ECO-SOCIAL ASSESSMENTS OF AQUATIC ECOSYSTEMS Volume 2 of 2: Notes for Using Generic Relationships in Drift

H Bukhari, A Joubert, C Brown, L van Niekerk, S Taljaard

TT 934/2/23

AFRICA'S LIVING RIVERS PROGRAMME ECO-SOCIAL ASSESSMENTS OF AQUATIC ECOSYSTEMS

VOLUME 2 OF 2: NOTES FOR USING GENERIC RELATIONSHIPS IN DRIFT

Report to the WATER RESEARCH COMMISSION

By H Bukhari, A Joubert, C Brown, L van Niekerk, S Taljaard

WRC Report No. TT 934/2/23

March 2024

Obtainable from Water Research Commission Bloukrans Building, Lynnwood Bridge Office Park 4 Daventry Street Lynnwood Manor PRETORIA

orders@wrc.org.za or download from www.wrc.org.za

This is the final report of Water Research Commission project no. C2020-00437 Project Leader: CA Brown

The outcomes of this report are published in two volumes, namely Volume 1: Library of Generic Relationships for SADC Rivers and Estuaries (WRC Report No. TT 934/1/23)

Volume 2: Notes for Using Generic Relationships in Drift (this report)

DISCLAIMER

This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ISBN 978-0-6392-0592-2 © Water Research Commission

Suggested citation

Bukhari H, Joubert A, Brown C, van Niekerk L and Taljaard S (2024) Eco-Social Assessments of Aquatic Ecosystems, Volume 2: Notes for using Generic Relationships in DRIFT. Africa's Living Rivers Programme (WRC Report No. TT 934/2/23). Water Research Commission, Pretoria.

CONTENTS

1		INTRODUCTION	1
	1.1.	Report outline	1
2		GETTING STARTED	2
	2.1.	Setting up a new DRIFT database	2
	2.2.	Navigating, editing and saving in DRIFT	2
	2.3.	Creating a new DRIFT DB	2
	2.4.	Selecting Eco-Social indicators	3
3		ADDING HYDROLOGY	7
	3.1.	Site calibration	8
	3.2.	Assessment scenarios	9
4		ADJUSTMENTS AND BALANCING1	2
	4.1.	Adjustments to response curves1	2
	4.2.	Review and adjustment of modifiers1	4
	4.3.	Adjustments to connectivity1	4
	4.4.	Balancing1	5
	4.5.	Ecological Categories1	6
5		ESTUARY SPECIFIC GUIDELINES 1	9
6		EXPORTING AND ANALYSING RESULTS	2
	6.1.	Analysing results	5

LIST OF FIGURES

Figure 2.1	Layout of sites and instream weir in the DRIFT-Generic-SADC database	3
Figure 2.2	Selecting and unselecting ecosystem indicators	4
Figure 3.1	Required format for hydrology data, daily timestep left and sub-daily timestep	right7
Figure 3.2	Hydrology parameter setup.	7
Figure 3.3	Site calibration tab in DRIFT.	8
Figure 3.4	Reviewing results of site calibration.	9
Figure 3.5	Adding and deleting scenarios.	10
Figure 3.6	Adding in channel weirs to scenarios	10
Figure 3.7	Flow indicator calculation tab.	11
Figure 4.1	Connectivity tab in the DRIFT DSS	15
Figure 4.2	Although variations occur in the baseline, the Mean should be near 100%	16
Figure 4.3	Present Ecological Status tab in the DRIFT software.	17
Figure 4.4	Abundance/Integrity relationships.	17
Figure 4.5	Discipline integrity weights tab in the DRIFT software.	
Figure 4.6	Site integrity weights tab in the DRIFT software	
Figure 5.1	Generic relationship between salinity and estuary associated species	20
Figure 6.1	Running the model and exporting results	22
Figure 6.2	Exporting the summary of drivers from DRIFT	24

LIST OF TABLES

Table 2.1	Layout of three site DRIFT-Generic-SADC database
Table 2.2	Suggested selection criteria for ecosystem indicators5
Table 3.1	Explanation of site calibration parameters8
Table 4.1	Examples of response curves where adjustments must be made12
Table 4.2	Examples of site-specific adjustments that can be made to response curves14
Table 4.3	Definitions of Ecological Status categories (after Kleynhans 1996 and 1999)16
Table 5.1	Possible translation of relationship between salinity and estuary associated species20
Table 6.1	Example of annual timeseries DRIFT output23
Table 6.2	Example of Indicator results outputs from DRIFT23
Table 6.3	Example of Discipline Integrity outputs from DRIFT23
Table 6.4	Example of Overall Site Integrity outputs from DRIFT23
Table 6.5	Integrity scores that correspond to Ecological Status categories and sub-categories24
Table 6.6	Examples on how outputs from DRIFT can be communicated to decision makers25

This pagw was intentionally left blnak

1 INTRODUCTION

Africa's Living Rivers Programme Module 2: Knowledge Capture Project was funded by the South African Water Research Commission (Contract #: C2020-00437). The project started in April 2021 and ended in February 2024.

The main aim of Contract #: C2020-00437 was to develop a set of indicators, links and generic response curves that depict the relationships between physical-chemical-biological drivers and ecological-social responses in southern African rivers and estuaries. The idea being that the indicators, links and generic curves can be used to set up a coarse-level DRIFT (Downstream Response to Imposed Flow Transformations) Eco-social Model for most major river basins in the Southern African Development Community (SADC) for which daily hydrological time series are available at a fraction of the time and expense of set up the model from scratch. Once set up, the DRIFT Eco-social Model can be used to provide first-level predictions of the ecological and social implications of changes in the flow of water and sediment for the rivers and estuary in the basin.

1.1. Report outline

This report is the Eco-Social Assessments of Aquatic Ecosystems (Volume 2): Notes for using Generic Relationships in DRIFT. It is one of three products from this project:

- Eco-Social Assessments of Aquatic Ecosystems (Volume 1): Library of Generic Relationships for SADC Rivers and Estuaries.
- Eco-Social Assessments of Aquatic Ecosystems (Volume 2): Notes for using Generic Relationships in DRIFT.
- A DRIFT database setup using the generic indicators, links and response curves for rivers presented in Volume 1 of the report. It is called DRIFT-Generic-SADC.

This report is arranged along the following sections:

Section 1	Introduction
Section 2	Getting started
Section 3	Adding hydrology
Section 4	Adjustments and balancing
Section 5	Estuary specific adjustments

Section 6 Exporting and analysing results

This report should be read in conjunction with the DRIFT Manual (www.drift-eflows.com).

2 GETTING STARTED

These notes offer guidance on the use of the generic library of indicators, links and response curves provided in Volume 1. They are designed as a supplement to the DRIFT User Manual. The manual, along with other helpful resources, including tutorial videos and related publications, are available on the DRIFT website (<u>www.drift-eflows.com</u>). The latest version of DRIFT as of February 2024 is 4.16 and is included with the Final Report of Contract #: C2020-00437.

2.1. Setting up a new DRIFT database

Setting up a DRIFT database (DB) for project would involve:

- creating a new DRIFT DB
- selecting a sub-set of the generic indicators for each of geomorphology, algae, riverine vegetation, macroinvertebrates and fish based on characteristics of each reach/ site
- generating baseline daily time series for hydrology, either measured or simulated, for each site and importing these into DRIFT
- generating scenario daily time series for hydrology and importing these into DRIFT
- adjusting of response curves, modifiers, and connectivity percentages if needed
- Adding baseline ecological status for each discipline and site
- running the model and exporting results
- processing outputs and analysing results

Each of these steps are described in further detail in this report.

2.2. Navigating, editing and saving in DRIFT

Navigating, editing, and saving in the DRIFT software are covered thoroughly in the DRIFT software manual. However, to remind users, where a screenshot of the DRIFT DSS is shown, very brief instructions on how to navigate to, and edit on that screen are provided below it, and not in the main text.

As a general reminder, most of the DRIFT software windows have an edit button in the top left corner. To edit, click this button to turn on the edit session. When editing is complete make sure to turn of the edit session by clicking the edit button again. All screens also have a save button. Remember to press save to save your edits, if you do not save these edits may be lost. Remember there is no undo button in DRIFT 4.16. Backups should be created periodically by zipping the DB folder and saving it with the current date and time.

2.3. Creating a new DRIFT DB

The DRIFT-Generic-SADC database has three sites (Table 2.1; Figure 2.1) and the database is preloaded with all the SADC generic indicators, links and response curves for rivers. Limited technical background in DRIFT is required to use this preset database, which can be used to conduct a rapid EFlows assessment. To start your study, make a copy of the "DRIFT-Generic-SADC" database and rename it to "DRIFT-Generic-*RiverUnderStudy*". The three sites in the generic DB must be assigned to the corresponding river reaches under study. The geographic coordinates of the selected sites and reaches can also be entered into DRIFT (see Section 5.2 of the main DRIFT User Manual).

For more experienced DRIFT users, this database provides a starting point to develop a full river network as required. However, that process (such as adding nodes, sites, etc.) is left to the more advanced user and is not covered in this report.

Site Code	Site name	Description
EFO	UpstreamDam	An EFlows site upstream of the proposed dam, weir or abstraction point. Likely to have connectivity related impacts but not affected by changes in flow.
EF1 Dewatered An EFlows site downstream of a proposed dam, weir or abstraction Likely to be dewatered.		An EFlows site downstream of a proposed dam, weir or abstraction point. Likely to be dewatered.
EF2	FurtherDownstream	An EFlows site further downstream of the proposed dam. Can be located downstream of a tailrace, irrigation return flows, or where a tributary joins the river.

 Table 2.1
 Layout of three site DRIFT-Generic-SADC database

Note: Any section of the river inundated by a reservoir is not modelled by the generic library. This habitat is considered completely transformed from river to lake/reservoir.

Figure 2.1 Layout of sites and instream weir in the DRIFT-Generic-SADC database.

2.4. Selecting Eco-Social indicators

Ecosystem indicators should be selected to best describe the local environment of the river sites under study (Figure 2.2). Information on the presence of habitats, vegetation and guilds of invertebrates and fish can be collected based on literature reviews, interviews with locals and local specialists, and from field surveys. Brief guidelines for selecting indicators are provided (Table 2.2) whereas, detailed descriptions of each indicator are provided in Volume 1.

1 and 1	Sites	
Used To be added, (A)dd	delete	eam dam itered sstream outle
_		Upstr Dewe
Algae		
Algal biofilms	%Base	
Filamentous algae	%Base	
∃ Fish		
Rocky riffle	%Base	
Quiet vegetated water fish	%Base	
Geomorphology		
Clay and silt	%Base	
Sand	%Base	
Gravel and cobble	%Base	
FPOM	%Base	
Bed erosion	%Base	
Bank erosion	%Base	
Bed sediment size	%Base	
Embeddedness	%Base	
Turbidity	%Base	
Pool depth	%Base	
Cut banks	%Base	
Islands and bars	%Base	
Backwaters and secondary channels	%Base	
Exposed sandy habitat in the dry se	%Base	

Setup \rightarrow Indicator selection \rightarrow Site indicators

All indicators are preloaded in the database. To remove an indicator, click edit, select the indicator and site where it must be removed and then type D to delete; and type U to undelete mistakenly deleted indicators. Please note that once deleted all links and response curves for that indicator will be removed from that site. Once done, click save and close the editing session.

Figure 2.2 Selecting and unselecting ecosystem indicators.

Table 2.2	Suggested selection	criteria for	ecosystem	indicators.
-----------	---------------------	--------------	-----------	-------------

Selection criteria	Indicator
Geomorphology	
Codiment cumply indicators that may be calested depending on	Clay and silt
the types of sediments expected to be carried by the river	Sand
the types of sediments expected to be carried by the river.	Gravel and cobble
Care geometry belogy indicators that may be calested for most if	Bed erosion
core geomorphology indicators that may be selected for most if	Bank erosion
	Bed sediment size
	Embeddedness
Additional core indicators that can be selected if of concern in the	Turbidity
study, such as to invertebrates of fish	FPOM (Fine Particulate Organic matter)
	Pool depth
	Backwaters and secondary channels
	Cut banks
	Islands and bars
Situational geomorphology indicators that are relevant based on	Exposed sandy habitat in the dry season
the presence of specific habitats. Select based on presence of	Exposed cobble habitat in the dry season
habitat in the river reach under study. The selection can vary	Exposed bedrock habitat in the dry season
between sites.	Inundated sandy habitat
	Inundated cobble habitat
	Inundated bedrock habitat
	Riffle habitat
Algae	
Both algae indicators can be selected for most river sites. Keep in mind that even if the algal indicators are not present in the	Algal biofilms
baseline, conditions may arise that cause them to become more abundant.	Filamentous algae
Riverine vegetation	
These five indicators represent three lateral vegetation zones: 1) <i>aquatic</i> zone plants that are in the water 2) <i>emergent</i> zone plants	Aquatic plants on rock
that are on the water's edge; and 3) <i>wetbank</i> zone plants that are inundated at least once a year. While all five indicators may be	Aquatic plants in sand
relevant at most river sites, at least one indicator can be selected for each zone (and considering the presence of the indicator at the site). For example, in case the riverbed is completely bedrock, the aquatic plants on sand can be unselected. Do note that reeds	Emergent graminoids
	Wetbank grasses
(see below) may also be counted towards any of these zones depending on where they are growing.	Wetbank shrubs/trees
Papyrus (<i>Cyperus papyrus</i>), dry dormant reeds (<i>Phragmites australis</i>) and evergreen reeds (<i>Phragmites mauritianus</i>) are	Papyrus (<i>Cyperus papyrus</i>)
common across SADC and are included directly in the library as	Reeds dry dormant (Phragmites australis)
are present at the site	Reeds evergreen (Phragmites mauritianus)
These are composite indicators that make it easier for other	Agg: Aquatic veg
disciplines to link to riverine vegetation indicators.	Agg: Marginal and riparian veg
Select if floating exotics are present in the system and if they are similar in nature to water hyacinth which is captured by this indicator.	Floating exotics
Macroinvertebrates	
	Caenidae

Selection criteria	Indicator	
In the absence of additional information, at least one	Heptageniidae	
Ephemeroptera indicator can be selected. Note that Caenidae prefer fine sediment beds and Oligoneuriidae are generally present in the tropics.	Oligoneuriidae	
In the absence of additional information, at least one Diptera	Ceratopogonidae	
indicator can be selected. Simuliidae can be selected if Black Fly	Chironomidae	
related concerns are present in the river under study.	Simuliidae	
Can select if riffle habitat is present.	Elmidae	
Between dragonflies (Gomphidae) and damselflies	Coenagrionidae	
(Coenagrionidae) dragonflies are more commonly occurring.	Gomphidae	
Sometimes used as indicator of pollutants in the water so may	Hydropsychidae	
not be present at polluted sites.	Perlidae	
Select if Schistosomiasis (Bilharzia) is a potential concern for the area under study.	Freshwater snails	
Species from these shrimp families may be an important part of	Atyidae	
commercial fishing (e.g. Macrobrachium).	Palaemonidae	
This composite indicator combines the abundance of		
Ceratopogonidae, Chironomidae and Hydropsychidae. Therefore,	Agg: Invert food for inverts	
at least one of the constituents must be selected.		
These are composite indicators that make it easier for fish to link	Agg: EPT food for fish	
to macroinvertebrate indicators. Should not be modified.	Agg: Invert food for fish	
Fish		
Select fish indicators based on the species present in the river. If	Riffle dependent fish (small)	
that information is not available, select indicators based on the	Quiet vegetated waters dependent fish	
presence of habitats (e.g. if riffles are present select riffle	Floodplain dependent fish	
dependent fish).	Migratory fish (large)	
	Tolerant fish	
Social		
Select if sand and gravel mining occurs in the river reach	Sand and gravel resources	
Select if reed harvesting occurs in the river reach	Reed harvesting potential	
Select if river is used for subsistence or commercial fishing.	Fishing resources	
Can be selected for most sites.	Aesthetic value	

3 ADDING HYDROLOGY

A basic requirement for the DRIFT DSS is a continuous daily hydrological flow sequences for a minimum of 20 years (but preferably longer) for each site for each scenario. Hydrologists undertake the relevant hydrological modelling outside the DRIFT DSS, and the data provided by them is imported into the DSS.

All projections are made against a baseline hydrology regime. This is usually set to current day water resource development, infrastructure, and abstraction levels, from gauge or modelled data. However, the baseline may also be set to naturalised flows, or an expected future flows after the completion of currently under approved and construction projects.

The start month of the hydrology timeseries must be in the middle of the dry season and must follow a specific format (Figure 3.1). Date format is 'YYYYMMDD' for daily timestep files and the files should be saved as 'SiteCode'-'ScenarioCode'.day for daily timestep files. The hydrology files should be kept in the DRIFT\DRIFT-Generic-RiverUnderStudy\Data\Hydrology\ folder. Once the baseline hydrology is acquired, its details including start date, length in years and start month must be entered (Figure 3.2).

Da	ily,m3/s
Da	te,EF2-Base
19	241101,109.1401292
19	241102,111.1589158
19	241103,111.1589158
19	241104, 113. 2010718
19	241105,115.2667082
19	241106, 115. 2667082
19	241107,115.2667082
19	241108, 115. 2667082
19	241109, 115. 2667082
19	241110,115.2667082
19	241111, 115. 2667082
19	241112, 117. 3559356
19	241113,119.4688647
19	241114,121.6056056

Figure 3.1 Required format for hydrology data, daily timestep left and sub-daily timestep right.

Edit 🧐 Cancel	- Save		
Setup parameters Ind	licator options	& time-series data	
General informa	tion:		
Start year:		1924	
Start month:		11	
No Years:		90	
Seasons:	Code	Name	
	D	Dry	
	T1	Transition 1	
	F	Flood	
	T2	Transition 2	

Knowledge Capture \rightarrow Hydrology & Hydraulics \rightarrow Parameters & timeseries data

Figure 3.2 Hydrology parameter setup.

3.1. Site calibration

Site calibration is the process of setting flow thresholds at each site that will determine the starts and ends of the flow seasons. Once baseline hydrology is placed in the required format in the \Data\Hydrology\ folder each site must be calibrated (Figure 3.3)

The parameters (Table 3.1) are set/adjusted through trial and error so that season demarcations "look reasonable" (the threshold does not appear too high or too low); and as few seasons are 'missing' as possible, preferably none (Figure 3.4).

Hydrology / Site calibration	Hydrology / Site calibration
🕈 Edit 🍓 Calculate 🛛 🔙 Save	🖙 Edit 🎂 Calculate 🔄 Save
Site	Site Downstream site Middle site
Upstream site 2023-08-17 20	Upstream site 2023-08-17 20
Jpstream site	Upstream site
arameters Results Seasons Data	Parameters Results Seasons Data
General Hydrology Hydraulics	General Hydrology Hydraulics
	Season delineation
Flow Regime: Flood Pulse ~	Hydro start month: 10.00 🗘 Season (D, T1, W, T2)
Calibration scenario: Baseline 🗸	Q moving avg. period: 5.00 🗘 days Jan T1
	Use recession rate for end of T2: 2 Feb W
Calculate hydraulic indicators ?	Use base flow for delineation Mar W
	Use defined seasons to calc onsets Apr W
	May W
	Jun W
	Perennai: • X Min, Dry season Q Jul T2
	Ephemeral: 0.40 🐑 x Mean Annual Q Aug D
	Flood Season Crossings: 0.80 🐡 x Mean Annual Q Sep D
	Oct D
	Perenting Pate c 0.20 * m3/s/day
	Recession Rate < 0.70 m3/s/day Dec D
	Rate calculated over 14.00 days

Knowledge Capture \rightarrow Hydrology & Hydraulics \rightarrow Site Calibration

Select the site to be calibrated and click Edit. First, in the Parameters\General tab (left) select flood pulse as the flow regime and the name of the scenario that will be used for the baseline calibration. Next in the Parameters\Hydrology tab add the calibration parameters (right) and click Calculate when done.

Figure 3.3	Site calibration	tab in DRIFT.
------------	------------------	---------------

Table 3.1	Explanation	of site	calibration	parameters
-----------	-------------	---------	-------------	------------

Parameter	Description
Hydro start month	The start month (1 to 12; where 1 is January) must be in the middle of the dry season and the same month which the hydrology files start at.
Q moving avg period	The number of days over which key parameters are calculated 5 days is set as the default.
End of dry season	Dry to T1 season threshold
Perennial rivers	Set using a multiple of the minimum dry season discharge. Although it may vary, setting this to 5 to 10 times minimum dry season discharge suggested as a starting point.

Parameter	Description
Ephemeral rivers	Set using a multiple of the mean annual discharge as the minimum dry season
	discharge may be zero or very low. A starting point may be between 0.3 to 0.7
Start and end of Wet	T1 to Wet and Wet to T2 threshold
season	
Flood Season Crossings	Set using a multiple of the mean annual discharge and is often near the mean
	annual discharge (e.g. 1.0 to 1.2 times mean Annual Q).
End of T2 season	T2 to Dry threshold
Use recession rate for end	If unchecked T2 will end when the flows cross the Dry/T1 threshold. If checked
of T2	T2 will end when the recession rate is less than the specified value in m ³ /s/day
	calculated over a defined set of days.
Use base flow for	Used for flashy hydrology beyond the scope of this manual. Keep unchecked.
delineation	
Use defined seasons to	Estimated seasons must be entered in the seasons tab to the right. Keep
calculate onsets	unchecked, however, these estimated seasons are used by the software in
	certain cases and so must be filled

Knowledge Capture \rightarrow Hydrology & Hydraulics \rightarrow Site Calibration

Once site calibration calculations are concluded, click on Seasons (left) to view how season demarcations look like for each year of the record. The hydro-year can be navigated using the buttons at the bottom. Next click on Results (right) and scroll down to the Seasons section of the panel to check how many seasons were missed.

3.2. Assessment scenarios

DRIFT is a scenario based EFlows assessment approach. This provides decision makers with information to weigh options and trade-offs under various future development and operational scenarios. A baseline and two dummy scenarios are added to the DRIFT-Generic-SADC database. If a

scenario is not used it can be deleted or additional scenarios added as required (Figure 3.5). The reference scenario is just a copy of the baseline scenario and is required for DRIFTs inner working (and subsequently ignored). For the rapid assessment a single in-channel dam or weir is defined which blocks movement between EFlows Site 0 (EF0, UpstreamDam) and EFlows Site 1 (EF1; Dewatered). It can be added to any assessment scenario (Figure 3.6). Refer to the main DRIFT manual to change the location of the weir or to add additional in-channel barriers.

enari	o descr	iption:	
Display order	Code	Name	Description
1	Ref	Reference	Reference scenario: Same as the baseline
2	Base	Baseline	Baseline scenario: 90 years of daily gauging station data (from 1924 to 2014)
3	Sc1	Scenario 1	Hypothetical scenario: Basic water diversion infrastructure. EFlow 10% of MAR (1.13 m3/s), design diversion 10 m3/s. No storage, no minimum diversion. No return flows to Site2
4	Sc2	Scenario 2	Hypothetical scenario: Basic water diversion infrastructure. EFlow 30% of MAR (113 m3/s), max diver 6 m3/s. No storage, no minimum diversion. 25% return flows to Site2

Setup \rightarrow Scenarios specification \rightarrow General description

To add a scenario click edit followed by the green plus sign. To delete a scenario click edit, select the scenario to delete and then click delete. Save afterwards and close the edit session.

Figure 3.5 Adding and deleting scenarios.

Setup \rightarrow Scenarios specification \rightarrow Specifications

To include the dam in the scenario click edit followed by typing I to include and E to exclude the dam from the scenario.

Figure 3.6 Adding in channel weirs to scenarios.

Once each site has been calibrated with the baseline hydrology and all the scenario hydrology is placed in the \Data\Hydrology\ folder, DRIFT is used to calculate the flow indicators for each site and scenario (Figure 3.7). The results are also automatically saved and can be viewed in a text file in the \Data\FlowIndicators\ folder. These files have the naming convention "SiteCode"-"ScenarioCode".hst, e.g. EF0-Base.hst and can be opened in Notepad to view.

- CR 🔁 🍐	Calculate			
Calculate Seaso	ns			
Scenario	Calculated	Calc Date	Calib date	
Dewatered				
Baseline		2023-10-24 16:41	2023-10-24 16:39	
Scenario 1		2023-10-24 16:41	2023-10-24 16:39	
Scenario 2		2023-10-24 16:42	2023-10-24 16:39	
FurtherDow	nstream			
Baseline	2.	2023-10-24 16:42	2023-10-24 16:40	
Scenario 1		2023-10-24 16:43	2023-10-24 16:40	
Scenario 2		2023-10-24 16:43	2023-10-24 16:40	
UpstreamDa	m			
Baseline		2023-10-24 16:45	2023-10-24 16:40	
Scenario 1		2023-10-24 16:46	2023-10-24 16:40	
Scenario 2		2023-10-24 16:47	2023-10-24 16:40	
Site: Downst SUMMARY HYDR DateTime: 2	ream Sc OLOGICAL D 4/10/2023	enario: Baseli ATA 16:42:45	se	

Knowledge Capture \rightarrow Hydrology & Hydraulics \rightarrow Calculate flow indicators

Calculate flow indicators by clicking each site and scenario and clicking calculate. Note the flow indicators for a site must be calculated <u>after</u> the site is calibrated. Therefore, if a site is re-calibrated the flow indicators must also be recalculated. These date of calibration and calculation can be checked on this screen. Often if unforeseen errors are arising in the software, re-running the calibration and calculation might resolve the issue.

Figure 3.7 Flow indicator calculation tab.

4 ADJUSTMENTS AND BALANCING

To use this library, the absolute minimum requirement is a hydrological timeseries for the baseline, and preferably also for other scenarios. Starting from this bare minimum requirement, the generic database can be further refined by adjusting response curves and modifiers, reviewing connectivity related links, and updating the baseline ecological status.

4.1. Adjustments to response curves

In the case where the response curves have hydrology driving indicators, the x axis will be automatically populated by DRIFT with physical units such as m³/s for discharge, Mm³ for daily volume, days for season duration, etc. These values on the x-axes depends on the input baseline hydrology which will vary from site to site. Because the x-axes may change in range or shape, in some cases, the generic response curves may need to be adjusted. This can occur for many reasons, for example, if there is low natural variation, very extreme variation, or very skewed distribution (Table 4.1) in the baseline flows. The key is to ensure that the response curves should carry the purpose described in the supporting explanations. In general, in these circumstances, the response (y axis) will be adjusted, but it may be useful to adjust certain points on the x-axes as well (but never the median), to better correspond to known thresholds.

Response curves can also be fine-tuned if additional information is available. For example, if gravel and cobble beds are located at the centre of the bed and their inundation is not very sensitive to flows the scores that relate inundated cobble habitat to reduced flows can be made less severe (Table 4.2). The degree of positive and negative scoring also depends on the median baseline abundance, such as in the case of fish and prey/food. If fish are at carrying capacity due to habitat availability, an increase in prey abundance will not allow for a very large increase in fish abundance.

If major changes are made, supported by new studies or literature, it will be appreciated that such changes are communicated to the study team (admin@southernwaters.co.za) so that such edits may be added to the generic library to benefit its users.

	Generio	c resp	onse cui	rve		
Dry averag	e daily volum	e [D seas	on]			
	%Base	Y1			120	
Min	0	-2			100	
Min Base	25	-1	/		80	
	50	0	/		60 88	
Median	100	0			40 %	
	150	0			20	
Max Base	200	0.1			20	
Max	250	0.4	0 100	200	0	
		10	Dry average	e daily volum	пе	

 Table 4.1
 Examples of response curves where adjustments must be made.

kc exan	nples afte	r site hy	ydrolo	ogy is a	addec			Possible	e adjustm	ents						
Follows	the gener	al shap	e and	conce	ept of	the ge	eneric	No adju	istment is	require	d.					
	e curve.	[aoscon]														
Diy av	e daily voi [D s	seasonj		-			2									
Desc	Mm3/d	¥1	¥2		-		100									
Min	0.000	-2.000		- /			80 2									
Min Base	1.268	-1.000					Bas									
	3.259	0.000		- r			60 %									
Median	4,108	0.000					40									
	5.268	0.000					20									
Max Base	7.265	0.100					0									
Max	8.354	0.400		0	2 4	6	8									
to Medi	an, e.g. M	in Base	is 99.	5% of	Medi	an val	ue.	change	d to 1 and e daily vol [D s	2 Mm3	/d	inext	X dXI	s valu	e	
Desc	Mm3/d	Y1	42				100	Desc	Mm3/d	Y1	Y2		-		100	D
Min New York	0.000	-2.000					80 🗯	Min	0.000	-2.000			/		80	
Min base	4.102	-1.000					Ba	Min Base	1.000	-1.000						Bat
Madan	4.104	0.000		-			00 %		2.000	0.000		-			60	%
median	4.108	0.000					40	Median	4.108	0.000					40	
		0.000							4.250	0.000						
Mary David	4.250	0.100					20								20	
Max Base Max	4.230 4.758 5.472 xis values	0.100 0.400 are the	same	e (e.g.	2 Min a	4 nd Mi	n base	Max Base Max Possible	4.758 5.472 e remedy 2	0.100 0.400 1: Min k	ase x	axis c	2 hang	₄ ed to	0	
Max Base Max Two x ax are both	4.250 4.758 5.472 xis values n 0) theref	0.100 0.400 are the ore issu	same Jes ar	e (e.g. ise on	2 Min a whicł	4 nd Mi n value	n base e to use	Max Base Max Possible Mm ³ /d	4.758 5.472 e remedy 2 e daily vol [D s	0.100 0.400 1: Min k	ase x	axis c	2 hang	₄ ed to	10	
Max Base Max Two x ax are both	4.758 4.758 5.472 xis values n 0) theref e daily vol [D s	0.100 0.400 are the ore issu	same Jes ar	e (e.g. ise on	2 Min a whicł	₄ nd Mi n value	n base to use	Max Base Max Possible Mm ³ /d	4.758 5.472 e remedy 2 e daily vol [D s	0.100 0.400 1: Min k season]	ase x	axis c	2 hang	4 ed to	10	
Max Base Max Two x ax are both Dry ave Desc	4.250 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d	0.100 0.400 are the ore issu eason] Y1 -2.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	4 nd Mi n value	n base e to use	Max Base Max Possible Mm ³ /d Dry av Desc Min	4.758 5.472 e remedy 2 e daily vol [D s Mm3/d	0.100 0.400 1: Min k season] Y1 -2.000	oase x Y2	axis c	2 hang	₄ ed to	10	0
Max Base Max Two x ax are both Dry ave Desc Min Min Base	4.758 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	4 nd Mi n value	n base to use	Max Base Max Possible Mm ³ /d Dry av Desc Min Base	4.758 5.472 e remedy : e daily vol [D s Mm3/d 0.000 10.000	0.100 0.400 1: Min k season] Y1 -2.000 -1.000	oase x Y2	axis c	2 hang	ed to	10	0
Max Base Max Two x ax are both Dry ave Desc Min Min Base	4.250 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000 0.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	4 nd Mi n value	n base to use	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base	4.758 5.472 e cally vol [D : Mm3/d 0.000 10.000 24.174	0.100 0.400 1: Min k season] Y1 -2.000 -1.000 0.000	pase x Y2	axis c	2 hang	4 ed to	10	Base
Max Base Max Two x ax are both Dry ave Desc Min Min Base Median	4.250 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174 48.399	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000 0.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	nd Mi n value	n base e to use	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median	4.758 5.472 e remedy 2 e daily vol [D s Mm3/d 0.000 10.000 24.174 48.349	0.100 0.400 1: Min k season] Y1 -2.000 -1.000 0.000	vase x Y2	axis c	2 hang	4 red to	10	% Base
Max Base Max Two x ax are both Dry ave Desc Min Min Base Median	4.250 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000 0.000 0.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	nd Mi n value	20 0 n base e to use 100 80 60 40	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median	4.758 5.472 e remedy 2 e daily vol [D : Mm3/d 0.000 10.000 24.174 48.349 63.112	0.100 0.400 1: Min k season] Y1 -2.000 -1.000 0.000 0.000	yase x	axis c	2 hang	4 ged to	10 10 10 40	% Base
Max Base Max Two x ax are both Dry ave Desc Min Min Base Median	4.250 4.758 5.472 xis values n 0) theref e daiy vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117 77.886	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	4 nd Mi n value	20 0 100 100 100 100 100 100 100	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median	4.758 5.472 e remedy 2 e daily vol [D : Mm3/d 0.000 10.000 24.174 48.349 63.117 77,885	0.100 0.400 1: Min k season] Y1 -2.000 -1.000 0.000 0.000 0.000 0.000	y2	axis c	2 hang	ed to	20 0 10 10 80 60 40 20	% Base
Max Base Max Two x a: are both Dry ave Desc Min Min Base Median Max Base	4.230 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117 77.886	0.100 0.400 are the ore issu eason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.100	same Jes ar Y2	e (e.g. ise on	2 Min a which	4 nd Mi n value	20 n base e to use 100 80 60 20 20	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median Max Base	4.758 5.472 e remedy 2 mm3/d 0.000 10.000 24.174 48.349 63.117 77.886	0.100 0.400 1: Min k season] Y1 -2.000 -1.000 0.000 0.000 0.000 0.100	y2	axis c	2 hang	ed to	20 0 10 10 80 60 40 20	
Max Base Max Two x a: are both Ory ave Desc Min Min Base Median Max Base Max	4.230 4.758 5.472 xis values n 0) theref e daiy vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117 77.886 89.569	0.100 0.400 are the fore issu ieason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.100 0.400	same Jes ar Y2	e (e.g. ise on	2 Min a which	and Min value	20 n base e to use 0 0 0	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median Max Base Max Possible 1) for b Ory av Desc Min Min Base	4.758 5.472 e remedy 2 e daily vol [D s Mm3/d 0.000 10.000 24.174 48.349 63.117 77.886 89.569 e remedy 2 oth Min at e daily vol [D s Mm3/d 0.000 0.000 2.4.174	0.100 0.400 1: Min b season] Y1 -2.000 -1.000 0.000 0.000 0.400 2: Y1 see nd Min season] Y1 -2.000 -2.000 -2.000 0.000	verity base y2	axis c	2 hang	4 red to	20 0 10 10 40 20 0 -2 (or	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Max Base Max TWO X ax are both Dry ave Desc Min Base Median Max Base Max	4.230 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117 77.886 89.569	0.100 0.400 are the fore issu ieason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.100 0.400	same Jes ar Y2	e (e.g. ise on	2 Min a which	nd Min value	20 n base e to use 100 80 40 20 0	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median Max Base Max Possible 1) for b Dry av Desc Min Min Base Max	4.758 5.472 e remedy 2 e daily vol [D s Mm3/d 0.000 10.000 24.174 48.349 63.117 77.886 89.569 e remedy 2 oth Min al e daily vol [D s Mm3/d 0.000 0.000 0.000 0.000 24.174 48.349	0.100 0.400 1: Min b season] Y1 -2.000 -1.000 0.000 0.000 0.400 2: Y1 se md Min season] Y1 -2.000 -2.000 0.000	verity verity	axis c	2 hang	4 red to	20 0 10 10 10 50 60 40 20 0 0 -2 (01	
Max Base Max TWO X ax are both Desc Min Min Base Median Max Base Max	4.230 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 0.000 24.174 48.349 63.117 77.886 89.569	0.100 0.400 are the fore issu acason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000	same Jes ar Y2	e (e.g. ise on	2 Min a which	nd Min value	20 n base e to use 100 80 80 60 80 80 80 90 90 90 90 90 90 90 90 90 9	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median Max Base Max Possible 1) for b Dry av Desc Min Min Base Max Max Max Max Max Max Max Max Max Max	4.758 5.472 e remedy 2 e ally vol [D s Mm3/d 0.000 10.000 24.174 48.349 63.117 77.886 89.569 e remedy 2 oth Min all e ally vol [D s Mm3/d 0.000 24.174 48.349 63.117	0.100 0.400 1: Min b season] Y1 -2.000 -1.000 0.000 0.000 0.400 2: Y1 se nd Min season] Y1 -2.000 -2.000 0.000 0.000	verity verity base Y2	axis c	2 hang	4 red to	20 0 10 10 10 50 60 40 20 0 0 -2 (01 50 60 60 60 60 60 60 60 60 60 60 60 60 60	0 () () () () () () () () () (
Max Base Max TWO X ax are both Desc Min Min Base Median Max Base Max	4.758 4.758 5.472 xis values n 0) theref e daily vol [D s Mm3/d 0.000 24.174 48.349 63.117 77.886 89.569	0.100 0.400 are the fore issu eason] Y1 -2.000 -1.000 0.000 0.000 0.000 0.000 0.400	same Jes ar Y2	e (e.g. ise on	2 Min a which	nd Min value	20 n base e to use 100 80 60 80 40 20 0	Max Base Max Possible Mm ³ /d Dry av Desc Min Min Base Median Max Base Max Dry av Desc Min Min Base Max Max Base Median	4.758 5.472 e remedy 2 e remedy 2 mm3/d 0.000 10.000 24.174 48.349 63.117 77.886 89.569 e remedy 2 oth Min at e daily vol [D s Mm3/d 0.000 24.174 48.349 63.117 48.349 63.117 77.886	0.100 0.400 1: Min b season] Y1 -2.000 -1.000 0.000 0.000 0.000 0.400 2: Y1 se nd Min season] Y1 -2.000 -2.000 0.000 0.000 0.000 0.000	verity verity base	axis c	2 hang	4 red to	20 0 10 10 10 50 60 40 20 0 0 -2 (OI 50 60 40 20 0 0 -2 (OI 50 60 40 20 0 0 10	

The DRIFT-Generic-SADC response curves can be further adjusted based on available site-specific information (Table 4.2).

Table 4.2Examples of site-specific adjustments that can be made to response curves

4.2. Review and adjustment of modifiers

Reasonable modifiers according to Volume 1 of the report are entered into DRIFT-Generic-SADC. However, if the user has additional site- or species-specific information, they are welcome to make adjustments to the generic modifiers. For example, the suggested dependence on the previous year for Quiet vegetated dependant water fish is 55%. However, if it is known that the species present in the reach under study has a much lower fecundity or a longer time to sexual maturity, this would imply a higher dependence on the previous year. This modifier could therefore be changed accordingly. Modifiers make substantial change to the results, and it is worthwhile to review these.

4.3. Adjustments to connectivity

The pre-defined barrier between EFlows Site 0 and EFlows Site 1 presents a barrier to connectivity as follows:

- The dam and reservoir restrict the flow of sediment downstream.
 - Silt and clay (25% reduction): Fine sediments remain in suspension and flow through the reservoir; unless the reservoir is very long then they will be deposited.
 - FPOM (20% reduction): These fine sediments remain in suspension and flow through the reservoir.
 - Sand (60% reduction). Sand will be deposited at the start of the reservoir due to the slowdown in velocities.
 - Gravel and cobbles (95% reduction): These heavy bedload sediments will be deposited and not make it downstream of the weir.
- The weir and reservoir restrict the movement of animals both upstream and downstream
 - Migratory fish Upstream movement (70% blocked) and Downstream movement (50% blocked): the dam wall and reservoir are difficult to breach by fish. Some may enter the turbine which can be fatal.

Palaemonidae Upstream movement (70% blocked) and downstream movement (50% blocked): the dam wall and reservoir are difficult to breach by shrimps.

If additional information is available, then these impacts to connectivity can be fine-tuned (Figure 4.1). For example, if the weir under study has a well-designed fish passage, then it may have a lower impact on the movement of fish.

Figure 4.1 Connectivity tab in the DRIFT DSS.

4.4. Balancing

The time series of the indicator will show variability over time, responding to climate changes and water resource developments in the scenarios. However, for the baseline scenario, the mean value across this time series, must be between 98% and 102% for all indicators (Figure 4.2). As the flow patterns will vary from river to river and from site to site, the generic response curves may need slight adjustments to account for this. The modifiers that directly limit the indicator percentage (Minimum % of Base and Maximum % of Base) should preferably not be used during the balancing process. These types of adjustments are called "balancing".

When balancing, remember to balance in the order of operations. In other words, start at the most upstream site and the first discipline (geomorphology) and then move to the next discipline and then the next site. Running the DRIFT software will update changes across sites and disciplines. If the DB includes up- and down-stream migrations, it is particularly important to "Run All" scenarios frequently when balancing. If there are migration related response curves, it is a good strategy, to turn off migration links and balance all the other response curves to give the overall 98% to 102% result, and then, once these are balancing, switch the migration back on and balance the migration.

Figure 4.2 Although variations occur in the baseline, the Mean should be near 100%

4.5. Ecological Categories

The ecological status (health or condition) of a river ecosystem is defined as its ability to support and maintain a balanced, integrated composition of physio-chemical and habitat characteristics, as well as biotic components on a temporal and spatial scale that are comparable to the natural characteristics of ecosystems of the region (Kleynhans 1996; Table 4.3). Converting scenario results to Ecological Categories provides an understandable scoring criterion to compare different sites and scenarios assessed and may be an administrative requirement in some cases.

 Table 4.3
 Definitions of Ecological Status categories (after Kleynhans 1996 and 1999).

Α	Unmodified, natural	As close as possible to natural conditions.
В	Largely natural	Modified from the original natural condition but not sufficiently to have produced measurable change in the nature and functioning of the ecosystem.
С	Moderately modified	Changed from the original condition sufficiently to have measurably altered the nature and functioning of the ecosystem, although the difference may not be obvious to a casual observer.
D	Largely modified	Sufficiently altered from the original natural condition for obvious impacts on the nature and functioning of the ecosystem to have occurred.
E F	Completely modified	Important aspects of the original nature and functioning of the ecosystem are no longer present. The area is heavily negatively impacted by human interventions.

As, in DRIFT, all change is evaluated against the baseline, the Baseline Ecological status (BES) of each river reach must be entered into the DRIFT DSS (Figure 4.3). Secondly, the user must review whether an increase in abundance of the indicators selected is a move towards natural or away from natural conditions for the river under study (Figure 4.4). For instance, in some cases a certain plant of fish species may be native (an increase would be towards natural) whereas in other areas it may be invasive (an increase would be towards natural).

📝 Edit 📙 Save							
Discipline	Upstream dam	Dewatered	Downstream outle				
Geomorphology	B/C	B/C	B/C				
Vegetation	B/C	B/C	B/C				
Algae	B/C	B/C	B/C				
Macro-invertebrates	B/C	B/C	B/C				
Fish	B/C	B/C	B/C				
Social	B/C	B/C	B/C				

Knowledge Capture \rightarrow Integrity \rightarrow Present Ecological Status

To update the Baseline Ecological Status (BES), click Edit, select the cell to update, and enter the BES (A, A/B, B, B/C, C, C/D, D, D/E, or E) for that site and discipline.

Figure 4.3 Present Ecological Status tab in the DRIFT software.

S Luit E Save					
Indicator	1_Lephalala	2_NoName	3_Olifantspruit	4_Mogalakwena1	5_Mogalakwena
∃ Fish					
Rocky riffle fish	Towards		Towards	Towards	Towards
Quiet vegetated water fish	Towards		Towards	Towards	Towards
Floodplain dependent fish	Towards				
Migratory	Towards		Towards	Towards	Towards
Tolerant species	Towards	Towards	Towards	Towards	Towards
Fish health	Towards	Towards	Towards	Towards	Towards
Species diversity	Towards		Towards	Towards	Towards
Comp: Fish abundance	Towards	Towards	Towards	Towards	Towards
Geomorphology					
Clay silt FPOM supply	Away	Away	Away	Away	Away
Sand Gravel supply	Away	Towards	Towards	Towards	Towards
Bed erosion	Away	Away	Away	Away	Away
Bank erosion	Away	Away	Away	Away	Away
Bed Sediment size	Towards		Towards	Towards	Away
Embeddedness	Away		Away	Away	Away
Pool depth	Towards	Towards	Towards	Towards	Towards
Backwaters and secondary channels	Towards		Towards	Towards	Towards
Inset bench and sand bars	Away	Towards	Towards	Towards	Away
Inundated sandy habitat	Away	Towards	Away	Away	Away
Inundated cobble habitat	Towards		Towards	Towards	Towards
Riffles	Towards	Towards	Towards	Towards	Towards
Flood bench	Towards		Towards	Towards	Towards

Knowledge Capture \rightarrow Integrity \rightarrow Abundance Integrity relationship

'Towards' means an increase in abundance is a move toward the natural condition for the ecosystem (e.g. an increase in indigenous fish) and 'Away' means an increase is a move away from the natural condition for the ecosystem (e.g. increase in alien invasive vegetation). To update, enter Towards or Away by typing or selecting it from the dropdown.

Figure 4.4 Abundance/Integrity relationships.

The contribution of each discipline to a site's overall ecosystem integrity is determined by "site integrity weights". Within a discipline, the contribution of each indicator to the discipline's integrity is determined by "discipline integrity weights". By default, each indicator in each discipline is given the same weight when calculating the discipline's integrity score; and each discipline is given the same weight when calculating the site integrity. In the case of DRIFT-Generic-SADC minor adjustments have been made to weights, for example:

- For geomorphological integrity: sediment loads, bed erosion and bank erosion were excluded as they are driving factors and processes rather than outcomes in geomorphological indicators such as bed sediment size, etc.
- For overall site integrity:
 - Algal indicators are excluded as it is difficult to assign a consistent score for these that indicate whether a change in abundance is a move toward or away from natural. While small variations in the abundance are natural, both a large increase and a large decrease in their abundance may represent a move away from natural for the system.
 - Fish indicators were more heavily weighted because fish integrate many of the other aspects of the river.
 - Social indicators are excluded they are not part of ecological integrity.

The weights can be adjusted if additional information is available (Figure 4.5 and Figure 4.6).

🛿 Edit 🚽 Save							
Discipline	Indicator	UpstreamDam	Dewatered	FurtherDownstream			
🗉 Algae							
Algae	Algal biofilms	1.0	1.0	1.0			
Algae	Filamentous algae	1.0	1.0	1.0			
E Fish							
Fish	Rocky riffle	1.0	1.0	1.0			
Fish	Quiet vegetated water fish	1.0	1.0	1.0			
E Geomorphology							
Macro-invertebrate	5						
Macro-invertebrates	Caenidae	1.0	1.0	1.0			
Macro-invertebrates	Heptageniidae	1.0	1.0	1.0			
Macro-invertebrates	Oligoneuriidae	1.0	1.0	1.0			
Macro-invertebrates	Ceratopogonidae	1.0	1.0	1.0			
Macro-invertebrates	Chironomidae	1.0	1.0	1.0			

Knowledge Capture \rightarrow Integrity \rightarrow Discipline integrity weights

Discipline integrity weights are used to weigh how much each indicator contributes towards the discipline's overall integrity. To update the weights, click Edit, select the cell to update, and enter a new weight between 0 and 1 for example 0.5.

Figure 4.5 Discipline integrity weights tab in the DRIFT software.

📝 Edit 📃 Save						
Discipline	UpstreamDam	Dewatered	FurtherDownstrea m			
Geomorphology	1.0	1.0	1.0			
Vegetation	1.0	1.0	1.0			
Algae	0.0	0.0	0.0			
Macro-invertebrates	1.0	1.0	1.0			
Fish	2.0	2.0	2.0			
Social	0.0	0.0	0.0			

Knowledge Capture \rightarrow Integrity \rightarrow Site integrity weights

Site integrity weights are used to weigh how much each discipline integrity contributes to the sites overall integrity.

Figure 4.6 Site integrity weights tab in the DRIFT software.

5 ESTUARY SPECIFIC GUIDELINES

Although the generic relationships for estuaries provide a wealth of information, they are not directly usable in the DRIFT software due to the various limitations described in Volume 1 of this study. Some initial concepts for the steps required for this translation are described:

- **Step 1.** Select ecosystem indicators relevant to the estuary being modelled from the list of possible estuary indicators
- **Step 2.** Access the generic estuary response curves for that indicator
- Step 3. For each of these response curves evaluate which season(s) it is applicable in. Relationships related to floods are likely only applicable in the wet season whereas others such as salinity may be applicable to both dry and wet seasons. Remember that DRIFT has four seasons and response curves across the four seasons in a single year are additive.
- **Step 4.** Based on this selection enter the links into DRIFT. The x-axis of these response curves will be auto-populated by DRIFT by the values that occur in the baseline. These can be adjusted if required to extend the range and generally the median value is not changed.
- **Step 5.** For each value on the x-axis of the DRIFT response curve, use the generic estuary relationships for guidance to estimate the corresponding change from the baseline in the responding indicator under those conditions.
- **Step 6.** Convert the generic response to DRIFT severity scores (see the DRIFT software manual) and enter into the DRIFT response curves.

These steps should be conducted with care and caution and by a specialist versed in both the DRIFT method and the understanding of estuary ecosystems. This may be a complex and iterative process and has only been completed for one estuary in SADC.

As a worked example the single generic relationship between IIB and C Estuary associated species and salinity (Figure 5.1) may translate into four DRIFT response curves (Table 5.1). Note that in this example, the DRIFT response to the median value of the salinity at each site and season is zero and the rest of the responses are scaled accordingly.

Note: Arrows indicate the baseline seasonal range of salinities from two sites in the Pungwe Estuary, circles indicate median salinity in the baseline.

Figure 5.1 Generic relationship between salinity and estuary associated species.

Table 5.1Possible translation of relationship between salinity and estuary associated species.

For flood related relationships, further exploration into the indicator being modelled and the baseline hydrology of the target estuary are required. At the generic level, the flood related responses are based on two thresholds: (1) flood volumes below which lowering flood volume makes no further negative impact as, for example, small flood volumes may not influence sediment processes in large estuaries; and (2) flood volume above which increasing flood volume makes no further positive impact as response are transferred to the nearshore marine (note that very large floods may also have a shortterm negative influence flushing out biota and uprooting and damaging flora). The DRIFT response will relate to where the median flood volume is located. For instance, if the median is below the lower threshold (for example in a very regulated river), further lowering the floods will not have any negative impact, if it is beyond the upper threshold (for example, an estuary with regular floods) further increases may not markedly benefit the responding indicator. The most likely possibility is that the median lies between the lower and upper thresholds, in which case the difference between the lower threshold, median and upper threshold and the preference of the species represented by the indicator in the estuary should be evaluated when developing the DRIFT response curve. Lastly, although the generic relationships present a linear relationship this should be fine-tuned based on available information.

6 EXPORTING AND ANALYSING RESULTS

Once all the previous steps have been completed the model can be run and results exported (Figure 6.1). If results have been exported previously the new export will overwrite previous results. Results are exported to the \Data\Export\ folder. The model can also be run at any intermediate stage to update the internal links and displays.

Analysis / Run mode		****			10 a 172	0.000		et			
日 臣 Inputs	Excel Scenar	10:		~	Run 🔄	Save R	un ALL 🕍	Charts	export • 🕼 Write		
lessages Results: All Indi	ators Discipline In	tegrity Sit	te Integrity						Export annual r	esults (ALL sc	enarios)
Indicator	Units	T/A	Abundance, Lo	Abundance, Mi	Abundance, Up	Integrity, Lo	Integrity, Mi	Integrity	Export integrity	(ALL scenario	os) ario)
 Dewatered Algae 								_	export integrity	(current see	
Algal biofilms	%Base	A	96.04	100.17	104.30	-0.23	0.01	0.2	5 -0.23	0.01	0.25
Filamentous algae	%Base	A	93.92	99.60	105.28	0.35	0.02	-0.03	3 0.35	0.02	-0.03
🕀 Fish											
Rocky riffle	%Base		100.00	100.00	100.00	0.00	0.00	0.0	0.00	0.00	0.00
Quiet vegetated wat	%Base	F	100.00	100.00	100.00	0.00	0.00	0.0	0.00	0.00	0.00
Geomorphology											
Clay and silt	%Base		100.00	100.00	100.00	0.00	0.00	0.0	0.00	0.00	0.00
Sand	%Base	G	98.36	98.76	99.16	0.09	0.07	0.0	5 0.09	0.07	0.05
Gravel and cobble	%Base	G	85.78	88.79	91.80	0.82	0.65	0.4	7 0.82	0.65	0.47
FPOM	%Base		100.00	100.00	100.00	0.00	0.00	0.0	0.00	0.00	0.00
Bed erosion	%Base		97.19	100.46	103.72	0.16	-0.03	-0.2	2 0.16	-0.03	-0.22
Bank erosion	%Base	G	94.46	99.67	104.89	0.32	0.02	-0.2	3 0.32	0.02	-0.28
Bed sediment size	%Base	G	98.30	99.77	101.21	0.10	0.01	-0.0	7 0.10	0.01	-0.07
Embeddedness	%Base		98.91	99.68	100.45	0.06	0.02	-0.03	3 0.06	0.02	-0.03
Turbidity	%Base	G	100.00	100.00	100.00	0.00	0.00	0.0	0.00	0.00	0.00
Daaldaath	0/0	0	100.33	100.45	100.53	0.00	0.03	0.0	0.00	0.03	0.01

Analysis \rightarrow Scenario outcomes \rightarrow Run model

Click Run ALL to run the model for all sites and all scenarios. Once the run is complete, click Export annual results to export results as timeseries of percentage of baseline abundance for each indicator at each site; and click Export integrity to export the integrity results.

Annual results are exported in the form of annual (end of year) values of the abundance of each indicator at each site (Table 6.1). The Excel sheets are exported to the folder \Export\FullResults\ and also contain timeseries labelled as Upper and Lower which represent the error bounds of the abundance. Average abundances over the timeseries for each indicator are exported into the "Results (Indicators)" sheet (Table 6.2).

Discipline integrity and site integrity outputs (Table 6.3 and Table 6.4) include a base integrity score which is a change from zero and an adjusted integrity which is a change from the baseline ecological category as it has been entered in DRIFT. Integrity scores are also provided with a Lower and Upper integrity which corresponds to the Lower and Upper error bars for the indicator abundance. Integrity number scores can be converted to Ecological Categories (Table 4.3) using the scale in Table 6.5.

Table 6.1Example of annual timeseries DRIFT output.

	A	В	C	D
1	Site	FurtherDownstream		
2	Discipline	Vegetation		
3		Middle		
4	Scenarios	Reference		
5	Years	Aquatic plants on rock	Aquatic plants in sand	Emergent graminoids
6	1924	94.14	96.06	98.81
7	1925	91.82	88.91	96.49
8	1926	92.41	92.12	100.05
9	1927	92.33	94.04	105.89
10	1928	92.20	92.72	108.72
11	1929	87.68	86.03	107.56
12	1930	89.04	87.31	103.22
13	1931	92.42	94.64	100.00
14	1932	93.58	96.19	106.32
15	1933	89.43	81.81	94.83
16	1934	90.94	90.00	100.28
17	1935	93.33	93.49	104.65
18	1936	93.49	90.19	99.32
19	1937	95.34	95.59	101.93

Table 6.2Example of Indicator results outputs from DRIFT.

Indicator	Units	T/A	Abundance,	Abundance,	Abundance,	Integrity,	Integrity,	Integrity,	Adjusted	Adjusted	Adjusted
			Lo	Mi	Up	Lo	Mi	Up	Integrity, Lo	Integrity, Mi	Integrity, Up
- Site : Dewatered											
- Discipline : Algae											
Algal biofilms	%Base	Α	75.910	99.086	122.261	-1.395	-0.053	1.368	-1.395	-0.053	1.368
Filamentous algae	%Base	А	33.497	62.460	91.423	3.851	2.174	0.497	3.851	2.174	0.497

The output includes Abundance of the indictor and error bounds.

Table 6.3Example of Discipline Integrity outputs from DRIFT.

1	A	В	С	D	E	F	G	н
1	Site		Integrity, Lo	Integrity, Mi	Integrity, Up	Adjusted Integrity, Lo	Adjusted Integrity, Mi	Adjusted Integrity, Up
2	- Discipline : Alga	ie				•		
3	Dewatered		-0.449	1.060	2.609	-1.216	0.294	1.843
4	FurtherDownstr	ream	-0.411	0.914	2.305	-1.179	0.145	1.537
5	UpstreamDam		-0.153	0.012	0.296	-0.916	-0.750	-0.466
6	- Discipline : Geo	morphology						
7	Dewatered		-1.962	-1.295	-0.704	-2.679	-2.012	-1.422
8	FurtherDownst	ream	-1.910	-1.213	-0.633	-2.621	-1.924	-1.344
9	UpstreamDam		-0.364	-0.048	0.312	-1.066	-0.750	-0.390
10	- Discipline : Mac	ro-invertebrates						
11	Dewatered		-1.761	-1.022	-0.326	-2.512	-1.773	-1.078
12	FurtherDownst	ream	-1.645	-0.940	-0.278	-2.394	-1.690	-1.028
13	UpstreamDam		-0.206	0.026	0.293	-0.961	-0.728	-0.461

Table 6.4	Example of Overall Site Integrity outputs from DRIFT.
-----------	---

Site	Integrity,	Integrity,	Integrity,	Adjusted	Adjusted	Adjusted
	Lo	Mi	Up	Integrity, Lo	Integrity, Mi	Integrity, Up
Dewatered	-1.02777	-0.45682	0.09941	-1.77271	-1.20176	-0.64553
FurtherDownstream	-0.95437	-0.42141	0.09331	-1.69768	-1.16472	-0.65000
UpstreamDam	-0.16482	-0.00273	0.19150	-0.90845	-0.74636	-0.55213

Ecological sub-catagory	Intogrity value	Suggested colour coding			
	integrity value	Hex Code	Colour		
А	-0.075 < EC	#0000FF			
A/B	-0.25 < EC <u><</u> -0.075	#0F87FF			
В	-0.55 < EC <u><</u> -0.25	#47CFFF			
B/C	-0.9 < EC <u><</u> -0.55	#66FFFF			
С	-1.25 < EC <u><</u> -0.9	#00FF00			
C/D	-1.65 < EC <u><</u> -1.25	#42BE36			
D	-2.175 < EC <u><</u> -1.65	#FFBE32			
D/E	-2.7 < EC <u><</u> -2.175	#EB652D			
E	-3.25 < EC <u><</u> -2.7	#FF0000			
E/F	-3.7 < EC <u><</u> -3.25	#C84150			
F	EC <u><</u> -3.7	#C80A5A			

Table 6.5Integrity scores that correspond to Ecological Status categories and sub-categories.

A summary of the inputs can be exported from DRIFT (Figure 6.2); these are useful in explaining the resultant changes under various scenarios.

品店	nputs 🛛 🔀 Excel Scenar	rio:			× 1	Run 📄	Save 🛗 Run ALL 🛃 Charts Export 🕶
ssages Input in	dicators (all scenarios) Res	sults: All In	ndicators	Discipline	Integrity	Site Integrit	у
Scenario 🛛	_						
ite	A Indicator	Min	Max	Mean	Median	StdDev	Ystr
Dewatered	T1 duration	7.00	128.00	56.63	56.50	44.71	25,59,49,64,75,85,81,45,61,61,62,62,39,66,47,5
Dewatered	Dry duration	100.00	260.00	164.58	163.50	119.99	103, 176, 163, 170, 180, 191, 159, 147, 180, 202, 152,
Dewatered	Dry ave daily vol	0.21	0.54	0.33	0.32	0.24	0.298447882863658,0.2554293970368,0.291687
Dewatered	Dry Min 5d Q	0.94	4.59	2.32	2.21	1.78	1,1.5061742982,1.955782395,1.7324608494,2.2
Dewatered	T1 within day range	0.00	0.00	0.00	0.00	0.00	0,
Dewatered	Wet within day range	0.00	0.00	0.00	0.00	0.00	0,
Dewatered	Wet Max 5d Q	9.09	94.36	35.52	33.09	30.44	33.109119364,44.75116071,31.68225583,22.332
Dewatered	Wet duration	5.00	214.00	142.12	147.00	107.24	158, 128, 150, 125, 83, 129, 121, 161, 94, 137, 142, 11
Dewatered	Mean annual runoff	3.90	23.07	11.33	11.02	8.96	10.1224889060438,11.3473666579945,10.21002
FurtherDownstr	eam T2 duration	0.00	1.00	0.99	1.00	0.71	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
FurtherDownstr	eam Dry within day range	0.00	0.00	0.00	0.00	0.00	0,
FurtherDownstr	eam Dry onset	20.00	34.00	27 73	28.00	19 74	29 28 28 28 27 23 29 29 27 23 28 27 26 29 26 3

Analysis \rightarrow Scenario outcomes \rightarrow Run model

Click Inputs to load inputs; then click the expand all button; then click on Site to sort by site, and finally click the Excel button to export a summary of the input data.

Figure 6.2 Exporting the summary of drivers from DRIFT.

6.1. Analysing results

Various analysis can be undertaken using the outputs of the DRIFT software. Tables, charts, and graphs should be organized and explained in a way that answers the questions posed by decision makers (Table 6.6).

These can be generated using the accompanying excel sheet "Summary_DRIFT-Generic-SADC" placed in the \Export\ folder. Using and editing of the excel sheet "Summary_DRIFT-Generic-SADC" requires knowledge of MS Excel may require knowledge of VBA Excel Macros for troubleshooting if needed.

 Table 6.6
 Examples on how outputs from DRIFT can be communicated to decision makers.

