Methodology: Indicator SDG 6.3.5A – Proportion of waste recycled or reused

Version 1, March 2023

Goal 6:	Ensure availability and sustainable management of water and sanitation for all
Target 6.3:	By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally
Indicator 6.3.5A:	Proportion of waste recycled or reused

E1 THE INDICATOR

E1.1 Organisation(s)

Department of Water and Sanitation (DWS)

Department of Forestry, Fisheries and Environment (DFFE)

Statistics South Africa (StatsSA)

E1.2 Definition

Target 6.3 sets out to improve ambient water quality, which is essential to protecting both ecosystem health (Target 6.6 and SDGs 14 and 15) and human health (Target 6.1; recreational waters and drinking water sources), by eliminating, minimizing and significantly reducing different streams of pollution into water bodies. The main sources of pollution from solid waste include landfills, informal waste dumps, and unlawful disposal of solid waste by industry into facilities that have not been designed to receive that waste.

The 2020 National Waste Management Strategy has the concept of the "circular economy" at its centre. The circular economy is an approach to minimising the environmental impact of economic activity by reusing and recycling processed materials to minimise: (a) the need to extract raw materials from the environment; and (b) the need to dispose of waste. In the waste management hierarchy, reuse takes precedence over recycling, because reuse can take place without additional treatment or processing. Both reuse and recycling divert waste from the need for disposal, thereby freeing up available landfill space.

It must be noted that solid waste and the recycling of waste is also covered under SDG Indicators 11.6.1 (Urban Solid Waste), 12.4.2 (Hazardous Waste) and 12.5.1 (National Recycling Rate).

The proposed methodology for Indicator 6.3.5.A: *Proportion of Waste Recycled or Reused* implies the mass of solid waste being recycled or reused, in comparative relation to the total mass of solid waste being generated. Table E.1 defines the terms used in terms of the application of policies and guidelines.

Table E.1: Phrase by phrase interpretation of Indicator 6.3.5.A

Indicator 6.3.5A	Normative interpretation
"Proportion of	"Proportion of"
waste Recycled or	Percentage of total
Reused."	"Waste"
	means any substance, whether or not that substance can be reduced,
	re-used, recycled and recovered—
	(a) that is surplus, unwanted, rejected, discarded, abandoned or disposed of;

Indicator 6.3.5A	Normative interpretation			
	(b) which the generator has no further use of for the purposes of production;			
	(c) that must be treated or disposed of; or			
	(d) that is identified as a waste by the Minister by notice in the Gazette,			
	and includes waste generated by the mining, medical or other sector, but—			
	(i) a by-product is not considered waste; and			
	(ii) any portion of waste, once re-used, recycled and recovered, ceases to be			
	Waste.			
	(Definition from the National Environmental Management: Waste Act)			
	"Recycled"			
	The recovery of materials from products (post-consumer) or manufacturing			
	processes (pre-consumer) and returning them to the feedstock			
	for some other process.			
	(Definition from: A Circular Economy Guideline for the Waste Sector, DEFF, 2020)			
	"or Reused"			
	To re-use whole products after their current users no longer have use for			
	them. This may include testing or minor repairs to ensure that			
	products will perform reliably in the next life cycle. Multiple re-use cycles may			
	be possible for a given product, especially if durability and reuse have been			
	considered during its design.			
	(Definition from: A Circular Economy Guideline for the Waste Sector, DEFF, 2020)			

E1.3 Rationale

Reducing the amount of waste disposed of by diverting waste to landfill by increasing recycling and reuse, will assist South Africa in achieving its raw water quality goals, as measured by SDG Indicator 6.3.2D.

The elimination of minimizing the generation, use and discharge of hazardous substances, is also consistent with goals of the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal, the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade and the Stockholm Convention on Persistent Organic Pollutants.

South Africa is a water scarce country, and therefore pollution reduction is imperative to conserve our limited freshwater resources.

E1.4 Concepts and Terms

The concepts and definitions used in the methodology have been based on existing international frameworks and glossaries unless indicated otherwise below.

Change: a shift from one condition to another; in this case it refers to a change in cumulative volume over time, in relation to a point of reference, within a water-related ecosystem.

Disaggregation: Breaking down of data into constituent data sub-sets. Data can be disaggregated by subnational regions as well as by urban/rural regions, providing information on equity.

Municipal Solid Waste: waste generated by households, and waste of a similar nature generated by commercial and business establishments, industrial and agricultural premises, institutions such as schools and hospitals, public spaces such as parks and streets and construction sites. (UN Habitat, 2016)

Other Solid Waste: waste that require special treatment such as hazardous waste from industrial processes, agricultural activities and mining wastes, hospital waste, end of life vehicles, construction and demolition waste and WEEE (Waste Electrical and Electronic Equipment). (UN Habitat, 2016).

Non-point source pollution: Diffuse pollutants that do not originate from a single discrete source, e.g. a pollution plume originating at a landfill site.

E1.5 Relationship between SDG Indicator 6.3.5A and Target 6.3.2D

SDG Indicator 6.3.5A measures the recycling and reuse of waste (which is linked to a decrease in waste disposal). SDG Indicator 6.3.2D measures the quality of water resources around South Africa. The impact of reduced waste disposal on the quality of ambient water can thus be established using this additional indicator.

E2 COMMENTS AND LIMITATIONS

Some data is available for the mass of waste generated, because there are many waste management entities operating in South Africa, as well as household surveys by StatsSA. However, the total data set for waste generation is incomplete.

E3 METHODOLOGY

E3.1 Computation Method

The proposed methodology includes estimation of the proportion of recycled and reused. This indicator relies on the total mass of waste generated, which is computed as part of SDG Indicator SDG 6.3.4A. As such, that indicator will need to be used as source data for Indicator 6.3.5A. Please reference the SDG Indicator 6.3.4A methodology document for reference.

The proposed computation method consists of three calculations:

- Total mass of solid waste generated (using the number generated in SDG Indicator 6.3.4A);
- · Mass of solid waste recycled and reused; and
- Proportion of solid waste recycled and reused of (calculated using the numbers in the points above)

E3.1.1 Formula

The total mass of solid waste generated in the is calculated in the methodology for SDG 6.3.4A (Equation 1), which produces the variable " m_t ", the total mass of solid waste generated in South Africa. The recommended monitoring unit is tonnes per annum. Equation 1 is shown below for clarity and information.

Equation 1:

$$m_t = m_g + m_i + m_s$$

Where:

m_t = total mass of solid waste generated in South Africa

 m_g = total mass of general municipal solid waste generated (by households and commercial activities)

m_i = total mass of solid waste generated by the agricultural, power generation, and mining industries

m_s = total mass of solid waste generated by the manufacturing industries (chemicals, FMCG, fertiliser, tyres, etc)

<u>Note</u>: mass is measured by scales, weighbridges, etc. where mass data is available, and estimated per capita where mass data is not available.

The total mass of solid waste recycled and reused in the country is partially measured for some sectors, and estimated in others. The combination of these estimates and measurements can be used to provide an overall total for the country. Equation 2 shows how the total can be estimated. The recommended monitoring unit is tonnes per annum.

Equation 2:

$$m_{t,r} = m_{r1} + m_{r2}$$

Where:

m_{t,r} = total mass of solid recycled and reused of in South Africa

 m_{r1} = total mass of solid waste recycled

 m_{r2} = total mass of solid waste reused

<u>Note</u>: mass is measured by scales, weighbridges, etc. where mass data is available, and estimated by the waste recycler/reuser using proxy data such as pump rates, processing rates, etc. where mass data is not available.

The calculation for the proportion of waste recycled and reused is shown in Equation 3 below.

Equation 3:

$$p_r = \frac{m_{t,r}}{m_t} \times 100$$

Where:

p_r = proportion of solid waste recycled and reused in South Africa

m_{t,r} = total mass of solid waste recycled and reused in South Africa

m_t = total mass of solid waste generated in South Africa

The masses of solid waste recycled and reused can be aggregated into municipality, province, watershed, or for the country as a whole. This will assist in providing data at a range of scales, while also providing comparisons between municipalities, regions, and provinces to give a better representation of the country's status quo and provide an understanding of where the main solid waste recycling and reuse lie.

The percentages calculated can be presented graphically, and on maps using spatial techniques to assist with reporting and interpretation of the data.

In terms of progressive monitoring, municipalities can start with an estimation of mass, and gradually move towards more accurate quantitative estimations. Table E.2 provides an example of progressive monitoring.

Table E.2: Progressive Monitoring of Indicator 6.3.5A

Indicator 6.3.5A	Progressive Monitoring			
"Proportion of	First step			
waste recycled and reused"	Calculation of total masses of waste recycled and reused, using existing data from municipalities and private waste recyclers and reusers by location. These estimates should be aggregated into local municipalities, and then aggregated into district municipalities and provinces.			
	Estimation of total masses of waste recycled and reused by the informal sector, using surveys from informal waste workers (waste pickers).			
	Where available; actual masses should be used, as recorded on:			
	 waste manifests of receiving processing facilities, waste manifests of reuse applications, SAWIS 			
	Sales records in the informal sector.			
	Where appropriate, masses should be inferred/extrapolated for similar activities (e.g. similar-sized businesses in the same local municipality).			
	Second step			
	Refined estimation of total masses of waste recycled and reused, including improved measurement of waste received at waste depots, recycling facilities, and reuse end users.			
	Inclusion of total masses more waste streams, using survey/spatial data to calculate mass based on volume of waste on land.			
	Third step			
	Further refined estimation of total masses of waste recycled and reused, using			
	more measured data on recycling and reuse streams.			

To align to the UN global reporting standard for SDG 6.3.5A, the proposed frequency of national data collection and reporting should be annually.

E3.2 Treatment of incorrect and missing data

In the first step of progressive monitoring, missing data on waste generation and recycling and reuse will be estimated, i.e. where there is no data for a given mass of waste generated, it will be calculated using per capita data, spatial data, or inferred data.

E3.3 Sources of discrepancies

There is a dearth of data on waste recycling reuse, and as such, it is unlikely that duplicate data would exist for a given waste generator. However, if this does occur, the measured data, as declared on a waste manifest, or point of use scale/weighbridge, will be used.

Various issues surrounding poor data capturing and uploading can exist namely:

- Insufficient funding for data collection and capture (human resources)
- Insufficient funding for data management systems (database maintenance, servers, backups, reporting software, etc.)
- · Lack of training of human resources

E4 DISAGGREGATION OF DATA FOR MANAGEMENT PURPOSES

The measured and estimated data will make it possible to disaggregate national information to depict performance .

- Per receiving water resource
- Per draining region / catchment;
- Per Water Management Area (WMA);
- Per province;
- Per municipality;
- Per waste generation sector;
- Per waste type (e.g. general, hazardous);
- Per entitlement (authorization type/approval).

E5 DATA SOURCES

The data sources or monitoring mechanisms of information of management targets for Indicator 6.3.5A may include the following:

- Scale, weighbridge and/or conveyor data from waste recycling companies or reuse end users;
- Waste disposal data stored in the South African Waste Information System (SAWIS), established in terms of Section 60 of the National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008).
- Waste manifests from waste management companies;
- Waste manifests in informal waste sites (if available);
- Spatial data of for informal waste management sites (e.g. waste picker central operations).

In addition to the above data; additional supporting data is required to generate sufficient and appropriate intelligence to improve recycling and reuse efforts. Such additional and supporting data include the recording of-

- whether the activity falls within the municipal or non-municipal category;
- whether the recycling/reuse occurs at a municipal-controlled or privately controlled facility, or at an informal site;
- the quaternary drainage region name(s) and/or number(s);
- the name of the municipality and/or the waste recycler/reuser;
- the name and coordinates of the recycling/reuse sites;
- the type of waste;
- whether the waste recycling/reuse is permissible or not (Y/N);
- the entitlement (i.e. authorisation type/ municipal approval) received or required;
- whether waste recycling/reuse masses are recorded by the regulator, the municipality and/ or waste recycler/reuser (Y/N).

E5.1 Collection process

Data collection could follow the following processes:

- Scanning and download of data in the SAWIS database;
- Collection of all waste management licence data not in the SAWIS database (from private companies that recycle/reuse waste)

- Formal directed request for information from recycling businesses and reuse end users operating countrywide;
- Spatial survey of informal and illegal dump waste recycling/reuse sites;
- Scanning and download of publicly disclosed waste recycling and reuse data by major corporate entities (e.g. GRI and CDP Water disclosures);

The initial data gathering is a once-off exercise to generate an initial database. Thereafter, data would be updated on an annual basis.

E6 DATA AVAILABILITY

E6.1 Availability

Only limited data is currently available (from a combination of sources such as SAWIS, waste management companies, and recycling/reuse companies).

Waste management licence data is incomplete and not all waste management licences are audited regularly to capture waste recycling/reuse data time series.

E6.2 Frequency

Data may not be captured in sufficient time intervals due to the above constraints.

The proposed frequency of national data collection and reporting should be annually.

E7 DATA PROVIDERS

Government data providers include:

- Local and district municipalities: waste management departments, human settlements departments,
- Department of Forestry, Fisheries and Environment (DFFE) waste authorisation and management departments,

Private company data providers:

- Recycling/reuse company owners,
- Mine owners,
- Farm owners,
- Private waste management company owners.

E8 DATA COMPILERS

The DWS will be the primary data compiler, with support from the DFFE and district municipalities. DWS will provide this data to StatsSA, who is responsible for country-level reporting on the SDGs. The roles of the various players is outlined below:

Table E.3: SDG 6.3.5A Summary of Data and Information Compilers

Data Provider	SDG 6.3.3A
DWS	X
StatsSA	X
DFFE	X
District Municipalities	X
Private companies	X

X = Lead role player

x = supporting role player

- = No role

E9 MANAGEMENT TARGETS

SDG Indicator 6.3.5A is a new additional indicator under SDG 6.3. The purpose of SDG 6.3.5A subtarget is to provide a practical, step-by-step incremental and attainable integrated water quality management target that can be utilised for benchmarking purposes during SDG Target 6.3 implementation and reporting. Table E.4 includes the *Management* and supporting *Milestone Subtargets* for SDG 6.3.5A.

Knowledge on the current baseline is necessary for the finalisation of the Milestone Sub-targets

Table E.4: Milestones and Management Targets to Benchmark Performance during SDG 6.3.5.A Implementation (Ref: DWS, SDG6.3 Methodology Report, Jan 2021)

Target Type	Year	Target Description		
	Baseline	(baseline) % waste lawfully dispose of		
	data			
	2022	Baseline + 1/10 or 10% of Baseline		
	2023	Baseline + 2/10 or 20% of Baseline		
	2024	Baseline + 2/10 or 20% of Baseline		
Milestone Sub-target	2025	Baseline + 3/10 or 30% of Baseline		
	2026	Baseline + 3/10 or 30% of Baseline		
	2027	Baseline + 4/10 or 40% of Baseline		
	2028	Baseline + 4/10 or 40% of Baseline		
	2029	Baseline + 5/10 or 50% of Baseline		
	2030	Baseline + 5/10 or 50% of Baseline		
Milestone Sub-Target		50% of waste is lawfully disposed of*		
(MST)		(based on US target for 2030, SA target is 25% for 2023)		
SDG Target 6.3		By 2030, improve water quality by reducing pollution,		
	2030	eliminating dumping and minimizing release of hazardous		
		chemicals and materials, halving the proportion of untreated		
		wastewater and substantially increasing recycling and safe		
		reuse globally.		

Table E.5 summarises potential links between global and national indicators and targets for SDG 6.3.5A.

Table E5: SDG 6.3.5A Indicator and Targets from Global and South African Literature

Global and National Indicators for 6.3.5A	Targets			
Medium-Term Strategic Framework (MTSF)				
PRIORITY 2: Spatial Integration, Human Settlements and Local Government				
2024 Impact: Achieving spatial transformation through improved integrated settlement				
development and linking job opportunities and housing opportunities				
2024 Impact: Rapid land and agrarian reform c	ontributing to reduced asset inequality, equitable			
distribution of land and food security				
National Water and Sanitation Master Plan (N	W&SMP)			
1.5 Improving raw water quality				
1.5.1 Determine in-stream Resource Water	Publish the RWQOs for water quality			
Quality Objectives (RWQOs), based on the SA				
Water Quality Guidelines (SA36), in support of				
RQO's Capacity, budgetary constraints				
1.5.2 Routinely monitor resource water	Laboratory facilities not readily available in all			
quality (SA46, SA47 SA48)	WMAs hampering IWQM			
	National monitoring network in place but			
	coverage requires expansion			
	Regional water quality programmes insufficient			
	to manage pressure on water resources			
	Regional and local water quality programmes			
	insufficient to manage pressure on water			
	resources			
1.5.4 Assess resource water quality	Routine national assessments of water quality			
information (SA52 & SA59)	and input in support of the SDG process			
1.5.10 Formalise governance frameworks to	Build from IGR framework and SADC protocols			
support engagements on water quality				
management (SA10, SA11, SA12, SA13, SA14,	Routine catchment assessments of water quality			
SA15, SA54 & SA61)	and the identification of "hot spots" for potential			
	water quality management intervention			
National Biodiversity Strategy and Action Plan				
SO 3. Biodiversity considerations are mainstrearing of sectors	amed into policies, strategies, and practices of a			
Number of compliance inspections conducted	By 2019, 14 500 compliance inspections			
·	conducted.			
Number of enforcement actions undertaken	By 2019, 1 500 completed criminal investigations			
for non-compliance with environmental	handed to the NPA for prosecution (for EMI			
legislation	Institutions) and 3 100 administrative			
	enforcement notices issued for non-compliance			
	with environmental legislation.			
SO 6. Effective knowledge foundations, includi				
support management, conservation, and susta	inable use of biodiversity			
Single portal exists through which all	By 2016, the single portal is established, and it is			
biodiversity information can be accessed	being populated			
National Waste Management Strategy, 2020				
Pillar 2: Effective and Sustainable Waste	Integrated Waste Management Planning			
Services	2. Producers with the concurrence of			
	Municipalities to provide recycling drop-			
	off/buyback/storage centres			
	3. Waste Collection including separation at			
	source			

Global and National Indicators for 6.3.5A	Targets
	 Safe Management of hazardous household wastes and absorbent hygiene products waste
Pillar 3: Compliance, Enforcement and Awareness	 Compliance promotion and awareness Waste Services Infrastructure Provision Enforcement Awareness and Community Participation Reduce littering and illegal dumping Ensure municipal landfill sites and waste management facilities comply with licensing requirements
Key Principles Underpinning the NWMS 2020	 Waste as a Resource: beneficiating waste through re-use, recycling, treatment and recovery to reduce the amount and the toxicity of waste disposed of. Targets for 2025: 70% of paper recycled, 60% of plastic recycled, 90% of glass recycled, 90% of metals recycled and 40% of fly-ash recycled

E10 DISPLAY OF RESULTS

The percentages calculated of proportion of waste recycled/reused, can be presented graphically, and on maps to assist with reporting and interpretation of the data. The mass of waste recycled/reused can be aggregated into municipality, province, watershed, or for the country as a whole. This will assist in providing data at a range of scales, while also providing comparisons between municipalities, regions, and provinces to give a better representation of the country's status quo and provide an understanding of where the main waste recycling/reuse challenges lie.

Table E6 provides an example of the format in which the SDG 6.3.5A results and be formatted. Figure E1 provides a graphical representation of how the data sets can be presented and assessed for comparative purposes.

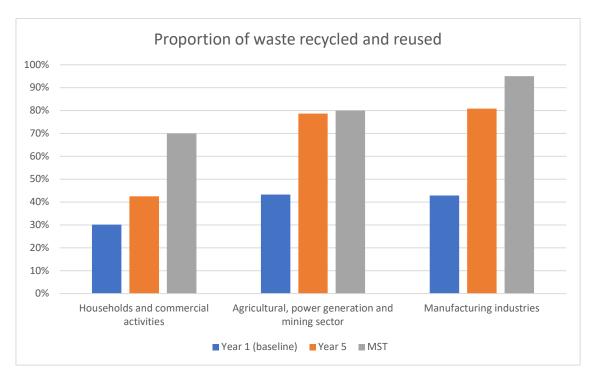


Figure E1: Example graph of proportion of waste recycled/reused by sector

 Table E6:
 SDG 6.3.5A Fictitious Waste Recycling/Reuse Data for South Africa

Category / Sector: Waste	YEAR 1 (BASELINE)			YEAR 5			
recycling/reuse	Total mass of waste generated [Equation 1]	Total mass of waste recycled and reused [Equation 2]	Proportion of waste recycled and reused [Equation 3]	Total mass of waste generated	Total mass of waste recycled and reused	Proportion of waste recycled and reused red < MST green ≥ MST	Management Sub- Target (MST)
	(tonnes/annum)	(tonnes/annum)	Percentage	(tonnes/annum)	(tonnes/annum)	Percentage	
Households and commercial activities	599 667	180 513	47%	629 900	268 051	43%	70%
Agricultural, power generation and mining sector	1 426 010	617 197	50%	1 205 202	948 650	79%	80%
Manufacturing industries	750 890	322 162	83%	605 900	490 216	81%	80%

E11 COMMENTS AND LIMITATIONS

Data collection in relation to waste recycling and reuse is only tracked to a limited extent, and has not had a formal methodology for such tracking. The data is largely incomplete, and requires a concerted effort to be collected, captured, and organised.

It is important that the same methods are used by all reporting agencies from which data is obtained for DWS's use when compiling data according to this new methodology. The methods, approaches, and interpretations should be consistently applied by owners of all waste sources.

This methodology document should be a living document, and should be updated as more information of constraints and details of recycling/reuse, become available.

E12 IMPLEMENTATION CALENDAR

Table E7 describes how reporting on this indicator will be improved over time:

Table E7: Improvement in the Availability of Data and Information for Indicator 6.3.5A

Indicator	Tier 1	Tier 2	Tier 3
	First step of progressive	Second step of progressive	Third step of progressive
	monitoring and	monitoring and	monitoring and
	information handling	information handling	information handling
SDG 6.3.5A	Calculation of total masses	Refined estimation of total	Further refined estimation
"Proportion of	of waste recycled and	masses of waste recycled	of total masses of waste
waste recycled	reused, using existing data	and reused, including	recycled and reused, using
and reused."	from municipalities and	improved measurement of	more measured data on
	private waste recyclers and	waste received at waste	recycling and reuse streams
	reusers by location. These	depots, recycling facilities,	
	estimates should be	and reuse end users.	
	aggregated into local	_	
	municipalities, and then	Inclusion of total masses	
	aggregated into district	more waste streams, using	
	municipalities and	survey/spatial data to	
	provinces.	calculate mass based on	
	Fall and the self-tell and and	volume of waste on land.	
	Estimation of total masses		
	of waste recycled and		
	reused by the informal		
	sector, using surveys from informal waste workers		
	(waste pickers).		
	(waste pickers).		
	Where available; actual		
	masses should be used, as		
	recorded on:		
	waste manifests of		
	receiving processing		
	facilities,		
	 waste manifests of 		
	reuse applications,		

 SAWIS Sales records in the informal sector. 		
Where appropriate, masses should be inferred/extrapolated for similar activities (e.g. similar-sized businesses in the same local municipality).		
Mid 2024	End 2025	Data collection on an annual basis to be reported on annually

Table E8 contains a summary of due dates and responsibilities for key implementation activities that apply to the roll-out of the Indicator methodology.

Table E8: Key Implementation Activities and Due Dates to be Completed for Indicator 6.3.5A

Imp	plementation Activities	Due Date	Responsibility
1	Methodology Finalised	June 2023	DWS, DFFE
2	National database of available data and estimated data	June 2024	DWS, DFFE
	(baseline)		
3	National database with all data captured	December 2025	DWS,DFFE
4	Data analysis and national reporting	2024, 2026,	DWS,DFFE,
		2028, 2030	StatsSA

D14 METHODOLOGY REPORT COMPILERS

The draft methodology was compiled by:

Bjanka Korb (SRK)

Lindsay Shand (SRK)

Department of Water and Sanitation

D15 REFERENCES

DEA, 2008. National Environmental Management: Waste Act. Act 59 of 2008.

DEA, 2016. South African's National Biodiversity Strategy and Action Plan 2015 – 2025. Pretoria, South Africa

DEFF, 2020. A Circular Economy Guideline for the Waste Sector.

DEFF, 2020. National Waste Management Strategy 2020

DPME. 2020. Medium Term Strategic Framework: 2019 – 2024. Pretoria.

DWS. October 2018a. National Water and Sanitation Master Plan Volume 1: Call to Action. Pretoria.

DWS. October 2018b. National Water and Sanitation Master Plan Volume 2: Plan to Action. Pretoria.

DWS. October 2018c. National Water and Sanitation Master Plan Volume 3: Schedule and Action. Pretoria.

Fourie. W. 2018. Aligning South Africa's National Development Plan with the 2030 Agenda's Sustainable Development Goals: Guidelines from the Policy Coherence for Development movement. Pretoria.

UN Habitat. 2016. A Guide to Assist National and Local Governments to Monitor and Report on SDG Goal 11+ Indicators. Monitoring Framework - Definitions - Metadata - Un-Habitat Technical Support.

UN-Water. 2017. Sustainable Development Goal 6 on Water and Sanitation: Targets and Global Indicators.

