

UNIVERSITY of the WESTERN CAPE

global environmental solutions

REGULATIONS AND WATER SCIENCE PLAN FOR UNCONVENTIONAL GAS PRODUCTION

16/09/2015

CONTEXT

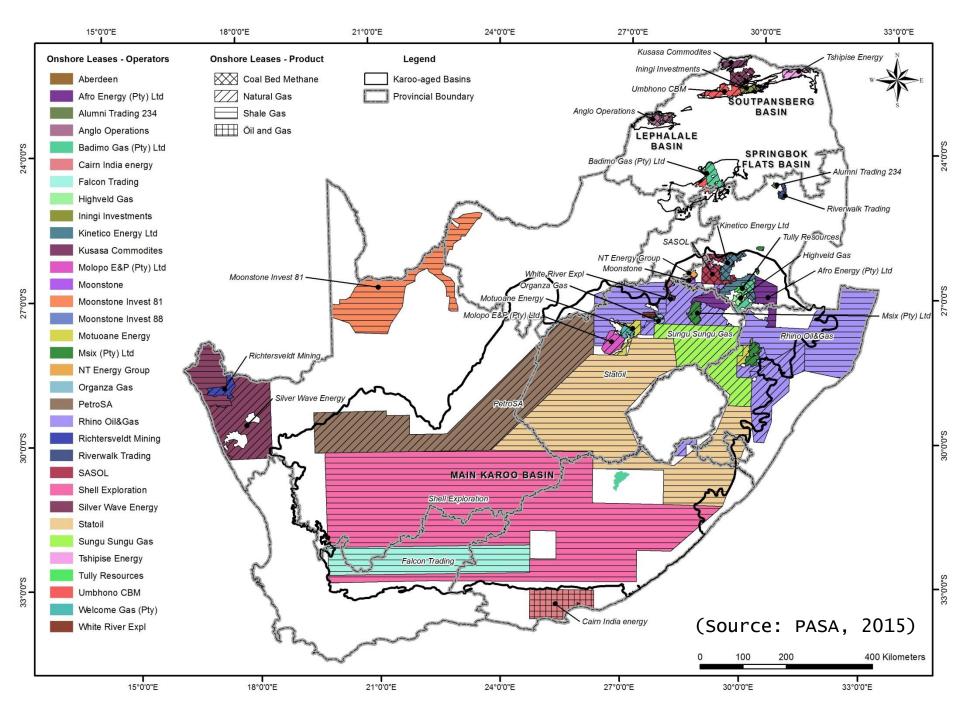
- Energy demand
 Coal and imported crude
- High greenhouse gas emissions
- Constrained electricity supply
- Need to diversify primary energy mix

GAS OPTIONS

Share of energy consumption 2030 - Policy adjusted Integrated Resource Plan for Electricity (DoE, 2013b).

Туре	Total capacity		
	MW	%	
Coal	41071	45.9	
Open cycle gas turbine	7330	8.2	
Closed cycle gas turbine	2370	2.6	
Pumped storage	2910	3.3	
Nuclear	11400	12.7	
Hydro	4759	5.3	
Wind	9200	10.3	
Concentrating solar power	1200	1.3	
Photo-voltaic	8400	9.4	
Other	890	1	
Total	89532		

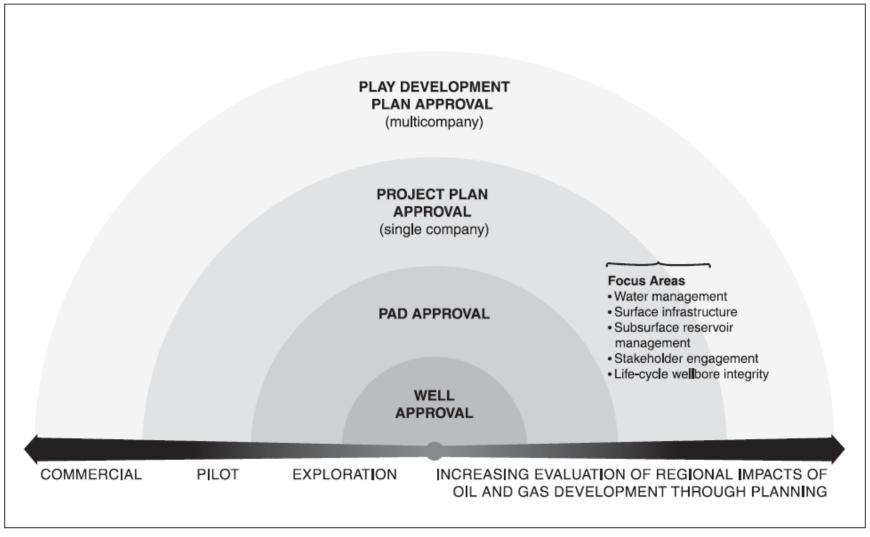
GAS TURBINES


Source: http://essentialbusinessmag.com/wp-content/uploads/2015/03/Ankerlig-Open-Cycle-Gas-Turbines.jpg

UNCONVENTIONAL GAS RESOURCES

- Coalbed methane (CBM)
- Shale gas

CBM production well (photograph taken by Prof Danie Vermeulen - courtesy of Origin Energy).


WATER CONCERNS

СВМ	Shale gas
 Disposal of co-produced water - "salt management" Groundwater abstraction and the lowering of the groundwater level Contamination of water resources by hydraulic fluids Upward migration of stray gas Compromised wellbore integrity leading to groundwater contamination incidents 	 Leakage of stray-gas from the target formation through faulty well casings to contaminate groundwater Flowback and produced water from hydraulic fracturing operations risk to surface water resources The wastewater residue deposits associated with shale gas production carries a risk of groundwater contamination The development of shale gas water use will be a competing water demand in already stressed water catchments

REGULATORY LESSONS FROM INTERNATIONAL JURISDICTIONS

- Goal-based vs. prescriptive regulation
- Disclosure of hydraulic injection fluid
- The credibility of compliance monitoring and enforcement
- Transparency in decision-making (and research)
- Trade-offs / tolerance levels
- Pre-development monitoring

PLAY-BASED REGULATION

(Energy Resources Conservation Board 2013)

Category	Context	Criterion	Gap
Setting	Groundwater policies	Sustainability in quantity and quality	3
policies	within overall water	Efficiency in allocation and use within and between	3
	policy	sectors	,
		Equity by ensuring fair access and protection of	3
		water rights	
	Cross-sector policy	Coordination with other government departments and	2
	coordination	regulatory bodies	2
Strategic level	IWRM	An IWRM planning function capable of allocating	3
governance		water in line with society's policy goals	
	Laws, rights and	A framework of laws, rights and regulatory	2
	regulatory instruments	instruments adapted to the context	3
		Goal-based regulatory framework	2
		Disclosure of hydraulic injection fluid	2
		Compliance monitoring and enforcement	2
	Incentive framework	An incentive framework (prices, subsidies, trade	
		controls etc.) that supports good groundwater	1
		management	
	Subsidiarity and	A framework for subsidiarity and support to local	3
	local water management	water management	د
	Knowledge and capacity	Acquisition and management of information and	2
		knowledge, and communication with stakeholders	2
		Research and knowledge production	2
		Education and training	2
		Information and brokerage	2
		Network and service rendering	2
Local level	Baseline measurements	To detect groundwater pollution	1
governance		To determine resource status	1
	Licenses	Review of licenses and setting conditions	1
	Transgressions	Dealing with non-compliant operators	1
	Prevention of	Mitigation options in place	1

Context	Criterion	Gap	Rank	
Cross-sector policy	Coordination with other			
coordination	government departments and		9	
	regulatory bodies			
Laws, rights and	Laws, rights and Goal-based regulatory framework		7	
regulatory	Disclosure of hydraulic injection		8	
instruments	fluid		0	
	Compliance monitoring and		2	
	enforcement	3		
Incentive framework	An incentive framework (prices,			
	subsidies, trade controls etc.)		11	
	that supports good groundwater			
	management			
Subsidiarity and	A framework for subsidiarity and			
local water	support to local water management		10	
management				
Baseline	To detect groundwater pollution		1	
measurements	To determine resource status		5	
Licenses	Review of licenses and setting		2	
	conditions		2	
Transgressions	Dealing with non-compliant		4	
	operators		4	
Prevention of	Mitigation options in place		6	
pollution			0	

DATA NEEDS

- Pre-drilling baseline conditions
- Hydrogeology
- Monitoring
- Test-bed design
- Drilling, completion, well stimulation, integrity
- Chemicals, additives, and pathways
- Economic Indicators
- Sustainability

Levine, 2015

RESEARCH DIRECTIONS

Technologies

- Drilling and completion
- Green chemicals
- Green completions
- Alternative proppants
- Water use efficiency/ reuse systems

• Analytical Tools

- Chemical and microbial fingerprinting
- Sensors
- Isotopes/tracers

• Big Data

- Real-time information
- Analytics
- Visualization
- Modeling and simulation
- Decision tools

RESPONSES

+50 activities

- Government departments DEA / DMR / DST / DST
- CGS
- Operators
- SANEDI
- Universities
- -WRC

WATER SCIENCE PLAN

 Testbed for technology and evaluation

Thank you

Source: Dennis (2006)