destructively derived from each sampling plot and measured using a 

digital scale. 

RF algorithm was then used to estimate maize LAI across the growing season. RF is amongst 

the group of supervised ensemble regression machine learning techniques developed to 

advance the classification and regression trees algorithm by compiling a huge set of decision 

trees. RF uses a bootstrap aggregation technique popularly known as bagging. In conducting 

bagging, RF creates decision trees and then trains each tree using exclusive data samples 

from the field-measured data (LAI). Data sampling for each tree is conducted with replacement 

from the main pool. Its popularity is based on optimising the regression trees (ntree) method 

by combining a large set of decision trees. Another hyperparameter of RF, mtry, regulates that 

split-variable randomization feature. This study implemented the RF machine learning 

technique using the R interface. In R, the doBest function was used to optimize the ntree and 

mtry parameters to 200 and 5, respectively, as it was the best combination of parameters after 

testing the ntree values in increments of 100 to 2500 and the mtry values in increments of 1 

to 5. The resulting models of each growth stage were then compared to assess the best-

performing model. RF conducted the optimal spectral feature selection, and these optimal 

features were identified using their relatively high variable importance scores. 

8.2.5 Accuracy assessment  

To assess the performance of the models, the dataset (n = 63) was split into 70% training  

(n = 44) and 30% test (n = 19) datasets. The training data was used to train the model, and 

the test data was used to evaluate the estimation models. The performance of each model in 

estimating LAI was evaluated using the coefficient of determination, the root mean square 

error (RMSE) and the relative root mean square error (RRMSE) (see Equations 7-3 and 7-4). 

The model that yielded a high R2 and low RMSE  was then used to create an LAI map for the 

study site in ArcMap 10.6. The LAI index mathematical models and the selected optimal 

spectral variables were then used to create LAI maps using the raster calculator in ArcMap. 

8.3 Results 

8.3.1 Descriptive statistics 

Descriptive statistics of LAI measured in the field for all the growth stages (i.e. V8-V10,  

V10-V12, VT-R1, R2-R3, R3-R4) are shown in Table 8-3. The highest average maize LAI of 

3.44 was obtained from the R3-R4 growth stage, and the lowest was observed for the V8-V10 

growth stage, which was 1.78. Furthermore, the R3-R4 growth stage had the highest 
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maximum LAI of 6.29 compared to the rest. The V8-V10 stage had the lowest LAI of 0.47 

compared to the rest. The mean LAI increased along with an increase in maize crop 

productivity. In assessing the general relationship between the maize field measured LAI 

estimates and the yield, results showed a significant (α = 0.05) positive correlation. 

Specifically, a correlation coefficient (r) of 0.74 indicated a strong positive relationship between 

the yield and the LAI. This implied that an increase in average LAI estimates is associated 

with a significant increase in yield (Figure 8-2). 

 

Table 8-3: Descriptive statistics of the actual maize LAI 

Growth Stage N Mean Std. dev Min Max 

V8-V10 63 1.78 0.35 0.47 1.37 

V12-V14 63 1.82 1.37 1.01 2.93 

VT-R1 63 2.07 1.14 2.24 3.46 

R2-R3 63 3.29 1.1 2.66 5.15 

R3-R4 63 3.44 0.63 3.53 6.29 

 

 

Figure 8-2: Relationship between field-measure Yield and average LAI estimates of maize. 

8.3.2 Derived Maize LAI prediction models and their accuracies 

Figure 8-3 demonstrates the model accuracies obtained in estimating maize LAI based on the 

RF algorithm. The prediction models' accuracy was moderate to high across the different 

maize growth stages. For instance, the most optimal model derived in predicting LAI was the 

V8-V10 growth stage with an R2 of 0.91, RMSE of 0.15 m2/m2 and RRMSE of 8.13% (Figure 

8-3 (a)) based on ndviB&T and ndviG&B spectral variables (Figure 8-4 (a)). The V12-V14 

growth stage exhibited the second-best model with a maize LAI model that exhibited an R2 of 

0.93, RMSE of 0.17 m2/m2 and RRMSE of 8.97% (Figure 8-3 b) with BNDVI and ndviB&NIR 

being more influential for the model (Figure 8-4 (b)).  

Meanwhile, the VT-R1 growth stage demonstrated a moderate prediction accuracy in 

estimating maize LAI (R2 = 0.91, RMSE = 0.65 m2/m2 and RRMSE = 19.61%) (Figure 8-3 (c)). 
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The most suitable predictor variables for this stage included ndviNIR&T and ndviR&T (Figure 

8-3 (c)). This was followed by a drastic improvement in the R2-R3 growth stage with an R2 of 

0.89, RMSE of 0.19 m2/m2 and RRMSE of 10.78% (Figure 8 3 (d)). CI and ndviB&RE (Figure 

8-4 (d)) were the most influential variables for this prediction. The R3-R4 growth stage also 

yielded the least model with an R2 = 0.91, RMSE = 0.32 m2/m2 and RRMSE = 15.22% (Figure 

8-3 (e)). The most optimal variables for predicting maize LAI at the R3-R4 growth stage were 

ndviNIR&B and ndviB&NIR (Figure 8-4 (e)).  

 

 
Figure 8-3: Relationship between measured and estimated LAI based on the combination of 

traditional, red edge-based and new VIs using the RF Model for the a) V8-V10 b) V12-V14 c) 

VT-R1 d) R2-R3 and e) R3-R4 maize growth stages. 
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Figure 8-4: The variable importance scores of selected variables that exhibited the highest 

scores in predicting maize LAI for the a) V8-V10, b) V12-V14, c) VT-R1 d) R2-R3 and e) R3-

R4 maize growth stages 

 

Figure 8-5 illustrates the spatial distribution of LAI estimated using UAVs remotely sensed 

data at different phenological stages. Following the maize development stages considered in 

this study, the spatial variation of LAI increases with the increase in the growing stages. Across 

all maps, the eastern section of the field exhibits slightly higher maize LAI estimates in relation 

to the western section. 
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Figure 8-5: The distribution of modelled maize LAI for the a) V8-V10, b) V12-V14, c) VT-R1 d) 

R2-R3, and e) R3-R4 growth stages based on the RF models.  

 

8.4 Discussion 

This study sought to test the utility of UAV-derived VIs in estimating maize LAI across the 

growing season based on the Altum sensor mounted on the DJI Matrice 300 UAV data. 

Specifically, this study sought to estimate LAI using a combination of UAV-derived traditional, 

new and red edge-based bands, indices and the RF algorithm across the growing season 

within a smallholder farm. 

8.4.1 Predicting maize LAI 

The results of this study showed that maize LAI could be optimally estimated at the V8-V10 

growth stage to an R2 of 0.91, RMSE of 0.15 m2/m2 and RRMSE of 8.13%, with the most 

influential variables being the ndviG&B and ndviB&T derived using the green, blue and thermal 

spectral variables. This finding demonstrates the sensitivity of maize LAI to the blue, green 

and thermal regions of the EMS in the early growth stages. Literature notes that the blue 

section of the EMS is sensitive to green vegetation as plants use it during photosynthesis, 

which results in its absorption by vegetation, hence its influence in predicting LAI (Dou, Niu et 

al., 2019; Grajek, Rydzyński et al., 2020). Literature also notes that the presence of bright 
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green vegetation on the ground during the early stages of plant growth results in a high 

reflectance in the green region of the EMS, which explains the sensitivity of maize LAI to the 

green section of the EMS at the V8-V10 stages for this study (Ren and Zhou, 2019; Sharifi 

and Agriculture, 2020). These findings agree with Motohka, Nasahara et al. (2010), who 

noticed a decrease in green reflection when leaves changed from bright green in the early to 

dark green towards the later stages of the season. This is attributed to the end of the formation 

of new leaves, which was also detected using spectral variables derived from the green 

section of the EMS. New leaves tend to be thinner and primarily function as a source for plant 

assimilates. Older leaves are thicker and are actively photosynthesizing functioning as an 

assimilation source for the cob. In addition, the thermal band was also amongst the most 

influential spectral predictor variables. This could be explained by the fact that during the  

V8-V10 growth stage, there is low foliage density. Literature notes that when there is low 

foliage density, the soil tends to absorb more heat, resulting in a high reflectance of the thermal 

region from the ground, which explains the sensitivity to the thermal band during this stage for 

this study (Filgueiras, Mantovani et al., 2019).  

In estimating maize LAI during the V12-V14 growth stage, UAV-derived VIs yielded an R2 of 

0.93, an RMSE of 0.17 m2/m2 and an RRMSE of 8.97% based on spectral variables derived 

from the blue and NIR regions of the EMS (BNDVI). The results of this growth stage signify 

the sensitivity of maize LAI to the blue and NIR sections of the EMS to maize LAI during the 

V12-V14 growth stage. As mentioned earlier, the blue region of the EMS plays an important 

role in the daily plant photosynthetic process, hence the importance of the blue waveband at 

this growth stage as well (Grajek, Rydzyński et al., 2020). In explaining the sensitivity of maize 

LAI to the NIR section of the EMS, the literature notes that this section is significant in 

vegetation monitoring as healthy vegetation tends to reflect highly in this section, hence its 

influence in estimating LAI (Fu, Yang et al., 2014; Liu, Liu et al., 2019; Martínez-Guanter, Egea 

et al., 2019). Specifically, maize plants' presence and increased foliage density result in leaves 

strongly reflecting in the NIR section of the EMS. Correspondingly, studies by He et al. (He, 

Zhang et al., 2019) and Tunca et al. (Tunca, Köksal et al., 2018) successfully illustrated the 

use of leaf optical reflectance in the NIR section of the EMS in optimally predicting LAI with an 

R2 of 0.83 and 0.77, respectively. Specifically, the presence and increased foliage density due 

to leaf and stem elongation result in leaves strongly reflecting in the NIR section of the EMS. 

In predicting maize LAI at the VT-R1 growth stage, UAV-derived VIs produced a prediction 

model with an R2 of 0.91, a RMSE of 0.65 m2/m2 and an RRMSE of 19.61% based on the 

combination of spectral variables derived from the red and NIR regions of the EMS (ndviR&T 

and ndviNIR&T). The EMS's red and NIR sections are significant in vegetation monitoring. 

Specifically, vegetation tends to absorb in the red section strongly and as mentioned earlier, 

reflect highly in the NIR section explaining the sensitivity of maize LAI to these sections of the 

EMS. As in this study, Kanning et al. (Kanning, Kühling et al., 2018) noted that these red and 

NIR band-based indices presented a higher sensitivity to crop growth parameters. These 

sections of the EMS are of great value in explaining LAI because the level of absorption in the 

red section and reflection in the NIR section reflects on the amount of vegetation present on 

the ground, and therefore the higher the absorption and reflection in the red and NIR sections 

respectively, the higher the amount of vegetation on the ground and vice versa (Ramos, Osco 

et al., 2020).  
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When predicting maize LAI at the R2-R3 growth stage using UAV-derived VIs, a model with 

an R2 of 0.89, an RMSE of 0.19 m2/m2 and an RRMSE of 10.78% was obtained based on the 

indices derived using the blue and red wavebands together with the red edge wavebands 

(ndviB&RE and CI). This indicates maize LAI sensitivity to the EMS's blue, red and red edge 

sections in the R2-R3 growth stage. The contribution of the red edge could be attributed to the 

fact that chlorophyll and biomass are sensitive to the red edge (Tumlisan, 2017). Specifically, 

LAI is correlated to chlorophyll and biomass, hence the influence of the red edge in predicting 

LAI (Sun, Qin et al., 2019). Finally, in the R3-R4 growth stage, maize LAI was sensitive to the 

blue and NIR sections of the EMS. These produced an optimal model with an R2 of 0.91, an 

RMSE of 0.32 m2/m2 and an RRMSE of 15.22%. As aforementioned, the influence of the blue 

and NIR bands in predicting maize LAI could be explained by the blue band's role in 

photosynthesis and the strong reflection of vegetation in the NIR section of the EMS. 

8.4.2 The performance of combining UAV-derived traditional, red edge-based and 

new VIs in predicting maize LAI 

Results in this study show that combining traditional, red edge-based and new VIs produced 

good yield prediction models for all the growth stages. This could be due to the sensitivity of 

the red edge region of the EMS, together with the ability of VIs to enhance vegetation features 

to the variation in LAI changes (Sun, Qin et al., 2019). Across the growing season, LAI 

changes, as shown in Table 3. During the early stages (V8-V10 and V12-V14) of the growing 

season, leaves are small, and as maize grows, so do the leaves. This results in the alteration 

of LAI across the phenological cycle. Therefore, the red edge section of the EMS better detects 

the spectral reflectance of these growth stages, which shifts with vegetation growth, expanding 

on the performance of VIs (Sibanda, Onisimo et al., 2021). Additionally, the red edge region 

of the EMS is also sensitive to chlorophyll content variability, which increases as maize grows. 

This also contributes to the high accuracy of estimating maize LAI when VIs is combined with 

the red edge.  

Meanwhile, VIs are sensitive to distinctive spectral properties of green vegetation in the image 

caused by the reflectance of maize at various growth stages on particular spectral bands such 

as the red, red edge and NIR (Kanning, Kühling et al., 2018). Furthermore, VIs is highly 

correlated with LAI. This then boosts the robustness of VIs in estimating LAI. VIs are also 

sensitive to the LAI variability caused by the different stages of the phenological cycle and the 

accumulating chlorophyll content throughout the crop's growing season (Leroux, Castets et 

al., 2019). In this regard, high estimation accuracies of LAI are realized when the traditional, 

red edge-based and new VIs are combined. In addition, VIs optimize the characterization of 

spatial information on vegetation while increasing the range of LAI to optimal levels (He, Zhang 

et al., 2019). The results of this study are consistent with those of Fu, Yang et al. (2014), who 

reported that models derived from the combination of VIs and band parameters could 

effectively increase the accuracy of winter wheat biomass estimation compared with the 

performance of bands or VIs as stand-alone data. Another study by He, Zhang et al. (2019) 

estimated the rice-LAI based on a new vegetation index and concluded that combining the 

NIR and red edge bands best-predicted rice LAI (R2 = 0.6, RMSE = 1.41 m2/m2).  

Although the findings of this experimental study address the overarching objective, the caveats 

of UAV-derived datasets need to be stated as they negatively impact related studies. For 
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instance, most studies based on UAV remotely sensed data cover small spatial extents due 

to the battery power's inhibited duration and weight (Boukoberine, Zhou et al., 2019). Batteries 

with limited power or are heavy tend to inhibit the flight plan and time to a small area. This 

limits these earth observation technologies and associated experimental studies to farm or 

field scales. 

 

8.5 Conclusion 

This study sought to test the utility of UAV-derived VIs in estimating maize LAI across the 

growing season based on the Altum sensor mounted on the DJI Matrice 300 UAV data in a 

smallholder farm. Based on the findings of this study, it can be concluded that: 

• Maize LAI can be optimally estimated using UAV-derived VIs across the growing 

season. 

• The blue, green, red edge and NIR sections of the EMS are influential in estimating 

Maize LAI 

• Combining traditional, red edge-based and new VIs is useful in attaining high LAI 

estimation accuracies. 

Quantitative assessments of maize LAI attained in this study are a step towards developing 

non-destructive and cost-effective methods for routine and timely monitoring of maize LAI in 

smallholder farms for improved crop health and productivity estimation. The findings indirectly 

contribute to a better understanding of maize crop health and crop monitoring efforts for 

improved food security.  
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9 PREDICTING MAIZE YIELD IN SMALLHOLDER CROPLANDS USING 

UAVS-DERIVED MULTI-TEMPORAL REMOTELY SENSED DATASETS 

 

Ndlovu HS, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP and Mabhaudhi T  

 

9.1 Introduction 

Agriculture continues to be the mainstay of the economies of most Southern African countries, 

providing over 35% of their gross domestic product, 70-80% of the available employment 

opportunities and about 30% foreign exchange. Furthermore, the agricultural sector provides 

livelihoods to over 70% of the country's population through smallholder farming, which 

constitutes the majority of food producers (Jin, Azzari et al., 2019). However, despite the 

sector’s fundamental role in the region’s economies and food security, like many other regions 

of the African continent, abject poverty and deepening hunger continue to stall the 

development prospects. This is demonstrated by, among others, the increasing number of 

people living below the poverty line and malnourished children. These trends could reduce the 

region’s objective of ending poverty and hunger by 2030 as the current sustainable 

development goals stipulated. Whereas there are many challenges accelerating food 

insecurity, the principal cause is the decline in the production of staple crops. Specifically, 

drastically decreasing yields of critical food crops such as maize are attributed to, among 

others, the utility of rudimentary farming practices, the low inputs that characterize 

conventional farming systems, lack of incentives and appropriate technologies to optimize 

production, especially on smallholder farms (Tan, Zhang et al., 2020). Despite their potential, 

the characteristic nature of smallholder farming systems has presented a low predisposition 

to invest in improved agricultural technologies that can optimize agricultural productivity, 

hence mitigating food insecurity and poverty.  

As mentioned, smallholder farming is the most prevalent maize production in southern African 

countries.  In a recent sub-national census, Jin, Azzari et al. (2019) showed that 50% of food 

calories in the region were produced on farms of less than 5 ha in size. This region's annual 

demand for maize is expected to increase by 2.4% per annum up to 2025 (Dhau, Adam et al., 

2018). Hence, exploring approaches to maximize maize production on smallholder farms is 

necessary to mitigate poverty and address food and nutritional insecurities. To achieve this, 

frequent monitoring across the growing season is critical in assessing the value of the adopted 

techniques and approaches to improve smallholder farm productivity (Tunca, Köksal et al., 

2018). 

Traditionally, several approaches that include ground observations, surveys and 

measurements have been adopted in crop monitoring (Mditshwa, 2017). However, these 

approaches are limited by their high labour and financial costs and, therefore, not ideal for 

continuous and time-efficient crop monitoring (Jégo, Pattey et al., 2012). Meanwhile, satellite 

remote sensing has emerged as a better alternative for crop monitoring and yield estimation 

(Fernandez-Ordoñez and Soria-Ruiz, 2017; Leroux, Castets et al., 2019). For instance, 
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Aghighi, Azadbakht et al. (2018) demonstrated that Landsat 8 multispectral remotely sensed 

data could predict silage maize yield with an optimal R2 of 0.87, while Kayad, Sozzi et al. 

(2019) utilized Sentinel-2 multispectral instrument derived VIs to estimate corn grain yield 

spatial variability with an R2 of 0.6. Despite the successes associated with these studies, the 

utilization of such multispectral satellite datasets in crop monitoring and yield estimation in 

smallholder farms is limited by their relatively coarse spatial and temporal resolutions 

(Stratoulias, Tolpekin et al., 2017). Although numerous satellite images have high spatial 

resolutions (e.g. SPOT, Worldview and QuickBird and Planetscope), they are not cost-

effective for monitoring smallholder crops.  Moreover, they are often associated with 

processing complexities, making them unsuitable for monitoring and estimating maize yield at 

a farm scale (Jin, Azzari et al., 2019; Chivasa, Mutanga et al., 2020).  

On the other hand, UAVs, also known as drones, have emerged as a prospective alternative 

source of remotely sensed data suitable for mapping and monitoring crop productivity at a 

farm-to-field scale (Maes, Huete et al., 2018). With advancements in technology, the weight 

and size of multispectral cameras have been drastically reduced to ease mounting on UAVs 

for use in precision agriculture (Candiago, Remondino et al., 2015). UAV systems provide high 

spatial resolution remotely sensed data at user-defined revisit frequencies and areas of 

interest, hence time-efficient and cost-effective agricultural applications such as yield 

modelling (Schut, Traore et al., 2018; Ziliani, Parkes et al., 2018). Furthermore, in estimating 

maize crop yield using temporal remotely sensed datasets, it is not very clear whether the 

ultimate plant biomass (inclusive of the grains), the actual grain biomass (excluding the foliage 

and stem) or the biomass of grain yield as a proportion of ultimate plant biomass exhibits more 

accurate yield estimates. This has further compounded the challenge in using remotely sensed 

data to estimate the yield of crops such as maize when compared with crops such as cabbages 

and spinach (Abdel-Rahman, Mutanga et al., 2014) where biomass is derived from the foliage 

which in turn directly interacts with the spectral signatures used in yield estimation. In this 

regard, very few studies have utilized UAV-derived data in estimating maize yield at 

smallholder farms in Sub-Saharan Africa. Hence, there is a need to test the utility of 

multispectral and thermal drone-derived remotely sensed datasets to not only estimate maize 

yield in smallholder farms of the southern African region but also identify the specific yield 

variables that optimally facilitate the accurate estimation of yield. Testing drone-derived 

remotely sensed data in estimating maize yield is important for optimizing agricultural 

production, a challenge using coarse spatial resolution image data. Therefore, this study 

aimed to test the utility of UAV-derived data in estimating maize yield across the growing 

season in a smallholder farm. To address this overarching objective, the study sought to; i) 

predict maize yield using UAV remotely sensed data in conjunction with the RF algorithm and 

determine the most optimal growth stage for yield prediction, and ii) compare the performance 

of using the actual grain biomass (excluding the foliage), the ultimate plant biomass (inclusive 

of the grains and foliage) and the biomass of grain yield as a proportion of ultimate plant 

biomass in estimating maize yield. To achieve this, the combination of bands and VIs and the 

RF algorithm regression ensemble was used. 
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9.2 Materials and Methods 

9.2.1 Study area 

This study was conducted on a smallholder farm in Swayimane, KwaZulu-Natal, South Africa. 

The farm is between 29°31’24’’S and 30°41’37’’ E (Figure 9-1). The area has a sub-humid 

climate with an average temperature of 20°C and average precipitation of  900-1200 mm per 

annum (Miya, Modi et al., 2018). The study was conducted on a 2699.005 m2 maize field where 

the maize was sawn in November with approximately 160 days of the growing season.  

 
Figure 9-1: a) Location of the experimental field plot in Swayimane, KwaZulu-Natal, South 

Africa, and b) & c) The maize field. 

The maize growth stages were divided into two sub-groups, the vegetative growth stages, 

which are the early growth stages covering the V8-V10, V12-V14 and VT-R1 growth stages 

and the reproductive growth stages covering the R2-R3 and R3-R4 growth stages. *Refer to 

Table 9-1 in Chapter Two for more details on the growth stages. 

9.2.2 Agricultural practices 

Maize seeds were sawn by hand in February 2021, and weeds were constantly hand removed 

throughout the growing season. Cow manure, instead of chemical fertilizers, were used to 

optimize soil fertility. The maize crops in the study area were rain-fed.  

 

a) b) 

c

) 
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9.2.3 Sampling strategy for yield measurements 

To optimize the sampling procedure, a polygon of the entire experimental field was generated 

in Google Earth Pro and imported into ArcGIS 10.6.  Subsequently, 63-point locations were 

generated inside the experimental field plot polygon based on stratified random sampling to 

determine the sampling points for yield data collection. These points were then uploaded into 

a Trimble handheld GPS with a sub-meter accuracy of 30 cm. The GPS was then used to 

locate and navigate the sampling points in the field. A square meter plot was established at 

each location, and maize plants near each sample point were selected for yield estimation. To 

determine the absolute maize plant biomass, the sample plants (the entire stalk and the cob 

with the grains) were harvested manually during the reproductive stage R3-R4, which marked 

the end of the growing season of maize. These were lightly shredded to fit in the brown bags 

and appropriately labelled. The entire plant biomass was first oven-dried at 60°C for 48 hours 

and then weighed to determine the entire plant biomass before separating the cobs from the 

plant. After the separation, the grains were shelled to determine the grain yield biomass. The 

dry grains were weighed, and grain yield was calculated as the weight in kg/m2. The absolute 

plant biomass divided the dry grains to determine the proportional yield. These weights were 

then recorded on an Excel spreadsheet, together with the coordinates of each sampling point. 

9.2.4 Calculation of VIs 

The UAV-derived image bands were used to compute VIs, and both spectral bands and 

indices were used to predict maize yield. The VIs selected and utilized in this study are 

summarized in Table 9-1. These VIs were chosen based on their performance in literature 

(Bala and Islam, 2009; Mditshwa, 2017; Tumlisan, 2017). The indices directly relate to the 

chlorophyll content of the plant, which indirectly relates to yield. 

 

  



 

138 

 

Table 9-1: VIs used in this study.  

Vegetation Index Abbreviation Equation Reference 

Normalized Vegetation 

Index 

NDVI 

 

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  (Wahab, Hall et al., 

2018) 

Enhanced Vegetation 

Index 

ENDVI 

 

 

(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) − (2 × BLUE)

(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) + (2 × BLUE)
 

(Zhang, Lan et al., 2009) 

Soil Adjusted 

Vegetation Index 

SAVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
 × (1 + L) 

 

Ngie and Ahmed (2018) 

Optimized Soil Adjusted 

Vegetation Index 

OSAVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.16)
 

× (1 + 0.16) 

 

Liu, Liu et al. (2019) 

Simple Ratio SR 𝑅𝐸𝐷

𝑁𝐼𝑅
 

Kanning, Kühling et al. 

(2018) 

 

9.2.5 Data Analysis 

A correlation between the grain and the biomass data was determined to evaluate whether 

there was a link between the accumulated biomass and the actual yield at the R3-R4 growth 

stage. A Pearson product-moment correlation test was conducted in this regard following a 

data normality test, which indicated that the data did not significantly deviate from the normal 

distribution.  

To test the relationship between biomass, grain yield and proportional yield determined at the 

R3-R4 stage, the collected 63 yield samples and UAV data (i.e. combination of bands and VIs 

data) were divided into training (70%) and test (30%) datasets to derive models using the RF 

algorithm in R statistical package. The RF algorithm was adopted in this study as it is a non-

parametric statistical technique that uses a bagging-based approach to build an ensemble of 

regression trees while ranking important variables that produce an independent measure of 

prediction error Prasad, Iverson et al. (2006).  In R, the ntree and mtry parameters were 

optimized using the doBest function. The function selected the ntree and mtry parameters with 

the lowest RMSE to determine the most influential parameters. These parameters were tuned 

to 600 for ntree and five for mtry. In addition, the most optimal growth stage at which the 

combination of bands and VIs were highly correlated to the yield was assessed to determine 

the most suitable period to predict maize yield before harvest.  

Test data (30%) was used to evaluate the model performance of the derived models. 

Performance indicators such as R2, RMSE and RRMSE (see Equations 7-3 and 7-4) were 

determined and used to assess the accuracy of each model. The model that yielded a low 

RMSE and high R2 at a stage with adequate time before harvest for intervention was set aside 

and used to predict yield. The most optimal model was then used to create a yield map for the 

study site in ArcMap 10.6. 
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9.3 Results  

9.3.1 Descriptive statistics 

The highest maize biomass, grain yield and proportional yield were 8.61 kg/m2, 4.4 kg m2 and 

0.76 kg/m2, and the lowest was 3.24 kg/m2, 0.16kg/m2, and 0.04 kg/m2, respectively. There 

was considerable variation in maize yield samples in the study. The standard deviation was 

1.45, 1.08 and 0.15 for biomass, grain yield and proportional yield, respectively. Furthermore, 

a strong (R2 of 0.74) positive correlation between the grain yield samples and the overall 

biomass of the maize plants was attained. Figure 9-2 shows the relationship between yield 

and biomass. 

 

Figure 9-2: Correlation between the grain yield and biomass at the R3-R4 stage using all 

samples. 

9.3.2 Derived maize yield prediction models and their accuracies 

Figure 9-3 illustrates the model accuracies obtained in predicting the biomass, grain yield and 

proportional yield based on the RF algorithm. The accuracies of the prediction models varied 

greatly across the maize growing season. For example, when estimating the absolute plant 

biomass, the V8-V10 growth stage yielded the poorest model, with an R2 of 0.80 and RMSE 

of 0.94 kg/m2. The biomass prediction improved in the V12-V14 growth stage model (R2 = 0.85 

an RMSE = 0.72 kg/ m2). Similarly, the VT-R1 and R2-R3 models predicted biomass at an 

improved R2 = 0.89, RMSE = 0.77 kg/m2 and R2 = 0.89, RMSE = 0.88 kg/m2, respectively. The 

optimal model in estimating biomass was derived from the R3-R4 model, with an R2 of 0.91 

and RMSE of 0.61 kg/m2 (Figure 9-3 (e)). The most optimal variables in estimating biomass 

were ENDVI, the red edge band, NIR and NDVI, in order of importance (Figure 9-4 (e)).  

Similarly, the V8-V10 model demonstrated the lowest prediction accuracy in estimating the 

grain yield (R2 = 0.85 and RMSE = 0.6 kg/m2). V12-V14 and VT-R1 followed this with an R2 of 

R² = 0,7364
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0.89, RMSE of 0.12 kg/m2 and, R2 of 0.85, RMSE of 0.1 kg/m2, respectively. The prediction 

accuracy increased significantly with the R2-R3 model (R2 = 0.95 and RMSE = 0.09 kg/m2). 

The R3-R4 model optimally predicted the grain yield with the lowest RMSE = 0.03 kg/m2 and 

R2 = 0.92 (Figure 9-3 (e)). The variables with the highest influence in the grain yield model 

were ENDVI, NIR, NDVI and the red edge band in ascending order of importance (Figure 9-

4(e)). 

When predicting the proportional yield, the V12-V14 model produced the lowest prediction 

accuracy with an R2 of 0.92 and RMSE of 0.11 kg/m2. The prediction of proportional yield 

improved in the V8-V10, VT-R1 and R2-R3 models with an R2 of 0.91, RMSE of 0.09 kg/m2; 

R2 of 0.92, RMSE of 0.06 kg/m2 and R2 = 0.92, RMSE = 0.07 kg/m2. The optimal model for 

estimating proportional yield produced an R2 of 0.95 and RMSE = 0.07 kg/m2 (Figure 9-3 (e)). 

The most suitable predictor variables included NDVI, the green, NIR and red edge bands 

(Figure 9-4 (e)). 

The results varied greatly in comparing the performance of the maize biomass, grain yield, 

and proportional yield variables in predicting yield across all growth stages (Figure 9-3). For 

example, when estimating yield at the V8-V10 growth stage, the proportional yield model 

exhibited the poorest prediction accuracy with an RRMSE of 30.43%, followed by the grain 

yield model with an RRMSE of 27.99%. Comparatively, the most optimal model in estimating 

yield during the V8-V10 growth stage was the biomass model with an RRMSE of 15.42% 

(Figure 9-3(a)). The most important variables include the red and blue bands, SAVI and OSAVI 

(Figure 9-4). 

Similarly, the proportional yield model yielded the poorest model with an RRMSE of 39.91%, 

followed by the biomass model with an RRMSE of 15.37% at the V12-V14 growth stage. The 

grain yield model optimally predicted maize yield with the lowest RRMSE = 5.44% at the V12-

14 (Figure 9-3 (b)). The most optimal variables for this prediction were the green, red edge, 

red and blue bands (Figure 9-4 (b)). 

In predicting yield at the VT-R1 growth stage, the proportional yield model produced the 

highest RRMSE of 17.56%. The prediction accuracy improved with the biomass and grain 

yield models (RRMSE = 12.56% and 5.08%, correspondingly) (Figure 9-3 (c)). The variables 

with the highest influence in the grain yield model were SAVI, NDVI, ENDVI and the green 

band, in order of importance (Figure 9-4 (c)). 

When predicting yield in the R2-R3 growth stage, the highest RRMSE of 22.57% was obtained 

by the proportional yield model. The biomass model improved the prediction by a magnitude 

of 8.1%, i.e. RRMSE = 14.47%. Similarly, the grain yield model was optimal for estimating 

yield at the R2-R3 growth stage (Figure 9-3 (d)). The red-edge band, NDVI, ENDVI and SR 

were the most influential variables for this model (Figure 9-4(d)). 

For the R3-R4 growth stage, the proportional yield exhibited the lowest prediction accuracy 

with an RRMSE of 21.78%. The prediction of yield improved significantly with the biomass 

model (RRMSE = 12.97%) and even greater with the grain yield model (RRMSE = 2.21%) 

(Figure 9-3(e)).  The most influential variables for this prediction were NDVI, NIR, ENDVI and 

the red edge band (Figure 9-4 (e)). Then, Figure 9-5 shows the modelled spatial variation of 



 

141 

 

biomass, grain yield and proportion of grain yield. Based on the maps, biomass, grain yield, 

and proportion of grain yield increased from the west to the east of the experimental fields. 

 

Figure 9-3: Relationship between observed and predicted i) biomass, ii) grain yield and iii) 

proportional yield based on the combination of bands and VIs using the RF Model for a) V8-

V10 b) V12-V14 c) VT-R1 d) R2-R3 and e) R3-R4 maize growth stages. 
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Figure 9-4:The variable importance of the i) biomass, ii) grain yield and iii) proportional yield 

models for a) V8-V10, b) V12-V14, c) VT-R1, d) R2-R3 and e) R3-R4 maize growth stages. 
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Figure 9-5: The spatial distribution of modelled maize a) biomass, b) grain yield and c) 

proportional yield based on the most optimal RF models. 

 

9.4 Discussion 

This study sought to test the capability of UAV-derived data in estimating maize yield across 

the growing season based on the Altum sensor mounted on the DJI Matrice 300 UAV. 

Specifically, this study sought to predict maize yield using UAV images and the RF algorithm 

in smallholder farms. 

9.4.1 Maize yield prediction models 

The results of this study show that the early growth stages of the crop yielded lower overall 

accuracies for the biomass, grain yield and proportional yield, followed by some improvements 

 

a) b) 

c) 
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in the later stages of growth (Figure 9-3). Specifically, the V8-V10, V12-V14 and VT-R1 growth 

stages had lower overall accuracies when compared to the R2-R3 and R3-R4 growth stages. 

Several studies (Guindin-Garcia, 2010; Son, Chen et al., 2013; Al-Gaadi, Hassaballa et al., 

2016; Chivasa, Mutanga et al., 2017) have noted that in the early stages of crop development, 

vegetation reflectance is affected by the soil background, which explains the low performance 

of UAV data in predicting maize biomass, grain yield and proportional yield at the early 

(vegetative growth) stages of this study.  At this stage, the maize leaves are not fully grown, 

exposing the surrounding soil and interfering with the plant’s reflectance as the sensor also 

picks up the soil reflectance (Zhang, Niu et al., 2019).   

In contrast, the later growth stages of the crop yielded higher overall accuracies. Specifically, 

the R2-R3 and R3-R4 growth stages had higher accuracies when compared to the V8-V10, 

V12-V14 and VT-R1 stages. The high performance of the UAV data in predicting maize yield 

at the R2-R3 and R3-R4 stages of the growth cycle can be explained by existing literature 

which has reported significantly high accuracies in the prediction of maize yield at the late 

(reproductive) stages of the crop (Guindin-Garcia, 2010; Mditshwa, 2017). Literature notes 

that at this stage, the maize leaves have grown to mid-density, covering the surrounding soil, 

and therefore crop reflectance is not impacted by the soil background (Mkhabela, Mkhabela 

et al., 2005; Tumlisan 2017; Tunca, Köksal et al., 2018). When plants have grown to mid-

density, there is canopy coverage, meaning the biomass production has reached its most 

mature stage, making it possible to remotely sense vegetation without any interferences from 

the ground, such as soil (Kayad, Sozzi et al., 2019). At this stage, when biomass production 

has reached its peak, it is most closely related to yield, which explains why the model 

accuracies for these stages were higher than those of the earlier stages of growth (Ngie and 

Ahmed 2018; Li, Xu et al., 2020). 

Regarding model variable importance, SAVI, OSAVI, and the blue and red bands were more 

important in predicting early stages than in the late stages of the crop phenological cycle. The 

value of SAVI and OSAVI can be attributed to their ability to suppress soil background, hence 

better prediction at minimal leaf coverage and soil exposure (Ren and Zhou, 2019; Zhang, 

Zhang et al., 2019). The importance of the blue and red bands for these models can be 

explained by soil being more dominant than vegetation in the early stages of the crop resulting 

in high reflectance in the blue and red region of the EMS (Ngie and Ahmed, 2018). 

Comparatively, NDVI, ENDVI, the green, red, red edge and NIR bands were important in the 

prediction models at the R2-R3 and R3-R4 crop growth stages. The importance of NDVI and 

ENDVI in these models could be a result of the fact that when the reflectance measurements 

for the R2-R3 and R3-R4 growth stages were taken, a saturation of the plant canopy had not 

occurred, the plant canopy had only accumulated to mid-density, and there is a good 

relationship between NDVI and ENDVI and biomass and yield at mid-density canopies, which 

characterize the R2-R3 and R3-R4 maize growth stages (Awad, 2019). The importance of the 

green, red, red edge and NIR bands in the models of the R2-R3 and R3-R4 growth stages for 

this study can be attributed to the fact that there was a dominance of vegetation which reflects 

strongly in the green and NIR regions of the EMS and highly absorbs in the red and red edge 

regions of the EMS (Khaliq, Comba et al., 2019; Marcial-Pablo, Gonzalez-Sanchez et al., 

2019). 
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9.4.2 Determining the most optimal growth stages and variables for yield prediction  

The best-fit model for predicting maize biomass and grain yield was obtained at the R3-R4 

growth stage, with ENDVI and the red edge band being the most important variables for 

predicting maize biomass and ENDVI and NDVI being the most important for the prediction of 

grain yield. The influence of the ENDVI, NDVI and the red edge in the prediction at this stage 

could be explained by the good relationship between the two indices and biomass and yield 

at mid-density canopies before saturation (Mutanga, Adam et al., 2012; Tan, Zhang et al., 

2020). On the other hand, the literature notes that the red edge section of the EMS is related 

to chlorophyll and biomass, which directly relates to yield (Dube, Mutanga et al., 2017; 

Sibanda, Mutanga et al., 2017).  Generally, mid-density canopies are characterized by a high 

amount of biomass, associated with high chlorophyll content and carbon assimilation, which 

are sensitive to the red edge section of the EMS (Sibanda, Onisimo et al., 2021). Furthermore, 

a mid-density canopy like in the R3-R4 growth stage results in high ENDVI and NDVI values 

as well as a strong absorption in the red edge region of the EMS, hence their strong influence 

in the prediction of biomass and grain yield when compared to the other variables (Raeva, 

Šedina et al., 2019). In addition, the best-fit model for predicting proportional maize yield was 

obtained in the VT-R1 growth stage, with NDVI and SAVI being the most important variables 

for predicting proportional yield. The significance of NDVI and SAVI in the prediction model of 

maize of proportional yield at this stage can be attributed to the fact that this is the middle 

stage where the canopy has not grown to mid-density resulting in significant soil exposure  

(Mditshwa, 2017). This then results in SAVI being important in suppressing the soil 

background effect and allows NDVI to perform well as it has a good relationship with the 

biomass and yield at this stage’s canopy level because the canopy has not yet reached 

saturation, as canopy saturation hinders the performance of NDVI (Mutanga, Adam et al., 

2012).  

The best-fit model for maize biomass and grain yield was obtained at the R3-R4 reproductive 

development stage and proportional yield at the VT-R1 vegetative development stage (78 and 

62 days after emergence) of the growth cycle. Using the R3-R4 growth stage for biomass and 

grain yield prediction could be late for adopting any effective measure before harvest. A 

significant relationship was found at the VT-R1 (62 days after emergence) growth stage for 

biomass and grain yield. Our findings indicate this is the optimal stage at which maize yield 

could be predicted before harvesting. The most significant variables for the optimal biomass, 

grain yield and proportional yield prediction models were the red edge band and ENDVI, SAVI 

and NDVI, ENDVI and the red edge band respectively. 

Furthermore, the grain yield produced higher prediction accuracies in estimating maize yield 

for most of the crop’s growth stages (V12-V14, VT-R1, R2-R3 and R3-R4) compared to the 

absolute plant biomass and the biomass of grain yield as a proportion of ultimate plant 

biomass. The absolute plant biomass was only optimal in the V8-V10 growth stage, and the 

proportional yield produced the poorest yield prediction accuracies in all growth stages. 

Therefore, the grain yield was the most optimal in estimating maize yield. 

The obtained validation accuracies and their variable importance match those from previous 

findings, where the prediction was conducted on maize using different space-borne sensors. 

For example, Battude, Al Bitar et al. (2016) estimated the biomass and maize yield over a 
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large area using Sentinel-2 data and concluded that remotely sensed data could accurately 

predict the biomass and yield throughout the phenological cycle, with prediction accuracies 

ranging from 0.8-0.9.  Ngie and Ahmed (2018) successfully estimated maize grain yield using 

SPOT 5 data in the Free State province of South Africa, where prediction models with 

accuracies of 0.92 and 0.9 were achieved using SAVI and NDVI.  Mditshwa (2017) used GIS 

and remote sensing to estimate maize grain yield from the different growth stages and 

concluded that NDVI and SAVI are good yield predictors. Unlike the current study, which was 

conducted on a small area using high spatial and temporal resolution datasets, the studies 

mentioned above were conducted at large spatial extents using Sentinel-2 and Landsat-8. In 

this study, adopting a sensor mounted on a UAV has demonstrated its value in predicting 

maize yield in a smallholder farm.  

9.5 Conclusion 

Based on UAV remotely sensed data, this study aimed to predict maize yield (biomass, grain 

yield and proportional yield) across the growing season in a smallholder farm. The following 

conclusions were drawn: 

• UAV-derived data optimally predicted maize yield during the R3-R4 growth stage using 

ENDVI, NDVI and the red edge band.  

• The VT-R1 stage was the most optimal stage for the early prediction of maize yields 

using SAVI, NDVI, ENDVI and the red edge band. 

• The grain yield models produced higher accuracies in estimating maize yield 

compared to the absolute plant biomass and the biomass of grain yield as a proportion 

of absolute plant biomass models. 

The characterised variations in field productivity can assist farmers and decision-makers in 

identifying low-yield areas within the field to adjust their management practices to maximize 

farm productivity. These findings highlight the utility of UAV systems in optimizing agricultural 

production through precision farming on smallholder farms, which is necessary for poverty 

alleviation and food and nutritional security. 

 

  



 

147 

 

10 EXPLORING THE PROSPECTS OF USING LANDSAT, SEBS AND 

METRIC-EFFLUX MODELS AND A CLOUD COMPUTING INFRASTRUCTURE IN 

THE ESTIMATION OF ETC USING UAV MULTI-SPECTRAL IMAGERY 

 

Nyaawose A, Odindi J, Sibanda M, Mutanga O, Clulow A, Chimonyo VGP and Mabhaudhi T  

 

10.1 Introduction 

Crop evapotranspiration (ETC) is the key water balance component representing crop water 

requirements. ETC can be used to quantify the amount of water required in rain-fed and 

irrigated agricultural fields to maximize farm and water productivity while mitigating water 

resource depletion (Bansouleh, Karimi et al., 2015). ETC is estimated to assess crop water 

use or stress, and it can provide invaluable information to facilitate improved agricultural water 

resource management (Bansouleh, Karimi et al., 2015; Dzikiti, Volschenk et al., 2018). 

Shortages of water in semi-arid regions during the growing season decrease crop production 

and yield, especially in small-scale rain-fed agricultural systems (Adetoro, Ngidi et al., 2022).  

Rain-fed smallholder farms, the most common communal cropping practice in Southern Africa, 

generally contribute substantially to food production and improving livelihoods (Masiza, 

Chirima et al., 2022). Maize (Zea mays L) is one of the most produced crops in rain-fed 

smallholder farms because its production can occur in diverse environments (Masupha and 

Moeletsi, 2020). Maize is a staple food in Southern African countries and is among the crops 

whose production needs to be increased to meet the demand of the growing human population 

(Giller, 2020; Cairns, Chamberlin et al., 2021). The production of maize in rain-fed agriculture 

is significantly affected by changes and the distribution of precipitation during the growing 

season (Oluwaranti, Edema et al., 2020). To attain optimum maize crop yield, adequate water 

is required throughout the physiological development (emergence to maturity) because yield 

is sensitive to water stress (Masupha and Moeletsi, 2020). The amount of water required by 

maize depends on the crop's development stage, growth duration, evaporative demand of the 

environment, and planting density (Song, Jin et al., 2019). Therefore, detailed spatially explicit 

locally developed crop and water relationships can aid farmers in understanding the variation 

in crop water use and stress across the growing season for optimising crop production. 

Estimating ETC at different crop growth stages would allow for an improved understanding of 

water use requirements and aid in informed agricultural management decisions (Quan and 

Doluschitz, 2021).  

Numerous methods have been developed to estimate ETC. The most commonly used 

methods are conventional and remote sensing-based methods. Conventional methods such 

as the Bowen ratio, Eddy covariance, and lysimeter are efficient and provide accurate ETC 

estimates (Aryalekshmi, Biradar et al., 2021). However, these methods require extensive input 

data, which is costly and labour-intensive, especially in data-scarce and resource-poor regions 

such as Southern Africa (Mashaba-Munghemezulu, Chirima et al., 2021). Application of 

conventional methods in smallholder farms is a challenge because these farms are 
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fragmented and have heterogeneous fields, whereas these methods are well-suited to 

uniform, extensive homogenous fields (Giller 2020; Mashaba-Munghemezulu, Chirima et al., 

2021). Remote sensing technologies have emerged as a tool that overcomes the limitations 

of conventional data collection methods. For instance, remote sensing techniques are 

noninvasive, offer robust time, cost-effective and reliable methods of estimating ETC.  Many 

studies successfully utilized remote sensing to estimate ETC at various spatial and temporal 

scales (Reyes-González, Kjaersgaard et al., 2018). Furthermore, the availability and 

accessibility of some remotely sensed data used in agriculture allow for retrieving ETC-related 

information in resource-poor and data-scarce regions (Reyes-González, Kjaersgaard et al., 

2018; Nisa, Khan et al., 2021).  

Although satellite-based methods have shown better prospects for estimating ETC due to their 

free access to data policies such as the Moderate-resolution Imaging Spectroradiometer 

(MODIS) and Landsat fleet. However, some satellite platforms provide multispectral images 

with a limited spatial or spectral resolution, which limits the applicability of freely available 

satellite-borne images in smallholder farms (Mashaba-Munghemezulu, Chirima et al., 2021; 

Rezaei, Ghazaryan et al., 2021). For instance, MODIS and Landsat with medium to coarse 

spatial resolution (30-1000 m) often mask out the heterogeneity and complexity of smallholder 

farms, which makes it difficult to obtain finer spatial resolution data suitable to generate 

information for decision-making in smallholder croplands (Sibanda and Murwira, 2012; 

Mashaba-Munghemezulu, Chirima et al., 2021). Meanwhile, the Sentinel-2 multispectral 

instrument (MSI) has a minimum spatial resolution of 10 m with better prospects of capturing 

smallholder farms. However, its application is limited by its spectral resolution, which does not 

cover the critical thermal band for characterising land surface temperature for ETc estimation 

(Segarra, Buchaillot et al., 2020). Satellite-borne sensors characterised by very high spatial 

resolutions (>1 m), such as Geo Eye, Rapid Eye, and Pleiades-1A, are associated with 

exorbitant acquisition costs, which restrict their application in smallholder farms (Stratoulias, 

Tolpekin et al., 2017). Meanwhile, manned aerial vehicles are not often used in smallholder 

farms because they are costly (Chivasa, 2020).  

Unmanned aerial vehicles (UAVs) also have emerged as a potential source of spatially explicit 

data that could alternatively estimate crop water use for optimising agricultural productivity at 

a local scale (Quan and Doluschitz, 2021). UAVs mounted with portable sensors have shown 

great prospects of providing ultra-high spatial resolution (UHSR)  (>1 m) suitable for detecting 

and mapping crop attributes such as ETC and water stress in fragmented heterogeneous 

cropping environments (Niu, Zhao et al., 2019; Quan and Doluschitz, 2021). UAVs can 

address the spatiotemporal limitations of readily available spatial datasets. They can be 

deployed to acquire data on heterogeneous crop types while capturing the complexity of 

fragmented smallholder farms aided by their high spatial resolution (Marcial-Pablo, Ontiveros-

Capurata et al., 2021). Cloud cover does not extensively affect UAVs as they are flown at low 

heights above sea level. They are flexible to acquire images at user-defined times and in 

geographically exclusive areas; hence they have a  great potential to accurately estimate ETC 

in smallholder croplands. Morandé, Trezza et al. (2017)  demonstrated that using UAV-derived 

data as an input in a remote sensing-based model allows for an improved representation of 

the spatial variability in ETC. Ellsäßer, Stiegler et al. (2021) showed that UAV-derived ETC 

estimates compared favourably against eddy covariance estimates and concluded that UAVs 

have great prospects of being utilised in estimating crop ETC in smallholder farms. 
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There are various approaches to estimating ETC using remotely sensed data, including surface 

energy balance (SEB) models, vegetation indices (VIs), or a combination of SEB models and 

VIs. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 

(Allen, Tasumi et al., 2007), Surface Energy Balance System (SEBS) (Su, 2002), and Surface 

Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, Menenti et al., 1998) are amongst 

single source SEB models that have been commonly applied using different satellite images 

to estimate ETC and an evaporative fraction (EF) (Ramoelo, Majozi et al., 2014; Singh and 

Senay 2016).  EF is the ratio between available energy at the land surface and latent heat flux 

(Liu, Xu et al., 2020). EF is used with VIs to estimate ETC when there are gaps in the available 

dataset due to spatial, spectral, and temporal limitations. SEB models are used with freely 

available satellite data to estimate ETC with limited costs (Aryalekshmi, Biradar et al., 2021). 

Following the availability of several methods of estimating ETc, comparative studies have 

been conducted to assess the accuracy of ETC estimates derived using non-spatially explicit 

conventional empirical methods in relation to RS-based models. Results of those studies 

showed that RS-based models could estimate ETC to acceptable accuracies comparable to 

empirical conventional methods (Grosso, Manoli et al., 2018, Niu, Zhao et al., 2019). 

Specifically, SEBS and METRIC-Efflux have successfully been applied in estimating maize 

ETC (Bansouleh, Karimi et al., 2015). For example, a large and growing body of literature has 

successfully estimated ETC using SEBS in irrigated fields (Bansouleh, Karimi et al., 2015; 

Jamshidi, Zand-parsa et al., 2019). Huang, Li et al. (2015) successfully estimated ETC using 

SEBS in a semi-arid region. 

Meanwhile, there is also a significant number of studies that have demonstrated the potential 

of utilising METRIC-Efflux in estimating maize ETc irrigated fields (de Oliveira Costa, José et 

al., 2020; Nisa, Khan et al., 2021; Kamyab, Mokhtari et al., 2022). Although these models are 

commonly used, their application has been mainly on irrigated fields using MODIS and 

Landsat data. An existing study by Cha, Li et al. (2020) demonstrated that incorporating 

Landsat with medium resolution into SEB models can provide accurate estimates compared 

to incorporating MODIS with coarse resolution into SEB models. Considering that many 

comparative studies have been conducted at large scales, Cha, Li et al. (2020) concluded that 

a need to evaluate and compare these RS-based models at spatial scales different from those 

targeted in their development, as their spatial resolution could affect the accuracy of ETC 

estimates.  

While these models have been frequently utilized for various scenarios, only a few selected 

studies have implemented them using UAV-derived inputs (Quan and Doluschitz, 2021). 

Furthermore, given the spectral limitations of UAV-based sensors, the requisite RS-based 

inputs may not be available directly from the UAV imagery, similar to when utilising satellite-

borne data. Therefore, this study explores and demonstrates a relatively simple approach that 

utilizes open source and readily available data, models and cloud computing infrastructure to 

aid in estimating ETC using multi-spectral UAV imagery suitable for application in smallholder 

croplands. Specifically, this study sought to assess the performance of the SEBS and the 

METRIC-Efflux models combined with UAV-derived multispectral data based on Landsat-

derived VIs as a proxy of EF in estimating maize crop ETc across the growing season in 

smallholder croplands in relation to the FAO-56 potential ET as a reference. 
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10.2 Materials and Methods 

10.2.1 Description of the study area 

The study was conducted in the rural community of Swayimane (29°52’S, 30°69’E) in the Kwa-

Zulu-Natal province of South Africa (Figure 10-1). The community is dominated by small-scale 

subsistence farming. The area is characterised by cool temperatures, average annual rainfall, 

and deep fertile soils (Matungul, Lyne et al., 2001). Swayimane has a mean annual 

temperature range of 16°C-18°C and receives annual average precipitation of 1000 mm. 

During the maize growing season of 2020-2021, Swayimane recorded an average air 

temperature of 23.94°C and an average rainfall of 86.56 mm (Ndlovu, Odindi et al., 2021). The 

area is characterised by a gentle elevation between 800 and 1000 m above sea level.  

Farmers have an average of 2 hectares of fields for cultivating various crops, including maize, 

sweet potato, amadumbe, sugarcane and vegetable crops such as spinach and cabbage. The 

variety of maize used in this study is SC701 variety of green mealies. Green mealies are one 

of the most important crops in Southern Africa regarding their economic value (Chirigo, 2014). 

SC701 is one of the most nutritious varieties optionally grown under rain-fed agriculture. It is 

highly recommended for green mealies production in smallholder croplands because of its 

drought and heat tolerance capabilities (Rezaei, Ghazaryan et al., 2021). In this study, maize 

was planted in mid-November 2020 and mid-January 2021, and it matured between 138 and 

150 days after the planting date. Maize was managed using traditional techniques. Traditional 

techniques were used for levelling the soil, distributing cow manure, sowing, and harvesting. 

Weedcides were then used to clear the weeds before planting.  From the ETC maps of the 

entire study area maize fields were extracted by masking the other land cover types. The field 

was divided into 3 plots A, B, and C (Table 10-1), each plot represented a different monthly 

growth stage. 
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Table 10-1: Maize growth stages 

Picture Growth Stage Description 

 

Vegetative growth stage (V5).  20-25 mm below the surface. 5 

leaf – cob and tassel initiation. 

 

Vegetative growth stage (V12). Active growth, leaf and cob 

development. 12 leaf – cob 

size determined. 

 

Reproductive growth stage (R1-R2). Pollination and kernel 

development.  
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Figure 10-1: Study area and maize fields (A, B, and B) 

 

10.2.2 Daily ETc estimation using UAV imagery, Landsat data, SEB models, and GEE 

This study computed maize ETc using the formula below using the reference crop 

evapotranspiration Eto and crop coefficient (Kc) following the surface energy balance model. 

ETC = ETO × Kc   Equation 10-1 

Where ETc is the crop evapotranspiration mm d-1; ETO is the reference evapotranspiration 

from the automatic weather station derived using the Penman-Monteith method; Kc is the 

maize crop coefficient (dimensionless) from the FAO-56 manual.  

Albedo could not be derived from our UAV-derived multispectral image due to the spectral 

limitation of the sensor used; hence the evaporative fraction (EF) was derived from Landsat 
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data and used in this study. The literature illustrates that EF is closely related to VIs, crop 

coefficient (Kc), and reference evapotranspiration (ETo) (Parmar and Gontia, 2022). Therefore, 

it can be used to derive and upscale hourly ETC to daily ETC as it is assumed to be constant 

for 24 hours (Parmar and Gontia, 2022). Normalised difference vegetation index (NDVI) is the 

commonly used VI indicator of land surface vegetation because the magnitude of EF, ETC is 

affected by the vegetation density covering the ground. The EF and NDVI ratio (Equation  

10-2) is based on their strong linear relationship and correlation (Cihlar, Laurent et al., 1991). 

The ratio of EF and NDVI are hypothesized to be equivalent for different sensors; therefore, it 

was used to downscale EF. Subsequently, UAVs based EF (EFUAV) was derived using 

Equation 10-3 (Singh, Khand et al., 2020). Downscaling is generally conducted to address 

sensors' spatial, temporal, or spectral limitations (Tan, Wu et al., 2017). Numerous studies 

used downscaling approach to estimate daily ETC using EF(Yang, Chen et al., 2010; Singh, 

Khand et al., 2020). For instance, Yang, Chen et al. (2010) demonstrated that the EF approach 

is more accurate than the residual approach.  

EF

NDVI
(𝐿𝑎𝑛𝑑𝑠𝑎𝑡) =

EF

𝑁𝐷𝑉𝐼
(𝑈𝐴𝑉)  Equation 10-2 

EFUAV=
EF

NDVI
𝑥 NDVIUAV   Equation 10-3 

Normalised difference vegetation index (NDVI)  

NDVI=
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
    Equation 10-4 

Where NIR and Red represent near-infrared and red bands, respectively. In UAV, NIR and 

Red are Bands 5 and 3, respectively. In Landsat 7, NIR and Red are 4 and 3, respectively. In 

Landsat 8, NIR and Red are Bands 5 and 4, respectively.  

SEBS and METRIC-Efflux were used to derive EF based on Landsat 7 and 8 data. EF and 

NDVI derived from Landsat images were used to estimate EFUAV. Landsat was used because 

all SEBS input parameters can be derived from its image; it is freely available. Landsat images 

with a cloud cover of less than 30% were selected, from the USGS Earth Explorer site, 

downloaded and used in this study. To calculate the ratio 
EF

NDVI
, Landsat and UAV images must 

be acquired on the same date. If the images were not acquired on the same date, the last 

Landsat image acquired before the UAV image and the first Landsat image acquired after the 

UAV image must be used. In this study, Landsat and UAV images were not acquired on the 

same date; therefore, a linear interpolation was applied based on the Landsat images acquired 

before and after the UAV image acquisition date to calculate 
𝐸𝐹

𝑁𝐷𝑉𝐼
(𝑈𝐴𝑉) (Equation 10-5).  

Ratio: 
𝐸𝐹

𝑁𝐷𝑉𝐼
(𝑈𝐴𝑉 = (

𝐸𝐹

𝑁𝐷𝑉𝐼
)i-1+

((
𝐸𝐹

𝑁𝐷𝑉𝐼
)𝑖+1)+((

𝐸𝐹

𝑁𝐷𝑉𝐼
)𝑖−1)

(𝐷𝑂𝑌 𝑖+1)−(𝐷𝑂𝑌 𝑖−1)
×((𝐷𝑂𝑌 𝑖) − (𝐷𝑂𝑌 𝑖 − 1))  Equation 10-5 

Where: (
EF

NDVI
)i-1 is the ratio of the Landsat image acquired before the drone image. (

EF

NDVI
)i+1 is 

the ratio of the Landsat image acquired after the drone image. DOYi is the day of the year 

when the drone image was acquired. DOY i-1 is the last Landsat image before the drone image 

was acquired. DOY i+1 first image of Landsat after the drone image was acquired. The Landsat 

images were retrieved from the GEE platform by specifying the date range (February to May 
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2021) and the location of the study site. GEE was selected due to its advanced image 

processing capabilities and ability to minimize processing errors often associated with image 

pre-processing. 

10.2.3 Calculation of EF to NDVI ratio using SEBS 

Surface Energy Balance System (SEBS) is a single-source model developed by Su (2002) 

that is incorporated into free, open-source GIS software Integrated Land and Water 

Information System (ILWIS). SEBS was selected for this study because it does not require 

subjective intervention by the user to select hot and cold pixels and does not require 

professional expertise to develop or build the model (Bansouleh, Karimi et al., 2015). This 

model is less site-specific as compared to the other models. SEBS input parameters are NDVI, 

leaf area index (LAI), albedo, emissivity, land surface temperature (LST), and fractional 

vegetation cover (FVC). These parameters were calculated from Landsat images within GEE 

using equations Mhawej and Faour (2020) described. Hourly meteorological data used were 

average air temperature (°C), wind speed (m/s), solar radiation (Wm-2), specific humidity 

(kg/kg), atmospheric pressure (Pa), surface pressure (Pa) and daily air temperature (°C). The 

meteorological data used was observed on the hour of the satellite overpass. Meteorological 

data were obtained from the automatic weather stations (AWS) located at Swayimane primary 

school, approximately 2 km from the study site. AWS was installed following World 

Meteorological Organization’s standards. The meteorological variables were measured at 2 m 

above the ground using the following sensors: CS215 Temp/RH probe (temperature and 

relative humidity), CS106 barometric pressure sensor (pressure), RM young 05103 sensors 

(wind speed and direction), Licor LI2005 pyranometer (solar radiation). The sensor scans 

every 10 seconds and outputs average data every hour.  

The input parameters were manually imported into the model to derive EF and NDVI. EF and 

NDVI output files were exported from SEBS and imported to ArcGIS 10.6 for further 

processing. Using ArcGIS 10.6, the ratio was calculated and resampled from 30 m to 0.5 m to 

match the pixel size of the UAV image. The daily maize ETC was calculated on GEE as the 

product of EF to NDVI ratio, NDVIUAV, and total daily ETo (Equation 10-6). The 
EF

NDVI
  (UAV) 

was imported to GEE to generate daily ETC maps using Equation 10-5. 

ETC = (
𝐸𝐹

𝑁𝐷𝑉𝐼
) Landsat× NDVIUAV ×ETo  Equation 10-6 

Where ETC is the crop evapotranspiration (mm d-1).  
EF

NDVI
 ratio derived from the Landsat 7/8 

data and using the SEB model. NDVIUAV is derived from drone imagery near-infrared (NIR) 

and red bands. ETo is the total daily reference evapotranspiration calculated from the local 

weather station based on the Penman-Monteith equation.  

10.2.4 Calculation of ETrF to NDVI ratio using METRIC-Efflux 

The same procedure used to derive EF and NDVI using SEBS was applied using METRIC-

Efflux. Earth Engine Evapotranspiration Flux (Efflux) is an automated version of METRIC that 

operates on the GEE system; it was designed and developed within GEE based on the 



 

155 

 

METRIC algorithm (de Oliveira Costa, José et al., 2020). METRIC-Efflux uses Landsat 7 and 

8 images and meteorological data within the GEE platform to generate intermediate maps 

such as NDVI, albedo, ETrF, and LST for estimating ETC. ETrF is the fraction of maize 

reference evapotranspiration (ET), equivalent to maize-based Kc. METRIC-Efflux was used 

in this study because it is an automated open-source software; the user does not manually 

download and pre-process Landsat images. Automatic pre-processing and generation of 

intermediate maps are advantageous because it minimizes human errors associated with pre-

processing (Allen, Morton et al., 2015). METRIC-Efflux can be applied in resource-poor and 

data-scarce regions as it does not require field input data and does not require expertise. 

METRIC-Efflux version 0.20.4, accessed from the website https://eeflux-level1.appspot.com/, 

was used to download and pre-process NDVI and ETrF. The 
ETrF

NDVI
  (UAV) calculated (Equation 

10-5) following the same procedure used in SEBS to calculate the ratio.  

A total of 25 ETC values from each plot were randomly extracted from the ETC maps, and the 

average value attained was used to compare SEBS and METRIC-Efflux ETC with the FAO-56 

potential ET estimates across the study period. 

10.2.5 Data Validation 

ETC estimates derived from remote-sensing-based models are often validated using 

conventional methods such as the Bowen ratio, Eddy covariance, and lysimeters (Nisa, Khan 

et al., 2021). Due to the lack of in-situ monitoring systems at the study site, the FAO-56 

Penman-Monteith method was used to validate UAV ETC estimates. This method uses ETO 

from a weather station situated at the study site and tabulated FAO-56-based crop coefficient 

(Kc) for a specific crop to estimate potential ET (equation 10.1) (Parmar and Gontia, 2022). 

The expected crop coefficient values for different maize growth stages were obtained from the 

FAO-56 manual using maize estimated height and number of days after the planting date. The 

Kc values used varied with growth stage in February (A= 0.19, B = 0.7, and C = 1.2), March 

(A = 0.4, B = 1.0, and C = 1.25) and April (A = 1.3, B = 1.2, and C = 0.95) (Kabanda, 2015; 

Pereira, Paredes et al., 2021). ETO values were 4.157, 4.708, and 2.368 mm-d for February, 

March, and April, respectively. 

 

10.3 Results 

10.3.1 Spatial distribution of ETC across the growing season 

Figure 10-2 illustrates the distribution of daily ETC across different growth stages during the 

growing season. ETC ranged from 0.5-7.5 mm-d, with the lowest ETC attained at the initial stage 

and the highest attained at the matured stage. For both models, ETC varied for different growth 

stages, and an increasing trend of ETC with increasing vegetation cover was observed. ETC 

decreased after harvesting the maize. Both models can map ETC's spatial distribution across 

the growth stages.  

https://eeflux-level1.appspot.com/


 

156 

 

 

Figure 10-2: Daily distribution of ETC across the growing season 

 

10.3.2 Comparison of SEBS and METRIC-Efflux daily ETC estimates with FAO-56 

potential ET for maize.  

Figure 10-3 graphically presents the maximum ETC steatites extracted from derived maps 

compared to the FAO-56 reference ETc for maize. The SEBS estimates were higher than 

METRIC-Efflux, and FAO-56 estimates throughout the growing season.  
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Figure 10-3: Comparison of maximum ETC estimates of SEBS, METRIC-Efflux, with FAO-56 

across different maize growth stages. 
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Figure 10-4 illustrates the linear relationship between estimated and potential daily ETC. There 

is a close correlation between ETC estimated using METRIC-Efflux and potential ETC (B, D, 

and F) when compared with ETC estimated using SEBS (A, C, and E).  

 

Figure 10-4: Relationship between SEBS & FAO-56 ETC estimates and METRIC-Efflux & 

FAO-56 estimates in (a) February, (b) March and (c) April. 

 

10.4 Discussion  

This study's main objective was to assess the performance of the SEBS and the METRIC-

Efflux models combined with UAV-derived multispectral data and Landsat-derived VIs as a 

proxy of EF in estimating maize crop ETc across the growing season in smallholder croplands 

in relation to the FAO ET as a reference. 
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10.4.1 Comparison of SEBS and METRIC-Efflux daily ETC estimates with FAO-56 

potential ET for maize.  

Results of this study showed that the ETc estimates derived following the METRIC-Efflux 

model ranged between 0.9 and 3.3 mm d-1, while the FAO ranged between 0.78 and 5.8 mm 

d-1. Meanwhile, the SEBS model exhibited ETc values that ranged between 1.5 and 7.2 mm d-

1. In this regard, the ETC estimates from both models were comparable to those from FAO and 

in the literature across the growth stages (Bansouleh, Karimi et al., 2015; Kamyab, Mokhtari 

et al., 2022). For example, Kamyab, Mokhtari et al. (2022) found that ETC ranges from 2.3-6.5 

mm d-1 when estimated using METRIC-Efflux in an irrigated field. de Oliveira Costa, José et 

al. (2020) found that the average daily maize evapotranspiration estimated using METRIC-

Efflux was 3.64, 3.59 mm d-1, and 3.62 mm d-1 for initial, development, and matured, 

respectively. Wagle, Gowda et al., 2016 found that ETC ranges from 1.2-7.1 mm d-1 when 

estimated using SEBS in an irrigated field. Bansouleh, Karimi et al., 2015 found that SEBS 

daily maximum ETC range from 4.07-7.7 mm d-1 in irrigated fields. A study that was done by 

(Kabanda, 2015) in South Africa (North West) found that maize ETC ranges from  

1.3-1.5 mm d-1, 1.8-3.81 mm d-1, 3.87-4.5 mm d-1, and 1.52-3.33 mm d-1 in the initial, 

development, matured, and postharvest growth stages, respectively. Our ranges are similar 

to all these values, even though most studies were conducted under irrigation conditions. 

SEBS had the highest ETC estimates because it overestimated ETc estimates during February. 

The fact could explain this during February; the crop foliage will be minimal while the soil 

background effect will be pronounced. Subsequently, when the vegetation is sparse, SEBS 

overestimates sensible heat flux (Elhag, Psilovikos et al., 2011; Mohammadian, Arfania et al., 

2017). This is typical in February conditions similar to those in arid and semi-arid regions 

where water is a limiting factor to foliage density and sparse vegetation, SEBS overestimate 

ETC (Huang, Li et al., 2015). Many authors have shown that although tabulated Kc values give 

reasonable ETC estimates, it tends to overestimate ETC even when adjusted with local data. 

This is because Kc values used to calculate ETC were developed for standard conditions 

(Grosso, Manoli et al., 2018). Kc values are available for the initial, development, and matured 

growth stages; the Kc values are estimated for the other stages. Estimating Kc values for 

vegetative and postharvest growth stages could impact the estimate because they do not 

represent the actual crop characteristics (Van der Laan, Jarmain et al., 2019). 

Furthermore, the difference in the performance of these models could be explained by the fact 

that they differ in their input requirements, model structure, and assumptions made in the 

model. This could impact the model output, thus, differences in ETc estimates (Acharya & 

Sharma, 2021). SEBS uses local meteorological data that is recorded on-site. Meanwhile, 

METRIC-Efflux does not use local meteorological data observed on site. This could impact 

the final estimates of ETc due to the microclimate variability (de Oliveira Costa et al., 2020). 

Furthermore, the METRIC-Efflux is automated, and the input files are stored, pre-processed, 

and processed within the GEE platform. On the other hand, SEBS  requires many input 

parameters derived manually and requires the user to manually input these files (Aryalekshmi 

et al., 2021). Li et al. (2017) noted that SEBS’s uncertainties are associated with input 

parameterization. Subsequently, SEBS is more subjected to human errors in relation to 
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METRIC-Efflux, which could contribute to the variation in its performance compared to 

METRIC-Efflux.   

10.4.2 Variability of estimated daily ETC across different plots 

Results of this study showed significant differences between the ETc models across the 

growing season between plots B, C and A. ETc was high at vegetative, reproduction, and 

matured for both models. This could be explained by the different phenological stages 

associated with different foliage densities. Plot A was slightly younger than plots B and C. 

Similarly, the variability of ETC across the three months resulted from changes in 

meteorological and crop characteristics which are factors that influence the rate of ETC (Van 

der Laan, Jarmain et al., 2019). The vegetation cover increased from February to March hence 

the increase in ETC with time (Figures 10-2 and 10-3). There are minimal differences in ETC 

estimates in plots B and C because the planting dates for these plots were a few weeks apart. 

Whereas plot A was planted a month later after plots B and C. ETC was high at vegetative, 

reproduction, and matured because these are identified as the peak crop development stages 

characterised by higher biomass accumulation and high water demand to sustain the 

accumulation of biomass and reproduction process (Van der Laan, Jarmain et al., 2019).  

Maize daily ETC increase gradually from the begging of the growing season to the peak 

season, then decrease gradually in the late season (Zhou, Wang et al., 2019). The gradual 

increase of ETC is closely related to the increase in leaf area index (LAI) (Zhang, Ming et al., 

2021). However, in this study ETC decreased from March to April because maize crop leaves 

were damaged by the hailstorm, reducing the leaf area index and thus reducing ETC (Brewer, 

Clulow et al., 2022).  Another factor that might have contributed to April having the least ETC 

estimates is that the microclimate parameters on that day were low compared to the other 

days because ETC is significantly affected by available soil water and radiant energy (Huang, 

Li et al., 2015). The rate of ETC is significantly affected by crop, ETO, and weather conditions 

(Reyes-González, Kjaersgaard et al., 2018).  

10.4.3 Implications of the Study 

The results indicate that SEBS and METRIC-Efflux could be used with various remotely 

sensed images from various sensors, including UAVs with fine spatial resolution under rain-

fed farms from the early to the matured stage of maize crops. Therefore, in critical early growth 

stages, UAVs can aid farmers by providing near-real-time data that would assist in mitigating 

threats that can drastically reduce potential crop yield (Brewer, Clulow et al., 2022). ETC spatial 

distribution for short crops was a challenge to map due to the high spatial resolution, which is 

>30 m (Nisa, Khan et al., 2021). The results demonstrate that UAVs can be a reliable tool to 

map the ETC spatial distribution of all crops, including short crops. In addition, using fine 

resolution for mapping spatial crop traits in subsistence smallholder farms is advantageous 

because coarse spatial resolution may result in the misclassification of crop type (Chivasa, 

Mutanga et al., 2017). Misclassification is a major source of error in fields where different crops 

with similar phonologies are intercropped or grown together (Reyes-González, Kjaersgaard et 

al., 2018). 
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10.4.4 Limitations and recommendations  

The approach of using EF and NDVI to estimate daily ETC was applied successfully using UAV 

data in rain-fed smallholder farms. It can be used as a reliable method of estimating and 

mapping ETC variability in ETC in data-scarce and resource-poor sites. However, the study's 

limitations include the unavailability of on-site data to validate SEBS, and METRIC-Efflux ETC 

estimates. Due to the lack of on-situ data to validate the estimates from the models, it was a 

challenge to assess the model's accuracy because both models could overestimate or 

underestimate ETC under different crop and environmental conditions (Xue, Bali et al., 2020). 

Due to spectral resolution differences between Landsat and UAV downscaling, EF could have 

impacted the results. 

Furthermore, the UAV and Landsat images were not acquired on the same date; hence 

application of linear interpolation could have affected the performance of the models. In 

February, the cloud-free Landsat image was acquired two weeks before the UAV image 

acquisition. In March, the cloud-free Landsat image was acquired four weeks after the 

acquisition of the UAV image. The huge gap between acquisition dates could significantly 

impact the final results due to microclimate variability. According to (Singh, Khand et al., 2020) 

the image acquisition dates of different sensors used must be acquired on the same date.  

The Kc values used for validation were designed for irrigated maize fields with standard 

conditions and were not adjusted for non-irrigated fields. 

Therefore, future studies should consider assessing the accuracy of the SEBS and METRIC-

Efflux using on-site validation data or adjusting Kc values to study area specifications. More 

research is needed on deriving SEBS parameters directly from the sensor type used, which 

will provide a simpler way of estimating ETC using UAVs directly. This study highlighted the 

strengths and limitations of each model, implying the importance of model comparison for 

application in different conditions, as the input data type strongly influences the model 

performance. Future research should consider developing an automated SEBS version within 

GEE. The automated version should allow users to input local meteorological data due to its 

significant impact on the rate of ETC (Singh and Senay, 2015). 

 

10.5 Conclusion 

The essence of the study was to assess the potential of SEBS and METRIC-Efflux in 

estimating and mapping daily ETC using UAV data in rain-fed smallholder farms with limited 

datasets. Based on the findings of this study, it can be concluded that, 

• The utility of unmanned aerial vehicle data in conjunction with Landsat-derived EF and 

NDVI could comparably and effectively estimate and map spatial variability of maize 

evapotranspiration at different growth stages throughout the growing season.   

• SEBS and METRIC-Efflux can be applied successfully in rain-fed smallholder farms 

using UAV remotely sensed data to estimate, map and monitor the variability of crop 

evapotranspiration.  
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The findings of this study are a step towards establishing smallholder crops' water use 

monitoring frameworks required to optimise productivity. Especially because it is based on 

open-source data and software (ILWIS, Efflux level 1, and GEE). The approach used in this 

study has great prospects of being implemented as a precision agricultural application in farms 

with limited resources and datasets.   
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11 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS  

 

11.1 General Discussion 

Smallholder farming systems contribute significantly to agricultural production, livelihood 

sustenance, and socio-economic growth in most third-world countries. Regardless of their 

critical role, smallholder farmers generally lack the resources to maximize their potential. 

Subsequently, they face challenges in optimising their crop production due to the lack of 

mechanisms for monitoring the spatial variability of crop health and water use efficiency. 

Hence, it is imperative to identify and provide smallholder farmers with innovative, objective, 

low-cost solutions to assist them in optimizing their productivity. Recent precision agricultural 

developments, such as unmanned aerial vehicles (UAVs) mounted with ultra-high-resolution 

cameras, provide spatially explicit near real-time information useful in monitoring and 

assessing farm and plot scale crop growth dynamics. The synergistic use of UAV technology 

with remote sensing techniques allows for a deeper understanding of crop characteristics that 

could assist with operational decisions related to crop health at the field level, allowing the 

timely implementation of remedial solutions to ensure productivity. Maize is one of the crops 

widely grown in smallholder croplands in South Africa and across southern Africa. In this 

regard, maize is the staple food in these countries, often affected by climate variability and 

natural disasters such as storms and drought. In this regard, the project sought to assess the 

utility of drone technology in monitoring the state of maize crops to improve water use and 

productivity. Specifically, the project sought to 

• To review the literature on specialist drones for crop monitoring and crop-water models 

that use drone products. This will include an analysis of drones' use to monitor crops, 

modelling yield and water use, and irrigation scheduling. 

• To assess crop health by analysing real-time NDVI derived from drone imagery. 

• To monitor crop evapotranspiration at the field scale for a farmer to make on-field 

decisions. 

• To develop high-resolution maps of agriculture fields and irrigated areas and datasets 

on water use and water productivity, potential yield and evapotranspiration. 

• To assess the impact of the application of drones on water use, crop nutrition, and 

water productivity (yield and quality) for improved livelihoods of smallholder farmers. 

In synthesising the literature on using UAVs in the smallholder agriculture sector in developing 

countries, the review highlights the role of UAV-derived normalised difference vegetation index 

(NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. 

The review's findings showed that UAV technologies could improve the productivity of 

smallholder agriculture by facilitating access to information on crop biophysical parameters in 

near real-time for improved preparedness and operational decision-making. Coupled with 

accurate meteorological data, the technology could allow for precise estimations of crop water 

requirements and crop evapotranspiration at high spatial resolutions. They offer opportunities 

for mainstreaming climate-smart and precision agriculture into smallholder farming through 

improved crop health monitoring and agricultural water management.  
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A lack of resources and skills has limited their use in smallholder farming to acquire and 

operate them. Furthermore, the perception that they are expensive has failed to consider the 

benefits that would be unlocked through their use in smallholder agriculture. While noting the 

high ownership costs, the review recommended communal ownership of UAVs by smallholder 

farmers to reduce operational costs, as they can potentially improve agriculture and water 

productivity. Specifically, the review recommended that drones be targeted as an opportunity 

to increase youth participation in agriculture, which is a priority in most African countries. The 

application of UAVs in smallholder agriculture would advance the importance of remote 

sensing in previously disadvantaged smallholder farmers by providing high-resolution images 

at user-defined temporal resolution and automating data collection, processing and analysis 

at low cost. This will improve mapping accuracy, stress classification, irrigation scheduling and 

yield prediction for smallholder croplands. Applications of UAVs in smallholder agricultural 

farming could significantly improve input efficiency, environmental sustainability, and nutrition 

of farmers, as well as farm income and livelihoods. This review informed the methodological 

procedures we employed in evaluating the utility of drones in mapping maize crop health and 

productivity in smallholder croplands. In this regard, the project's next objective was to map 

field boundaries. 

The project aimed to demonstrate how GEE can be leveraged to maximize the potential of 

UAVs for mapping LULC in smallholder farms, with a specific focus on cultivated areas. The 

results of these investigations demonstrated that LULC could be mapped fairly accurately 

using UAV imagery and GEE’s image classification procedures. Furthermore, the UAV-

derived LULC map outperformed other publicly available landcover maps in capturing the 

spatial heterogeneity within the study area. While these investigations could have benefited 

from the availability of more training data or higher spectral resolution data, the overall results 

were quite promising. They can serve as a foundation for developing improved land cover 

maps for the study area in the future, which in turn can facilitate improved agricultural 

management. After the field boundaries were delineated, the project sought to assess the 

utility of crop UAVs in mapping and monitoring crop health and water use proxies. 

The project focused on chlorophyll content and leaf area index in predicting maize crop health 

parameters. The project sought to test the use of UAV-derived multispectral data by estimating 

maize chlorophyll content over the various stages of phenotyping. This was done using a 

random forest prediction model, which estimated the chlorophyll concentrations of maize in 

smallholder farms of Swayimane. Therefore, premised on the findings of the study, it is 

concluded that:  

• Optimal chlorophyll content prediction accuracies were produced during early 

vegetative growth stages (V5-V10 and V12), late vegetative growth stages (V14-T) 

and early reproductive growth stages (R1-R3), 

• Maize chlorophyll content was optimally estimated through UAV-derived NIR and red-

edge wavelengths.  

After noting the prospects of accurately mapping chlorophyll content, the project sought to 

map another productivity attribute, the leaf area index. 



 

165 

 

In testing the utility of UAV-derived VIs in estimating maize LAI across the growing season 

based on the Altum sensor mounted on the DJI Matrice 300 UAV data in a smallholder farm. 

It could be concluded that: 

• Maize LAI can be optimally estimated using UAV-derived VIs across the growing 

season 

• The blue, green, red edge and NIR sections of the EMS are influential in estimating 

Maize LAI 

• Combining traditional, red edge-based and new VIs is useful in attaining high LAI 

estimation accuracies 

 

Overall, the UAV technologies illustrated a great potential for quantifying the spatial variability 

of crop health at reasonable accuracies. The next segment assessed maize crop water stress 

and use efficiency. 

The project tested the utility of UAV-derived multispectral data in estimating folia temperature 

and stomatal conductance as proxies of crop water stress and use. These two variables are 

linked to water loss through evapotranspiration; hence they were selected and used in this 

project section. Based on the findings of this study, it was concluded that foliar temperature 

and stomatal conductance are adequate indicators and proxies of crop water stress 

throughout the growing period. Foliar temperature yielded higher prediction accuracies as 

compared to stomatal conductance. Nevertheless, the random forest regression model 

optimally predicted both indicators throughout all phenological stages of maize. Specifically:  

• The UAV-derived multispectral data and thermal infrared waveband optimally 

estimated maize temperature during the mid-vegetative stage to an RMSE = 0.59°C 

and R2 = 0.81 (RRMSE = 2.9%) based on the thermal infrared, followed by the NIR, 

NGRBI, EVI and NDVI, in order of importance, 

• The multispectral and thermal infrared data optimally predicted stomatal conductance 

during the early reproductive stage to an RMSE = 25.9 mmol/m2 and R2 = 0.85 

(RRMSE = 11.5%) based on the red-edge band, followed by the NIR, green, OSAVI 

and blue band, in order of importance. 

The project then sought to explore and demonstrate a relatively simple approach that utilizes 

open source and readily available data, models and cloud computing infrastructure to aid in 

estimating ETC using multi-spectral UAV imagery suitable for application in smallholder 

croplands. Specifically, in this section, the project sought to comparatively assess the 

performance of the SEBS and the METRIC-Efflux models combined with UAV-derived 

multispectral data based on Landsat-derived VIs as a proxy of EF in estimating maize crop 

ETc across the growing season in smallholder croplands in relation to the FAO-56 potential 

ET as a reference. Grounded on the findings of that study was concluded that; 

• The utility of unmanned aerial vehicle-acquired data in conjunction with Landsat-

derived EF and NDVI could comparably and effectively estimate and map spatial 

variability of maize evapotranspiration at different growth stages throughout the 

growing season.   
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• SEBS and METRIC-Efflux can be applied successfully in rain-fed smallholder farms 

using UAV remotely sensed data to estimate, map and monitor the variability of crop 

evapotranspiration.  

The findings of this study are a step towards establishing smallholder crops water use 

monitoring frameworks required to optimise productivity, especially because it is based on 

open source data and software (ILWIS, Efflux level 1, and GEE). The approach used in this 

study has great prospects of being implemented as a precision agricultural application in farms 

with limited resources and datasets. 

11.2 Limitations of The Study  

The project managed to adequately address all the specific objectives. Although the study 

hypothesised that maize crop evapotranspiration could be adequately estimated using UAV-

acquired data, numerous limitations were associated with the procedure. Using evaporative 

fraction (EF) and Landsat-derived NDVI to estimate daily ETC was applied using UAV remotely 

sensed data in rain-fed smallholder farms, indicating that it can be used as a reliable method 

of estimating and mapping variability of ETC in data-scarce and resource-poor sites. However, 

this can only be feasible where the target fields are expansive. The moderate spatial resolution 

of Landsat affects the spatial variability of the derived maps. Due to spectral resolution 

differences between Landsat and UAV downscaling, the EF derived and used in this study 

could have possibly impacted the accuracy of our results. 

Furthermore, the unavailability of on-site data for validation of SEBS and METRIC-Efflux ETC 

estimates was another major limitation associated with the procedure followed in this project. 

Despite attempts to compare our modelled evapotranspiration with FAO estimates, it was a 

challenge to assess the accuracy of the models because both SEBS and METRIC-Efflux seem 

to overestimate or underestimate ETC at different crop and environmental conditions. 

Furthermore, the UAV and Landsat images were not acquired on the same date. Hence, 

applying linear interpolation could also have affected the derived ETc models' accuracy. In 

February, the cloud-free Landsat image was acquired two weeks before the UAV image 

acquisition. In March, the cloud-free Landsat image was acquired four weeks after the 

acquisition of the UAV imagery. The huge gap between acquisition dates could have 

significantly impacted the final results due to microclimate variability. Also, the Kc values used 

to validate derived ETC were designed for irrigated maize fields with standard conditions and 

were not adjusted for non-irrigated fields. Considering that water use, productivity, and 

potential yield are derived using evapotranspiration, this study did not estimate these crop 

attributes. Furthermore, the study was conducted using rainfed crops. Smallholder croplands 

in Swayimane do not have crop irrigation facilities; hence this aspect of the project was not 

addressed. 
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11.3 Conclusion 

Based on this study's findings, it can be concluded that multispectral data derived using UAVs 

could be optimally used to map and monitor smallholder crop attributes throughout the growing 

season. The UAVs technology could improve smallholder agriculture by facilitating access to 

information on crop biophysical parameters in near real-time for improved preparedness and 

operational decision-making. Coupled with accurate meteorological data, the technology 

allows for precise estimations of crop water requirements and crop evapotranspiration at high 

spatial resolution. Timely access to crop health information helps inform operational decisions 

at the farm level, thus, enhancing rural livelihoods and well-being. Subsequently, this will help 

in optimising productivity in smallholder croplands. However, there is still a need to extend the 

research evaluating the relative contribution of drone technologies in monitoring other climate-

smart crops in smallholder croplands. Specifically, there is limited literature on the utilisation 

of drones in mapping and monitoring neglected and under-utilised crop species, the impact of 

weeds, and water quality and quantity assessments in smallholder croplands. The successful 

implementation of drone technologies is a pathway towards offering detailed and spatially 

explicit information to smallholder farmers on local variations of cropland characteristics and 

facilitating on-field decisions for optimising productivity. Furthermore, there is a need to assess 

how drone-derived data could be integrated with other datasets in building strategies and 

frameworks for monitoring crop health and productivity while informing policy. 

11.4 Recommendations 

Numerous gaps remain regarding using drone remotely sensed data in mapping and 

monitoring crop health and water use efficiency. In this regard, several recommendations are 

listed below. 

• More efforts need to be extended in assessing the integration of UAV-derived data with 

the Google Earth engine as well as ancillary data in characterising farm boundaries. 

• There is a need to assess the utility of UAV-derived multispectral data in estimating 

crop health parameters and ecophysiological attributes such as the canopy chlorophyll 

content and structural attributes of crops in relation to the environmental attributes of 

the fields. 

• Following the exploratory nature of this project, there is a need to exert more efforts 

toward the estimation of evapotranspiration of crops using UAV-derived data. 

• Future studies could assess other techniques, such as the sap flows and on-site 

measurement of evapotranspiration, in evaluating water use efficiency. 

• Research efforts are still needed to estimate water use and water productivity, potential 

yield and evapotranspiration using drone remotely sensed data. 

• Variables such as soil moisture and precipitation need to be integrated into the 

characterisation of crop health and water use efficiency models. 

• Above all, future studies could evaluate the fusion of freely available remotely sensed 

data sets and UAV-acquired data in mapping and monitoring crop attributes in 

smallholder croplands. 

• Future studies should consider assessing the accuracy of the SEBS and METRIC-

Efflux using on-site validation data or adjusting Kc values to study area specifications. 
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More research is needed on deriving SEBS parameters directly from the sensor type 

used, which will provide a simpler way of estimating ETC using UAVs directly. 
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