
MODEL INTEGRATION FOR OPERATIONAL
WATER RESOURCES PLANNING AND MANAGEMENT

Report to the

WATER RESEARCH COMMISSION

by

DJ Clark, JC Smithers (Editors)

Bioresources Engineering

School of Engineering

University of KwaZulu-Natal

WRC Report No. 1951/1/12

ISBN 978-1-4312-0393-2

MARCH 2013

ii

Obtainable from

Water Research Commission
Private Bag X03
GEZINA, 0031

orders@wrc.org.za or download from www.wrc.org.za

DISCLAIMER
This report has been reviewed by the Water Research Commission (WRC) and approved for

publication. Approval does not signify that the contents necessarily reflect the views and
policies of the WRC nor does mention of trade names or commercial products constitute

endorsement or recommendation for use.

© WATER RESEARCH COMMISSION

iii

EXECUTIVE SUMMARY

RATIONALE

Water is a critical and a scarce resource in South Africa. Hence, it is essential that water

resources are managed efficiently and equitably, as required by the National Water Act

(NWA, 1998) of South Africa (Act 36 of 1998).

Computer models of water resource systems are a tool for understanding and managing

water resources in South Africa. There are two main drivers for the need for better water

resources modelling tools in South Africa: (i) in many catchments water demand exceeds

available supply, and (ii) the requirements of the NWA. In DWAF (2004) it is reported that in

the year 2000 already 10 of the 19 Water Management Areas (WMAs) in South Africa were

water stressed, i.e. the demand for water exceeded supply. All, except one, of these WMAs

are linked by inter-catchment transfers that assist in the transfer of water from areas with

adequate supply and low demand to highly developed areas with high demand (DWAF,

2004). Water resource managers require improved water resources modelling tools for

planning and operations to assist them in making management decisions leading to better

water allocation and improved water use efficiency. There is a growing realisation of the

need for integrated water resources management, including both water quantity and quality

components and incorporating environmental, social, economic and political aspects of

water, and this need is reflected in the NWA. Typically models are developed for specific

domains within the water resource system and integrated water resources management will

require integration of the models representing specific domains in order to provide a systems

perspective for water management decisions.

This WRC project was preceded by a one year consultancy with the purpose of (i) evaluating

user needs with regard to modelling for water resource planning and operations, (ii)

reviewing existing modelling tools for water resource planning and operational management,

and (iii) making recommendations for further research and the development of modelling

tools (Pott et al., 2008b). Based on the requirements identified in these consultations, a set

of water management tasks and decisions and the modelling requirements to assist water

managers with these was created. These tasks and decisions included: water quantity

(yield) determination, assessing new licence applications, water quality, impact assessment,

water use efficiency, data management and storage, monitoring, meeting licences/demands,

auditing and compliance, flood management, and forecasting demands and supply. The

iv

water resource modelling requirements identified to support these tasks can be summarised

as: (i) the need to adequately represent real work complexity, and (ii) the need to integrate

models representing different domains within the water resource system and other system

requirements.

OBJECTIVES AND AIMS

The broad objective of this project was to develop and integrate modelling tools to support

water resource managers by meeting some of the modelling requirements identified for

water resources planning and operations. The more specific objectives of this project were

to:

• Review river network models which are suitable for water resource planning and

operations and to select one to be integrated with the ACRU agrohydrological model.

• Investigate methods for linking different domain models such as a hydrological model

and a river network model, then select and implement a suitable method for integrating

the hydrological model and the selected river network model.

• Further develop the ACRU daily time step agrohydrological model in order to

realistically represent the varying hydrological responses within the terrestrial

hydrological system.

• Configure and apply the integrated hydrological model and river network model for

selected catchments within the Inkomati WMA.

REVIEW AND EVALUATION OF RIVER NETWORK MODELS

A review of river network models was conducted for the purpose of selecting a river network

model to be used in this project. An initial review based on literature and available model

documentation was conducted on the following models: AWRIS, BASINS, eWater CRC

Source, HEC-ReSim, MIKE BASIN, MODSIM, REALM, RIBASIM, RiverWare, WEAP and

WRAP. Each model was assessed against a set of required attributes. This initial review

found that the MIKE BASIN, MODSIM, RiverWare and eWater CRCs Source models all had

many of the attributes of a river network model required for this project. The review

concluded by recommending that further evaluation of the MIKE BASIN, MODSIM and

RiverWare models before a final decision could be made to select a river network model.

The eWater CRC Source model was not considered further it was still under development.

v

Following the literature review of river network models, the functionality offered by the MIKE

BASIN, MODSIM and RiverWare models was further evaluated by configuring a hypothetical

test catchment in each model to verify information contained in the literature review, and to

gain experience in setting up and running the models. Each model was evaluated against a

range of criteria grouped in the following categories:

• User interface,

• GIS functionality,

• Flexible configuration,

• Water allocation,

• Scenarios,

• Accounting and auditing, and

• Operational use.

The MIKE BASIN model was found to be strong on the GIS requirements but weak in the

accounting and auditing functionality. It has local, South African support and is relatively

easy to use. MIKE BASIN was the easiest and quickest model to configure for the test

catchment. RiverWare is strong on accounting and auditing, but is weaker on the GIS

requirements. RiverWare is more flexible in the way that it can be configured, but requires

greater expertise. Due to the complexity of setting up RiverWare, the user support provided

by the developers proved invaluable. MODSIM was weak on the GIS requirements. Some

aspects of the hypothetical test catchment could not be configured within the MODSIM

model in this evaluation. The lack of user support for MODSIM was its main drawback.

However, it is the only model evaluated that has no cost or licence required.

Each of the models was assigned a score for each of the evaluation criteria. The averaged

scores shown in Table ES1 serves as a rough overall guide as to how the models scored

relative to each other, but does not account for the relative importance of the different

evaluation criteria. During the course of the evaluations it was noted that the level of user

support and training available for the different models was an important factor for model

selection.

Although MODSIM received the highest average score, the lack of adequate user support

and difficulty in configuring aspects of the evaluation river network counted against it. Based

on the evaluations described in this document, it was recommended that MIKE BASIN be

selected for use in the project, largely due to its ease of use, strong GIS support through

ArcGIS and availability of local user support and training.

vi

Table ES1 Summary of evaluation ratings

Evaluation Criteria MIKE BASIN
(%)

RiverWare
(%)

MODSIM
(%)

User Interface 100 86 100

GIS Functionality 100 33 33

Flexible Configuration 95 91 100

Water Allocation 100 67 100

Scenarios 50 50 100

Accounting and Auditing 33 100 67

Operational Use 50 50 50

Average 76 68 79

REVIEW AND EVALUATION OF MODEL LINKAGE MECHANISMS

Integrated Water Resources Management (IWRM) requires that social, environmental and

economic aspects of water are included water management decisions. For IWRM it is

necessary to integrate individual specialised models representing specific aspects of water

resource systems. Integration of models requires some form of linkage mechanism to

enable the exchange of data or functionality between models, preferably during runtime.

Linking two models in series is usually a simple matter of running the first model, converting

the output format of the first model to the input format of the second model, and then running

the second model. One critical drawback of the series linking approach is that feedbacks

between processes in the two separate models cannot be represented. To properly

integrate the ACRU model and a river network model it would be necessary for data and

information to be exchanged between the models on a time step by time step basis. Ideally

the link between the ACRU model and the selected river network model should not be hard-

coded but suitable for application in other scenarios and applications beyond the ACRU –

MIKE BASIN link developed in this project. There are various means of integrating models,

including linking models in parallel. The following model linkage mechanisms and

component modelling systems were reviewed: OpenMI, OMS, JAMS, TIME, LIQUID, ESMF,

MMS, HLA and CCA. This review concluded that the OpenMI interface specification

standard was the most appropriate linking mechanism for use in the project. The

advantages of OpenMI are that it is generally accepted as a de facto standard, is strongly

supported by the OpenMI Association, has been widely adopted by key research and

commercial model developers, thus providing a useful set of compliant models, and has

been well documented. Though use of the OpenMI interface specification standard is not a

requirement for the project, OpenMI’s widespread adoption would mean that this project

vii

would not be limited to a once off link between two specific models, but would be a useful

test case leading to potential further linking of models to support IWRM.

The model linkage mechanisms supported by the MIKE BASIN , MODSIM and RiverWare,

models were investigated and, in particular, evaluated to determine whether these models

support the OpenMI model linking interface or could be adapted to support OpenMI. The

evaluation of each model consisted of two parts, a review of the literature about the linking

mechanisms and personal communications with the developers, and a technical evaluation

in which a simple software implementation of the linking mechanism was created to better

understand the mechanism and to assess its ability to meet the criteria set for use in the

project. None of the MIKE BASIN, MODSIM and RiverWare models are OpenMI compliant

and therefore their suitability for adaption through the creation of OpenMI compliant

wrappers was investigated. MIKE BASIN does not support an alternative linking

mechanism, but does provide access to its model engine and satisfies the criteria necessary

for the creation of OpenMI compliant wrappers. MODISM does not support an alternative

linking mechanism, but does provide access to its model engine, though only satisfies some,

but not all, of the criteria necessary for the creation of OpenMI compliant wrappers.

RiverWare provides an alternative linking mechanism through its Data Management

Interface (DMI) and batch mode capabilities, and through the implementation of a custom

RiverWare solution it was demonstrated that some, but not all, of the criteria for OpenMI

could be satisfied. Based on this evaluation of the linkage mechanisms by which these three

models could be linked to the ACRU model, MIKE BASIN was found to be the only model of

the three that could be linked to the ACRU model through the development of OpenMI

wrappers. In addition, support for the model by DHI South Africa appeared to be good. This

conclusion confirmed the recommendation that MIKE BASIN model should be selected for

use in the project.

ACRU MODEL DEVELOPMENT

As part of this project some changes were made to the ACRU model and the design of its

associated model input files to ensure that the ACRU model is suited for use in both water

resources planning and operations modelling, and is capable of representing real world

complexity. In particular, the input files required further development with respect to their

use for operational modelling. Several changes were made to the ModelData and

ModelConfiguration XML schemas used for ACRU model input in order to refine the design

and include new functionality such as scenario management, the storage of state data

required to hot-start the model, a means of storing dynamic data, use of forecast data and

viii

improved linkages to external data files. These changes to the schemas required

corresponding changes to be made to the .Net and Java XmlModelFile libraries and the

ACRU model itself.

A considerable amount of work was done in this project to revise the initial design of the

ModelData and ModelConfiguration schemas and this has resulted in a design that is not

only more robust but is expected to provide the ACRU model with model input functionality

necessary for both planning and operations modelling. The design of these schemas is

expected to be stable from this point on and no substantial changes to the design are

expected. Following the revision of the design for the ModelData and ModelConfiguration

schemas, various changes were made to the ACRU model itself to be compatible with and to

make full use of model input and configuration files that use these schemas and to make the

model more suitable for use for water operations modelling. Restructuring the data structure

used within the ACRU model was a bigger undertaking than initially anticipated largely due

to the complexity of dynamic type variables, however, this restructuring was critical to enable

the ACRU model to handle time series more efficiently especially with regard to state and

dynamic type data variables. The Component structure was also revised to simplify it and

make it compatible with the new concepts introduced into the ACRU model configuration file

such as Hydrological Response Units (HRUs). The introduction of the concept of resources

using the RResource class was also a step forward from a conceptual and model

extensibility point of view. Further development of the ACRU model has taken place to

implement new functionality such as scenarios, hotstarting and the storage of state data,

dynamic variables and flexible spatial component configurations. A Java version of the

ModelDataAccess was also created.

IMPLEMENTATION OF OPENMI FOR MODEL LINKING

The OpenMI interface specification standard was accepted as the most appropriate linking

mechanism for use in the project. The OpenMI Association supports the standard and has

released the OpenMI 1.4 version of the OpenMI Standard and associated OpenMI Software

Development Kit (SDK) in 2005. OpenMI 1.4 has been adopted and implemented in a range

of models, many belonging to well know international developers of water resources

modelling software. The OpenMI Standard is duplicated in Java and .Net versions and each

of these is supported by a corresponding OpenMI Software Development Kit (SDK)

containing a default implementation of the OpenMI Standard interfaces and other helper

classes. The OpenMI 2.0 version of the OpenMI Standard was recently released to provide

additional user requirements not met by the OpenMI 1.4 version. It was decided that in this

ix

project the ACRU and MIKE BASIN models would be made OpenMI 1.4 compliant for the

following reasons: (i) the OpenMI 2.0 SDK for Java is still under development and has not

been released, (ii) the problems experienced with the use of the OpenMI 2.0 SDK for .Net

during an initial attempt to create an OpenMI 2.0 wrapper for MIKE BASIN indicated that the

supporting tools for the OpenMI 2.0 version may not be mature enough to use reliably, and

(iii) all the models registered on the OpenMI Association website as being OpenMI compliant

are currently only OpenMI 1.4 compliant.

There are two main approaches to making a model OpenMI compliant, which is through the

use of, either an OpenMI compliant wrapper or direct implementation in a model’s source

code. The wrapper approach was used in this project for the following reasons: (i) access to

the source code of the models is not required and no changes are made to the model, (ii) the

wrapper option is easier and takes advantage of functionality already coded into the classes

provided in the SDK’s, and (iii) wrapping would enable both OpenMI 1.4 and OpenMI 2.0

compliant versions of the wrappers to be provided at some point in the future, without the

two versions potentially conflicting with each other.

To meet OpenMI compliance a model needs to implement the ILinkableComponent interface

of the OpenMI standard. The model wrapping tools provided by the OpenMI Association

achieve this through two classes, the first class is a wrapper class for the model engine

which implements the IEngine interface, and the second class is the linkable component

which implements the ILinkableComponent interface by extending the LinkableEngine class

and accesses the model engine through the first wrapper class.

An OpenMI 1.4 compliant wrapper for MIKE BASIN was successfully developed. Tests were

performed to validate the OpenMI 1.4 compliant wrapper worked as expected. Data

operations applied to output from a LinkableComponent were also successfully implemented

and tested.

Though the initial implementation of the OpenMI 2.0 compliant wrapper for MIKE BASIN was

successful, problems with the OpenMI 2.0 Configuration Editor prevented further

development and application of this wrapper. If the OpenMI Association releases a stable

version of OpenMI 2.0 SDK, it would be recommended to use the OpenMI 2.0 compliant

wrapper for MIKE BASIN, as the OpenMI 2.0 Standard is an improvement to the OpenMI 1.4

Standard.

x

An OpenMI 1.4 Java and OpenMI 1.4 .Net compliant wrappers were also successfully

developed for the ACRU model. Tests indicated that the wrappers were working as expected

and the ACRU and MIKE BASIN models were successfully linked using OpenMI for a simple

test catchment.

The completed OpenMI 1.4 compliant wrappers for ACRU and MIKE BASIN were further

tested by linking a simple test catchment configuration for ACRU to a simple hypothetical

river network configuration for MIKE BASIN. The linked ACRU and MIKE BASIN models

were successfully run using OpenMI and the data values transferred between the models

were checked to ensure that the correct values were transferred for the correct model time

steps. These tests highlighted the fact that even though two models may be OpenMI

compliant, it is important that users have a sound understanding of both models to ensure

that they are correctly linked.

USE CASES FOR THE LINKED MODELS

There are two main reasons for integrating models: (i) to gain functionality not available in an

individual domain model, and (ii) to model feedbacks between the system components

represented by the individual models, to better represent the system being modelled. If

there are no feedbacks between the systems being represented by each individual model,

then the models can be integrated using a simple series link, otherwise a model linking

mechanism, such as OpenMI selected for this project, can be used to link the models in

parallel. Parallel linking involves running one model for a single time step, then using the

output from this model as input to another model which is run for a single time step, and this

process is repeated for individual time steps until the end of the simulation time period. The

models may have different time steps and the links between them may be uni-directional or

bi-directional.

Linking the ACRU and MIKE BASIN models, means that ACRU can provide input data such

as streamflow required by MIKE BASIN, and in turn MIKE BASIN provides functionality such

as flow routing, easier and more flexible water user configurations and water allocation

methods which are not available in ACRU. Prior to this project the ACRU and MIKE BASIN

models have been integrated by means of simple series links, where ACRU is used to

generate a streamflow time series which is then translated and used as input to MIKE

BASIN. This approach works well if there are no feedbacks between the terrestrial

hydrological system being modelled by ACRU and the river network system being modelled

by MIKE BASIN. However, a common example of a feedback between these two systems is

xi

irrigation demand and supply, and this particular feedback problem resulted in the

developers of MIKE BASIN including an irrigation module into the MIKE BASIN model, so

that the feedback was dealt with within the model.

The advantages of using OpenMI to dynamically link models are that it:

• Saves manual translation between model output and input file formats.

• Saves developing custom code to link models, as any OpenMI compliant model can

be linked to any other OpenMI compliant model.

• Enable chains of models, e.g. one-to-many and many-to-one, which would be difficult

in custom code which is usually one-to-one.

• Enables linking models with different spatial and temporal resolutions.

• Enables feedbacks to be modelled.

Having successfully created OpenMI compliant wrappers for ACRU and MIKE BASIN the

next step was to define a set of use cases to demonstrate how these two models linked

using OpenMI could be used for a range of modelling scenarios. Use cases were developed

for: simple uni-directional streamflow links, uni-directional streamflow and groundwater links,

bi-directional streamflow, irrigation requirement and irrigation supply links, and water quality

links. A simple use case giving an example of the use of the integrated models for short

term operational links was also created. In each use case ACRU component-variable to

MIKE BASIN component-variable pairs are specified to assist future users in setting up

model links. In some use cases there may be more than one way to configure the model

links and it is up to the user to decide which is best for their particular application depending

on how the individual models have been set up. Though OpenMI makes linking models

easier, users will still require a thorough conceptual understanding of both models in order to

link them correctly.

CASE STUDY

Both the ACRU model and the MIKE BASIN model were configured for the Kaap River

Catchment to demonstrate the use of the integrated models in a real catchment. The Kaap

River is a tributary of the Crocodile River located in the Inkomati Water Management Area

(WMA), in Mpumalanga, South Africa. The 8 quaternary catchments of the Kaap River

Catchment were subdivided into a total of 22 smaller subcatchments, which in turn were

subdivided into hydrological response units (HRUs) based on land use.

xii

Initial verifications prompted further investigation regarding the ACRU configuration. The

observed streamflow at flow gauging weirs X2H010, X2H024 and X2H008 were used to

verify the simulated streamflow. The best simulation was obtained at Weir X2H010 with

poorer verifications at weirs X2H024 and X2H008. The poorer verifications at weirs X2H024

and X2H008 were attributed to poor observed streamflow data, but changes in land use,

increased abstractions and the influence of farm dams could also be contributing factors.

The MIKE BASIN configuration was further updated with assistance from DHI-SA, to include

water abstractions and depth/area/volume relationships for dams in the configuration.

DISCUSSION AND CONCLUSIONS

The project started by identifying the modelling requirements for water resources planning

and operations to meet the requirements of the National Water Act of South Africa. It was

recognised that it is unlikely that any one model would be able to meet all these

requirements. To meet these requirements a collection of models covering all aspects

(hydrology, environmental, economic and social) of water resource systems is required, and

these models need to be integrated to model real world complexity and to ensure that any

important feedbacks within the system are represented. The project thus aimed to

demonstrate the integration of different domain models, with the linking of a hydrological

model and a river network model, as a case study, in order to meet some of the modelling

requirements identified for water resources planning and operations.

The initial review of river network models resulted in a recommendation that the MIKE

BASIN, MODSIM and RiverWare models be evaluated in more detail. The result of the

detailed evaluation was that the MIKE BASIN model was selected for use in the project

largely due to its ease of use, strong GIS support through ArcGIS and availability of local

user support and training.

Further development of the ACRU model and its associated model input files has resulted in

the model being better suited for use in both water resources planning and operations

modelling and is now capable of more realistically representing real world complexity.

The review of model linkage mechanisms resulted in OpenMI being selected for the

following reasons: it is a generally accepted as a de facto standard, is strongly supported by

the OpenMI Association, has been widely adopted by key research and commercial model

developers, the provision of a useful set of compliant models, and is well documented. The

OpenMI model linkage framework was successfully implemented to create an OpenMI 1.4

xiii

.Net wrapper for the MIKE BASIN model and both OpenMI 1.4 Java and .Net wrappers for

the ACRU model. An important lesson learned while setting up and testing the integrated

models was that though OpenMI may make it easy to link compliant models, a detailed

understanding of the models being linked is required to ensure that valid links are created

without compromising the integrity of either model. To aid in the application of the integrated

models a number of use cases were described with details of which variables should be

linked in each model as a guide to future users of the integrated models.

To demonstrate the application of the integrated models, the models were configured and

run for the Kaap River Catchment in the Inkomati WMA. The poor verifications of simulated

streamflow against observed streamflow highlighted the need for more accurate data and at

a finer spatial and temporal resolution, including: rainfall, streamflow, land cover, land use

practices, soils, water transfers and water abstractions.

The project was successful in demonstrating the implementation of OpenMI by successfully

linking the ACRU and MIKE BASIN models which represent two often separately modelled

domains within water resource systems. The use of these linked models is expected to be a

useful tool for water resources modelling for planning and operations in South Africa. This

project was a test case for model integration of legacy models using OpenMI and, given the

successes achieved, there is no apparent technical reason why other models representing

other domains cannot also be made OpenMI compliant. In addition to the fact that the

ACRU model can now be easily linked with MIKE BASIN, OpenMI compliance means that

these models can be linked to a range of other OpenMI compliant models, many from well-

known developers of software for water resources modelling.

In this project, the advantages of linking models in parallel to provide a more holistic systems

view of water resources and better representation of feedbacks between components in the

different domains being modelled, were demonstrated. Some potential limitations of linking

models include, the requirement for expert knowledge of all models to be linked, reduction in

performance in running simulations, due to the linkage mechanism, and increased

uncertainty in the simulation results introduced by linking the models.

xiv

RECOMMENDATIONS FOR FUTURE RESEARCH

This project has demonstrated that integration of independent domain models using OpenMI

is possible, and has explained and demonstrated the advantages of model integration in

being able to better represent real world complexity and thus to provide a systems view of

water resource systems. The application of the integrated ACRU and MIKE BASIN models

by users outside of the project team would not be easy, as an understanding of the OpenMI

model linkage mechanism and the individual models is required. An open modelling

environment named Delta Shell is being developed by the Dutch research institute Deltares.

This integrated modelling will include OpenMI tools to enable models to be linked but also

facilitate communication between models and the modelling environment which will provide

GIS, data management and analysis tools. Delta Shell should be investigated further once it

is released, both for the modelling environment itself and the approach adopted to facilitate

use of OpenMI.

The performance penalty and memory requirements when linking models using OpenMI

needs to be further investigated. Once a stable version of OpenMI 2.0 SDK has been

released by the OpenMI Association the development of OpenMI 2.0 compliant wrappers for

the ACRU and MIKE BASIN models should be considered as it is expected to offer better

performance and improved user interface tools for linking models.

The integration of additional models, such as groundwater, water quality and economics

models, using OpenMI would enable the OpenMI model linkage mechanism to be tested

further. The integration of additional models, representing other domains, would also enable

the investigation of the advantages and potential problems associated with modelling

feedbacks between the various domains.

Considerable expertise has been developed through this project in the use of OpenMI to

dynamically link legacy models. While the linked models have been demonstrated to

operate on a real catchment, it is recommend that the expertise developed in the project be

used to install and operationalize the linked models such that they can be used by water

resource managers (e.g. by a CMA). It is anticipated that this will lead to further

developments and refinements in order to meet the requirements of the water resource

managers. This will also utilise the expertise developed during the project which, with no

follow up research or operationalization project, is in danger of dispersing and being lost to

the water community in South Africa.

xv

ACKNOWLEDGEMENTS

The WRC for funding this research project.

The Reference Group of this WRC project for their contributions during the project:

Mr W Nomquphu (Chairman) Water Research Commission

Mr T Badenhorst Department of Water Affairs

Mr A Bailey SSI

Ms KT Chetty University of KwaZulu-Natal

Mr MJC Horan University of KwaZulu-Natal

Mr B Jackson Inkomati Catchment Management Agency

Mr A Jeleni Muondli Consulting

Prof GPW Jewitt University of KwaZulu-Natal

Mr H Keuris Department of Water Affairs

Dr N Lecler SASRI

Mr KB Meier Umgeni Water

Dr B Mwaka Department of Water Affairs

Mr SM Ngoepe Department of Water Affairs

Ms C Nthuli Department of Water Affairs

Mr AJ Pott DHI

Prof RE Schulze University of KwaZulu-Natal

Mr MJ Summerton Umgeni Water

Mrs I Thompson Department of Water Affairs

Mr CD Tylcoat Department of Water Affairs

Mr P van Niekerk Department of Water Affairs

Mr NA Ward Department of Water Affairs

Ms T Zokufa Department of Water Affairs

The University of KwaZulu-Natal (UKZN) for provision of office space, administrative support

and computing equipment to project team members. The administrative staff in the School

of Engineering for their general assistance.

DHI-SA for providing copies of the MIKE BASIN software with associated licenses and

dongles to the project team, for use within the project, as part of an agreement with the

University of KwaZulu-Natal, providing training in the use of MIKE BASIN, support with the

xvi

MIKE BASIN configuration for the Kaap River Catchment, and for their assistance in getting

the configurations of MIKE BASIN used for the evaluation of linking mechanisms running.

To the Inkomati Catchment Management Agency (ICMA), for allowing DHI-SA to provide

support to the project team in configuring MIKE BASIN for the Kaap River Catchment.

CADSWES for providing an evaluation licence for the RiverWare software and especially

Edith Zagona and David Neumann for their valuable assistance via e-mail in getting the

configurations of RiverWare used for the evaluation running and assistance with the

evaluation of linking mechanisms.

John Labadie and Johan Van Zyl for their response to e-mailed queries regarding MODSIM.

Richard Kunz for extracting the daily temperature and Penman-Monteith time-series data

use in the Kaap River Catchment configuration.

The members of the Project Team for the work that they contributed to the project:

Prof JC Smithers (Project Leader) University of KwaZulu-Natal

Mr DJ Clark (Responsible Researcher) University of KwaZulu-Natal

Mr SLC Thornton-Dibb (Researcher) University of KwaZulu-Natal

Mr A Lutchminarain (Researcher) University of KwaZulu-Natal

Mr R Winckworth (MSc student) University of KwaZulu-Natal

xvii

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ... iii
ACKNOWLEDGEMENTS ... xv
TABLE OF CONTENTS... xvii
LIST OF FIGURES ... xx
LIST OF TABLES.. xxiv
LIST OF ABBREVIATIONS .. xxvi
1 INTRODUCTION AND OBJECTIVES ... 1
2 REVIEW AND EVALUATION OF RIVER NETWORK MODELS 12

2.1 Review and Initial Evaluation of Available Models ... 12
2.1.1 User needs and requirements ... 15
2.1.2 River/reservoir network models ... 17
2.1.3 Discussion and recommendation .. 36

2.2 Detailed Evaluation of Selected Models ... 39
2.2.1 Evaluation criteria .. 42
2.2.2 MIKE BASIN .. 46
2.2.3 MODSIM ... 55
2.2.4 RiverWare ... 63
2.2.5 Results and recommendation ... 72

3 REVIEW AND EVALUATION OF MODEL LINKAGE MECHANISMS 74
3.1 Review of Available Mechanisms ... 75

3.1.1 Open Modelling Interface (OpenMI) .. 80
3.1.2 Object Modelling System (OMS) ... 96
3.1.3 Jena Adaptable Modelling System (JAMS) ... 102
3.1.4 The Invisible Modelling Environment (TIME) .. 105
3.1.5 LIQUID® Modelling Framework ... 115
3.1.6 Earth System Modelling Framework (ESMF) .. 119
3.1.7 Modular Modelling System (MMS) .. 120
3.1.8 High Level Architecture (HLA) ... 120
3.1.9 Common Component Architecture (CCA) ... 122
3.1.10 Discussion and recommendation .. 124

3.2 Evaluation of Linkage Mechanisms in Selected Models 126
3.2.1 Evaluation criteria .. 127
3.2.2 MIKE BASIN .. 130
3.2.3 MODSIM ... 133
3.2.4 RiverWare ... 136
3.2.5 Results and recommendation ... 144

4 ACRU MODEL DEVELOPMENT .. 146
4.1 Background .. 147

4.1.1 The ACRU 3.00 version .. 147
4.1.2 The ACRU2000 version .. 148

xviii

4.1.3 The ACRUXml version .. 149
4.2 Development of XML Input Files .. 151

4.2.1 ModelData schema ... 152
4.2.2 ModelConfiguration schema ... 160
4.2.3 XmlModelFiles libraries ... 168

4.3 Model Development ... 171
4.3.1 Component types and component configurations 173
4.3.2 Components .. 175
4.3.3 Internal data structure ... 182
4.3.4 Resources ... 189
4.3.5 Scenarios .. 191
4.3.6 State data and hotstarting ... 191
4.3.7 Dynamic data variables ... 192
4.3.8 Data readers and writers ... 192

4.4 Summary and Conclusions .. 193
5 IMPLEMENTATION OF OPENMI FOR MODEL LINKING 194

5.1 Development of OpenMI Wrapper for MIKE BASIN ... 199
5.1.1 OpenMI 1.4 wrapper ... 200
5.1.2 OpenMI 2.0 wrapper ... 204

5.2 Development of OpenMI Wrapper for ACRU ... 209
5.2.1 OpenMI 1.4 Java wrapper ... 210
5.2.2 OpenMI 1.4 .Net wrapper .. 212

5.3 Results and Recommendation ... 213
6 USE CASES FOR THE LINKED MODELS ... 214

6.1 Streamflow Links .. 218
6.1.1 Water users and return flows .. 219
6.1.2 Multiple water sources for a user .. 220
6.1.3 Water allocation options .. 220
6.1.4 Flow routing ... 220
6.1.5 Scenarios .. 221

6.2 Streamflow and Groundwater Links ... 221
6.3 Irrigation Requirement and Supply Links ... 224
6.4 Water Quality Links .. 225
6.5 Operations Modelling ... 226

7 CASE STUDY .. 228
7.1 MIKE BASIN Configuration .. 229
7.2 ACRU Configuration ... 232

7.2.1 Subcatchment and HRU configuration .. 232
7.2.2 Climate data .. 234
7.2.3 Soils and land-use ... 236
7.2.4 Dams and irrigated areas .. 237

7.3 Verification Studies on Quaternary Subcatchments X23A, X23C and X23E 240
7.4 Use Cases .. 251

7.4.1 Streamflow links .. 252

xix

7.4.2 Streamflow links with flow routing ... 255
7.4.3 Streamflow and irrigation links .. 256
7.4.4 Results .. 258

8 DISCUSSION AND CONCLUSIONS .. 265
9 RECOMMENDATIONS ... 268
10 CAPACITY BUILDING ... 270
11 REFERENCES .. 271
APPENDIX: ... 280

xx

LIST OF FIGURES

Page
Figure 1.1 Mind map of the water system, management, modelling loop 7

Figure 2.1 Simple river diagram .. 17

Figure 2.2 Simple river network diagram .. 17

Figure 2.3 Schematic diagram of database and information processes in AWRIS

(BoM, 2010b) ... 20

Figure 2.4 Schematic of hypothetical test catchment ... 39

Figure 2.5 FarmReservoir level-area-volume relationships .. 41

Figure 2.6 Reservoir 1 level-area-volume relationships .. 41

Figure 2.7 MIKE BASIN project within ESRI ArcMap (DHI, 2009) 47

Figure 2.8 MIKE BASIN Catchment Properties window (DHI, 2009) 48

Figure 2.9 MODSIM’s user interface (Labadie, 2010a) .. 56

Figure 2.10 Catchment 1 configuration with Flowthru component (Labadie, 2010a) 61

Figure 2.11 RiverWare’s user interface (CADSWES, 2011) ... 64

Figure 2.12 RiverWare’s reservoir properties window (CADSWES, 2011) 64

Figure 3.1 The OpenMI Version 1.4 standard interfaces (OpenMI, 2011a) 85

Figure 3.2 Example of two model applications linked after implementation of the

OpenMI interface standard (Moore and Tindall, 2005) 87

Figure 3.3 Example of the exchange of flow quantities between the two linked

model applications shown in Figure 3.2 (Moore and Tindall, 2005) 87

Figure 3.4 Illustration of data exchange between OpenMI compliant models using

the GetValues method (Moore and Tindall, 2005) ... 89

Figure 3.5 OpenMI architecture namespaces (Moore and Tindall, 2005) 91

Figure 3.6 Conceptual layout of OMS (Kralisch et al., 2005) .. 98

Figure 3.7 Application of compound components to control execution of model

components in time and space (Kralisch et al., 2005) 100

Figure 3.8 Representing spatial entities using OMSEntity objects (Kralisch et al.,

2005) .. 100

Figure 3.9 Organisation of the JAMS framework Kralisch and Krause (2006)............. 103

Figure 3.10 Architectural layers of the TIME modelling framework (Rahman et al.,

2003) .. 107

Figure 3.11 Core classes of the Kernel layer (Rahman et al., 2003) 107

Figure 3.12 Representation of units in TIME (Rahman et al., 2003) 109

xxi

Figure 3.13 Example of a simple model including TIME custom metadata tags (after

Rahman et al., 2003) ... 111

Figure 3.14 TIME Visualisation Framelet classes (Rahman et al., 2003) 112

Figure 3.15 The main sections of LIQUID® (Branger et al., 2010a) 116

Figure 3.16 Architecture of a LIQUID® module (Branger et al., 2010a) 117

Figure 3.17 Illustration of river network model linkage mechanism requirements 128

Figure 3.18 Structure of the proposed custom RiverWare solution 139

Figure 4.1 Main components and data flows for ACRUXml and SPATSIM_HDSF 151

Figure 4.2 The initial design of the ModelData schema .. 153

Figure 4.3 The revised version of the ModelData schema ... 153

Figure 4.4 The new ModelInfo element containing a list of Data elements 154

Figure 4.5 The Components element in the initial ModelData schema 155

Figure 4.6 The Components element in the revised ModelData schema 156

Figure 4.7 The Relationships element in the revised ModelData schema 157

Figure 4.8 The DataRef element in the revised ModelData schema 157

Figure 4.9 The initial design of the Data element ... 158

Figure 4.10 The revised version of the Data element. .. 159

Figure 4.11 The initial design of the ModelConfiguration schema 160

Figure 4.12 The revised version of the ModelConfiguration schema 161

Figure 4.13 The new ModelInfo element in the ModelConfiguration schema 161

Figure 4.14 The ComponentTypes element in the initial ModelConfiguration schema ... 162

Figure 4.15 The ComponentTypes element in the revised ModelConfiguration

schema .. 162

Figure 4.16 The Lookups element .. 163

Figure 4.17 The ComponentConfiguration element in the initial ModelConfiguration

schema. ... 165

Figure 4.18 The ComponentConfiguration element in the revised

ModelConfiguration schema. ... 165

Figure 4.19 The DataDef element in the revised ModelConfiguration schema. 167

Figure 4.20 The DataGroup element in the revised ModelConfiguration schema 168

Figure 4.21 Simplified UML diagram of the XmlModelFiles.ModelData package 169

Figure 4.22 Simplified UML diagram of the XmlModelFiles.ModelConfiguration

package ... 170

Figure 4.23 The main classes of the ACRU model ... 172

Figure 4.24 A UML Class Diagram showing the new main Component classes in the

ACRUXml version of the model ... 177

xxii

Figure 4.25 A UML Class Diagram showing the main subcomponents of the main

spatial Component classes in the ACRUXml version of the model 178

Figure 4.26 A UML Class Diagram showing the main Data classes used in the

ACRU2000 version of the model ... 184

Figure 4.27 A UML Class Diagram showing the new main Data classes created for

the ACRUXml version of the model ... 185

Figure 4.28 A diagram of the extended ModelConfiguration schema showing the

new Resource related elements .. 191

Figure 5.1 Illustration depicting a link between components in OpenMI 1.4

(OpenMI, 2012) .. 194

Figure 5.2 An example of linking components in OpenMI 2.0 (OpenMI, 2012) 195

Figure 5.3 An example of an OpenMI compliant wrapper (Blind et al., 2005)............... 197

Figure 5.4 Example of an OMI file .. 199

Figure 5.5 Example showing LinkableComponents loaded and connected in the

OpenMI 1.4 Configuration Editor ... 199

Figure 5.6 The OpenMI 1.4 SDK configuration editor ... 202

Figure 5.7 The Run properties dialog box of the configuration editor 203

Figure 5.8 LinkableEngine abstract class showing methods .. 205

Figure 6.1 Status quo simple series link by file translation ... 216

Figure 6.2 Status quo simple series link by custom code ... 216

Figure 6.3 Linking ACRU and MIKE BASIN using OpenMI .. 217

Figure 6.4 Key to the use case diagrams used in this chapter 218

Figure 6.5 Streamflow use case ... 219

Figure 6.6 Surface runoff and groundwater recharge use case using the first

method ... 222

Figure 6.7 Surface runoff and groundwater recharge use case using the second

method ... 223

Figure 6.8 Streamflow, irrigation requirement and supply use case 225

Figure 6.9 Water quality use case .. 226

Figure 6.10 Operations modelling use case ... 227

Figure 7.1 The Kaap River Catchment is represented by the tertiary catchment X23

which is located in the primary catchment X, namely the Inkomati 228

Figure 7.2 Altitude variation in the Kaap River Catchment ... 230

Figure 7.3 MIKE BASIN configuration for the Kaap River Catchment 231

Figure 7.4 Location of quaternary catchments, subcatchments, flow gauging weirs

and selected rain gauges ... 232

Figure 7.5 Subcatchment flow network for the Kaap River Catchment 233

xxiii

Figure 7.6 Distribution of MAP in the Kaap River Catchment (after Schulze et al.,

2008) .. 235

Figure 7.7 Rain gauges in or near the Kaap River Catchment 236

Figure 7.8 Broad soil classification within the Kaap River Catchment (after ISCW,

2005) .. 238

Figure 7.9 Land-use of the Kaap River Catchment (after NLC, 2005) 239

Figure 7.10 Example of configuration of HRUs within subcatchments 240

Figure 7.11 Flow gauging weir X2H010 (DWA, 2012b) .. 241

Figure 7.12 Simulated vs observed monthly streamflow for Weir X2H010 242

Figure 7.13 Accumulative rainfall, observed and simulated streamflow for Weir

X2H010 .. 242

Figure 7.14 Plantation coverage (After Jackson, 2012) .. 244

Figure 7.15 Daily mean observed discharge for X2H010 ... 244

Figure 7.16 7-Day Minimum flow for Weir X2H010 (after Jewitt et al, 1999) 245

Figure 7.17 Rating curves for Weir X2H010 ... 246

Figure 7.18 Double mass plot of the rainfall and observed streamflow 246

Figure 7.19 Flow gauging weir X2H024 (DWA, 2012) .. 247

Figure 7.20 Daily mean observed discharge for X2H024 ... 247

Figure 7.21 Simulated vs observed monthly streamflow for Weir X2H024 248

Figure 7.22 Accumulative rainfall, observed and simulated streamflow for Weir

X2H024 .. 248

Figure 7.23 Flow gauging weir X2H008 (DWA, 2012) .. 249

Figure 7.24 Daily mean observed discharge for X2H008 ... 249

Figure 7.25 Simulated vs observed monthly streamflow for Weir X2H008 250

Figure 7.26 Accumulative rainfall, observed and simulated streamflow for Weir

X2H008 .. 250

Figure 7.27 The MIKE BASIN configuration for the streamflow use case....................... 254

Figure 7.28 The MIKE BASIN configuration for the streamflow and irrigation use

case ... 257

Figure 7.29 Accumulated flow (106 m3) at Weir X2H022 for the period 1990 to 1999 259

Figure 7.30 Flow rates for Weir X2H022 for early 1996 .. 260

Figure 7.31 Accumulated flow (106 m3) at Weir X2H022 for the period 1996 to 1999 261

Figure 7.32 Flow rates for Weir X2H022 for the 1997-1998 rainy season 262

Figure 7.33 Flow rates for Weir X2H022 for the 1998-1999 rainy season 262

Figure 7.34 Example of the effect of flow routing on flow rates for Weir X2H022 263

xxiv

LIST OF TABLES

Page
Table 1.1 Water resource management tasks and decisions for planning 3

Table 1.2 Water resource management tasks and decisions for operations 4

Table 2.1 RiverWare objects (after Wurbs, 2005) ... 33

Table 2.2 Summary of selected models .. 37

Table 2.3 Catchment details .. 40

Table 2.4 Sequence of average monthly flows in the Catchrun file 40

Table 2.5 Reservoir level characteristics ... 41

Table 2.6 Lookup table for diversions to FarmReservoir ... 42

Table 2.7 Water user details for the priority allocation test case 44

Table 2.8 Reservoir curtailment levels ... 44

Table 2.9 Water user details for the FWACS allocation test case 45

Table 2.10 MIKE BASIN components (after DHI, 2009) .. 50

Table 2.11 MIKE BASIN evaluation scores ... 55

Table 2.12 MODSIM components (after Labadie, 2010a) ... 58

Table 2.13 MODSIM evaluation scores ... 62

Table 2.14 RiverWare components (after CADSWES, 2011).. 66

Table 2.15 RiverWare evaluation scores ... 72

Table 2.16 Summary of evaluation ratings .. 73

Table 3.1 A list of models and other software that are OpenMI Version 1.4

compliant (after (OpenMI, 2011b) .. 94

Table 3.2 TIME custom metadata tags defined in the Kernel layer (Rahman et al.,

2003; Murray et al., 2007) .. 109

Table 3.3 Some specialised TIME data types (Rahman et al., 2003) 110

Table 3.4 Modelling tools within the eWater Catchment Management Toolkit (after

http://www.toolkit.net.au) ... 113

Table 3.5 Simple quantitative evaluation of the systems reviewed where 1 =

strong, 0 = average, -1 = weak .. 126

Table 3.6 Comparison of river network models based on requirements...................... 144

Table 3.7 Comparison of river network models based on OpenMI criteria 145

Table 4.1 Attributes of the DataDef element .. 167

Table 4.2 The instance variables belonging to the DData class and their

descriptions .. 187

xxv

Table 4.3 Time series types that apply to the DTimeSeries class and their

descriptions .. 188

Table 5.1 The IEngine interface methods .. 198

Table 5.2 Implementation of the IEngine interface methods in the

MBEngineWrapper class ... 200

Table 5.3 The LinkableEngine abstract class methods ... 205

Table 5.4 Implementation of the LinkableEngine abstract class methods 206

Table 5.5 Implementation of the IEngine interface methods in the

AcruEngineWrapper class ... 210

Table 7.1 Quaternary catchment and subcatchment areas ... 233

Table 7.2 Characteristics of rain gauges in or near the Kaap River Catchment 236

Table 7.3 Summary of land use in SubCatchment_10 .. 243

Table 7.4 Summary of land use in SubCatchment_11 .. 243

Table 7.5 The linked model variables for the streamflow use case 253

Table 7.6 The additional linked model variables for the irrigation use case 258

Table 10.1 Students supported by the project. .. 270

xxvi

LIST OF ABBREVIATIONS

ANN Artificial Neural Networks

API Application Programming Interface

AWRIS Australian Water Resources Information System

BASINS The Better Assessment Science Integrating Point and Nonpoint Sources

BEEH School of Bioresources Engineering and Environmental Hydrology (former)

CADSWES Center for Advanced Decision Support for Water and Environmental

Systems

CAT Case Analysis Tool

CCA Common Component Architecture

CDSI Conservation Delivery Streamlining Initiative

CMA Catchment Management Agency

CMT Case Management Tool

COM Component Object Model

CRC Co-operative Research Centre

CRCCH Cooperative Research Centre for Catchment Hydrology Systems

CWMS Corps Water Management System

CWRR Centre for Water Resources Research

DEM Digital Elevation Model

DHI Danish Hydrological Institute

DHI-SA Danish Hydrological Institute in South Africa

DMI Data Management Interface

DMSO Defence Modelling and Simulation Office

DSS Decision Support System

DWA Department of Water Affairs

DWAF Department of Water Affairs and Forestry (former)

ESMF Earth System Modelling Framework

FOM Federation Object Model

FSU Friedrich Schiller University

FU Functional Unit

FWACS Fractional Water Allocation And Capacity Sharing

GIS Geographic Information System

GUI Graphical User Interface

HDSF Hydrological Decision Support Framework

HEC Hydrologic Engineering Centre

xxvii

HEC-DSS HEC Data Storage System

HEC-ResSim HEC Reservoir System Simulation

HLA High Level Architecture

HPC High-performance Computing

HRU Hydrological Response Unit

ICMA Inkomati Catchment Management Agency

IFR In-stream Flow Requirement

IWR Institute for Water Resources

IWRM Integrated Water Resources Management

JAMS Jena Adaptable Modelling System

JNI Java Native Interface

LP Linear Programming

MAC Media Access Control

MAP Mean Annual Precipitation

MDB Murray-Darling Basin

MDI Multiple Document Interface

MMS Modular Modelling System

N/A Not Applicable

NexGen HEC Next Generation

NWA National Water Act of South Africa, Act 36 of 1998

NWRS National Water Resources Strategy

ODBC Open DataBase Connectivity

OMS Object Modelling System

OpenMI Open Modelling Interface

PEST Parameter Estimation

PRMS Precipitation-Runoff Modelling System

PUMMA Peri-Urban Model for Landscape Management PUMMA

RBIS River Basin Information System

Rcl RiverWare Command Language

REALM The REsource ALlocation Model

RIBASIM River Basin Simulation Model

RPL RiverWare Policy Language

RRM Rainfall-Runoff Model

RTI Runtime Infrastructure

RZWQM Root Zone Water Quality Model

SDK Software Development Kit

SEI Stockholm Environment Institute

xxviii

SIDL Scientific Interface Definition Language

SMW Simple Model Wrapper

SOM Simulation Object Model

SWAT Soil and Water Assessment Tool

TIME The Invisible Modelling Environment

UKZN University of KwaZulu-Natal

UML Universal Modelling Language

URL Uniform Resource Locator

USGS US Geological Survey

WASP5 Water Quality Simulation Program (Version 5)

WEAP Water Evaluation And Planning

WMA Water Management Area

WRAP Water Rights Analysis Package

WRC Water Research Commission

WRPM Water Resources Planning Model

WRYM Water Resources Yield Model

XML Extensible Markup Language

1

1 INTRODUCTION AND OBJECTIVES

DJ Clark and JC Smithers

Water is a critical and a scarce resource in South Africa. Hence, it is essential that water

resources are managed efficiently and equitably, as required by the National Water Act

(NWA, 1998) of South Africa (Act 36 of 1998) .

Computer models of water resource systems are a tool for understanding and managing

water resources in South Africa. There are two main drivers for the need for better water

resources modelling tools in South Africa: (i) in many catchments water demand exceeds

available supply, and (ii) the requirements of the NWA. In DWAF (2004) it is reported that in

the year 2000 already 10 of the 19 Water Management Areas (WMAs) in South Africa were

water stressed, i.e. the demand for water exceeded supply. All, except one, of these WMAs

are linked by inter-catchment transfers that assist in the transfer of water from areas with

adequate supply and low demand to highly developed areas with high demand (DWAF,

2004). Water resource managers require improved water resources modelling tools for

planning and operations to assist them in making management decisions leading to better

water allocation and improved water use efficiency. There is a growing realisation of the

need for integrated water resources management, including both water quantity and quality

components and incorporating environmental, social, economic and political aspects of

water, and this need is reflected in the NWA. Typically models are developed for specific

domains within the water resource system and integrated water resources management will

require integration of the models representing specific domains in order to provide a systems

perspective for water management decisions.

This WRC project was preceded by a one year consultancy with the purpose of (i) evaluating

user needs with regard to modelling for water resource planning and operations, (ii)

reviewing existing modelling tools for water resource planning and operational management,

and (iii) making recommendations for further research and the development of modelling

tools (Pott et al., 2008b). The following modelling requirements were identified by Pott et al.

(2008b):

• The need to model water quality in addition to water quantity.

• The need to model at appropriate temporal and spatial scales.

• Models need to represent real life complexity to adequately mimic hydrological

processes and realities on the ground.

• Modelling tools are required for both planning and operations.

2

• Integrated modelling in a Decision Support System (DSS) is required.

• Alternative methods and scenarios of water allocation/apportionment, including

Fractional Water Allocation and Capacity Sharing (FWACS), need to be assessed in

order to promote efficient water use.

• The conjunctive use of surface water and groundwater needs to be integrated in

models.

• The modelling system should link irrigation with water supply limited by operating rules

in order to simulate crop yields.

• To assess the impacts of transferring water use rights.

• To include modelling of economic and social impacts.

• To assess impacts of climate change on water resources and agricultural productivity.

• To perform real time modelling for operational management.

• To include a DSS for managing real time volumetric water abstractions.

• The operational modelling must account for real life operational situations.

• Feedback loops between water demand and supply to determine impact of different

operating decisions must be included.

• Flow routing is necessary for operations modelling.

• The modelling system should include water operating rules and releases that can be

applied on a day-to-day basis.

• Tools are required to operationalize the reserve.

• The modelling system must be able to use climate forecasts to aid operational

decisions.

• Water accounting and auditing of water use combined with metering and monitoring is

necessary.

• Modelling results must be verified against measured data.

• More user friendly model front and back ends are necessary to assist in setting up

models and communicating results to stakeholders.

In a subsequent meeting with Mr Brian Jackson from the Inkomati CMA, the following

modelling requirements were identified (Jackson, 2009):

• Water accounting and auditing.

• Operationalization of the Reserve at a daily time scale.

• Determine quantity of surplus water (i.e. in excess of allocated water).

• Easy means of running scenarios to assess impacts of restrictions, licences and

trading on water users, especially downstream users.

3

• Physical modelling to evaluate land use scenarios (e.g. impact of change of land use

on water resources).

• Model the impact of off-channel dams.

• Operate dams as part of a system not individually.

• Use of short and long term forecasts for planning.

• Need to be able to easily update models with rainfall and system state data (e.g. dam

levels).

Based on these requirements a set of water management tasks and decisions and the

modelling requirements to assist water managers with these was created. The main tasks

and decisions were divided into two sets, planning and operations, and are described in

Table 1.1 and Table 1.2 respectively.

Table 1.1 Water resource management tasks and decisions for planning

Task/Decision Description
Water quantity (yield)
determination

One of the primary water management tasks is to estimate the quantity of
water available within a catchment and the level of assurance of this
availability. These estimates need to account for the spatial and temporal
variability of the climate variables driving the hydrology. In addition to climate
variability the influence of climate change also need to be considered. The
methods used to estimate water availability for planning purposes needs to
be compatible with the methods used for water resource operations.

Assessing new
licence applications

Water managers need to assess water use licence applications to determine:
• if there is sufficient quantity of water available,
• of a suitable quality,
• the impacts of any associated change in land use, and
• the impact of quantity and quality of water discharged.

Water quality There is increasing awareness and concern regarding water quality in
catchments. The NWA requires water managers to assess and manage the
quality of the water resources under their control.

Impact assessment Catchments are in a continual state of change as they develop. These
changes include: urbanisation, industry, land use and management changes,
irrigation, transfer of water use rights and water infrastructure such as dams.
Water managers need to assess the impacts of these changes on water
availability and quality.

Water use efficiency Water managers should promote water use efficiency, especially in stressed
catchments, to increase assurance of supply to existing users or make water
available to new water users. It may be possible to increase water use
efficiency through the adoption of alternative water allocation methods such
as FWACS in place of a priority based system. Water use efficiency should
be considered when allocating water use licences, including socio-political
criteria in addition to economic benefits.

4

Table 1.2 Water resource management tasks and decisions for operations

Task/Decision Description
Data management
and storage

In order for water managers to make informed decisions they require data
and information about the water resource they are managing. This data
includes historical data, real time data and records of water trades. This data
and information needs to be obtained, quality controlled, stored, accessed
and analysed.

Monitoring If the required time varying data and information are not available from state
or commercial sources then a monitoring network will need to be established
at a suitable scale to monitor streamflow, rainfall and climate variables used
to estimate evaporation such as temperature, humidity and solar radiation.

Meeting
licences/demands

The National Water Act makes provision for a Reserve to meet basic human
needs and environmental requirements. A Reserve determination needs to
be conducted, then a plan to fulfil the Reserve requirements and finally how
to provide water for the Reserve operationally through releases from a dam
or restrictions on water users. The water resources in a catchment need to
be allocated to meet demands in priority order of the Reserve, international
obligations and then demands from other sectors (e.g. industry, irrigation). In
catchments with water infrastructure such as dams and diversions it is
necessary to operate this infrastructure to provide water to licensed water
users downstream. Water management includes conjunctive use of both
surface water and groundwater.

Auditing and
compliance

To give effect to water use licences users need to be informed of the water
allocation quantities, surplus water and restrictions during droughts. Water
use licences are only of use if all water users are honest in only using the
water allocated to them and it may be necessary to monitor actual water use
by means of weirs and flow meters so that water use can be audited.
Monitoring of flows may also be necessary to ensure compliance with the
Reserve.

Flood management Flood management plans need to be put in place to enable control of floods,
prevent development in high risk areas and to provide early warning systems.

Forecasting
demands and supply

Recent advances in climate forecasting enable water managers to plan
ahead in time to the next day, week, month or season and estimate future
water demands and availability which can assist in the operational decisions
they make in real time. Recent advances in remote sensing technologies
provide water managers with valuable information about the current status of
water resources within a catchment and potential crop water requirements.

The water resource modelling requirements identified to support these tasks include the

need to adequately represent real work complexity, the need to integrate models

representing different domains within the water resource system and other system

requirements.

Water resource systems are complex even in their natural state and anthropogenic

development within these systems adds to the complexity. All models are a simplification of

the systems they represent, however, for a model to be useful it must be capable of

5

adequately representing real work complexity for a given application. In terms of water

resource modelling representing this real world complexity includes being able to:

• Represent non-homogenous hydrological responses due to spatially variable

catchment characteristics such as land use and soil type within a catchment, by

modelling catchment subdivisions referred to as hydrological response units (HRUs).

In a study by Chetty (2009) it was shown that area weighting soils in subcatchments

and dividing a subcatchment up into HRUs based on land cover resulted in significantly

better simulation results compared to using the dominant land use and soil for a

subcatchment.

• Represent complex catchment configurations, including HRUs, irrigated areas, rivers,

dams, intercatchment transfers and diverse water users.

• Model individual water users or groups of similar water users.

• Model water supply to a user from more than one water source.

• Model multiple water user demands from each water source.

• Model inter-catchment transfers on a time step by time step basis.

• Perform flow routing through rivers and dams to estimate flow lags and attenuations.

• Represent feedbacks between different hydrological processes or components of the

water resource system on a time step by time step basis, for example irrigation

demand, supply and return flows.

• Model dynamic changes in land use, management and abstractions (e.g. for irrigation)

within catchments during a simulated time period.

There is a growing awareness of the need for a systems perspective of water resources

instead of focusing on specific domains within the water resource system, such as surface

water, groundwater or the environment. Ideally a water resources planning and operation

toolkit should include models of terrestrial surface water, groundwater, the river and dam

network, the water supply network, water quality, ecology and economic and social aspects

of the water resource system. Many models have been developed for each of these

domains, but these models need to be linked to give a systems perspective to enable water

managers to make better decisions. Ideally these models need to be linked “in parallel”, i.e.

on a time step by time step basis to model feedbacks between processes simulated in the

different domains. Ideally these models should be run within a common modelling framework

to minimise duplication of common tools for GIS and time series analysis.

6

Other modelling system requirements include:

• Being able to model hydrological processes in a physical conceptual manner.

• Being able to model at appropriate and variable spatial and temporal scales.

• Graphical user interfaces (GUIs) for models that are user friendly and enable easy and

flexible configuration of model, including GIS and data analysis tools.

• Being able to easily configure and run scenarios.

• Provision and management of real time data for operations modelling.

• Adaptive modelling where simulated state parameters in models can be updated using

observed real time data.

• Data management structures and tools and efficient model input and output.

• Evaluation of uncertainty in model domains and overall modelling uncertainty.

• Suitability for use for both planning and operations modelling.

Water resource managers, for example employed by Catchment Management Agencies

(CMAs), will be required to perform many water management tasks for water resource

planning and operations as shown in Figure 1.1. The water management tasks and

decisions and the modelling requirements listed above are an indication of the need by water

managers for a better understanding of the physical hydrological system they are managing

and for better modelling tools to assist in managing the finite water resources under their

control in an equitable and sustainable manner. To meet these requirements it will be

necessary to integrate models developed for specific domains within the water resource

system. The models selected need to represent the real world complexity of the physical

hydrological system at appropriate spatial and temporal scales. As shown in Figure 1.1, the

physical hydrological system, consisting of catchments and water users, requires

management of the finite water resource, and to do this managers require integrated

modelling tools to adequately represent the physical hydrological system being managed.

7

F
ig

ur
e

1.
1

M
in

d
m

ap
 o

f t
he

 w
at

er
 s

ys
te

m
,

m
an

ag
em

en
t,

m
od

el
lin

g
lo

op

8

Water resources modelling tools are required both for water resources planning and for water

resources operations. Water resources modelling for planning is widely practiced in South

Africa, though many of the water resources modelling tools currently in use were developed

prior to the 1998 National Water Act (NWA, 1998) and may need to be updated, extended or

replaced in order to meet the requirements of the National Water Act. The use of water

resources modelling for operations appears to be less widely practiced in South Africa and is

an area of water resources modelling that requires further development and implementation.

Recent improvements in climate forecasting and remote sensing have increased the data

and information available to water resource managers and expanded the scope for water

resources modelling to aid operational decisions by water managers. It is important that the

concepts and methodologies used in water resources modelling for planning and operations

are compatible.

In South Africa the Pitman model used together with the Water Resources Yield Model

(WRYM) and the Water Resources Planning Model (WRPM) are the modelling tools

predominantly used for water resource planning. The WRYM and WRPM models operate at

a monthly time step and are generally used at a relatively coarse spatial scale. The WRYM

does not model water quality. The ACRU agrohydrological model has been used for more

detailed planning studies, especially in studies of land use and climate change impacts but is

not strong in the area of network modelling. More recently the ACRU model has been used

together with the MIKE BASIN model, where ACRU is used to generate streamflow which is

then used in MIKE BASIN for network modelling. However this is still a series link between

the models and feedbacks such as irrigation return flows and water quality cannot be

represented. These modelling tools in their current state are not suitable for assisting water

managers in many of the tasks and decisions listed above. There is a growing realisation

internationally of the need to integrate models representing different domains. The main

shortcomings of the models mentioned above are limitations in being able to represent real

world complexity, suitability for operational modelling and the ability to be easily linked with

models for other domains. The restructuring of the ACRU model into an object oriented

structure in the Java programming language (Lynch and Kiker, 2001) and the recent

implementation of XML model input files (Clark et al., 2009) were significant moves towards

being able to model real word complexity. However, further development is still required to

enable more flexible catchment configuration scenarios and modifications to make it suitable

for modelling both the spatially non-uniform hydrological responses within a catchment and

for operational modelling.

9

The broad objective of this project was to develop and integrate modelling tools to support

water resource managers by meeting some of the modelling requirements identified for water

resources planning and operations. The more specific objectives of this project were to:

• Review river network models which are suitable for water resource planning and

operations and to select one to be integrated with the ACRU agrohydrological model.

• Investigate methods for linking different domain models such as a hydrological model

and a river network model, then select and implement a suitable method for integrating

the hydrological model and the selected river network model.

• Further develop the ACRU daily time step agrohydrological model in order to

realistically represent the varying hydrological responses within the terrestrial

hydrological system.

• Configure and apply the integrated hydrological model and river network model for

selected catchments within the Inkomati WMA.

The first step towards an integrated modelling system is to model land based hydrological

processes at suitable spatial and temporal scale to represent real world complexity. It is

proposed that the ACRU agrohydrological model be used of this purpose for the following

reasons:

• It has been developed and applied extensively in South Africa and is on the South

African Department of Water Affairs (DWA) list of recommended models.

• The physical conceptual nature of the model makes it suitable for modelling a variety of

land use scenarios.

• The object oriented model structure and object oriented XML input file structure is

capable of representing real world complexity.

• It operates at a daily time step, which makes it suitable for operational modelling.

• The object oriented model structure enables parallel processing which enables

feedbacks between catchments to be modelled.

• It includes water quality modules for sediment yield, salinity, and nitrogen and

phosphorus modelling.

• It can be easily adapted to provide additional functionality required for operations

modelling.

• It includes the concept of water ownership which is necessary for water accounting.

The ACRU model does not have sufficient river network modelling capabilities and

specialised river network models typically rely on simple rainfall-runoff models or require

streamflow as an input. Suitable river network models should:

10

• Model both water quality and quantity.

• Be suitable for planning and operations modelling.

• Support different water apportionment rules.

• Include functionality for water accounting and auditing.

• Include functionality to support water trading.

• Be able to solve complex water demand and supply networks.

• Be able to do flow routing to account for flow lags and attenuations.

• Be suited to linking with ACRU and other models.

Several suitable river network models are reviewed and evaluated in Chapter 2, resulting in a

recommendation that the MIKE BASIN model be selected for use in conjunction with the

ACRU model.

To integrate models it is necessary for data and information to be exchanged between the

models. Linking two models in series is usually a simple matter of running the first model,

converting the output format of the first model to the input format of the second model, and

then running the second model. One critical drawback of the series linking approach is that

feedbacks between processes in the two separate models cannot be represented. There are

various means of integrating models, including linking models in parallel, these are reviewed

and evaluated in Chapter 3. As a result of this review and evaluation the OpenMI Standard

and model linking framework were recommended as being the most appropriate for use in

this project. The implementation of OpenMI using wrappers for both the ACRU and MIKE

BASIN models is explained in Chapter 5. The integration of the ACRU hydrological model

and the MIKE BASIN river network model in this project was intended as a test case for the

integration of additional models for other domains such as detailed groundwater models and

socio-economic models. A set of use cases for the application of OpenMI to link the ACRU

and MIKE BASIN model is presented in Chapter 6.

In the assessment of modelling requirements to support water resource planning and

operations, a few areas of further development were identified for the ACRU model, including

the following which are described in Chapter 4:

• Refinements to the design of the XML input files for the ACRU model to include:

relationships between components of the hydrological system, catchment configuration

options, a means of storing dynamic data and improved linkages to external data files.

11

• Modifications to the design of the XML input files for the ACRU model, to make it

suitable for operational modelling, including: storage of state variables and scenario

management.

• Modifications to the ACRU model, to make it suitable for operational modelling,

including: storage of state variables, hotstarting, scenario management and saving

output to other data formats.

It was proposed that the ACRU model and the MIKE BASIN model be configured for a

selected catchment within the Inkomati WMA to demonstrate the use of the integrated

models in a real catchment. The Inkomati WMA was proposed for the following reasons:

• It is a stressed catchment;

• It contains a variety of water users including irrigation, industry, urban, the Kruger

National Park and international obligations to Mozambique and Swaziland;

• Monitoring of water use is already taking place;

• The Catchment Manager, Mr Brian Jackson, was supportive of this research;

• The project could build on and contribute to other research projects within the

catchment.

The Kaap River Catchment was selected for the case study. The configuration of the ACRU

and MIKE BASIN model for this catchment, and the application of the integrated models, is

described in Chapter 7.

The outcomes of the project which include a review of river network models, a review of

model linkage mechanisms, further development of the ACRU model, development of

OpenMI compliant wrappers for the ACRU and MIKE BASIN models, and examples of how

these integrated models can be applied is discussed in Chapter 8. Recommendations for

future research are listed in Chapter 9.

12

2 REVIEW AND EVALUATION OF RIVER NETWORK MODELS

SLC Thornton-Dibb JC Smithers and DJ Clark

There are a number of river network models and modelling tools available from software

developers and research groups internationally. These models were reviewed and evaluated

to gain a better understanding of how these models work and the functionality offered by

each individual model to enable the most appropriate model to be selected for use in the

project.

2.1 Review and Initial Evaluation of Available Models

The planning and management of water resources are complex processes as many

competing demands have to be simultaneously met. In South Africa these include demands

related to meeting human needs for water, supplying water to sustain the environment

through an environmental reserve, meeting growing demands from industry for water while

also supporting food security by the allocation of water to meet irrigation demands. Fresh

water is a critical and limited resource, particularly in a semi-arid country like South Africa

and the increase in demand as well as the uncertainty and variability of supply, both spatially

and in quantity and quality, adds to the complexity of managing this vital resource. Although

there is a continued growth in the demand for water resources there are few, if any, dams

being built in developing countries, thus emphasizing the need to maximise the potential of

reservoirs and improving water use efficiency (Labadie, 2004).

The National Water Act (NWA, 1998) has transformed the way water is controlled, from a

system of rights based on land ownership (the riparian system) to a system designed to

allocate water equitably in the public interest according to the National Water Resources

Strategy (NWRS), as detailed in DWAF (2004). This has been a significant change, which

has influenced the user needs in South Africa for water resource planning and operational

activities, bearing in mind that the currently applied water resources planning systems were

largely conceptualized and developed in the era of the 1956 Water Act. As a consequence,

the management of water resources in South Africa is currently faced with a number of inter-

related challenges which include:

• To accurately determine, at detailed spatial and temporal scales and in an integrated

manner, how much water can be allocated in various catchments (and subcatchments)

in South Africa.

13

• To most appropriately allocate the limited water resources with stakeholder input and in

accordance with the NWRS, and issue entitlements (licenses) amongst competing

users. The allocation of water resources is critical given that more than 50% of

catchments in South Africa are deemed to be over-allocated, with the demand for water

exceeding the ability of the systems to supply the water within acceptable levels of

assurance (DWAF, 2004).

• To ensure that license conditions are adhered to and to ensure that water resources

are managed efficiently.

Planning models and methods are required for the first two challenges, while operational

models and methods are required to address the third challenge. There should be a direct

link between the planning and operational models in that both types of models have similar

characteristics.

Planning models usually work on relatively coarse time steps, e.g. monthly or even annual

time steps, and make use of historical data or synthetic streamflow sequences generated via

stochastic algorithms from the historical data sets. The operational models on the other

hand need to operate on a more current “now-time” basis, and may make use of forecast

data (e.g. daily to seasonal forecasts), and often need to better reflect the complexities within

catchments than the planning models, including the institutional arrangements (operating

rules) prevalent in the catchment. Welsh (2011) indicated that in Australia the most common

time step for planning models is now daily, with monthly models being phased out. Welsh

(2011) also indicated and that operational models in Australia run at daily to hourly time

steps and always include forecast data, and that both planning and operational models

include the institutional arrangements (operating rules). It is important to note that finer time

step and spatially detailed hydrological data can be accurately aggregated into larger time

steps, but the converse is not true. Thus, in order to meet the requirements of the National

Water Act (NWA, 1998) and NWRS (DWAF, 2004), it is anticipated that future planning and

operational models will be based on spatially and temporally detailed configurations. The

basis of these systems will be a rainfall-runoff model linked to a river network model. In

addition, there has been a move towards a “bottom up” approach in water resources

planning and management as stakeholders have become more actively involved in driving

the requirements and needs in the planning process, as well as demanding more transparent

systems to aid in policy and decision making (Assaf et al., 2008).

In South Africa, the Pitman model used with the Water Resources Yield Model (WRYM) and

the Water Resources Planning Model (WRPM) are the modelling tools predominantly used

14

for water resource planning (Basson et al., 1994; Mckenzie and Van Rooyen, 2003). The

WRYM and WRPM models operate at a monthly time step and are generally used at a

relatively coarse spatial scale. The WRYM does not model water quality. Many of South

Africa’s dams lack a comprehensive system of operating rules, as shown in a Department of

Water Affairs and Forestry business review (Manqoyi and Nyabeze, 2006). As a

consequence, many of the dams in South Africa are managed using operator experience and

rules of thumb and hence there is no clear link between planning and operations. The

WRYM and WRPM models were not included in this review based on the conclusions made

in Frezghi (2007) that the WRYM’s monthly time step is too coarse to support all aspects of

the implementation of the National Water Act (NWA, 1998) and the National Water

Resources Strategy (NWRS), as detailed in DWAF (2004). For example, these models are

not suited to modelling short term operational decisions requiring a daily time step, such as

releases for environmental flows which mimic the natural hydrology, water quality processes

where a monthly time step is too long, and the ability to route flows with lagging and

attenuation of hydrographs through a river network. In addition, the WRYM is based on a

priority allocation method and does not make provision for alternative allocation methods

which may result in more effective allocation of water resources in some circumstances.

Generic simulation models are available for both supporting water resource planning and

management in catchments and also for facilitating stakeholder involvement (Wurbs, 2005).

Reservoir/river system network models track the movement of water through a system using

volume mass balance accounting procedures (Assaf et al., 2008). One of the challenges in

developing these models is including different levels of complexity appropriate to the

experience and needs of the user.

The objective of this section is to review river network models which are suitable for water

resource planning and operations and to select a network model to be integrated with the

ACRU daily time step hydrological model.

According to Wurbs (2005), a significant amount of work has been published, in addition to

unpublished work, on developing and applying reservoir/river system models over the past

50 years and he provides an inventory of 15 generalised river network models used

internationally and reviews 5 of these models in more detail (SUPER, HEC-ResSim,

RiverWare, MODSIM and WRAP). More recently, Assaf et al. (2008) reviewed five river

network simulation models (MODSIM, MIKE BASIN, RIBASIM, WBalMo, and WEAP) for

river planning and operations.

15

Pott et al. (2008b) reviewed a number of models and systems used both locally and

internationally for water resources planning and operations and also conducted a survey of

stakeholders involved in water resources planning and management in South Africa. From

the review of models and needs identified, Pott et al. (2008b) identified that the RiverWare

model (Zagona et al., 2001), the BASINS framework developed by the USA EPA (EPA,

2007), the MIKE BASIN model (DHI, 2010) and the Australian Water Resources Information

System (AWRIS) currently under development (BoM, 2010b), as all having the potential to

meet some or all of the needs identified. Comprehensive literature reviews of models used

for water resources planning and operations have been conducted by Frezghi (2007) and

Kime (2010) and are utilised in the model reviews in this section.

2.1.1 User needs and requirements

From the expert panel and stakeholder workshops conducted by Pott et al. (2008b) the

following issues related to water resource management in South Africa were raised:

• Water quality planning is lagging far behind planning for water quantity.

• Implementation of the National Water Act is not being operationalized.

• Tools and methods are needed which promote the efficient use of water by water

users.

• Concerns were raised regarding the potential impact of climate change.

• Both short-term operational modelling and long term planning must take account of real

life operational situations and monthly time step models are not capable of mimicking

much of the complexity that exists at an operational level.

• New water apportionment methods need to be considered and supported by planning

and operational models.

• There is a need for models to support the transfer of water use-rights.

• Both water accounting and auditing of water use is necessary.

Pott et al. (2008b) recognised the need to communicate the user rights to water users and to

facilitate the trading of water. Based on inputs from the expert panel and stakeholder

workshops, Pott et al. (2008b) envisage a water accounting system which will enable the

following queries to be performed at a river node:

• the quantity and quality of water at the node (for a given point in time or time range),

• the water allocated to a user and hence the ownership of the water,

• the source/origin and destination of the water,

• the timing when the water will reach the abstraction point,

16

• the location where the water will be used,

• the water lost and changes in water quality as water flows downstream, and

• to be able to identify traded water.

In addition, records of water traded, trading opportunities and a comparison of actual vs.

allocated water would need to be maintained by the water accounting system.

Wurbs (2005) suggested that the following should be taken into account when selecting a

complex river water management decision-support model:

• The model should have a history of extensive development/application thus providing

opportunities to correct deficiencies and add improvements.

• A sound technical and institutional foundation is necessary to support a framework that

provides continued future modelling improvements.

Based on the above, the selected river network model should include all or most of the

following attributes:

• Model both water quality and quantity.

• Be suitable for planning and operational modelling.

• Be able to simulate a range of spatial and temporal scales.

• Support different water apportionment rules, including priority based and fractional

allocation of river flow and capacity sharing in reservoirs.

• Include functionality for water accounting and auditing.

• Include functionality to support water trading.

• Be able to solve complex water demand and supply networks.

• Be able to do flow routing to account for flow lags and attenuations and to determine

releases necessary to obtain a specified peak discharge at a downstream point.

• Be suited to linking with the ACRU model and other models on a time-step-by-time step

basis.

• Be user friendly, to facilitate flexible configurations, preferably with integration of GIS

functionality, and the ability to run scenarios.

Other considerations include the purchase and maintenance cost of the model, the potential

to develop a working relationship with the model developers, the level of available user

support by the model developers to model users, and a history of model development,

application and refinement with continued support for modelling developments in the future.

17

After their review of river network models, Pott et al. (2008b) recommended that the

RiverWare model (Zagona et al., 2001) and the AWRIS (BoM, 2010b) should be prioritized

for further investigation to assess their potential to meet the needs identified. These and

other river network model developments are reviewed in Section 2.1.2.

2.1.2 River/reservoir network models

A river network model can be viewed at a simple level as a schematic linkage of rivers and

reservoirs. This is illustrated in Figure 2.1 and Figure 2.2 where River Reaches 1, 2, 3 and 4

feed into River Reach 5.

Figure 2.1 Simple river diagram

Figure 2.2 Simple river network diagram

21

3 4

5

1

4

5

2

3

18

In Figure 2.1 the assumption is made that there is one river reach per catchment thus the

representation in Figure 2.2 could also be indicative of the catchment network.

River networks are in reality far more complex than the simple illustrations above. They are

an integral part of catchment hydrology and include reservoirs, links to irrigation systems as

well as other extractions, canals, wetlands, water user return flows and in some cases inputs

from external systems such as inter-catchment water transfers. To manage the system

effectively, a detailed understanding is required of the complex systems involved, including

both the quantity and quality of water available at various locations within the system.

For a small catchment it may be assumed that all the stormflow generated from an event

may reach the exit of the catchment on the same day. However, this may not be the case for

large catchments (Smithers and Caldecott, 1995). Hence, the river network model is

required to route the hydrographs through the system in order to simulate the lagging and

attenuation of hydrographs as they move down the river network and through reservoirs.

In a river network model, streamflow from the subcatchments are input to the model. These

may be observed, simulated or stochastically generated streamflow, which in the simulation

case, requires that a rainfall-runoff model (RRM) simulates the streamflow which is linked to

the river network model. Ideally the models need to be linked in such a way as to represent

feedbacks between the two systems being modelled, for example, irrigation return flows.

The linking of a daily hydrological model with a river systems model can be accomplished by

directly integrating the one model into the other or creating a new interface to link the two

models. Frequently, the simulated output from the rainfall-runoff model is used as input to

the river network model. The disadvantage of this serial-type link is that no feedback is

possible between the two models (e.g. irrigation return flows) and ideally the two models

should run in parallel on a time-step-by-time-step basis.

One approach to support integrated catchment management is the concept of using a

Decision Support System (DSS) or a framework, which includes common general

functionality (e.g. a common Graphical User Interface, common GIS tools, common analysis

tools), but allows for multiple models to be incorporated within the framework. This approach

requires the models that plug into the framework follow certain criteria and standards to

facilitate the communication between the model and tools available within the framework.

Hence, a requirement for the river network model selected for this project is that the model

19

must be able to link with other models. In the following sections a number of river network

models are reviewed.

Wallbrink (2008) suggested the following reasons why models are useful for the

management and/or operations of river systems:

• Resolution of competing demands for water resources and their associated trade-offs.

• Comparisons can be made between current water use and proposed future water use,

including water allocation or sharing.

• Assist in policy formulation and land use permit decisions.

• The impact of climate change or variability and its possible effects on the water

resources with a catchment.

• Better understanding of the river system.

Each of the following sections contains a brief overview of a model or system that was

reviewed for this project.

2.1.2.1 AWRIS

A literature review of the Australian Water Resource Information System (AWRIS) (BoM,

2010b) clearly indicates that an open supply of information for planning and management

has been embraced. At the heart of AWRIS is an information system housed in a central

database for the entire country that is managed by the Bureau of Meteorology (the Bureau).

This information system is populated by water data collecting agencies that are, as a result of

Water Regulations 2008, now required to supply specified data to the Bureau (BoM, 2010b).

The standardization of the water information by the Bureau facilitates data accessibility by

users, planners, water managers, stakeholders and policy-makers. The data is linked

spatially via the Australian Hydrological Geospatial Fabric, referred to as Geofabric (BoM,

2010a), which can be queried and reports generated in various ways. Both observed data

and modelled data are made available publicly which encourages both stake holder buy-in

and transparency.

The Geofabric is a Hydrological Geodatabase developed as part of the AWRIS. It

incorporates DEMs as well as hydrological networking information and facilitates setting up

of models as well as access to data provided by the AWRIS system (BoM, 2010a).

The first phase of the AWRIS has been completed. One part of this is the water storage

information for Australia that can now be accessed from:

20

http://water.bom.gov.au/waterstorage/awris/index.html. This web based tool gives an

overview of the entire country’s water storage levels on a daily basis, or accumulate storages

based on various spatial queries, for example by region or catchment. The user can drill

down to a specific reservoir and view its current storage as well as changes in storage.

The AWRIS is being developed in phases with more being added over the next ten years

(BoM, 2010b). This cutting edge development has vast resources being ploughed into it,

both in expertise and in monetary terms, and is shown schematically in Figure 2.3.

Figure 2.3 Schematic diagram of database and information processes in AWRIS (BoM,

2010b)

Thus AWRIS is more of an information system than a model and developments in eWater

CRC Source, which is a part of the Australian system currently under development, are

briefly reviewed in Section 2.1.2.3.

2.1.2.2 BASINS

The Better Assessment Science Integrating point and Nonpoint Sources (BASINS) (EPA,

2007) software system was first released in 1996 and has seen various improvements over

the years with different version releases. The release of BASINS 4.0 has seen the most

noteworthy changes with the move to an open source GIS system architecture providing a

cost saving benefit (EPA, 2007). BASINS is used for analysing environmental systems to

explore management alternatives at various spatial scales as it was developed to be used by

both local and regional agencies. It enables both water quantity and quality catchment

studies to be simulated and facilitates viewing data from a point or spatial scale (EPA, 2007).

BASINS incorporates the WinHPSF and PLOAD models and also includes Parameter

21

Estimation (PEST) for WinHPSF and the Windows-based Climate Assessment Tool. PEST

is a tool for automating the calibration process of WinHPSF and adds the ability to quantify

uncertainty in the model predications (EPA, 2007). PLOAD is a lumped model for

investigating water quality trends based on land-use (EPA, 2010).

A Data Download Tool and GIS enables access to observed data and other input information

via links to the BASINS web site and other sources. BASINS also contains a GIS Project

Builder, GIS Edit Tools, the ability to automatically or manually delineate catchment

boundaries, a reporting facility to characterize catchments, a series of Surface Water Models,

and customised databases. Software improvements include an automatic update feature to

ensure that all the BASINS components are updated to the most current version (EPA,

2007).

Flow routing is performed within the models integrated into BASINS (EPA, 2010) and as

such is not a feature made available from the BASINS framework itself. No facilities for

water accounting or water ownership could be found as a result of a search through the

BASINS electronic user manual (EPA, 2010).

2.1.2.3 eWater CRC Source

The eWater Co-operative Research Centre (CRC) is developing a new National River

Modelling Platform for Australia, along with partner organisations and additional funding from

Australian Government agencies, to “manage and/or operate” river systems (Wallbrink,

2008). Wallbrink (2008) describes this platform as a flexible, extensible and component-

based platform incorporating the “next generation of models” capable of taking into account

the entire “water balance – from climate to runoff to river system to regulation and

surface/groundwater interactions”. This flexibility enables the building of various systems

based on the availability of data. The extensibility and component-based design facilitates

the merging of models within the suite, which will range from the current uncertainty and risk

models through to economic models in the future.

The eWater River Manager software, or ‘Source’ as it is referred to (Welsh, 2011), is

currently under development and will replace the MSM-Bigmod, REALM and IQQM models

for the Murray-Darling Basin (MDB) in Australia (Welsh and Podger, 2008; Welsh and Black,

2010). Welsh and Black (2010) refer to the REALM model as a monthly “generic

optimisation model”, and the IQQM and Bigmod models as “generic daily simulation models”.

Previously different models calibrated for specific subcatchments, and running at monthly or

22

daily time steps were used within large catchments in Australia, making it difficult to compare

or accumulate outputs (Welsh and Podger, 2008). Source Catchments uses a common daily

time step to overcome this problem in the MDB (Wallbrink, 2008). It is envisaged that the

platform will provide a more consistent method for calibration of hydrological models and

facilitate stakeholder involvement and is intended to aid in trade-off decisions, water trading,

regulations and water accounting in a transparent process that can be repeated (Wallbrink,

2008).

Wallbrink (2008) states that the modelling platform puts Australia “at the forefront of model

building internationally” and that once their vision is achieved their models may have great

potential for application internationally where contention over water resources is high, for

example, in Southern Africa. The Source Rivers component is currently under development.

However, a beta version could possibly be obtained for evaluation on request (Miller, 2011).

Delgado et al. (2011), in the draft Source User Guide which is currently under development,

describes Source as “an application for describing and modelling the behaviour of river

systems. Source is designed to support the construction and operation of river models that

mimic river behaviour over arbitrarily-long periods (days, weeks, months, years, centuries)”.

Source has the facilities to track water ownership through a system enabling queries to be

made that determine how much water and where in the system it is located for a particular

water owner. A river system can therefore be sub-divided based on the water owner which

adds management functionality which could facilitate water trading, in both storages and

links and restrictions for water owners. The development of separate resource allocation

systems for water owners facilitates capacity sharing, continuous sharing and water

accounting. Optimisation algorithms, scenarios and economic analysis are some of the

features of Source (Delgado et al., 2011). The base code is currently being made OpenMI

compliant (Welsh, 2011). eWater CRC’s Source is made up of Source Catchments, Source

Rivers and Source Urban (eWater, 2010a).

Source Catchments has a user friendly GUI and facilitates setting up various scenarios with

the aid of a Scenario Wizard. The concept of a Functional Unit (FU) is used within Source

Catchments, where FUs are defined as “areas of similar hydrological behaviour or response

(e.g. land use)” (eWater, 2010b). A FU is equivalent to a Hydrological Response Unit (HRU).

Each FU can have a different Rainfall-Runoff Models (RRM) assigned to it, or a particular

RRM can be assigned to all the FUs in a particular subcatchment, or assigned based on FU

23

type. Currently the RRMs available for selection in Source Catchments include: AWBM,

Sacramento, SIMHYD, and SURM (eWater, 2010b).

The Source Catchments component is currently free for the first 12 months with an annual

renewal fee of (AUD) $ 990 and is available from their web site (eWater, 2010a).

2.1.2.4 HEC-ReSim

The Hydrologic Engineering Centre (HEC) is a division of the Institute for Water Resources

(IWR) of the U.S. Army Corps of Engineers. The Reservoir System Simulation (HEC-

ResSim) model is a part of the HEC Next Generation (NexGen) Software Development

Project and replaces HEC-5 (HEC-5, 1998). It is intended to simulate reservoir operation

and has a Graphical User Interface (GUI), makes use of the HEC Data Storage System

(HEC-DSS), and has data management capabilities and reporting features (Wurbs, 2005;

HEC-ResSim, 2010).

HEC-ResSim is suited to planning studies and for modelling flood control operations by

reservoir control personnel. Specifically coded algorithms are used to simulate multi-

purpose, multi-reservoir systems with user selected time-steps, which may range from 15

minutes to one day. Various routing options are provided (Wurbs, 2005).

HEC-ResSim consists of three modules: catchment configuration, river network and

simulation (HEC-ResSim, 2010). The catchment configuration module provides a common

framework for catchment configuration and definition which can be used by different HEC-

based modelling applications.

The river network module builds a schematic network describing the physical and operational

elements of the system, including alternative scenarios, and can be used to create and edit

elements on a river reach. The simulation module configures the simulation, performs the

computations and enables viewing of the results. Seven different routing methods, which are

mostly Muskingum-based methods, are available to route the flows in the river reaches.

(HEC-ResSim, 2010).

2.1.2.5 MIKE BASIN

The MIKE BASIN model is river network simulation model where rivers are represented by a

network of branches and nodes and a mass balance is performed for each accounting step

24

(DHI, 2010). According to Ershadi et al. (2005), the philosophy behind MIKE BASIN is to

keep the modelling simple and intuitive while still providing comprehensive planning and

management insight. The model is an extension to and runs from within the ESRI ArcView

GIS environment (Wurbs, 2005) via a user-friendly graphical user interface, making the

model a potentially powerful tool for enhancing communication between stakeholders

involved in water management.

MIKE BASIN incorporates the physical layout of the river basin and the water resource

system infrastructure, enables naturalised streamflow to be specified for incremental

catchments, the specification of different water user schemes including their water demand,

and water resource infrastructure and management operations.

Although a monthly time step is commonly used for MIKE BASIN applications, the time step

can be specified by the user if a specific need is encountered (Wurbs, 2005). Reservoirs and

abstraction points can be used to control the allocation of water through the specification of a

set of rules which are capable of simulating riparian rights or prior rights systems (Wurbs,

2005). This is facilitated by various water sharing and allocation algorithms (DHI, 2010).

When available water quantities do not meet the requirements from multiple stakeholders,

the allocation is solved based on priority levels that can be set at a local (i.e. node) or global

scale (Christensen, 2004).

Pott et al. (2008a) showed that the ACRU model has been successfully linked in series with

MIKE BASIN via the AAMG development in the Oliphant’s River and the Mhlathuze River

catchments. Kime (2010) also used a combination of ACRU and MIKE BASIN to develop a

water accounting and auditing system to track water ownership, but encountered limitations

to do this in MIKE BASIN.

2.1.2.6 MODSIM

MODSIM is a comprehensive, generalized river basin management decision support system

which has been under continuous development and enhancement since 1979 at Colorado

State University (Labadie, 2005). The Bureau of Reclamation and various other entities have

sponsored studies in which MOSDIM has been applied. MODSIM is based on object-

oriented programming and represents a number of water allocation models based on

network flow programming, including the early Texas Water Development Board models

among others (Wurbs, 2005).

25

Wurbs (2005) describes MODSIM as a “general-purpose reservoir/river system simulation

model based on network flow programming designed for analysing physical, hydrologic, and

institutional/administrative aspects of river basin management”. Long-term planning is

supported with the use of monthly time steps, medium-term management by using weekly

time steps and short-term operations by the use of daily time steps. User-specified relative

priorities are used to allocate water to meet diversion, instream flow, hydroelectric power,

and storage targets, as well as lower and upper bounds on flows and storages.

Water quality simulation and the joint use of ground and surface water are optional

capabilities (Labadie, 2006a). Allocation decisions are not affected by either future inflows or

future releases as a network flow programming solver is used for each individual time interval

(Wurbs, 2005).

The river/reservoir system topology is built by clicking and dragging icons representing

various hydrologic nodes via the graphical user interface (Wurbs, 2005; Labadie, 2006a).

Raster image files may be imported as background layers over which the network nodes etc.

can be spatially laid out (Labadiea, 2006). A data management system controls data

structures embodied in each model object and this facilitates data input and queries. Data

files are prepared interactively and time series data can be either imported from Microsoft

Access databases, Excel spreadsheets, comma separated value ASCII files, copied and

pasted, or manually input. The network flow optimization can be automatically executed via

the graphical user interface. The results from the simulations preformed are output to graphs

and there is also the facility to produce customized reports with the aid of the Custom Code

Editor within MODSIM (Labadie, 2005; Wurbs, 2005; Triana and Labadie, 2007).

Earlier versions of MODSIM incorporated the PERL scripting language for customization

(Wurbs, 2005). This has since been replaced by a Custom Code Editor that makes use of

Microsoft .NET Framework compatibility and allows customised code to be written in Visual

Basic.NET or C#.NET. The Custom Code Editor enables the customised code to be

compiled into machine code which has improved the runtime performance (Labadie, 2006a).

Stream inflows and reservoir evaporation rates are required as input and monthly, weekly, or

daily time steps may be used in the simulation. A lag methodology is for routing daily

streamflow with built in calibration procedures provided for computing local streamflow gains

and lag parameters (Wurbs, 2005). When simulating at a daily time-step, hydrologic

streamflow routing can be achieved either via the Muskingum method or by user-specified

time-lagging. Routing can be applied to any link between nodes (Labadie, 2006a).

26

There are three types of nodes which may be defined. These are non-storage nodes (e.g.

river gauges, diversion dams, tributary confluences, and sites where return flows enter the

river), demand nodes (e.g. consumptive diversions or instream flow requirements), and

reservoir nodes. The types of links used to connect nodes include artificial, natural flow,

general flow, storage ownership, and accrual and a number of constructs are available for

modelling complex water allocation schemes (Wurbs, 2005).

The configuration of the river/reservoir system is stored in an ASCII data file which includes

all the information about the time series data and the physical features of the river system.

The data file is command-value oriented, with each line of the input starting with a command

that the input parsing code associates with a model construct. Data values relevant to the

modelled feature follow the command. The model user may also specify system constraints

through the Custom Code Editor (Wurbs, 2005).

According to Labadie (2006a) the customisation features of MODSIM were effectively used

in an economic study in the San Joaquin River catchment. Complex water pricing structures

such as tiered water pricing, as well as increased water prices, were modelled along with

changes in reservoir operations and environmental flows to improve water management

(Labadie, 2006a).

A simplified groundwater component and limited water quality modelling options are available

in MODSIM and the model has also been linked with the U.S. Geological Survey MODFLOW

groundwater model (Wurbs, 2005).

Network flow programming is used to simulate complex water management and allocation

systems. User input cost coefficients and constraints for each prioritised link are used in the

objective function and an optimisation algorithm minimises the objective function while

meeting all constraints for a single time step. For each time step, nonlinear aspects are dealt

with in a sequential process where the computations are repeated in an iterative manner

(Labadie, 2006a).

Water allocation is based on the priorities assigned by the user to storage and hydroelectric

power targets, lower and upper bounds on both storages and flows, diversions and in-stream

environmental flows (Labadie, 2006a). Other features, according to Labadie (2006a),

include:

• rent pools,

27

• water banking,

• flow augmentation plans,

• exchanges that allow flexible system operations (still maintaining water rights and

contract legality), and

• flood control.

GEO-MODSIM is an ArcView extension that enables MODSIM to be incorporated within an

ArcGIS environment which facilitates the use of GIS tools to configure the networks and run

other spatial tools (Triana and Labadie, 2007). According to Labadie (2011), the GEO-

MODSIM extension should be publicly available by August 2011. At this stage it has not

been established if there is a cost for this extension, but MOSIM Version 8.1 is available at

no cost from the following URL: http://modsim.engr.colostate.edu/index.shtml

A recent application that makes use of MODSIM and the GEO-MODSIM is River GeoDSS

(Triana et al., 2010). Triana et al. (2010) used Artificial Neural Networks (ANNs) to model

complex stream-aquifer interactions in the Lower Arkansas River catchment. According to

Triana et al. (2010) there are several benefits of this system over network models such as

RiverWare, RIBASIM, MIKE BASIN, IQQM and WEAP. These include:

• the incorporation into a fully functional GIS,

• a data-centred structure where the database management system is the fundamental

component of the multi-application environment,

• extensive customisation tools allowing direct compilation of custom code into

machine language, rather than the use of inefficient scripting languages,

• a highly efficient network flow optimization solver allowing applications for large-scale

systems,

• inclusion of time-lagged routing of surface flows and stream-aquifer interactions,

• applicability to problems ranging from real-time operations to strategic planning,

• ideally suited for evaluating complex administrative rules and legal issues related to

water and storage rights for priority-based water allocation, and the

• option to seamlessly link “more realistic”, well-calibrated models, rather than being

confined only to internal modules.

2.1.2.7 REALM

The REsource ALlocation Model (REALM), developed in Australia, is described by Perera et

al. (2005) as a generalised simulation model that simulates the accumulation and allocation

of water resources within a water supply system. According to Schreidera et al. (2003),

28

REALM is used widely as a water allocation management tool in Australia. Perera et al.

(2005) describe REALM as a modelling tool that can be applied to create specific water

allocation models. This is achieved through a host of supply systems and operating options.

Optimisation of water allocation in REALM is achieved by means of a network linear

programming algorithm which accounts for penalties defined by the user at each time step.

Mass-balance accounting at nodes are used and constraints on carriers, such as rivers

channels or pipe carriers, control water movement. Transmission losses can also be

accounted for by the carriers (Perera et al., 2005).

According to Perera et al. (2005) REALM attempts to satisfy:

• evaporation losses in reservoirs,

• transmission losses in carriers,

• all demands (which may be restricted), to maximize reliability,

• minimise spill from the system in order to maximise yield, and

• minimum flow requirements and ensure that reservoir storage targets are met at the

end of the season.

REALM in the process of being superseded by eWater’s Source (Welsh, 2011).

2.1.2.8 RIBASIM

Wurbs (2005) and Assaf et al. (2008) report that the River Basin Simulation Model

(RIBASIM) model links water inputs from various locations in a catchment with specific water

users. A water balance is computed for the reservoir/river/use system to determine water

availability and to evaluate a variety of measures related to infrastructure and operational

and demand management. The simulated series may be linked to water quality and

sedimentation analyses for river reaches and reservoirs and the composition of the flow can

be interrogated. The user-friendly graphical interface of the RIBASIM model provides

guidance on the design, simulation and the analysis phase, and supports the user’s choice

of GIS environment to configure the model, to enter object attribute information and to

evaluate the simulation results (Wurbs, 2005; Deltares, 2010).

RIBASIM is described as “a comprehensive and flexible tool which links the hydrological

water inputs at various locations with the specific water-users in the basin” and is used for

river and catchment planning and management (Deltares, 2010). RIBASIM encapsulates a

structured approach to catchment planning and management and enables evaluation of

29

distribution patterns of both water quantity and water quality measures related to

infrastructure, operational and demand management in river reaches and reservoirs. It

enables source analysis and water auditing to be performed at a point in a catchment.

RIBASIM can be used for:

• long-term basin planning with time horizons ranging from10 to 25 years,

• seasonal operational planning and short term (< 1 year) water allocation scheduling,

and

• within season operational scheduling using both actual (observed) and expected

(forecast) rainfall and allocation schedules (Deltares, 2010).

The model has been applied for more than 20 years internationally on both large, complex

catchments which include independently simulated subcatchments which are combined into

a single larger catchment simulation for catchment wide planning and management

(Deltares, 2010). For example, Schellekens et al. (2003) assessed the feasibility of linking

the RIBASIM network based water allocation model of a river with a raster based crop water

balance model using the PC-Raster software package, which is a raster based dynamic

modelling language, and concluded that the software package was not ready to create the

on-line linkage. Nadomba et al. (2005) used RIBASIM to for water distribution in the

development of GIS-based modelling tools and methods for sustainable and integrated

management of water resources in the Nile Catchment. Tollenaar (2009) integrated a

rainfall-runoff model using a series link with RIBASIM configured for the NILE catchment

(referred to as RIBASIM-NILE) in order to investigate current and future discharges.

According to van der Krogt (2011), the ability to link RIBASIM to other models on a time step

(parallel) basis would require modification of the code by developers.

RIBASIM can simulate concentrations of substances in river reaches and reservoirs and can

be linked to the HYMOS hydrological database and modelling system and to the DELWAQ

water quality model to simulate detailed water quality processes. However, a user defined

number of substances can be specified, e.g. salt, Biological Oxygen Demand, Nitrogen,

Phosphorus, Bacteria and toxic substances (Deltares, 2010).

According to Deltares (2010), RIBASIM simulates the water balance of a catchment and

computes the composition of flow at every location and at any time in the catchment.

Drainage from agriculture, discharge from industry and re-use of water downstream can all

be accommodated in the model. The flow routing options in RIBASIM (e.g. Manning formula,

flow-level relation, 2-layered multi segmented Muskingum formula, Puls method and

Laurenson non-linear “lag and route” method), which are executed on a daily basis started

30

on a user selected day and for any forecasted period, have been used within an early flood

warning system.

RIBASIM includes a range of water management and water allocation features which include

the following (Deltares, 2010):

• Both water allocation and source allocation priority per individual user.

• Operation rules for individual reservoirs and groups of reservoirs, groundwater

management rules.

• Water allocation based the simulated target demands and target releases.

• Proportional allocation of water.

The current version of RIBASIM allocates water only on a priority basis and cannot perform

capacity sharing of reservoirs or fractional allocation of streamflow between users. Additional

coding will be necessary to implement this functionality (van der Krogt, 2011).

Various tools from the Delft Tools library may be used in conjunction with RIBASIM. These

include (Deltares, 2010):

• Case Management Tool (CMT) enables a visualisation of the workflow diagram.

• Delft-GIS (Netter) software provides catchment analysis not available in conventional

GIS.

• Ods_View is used to export and present time series data.

• The Case Analysis Tool (CAT) is used to compare and evaluate simulation results.

Simulation of reservoir operation is strong feature of RIBASIM and includes (Deltares, 2010):

• The simulation of the water balance of reservoir in series or parallel including rainfall

input, observed or expected inflow, evaporation, seepage losses and releases.

• The simulation of the hydraulic characteristics of the reservoir gates, sluices and

turbines.

• Rule curves for flood control, maximum energy production, firm storage, zoning of the

reservoir storage and hedging (water rationing) of target releases.

• Demand driven (target release) or supply orientated (storage controlled) operations

and specific operation based on level control.

• The simulation of hydro-power station characteristics and power generation potential.

• The simulation of firm energy demand per time step taking catchment level water

allocation into account.

31

RIBASIM includes various methods for simulating demand for water from agriculture,

including input of the gross demand as well as the use of the DelftAGRI to simulate

agricultural water demand, water allocation, crop yield and production costs (Deltares, 2010).

An interactive graphical tool in RIBASIM enables the simulation of combinations of cultivars

for specified areas planted and planting dates (Deltares, 2010).

The water balance of a groundwater aquifer, and thus the groundwater management options

and the conjunctive use of surface (river and reservoir) and groundwater, can be simulated

using RIBASIM (Deltares, 2010).

Assaf et al. (2008) conclude that RIBASIM is relatively easy to use but requires significant

data for detailed analysis. A limited version of RIBASIM is freely available and the full model

and documentation can be obtained at a “relatively low cost” (Assaf et al., 2008). Currently

for Version 7.00 of RIBASIM, the cost is 10 000 Euro with a 50 % discount for educational

institutions and annual maintenance costs are 25 % of the purchase cost (van der Krogt,

2011). The developers of RIBASIM have improved their model over time, but recognise that

the model still requires continuous modification and/or further extension and hence is always

in a state of development (Assaf et al., 2008). The source code for RIBASIM is currently not

distributed to users (van der Krogt, 2011).

2.1.2.9 RiverWare

RiverWare has been developed at the University of Colorado Centre for Advanced Decision

Support for Water and Environmental Systems (CADSWES) along with collaborative

research and development from the Tennessee Valley Authority, the U.S. Bureau of

Reclamation and the U.S. Army Corps of Engineers (Zagona et al., 2001). RiverWare is a

general river and reservoir modelling tool for planning, forecasting, operational scheduling,

policy evaluation and water accounting (Zagona et al., 2001). Perera et al. (2005)

categorised RiverWare as a heuristic procedure guided by objectives defined by the user.

RiverWare focuses on river/reservoir systems and includes allocation of water for the

environment, recreation, agriculture, hydropower, navigation, flood control and flood

prevention, and also simulates water quality constituents. The model has an object oriented

modelling approach. Features, represented as a type of object, contain data (slots) as well

as the algorithms (methods) specific to that object type. The slots are made up of various

data structures capable of storing, for example, data tables and time-series. The water

ownership information is also contained within the feature objects (Zagona et al., 2001).

32

RiverWare can accommodate various time-steps from hourly through to annual to facilitate

multiple purposes, for example monthly to annual time-steps may be used for planning, or

hourly to daily may be used for scheduling (Zagona et al., 2001; Wurbs, 2005). Input data

can either be forecast, or historical hydrology, or stochastically generated sequences. The

model can then interact with multi-objective operating policies to produce output to aid in

predictions, operating decisions and trade-offs in environmental and economic analysis.

Water Accounting is handled by four account types (Zagona et al., 2010):

• storage,

• diversion,

• instream flow, and

• pass-through.

A number of different river reach routing methods are available in RiverWare (Zagona et al.,

2010). These include Time Lag, Impulse Response, Muskingum, Muskingum-Cunge,

Kinematic Wave, and Storage Routing methods.

Streamflow is input at river nodes and RiverWare models the volume balances at reservoirs,

hydrologic routing in river reaches, evaporation and other losses, diversions, and return

flows. Groundwater interactions, water quality, and electric power economics may also be

computed. Any number of reservoirs and stream reaches can be modelled (Wurbs, 2005).

Software tools are provided for constructing a model for a particular reservoir/river system

and then running the model. These include a library of modelling algorithms, several solvers,

and a language for coding operating policies. The tools are applied within a point-and-click

graphical user interface (Wurbs, 2005).

A palette of object icons representing features of a river basin is provided, as listed in Table

2.1. Objects have slots, which contain variables and parameters associated with the physical

process models and each object models one or more basic physical processes. The objects

are linked to form the river network. The user selects objects by dragging icons from the

palette to the workspace and customises each object by naming it, selecting computational

options, and adding data (Wurbs, 2005).

33

Table 2.1 RiverWare objects (after Wurbs, 2005)

Object Type Processes Modelled

Storage reservoir Mass balance, evaporation, bank storage, spill, water quality

Level power reservoir Storage reservoir plus hydropower, energy, tailwater, operating head

Sloped power reservoir Level power reservoir plus wedge storage for long reservoirs

Pumped storage reservoir Level power reservoir plus pumped inflow from another reservoir

Reach Routing in a river reach, diversion and return flows

Aggregate reach Many reach objects aggregated to save space on the workspace

Confluence Brings together two inflows to a single outflow as in a river
confluence

Canal Bi-directional flow in a canal between two reservoirs

Diversion Diversion structure with gravity or pumped diversion

Water user Depletion and return flow from a user of water

Aggregate water user Multiple water users supplied by a diversion from a reach or reservoir

Groundwater storage Stores water from return flows

River gage Specified flows imposed at a river node

Thermal object Economics of thermal power system and value of hydropower

Data object User-specified data for policy statements and post-processing

Bifurcation Flow junction with single inflow and two outflows

Inline power Run-of-river power production

Control point Object used to regulate upstream reservoirs based on channel
capacity

Data may input to RiverWare manually through the graphical user interface, by loading data

files, or entered through the data management interface, which facilitates retrieving large

datasets through an external program. Tabular and graphical displays of the model results

are output. Time series associated with the various objects, such as reservoir and reach

outflows, water quality and reservoir storages, elevations, and other water accounting data

can be output (Wurbs, 2005).

Water ownership accounting and water quality computations are possible with the simulation

and rule-based approaches while operational rules are used to solve for the rule-based

simulation and optimisation approaches (Wurbs, 2005). The model has multiple solution

methodologies (Zagona et al., 2001). These include the following approaches:

• standard simulation mode,

• rule-based simulation, with operating policies or rules, and

• optimization, implemented through a linear, pre-emptive goal programming method.

Pure simulation can be performed when each object has the information required to

“dispatch” the method/algorithm. Data are input to “slots” on the objects, either directly by

34

users or by propagation from other objects. The methods associated with an object may also

set required values (Wurbs, 2005).

Based upon the data provided, the appropriate dispatch method is executed and the

simulation is performed. When required, solution results propagate to other objects as

appropriate and multiple links between objects may necessitate iterative solutions. When

conflicting information results in an error state, the simulation is terminated. Parts of the

model are not solved if not enough information is provided (Wurbs, 2005).

A rule language provides flexibility in expressing reservoir/river system operating rules and,

in rule-based simulation, enables a solution when there is not enough information associated

with the objects to obtain a solution. The user specified prioritised policy statements (rules)

are interpreted by the rule processor to provide the additional information required for the

solution to proceed. Slot values for the objects are set based on these rules and the state of

the system. The rules are if-then constructs that examine the state of the system as functions

of values of slots on the objects in the if-clause. Values are then set depending on that state.

The rules are formulated by the model-user in the RiverWare rule language and entered

through a graphical editor (Wurbs, 2005).

RiverWare combines a linear programming (LP) solver with pre-emptive goal programming in

the optimization solution approach. The use of an optimization constraint editor and

expression language in RiverWare enable users who are not proficient in LP to provide the

required input information. Objectives and constraints are expressed in terms of physical

variables such as pool elevation, flows, or spills or in terms of economic variables such as

net replacement cost, future value of used energy, spill cost, and the cost of alternative

power sources (Wurbs, 2005).

According to (Biddle, 2001), RiverWare has been effectively used for operational planning in

the Tennessee Valley Authority System.

2.1.2.10 WEAP

Primary support for the development of the Water Evaluation And Planning (WEAP) model

(SEI, 2011) came from the Stockholm Environment Institute (SEI). The Hydrologic

Engineering Center of the US Army Corps of Engineers has been responsible for significant

enhancements and numerous agencies have provided project support. WEAP has been

applied in a number of countries for water assessments (Wurbs, 2005; SEI, 2011).

35

Wurbs (2005) describes WEAP as a reservoir/river/use system water balance accounting

model where demands for water are met from surface and groundwater sources. WEAP

maintains water balance databases, generates water management scenarios, and performs

policy analyses.

Examples of the application of WEAP in South Africa can be found in Lévite et al. (2002) and

McCartney and Arranz (2009). McCartney and Arranz (2009) used WEAP at a monthly time

step to investigate various water demand scenarios in the Olifants River Catchment. As part

of these scenarios they investigated possible future water demands and various strategies

that could be implemented and the economic implications thereof. Lévite et al. (2002)

describe the application of WEAP in the Steelpoort catchment, which is a subcatchment of

the Olifants River Catchment. Various scenarios of water allocation were considered with an

emphasis on management of water demand. The usefulness of WEAP as a tool to stimulate

discussion and the interaction of stakeholders was noted by Lévite et al. (2002).

2.1.2.11 WRAP

The Water Rights Analysis Package (WRAP), developed as a suite of Fortran programs,

simulates the management of the water resources of a river basin or multiple-basin region

under a priority-based water allocation system. Long-term monthly time step modelling is

performed to assess hydrologic and institutional water availability and reliability for water

supply diversions, environmental instream flow requirements, hydroelectric energy

generation, and reservoir storage, with an updated version being able to simulate at daily or

other sub-monthly time steps. An interface (WinWRAP) for executing the programs within

Microsoft Windows has been developed (Wurbs, 2005).

Inputs to WRAP are monthly naturalized streamflows and reservoir net evaporation less

rainfall depths. Routines are provided to facilitate the estimation of naturalized streamflows

and reservoir net evaporation. Options are available to distribute flows from gauged to

ungauged sites. An adaptation of the Muskingum method is used for routing streamflow, and

routines for calibrating routing parameters are provided (Wurbs, 2005).

Simulation modes include a single long-term simulation, automatic repetition of the

simulation with adjustments to specified targets to develop a yield-reliability table that ends

with the firm yield, and conditional reliability modelling based on many short-term simulations

starting with the same initial storage condition (Wurbs, 2005).

36

2.1.3 Discussion and recommendation

The information in Table 2.2 is compiled from the above overviews of the characteristics of

the various river network models. Included in Table 2.2 is summary of the model

requirements discussed in Section 2.1.1 and, where sufficient information has been sourced,

the characteristics of the selected models are assessed against these requirements.

From the summary provided in Table 2.2, the least suitable river network models to meet the

listed attributes are HEC-ResSim, WRAP and RIBASIM. The main limitation of RIBASIM is

the limitation to perform priority-based allocation only. The developments within the eWater

CRC Source framework appear to hold significant potential, but the code is still under

development and currently only some beta versions of the software are available on request.

Not all components are functional as yet and this could affect the suitability of this suite of

models for use in this project.

The RiverWare, MIKE BASIN, eWater CRC Source and MODSIM models were all found to

have many of the required attributes. One known limitation of the current version of MIKE

BASIN is that it cannot adequately perform all the functions for water auditing and

accounting. An advantage of MIKE BASIN is the availability of support for the model in

South Africa. Given the information gained from the literature, it thus appears that the

RiverWare and MODSIM models have the largest potential to meet all the required attributes

and functionality. Added advantages of MODSIM are that the model is available at no cost

and that the MODSIM compiled libraries are provided for access by third party software.

Although the River component of Source by eWater CRC appeared to meet the requirements

for the project it was still under development and only a beta version was available at the

time of the review (Miller, 2011), and the help documentation for the river component was

also still being developed (Delgado et al., 2011). Based on the this review it was

recommended that further evaluation of the MIKE BASIN, MODSIM and RiverWare models

needed to be performed to facilitate selecting one model for use in the project.

37

T
ab

le
 2

.2

S
um

m
ar

y
of

 s
el

ec
te

d
m

od
el

s

A
tt

ri
b

u
te

M

o
d

el

F
ra

m
ew

o
rk

R
iv

er
W

ar
e

M
IK

E
 B

A
S

IN

H
E

C
-R

es
S

im

M
O

D
S

IM

W
R

A
P

R

IB
A

S
IM

eW

at
er

 S
o

u
rc

e

D
es

cr
ip

tiv
e

N
am

e

R
iv

er
 a

nd
 R

es
er

vo
ir

O
pe

ra
tio

ns

G
IS

-B
as

ed

D
ec

is
io

n

S
up

po
rt

fo

r
W

at
er

P
la

nn
in

g
&

 M
an

ag
em

en
t

R
es

er
vo

ir
S

ys
te

m
 S

im
ul

at
io

n
G

en
er

al
iz

ed
 R

iv
er

 B
as

in

N
et

w
or

k
F

lo
w

 M
od

el

W
at

e
r

R
ig

ht
s

A
na

ly
si

s

P
ac

ka
ge

R
iv

er
 B

as
in

 S
im

ul
at

io
n

S
ou

rc
e

(B
et

a
ve

rs
io

n
av

ai
la

bl
e

in
 2

01
0)

M
od

el

D
ev

el
op

m
en

t

O
rg

an
iz

at
io

n

C
en

te
r

fo
r

A
dv

an
ce

d
D

ec
is

io
n

S
up

po
rt

 f
or

 W
at

er
 a

nd
 E

nv
iro

nm
en

ta
l

S
ys

te
m

s
(C

A
D

S
W

E
S

),
 U

ni
ve

rs
ity

 o
f

C
ol

or
ad

o

ht
tp

://
ca

ds
w

es
.c

ol
or

ad
o.

ed
u/

riv
er

w
ar

e/

D
an

is
h

H
yd

ra
ul

ic
 I

ns
tit

ut
e

h
tt

p:
//

w
w

w
.d

h
is

o
ft

w
a

re
.c

o

m
/

U
S

A
C

E
 H

yd
ro

lo
gi

c

E
ng

in
ee

rin
g

C
en

te
r

h
tt

p:
//

w
w

w
.h

e
c.

u
sa

ce
.a

rm
y.

m
il

/

C
ol

or
ad

o
S

ta
te

 U
ni

ve
rs

ity

ht
tp

://
m

od
si

m
.e

ng
r.

co
lo

st
at

e.
ed

u/

T
ex

as

C
om

m
is

si
on

on

E
nv

iro
nm

en
ta

l Q
ua

lit
y,

 U
S

A

D
el

ft
H

yd
ra

ul
ic

s,

h
tt

p:
//

w
w

w
.w

ld
e

lft
.n

l/s
of

t/
rib

a
si

m
/

eW
at

er
 C

oo
pe

ra
tiv

e
R

es
ea

rc
h

C
en

tr
e

h
tt

p:
//

w
w

w
.e

w
at

e
r.

co
m

.a
u/

pr
od

uc
ts

/e
w

at
e

r-
so

ur
ce

/

P
la

n
n

in
g

Y
es

Y

es

Y
es

Y

es

Y
es

Y

es

Y
es

O
p

e
ra

tio
n

a
l

Y
es

Y

es

Y
es

Y

es

Y
es

Y

es

Y
es

M
od

el

tim
e

st
ep

1h
 t

o
 –

 1
 y

ea
r

U
se

r
sp

ec
ifi

ed

15
 m

in
 to

 1
 d

ay

M
on

th
,

w
ee

k,
 1

0,
 5

 &
 1

da
y

D
ai

ly

to

m
on

th
ly

D
ai

ly

D
ai

ly
 t

o
m

on
th

ly

R
an

ge

of

sp
at

ia
l s

ca
le

s

Y
es

Y

es

Y
es

Y

es

Y
es

?
Y

es

Y
es

F
le

xi
bl

e

co
nf

ig
ur

at
io

n

Y
es

Y

es

Y
es

Y

es

Y
es

?
Y

es

Y
es

?

G
IS

fu
nc

tio
na

lit
y

N
o

Y
es

Y

es

Y
es

,
w

ith
 G

eo
M

O
D

S
IM

?

Y
es

Y

es

U
se

r
fr

ie
nd

ly

Y
es

Y

es

?
Y

es

Y
es

?
Y

es

Y
es

G
U

I
Y

es

Y
es

Y

es

Y
es

Y

es

Y
es

Y

es

W
at

er

qu
an

tit
y

Y
es

Y

es

Y
es

Y

es
,

w
ith

 l
in

k
to

 M
O

D
F

L
O

W
 f

or

gr
ou

nd
w

at
er

 s
im

ul
at

io
n

Y
es

Y

es

Y
es

,
co

nt
ai

ns
 o

th
er

 m
od

el
s

(e
.g

.
A

W
B

M
,

S
IM

H
Y

D
c.

)

F
lo

w
 r

ou
tin

g
M

ul
tip

le
 m

et
ho

ds

Y
es

?
M

us
ki

ng
um

or

us

er

sp
ec

ifi
ed

la
gg

in
g

M
us

ki
ng

um
-

ba
se

d

M
ul

tip
le

 m
et

ho
ds

M

ul
tip

le
 m

et
ho

ds

W
at

er
 q

ua
lit

y
S

al
in

ity
,

di
ss

ol
ve

d
so

lid
s,

te
m

pe
ra

tu
re

,
an

d
di

ss
ol

ve
d

ox
yg

en

?
?

S
al

in
ity

 (
Q

U
A

L2
E

)
S

al
in

ity

Y
es

,
by

 li
nk

 to
 D

E
LW

A
Q

Y

es

S
im

ul
at

e

di
ffe

re
nt

w
at

er

al
lo

ca
tio

n

m
et

ho
ds

Y
es

Y

es

?
Y

es
?

P

rio
rit

y
ba

se
d

al
lo

ca
tio

n

on
ly

Y
es

Y

es
?

W
at

er

ac
co

un
tin

g
&

au
di

tin
g

Y
es

N

ot
 a

bl
e

to
 tr

ac
k

w
at

er

?
Y

es

?
?

38

T
ab

le
 2

.2
 (

co
nt

in
ue

d)

S
um

m
ar

y
of

 s
el

ec
te

d
m

od
el

s

A
tt

ri
b

u
te

M

o
d

el

F
ra

m
ew

o
rk

R
iv

er
W

ar
e

M
IK

E
 B

A
S

IN

H
E

C
-R

es
S

im

M
O

D
S

IM

W
R

A
P

R

IB
A

S
IM

eW

at
er

 S
o

u
rc

e

F
or

e
ca

st
in

g
Y

es

Y
es

?

Y

es

?

Y
es

Y

es
?

W
at

er
 tr

ad
in

g
?

?
?

?
?

?
?

C
om

pl
ex

w
at

er

su
pp

ly

an
d

de
m

an
d

si
m

ul
at

io
ns

an
d

op
tim

is
at

io
n

Y
es

,
in

cl
ud

es

cu
st

om
is

ed

ru
le

s
fo

r

ob
je

ct
s

w
ith

 p
se

ud
o

co
de

 e
di

to
r

Y
es

Y

es
?

Y
es

,
in

cl
ud

es

C
us

to
m

C

od
e

E
di

to
r

?
Y

es
?

Y
es

?

S
ce

na
rio

s
Y

es
 (

U
nd

er
 d

ev
el

op
m

en
t)

?

?
Y

es

?
N

o
Y

es

M
od

el

lin
k

pr
ot

oc
ol

P
ro

pr
ie

ty

O
pe

nM
I?

?

?
?

?
O

pe
n

M
I?

P
ot

en
tia

l
to

lin
k

to

A
C

R
U

on

da
ily

tim

e

st
ep

 b
as

is

Y
es

Y

es
 (

A
A

M
G

),
 b

ut
 li

nk
ed

 in

se
rie

s

?
Y

es

?
N

o,

w
ou

ld

re
qu

ire

co
de

m
od

ifi
ca

tio
n

Y
es

P
ot

en
tia

l
fo

r

co
lla

bo
ra

tio
n

w
ith

m

od
el

de
ve

lo
pe

rs

Y
es

Y

es

?
Y

es
,

re
qu

ire
s

co
nt

ra
ct

ua
l

ar
ra

ng
em

en
t

?
?

?

O
rg

an
iz

in
g

C
om

pu
ta

tio
na

l

S
tr

uc
tu

re

O
bj

ec
t-

or
ie

nt
ed

,
op

tio
ns

 f
or

 p
ur

e
an

d

ru
le

-b
as

ed

si
m

ul
at

io
n

an
d

op
tim

iz
at

io
n

O
bj

ec
t-

or
ie

nt
at

ed

O
bj

ec
t-

or
ie

nt
ed

ad

ho

c

si
m

ul
at

io
n

pr
og

re
ss

in
g

fr
om

up
st

re
am

 to
 d

ow
ns

tr
ea

m

O
bj

ec
t-

or
ie

nt
ed

ba

se
d

on

ne
tw

or
k

flo
w

 p
la

nn
in

g

A
d

ho
c

si
m

ul
at

io
n

pr
og

re
ss

in
g

in

or
de

r
of

 u
se

r-

de
fin

ed

pr
io

rit
ie

s

?
?

M
od

el

us
er

su
pp

or
t

Y
es

 (
U

S
)

Y
es

 (
S

A
)

?
Y

es

?
?

Y
es

 (
A

us
tr

al
ia

)

U
se

r
ba

se

Y
es

Y

es

Y
es

Y

es

?
Y

es

C
od

e
un

de
r

de
ve

lo
pm

en
t

A
cc

es
s

to

so
ur

ce
 c

od
e

N
o

N
o

N
o

A
cc

es
s

to
 c

om
p

ile
d

lib
ra

rie
s

N
o

N
o

N
o

C
os

t
(2

01
0)

S

in
gl

e
no

de
 li

ce
ns

e:
 $

 3
00

A
nn

ua
l r

en
ew

al
 f

ee
:

R
es

ea
rc

h
$

90
0

G
ov

er
nm

en
t/C

om
m

er
ci

al
 $

 3
00

0

B
as

ic
 M

B
: €

 6
00

0

M
B

 W
Q

: €
 3

00
0

E
xt

en
de

d:
 €

 8
50

0

F
re

e
F

re
e

F
re

e
P

ur
ch

as
e:

€
10

00
0

(5
0%

di
sc

ou
nt

fo

r
ed

uc
at

io
na

l

in
st

itu
tio

ns
)

A
nn

ua
l

m
ai

nt
en

an
ce

:
25

%
 o

f

th
e

pu
rc

ha
se

 c
os

t

F
re

e
fo

r
fir

st
 1

2
m

on
th

s

A
nn

ua
l r

en
ew

al
 f

ee
 (

A
u)

 $
 9

90

39

2.2 Detailed Evaluation of Selected Models

The aim of the following evaluation of the MIKE BASIN, MODSIM and RiverWare models

was to configure these models and evaluate them based on a set of criteria. This provided a

better understanding of how these models work and enabled the capabilities of these

models, as stated in the literature, to be confirmed. This evaluation also intends to test two

allocation methods vis. priority allocation and Fractional Water Allocation And Capacity

Sharing (FWACS), as described by (Lecler, 2004).

The methodology used for the testing of river network models was to create a hypothetical

catchment with various water users. The hypothetical test catchment is made up of four

subcatchments and various water users as shown in Figure 2.4. As far as possible the

same hypothetical catchment was configured for each of the network models and then

evaluated against a list of criteria (cf. Sections 2.2.1.1 to 2.2.1.7). For each of the network

models the hypothetical catchment was configured to allocate water using two methods, (i)

water user priority, and (ii) FWACS. No evaporation, transfer, or seepage losses were

modelled as part of this evaluation.

Figure 2.4 Schematic of hypothetical test catchment

Catchment 1
Catchment 2

Catchment 3

Catchment 4

Domestic 1

Irrigator 1
Reservoir 1

FarmReservoir

Industry 1

Domestic 2

Irrigator 2

Irrigator 3

IFR 1

IFR 2

Transfer_Pump

Key:

Catchment Domestic

River Irrigation

Reservoir Industry

Transfer Abstraction

IFR Site Return Flow

40

Catchments 1 and 2 are runoff generating catchments, but for the purpose of simplifying the

tracking of runoff from the upstream catchments for this evaluation, Catchments 3 and 4 are

assumed not to generate any runoff. The details of the runoff generating catchments are

contained in Table 2.3. The average monthly flow sequence specified in the Catchrun file is

shown in Table 2.4 and was used to generate the runoff from Catchment 1 and Catchment 2

based on their catchment area and applied as daily inflow into the river in Catchment 1 and

into the reservoir in Catchment 2.

Table 2.3 Catchment details

Catchment Area (km2) Flow sequence (time series file)
Catchment 1 100 Catchrun
Catchment 2 200 Catchrun

Table 2.4 Sequence of average monthly flows in the Catchrun file

Time Specific runoff
(l/s/km2)

1981/01/01 100

1981/02/01 100

1981/03/01 70

1981/04/01 60

1981/05/01 50

1981/06/01 40

1981/07/01 20

1981/08/01 10

1981/09/01 50

1981/10/01 70

1981/11/01 90

1981/12/01 100

The hypothetical test catchment includes two reservoirs; Reservoir 1 situated at the outlet of

Catchment 2, and FarmReservoir which is a small off-channel farm reservoir within

Catchment 3. The reservoir level characteristics assumed for these reservoirs are

summarised in Table 2.5. The level-area-volume relationships are shown in Figure 2.5 for

FarmReservoir and in Figure 2.6 for Reservoir 1.

Table 2

R
F

Figure 2

Figure 2

The loo

water fr

for irriga

main ch

2.5 Res

Reservoir

Reservoir 1
FarmReservo

2.5 Far

2.6 Res

okup table s

rom the rive

ation. It en

hannel.

servoir level

r Bottom
level (m

53
oir 53

mReservoir

servoir 1 lev

shown in Ta

er in Catchm

nabled the m

l characteris

m
m)

Top o
dead

storag
(m)

34
34

r level-area-

vel-area-vol

able 2.8 wa

ment 3 to an

magnitude o

41

stics

of
d
ge
)

Re
cre

536
535

-volume rel

ume relatio

as used to s

n off-chann

of the divers

servoir
est level

(m)

545
545

ationships

onships

simulate a

el farm rese

sion to vary

Flood
control

level
(m)

54
54

diversion p

ervoir (Farm

y based on

Initial
level
(m)

43 54
45 54

pump that e

mReservoir)

the flow ra

0
0

extracted

) utilised

te in the

42

Table 2.6 Lookup table for diversions to FarmReservoir

Flow rate
in river
(m3/s)

Flow rate of
diversion

(m3/s)
< 2.0 0.0

2.0-3.0 0.5
3.0-9.0 1.0

> 9.0 0.0

2.2.1 Evaluation criteria

Each of the river network models were evaluated against a range of criteria to enable the

models to be compared. The criteria used in the evaluation are listed in Sections 2.2.1.1 to

2.2.1.7 below.

2.2.1.1 User interface

To assess the user interface tools available to assist users in setting up a model the

following user interface functionality was evaluated:

(i) Is there a Graphical User Interface (GUI)?

(ii) Is the GUI well laid out and logical or intuitive?

(iii) Is there a network visualizer?

(iv) Can model input and output data be interrogated via the network?

(v) Are wizards or expert systems provided?

(vi) Can model input and output data be tabled and graphed?

(vii) Can animations of model results be created?

2.2.1.2 GIS functionality

If the model contains GIS functionality, the following criteria were assessed:

(i) Does the model have full GIS integration or is there only GIS visualisation?

(ii) Does the model use input generated via the GIS?

(iii) Can the output be accessed via GIS?

2.2.1.3 Flexible configuration

The flexibility of configuration was assessed by the following questions:

(i) What components can be added to the network and what are their basic functions?

(ii) Is there a limit to the number of network components or connections?

(iii) Are multiple demands at extraction points permitted?

(iv) Are water users able to extract water from more than one source?

43

(v) Can curtailments be applied to water use requests?

(vi) What constraints can be applied: for example, minimum or maximum flows?

(vii) Can hydrological or hydraulic routing along channels be performed?

(viii) Can routing through reservoirs be performed?

(ix) Can in-stream flow requirements (IFRs) be simulated?

(x) Can inter-catchment transfers be modelled?

(xi) Can more complex operating rules be set up where their operation is dependent on

the state of other features? For example, a transfer from a node upstream of a

reservoir that is dependent on the water level of the reservoir.

2.2.1.4 Water allocation

The water allocation method used has a critical impact on the distribution of the water

resource to meet demands. In order to determine what water allocation methods can be

implemented by the model and their functionality, the following criteria were assessed:

(i) What allocation methods are available within the model?

(ii) Are the rules locally or globally based?

(iii) What operating rules are available for reservoirs?

For each of the network models both the water user priority and FWACS allocation methods

were tested. The water user details used for these test cases are specified below.

Priority allocation

The user priority allocation system is an allocation method where water demands are

allocated based on each user’s priority. The available water is allocated to the highest

priority users until all demands are met or there is no more water available for allocation.

The demands and priorities applied for the priority allocation test case are summarised in

Table 2.7, where Priority=1 is the highest priority. In order to cater for changes in the

hydrological state of the network, such as periods of drought, curtailments or rule curve

restrictions can be used to manage the water resource. The reservoir curtailment levels for

Reservoir 1 and FarmReservoir are shown in Table 2.8, where the curtailment level indicates

the reservoir storage level below which the user is curtailed to a specified percentage of the

demand.

44

Table 2.7 Water user details for the priority allocation test case

Water users Water source Return flow Demand
(m3/s)

Priority

Domestic 1 Catchment 1 No 2.50 1
Irrigator 1 Catchment 1 Yes (10%) 2.50 2
Irrigator 2 FarmReservoir Yes (10%) 0.01 1
Domestic 2 Reservoir 1 No 5.00 1
Transfer_Pump Reservoir 1 Yes (100%) to tributary of river

from Catchment 1
0.50 2

Industry 1 Reservoir 1 No 3.00 3
Irrigator 3 Reservoir 1 Yes (10%) 2.00 4
IFR 1 Catchment 1 and

Reservoir 1
N/A 0.50 1

IFR 2 Reservoir 1 N/A 1.00 1

Table 2.8 Reservoir curtailment levels

Reservoir Water users Curtailment
level (m)

Curtailment
(%)

Reservoir 1 Domestic 2 541 80
Reservoir 1 Transfer_Pump 541 80
Reservoir 1 Industry 1 541 80
Reservoir 1 Irrigator 3 541 80
FarmReservoir Irrigator 2 537 80

Fractional allocation and capacity sharing

The FWACS allocation system is an allocation method where water users are allocated a

fraction of the water flowing in a specified river reach and where water users may be

allocated a share in the capacity of a reservoir which they may use to store water (Lecler,

2004). Thus FWACS, as described by Lecler (2004), has two parts, viz.:

• River flow is divided based on fractional allocation. Thus a water user has access to

their fraction multiplied by the available flow in the river.

• Storage capacity is divided into storage accounts that water users can either own or

rent. These predefined water accounts are operated as water accounts in a “Water

Banking” system. The inflows into the storage reservoir are apportioned to the various

water accounts; however, these inflow portions may differ from the storage portions.

Water losses such as evaporation and seepage are shared across the water accounts.

The water users manage their own water accounts separately which can promote

more efficient water use and also permits water trade.

Allocation of water via a fractional allocation system, where water demands are met from a

user’s predefined fraction of the resource, are detailed in Table 2.9. The two parts of

45

FWACS as described above are represented by the Domestic 1 and Irrigator 1 water users

abstracting from the river in Catchment 1, and several other water users abstracting from

Reservoir 1. Water users’ storage fractions and inflow fractions for Reservoir 1 are assumed

to be the same. Two scenarios were simulated, with the second scenario having a larger

fraction apportioned in order to meet the requirements of IFR 2.

Table 2.9 Water user details for the FWACS allocation test case

Water users Water source Return flow Demand
(m3/s)

Fraction
(Scenario 1)

Fraction
(Scenario 2)

Domestic 1 Catchment 1 No 2.50 0.60 0.60
Irrigator 1 Catchment 1 Yes (10%) 2.50 0.40 0.40
Irrigator 2 FarmReservoir Yes (10%) 0.01 1.00 1.00
Domestic 2 Reservoir 1 No 5.00 0.40 0.40
Transfer_Pump Reservoir 1 Yes (100%)

to tributary of
river from
Catchment 1

0.50 0.15 0.15

Industry 1 Reservoir 1 No 3.00 0.15 0.10
Irrigator 3 Reservoir 1 Yes (10%) 2.00 0.15 0.15
IFR 1 Catchment 1 and

Reservoir 1
N/A 0.50 N/A N/A

IFR 2 Reservoir 1 N/A 1.00 0.15 0.20

2.2.1.5 Scenarios

Scenario handling can be powerful tool in the hands of the modeller for exploring alternate

solutions to water resource problems.

(i) Does the model provide scenario handling functionality?

2.2.1.6 Accounting and auditing

In order to determine what accounting and auditing functionality exists in the model the

following criteria were assessed:

(i) What queries can be made at points within the network?

(ii) Can source and destination of water be determined?

(iii) Can ownership of water be determined?

2.2.1.7 Operational use

Modelling can be a useful tool in the operational management of water resources, but

models developed primarily for water resources planning may not necessarily be suitable for

46

operational use. For efficient operational use the current state of the river/reservoir network

needs to be known, and both short term and long term forecasts need to be included in the

simulation. To facilitate this it is important to be able to simulate to a given point in time (e.g.

current date) and then retrieve the model state variables in order to continue the simulation

when updated observed or forecast data become available. Reservoir level is an example of

a state value which is initialised at the start of the simulation and then varies during the

simulation as inflows and outflows occur. For operational modelling the state of the reservoir

would need to be either maintained when the simulation is restarted from where it was

stopped or corrected based on observed data. The following criterion was assessed:

(i) Does the model enable storage of state data so that a simulation can be started or

restarted using a simulated or actual state for a specified point in time? For example,

can simulations be re-run using observed data values to replace forecast data values

as they become available?

The evaluation criteria listed and described in this section are not exhaustive and were

chosen for the purpose of selecting a network model suitable for meeting the objectives of

the project. However, beyond selecting a suitable model for the project an important

consideration is the suitability of the models for use in South Africa as a tool for “real world”

water management. These criteria enable the selected network models to be evaluated

individually and relative to each other.

2.2.2 MIKE BASIN

For this evaluation the 2011 version of MIKE BASIN with Service Pack 7 was used within

ArcGIS 10.0. As MIKE BASIN is an extension for ESRI ArcMap, it requires that the ArcGIS

software be installed first. The ESRI ArcGIS software requires a personal or site license.

MIKE BASIN requires a USB dongle and a license file provided by DHI for the software to

function. An academic evaluation license and USB dongle were obtained from DHI-SA to

carry out this evaluation.

MIKE BASIN is one software product in the Mike by DHI suite (DHI, 2011d). The dedicated

customer care e-mail address is mikebydhi@dhigroup.com, but there are also support

centres in numerous countries around the world that can be contacted directly via e-mail or

telephone for local support (DHI, 2011d). The e-mail address for DHI-SA who represent DHI

in southern Africa is mikebydhi.za@dhigroup.com (DHI, 2011d). While setting up this

evaluation a number of queries were e-mailed to DHI-SA to ensure correct understanding of

the model and this user support proved valuable.

47

2.2.2.1 User Interface

MIKE BASIN is an extension for ESRI ArcMap and therefore is run from within the ArcMap

GUI using additional toolbars. The MIKE BASIN GUI with the test project loaded is shown in

Figure 2.7. The MIKE BASIN Toolbar and the MIKE BASIN Results Toolbar are shown in

Figure 2.7. The MIKE BASIN Toolbar is the primary tool for MIKE BASIN project

management, setting up model networks and running the model. The MIKE BASIN Results

Toolbar contains tools that facilitate the management and display of output generated by the

model. Once flow network components have been added to the network layer, their MIKE

BASIN properties can be easily accessed, for example, the properties of a catchment, as

displayed in Figure 2.8.

Figure 2.7 MIKE BASIN project within ESRI ArcMap (DHI, 2009)

MIKE BASIN Toolbar MIKE BASIN ResultsToolbar

48

Figure 2.8 MIKE BASIN Catchment Properties window (DHI, 2009)

The output generated by the model can then be associated with ArcGIS map features which

aids in the user friendliness of the interface. MIKE BASIN projects are saved as ArcMap

Document files with a “mdx” extension. A geodatabase is also created with the same name

as the MIKE BASIN project, but with an “mdb” extension, where this and any other files

generated are, by default, located in the same folder as the MIKE BASIN project file.

The MIKE BASIN user interface was evaluated as follows:

(i) Is there a GUI?

 Yes.

(ii) Is the GUI well laid out and logical or intuitive?

The interface, as indicated above, is largely based around the fact that MIKE BASIN is an

extension for ArcMap and is thus easy to use if the user has previous working

knowledge of ArcMap. For non-GIS users it is essential to first acquire GIS skills,

which are not too demanding.

(iii) Is there a network visualizer?

 Yes, networks are built within the map window of ArcMap.

(iv) Can model input and output data be interrogated via the network?

 Yes, by selecting the MIKE BASIN Feature Properties icon from the MIKE BASIN

Toolbar and then clicking on the feature of interest, within the network, in the map

window.

49

(v) Are wizards or expert systems provided?

 Yes, MIKE BASIN contains a result layer wizard that enables results to be processed

and added as layers within the geodatabase. There are also tools to generate

reports and graphs, and for management, diagnostics and optimization of systems.

(vi) Can model input and output data be tabled and graphed?

 Yes, this includes output such as frequency analysis curves and time series analysis.

(vii) Can animations of model results be created?

 Yes, result groups generated from the result layer wizard can be selected for

animation.

2.2.2.2 GIS Functionality

MIKE BASIN is an extension for ArcMap and is thus fully integrated with the GIS functionality

of ArcMap. The flow network for MIKE BASIN is built up of Node, Reach and Catchment

layers within ArcMap. These spatially explicit layers make it easier to configure the model as

variables such as catchment area or reach length can be calculated using tools in the GIS.

A Digital Elevation Model (DEM) can be added to the MIKE BASIN project and can be used

to determine flow directions as well as aid in catchment delineation. In this example, no

DEM was used, thus catchment areas were manually input using the Catchment Properties

window shown in Figure 2.8. If the catchment had been generated from the DEM, or was

associated with a pre-defined catchment polygon, then the area could be easily linked to this

spatial feature.

The MIKE BASIN GIS functionality was evaluated as follows:

(i) Does the model have full GIS integration or is there only GIS visualisation?

 The model has full GIS integration with ArcGIS.

(ii) Does the model use input generated via the GIS?

 Yes, model inputs can be generated via GIS and fed directly into the model.

(iii) Can the output be accessed via GIS?

 Yes, computed results can be displayed as GIS layers and generated output time

series can be accessed via the GIS interface.

50

2.2.2.3 Flexible Configuration

The MIKE BASIN configuration flexibility was evaluated as follows:

(i) What components can be added to the network and what are their basic functions?

 The network components available in MIKE BASIN are listed and described in Table

2.10.

 Table 2.10 MIKE BASIN components (after DHI, 2009)

Icon Component Description / Functionality

 Catchment Node Represents a River Node at the exit of a catchment.

 Catchment
Represent catchment runoff, ground water and ground water
quality interaction with surface water.

 River Node
Acts as accumulation, bifurcation or extraction points, and
enables minimum flow requirements to be specified.

River Reach /
Branch

Enables modelling of flow losses, flow capacities, hydraulics
and water quality changes based on decay.

 Link Channel
A Channel is similar to a River Reach, but is primarily used
to connect Water User, Hydropower or Irrigation Scheme
components to their water sources and destinations.

 Water User

Represent water use or demand points that can also interact
with ground water and water quality. A Water User can also
be configured as a point source for water and water quality
constituents.

 Irrigation Scheme
Enables calculation of irrigation demands based on crop
growth and climatic conditions.

 Reservoir

A Reservoir can be simulated as a rule curve reservoir,
allocation pool reservoir or lake. Various operating rules,
spillway and water quality options are provided. An optional
remote flow control node can be specified which is useful for
setting up a downstream minimum flow requirement for a
River Node for example.

Reservoir with
Catchment Node

Same as Reservoir put indicating that the reservoir is at the
exit of a catchment with the catchment’s flow entering the
Reservoir.

 Hydropower
A Hydropower component enables representation of varying
water needs based on varying power requirements and can
only be linked to a Reservoir.

(ii) Is there a limit to the number of network components or connections?

 The components and connections are stored as records in a MS Access

geodatabase and thus the only limitation is the number of records permitted by MS

Access.

(iii) Are multiple demands at extraction points permitted?

 Yes.

51

(iv) Are water users able to extract water from more than one source?

 Yes, users can extract from Reservoirs, River Nodes, Catchment Nodes, including

groundwater. Water users are able to prioritise or set preferences for water sources

if they are linked to multiple water sources.

(v) Can curtailments be applied to water use requests?

 Yes.

(vi) What constraints can be applied: for example, minimum or maximum flows?

 Minimum and maximum flows, and flow losses.

(vii) Can hydrological or hydraulic routing along channels be performed?

 Yes, Linear Reservoir, Muskingum and Translation routing are available options.

However, there are some limitations, as routing is not allowed for reaches

immediately downstream of reservoirs or immediately downstream of nodes that

have more than one upstream connection. However, the addition of more river

nodes enables these limitations to be overcome.

(viii) Can routing through reservoirs be performed?

 No, but the reservoir has flow release controls based on spillway capacity tables and

flood control parameters.

(ix) Can IFRs be simulated?

 Where a large reservoir controls the hydrology of a system, a remote flow control

node may be specified for a Reservoir component to model IFRs. Minimum flow

requirements may also be set for River Node components, but would need to be set

at each River Node component upstream of the IFR site, as minimum flow

requirements are determined at a local level.

(x) Can inter-catchment transfers be modelled?

 Yes.

(xi) Can more complex operating rules be set up where their operation is dependent on

the state of other features?

 No, this is not possible from within the user interface, but may be possible through

the use of macros to implement such rules, though this was not explored in this

evaluation.

2.2.2.4 Water Allocation

The MIKE BASIN water allocation methods were evaluated as follows:

(i) What allocation methods are available within the model?

 MIKE BASIN provides user priority and FWACS allocation methods. The allocations

are determined at a local level, where water is distributed based on user demands at

52

a particular node. Only Reservoir components provide the facility to configure a

remote node where, for example, a specified minimum flow level can be set.

(ii) Are the rules locally or globally based?

 Generally rules are locally based and are performed in flow order, starting with the

topmost river reach and progressing downstream.

(iii) What operating rules are available for reservoirs?

 Reservoir components can be simulated as a rule curve reservoir, allocation pool

reservoir or a lake, and thus priority water allocation or capacity sharing can be

modelled.

Priority allocation

The hypothetical catchment described in the introduction to Section 2.2 was set up in MIKE

BASIN as displayed in Figure 2.7. Each water user at a node was assigned a local priority.

Setting up the network and the priorities was relatively straight forward.

If a DEM or ESRI shape file had been used to configure the catchment, then the MIKE

BASIN properties for the catchment could be easily configured to make use of that area

information via a check box option as illustrated in Figure 2.8. However, for this evaluation

the catchment areas were simply input into the appropriate field. The time series of runoff in

l/s/km2 was created by making a new time series file and copying in the catchment runoff

data from Table 2.4.

Setting up the water users required adding Water User nodes, linking them to their sources

and then specifying a demand time series. In this test only one water source was used but

multiple sources could have been configured.

The assignment of the priorities for the two water users abstracting from the Catchment 1

node was specified using the node’s properties window. The reservoir initial, bottom, dead

storage and crest levels as well as their level-area-volume relationships were set for both

reservoirs. Priorities were also specified for the water users using water from Reservoir 1 as

well as IFR 2’s minimum demand downstream of the reservoir via the remote flow control

option. The curtailments to be implemented at specified reservoir levels were also set. In

order to configure the transfer (Transfer_Pump) which simulates an inter-catchment transfer

that abstracts water from Reservoir 1 and feeds it into Catchment 3, a water user with a 100

% return flow into the node feeding Catchment 3 was used. A demand time series and

return flows were set for Transfer_Pump.

53

The results from running the MIKE BASIN model based on the user priority allocation rules

were as expected. Irrigator 1 was curtailed at the beginning of June as the flow could no

longer sustain both users’ requirements. As Domestic 1 has a higher priority, its demands

were met first. In July there is a further reduction in the streamflow at the abstraction point

and Irrigator 1, who had the lower priority, received none of its demand and Domestic 1’s

abstractions were then curtailed to 2 m3/s, which was the remaining flow in the river channel.

As specified by the curtailments, when the level in the Reservoir 1 reached 541 m the supply

to all reservoir water users was curtailed to 80% of their demands. For the abstraction from

the river in Catchment 3 to FarmReservoir, the results demonstrated that the lookup table

used to divert water to FarmReservoir was successfully implemented in MIKE BASIN. IFR 1

(N28) and IRF 2 (N34) are control nodes at the exit of Catchment 3 and Catchment 4

respectively. IFR 2 was configured such that Reservoir 1 was used as a control to meet the

required minimum flow of 1 m3/s. The results showed that this minimum flow was met.

Fractional allocation and capacity sharing

The components and network layout for FWACS was the same as that for the priority

allocation shown in Figure 2.7, and only the properties were changed. The flow, at the river

node in Catchment 1 from which users Domestic 1 and Irrigator 1 abstract water, is first

divided into the fractional allocation portions of 60 % and 40 %. It is then determined how

much of the demand by each user can be met from their allotted portions. In the results it

was shown that when the flow drops to 6.0 m3/s it is sufficient to meet both demands of 2.5

m3/s, but this flow is first divided into portions based on each water user’s fractional share.

The portions are 3.6 m3/s (6.0 m3/s x 0.6) for Domestic 1, and 2.4 m3/s (6.0 m3/s x 0.4) for

Irrigator 1. Thus the water demanded by Irrigator 1 could not be met even though Domestic

1 had surplus at that point. The reservoir capacity sharing functioned as expected with each

user’s capacity share being represented as a user pool. Using the FWACS Scenario 1 the

minimum flow requirement of 1 m3/s for IFR 2 (N34) could not be met 100% of the time. In

FWACS Scenario 2 the capacity allocation of the reservoir was changed by increasing the

portion available to the downstream flow from 15% to 20% and reducing the capacity

assigned to Industry 1 from 15% to 10%. These changes to the capacity allocation resulted

in the minimum flow requirement at IFR 2 being met.

54

2.2.2.5 Scenarios

The MIKE BASIN scenario handling functionality was evaluated as follows:

(i) Does the model provide scenario handling functionality?

 Names can be assigned to model runs; this enables model output to be associated

with a particular model run which aids in testing a number of modelling scenarios.

However, no means is provided to store model inputs for different modelling

scenarios other than saving each scenario in a different MIKE BASIN project.

2.2.2.6 Accounting and Auditing

The MIKE BASIN accounting and auditing functionality was evaluated as follows:

(i) What queries can be made at points within the network?

 Time series can be queried at each network component within MIKE BASIN. Both

inflows and outflows can be queried.

(ii) Can source and destination of water be determined?

 The sources and destinations are limited to directly linked nodes.

(iii) Can ownership of water be determined?

 Water ownership is not accounted for.

2.2.2.7 Operational Use

The suitability of MIKE BASIN for operational use was evaluated as follows:

(i) Does the model enable storage of state data so that a simulation can be started or

restarted using a simulated or actual state for a specified point in time?

 No, not directly. The model was run for the first half of the year and then the reservoir

levels were manually copied across from the output files to the initial values in the

property dialogs for the reservoirs and then run for the second half of the year. This

resulted in the same reservoir levels obtained from the full year run.

2.2.2.8 Discussion

A three day MIKE BASIN course was attended before this evaluation took place which aided

in a relatively quick learning curve regarding the general methodology used to configure and

run the MIKE BASIN model. The training manual from this MIKE BASIN course (DHI,

2011a) was also an invaluable resource while setting up and running this evaluation. DHI-

SA has initiated a web based discussion forum (http://www.dhi-students.co.za) for students

to facilitate interaction and learning (Pott, 2011). Online presentations are also available

55

from this discussion forum (Pott, 2011). The factors discussed above as well as the local

user support meant that this was the quickest of the three models to configure for this

evaluation.

An assessment of how well MIKE BASIN met the evaluation criteria is shown in Table 2.11,

with the number of times the model met the criteria being totalled. MIKE BASIN scored high

in the “User Interface”, “GIS Functionality” and “Water Allocation” evaluations by meeting all

the requirements. The “Flexible Configuration” evaluation also scored highly. MIKE BASIN

achieved lower scores in the “Scenarios”, “Accounting and Auditing” and “Operational Use”

evaluations.

Table 2.11 MIKE BASIN evaluation scores

Evaluation Criteria Number of Criteria Score

User Interface 7 7

GIS Functionality 3 3

Flexible Configuration 11 10½

Water Allocation 3 3

Scenarios 1 ½

Accounting and Auditing 3 1

Operational Use 2 1

2.2.3 MODSIM

MODSIM version 8.1 Beta was used for this test. MODSIM is freely available for download

from the Colorado State University’s web site [http://modsim.engr.colostate.edu/] and does

not require a dongle or licence. A version of MODSIM named Geo-MODSIM, which includes

a GIS interface, is mentioned in the literature (Triana and Labadie, 2007), however this

version is still under development and its launch has been delayed indefinitely (Labadie,

2011). It was not possible to attend a training course for MODSIM prior to this evaluation, so

the use of the model was mainly learned through the user manual tutorials provided by the

developers.

MODSIM is not a commercially sold model and dedicated user support was not available,

though limited support was obtained by e-mail from the developer, Dr Labadie

(Labadie@engr.colorstate.edu).

56

2.2.3.1 User Interface

MODSIM is a standalone application that operates on the Microsoft Windows operating

platform. The GUI with the network representing the hypothetical test catchment loaded is

displayed in Figure 2.9. MODSIM makes use of a Multiple Document Interface (MDI), thus

unlike the other models tested, multiple model configurations can be loaded and viewed at

one time, which is especially useful when setting up and running different scenarios. The

network components are dragged from the Node Pallet form, displayed in Figure 2.9, onto

the network editor window to build up the network. The Network Settings window is used to

set up general model parameters as well as run parameters.

Figure 2.9 MODSIM’s user interface (Labadie, 2010a)

The MODSIM user interface was evaluated as follows:

(i) Is there a GUI?

 Yes, the GUI has been developed in Microsoft Visual C++ .NET and accesses the

model libraries that can also be accessed via the Custom Code Editor or a .NET

application (Labadie, 2010a).

57

(ii) Is the GUI well laid out and logical or intuitive?

 As with RiverWare, MODSIM’s GUI follows the general Microsoft Windows

application layout with menus, a toolbar and a workspace where the networks are

created but differs in that it makes use of a MDI. The Node Palette and Network

Overview windows can be moved, docked and pinned, thus adding a degree of

customisability to the interface.

(iii) Is there a network visualizer?

 Yes, there is a network visualizer and a background image can be loaded into the

network editor to facilitate visualising and laying out the network.

(iv) Can model input and output data be interrogated via the network?

 Yes, by double clicking on a node or link the properties and input can be viewed and

set. Right clicking on a link or node opens a localised menu where the graph option

can be selected to open the graphing tool.

(v) Are wizards or expert systems provided?

 MODSIM supports Monte Carlo Analysis as well as “a state-of-the-art” network flow

optimization algorithm (Labadie, 2010a). MODSIM can also be customised through

the use of Microsoft .NET.

(vi) Can model input and output data be tabled and graphed?

 Yes, input and output data can be viewed in either a data table view or plotted as a

graph.

(vii) Can animations of model results be created?

 Yes, MODSIM has a tool to animate the output results for reservoirs, demand nodes

and network links. The animation changes the colours of the links and nodes within

defined colour ranges.

2.2.3.2 GIS Functionality

The MODSIM GIS functionality was evaluated as follows:

(i) Does the model have full GIS integration or is there only GIS visualisation?

 MODSIM version 8.1 Beta does not have any GIS functionality. Geo-MODSIM is a

GIS based version MODSIM (Triana and Labadie, 2007), however it is not publicly

available as indicated above.

(ii) Does the model use input generated via the GIS?

 No, but GIS coverages can be exported as images and then imported as a

background to assist in visualising networks.

58

(iii) Can the output be accessed via GIS?

 No, the output can be accessed from the network visualizer but results cannot be

displayed as a map.

2.2.3.3 Flexible Configuration

The MODSIM configuration flexibility was evaluated as follows:

(i) What components can be added to the network and what are their basic functions?

 The components provided in MODSIM and their functions are summarised in

 Table 2.12.

 Table 2.12 MODSIM components (after Labadie, 2010a)

Icon Component Description / Functionality

Consumptive
Demand

Nodes that represent water users or a demand. The demand can
also represent an abstraction from ground water.

 NonStorage
Nodes that can represent catchment runoff, river nodes,
confluences, diversions and abstraction points or input sources or
water rights of a user.

Flowthru
Demand

A modified Consumptive Demand node that requires a destination
node. Also referred to as a non-consumptive node i.e. used for
controlling instream flow requirements. Can be used along with
historical data for model calibration.

Operations or
Hydropower
Reservoir

Operations of off-stream or main-stem reservoirs. Flood control,
conservations pools and dead storage. Zones for storage
balancing in multi-reservoir systems.
Reservoir hydropower or run-of-river hydropower, pumped
storage.

Storage Right
Reservoir

Storage ownership, pool rentals, water banking and service
contracts and water rights storage accounts.

Network Sink Catchment outlet.

 Link
Can function as rivers, canals, pipelines and water rights.
Channel losses and maximum and minimum flows.

MultiLink

Multiple water sources and rights including nonlinear cost-
discharge functions and non-linear discharge-channel loss
functions.

 Routing Link Streamflow and channel routing.

 Annotation Can be used to add labels to the network.

(ii) Is there a limit to the number of network components or connections?

 The number of components and connections appears to be limitless.

(iii) Are multiple demands at extraction points permitted?

 Multiple water users may be connected to Reservoir and NonStorage nodes.

59

(iv) Are water users able to extract water from more than one source?

 Yes, water users can extract from more than one source. Priorities and link costs

then determine which source or combination of sources are used to supply the water

user.

(v) Can curtailments be applied to water use requests?

 Yes, Hydrologic State tables can be utilised to specify reservoir operating rules.

(vi) What constraints can be applied: for example, minimum or maximum flows?

 Both minimum and maximum flow constraints can be applied.

(vii) Can hydrological or hydraulic routing along channels be performed?

 Yes, Muskingum and user defined lag coefficients (Labadie, 2010a).

(viii) Can routing through reservoirs be performed?

 Yes, restrictions to reservoir discharge can be made based on the hydraulic capacity

and reservoir head. This is limited to one exit node.

(ix) Can IFRs be simulated?

 Yes, Flowthru Demand components can be used to represent IFRs.

(x) Can inter-catchment transfers be modelled?

 Yes.

(xi) Can more complex operating rules be set up where their operation is dependent on

the state of other features? For example a transfer from a node upstream of a

reservoir that is dependent on the water level of the reservoir.

 Watch Links is a feature that facilitates setting up relationships whereby flow

requirements at a point can be dependent on flow conditions at other locations within

the network. Theoretically almost any conceivable operation can be configured

through custom code.

2.2.3.4 Water Allocation

The MODSIM water allocation methods were evaluated as follows:

(i) What allocation methods are available within the model?

 Priority, rent pool, user rights and ownership.

(ii) Are the rules locally or globally based?

 The priorities are at a network level, i.e. globally based.

(iii) What operating rules are available for reservoirs?

 Priority allocation with hydrologic state based reduction curves. Capacity sharing is

also available.

60

Unlike MIKE BASIN and RiverWare, MODSIM’s priority based water allocation system

closely resembles the penalty structure of the WRYM developed and used in South Africa.

The priorities are at global level and the network links can have an associated “link cost” that

ensures allocation is made in accordance with specified water rights and priority rankings

(Labadie, 2010a).

Priority allocation

The hypothetical catchment described in the introduction to Section 2.2 was set up in

MODSIM as displayed in Figure 2.9. Some aspects of the network for the hypothetical

catchment could not be modelled, though it is possible that experienced users of the model

may be able to work around these apparent limitations. The lookup table method used to

divert water to the FarmReservoir in the other models could not be represented. The

reduction fractions applied to the water users for the reservoir could also not be

implemented. A Flowthru Demand node was used to model the inter-catchment water

transfer and IFRs and Consumptive Demand nodes were used to represent the other water

users.

The results from running the MODSIM model based on the user priority allocation rules

showed that the priority allocation method worked in the same way for the Domestic 1 and

Irrigator 1 water users as for the MIKE BASIN and RiverWare models.

Fractional allocation and capacity sharing

From the literature it appears that it is possible to set up FWACS allocation in MODSIM

(Labadie, 2010b). A Flowthru component in conjunction with NonStorage components was

configured for the fractional allocation of the runoff from Catchment 1 to the Domestic 1 and

Irrigator 1 components as shown in Figure 2.10. The capacity sharing configuration for

Reservoir 1 was set up with the Storage Right Reservoir and NonStorage components.

Thus the components in the network layout for FWACS had to be configured differently to

that used for the priority allocation test.

61

Figure 2.10 Catchment 1 configuration with Flowthru component (Labadie, 2010a)

2.2.3.5 Scenarios

The MODSIM scenario handling functionality was evaluated as follows:

(i) Does the model provide scenario handling functionality?

 Scenarios can be saved as separate MODSIM (.xy) files. If all the scenario files are

open at the same time, in the MODSIM interface, the Scenario Analysis option

enables the graphing tool to plot results from all the scenarios concurrently.

2.2.3.6 Accounting and Auditing

The MODSIM accounting and auditing functionality was evaluated as follows:

(i) What queries can be made at points within the network?

 Component properties, input time series and output can be queried at network links

and components.

(ii) Can source and destination of water be determined?

 The sources and destinations are limited to directly linked nodes.

(iii) Can ownership of water be determined?

 MODSIM has a Water Rights Extension that facilitates keeping track of water

ownership through the use of storage ownership accounts (Labadie, 2010a).

2.2.3.7 Operational Use

MODSIM can be used for real-time catchment management by linking it with data

management systems what include forecast data (Labadie et al., 2007; Labadie, 2010a).

The suitability of MODSIM for operational use was evaluated as follows:

62

(i) Does the model enable storage of state data so that a simulation can be started or

restarted using a simulated or actual state for a specified point in time?

 No, not directly. As with the other models evaluated, MODSIM was first run for the

full year of 1981, then for the first half and second of the same year. As with MIKE

BASIN the reservoir levels were manually copied across from the end of the first half

of the year to the initial value for the second half of the year. However, MODSIM

required the reservoir storage volume as opposed to the reservoir level. The

reservoir storages for the second half of the year thus continued from the same value

where the first half of the year left off but did not follow the same curve that was

obtained from the full year simulation. This could be as a result of other model state

values that were not accounted for.

2.2.3.8 Discussion

Configuring the catchment for the FWACS allocation method proved to be challenging

without appropriate user support and experience. Unfortunately, this evaluation was done

without attending a course and as there is only one contact person for queries it proved

difficult to resolve the details required to fully implement the water banking and ownership

functionality described in the literature by Labadie (Labadie, 2010b).

An assessment of how well MODSIM met the evaluation criteria is shown in

Table 2.13, with the number of times the model met the criteria being totalled. MODSIM

scored high in the “User Interface”, “Flexible Configuration”, “Water Allocation” and

“Scenarios” evaluations by meeting all the requirements. The MDI interface was a very

useful and simple method of comparing scenarios as output from a point of interest could be

easily compared across scenarios. The flexibility of changing rules and components

between scenarios was also a strong point. MODSIM achieved lower scores in the “GIS

Functionality”, “Accounting and Auditing” and “Operational Use” evaluations.

Table 2.13 MODSIM evaluation scores

Evaluation Criteria Number of Criteria Score

User Interface 7 7

GIS Functionality 3 1

Flexible Configuration 11 11

Water Allocation 3 3

Scenarios 1 1

Accounting and Auditing 3 2

Operational Use 2 1

63

2.2.4 RiverWare

For this test RiverWare version 6.0.3 – Mar 8 2011 10:53:10 was used. RiverWare requires

a license file that is generated based on the Media Access Control (MAC) address of the

computer on which it is installed. A six month academic evaluation license was obtained

from the developers at the Centre for Advanced Decision Support for Water and

Environmental Systems (CADSWES).

Modelling support is provided for RiverWare by CADSWES via e-mail (riverware-

support@colorado.edu). The responses to queries during the evaluation were prompt

(generally next day), clear and included examples. The user support obtained during the

evaluation was invaluable in providing a clear understanding of the modelling methodology

used by RiverWare. The time zone differences between South Africa and the USA proved

beneficial, as any queries were compiled at the end of the working day and e-mailed through

to the support address, and generally the response e-mail was received by the next morning.

RiverWare refers to the network “objects”, but for the purpose of consistency this document

will use the term network “components”.

2.2.4.1 User Interface

RiverWare is a standalone application. The RiverWare GUI with the test catchment loaded

is displayed in Figure 2.11. The Run Control form enables model run settings to be easily

changed and includes functionality to pause a run and step through a run at any point. It

should be noted that when a model run starts all the output is cleared. Thus, if testing for a

shorter period within the full simulation period, it is better to run from the start date and

pause and then step through the period of interest. If this is not done, state or other required

input would have to be specified just before the period of interest. The network components

contain data containers called slots. Setting up the run parameters facilitates the

subsequent addition of time series slots to the network components, as the time step

specified on the Run Control form is used by the software for entering data into the time

series slots. The network components are dragged from the Sim Object Pallet form onto the

workspace in order to build up the network. The properties of network components added to

the workspace can be set using their respective properties windows, as shown in Figure

2.12.

64

Figure 2.11 RiverWare’s user interface (CADSWES, 2011)

Figure 2.12 RiverWare’s reservoir properties window (CADSWES, 2011)

65

The RiverWare user interface was evaluated as follows:

(i) Is there a GUI?

 Yes.

(ii) Is the GUI well laid out and logical or intuitive?

 The GUI follows the general Microsoft Windows application layout with menus, a

toolbar and a workspace where the networks are created. The component selector

window can be moved and docked, thus adding a degree of customisability to the

interface.

(iii) Is there a network visualizer?

 Yes, networks can be displayed in the workspace as either a simulation view (default)

or a geospatial view. The simulation view enables components to be placed in a

manner that facilitates visualizing the network and the geospatial view enables

components to be placed relative to one another based on a x and y location. The

network visualizer has a useful lock feature that prevents components from being

accidentally moved around.

(iv) Can model input and output data be interrogated via the network?

 Yes, input and output slots are contained in the network components and are thus

easily accessible via the network. Expression slots are a useful means of calculating

statistics and other user defined calculations. These are located in Data components

and are thus accessible from the network but need to be clearly named to avoid

confusion.

(v) Are wizards or expert systems provided?

 RiverWare makes use of a RiverWare Policy Language (RPL) for both expression

slots and rule-based computations. The RPL Palette form facilitates setting up

complex functions, rules and expressions. Due to the complex nature of changing

prerequisite inputs and outputs, and the possible effect on rules, a wizard is provided

to analyse a model run at a component level, which is invaluable for determining why

a run may have not been completed. Missing inputs required to run the methods for

a particular component can be tracked with the aid of this tool.

(vi) Can model input and output data be tabled and graphed?

 Yes, input and output data are stored in slots for which data can be represented in a

tabular format and as graphs, including statistical analyses such as frequency

analysis curves. RiverWare slots have the ability to specify input or output status at a

record or time step level. Thus one data slot could contain both input and output

values within the same time series. This is a unique feature of RiverWare compared

to the other the models tested.

66

(vii) Can animations of model results be created?

 No, animation of results is not a feature of RiverWare.

2.2.4.2 GIS Functionality

There is no GIS functionality within RiverWare apart from the ability to visualise networks

geospatially. Thus, the evaluation of GIS functionality is as follows:

(i) Does the model have full GIS integration or is there only GIS visualisation?

 RiverWare only provides simple GIS visualisation.

(ii) Does the model use input generated via the GIS?

 No.

(iii) Can the output be accessed via GIS?

 No.

2.2.4.3 Flexible Configuration

The RiverWare configuration flexibility was evaluated as follows:

(i) What components can be added to the network and what are their basic functions?

 The RiverWare software includes a comprehensive list of network components which

are listed and described in Table 2.14.

Table 2.14 RiverWare components (after CADSWES, 2011)

Icon Component Description / Functionality

Storage Reservoir

A reservoir with Release and spillways and no hydropower
facilities. Storage is a function of Pool Elevation as defined by
an Elevation-Volume Table.

Level Power
Reservoir

A reservoir with a hydropower plant (Turbine Release) and
spillways. Storage is a function of Pool Elevation as defined by
an Elevation-Volume Table.

Slope Power
Reservoir

A reservoir with hydropower facilities and spillways. Storage is
a combination of level storage and wedge storage. Wedge
storage is defined by a table which relates headwater elevation
and Inflow to a water surface profile.

Pumped Storage

A reservoir which has reversible pump-turbines. The turbines
may generate or pump at each time step. Storage is a function
of Pool Elevation as defined by an Elevation-Volume Table.

Reach

A river section which routes water using one of many possible
routing algorithms. Reaches may lose water to a Diversion and
gain water from Return Flow. Reaches can also have side
inflows, gains, and/or losses.

AggReach

An aggregate component which contains one or more Reach
components.

67

Table 2.14 (continued) RiverWare components (after CADSWES, 2011)

Icon Component Description / Functionality

Confluence

A flow junction with two Inflows and a single Outflow.

Bifurcation A flow junction with a single Inflow and two Outflows.

Control Point

A component used to regulate upstream reservoirs so that
channel Capacity at the control point is not violated.

Inline Power

A component used to model power production on a stretch of
reach with no storage (run of river power production).

Canal

A bi-directional conveyance channel which delivers water by
gravity between two Reservoirs.

Pipeline

A component that models flow in a pipeline between two
components.

Pipe Junction

A component used with pressurized flow to split flows similar to
a bifurcation or bring flows together similar to a confluence.

Inline Pump

A component used to model a booster pump station. It controls
solution direction, calculates added head and calculates the
power consumed.

Agg Distribution
Canal

An aggregate component which serves to route Diversion
Requests from a Water User upstream to a Diversion
component. It also routes flow from the Diversion component
down to the Water Users.

AggDiversion Site

An aggregate component which contains zero or more Water
Users. It diverts water from a Reach or a Reservoir. The Water
User elements consume water and return excess flow to the
system.

Diversion
Component

A component which diverts water from a Reservoir or Reach.
The amount of water which may be diverted is based on water
surface elevation, pumping parameters, or available water.

Water User

A component that diverts water from a Reach or a Reservoir,
consumes water, and then returns excess flow to the system.

Ground Water
Storage

An underground storage reservoir which receives Inflow from
Water User Return Flow or Reach seepage and can return
water to the system.

Stream Gauge

A component used to represent stream gauge location. It
shows the discharge data at a particular location in a model.

Thermal
Component

A component which models the economics of the thermal
power system and the thermal replacement value of the
hydropower.

Data Component

A container for user-defined data to be imported to and/or
exported from RiverWare. Data Components may also contain
expression slots for performing user-defined calculations.

(ii) Is there a limit to the number of network components or connections?

 There does not appear to be a limit on the number of components or connections.

(iii) Are multiple demands at extraction points permitted?

 Yes, if more than one Water User diverts water from a Reservoir or Reach then an

AggDiversion Site component must be used.

68

(iv) Are water users able to extract water from more than one source?

 No, a Water User can extract water from individual Reservoir, Reach and Diversion

components, but it does not appear to be possible to extract from multiple sources.

This may be possible using more complex methods such as rules and expression

slots, which were not explored in this evaluation.

(v) Can curtailments be applied to water use requests?

 Yes.

(vi) What constraints can be applied: for example, minimum or maximum flows?

 Yes, constraints can be applied, but these would have to be implemented by creating

rules.

(vii) Can hydrological or hydraulic routing along channels be performed?

 Yes, routing methods can be applied in Reach components and include Time Lag,

Variable Time Lag, Impulse Response, Step Response, Variable Step Response,

Muskingum, Kinematic, Muskingum Cunge, Muskingum Cunge Improved,

MacCormack, Storage and Variable Storage routing.

(viii) Can routing through reservoirs be performed?

 Yes, hydrologic inflow methods are available for reservoirs.

(ix) Can IFRs be simulated?

 Yes, rules or Control Point components can be configured to model minimum flow

requirements.

(x) Can inter-catchment transfers be modelled?

 Yes.

(xi) Can more complex operating rules be set up where their operation is dependent on

the state of other features? For example a transfer from a node upstream of a

reservoir that is dependent on the water level of the reservoir.

 Almost any conceivable operation can be configured using the RPL.

2.2.4.4 Water Allocation

The RiverWare water allocation methods were evaluated as follows:

(i) What allocation methods are available within the model?

 The system is primarily geared towards a priority system, however in this evaluation

examples of priority and fractional allocation were set up successfully. The water

accounting ability could have also been used for the fractional allocation testing.

(ii) Are the rules locally or globally based?

 Rules are run in order of their priority and not by component and can thus be applied

at a global level.

69

(iii) What operating rules are available for reservoirs?

 Reservoirs can have numerous methods applied to them, enabling user priority

allocation and capacity sharing to be modelled.

Priority allocation

The hypothetical catchment described in the introduction to Section 2.2 was set up in

RiverWare as displayed in Figure 2.11. As Aggregate Diversion Sites were used with each

of their Water Users linked via a sequential structure, the Water User priority was based on

the order in which they were listed in the Aggregate Diversion Site.

Setting up the network in RiverWare required dragging the appropriate components into the

workspace and linking them appropriately. Initially some trial and error was required to

select the most appropriate network components to represent the hypothetical catchment.

As no catchment components are provided, expression slots were used to calculate the

runoff from the catchments. Catchment runoff from Table 2.4 was converted to cubic meters

per second (m3/s) and stored in a slot called CatchFlow in a Data Component called

DataObj1. Two expression slots representing the two catchments were created viz.

Catch1Flow and Catch2Flow. These were then set up to calculate runoff as the CatchFlow

slot multiplied by the appropriate catchment area. The execution order of the expression

slots was found to be important when running the model, and they were therefore set to

execute at the beginning of each time step. These expression slots were then linked to the

inflows for each catchment viz. Reach 1 and Reach 2. All the water users were set up in a

priority allocation system based on their order in the AggDiversion Site components. The

Dom1AndIrr1 AggDiversion Site component was configured with allocation to the Domestic 1

user first then to the Irrigator 1 user. Setting up the water users required first adding the

AggDiversion Site components, then appending each user at a site in order of priority. The

abstraction rates for these users were set in their corresponding Diversion Request slots.

The reservoir level-area-volume relationships and initial pool elevations were set in the

appropriate slots for the Reservoir components. A Data Component, named

ReservoirWaterUsersData was created and the water user demands and curtailments

(reduction fractions) were added. Rules were configured with the aid of RiverWare’s RPL

Palette to specify the configuration of rules and how the slots interact which each other. The

rules were grouped according to the reservoirs on which they operated and ordered so as to

represent the hypothetical catchment described in the introduction to Section 2.2. Dead

storage and crest levels were specified within the rules created to determine the water

70

available for each of the specific water users based on the calculated reservoir level. A

release for minimum flow rule was used to represent the IFR 2 site downstream of

Reservoir 1. For the inter-catchment transfer the Transfer_Pump water user’s Fractional

Return Flow slot was set to 1 and its Return Flow slot was linked to the inflow in

Catchment 3.

The results from running the RiverWare model based on user priority allocation rules were

as expected. Irrigator 1 was curtailed at the beginning of June as the flow could not sustain

both users’ requirements. As the Domestic 1 user has a higher priority, its demands are met

first. In July there was a further reduction in the in-stream flow at the abstraction point and

the lower priority Irrigator 1 then receives none of its demand and the Domestic 1 user was

then curtailed down to 2 m3/s which was the remaining flow in the river channel. The

curtailments for the Reservoir 1 water users were implemented as expected. The outflow

from the reservoir had some oscillation as a result of the simplified spillway rating table that

had been applied. This spillway rating table was a requirement in RiverWare unlike MIKE

BASIN where it was an optional setting. Abstractions from the river in Catchment 3 flow into

FarmReservoir were as expected. The flows at IFR 1 and IFR 2, were as expected, except

for the oscillations as mentioned above.

Fractional allocation and capacity sharing

The components and network layout for the FWACS allocation configuration were largely the

same as the configuration for the priority allocation. There were, however, some extra slots

and data components required, and rules were changed to meet the FWACS parameters

and some changes were made to some slot linkages. The results obtained were as

expected, and, as shown in the MIKE BASIN evaluation, there is a point in the simulation

where the Domestic 1 user receives its full allocation while the Irrigation1 user is in deficit,

even though there is sufficient water in the river. The minimum flow at IFR 2 was

determined at each time step before the reservoir was fractionally allocated to the water

users as the IFR had not been set up with a capacity share. This configuration was different

to the MIKE BASIN test where the flows to IFR 2 downstream were allocated from an

environmental fraction of the reservoir. Due to the way that the rules were configured, the

minimum flow requirement had the highest priority and thus was always met.

71

2.2.4.5 Scenarios

The RiverWare scenario handling functionality was evaluated as follows:

(i) Does the model provide scenario handling functionality?

 RiverWare has a scenario manager utility in which a baseline is saved then various

scenarios can be configured and compared. These scenarios are limited to changes

in slot values as once the baseline has been saved the network components, links

and rules cannot be changed (CADSWES, 2011). This functionality was not tested

as part of this evaluation.

2.2.4.6 Accounting and Auditing

RiverWare has an extensive accounting system and water ownership can be accounted for

within the water accounts manager. The accounting and auditing functionality was

evaluated as follows:

(i) What queries can be made at points within the network?

 Input and output data slots can be queried from the network components. The slots

within Data Components may not be site specific and thus clear naming facilitates

analysis.

(ii) Can source and destination of water be determined?

 The RiverWare accounting system can keep track of the source and destination of

water (CADSWES, 2011).

(iii) Can ownership of water be determined?

 Yes, the RiverWare accounting system can keep track of water ownership

(CADSWES, 2011).

2.2.4.7 Operational Use

Numerous forecasting methods are available in RiverWare for Control Point, Reach and

Reservoir components (CADSWES, 2011). The suitability of RiverWare for operational use

was evaluated as follows:

(i) Does the model enable storage of state data so that a simulation can be started or

restarted using a simulated or actual state for a specified point in time?

No, not directly. This can be achieved manually in RiverWare by changing a slot

records’ status from output to input. The model was run from the 1st of January 1981

up to the 30th of June 1981. The records for both the reservoir levels on 30th of June

were then changed to indicate that they were now input values and then the model

was run for the period of 1st July to 31st December 1981.

72

2.2.4.8 Discussion

For this evaluation the methodology for setting up and running networks in RiverWare took

longer to learn than MIKE BASIN for two main reasons: (i) it was not possible to attend a

training course for RiverWare prior to this evaluation, so use of the model was mainly

learned through the tutorials provided by the developers, and (ii) the model requires that the

methods which control how water is allocated to be configured by the user. This manual

configuration could be considerably quicker and offer more control in the hands of an

experienced user.

An assessment of how well RiverWare met the evaluation criteria is shown in Table 2.15,

with the number of times the model met the criteria being totalled. RiverWare scored high in

the “User Interface”, “Flexible Configuration” and “Accounting and Auditing” evaluations.

RiverWare achieved lower scores in the “GIS Functionality” ”, “Water Allocation”, “Scenarios”

and “Operational Use” evaluations.

Table 2.15 RiverWare evaluation scores

Evaluation Criteria Number of Criteria Score

User Interface 7 6

GIS Functionality 3 1

Flexible Configuration 11 10

Water Allocation 3 2

Scenarios 1 ½

Accounting and Auditing 3 3

Operational Use 2 1

2.2.5 Results and recommendation

The MIKE BASIN model was found to be strong on the GIS requirements but weak in the

accounting and auditing functionality. It has local, South African support and is relatively

easy to use. MIKE BASIN was the easiest and quickest model to configure for the test

catchment. RiverWare is strong on accounting and auditing, but is weaker on the GIS

requirements. RiverWare is more flexible in the way that it can be configured, but requires

greater expertise. Due to the complexity of setting up RiverWare, the user support provided

by the developers proved invaluable. MODSIM was weak on the GIS requirements. Some

aspects of the hypothetical test catchment could not be configured within the MODSIM

model in this evaluation. The lack of user support for MODSIM was its main drawback.

However, it is the only model evaluated that has no cost or licence required.

73

The scores represented in the discussion chapters for each model were summarised by

converting them to percentages as represented in Table 2.16. The average score for each

model serves as a rough overall guide as to how the models scored relative to each other,

but does not account for the relative importance of the different evaluation criteria. During

the course of the evaluations it was noted that the level of user support and training available

for the different models was an important factor for model selection.

Table 2.16 Summary of evaluation ratings

Evaluation Criteria MIKE BASIN
(%)

RiverWare
(%)

MODSIM
(%)

User Interface 100 86 100

GIS Functionality 100 33 33

Flexible Configuration 95 91 100

Water Allocation 100 67 100

Scenarios 50 50 100

Accounting and Auditing 33 100 67

Operational Use 50 50 50

Average 76 68 79

Although MODSIM received the highest average score, the lack of adequate user support

and difficulty in configuring aspects of the evaluation river network counts against it. Based

on the evaluations described in this document it was recommended that MIKE BASIN be

selected for use in the project, largely due to its ease of use, strong GIS support through

ArcGIS and availability of local user support and training.

74

3 REVIEW AND EVALUATION OF MODEL LINKAGE MECHANISMS

DJ Clark, A Lutchminarain and JC Smithers

Integrated water resources management (IWRM), which includes not only water quantity and

quality aspects of water resources but also social and economic aspects, requires integrated

water resource assessment. Assessment of complex hydrological systems often requires

detailed process-oriented models (Barthel et al., 2006). It is unlikely that a single model will

be able to adequately represent every facet of a water resource system, which may include

different scientific disciplines, different spatial and temporal scales, varying data availability

and a variety of modelling objectives and stakeholders (Blind and Gregersen, 2005; Moore

and Tindall, 2005; Gregersen et al., 2007; Castronova and Goodall, 2010). Existing models

are often developed for or have strengths in specific domains within the hydrological system

and integration of models is a popular solution in attempting to model complexity (Moore and

Tindall, 2005; Barthel et al., 2006). Krause et al. (2005) state that combining and

implementing approaches from natural and social sciences is a challenge to be faced in

developing models and their application for IWRM. Different scientific disciplines approach

system complexity and diverse scales in various ways, and use different modelling

techniques and approaches to model design (Krause et al., 2005). Integrated models must

be compatible in terms of spatial and temporal scales and strategies for validation of both

individual models and the integrated collection of models are necessary (Barthel et al.,

2006). Integration of models and modelling approaches for IWRM has led to research and

development into integrated modelling environments, model interfacing specifications and

modular modelling systems (Krause et al., 2005). Integrated modelling environments

typically include common data storage and formats, common data editing tools, and

common spatial and temporal data visualisation and analysis tools. Integrated modelling

environments are not included in this review as although they offer some degree of model

integration by means of their common data formats, data repositories and analysis tools,

they do not facilitate direct communication between models which is necessary for modelling

feedbacks between system components. Gregersen et al. (2007) noted that some existing

hydrological decision support systems are based on fixed combinations of specific

hydrological and hydraulic models, but that the limited supported combinations sometimes

resulted in compromises being made in representing the hydrological system being

modelled. Krause et al. (2005) noted that there were two main research and development

paths being followed with regard to model integration, direct integration of whole models

through implementation of a model interface specification, and modular modelling systems

75

where modules representing individual processes are combined to create custom models.

Both approaches have advantages and disadvantages.

To integrate two models it is necessary for data and information to be exchanged between

the models. Linking two models in series is usually a simple matter of running the first

model, converting the output format of the first model to the input format of the second

model, and then running the second model. One critical limitation of the series linking

approach is that feedbacks between processes in the two separate models cannot be

represented. The first requirement for models to be linked in parallel is that each of the

models to be linked must expose its engine such that: its variable can be read and written by

third party software, and a simulation run can be initiated then executed on a time step by

time step basis. If this first requirement can be met then it is possible to write custom code

to link two specific models. However, a better approach would be to adopt and implement a

more generic model linkage mechanism, such that any combination of models that

implement this mechanism can be linked as required for a particular study. The aim of this

chapter is to review and evaluate methods of linking models to gain a better understanding

of model linkage mechanisms and to enable the most appropriate mechanism to be selected

for use in this project. The integration of the ACRU model and a river network model in this

project is expected to act as a test case for the integration of models representing other

domains such as detailed groundwater models and socio-economic models. When

evaluating the methods for linking models, the following requirements need to be

considered:

• the method needs to be suitable for use with the ACRU model and a river network

model,

• the method should require minimal changes to the code for the models,

• ideally the method should be based on a standard so that other compatible models

can be linked in the future, and

• ideally the method should enable the models to be linked in parallel so that feedbacks

between models can be adequately represented.

3.1 Review of Available Mechanisms

As stated in the introduction, IWRM considers not only water quantity and quality, but also

social and economic aspects of water resources. Often models are developed for, or have,

strengths in specific domains within the hydrological system, for example,

evapotranspiration, groundwater or hydrodynamic flow routing through river networks. For

76

IWRM it will be necessary to integrate one or more models to provide a holistic water

resources modelling system for use in water resources planning and operations. An

important consideration is that the models to be integrated may run at different spatial and

temporal scales.

Over the years a number of strategies have been used to integrate models. As expressed by

Krause et al. (2005), one of the simplest ways to combine models and modelling approaches

from different domains or disciplines is the coupling of whole standalone models. There are

many methods by which models can be coupled and these differ in their degree of

complexity and the degree of interaction and feedback that can take place between the

coupled models (Krause et al., 2005). At the most basic level, model coupling involves using

the output from one model as input for another model, Model-A could be run for say 10

years, the output files from Model-A are then reformatted to provide input to Model-B which

is then run for the same 10 years. This approach is referred to as running models in series,

that is, each model is run independently for the full time period one model after the other.

The advantages of this approach are that it is simple and does not require any changes to

the models used. There are two main problems with this approach, firstly, the effort required

to reformat the output from one model to be suitable for use as input for the other model, and

secondly, as stated by Krause et al. (2005) potential interactions and influences between the

systems represented by the coupled models can only be realised in one direction, meaning

that feedbacks cannot be modelled. The first problem can be overcome if both models use

the same data input and output format.

A recent trend has been the development of integrated modelling environments or decision

support systems such as DeltaShell (Donchyts and Jagers, 2010), LIANA (Hofman, 2005)

and SPATSIM-HDSF (Clark et al., 2009). These modelling frameworks have an important

role to play in providing a modelling environment within which model users can operate

without having to learn new user interface, data editing and analysis tools for each model,

and in enabling model developers to concentrate on the science behind their models instead

of having to re-invent the common functionality that is part of these modelling environments.

For a particular model to be used within such a modelling environment, the model will need

to be modified to read from and write to the environment’s data format, but having done this

would benefit from being able to use the common environment tools. Integrated modelling

environments assist in standardising the way in which models are run and resolve the

problem of having to translate the output data format from one model to the input data format

of the receiving model, but in general, models would still have to be run in series and

therefore the problem of not being able to model feedbacks between the models would still

77

exist, though in some cases, for example the DeltaShell environment, these environments

may include some means of directly coupling models (Krause et al., 2005).

One method of enabling two models to run in parallel would be to modify two or more

specific models to communicate with each other either directly or via a common data

repository on a timestep-by-timestep basis. When coupling two or more models in this

manner, the computation order and protocols for data format and transfer have to be

considered (Krause et al., 2005). In order for this to work each model must have some

means of being instructed to run each individual time step and there needs to be some sort

of controller that commands each model or a component of each model to run for the next

time step. Alternatively, for the models to communicate with each other directly they each

need to provide some sort of publicly accessible interface, for example the Component

Object Model (COM) interface standard, and the interface type selected needs to be

compatible with the operating platform and programming language of all of the models to be

linked. The .Net programming platform has, in some respects, replaced COM by enabling

compatibility between software modules written in different .Net programming languages.

This linking approach requires the models to be modified to implement the interface

standard, which may not be possible if the models are proprietary. This approach has the

advantage that feedbacks can potentially be modelled, and though the models will need to

be modified, legacy models can be linked without being completely re-written and thus retain

their identity and in-built integrity. A disadvantage of this approach is that, though the

specific models have been linked, further modifications may be required if another model

needs to be linked into the suite of models.

As noted by Krause et al. (2005), one of the recent model integration development paths for

integrated modelling has been the development of model interface specifications such as

OpenMI (Blind and Gregersen, 2005; Gregersen et al., 2005; Moore and Tindall, 2005;

Gregersen et al., 2007; Knapen et al., 2009) and the High Level Architecture (HLA)

(Lindenschmidt et al., 2005). A model interface standard consists of a set of software

interfaces that must be implemented by the model that is to be made compliant with the

standard. This concept of some sort of interface standard which must be adhered to is in

some ways similar to the modularisation approach, except that it does not require the

modularisation of legacy models. Implementation of the interface standard can be achieved

in two ways, either by implementing the interface directly in the model code or creating a

wrapper around the model. In the latter, the wrapper is compliant with the standard and has

internal links to the wrapped model; however, the model may still need to be modified to

some extent. Each model must declare sets of publically visible input and output variables.

78

Feedbacks may be modelled if the model interface standard permits this. The models would

be configured individually through their respective user interfaces. Links would then be

created between appropriate variables in each model. It is important to note that it is specific

applications of each model that are linked, not the model engines themselves.

There are two approaches to indirectly controlling the flow of a simulation, pull mechanisms

and push mechanisms. Pull mechanisms start at the point where a result is required and

requests for variable values filter up through links and processes are called until the required

result has been calculated. Push mechanisms start at the point where a piece of information

is available and filters down through the links with each process being run when all its input

variables are available. The linked model run is initiated by an external trigger. Krause et

al. (2005) conclude that though coupling models by means of model interface standards

requires some effort to adapt the models, the advantages are increased flexibility, the ability

to model more complex interactions and the ability to perform more detailed analyses of the

coupled models. Other advantages of this approach are that the identity and integrity of

legacy models is maintained, and their marketability is improved through their ability to link to

other models obeying the same interface specification. Krause et al. (2005) conclude that at

that time the OpenMI approach to model coupling was the most sophisticated.

The other main development path for integrated modelling noted by Krause et al. (2005) has

been the modularisation of models and the development of modular modelling frameworks

such as such as MMS (Leavesley et al., 2002), OMS (Ahuja et al., 2005; Kralisch et al.,

2005) and LIQUID (Branger et al., 2010a; Branger et al., 2010b). Water resources models

are typically structured into software components of some description that that represent one

or more hydrological processes. Thus, the concept of modularising legacy model into

collections of modules representing individual hydrological processes makes a certain

amount of sense. The modular modelling frameworks typically specify some sort of interface

which each module must adhere to. Each module must declare sets of publically visible

input and output variables. Several modules can then be linked within the appropriate

modelling framework to create a custom-built model. Some sort of controller is usually

required to configure the model and to coordinate calls to the various modules. The

advantage of the modularisation approach is that custom-built models can be created to

meet the requirements of specific modelling projects. The disadvantages of this approach

are that there is a difference in the skills required by a model builder and a model user, and

that the developers of legacy models must buy into one modular modelling framework.

Feedbacks can be modelled if the controller and the module interface permit this, though the

modularisation in itself may be sufficient for feedbacks to be modelled.

79

Each modelling exercise and combination of models will have unique requirements and the

most appropriate linking mechanism will have to be selected for each case. The

requirement for integrated assessment of water resources and advances in computer

programming technologies has resulted in numerous innovative endeavours to provide the

ultimate modelling system. This is evident from the proceedings of the International

Environmental Modelling and Software Society (iEMSs) 2010 International Congress on

Environmental Modelling and Software, from which many of the papers referenced in this

review were obtained. There does not appear to be any ultimate modelling system that

stands out above the rest and, as a general rule, each individual research or commercial

development group tends to continue along its own development path as it has control over

its software and is able to continue development to meets its own specific needs. For this

project it is important to keep in mind that adoption of a standard would be preferable to

buying into a proprietary system, as this project is meant as a test case for future model

linking exercises.

Several model linking mechanisms from the interface specification and modular modelling

system and approaches are reviewed below. The mechanisms reviewed were those that

appeared from the literature to have undergone on-going development and implementation.

Some of the requirements were that the linking mechanism should:

• be suited to water resource type models;

• be capable of linking models with different spatial and temporal scales;

• be applicable to most water resource type models;

• enable parallel processing to account for feedbacks between modelled components

to be represented;

• require minimal changes to the models in which it is implemented;

• ideally enable linking of models written using different software platforms;

• have a minimal impact on the speed of model runs;

• ideally be based on some sort of standard or be regarded as a standard in its own

right;

• be adequately supported by the developers of the linking mechanism;

• have been widely applied and adopted by developers of water resources models;

• not place a large financial burden on users of the models it which it is used; and

• be suitable for linking the ACRU model and the selected flow network model.

80

3.1.1 Open Modelling Interface (OpenMI)

3.1.1.1 Overview

The purpose of OpenMI is to provide a standard to facilitate the linking of models, operating

at various spatial and temporal scales, and to enable new and existing models to interact

with each other to represent catchment process interactions (Blind and Gregersen, 2005;

Moore and Tindall, 2005; Gregersen et al., 2007). Gregersen et al. (2007) define OpenMI as

“a standardised interface to define, describe and transfer data on a time basis between

software components that run simultaneously, thus supporting systems where feedback

between the modelled processes is necessary in order to achieve physically sound results”.

Initial development of OpenMI was completed in the HarmonIT project funded by the

European Commission as part of the Water Framework Directive (2000/60/EC) approved by

the European Parliament and Council in 2000 (Blind and Gregersen, 2005; Moore and

Tindall, 2005). Hutchings et al. (2002) conducted an extensive review of the state of the art

with regard to model integration as part of the HarmonIT project, and the conclusion of the

review was that none of the existing model integration initiatives met the requirements of the

Water Framework Directive. Hutchings et al. (2002) found that many of the existing

developments did not seem to have been used outside of the institution that developed

them, suggesting that their design and functionality were targeted to the developers own

needs. Version 1 of OpenMI was launched in 2005 with the aim that it would become a

worldwide standard for linking environmental models and tools, though the initial focus had

been on water resources modelling (Gijsbers et al., 2010). Subsequent to the launch of

OpenMI, the OpenMI Life project under the EU-Life programme was initiated to transform

OpenMI from a research output to an operationally viable standard (Gijsbers et al., 2010).

Gijsbers et al. (2010) report that an organisation known as the OpenMI Association was

established in 2007 as a legal entity, to take ownership of, support and promote the OpenMI

standard and associated software utilities and tools (Gijsbers et al., 2010). The website for

the OpenMI Association can be found at http://www.openmi.org. Since the inception of the

OpenMI Association, additional model and software development groups have joined the

association and created new implementations of OpenMI. Based on feedback from

members of the association regarding their experiences with implementing OpenMI and

requests for additional features, the design of OpenMI was refined and further developed,

resulting in Version 2.0 being released (Donchyts et al., 2010; Gijsbers et al., 2010). This

review is largely based on Version 1 of OpenMI as more literature was available for this

version, and the changes to OpenMI to create Version 2 are only mentioned briefly.

81

The HarmonIT project acknowledged that there were a variety of approaches to model

integration, and the two criteria that directed their chosen solution were, that it should be

suitable for application to existing models, as it would not be feasible or desirable to recode

a large number of existing models, and that the time, skill and cost required to implement it

in a model should not be a deterrent to its use (Moore and Tindall, 2005). Gregersen et al.

(2007) state that OpenMI is designed to be easily implemented in existing models and

modelling systems, in which substantial investment in development and testing has already

taken place, and for which recoding may not be an option for economic reasons. The

objective was to create a model linking architecture that, due to its high quality and wide

support, would become a European standard, or even a world standard, for linking water and

environmental models (Moore and Tindall, 2005; Gregersen et al., 2007). The project aimed

to simplify the linking of models to enable better modelling of process interactions, enable

simple swapping of linked models to facilitate sensitivity studies and benchmarking, enable

representation of feedbacks and process interactions, reduce development time for decision

support tools, provide model users with a wider selection of models, and provide model

developers with a bigger market (Moore and Tindall, 2005). One of the strengths of the

project was that the development team comprised individuals from a broad collection of end

users, research organisations and several usually competing commercial modelling software

developers, representing 14 organisations and 7 countries (Blind and Gregersen, 2005;

Moore and Tindall, 2005; Gregersen et al., 2007). Gregersen et al. (2007) noted that it was

significant that three significant and usually competitive commercial partners, DHI – Water

and Environment, WL – Delft Hydraulics and Wallingford software had contributed to the

development and promotion of OpenMI. Blind and Gregersen (2005) make the point that

this broad collaboration was important if the objective to create a standard was to be

achieved.

In order to promote wide adoption of the OpenMI standard, Gregersen et al. (2007) state that

one for the general requirements for the OpenMI architecture, was that implementation of

the standard in models should be cost effective, and at the same time enable model

developers to create their own software solutions around the standard. They also state that

it was important that legacy models should not be required to include an unnecessary

amount of OpenMI related code and that implementation of the standard should not require

maintaining two versions of a model. These requirements indicated the need for a lean

standard that is, in essence, just an interface definition, but which is supported by software

libraries that include wrapper classes and other tools. Moore and Tindall (2005) list the

following key requirements identified for the development of OpenMI:

82

• ability to link models from different domains, such as hydraulics, hydrology, ecology,

water quality and economics;

• ability to link models from different environments, such as atmospheric, freshwater,

marine, terrestrial, urban or rural;

• ability to link models based on different concepts, for example, deterministic and

stochastic models;

• ability to link models with different dimensional representations (0, 1, 2, 3D);

• ability to link models working at different spatial and temporal scales;

• ability to link models using different projections, units and categorisations;

• ability to link models to alternative data sources, such as databases and monitoring

equipment;

• ability to link both new and existing models with the minimum of code changes by

people and without requiring unreasonably high level IT skills;

• not adversely affect model performance;

• based on proven and available programming technologies;

• the architecture should be component based and multi-layered;

• enable linking of models developed in different programming languages and running

on different operating platforms and networks; and,

• that the model interface specification should be placed in the public domain.

Gregersen et al. (2007) and Moore and Tindall (2005) define the following terms used within

the OpenMI documentation:

• model application – all the parts of a modelling system’s software that is installed on

a computer, which typically include a user interface and an engine;

• engine – generic representation of a process or processes, consisting of the

algorithms or calculations used to model the process or processes;

• user interface – graphical or command line tools that enable the model user to

specify or input data required by the engine and which describe a specific scenario to

be simulated by the process;

• model – when the engine is run it reads the data for specific scenario to be simulated

and becomes a model of the system for which the simulation is being run (a model is

an engine that has been populated with data);

• engine component – and engine becomes an engine component if can be

instantiated as a standalone software entity and has a well-defined interface enabling

it to accept and provide data;

• model component – an engine component that has been populated with data;

83

• linkable component – if the engine component implements the OpenMI standard

interface then it becomes a linkable component, and can be linked to other linkable

components;

• quantity – a engine variable whose value can be accepted or provided during an

exchange between models;

• element – a location at which a quantity is calculated, for example, a catchment or a

river reach;

• migration – the process of implementing the OpenMI interface standard in an engine.

The OpenMI standard interface has two functions, a descriptive configuration-time function,

in that it defines what items a linkable component can accept or provide and which of these

items will be used in a particular modelling scenario to exchange data between linked

models, and a runtime function, in that it defines the means for a model to request and

accept exchanged data values at runtime (Moore and Tindall, 2005). Gregersen et al.

(2007) explain that the OpenMI standard is a software component interface definition that

can be implemented in the computational core of water resource models to enable their

integration, and that without any additional programming these models can be configured to

exchange data during model execution.

Blind and Gregersen (2005) state that the main problem to be overcome in the design of the

OpenMI interface standard was how to enable the exchange of data between models,

databases and other modelling software tools in a runtime environment, and that the solution

was based on two principles, component based design and the ‘GetValue’ mechanism for

runtime data exchange. They explain that component based design implies that OpenMI

compliant models, databases and tools must be structured as standalone components which

all have a common set of properties methods and events. Existing models can be made

OpenMI compliant by implementing the OpenMI interface standard directly or by creating a

wrapper around the model. They explain further that the ‘GetValue’ mechanism is pull

driven, which means that the requesting model requests the requested model for a set of

quantity values for a given time for one or more specified locations. Gregersen et al. (2007)

describe this as a ‘request and reply’ mechanism, and that OpenMI has a ‘pull-based pipe

and filter’ architecture made up of linked source and target components that exchange

memory-based data in a predefined format and manner. They state that OpenMI is a purely

single threaded architecture in which each linkable component can handle just one data

request at a time. During a model run, data exchange is initiated by one component at the

end of the chain of linked components, and after this the linkable components continue to

84

exchange data without any external supervision till the end of the simulation period reached.

Gregersen et al. (2007) make the point that OpenMI is not based on a framework, it consists

entirely of linkable components which exchange data directly at runtime. The standard

interfaces are described by Gregersen et al. (2007) and are shown in

Figure 3.1. The OpenMI standard includes a standard interface ILinkableComponent that

must be implemented by each engine component to become an OpenMI

LinkableComponent. Each LinkableComponent contains a list of InputExchangeItem objects

and a list of OutputExchangeItem objects, in other words a list of the data inputs it requires,

and a list of the data outputs it can provide. Each InputExchangeItem contains a Quantity

object and an ElementSet object specifying what can be accepted at which locations. Each

OutputExchangeItem contains a Quantity object and an ElementSet object specifying what

can be supplied at which locations, and also a set of DataOperation objects describing

details of how the exchanged data is to be calculated. A Quantity object describes what type

of data is to be supplied or received, for example, water level or flow rate. An ElementSet

object specifies the locations (physical entities) to which a Quantity applies. Two instances

of LinkableComponent can only exchange data if they are linked by one or more Link objects

which implement the ILink interface. A Link object contains information about the

InputExchangeItem object and OutputExchangeItem object of the target and source

LinkableComponent objects respectively.

Moore and Tindall (2005) provide the diagrams shown in Figure 3.2 and Figure 3.3 to help

illustrate how the linking of two models works in simple terms. Two OpenMI compliant

model applications, a rainfall-runoff model application and a river flow model application are

shown in Figure 3.2, each with its own user interface and input datasets. As shown in Figure

3.3 each model engine declares the variables which it can accept and provide. In this

example the rainfall-runoff model can provide runoff which can be used by the river flow

model to satisfy its requirement for lateral inflow. These linkages between models must be

specified by the user before the linked models can be run. These linkages must be

configured for each model element, in other words, for each catchment and river reach in

this example. One of the models must be nominated as the trigger to start the data

exchange process, and in this example the river flow model would be triggered to start

running, at its first simulation time step it would determine that it requires a value for the

lateral inflow variable before it can proceed and so would call the GetValues method for the

runoff variable in the rainfall-runoff model which would initiate calculation of runoff for the

appropriate time step in the rainfall-runoff model. The runoff value for the requested time

step would be returned to the river flow model which can then proceed with its calculations

85

for the first time step and this sequence of events would be repeated for each time step in

the river flow model till the simulation is complete.

Figure 3.1 The OpenMI Version 1.4 standard interfaces (OpenMI, 2011a)

86

Figure 3.1 (continued) The OpenMI Version 1.4 standard interfaces (OpenMI, 2011a)

87

Figure 3.2 Example of two model applications linked after implementation of the OpenMI

interface standard (Moore and Tindall, 2005)

Figure 3.3 Example of the exchange of flow quantities between the two linked model

applications shown in Figure 3.2 (Moore and Tindall, 2005)

88

The GetValues method is the key with regard to data exchange between models at runtime,

and the way this works for typical modelling situations, including feedbacks, is shown in

Figure 3.4 and explained by Moore and Tindall (2005). There are several scenarios that

could arise when a model receives a request for data. First, if the requested data already

exists or has already been calculated for the relevant time step, then it is simply returned to

the model that requested it after any necessary, interpolation, unit conversion and mapping

operations have been performed. Second, if not available, the requested model will run for

one or more time steps, if necessary requesting other data inputs from other models, until it

can return the requested value. In this case if the requested model cannot run, possibly

because the data inputs it requires are not available, then it will attempt to return a data

value extrapolated from existing previous values. Third, if the requested model in turn

requires data from the requesting model, as is the case for backwater calculations, then

iteration is required to reach a solution. OpenMI compliant models are required to save their

status at each time step and if required be able to revert back to the status at a specified

time step. Moore and Tindall (2005) make the point that the GetValues method handles

requests for data strictly in order of request which prevents the calculation sequence

becoming confused.

89

Figure 3.4 Illustration of data exchange between OpenMI compliant models using the

GetValues method (Moore and Tindall, 2005)

The OpenMI architecture design is described by Blind and Gregersen (2005) as a layered

architecture, and consists of two components, the OpenMI standard and the OpenMI

environment, as shown in Figure 3.5. Moore and Tindall (2005) explain that the OpenMI

standard is the definition of the model interface standard that an engine component must

implement in order to be OpenMI compliant, and that this interface standard has been

placed in the public domain. Blind and Gregersen (2005) describe the standard itself as

being the system layer, which consists of a description of the mechanisms, interface

definitions, model definitions and exchange variables, which is all that is required to work

with the standard. Gijsbers et al. (2010) state that the OpenMI Association does not intend

to develop a modelling framework, the OpenMI standard is its primary responsibility, but that

it is necessary to provide an open source software implementation of the standard to

promote wide adoption of the standard. The OpenMI environment consists of a collection of

software tools and utilities that may be used by model developers to assist in making model

engines OpenMI compliant and facilitate linking and running of OpenMI compliant models.

The OpenMI standard consists of a set of interface definitions which must be implemented in

code to create OpenMI compliant models. The OpenMI environment includes a backbone

package (org.OpenMI.Backbone) that contains a default C# code implementation of each

interface in the standard (Gregersen et al., 2007). Blind and Gregersen (2005) explain that

the OpenMI environment also includes three supporting configuration, utilities and tools

layers. The configuration package (org.OpenMI.Configuration) provides tools to facilitate

linking two or more models, and running the linked models. These tools include a graphical

user interface, but use of this user interface is not prescribed and it is likely that developers

of modelling frameworks will create their own custom user interfaces (Gregersen et al.,

90

2007). The utilities package (org.OpenMI.Utilities) provides utility classes, includes a default

implementation of the ILinkableComponent interface, containing useful facilities for use when

wrapping models, for example, keeping track of model links, converting units of measure,

buffering, and interpolation or extrapolation between different spatial and temporal scales.

The tools package (org.OpenMI.Tools) provides a set of useful tools including, visualisation

tools, logging tools, optimisation controllers and iteration controllers. Versions of these tools

and utilities were developed in C# and Java and are available as open source, and

SOAP/WebServices were used to provide for communication across networks. Jagers

(2010) states that although both the C# and Java implementations use only a single

execution thread, this is not a requirement of the OpenMI standard which has been shown to

be compatible with remote and multithreaded engines, and web services. The

org.OpenMI.DevelopmentSupport package contains a generic set of low-level classes that

can be used in the development of an OpenMI modelling environment. All aspects of the

architecture were documented during HarmonIT project. Testing of the OpenMI interface

standard and environment was done first by the design and development team, and then by

an implementation team who implemented the standard in a wide range of models and ran

linked models for a list of use cases developed to demonstrate its capabilities. The OpenMI

interface standard, the OpenMI environment and all the accompanying documentation have

been made available to the public as open source (Gregersen et al., 2007).

Blind and Gregersen (2005) state that when migrating a legacy model the primary

requirement is to ensure compliance with the OpenMI interface standard, however, there are

many ways of going about doing this. One of the first decisions that need to be made is

whether to migrate the whole model or individual functional components with the model.

Blind and Gregersen (2005) state that smaller functional components are preferred, but

larger components may be necessary for practical, financial and commercial reasons,

though the larger component could itself be internally OpenMI compliant. Second, it needs

to be decided for which model variables input or output data exchange items are required,

where this will depend to a large extent on what the model is to be used for. Although the

design of the OpenMI interface standard permits each model to run at its own spatial and

temporal resolution, the GetValue mechanism requires, within reason, that model outputs be

delivered at any requested time and location. Gregersen et al. (2005) estimate that,

depending on how well structured the model code is, migration of a model to OpenMI will

take from a few weeks to a few months to perform.

91

Figure 3.5 OpenMI architecture namespaces (Moore and Tindall, 2005)

Donchyts et al. (2010) explain that Version 2 of the OpenMI standard includes several new

goals, some of these are technical in the sense of applying certain useful and established

information technology concepts in the design of the standard to improve its quality and

make it more intuitive, and some are intended to extend the scope of the standard to a wider

set of applications than previously envisaged. Some of the main changes to Version 2 of the

OpenMI standard are described by Donchyts et al. (2010) and Gijsbers et al. (2010). The

ILink interface has been removed as, in some respects, it was not very intuitive or efficient

and ownership of Link objects was not clear. The connections between source and target

LinkableComponent objects are defined in Version 2 by a provider/consumer relationship as

a direct reference between an output exchange item and an input exchange item defined

using new IInput and IOutput interfaces which are subclasses of IExchangeItem. The

exchange items have taken on many of the responsibilities ILink responsibilities and are now

completely self-contained. This arrangement means that, for example, a data provider

object does not need to implement ILinkableComponent to be coupled to a

LinkableComponent. In the ILinkableComponent the “Perform Calculation” and the “Query

Value” steps of have been separated, the ILinkableComponent now includes an Update

method which can be called independently, previously calculated values can be retrieved

from an instance of IOutput, and the GetValue method can return a subset of the values

available from the source exchange item. The IDataOperations interface used by the

IOutputExchangeItem, has been replaced by a simpler IAdaptedOutput interface which can

be wrapped around an output exchange item to perform data conversion operations between

the data source and target. The pull mechanism of data flow control still exists, but a loop

mechanism has been included as a different approach to running components which

92

enables control programs to be developed to be developed to, for example, run components

in different threads or on different computers. Other changes include changes in the

handling of spatial references, time and state data. Jagers (2010) states that the changes

made in Version 2 of OpenMI will make it easier to use with implementations that are not

models, for example in databases.

3.1.1.2 Application

As part of the development of OpenMI in the HarmonIT and OpenMI Life projects, the

standard was implemented in numerous models and modelling tools. A list of models and

other software known by the OpenMI Association to be compliant to OpenMI Version 1.4 is

shown in Table 3.1. It will take some time for existing OpenMI compliant models to be

updated to OpenMI Version 2. Gijsbers et al. (2010) report several new implementations of

OpenMI including Delft3D, SWAT, HEC-RAS, Modflow, WaterOneFlow, Frames 3 and

notably OMS. The following applications of OpenMI were found in the literature:

• In a study by Christensen (2004) the MIKE SHE hydrological model written in

FORTRAN 90 and FORTRAN 77 was linked to the MIKE BASIN river management

model written in C++. The implementation of OpenMI is reported to have required

relatively little re-engineering of code in these models and enhanced the flexibility

and applicability of the models. The performance of the OpenMI linking mechanism

compared to other mechanisms was not evaluated.

• Reußner et al. (2009) report on the implementation of OpenMI in the SMUSI sewer

system model and the BlueM.Sim rainfall-runoff and receiving waterbody model.

Both models were coded in the FORTRAN 90/95 programming language. The

OpenMI coupled system was found to significantly reduce the time and effort

required for model configuration, compared to the previously used manual coupling

procedure, and worked well for the case study. Reußner et al. (2009) state that the

ability to reuse existing models and datasets is a significant advantage of the OpenMI

approach. They state that another advantage of OpenMI is the scalability of the

interactions between models and that model can be easily interchanged.

• Bulatewicz et al. (2010) report on the integration of agricultural (EPIC), groundwater

and economic models using OpenMI. Wrappers written in C# were used to wrap the

models written in FORTRAN or Scilab. OpenMI was selected as it represented a

standard linking protocol as opposed to a specialised one, promotes collaboration,

enables a model to be linked to a variety of other models and the integration of these

models to be rapidly reconfigured. Bulatewicz et al. (2010) highlight the importance

of model validation, not only the individual models but also the integrated models,

93

especially in instances where feedbacks occur. They conclude that the software

development effort was minimised by being able to reuse existing models through the

OpenMI linking mechanism, especially through utilising a standard which will enable

the now OpenMI compliant models to be used in other studies.

• Castronova and Goodall (2010) investigated component-based modelling, in other

words the modular modelling approach, and believe that OpenMI can serve as a

foundation for a loosely coupled, component-based structure to enhance more tightly

coupled approaches such as ESMF, CSDMS and OMS. They recognised that

OpenMI was mainly intended for integration of legacy models but used it to create

the Simple Model Wrapper (SMW). The SMW is intended to simplify the use of

OpenMI for model developers and promote the development of process based model

components.

• Makropoulosa et al. (2010) present a study in which two integrated modelling

systems using different models, but both using OpenMI, were developed in parallel

by two research groups for the same case study. Both modelling systems include

hydrology, hydraulics and water quality models; MIKE-11(NAM), MIKE-11 and OTIS

in one case and, MIKE-11(NAM), RISH-1D and RISQ-1D in the other case. MIKE-

11 was already OpenMI compliant and OpenMI was implemented in the other

models. The individual and integrated model runs corresponded well in both studies,

demonstrating that integration using OpenMI did not adversely affect the accuracy of

results from individual models. Not surprisingly, there were differences between the

results from the two different modelling systems, but this highlighted the advantage of

using OpenMI, which enables models to be compared by swapping them in and out

of a suite of integrated models.

94

Table 3.1 A list of models and other software that are OpenMI Version 1.4 compliant

(after (OpenMI, 2011b)

Provider Component Description
British geological survey &
University of Birmingham

ZOOMQ3D Finite-difference groundwater flow
model

Wallingford Software Ltd InfoWorks CS 10.0 Hydrological modelling for the urban
water cycle

InfoWorks RS 10.0 Flow simulation for rivers, channels and
floodplains

InfoWorks RS WQ
10.0

Water Quality analysis for rivers,
channels and floodplains

InfoWorks CS 9.5 Hydrological modelling for the urban
water cycle

InfoWorks RS 9.5 Flow simulation for rivers, channels and
floodplains

InfoWorks RS WQ
9.5

Water Quality analysis for rivers,
channels and floodplains

TU Darmstadt – Section of
Engineering Hydrology and Water
Management

SMUSI.OpenMI Hydrologic runoff and pollution load
model (urban sewer systems)

BlueM.Sim Hydrological modelling
BlueM.Analyser Monitoring and evaluation tool

(IListener)
Halcrow Group Ltd ISIS Professional

v.3.1
River and flood risk modelling system

ISIS Free v.3.1 River and flood risk modelling system
(free version)

UNESCO-IHE Institute for Water
Education

SWAT, version IHE River basin modelling tool for soil, water
and pollution

National and Technical University
of Athens

RiSH-1D Fortran Hydraulic River Model
RMM-NTUA Delphi Reservoir Management Model

Deltares Sobek-Rural-CF 0/1D hydraulic simulation software for
rural applications

Sobek-RE 1D hydraulic simulation software for
Rivers and Estuaries

Dutch Rijkswaterstaat, Waterdienst Waqua, version
Simona0811

2D/3D hydraulic simulation software for
Seas, Rivers and Estuaries

BAW, Bundesanstalt fΓΌr
Wasserbau

GEI Generic access to initial and boundary
condition data files

LicTek RegularGrid Facilitates testing of exchange items
with ElementSets of type XYPolygon

DHI MIKE 11 Hydraulic and hydrological model for
river flow

MIKE SHE Integrated GroundWater/Surface Water
model

MIKE URBAN Industry standard in modelling water
distribution and urban drainage
networks

KISTERS AG WISKI-KiTSM Water Information System KISTERS

95

3.1.1.3 Comments

Blind and Gregersen (2005) state that at the time OpenMI was initially developed, none of

the existing modelling frameworks or integration systems appear to have been successful in

being recognised as a standard. They believe that OpenMI is not just another attempt, for

the reasons that, three significant commercial hydrological modelling groups have invested

expertise, time and funds, the organisations that participated in the development all

recognise the need for collaboration and flexible modelling solutions, from an early stage the

design was open to comment from all interested parties and the project was widely

supported by leading experts in the field, the development was well documented, during the

project a significant collection of models were made OpenMI compliant, and that a

collaborative organisation was being put in place to maintain and further develop OpenMI

beyond the HarmonIT project. Gregersen et al. (2007) confirmed that an OpenMI

association was being formed to support the OpenMI user community, that it would be

responsible for the maintenance and further development of OpenMI and would be an open

forum to the public. Gregersen et al. (2007) make the point that standards enable people to

work together, by providing a common ‘language’, but will only be successful if technically

sound, widely used, well supported and further developed in response to user needs. The

technical soundness of OpenMI has been proven through extensive testing on a wide range

of use cases, including complex systems (Gregersen et al., 2007). Gregersen et al. (2007)

correctly state that the usefulness, and therefore success of the OpenMI interface standard,

will depend on the number and availability of OpenMI compliant models. Approximately 20

models, including some widely used commercial water resources models, were migrated to

OpenMI as part of the HarmonIT project and subsequently other model developers have

started migrating additional models (Gregersen et al., 2007). Gijsbers et al. (2010) strongly

believe that Version 2 of OpenMI is a major advance in enabling application of OpenMI to

support interoperation between models, GIS applications, databases and web-services.

OpenMI is primarily a model coupling interface specification. Though default code

implementations are provided in both Java and C#, model developers are not required to

use these implementations. Model developers may either implement the OpenMI interface

directly in a model or by means of wrapper classes for which examples are provided. One

possible negative aspect of OpenMI is that it does not directly support linking between a

Java and a .Net implementation of the interface, though wrappers may provide a solution to

this. OpenMI does not provide any of the traditional modelling framework tools, such as

graphical user interfaces and data analysis tools, and the use of OpenMI in the DeltaShell

(Donchyts and Jagers, 2010) modelling framework is an interesting development. OpenMI

96

was originally designed with the intention that it would be used to link legacy models, but

there is no apparent reason why it should not be used in a modular modelling context. The

OpenMI interface specification and associated code implementation are well documented

compared to almost all of the model linkage mechanisms mentioned in this review. OpenMI

was and is being developed by a diverse collaborative team and is being maintained and

further developed by the OpenMI Association. OpenMI has been widely implemented, as

evidenced by literature and the documentation, and seems to be gaining momentum, though

the non-backwards compatibility of OpenMI Version 2 may result in a delay in already

compliant models being migrated to the new version. Based on the wide acceptance of

OpenMI, its good documentation and the existence of the active OpenMI Association,

OpenMI could be considered to be a standard for coupling of environmental models.

OpenMI is open source and available in the public domain.

3.1.2 Object Modelling System (OMS)

3.1.2.1 Overview

The Object Modelling System (OMS) is described by David et al. (2010) as a framework for

developing environmental models, including facilities for data provision, testing, validation,

and deployment. Ahuja et al. (2005) describe OMS as a modular modelling framework

which enables single- or multi-process modules to be implemented, and then compiled and

applied as custom models. Kralisch et al. (2005) elaborate that OMS is based on a concept

where all system and model components are represented as independent reusable modules

which are coupled by standardised software interfaces. David et al. (2004) explain that OMS

consists of a library of process, control and database access modules, tools to assemble

selected modules into a custom model, supporting utilities for data retrieval, and GIS,

statistical and graphical tools for data analysis.

Development of OMS started in 1996 at Friedrich Schiller University (FSU) in Jena,

Germany, and since 2000 development continued at the USDA-ARS Great Plains Systems

Research Unit (Fort Collins, CO) and the USGS (Denver, CO), jointly with FSU (Ahuja et al.,

2005; Kralisch et al., 2005). David et al. (2010) state that OMS was first released in 2004

and report on recent development of the framework resulting in Version 3 of OMS. OMS

appears to support open source development and is available from

http://oms.javaforge.com.

97

David et al. (2004) describe OMS as a Java based introspecting simulation framework,

which uses metadata read from annotations in the code of the modules, where these

annotations specify the spatial and temporal constraints of the module, and metadata about

data variables and parameters which are used for range validation, unit conversion and

automated testing. OMS uses this metadata during creation of models to ensure correct

assembly with respect to spatial and temporal scales, and at model runtime to provide data

linkages. As explained in David et al. (2004), modules, which are called “Components” in

OMS are the building blocks used to create custom models and usually represent a unique

concept within a model, for example, a physical process, a management process or a

remote data input. A comprehensive set of metadata requirements are specified by OMS to

be declared by components, which provide a full definition of each component. There are

two levels of metadata annotation required for each component, the first being component

metadata, which includes information about the component’s purpose, author, version,

references to relevant literature, spatial and temporal scale. The second level is attribute

metadata for each public attribute of a component, such as units of measure, data range and

default values. Jagers (2010) explains that each component is a plain Java class, with an

execution method and optional initialization and finalization methods, where input variables,

output variables and methods are identified and described using Java annotations, for

example, @In for input variables, @Out for output variables, @Unit for unit of measure, and

@Execute for the execute method. OMS is built on top of the NetBeans platform which is a

Java based open source software framework for building desktop application software,

which provides OMS with access to NetBeans features such as GUI components, data

storage access components and help file components (Ahuja et al., 2005; Kralisch et al.,

2005). Ahuja et al. (2005) explain that OMS uses a dictionary framework which they

describe as the “knowledge-backbone” of OMS. These data dictionaries are implemented in

Extensible Markup Language (XML) and are used to specify parameter sets, model control

information and details of component connectivity. Ahuja et al. (2005) mention that OMS

includes some generic software tools that may be used to assist in extracting components

from existing non-modular simulation models, and include them in the OMS framework.

The conceptual layout of OMS is shown in Figure 3.6. Kralisch et al. (2005) explain that

there are two types of components in OMS: model components which are the building blocks

from which models are created, and system components which are used to assemble and

execute model components. The system component are used to provide the selected model

components to a Model Builder which assembles them to create an application specific

model that may be populated with data and then executed within the Runtime Environment.

System components are comprised of system core, model builder, update centre and user

98

interface groups of components which are responsible for all coupling and execution of

model components. The system core provides the environment for component development

and execution and the model runtime environment. It also provides basic functionality for all

other components, implements a set of simple and complex data types including temporal

data types that may be used in model components and provides objects such as the OMS

components which are used as base classes for implementing model components. The

model builder provides a GUI that enables individual model component to be assembled and

configured to create custom models, including mapping component input and output

parameter linkages. The documented input and output parameters for each available model

component are exposed enabling users to link the output parameter from one component to

the input parameter of another component. The model builder enables storage and

management of custom models which can be shared with other users and executed in other

computing environments. The update centre is a standard Net-Beans tool that enables

existing OMS components to be downloaded or updated via the internet. OMS model

components can be encapsulated within NetBeans modules containing model components,

parameter-sets and documentation. There are facilities for shared components to be

protected by licence agreements. OMS provides a collection of GUI components including

GIS and graphing facilities for developers and users to display modelling results, and

additional user interface components may be added by implementing them as NetBeans

modules within the OMS framework.

Figure 3.6 Conceptual layout of OMS (Kralisch et al., 2005)

99

As explained previously OMS model components are the building blocks from which custom

models are created. Kralisch et al. (2005) explain that developers must implement certain

OMS specific properties in each model component. Each model component must implement

four standard methods, register, init, run and cleanup. The register method should contain

functionality that is required to be run once during model initialization. The init method

should contain functionality to be run once at the first time the component is executed, such

as setting initial values for parameters and variables. The run method should contain the

algorithm calculations for the process represented by the component and is called every

time the component is invoked. The cleanup method should contain functionality to be run

during model finalisation, for example, to free any resources used by the component. In

addition, for each input and output parameter or variable used by a component, the read and

write access, which is supervised by each individual model component, must be specified.

The model components are implemented as Java classes, but may access functionality from

libraries outside the Java runtime environment using the Java Native Interface (JNI),

enabling existing software developments written in other programming languages to be

easily incorporated. OMS also makes provision for specialised compound components,

within which other components may be executed, enabling control structures such as

conditions and iteration. OMS provides two special predefined compound components

TimeCompoundComponent and SpatialCompoundComponent which provide the temporal

and spatial contexts required by most models. TimeCompoundComponent includes an

attribute that represents a user specified time interval type and step size.

SpatialCompoundComponent represents discrete points in space by means of a list of

spatial entities such as HRUs or GIS raster cells. Examples demonstrating the use of

TimeCompoundComponent and SpatialCompoundComponent to execute model

components iteratively through time and space, including hierarchies of these components is

shown in Figure 3.7.

Kralisch et al. (2005) explain that OMS provides the OMSEntity data type to represent

spatial entities in model components, where OMSEntity is an abstract container for arbitrary

attributes of spatial entities. OMSEntity objects store attribute data in tables that map

attribute names to corresponding attribute values. The attribute set within an OMSEntity

object may be easily expanded to accommodate additional data obtained from other model

components or external data sources. Each spatial entity is represented by a unique ID in

an OMSEntity object, and ‘get’ and ‘set’ methods are provided to access the attributes for a

specified entity ID. The use of OMSEntity objects to represent spatial attribute data is

illustrated in Figure 3.8.

100

Figure 3.7 Application of compound components to control execution of model

components in time and space (Kralisch et al., 2005)

Figure 3.8 Representing spatial entities using OMSEntity objects (Kralisch et al., 2005)

David et al. (2010) explain that OMS Version 1 was a heavyweight framework in that it

offered a traditional library of classes, in the form of an Application Programming Interface

(API), to be subclassed or instantiated directly by components or models, and a limited set of

data types that could be used to exchanged data values between linked components. They

state that this was a simple approach but that it was not suitable for legacy code integration

and restricted the use and sharing of custom data types. David et al. (2010) explain further

that in OMS Version 2 component design was simplified by requiring components to use

interfaces instead of classes as is the case in many other frameworks, resulting in a better,

101

more robust and more lightweight framework, though supported data types were still fixed.

Following from an in-depth analysis of successful framework designs and software

engineering principles. David et al. (2010) report that in OMS Version 3 they have moved

away from the traditional API-based approach to a lightweight, non-invasive approach, with a

small API, by using programming language annotations to provide metadata at relevant

points in the model code which is then read by the framework. Their objectives for Version 3

were to enable easier integration of model code, through the use of programming language

annotations with the flexibility to integrate legacy models. These code annotations enable

the specification of connections between components, data transformations, conversion of

units of measure and automated model documentation. They conclude that the architecture

of Version 3 provides an environmental modelling framework that is scalable, easier to use

and more transparent. An interesting development is that Gijsbers et al. (2010) , citing David

et al. (2009), state that OpenMI has been implemented on top of OMS. David et al. (2009)

state that the use of code annotations provide a means of enabling interoperability between

models and modelling frameworks.

3.1.2.2 Application

Kralisch et al. (2005) report that J2000, a distributed conceptual hydrological model, has

been implemented in the version of OMS being used at Friedrich Schiller University in Jena,

Germany. They report that the implementation was successful though performance in

comparison to the original implementation of J2000 was slower, and concluded that this was

related to the flexibility gained by the use of dynamic attribute sets for model entities inside

the OMS. Ahuja et al. (2005) and David et al. (2004) indicate that the Root Zone Water

Quality Model (RZWQM) and Precipitation-Runoff Modelling System (PRMS) have been

implemented in OMS. Jagers (2010) mention that an OMS implementation of the Soil and

Water Assessment Tool (SWAT) was being created. David et al. (2010) report some recent

implementations of OMS that are being tested and applied as follows:

• Implementation of the J2K-S model for distributed simulation of water balance and

Nitrogen dynamics in large watersheds using OMS version 3 is described in Ascough

et al. (2010).

• A PRMS-based model family with associated methods and tools for water supply

forecasting by the NRCS National Water and Climate Centre.

• The Conservation Delivery Streamlining Initiative (CDSI) model base to deliver

science deployed as services available to USDA-NRCS field consultants.

The core components of the Horton Machine, a hydro-geomorphological toolbox and the

NewAge semi-distributed hydrological model.

102

3.1.2.3 Comments

Ahuja et al. (2005) believe that OMS will leverage the sizeable investments of developer

time and money, made in existing complex natural resource systems, to facilitate an

interdisciplinary effort extract the best scientific routines from these models and enable

integration and interoperability of new and existing modules and data resources, while

reducing duplicate functionality across natural resource models. Ahuja et al. (2005)

conclude that the component-oriented and modular approach of the OMS and its library of

implemented modules and models will enable the collaborative, integrative and more

efficient model development approach that is required to solve global challenges related to

natural resource systems. David et al. (2010) state that the structure of OMS Version 3,

being a lightweight and non-invasive modelling framework will enable quick development of

new models and easier integration of legacy models for use on multiple platforms.

OMS has a dual purpose, part modelling framework and part model linking mechanism. The

model linking architecture appears to be sound and is could be used to link both whole

models and process modules. Although not much literature has been published by the

developers, OMS appears to be fairly well known, judging from the times it is referenced as

an example of a model linking framework. OMS does not appear to be well documented, but

the source code is available in the public domain. Development and implementation seems

to be largely restricted to the USGS and USDA-ARS modelling groups. The primary

strength of OMS is its use of metadata tags and annotation which enable a lightweight model

coupling mechanism.

3.1.3 Jena Adaptable Modelling System (JAMS)

3.1.3.1 Overview

The Jena Adaptable Modelling System (JAMS) is described as an environmental

modelling framework for component based model development and application, with a focus

on water resources management (Kralisch and Krause, 2006; Kralisch et al., 2007; Fischer

et al., 2009). It is stated by Kralisch and Krause (2006) that JAMS is based on OMS, but

that the capabilities of OMS have been enhanced based on special requests from model

developers. They go on to state that the focus of JAMS is on providing flexibility for the

development of new model components and less on easy integration of existing models.

Kralisch and Krause (2006) state that the aim of JAMS is to represent complex simulation

models as sets of well-defined model components, whose functionality can include single

103

processes, complex sub-models, and data input and output. The architecture of JAMS and

how it works is described in Kralisch et al. (2007) and Kralisch and Krause (2006) though it

is not clear which parts are specific to JAMS and which parts are specific to OMS. Fischer

et al. (2009) describe the calibration of environmental models using JAMS.

As with OMS, JAMS is implemented in Java. Kralisch and Krause (2006) explain further that

a JAMS model is defined by a XML-based model description document listing the model

components from the component library that are used, how the listed model components are

assembled and what data must be exchanged between components. The organisation of

the JAMS framework is shown in Figure 3.9. The JAMS core consists of the core library and

the runtime system. The core library contains data types and core functionality such as I/O

mechanisms and unit conversion. The runtime system is responsible for model configuration

and execution including communication between JAMS components.

Figure 3.9 Organisation of the JAMS framework Kralisch and Krause (2006)

JAMS components must contain a set of data attributes through which data is exchanged

with other components, and three methods, init which is executed once when the model

starts, run which is executed repeatedly for different points in time and space, and cleanup

which is executed once at the end of model execution. JAMS provides specialised

components called ‘context components’ as a base for components in which the run method

needs to be executed repeatedly for different points in time or space, where context

components act as containers for other components. Model Context components represent

a JAMS model and contain an ordered list of other components whose run methods are

executed once during a model run. Temporal Context components provide the time related

control during model execution. Temporal Context components contain an ordered list of

other components to be executed, start and end date of simulation, and time step size.

104

Spatial Context components represent the spatial domain and contain an ordered list of

spatial model entities, and an ordered list of components to be executed for each spatial

entity.

A component may exchange data with another component or a spatial entity provided within

a spatial context if the input and output data variables for the component have been declared

and at configuration time the sources of input data have been specified. Component input

and output data are specified using Java annotations that provide the following: the access

type (input, output or both), the update type (at initialisation or run stages), units of measure,

and minimum and maximum values.

3.1.3.2 Application

Kralisch et al. (2007) state that a collection of JAMS modelling components have been

developed covering various aspects of IWRM including hydrological and nutrient modelling

and parameter optimization. They also mention several hydrological models that have been

implemented in JAMS, including the Thornthwaite water balance model, HYMOD, J2000,

parts of WASIM-ETH and PRMS, and the SNOW17 processes. Kralisch and Krause (2006)

present an example application where the FAO reference evapotranspiration (refET) model

was implemented as a model in JAMS. Kralisch et al. (2009) describe how JAMS and the

River Basin Information System (RBIS), which is a is a web-based environmental information

management system, were coupled to enable data sharing between the two systems.

3.1.3.3 Comments

Kralisch et al. (2007) state that JAMS can be used to easily create custom models tailored to

simulate a wide range of specific environmental problems while reusing existing solutions.

From literature it appears that JAMS has been developed and applied within Department of

Geoinformatics, Hydrology and Modelling at Friedrich-Schiller-University, Jena, Germany. As

mentioned in Section 3.1.2, development of OMS started in 1996 at Friedrich Schiller

University (FSU) in Jena, Germany and since 2000 development continued at the USDA-

ARS Great Plains Systems Research Unit (Fort Collins, CO) and the USGS (Denver, CO),

possibly jointly with FSU (Ahuja et al., 2005; Kralisch et al., 2005). It is not clear in the

literature which version of OMS JAMS is based on, what the differences are between JAMS

and OMS, and whether there are two divergent developments of OMS in Germany and the

USA. These questions were clarified via personal communication with (Kralisch, 2011) at

FSU who confirmed that JAMS and the current USDA-ARS and USGS version of OMS are

105

divergent versions of the original version of OMS, though the core platforms are the same

and the JAMS and OMS developments groups do collaborate on further development of

both frameworks. Kralisch (2011) reports that components can be exchanged between

JAMS and OMS with minor changes to the components. Kralisch (2011) explains the

differences between JAMS and OMS as follows:

• JAMS only supports Java components, while OMS also supports legacy code in

other programming languages;

• JAMS includes additional tools to support the creation, application and analysis of

models, for example, a graphical model builder, a model calibration assistant, a

toolbox for parameter sensitivity and uncertainty analysis, and a toolbox for analysing

simulation results; and,

• JAMS provides a large number of modelling components including hydrological

modelling, nutrient modelling and erosion modelling.

Many of the comments that were made with respect to OMS apply to JAMS. It appears that

JAMS is used by FSU more in a research capacity, and its development and implementation

seems to be restricted to the environmental modelling group at Friedrich Schiller University.

3.1.4 The Invisible Modelling Environment (TIME)

3.1.4.1 Overview

The Invisible Modelling Environment (TIME) is described as a model development

framework for the creation, testing and integration of new model components and the

development, application and deployment of environmental model applications (Rahman et

al., 2003; Rahman et al., 2005; Murray et al., 2007). The objective of the Catchment

Modelling Toolkit is to provide a cohesive suite of environmental modelling applications, and

this is achieved through the TIME framework which enables models to be developed and

integrated quickly and consistently (Rahman et al., 2003). TIME consists of a collection of

.NET classes, libraries and visualisation components for use in the development of model

components and applications. Rahman et al. (2003) state that TIME is different to most

other frameworks, mostly in its use of metadata to describe and manage models, and that it

gives model developers the flexibility to select the components of TIME that are relevant to a

specific project. Argent and Rizzoli (2004) state that the primary features of TIME are that it

has a thin architecture and a strong facility to utilise model metadata enabling the TIME

system to be automated in many ways. TIME enables deployment of models as graphical

applications, command line applications and active webpages (Murray et al., 2004).

106

TIME was developed in 2001 within the Catchment Modelling Toolkit project by the

Cooperative Research Centre for Catchment Hydrology (CRCCH) in Australia, and funded

by the Commonwealth (Rahman et al., 2003). The CRCCH includes several institutions

including universities, research institutes, water services providers, catchment management

organisations and government departments. The Catchment Modelling Toolkit is a system

of environmental modelling software which integrates a new generation of catchment models

and modelling support tools (Marston et al., 2002). The aim of the Catchment Modelling

Toolkit is to provide land and water managers, researchers and educators with an integrated

collection of software tools and components to simulate catchment response to management

and climate variability, at a range of scales and using a variety of approaches (Marston et

al., 2002). The requirements for TIME and the Catchment Modelling Toolkit in general were

based on three surveys conducted in 2001 among catchment managers, model users,

model developers and model coders in Australia to gather information about which models

were being used, the types of model applications, and the design and development behind

the models. The results of these surveys are documented in Marston et al. (2002). From

the eWater Toolkit website (http://www.toolkit.net.au) it appears that prospective users of

TIME would be required to first attend a training course and may then apply for access to the

source code and is subject to a licence agreement.

TIME was developed on the Microsoft .Net platform, mostly using the C# programming

language and supports model development in a variety of .Net programming languages

including C#, VB.Net, Fortran95.Net, C++, Delphi.Net and Visual J# (Murray et al., 2007).

The models and tools forming the Catchment Modelling Toolkit are based on TIME and the

approach seems to have been to restructure legacy models into a .Net programming

language with a direct implementation of TIME.

Rahman et al. (2003) explain that the architecture of TIME is divided conceptually into five

layers, as shown in Figure 3.10. Each layer consists of a family of classes, with the classes

in the upper layers using services provided by classes in lower layers. Developers create

models in the Model layer using classes in the Kernel and Data layers. The Tools and

Visualisation and User Interface layers contain classes that interact with models and provide

most of the framework functionality, such as user interface generation and model linking.

Rahman et al. (2004) explain that with a thin Kernel layer, most framework functionality

including user interface generation and model linking, is implemented in the Tools layer,

enabling models, which mostly use the Kernel and Data layers, to remain independent of

these tools. These layers are described further by Rahman et al. (2003) and Murray et al.

(2007).

107

The Kernel layer contains the core classes of the framework, as shown in Figure 3.11, which

support the other layers. Model is the abstract parent class for all TIME models, and it

contains the abstract runTimeStep method which must be implemented by all child classes.

Figure 3.10 Architectural layers of the TIME modelling framework (Rahman et al., 2003)

Figure 3.11 Core classes of the Kernel layer (Rahman et al., 2003)

Data is the abstract parent class for all classes representing data types in TIME. The Data

class includes the item and setItem methods for generic one dimensional access to data

values for all data types. These two access methods must be implemented in all child

classes of Data to provide a common interface. Child classes of Data may declare access

methods more specific to the particular data type, enabling more convenient access to data

values. The spatial or temporal context of a data object is specified by its association with a

class implementing the Geometry interface. A group of data objects sharing a common

geometry as specified through the Geometry interface are considered compatible for certain

operations such as mathematical addition and subtraction, and custom operations such as

regression analysis. This separation between Data objects storing data values and

108

Geometry objects enables efficient representation of spatial data such as a layer of polygon

features linked to an attribute table. The shape and location of the polygon features is

stored in a shared Geometry object, and the data values for each field in the attribute table

are stored in a different Data object. Hence, most data types are represented by two

classes, a class implementing the Geometry interface which stores the spatial or temporal

context, and a Data class storing the data values specific to the data type.

The Model and Data classes are child classes of the Subject support class. An instance of

the Subject class may be associated with one or more classes implementing the associated

Observer interface. This allows Observer type objects to subscribe to Model and Data

objects to receive notification of changes through events.

The Kernel layer includes definitions of the various custom metadata tags used to classify

and document properties of TIME model components and models, and the scope of model

parameters; these are listed in Table 3.2. Rahman et al. (2004) explain that the use of TIME

custom metadata tags and the capacity for introspection that they offer, enables the code in

models to remain independent of TIME’s support operations, such as data and model

management, model linking, IO and data visualisation, resulting in better model stability

(Rahman et al., 2004). TIME makes use of the language independent introspection

mechanism in .Net for discovering components and their properties at runtime, including

class structure, class member fields and methods as well as custom metadata tags.

The Kernel layer also includes a set of classes that may be used to represent common data

units. As shown in Figure 3.12 units may be represented as a Simple Unit such as length,

mass or time, or as a Compound Unit that combines two or more Units using multiplication

or division.

109

Table 3.2 TIME custom metadata tags defined in the Kernel layer (Rahman et al., 2003;

Murray et al., 2007)

Category Tag Description Applied To

Classification Input Variable is a non-static model input Fields
Classification Output Variable is a model output Fields
Classification Parameter Variable is a static one off input to the model Fields
Classification State Variable is an internal state Fields
Constraints Minimum Minimum allowable value of a variable Fields
Constraints Maximum Maximum allowable value of a variable Fields
Display Ignore Exclude component or field from generic tools Classes,

Fields
Documentation Aka Alternative name for a variable Fields
Documentation Author Author of the code Classes
Documentation LastModified Last time code was modified Classes
Documentation Note Describe an auxiliary aspect of a variable Field
Documentation Status Release status of a variable or model Classes,

Fields
Documentation Summary General description of fields or classes Classes,

Fields
Documentation URL URL to further documentation Classes,

Fields
Other Minimise Whether to maximise or minimise an objective

function
Fields

Other UserOption Flags a field as a default the user can change
and maintain across sessions

Field

Other WorksWith Class works with a particular type Classes
Parameter
attribute

CalculationUnits Specifies the units a class uses internally for a
variable

Fields

Parameter
attribute

DecimalPlaces Number of significant decimal places for a
variable

Fields

Parameter
attribute

Default Value to be applied to a property when model
initialised or reset

Fields

Parameter
attribute

ExpectedUnits Units that make sense for a variable Fields

Parameter
attribute

Fixed Indicated variable should not be modified for
calibration

Fields

Figure 3.12 Representation of units in TIME (Rahman et al., 2003)

110

The Data layer contains classes representing a range of data types, and some of the more

specialised data types are listed in Table 3.3. Murray et al. (2007) describe data cubes

representing a time continuum of two dimensional data, such as a time-series of rasters or a

raster of time-series. The Data layer also contains classes that perform data input and

output operations on a selection of text, database and spatial data formats.

Table 3.3 Some specialised TIME data types (Rahman et al., 2003)

Data Type Description
Raster Two dimensional regular grid of data, located within a geospatial context.
Time-Series Temporal arrangement of data on one of several fixed time steps.
Node Link Network Abstract representation of physical networks, such as river systems.
Sites Collections of points in space.
Poly Lines Linked collection of multi segment lines.
Polygons Collection of closed polygonal regions.
Cross Sections Cross sections surveyed, or generated river cross sections.
Arrayed Data Ordered list of values with no spatial or temporal context.

The Models layer contains the models and model components included in the TIME

framework, and is the layer in which most developers will work creating their own models.

Models typically only reference classes in the Kernel and Data layers and contain only core

scientific algorithms. Models are then included in model applications which include user

interfaces and data handling. All TIME models are implemented as a class which inherits

from the Model class and are written in one of the .Net languages. Each model must

implement the abstract runTimeStep method in the Model class, this method is called for

each iteration of the model. Each model class will contain fields specifying input, output,

parameter and state variables that are each documented using TIME custom metadata tags.

A simple model written in C# is shown in Figure 3.13 and illustrates the use of TIME custom

metadata tags.

The Tools layer includes various classes that may be used for generic processing of data

and models, data statistics and parameter optimisation. These classes may be used by

developers when writing and testing models and model applications. The Tools layer

contains classes that make use of the TIME custom metadata tags in models to provide a

set of model processing tools. These tools include automatic generation of graphical user

interfaces and command line interfaces for models, linking of models, and several parameter

optimisation tools. Other tools provide support for attaching data to model input and output

variables. Automatically generated user interfaces are designed to enable model developers

to quickly and easily test models. Modelling applications generally include custom designed

user interfaces.

111

Figure 3.13 Example of a simple model including TIME custom metadata tags (after

Rahman et al., 2003)

The Visualisation and User Interface layer contains a collection of classes that provides

users with a visual interface to the data, models and tools in the other layers. A group of

classes known as the Visualisation Framelet is shown in Figure 3.14, which are the parent

classes for all classes created for the visualisation of data. Subclasses of Layer are used to

draw a particular representation of a data type onto a Canvas and may be used to draw both

graphs and spatial maps. A Canvas may contain several superimposed layers. A Canvas

manages the drawing of individual layers and translates data coordinates for a layer to

screen coordinates. ViewDecorators are used to draw axes, titles, labels and legends onto a

canvas. ViewControl objects are used to display a View object in a graphical user interface.

View objects may also be used for printing, bitmap generation and in web-based mapping

tools. The Visualisation and User Interface layer contains numerous classes for graphical

display based on the classes in the Visualisation Framelet. These classes include standard

Layer classes for each of the main data types except arrayed data, and graph layers

displaying scatter plots, cumulative frequency graphs, flow duration curves and probability

density plots. TIME also provides support for the use and visualisation of rasters.

using System;
using TIME.Core;

public class ToyModel : Model {
 [Input,Minimum(0.0)] double rainfall;
 [Input,Minimum(0.0)] double actualET;
 [State] double netRainfall;
 [Parameter,Minimum(0.0),Maximum(1.0)] double coefficient;
 [Output] double runoff;

 public override void runTimeStep() {
 netRainfall = Math.Min(0.0, rainfall–actualET);
 runoff = coefficient * netRainfall;
 }
}

112

Figure 3.14 TIME Visualisation Framelet classes (Rahman et al., 2003)

3.1.4.2 Application

TIME is part of the Catchment Modelling Toolkit and is the foundation on which the models,

model applications and other modelling tools included in the Catchment Modelling Toolkit

are built. Argent et al. (2009) mention that TIME is used as the base for over 30 integrated

catchment process modelling tools, most of which form part of the Catchment Modelling

Toolkit. A list of modelling tools in the Catchment Modelling Toolkit reproduced from the

eWater Toolkit website (http://www.toolkit.net.au) is shown in Table 3.4. One of the most

noteworthy implementations of TIME is in the Source Catchments modelling framework

(formerly called WaterCAST and E2) described in Argent et al. (2009) and Cook et al.

(2009).

3.1.4.3 Comments

Rahman et al. (2005) state that TIME has a growing user base and that its evolution and

maturation were mostly stakeholder driven with much of the functionality being dictated by

the requirements of the modelling tools forming the Catchment Modelling Toolkit. Rahman

et al. (2004) make the point that the use of markup, and the introspection of this markup,

simplifies the development of modelling tools, including model linking engines and user

interface generators, while enabling greater flexibility by keeping models and model

components decoupled from details of a framework and its tools.

From the literature it seems that TIME almost has a dual purpose, part modelling framework

and part model linking mechanism, although the model linking mechanism is not explained.

TIME appears to have many similarities to OMS, particularly in its use of metadata and

113

introspection, except that TIME is .Net based while OMS is Java based. The .Net platform

gives developers using TIME the advantage of being able to use several object-oriented .Net

programming languages. As with OMS, TIME seems to be suitable for use both in legacy

models, and in the modular approach of small process modules or components that may be

linked together by users to create custom models. TIME is well documented and is

maintained and supported by the eWater Cooperative Research Centre. TIME seems to

have been mainly developed and implemented within the water resource management

fraternity in Australia, and has been implemented in a wide range of models developed in

Australia. The source code is available to the public subject to training and licencing.

Table 3.4 Modelling tools within the eWater Catchment Management Toolkit (after

http://www.toolkit.net.au)

Tool Description
Aquacycle Aquacycle is a total urban water balance model gaming tool.
BC2C BC2C (Biophysical Capacity to Change) is a tool for estimating catchment scale

water and salt export quantities, following changes in landuse in upland
catchments.

CatchmentSIM CatchmentSIM is a 3D-GIS topographic parameterisation and hydrologic analysis
model.

CHUTE CHUTE is a spreadsheet program for the design and analysis of rock chutes.
CLASS-CGM CLASS-CGM (Crop Growth Model) can be used to simulate growth of main C3

field crop types.
CLASS-PGM CLASS-PGM (Pasture Growth Model) can be used to simulate growth of

composite pasture types.
CLASS-SA CLASS-SA (Spatial Analyst) is a spatial modelling tool.
CLAS-U3M-1D CLASS-U3M-1D (Unsaturated Moisture Movement Model) can be used for

estimating recharge, plant water use and soil evaporation across the soil profile
at daily time steps using the Richards' equation.

CMSS CMSS (Catchment Management Support System) predicts average annual loads
of pollutants (usually Total Phosphorus and Total Nitrogen) at the subcatchment
level, according to different land use types.

Concept Concept is a conceptual diagram drawing package that can be used to
communicate dynamic relationships between multiple elements.

E2 E2 is a whole-of-catchment model building and running application that can
simulate the effects of scenarios (e.g. land use or climatic change) on the flow
and load of constituents (e.g. sediments, nutrients, salt) at defined points in a
river network over time.

Eco-Modeller Eco Modeller is a tool for building, storing and running quantitative models of
ecological responses to physical and biological factors, for use in comparing the
merits of alternative natural resource management scenarios.

eFlow-Predictor eFlow uses environmental flow objectives to generate an altered flow regime and
determine how much additional water would be required to achieve the new flow
regime.

114

Table 3.4 (continued) Modelling tools within the eWater Catchment Management Toolkit

(after http://www.toolkit.net.au)

Tool Description
FCFC FCFC (Forest Cover Flow Change model) is used to adjust daily time series

observed or simulated flow records for significant changes in forest cover.
IHACRES IHACRES (Identification of unit Hydrographs And Component flows from Rainfall,

Evaporation and Streamflow data) is a catchment-scale, rainfall-streamflow,
modelling methodology that characterises the dynamic relationship between
rainfall and streamflow, using rainfall and temperature (or potential evaporation)
data, and predicts streamflow.

LIZA LIZA (Landcover for the use Zone of Australia) is a collection of maps and GIS
data that provide landcover type for 1990 and 1995 for the intensive use zone of
Australia.

MCAT MCAT (Multi Criteria Analysis Tool) is an investment decision support tool that
optimises environmental expenditure using multi-criteria analysis and
combinatorial optimisation techniques.

MELS MELS (Minimum Energy Loss (MEL) Structures) is a hydraulic design and
analysis suite that enables designers to quickly trial several alternative MEL
culvert designs, checking for basic structure dimensions and performance under
adverse conditions such as high or low flow and sedimentation issues.

MUSIC Model for urban stormwater improvement conceptualisation
NSFM NSFM (Non-parametric Seasonal Forecasting Model) forecasts continuous

exceedance probabilities of streamflow (or any other hydroclimate variable).
RAP RAP (River Analysis Package) is a collection of 3 tools: Hydraulic Analysis –

examines the hydraulic characteristics of river channels to determine the optimal

discharge for a river reach based on specified rules. Time Series Analysis –
calculates summary statistics of time series data, including hydrological metrics.

Time Series Manager – manipulates and manages time series data.

RIPRAP RIPRAP is a spreadsheet program for the design of rock lining (rip-rap) bank
protection. It provides a range of rock sizes to be used depending on bank angle
and depth chosen.

RRL RRL (Rainfall-Runoff Library) simulates catchment runoff by using daily rainfall
and evapotranspiration data.

SCL SCL (Stochastic Climate Library) is a source of models for generating climate
data, including rainfall, evaporation or temperature, at multiple timescales, across
single or multiple sites.

SedNet SedNet identifies sources and sinks of sediment and nutrients in river networks
and predicts spatial patterns of erosion and sediment load.

SHPA SHPA (Soil Hydrological Properties of Australia) is a collection of maps and GIS
data that provide estimates of soil hydrologic properties across Australia based
on the Atlas of Australian Soils and interpretations by Neil McKenzie.

Source-
Catchments

Water quality and quantity modelling framework that supports decision making
and a whole-of-catchment modelling approach.

TREND TREND facilitates statistical testing for trend, change and randomness in
hydrological and other time series data, utilising 12 different statistical tests.

Urban Developer Tool for urban water management.
WRAM WRAM (Water Re-Allocation Model) simulates water allocation and trading

between irrigation areas.

115

3.1.5 LIQUID® Modelling Framework

3.1.5.1 Overview

LIQUID® is described as a modelling framework for modelling hydrological processes

(Branger et al., 2010a; Branger et al., 2010b). The LIQUID® framework was developed for

the purpose of providing easy integration of hydrological processes while maintaining their

individual spatial and temporal scales, enabling integrated models composed of reusable

modules to be built and run. The framework includes templates for creating new modules,

module coupling mechanisms and connections to work with input and output data in GIS and

databases. LIQUID® is claimed to be able to represent complex interactions between

modules, including feedbacks, different time steps and irregular geometries.

The LIQUID® framework is proprietary software and has been under development since

2005 by Hydrowide, but can be made available for research purposes by means of a

partnership contract, and modules are subject to licences imposed by the individual module

developers (Branger et al., 2010a). There does not appear to be much literature related to

LIQUID® and the documentation on the Hydrowide website

(http://www.hydrowide.com/liquid/current/) was incomplete. Development and use of the

LIQUID® framework seems to be confined to researchers from Hydrowide, Cemagref and

Grenoble University.

Branger et al. (2010a) explain that LIQUID® consists of two main sections, the framework,

consisting of core components and some general utilities, and the platform, consisting of

modelling components and their documentation, as illustrated in Figure 3.15. LIQUID®

manages a library of modelling modules representing hydrological processes and provides a

build system enabling custom hydrological models to be built using selected modules in the

library (Branger et al., 2010b). Three categories of user are envisaged for LIQUID®, module

developers, model developers and model users. One of the most important core

components of the LIQUID® framework is the Scheduler which manages the interactions

between modules within a model at runtime and controls the simulation time steps. Another

important core component of the LIQUID® framework is the model build system which

enables operating system and compiler independent code compilation, and creation of

executable files using the Build tool provided by Boost (http://www.boost.org). A set of third

party libraries for numerical analysis, geometry calculations and connecting to databases are

included in the LIQUID® framework for use by module developers. The LIQUID® framework

also includes a test framework that enables module developers to build and run tests for

116

modules, and a system to automatically generate module code documentation is also

available. LIQUID® is programmed using the C++ programming language, including template

and meta-template programming, and makes use of the standards ANSI C++, OpenGIS,

Open DataBase Connectivity (ODBC) and DocBook standards. (Branger et al., (Branger et

al., 2010a)a). Most of the modules currently in the library were implemented in C++ but it is

possible to implement modules in other programming languages such as FORTRAN.

Figure 3.15 The main sections of LIQUID® (Branger et al., 2010a)

Branger et al. (2010a) and Branger et al. (2010b) explain that each module is autonomous

and represents one or more hydrological processes occurring on one or more spatial entities

at a specific temporal and spatial scale. Each module includes five main components: a

data scheme, a pre-processor, a solver, test cases and documentation as shown in Figure

3.16. Each module contains its own spatial data scheme which describes the time-

independent data required by the module including parameters, initial values and the spatial

entity types. The data used in the modules is accessed from a PostgreSQL/PostGIS

database through an ODBC connection. Based on the data scheme for each module empty

tables are created in the database and the model user populates these tables with

appropriate data which is then read by the pre-processor and used to initialise a solver with

parameters and initial values for each spatial entity being modelled. The hydrological

simulation takes place within these solvers. Each solver is responsible for managing its own

time steps and these time steps are re-evaluated each time the solver is executed. Each

solver can receive input through its slots and provide output through its signals. There is one

signal for each output variable and output values are delivered each time the solver

executes. A slot is a method that is called when a new input value is received by the solver,

and is the means through which a solver responds when new input value become available.

In other words LIQUID® uses a push-driven mechanism to govern the progression of the

117

hydrological processes being modelled. The modules making up a model communicate

through their slots and signals, and through these, both simple one-way coupling and

couplings representing feedbacks can be established. Modules are created using LIQUID®

templates in which the module developer first defines the slots, signals and data scheme,

then writes code for the signals, slots, pre-processor and the solver, and finally provides

metadata describing each slot and signal. One important constraint is that solvers must be

time step independent, so that they can be run with a variable time step. SI base units are

used by convention to prevent having to convert between units of measure, but it is

ultimately up to the model developer to ensure units are consistent between associated

signals and slots. The module library within LIQUID® contains Input modules for reading

time series input data and Output modules for writing output data to ASCII files. The

architecture of the Input and Output modules is the same as for the hydrological process

modules. When creating a model one Input module is required for each time series input

variable and can handle fixed interval or variable interval time series. Each time an Input

module reads a new value from the database it sends a signal to the appropriate slots of

connected process modules. The Output module can perform operations such as time

series aggregation.

Figure 3.16 Architecture of a LIQUID® module (Branger et al., 2010a)

Branger et al. (2010a) and Branger et al. (2010b) explain that a model is created by

selecting suitable modules and connecting their slots and signals. This model configuration

information is stored in a XML file which is read by the build system. The build system uses

this configuration system to compile the specified modules and create an executable file for

the model. During a model run the Scheduler manages the progression of the simulation.

At each time step during a simulation each module solver estimates what its next time step

will be and schedules the time of it next execution with the scheduler. When the next

118

scheduled execution date is reached for a particular module, the Scheduler calls the module

and it executes. Based on signals received by a solver the slots can decide to reschedule

the next execution of the module. This design enables simulations to progress at variable

time steps. For most LIQUID® models it is envisaged that a study catchment will be divided

into hydrological response units (HRUs), depending on the objectives of the study and data

availability, and during pre-processing of a model run a separate solver instance would be

created for each HRU on which a particular module is applied.

3.1.5.2 Application

Branger et al. (2010a) describe several applications of LIQUID® to create models as follows:

• PESTDRAIN simulates pesticide transport in tile-drained agricultural fields at an

event scale. It is made of three modules, SIRDA which simulates water flow in the

saturated zone, SIRUP which simulates surface runoff and water flow in the

unsaturated zone, and SILASOL which simulates pesticide transport in the saturated

and unsaturated zones. The model has a variable time step ranging from 3 minutes

or less during rainfall events to a week during dry periods, providing a compromise

between accuracy and computation time.

• ELIXIR-D2D was developed to estimate the effect of temporary pressurization of

drainage pipes on the discharge agricultural field drainage systems during heavy

rainfall events. ELIXIR is a 1D Saint-Venant module that computes flow and

hydraulic head in pipe and channel networks, and D2D is a 2D shallow water table

module based on Boussinesq approximations used to compute water table elevation

and discharge into buried drains.

• BVFT is used to assess the influence of landscape management on water

fluctuations in small agricultural catchments. It uses SIDRA and SIRUP modules, the

FRER1D module for undrained agricultural zones, the HEDGE module for modelling

the influence of hedgerows and the RIVER1D module for simple flow routing in ditch

and river networks.

• CVN was developed for the analysis of hydrological responses during flash flood

events. The FRER1D is used to calculate infiltration and is linked to the PEF module

which calculates runoff based on surface ponding, and the RIVER1D module

simulates water flow in the flow network.

• BALANCE model which models sensitivity of the long term water balance of large

catchments to land-use changes. It uses the FRER1D module for infiltration,

RIVER1D module for flow routing, and the BOUSS2D module for groundwater flow.

119

Jankowfsky et al. (2010) describe the Peri-Urban Model for Landscape Management

(PUMMA) created with LIQUID® to assess water fluxes in suburban areas for different

landscape management practices. The PUMMA uses the URBS module for urban

hydrological elements representing cadastral units, the FRER1D module for natural area

such as forests and fields, HEDGE for vegetated field borders and riparian zones, SIMBA for

retention basins and lakes, and RIVER1D for the drainage network. Each module has its

own time step, enabling different hydrological processes to be simulated at different

temporal scales.

3.1.5.3 Comments

Branger et al. (2010b) state that the strong aspects of LIQUID® are the flexibility provided to

module developers to develop modules based on any type of process representation, the

efficiency of the module coupling system, and the ability to synchronize time steps and data

exchange between modules with different process conceptualizations. According to Branger

et al. (2010a), LIQUID® was originally designed for research in hydrology and thus far had

only been used by researchers from Cemagref and Grenoble University for research

applications. Together with Branger et al. (2010b) they go on to state that LIQUID® has

entered a “mature development stage” and future development will include better

computational efficiency, parallel processing, parameter optimisation, stabilisation of

numerical schemes, adapting traditional numerical methods to complex geometries, display

of simulation results and user friendliness.

The details of the model coupling architecture used in LIQUID® were not clear in the limited

amount of literature that could be found. LIQUID® is intended to be used in a modular

modelling context, but could potentially be applied to whole models. In addition to its model

coupling mechanism LIQUID® also offers many of the attributes of a traditional modelling

framework. LIQUID® is intriguing in that it seems to build module code on the fly, which

enables models to be easily ported to different operating platforms. LIQUID® is supported by

a small collaborative research group in France, but does not appear to have been used

outside this group and is proprietary software.

3.1.6 Earth System Modelling Framework (ESMF)

The ESMF is a specialised, standards-based, open source modelling framework and model

architecture for coupling grid based climate and atmospheric models in a high performance

computing environment (Hill et al., 2004; Collins et al., 2005). ESMF resulted from a

120

collaborative multidisciplinary project to which many of the largest earth science modelling

centres in the USA contributed, and is used as the basis for some of the general circulation

models used by these centres. Models of large and distinct, but interactive, domains such

as atmosphere land and ocean are each represented by an ESMF Gridded Component

class, where each domain is represented by some form of physical grid. Instances of the

ESMF State class are used to exchange data between components, where each component

can accept one or more input ESMF States and produces one or more output ESMF States.

ESMF Coupler classes receive one or more input ESMF States as input and map them by

means of spatial and temporal conversion routines to one or more output ESMF States,

making provision for coupling models at different scales and grid representations. For the

reason that ESMF is a specialised framework focussed on coupling grid based climate and

atmospheric models, it was not considered further for this project.

3.1.7 Modular Modelling System (MMS)

The MMS is described by Leavesley et al. (2002) as an integrated modular modelling

framework developed to provide a research and application framework required to enhance

development, testing, and evaluation of physical-process modules, facilitate coupling of

selected modules to form custom models, facilitate the coupling of models and to provide a

range of modelling analysis and support tools. They further describe MMS as a modular

modelling framework enabling members of the scientific modelling community to address

complex issues associated with the design, development, and application of distributed

hydrological and environmental models in a collaborative manner, and provides a means of

sharing advances in modelling algorithms and techniques. MMS was developed by the US

Geological Survey (USGS) and was one of the forerunners in the development of modular

modelling frameworks. MMS was not considered further in this project as Markstrom (2011)

states that the USGS no longer distributes or supports MMS.

3.1.8 High Level Architecture (HLA)

3.1.8.1 Overview

The High Level Architecture (HLA) is described by Dahmann et al. (1997) as a specification

of a technical architecture for use across all classes of simulations in the US Department of

Defence (Dahmann et al., 1997). The Defence Modelling and Simulation Office (DMSO) of

the US Department of Defence have developed HLA to meet the requirement for

interoperability among new and existing simulations within the US Department of Defence.

121

Jagers (2010) describes HLA as a general purpose architecture for distributed real-time

training and simulation environments involving tightly coupled networks in which data

exchanges are frequent, but usually small. Lindenschmidt et al. (2005) describe HLA more

simply as a computer architecture for constructing distributed simulations, and explain that it

facilitates interoperability between different simulations and simulation types and promotes

reuse of simulation software modules. Jagers (2010) makes the point that HLA is just an

architecture and does not include an implementation. Jagers (2010) mentions that the

baseline definition for HLA was completed in 1996 and was accepted as a general IEEE

1516 standard in 2000.

In the HLA a model or simulation or entity implementing the HLA interfaces is referred to as

a Federate and a system of linked Federates is called a Federation (Dahmann et al., 1997).

The HLA has four main components, the HLA Rules (federation rules), the HLA Interface

Specification which specifies interfaces between components (federates), the Runtime

Infrastructure (RTI) via which data exchange occurs and the HLA Object Model Template.

The HLA Object Model Template for recording information that describes a federation object

model such as possible data exchanges between components (federates) that can be

queried at run-time (Dahmann et al., 1997; Jagers, 2010). The HLA Rules need to be

followed which define the general architecture of the HLA. The HLA interface specification

provides information on the services provided to the models by the RTI and by models to the

RTI. The HLA interface specification defines the way services are accessed, both

functionally and in a programmer’s interface. The HLA Object Model Template provides a

standard way to document descriptions of object models. There are two types of object

model descriptions, the first being the HLA Federation Object Model (FOM) and the second

is the HLA Simulation Object Model (SOM). The HLA FOM provides information about the

set of objects, attributes and interactions within a linked system (Federation). The HLA SOM

describes the set of objects, attributes and interactions a linked system (Federation) can

provide at runtime. The Runtime Infrastructure (RTI) is the system that provides services to

carry out the interactions between models within the linked system. Lindenschmidt et al.

(2005) describe the RTI as being the core of the HLA, providing services to start and stop a

simulation execution, control data transfer between linked simulations and to control time

stepping among the linked simulations. They mention that the source code of models to be

integrated into HLA needs to be modified to include RTI functionality.

122

3.1.8.2 Application

Lindenschmidt et al. (2005) describe an implementation of HLA to simulate river water

quality for the management of large river basins. They implemented HLA in Water Quality

Simulation Program version 5 (WASP5) to couple its three submodels, DYNHYD for

hydrodynamics, EUTRO for eutrophication and TOXI for sediment and micro-pollutant

transport into a HLA federation. Previously in WASP5 there was no interaction between the

EUTRO and TOXI submodels, and feedback between these two models and DYNHYD was

also not possible. They report that the HLA implementation of WASP5 enabled improved

transfer of information between the three submodels which lead to better predictive ability

and uncertainty analyses. Lindenschmidt et al. (2005) stated that they were not aware of

any other implementations of HLA for water resources modelling but mention six other

applications in other fields.

3.1.8.3 Comments

Lindenschmidt et al. (2005) concluded that the HLA provides a fast, simple means of

coupling models together in a simple modelling system, additional capabilities such as whole

model uncertainty analysis and representation of interactions and feedbacks between

submodels, and could potentially be used as a docking mechanism to modelling systems

such as OMS.

Though the details of the model linking architecture were difficult to understand form the

limited literature found, its design appears to be sound with many similarities to OMS and

TIME. HLA was primarily intended for applications in the defence domain, there is no real

reason why it should not be used for coupling environmental models as demonstrated by

Lindenschmidt et al. (2005). One main reason why HLA should not be considered for use in

this project is that it does not have a wide list of implemented environmental models.

3.1.9 Common Component Architecture (CCA)

3.1.9.1 Overview

The Common Component Architecture (McCartney and Arranz) is described as a

component architecture for scientific high-performance computing (HPC), specifically high-

performance parallel computing (Armstrong et al., 2006). Jagers (2010) states that the

objective of the CCA Forum, founded in 1998, was to define a standard for a scientific, high-

performance component architecture that includes HPC features not available in other

123

generic component architectures such as CORBA, COM, .NET and JavaBeans. He further

states that the objectives of the CCA specifications were to maintain the performance of

components, provide platform independent inter-component communication mechanisms,

enable parallel computing across components, and allow for configuration of components

before and during execution. Bramley et al. (2000) state:

“The philosophy of CCA is to precisely define the rules for constructing components (or, in

the case of existing applications, the software wrapping that makes them into components)

and the specification of the required behavior that a component must exhibit for it to coexist

with other components within a CCA framework.”

Bramley et al. (2000) explain that the CCA consists of two entity types: Components and

Frameworks. Components are the basic software units that are created, composed together

and managed within a Framework to form applications. Frameworks also provide the

essential services that components require to operate and interact, such as dynamic

instantiation, coupling and invocation of methods. The CCA does not provide any

specifications as to how the Framework is constructed enabling different frameworks to be

constructed for different purposes. A CCA framework should provide support for SIDL,

services to handle communication, security, thread creation and management, memory

management and error handling, ability to instantiate and couple components and a

repository for components (Jagers, 2010). Armstrong et al. (2006) mentions SCIRun,

Ccaffeine, and XCAT as examples of CCA compliant frameworks.

The concept of a port is fundamental in CCA, where ports provide the public interface of a

component through which it communicates. In CCA there are two types of port, Provides-

port and Uses-port, where one may be connected to the other. A Provides-port is an

interface of functions that the component implements and are executed by the component

on behalf of the component's “users”. A Uses-port is connection point on the surface of the

component where functionality the component requires can be implemented. In simpler

terms, Armstrong et al. (2006) describe a port in the CCA as a resource (collection of

subroutines) that can be either exported or imported from a component. Each CCA

component needs to have a setServices method in order to be used within a CCA

framework, where the responsibility of the setServices method is to definition of the ports

that a component provides and uses. When two components exist in the same address

space, a direct connection can be made between a Provides-port and a Uses-port, and

when two components exist in different address spaces, a Uses-port instead holds a proxy

to the remote Provides-ports.

124

Armstrong et al. (2006) state that it was recognised that scientists use a variety of

programming languages, but the CCA does not force scientists to use a particular language.

This is made possible by the CCA specification being written in Scientific Interface Definition

Language (SIDL) coupled with the use of appropriate programming language bindings.

Bramley et al. (2000) state that CCA components may be written in Java, Fortran, C or C++,

but it is the responsibility of the framework to provide suitable infrastructure to enable

interoperability between components from different languages.

3.1.9.2 Application

Jagers (2010) mentions that CCA has been demonstrated to be interoperable with other

frameworks such as the Earth System Modelling Framework and the Modelling Coupling

Toolkit, and that the Ccaffeine framework has been successfully combined with the OpenMI

1.4 Java implementation. Zhou (2006) reports using the CCA and ESMF to couple climate

models.

3.1.9.3 Comments

This short review does not even start to cover the technical details or the literature related to

the CCA, but it does serve to highlight that coupling of models and process modules is not

exclusive to the environmental modelling domain. In addition, this short review of the CCA is

of interest for two other reasons, first in that it indicates that there are means of linking

modules across programming languages and platforms, and second in that there are means

of coupling modules for parallel processing in a high performance computing environment.

There is no real reason why CCA should not be used for coupling environmental models

though one reason why it should not be considered for use in this project is that it does not

boast a wide list of implemented environmental models.

3.1.10 Discussion and recommendation

Several model linking mechanisms from the interface specification and modular modelling

system approaches have been reviewed in the previous sections. At the start of the review

these two approaches appeared to be quite distinct. However, in general there is no reason

why an approach intended for linking whole models, especially legacy models, should not be

used to link process modules which in reality are just small models. When linking either

whole models or process modules, it is critical for the person, or people, doing the linking to

have a clear understanding of the respective models or modules. Linking of models or

125

modules should be done by experts to produce a sound integrated modelling system for use

by suitable trained, but not necessarily expert, model users. Blind and Gregersen (2005)

sum this up by correctly pointing out that an integrated modelling system created by linking

individually valid models does not imply that the integrated system as a whole is valid, and

that collaboration between model specialists will be required. Modular modelling is an

attractive concept but it beyond the abilities of most model users, and even experienced

model developers will have to be careful when composing models to ensure that the

modules on which they are based are compatible with each other. Whole legacy models

build a reputation over time. While custom models may be useful for modelling individual

case studies they have no reputation that gives confidence in the results, assuming of

course that the model has been correctly parameterised. There needs to be a balance

between too much flexibility, making an architecture hard to implement, and too little

flexibility, which will reduce the number of situations in which the architecture can be applied.

The systems reviewed could be categorised into two main groups: CCA, HLA and OpenMI

which are purely interface specifications, whereas OMS, JAMS, TIME, LIQUID, ESMF and

MMS are modelling frameworks which include a mechanism for linking models or process

models. Jagers (2010) confirms this by pointing out that CCA, HLA and OpenMI in essence

only define architectures and interfaces, HLA doesn’t even have a reference implementation,

but that the developers of CCA and OpenMI are creating reference implementations.

OpenMI, OMS, JAMS, TIME, LIQUID, ESMF and MMS are designed primarily for use in the

water and environmental modelling domain, though ESMF is specific to the climate,

atmosphere domain. HLA was designed for use in the defence domain. CCA is a general

purpose linking mechanism and is suitable for use in a high performance computing

operating environment. The coupling interfaces defined by CCA, ESMF, OMS, OpenMI and

TIME are similar in that that they all use initialize, run, finalize, get and set method concepts,

but differ in the amount of code needed to implement the interface, and in run time

performance (Lloyd et al., 2009; Jagers, 2010).

A simple quantitative assessment was performed on the systems reviewed, relative to the

broad requirements stated at the beginning of Section 3.1, and the results of this

assessment are shown in Table 3.5. Each system is rated for each requirement using a

rating with the following scale: 1 = strong, 0 = average, -1 = weak.

126

Table 3.5 Simple quantitative evaluation of the systems reviewed where 1 = strong, 0 =

average, -1 = weak

O
pe

nM
I

O
M

S

JA
M

S

T
IM

E

LI
Q

U
ID

E
S

M
F

M
M

S

H
LA

C
C

A

Suited to water resource type models 1 1 1 1 1 -1 1 0 0
Ability model feedbacks 1 1 1 1 1 ? ? 1 1
Minimal changes to model code 1 1 1 1 0 ? 0 1 1
Linking across software platforms 0 1 0 1 1 ? 1 1
Minimal impact on model run speed ? ? ? ? ? ? ? ? ?
Regarded as a standard 1 0 0 0 0 -1 ? 1 1
Adequately supported 1 0 0 1 -1 0 -1 0 1
Widely adopted 1 0 0 0 -1 0 -1 0 1
Minimum financial burden 1 1 ? ? -1 ? ? ? 1
Suitable for this project 1 1 0 1 -1 -1 -1 -1 -1

Based on this review and the simple evaluation presented above it was the opinion of the

authors of this review that, in order of preference, the OpenMI, TIME and OMS systems

should be considered for use in this project. The advantages of OpenMI are that it is

generally accepted as a de facto standard, is strongly supported by the OpenMI Association,

has been widely adopted by key research and commercial players providing a useful set of

compliant models, and has been well documented. The advantages of TIME are its

lightweight architecture, it is strongly supported by the eWater CRC, has been extensively

implemented by the developers, providing a useful set of compliant water and environmental

models even if they are tailored to Australian requirements, and has been well documented.

The advantages of OMS are its lightweight architecture, that it has been moderately

implemented by the developers, providing a small set of compliant water and environmental

models even if they are tailored to USGS and USDA-ARS requirements. The selection of a

model linking architecture and system for use in this project will be strongly influenced by the

flow network model selected, and whether it supports one of the linking architectures

reviewed.

3.2 Evaluation of Linkage Mechanisms in Selected Models

The review model linking mechanisms in Section 3.1 concluded that the OpenMI interface

specification standard was the most appropriate linking mechanism for use in the project.

The ACRU model does not provide a mechanism for linking and would need to be made

OpenMI compliant. A review and technical evaluation of the linking mechanisms supported

by the river network models MIKE BASIN, MODSIM and RiverWare was conducted in order

127

to determine the feasibility of linking these models to the ACRU model, preferably using

OpenMI. This review and evaluation, together with the review and evaluation of river

network model presented in Chapter 2, was intended to lead to the selection of a river

network model for use in the project.

3.2.1 Evaluation criteria

The linking mechanism supported by the river network models needs to meet certain

requirements to be considered for this project, as shown in Figure 3.17, which in order of

preference are:

Requirement 1 - The river network model is OpenMI compliant.

Requirement 2 - The river network model is not OpenMI compliant, but the source code

for the model is accessible, enabling modification of the code to make

the model OpenMI compliant.

Requirement 3 - The river network model is not OpenMI compliant but provides access

to the model engine, including access to parameters, input data and

output data, which may enable an OpenMI compliant wrapper to be

developed around the model.

Requirement 4 - The river network model has a linking mechanism which is not OpenMI

compliant, but enables non-OpenMI links to be created with other

models.

In the case of ACRU, the source code of the model is available and can be changed to make

it OpenMI compliant. For a river network model that meets Requirement 1, no code changes

will be required as it is OpenMI compliant. In the case of Requirement 2 a non-OpenMI

compliant model, whose source code can be accessed, can be made OpenMI compliant by

making code changes to the source code.

There is no access to the source code of the river network models being reviewed.

Therefore, these river network models themselves cannot be made OpenMI compliant. In

terms of Requirement 3 access is provided to the model engine of the non-OpenMI

compliant model. In this case, wrapper code can be written around the model, which will

interact with the river network model and provide the required functionality for OpenMI

compliance, as illustrated for Requirement 3 in Figure 3.17. The wrapper code controls how

the non-OpenMI compliant model will run and will enable the non-OpenMI compliant model

to link to OpenMI compliant models. It is important to note that this type of solution may

provide limited linking abilities, where only a small set of selected variables may be made

128

available for exchange between the models. This limitation will depend on the model

selected. For Requirement 4, a non-OpenMI compliant model that offers a non-OpenMI

linkage mechanism can still be linked to an OpenMI compliant model to meet the goals of

this project.

Figure 3.17 Illustration of river network model linkage mechanism requirements

For existing models to be suitable for migration to become OpenMI compliant requires a list

of criteria to be met as defined in the guidelines for OpenMI, which can be found in Gijsbers

et al. (2005). The criteria for a model to be suitable for migration to become OpenMI

compliant are:

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Model B

(OpenMI

Compliant)

OpenMI Link

Model A

(OpenMI

Compliant)

Model A

(OpenMI

Compliant)

OpenMI Link

Model A

(OpenMI

Compliant)

OpenMI

Wrapper

OpenMI Link

Model A

 (OpenMI

Compliant)

Modified

Model B

(OpenMI Compliant)

Model B

(Non-OpenMI

Compliant)

Model B

(Non-OpenMI

Compliant)

Non-OpenMI Link

129

Criteria 1 - The model initialization should be separate from computation, with the ability

to set the boundary conditions during the computation phase.

Criteria 2 - The model should allow access to information detailing the modelled

quantities (variables) it can provide.

Criteria 3 - The model should allow access to the values of the modelled quantities it can

provide for any requested point in time and space.

Criteria 4 - The model should provide run-time control to any outside entity and

importantly it should provide methods to dynamically control the simulation

(step-wise simulation, hot-start from any previous time-step).

Criteria 5 - A model that is time independent should still respond to a request and, in the

case where it requires data from another model that is time dependent, it

should pass a timestamp on in its request.

The key concept is the ability to dynamically control the simulation and the manipulation of

data. These criteria have been defined for the conversion of a model itself. The river network

models being reviewed will not be converted, as there is no access to the source code of

these models. However, the river network models may provide access to their model engine,

or have a linking mechanism which is not OpenMI compliant, but has the potential to be

adapted or modified to support linking to OpenMI compliant models. In both cases, the

access to the model engine and the non-OpenMI linking mechanism needs to be evaluated

using these criteria. If these criteria are met by the river network models, then an OpenMI

compliant wrapper can be implemented around the model, thus making it OpenMI compliant.

For this evaluation the three river network models being evaluated do not need to satisfy

Criteria 5, as they are all time dependent models.

Criteria 3 for OpenMI compliance, which requires the return of a value when requested, has

resulted in the following conditions that need to be satisfied by a model being migrated as

defined in the guidelines for OpenMI, which can be found in Gijsbers et al. (2005):

Condition 1 - The model needs to know at which point in time it is within its simulation.

It needs to determine if it has not yet reached the requested time, it is at

the requested time, or it has passed the requested time. Depending on

the model and the context, this will further enable the model to know

whether to simulate up to the requested time, to extrapolate a value if it’s

not possible to obtain a value for the requested time, or to search its

buffer if it already has a value for the requested time.

130

Condition 2 - A requested value for a given time will need to be interpolated if the

model requesting and the model providing the value are not using the

same temporal or spatial scales.

Condition 3 - A model, when waiting for data to be computed, will need to return an

extrapolated value.

These conditions are needed to enable the OpenMI architecture to work. The model should

provide the functionality to meet these conditions. If a model does not meet these conditions

then they can be met through the implementation of code, such as wrappers, but this would

result in greater effort and time spent in converting the model to OpenMI.

The MIKE BASIN, MODSIM and RiverWare models are evaluated based on the

requirements, criteria and conditions described above. Though the criteria are focussed on

the OpenMI interface specification standard, the first four criteria would need to be met for

any linking mechanism that links complex interactions between processes in two or more

separate models.

The evaluation of each model consisted of two parts: (i) a review of information about the

linking mechanism from literature and personal communications with the developers, and (ii)

a technical evaluation in which a simple software implementation of the linking mechanism

was created to better understand the mechanism and verify its ability to meet the criteria.

3.2.2 MIKE BASIN

MIKE BASIN is a river network model developed by DHI Water and Environment. The

version of MIKE BASIN used for this evaluation was MIKE BASIN 2011.

3.2.2.1 Review

MIKE BASIN 2011 is not OpenMI compliant and does not have an alternative linking

mechanism (Hallowes, 2011). MIKE BASIN provides access to its computational core

engine through Microsoft COM and .NET class libraries (DHI, 2011b). This enables the

creation of customized solutions with any program or programming language that supports

these technologies, such as Visual Studio .NET, Microsoft Excel or ArcGIS®. MIKE BASIN

also enables users to write customized solutions using Visual Basic macro programming, as

a part of its graphical user interface (DHI, 2011b). The access provided to the computational

131

core engine of MIKE BASIN is described briefly in this section. The information that follows

on the COM and .NET class libraries has been derived from DHI (2011b) and DHI (2011c).

To use the computational core engine of the MIKE BASIN model, two assembly files need to

be referenced, namely the DHI MIKE BASIN COM / .NET Engine class libraries

(DHI.MikeBasin.Engine.tlb/dll) and the DHI MIKE BASIN Data Access Component class

libraries (DHI.MikeBasin.Data.tlb/dll) (DHI, 2011b). The class libraries contain a workspace

called DHI_MikeBasin_Engine, which contains two main classes, the

DHI_MikeBasin_Engine.Engine class and the DHI_MikeBasin_Engine.ModelObject class.

An instance of the DHI_MikeBasin_Engine.Engine contains instances of the

DHI_MikeBasin_Engine.ModelObject class, where each instance represents a physical

component, such as a node, reach or catchment, within the system being modelled.

The MIKE BASIN river network model’s access to its model engine meets Criteria 1 to 4

needed for OpenMI compliance. The DHI_MikeBasin_Engine.Engine class provides

initialization of MIKE BASIN separate to its computation, with the ability to modify boundary

conditions during computation, thus satisfying Criteria 1. Criteria 2 and 3 are met by the

Engine and Data classes which provide access to information on the quantities the model

can provide and the values of those quantities for any requested point in time and space.

The DHI_MikeBasin_Engine.Engine class also provides methods to dynamically control the

simulation (step-wise simulation, hot-start from any previous time-step or even iteration

within a time-step), which is required for Criteria 4. The MIKE BASIN river network model

does not provide the functionality to meet the Conditions 1-3 defined above. Additional

wrapper code would be needed, to implement the functionality to meet these conditions.

Further details on the COM and .NET class libraries can be found in DHI (2011c). It is

important to note that a MIKE BASIN model still needs to be configured using the ArcGIS®

user interface prior to running it using a customized solution such as wrapper code. The

class libraries do not enable the model structure to be changed, such as adding or deleting

nodes.

The COM and .Net class libraries, provides access to the model engine of MIKE BASIN,

which enables the development of an OpenMI wrapper for MIKE BASIN to support linking to

OpenMI compliant models. This is demonstrated in a study of linking MIKE BASIN to MIKE

SHE using OpenMI described by Christensen (2004). Christensen (2004) states, that

customization of MIKE BASIN to be OpenMI compliant took a small re-engineering effort.

The study conducted by Christensen (2004) proves that MIKE BASIN, through its model

engine access, can be made OpenMI compliant. According to Hallowes (2011), the latest

132

version of MIKE BASIN is not OpenMI compliant, but he does not foresee a problem with

implementing an OpenMI compliant wrapper to support linking to OpenMI compliant models.

3.2.2.2 Technical Evaluation

From the review, the COM and .Net class libraries provided for MIKE BASIN, meet the

criteria to enable the development of an OpenMI compliant wrapper for MIKE BASIN. A

technical evaluation was carried out to verify that the .NET class libraries meet the criteria for

OpenMI, which will aid in the evaluation. The technical evaluation involved the creation of a

simple test application that interacted with the .Net class libraries.

The version of MIKE BASIN used for testing was sourced from the MIKE by DHI software

2011. It required the installation of ESRI ArcMAP™ 10.0 version of ArcGIS®, as the MIKE

BASIN release 2011 runs as an extension within ESRI ArcMAP™ 10.0. It is important to

note, both MIKE BASIN release 2011 and ESRI ArcMAP™ 10.0 require licenses. The test

application was written in the Visual Studio 2008 development environment, using the

programming language C#. The two assembly files referenced in the test application were

DHI.MikeBasin.Engine.dll and DHI.MikeBasin.Data.dll. The MIKE BASIN model used for

testing was initially set up and saved using the MIKE BASIN software’s ArcGIS® interface.

The MIKE BASIN .NET class libraries were tested and they were found to meet Criteria 1-4.

The DHI_MikeBasin_Engine.Engine .Net class has a method called Initialize that sets up the

model separate from its computation. A DHI_MikeBasin_Engine.Engine object contains

DHI_MikeBasin_Engine.ModelObject objects, representing entities such as dams, reaches

and water users. These objects can be accessed using the GetModelObject method

contained within the DHI_MikeBasin_Engine.Engine class. The

DHI_MikeBasin_Engine.ModelObject class provides methods such as SetInput to change

boundary conditions and input quantities during computation. The Initialize and SetInput

methods enable Criteria 1 to be met.

The details of the input and output quantities of a MIKE BASIN model can be accessed

using the DHI_MikeBasin_Engine.ModelObject class methods GetInputSpecs and

GetResultSpecs respectively, which satisfies Criteria 2. The values of input and output

quantities of a MIKE BASIN model are retrieved using the

DHI_MikeBasin_Engine.ModelObject class methods GetInputOriginalValue and

GetCurrentResult respectively. Similarly, the values of input time series and output time

133

series quantities are retrieved using the DHI_MikeBasin_Engine.ModelObject class methods

GetInputTSObject and GetResultsTSObject respectively. Criteria 3 is met by being able to

retrieve the values for both input and output quantities of a MIKE BASIN model, for the

current time-step, using GetInputOriginalValue and GetCurrentResult methods and for a

requested point in time and space, using the GetInputTSObject and GetResultsTSObjec

methods.

The MIKE BASIN .Net class libraries submit control to an outside entity, satisfying Criteria 4.

An important aspect of this control with regards to OpenMI, is the ability to run the model on

a time-step basis with the ability to hot-start from any previous time-step. In the test

application the SimulateTimeStep and AdvanceTimeStep methods of the

DHI_MikeBasin_Engine.Engine class were used to run the model on a time-step basis.

The test application successfully interacted with a MIKE BASIN model using the MIKE

BASIN .Net class libraries verifying that Criteria 1-4 are met. The functionality provided by

the class libraries was sufficient to satisfy Criteria 1-4 and no additional coding was needed.

The support provided by the DHI group was good, with a response time to e-mail queries

being on average one week. The literature describes MIKE BASIN as having the potential to

be made OpenMI compliant and the technical evaluation has verified that MIKE BASIN

meets the criteria for OpenMI.

3.2.3 MODSIM

MODSIM is developed and maintained by Colorado State University (Labadie, 2006b).

MODSIM 8.1 has been written using Microsoft Visual C++ .NET (Labadie, 2006b).

3.2.3.1 Review

MODSIM is not OpenMI compliant and does not provide an alternative linking mechanism,

but like MIKE BASIN, does provide access to its model engine. MODSIM provides access to

its model engine using public classes and variables. These classes can be accessed using

custom code written using any of the supported programming languages in the .NET

framework. Labadie (2006b) states that MODSIM can be accessed by external applications

such as models running concurrently with MODSIM, without having to modify the original

code.

134

To implement a solution to make MODSIM accessible through an OpenMI compliant

wrapper requires access to the model engine which should meet Criteria 1-4. MODSIM

provides this functionality through the Model class and the TimeManager class (Labadie,

2010c). The following brief descriptions of these two classes was found in Labadie (2010c).

The Model class is the main class used to access the model engine of MODSIM. The Model

class is structured such that MODSIM can be initialized separately from its computation.

Labadie (2010c) states that through code customisation, access is provided to all model

variables, prior to computation, during computation and after computation, and that boundary

conditions can be modified during computation. This separate initialization and access to all

model variables during computation meets Criteria 1. The Model class contains public

methods and variables used to perform a MODSIM network simulation and access the data

of the model. Access to time series information is provided by the TimeSeries class. The

TimeManager class controls the model simulation time-steps in MODSIM. MODSIM

therefore provides access to information about quantities and values of these quantities at a

requested point in time and space, satisfying Criteria 2 and Criteria 3. The Model class and

TimeManager class of MODSIM provides run-time control to any outside entity, which is

required for Criteria 4. All public variables and object classes for MODSIM, such as the

Model class and TimeManager class can be found within the Csu.Modsim.ModsimModel

namespace. To adapt MODSIM to be OpenMI compliant, custom code, such as wrappers,

will be required to access the model engine and implement the requirements needed for

OpenMI compliance. MODSIM does not provide the functionality to meet the Conditions 1-3

defined above. Thus, additional wrapper code would be needed to implement the

functionality to meet these conditions

3.2.3.2 Technical Evaluation

The technical evaluation involved the creation of a simple test application that interacted with

the MODSIM classes, to verify that the access to the model engine provided by MODSIM

meets Criteria 1-4. MODSIM version 8.1 was used for testing and was downloaded from the

MODSIM-DSS website [http://modsim.engr.colostate.edu/version8.shtml]. It required no

additional installation files and did not require a license to be used. The test application was

written in the Visual Studio 2008 development environment, using the C# programming

language. The assembly files referenced in the test application were ModsimModel.dll,

NetworkUtils.dll and XYFile.dll. A simple MODSIM model configuration was created using

the MODSIM user interface for the purposes of testing.

135

A MODSIM model can be loaded by creating a new instance of the Model class, and loading

the model into the new instance of the Model class, using the XYFileReader class found in

the XYFile.dll library. The Model class also provides access to the boundary conditions of

the model which can be set prior to and during running of the model, essentially the

computation phase of the model. The ability to initialize and load a model and modify

boundary conditions at computation time satisfies Criteria 1.

The Model class does not have methods that return a description of the quantities a

MODSIM model can provide, but the quantities are accessible. In this simple test a list of the

public variables of the Model class was created and displayed by the test application using

reflection. The variables represented the input and output quantities of the model. A possible

solution is to create two predefined lists of variables, with one list representing the input

quantities a MODSIM model requires and the other list representing the output quantities a

MODSIM model can provide. These lists would be defined in the wrapper that would be

written around MODSIM to make it OpenMI compliant. Each quantity would have some

description associated with it. An expert on the MODSIM model would be required to define

the lists of input and output quantities, and their associated descriptions. The definition of

these lists would be once-off and would apply to all MODSIM models. Therefore, although

Criteria 2 is not met explicitly, Criteria 2 could be met when creating an OpenMI wrapper.

The time series quantities of a spatial object, known as nodes within the MODSIM model,

can be accessed and updated through the Node class, which is contained in the Model

class. These time series quantities are of type TimeSeries class and it provides functionality

to access a time series value. The MODSIM model classes provide access to the value of a

quantity for a given point in time and space satisfying Criteria 3. The Model, Node and

TimeSeries classes provide access to its quantities, but a developer creating a custom

solution that uses these classes would require knowledge on the quantities in order to use

them effectively. The solution proposed above for the creation of lists of input and output

quantities, with their associated descriptions, will aid in this process.

The MODSIM model loaded into a Model object can be run using the RunSolver method of

the Modsim class. The TimeStepManager class within the Model object is responsible for the

model simulation time-steps in MODSIM. Initially the model was run for one year by setting

the simulation start date to 01/01/1981 and the simulation end date to 01/01/1982 using the

MODSIM user interface. An attempt was then made to run the model on a single daily time-

step basis. To run the model for a single day the startingDate and endingDate variables of

the TimeStepManager class were set to 01/01/1981 and 02/01/1981 respectively. The model

136

was then saved and the RunSolver method was then called to run the model for one day (i.e.

01/01/1981). The model ran for the single day (i.e. 01/01/1981), however, it was not possible

to repeat the process of setting the startingDate and endingDate variables to run the model

for subsequent days in the simulation period. The access to the model engine of MODSIM

does submit runtime control to an outside entity but the model could not be run on a daily

time-step basis. The MODSIM model engine classes do not appear to fully meet Criteria 4. It

is possible the approach taken to run the MODSIM model on a daily time-step basis was

incorrect, but there is no documentation providing an example or instructions on how to do

so. The approach taken was from the knowledge gained from the tutorial document on

MODSIM by Labadie (2010c). Numerous attempts over an eight week period were made to

get support from the developers of MODSIM on the approach required to run the model on a

daily time-step, but there has been no response to date of the writing of this document.

MODSIM is not OpenMI compliant but provides access to its model engine using the classes

Model, Modsim and TimeManager included in the MODSIM shared libraries. The access to

the model engine was evaluated using a simple test application and it was established that

Criteria 1-3 could be largely met, though additional code would need to be implemented to

fully satisfy these criteria, which was beyond the scope of this technical evaluation and

would require assistance from an expert on the model. The Model, Modsim and

TimeManager classes submit runtime control to an outside entity, but the MODSIM model

could not be run on a time-step basis. The review of MODSIM indicated that it had the

potential to be made OpenMI compliant, however the technical evaluation indicated that

MODSIM may not fully meet the criteria for OpenMI.

3.2.4 RiverWare

RiverWare is a general river basin modelling tool developed by the Center for Advanced

Decision Support for Water and Environment Systems (CADSWES) at the University of

Colorado (CU) (Zagona et al., 1998). This evaluation was conducted using the RiverWare

6.0.3 version of the software.

3.2.4.1 Review

RiverWare is not OpenMI compliant but has been linked to MODFLOW to model

groundwater-surface water interaction, and provides an alternative linking mechanism

(Valerio, 2008; Zagona, 2011). Changes had to be made to the MODFLOW and RiverWare

137

code, to implement a link between the models, to enable parallel execution of the models

and data transfer between the models at run time (Valerio, 2008; Zagona, 2011). This type

of linking mechanism can be described as a hard-coded link (Zagona, 2011). A hard-coded

link requires code changes to be made to the participating models to implement the link. In

this case the link implemented between RiverWare and MODFLOW will only work for that

combination of models.

RiverWare provides a Data Management Interface (DMI), which is a mechanism that

enables the transfer of data from RiverWare by directly linking to a data source or using

external executable software (CADSWES, 2010b). The configuration of a DMI is done

through a user interface, which allows for flexible configuration. Once the DMI has been set

up, RiverWare calls the DMI to automatically export data from RiverWare or import data into

RiverWare. There are two types of DMI, namely, the Control File-Executable approach and

the Database DMI (CADSWES, 2010b).

The Control File Executable approach is of more interest than the Database DMI, as it has

the potential to be used to link to a model by transferring data. The Database DMI is a direct

connection between RiverWare and an external database (CADSWES, 2010b). The

following details on the Control File Executable DMI were found in CADSWES (2010b). The

Control File Executable approach enables the transfer of large amounts of data between

RiverWare and an external data source. Data can be exported from or imported into

RiverWare using this approach. A control file is a list describing the data that will be exported

for an export DMI or imported for an import DMI. An external executable can be called by the

RiverWare DMI facility which acts as a mediator for the transfer of data between RiverWare

and external sources.

RiverWare also provides a batch mode option, which enables the execution of RiverWare

without using the graphic user interface (CADSWES, 2010a). The following description of

the batch mode can be found in the technical documentation by CADSWES (2010a). When

used in batch mode RiverWare reads and executes the commands contained in a

RiverWare Command Language (Rcl) script file. This enables external applications to control

the execution of RiverWare by creating these Rcl script files and calling RiverWare in batch

mode to execute the commands. Rcl supports basic model run commands such as, setting

up a model run, calling DMIs to transfer data, executing the model and saving the model.

The DMI and batch mode capability can be described as the linking mechanism offered by

RiverWare. According to Zagona (2011), RiverWare, through its DMI and batch mode

138

capability, can transfer data to other models at each time-step and wait for values to be

returned. This capability also enables RiverWare to be called by external software and for

data to be transferred between the external software and RiverWare. RiverWare has been

integrated into the U.S. Army Corps of Engineers’ Corps Water Management System

(CWMS) using the DMI and batch mode capability (Evans et al., 2006). CWMS is a model

support framework which provides standard support interfaces or utilities to models

contained within the framework (Evans et al., 2006). Cotter et al. (2006) states that CWMS

controls the execution of RiverWare using Rcl script files and the transfer of data using

DMI’s between itself and RiverWare. This integration provides an example of the adaption or

modification of the linking mechanism provided by RiverWare to link to an external

application.

RiverWare does not meet the Criteria 1-4 or Conditions 1-3, as it does not provide access to

its model engine. The batch mode capability enables the execution of RiverWare using Rcl

scripts. The initialisation is not separate from computation, and boundary conditions cannot

be changed during computation. The DMI does provide access to input and output data, but

this is not direct access to the quantities provided or the values of the quantities. Additional

code could be written to determine the quantities that are provided and the values of the

quantities. The batch mode capability does not directly submit control to an outside entity.

Rather the outside entity has to control the execution of RiverWare using Rcl scripts. This

again would require additional code to automate this process.

The DMI and batch mode capability of RiverWare has the potential to be used together with

code to support linking to OpenMI compliant models. A possible solution would be to write

wrapper code in conjunction with Rcl script files and Control File Executable DMIs, which

controls the execution of RiverWare and the transfer of data between RiverWare and the

OpenMI compliant model it is linked to. The wrapper code would need to provide the

necessary functionality to ensure OpenMI compliance of RiverWare.

3.2.4.2 Technical Evaluation

RiverWare is not OpenMI compliant but does provide an alternative linking mechanism by

using its DMI and batch mode capabilities. The DMI and batch mode capability do not fully

satisfy the Criteria 1-4. A possible solution is the use of the RiverWare DMI and batch mode

capability in conjunction with custom code to attempt to meet these criteria. This section

139

describes the prototype implementation and testing of a proposed solution. The proposed

solution will be referred to as the custom RiverWare solution in the rest of this document.

The custom RiverWare solution required the implementation of code that will interact with

RiverWare using the DMI and batch mode capability, and will provide the functionality to

outside entities required to meet Criteria 1-4. The custom RiverWare solution would provide

methods similar to the methods of the model engines of MIKE BASIN and MODSIM. This

enables the implementation of wrapper code to make the custom RiverWare solution

OpenMI compliant, therefore enabling the linking of RiverWare to other OpenMI compliant

models. The proposed solution is represented in Figure 3.18. The custom code is essentially

wrapper code mimicking a model engine similar to MIKE BASIN and MODSIM, but to avoid

confusion with the wrapper code used to make a model OpenMI compliant, it will be referred

to as a custom engine. It is also important to note that the term used in RiverWare for

boundary conditions and quantities is slots.

The custom RiverWare solution is not efficient, but the purpose of this evaluation was to

determine if it is possible to meet Criteria 1-4 for OpenMI. The technical evaluation will

involve a simple implementation of the custom RiverWare solution, and a test application to

verify whether it meets Criteria 1-4.

Figure 3.18 Structure of the proposed custom RiverWare solution

The version of RiverWare used for testing was Version 6.0.3. RiverWare is a standalone

application and does not require additional software packages to be installed but it does

require a license. The custom code and the test application are both written using the Visual

140

Studio 2008 development environment, using the C# programming language. A basic model

was set up using RiverWare, for the purposes of testing.

RiverWare does not provide any initialization options as it is an executable. The custom

engine was coded as a shared library, with a method called Initialize, which initializes the

custom engine and requires the file path to the RiverWare model file (.mdl) as a parameter.

This parameter will be used when interacting with RiverWare using the DMI and batch mode

capabilities. The custom engine’s Initialize method satisfies the first part of Criteria 1, which

is, initialization should be separate from computation

To satisfy Criteria 2, a private method called RetrieveModelSlots was written, which is called

from the Initialize method which retrieves the input and output slots (quantities) of the

RiverWare model. This was achieved by creating a RCL script, which loads the model,

retrieves the slots and writes this information to an output file. The custom engine creates

and executes this Rcl script file using the RiverWare batch mode capability. The custom

engine then reads the output file and stores the slots’ details. A method GetSlotSpecs was

defined to return the description of the quantities the RiverWare model provides, which has

been read into the custom engine using RetrieveModelSlots method. The test application

calls the GetSlotSpecs method and displays the description of the quantities in the

RiverWare model.

Data is imported to and exported from RiverWare using the DMI. A control file is used to

specify the data that will be either exported from or imported to RiverWare. An external

executable is called by the RiverWare DMI which acts as a mediator for the transfer of data

between an external data repository and RiverWare. For an import DMI, the executable

provides the data files in a format which RiverWare understands and can import into the

model. For an export DMI, the executable reads data files exported by RiverWare from a

model and carries out processes such as storing the data in an external source or creating a

report. The custom engine does not require an executable for the DMI because there is no

transfer of data to an external data source.

The custom engine retrieves data from slots in a RiverWare model using a DMI and a RCL

script. The method GetSlotData was coded to retrieve data from the model. The data is

returned by the method GetSlotData in the form of a string to the calling code. In order for

this method to work a DMI had to be set up in the model called DMI_Output_Data which

points to a blank control file called Output.Control. For every RiverWare model that interacts

with the custom engine, the DMI DMI_Output_Data needs to be created, which points to a

141

blank control file called Output.Control using RiverWare. The name of the DMI has to be

DMI_Output_Data and the control file has to be named Output.Control in order for the

custom engine to work. An object within RiverWare represents a spatial feature. A spatial

feature (or object) and a slot need to be provided as parameters for the GetSlotData method.

A new Output.Control file is created using the spatial object and slot, to specify the data to

be exported and the file the DMI needs to write the exported data to. The file is called

TempOutput.dat. Once the DMI is configured, a RCL script file is created and executed

using the batch capability of RiverWare to invoke the DMI_Output_Data. The GetSlotData

method then extracts the data in the file, and for this custom solution returns the data as a

string. The test application then displays this data. In a proper implementation of this

solution, the data will be converted and returned as a time series or a scalar type depending

on the description of the slot. The GetSlotData method does not take a date-time value but

this does not mean that a value from a time series type slot cannot be returned for a

specified time. This was not implemented in the prototype custom engine as the work

required to carry this out is beyond the scope this technical evaluation. The time series type

slot values returned are for the date-time the model was run up until, which is the end date-

time of the last simulation run. For example, if the model was run from 01/01/1981 00:00 to

21/01/1981 00:00, the values of the time series type slot returned will be for a simulation

from 01/01/1981 00:00 to 21/01/1981 00:00. Values that have not been calculated for a time

series type slot as yet, have the value “NaN” (Not a Number). The time series type slot

values returned can be accessed and therefore it is possible to return the value from a time

series slot for a particular time. If the value has not been calculated a null value could be

returned. In a full implementation of this solution, the method returning data would accept a

date-time parameter and either return a value or a null value indicating value has not been

reached. Using the DMI and RCL scripts it is possible to return a value for a requested point

in time and space, satisfying Criteria 3.

An initial attempt was made to meet Criteria 4 by trying to run the RiverWare model using

code in the custom engine and RCL script commands in a daily stepwise manner. The

RiverModel ran for the first day but failed to run for the days that followed. The reason is that

the state of slots of a previous step of a simulation are not maintained. A simulation step in

the model requiring values of slots from a previous step causes errors in the model.

According to Neumann (2011a), the reason that the state of slots is not maintained, is that

the RCL command StartController which is used to run the model, clears output slot values

which have been saved in a previous run.

142

A solution to this problem was proposed by Neumann (2011b). The solution entails the

running of the model for the first time-step, and then saving the slots or data whose state

needs to be maintained, using an export DMI. The export DMI would be invoked after the

StartController RCL command. In the second time-step an import DMI could be used to

import the slots or data exported in the first time-step. This import DMI is invoked between

the OpenWorkspace and StartController command. This would ensure the state of the

values of slots are now maintained and can be used in the second time-step simulation.

Similarly, once the model has run for the second time-step, the slots whose state needs to

be maintained would be saved using an export DMI. Again the export DMI is invoked after

the StartController RCL command. This process would be followed for each time-step. This

solution would work as the state of slot values are maintained and also enables boundary

conditions to be changed, but this solution requires more effort and time as it is more

complex than a simple implementation of the custom RiverWare solution. The complexity

comes in deciding which slots’ state needs to be maintained. This would require additional

code and knowledge of the slots, and how they are used in calculations in the model.

For the purpose of this evaluation, a prototype version of this solution was implemented. At

initialization all slots are exported from the RiverWare model, which the custom engine reads

and stores. The method to run the RiverWare model on a time-step basis, reads the slots

that are required for the next time-step, which are stored in the custom engine. It then

imports these values into the RiverWare model, runs the model and then exports the slots to

files, which the custom engine reads and stores the slots with a date-time stamp flag. For

each time-step the slot values imported into the RiverWare model are the previous time-step

values, and in the case of the first time-step the “Initial” values. This allows the custom

engine to maintain the state of slots and the model to step through its entire simulation

period. The solution implemented succeeded in running the model in a stepwise fashion,

satisfying Criteria 4. In addition, the maintenance of the state of slots within the model

engine, specifically slots representing boundary conditions, provides the ability to change or

set the boundary conditions during the computation phase, thus satisfying the second part of

Criteria 1.

The results of the daily stepwise simulation of the RiverWare model needed to be verified

against results from a simulation run for a year of the same RiverWare model. A comparison

was carried out on a single result slot in the model for the two types of simulation. It was

found that there was a difference between the values calculated for the stepwise simulation

and the simulation run for a year. According to Neumann (2011a) the reason that the results

could be different is there could be slots that are not being maintained, and also the model

143

could behave differently for a standard simulation and the stepwise simulation. Further

investigation and code implementation would be needed to ensure the that daily stepwise

simulation of the RiverWare model calculated the correct values, but was beyond the scope

of this technical evaluation due to its complexity and expert knowledge that is required. It is

rather left for the full implementation of the custom RiverWare solution if the model is chosen

for use in this project.

The custom RiverWare solution for this evaluation could not meet all the criteria required for

OpenMI compliance. An alternative solution to create a non-OpenMI link between RiverWare

and an OpenMI compliant model was also explored conceptually, which required a

RiverWare model to only import output data from an OpenMI compliant model into an input

slot. A RiverWare model could import data from an OpenMI compliant model on a time-step

basis using an import DMI using rules. The import DMI would interact with an executable

that triggers an OpenMI compliant model to run for the requested time-step. Once the

OpenMI compliant model had run for the time-step, the executable would read the returned

data and convert it into the format required for the import DMI. The import DMI would then

import the data into the RiverWare model. The RiverWare model would continue its

execution and interact in future time steps with the OpenMI compliant model to retrieve input

data. A problem is foreseen with this solution which is, for each time-step the executable is

called by the import DMI, the OpenMI compliant model and any other OpenMI compliant

model linked to it needs to be loaded into memory for every time-step. This solution would

then also require some means of maintaining the state of values used within RiverWare.

In summary, RiverWare’s DMI and batch mode capability do not fully satisfy Criteria 1-4. A

proposed custom RiverWare solution involving the DMI and batch mode capability was

described and an attempt at a prototype version of the solution was carried out. The

prototype custom solution was also not able to meet all the criteria. The main problem

encountered was the use of the RiverWare executable using RCL commands. It was

designed to execute batch tasks and not to maintain the state of slots. A solution to maintain

the state of slots to enable the model to run in a step wise fashion was proposed by

Neumann (2011b). A prototype implementation of the solution that maintains the state of

slots was implemented and the RiverWare model was able to run in a daily stepwise

simulation. It was found that the results of the daily stepwise simulation were incorrect.

Further investigation and code implementation to get the correct result is beyond the scope

of this technical evaluation. It is also important to note that the approach taken is not efficient

as the RiverWare model had to be loaded into memory for any interaction between it and the

custom engine, and then released from memory, making the custom RiverWare solution

144

simulation slow. A more efficient solution was discussed using just an import DMI to link to

an OpenMI compliant model and it was foreseen the OpenMI compliant model would suffer

the same pitfalls as the batch mode of RiverWare. The support provided for RiverWare was

impressive, with a short response time of one day and valuable feedback was provided by

the developers.

3.2.5 Results and recommendation

None of the three river network models (MIKE BASIN, MODSIM and RiverWare) evaluated

is OpenMI compliant. MIKE BASIN and MODSIM do not support an alternative linking

mechanism, but do provide access to their model engines, satisfying Requirement 3 as

shown in Table 3.6. RiverWare provides an alternative linking mechanism through its DMI

and batch mode capabilities, satisfying Requirement 4 as shown in Table 3.6.

Table 3.6 Comparison of river network models based on requirements

Requirements MIKE BASIN MODSIM RiverWare

Requirement 1
OpenMI compliant.
Requirement 2
Non-OpenMI compliant, access to source code.
Requirement 3
Non-OpenMI compliant, access to model engine.
Requirement 4
Non-OpenMI compliant link.

MIKE BASIN is the only model that satisfies Criteria 1-4 necessary for the creation of

OpenMI compliant wrappers, as shown in Table 3.7. MODSIM satisfied Criteria 1-3 but not

Criteria 4. In the review of RiverWare, it was found that it did not satisfy Criteria 1-4.

Through the implementation of the custom RiverWare solution it was demonstrated that

Criteria 1-3 could be satisfied, but not Criteria 4. None of the models evaluated meet the

Conditions 1-3, therefore additional code would be required when developing the wrappers

in order to meet these conditions.

MIKE BASIN is the only model that satisfied OpenMI Criteria 1-4 and did not require

customization. The support offered by DHI for this evaluation was good, with an average

response time of one week. The technical evaluation of MIKE BASIN was the least complex

and time consuming.

145

Table 3.7 Comparison of river network models based on OpenMI criteria

 MIKE BASIN MODSIM RiverWare
Custom
RiverWare
Solution

Criteria 1
Criteria 2
Criteria 3
Criteria 4

MODSIM could not fully satisfy Criteria 4. It is possible that the approach used to get a

MODSIM model to run on a time-step basis was incorrect. Attempts have been made to

contact the developers of the MODSIM model to determine if it is possible to run the model

on a time-step basis, using the classes provided by MODSIM, but there has been no

response to date of writing of this document.

In the case of RiverWare a possible solution was the use of its DMI and batch mode

capability and custom code in the form of a custom engine and an OpenMI compliant

wrapper to adapt RiverWare for linking to other OpenMI compliant models. A prototype

version of the solution proposed to make RiverWare meet the OpenMI criteria was

implemented, but did not result in the criteria for OpenMI being fully met. RiverWare was the

most complex and time consuming evaluation. The technical evaluation reached a point that,

if it were to continue further, it would go beyond the scope of a technical evaluation and

would rather be a full implementation of the solution. The custom RiverWare solution was

inefficient in terms of its use of memory resources. It would be possible to meet all the

criteria for OpenMI, using the DMI and batch mode capability, but it would probably be an

easier task to migrate RiverWare to OpenMI, though this would have to be done by the

developers of RiverWare. The support provided for RiverWare was excellent, with an

average response time of one day, which aided in the implementation of the prototype

solution.

The best model for use in this project would be the one that satisfies all the OpenMI criteria,

requires minimal or no customisation to satisfy these criteria and has a good support system

for the model. If all these requirements are satisfied, OpenMI compliant wrapper code can be

written around the model to support linking to OpenMI compliant models. Based on this

evaluation it can be concluded that RiverWare and MODSIM do not satisfy these

requirements but MIKE BASIN does, making MIKE BASIN the strongest of the three river

network models evaluated for this project.

146

4 ACRU MODEL DEVELOPMENT

DJ Clark

The requirement for integrated water resources management will require the integration of

models representing specific domains to provide a systems perspective for water

management decisions to support the implementation of the National Water Act. One of the

objectives of this project was to provide a daily time step hydrological model that is capable

of modelling the varying hydrological responses within the terrestrial hydrological system at

suitable spatial and temporal scales to represent real world complexity. The ACRU

hydrological model was proposed as a suitable model to represent land based hydrological

processes for the following reasons:

• It has been developed and applied extensively in South Africa and is on the South

African Department of Water Affairs (DWA) list of recommended models;

• The physical conceptual nature of the model makes it suitable for modelling a variety

of land use scenarios;

• The object oriented model structure and object oriented Extensible Markup Language

(XML) input file structure is capable of representing real world complexity;

• It operates at a daily time step, which makes it suitable for operational modelling;

• The object oriented model structure enables parallel processing which enables

feedbacks between catchments to be modelled;

• It includes water quality modules for sediment yield, salinity, and nitrogen and

phosphorus modelling;

• It can be easily adapted to provide additional functionality required for operations

modelling; and

• It includes the concept of water ownership which is necessary for water accounting.

A brief background to the ACRU model is given to provide the context for ACRU

development work within this project. Within this project it was necessary to make changes

to the ACRU model and the design of its associated model input files to ensure that the

ACRU model is suited for used in both water resources planning and operations modelling

and is capable of representing real world complexity. Several changes were made to the

ModelData and ModelConfiguration XML schemas used for ACRU model input to refine the

design and include new functionality such as scenario management, the storage of state

data required to hot-start the model, a means of storing dynamic data, use of forecast data

and improved linkages to external data files. These changes to the schemas required

147

corresponding changes to be made to the .Net and Java XmlModelFile libraries and the

ACRU model itself.

4.1 Background

The ACRU model is described in Schulze et al. (1995b) as a physical conceptual

agrohydrological model operating at a daily time step. The ACRU model is a further

described in Schulze et al. (1995b) as a versatile total evaporation model that is sensitive to

climate, land cover/use and land management practices. These characteristics have

resulted in ACRU being used for a variety of purposes including: climate change

assessments, land use studies, crop yield modelling, water resource availability studies,

reservoir yield analysis, crop water requirements and design hydrology (Schulze et al.,

1995b). The purpose of this section is to provide some background to the history of the

development of ACRU model so that the context of the work included in this project is clearly

understood.

4.1.1 The ACRU 3.00 version

The ACRU model was originally developed as part of a distributed catchment

evapotranspiration study conducted in the early 1970’s in the Natal Drakensberg region of

South Africa (Schulze, 1975). The early development and use of the ACRU model are

further described in Schulze et al. (1995b). Though the ACRU model has been developed,

tested and applied in South Africa it has also been tested and applied internationally. Since

its inception the ACRU model has been under continual development and refinement by staff

and post graduate students in what was the School of Bioresources Engineering and

Environmental Hydrology (BEEH) at the University of KwaZulu-Natal. The Centre for Water

Resources Research (CWRR) at the University of KwaZulu-Natal is now the custodian of the

ACRU model. This development and refinement has taken place as part of numerous

hydrological studies, many of which were funded by the South African Water Research

Commission. The ACRU model was developed in the FORTRAN programming language.

This FORTRAN version of the ACRU model as described in Schulze et al. (1995b) will be

referred to in this document as the ACRU 3.00 version of the model. The ACRU 3.00

version of the model used text files for model input, consisting of the main model input file (or

“menu” file) and Single, Composite and CompositeY2K format time series input files.

148

The ACRU 3.00 version is a stable computationally efficient version of the model but had

some limitations which prompted its restructuring into an object oriented model structure in

the Java programming language. Some of these limitations included:

• the need for a more modular model structure that enabled easier model development,

• the need to keep up with changes in computer programming technology,

• the need to be able to model more complex hydrological system configurations, and

• the need for different components of the hydrological system can be run in parallel

(parallel processing), enabling the transfer of water between components of the

hydrological system to be effected at each modelling time step.

4.1.2 The ACRU2000 version

The restructuring of the ACRU model described in Kiker (2001) and Kiker et al. (2006) took

place between January 1999 and March 2002 as part of the WRC Project 636. The

restructuring resulted in the ACRU2000 version of the model. The model structure was

changed but the same hydrological process algorithms were used as in the ACRU 3.00

version of the model. The restructured ACRU model offers several advantages:

• the object oriented structure enables easier model development,

• the object oriented structure enables more complex hydrological system configurations

to be modelled, and

• different components of the hydrological system can be run in parallel, though there

are performance trade-offs for parallel processing due to the quantity of information

loaded into memory at one time.

The object oriented structure of the model includes three main types of objects: Component

objects which represent the physical components of the hydrological system being modelled

(e.g. subcatchments, rivers, dams, vegetation, soil), Process objects which represent the

hydrological processes through one or more algorithms (e.g. evapotranspiration, runoff,

infiltration) and Data objects which contain the parameter or variable data values that

describe the Component objects. Additional object types include Model which serves as the

main object container for a model run and various model input, output and configuration

objects.

The restructured ACRU model enabled several new modelling modules to be developed,

including: ACRUSalinity for salinity modelling, ACRU_NP for nitrogen and phosphorus

modelling, ACRU_Cane for modelling sugarcane yield under irrigation, and a module for

149

modelling dam and river operating rules. The development of these new modules

demonstrated the robustness of the new object oriented structure, and also highlighted some

areas for improvement.

The ACRU2000 version of the model also used text files for model input, where the “menu”

file was divided into a single “control menu” file and a set of separate “land segment menu”

files, one for each subcatchment, together with the Single, Composite, CompositeY2K

format time series input files and a new ACRU-CSV time series input file format. However,

the restructured ACRU model could not be used to its full potential due to the non-object

oriented nature of these model input files used to store the model input data and information.

4.1.3 The ACRUXml version

Between August 2004 and June 2008 the SPATSIM hydrological modelling framework was

restructured and extended as part of WRC Project K5/1490 to produce the SPATSIM-HDSF

hydrological modelling framework. The SPATSIM-HDSF framework includes a generic

extensible database structure, tools to view, edit and analyse this data, an ArcGIS extension

and several hydrological modelling tools and utilities. The ACRU model was modified to run

from within the SPATSIM-HDSF framework and to be able to read from and write to

SPATSIM-HDSF databases. The further development of the SPATSIM-HDSF framework

and modifications to the ACRU model are described in Clark et al. (2009). This version of

the ACRU model will be referred to as ACRUXml in this document.

The SPATSIM-HDSF framework includes a simple Graphical User Interface (GUI) tool that

enables a user running a selected model within the framework to link a model input

parameter or variable to the location of the relevant data value within a SPATSIM-HDSF

database. These parameter/variable and data source links are stored internally within a

SPATSIM-HDSF database. However, for a complex model such as ACRU which includes a

large number of possible parameters and variables this means of linking model parameters

and variables to a data source would not be suitable. Therefore, for ACRU a model specific

GUI application is required to configure and edit model input data and data links used by the

model. For this purpose the ConfigurationEditor application was developed. In addition

some form of model input file was required for the ACRU model to store model configuration

information and to enable the links between model variables and the location of the relevant

data value within a SPATSIM-HDSF database to be recorded. For this purpose a prototype

XML based model input file structure was developed. The XML based model input file

structure sought to address four main requirements:

150

• Provide an object oriented input file structure to complement the object oriented

structure of the ACRU model thereby enabling the restructured model to be used to its

full potential;

• Provide a data model that is extensible such that new model parameters or variables

can be accommodated without changes to the data model or to the software utilities

that read from or write to the data model;

• Provide a structure for storing actual data values or references to where data values

are stored, such as in a SPATSIM-HDSF database; and

• Provide a structure for storing additional information that describes the model

parameters or variables for use in the ConfigurationEditor application.

These requirements were met with the design of two XML file schemas, the ModelData

schema and the ModelConfiguration schema. The ModelData schema provides a data

model for storing model input data in an object oriented structure suited to the ACRU model

including Component elements and Data elements. A different implementation of the

ModelData schema would be used for each configuration of the ACRU model. The

ModelConfiguration schema provides a data model for storing information about model

parameters and variables for use in ACRU and associated software utilities such as the

ConfigurationEditor. A single implementation of the ModelConfiguration schema would be

used for all configurations of the ACRU model. A different implementation of the

ModelConfiguration schema would only be required if changes were made to the ACRU

model. The details of the initial design of the ModelData and ModelConfiguration schemas

can be found in (Clark et al., 2009). Although the ModelData schema, ModelConfiguration

schema and ConfigurationEditor were designed and developed primarily for the ACRU

model, they were designed in such a way that they could easily be applied to other

hydrological models. An advantage of using XML files is that they are programming

language and platform independent. To facilitate the reading writing and editing of

ModelData and ModelConfiguration XML files the XMLModelFiles software library was

created in both the C-Sharp (C#) and Java programming languages. The main components

and data flows for the ACRUXml model and the SPATSIM_HDSF modelling framework are

shown in Figure 4.1.

Following the completion of WRC Project K5/1490 a follow-on project WRC Project K5/1870

was initiated by the DWA to enable further development of the SPATSIM-HDSF modelling

framework and the ACRU model and to provide user support. Software development work in

WRC Project K5/1870 focused on debugging and further development of tools within the

SPATS

develop

Figure 4

4.2 D

The des

as part

from th

requirem

with A

function

models

These

XmlMod

was tha

variable

and the

the term

IM-HDSF f

pment of the

4.1 Mai

Developmen

sign of both

of this proj

his point.

ments and

CRUXML,

nality such

 such as A

changes to

delFiles libr

at they sho

e to a mode

e ModelCon

m “software

framework

e Configura

n compone

nt of XML I

h the Mode

ect and the

Some of

problems e

and other

as scenari

ACRU, use

o the schem

raries. A k

ould be des

el, then this

nfiguration s

e utilities”

especially

ationEditor.

ents and dat

nput Files

lData and t

e design of

the desig

encountere

r refinemen

o managem

of forecast

mas have r

key requirem

signed in s

s could be d

schemas or

will be use

151

time serie

ta flows for

the ModelC

these files

n refineme

ed in the im

nts have b

ment, the s

t data and

required co

ment for th

such a way

done withou

r the softwa

ed to refer

es analysis

ACRUXml

Configuration

are not exp

ents have

mplementati

been made

storage of s

improved li

rresponding

e design of

y that if it w

ut changing

are utilities t

r genericall

 tools and

and SPATS

n schemas

pected to ch

been mad

on of these

e to includ

state data r

inkages to

g changes

f these mo

was necess

g the design

that use the

ly to any s

d extensive

SIM_HDSF

have been

hange subs

de in respo

e schemas

de propose

required to

external da

to be mad

odel input d

sary to add

n of the Mo

em. In this

software ut

e further

 revised

stantially

onse to

for use

ed new

hotstart

ata files.

e to the

ata files

d a new

odelData

s section

tility, for

152

example the ConfigurationEditor software, which may be developed to enable model users

to interact with model input data stored in the XML based model input files described in this

section.

4.2.1 ModelData schema

Schema diagrams of the main elements of the initial and revised versions of the ModelData

schema are shown in Figure 4.2 and Figure 4.3 respectively to help illustrate the design

changes that have been made to this schema. An implementation of the ModelData schema

will be referred to as a “ModelData file”, therefore a ModelData file is a populated XML file

that obeys the ModelData schema. Each of the main schema elements will be briefly

described to explain its purpose and important changes to the schema will be described in

more detail.

The ModelVersion element will be used to store the version number of the ACRU model for

which a ModelData file was created as a means of version control. Each ModelData file will

need to keep a record of the ModelConfiguration file to be associated with it; this is another

aspect of version control to ensure that the model version, ModelData file and

ModelConfiguration file are all compatible. The ModelConfigurationID element in the initial

schema has been renamed to ModelConfigurationFile. The new ModelValidation element in

the revised schema will be used to hold information about whether the data in the ModelData

file has been checked to be valid and when this was last checked. The purpose of the new

DefaultDataStore element is to enable a default data store, for example a SPATSIM-HDSF

database, to be specified.

A useful new element in the schema is the ModelRuns element which contains a list of zero

or more ModelRun elements. A ModelRun element is used to store information about a

particular model run so that it can be easily run again or so that a list of model runs can be

configured and used in batch executions of the model. A ModelRun element stores an ID

and description for the model run, the ordered scenario set to be used, the start and end

dates of the simulation and optional start and end dates for the time series datasets to be

used if different from the simulation start and end dates. Specifying the time series data

start and end dates enables time series data preceding the simulation start date to be read

into memory in situations where processes are influenced by model variable data values

preceding the current simulation date.

153

Figure 4.2 The initial design of the ModelData schema

Figure 4.3 The revised version of the ModelData schema

In water resource planning it is often useful to be able to model two or more different

scenarios. In the past this would have been done for the ACRU model in one of two ways,

either changing the relevant data values in the model input file before running the model

using the edited file, or copying the whole model input file and changing the relevant data

values in the copy of the file. A drawback of the first method it that it can be difficult to keep

154

track of which data values were changed for which scenario and the second method results

in duplication of data when only one or a few small changes are required for the scenario.

Therefore a mechanism for setting up scenarios has been included in the data model and

while this has added some complexity to the data model it is expected to be a useful feature.

Each Model element will contain a Scenarios element which contains a list of one or more

Scenario elements. A Scenario element is used to store information about a particular

scenario it stores an ID and description for the scenario and an optional base scenario ID

identifying the base scenario with which this scenario should be used. These Scenario

elements are referenced by Data, Component and Relationship elements. The way in which

scenarios have been designed to work is that typically a base scenario containing a full set

of data would be configured by the user. The user would then configure additional scenarios

which only contain the data values that change and these data values would override the

data values in the base scenario. A scenario is only a base scenario if it does not itself have

a base scenario. Scenarios which are not base scenarios can be superimposed over each

other in the order specified in the scenario set specified in a ModelRun element, with the

condition that they all have the same base scenario. Superimposed scenarios should

typically not have overlapping parameter or variable values.

A model configuration may have parameters required to control model configuration and

execution, these parameters are configured as a list of Data elements within the ModelData

element. In the revised schema this ModelData element is contained within a new ModelInfo

element, as shown in Figure 4.4, to be consistent with the Component element.

Figure 4.4 The new ModelInfo element containing a list of Data elements

The Components element contains a list of Component elements. The Component

elements represent the physical components of the hydrological system being modelled (e.g.

subcatchments, rivers, dams, vegetation, soil). Each Component element stores a unique

ID for the component represented, a name for the component, the type of component being

represented and a configuration component ID. The component type is a reference to a

ComponentType element in the ModelConfiguration schema. The configuration component

ID is a reference to a configuration Component element within the ComponentConfiguration

element in the ModelConfiguration schema. A few changes have been made to the

Components element as shown in Figure 4.5 and Figure 4.6 for the initial and revised

155

ModelData schemas respectively. The ConfigurationInfo element shown in Figure 4.5 has

been removed as the ModelConfiguration schema has been changed to contain only one

component configuration.

Figure 4.5 The Components element in the initial ModelData schema

In the revised ModelData schema shown in Figure 4.6 zero or more component Scenario

elements may be included in a Component element. These component Scenario elements

each contain two items of information, the first item is a scenario ID which is a reference to

one of the model Scenario elements, and the second item specifies whether the Component

element is active or inactive for the scenario. By default a Component element will be active

unless it has a Scenario element that specifies that it is inactive for the specified scenario.

Component scenarios enable certain components to be excluded from a simulation, for

example when running simulations to determine the effect of a new dam in a subcatchment.

Component scenarios should be used with caution and would typically be an option available

to advanced users only. Setting Component element scenarios would require corresponding

Relationship element scenarios to be set.

A new SpatialRef element has been added to the Component element to enable a spatial

reference to be stored for a Component element, where this spatial reference may refer to a

feature in an ESRI shapefile or geodatabase for example. These component SpatialRef

elements each contain two items of information, the first item is a data reference ID which is

a reference to one of the model DataRef elements which for example may store information

for an ESRI shapefile, and the second item stores an ID that will be used to identify a

particular spatial entity within the data reference, for example a particular feature in an ESRI

shapefile.

156

The SubComponents element within a Component element contains a list of Component

elements which are subcomponents of the parent Component element, for example a dam

within a subcatchment. This structure allows for a nested hierarchy of parent and child

Component elements.

The ComponentProcesses element within a Component element contains a list of Process

elements belonging to the parent Component element. It is intended that a Process element

will contain information about an algorithm for a hydrological process to be run for the parent

Component element.

Figure 4.6 The Components element in the revised ModelData schema

The physical components making up a hydrological system to be modelled, for example

hydrological response units (HRUs), dams and subcatchments, do not exist in isolation, they

are related to each other in a one or more ways. For example an HRU may be related to a

dam in that it is upstream of the dam. The ComponentRelationshipTypes element has been

moved to the ModelConfiguration schema. Each Model element will contain a

ComponentRelationships element which contains a list of zero or more Relationship

elements. A Relationship element is used to store information about a relationship between

two Component elements; it stores the relationship type, for example streamflow, and the

IDs of the two Component elements which are the subjects of the relationship being stored.

In the revised ModelData schema shown in Figure 4.7 zero or more relationship Scenario

elements may be included in a Relationship element. These relationship Scenario elements

each contain two items of information, the first item is a scenario ID which is a reference to

one of the model Scenario elements, and the second item specifies whether the Relationship

element is active or inactive for the scenario. By default a Relationship element will be

active u

scenari

simulat

set and

Figure 4

A comm

data is

data fo

incorrec

in an in

water r

second

as in a

data be

referenc

elemen

DataRe

ID for

referenc

elemen

a param

"C:\Myf

elemen

and op

elemen

Figure 4

unless it ha

o. Relatio

ion. Relati

 should be

4.7 The

mon proble

in the spec

rmat is time

ct inputs to

ntegrated w

esource sy

 model. In

ModelData

e saved to

ces in the

t which con

ef element i

the data re

ced data s

t may also

meter name

folder\MyFil

ts would be

pen it for re

ts and Spa

4.8 The

as a Scena

onship sce

onship sce

used with c

e Relationsh

m when se

cific data fo

e consumin

a model. T

water resour

ystem as of

addition it

file. It woul

o a specific

ModelData

ntains a list

s used to s

eference a

store, for ex

contain zer

e and value

e.txt" as th

e used by t

eading and

tialRef elem

e DataRef e

ario elemen

narios ena

narios wou

caution.

hips elemen

etting up a h

ormat requir

ng and can

This problem

rce assessm

ften output

is not efficie

ld also be a

c format. T

schema. E

of zero or

store inform

nd a data

xample AC

ro or more P

e pair, for e

he parame

third party s

 writing.

ments belon

lement in th

157

nt that spec

able certain

ld only be

nt in the rev

hydrologica

red by the

 lead to er

m is further

ment conte

from one m

ent to store

advantageo

These cons

Each Mode

more Data

mation abou

reference

CRU_Single

Param elem

example "F

eter value.

software ut

These Da

nging to Com

he revised M

cifies that i

n relationsh

required wh

ised Model

al model is

model. Tra

rors in the

r evident wh

ext to mode

model need

e large time

us to be ab

siderations

el element w

Ref elemen

t a particula

type which

eFormat or

ments, wher

FILENAME"

 The infor

ilities to loc

taRef elem

mponent ele

ModelData

it is inactiv

hips to be

hen compo

Data schem

ensuring th

anslation of

translated

hen using tw

l two separ

ds to be us

series data

le to specify

lead to the

will contain

nts as show

ar data refe

h identifies

SPATSIM-

re each Par

 as the pa

rmation sto

cate the refe

ments are re

ements.

schema

ve for the s

 excluded

onent scena

ma

hat the mod

f data to a

data and th

wo different

rate aspect

sed as inpu

a sets in XM

fy that mode

e concept

a DataRef

wn in Figure

erence; it st

the forma

-HDSF. A

ram elemen

rameter na

ored in the

ferenced da

eferenced

specified

from a

arios are

del input

different

herefore

t models

ts of the

ut to the

ML such

el output

of data

ferences

e 4.8. A

tores an

t of the

DataRef

nt stores

ame and

e Param

ata store

by Data

158

The design of the Data element has undergone substantial changes in conjunction with

changes to the design of the DataDef element in the ModelConfiguration schema. The Data

elements used in the ModelInfo and Component elements are identical. Schema diagrams

of the initial and revised versions of the Data element are shown in Figure 4.9 and Figure

4.10 respectively. The combined design of the Data and DataDef elements has attempted to

provide enough flexibility so that a particular model parameter may have a constant value or

a value that changes dynamically during the simulation and to be able to store state data so

that a model can be hotstarted.

Figure 4.9 The initial design of the Data element

In the revised ModelData schema shown in Figure 4.10 each Data element will contain one

or more Scenario elements. These data Scenario elements store a scenario ID which is a

reference to one of the model Scenario elements. Each data Scenario element will contain a

Val, Rec or TimeSeries element in which the data values for the scenario are stored. A Val

element stores one data value or a reference to one data value. A Rec element stores a

table of data values or a reference to a table of data values. A Rec element may contain a

table (record) of data values in the form of either a 1-D array of values, a 2-D array of values

or a dictionary of key-value pairs. A TimeSeries element stores a time series of Val or Rec

elements or a reference to a time series. A TimeSeries element also contains two attributes,

one stating the type of time series, such as daily, monthly or breakpoint, and the other

stating the format of the timestamp used for the time series data/time values, for example

“yyyy/MM/dd”.

159

In the initial design of the Data element if the data element stored a reference to an external

data source then the information about the data reference was stored in the Ref element.

This data reference information is now stored in the Val, Rec and TimeSeries elements so

that when reading from the external data source it is known whether one data value, a table

of data values or a time series is expected. The Val, Rec and TimeSeries elements may

store either actual data values or a reference to data values stored externally but not both.

References to data values stored externally require two items of information to be stored, the

first item is the ID of the DataRef element that stores information about the data store itself,

and the second item is an ID that identifies the location of the data value or values within the

data store.

A Scenario-Val element stores only a data value. The Rec-Val and the TimeSeries-Val

elements store a data value and also a key used to identify the data value within the set. A

TimeSeries-Val element stores a data value, a time stamp and an optional data quality flag.

A TimeSeries-Rec element is similar to a Scenario-Rec element but in addition stores a time

stamp and an optional data quality flag.

Each data Scenario element may also contain zero or more OutRef elements. The purpose

of OutRef elements is to store information about where model output for the scenario is to be

stored. This information includes the ID of the DataRef element that stores information

about the data store itself, and the location of where the data value is to be stored within the

data store. The OutRef element also stores information regarding whether model output

should replace or be appended to existing data values in the data store.

Figure 4.10 The revised version of the Data element.

160

The design of the ModelData schema has been revised to the point where it is expected to

be stable and no substantial changes to the design are expected. The ModelData schema

must be used in conjunction with the ModelConfiguration schema

4.2.2 ModelConfiguration schema

Schema diagrams of the main elements of the initial and revised versions of the

ModelConfiguration schema are shown in Figure 4.11and Figure 4.12 respectively to help

illustrate the design changes that have been made to this schema. Implementations of the

ModelConfiguration schema will be referred to as a “ModelConfiguration file”, therefore a

ModelConfiguration file is a populated XML file that obeys the ModelConfiguration schema.

Each of the main schema elements will be briefly described to explain its purpose and

important changes to the schema will be described in more detail. The primary purpose of a

ModelData file is to store model input data values and model settings. The primary purpose

of a ModelConfiguration file is to store information describing permitted component

configurations and relationships and to store metadata about model parameters and

variables. A large proportion of the information stored in a ModelConfiguration file is not

required by the model but is required by software utilities used to display, edit and analyse

data values stored in a ModelData file.

Figure 4.11 The initial design of the ModelConfiguration schema

Figure 4

The Mo

model

version

means

The Mo

elemen

created

4.13. T

each D

The Da

elemen

display

Figure 4

4.12 The

odelConfigu

configuratio

 number of

of version c

odelInfo el

t in the M

d in the revis

The DataDe

DataDef ele

ataGroups

t. Data gr

purposes in

4.13 The

e revised ve

uration elem

on it repres

f the ACRU

control.

ement in t

ModelData s

sed schema

efinitions ele

ment conta

element h

roups prov

n software u

e new Mode

ersion of the

ment has be

sents. The

U model for

the ModelC

schema an

a as a conta

ement cont

ains metada

as been a

ide a mean

utilities.

elInfo eleme

161

e ModelCon

en extende

e ModelVer

r which a M

Configuratio

d for simil

ainer for the

tains a list o

ata informa

added to b

ns of grou

ent in the M

nfiguration s

ed to store a

rsion eleme

ModelConfig

on schema

ar reasons

e ModelDat

of zero or m

ation about

be consiste

ping mode

odelConfigu

schema

a name and

ent will be

guration file

is related

 the Mode

ta element

more DataD

a general

ent with the

l paramete

uration sche

d description

used to s

e was creat

d to the M

elInfo eleme

as shown i

Def element

model par

e Compon

ers or varia

ema

n for the

tore the

ted as a

ModelInfo

ent was

n Figure

ts where

rameter.

entType

ables for

162

The ComponentTypes element contains a list of ComponentType elements. The

ComponentType elements represent the different types of physical components making up

the hydrological system being modelled (e.g. subcatchments, rivers, dams, vegetation or soil

horizons). Each ComponentType element stores a unique ID for the component type

represented, a name for the component type, the name of the model software class that is to

be associated with the component type, and help text and description information for the

component type. A few changes have been made to the ComponentType element as shown

in Figure 4.14 and Figure 4.15 for the initial and revised ModelConfiguration schemas

respectively. The Identifiers, ComponentProcesses and SubComponentTypes elements

shown in Figure 4.14 have been removed as these are no longer required. The

ComponentType element literally defines a type of component by means of the parameters

and variables describing its characteristics. Component configuration is dealt with in the

ComponentConfiguration element. For example, an in-channel dam and an off-channel dam

may both be represented by the same “dam” component type but they will be configured

differently in terms of streamflows.

Figure 4.14 The ComponentTypes element in the initial ModelConfiguration schema

Figure 4.15 The ComponentTypes element in the revised ModelConfiguration schema

163

As explained in Section 4.2.1 the ComponentRelationshipTypes element shown in Figure

4.2 for the initial ModelData schema has been moved to the ModelConfiguration schema as

shown in Figure 4.12 and has been renamed to RelationshipTypes. The RelationshipTypes

element has been moved to the ModelConfiguration schema to prevent duplication between

ModelData files but also to standardise the relationship types so that ModelData files do not

each specify different relationship types that may not be recognised by the model. A

RelationshipType element stores a unique ID for the relationship type, and a context and an

inverse context for the relationship type. For example, a relationship type with the ID of

“Streamflow” would have a context of “Upstream” and an inverse context of “Downstream”,

thus if river reach RiverA flows into river reach RiverB, then if RiverA was the subject then

RiverB would be related to it in a downstream context.

The Units element has been simplified in the revised ModelConfiguration schema. The Units

element consists of a list zero or more Unit elements each representing a unit of measure for

example cubic metres. The Unit element stores a unique ID for the unit of measure and a

name and description for the unit. Each unit of measure is assigned to a category, for

example, cubic metres may be assigned to a “Volume” category. Further information related

to the dimensions for the unit and conversion to SI units is also included.

The Lookups element is unchanged. The Lookups element contains a list of zero or more

Lookup elements and is used to store lookup lists for parameters that have a finite number of

permissible data values. Each Lookup element contains a list of LookupItem elements each

of which of which contains ID, name and description information about an individual lookup

item.

Figure 4.16 The Lookups element

The RuleSourceFile and RuleReferences elements are also unchanged. The

RuleSourceFile element stores the name of the software class file containing the code for

the data and display rules that are called for each model parameter and variable to

determine whether the data values are valid and whether they should be displayed. The

RuleReferences element stores references to software classes that are required by the file

specified in the RuleSourceFile element to enable this file to be compiled on the fly.

164

The DataRules and DisplayRules elements shown in Figure 4.11 have been removed as

data and display rules are now specified using elements within a DataDef element as in

most cases the rules are specific to a particular data definition and by placing them in the

data definition it removes the need to search for the relevant rule for a particular data

definition. The ComponentProcesses element shown in Figure 4.11 has been removed as it

is no longer required.

The ComponentType element shown in Figure 4.15 contains data definitions that describe

the characteristics of the component type. Each ComponentType element represents a

particular component type in isolation of all other component types even the subcomponents

of the component type. Some means was required to enable the configuration of these

isolated component types to be described to represent the hydrological system being

modelled. This configuration needed to include not only parent-child component

containment relationships but also other relationships between components. The

ComponentConfiguration element shown in Figure 4.17 and Figure 4.18 for the initial and

revised ModelConfiguration schemas respectively performs this purpose. The initial

ModelConfiguration schema allowed for more than one component configuration to be

specified, but this has been discontinued in the revised ModelConfiguration schema as it

was decided that it would be better to create a new ModelConfiguration file to specify a

different component configuration. The ComponentConfiguration element contains three

sub-elements Components, PermissibleRelationships and AutomaticRelationships.

The Components element contains information describing the parent-child component

containment relationships. As may be expected it has a similar structure of Component and

SubComponents elements as for the ModelData schema as shown in Figure 4.6. Each

configuration Component element stores a unique ID for the configuration component, a

name for the configuration component, the component type ID, the minimum and maximum

permitted occurrences of the configuration component within its parent configuration

component, and whether the configuration component is permitted to recur within itself.

It was recognised that some means was required to be able to specify what types of

relationships could be specified between two configuration components. The

PermissibleRelationships element contains a list of permissible Relationship elements each

containing information describing a relationship that is permitted between two configuration

components. For example, and in-channel dam may be permitted to have a streamflow

relationship with an upstream river reach, but an off-channel dam would not be permitted to

have such a relationship. A permissible Relationship element stores the relationship type,

165

for example streamflow, and the configuration Component element IDs of the two

configuration Component elements which are the subjects of the relationship.

It was further recognised that in addition to specifying permissible relationships some means

was required to be able to specify what relationships must exist for a particular configuration

component to enable software utilities to automatically configure some of the relationships in

a ModelData file thereby helping to reduce model configuration time. The

AutomaticRelationships element contains a list of automatic Relationship elements each

containing information describing the target configuration component, the relationship type

and context, and the related configuration component.

Figure 4.17 The ComponentConfiguration element in the initial ModelConfiguration

schema.

Figure 4.18 The ComponentConfiguration element in the revised ModelConfiguration

schema.

The design of the DataDef element has undergone substantial changes in conjunction with

changes to the design of the Data element in the ModelData schema. The DataDef

elements used in the ModelInfo and ComponentType elements are identical. A schema

diagram of the revised version of the DataDef element is shown in Figure 4.19. In the initial

design the DataDef element did not contain any sub-elements. The DataDef element

includes a long list of attribute information which is shown and described in

Table 4.1. The ID attribute of a DataDef element must contain an ID that is unique within the

parent configuration ModelInfo or ComponentType element but need not be unique within

166

the ModelConfiguration file. The ID of a Data element in a ModelData file is identical to the

ID of the corresponding DataDef element in the associated ModelConfiguration file to make

the link between Data element and corresponding DataDef element. The PType attribute

states whether the DataDef element represents input, output or state data, where state data

can be regarded as both input and output data. The PType, VType, SType and TType

attributes have been added to the DataDef element to describe the data values stored in a

Data element as clearly as possible to make provision for all anticipated data structures that

may need to be represented in the ACRU model and other similar models. The VType

attribute stores the value type of the data values stored. The SType attribute stores the

structure type of the data, an individual data value or a table of data values, where a

constant would be one individual data value or one data table as opposed to and a time

series of individual data values or a time series of data tables. The TType attributes states

whether the data is always a constant, or always a time series, or whether the data may be

dynamic. The TType attribute would be set to Dynamic if the data to be stored is in some

instances modelled as a constant but in advanced modelling exercises the data may vary

with time and a time series will be entered.

As stated previously the DataRule and DisplayRule elements are now situated within the

DataDef element. A DataDef element may have more than one DataRule and DisplayRule

element. A data rule is used to determine whether a model parameter or variable data value

is valid or not. A DataRule element contains information about which software method in the

rule source file is to be run and which other model parameters or variables may be required

in determining the validity of the target parameter or variable. The display rules would be

used by software utilities to determine whether a model parameter or variable should be

displayed depending on user selected values for other model parameters or variables. A

DisplayRule element contains information about which software method in the rule source

file is to be run and which other model parameters or variables may be required in

determining whether to display the target parameter or variable.

Figure 4

Table 4

Attribu

ID

Name

Alias

PType

VType

SType

TType

AType

IType

TSType

RType

RForm

UnitID

DataCl

Decima

Lookup

ReadO

Descrip

HelpTe

MaxVa

MinVal

Default

ApplyD

Data g

purpose

from th

parent d

4.19 The

4.1 Attr

ute

es

at

ass

als

pID

Only

ption

ext

alue

ue

tValue

Default

roups prov

es in softwa

e initial des

data group

e DataDef e

ributes of th

Us

req

req

req

req

req

req

req

opt

opt

opt

opt

opt

req

req

opt

opt

opt

req

req

opt

opt

opt

req

vide a mea

are utilities.

sign, it cont

if applicable

lement in th

e DataDef e

se De

quired A u

quired A n

quired An

quired Pa

quired Va

quired Str

quired Tim

tional Ag
Su

tional Inte
(Iso

tional Se
Ho

tional Re
(Ar

tional Re
RT

quired Th

quired Th

tional De

tional Th

tional Sp

quired Bri

quired He

tional Th

tional Th

tional Th

quired Op

ans of gro

 The Data

tains a uniq

e and a list

167

he revised M

element

escription

unique ID for

name for the

n alternative n

arameter type

alue type (Str

ructure type

me type (Con

ggregation ty
um, Max, Min

erpolation ty
olated, Step

et of permitte
ourly, Minute

ecord type –
rray1D, Array

ecord forma
Type="Array1

e ID of the u

e associated

efault numbe

e ID of the lo

pecifies if the

ief descriptio

elp text for th

e maximum

e maximum

e default val

ption to autom

ouping mod

aGroup elem

que ID for t

of DataDef

ModelConfig

r the data de

e data definiti

name for the

e (Input, Out

ring, Int16, In

(Val, Rec)

nstant, TimeS

pe – only ap
n, Mean)

ype – only
, StraightLine

ed time series
, Second, Br

– only appli
y2D, Dictiona

at – only a
1D" or RType

unit of measu

d software cla

r of decimal

ookup list to

data should

on of the data

e data param

value for nu

value for nu

ue to be use

matically set

del parame

ment shown

the data gr

f element ID

guration sch

finition

on

e data definiti

put, State)

nt32, Float, D

Series, Dyna

pplies to time

applies to
e, Fourier, C

s types (Ann
reakpoint)

ies to data
ary)

applies to
e="Array2D"

ure

ass

places for nu

be used

 be read-onl

a parameter

meter or varia

meric data

meric data

ed

the default v

ters or va

n in Figure

oup, a nam

Ds which be

hema.

ion

Double, Date

amic)

e series data

o time serie
CublicSpline)

nual, Monthly

with SType

SType="Re

umeric data

y

or variable

able

value

ariables for

4.20 is unc

me, a descr

elong to the

eTime)

(None,

es data

y, Daily,

e="Rec"

c" and

display

changed

ription, a

group.

Figure 4

The de

expecte

XmlMod

ModelD

4.2.3

The pu

editing

library w

change

• C

• C

M

• C

C

• C

an

th

• C

• N

ac

pr

• N

ve

M

The X

XmlMod

XML fi

informa

4.20 The

esign of the

ed to be s

delFiles sof

Data and Mo

XmlModelF

rpose of th

of ModelD

was created

es have bee

Consolidatio

Changes and

ModelConfig

Creation of t

Component e

Creation of t

nd Compon

he same wa

Creation of n

ew code b

ccumulated

rovided reg

ew code to

ersion of th

ModelData fi

XMLModelFi

delFiles.Mo

le are ofte

ation within

e DataGroup

e ModelCon

stable and

ftware librar

odelConfigu

Files librar

he XMLMod

Data and M

d in both the

en made to t

n and organ

d additions

guration sch

the IDataCo

elements in

he IDataDe

nentType el

ay;

new DataRu

being written

d up the da

arding miss

o implemen

he library s

ile.

iles library

odelConfigu

en represe

a code ob

p element in

nfiguration

no substa

ry has been

uration sche

ries

delFiles soft

ModelConfig

e C-Sharp (

the library in

nisation of c

to the code

hemas;

ontainer int

n the ModelD

efContainer

ements in t

ule and Disp

n to enable

ata group a

sing or inva

nt a new m

o that the A

y consists

ration and X

nted by m

bject to XM

168

n the revise

schema ha

antial chang

n revised to

emas.

tware librar

guration XM

(C#) and Ja

ncluding:

code within

e to implem

terface so t

Data schem

interface so

the ModelC

playRule cla

e data and

and compo

lid model pa

ethod of re

ACRU mod

of three

XmlModelF

matching co

ML is refer

ed ModelCo

as been rev

ges to the

implement

ry is to faci

ML files. T

ava program

one softwa

ent change

that Data e

ma can be d

o that Data

Configuratio

asses;

display rul

onent hiera

arameters o

eading and

del is able

packages

iles.ModelR

ode object,

rred to as

onfiguration

vised to the

design ar

the change

litate the re

The XMLM

mming langu

are library;

es made to t

lements in

dealt with in

Def elemen

n schema c

les to be c

rchy and f

or variables

writing XM

to write sta

s: XmlMod

Rules. The

 the proce

serialisation

schema

e point wh

re expected

es made to

eading, writ

ModelFiles s

uages. Sub

the ModelD

the ModelI

 the same w

nts in the M

can be deal

configured,

for feedbac

s; and

ML files in t

ate data ba

delFiles.Mod

elements w

ess of sav

n and the

ere it is

d. The

both the

ting and

software

bstantial

Data and

Info and

way;

ModelInfo

lt with in

run and

ck to be

he Java

ack to a

delData,

within an

ving the

reverse

operatio

diagram

4.21. T

serialize

ModelE

Compo

corresp

created

a gene

Display

display

ModelC

Figure 4

A simp

XmlMod

ModelC

to seria

The Mo

DataDe

Permiss

on is referre

m of the ma

The Model

e and des

Element,

nentElemen

ponding elem

d so that the

eric manne

yRule class

rules ba

Configuratio

4.21 Sim

plified Unive

delFiles.Mo

Configuratio

alize and d

odelConfigu

efElement,

sibleRelatio

ed to as des

ain classes

lDataDocum

serialize be

ModelR

nt, Relatio

ments in th

e ModelInfo

er when w

es were cr

ased on t

n file.

mplified UML

ersal Mode

odelConfigu

nDocumen

eserialize b

urationElem

Compon

onshipsElem

serialization

in the Xml

ment class

etween Mo

RunElement

nshipEleme

e ModelDa

oElement an

working wit

reated to c

the inform

L diagram o

elling Lang

ration pa

t class repr

between Mo

ent, Config

entConfigu

ment and Au

169

n. A simplif

lModelFiles

represents

odelData fil

t, Sc

ent and D

ata schema.

nd Compon

th the Da

contain code

mation stor

of the XmlM

uage (UML

ackage is

resents a M

odelConfigu

gurationMod

rationEleme

utomaticRe

fied Univers

s.ModelData

a ModelD

les and th

enarioElem

DataRefElem

. The IData

nentElemen

taElement

e used to

red in the

odelFiles.M

L) diagram

shown

ModelConfig

uration files

delInfoElem

ent, Con

elationshipsE

sal Modellin

a package

ata file and

heir matchi

ment,

ment class

aContainer

t classes ca

class. T

configured

e DataDef

ModelData p

of the ma

in Figur

guration file

s and their

ent, Compo

nfigurationC

Element cla

ng Languag

is shown in

d contains

ng classes

ModelInfoE

ses repres

interface h

an be referr

The DataRu

and run d

f elements

package

ain classes

re 4.22.

and contai

matching

onentTypeE

ComponentE

asses repre

e (UML)

n Figure

code to

s. The

Element,

ent the

as been

red to in

ule and

ata and

s of a

s in the

 The

ns code

classes.

Element,

Element,

sent the

corresp

interfac

Compo

the Dat

Figure 4

The Xm

and run

be doc

previou

It shou

softwar

ModelC

within w

An imp

set of

reposito

data re

Microso

format.

stored

operatio

ponding ele

ce has b

nentTypeEl

taDefEleme

4.22 Sim

mlModelFile

n the softwa

cumented h

sly formed

ld be note

re utility w

Configuratio

which the c

ortant aspe

forms and

ories to be

epositories

oft Access,

 These im

in external

onal modell

ements in

been crea

lement clas

ent class.

mplified UML

s.ModelRul

are class file

here. The

part of the

ed that cha

were requir

n schemas

oding of th

ect of the w

d code clas

configured

currently

ACRU Sing

mproved an

data files

ing and for

the Mode

ated so

sses can be

L diagram o

les package

e containing

se classes

Configuratio

anges and

red to imp

s, however,

e main func

work comple

sses to en

and read d

included a

gle format, A

d more flex

are expect

the integra

170

elConfigurat

that the

e referred to

of the XmlM

e contains s

g the code f

s were con

onEditor co

additions t

plement ch

 this work

ctionality of

eted in WR

nable refer

data from a

are: SPAT

ACRU Com

xible linkag

ted to be in

ted modelli

tion schem

 Configur

o in a gene

odelFiles.M

several low

for the data

nsolidated i

ode set.

to the cod

hanges ma

was done

f the Config

C Project K

ences to d

and write da

TSIM-HDSF

mposite form

ges to data

nvaluable f

ng.

ma. The

rationModel

ric manner

ModelConfig

level class

a and displa

into this lib

e for the C

ade to the

within WR

gurationEdit

K5/1870 wa

data stored

ata to these

databases

mat and AC

, especially

for including

IDataDefC

lInfoElemen

when work

guration pac

ses used to

ay rules and

brary as th

Configuratio

e ModelDa

RC Project K

tor was com

as the creat

d in extern

e repositorie

s impleme

CRU Compo

y time serie

g forecast

ontainer

nt and

king with

ckage

compile

d will not

hey had

onEditor

ata and

K5/1870

mpleted.

tion of a

nal data

es. The

ented in

ositeY2K

es data,

data for

171

The design changes to the ModelData and ModelConfiguration schemas and corresponding

changes to the XmlModelFiles library formed the first component of this further development

the second component involved the implementation of these new features into the ACRU

model.

4.3 Model Development

As stated in the introduction to Chapter 4 the aim was to make necessary changes to the

ACRU model and the design of its associated model input files to ensure that the ACRU

model is suited for use in both water resources planning and operations modelling and is

capable of representing real world complexity. The changes to the design of the model input

files described in Section 4.2 of this document laid the necessary foundation for important

new functionality to be added to the ACRU model. However, the changes to the code of the

ACRU model are more difficult to document than the design of the model input files so this

section will only contain brief descriptions of the changes made to the model.

Before the further development of the ACRU model completed in this project can be

described it is necessary to explain a few ACRU related terms. The object oriented structure

of the model includes three main types of objects: Component objects which represent the

physical components of the hydrological system being modelled (e.g. subcatchments, rivers,

dams, vegetation, soil), Process objects which represent the hydrological processes through

one or more algorithms (e.g. evapotranspiration, runoff, infiltration) and Data objects which

contain the parameter or variable data values that describe the Component objects.

Additional object types include Model which serves as the main object container for a model

run and various model input, output and configuration objects.

The changes to the design of the model input files reported in Section 4.2 laid the necessary

foundation for important new functionality to be added to the ACRU model. The main

classes of the ACRUXml version of the ACRU model are shown in Figure 4.23. A MModel

object contains one or more primary CComponent objects which may in turn be composed of

one or more CComponent objects, where CComponent objects represent the physical

entities of the hydrological system being modelled. Each MModel class is associated with

an AModelInput class, an AModelCreator class and an AModelOutput class to enable model

input to be read, model configuration to be performed and model output to be written out.

The MModel and the CComponent class both implement the IDataOwner interface which

means that MModel and the CComponent objects may contain a list of parameters and

variables represented by DData objects and which describe the attributes of the MModel and

172

CComponent objects. A CComponent object may also contain one or RResource objects,

each representing a resource or matter such as water, Nitrogen or Phosphorous contained

within or owned by the CComponent object. A PProcess object may be associated with one

or more CComponent objects on which it acts and is owned by one CComponent object from

which its place in the order of Process calculations is determined. The further development

of the ACRU model completed in this project included restructuring of the internal data

structures of the ACRU model to enable handling of state and dynamic type data, some

changes to the Component structure, the introduction of the RResource class to represent

modelled resources, and creation of data reader/writer classes to access external data

repositories referenced by the model input files.

Figure 4.23 The main classes of the ACRU model

Once an ACRU ModelData file has been populated with configuration information and data

for a particular hydrological study area the ACRU model may be run. For the model to run a

few key pieces of information are required, these are the name and location of the

ModelData file, the scenario or ordered scenario set to be used for the run and finally the

start and end dates of the simulation. The concept of ModelRun elements in the ModelData

file was explained in Section 4.2.1. The ACRU model has been modified so that a model run

may be initiated by specifying either the ID of a ModelRun element in the command line or

specifying the scenario ID (or an ordered list of scenarios making up a scenario set), the

173

simulation start date, the simulation end date and if necessary the data start and end date. It

is expected that the concept of model runs together with the concept of scenarios will enable

a range of scenarios to be run using batch executions of the model.

4.3.1 Component types and component configurations

The hydrological systems that models such as ACRU are created to represent can be

viewed as being composed of a collection of distinct components such as: HRUs, dams,

river reaches, vegetation and soil horizons. The ACRU 3.00 version of the model used a

simple, and in most cases adequate, view of the components making up the hydrological

system being modelled. The main spatial building blocks were subcatchments. Each

subcatchment consisted of a land area plus an optional dam, an optional irrigated area, an

optional adjunct impervious area and an optional disjunct impervious area. Subcatchments

were selected such that the land area represented a region on which the climate, soil and

land use of the land area were assumed to be homogeneous. In an effort to represent the

real world in which climate, soils and land use can vary within a particular hydrological

catchment, subcatchments were frequently used to represent HRUs rather than regions

defined by a watershed. This component configuration structure was to a large degree hard

coded into the model and its model input files.

The development of the object oriented ACRU2000 version of the model was an important

step towards enabling more flexibility in setting up the configuration of the spatial

components representing the hydrological system. It is important to note that there is a

distinction between providing more flexibility in the configuration of spatial components and

providing complete flexibility for a user to in effect build their own model using components

and processes as building blocks. Complete flexibility is difficult to achieve due to the

complexity of the process algorithms and the fact that many of the process algorithms were

developed based on certain assumptions, for example in the ACRU model the soil water

process algorithms are based on concept of the soil being comprised of an A-horizon and a

B-horizon. Complete flexibility would not only be difficult to achieve but also dangerous as

the majority of model user’s would not be likely to have a complete understanding of all the

process algorithms and the feedbacks that may occur.

The design of the ModelData and ModelConfiguration schemas based on object orient

concepts was a second important step towards more flexible configuration of spatial

components in the ACRU model and therefore better representation of real world complexity.

In addition the SpatialRef element added to the Data element in the ModelData schema will

174

enable spatial components to be given a spatial reference which will facilitate the

development of GIS tools for setting up component configurations. For the ACRUXml

version of the ACRU model a ModelConfiguration file has been created to include a

component configuration that will enable more flexible configuration of spatial components

without compromising the well-established process algorithms developed and tested for the

model over many years. The new data structure including components and relationships

has also enabled easier and more flexible configuration of flow networks within the model.

The ACRU ModelConfiguration file is named “AcruConfiguration.xml”. In the ACRUXml

version there are four main aspects of the component configuration that need to be

mentioned:

• As in previous versions of the model subcatchments are the main building blocks of

the system being modelled, though a return has been made to the concept that each

subcatchment should have a watershed as its’ boundary;

• The concept of HRUs has been introduced where each subcatchment may contain

one or more HRUs representing the homogeneous land areas within it;

• The concept of catchments has been introduced to enable subcatchments to be

grouped together within catchments; and

• The concept of nodes has been introduced to aid in flow routing.

In ACRUXML there are three main types of objects that are referred to: Component, Data

and Process, where:

• Component objects represent are the real world physical entities (e.g. catchment, dam,

irrigated area, soil, vegetation) that make up the hydrological system being modelled.

• Data objects represent the attributes of each Component object (e.g. catchment area,

dam volume).

• Process objects represent the real world hydrological processes that act on the real

world physical entities represented by Component objects (e.g. evaporation, runoff,

infiltration).

The spatial Component object types represented in ACRUXml are briefly described below to

explain how ACRU visualises the real world hydrological system:

• A Catchment is a spatial container for other Catchments and Subcatchments.

• A Subcatchment is a spatial container for other spatial entities including: HRU,

IrrigatedArea, AdjunctImperviousArea, DisjunctImperviousArea, Vlei, RiparianZone,

River, RiverInflowNode, Dam, DamInflowNode and SubcatchmentNode. A

Subcatchment may not contain other Subcatchments, it is the smallest spatial

175

container representing a surface flow watershed. It is a container for entities

representing segments of land and the flow network.

• A HRU (hydrological response unit) is a spatial segment of land for which the soil and

land cover are assumed to be homogeneous. A HRU is used to represent a spatial

segment of land that does not require specialised processes as is the case for

IrrigatedArea, AdjunctImperviousArea, DisjunctImperviousArea, Vlei and

RiparianZone.

• An IrrigatedArea is a spatial segment of land on which irrigation may be applied

(currently an IrrigatedArea is a subcomponent of a HRUs because the area of the

IrrigatedArea can vary monthly and the ACRU model needs to adjust the net area of

the HRU accordingly).

• An AdjunctImperviousArea is a spatial segment of land that has an impervious land

cover and is adjacent to and flows directly into the flow network.

• A DisjunctImperviousArea is a spatial segment of land that has an impervious land

cover and is adjacent to a HRU, Vlei or RiparianZone and flows directly onto this HRU,

Vlei or RiparianZone.

• A Vlei is a spatial segment of land adjacent to part of the flow network, it receives

excess flow from the flow network and may be modelled together with a dam.

• A RiparianZone is a spatial segment of land adjacent to part of the flow network, it

receives baseflow from upslope HRUs and also excess flow from the flow network.

• A River is a spatial river reach and forms part of the flow network.

• A RiverInflowNode is a spatial node that flows into a River, a RiverInflowNode must

exist for each River.

• A Dam is a spatial dam reach and forms part of the flow network.

• A DamInflowNode is a spatial node that flows into a Dam, a DamInflowNode must

exist for each Dam.

The ACRU ModelConfiguration file has been populated with the necessary information for all

main features of the ACRU model. Sample ModelData files have been created for ACRU

and the ACRU model has been successfully run using these files.

4.3.2 Components

In parallel with changes to the Component structure used in the ACRUXml version of the

ModelConfiguration file several changes were made to the Component classes in the ACRU

176

model. The main spatial Component classes are shown in Figure 4.24 and the main spatial

subcomponents of these Components are shown in Figure 4.25.

17
7

F
ig

ur
e

4.
24

A

 U
M

L
C

la
ss

 D
ia

gr
am

 s
ho

w
in

g
th

e
ne

w
 m

ai
n

C
om

po
ne

nt
 c

la
ss

es
 in

 th
e

A
C

R
U

X
m

l v
er

si
on

 o
f t

he
 m

od
el

17
8

F
ig

ur
e

4.
25

A

 U
M

L
 C

la
ss

 D
ia

gr
am

 s
ho

w
in

g
th

e
m

ai
n

su
bc

om
po

ne
nt

s
of

 t
he

 m
ai

n
sp

at
ia

l C
om

po
ne

nt
 c

la
ss

es
 in

 t
he

 A
C

R
U

X
m

l v
er

si
on

 o
f

th
e

m
od

el

179

In the ACRU2000 version of the model the CLandSegment class was used to represent the

ACRU 3.00 version view of a subcatchment. The CLandSegment class acted both as a

container for other optional spatial Components such as a river, a dam, an irrigated area and

impervious areas, and at the same time also represented the remaining land portion of the

subcatchment. This led to many complications and one of the goals in the ACRUXml

version of the model was to change the way in which the spatial components of the

hydrological system were represented and in particular to remove cases where one instance

of CLandSegment was contained within another. It should be noted that changes to the

Component structure would only result in minor coding changes to the Process classes and

no change to the simulation results. With this goal in mind the following changes were made

to the way in which the spatial Components were structured:

• The CLandSegment class was made abstract and now generically represents a

portion of land which may be subclassed to represent specialised land units.

• The new CHRU class was introduced as a subclass of CLandSegment to represent a

portion of land termed as a “hydrological response unit” (HRU), where a HRU is

understood to be any non-specialised portion of land where, for modelling purposes,

the soil and land cover are assumed to be homogeneous.

• The CIrrigatedArea class was modified so that it is no longer a subcomponent of

CLandSegment, but rather a subcomponent of CSubCatchment as is the case for all

other subclasses of CLandSegment which is now abstract. This required that the area

of an irrigated area be constant for the duration of a simulation. The concept of the

area of irrigation varying from month to month was a previous feature in ACRU that

was seldom if ever used and can now be modelled by placing more than one irrigated

area within a subcatchment.

• The CIrrigationSystem class was changed to extend the CWaterTransfer class so that

the irrigation water supply path does not need to contain a CWaterTransfer class to

simplify setting up water sources for irrigated areas.

• The new CSubCatchment class was introduced as a spatial container for other spatial

entities including the flow network and portions of land such as HRU, irrigated areas

and impervious areas. An instance of the CSubCatchment class should not contain

other instances of the CSubCatchment class as it is intended to be the smallest spatial

container representing a surface flow watershed. An instance of CSubCatchment can

now contain more than one instance of each type of spatial unit.

• The new CSubCatchmentNode class was introduced to represent a node in the flow

network at which flows out of a subcatchment can be evaluated.

180

• The CCatchment class was changed to extend CSpatialUnit instead of CComponent

as this makes sense even though it is currently just serves as a container with no

processes. The CCatchment class was modified so that an instance of CCatchment

acts as a spatial container for instances of CSubCatchment and other instances of

CCatchment forming sub-areas within the catchment represented. The main role of

the CCatchment class is to act as a container enabling instances of the

CSubCatchment to be grouped in a hierarchical manner. The code used to calculate

the catchment area has been removed as this is now a model input and is used as a

check on the total area of the spatial subcomponents within the catchment.

• The new CCatchmentNode class was introduced to represent a node in the flow

network at which flows out of a catchment can be evaluated.

• In CSpatialUnit removed the catchment instance variable and associated methods as

this is now included as part of the component-subcomponent hierarchy

• In CSpatialUnit removed the code that calculated the net area of the Component as

with the new CCatchment, CSubCatchment and CLandSegment structure this

complication has been removed.

• In CReach added new methods getUpstreamSubCatchments and

getUpstreamSpatialUnitsInSameSubCatchment and getTotalUpstreamArea.

• The CGully and CStream classes were removed from the model as they were not

being used.

• Removed the CObservedFlowInput and CSimulatedFlowRemoved classes as they

were no longer required and removed all related code from the CObsSimFlowNode

class.

• The CSourceSinkNode was added to the model to represent sources and sinks of

water which do not form part of the flow network of a subcatchment, they are used to

add water to and remove water from the hydrological system being modelled.

• The CSpatialUnit class and all its subclasses were moved from the

ACRU.Components package to a new sub-package named

ACRU.Components.SpatialUnits.

One of the Component related issues that the ACRUXml version of the ModelConfiguration

file addressed was how to minimise the repetition of climate data stored through the

introduction of the concept of reference climates and monitoring points. The context of the

problem is that each spatial Component has its own set of climate related parameters and

variables, but observed data may only be available at widespread monitoring points and

would potentially be used by several spatial Components, but it would be wasteful to store

181

the same data values for each individual climate Component. This problem was partially

addressed in the ACRU2000 version of the model through the CClimateStation class, but a

better solution was required and this has been achieved through the new ReferenceClimate

and MonitoringPoint Component types in the ACRUXml version of the ModelConfiguration

file and the new CReferenceClimate and CMonitoringPoint classes. The concept of a

reference climate Component is that two or more spatial Components may refer to the same

set of climate variables, for example the HRUs within a single subcatchment. The concept

of a monitoring point Component is that the data for a single climate variable could be stored

once and accessed by one or more reference climate Components. The CClimateStation

class has been removed from the model. The CClimateRelatedComponent was also

removed from the model as it complicated the Component inheritance structure and was not

really necessary anymore. As part of the water tracking functionality within ACRU the

CClimate class previously contained two subclasses CRainfallStore and CEvaporationStore.

Although the CRainfallStore and CEvaporationStore classes made good sense from a strict

coding conceptual point of view, they created additional complexity for model users so these

classes were removed from the model and the code in the relevant Process classes was

modified where necessary.

In the ACRU2000 version of the model the CVegetation class was designed to have several

subcomponent classes, namely CLeafCanopy, CSeeds, CStems and CRoots representing

various components of the vegetation. While these subcomponents would make perfect

sense for a detailed plant physiology model they served no real purpose in ACRU and the

only one being used was the CLeafCanopy class. For the purpose of simplifying the model

the CLeafCanopy, CSeeds, CStems and CRoots classes were removed from the model and

the necessary changes were made to the model to move the parameters and variables

associated with the CLeafCanopy class to the CVegetation class. The CVegetation class

had also been subclassed to represent a large selection of vegetation types. These

subclasses of the CVegetation class contained no specialised code and served no real

purpose except to identify the vegetation type being modelled and prevent, for example, a

maize yield model being run for a vegetation type that was not maize. All the subclasses of

the CVegetation class have been removed from the model and if necessary the vegetation

type can be specified using a parameter stored in a DData object.

In the ACRU2000 version of the model the CComponent class and the DData class

contained static variables called COMPONENT_REFERENCE and DATA_REFERENCE

respectively. These static variables stored references of all the instances of CComponent

and DData in a configuration of the ACRU to enable individual Component objects to be

182

accessed easily and to enable sets of similar Data objects to be queried and returned. In

retrospect using static variables to do this was not the best solution from a computer

programming point of view. The COMPONENT_REFERENCE and DATA_REFERENCE

variables have both been removed from their respective classes. A Component reference

and associated methods to query it has been implemented in a different manner as an

instance variable in the MModel class. Recent code changes have removed the need for a

Data reference. Minor changes were also made to the CNode class in which the two

getTypeOfNexts methods were removed and replaced them with similar methods named

getNextsOfClass and getNextsOfSpecificClass.

4.3.3 Internal data structure

It is typical when doing water resources planning that simulations will be run for long time

periods so that sufficient data points are available for statistical analysis or to determine the

long term influence of decisions made. A long simulation period may also be required to

ensure that there is a suitable warm up period for the model so that state variables have time

to stabilise. However, operation modelling requires short simulation periods to assist water

managers in making short term decisions. Currently the ACRU model requires a suitable

warm up period at the start of the time period being simulated so that certain state variables

have time to stabilise. It would be an advantage if these state variables could be initialised

with appropriate values at the start of the simulation to remove this need for a warm up

period. In addition operational modelling requires that the ACRU model needs to be able to

start from a known state, this is termed “hot-starting”. The ability to hotstart is a feature that

needed to be added to the ACRU model to enable it to be used for water resources

operations modelling. The ability to hotstart ACRU is has been recognised as a critical

feature for several years, not only by the developers of ACRU but also by specialist

hydrological consultants. The use of forecast data, such as short term rainfall forecasts, is

an important part of operational modelling and when used in this mode a model needs to be

able to run simulations using forecast data and then roll back to observed or previously

simulated states as updated forecasts come available. The reasons previously preventing

hot-starting being implemented in ACRU were the lack of a suitable model input data

structure for the storage of state variables, the internal data structure not meeting all the

requirements for the storage and handling of state data, and that that the model included

several internal state variables that could not be initialised from the model input files and

were always set to zero at the start of each simulation.

183

Hydrological models such as ACRU, by means of parameters, variables and process

algorithms, attempt to represent real hydrological systems which by nature are often

complex. Not only are the process algorithms simple models of reality, but the model input

parameters and variables are often also simplified. In many cases model input variables are

provided as constant values, for example land use variables. In some cases providing land

use variables as constants is reasonable, while in other cases especially for simulations over

a long time period, it may be necessary to vary the values of the land use variables over time

to reflect real land use changes. The ACRU 3.00 version of the ACRU model made

provision for modelling certain model variables dynamically through the use of a dynamic

input file. This feature was absent in the ACRU2000 version of the model. One

disadvantage of the dynamic input files in the ACRU 3.00 version was that working with

these files was perceived by users to be difficult as these files were structured differently to

the main model input files and data had to be entered into these files manually. The new

model input data structures provided in the ModelData and ModelConfiguration schemas

enable model parameters and variables in which data values can be entered as constant

values or as time series of values. An advantage of the new model input data structure is

that dynamic variables use the same data structure and model input file as other variables

and corresponding changes need to be made to the model’s internal data structure.

A UML Class Diagram showing the main Data classes used in the ACRU2000 version of the

model is shown in Figure 4.26. This data structure was strongly influenced by the main data

types used in the ACRU 3.00 version of the model. Data classes, as opposed to simpler data

types, were used to represent the model parameter and variables as they could do so much

more than simply store data but also enable range checking, metadata storage and other

functions. The main Data class was the abstract DData class which was extended by several

abstract subclasses representing the various data types and structures required by the

ACRU model. Only two main types of time related Data class were used, “daily” to represent

time series of fixed interval daily data values and “monthly” to represent sets of 12 month-of-

year data values which were generally disaggregated to create sets of day-of-year data

values. The DHydrographData class was introduced to handle the sub-daily time series

used when doing flow routing. The DFluxRecord class and it subclasses were created to

meet the more complex data requirements of keeping track of the storage, fluxes, ownership

and source or destination of matter or resources such as water, nitrogen or phosphorous

within and between Components. The DFluxRecord class and it subclasses were in effect

used to store the state of the different types of resources within a Component. The main

classes shown in Figure 4.26 were in turn subclassed to create a data class for each input,

output and state parameter or variable in the ACRU model. This was necessary as the class

184

names were used to identify the Data objects representing parameters and variables as at

the time there was no other means to identify model parameters and variables, but this

resulted in a large number of Data classes being created which in most cases did not include

any additional functionality to that of their respective subclasses.

Figure 4.26 A UML Class Diagram showing the main Data classes used in the ACRU2000

version of the model

For the reasons discussed above it was necessary to completely restructure the internal

data structure used by ACRU. The objectives of this restructuring were to (i) implement a

better means of representing time series data to facilitate storage of state data required for

hot-starting and enabling dynamic changes to certain model variables during a simulation,

and (ii) remove the need for a class to be created for each parameter and variable in the

model as Data objects can now be identified using the ID, Name and Alias attributes which

are part of the DataDef element defined in the ModelConfiguration schema.

185

The UML Class Diagram in Figure 4.27 shows the structure of the restructured Data

package within the ACRU model. The design of the new data structure is closely linked to

the Data element in the ModelData schema and the associated DataDef element defined in

the ModelConfiguration schema.

Figure 4.27 A UML Class Diagram showing the new main Data classes created for the

ACRUXml version of the model

The DData class is still at the top of the Data hierarchy, but it has been completed recoded.

The instance variables within the new DData class are shown and described in Table 4.2.

The id, name and alias instance variables are identical to those in the DataDef element

associated with the Data element used to create the instance of DData. The

parameterType, valueType, aggregationType and interpolationType instance variables help

describe the data values and how they should be processed. The saveOption instance

variable indicates whether values in the instance of DData will be output or not as specified

by the user. The DData class has been parameterised with a base data type represented by

the generic declaration “B” and data value type represented by the generic declaration “V” to

minimise code repetition in subclasses and ensure type safety at compile time. The purpose

of the baseType instance variable is to store the Class of the base data type to assist in

186

casting values to the correct data type as the Java programming language does not provide

a means to query the type of a generic parameter. Two categories of base data type are

envisaged, “values” and “records”, where “values” are individual data values such as an

individual integer or floating point value, and “records” are collections of data values such as

an array of integer or floating point values. These “values” and “records” categories would

also apply to time series, for example daily rainfall could be stored as a time series of

floating point values, and a set of calibration constants that vary with time could be stored as

a time series of records. For “value” base data types the base data type and the data value

type would be the same.

One of the objectives in restructuring the DData class was to better represent variables that

vary with time, either continuously or at irregular intervals. Some ACRU variables are

termed “dynamic” in that they are usually considered as constant during a simulation, but

could be set to change at intervals during the simulation, for example to simulate a land use

change. This means that within the DData class it is necessary to make provision for a

variable to be represented by either a constant value or a time series of values, as each

variable can only be represented by one DData class. For constant parameters or variables

the data value or values are stored in the constantData instance variable. For time series

parameters or variables the data value or values are stored in an instance of the

DTimeSeries class which is in turn stored in the tsDatasets instance variable. The

tsDatasets instance variable is a Java Hashtable that can store a set of DTimeSeries

instances, one for each time series type. Typically the tsDatasets instance variable would

initially be populated with just one instance of DTimeSeries, and any aggregated or

interpolated variations of the original time series could also be stored to save having to

repeat the aggregation of interpolation process. It is envisaged that the main non-abstract

Data classes shown in Figure 4.27 would be sufficient to represent all the variables required

for the ACRU model, however, these classes could be subclassed if necessary to provide for

any variable with specific requirements.

In order to better represent temporal data in ACRU the DTimeSeries and DTSDataPoint

classes were created to provide a means of storing and transferring time series data in a

data structure that is independent of, but used by the DData class and its subclasses. The

DTimeSeries class is an abstract class that has been subclassed as shown in Figure 4.27 to

provide concrete subclasses that include additional methods specific to the type of time

series data stored. The DTimeSeries class contains an instance variable tsTypeID which

stores the time series type, which is one of the time series types listed in Table 4.3. Each

instance of the DTimeSeries class stores a chronologically ordered collection of data points

187

where each data point is represented by an instance of the DTSDataPoint class. Each

instance of the DTSDataPoint class stores three pieces of information, a date/time, a data

value or record and a data quality flag. The DTimeSeries and DTSDataPoint classes have

also been parameterised with a base data type “B” and a data value type “V” the same as

that described for the DData class.

Table 4.2 The instance variables belonging to the DData class and their descriptions

Variable Type Description
id String The ID of the instance of DData.
name String The name of the instance of DData.
alias String The alias of the instance of DData.

parameterType int

The parameter type specifies whether the instance of
DData represents a model input, output or state (input
and output) variable or parameter (1 = INPUT, 2 =
OUTPUT, 3 = STATE).

valueType int

The value type specifies the data type of the data
values stored in the instance of DData (1 = STRING, 2
= BOOLEAN, 3 = BYTE, 4 = SHORT, 5 = INT16, 6 =
INTEGER, 7 = INT32, 8 = LONG, 9 = INT64, 10 =
FLOAT, 11 = DOUBLE, 12 = DATETIME).

aggregationType int

The aggregation type specifies how time series of
values will be aggregated to a larger time step (0 =
NONE, 1 = SUM, 2 = MEAN, 3 = MAXIMUM, 4 =
MINIMUM).

interpolationType int

The interpolation type specifies how breakpoint time
series of values will be interpolated to estimate
intermediate data values (0 = NONE, 1 = ISOLATED, 2
= STEP, 3 = STRAIGHTLINE, 4 = CUBICSPLINE).

saveOption boolean
The save option indicates whether values in the
instance of DData will be output or not as specified by
the user.

baseType Class

The Class representing base type of the instance of
DData, for example the base type for a variable
represented by an individual double precision floating
point value would be Class<Double> or for an array of
String values would be Class<String[]>.

constantData B
The data value to be stored by this instance of DData if
it represents a constant parameter or variable.

tsDatasets
Hashtable<Integer,
DTimeSeries<B,V>>

A Hashtable that may contain one or more time series
of data values. More than one time series may be
stored so that aggregated or interpolated time series
may be stored to save them having to be recalculated.

timeSeriesConverter DTSConverter<B,V>
The instance of DTSConverter to be used by the
instance of DData to convert from one time series type
to another.

dataOwner IDDataOwner
The owner of this instance of DData, for example and
instance of MModel or CComponent which both
implement the IDataOwner interface.

188

Table 4.3 Time series types that apply to the DTimeSeries class and their descriptions

Time Series Type Description
ANNUAL Regular time series with data points at year intervals
MONTHLY Regular time series with data points at month intervals
DAILY Regular time series with data points at day intervals
HOURLY Regular time series with data points at hour intervals
MINUTE Regular time series with data points at minute intervals
SECOND Regular time series with data points at second intervals
MILLISECOND Regular time series with data points at millisecond intervals
BREAKPOINT_YEAR Variable interval time series with data points at intervals of one

or more whole years
BREAKPOINT_MONTH Variable interval time series with data points at intervals of one

or more whole months
BREAKPOINT_DAY Variable interval time series with data points at intervals of one

or more whole days
BREAKPOINT_HOUR Variable interval time series with data points at intervals of one

or more whole hours
BREAKPOINT_MINUTE Variable interval time series with data points at intervals of one

or more whole minutes
BREAKPOINT_SECOND Variable interval time series with data points at intervals of one

or more whole seconds
BREAKPOINT_MILLISECOND Variable interval time series with data points at intervals of one

or more whole milliseconds
MONTHOFYEAR Set of 12 aggregated values, one for each month of the year
DAYOFMONTH Set of 31 aggregated values, one for each day of the month
DAYOFYEAR Set of 366 aggregated values, one for each day of the year,

identified by day and month
DYNAMIC_MONTHOFYEAR Variable interval time series with sets of month-of-year values at

intervals of one or more whole years
DYNAMIC_DAYOFMONTH Variable interval time series with sets of day-of-month at

intervals of one or more whole months
DYNAMIC_DAYOFYEAR Variable interval time series with sets of day-of-year values at

intervals of one or more whole years

It is common when dealing with time series data to need to aggregate time series values to

obtain an aggregated value at a courser time step, for example from daily to monthly or

annual. It is also common when dealing with breakpoint time series to need to interpolate

between two data points to obtain an estimated data value at specified point in time. For this

purpose the DTSConverter class and its subclasses were developed to enable conversion,

that is aggregation or interpolation, between time series of different time series types. The

DTSConverter class contains one public method named convert and a set of protected

methods each handling to the conversion from one specific time series type to another

specific time series type, for example the method named convertDailyToMonthly to convert

from a fixed interval daily time series to a fixed interval monthly time series. The convert

method would be called from the code and, based on the input time series type and other

conversion parameters, would in turn call the relevant conversion method. The

189

DTSConverter class has also been parameterised with a base data type “B” and a data

value type “V” the same as that described for the DData class. In the ACRU model

individual Processes require input data at varying levels of detail, and part of the rationale of

the DTSConverter class is to take care of the conversion process internally to save the user

having to do this, especially when linking models which operate at different time scales. The

DDateTool class was created as a utility class to simplify use of the Java Date class by

providing methods to deal with formatting dates and times as strings and returning the next

or previous date or time relative to a specified data or time as the specified time step.

The ModelData and ModelConfiguration XML schemas used for ACRU model input allow

Data elements to be specified for the Model element and not just for Component elements,

so that general model parameters may be handled in a similar manner to the parameters

and variables used to describe the Components of the hydrological system being modelled.

This concept has been carried through to the ACRUXml version of the ACRU model. The

IDDataOwner interface shown in Figure 4.23 has been created and is implemented by both

the MModel and the CComponent class so that certain operations related to instances of the

DData class and their owner or container class can be standardised and thereby simplify

and reduce the code required for these shared operations.

As the DData objects belonging to a CComponent object are now identified by the ID

attribute instead of the class name it was necessary to make changes to the CComponent

class to put this into effect. Implementation of the new internal data structure of ACRU also

required that changes be made to the code for classes in ACRU that deal with model input,

model creation and model output.

4.3.4 Resources

In the ACRU model the physical entities making up the hydrological system being modelled

are represented using discrete Components though in reality catchment attributes such as

soil types and land cover are far from discrete. ACRU as a model is a simplification of reality

and a modeller setting up ACRU will need to decide on a suitable level at which to discretise

the system being modelled. The ACRU model is a hydrological model and thus its main

purpose is to model the water resource within a given hydrological system, but it also

includes modules to model other matter such as salinity, nitrogen and phosphorus which

could also be generically described as resources. These resources are also in a sense a

physical part of the system being modelled but are continuous within a hydrological system.

This leads to the question regarding how these resources should be represented in the

190

ACRU model. Should they be represented as Components or Data? In addition, it should

be considered that not only resource quantities need to be modelled but also ownership and

location of portions of the resource. Water and other resources were modelled in the

ACRU2000 version of the model using a special Data class DFluxRecord which was

subclassed for each type of resource being modelled, for example DWaterFluxRecord,

DNitrateFluxRecord and DLabilePFluxRecord, among many others. Each Component

contained an instance of DWaterFluxRecord representing the portion of the water resource

contained within the Component. These DFluxRecord classes worked well and enabled the

model to keep track of how much of each resource was contained within each Component,

whether the resource was unallocated or owned by one or more water owner Components

and from which Component and to which Component a quantity of the resource had been

received or lost.

This concept of resources has been taken a step further in this project by introducing the

RResource class. The RResource class contains an internal variable resourceTypeID which

enables the ID of the resource type being represented, for example “WATER”, to be stored.

As shown in Figure 4.23 each instance of CComponent may contain one or more instances

of RResource where each instance of RResource would have a different ID representing a

different resource type. The RResource class stores the quantity of water stored within the

parent Component and which Components if any own a portion of the stored resource. It

also stores a record of influxes and outfluxes of the resource, not only the quantities but also

the source and destination Components. It also stores a record of the quantities of the

resource owned by the parent Component but stored in other Components. The RResource

class has been subclassed as RResource_Double and RResource_Integer to represent

different data value types. The RResource class contains several methods enabling the

resource to be transferred between Components or transformed to a different form, for

example Nitrate to Ammonium, where Nitrate and Ammonium are modelled as different

resources. The RResource class offers the following advantages over the DFluxRecord

class: it better represents the concept of resources, it does not have to be subclassed for

each different resource type making the model more extensible, it enables resource

ownership information to be retained as state data for hotstarting and can be represented

more easily in the ModelConfiguration schema than a complex specialised DFluxRecord

Data class. The ModelConfiguration schema was extended to include the ResourceTypes

and ResourceType elements within the ModelConfiguration element and to include the

ResourceDefinitions and ResourceDef elements within the ComponentType element as

shown in Figure 4.28. The ResourceType element is used to define each resource type that

191

can modelled. The ResourceDef element specifies the resource types that can exist within

each ComponentType element.

Figure 4.28 A diagram of the extended ModelConfiguration schema showing the new

Resource related elements

4.3.5 Scenarios

The ability to be able to easily and efficiently configure and run a range of different scenarios

is especially useful when modelling for water resources planning. The manner in which data

for different modelled scenarios is handled within a ModelData file is explained in detail in

Section 4.2.1. The implementation of this functionality within the ACRU model itself was

relatively straight forward as only the AAcruXmlModelInput class within ACRU required a few

changes to ensure that only the data values for the relevant scenario are read into the

model. The AAcruXmlModelOutput class also required a few changes to ensure that when

state data is saved back to a ModelData file it is saved within the correct data Scenario

element. While the setting up of scenarios in a ModelData file may be complex, if they are

configured correctly the ACRU model itself “sees” only one set of data values at a time and

simulations will proceed as before.

4.3.6 State data and hotstarting

The necessity for ACRU to be able to store data and be hotstartable was discussed in the

introduction to Section 4.3.3. The new XML model input data structures and the new model

192

internal data structures have been designed and developed to facilitate the storage of state

data. The AAcruXmlModelInput and AAcruXmlModelOutput classes within ACRU have

been modified to read state data in, to initialise state variables at the beginning of a

simulation and to save state data back to these variables at user specified times during the

simulation. Additional model input variables were created for the main internal state

variables to enable initial states to be specified.

4.3.7 Dynamic data variables

As discussed in the introduction to Section 4.3.3, iIn some cases providing land use

variables as constants is reasonable, while in other cases especially for simulations over a

long time period, it may be necessary to vary the values of the land use variables over time

to reflect real land use changes. The new model input data structures provided in the

ModelData and ModelConfiguration schemas enable model variables in which data values

can be entered as constant values or time series of values as explained in Section 4.2.2. An

advantage of the new data structure is that dynamic variables use the same data structure

and model input file as other variables and can thus be configured and edited using the

same software utilities. This renewed and hopefully improved ability for ACRU to handle

dynamically changing variable values is important for modelling land use changes over time

and forms part of the model’s ability to model real world complexity.

4.3.8 Data readers and writers

As part of further development of the ACRU model completed in WRC project K5/1870 a

software library named ModelDataAccess was developed for the .Net platform. This

software library contains a set of classes to read and write data from and to several data

formats including SPATSIM-HDSF database, ACRU Single format, ACRU Composite format

and ACRU CompositeY2K format, where each of these reader/writer classes implements a

common interface named IDataReaderWriter. The ACRU model previously contained

several classes to read and in some cases write to these same data formats. As part of this

project a Java version of the ModelDataAccess library reader/writer classes has been

created, where the IDataReaderWriter interface and the DataReaderWriter_AcruSingle,

DataReaderWriter_AcruComposite and DataReaderWriter_AcruCompositeY2K class have

been duplicated and additional DataReaderWriter_AcruCSV and

DataReaderWriter_DBF_AcruOutput have been developed.

193

4.4 Summary and Conclusions

A considerable amount of work has been done in this project to revise the initial design of

the ModelData and ModelConfiguration schemas and this has resulted in a design that is not

only more robust but is expected to provide the ACRU model with model input functionality

necessary for both planning and operations modelling. The design of these schemas is

expected to be stable from this point on and no substantial changes to the design are

expected. Following from the revision of the design for the ModelData and

ModelConfiguration schemas various changes were made to the ACRU model itself to be

compatible with and make full use of model input and configuration files that uses these

schemas and to make the model more suitable for use for water operations modelling.

Restructuring the data structure used within the ACRU model was an bigger undertaking

than initially anticipated largely due to the complexity of dynamic type variables, however,

this restructuring was vital in enabling the ACRU model to handle time series better

especially with regard to state and dynamic type data variables. The Component structure

was also revised to simplify it and make it compatible with new concepts introduced to the

ACRU model configuration file such as HRUs. The introduction of the concept of resources

using the RResource class was also a step forward from a conceptual and model

extensibility point of view. Further development of the ACRU model has taken place to

implement new functionality such as scenarios, hotstarting and the storage of state data,

dynamic variables and flexible spatial component configurations. A Java version of the

ModelDataAccess was also created.

The Op

mechan

release

Develop

models

group r

certain

improve

recently

version

yet thou

OpenM

during

interfac

progres

OpenM

the sou

(OpenM

is show

Figure 5

5 IM

penMI interf

nism for us

ed the Open

pment Kit

 (Gijsbers

realized tha

aspects o

ements was

y released

. The Open

ugh the wor

I 1.4 is rest

the simulat

ce that can

ss in time (O

I 1.4 uses a

urce and tar

MI, 2012). A

wn in Figure

5.1 Illus

201

MPLEMEN

face specifi

e in the pro

nMI 1.4 vers

(SDK) in 2

et al., 201

t through th

of the sta

s OpenMI

to provide

nMI 2.0 ver

rking code h

tricted to on

tion. Open

be extende

OpenMI, 20

a link objec

rget models

An example

5.1.

stration dep

2)

NTATION O

DJ Clark a

ication stan

oject. The O

sion of the

2005. Ope

0). Gijsbers

heir own im

ndard that

2.0. The

e additiona

sion of the

has been m

nly one type

MI 2.0 intro

ed to suppo

12).

t to connec

, the output

showing th

picting a lin

194

OF OPENM

and A Lutc

ndard was a

OpenMI As

OpenMI Sta

enMI 1.4 wa

s et al. (20

mplementatio

t needed

OpenMI 2.

l user requ

SDK for Op

made availab

e of model,

oduces a b

ort different

ct two mode

t and the in

he link objec

nk between

MI FOR M

chminarain

accepted as

sociation s

andard and

as adopted

010) state t

on experien

to be imp

0 version o

uirements

penMI 2.0 h

ble.

which is a

base interfa

t types of m

els. This link

nput exchan

ct used to li

n compone

ODEL LIN

s the most

upports the

d associated

d and imple

the OpenM

nces and fe

proved. The

of the Ope

not met by

has not been

model that

ace, which

models, inc

k object con

ge items, a

nk compone

nts in Ope

NKING

appropriate

e standard a

d OpenMI S

emented in

MI Associati

eedback the

e result o

enMI Standa

y the Ope

n officially r

progresses

 is a very

cluding mod

ntains refere

and data op

ents in Ope

enMI 1.4 (O

e linking

and has

Software

n certain

ion core

ere were

of these

ard was

nMI 1.4

released

s in time

generic

dels that

ences to

erations

enMI 1.4

OpenMI,

Accordi

was no

efficient

consum

In the O

referenc

more in

exchan

adapted

the inp

output e

models

three in

betwee

improve

values

(2012).

Figure 5

Initially

the mo

accordi

should

ing to Gijsb

ot intuitive a

t solution,

mption would

OpenMI 2.0

ce between

ntuitive as

ge item, cl

d outputs, t

ut exchang

exchange i

 in OpenM

nput exchan

n input and

ements inc

and contro

5.2 An e

it was dec

ore advance

ng to OATC

be fairly s

bers et al.(2

as there wa

as it was

d become e

0 Standard

n input exch

there is a

early indica

o ensure th

ge item. On

tem and th

I 2.0 is sho

nge items, w

d output ex

lude increa

ol flow. Furt

example of

ided that th

ed version.

C (2012), w

stable to us

010) the IL

as no clear

memory int

excessive (G

the link ob

hange items

direct link

ating owner

he data from

ne or more

e input exc

own in Figu

with data a

xchange ite

ased flexibi

ther details

linking com

he OpenMI

 The work

working cod

se due to t

195

Link interfac

ownership

tensive, an

Gijsbers et

bject has b

s and outpu

between t

rship. The

m the outpu

adaptors c

change item

ure 5.2; a s

daptors ap

ems in Ope

ility of data

s on these

mponents in

2.0 version

king code o

de is not tes

testing carr

ce used for

between m

nd with larg

al., 2010).

been replac

t exchange

he output e

data opera

ut exchange

can be app

m (OpenMI,

single outp

plied to eac

enMI 2.0 co

a definitions

improveme

 OpenMI 2.

n should be

of the Ope

sted as exte

ried out du

linking mod

models. ILin

ger study a

ced and the

items. This

exchange i

ations have

e item is in t

plied to the

2012). An

ut exchang

ch link. The

onsumes le

s and impr

ents can be

0 (OpenMI,

e used in th

nMI 2.0 SD

ensively as

ring the de

dels in Ope

nk was also

areas, this

ere is now

s direct refe

item and th

 been repla

the correct

e data betw

example o

ge item is l

e direct rela

ess memory

roved requ

e found in

, 2012)

he project a

DK was us

s released c

evelopment

nMI 1.4,

o not an

memory

a direct

erence is

he input

aced by

form for

ween the

of linking

inked to

ationship

y. Other

ests for

OpenMI

as it was

sed and

code but

t phase.

196

Though the wrapper itself was successfully created, several problems were encountered

while trying to run it using the Configuration Editor graphical user interface provided for

OpenMI 2.0. Some of these problems in the working code for OpenMI 2.0 were fixed

enabling the wrapper code to be run. The implementation of the wrapper using the OpenMI

2.0 version of the standard and problems and fixes are described in Section 5.1.2. Further

testing revealed additional problems in the working code of the OpenMI 2.0 SDK and a

decision was made to rather implement the wrappers for ACRU and MIKE BASIN in the

stable OpenMI 1.4 version.

There are two main approaches to making a model OpenMI compliant, which is through the

use of, either an OpenMI compliant wrapper or direct implementation in a model’s source

code. A model that is made OpenMI compliant by either of these approaches is referred to

as a LinkableComponent.

In this project both ACRU and MIKE BASIN are existing models. Blind et al. (2005)

recommended that the wrapping approach should be used for existing model. One of the

advantages of using the wrapping approach is that it minimises the amount of changes

made to the model. Another advantage of using the wrapping approach is that the OpenMI

specific code can be separated from the model’s engine implementation (Blind et al., 2005).

This allows the model’s engine to still be used in its existing standalone application.

To meet OpenMI compliance a model would need to implement the ILinkableComponent

interface of the OpenMI standard. The OpenMI Association realised that most time stepping

models have common functionality, and so provided the LinkableEngine abstract class and

the IEngine interface within the OpenMI 1.4 SDK, to aid in the creation of OpenMI 1.4

compliant wrappers. The OpenMI Association recommends creating two classes to form an

OpenMI 1.4 compliant wrapper for a model as explained in Blind et al. (2005) and shown in

Figure 5.3.

The first wrapper class interacts with the model engine of the model being wrapped, by

implementing the methods of the IEngine interface. These methods interact with the model

engine and provide access to the model engine to any class that uses the first wrapper

class. In Figure 5.3 the MyEngineWrapper is an example of the first wrapper class that

implements the IEngine interface and interacts with the example model engine

RiverModel.dll. The methods that need to be implemented by the first wrapper class are

shown in Table 5.1 The populated model component referred to in Table 5.1 is the model

engine populated with data for a particular study area.

197

Figure 5.3 An example of an OpenMI compliant wrapper (Blind et al., 2005)

The second wrapper class communicates with other OpenMI compliant models and provide

access to the model engine through the first wrapper class. It inherits the LinkableEngine

abstract class, which has already implemented most of the methods for the

ILinkableComponent interface. The only method that needs to be implemented by the

second wrapper class, is the SetEngineApiAccess() method, which provides access to the

model engine. In Figure 5.3 the MyLinkableModel class is an example of the second

wrapper class that inherits the LinkableEngine abstract class, and uses the

MyEngineWrapper class to provide access to the example model engine RiverModel.dll in its

implementation of the SetEngineApiAccess() method.

According to the OATC (2010) and Blind et al. (2005) each model that is set up for a study or

research area must have an associated xml (OMI) file containing information about the

model, and its capabilities and also indicates its availability to be linked to other OpenMI

compliant models. An example of an OMI file is shown in Figure 5.4. This OMI file is used

by the OpenMI Configuration Editor to identify, instantiate and configure a

LinkableComponent. The Configuration Editor can be used to create and run a composition

of linked LinkableComponents. Both OpenMI 1.4 and OpenMI 2.0 provide a Configuration

Editor within their respective SDK’s. An example showing LinkableComponents loaded and

connected in the OpenMI 1.4 Configuration Editor is shown in Figure 5.5.

198

Table 5.1 The IEngine interface methods

Method Name Method Description

GetModelID() Returns the ModelID of the populated model component.

GetModelDescription() Returns a description of the populated model component.

GetComponentID() Returns the name of the non-populated component. This is
typically the name of your model engine.

GetComponentDescription() Returns a description of the non-populated component. This
typically gives a description of the model engine.

GetTimeHorizon() Returns the time horizon for the populated model component,
which is typically the same as the simulation period.

GetInputExchangeItemCount() Returns a count of the input exchange items for the populated
model component.

GetOutputExchangeItemCount() Returns a count of the output exchange items for the
populated model component.

GetOutputExchangeItem() Returns index based output exchange item from the
populated model component.

GetInputExchangeItem() Returns index based input exchange item from the populated
model component.

Initialize() The first method called to initialize the model and populate the
model engine with data, to create a populated model
component.

PerformTimeStep() This method will execute the model engine for one time step
of the simulation period.

GetCurrentTime() Returns the current time of the model engine.

GetInputTime() Returns the time for which the next input is needed for a
specific Quantity and ElementSet combination

GetEarliestNeededTime() This method returns the earliest needed time. The period from
the earliest needed time till the current time is the buffer
period. Generally for most time stepping model engines this
time will be the time for the previous time step.

SetValues() This method sets the values in a model engine.

GetValues() This method gets the values in a model engine.

GetMissingValueDefinition() Gets the missing value, which is used in place of a value that
cannot be returned.

Finish() This method is invoked after all calculations are carried out.
Typically de-allocation of memory and closing of any files
implemented in this method.

Dispose() This method will be invoked after the Finish method has been
invoked to dispose of any objects.

Figure 5

Figure 5

This ch

MIKE B

5.1 D

As expl

but doe

BASIN

function

will run

5.4 Exa

5.5 Exa

1.4

hapter desc

BASIN mode

Developmen

ained in the

es provide a

model eng

nality for Op

and will en

ample of an

ample show

Configuratio

cribes the p

els.

nt of Open

e model eva

access to its

gine, which

penMI comp

able a MIK

OMI file

ing Linkable

on Editor

process of i

MI Wrappe

aluation in S

s model eng

will interac

pliance. Th

E BASIN m

199

leCompone

implementin

er for MIKE

Section 3.2

gine. Wrap

ct with the

e wrapper

model to link

nts loaded

ng OpenMI

 BASIN

.2, MIKE BA

pper code w

model eng

code contro

k to other O

and connec

 wrappers

ASIN is not

will be writte

gine and pr

ols how a M

penMI com

cted in the

for the AC

t OpenMI co

en around th

rovide the

MIKE BASIN

pliant mode

OpenMI

CRU and

ompliant

he MIKE

required

N model

els. The

200

OpenMI compliant wrapper together with the MIKE BASIN model engine will be referred to

as the MIKE BASIN LinkableComponent.

Initially it was decided that the OpenMI 2.0 version should be used in the project as it was

the more advanced version but due to several problems encountered in the working code, a

decision was made to rather implement the wrapper in the stable OpenMI 1.4 version. For

both versions of OpenMI, the Microsoft .NET C# programming language was used in the

creation of the OpenMI compliant wrapper. The Microsoft .NET versions of the OpenMI

standards and software development kits were used. The reason for using the Microsoft

.NET platform was because MIKE BASIN’s access to its model engine had been created

using this platform. The following sections detail the creation of the wrappers using the .NET

OpenMI 1.4 SDK and the .NET OpenMI 2.0 SDK working code.

5.1.1 OpenMI 1.4 wrapper

The OpenMI 1.4 compliant wrapper was developed for MIKE BASIN by creating two classes.

The first wrapper class named MBEngineWrapper, which inherits the IEngine abstract class

overriding the abstract methods to access specific behaviour of the MIKE BASIN model

engine. The second class named MBLinkableComponent, inherits the LinkableEngine

abstract class, which uses the first class to provide access to the MIKE BASIN model engine

to other OpenMI 1.4 compliant models. These two classes form the wrapper for the MIKE

BASIN model, enabling MIKE BASIN to communicate with other OpenMI 1.4 compliant

models. The methods of the MIKE BASIN engine that were used to implement the methods

of the IEngine abstract class in the MBEngineWrapper class are detailed in Table 5.2.

Table 5.2 Implementation of the IEngine interface methods in the MBEngineWrapper

class

Method Name Description of Method Implementation

GetModelID() Retrieved a model ID value from the OMI file.

GetModelDescription() Returned the SimulationDescription property of the MIKE
BASIN model engine.

GetComponentID() Hard-coded “MIKE BASIN” as the component ID.

GetComponentDescription() Hard-coded a description of the MIKE BASIN model engine.

GetTimeHorizon() Returns the time span between the SimulationStart and
SimulationEnd properties of the MIKE BASIN model engine.

GetInputExchangeItemCount() Returns a count of the ArrayList of input exchange items
called _inputExchangeItems defined in the MBEngineWrapper
class.

201

Table 5.2 (continued) Implementation of the IEngine interface methods in the

MBEngineWrapper class

Method Name Description of Method Implementation

GetOutputExchangeItemCount() Returns a count of the ArrayList of output exchange items
called _outputExchangeItems defined in the
MBEngineWrapper class.

GetInputExchangeItem() Returns index based input exchange item from the
_inputExchangeItems defined in the MBEngineWrapper class.

GetOutputExchangeItem() Returns index based output exchange item from the
_outputExchangeItems defined in the MBEngineWrapper
class.

Initialize() The SimulationDescription property of the MIKE BASIN
engine is assigned. The Initialize method of the MIKE BASIN
engine is used to initialize and populate the MIKE BASIN
model. The SimulationStart property of the MIKE BASIN
model engine is used to assign the properties
_simulationStartTime and _dtCurrentDateTime of the
MBEngineWrapper class. The SimulationEnd property of the
MIKE BASIN model engine used to assign the property
_simulationEndTime of the MBEngineWrapper class. The
MIKE BASIN model engine methods GetModelObject(),
GetExtendedInfo(), GetInputSpecs(), and GetResultSpecs()
are used to create the input and output exchange items a
MIKE BASIN model requires and provides.

PerformTimeStep() The MIKE BASIN model engine uses the SimulateTimeStep()
and AdvanceTimeStep() methods to execute the MIKE BASIN
model engine for one time step of the simulation period.

GetCurrentTime() Returns the _dtCurrentDateTime property of the
MBEngineWrapper class.

GetInputTime() Returns the _dtCurrentDateTime property of the
MBEngineWrapper class advanced by the MIKE BASIN
model engine TimeStep property in seconds.

GetEarliestNeededTime() Returns the _dtCurrentDateTime property of the
MBEngineWrapper class, as this is the time step that has
already been executed.

SetValues() The GetModelObject(), GetInputSpecs(), FindInputIndex() and
SetInput() methods of the MIKE BASIN model engine are
used to set the values in the MIKE BASIN model.

GetValues() The GetModelObject() and GetCurrentResult() methods of the
MIKE BASIN model engine are used to get the values from
the MIKE BASIN model.

GetMissingValueDefinition() This is a hard-coded value.

Finish() The FinishSimulation() method of the MIKE BASIN model
engine is invoked.

Dispose() The Dispose() method of the MIKE BASIN model engine is
invoked.

202

A simple OpenMI 1.4 compliant test application, named Test, was also created for use in

testing the MIKE BASIN wrapper. The Configuration Editor graphical user interface,

provided by the OpenMI Association for setting up linked model runs, was used to link and

run the Test LinkableComponent and the MIKE BASIN LinkableComponent. The

Configuration Editor with the linked composition loaded is shown in Figure 5.6 . The results

of the model runs demonstrated that the development of the OpenMI 1.4 compliant wrapper

for MIKE BASIN had been successful.

Figure 5.6 The OpenMI 1.4 SDK configuration editor

It is important to note that no code changes had to be made to the OpenMI 1.4 SDK during

the implementation. A problem was encountered with regards to the MIKE BASIN

LinkableComponent writing its output data to a file. After some debugging of the code of the

Configuration Editor contained in the OpenMI 1.4 SDK, it was found that running the linked

composition using threads was the cause of the problem. This was solved by selecting the

checkbox option Don’t use separate thread in the Run properties dialog box of the

Configuration Editor as show in Figure 5.7.

A test was conducted to verify if a data operation could be applied to an output exchange

item of the OpenMI compliant wrapper. A simple class named MultiplyByFactor, inherited

from the IDataOperation class, was created which multiplied the output values passed to it

by a factor. The MultiplyByFactor data operation was added to the OpenMI compliant

wrapper solution and successfully applied to output exchange items.

203

Figure 5.7 The Run properties dialog box of the configuration editor

A .NET profiler was used to evaluate the performance and memory usage of the MIKE

BASIN LinkableComponent against the MIKE BASIN engine being run standalone. In both

cases the same test model configuration was used. The OpenMI 1.4 Configuration Editor

was used to run the MIKE BASIN LinkableComponent. A test application had been written

to run the MIKE BASIN engine standalone. The results of this evaluation showed there is a

slight increase in memory usage and decrease in performance of the MIKE BASIN

LinkableComponent compared to the MIKE BASIN engine being run standalone. This can be

expected as there are additional data being stored and operations performed with the MIKE

BASIN LinkableComponent compared to the MIKE BASIN engine being run standalone.

An evaluation of the performance and memory usage of the OpenMI 1.4 MIKE BASIN

LinkableComponent showed that there is a slight increase in memory usage and decrease in

performance of the MIKE BASIN LinkableComponent compared to the MIKE BASIN engine

being run standalone. This was expected as there are additional data being stored and

operations performed with the MIKE BASIN LinkableComponent. These slight increases in

memory usage and decrease in performance would be multiplied for larger model

configurations and compositions of LinkableComponents. The flexibility offered by the

OpenMI interface specification standard to link to other OpenMI compliant models results in

a performance and memory usage penalty. The OpenMI Association has released OpenMI

2.0 interface specification standard that has attempted to decrease memory consumption

and improve the performance of LinkableComponents in OpenMI but they have not officially

released a stable version of the OpenMI 2.0 SDK. Further testing of the OpenMI 1.4 MIKE

204

BASIN LinkableComponent will need to be conducted to determine if the benefits of running

models linked in parallel using OpenMI outweighs the performance and memory usage

penalties experienced.

5.1.2 OpenMI 2.0 wrapper

Initially it was decided that the OpenMI 2.0 version should be used in the project as it was

the more advanced version. The wrapper was successfully created but several problems

were encountered while trying to run it using the Configuration Editor graphical user interface

provided for OpenMI 2.0. Some of these problems in the working code for OpenMI 2.0 were

fixed enabling the wrapper code to be run. The implementation of the wrapper using the

OpenMI 2.0 version of the standard and problems and fixes are described in this section

According to OATC (2010) a model needs to implement the

OpenMI.Standard2.IBaseLinkableComponent interface to be OpenMI 2.0 compliant. The

OpenMI.Standard2.IBaseLinkableComponent interface is the base interface and the

ITimeSpaceComponent is an extension of this base interface for models that progress in

time. A single class needed to be created for the OpenMI 2.0 compliant wrapper which

inherited the abstract class called the LinkableEngine, which is a default implementation of

the TimeSpaceComponent interface. The OpenMI 2.0 compliant wrapper developed for

MIKE BASIN inherits the LinkableEngine abstract class, and overrides the abstract methods

to implement specific behaviour of the MIKE BASIN model engine. The LinkableEngine

abstract class with its abstract methods in italics is shown in Figure 5.8. The method names

not shown in italics in Figure 5.8 indicate functionality that is already implemented, which the

OpenMI 2.0 compliant wrapper does not have to override.

The LinkableEngine abstract class has fewer methods that need to be implemented

compared the IEngine abstract class of OpenMI 1.4. These methods that needed to be

implemented by the OpenMI 2.0 compliant wrapper are shown in Table 5.3

The single class that was created for the OpenMI 2.0 compliant wrapper was called

MIKEBASINLinkableComponent. It inherits the LinkableEngine abstract class. The methods

of the MIKE BASIN engine that were used to implement the methods of the LinkableEngine

abstract class in the MIKEBASINLinkableComponent class are detailed in Table 5.4

.

205

Figure 5.8 LinkableEngine abstract class showing methods

Table 5.3 The LinkableEngine abstract class methods

Method Name Method Description

Initialize() The first method called to initialize the model and populate the model engine
with data, to create a populated model component.

PerformTimeStep() This method will execute the model engine for one time step of the
simulation period.

GetCurrentTime() Returns the current time of the model engine.

GetInputTime() Returns the time for which the next input is needed.

OnPrepare() This method carries out any additional preparation operations required
before running the model.

OnValidate() This method carries out any validation operations required.

Finish() This method is invoked after all calculations are carried out. Typically de-
allocation of memory and closing of any files implemented in this method.

206

Table 5.4 Implementation of the LinkableEngine abstract class methods

Method Name Description of Method Implementation

Initialize() The SimulationDescription property of the MIKE BASIN engine is assigned.
The Initialize method of the MIKE BASIN is used to initialize and populate
the MIKE BASIN model. The SimulationStart property of the MIKE BASIN
model engine used to assign the properties _simulationStartTime,
_dtCurrentDateTime of the MIKEBASINLinkableComponent class. The
SimulationEnd property of the MIKE BASIN model engine used to assign the
property _simulationEndTime of the MIKEBASINLinkableComponent class.
The MIKE BASIN model engine methods GetModelObject(),
GetExtendedInfo(), GetInputSpecs(), and GetResultSpecs() are used to
create the input and output exchange items a MIKE BASIN model requires
and provides.

PerformTimeStep() The MIKE BASIN model engine uses the SimulateTimeStep() and
AdvanceTimeStep() methods to execute the MIKE BASIN model engine for
one time step of the simulation period.

GetCurrentTime() Returns the _dtCurrentDateTime property of the
MIKEBASINLinkableComponent class.

GetInputTime() Returns the _dtCurrentDateTime property of the
MIKEBASINLinkableComponent class advanced by the MIKE BASIN model
engine TimeStep property in seconds.

OnPrepare() This method was implemented but had no functionality associated with it.

OnValidate() This method was implemented but had no functionality associated with it.

Finish() The FinishSimulation() method of the MIKE BASIN model engine is invoked.

The input items need to implement the EngineInputItem abstract class and the output items

need to implement the EngineOutputItem abstract class for OpenMI 2.0. There are a number

of classes that exist that implement the EngineInputItem and EngineOutputItem which form

part of the Oatc.OpenMI.Wrappers.EngineWrapper dll. The difference between the classes

is the approach taken to get and set the values of the model engine. The following is a list

and brief description of these classes:

• EngineDInputItem and EngineDOutputItem: Use a delegate, which is pointer to a

method that does the set and get of the values in the model engine. This pointer can

also point to code that does the set and get of the values in a model engine.

• EngineIInputItem and EngineIOutputItem: Uses an object implementing the

IValueSetter or IValueGetter interface. These interfaces have a SetValues and

GetValues method, which the object must override and provide the code to set and get

the values from the engine.

• EngineEInputItem and EngineEOutputItem: These classes mimic the get and set

functionality of OpenMI 1.4. It uses the LinkableGetSetEngine abstract class which

moves the setting and getting of values from the exchange item to the wrapper or

engine. The methods SetEngineValues and GetEngineValues of the

LinkableGetSetEngine abstract class need to be overridden and code added to set

207

and get the values from the model engine. This approach, according to OATC (2010),

is not efficient as it causes bottle necks.

The EngineDInputItem and EngineDOutputItem classes were used in the OpenMI 2.0

wrapper for MIKE BASIN to define the input and output items as objects to get and set

model engine values.

A simple OpenMI 2.0 compliant test application, named Test, was also created for use in

testing the OpenMI 2.0 MIKE BASIN wrapper. During the process of linking and running the

OpenMI 2.0 MIKE BASIN LinkableComponent and the OpenMI 2.0 Test

LinkableComponent, problems arose with the OpenMI 2.0 Configuration Editor. These

problems prevented the loading of the OpenMI 2.0 LinkableComponents, the creation of

links between the OpenMI 2.0 LinkableComponents and the execution of the linked

composition of OpenMI 2.0 LinkableComponents. These problems and the fixes are detailed

below.

Initially the OpenMI 2.0 MIKE BASIN LinkableComponent did not load into the OpenMI 2.0

Configuration Editor. The documentation and examples provided by the OpenMI Association

did not mention that the Caption string variable of the LinkableEngine interface needs to be

set in the Initialize method to load a LinkableComponent. This was discovered through

debugging the source code of the OpenMI 2.0 Configuration Editor. Once the Caption string

variable of the LinkableEngine interface was assigned a value, the MIKE BASIN

LinkableComponent loaded successfully in the OpenMI 2.0 Configuration Editor.

It is important to note that TortoiseSVN client software, used to access the OpenMI 2.0

source code repository, uses a Revision number for each file to keep track of the version of

files. If a change is made to a file and committed to the server working code, the file receives

a new incremented Revision number. This ensures the file being worked on a client machine

is the latest updated code. The Revision number of files changed to solve the main problems

or issues will be provided below. It is also important to note that the root folder described in

the rest of this document refers to the folder on the development machine where the working

code has been downloaded using the TortoiseSVN client software.

The first problem experienced was that a link could not be correctly added between any two

LinkableComponents as the OpenMI 2.0 Configuration Editor tried to add the link twice. The

problem was traced to the Output class of the Output.cs file contained in the

Oatc.OpenMI.Sdk.Backbone namespace. The Output.cs file forms part of the

208

Oatc.OpenMI.Sdk project and can be found in the

root\src\csharp\Oatc.OpenMI\Sdk\Backbone\ directory. The Revision number for the file was

1640. There was no update of the Output.cs file at the time of writing of this document. To

rectify the problem code was commented out from the AddConsumer(IBaseInput consumer)

method of the Output.cs file to prevent the OpenMI 2.0 Configuration Editor from adding the

link twice, and new code was added.

The second problem encountered was that the linked LinkableComponents could not run

within the OpenMI 2.0 Configuration Editor. The OpenMI 2.0 Configuration Editor was using

threads to run the linked LinkableComponents. The threaded approach could not use a

method defined for an interface within the MIKE BASIN LinkableComponent across different

threads, which prevented the linked LinkableComponents from running. An attempt was

made to change the code of the MIKE BASIN LinkableComponent to get the linked

LinkableComponents to run using threads, without changing the code of the OpenMI 2.0

Configuration Editor, but this was not successful. By studying the code of the OpenMI 2.0

Configuration Editor a method called Run was found to run the linked LinkableComponents

without using threads. The Run method can be found in the CompositionRun class, falling

under the Oatc.OpenMI.Gui.Core namespace. The CompositionRun class is from the

Oatc.OpenMI.Gui.Core project. The CompositionRun.cs file can be found in the root\

src\csharp\Oatc.OpenMI\Gui\Core directory. The code change was made to the Run class of

the Run.cs file of the Oatc.OpenMI.Gui.ConfigurationEditor namespace. The Run.cs file

forms part of the Oatc.OpenMI.Gui.ConfigurationEditor project and can be found in the

root\src\csharp\Oatc.OpenMI\Gui\ConfigurationEditor\ directory. There was no update of the

Run.cs file at the time of writing of this document.

The third problem encountered was that the linked LinkableComponents would not stop

running. The linked LinkableComponents ran beyond the simulation end date and time. It

was discovered through debugging of the Oatc.OpenMI.Gui.ConfigurationEditor project

working code, that the DoRun method contained in the CompositionRun class of the

Oatc.OpenMI.Gui.Core namespace did not check for a status Done, which indicates a

LinkableComponent has completed its run. There was no update of the CompositionRun.cs

file at the time of writing of this document

Some of these problems discussed were solved by changing the code of the OpenMI 2.0

environment but were done without exploring the consequences these changes would have

on the rest of the functionality within the OpenMI 2.0 environment. The changes could

possibly affect the results produced. Problems continued to arise during the creation of the

209

OpenMI compliant wrapper and it was decided to use the OpenMI 1.4 SDK, as it is a

released version that has been tested extensively to eliminate any bugs and would require

no changes to its code. The OpenMI 2.0 compliant wrapper was successfully created for

MIKE BASIN, but due the problems experienced with OpenMI 2.0 Configuration Editor,

further implementation, testing and use did not take place.

5.2 Development of OpenMI Wrapper for ACRU

The ACRU model is not OpenMI compliant, but refinements to the model in this project,

described in Chapter 4, made it suitable to be made OpenMI compliant, either by direct

implementation of the OpenMI Standard or by means of a wrapper. The ACRU model is

written in the Java programming language and the necessity for ACRU to be made both

Java and .Net OpenMI compliant was an important criteria.

The OpenMI Standard is duplicated in Java and .Net versions and each of these is

supported by a corresponding OpenMI Software Development Kit (SDK) containing a default

implementation of the OpenMI Standard interfaces and other helper classes. The OpenMI

2.0 version of the OpenMI Standard was recently released to provide additional user

requirements not met by the OpenMI 1.4 version. It was decided that in this project the

ACRU model would be made OpenMI 1.4 compliant for the following reasons: (i) the OpenMI

2.0 SDK for Java is still under development and has not been released, (ii) the problems

experienced with the OpenMI 2.0 SDK for .Net when creating and using an OpenMI 2.0

wrapper for MIKE BASIN indicate that the supporting tools for the OpenMI 2.0 version may

not be mature, and (iii) all the models registered on the OpenMI Association website as

being OpenMI compliant are currently only OpenMI 1.4 compliant.

It was decided that ACRU should be made OpenMI compliant by means of a wrapper

instead of direct implementation of the OpenMI Standard for the following reasons: (i) the

wrapper option is easier and takes advantage of functionality already coded into the classes

provided in the SDK’s nl.alterra.openmi.sdk.wrapper package, and (ii) wrapping would

enable both OpenMI 1.4 and OpenMI 2.0 compliant versions of ACRU to be provided at

some point in the future without changing the ACRU code and without the two versions

potentially conflicting with each other.

210

5.2.1 OpenMI 1.4 Java wrapper

An OpenMI 1.4 compliant Java wrapper was created for the ACRU model through two

classes, the ACRU.OpenMI.AcruEngineWrapper class which implements the

nl.alterra.openmi.sdk.wrapper.IEngine interface and the

ACRU.OpenMI.AcruLinkableComponent class which extends the

nl.alterra.openmi.sdk.wrapper.LinkableEngine class.

The methods in the ACRU engine that were used to implement the methods of the IEngine

abstract class in the AcruEngineWrapper class are detailed in Table 5.5

Table 5.5 Implementation of the IEngine interface methods in the AcruEngineWrapper

class

Method Name Description of Method Implementation

getModelID() Calls the MAcruXml.getModelID() method which returns the
model run ID if it exists

getModelDescription() Calls the MAcruXml.getModelDescription() method which
returns the model run description if it exists or a string
containing the model input file name, the scenario set
selected for the run and the simulation start and end dates.

getComponentID() Returns “ACRU” as the component ID.

getComponentDescription() Returns “ACRU daily physical conceptual agrohydrological
model” as the component ID.

getTimeHorizon() Returns a time span starting with the date/time returned by
the MAcruXML.getSimulationStartDate() method and ending
with the date/time returned by the
MAcruXML.getSimulationEndDate() method

getInputExchangeItemCount() Returns the size of the inputExchangeItems ArrayList of input
exchange items defined in the AcruEngineWrapper class.

getOutputExchangeItemCount() Returns the size of the outputExchangeItems ArrayList of
output exchange items defined in the AcruEngineWrapper
class.

getInputExchangeItem(int
exchangeItemIndex)

Returns the input exchange item at the specified index in the
inputExchangeItems ArrayList defined in the
AcruEngineWrapper class.

getOutputExchangeItem(int
exchangeItemIndex)

Returns the output exchange item at the specified index in the
outputExchangeItems ArrayList defined in the
AcruEngineWrapper class.

211

Table 5.5 (continued) Implementation of the IEngine interface methods in the

AcruEngineWrapper class

Method Name Description of Method Implementation

initialize(HashMap properties) Uses the model initialisation arguments specified in
properties to generate an array of model initialisation
arguments required by the ACRU model engine, which is
used to create a new instance of MAcruXml. The
MAcruXml.initialiseModel() method is than called to initialise
the new model. The new model is then queried to find all
instances of CComponent and all the instances of DData
belonging to each CComponent. For each instance of DData
an input exchange item and/or output exchange item is
created depending on whether the instance of DData is an
input, output or state variable.

performTimeStep() The MAcruXml.runTimeStep() method is called to execute the
ACRU model engine for one time step.

getCurrentTime() Calls the MAcruXml.getCurrentDate() method which returns
the current date of the simulation.

getInputTime(String QuantityID,
String ElementSetID)

Returns the date time of the next day after the date/time
returned by the MAcruXml.getCurrentDate() method.

getEarliestNeededTime() Returns the date time of the previous day before the date/time
returned by the MAcruXml.getCurrentDate() method.

setValues(String QuantityID, String
ElementSetID, IValueSet values)

Uses the ElementSetID parameter to find the relevant
instance of CComponent and the QuantityID parameter to find
the relevant instance of DData. If the instance of DData is a
state variable then the DData.setCurrentState(…) method is
called, otherwise the DData.setData(…) method is called to
set the value specified in the values parameter.

getValues(String QuantityID, String
ElementSetID)

Uses the ElementSetID parameter to find the relevant
instance of CComponent and the QuantityID parameter to find
the relevant instance of DData. If the instance of DData is a
state variable then the DData.getCurrentState() method is
called, otherwise the DData.setData(Date dateTime) method
is called to return a value for the end of the previous
simulation day.

GetMissingValueDefinition() Returns a hard-coded value of “-999.9”.

Finish() Calls the MAcruXml. .finaliseModel() method

Dispose() Disposes of the instance of MAcruXml by setting it to null.

One potential problem that had to be overcome was the manner in which units of measure

are specified for variables representing fluxes in ACRU. For example, in ACRU the units of

measure associated with streamflow are cubic metres, and not cubic metres per day. This

makes sense in ACRU as it is a daily model and so all fluxes are implicitly per day. This also

means that the units of measure do not need to change when a flux is temporally

aggregated, for example, to annual streamflow. However, a model such as MIKE BASIN

can be run for different time step lengths and fluxes may be specified to have units of

212

measure which include the time period, for example, cubic metres per second. This was

resolved by further developing the OpenMI wrapper to provide duplicate input and output

exchange items for each flux variable, one as a quantity and one as a rate.

To test the OpenMI wrapper for ACRU, an OpenMI 1.4 compliant Java wrapper was created

for the DataReaderWriter_AcruCSV class which is part of the ModelDataAccess package

developed as part of the ACRU modelling system. The DataReaderWriter_AcruCSV class

reads and writes time series data in a comma separated value (CSV) file designed to

provide time series input data to the ACRU model. The development of this wrapper not

only provided a means of testing the OpenMI wrapper developed for the ACRU model, but

also demonstrated the versatility of the OpenMI standard and the benefit of OpenMI

compliance in making models and modelling tool interoperable. Tests were then run using a

simple test catchment for the following scenarios: (i) CSV file as input to ACRU, (ii) ACRU

output to CSV file, and (iii) one ACRU model flowing into another ACRU model. As the

OpenMI Association does not provide a Java version of the Configuration Editor graphical

user interface shown in Figure 5.5, some custom code was written using classes provided in

the OpenMI 1.4 SDK to enable an OpenMI configuration to be configured and run. These

tests were all successfully completed, providing confidence that the wrapper was working as

expected. The development of an OpenMI wrapper for ACRU was surprisingly easy where

this was partly due to the wrapping tools provided by the OpenMI Association and partly due

to the changes made to the ACRU model reported in Chapter 4.

5.2.2 OpenMI 1.4 .Net wrapper

The ACRU model is written in the Java programming language and has been made OpenMI

1.4 Java compliant. However, all the OpenMI compliant models listed on the OpenMI

Association website are OpenMI 1.4 .Net compliant, which emphasised the need to develop

an OpenMI 1.4 .Net compliant wrapper for ACRU.

There were two possible approaches to overcoming the compatibility problem between the

Java and .Net platforms, (i) to use a Java-.Net bridge that makes use of the Java Native

Interface (JNI) for Java, and (ii) to compile the ACRU Java code into a .Net assembly. The

second approach was selected as this approach was expected to offer better model run

speeds, though with the disadvantage of having to recreate the .Net assembly every time a

change is made to the ACRU model. The IKVM.NET (http://www.ikvm.net/) tool was used to

statically compile the ACRU model code written in Java to a .Net assembly named ACRU.dll.

213

The ACRU.OpenMI.AcruEngineWrapper and ACRU.OpenMI.AcruLinkableComponent

classes were then duplicated in .Net using the C# programming language to create an

OpenMI 1.4 .Net wrapper for ACRU.

A similar procedure to that used for ACRU was used to create a .Net assembly for the

ModelDataAccess package and duplicate the Java wrapper for the

DataReaderWriter_AcruCSV class in .Net. Tests were then run for a simple test catchment,

using the Configuration Editor shown in Figure 5.5, for the following scenarios: (i) CSV file as

input to ACRU, (ii) ACRU output to CSV file, (iii) one ACRU model flowing into another

ACRU model, and (iv) ACRU model flowing into MIKE BASIN model. These tests were all

successfully completed.

5.3 Results and Recommendation

An OpenMI 1.4 compliant wrapper for MIKE BASIN was successfully implemented. Tests

were carried that verified the OpenMI 1.4 compliant wrapper worked as expected. Data

operations applied to output from a LinkableComponent were also successfully implemented

and tested.

Though the initial implementation of the OpenMI 2.0 compliant wrapper for MIKE BASIN was

successful, problems with the OpenMI 2.0 Configuration Editor prevented further

development and application of this wrapper. If the OpenMI Association releases a stable

version of OpenMI 2.0 SDK it would be recommended to use the OpenMI 2.0 compliant

wrapper for MIKE BASIN, as the OpenMI 2.0 Standard is an improvement to the OpenMI 1.4

Standard.

An OpenMI 1.4 Java and OpenMI 1.4 .Net compliant wrappers were also successfully

implemented for the ACRU model. Tests indicated that the wrappers were working as

expected and the ACRU and MIKE BASIN models were successfully linked using OpenMI

for a simple test catchment.

214

6 USE CASES FOR THE LINKED MODELS

DJ Clark and SLC Thornton-Dibb

Modellers often try to simplify complex systems by breaking them up into more manageable

components, but sometimes by doing this, important interrelationships between the modelled

components are lost. Integrated water resource management requires a more holistic

assessment of entire water resource systems, including surface water, groundwater,

economics and social impacts. This requires integrated water resource modelling. One

approach to integrated modelling would be to develop a big model to do everything, but this

approach has high development and maintenance costs and does not take advantages of

using existing models for the various components of a water resources systems. A more

practical approach is to integrate several existing models, saving costs and enabling

different combinations of models to be integrated for each unique modelling exercise. There

are two main reasons for integrating models: (i) to gain functionality not available in an

individual model and (ii) to model feedbacks between the system components represented

by the individual models to better represent the system being modelled. If there are no

feedbacks between the systems being represented by each individual model, then the

models can be integrated using simple series links, otherwise a model linking mechanism

such as OpenMI selected for this project can be used to link models in parallel. Parallel

linking involves running one model for a single time step, then using the output from this

model as input to another model which is run for a single time step, and this process is

repeated for individual time steps until the end of the simulation time period. The models

may have different time steps and the links between them may be uni-directional or bi-

directional.

The ACRU model has the following limitations which necessitate linking it to another model

such as MIKE BASIN:

• Flow routing, the ACRU 3.00 model included flow routing but this was slow and difficult

to apply, and the flow routing has not yet been included in the ACRUXml version.

• Multiple water users can use one source, but a single user cannot have multiple water

sources.

• ACRU does not explicitly include water users other than irrigation, though lumped dam

and river in-transfer and out-transfer quantities can be specified to represent other

water users.

215

• Water allocation is by means of a relatively simple priority system, and at this point

there is no provision for other allocation methods, such as Fractional Water Allocation

and Capacity Sharing (FWACS).

• No GIS user interface is available to configure and view river/dam flow networks.

• No optimization of flow networks is possible.

• The simple ground water model does not handle complex groundwater interactions.

• The ACRU_NP water quality module only deals with the terrestrial part of the water

system and does not route water quality constituents through the river network.

The MIKE BASIN requires the following inputs which could be provided by the ACRU model:

• Streamflow simulated by the ACRU daily timestep agrohydrological model, which has

been extensively applied in South Africa, and for which default input data sets are

available at a quinary catchment scale for the whole of South Africa.

• Irrigation water requirement and return flow quantities, though these can also be

modelled in MIKE BASIN.

• Groundwater recharge quantities.

• Salinity, nitrogen and phosphorus loads leaving the terrestrial hydrological system.

Prior to this project, the ACRU and MIKE BASIN models have been integrated by means of

simple series links, where ACRU generates a streamflow time series n years in length which

are than translated and used as input to MIKE BASIN, as shown in the use case presented

in Figure 6.1, or using custom code as shown in the use case presented in Figure 6.2. This

approach works well if there are no feedbacks between the terrestrial hydrological system

being modelled by ACRU and the river network system being modelled by MIKE BASIN.

However, a common example of a feedback between these two systems is irrigation, where

the irrigation requirement is calculated using the hydrological model, this requirement is

provided by the river network model, and then applied to the irrigated fields in the

hydrological model, which will calculate return flows which then need to be fed back to the

river network model. This particular feedback problem was recognized, and resulted in the

developers of MIKE BASIN recently including an irrigation module into the MIKE BASIN

model, so that the feedback was dealt with within the model.

Figure 6

Figure 6

The adv

•

•

•

•

•

6.1 Stat

6.2 Stat

vantages of

Saves man

Saves deve

be linked to

Enable cha

in custom c

Enables lin

Enables fee

tus quo sim

tus quo sim

f using Ope

nual translat

eloping cus

o any other

ains of mode

code which

king model

edbacks to

mple series l

mple series l

enMI are tha

tion betwee

tom code to

OpenMI co

els, e.g. one

is usually o

s with differ

be modelle

216

ink by file tr

ink by custo

at it:

en model ou

o link mode

ompliant mo

e-to-many a

one-to-one.

rent spatial

ed.

ranslation

om code

utput and in

els, any Ope

odel.

and many-t

and tempo

put file form

enMI compl

o-one, whic

ral resolutio

mats.

iant model

ch would be

ons.

and can

e difficult

The gen

is show

exampl

for exam

value to

repeate

Figure 6

Having

as desc

how the

each us

exampl

case, A

assist f

one wa

particul

OpenM

underst

assume

day.

neral conce

wn in Figure

e MIKE BA

mple ACRU

o MIKE BA

ed for succe

6.3 Link

successful

cribed in C

ese two mod

se case a d

e containin

ACRU comp

future users

y to configu

ar applicati

I makes l

tanding of

ed that both

epts of linkin

e 6.3. In

ASIN, will req

U. ACRU w

ASIN which

essive time

king ACRU

ly created

hapter 5, th

dels could b

diagram is

ng a key ex

ponent-varia

s in setting

ure the mod

ion depend

inking mod

both mode

h the ACRU

ng two mod

simple term

quest an inp

will then run

will then a

steps until t

and MIKE B

OpenMI co

he next ste

be linked us

provided to

xplaining the

able to MIK

up model

del links and

ing on how

dels easier

els in order

U and MIKE

217

dels such as

ms, when a

put value fo

for the first

also run for

the end of t

BASIN usin

ompliant wra

p was to d

sing OpenM

o help illust

ese diagram

KE BASIN c

links. In so

d it is up to

w the individ

r, users w

r to link th

E BASIN mo

s ACRU an

a simulation

or the first ti

t time step

r one time

the simulatio

ng OpenMI

appers for

efine a set

MI for a rang

trate how th

ms is show

component-

ome use ca

o the user to

dual models

will still req

em correct

odels are b

nd MIKE BA

n is triggere

me step fro

and provide

step. This

on period.

both ACRU

of use cas

ge of model

he models

wn in Figure

variable pa

ases there

o decide wh

s have bee

quire a tho

ly. In thes

eing run at

ASIN using

ed, one mo

om the othe

e the requir

s sequence

U and MIKE

ses to dem

ling scenar

are linked,

e 6.4. In e

airs are spe

may be mo

hich is best

en set up.

orough con

se use cas

a time step

OpenMI

odel, for

r model,

red input

e is then

E BASIN

onstrate

rios. For

 and an

ach use

ecified to

ore than

for their

Though

nceptual

ses it is

p of one

Figure 6

6.1 S

The sim

MIKE B

runoff a

period.

ACRU,

BASIN

for the

can alre

translat

linked m

irrigatio

values a

and mo

BASIN

process

The MIK

a Catch

by strea

6.4 Key

Streamflow

mplest use

BASIN as s

and baseflo

 At the sta

ACRU will

which will t

second tim

eady be don

tion of strea

models sho

on would st

are exchan

odelling ripa

must be do

ses which m

KE BASIN m

hment comp

amflow valu

y to the use

Links

case is a u

shown in Fi

ow and is re

art of the f

then run fo

then run fo

e step and

ne with seri

amflow data

ould be iden

till need to

ged betwee

arian zones

ownstream

model feedb

model usua

ponent by m

ues calculat

case diagra

uni-direction

gure 6.5.

epresented

first time st

or the first t

r the first ti

all subsequ

ies linking b

a between t

ntical to obt

be done c

en the mode

 or wetland

of the wetl

backs within

ally receives

means of a

ted in ACR

218

ams used in

nal link whe

In this use

 as a norm

tep MIKE B

time step a

me step. T

uent time s

but is now m

the models

tained from

completely

els. Care s

ds in ACRU

and or ripa

n the flow ne

s streamflow

DFS0 file.

RU. The un

n this chapt

ere ACRU p

e case, stre

malised dep

BASIN requ

nd return th

This sequen

teps until th

much easie

s nor custom

 a simple s

within MIK

should be ta

U, the stream

arian zone b

etwork mod

w inputs to

In this case

nits of meas

ter

provides str

amflow inc

th of flow f

uests strea

he streamflo

nce of even

he end of th

r as it requi

m code. Th

series link.

KE BASIN a

aken when u

mflow value

being mode

delled in AC

the Specific

e these valu

sure for the

reamflow v

cludes both

for a specif

amflow valu

ow values

nts will be r

he simulatio

ires neither

he results f

For this us

as only stre

using this u

es passed

elled as the

CRU.

c Runoff va

ues are ove

 values exc

alues to

surface

fied time

es from

to MIKE

repeated

on. This

r manual

from the

se case,

eamflow

use case

to MIKE

se have

riable of

erwritten

changed

betwee

the sam

convers

streamf

SubCat

accumu

This us

would n

Figure 6

6.1.1

As state

irrigatio

althoug

ACRU

Domest

SubCat

the out-

GIS gra

User co

quantiti

n the mode

me dimensi

sion. It is re

flow. If

tchmentNod

ulated in AC

se case en

not be availa

6.5 Stre

Water use

ed in the in

on water us

h lumped d

model

ticAbstractio

tchment com

-transfers.

aphical use

omponent t

es, a return

els for an in

on, in this

ecommende

f the AC

de is used

CRU’s own

nables the

able from th

eamflow use

rs and retu

ntroduction t

sers such

dam and riv

permits

onNode,

mponent, th

In MIKE B

r interface t

the user ma

n flow destin

ndividual lin

case lengt

ed that the

CRU Unit

then the u

internal rive

provision o

he ACRU m

e case

urn flows

to this chap

as industri

ver in-transfe

one o

and Exter

hough in-tra

BASIN Wate

to represen

ay specify t

nation and a

219

k do not ne

th per unit

ACRU Unit

tStreamflow

user needs

er network.

of additiona

model on its

pter ACRU

ial and mu

fer and out-

or more

rnalWaterS

ansfers in th

er User com

nt individual

the water s

a time serie

eed to be th

time, as O

tRunoff vari

w variable

to make s

al modelling

own.

does not ex

unicipal wat

transfer qua

DamPum

ourceNode

he sense of

mponents c

or lumped

source, a ti

es of return f

he same as

OpenMI take

able be use

e for Ca

sure that flo

g functional

xplicitly ena

ter users t

antities can

mpInNode,

to be

f return flow

can easily b

water user

me series o

flow fraction

s long as th

es care of

ed as the s

atchmentNo

ows are no

lity some o

able individ

to be repre

n be specifie

DamDra

added to

ws are not l

be added u

rs. For eac

of requeste

ns.

ey have

the unit

ource of

ode or

ot being

of which

ual non-

esented,

ed. The

aftNode,

o each

inked to

sing the

ch Water

ed water

220

6.1.2 Multiple water sources for a user

The ACRU model allows multiple water users to request water from a single water source,

but does not allow a water user to request water from multiple water sources due to its

relatively simple water allocation rules. However, MIKE BASIN does permit multiple water

sources to be assigned to an individual water user and these water sources may be rivers,

reservoirs or groundwater.

6.1.3 Water allocation options

The ACRU model has a relatively simple priority based water allocation system. In ACRU a

water user sends a water request to its single water source specifying the water supply path,

water ownership and a request priority. Near the end of each time step all the water

requests collected at a water source for the time step are evaluated and available water is

allocated. If there are several requests with the same priority then this group of requests will

either be met in full or, if there is insufficient water, this this group will share the available

water in proportion to their requested quantity. The MIKE BASIN model provides the option

to use either priority or FWACS allocation. The facility to track water ownership in ACRU

does enable water in rivers and reservoirs to be reserved for a water owner, and would thus

enable FWACS allocation to be added. However, water allocation and river network

modelling are not the main focus of ACRU, and this an example of integration enabling the

use of each model for its strengths.

6.1.4 Flow routing

Flow routing is an important feature for any modelling system that is to be used for water

resource operations modelling and management, as for short term operational decisions,

with critical durations of the order of days or even hours, the timing of flows is critical in

determining availability. Flow routing is another example of where integrating the models

enables MIKE BASIN to provide functionality in an area that is not a main focus of ACRU.

The ACRU 3.00 and ACRU2000 versions included flow routing, but this was slow and

difficult to apply. Flow routing has not yet been included in the ACRUXml version, though it

is anticipated that the changes to the component configuration and the internal data

structures described in Section 4.3, will facilitate easier implementation of flow routing. The

GIS user interface for MIKE BASIN lends itself to setting up flow networks and the input

parameters required for flow routing.

221

6.1.5 Scenarios

The ability to set up and easily run different scenarios for water resources planning and

operations was one of the requirements noted at the beginning of the project. Changes

made to the ACRU model input files and the model itself, as explained in Chapter 4, have

made it easy to configure and run scenarios in ACRU. The MIKE BASIN model does not

offer similar functionality for scenarios, beyond enabling users to save model outputs for

scenarios in sets named by the user and enabling these to be analysed. If the configuration

of the river network modelled by MIKE BASIN does not change with time, then the integrated

models can be used to evaluate different land use scenarios and their effect on availability of

water at different locations in the river network.

6.2 Streamflow and Groundwater Links

Another relatively simple use case includes a uni-directional link where ACRU provides

separate surface runoff (termed “quickflow” in ACRU) and groundwater recharge values to

MIKE BASIN as shown in Figure 6.6 and Figure 6.7. In this use case, MIKE BASIN will do

the groundwater modelling, which will require that this option be turned on in MIKE BASIN

and the necessary groundwater modelling variables be specified. In the simple streamflow

use case described in Section 6.1, streamflow included both surface runoff and baseflow. In

this use case, ACRU will supply separate surface runoff and groundwater recharge inputs to

MIKE BASIN at each time step.

At the start of the first time step MIKE BASIN requests surface runoff and groundwater

recharge values from ACRU. ACRU will then run for the first time step and return the

surface runoff and groundwater recharge values to MIKE BASIN which will then run for the

first time step. This sequence of events will be repeated for the second time step and all

subsequent time steps until the end of the simulation. This can already be done with series

linking but is now much easier as it requires neither manual translation of streamflow data

between the models nor custom code. The results from the linked models should be

identical to obtained from a simple series link. For this use case irrigation would still need to

be done completely within MIKE BASIN.

The MIKE BASIN model usually receives surface runoff inputs to the Specific Runoff variable

and groundwater recharge inputs to the Specific Recharge variable of a Catchment

component by means of DFS0 files. In this case the values for these variables are

overwri

importa

normali

howeve

simples

variable

all insta

bear in

workaro

and ca

modelle

Catchm

Adjunct

Saturat

in the c

(UQFLO

Adjunct

SubCat

Unsatur

Wetland

Figure 6

tten by sur

ant to note

sed depth

er there are

st method s

e and set th

ances of HR

mind that

ound. In AC

n’t be adju

ed in MIKE

ment in MIK

tImpervious

tedFlow (SU

correspondi

OW) varia

tImpervious

tchment a

ratedRedist

d/Soil comp

6.6 Surf

rface runoff

that ACRU

of flow for

two ways t

shown in F

he coefficien

RU, Riparia

streamflow

CRU the co

usted, but t

E BASIN. T

KE BASIN

sArea in

UR) for thes

ng MIKE B

able for

sArea inste

as a w

tributionOpt

ponents wou

rface runoff

f and groun

U does not

a specified

that this use

Figure 6.6

nt of baseflo

anZone and

w values ca

oefficient of

this is not

The second

for every

ACRU, e

se compone

ASIN Catch

each HR

ead of th

whole.

tion (IUNSA

uld have to

and ground

222

ndwater rec

t include a

 time perio

e case can

is to use

ow respons

d Wetland.

alculated in

f baseflow r

important f

d method s

HRU, Rip

enabling t

ents to be l

hments. Fo

U, Riparia

he UnitQui

For this

AT) variab

be turned o

dwater rech

charge valu

n output of

d at a catc

be achieved

the SubCa

se CoefBase

 With this

ACRU will

response fo

for this use

shown in F

parianZone,

the groun

linked to the

or this seco

anZone, W

ickflow (UQ

s second

le for the

off.

arge use ca

es calculat

f groundwa

hment or s

d in spite of

atchment U

efowResp (

first metho

l be affecte

or irrigated a

e case as i

Figure 6.7 r

 Wetland,

dwater re

e Specific R

ond method

Wetland, I

QFLOW) v

method

HRU/Soil,

ase using th

ted in ACR

ater recharg

subcatchme

f this. The

UnitBaseflow

(COFRU) to

od it is impo

ed by the b

areas is set

irrigated ar

requires cre

IrrigatedAr

echarge v

Recharge v

d the UnitQ

IrrigatedAre

variable fo

to wo

RiparianZo

he first meth

RU. It is

ge as a

ent level,

first and

w output

o one for

ortant to

baseflow

t to 0.02

reas are

eating a

rea and

variables

variables

Quickflow

ea and

or each

rk the

one/Soil,

hod

This us

in Sect

water u

recharg

Figure 6

e case ena

ion 6.1 for

users to us

ge processe

6.7 Surf

ables the pro

the simple

se groundw

es to be mod

rface runoff

ovision of th

 streamflow

water as a

delled, neith

and ground

223

he same ad

w use case

water sou

her of which

dwater rech

dditional mo

e. In additi

rce and fo

h are curren

arge use ca

odelling func

on this use

r river-grou

ntly possible

ase using th

ctionality dis

e case ena

undwater se

e in ACRU.

he second m

scussed

bles the

eepage-

method

224

6.3 Irrigation Requirement and Supply Links

A more complicated use case includes a bi-directional link where ACRU provides streamflow

and irrigation requirement values to MIKE BASIN, and MIKE BASIN provides an irrigation

supply value to ACRU, as shown in Figure 6.8. This purpose of this use case is to

demonstrate modelling feedbacks using a bi-directional link. In this use case, ACRU will do

the irrigation modelling and will send a request for irrigation water to MIKE BASIN, which will

evaluate this request along with those of other water users and attempt to provide the

requested irrigation water, which will be applied to the irrigated area in ACRU. Both ACRU

and MIKE BASIN can model irrigation, but for the purpose of this use case it is assumed that

MIKE BASIN does not model irrigation. For this use case the ACRU model should be set up

such that each IrrigatedArea has an ExternalWaterSourceNode associated with it as the

supplier of water to the IrrigationSystem using a WaterSourceDest relationship. In MIKE

BASIN the irrigated area should be represented as Water User extracting water from the

relevant River Node, Catchment Node or Reservoir.

At the start of the first time step MIKE BASIN requests streamflow and irrigation requirement

values from ACRU. ACRU will then prepare to run for the first time step by requesting an

irrigation supply amount for the first time step. MIKE BASIN has not yet run for the first time

step as it is still waiting for a reply to its request to ACRU, but attempts to return a value to

ACRU which in this case is zero. ACRU will then run for the first time step without applying

any irrigation and return the streamflow and irrigation requirement values to MIKE BASIN

which will then run for the first time step. This sequence of events will be repeated for the

second time step, but this time MIKE BASIN will be able to provide an irrigation supply

amount calculated in the first time step, which will be applied in ACRU when it runs for its

second time step. When ACRU runs its second time step any return flows that may occur

will be included in the streamflow values that are provided to MIKE BASIN for its second

time step. This sequence of events is repeated for all subsequent time steps until the end of

the simulation. This scenario where irrigation is applied and return flows are generated for

the time step after the time step in which the irrigation supply is calculated is a common

scenario that exists internally with ACRU when it runs as a standalone model and probably

also occurs in MIKE BASIN. This scenario occurs due to the feedback loop, but is still a

good modelling solution as feedbacks where irrigation return flows enter the river network

upstream of the source can still be represented.

Figure 6

6.4 W

As an

includes

quickflo

provide

surface

in ACR

network

second

HRU, R

use cas

ACRUS

ACRUX

by the i

6.8 Stre

Water Quali

extension

s a uni-dir

ow in ACR

es water qua

e runoff and

U and then

k. For this u

 method in

RiparianZon

se irrigation

Salinity and

Xml version

ntegrated m

eamflow, irr

ty Links

to the grou

rectional lin

U) and gro

ality loads (

 groundwat

provided to

use case it

Section 6.2

ne, Wetland

n would still

 ACRU_NP

, this use ca

models once

igation requ

undwater u

nk where

oundwater

(such as am

ter recharge

o MIKE BAS

would be ne

2 which requ

d, IrrigatedA

need to be

P water qua

ase serves

e these mod

225

uirement an

use case p

ACRU pro

recharge v

mmonium) a

e water qua

SIN which m

ecessary to

uires creatin

Area and Ad

e done com

ality module

to demonst

dules have

nd supply us

presented in

ovides sepa

values to M

as shown in

antity and a

models flow

o set up MIK

ng a Catchm

djunctImper

mpletely with

e have yet

trate how w

been updat

se case

n Section 6

arate surfa

MIKE BASIN

n Figure 6.9

ammonium l

ws and wate

KE BASIN a

ment in MIK

rviousArea

hin MIKE B

to be upda

water quality

ted.

6.2, this us

ace runoff

N, and in

9. In this u

loads are m

er quality in

as described

KE BASIN f

in ACRU.

BASIN. Tho

ated for us

y could be m

se case

(termed

addition

use case

modelled

the river

d for the

for every

For this

ough the

e in the

modelled

Figure 6

6.5 O

The sim

integrat

historica

as inpu

simulate

The inte

demons

observe

regular

6.9 Wat

Operations

mple stream

ted ACRU a

al or stocha

ut to ACRU

es water all

egrated AC

strated in th

ed data be

intervals.

ter quality u

Modelling

mflow use

and MIKE B

astic time se

U which gen

locations an

CRU and M

he use cas

available t

 If for exa

use case

case desc

BASIN mod

eries of mod

nerate simu

nd flows res

IKE BASIN

se shown in

o update c

ample, sev

226

cribed in S

dels could b

del inputs s

ulated strea

sulting in an

 models co

n Figure 6.

critical state

ven day for

Section 6.1

be used in a

such as rain

amflows as

n estimate o

ould be used

10. Opera

e variables,

recasts of

 is an exa

a planning c

nfall and tem

 input to M

of catchmen

d in an ope

ational mod

such as re

rainfall and

ample of h

context, whe

mperature a

MIKE BASIN

nt yield.

erational co

elling requi

eservoir sto

d temperat

how the

ere long

are used

N which

ntext as

ires that

orage, at

ture are

availabl

then be

manage

day wh

tempera

seven d

daily tim

Figure 6

le, these ca

e run for a

er can then

hen a new

ature value

days can b

me steps us

6.10 Ope

an be provi

range of re

n make shor

w seven d

s for the pr

e provided

sing the sam

erations mo

ded as inpu

eservoir rele

rt term deci

day forecas

revious wee

as input to

me starting s

odelling use

227

ut to the AC

ease scena

isions rega

st is made

ek and forec

o the ACRU

state as bef

 case

CRU mode

arios for sev

rding releas

e available

cast rainfal

U model, an

fore.

l. The inte

ven daily tim

ses from re

e, the obse

l and tempe

nd both mo

egrated mod

me steps.

eservoirs. T

erved rainf

erature for

dels are th

dels can

A water

The next

fall and

the next

en for 8

The Ka

Manage

Figure 7

1871 m

north e

transfer

pumped

the Shi

Louws

Quatern

Figure 7

ap River is

ement Area

7.1. The ca

m, at Tafelko

east at the

rs into the K

d from the L

iyalongubu

Creek Irrig

naries X14A

7.1 The

whic

SLC Th

a tributary

a (WMA), si

atchment a

op in the we

confluence

Kaap River

Lomati Dam

Transfer th

gation Boar

A and X14B

e Kaap Riv

ch is locate

South Afric

7

ornton-Dib

of the Croc

tuated in th

area of the K

est at the h

e with the

r Catchmen

m to the Um

hat pumps

rd. The Lo

B respective

ver Catchm

d in the prim

ca

228

CASE ST

bb, DJ Clar

codile River

he north eas

Kaap River

ead of the

Crocodile

nt. The firs

mjindi Local

water from

omati and

ely, within th

ment is repr

mary catchm

Kaa

Te

UDY

rk and JC S

r and is loca

stern part o

is 1640 km

Suidkaap tr

River. Th

t is the Lom

 Municipalit

m the Shiya

Shiyalongu

he Komati R

resented by

ment X, nam

ap River Catc

rtiary catchmen

Smithers

ated within

of South Afr

m2 and the a

ributary, do

here are tw

mati transfe

ty (Barberto

alongubu D

ubu Dams

River Catchm

y the tertia

mely the Ink

Inkom

Primary catc

chment

nt X23

the Inkoma

rica as illust

altitude var

own to 336

wo inter-ca

er in which

on). The se

Dam for use

are located

ment to the

ary catchme

komati

mati

chment X

ati Water

trated in

ies from

m in the

atchment

water is

econd is

e by the

d in the

south.

ent X23

229

The Kaap River Catchment was selected as a test case as it has various competing water

users including domestic, mining and irrigation, which primarily abstract water from the

variable streamflow. The Kaap River Catchment forms a subcatchment of the Crocodile

River Catchment, which flows from South Africa into Mozambique. The Kruger National

Park’s southern border is formed by the Crocodile River before it enters Mozambique and

thus there is the Reserve Flow requirement required by the park as well as the international

flow requirement at the Mozambique border that need to be considered. In order to meet

these flow requirements the subcatchments of the Crocodile need to be managed

holistically. This study was aimed at creating a better understanding of the Kaap River

Catchment within this larger system. In order to achieve this, the ACRU and MIKE BASIN

models were configured for the Kaap River Catchment.

7.1 MIKE BASIN Configuration

The variation in altitude, represented by a 20 m Digital Elevation Model (DEM) obtained from

Inkomati Catchment Management Agency (ICMA), is illustrated in Figure 7.2.

The delineation of the subcatchments was based on the “quinary” shapefile of the Inkomati

catchment, received from DHI (Frezghi, 2012b) and originating from a report by Mallory and

Beater commissioned by DWAF (DWAF, 2009). This “quinary” shapefile consisted of 20

subcatchments. Two of these subcatchments were further sub-divided based on the

locations of the proposed Mountain View Dam (Haumann, 2008) and the Concession Creek

Dam (Theron, 2006). The DEM was utilised to delineate these new subcatchments as well

as the rivers within the MIKE BASIN software. The subcatchments, rivers, major dams,

primary abstractions and transfers, based on a MIKE BASIN configuration received from

(Frezghi, 2012a), were all added to the MIKE BASIN configuration as illustrated Figure 7.3.

A dam representing the lumped dams within SubCatchment_11 and the irrigation demand

for the same catchment were added for testing model linking.

23
0

F
ig

ur
e

7.
2

A
lti

tu
de

 v
ar

ia
tio

n
in

 th
e

K
aa

p
R

iv
er

 C
at

ch
m

en
t

FF
ig

ur
e

7.
3

MM
IK

E
 B

A
S

IN
 c

on
ffig

ur
at

io
n

fo
r

th
ee

 K
aa

p
R

iv
er

 C
a

23
1

at
ch

m
en

t

7.2 A

The AC

case s

subcatc

climate

7.2.1

The 22

configu

shown

shown

Figure 7

ACRU Conf

CRU4 versio

study. Th

chments co

, soils, land

Subcatchm

2 subcatch

re the ACR

in Figure 7

in Table 7.1

7.4 Loc

sele

iguration

on of the A

e ACRU m

rresponding

-use and ot

ment and H

ments gen

RU model. T

.5. The are

1.

cation of qu

ected rain g

ACRU mode

model was

g to those u

ther model

HRU config

nerated for

These subc

eas of the q

uaternary ca

auges

232

el described

s configure

used in the M

inputs are d

guration

the MIKE

catchments,

quaternary

atchments,

d in Clark e

ed for the

MIKE BASI

described in

E BASIN c

, shown in F

catchments

subcatchm

et al. (2009

Kaap Riv

N configura

n the followi

configuration

Figure 7.4,

s and their s

ments, flow

) was used

ver Catchm

ation. Detai

ing sections

n were uti

were netwo

subcatchme

gauging we

d for this

ment for

ils of the

s.

lised to

orked as

ents are

eirs and

Figure 7

Table 7

The AC

quatern

Schulze

catchm

7.5 Sub

7.1 Qua

CRU model

nary catchm

e et al. (20

ents were t

bcatchment

aternary cat

Quaterna
ID

X23A

X23B

X23C

X23D

X23E

X23F

X23G

X23H

Total area o

l was confi

ments withi

004). The A

hen used a

flow netwo

tchment and

ary Catchme
Area (k

126

229

81

181

180

309

225

306

of Tertiary C

gured for t

n Tertiary

ACRU inpu

s generalis

233

ork for the K

d subcatchm

ent
km2)
6.813 10

11
9.133 12

13
14

1.290 5
 6

1.871 7
 8

0.396 1
 2

9.588 3
 4
 9

5.098 15
16

6.063 17
18
19
20
21
22

Catchment X

the Kaap R

Catchmen

ut variables

ed input int

Kaap River C

ment areas

Subcatch
ID

X23 (km2)

River Catch

t X23, from

s and param

to each of th

Catchment

hment
Area (km2)

51.637
75.176
33.922
97.288
97.923
58.358
22.932
98.422
83.449
86.723
93.673
15.614

127.012
166.962
75.889

149.209
81.313

110.171
30.041
11.017

9.173
64.348

1640.252

hment by fi

m the conf

meters from

he new sub

7
6
2
8
3
8
2
2
9
3
3
4
2
2
9
9
3
1
1
7
3
8

2

rstly extrac

figuration u

m these qua

bcatchments

cting the

used by

aternary

s.

234

The subcatchment coverage was used as input into the ACRU Grid Extractor (Lynch and

Kiker, 2001), which is an ArcView extension used to extract the soils and land-type

information required by the ACRU model. The subcatchments were divided into

Hydrological Response Units (HRUs) based on a union of the land-use of the Kaap River

Catchment which was obtained from the National Land Cover for the year 2000 (NLC, 2005)

shown in Figure 7.9. The land-use polygons with the same specified land cover, contained

within a subcatchment, were grouped together to form single representative HRUs. The

representative HRUs contained within the subcatchments are listed in Appendix A.

7.2.2 Climate data

The main driver input for the ACRU model is rainfall. Representative rain gauges were

selected as driver stations for each of the subcatchments and extracted from the daily

rainfall database (Lynch, 2004) into ACRU CompositeY2K format files. An ACRU Reference

Climate Component was assigned to each of the subcatchments and the corresponding

ACRU CompositeY2K linked to it. The catchment rainfall correction factors for each of the

subcatchments used in this study were calculated from the gridded Mean Annual

Precipitation (MAP) and updated in the configuration files. The MAP represented by a

degree grid (Schulze et al., 2008) is illustrated in Figure 7.6. Daily maximum and minimum

temperatures were generated for the subcatchments, based on their centroids, from the

gridded temperature database (Schulze et al., 2010). Daily Penman-Monteith reference

evaporation values were generated for the same points, and corresponding adjustment

factors were derived to convert these Penman-Monteith reference evaporation values to A-

pan equivalents, so that A-pan derived crop factors could be used for the vegetation, as was

done by Schulze et al. (2010).

The variation in altitude, MAP and percentage reliability for the rain gauges in or near the

Kaap River Catchment are shown in Table 7.2, and plots of accumulated rainfall are shown

in Figure 7.7

 FF
ig

ur
e

7.
6

D
is

tr
ib

ut
io

n
of

 M
AA

P
 in

 th
e

K
aa

p
RR

iv
e

r
C

at
ch

m
en

t

23
5

t (
af

te
r

S
ch

ul
ze

 e
t a

l.,
 2

00
8)

Table 7

Figure 7

7.2.3

The Lan

hydrolo

the Lan

describ

Grassla

part of

extracto

Point (W

depth a

and BF

7.2 Cha

Rain
05185
05184
05185
05555
05188

7.7 Rai

Soils and l

nd Type an

ogical soils i

nd-use in F

ed as “Thic

and”. The f

the catchm

or was use

WP), poros

and drainag

FRESP res

aracteristics

Gauge ID
589W
460W
518W
567W
886W

n gauges in

land-use

d Year 200

information

Figure 7.9.

cket, Bushl

forestry is c

ment, where

ed to extrac

sity (PO), a

e response

spectively).

s of rain gau

Alti

n or near the

0 Land-use

, as shown

 The catch

land, Bush

oncentrated

e the soils

ct soils par

nd Field C

e fractions fo

 Soil wate

236

uges in or n

itude (m)
1397
1079

994
715
703

e Kaap Rive

e (Schulze e

 by the bro

hment is pr

Clumps, H

d in the hig

are broadl

rameters pe

apacity (FC

or A and B

er evapora

ear the Kaa

MAP (mm)
1036
1286

957
832
681

er Catchme

et al., 2008)

oad soil type

edominantly

High Fynbo

her altitude

ly of type A

er subcatch

C) for the A

Horizons (D

ation and t

ap River Ca

Reliabilit
6
6
7
2
1

ent

) were used

e categories

y covered

s” and “Un

s and is lar

Ab and Ac.

hment. Th

A-Horizon a

DEPAHO, D

transpiration

atchment

ty (%)
97.4
84.6
17.2
97.9
80.7

d as source

s in Figure

by the land

nimproved (

rgely in the

. The ACR

his included

and B-horiz

DEPBHO, A

n where m

s for the

7.8 and

d-covers

(natural)

western

RU Grid

d Wilting

zon; and

ABRESP

modelled

237

separately, which required the ACRU soil texture class to be input, which was back

calculated from the soils parameters (Schulze et al., 1995a). Other land-uses include

cultivated land, both irrigated and dry land, found chiefly in the lower altitudes, in addition to

urban and mining areas.

7.2.4 Dams and irrigated areas

The polygons with descriptions containing irrigated areas, from the Land-use, were also

simplified by combining them into a single representative irrigated HRU and adding these as

specialised irrigation type HRUs within each subcatchment. Similarly, areas indicated as

water bodies by the land-cover in each subcatchment, were aggregated into a single virtual

dam and added as a Dam component in the relevant subcatchment.

The database of registered dams was downloaded from the Department of Water Affairs

(DWA) Dams Safety website (DWA, 2012a). The database includes a Google Earth file that

facilitated identifying dams within the Kaap River Catchment. However, this database is only

accurate to the nearest second of a degree and therefore some of the locations in the file did

not correspond with the dams identified using Google Earth. All the dams located in the

Kaap River Catchment within this database were then correlated with the water bodies

indicated by the land type coverage and the dams easily identifiable within Google Earth.

Five unidentified dams were located within SubCatchment_10 and Subcatchment_11 and

these small dams where lumped as a single virtual dam in the ACRU configuration.

23
8

F
ig

ur
e

7.
8

B
ro

ad
 s

oi
l c

la
ss

ifi
ca

tio
n

w
ith

in
 th

e
K

aa
p

R
iv

er
 C

at
ch

m
en

t (
af

te
r

IS
C

W
, 2

00
5)

23
9

F
ig

ur
e

7.
9

La
nd

-u
se

 o
f t

he
 K

aa
p

R
iv

er
 C

at
ch

m
en

t (
af

te
r

N
LC

, 2
00

5)

7.3 V

Schulze

operatio

complex

in this c

X23E p

The HR

though

simplific

Figure 7

The Qu

from the

Verification

e (1995) re

onal catch

xities arisin

chapter as

proved to be

RUs within

there are m

cation.

7.10 Exa

uaternary C

e catchmen

Studies on

ecommends

ments, as

ng from anth

the attemp

e a challeng

the subcat

multiple HR

ample of con

Catchment X

nt recorded

n Quaterna

s that verifi

detailed

hropogenic

pt to verify t

ge.

tchments w

RUs, only th

nfiguration o

X23A is at t

 by the DW

240

ary Subcatc

cation stud

input data

land and w

the simulat

were configu

hree are ind

of HRUs wi

the head w

WA Weir X2

chments X

dies should

are often

water use. T

ions in Sub

ured as ind

dicated in F

thin subcat

waters of the

2H010, show

X23A, X23C

ideally not

n not avai

This statem

bcatchments

dicated in F

Figure 7.10

chments

e Noordkaa

wn in Figur

C and X23E

t be undert

lable and

ment becom

s X23A, X2

Figure 7.10

for the pur

ap River, wi

re 7.11. Th

taken in

due to

es clear

23C and

0. Even

rpose of

ith flows

here is a

241

flow record from 1948 up to 2012 available for this weir from the DWA website (DWA, 2012).

In the configuration used for this study the Quaternary Catchment X23A was divided into two

subcatchments, SubCatchment_10 and SubCatchment_11.

Figure 7.11 Flow gauging weir X2H010 (DWA, 2012b)

From a comparison of the simulated and observed streamflow at SubCatchmentNode_11

(Weir X2H010), it was apparent that there were a number of high simulated and observed

flows that did not correlate, as indicated in Figure 7.12. On closer examination it was also

noted that observed streamflow did not correspond to the rainfall events at these sites. The

correlation coefficient (R2) of 0.44 also indicated a poor correlation between simulated and

observed values. This could be as a result of the rain gauge selected for the subcatchment

and the associated missing data that had been infilled, or errors in the observed flow data.

The accumulated plots of rainfall, observed and simulated unit flow depth are summarised in

Figure 7.13. The accumulative plot of the rainfall, as shown in Figure 7.13, indicates a

change in slope at approximately 1974 for the selected rain gauge, 0518460 W. The

observed flow also indicates a change in slope in the mid-1960s. The observed and

simulated accumulative totals appeared relatively similar, with a slight under simulation. As

shown in Figure 7.13, there appears to be some under simulation occurring throughout the

simulation period. However, the large events occurring in the years 1954, 1956, 1972 and

1996 appeared to have been over simulated. Furthermore, the weir may have not captured

the full magnitude of these events as it is designed primarily to measure low flows.

Figure 7

Figure 7

7.12 Sim

7.13 Acc

mulated vs. o

cumulative r

observed m

rainfall, obs

242

monthly strea

erved and s

amflow for W

simulated s

Weir X2H01

treamflow f

10

for Weir X2H

H010

243

The shift in the gradient of the accumulative observed flow could be as a result of land use

changes with the catchment or abstractions. The increase in forest plantations over time is

one possible explanation, as there is a large amount of forestry, approximately 60% of the

catchment, as indicated by the land type coverage summarised in Table 7.3 and Table 7.4.

An increase in abstractions is another possible explanation. The majority of the commercial

forestry was planted before 1979 as indicated in Figure 7.14.

Table 7.3 Summary of land use in SubCatchment_10

Description

Area
(km2)

Area
(%)

Cultivated, temporary, commercial, dryland 0.038 0.07

Forest (indigenous) 8.948 17.33

Forest Plantations 31.112 60.25

Thicket, Bushland, Bush Clumps, High Fynbos 2.770 5.36

Unimproved (natural) Grassland 8.729 16.90

Waterbodies 0.022 0.04

Wetlands 0.018 0.03

 51.637 100.00

Table 7.4 Summary of land use in SubCatchment_11

Description

Area
(km2)

Area
(%)

Cultivated, temporary, commercial, dryland 4.918 6.54

Cultivated, temporary, commercial, irrigated 0.231 0.31

Forest (indigenous) 5.540 7.37

Forest Plantations 44.956 59.80

Thicket, Bushland, Bush Clumps, High Fynbos 16.210 21.56

Unimproved (natural) Grassland 3.185 4.24

Urban / Built-up, (industrial / transport : light) 0.097 0.13

Waterbodies 0.020 0.03

Wetlands 0.020 0.03

 75.177 100.00

The daily mean observed discharge at Weir X2H010, shown in Figure 7.15, clearly indicates

a marked difference in the flow patterns before and after the mid-1960s. This is possibly due

to a climatic shift or the introduction of commercial forestry. However, increased water

abstractions and errors in measurement of streamflow could also result in differences

between observed and simulated values.

Figure 7

Figure 7

7.14 Plan

7.15 Dail

ntation cove

ly mean obs

erage (After

served disc

244

r Jackson, 2

charge for X

2012)

X2H010

In a stre

low flow

investig

line add

Figure 7

The po

accumu

There a

(1966-2

does no

indicate

to be in

of a new

eamflow an

ws was ind

gation found

ded in Figur

7.16 7-D

int at which

ulative obse

are no flow

2012), there

ot have an

e that it has

nvestigated

w weir.

nalysis for W

icated in th

d that the w

re 7.16. Th

ay Minimum

h the chang

erved strea

ws in the re

efore the fl

y effect on

 a higher ac

if this chan

Weir X2H01

he 7-day mi

eir had a ch

e ratings ar

m flow for W

ge in rating

mflow plott

cord that e

attening ou

the curren

ccuracy in t

nge in rating

245

0 by Jewitt

inimum flow

hange in rat

re indicated

Weir X2H010

g occurs is

ted against

exceed the

ut of the ra

nt historical

the low flow

gs was acco

et al. (1999

w plot as s

tings in July

d in Figure 7

0 (after Jew

indicated o

the accum

rating capa

ating for the

dataset. T

ws over the

ompanied b

9), a decrea

hown in Fig

y 1966, indic

7.17.

witt et al, 19

on a double

ulative rain

acity for the

e second p

The second

first period’

by the desig

ase in the o

gure 7.16.

cated by th

99)

e mass plo

nfall in Figu

e ratings fo

period (199

d rating tab

’s ratings.

gn and cons

bserved

Further

e dotted

ot of the

ure 7.18.

or period

96-2012)

ble does

It needs

struction

Figure 7

Figure 7

7.17 Rat

7.18 Dou

ing curves f

uble mass p

for Weir X2

plot of the ra

246

2H010

ainfall and oobserved streamflow

The Qu

from the

flow rec

The dai

daily flo

again c

accumu

X2H024

change

catchm

divided

Figure 7

Figure 7

uaternary C

e catchmen

cord from 1

ily mean ob

ow for Weir

could be d

ulative obse

4 are illustra

e in gradien

ent. In the

into two su

7.19 Flow

7.20 Dail

Catchment X

nt recorded

964 till 201

bserved disc

r X2H024 in

due to obse

erved mont

ated in Figu

nt in the 1

e configurat

ubcatchmen

w gauging w

ly mean obs

X23C is at

 by the DW

12 available

charge at W

ndicates a l

ervation er

hly rainfall

ure 7.21 and

1960s poss

tion used fo

nts, SubCatc

weir X2H02

served disc

247

the head w

WA Weir X2

e for this w

Weir X2H02

lower frequ

rrors or inc

and stream

d Figure 7.2

sibly related

or this stud

chment_05

24 (DWA, 20

charge for X

waters of th

2H024, show

eir from the

4 is shown

ency of hig

creased ab

mflow, and s

22. The ob

d to the in

dy the Quat

and SubCa

012)

X2H024

he Suidkaa

wn in Figur

e DWA web

in Figure 7

gh flow eve

bstractions.

simulated s

bserved stre

ntroduction

ternary Cat

atchment_0

p River, wi

re 7.19. Th

bsite (DWA

7.20. The o

nts after 19

 The stat

streamflow

eamflow ind

of forestry

tchment X2

06.

ith flows

here is a

A, 2012).

observed

978, this

istics of

for Weir

dicates a

y in the

23C was

Figure 7

Figure 7

7.21 Sim

7.22 Acc

mulated vs. o

cumulative r

observed m

rainfall, obs

248

monthly strea

erved and s

amflow for W

simulated s

Weir X2H02

treamflow f

24

for Weir X2H

H024

The Qu

the catc

record

The da

flows in

334.8 m

streamf

Figure 7

the rain

this stu

SubCat

Figure 7

Figure 7

uaternary Ca

chment rec

from 1948

ily mean o

n 1984 were

mm over 7 d

flow, and s

7.26. Ther

n gauge se

udy the Q

tchment_01

7.23 Flow

7.24 Dail

atchment X

corded by th

up to 2012

bserved dis

e as a resu

days. The s

simulated st

re was a ma

lected or a

Quaternary

 and SubC

w gauging w

ly mean obs

X23E is at th

he DWA W

2 available

scharge at

ult of 324 m

statistics of

treamflow f

arked over

bstraction w

Catchmen

atchment_0

weir X2H00

served disc

249

he head wa

Weir X2H008

for this we

Weir X2H0

mm of rain o

accumulati

for Weir X2

simulation

within the c

nt X23A w

02.

08 (DWA, 20

charge for X

aters of the

8, shown in

eir from the

008 is show

over two da

ve observe

2H024 are

of the strea

catchment.

was divide

012)

X2H008

Queens Riv

 Figure 7.2

e DWA web

wn in Figur

ys; and in

d monthly t

illustrated i

amflow, whi

 In the con

ed into tw

ver, with flo

23. There i

bsite (DWA

re 7.24. Th

1996 as a

totals of rain

in Figure 7

ich could be

nfiguration u

wo subcatc

ows from

s a flow

A, 2012).

he large

result of

nfall and

7.25 and

e due to

used for

chments,

Figure 7

Figure 7

7.25 Sim

7.26 Acc

mulated vs. o

cumulative r

observed m

rainfall, obs

250

monthly strea

erved and s

amflow for W

simulated s

Weir X2H00

treamflow f

08

for Weir X2H

H008

251

An analysis of the accumulative observed rainfall and streamflow for a common period with

no missing data indicated that X2H010 and X2H024 had a runoff:rainfall ratio of 16%, as

opposed to that of 13% for X2H008 which appears to be low for this region. The best

simulation results were obtained from Subcatchment X23A (Weir X2H010).

7.4 Use Cases

To demonstrate the use of the integrated ACRU and MIKE BASIN models, these linked

models were run for three use cases for the Kaap River Catchment. In the first use case

(Streamflow) simple uni-directional links were created between the models such that ACRU

provides simulated streamflow inputs to MIKE BASIN, which models water allocation and

use. The second use case is similar to the first use case, except that MIKE BASIN now also

simulates flow routing down river reaches to represent lag and attenuation of flows as they

move through the river network. The third use case demonstrates bi-directional links

between the models, where ACRU provides simulated streamflow inputs and irrigation

requirements to MIKE BASIN, which models water allocation and use and informs ACRU of

the water allocated to irrigation water users. For these use cases both models were run at a

daily time step, though OpenMI does enable linking models running at different time steps.

As described in the Chapter 5, OpenMI wrappers were created for the ACRU and MIKE

BASIN models. Tests were run using simple hypothetical catchment configurations to

validate that the models could successfully be linked using these OpenMI wrappers.

However, setting up and running the three use cases presented in this chapter provided

valuable experience in applying the integrated models to a real catchment by highlighting

difficulties and areas for further research.

Although OpenMI makes it relatively easy to link two OpenMI compliant models, the linking

requires expert knowledge of both models in order to set up the links correctly and not

compromise the integrity of either model. When setting up the individual models it is

important to first have a detailed plan of how the models are to be linked as it may be

necessary for the individual models to be configured in a particular way to facilitate the links.

In these use cases, wetlands were modelled as ordinary HRUs in ACRU, as in ACRU river

reaches spill onto the wetland areas when flow exceed channel capacity. This represents

another instance of a feedback between the systems represented by the individual models

and requires further investigation. This is not expected to have a significant effect on the

252

results from these use cases, as wetlands represent a very small area of the whole Kaap

River Catchment.

In the verification studies discussed in Section 7.3, it was observed that the catchment

appeared to have experienced significant land use changes over time, possibly due to

afforestation, prior to 1972. For this reason it was decided that the use case simulations

would be run for 28 years, from 1972 to 1999. Initial attempts at running the use cases

failed due to System.OutOfMemoryException errors. When run individually, both models ran

for the full 28 year simulation period without errors and in a relatively short space of time. It

was anticipated that integrating the models, exchanging data on a daily basis via OpenMI,

would result in some performance penalties and would require additional memory resources,

though the full extent of this only became apparent when running these relatively large

model configurations. For the purpose of these use cases it was necessary to reduce the

simulation period to just 10 years, from 1990 to 1999, to avoid the

System.OutOfMemoryException errors.

In addition to the three use cases described below, the ACRU model was configured and run

as a standalone model in which both irrigation water users and water transfers into the

catchment were represented. This ACRU configuration provided a reference against which

to compare the Irrigation use case in Section 7.4.3

7.4.1 Streamflow links

In this use case the ACRU model is used to simulate runoff from the 22 subcatchments and

these runoff depths are then provided as input to the MIKE BASIN model which models all

water allocation and use, and flows down the river network. The catchment configuration for

MIKE BASIN is shown in Figure 7.27. Each catchment in MIKE BASIN was assigned a

specific runoff time series containing zero values which get overwritten by the runoff

quantities simulated by ACRU. For this use case the water users and their demands set up

in MIKE BASIN were obtained from DHI (Frezghi, 2012b) and were based on a report by

Mallory and Beater commissioned by DWAF (DWAF, 2009). There was no return flows

specified for any of the irrigation water users. In the ACRU model, irrigation was turned off

for all irrigated areas, effectively making these dryland cropping areas. In this use case

simple uni-directional links were created between the ACRU subcatchment UnitRunoff

(URFLOW) variables and the MIKE BASIN Specific Runoff variables as listed in Table 7.5.

There was a special case in Catchment11 in MIKE BASIN where some of the runoff flows

into the dam named Lumped Dam X23A-2 which is used for irrigation and some runoff flows

253

into the river reach down stream of this dam. In this situation two catchments,

Catchment11_01 and Catchment11_02, needed to be created in MIKE BASIN to receive

separate runoff values from ACRU river nodes 11.WaterbodyInflowNode_01 and

RiverInflowNode_11 respectively.

Table 7.5 The linked model variables for the streamflow use case

ACRU MIKE BASIN
SubCatchment_01: UnitRunoff (mm/d) Catchment01: Specific Runoff (l/s/km2)
SubCatchment_02: UnitRunoff (mm/d) Catchment02: Specific Runoff (l/s/km2)
SubCatchment_03: UnitRunoff (mm/d) Catchment03: Specific Runoff (l/s/km2)
SubCatchment_04: UnitRunoff (mm/d) Catchment04: Specific Runoff (l/s/km2)
SubCatchment_05: UnitRunoff (mm/d) Catchment05: Specific Runoff (l/s/km2)
SubCatchment_06: UnitRunoff (mm/d) Catchment06: Specific Runoff (l/s/km2)
SubCatchment_07: UnitRunoff (mm/d) Catchment07: Specific Runoff (l/s/km2)
SubCatchment_08: UnitRunoff (mm/d) Catchment08: Specific Runoff (l/s/km2)
SubCatchment_09: UnitRunoff (mm/d) Catchment09: Specific Runoff (l/s/km2)
SubCatchment_10: UnitRunoff (mm/d) Catchment10: Specific Runoff (l/s/km2)
11.WaterbodyInflowNode_01: UnitRunoff (mm/d) Catchment11_01: Specific Runoff (l/s/ km2)
RiverInflowNode_11: UnitRunoff (mm/d) Catchment11_02: Specific Runoff (l/s/ km2)
SubCatchment_12: UnitRunoff (mm/d) Catchment12: Specific Runoff (l/s/km2)
SubCatchment_13: UnitRunoff (mm/d) Catchment13: Specific Runoff (l/s/km2)
SubCatchment_14: UnitRunoff (mm/d) Catchment14: Specific Runoff (l/s/km2)
SubCatchment_15: UnitRunoff (mm/d) Catchment15: Specific Runoff (l/s/km2)
SubCatchment_16: UnitRunoff (mm/d) Catchment16: Specific Runoff (l/s/km2)
SubCatchment_17: UnitRunoff (mm/d) Catchment17: Specific Runoff (l/s/km2)
SubCatchment_18: UnitRunoff (mm/d) Catchment18: Specific Runoff (l/s/km2)
SubCatchment_19: UnitRunoff (mm/d) Catchment19: Specific Runoff (l/s/km2)
SubCatchment_20: UnitRunoff (mm/d) Catchment20: Specific Runoff (l/s/km2)
SubCatchment_21: UnitRunoff (mm/d) Catchment21: Specific Runoff (l/s/km2)
SubCatchment_22: UnitRunoff (mm/d) Catchment22: Specific Runoff (l/s/km2)

This use case was successfully run for the simulation period 1990 to 1999, and the results

are discussed in Section 7.4.4. This use case could be achieved using series linking, but is

now easier and should produce identical results.

25
4

F
ig

ur
e

7.
27

T

he
 M

IK
E

 B
A

S
IN

 c
on

fig
ur

at
io

n
fo

r
th

e
st

re
am

flo
w

 u
se

 c
as

e

255

7.4.2 Streamflow links with flow routing

The ACRU and MIKE BASIN configurations for this use case were almost identical to the

previous use case (Section 7.4.1), except that in MIKE BASIN flow routing was turned on for

the river reaches and the necessary flow routing variables were specified. Some minor

changes were also required in the configuration of the river reaches as MIKE BASIN does

not route flows down river reaches directly below confluences, water abstraction points and

dams. To resolve this problem it was necessary to add river nodes so as to make short river

reaches, in which no flow routing takes place, immediately downstream of confluences,

water abstraction points and dams.

MIKE BASIN provides three different routing options: wave translation, linear routing and

Muskingum routing. Initially it was proposed that the Muskingum routing option method

would be used, however, the lengths of the river reaches together with the daily time step

resulted in the Muskingum method being unsuitable, which lead to a decision to use the

simpler linear routing method for the purpose of this use case. The average slope of each

river reach was estimated using the length of the reach and the start and end elevations

estimated from the DEM for the catchment. The average slope for each river reach was

used together with the Uplands nomograph (Schulze and Arnold (1979), cited by Schulze et

al. (1992)), to determine the average flow velocity. The average flow velocity was multiplied

by 11/9 (Viessman et al., 1989) to determine the wave celerity in each reach. Finally, the

flow routing delay factor K was estimated for each river reach by dividing the reach length by

the wave celerity. In the MIKE BASIN configuration the delay parameter K was specified for

each river reach.

This use case was successfully run for the simulation period 1990 to 1999, and the results

are discussed in Section 7.4.4. This use case demonstrates the advantage of linking to

MIKE BASIN to provide additional functionality and is expected to improve modelling results

due to the lag and attenuation of flows in long river networks. Flow routing will be necessary

when using the models for short term operational decisions.

256

7.4.3 Streamflow and irrigation links

In this use case the ACRU model is used to simulate runoff and irrigation requirements from

the 22 subcatchments and these runoff and irrigation requirement values are then provided

as input to the MIKE BASIN model. MIKE BASIN models all water allocation and non-

irrigation water use, returns irrigation supply quantities to ACRU, and flows down the river

network. The supplied irrigation quantities are applied to the irrigated areas modelled by

ACRU and any return flows are included in the runoff quantities simulated by ACRU. The

catchment configuration for MIKE BASIN is shown in Figure 7.28. The non-irrigation waters

users were the same as those modelled in the streamflow use case (Section 7.4.1). In the

ACRU model, irrigation was turned on for all irrigated areas by switching the values in the

IrrigMonths (IRRMON) variable to 1. To model irrigation from an external water supply in

ACRU it was necessary to associate an ExternalWaterSourceNode component with each

Irrigated Area component using the WaterSupplyPath (WSPATH) variable. In MIKE BASIN

the irrigation water users were represented by a water user node in each catchment for

which ACRU simulates irrigated land use. These irrigation water user nodes were assigned

a water demand time series containing zero values which get overwritten by the irrigation

water requirement quantities simulated by ACRU. In this use case bi-directional links were

created between the ACRU model and the MIKE BASIN model to represent the irrigation

demand and supply feedbacks. The links between the ACRU subcatchment UnitRunoff

(URFLOW) variables and the MIKE BASIN catchment Specific Runoff variables were

configured as listed in Table 7.5 for the streamflow use case. Links between the ACRU

irrigated area RequestQuantity (IRREQ) variables and the MIKE BASIN water user node

Water Demand variables, and links between the ACRU external water source node

ExternalWaterSourceQuantity (EXTWSQ) variables and the MIKE BASIN supply channel

Flow variables were configured as listed in Table 7.6.

This use case was successfully run for the simulation period 1990 to 1999, and the results

are discussed in Section 7.4.4. This use case demonstrates the ability to represent irrigation

feedbacks between the components modelled by the individual models, which would not be

possible if the models were linked in series. In this case these two models both offer

irrigation modelling functionality, but if ACRU were integrated with a river network model

without irrigation modelling functionality, the parallel link would be necessary. Though the

irrigation links configured for this use case, these links need to be investigated further to see

if there is an easier way of setting these up and taking multiple water sources into account.

25
7

F
ig

ur
e

7.
28

T

he
 M

IK
E

 B
A

S
IN

 c
on

fig
ur

at
io

n
fo

r
th

e
st

re
am

flo
w

 a
nd

 ir
rig

at
io

n
us

e
ca

se

258

Table 7.6 The additional linked model variables for the irrigation use case

ACRU MIKE BASIN
IrrigatedArea_04: RequestQuantity (m3/d) Irrigation_04: Water Demand (m3/s)
04.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E120): Flow (m3/s)

IrrigatedArea_08: RequestQuantity (m3/d) Irrigation_08: Water Demand (m3/s)
08.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E114): Flow (m3/s)

IrrigatedArea_09: RequestQuantity (m3/d) Irrigation_09: Water Demand (m3/s)
09.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E123): Flow (m3/s)

IrrigatedArea_11: RequestQuantity (m3/d) Irrigation_11: Water Demand (m3/s)
11.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E95): Flow (m3/s)

IrrigatedArea_13: RequestQuantity (m3/d) Irrigation_13: Water Demand (m3/s)
13.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E147): Flow (m3/s)

IrrigatedArea_14: RequestQuantity (m3/d) Irrigation_14: Water Demand (m3/s)
14.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E132): Flow (m3/s)

IrrigatedArea_15: RequestQuantity (m3/d) Irrigation_15: Water Demand (m3/s)
15.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E148): Flow (m3/s)

IrrigatedArea_16: RequestQuantity (m3/d) Irrigation_16: Water Demand (m3/s)
16.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E135): Flow (m3/s)

IrrigatedArea_17: RequestQuantity (m3/d) Irrigation_17: Water Demand (m3/s)
17.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E120): Flow (m3/s)

IrrigatedArea_18: RequestQuantity (m3/d) Irrigation_18: Water Demand (m3/s)
18.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E89): Flow (m3/s)

IrrigatedArea_19: RequestQuantity (m3/d) Irrigation_19: Water Demand (m3/s)
19.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E151): Flow (m3/s)

IrrigatedArea_20: RequestQuantity (m3/d) Irrigation_20: Water Demand (m3/s)
20.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E144): Flow (m3/s)

IrrigatedArea_21: RequestQuantity (m3/d) Irrigation_21: Water Demand (m3/s)
21.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E141): Flow (m3/s)

IrrigatedArea_22: RequestQuantity (m3/d) Irrigation_22: Water Demand (m3/s)
22.ExternalWaterSourceNode_01:
ExternalWaterSourceQuantity (m3/d)

Reach (E150): Flow (m3/s)

7.4.4 Results

The simulation results for the three use cases (Streamflow, Flow Routing and Irrigation)

were compared with the observed flows from Weir X2H022, which is situated near the exit of

the Ka

(ACRU_

period

produce

routing

flows b

ACRU_

configu

the ACR

flows b

solely d

users.

verificat

irrigated

even g

especia

verificat

Figure 7

aap River

_Standalon

is shown in

ed similar f

simply lags

being lagge

_Standalone

rations wer

RU and MI

etween the

due to the

 This discr

tions in dev

d land use,

reater conc

ally in early

tion studies

7.29 Acc

Catchmen

ne). A grap

n Figure 7.2

flow volume

s and atten

ed by appr

e use case

re used, an

IKE BASIN

e two differe

difference

repancy in

veloped op

and also h

cern is the

1996, thou

s in the head

cumulated fl

nt, and wi

ph of accum

29. As exp

es as the sa

uates flows

roximately

es produce

d important

models wo

ent catchme

in water ab

water use

erational ca

ighlights an

e difference

ugh these re

dwater subc

low (106 m3

259

ith simulat

mulated flow

pected the

ame catchm

s to some e

one day.

ed similar

tly this conf

orked as ex

ent configu

bstracted fr

 quantities

atchments,

n area for fu

e between

esults were

catchments

3) at Weir X2

tion results

w volumes

Streamflow

ment config

extent. Flow

 Also, as

flow volum

firms that th

xpected. T

urations was

rom the rive

highlights

especially

urther invest

observed

e not unexp

s discussed

2H022 for t

s from AC

for the full

w and Flow

gurations we

w routing re

expected,

mes as the

he bi-directi

The differen

s larger tha

er network

the difficul

those that

tigation for

and simula

ected, give

in Section

he period 1

CRU on

10 year sim

wRouting us

ere used, a

esulted in t

the Irrigat

e same ca

ional links b

nce in accu

an expected

by irrigatio

lty of doing

contain da

this catchm

ated flow v

n the result

7.3.

990 to 1999

its own

mulation

e cases

and flow

he peak

ion and

atchment

between

mulated

d and is

on water

g model

ams and

ment. Of

volumes,

ts of the

9

The flow

occurre

Februar

observe

X2H022

m3/s. T

other m

when th

the con

used w

events

the per

appears

Streamf

when th

March 1

Figure 7

w rates for

ed in this re

ry over the

ed flows, w

2 weir was

The capacit

marked diffe

he average

nclusion tha

with caution.

in this catc

riod April 19

s to be a g

flow and Fl

he average

1999, and D

7.30 Flow

the first fou

egion in Feb

peak of th

which partly

replaced i

ty of the we

rences betw

 flow rate e

t periods w

. The way

chment also

996 to Dec

good correla

low Routing

flow rates e

December 1

w rates for W

ur months o

bruary 1996

e flood. Th

explains th

n 2001 wit

eir at X2H02

ween accum

exceeds ap

here observ

in which th

o needs to

cember 199

ation betwe

g use cases

exceeded 2

1999.

Weir X2H02

260

of 1996 are

6 and obse

he simulate

he differenc

th a bigger

22 prior to

mulated obs

pproximately

ved averag

he ACRU m

be investig

99 are show

een observe

s. Again, d

20.0 m3/s, su

22 for early

e shown in

rved data i

ed flows sta

ce in flow vo

weir with a

2001 is not

served and

y 20.0 m3/s

e daily flow

model simul

ated furthe

wn in Figur

ed flows an

differences

uch as in M

1996

Figure 7.30

s missing b

art to increa

olumes ove

a structural

t known, bu

simulated f

. These ob

ws exceed 2

ates flows

r. The acc

e 7.31. Fo

nd the simu

in flow accu

March 1997,

0. Severe

between 12

ase earlier t

er this perio

l capacity o

ut it was no

flows occur

bservations

20.0 m3/s sh

during high

cumulated f

or this perio

ulated flows

umulation o

 December

flooding

2 and 14

than the

od. The

of 61.86

oted that

on days

s lead to

hould be

h rainfall

flows for

od there

s for the

occurred

1998 to

Figure 7

Flow ra

rainy se

observe

high pe

simulat

requirem

case, c

Streamf

both in

Streamf

In Figur

the sam

quite di

events

rainfall

use in t

7.31 Acc

ates for the

eason is sh

ed peak flo

eak flows.

ion of flow

ments being

compared to

flow use ca

 the soil a

flow and Irr

re 7.32 and

me high flow

ifferent. Ho

that are ap

events that

hese case s

cumulated fl

1997-1998

own in Figu

ows and the

In a seaso

ws than th

g modelled

o the consta

ase. In the

and in the

rigation use

d Figure 7.3

w events a

owever, the

pparent in t

t are not pre

studies.

low (106 m3

rainy seas

ure 7.33. T

e 1998-199

on with low

he Streamfl

in the ACR

ant water u

 1998-1999

river netw

case simul

33 it can be

as were obs

ere are a fe

the observe

esent in the

261

3) at Weir X2

on are show

The 1997-19

99 rainy sea

wer flows, th

low use c

RU model o

use quantiti

9 rainy seas

work, this d

lations prod

e seen that

served, tho

few instanc

ed flows. T

e rainfall tim

2H022 for t

wn in Figur

998 rainy s

ason is cha

he Irrigation

case. This

n a day-by-

es used as

son, when

difference is

duce reason

in most ca

ough the ma

es where t

This problem

me series fo

he period 1

e 7.32, and

eason is ch

aracterised

n use case

s is due t

-day basis i

s input to M

there is mo

s less obvi

nable results

ases the sim

agnitude of

he models

m is possib

or the rain g

996 to 1999

d for the 19

haracterised

by a few r

results in

to actual i

in the Irriga

MIKE BASIN

ore water av

ious and b

s.

mulations re

f the flows

are not sim

bly due to lo

gauges sele

9

98-1999

d by low

elatively

a better

rrigation

ation use

N for the

vailable,

both the

epresent

may be

mulating

ocalised

ected for

Figure 7

Figure 7

7.32 Flow

7.33 Flow

w rates for W

w rates for W

Weir X2H02

Weir X2H02

262

22 for the 1

22 for the 1

997-1998 ra

998-1999 ra

ainy season

ainy season

n

n

In addit

flows a

due to t

model,

respons

the adv

function

routing

case is

closer t

in repre

operatio

Figure 7

In addit

factors

catchm

rainfall

parame

Althoug

tion to the o

re often sig

the capacit

such as so

se characte

vantages o

nality such

is shown i

 too early a

to the obser

esenting ev

ons modelli

7.34 Exa

tion to poss

possibly a

ent, transfe

time serie

eters and v

gh the simu

over simula

gnificantly h

y of the we

oil properties

eristics of th

f integratin

as flow rou

n Figure 7.

and too hig

rved flow hy

vent hydrog

ng.

ample of the

sible errors

affecting th

ers into the

es, static l

variables a

ulated strea

ation of stre

higher than

eir being ex

s and the q

e catchmen

g the ACR

uting. An e

.34, where

gh, and the

ydrograph.

raphs, espe

e effect of flo

in the meas

he simulatio

catchment,

and cover

affecting th

amflow volu

263

eamflow vo

the observ

xceeded, bu

uick flow re

nt will also h

RU and MIK

example of

the peak o

hydrograp

 Flow routin

ecially in b

ow routing o

surement of

ons includ

 local rainfa

r for the d

he respons

umes in the

lumes, the

ved peaks.

ut paramete

esponse fac

have an eff

KE BASIN

f the advan

of the hydro

h in the Flo

ng can prov

ig catchme

on flow rate

f high flows

e the esti

all events n

duration of

e of the c

ese use cas

simulated p

For large e

ers and vari

ctor, that ha

ect on the p

models is

tage of bei

ograph in th

ow Routing

vide a signif

nts, and ca

es for Weir X

s at Weir X2

mation of

ot represen

the simul

catchment

ses do not

peak avera

events this

iables in the

ave an effec

peak flows.

to gain ad

ing able to

he Streamf

 use case

ficant impro

an be impo

X2H022

2H022, som

water use

nted in the s

lation, and

to rainfall

t closely ma

age daily

may be

e ACRU

ct on the

 One of

dditional

do flow

flow use

is much

ovement

rtant for

me of the

e in the

selected

d ACRU

events.

atch the

264

observed streamflow volumes, the objective of demonstrating the use of the integrated

models in a real catchment has been achieved. Flow routing in MIKE BASIN enables better

modelling of flow peaks, and modelling irrigation requirements in ACRU enables better

modelling of irrigation water demand than the constant demand quantities use in the

Streamflow used case.

265

8 DISCUSSION AND CONCLUSIONS

DJ Clark and JC Smithers

The modelling requirements for water resources planning and operations to meet the

specifications of the National Water Act (NWA, 1998) of South Africa were identified by Pott

et al. (2008b). It was recognised that it is unlikely that any one model would be able to meet

all these requirements. To meet these requirements a collection of models covering all

aspects (hydrology, environmental, economic and social) of water resource systems is

required, and these models need to be integrated to model real world complexity and to

ensure that any important feedbacks within the system are represented. The project thus

aimed to demonstrate the integration of different domain models, with the linking of a

hydrological model and a river network model, as a case study, in order to meet some of the

modelling requirements identified for water resources planning and operations. The more

specific objectives of this project were to:

• Review river network models which are suitable for water resource planning and

operations and select one to be integrated with the ACRU hydrological model.

• Investigate methods for linking different domain models such as a hydrological model

and a network model, and select a suitable method for integrating the hydrological

model and the selected river network model.

• Further develop the ACRU daily time step hydrological model in order to realistically

represent the varying hydrological responses within the terrestrial hydrological system.

• Configure and apply the integrated hydrological model and selected river network

model for selected catchments within the Inkomati WMA.

There are a number of river network models available internationally. The initial review of

these models, documented in Section 2.1, resulted in a recommendation that the MIKE

BASIN, MODSIM and RiverWare models be evaluated in more detail. The result of this

detailed evaluation, described in Section 2.2, was that the MIKE BASIN model was

recommended for use in the project largely due to its ease of use, strong GIS support

through ArcGIS and availability of local user support and training.

A review of available mechanisms for linking models was conducted and is documented in

Section 3.1. Based on this review it was concluded that the OpenMI, TIME and OMS

systems would be suitable for use in the project and OpenMI was selected for the following

reasons: it is generally accepted as a de facto standard, is strongly supported by the

266

OpenMI Association, has been widely adopted by key research and commercial model

developers, the provision of a useful set of compliant models, and is well documented.

Further development of the ACRU model and its associated model input files, as described

in Chapter 4, has resulted in the model being better suited for use in both water resources

planning and operations modelling and is now capable of more realistically representing real

world complexity. Several changes were made to the ModelData and ModelConfiguration

XML schemas used for ACRU model input and to the model itself to refine the design and to

include new functionality such as scenario management, the storage of state variables

required to hot-start the model, a means of storing dynamic data, use of forecast data and

improved linkages to external data files. The revised ModelData and ModelConfiguration

schemas are more robust and capable of providing the ACRU model with model input

functionality necessary for both planning and operations modelling. The changes made to

the ACRU model itself, included: a revised internal data structure, the concept of resources,

and new functionality such as scenarios, hotstarting and the storage of state data, dynamic

variables and flexible spatial component configurations.

The OpenMI model linkage framework was successfully implemented to create an OpenMI

1.4 .Net wrapper for the MIKE BASIN model and both OpenMI 1.4 Java and .Net wrappers

for the ACRU model. Both models were structured such that it was relatively easy to make

them OpenMI compliant using the wrapping tools provided by the OpenMI Association. An

important lesson learned while setting up and testing the integrated models was that though

OpenMI may make it easy to link compliant models, a detailed understanding of the models

being linked is required to ensure that valid links are created without compromising the

integrity of either model. To aid in the application of the integrated models a number of use

cases have been described with details of which variables should be linked in each model

and important points to note to ensure the models are correctly configured.

To demonstrate the application of the integrated models, the models were configured for the

Kaap River Catchment which is part of the Inkomati WMA. The poor verifications of

simulated streamflow against observed streamflow highlighted the need for more accurate

data and at a finer spatial and temporal resolution, including: rainfall, streamflow, land cover,

land use practices, soils, water transfers and water abstractions.

The project was successful in demonstrating the implementation of OpenMI by successfully

linking the ACRU and MIKE BASIN models which represent two often separately modelled

domains within water resource systems. The use of these linked models is expected to be a

267

useful tool for water resources modelling for planning and operations in South Africa. This

project was a test case for model integration of legacy models using OpenMI and, given the

successes achieved, there is no apparent technical reason why other models representing

other domains cannot also be made OpenMI compliant. In addition to the fact that the

ACRU model can now be easily linked with MIKE BASIN, OpenMI compliance means that

these models can be linked to a range of other OpenMI compliant models, many from well-

known developers of software for water resources modelling.

In this project, the advantages of linking models in parallel to provide a more holistic systems

view of water resources and better representation of feedbacks between components in the

different domains being modelled, were demonstrated. Some potential limitations of linking

models include, the requirement for expert knowledge of all models to be linked, reduction in

performance in running simulations, due to the linkage mechanism, and increased

uncertainty in the simulation results introduced by linking the models.

268

9 RECOMMENDATIONS

DJ Clark and JC Smithers

This project has demonstrated that integration of independent domain models using OpenMI

is possible, and has explained and demonstrated the advantages of model integration in

being able to better represent real world complexity and thus to provide a systems view of

water resource systems. The application of the integrated ACRU and MIKE BASIN models

by users outside of the project team would not be easy, as an understanding of the OpenMI

model linkage mechanism and the individual models is required. An open modelling

environment named Delta Shell is being developed by the Dutch research institute Deltares.

This integrated modelling environment will include OpenMI tools to enable models to be

linked, but also facilitate communication between models and the modelling environment

which will provide GIS, data management and analysis tools. Delta Shell should be

investigated further once it is released, both for the modelling environment itself and the

approach adopted to facilitate use of OpenMI.

The performance penalty and memory requirements when linking models using OpenMI

needs to be further investigated. Once a stable version of OpenMI 2.0 SDK has been

released by the OpenMI Association, the development of OpenMI 2.0 compliant wrappers for

the ACRU and MIKE BASIN models should be considered as it is expected to offer better

performance and improved user interface tools for linking models.

The integration of additional models, such as groundwater, water quality and economics

models, using OpenMI would enable the OpenMI model linkage mechanism to be tested

further. The integration of additional models, representing other domains, would also enable

the investigation of the advantages and potential problems associated with modelling

feedbacks between the various domains.

Considerable expertise has been developed through this project in the use of OpenMI to

dynamically link legacy models. While the linked models have been demonstrated to

operate on a real catchment, it is recommend that the expertise developed in the project be

used to install and operationalize the linked models such that they can be used by water

resource managers (e.g. by a CMA). It is anticipated that this will lead to further

developments and refinements in order to meet the requirements of the water resource

managers. This will also utilise the expertise developed during the project which, with no

269

follow up research or operationalization project, is in danger of dispersing and being lost to

the water community in South Africa.

270

10 CAPACITY BUILDING

DJ Clark and JC Smithers

The three staff employed by this project belong to the newly formed Centre for Water

Resources Research (CWRR) at the University of KwaZulu-Natal, and as such are involved

in assisting, advising and supervising postgraduate students from the disciplines of

Hydrology and Bioresources Engineering.

This project has provided support for the four postgraduate students listed in Table 10.1.

During this project the students have grown in knowledge and experience and are all are

due to submit their dissertations for examination in 2013.

Table 10.1 Students supported by the project.

Student Full/Part Time Degree

Mr DJ Clark Part time PhD Engineering

Mr A Lutchminarain Part time MSc Bioresources Systems

Mr SLC Thornton-Dibb Part time MSc Hydrology

Mr R Winckworth Part time MSc Hydrology

More specifically, considerable expertise has been developed during this project in the use

of OpenMI to dynamically link legacy models, and in its application by integrating the ACRU

and MIKE BASIN models. The integration of models representing different domains within

water resource systems is seen to be a key requirement in providing water managers with

the tools and information necessary to make sound decisions, taking into consideration

environmental, economic and social aspects of water as required by the National Water Act

of South Africa. To the best of the author’s knowledge this is the first time that OpenMI has

been applied in South Africa, which means that as a result of this project, important capacity

has been developed in South Africa and not just at the University of KwaZulu-Natal. The

reviews of river network models and model linkage mechanisms are also expected to serve

as a useful reference for other water resources modellers in South Africa. The Kaap River

Catchment in the Inkomati WMA was used for the case study in this project and the Inkomati

CMA has expressed interest in building capacity in the use of the integrated ACRU and

MIKE BASIN models. This will enable expertise developed during the project to be used,

which, with no follow up research or operationalization project, is in danger of dispersing and

being lost to the water community in South Africa.

271

11 REFERENCES

Ahuja, LR, Ascough Ii, JC and David, O. 2005. Developing natural resource models using
the object modelling system: feasibility and challenges. Adv. Geosci. 4: 29-36.

Argent, R, Perraud, JM, Rahman, J, Grayson, R and Podger, G. 2009. A new approach to
water quality modelling and environmental decision support systems. Environmental
Modelling & Software 24 (7): 809-818.

Argent, R and Rizzoli, A. 2004. Development of multi-framework model components. 365-
370. Citeseer.

Armstrong, R, Kumfert, G, McInnes, LC, Parker, S, Allan, B, Sottile, M, Epperly, T and
Dahlgren, T. 2006. The CCA component model for high-performance scientific
computing. Concurrency and Computation: Practice and Experience 18 (2): 215-229.

Ascough, JC, David, O, Krause, P, Fink, M, Kralisch, S, Kipkac, H and Wetzel, M. 2010.
Integrated Agricultural System Modelling Using OMS 3: Component Driven Stream
Flow and Nutrient Dynamics Simulations. In: eds. Swayne, D, Yang, W, Voinov, A,
Rizzoli, A and Filatova, T, International Environmental Modelling and Software
Society (iEMSs), 2010 International Congress on Environmental Modelling and
Software – Modelling for Environment’s Sake, Ottawa, Canada.

Assaf, H, van Beek, E, Borden, C, Gijsbers, P, Jolma, A, Kaden, S, Kaltofen, M, Labadie,
JW, Loucks, DP, Quinn, NWT, Sieber, J, Sulis, A, Werick, WJ and Wood, DM. 2008.
Chapter Thirteen Generic Simulation Models for Facilitating Stakeholder Involvement
in Water Resources Planning and Management: A Comparison, Evaluation, and
Identification of Future Needs. In: eds. A.J. Jakeman, AAVAER and Chen, SH,
Developments in Integrated Environmental Assessment. Volume 3. Elsevier.

Barthel, R, G¨otzinger, J, Hartmann, G, Jagelke, J, Rojanschi, V and Wolf, J. 2006.
Integration of hydrological models on different spatial and temporal scales. Advances
in Geosciences 9: 1.

Basson, MS, Allen, RB, Pegram, GGS and van Rooyen, JA. 1994. Probabilistic
Management of Water Resources and Hydropower Systems. Water Resources
Publications, Highlands Ranch, Colorado, USA.

Biddle, SH. 2001. Optimizing the TVA Reservoir System Using RiverWare. In: eds. Don, P
and Gerald, S, 149. ASCE.

Blind, M, Dirksen, F, Gavardinas, C, Gijsbers, P, Gregersen, J and Westen, S. 2005.
OpenMI Document Series: Part B Guidelines for the OpenMI (version 1.0). [Internet].
The OpenMI Association. Available from:
https://sites.google.com/a/openmi.org/home/learning-
more/B_Guidelines.pdf?attredirects=0. [Accessed: 25 August 2012].

Blind, M and Gregersen, J. 2005. Towards an Open Modelling Interface (OpenMI) the
HarmonIT project. Advances in Geosciences 4: 69-74.

BoM. 2010a. Australian Hydrological Geospatial Fabric (Geofabric) Product Guide. [Internet].
Bureau of Meteorology. Available from:
http://www.bom.gov.au/water/geofabric/documentation.shtml. [Accessed: 14
December 2010].

BoM. 2010b. The Australian Water Resources Information System. [Internet]. Bureau of
Meteorology. Available from:
www.bom.gov.au/water/about/publications/document/InfoSheet_3.pdf. [Accessed: 14
December 2010].

Bramley, R, Chiu, K, Diwan, S, Gannon, D, Govindaraju, M, Mukhi, N, Temko, B and
Yechuri, M. 2000. A component based services architecture for building distributed
applications. 51. Published by the IEEE Computer Society.

Branger, F, Braud, I, Debionne, S, Viallet, P, Dehotin, J, Henine, H, Nedelec, Y and
Anquetin, S. 2010a. Towards multi-scale integrated hydrological models using the

272

LIQUID (R) framework. Overview of the concepts and first application examples.
Environmental Modelling & Software 25 (12): 1672-1681.

Branger, F, Debionne, S, Viallet, P, Braud, I, Jankowfsky, S, Vannier, O, Rodriguez, F and
Anquetin, S. 2010b. Advances in integrated hydrological modelling with the LIQUID
framework. In: eds. Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T,
International Environmental Modelling and Software Society (iEMSs), 2010
International Congress on Environmental Modelling and Software – Modelling for
Environment’s Sake, Ottawa, Canada.

Bulatewicz, T, Yang, X, Peterson, JM, Staggenborg, S, Welch, SM and Steward, DR. 2010.
Accessible integration of agriculture, groundwater, and economic models using the
Open Modelling Interface (OpenMI): methodology and initial results. Hydrology and
Earth System Sciences 14 (3): 521-534.

CADSWES. 2010a. RIVERWARE : Technical Documentation Version 6.0, Batch Mode and
RCL. Center for Advanced Decision Support for Water and Environmental Systems,
The University of Colorado, Colorado, USA.

CADSWES. 2010b. RIVERWARE : Technical Documentation Version 6.0, Data
Management Interface. Technical Documentation. Center for Advanced Decision
Support for Water and Environmental Systems, The University of Colorado,
Colorado, USA.

CADSWES. 2011. RiverWare version 6.0.3 – Mar 8 2011 10:53:10 [Software]. [Software].
Center for Advanced Decision Support for Water and Environmental Systems,
Boulder, Colorado, USA.

Castronova, AM and Goodall, JL. 2010. A generic approach for developing process-level
hydrologic modelling components. Environmental Modelling & Software 25 (7): 819-
825.

Chetty, K. 2009. An Assessment Of Scale Issues Related To The Configuration Of The
ACRU Model For Design Flood Estimation. Unpublished Unpublished MSc Thesis,
School of Bioresources Engineering and Environmental Hydrology, Pietermartizburg,
South Africa.

Christensen, FD. 2004. Coupling Between the River Basin Management model (MIKE
BASIN) and the 3D Hydrological Model (MIKE SHE) with use of the OpenMI System.
In: eds. Liong, S, Phoon, K and Babovic , V, 6th International Conference of
Hydroinformatics, Singapore.

Clark, DJ, Smithers, JC, Hughes, DA, Meier, KB, Summerton, MJ and Butler, AJE. 2009.
Design and Development of a Hydrological Decision Support Framework. WRC
Report No. 1490/1/09. Water Research Commission, Pretoria, South Africa.

Collins, N, Theurich, G, DeLuca, C, Suarez, M, Trayanov, A, Balaji, V, Li, P, Yang, W, Hill, C
and da Silva, A. 2005. Design and Implementation of Components in the Earth
System Modelling Framework. International Journal of High Performance Computing
Applications 19 (3): 341-350.

Cook, F, Jordan, P, Waters, D and Rahman, J. 2009. WaterCAST – Whole of Catchment
Hydrology Model: An Overview. 3492-3498.

Dahmann, JS, Fujimoto, RM and Weatherly, RM. 1997. The Department of Defense High
Level Architecture. IEEE Computer Society.

David, O, Ascough, J, Leavesley, G and Ahuja, L. 2010. Rethinking Modelling Framework
Design: Object Modelling System 3.0. In: eds. Swayne, D, Yang, W, Voinov, A,
Rizzoli, A and Filatova, T, International Environmental Modelling and Software
Society (iEMSs), 2010 International Congress on Environmental Modelling and
Software – Modelling for Environment’s Sake, Ottawa, Canada.

David, O, Lloyd, W, Carlson, J, Leavesley, G and Geter, F. 2009. Use of Annotations for
Component and Framework Interoperability. 1044.

David, O, Schneider, I and Leavesley, G. 2004. Metadata and modelling frameworks: The
object modelling system example. Transactions of the 2nd Biennial Meeting of the
International Environmental Modelling and Software Society, iEMSs 2004,
Osnabrück, Germany, 439-443. Citeseer.

273

Delgado, P, Kelley, P and Murray, N. 2011. Source User Guide. eWater Cooperative
Research Centre, Canberra, Australia.

Deltares. 2010. RIBASIM. [Internet]. Available from:
http://www.wldelft.nl/soft/ribasim/int/index.html. [Accessed: 15 February].

DHI. 2009. MIKE BASIN 2009 with service pack 5 [Software]. [Software]. Mike by DHI,
Horsholm, Denmark.

DHI. 2010. GIS-based water resource management. [Internet]. Available from:
http://mikebydhi.com/sitecore/content/Microsites/MIKEbyDHI/Products/WaterResourc
es/MIKEBASIN.aspx. [Accessed: 15 December 2010].

DHI. 2011a. Mike Basin Training Manual. DHI. Water and Envrionment, Johannesburg,
RSA.

DHI. 2011b. Mike Basin Training Manual. DHI South Africa 1-3 June 2011. DHI South
Africa., Johannesburg, South Africa.

DHI. 2011c. MIKE BASIN User Manual. DHI, Horsholm, Denmark.
DHI. 2011d. Mike by DHI. [Internet]. Available from: http://www.mikebydhi.com/. [Accessed:

14 October 2011].
Donchyts, G, Hummel, S, Vaneçek, S, Groos, J, Harper, A, Knapen, R, Gregersen, J,

Schade, P, Antonello, A and Gijsbers, P. 2010. OpenMI 2.0 – What's new? In: eds.
Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, International
Environmental Modelling and Software Society (iEMSs) 2010 International Congress
on Environmental Modelling and Software Modelling for Environment’s Sake, Ottawa,
Canada.

Donchyts, G and Jagers, B. 2010. DeltaShell – an open modelling environment. In: eds.
Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, International
Environmental Modelling and Software Society (iEMSs), 2010 International Congress
on Environmental Modelling and Software – Modelling for Environment’s Sake,
Ottawa, Canada.

DWA. 2012. Department of Water Affiars, Hydrological Services – Surface Water (Data,
Dams, Floods and Flows). [Internet]. Available from:
http://www.dwaf.gov.za/Hydrology. [Accessed: 11 May 2012].

DWAF. 2004. National Water Resources Strategy. Department of Water Affairs and
Forestry, Pretoria, RSA.

DWAF. 2009. Inkomati Water Availability Assessment. Report No. PWMA 05/X22/00/0808.
Pretoria, R.S.A.

EPA. 2007. BASINS. [Internet]. Available from:
http://water.epa.gov/scitech/datait/models/basins/. [Accessed: 14 December 2010].

EPA. 2010. Better Assessment Science Integrating Point and Nonpoint Scources BASINS
Version 4.0. [Software]. EPA.

Ershadi, A, Khiabani, H. and Lorup, J.K. 2005. Applications of remote sensing, GIS and river
basin modelling in integrated water resource management of Kabul River Basin. ICID
21st European Regional Conference, Frankfurt, Germany and Slubice, Poland.

Evans, T, Oakley, B, Cotter, J and Zagona, E. 2006. INTEGRATION OF RIVERWARE INTO
THE CORPS WATER MANAGEMENT SYSTEM. [Internet]. Hydrologic Engineering
Center, US Army Corps of Engineers. Center for Advanced Decision Support for
Water and Environmental Systems, University of Colorado. Available from:
http://www.gcmrc.gov/library/reports/physical/Fine_Sed/8thFISC2006/3rdFIHMC/8E_
Evans.pdf. [Accessed: 15 July 2011].

eWater. 2010a. eWater Source. [Internet]. eWater CRC. Available from:
http://www.ewater.com.au/products/ewater-source/. [Accessed: 21 Feb 2010].

eWater. 2010b. Source Catchments User Guide. eWater Cooperative Research Centre,
Canberra, Australia. Available from: [Accessed:

Fischer, C, Kralisch, S, Krause, P, Fink, M and Flügel, WA. 2009. Calibration of hydrological
model parameters with the JAMS framework. In: eds. Anderssen, RS, Braddock, RD
and Newham, LTH, 18th World IMACS / MODSIM Congress, Cairns, Australia.

274

Frezghi, MS. 2007. Water Resoure System Yield Assessement. Unpublished Unpublished
PhD Seminar, School of Bioresources Engineering and Environmental Hydrology,
School of Bioresources Engineering and Environmental Hydrology, University of
KwaZulu-Natal, Pietermartizburg, South Africa.

Frezghi, MS. 2012a. E-mail Communication | DHI Kaap Catchment MIKE BASIN setup.
Johannesburg, RSA. 2012/11/05.

Frezghi, MS. 2012b. E-mail Communication | RE: Coverages. Johannesburg, RSA.
2012/05/14.

Gijsbers, P, Gregersen, J, Westen, S, Dirksen, F, Gavardinas, C and Blind, M. 2005.
OpenMI Document Series: Part B Guidelines for the OpenMI (version 1.0). [Internet].
Stephen Morris, Butford Technical Publishing Ltd. Available from:
http://www.openmi.org/reloaded/about/publications-documents.php. [Accessed: 17
February 2011].

Gijsbers, P, Hummel, S, S., V, Groos, J, Harper, A, Knapen, R, Gregersen, J, Schade, P,
Antonello, A and Donchyts, G. 2010. From OpenMI 1.4 to 2.0.

Gregersen, JB, Gijsbers, PJA and Westen, SJP. 2007. OpenMI: Open modelling interface.
Journal of Hydroinformatics 9 (3): 175-191.

Gregersen, JB, Gijsbers, PJA, Westen, SJP and Blind, M. 2005. OpenMI: the essential
concepts and their implications for legacy software. Adv. Geosci. 4: 37-44.

Hallowes, J. 2011. Personal communication via e-mail on 05/08/2011. DHI. SA.
Johannesburg, RSA. 05/08/2011.

Haumann, J, K. 2008. Crocodile (East) River Development, Reconnaissance Study. PD
Naidoo & Associates (Pty) Ltd.

HEC-5. 1998. HEC-5. [Internet]. US Army Corp of Engineers. Available from:
http://www.hec.usace.army.mil/software/legacysoftware/hec5/hec5.htm. [Accessed:
07 February].

HEC-ResSim. 2010. HEC-ResSim. [Internet]. US Army Corp of Engineers. Available from:
http://www.hec.usace.army.mil/software/hec-ressim/index.html. [Accessed: 10
September].

Hill, C, DeLuca, C, Balaji, Suarez, M and Da Silva, A. 2004. The architecture of the Earth
System Modelling Framework. Computing in Science & Engineering 6 (1): 18-28.

Hofman, D. 2005. LIANA Model Integration System – architecture, user interface design and
application in MOIRA DSS. Adv. Geosci. 4: 9-16.

Hutchings, C, Struve, J, Westen, S, Millard, K and Fortune, D. 2002. State of the Art Review,
Work Package 1, IT Frameworks (HarmonIT). [Internet]. Available from:
http://www.harmonit.org/docs/repu_01_09_soa_review_approved.pdf. [Accessed: 28
February 2011].

Jackson, B. 2009. Personal communication on 11/01/2009. Council for Scientifiv and
Industrial Research (CSIR). Pretoria, RSA. 2009.

Jackson, B. 2012. Personal communication on 05/12/2012.
Jagers, H. 2010. Linking Data, Models and Tools: An Overview. In: eds. Swayne, D, Yang,

W, Voinov, A, Rizzoli, A and Filatova, T, International Environmental Modelling and
Software Society (iEMSs), 2010 International Congress on Environmental Modelling
and Software – Modelling for Environment’s Sake, Ottawa, Canada.

Jankowfsky, S, Branger, F, Braud, I, Viallet, P, Debionne, S and Rodriguez, F. 2010.
Development of a suburban catchment model within the LIQUID® framework. In:
eds. Swayne, D, Yang, W, Voinov, A, Rizzoli, A and Filatova, T, International
Environmental Modelling and Software Society (iEMSs), 2010 International Congress
on Environmental Modelling and Software – Modelling for Environment’s Sake,
Ottawa, Canada.

Kiker, GA. 2001. ACRU2000 Model. In: eds. Lynch, SD and Kiker, GA, ACRU Model
Development and User Support. WRC Report No. 636/1/00. Water Research
Commission, Pretoria, South Africa.

275

Kiker, GA, Clark, DJ, Martinez, CJ and Schulze, RE. 2006. A Java-based, Object-Oriented
Modelling System for Southern African Hydrology. Transactions of the ASABE 49 (5):
1419-1433.

Kime, DB. 2010. The Development and Assessment of a Prototype Water Accounting
System for South Africa Using the ACRU2000 and MIKE BASIN Models.
Unpublished Dissertation, School of Bioresources Engineering and Environmental
Hydrology, University of KwaZulu-Natal, Pietermaritzburg.

Knapen, M, Verweij, P, Wien, J and Hummel, S. 2009. OpenMI – The universal glue for
integrated modelling? 18th World IMACS Congress and MODSIM09 International
Congress on Modelling and Simulation, Cairns, Australia.

Kralisch, S. 2011. Personal communication vie e-mail on 3/3/2011.
Kralisch, S and Krause, P. 2006. JAMS – A Framework for Natural Resource Model

Development and Application. In: eds. Gourbesville, P, Cunge, J, Guinot, V and
Liong, SY, 7th International Conference on Hydroinformatics, Nice, France.

Kralisch, S, Krause, P and David, O. 2005. Using the object modelling system for
hydrological model development and application. Advances in Geosciences 4 (1-2):
75-81.

Kralisch, S, Krause, P, Fink, M, Fischer, C and Flügel, W. 2007. Component based
environmental modelling using the JAMS framework. In: eds. Oxley, L and Kulasiri,
D, MODSIM 2007 International Congress on Modelling and Simulation, Modelling
and Simulation Society of Australia and New Zealand, Christchurch, New Zealand.

Kralisch, S, Zander, F and Krause, P. 2009. Coupling the RBIS Environmental Information
System and the JAMS Modelling Framework. In: eds. Anderssen, RS, Braddock, RD
and Newham, LTH, 18th World IMACS / MODSIM Congress, Cairns, Australia.

Krause, P, Kralisch, S, Flügel, W, Haas, A, Jaeger, C, Hofman, D, Pullar, D, Lotze-Campen,
H, Lucht, W and Müller, C. 2005. Model integration and development of modular
modelling systems. Advances in Geosciences 4: 1-2.

Labadie, JW. 2004. Optimal Operation of Multireservoir Systems: State-of-the-Art Review.
Journal of Water Resources Planning and Management 130 (2): 93-111.

Labadie, JW. 2005. Optimal Operation of Multireservoir Systems: State-of-the-Art Review.
Journal of Water Resources Planning and Management 131 (5): 407-408.

Labadie, JW. 2006a. MODSIM: Decision Support System for Integrated River Basin
Management. In: eds. Singh, VP and Frevert, DK, Watershed Models. Taylor and
Francis Group, New York.

Labadie, JW. 2006b. MODSIM: Decision Support System for Integrated River Basin
Management. In: eds. Voinov, A, Jakeman, AJ and Rizzoli, AE, Proceedings of the
iEMSs Third Biennial Meeting: "Summit on Environmental Modelling and Software".
Burlington, USA. International Environmental Modelling and Software Society.

Labadie, JW. 2010a. MODSIM 8.1: River Basin Management Decision Support System
[Software]. [Software]. Department of Civil and Environmental Engineering, Colorado
State University, Fort Collins, USA.

Labadie, JW. 2010c. MODSIM 8.1: River Basin Management Decision Support System,
Tutorials and Example Networks. Training Manual. Department of Civil and
Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA.

Labadie, JW. 2011. E-mail Communication. MODSIM-DSS | Colorado State University,
USA.

Labadie, JW, Fontane, DG, Lee, J-H and Ko, IH. 2007. Decision Support System for
Adaptive River Basin Management: Application to the Geum River Basin, Korea.
Water International 32 (3): Pg. 397-414.

Labadiea, JW. 2006. MODSIM: Decision Support System for Integrated River Basin
Management. the International Environmental Modelling and Software Society.

Leavesley, G, Markstrom, S, Restrepo, P and Viger, R. 2002. A modular approach to
addressing model design, scale, and parameter estimation issues in distributed
hydrological modelling. Hydrological Processes 16 (2): 173-187.

276

Lecler, N. 2004. Fractional Water Allocation and Capacity Sharing/Water Banking. South
African Sugar Technologists' Association – Proceedings (78): 6.

Lévite, H, Sally, H and Cour, J. 2002. Water demand management scenarios in a water-
stressed basin in South Africa.

Lindenschmidt, KE, Hesser, FB and Rode, M. 2005. Integrating water quality models in the
High Level Architecture (HLA) environment. Adv. Geosci. 4: 51-56.

Lloyd, W, David, O, Ascough II, JC, Rojas, KW, Carlson, JR, Leavesley, GH, Krause, P,
Green, TR and Ahuja, LR. 2009. An exploratory investigation on the invasiveness of
environmental modelling frameworks. 909-915. TR, Ahuja, LR 2009. An Exploratory
Investigation on the Invasiveness of Environmental Modelling Frameworks. World
IMACS Congress and MODSIM09 International Congress on Modelling and
Simulation.

Lynch, SD. 2004. Development of a Raster Database of Annual, Monthly and Daily Rainfall
for Southern Africa. Report 1156/1/04. Pretoria, R.S.A.

Lynch, SD and Kiker, GA. 2001. ACRU Model Development and User Support. WRC Report
No. 636/1/01. Water Research Commission, Pretoria, South Africa.

Makropoulosa, C, Safioleaa, E, Bakia, S, Doukaa, E, Stamoua, A and Mimikou, M. 2010. An
integrated, multi-modelling approach for the assessment of water quality: lessons
from the Pinios River case in Greece. In: eds. Swayne, D, Yang, W, Voinov, A,
Rizzoli, A and Filatova, T, International Environmental Modelling and Software
Society (iEMSs), 2010 International Congress on Environmental Modelling and
Software – Modelling for Environment’s Sake, Ottawa, Canada.

Manqoyi, N and Nyabeze, WR. 2006. Situational Assessment of Operating Rules for Existing
DWAF Dams. Makgaleng Projects CC, Midrand, RSA.

Markstrom, S. 2011. Personal communication via e-mail on 2/3/2011.
Marston, F, Argent , R, Vertessy, R, Cuddy, S and Rahman, J. 2002. The Status of

Catchment Modelling in Australia. Cooperative Research Centre for Catchment
Hydrology.

McCartney, M and Arranz, R. 2009. Evaluation of water demand Scenarios for the Olifants
River catchment, South Africa. International Journal of River Basin Management 7
(4): 379-390.

Mckenzie, RS and Van Rooyen, PG. 2003. Management of large water resources systems.
Water Resources Planning Pty Ltd, Pretoria, RSA.

Miller, A. 2011. E-mail Communication. eWater Cooperative Research Centre, Australia.
Moore, RV and Tindall, CI. 2005. An overview of the open modelling interface and

environment (the OpenMI). Environmental Science & Policy 8 (3): 279-286.
Murray, N, Perraud, J-M, Rahman, J, Bridgart, R, Davis, G, Watson, F and Hotham, H. 2007.

TIME Workshop Notes 4.2. CSIRO Land and Water, and eWater CRC.
Nadomba, PM, Azab, A, Mulungu, MM, Malisa, J, Yousif, N, Atti, MA, Latief, AA, Deogratias,

M, Attia, AEA, Sayed, M and Gad, M. 2005. GIS-based watershed modelling in the
Nile basin countries. Nile Basin Capacity Building Network for River Engineering.

Neumann, D. 2011a. Personal communication via e-mail on 16/10/2011. Center for
Advanced Decision Support for Water and Environmental Systems, The University of
Colorado, Colorado, USA. 16/10/2011.

Neumann, D. 2011b. Personal communication via e-mail on 23/09/2011. Center for
Advanced Decision Support for Water and Environmental Systems, The University of
Colorado, Colorado, USA. 23/09/2011.

NWA. 1998. National Water Act (Act No. 36 of 1998). Government Printers, Pretoria, South
Africa.

OATC. 2010. OpenMI Document Series: Migrating Models for the OpenMI (Version 2.0).
[Internet]. The OpenMI Association Technical Committee. Available from:
https://4310b1a9-a-cb397f23-s-sites.googlegroups.com/a/openmi.org/home/learning-
more/OpenMI%2BStandard%2B2%2BMigrating%2BModels.pdf. [Accessed: 01
March 2012].

277

OATC. 2012. New to OpenMI ? [Internet]. The OpenMI Association Technical Committee.
Available from: https://sites.google.com/a/openmi.org/home/new-to-openmi#TOC-
Downloads. [Accessed: 03 July 2012].

OpenMI. 2011a. OpenMI Standard Specification. [Internet]. OpenMI Association. Available
from: http://www.openmi.org/reloaded/standard/specification.php. [Accessed: 28
February 2011].

OpenMI. 2011b. OpenMI Compliant Software. [Internet]. OpenMI Association. Available
from: http://www.openmi.org/reloaded/users/compliant-software.php. [Accessed: 28
February 2011].

OpenMI. 2012. What's New in OpenMI 2.0. [Internet]. OpenMI Association. Available from:
https://4310b1a9-a-cb397f23-s-sites.googlegroups.com/a/openmi.org/home/learning-
more/WhatsNewinOpenMI2.pdf. [Accessed: 01 March 2012].

Perera, BJC, James, B and Kularathna, MDU. 2005. Computer software tool REALM for
sustainable water allocation and management. Journal of Environmental
Management 77 (4): 291-300.

Pott, AJ. 2011. DHI presentations uploaded to youtube for students. Johannesburg, RSA.
2011/10/10.

Pott, AJ, Benadé, N, van Heerden, P, Grové, B, Annandale, J and Steyn, M. 2008a.
Technology Transfer and Integrated Implementation of Water Management Models in
Commercial Farming. WRC Report No TT 267/08. Water Research Commission,
Pretoria, RSA.

Pott, AJ, Hallowes, JS, Mtshali, SS and Smithers, JC. 2008b. A Review of National Water
Resource Planning for Operational Needs. WRC Consultancy Report No K8 /740/01.
Water Research Commission, Pretoria, RSA.

Rahman, J, Perraud, J, Hotham, H, Murray, N, Leighton, B, Freebairn, A, Davis, G and
Bridgart, R. 2005. Evolution of TIME. In: eds. Zerger, A and Argent, RM, MODSIM
2005 International Congress on Modelling and Simulation. Modelling and Simulation
Society of Australia and New Zealand, 697-703.

Rahman, J, Seaton, S, Perraud, J, Hotham, H, Verrelli, D and Coleman, J. 2003. It’s TIME
for a new environmental modelling framework. 1727-1732.

Rahman, JM, Seaton, SP and Cuddy, SM. 2004. Making frameworks more useable: using
model introspection and metadata to develop model processing tools. Environmental
Modelling & Software 19 (3): 275-284.

Reußner, F, Alex, J, Bach, M, Schütze, M and Muschalla, D. 2009. Basin-wide integrated
modelling via OpenMI considering multiple urban catchments. Water Science &
Technology 60 (5): 1241-1248.

Schellekens, J, Sprengers, CJ and Gijsbers, PJA. 2003. Water system research Yellow
River Basin Improving agro-hydrological models. Delft University of Technology,
Delft, Netherlands.

Schreidera, SY, Jamesb, B, Sekerc, MP and Weinmanna, PE. 2003. Sensitivity and Error
Propagation Analysis for the Goulburn Simulation Model built by REALM. The
Modelling and Simulation Society of Australia and New Zealand Inc.

Schulze, R and Arnold, H. 1979. Estimation of Volume and Rate of Runoff in Small
Catchments in South Africa, based on the SCS Technique. Agricultural Catchments
Research Unit, Report No. 40. Department of Agricultural Engineering, University of
Natal, Pietermaritzburg, South Africa.

Schulze, RE. 1975. Catchment evapotranspiration in the Natal Drakensburg. Unpublished
PhD thesis. Department of Geography, University of Natal, Pietermaritzburg, South
Africa.

Schulze, RE. 1995. Verification Studies. In: ed. Schulze, RE, Hydrology and Agrohydrology:
A Text to Accompany the ACRU 3.00 Agrohydrological Modelling System. Report
TT69/95, Water Research Commission, Pretoria, R.S.A.

Schulze, RE, Angus, G, R. and Guy, RM. 1995a. In: Schulze, R.E. Hydrology and
Agrohydrology: A Text to Accompany the ACRU 3.00 Agrohydrological Modelling
System. Report TT69/95. Water Research Commission, Pretoria, R.S.A.

278

Schulze, RE, Angus, GR, Lynch, SD and Smithers, JC. 1995b. ACRU: Concepts and
Structure. In: ed. Schulze, RE, Hydrology and Agrohydrology: A Text to Accompany
the ACRU 3.00 Agrohydrological Modelling System. WRC Report No. TT69/95.
Water Research Commission, Pretoria, South Africa.

Schulze, RE, Horan, MJC, Kunz, RP, Lumsden, TG and Knoesen, DM. 2010. Development
of the Southern African Quinary Catchments Database. In: eds. Schulze, RE,
Hewitson, BC, Barichievy, KR, Tadross, MA, Kunz, RP, Horan, MJC and Lumsden,
TG, Methodological Approaches to Assessing Eco-Hydrological Responses to
Climate Change in South Africa. Water Research Commission, Pretoria, RSA, WRC
Report 1562/1/10. Chapter 7.

Schulze, RE, Schmidt, EJ and Smithers, JC. 1992. SCS-SA user manual. PC-based SCS
design flood estimates for small catchments in Southern Africa. Agricultural
Catchments Research Unit, Report No. 40. Department of Agricultural Engineering,
University of Natal, Pietermaritzburg, South Africa.

SEI. 2011. Welcome to WEAP! [Internet]. Stockholm Environment Institute. Available from:
http://www.weap21.org/index.asp. [Accessed: 21 Feb].

Smithers, JC and Caldecott, RE. 1995. Hydrograph routing. In: ed. Schulze, RE, Hydrology
and Agrohydrology : A Text to Accompany the ACRU 3.00 Agrohydrological
Modelling System. Report TT69/95. Water Research Commission, Pretoria.

Tollenaar, D. 2009. Simulation of present and future discharges at the Nile River upstream
Lake Nasser. Unpublished Water Engineering & Management, University of Twente,
Netherlands.

Triana, E and Labadie, JW. 2007. GEO-MODSIM: Spatial Decision Support System for River
Basin Management. ESRI International User Conference, San Diego Convention
Center, San Diego, California.

Triana, E, Labadie, JW and Gates, TK. 2010. River GeoDSS for Agroenvironmental
Enhancement of Colorado’s Lower Arkansas River Basin. I : Model Development and
Calibration. Journal of Water Resources Planning and Management 136 (2):

Valerio, AM. 2008. Modelling Groundwater-Surface Water Interactions in an Operational
Setting by Linking RiverWare with MODFLOW. Unpublished Department of Civil,
Environmental, and Architectural Engineering, University of Colorado, Colorado,
USA,

van der Krogt, WNM. 2011. E-mail Communication. Deltares | delft hydraulics, Delft, the
Netherlands.

Viessman, W, Lewis, GL and Knapp, JW. 1989. Introduction to Hydrology. Harper and Row,
New Yourk, USA.

Wallbrink, P. 2008. A New National River Modelling Platform. Water | Journal of the
Australian Water Association 35 (7): 6-8.

Welsh, W. 2011. E-mail Communication. CSIRO | Land and Water, Australia.
Welsh, WD and Black, D. 2010. Engaging stakeholders for a software development project:

River Manager model. [Internet]. Available from:
http://www.iemss.org/iemss2010/proceedings.html. [Accessed:

Welsh, WD and Podger, GM. 2008. Australian Hydrological Modelling Initiative: River
System Management Tool (AHMI: RSMT) functionality specifications. eWater
Technical Report, eWater Cooperative Research Centre, Canberra.

Wurbs, RA. 2005. Comparative Evaluation of Generalized Reservoir/River System Models.
Technical Report No. 282. Department of Civil Engineering, Texas University, Texas,
USA.

Zagona, E, Kandl, E, Carron, J and Bowser, S. 2010. Water Accounting and Allocation in
Riverware.

Zagona, EA. 2011. Personal communication via e-mail on 18/07/2011. Center for Advanced
Decision Support for Water and Environmental Systems, The University of Colorado,
Colorado, USA. 18/07/2011.

279

Zagona, EA, Fuip, TJ, Shane, R, Magee, T and Goranflo, HM. 2001. RiverWare: A
Generalised Tool for Complex Reservoir System Modelling. Journal of the American
Water Resources Association 37 (4): 913-929.

Zagona, EA, Fulp, TJ, Goranflo, HM and Shane, RM. 1998. RiverWare: A General River and
Reservoir Modelling Environment. Proceedings of the First Federal Interagency
Hydrologic Modelling Conference, Las Vegas, Nevada, USA.

Zhou, S. 2006. Coupling climate models with the earth system modelling framework and the
common component architecture. Concurrency and Computation: Practice and
Experience 18 (2): 203-213.

280

APPENDIX:

Appendix A – Details Of How The Subcatchments Were Further Subdivided

The Area column represents the total area for each of these representative HRUs.

Table A.1 Details of the Components contained within each subcatchment

Subcatchment Component
Type

Description Area
(km2)

01

HRU Forest Plantations (clear-felled) 1.929

HRU Forest Plantations (Eucalyptus spp) 7.429

HRU Forest Plantations (Other / mixed spp) 6.456

HRU Forest Plantations (Pine spp) 45.476

HRU Thicket, Bushland, Bush Clumps, High Fynbos 4.968

HRU Unimproved (natural) Grassland 20.432

Dam Waterbodies 0.022

Wetland Wetlands 0.011

02

HRU Cultivated, temporary, commercial, dryland 0.073

HRU Forest (indigenous) 1.230

HRU Forest Plantations (clear-felled) 1.361

HRU Forest Plantations (Eucalyptus spp) 35.945

HRU Forest Plantations (Other / mixed spp) 6.589

HRU Forest Plantations (Pine spp) 7.466

HRU Thicket, Bushland, Bush Clumps, High Fynbos 17.564

HRU Unimproved (natural) Grassland 23.445

03

HRU Degraded Unimproved (natural) Grassland 0.123

HRU Forest Plantations (clear-felled) 1.236

HRU Forest Plantations (Eucalyptus spp) 1.297

HRU Forest Plantations (Other / mixed spp) 0.171

HRU Forest Plantations (Pine spp) 0.514

HRU Mines & Quarries (surface-based mining) 0.051

HRU Thicket, Bushland, Bush Clumps, High Fynbos 5.384

HRU Unimproved (natural) Grassland 6.763

HRU Urban / Built-up (residential) 0.075

04

IrrigArea Cultivated, commercial, irrigated 0.094

HRU Cultivated, permanent, commercial, sugarcane 0.009

HRU Cultivated, temporary, commercial, dryland 7.409

HRU Degraded Thicket, Bushland, etc. 0.158

HRU Degraded Unimproved (natural) Grassland 0.871

HRU Forest Plantations (Acacia spp) 0.258

HRU Forest Plantations (clear-felled) 1.023

281

HRU Forest Plantations (Eucalyptus spp) 4.482

HRU Forest Plantations (Other / mixed spp) 0.748

HRU Forest Plantations (Pine spp) 5.023

HRU Improved Grassland 0.442

HRU Mines & Quarries (surface-based mining) 0.184

HRU Thicket, Bushland, Bush Clumps, High Fynbos 86.593

HRU Unimproved (natural) Grassland 12.464

HRU Urban / Built-up (residential) 3.549

HRU Urban / Built-up (residential, formal suburbs) 0.678

HRU Urban / Built-up, (industrial / transport : light) 0.257

Dam Waterbodies 0.115

Wetland Wetlands 0.047

HRU Woodland (previously termed Forest and Woodland) 2.607

05

HRU Forest (indigenous) 0.698

HRU Forest Plantations (clear-felled) 3.528

HRU Forest Plantations (Eucalyptus spp) 19.542

HRU Forest Plantations (Other / mixed spp) 6.920

HRU Forest Plantations (Pine spp) 11.801

HRU Thicket, Bushland, Bush Clumps, High Fynbos 5.161

HRU Unimproved (natural) Grassland 10.394

HRU Urban / Built-up (residential) 0.058

Dam Waterbodies 0.256

06

HRU Forest Plantations (clear-felled) 1.982

HRU Forest Plantations (Eucalyptus spp) 13.205

HRU Forest Plantations (Other / mixed spp) 2.451

HRU Forest Plantations (Pine spp) 1.238

HRU Thicket, Bushland, Bush Clumps, High Fynbos 1.224

HRU Unimproved (natural) Grassland 2.832

07

HRU Cultivated, temporary, commercial, dryland 3.321

HRU Forest Plantations (clear-felled) 4.942

HRU Forest Plantations (Eucalyptus spp) 50.429

HRU Forest Plantations (Other / mixed spp) 2.415

HRU Forest Plantations (Pine spp) 0.170

HRU Thicket, Bushland, Bush Clumps, High Fynbos 29.527

HRU Unimproved (natural) Grassland 7.248

Dam Waterbodies 0.238

Wetland Wetlands 0.132

08

HRU Cultivated, temporary, commercial, dryland 10.860

IrrigArea Cultivated, temporary, commercial, irrigated 0.414

HRU Forest Plantations (clear-felled) 0.637

HRU Forest Plantations (Eucalyptus spp) 18.602

HRU Forest Plantations (Other / mixed spp) 0.163

HRU Thicket, Bushland, Bush Clumps, High Fynbos 51.957

282

HRU Unimproved (natural) Grassland 0.068

Dam Waterbodies 0.122

Wetland Wetlands 0.095

HRU Woodland (previously termed Forest and Woodland) 0.530

09

HRU Bare Rock and Soil (natural) 0.049

HRU Cultivated, permanent, commercial, sugarcane 6.051

HRU Cultivated, temporary, commercial, dryland 5.195

IrrigArea Cultivated, commercial, irrigated 3.806

HRU Degraded Thicket, Bushland, etc. 1.094

HRU Degraded Unimproved (natural) Grassland 1.895

HRU Forest Plantations (Acacia spp) 0.025

HRU Forest Plantations (Eucalyptus spp) 0.640

HRU Forest Plantations (Pine spp) 0.088

HRU Mines & Quarries (mine tailings, waste dumps) 0.264

HRU Mines & Quarries (surface-based mining) 0.505

HRU Thicket, Bushland, Bush Clumps, High Fynbos 104.64

HRU Unimproved (natural) Grassland 22.509

HRU Urban / Built-up (residential) 2.824

HRU Urban / Built-up (residential, formal suburbs) 2.853

HRU Urban / Built-up, (commercial, mercantile) 0.332

HRU Urban / Built-up, (industrial / transport : light) 0.175

Dam Waterbodies 0.162

Wetland Wetlands 0.043

HRU Woodland (previously termed Forest and Woodland) 13.815

10

HRU Cultivated, temporary, commercial, dryland 0.038

HRU Forest (indigenous) 8.948

HRU Forest Plantations (clear-felled) 3.598

HRU Forest Plantations (Eucalyptus spp) 17.766

HRU Forest Plantations (Other / mixed spp) 3.284

HRU Forest Plantations (Pine spp) 6.464

HRU Thicket, Bushland, Bush Clumps, High Fynbos 2.770

HRU Unimproved (natural) Grassland 8.729

Dam Waterbodies 0.022

Wetland Wetlands 0.018

11

HRU Cultivated, temporary, commercial, dryland 4.918

IrrigArea Cultivated, temporary, commercial, irrigated 0.231

HRU Forest (indigenous) 5.540

HRU Forest Plantations (clear-felled) 1.075

HRU Forest Plantations (Eucalyptus spp) 30.223

HRU Forest Plantations (Other / mixed spp) 6.663

HRU Forest Plantations (Pine spp) 6.995

HRU Thicket, Bushland, Bush Clumps, High Fynbos 16.210

HRU Unimproved (natural) Grassland 3.185

283

HRU Urban / Built-up, (industrial / transport : light) 0.097

Dam Waterbodies 0.020

Wetland Wetlands 0.020

12

HRU Cultivated, temporary, commercial, dryland 0.930

HRU Forest Plantations (clear-felled) 0.226

HRU Forest Plantations (Eucalyptus spp) 19.045

HRU Forest Plantations (Other / mixed spp) 4.685

HRU Forest Plantations (Pine spp) 2.771

HRU Thicket, Bushland, Bush Clumps, High Fynbos 5.301

HRU Unimproved (natural) Grassland 0.964

13

HRU Cultivated, temporary, commercial, dryland 5.877

IrrigArea Cultivated, temporary, commercial, irrigated 3.521

HRU Forest (indigenous) 17.791

HRU Forest Plantations (Eucalyptus spp) 2.805

HRU Forest Plantations (Other / mixed spp) 0.690

HRU Forest Plantations (Pine spp) 0.133

HRU Thicket, Bushland, Bush Clumps, High Fynbos 61.604

HRU Unimproved (natural) Grassland 1.978

Dam Waterbodies 0.120

Wetland Wetlands 0.047

HRU Woodland (previously termed Forest and Woodland) 2.721

14

HRU Bare Rock and Soil (erosion : dongas / gullies) 0.034

HRU Bare Rock and Soil (natural) 0.019

HRU Cultivated, permanent, commercial, sugarcane 0.032

HRU Cultivated, temporary, commercial, dryland 1.674

IrrigArea Cultivated, temporary, commercial, irrigated 2.571

HRU Degraded Thicket, Bushland, etc. 0.134

HRU Forest (indigenous) 0.228

HRU Forest Plantations (Acacia spp) 0.014

HRU Forest Plantations (clear-felled) 0.427

HRU Forest Plantations (Eucalyptus spp) 3.013

HRU Forest Plantations (Pine spp) 0.061

HRU Mines & Quarries (mine tailings, waste dumps) 0.042

HRU Mines & Quarries (surface-based mining) 1.287

HRU Thicket, Bushland, Bush Clumps, High Fynbos 77.854

Dam Waterbodies 0.077

Wetland Wetlands 0.010

HRU Woodland (previously termed Forest and Woodland) 10.446

15

HRU Bare Rock and Soil (natural) 0.023

HRU Cultivated, permanent, commercial, sugarcane 0.085

IrrigArea Cultivated, temporary, commercial, irrigated 0.564

HRU Degraded Unimproved (natural) Grassland 1.890

HRU Forest Plantations (Acacia spp) 0.011

284

HRU Forest Plantations (clear-felled) 0.354

HRU Forest Plantations (Eucalyptus spp) 0.097

HRU Forest Plantations (Pine spp) 0.278

HRU Mines & Quarries (surface-based mining) 0.303

HRU Thicket, Bushland, Bush Clumps, High Fynbos 45.882

HRU Unimproved (natural) Grassland 26.378

Dam Waterbodies 0.024

16

HRU Bare Rock and Soil (natural) 0.040

HRU Cultivated, permanent, commercial, sugarcane 5.813

HRU Cultivated, temporary, commercial, dryland 0.059

IrrigArea Cultivated, commercial, irrigated 0.908

HRU Degraded Thicket, Bushland, etc. 1.364

HRU Degraded Unimproved (natural) Grassland 0.780

HRU Forest Plantations (Eucalyptus spp) 0.103

HRU Forest Plantations (Pine spp) 0.021

HRU Mines & Quarries (surface-based mining) 0.085

HRU Thicket, Bushland, Bush Clumps, High Fynbos 92.485

HRU Unimproved (natural) Grassland 35.952

Dam Waterbodies 0.246

HRU Woodland (previously termed Forest and Woodland) 11.352

17

HRU Bare Rock and Soil (natural) 0.047

HRU Cultivated, permanent, commercial, sugarcane 1.196

IrrigArea Cultivated, commercial, irrigated 2.847

HRU Degraded Thicket, Bushland, etc. 1.638

HRU Thicket, Bushland, Bush Clumps, High Fynbos 56.735

HRU Unimproved (natural) Grassland 0.428

Dam Waterbodies 0.011

HRU Woodland (previously termed Forest and Woodland) 18.41

18

IrrigArea Cultivated, permanent, commercial, irrigated 0.839

HRU Cultivated, permanent, commercial, sugarcane 11.452

HRU Degraded Thicket, Bushland, etc. 0.954

HRU Degraded Unimproved (natural) Grassland 1.094

HRU Forest Plantations (Acacia spp) 0.010

HRU Forest Plantations (Eucalyptus spp) 11.343

HRU Forest Plantations (Pine spp) 0.648

HRU Mines & Quarries (surface-based mining) 0.329

HRU Thicket, Bushland, Bush Clumps, High Fynbos 72.292

HRU Unimproved (natural) Grassland 8.305

Dam Waterbodies 0.116

Wetland Wetlands 0.011

HRU Woodland (previously termed Forest and Woodland) 2.778

19
HRU Bare Rock and Soil (natural) 0.026

IrrigArea Cultivated, permanent, commercial, irrigated 0.052

285

HRU Cultivated, permanent, commercial, sugarcane 0.027

HRU Degraded Thicket, Bushland, etc. 0.922

HRU Forest Plantations (Eucalyptus spp) 0.903

HRU Forest Plantations (Pine spp) 0.026

HRU Thicket, Bushland, Bush Clumps, High Fynbos 23.04

HRU Unimproved (natural) Grassland 4.129

Dam Waterbodies 0.151

HRU Woodland (previously termed Forest and Woodland) 0.764

20

IrrigArea Cultivated, permanent, commercial, irrigated 0.277

HRU Cultivated, permanent, commercial, sugarcane 1.461

HRU Degraded Thicket, Bushland, etc. 0.573

HRU Thicket, Bushland, Bush Clumps, High Fynbos 6.203

Dam Waterbodies 0.009

HRU Woodland (previously termed Forest and Woodland) 2.494

21

HRU Degraded Thicket, Bushland, etc. 0.013

HRU Thicket, Bushland, Bush Clumps, High Fynbos 6.258

Dam Waterbodies 0.131

HRU Woodland (previously termed Forest and Woodland) 2.771

22

IrrigArea Cultivated, permanent, commercial, irrigated 0.789

HRU Cultivated, permanent, commercial, sugarcane 6.841

HRU Degraded Thicket, Bushland, etc. 4.575

HRU Degraded Unimproved (natural) Grassland 0.236

HRU Forest Plantations (Eucalyptus spp) 0.498

HRU Thicket, Bushland, Bush Clumps, High Fynbos 38.201

HRU Unimproved (natural) Grassland 3.387

Dam Waterbodies 0.190

Wetland Wetlands 0.017

HRU Woodland (previously termed Forest and Woodland) 9.614

286

Appendix B – Electronic Appendix

Appendix B is an electronic appendix on the CD accompanying this report. Appendix B

includes the OpenMI wrappers developed for the ACRU and MIKE BASIN models,

configuration files for the ACRU and MIKE BASIN models for the use case simulations in the

Kaap River Catchment and data used for the simulations.

In addition to the software included in Appendix B, it will be necessary to obtain third party

software libraries and applications in order to link and run the Kaap River Catchment

configurations for ACRU and MIKE BASIN. The websites where these software libraries and

applications can be found are as follows:

• The MIKE BASIN software and a licence may be obtained from DHI

[http://www.dhigroup.com]

• The OpenMI 1.4 Standard, and .Net and Java implementations of this, can be obtained

from the OpenMI Association [http://www.openmi.org]

• The OpenMI 1.4 SDK for .Net can be obtained from the OpenMI Association

[http://www.openmi.org]

• The OpenMI 1.4 SDK for Java, developed by Alterra can be obtained from

SourceForge

[http://openmi.svn.sourceforge.net/viewvc/openmi/branches/OpenMI-Version-1-4-

Trunk/MyOpenSource/Alterra/OpenMI-1.4-SDK]

• The OpenMI Configuration Editor is a GUI for linking and running OpenMI compliant

models and can be obtained from the OpenMI Association [http://www.openmi.org]

• The Pipistrelle application developed by HR Wallingford is a GUI for linking and

running OpenMI compliant models and can be obtained from the FluidEarth Portal

[http://fluidearth.net/default.aspx]

B.1 ACRU Model

See folder Appendix B\Software\ACRU on the CD accompanying this report.

B.2 OpenMI 1.4 Java Wrapper For ACRU

See folder Appendix B\Software\ACRU_OpenMI_Java on the CD accompanying this report.

B.3 OpenMI 1.4 .Net Wrapper For ACRU

See folder Appendix B\Software\ACRU_OpenMI_DotNet on the CD accompanying this

report.

287

B.4 OpenMI 1.4 .Net Wrapper For MIKE BASIN

See folder Appendix B\Software\MIKEBASIN_OpenMI on the CD accompanying this report.

B.5 Model Configurations And Data For The Streamflow Use Case

See folder Appendix B\UseCases\Streamflow on the CD accompanying this report.

B.6 Model Configurations And Data For The Flow Routing Use Case

See folder Appendix B\UseCases\FlowRouting on the CD accompanying this report.

B.7 Model Configurations And Data For The Irrigation Use Case

See folder Appendix B\UseCases\Irrigation on the CD accompanying this report.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

