Wastewater Reclamation for Potable Reuse

Symposium & Water-Tech Summit Topics

Accelerate the adoption of advanced technologies by both municipal and industrial water users


Project Aim & Objective

The aim of this project was to pave the way for technology that will enable South African water suppliers to produce consistent, acceptable drinking water quality through reclamation.

The main objective of this research project was to evaluate the performance of a range of configurations of advanced water treatment technologies, with a membrane bioreactor (MBR) as pre-treatment step to produce potable water.

LOCALITY MAP

Phased Approach

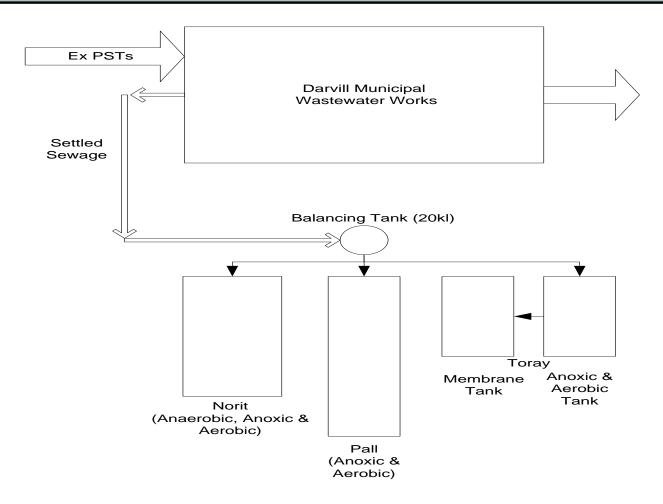
Phase 1

Evaluate performance of MBR technologies (as pretreatment) for tertiary wastewater treatment

- Compare MBR performance and operability
- Compare MBR performance against conventional secondary treatment i.e. Darvill Final Effluent

Phase 2

Laboratory evaluation of advanced water treatment processes to treat wastewater to potable standards



MBR

• Table 1: MBR Technologies and Configurations

		Process Co	nfiguration
	_	Submerged	Sidestream
Membrane Configuration	Flat Sheet (FS)	Brightwater Toray Kubota	Novasep-Orelis
	Hollow Fibre (HF)	Asahi-Kasei Koch Puron Mitsubishi Rayon Pall Corporation Siemens Memcor Zenon	
	Multitube (MT)	Millennimpore	Norit-Xflow

Site Plan

Plan Layout of MBR Demonstration Plants

Darvill MBR Pilot Plants

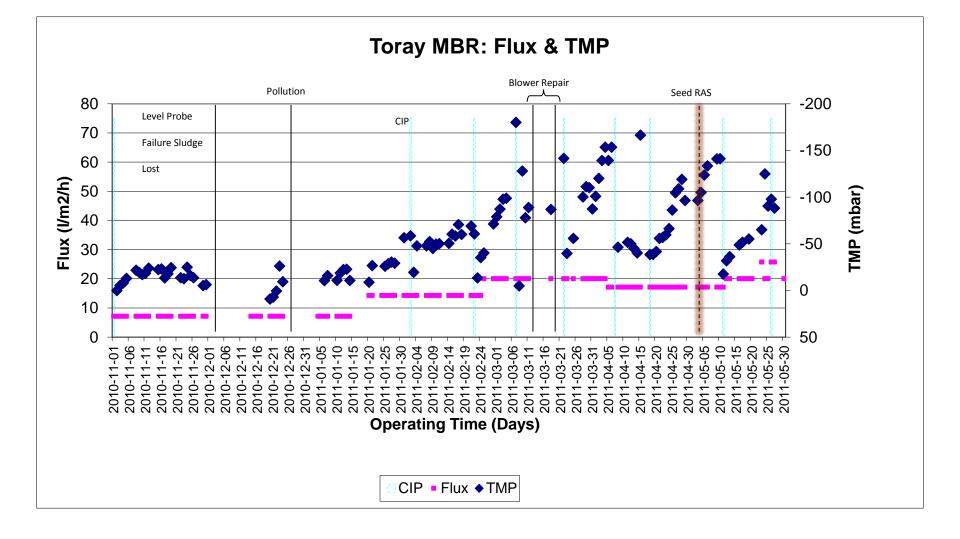
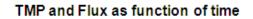
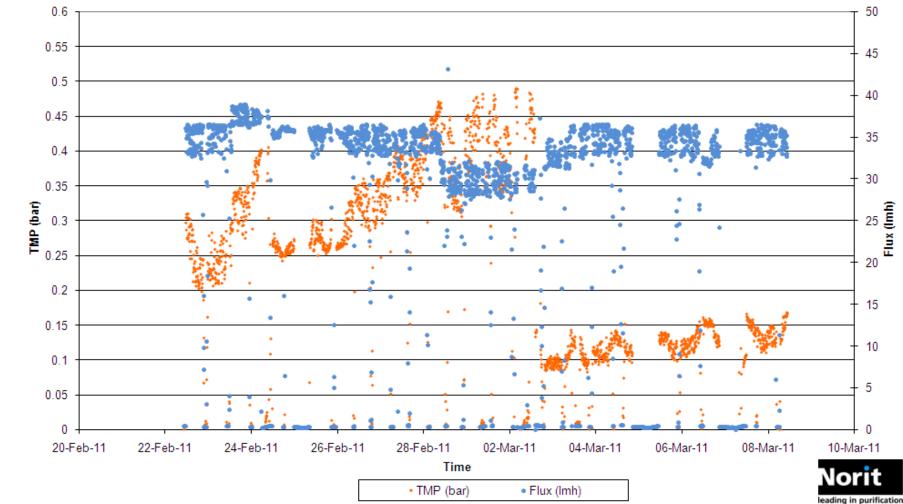

MBR WQ Objectives

Table 9: Target Permeate Water Quality Objectives for MBR Demonstration Plants


Parameter	Target (mg/l)
BOD ₅	2
COD	<20
TSS	<1
тос	7
Turbidity (NTU)	<1
O&G	2
Ammonia (NH ₃ -N)	<1
Nitrate (NO ₃) as N	<5
Nitrite (NO ₂) as N	<2
Total Nitrogen (TKN+NO ₃ +NO ₂)	<10
Ortho Phosphate (SRP)	1
UV ₂₅₄ (abs/cm ⁻¹)	0.065
Total Coliforms (CFU/100ml)	<10
Ecoli (CFU/100ml)	0
Coliphage (PFU/100ml)	0



Membrane Performance

Norit Membrane Performance

7-1

Process Challenges

Pollution incidences

- Industrial effluent entering works \rightarrow contaminate influent to pilot plants
- Results in foaming within bioreactor
- 4 major incidences in 6 months
- Rapid increase in Trans Membrane Pressure (Norit: 0.3 bar 0.5bar)
- Destroys activated sludge down to +/- 300mg/L from +/- 5000mg/L
- Permeate quality compromised
- Bioreactor draining and re-seeding required following these events
- Consequences \rightarrow Operational downtime

Mechanical Challenges

Equipment breakdowns

- Major breakdowns
 - \rightarrow Compressor (Norit)
 - → Membrane Tank Blower (Toray)
 - \rightarrow Screen (Toray)
- Minor breakdowns
 - \rightarrow Pipe bursts, pumps & valves

→ Level sensors/float switches - random failing leads to sludge loss in tanks or over pumping and spillage

MBRs v Darvill

Parameter	Units	Darvill Final Effluent	Toray MBR Permeate	Norit MBR Permeate
			Median	
Conductivity	mS/m	77	64	69
SS	mg/l	17	<4	<4
COD	mg/l	41	<20	<20
E.Coli	CFU/100 ml	140	1	0
Ammonia	mg/l	13	0.5	0.5
Nitrite	mg/l	0.5	0.5	0.5
Nitrate	mg/l	0.5	6.1	0.5
O&G	mg/l	1.2	1.2	1.2
SRP	mg/l	0.3	1.3	0.1

Performance of MBRs

Permeate Water Quality

- The MBRs performed well in terms of solids removal with Turbidity's <0.5 NTU being achieved.
- The plants performed well in terms of pathogen removal achieving log removals of 6,3 & 5 for *E.Coli*, Coliphages and Total Coliforms.
- The biological processes worked well with COD <20 mg/l being achieved.
- Nitrification worked well with median NH₃ values less than the target of 1 mg/l.
- Denitrification worked well with median NO₃ values less than the target of 5 mg/l for Norit and < 7 mg/l for Toray.
- MBRs generally outperform Darvill conventional secondary treatment for same period.

CECs (EDC)

- Sample Points
 - Henley Dam (control sample) Upstream
 - Msunduzi River above Darvill WWW
 - Msunduzi River below Darvill WWW
 - Darvill Raw influent
 - Darvill WWW effluent
 - Toray MBR Pilot Plant Permeate
 - Norit MBR Pilot Plant Permeate

CEC Results

Darvill WWW and MBR Pilot Plant EDC Results February 2011 October 2010 March 2010 June 2011 pg/ml Estrone 17B-Estrone 17B-Estrone 17B-Estrone 17B-Estriol EE2 Testosterone Progesterone Estradiol Estradiol Estradiol Estradiol No ID Mean Henley Dam Duzi u/s Duzi d/s υ Z Z υ Т Darvill Raw PC Snap **Pilot Influent** SSTs Darvill Effluent **Toray Pilot** Effluent Norit Pilot Effluent

Summary

- Phase 1
 - MBR product water quality is excellent and pathogen free
 - Outperforms conventional secondary treatment in this scenario and this is in-line with what is reported in the literature.
 - Ideal for as pre-treatment technology for reclamation

Phased Approach

Phase 1

- Evaluate performance of MBR technologies (as pretreatment) for tertiary wastewater treatment
- Compare MBR performance and operability
- Compare MBR performance against conventional secondary treatment i.e. Darvill Final Effluent

Phase 2

Laboratory evaluation of advanced water treatment processes to treat wastewater to potable standards

Phase 2: Laboratory Scale Testing

Advanced Water Treatment Processes

- 1. Wastewater \rightarrow MBR \rightarrow O₃/GAC \rightarrow NF \rightarrow UV/peroxide
- 2. Wastewater \rightarrow MBR \rightarrow RO \rightarrow UV/peroxide
- 3. Wastewater \rightarrow MBR \rightarrow NF \rightarrow UV/peroxide

4. Wastewater \rightarrow MBR \rightarrow NF \rightarrow O₃/GAC \rightarrow UV/peroxide

Multiple Barriers

Water Quality Parameter	Treatment Barrier							
	Process 1	Process 2						
	Membrane	Ozone /GAC						
Suspended Solids	MBR, RO	MBR, GAC, NF						
BOD / COD	MBR, RO	MBR, GAC, NF						
Nutrients (N,P)	MBR, RO*	MBR, NF*						
Microbiological	MBR, RO, UV	MBR, O ₃ , NF, UV						
Metals	MBR, RO	MBR, NF						
Micro-organics	MBR, RO, UV	MBR, O ₃ , GAC, NF, UV						

Water Quality Objectives

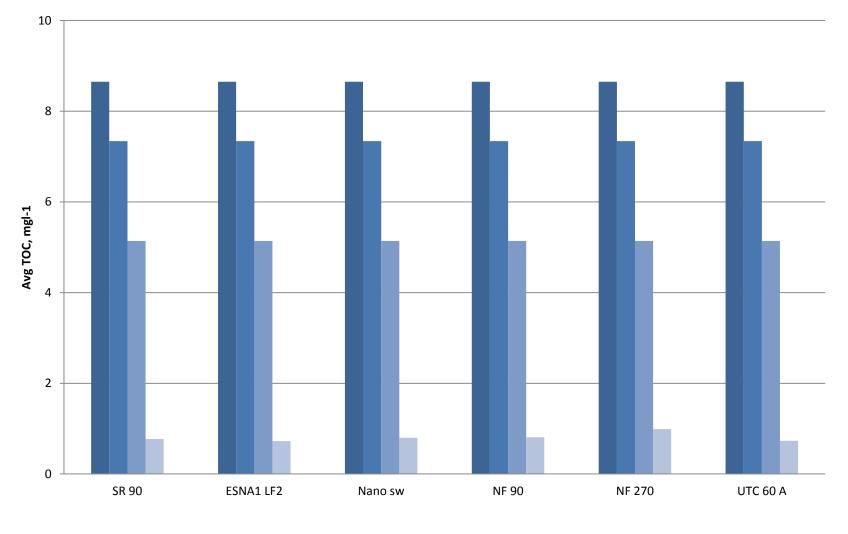
Summarized Treated Water Quality Objectives

Parameter	Specified/Design
SS Removal (NTU)	< 0.5
Ammonia (mg/l)	< 1
Total Nitrogen (mg/l)	< 10
TOC (mg/l)	< 1
UV ₂₅₄ (cm ⁻¹)	0.065
Total Coliforms (CFU/100ml)	ND
Faecal Coliforms (CFU/100ml)	ND
Coliphages -Somatic (PFU/100ml)	ND
Pathogens Removal (%)	5-log (99.999%)

Membrane Specifications

Membrane	Supplier	Туре	Salt Rejection (NaCl), %
NF 90 (NF 1)	Dow	Nanofiltration	97
ESNA (NF 2)	Hydranautics	Nanofiltration	91
Nano sw (NF 3)	Hydranautics	Nanofiltration	91
UTC70B (RO 1)	Тогау	Reverse Osmosis	97.2
UTC70UB (RO 2)	Toray	Reverse Osmosis	95
LFC 3 LD (RO 3)	Hydranautics	Reverse Osmosis	99.7

MBR-O₃/GAC-NF Spiral Wound Trials


Ozone / GAC Permeate Water Quality

		MBR Out				O3 Out				GAC Out			
Parameter	Units	Mean	Median	STD	95%	Mean	Median	STD	95%	Mean	Median	STD	95%
Alkalinity	mE/L	145	141	34	196	146	136	43	210	129	135	47	189
COD	mg/l	20	20	0	20	20	20	0	20	20	20	0	20
Coliforms	CFU/100ml	38	14	49	135	10	0	15	33	57	3	168	284
Coliphages	PFU/100ml	2	0	4	5	0	0	0	0	1	0	8	4
Conductivity	mS/m	80	82	9	93	80	80	11	91	79	79	10	86
E. coli	CFU/100ml	2	1	4	13	0	0	0	0	0	0	0	0
NH3	mg/l	2.7	0.5	5.0	14.5	4.5	0.9	6.5	17.4	3.0	0.5	4.8	13.8
NO3	mg/l	6	6	4	12	5	5	4	11	6	6	3	11
SRP	mg/l	0.5	0.2	0.6	1.9	1	0	1	2	1	0	1	2
ТР	mg/l	0.8	0.5	0.5	1.6					0.7	0.5	0.4	1.3
тос	mg/l	6.2	6.3	1.3	7.4	6.4	6.4	1.4	8.6	4.2	4.2	1.1	5.4
Turbidity	mg/l	0.4	0.4	0.2	0.8	0.3	0.3	0.2	0.9	0.3	0.3	0.1	0.5
рН		7.5	7.5	0.1	7.7	7.8	7.7	0.5	9.2	7.6	7.6	0.2	8.1

MBR - O3/GAC - NF Permeate Water Quality

		NF1 Permeate				NF2 Permeate				NF3 Permeate			
	Units	Mean	Median	STD	95%	Mean	Median	STD	95%	Mean	Median	STD	95%
Alkalinity	mE/L	47	33	49	108	15	15	2	17	35	32	8	43
Coliforms	CFU/100ml	231	28	354	1001	16	15	12	29	17	16	14	31
Coliphages	PFU/100ml	0	0	0	0	0	0	0	0	0	0	0	0
EC	mS/m	30	29	7	42	7	6	3	11	25	22	7	34
E. coli	CFU/100ml	0	0	0	0	0	0	0	0	0	0	0	0
NH3	mg/l	1.2	0.5	1.6	5.4	1.1	1.0	0.7	1.8	2.1	1.7	1.9	4.1
NO3	mg/l	6.2	6.3	3.2	11.7	1.2	1.1	0.8	2.3	5.2	5.4	2.8	8.6
SRP	mg P/l	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1
ТР	mg P/l	0.5	0.5	0.0	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.0	0.5
тос	mg/l	0.8	0.7	0.3	1.3	0.7	0.7	0.0	0.7	1.4	0.7	1.5	3.4
Turbidity	mg/l	0.24	0.22	0.14	0.39	0.19	0.15	0.11	0.32	0.2	0.3	0.1	0.3
pH		8.0	7.9	0.4	8.5	7.8	7.9	0.4	8.2	7.8	8.0	0.5	8.2

MBR - O3/GAC – NF 1 - 6 TOC Removal (mg/l)

■ MBR ■ Ozonation ■ GAC

NF

Comments

- The median TOC achieved for all NF membranes is < 0.7 mg/l
- Micro-biological contaminants such as E.Coli and Coliphages were removed entirely and recorded zero for all NF membranes.
- The median turbidity for all three NF membranes is 0.2 mg/l.
- Only one MBR-GAC-NF process does not meet the SANS 241-1 (2015) < 11 mg/l Nitrate standard at the 95% percentile. This highlights the importance of the preceding biological process (Nitrification & Denitrification)

MBR – RO Permeate Water Quality

		RO1 Perm	eate		RO2 Perm	eate			
	Units	Mean	Median	STD	95%	Mean	Median	STD	95%
Alkalinity	mE/L	13	10	7	26	25	10	43	84
Coliforms	CFU/100ml	106	37	171	404	199	24	452	783
Coliphages	PFU/100ml	0	0	0	0	0	0	0	0
EC	mS/m	2	1	1	4	3	1	5	17
E. coli	CFU/100ml	0	0	0	0	0	0	0	0
NH3	mg/l	0.5	0.5	0.0	0.5	0.5	0.5	0.0	0.6
NO3	mg/l	0.5	0.5	0.2	0.5	0.8	0.5	1.5	0.6
SRP	mg P/I	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1
ТР	mg P/I	0.5	0.5	0.0	0.5	0.5	0.5	0.0	0.5
тос	mg/l	0.7	0.7	0.1	0.9	0.7	0.7	0.1	0.7
Turbidity	mg/l	0.3	0.3	0.1	0.5	0.2	0.2	0.2	0.4
рН		7.6	6.1	0.8	8.9	7.3	7.2	0.8	8.8

Performance Comparison

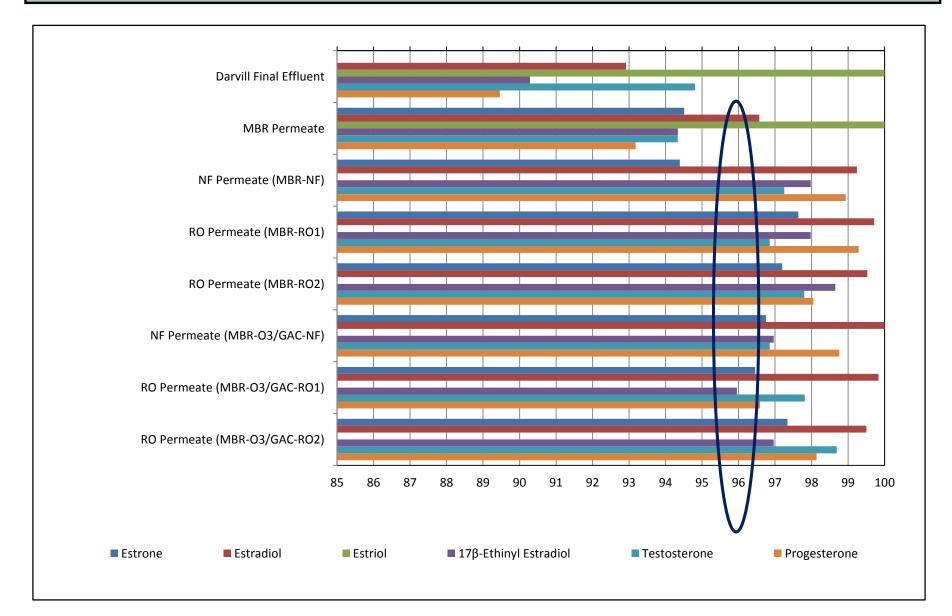
	MBR-GAC-NF	MBR-RO
TOC (mg/l)	< 0.7	< 0.7
EC (mS/m)	5-40	1-5
NH ₃	0.5 - 6	< 0.5
NO ₃ -N (mg/l)	1-12	0.5 – 1.4
NTU	< 1	< 1
Alkalinity (mg/l CaCO ₃)	10 - 218	10 -160
E.Coli (CFU/100 ml)	0	0
Coliphages (PFU/100 ml)	0	0

- The MBR-RO process exceeds the SANS 241-1: 2015 drinking water standards.
- The MBR-GAC-NF process does not meet the < 11 mg/l Nitrate standard at the 95% percentile.

CEC Removal Performance

Steroid hormones:-

- Estrone (E1),
- 17β-Estradiol (E2),
- Estriol (E3),
- 17α-Ethinyl-Estradiol (EE2),
- Testosterone and Progesterone.


Antibiotics

- Flouroquinolones
- Sulphamethoxazole

EDC Removal Performance

Mean (pg/ml)	Estrone	% Removal	17β-Estradiol	% Removal	Estriol	% Removal	EE2	% Removal	Testosterone	% Removal	Progesterone	% Removal
Darvill Raw	52		157		5		32		265		121	
Darvill Settled	118	\mathbf{D}	167		3		25	(286	\mathbf{D}	81	
Darvill Final Effluent	30	42	10	94	0	100	2	94	16	94	8	93
Darvill Prechlorinated Final Effluent	25	52	23	85	0	100	2	94	25	90	5	96
Toray Permeate	7	94	5	97	0	100	1	96	16	94	5	94
Post Ozonation	5	28	3	40	0		1	0	8	50	1	80
GAC Permeate	4	20	1	80	0		1	0	7	13	1	0
NF Permeate (MBR-NF)	9	93	1	99	0		1	96	8	97	1	99
RO Permeate (MBR-RO1)	3	97	1	99	0		1	96	9	97	1	99
RO Permeate (MBR-RO2)	3	97	1	99	0		0	100	6	98	2	98
NF Permeate (MBR-O3/GAC-NF)	4	96	0	100	0		1	96	9	97	1	99
RO Permeate (MBR-O3/GAC-RO1)	4	96	0	100	0		1	96	6	98	3	96
RO Permeate (MBR-O3/GAC-RO2)	3	97	1	99	0		1	96	4	99	2	97

EDC % Removal

Analysis Period: 12/7/2012 – 27/11/2012 Samples 11 No.

The highest remaining EDC concentration was observed for Testosterone (9 ng/l)

Australian Drinking Water Guideline (2008) safe limit for Testosterone is 7 $\mu g/l.$

Conclusions

Various combinations of advanced treatment technologies can be used to achieve the desired outcome of consistently producing water of a potable standard.

Cost Estimate

Cost Estimate – Treatment Works

Plant	CAPEX (R '1000)	OPEX	
100 Ml/day		Per day	Per m ³
MBR-RO-AOP	R950 000	R249 755	R2.49
MBR-O ₃ /GAC-NF-AOP	R1 012 000	R292 790	R2.93

*Excludes: Stabilisation, Product Water Storage and Chlorination

<u>Sludge Disposal using Evaporation Ponds</u> Effluent: 12 Ml/day (3700 mg/l) requires 100 x 43 000 m² ponds Cost estimate R450 million

Cost Estimate

Alternative treatment train

MBR-O₃/GAC-UF-AOP

Capital Cost – R752 million (R196 million saving)

Concentrate disposal to land

Conclusions

- Membrane based treatment processes (NF/RO) are suitable for coastal applications, where the brine can be discharged to sea e.g. MBR-RO-AOP
- For inland systems O₃/GAC based treatment processes are more applicable to avoid the issue of concentrate disposal e.g. MBR-O₃/GAC-UF-AOP

Way Forward

 Umgeni Water building a 2 Ml/day reclamation plant at the Darvill Wastewater Works

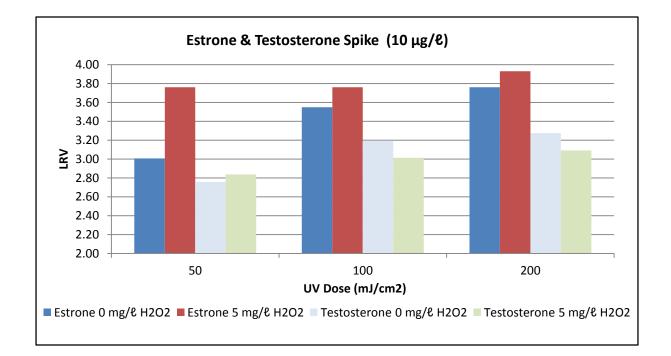
Coagulation/Floculation-RGF-O₃/GAC-UF

- Plant will serve dual purpose
 - Provide wash water for works
 - Produce potable drinking water
- Reclamation plant will be used as a demonstration facility to undertake further research and for education purposes
- Stakeholders, officials, scholars and members of the community will be invited to tour the facility and learn about the benefits of potable reuse.

Acknowledgements

- Dr N Kalebaila Water Research Commission
- Dr Jo Burgess Water Research Commission
- Mr. Steve Gillham GM ESS Umgeni Water
- Prof. Lingum Pillay Durban University of Technology
- Mr. Peter Thompson Process Services Manager
- Mr. Cyprian Murutu Durban University of Technology
- Process Technicians Mr. S Chiburi, Mr. N Gumede,
 - Mr. L Mkhwanazi, Ms. N Mbambo
- Umgeni Water Staff
- WRC Reference Group

What is the UV254 water quality test parameter? UV254, also known as the Spectral Absorption Coefficient (SAC), is a water quality test parameter which utilizes light at the UV 254nm wavelength to be able to detect organic matter in water and wastewater. This is due to the fact that most organic compounds absorb light at the UV 254nm wavelength. Unlike other organic test parameters, UV254 has a bias towards reactive or aromatic organic matter which has double bonded ring structures and is typically the most problematic form of organics in water. UV254 is typically represented as a calculation of UV absorbance (UVA) or UV transmittance (UVT). - See more at: http://www.realtechwater.com/resources/faq#sthash.4krNJo9v.dpuf


What is SUVA and how is that related to UVA? The Specific UV Absorbance (SUVA) calculation is typically performed for the purpose of determining disinfection by-product (DBP) formation potential. SUVA is simply the UV absorbance at the 254nm wavelength (UVA) divided by the DOC of a water sample. This allows the aromatic biased UV254 measurement to be normalized over the overall organic load in the water. A characterization of the aromaticity of the water independent from the general level of organics in the water can then be obtained. A high SUVA indicates that a large portion of the organics present in the water are aromatic. Since aromatic organics have a greater tendency to react with disinfectants to create DBPs, a high SUVA indicates there is a high potential for the formation of DBP's. For further details about measuring SUVA for regulatory purposes click here to link to EPA Method 415.3 - See more at: http://www.realtechwater.com/resources/faq#sthash.4krNJo9v.dpuf

- Additional steady state studies of flux sustainability at the recommended aeration rates were conducted. Results of steady-state operation indicated specific aeration demand of the membrane (SAD_m) values of 0.34-0.74 with accompanying SAD_p (permeate) values of 7.6-27, the lowest arising for the sidestream air-lift configured technology (Norit) for which supplementary sludge pumping was employed (**Table 6**).
- The Ro unit consisted of two single pass trains and was operated at 50% recovery and 20 &m²h⁻¹ throughout the study period. The RO membranes operated for a period of more than 1300 hours on MBR effluent without requiring a chemical clean

LC-OCD Analyses

- UV/H₂O₂ samples were also sent to Germany for identification of the carbon molecular weight distribution. A very sensitive separation technique known as Liquid Chromatography Organic Carbon Detection (LC-OCD) was used. Separation is based on size-exclusion chromatography (SEC) followed by multi-detection with organic carbon (OCD), UV-absorbance at 254 nm (UVD) and organic bound nitrogen (OND). The additional LC-OCD analyses were necessitated as the RO permeate used as a feed to the UV/H₂O₂ is very clean water. There was therefore no meaningful distinction between the RO permeate water quality results and the UV/H₂O₂ permeate water quality results, because measurement was beyond the Umgeni Water laboratory analyses detection limits. The benefits of contaminant removal using UV/H₂O₂ could therefore not be assessed.
- Results obtained from the LC-OCD analyses show that MBR-RO-UV results in a 93% removal of Dissolved Organic Carbon (DOC) which confirms the TOC permeate results obtained by the Umgeni Water laboratory (< 0.7 mg/ℓ). The RO membrane reduces DOC concentration to < 400 ppb (0.4 mg/ℓ). This is reduced further by the UV radiation unit process to < 250 ppb (0.25 mg/ℓ). The UV radiation achieves this by reducing the Low Molecular Weight (LMW) neutrals. This fraction includes alcohols, aldehydes, ketones and amino acids. UV/H₂O₂ reduces the concentration of organics by approximately 38%.

