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EXECUTIVE SUMMARY

A STOCHASTIC DAILY CLIMATE MODEL FOR
SOUTH AFRICAN CONDITIONS

by

Anabela de Gusmao Brandio and Walter Zucchini

Motivation

Effective water resources management is essential in a country like South Africa which
is particularly prone to the adverse effects of drought. This will only become feasible when

the risk associated with drought occurrences can be reliably assessed.

Present methods of assessing the risk of adverse weather conditions are based on rainfall
and streamflow only and do not take account of the many other climatic factors such as
evaporation, humidity, wind run, temperature etc. Such factors play an important role in

establishing drought conditions, especially in the agricultural sector.

Methods, such as those based on the Palmer drought index, are purely descriptive and
are designed to quantify what has happened in the past rather than what is likely to happen

in the future. These methods are therefore of limited use for planning purposes.

This project arose from a need to develop reliable methods to generate artificial climate
sequences over any period of the year and thereby enable water resources and agricultural
planners to assess the probable consequences of decisions whose outcomes depend on climate
factors. For example, sequences generated by a suitable model could be used as the input
to plant yield models associated with crops such as maize, wheat and sugar cane, and
thereby provide the probability distribution of yield under alternative options regarding, for

example, planting date, cultivar and irrigation strategy.

The climate model to be developed in the course of this project was seen as a logical
extension of the daily rainfall model which was developed in a previous Water Research
Commission project (WRC Report No. 91/1/84 — 91/3/84). The latter model has been
used by a number of institutions involved in Forestry, Agriculture, Nature Conservation,
as well as by individual researchers at a number of universities and the South African

Museum. It is offered as one of the data products available from the Computing Centre
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of Water Research. The climate model, incorporating several additional variables, would

therefore supplement the rainfall model.
Objectives

The objective of this project was to develop a stochastic model for the simultaneous
description of climate variables at fixed locations on a daily basis. The variables to be
analysed were rainfall, sunshine duration, maximum and minimum temperature, maximum

and minimum relative humidity, evaporation and wind run.

Once a suitable model was identified the object was to develop methodology to estimate
the relevant parameters from a given historical record and then to develop algorithms to

generate artificial daily climate sequences at the given site.

A further objective of the project was that the technicalities of the methodology de-
veloped should be transparent to the user, that is, the results should be accessible to users

with limited or no knowledge of statistics.
Summary of results

We investigated the properties of the only daily climate model (Model 1) that has
been described in the literature. A number of limitations of this model were identified and
four alternative models were constructed, Models 2, 3, 4 and 5. (Model 2 was designed
as a prototype for the subsequent models and is described in the report for the sake of

completeness rather than as a suitable model in its own right.)

The new models, which vary in complexity, are designed to form a compatible family.
This allows one to select a model of appropriate complexity for the particular historical
record that is available. In general the simpler models outperform more complex models
when the historical record is short (as is presently the case at almost all sites in South Africa)
whereas the latter can be expected to become increasingly applicable as more data becomes
available, Furthermore the compatibility property allows one to model the different climate
variables using components from any one of Models 3, 4 and 5 and then to combine these

into a single multivariate daily climate model.

To fulfil its purpose a daily climate model must incorporate all the important properties
exhibited by climate variables. These include the seasonal cyclical behaviour of climate, its
short—term persistence, the interrelationships between the different variables {for example

between rainfall and humidity} and the boundedness of some of the variables (for example



Erecutive Summary

the upper and lower limits of maximum and minimum relative humidity). In addition the
behaviour of each of the variables on wet days is different to that on dry days. For example,
on average, the maximum temperature on dry days is higher than it is on wet days. All
these properties have to be preserved, not only qualitatively, but also quantitatively by the

climate model.

The results of this project confirm that it is indeed possible to construct models that
preserve the above properties. This is in spite of the fact that the historical records which
are presently available in South Africa are extremely short for the purpose of modelling a
process of the complexity of daily climate. (The length of the records available to us ranged
from 6 to 12 years.) An additional factor which reduces the effective length of the records
for this type of modelling is the average number of rainy days which, in many parts of South

Africa, is quite small.

The models were calibrated at six sites, namely Elsenburg (South Western Cape), Kaka-
mas (Northern Cape), Middelburg (Eastern Central Cape), Nelspruit (Eastern Transvaal),
Cedara (Natal) and Iloopstad (Orange Free State) which, within the constraints of the data
available to us, were selected to represent as wide a variety of climate types as possible.
Extensive validation tests were carried out and our results show that, on the whole, the

models perform remarkably well.

There is no clear-cut answer regarding which model will perform best. As mentioned,
one would expect the simpler models to outperform the more complex alternatives when
the data records are short. For some sites Model 1 preserves the properties of some of
the climate va,ria,l:iles better than the more cofnplex alternative models. At other sites the
opposite was found to be the case. We therefore recommend that, at new sites, each of the

models be applied and tested before a final selection is made.

A major theoretical obstacle that had to be overcome in the course of the project was
that of developing methods which could accommodate records with missing observations,
with invalid recordings and with outlying observations. Although we had access to some
of the best historical records that are available in South Africa, there were considerable
gaps and imperfections in these records (amounting to between 1% and 13% of the total
record lengths for the records which we examined). As climate variables are both serially
correlated and cross—correlated it is not possible to simply ignore missing values. Methods

had to be developed to incorporate the estimation of missing values as part of the parameter
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estimation procedure.

A substantial portion of the research effort in this project was directed to deriving the
mathematical theory for the climate models which were developed. This material, which is
rather technical and thus is not accessible to the general user, includes the development of
estimation methods both for the individual climate variables as individual time series models
and then for the multivariate series which combines these models so as to synchronise the

various climate variables,

The second major component of the project was the preparation of computer programs
to implement the theory. In order to make the software accessible to as wide a variety of
users as possible it was decided at the outset that all programs would be such that they
could be implemented on micro—computers. Secondly, it was decided that no use should
be made of licensed software packages which may not be available to some potential users.
Thus the programs which are listed in this report are self-contained and are coded in
ANSI FORTRAN 77, (the HUGE attribute in programs 6 and 8 is an extension to the full
ANSI standard but this can be omitted without any problems on a mainframe) a language
for which compilers are generally available. This includes the programs to estimate the

parameters and to generate the required artificial climate sequences.

An objective of the project was that the results of the project should be accessible to
users with limited or no knowledge of statistics. This objective has been mostly met, but
with the following qualification. The programs that have been developed to generate the
climate sequences are accessible by any user who can operate a micro-computer. Such a
person would not have to know anything about programming but merely how to run an
existing program. We envisage that most users of the methodology will only be interested

in making use of the generating program.

Some training is required to apply the methodology at a new site, that is, to estimate
the model parameters from a given historical record. We estimate that, with instruction,
it would take a competent programmer' between two to three weeks to learn how to make
efficient use of the estimation software provided. Most of the training would be concerned
with methods for preparing the data for estimation. This aspect of the methodology simply

cannot be automated since it requires judgement.

Thus we must distinguish between two types of users; those who wish to calibrate the
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model for a new site and those who wish to use the model for a site that has already been
calibrated. The former task requires some training but the latter does not. This issue is

discussed in the recommendations below.

We believe that the main objectives of the project have been met. We have demon-
strated.that the models which were investigated in the course of this project meet all the

requirements that can be reasonably expected of models for a phenomenon of the complexity

of daily climate.
Recommendations
Quality of historical records

The main obstacle to the application of the techniques described in this report on a
large scale is the lack of suitable historical records. This refers to both the guantity and
the quality of available data. The records which were used for this report represent some of
the best available in South Africa. Nevertheless, for the purpose of modelling daily climate,
they are barely adequate. Although there is little that can be done to increase the length
of records except to wait for more data to be collected, it should be possible to improve
the quality of historical records. In particular it would be useful if some measure of the
reliability of the observations were also recorded on a regular basis. As we have repeatedly
pointed out in the body of the report, one of the problems which we encountered was that
of identifying incorrect observations. This task would be considerably simplified if one had

some index of reliability associated with (ideally) each recording or set of recordings.
Transfer of technology

For the methods developed in this project to realise their full potential it will be nec-
essary to calibrate the models at many more sites. As was pointed out, no special training
is required to use the programs for generating climate sequences once the parameters of
the model have been estimated. However, some training is required to use the programs to

prepare the data for estimation and to carry out the estimation for a new site.

We recommend that the Computing Centre for Water Research (CCWR) be approached
to acquire the expertise to implement the estimation techniques and with the help of users,
gradually build up a data base of estimates of the model parameters for as many sites as
possible in South Africa. The CCWR already offer a similar data product, namely the
parameter estimates of a daily rainfall model for 2550 sites in South Africa. These arose

from a previous Water Research Commission project (Zucchini and Adamson (1984)). The
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CCWR also offer the artificial rainfall generating program which can be applied to any of
these sites. Thus the programs developed in the course of this project constitute a logical
extension of a service that the CCWR. already offer.
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CHAPTER 1

INTRODUCTION

Climate is a critical factor in determining the variety and abundance of vegetation and
animal life that can exist in a region. It imposes limits on agricultural and other human
activities that are economically feasible. Thus it is not surprising that various aspects
of climate, such as precipitation, temperature, solar radiation, humidity, wind speed and

others, are recorded on a regular basis throughout the world.

The purpose of measuring these climate variables is to extend our knowledge of the
behaviour patterns of climate and thereby, among other things, to identify those activities
which are feasible and to determine how these may be most profitably carried out. For this,
one has to take account of the fact that both the climate process and human requirements,
such as demand for water, are dynamic processes which are stochastic rather than determin-
istic in character. For example, the annual rainfall in most regions of South Africa varies
considerably from year to year and it is obviously inadequate to base water—related decisions
solely on the average annual rainfall; the entire distribution of annual rainfall needs to be

considered.

Statistical theory provides an ideal framework for expressing our knowledge about the
properties of climate. Firstly, it provides a means of quantifying our knowledge in a precise
manner. Secondly being designed tc describe stochastic phenomena, the theory provides a
conceptual framework which accommodates notions such as uncertainty and risk, thereby
providing a convenient basis for rational decision making in the face of uncertainty. Thirdly,
statistical methodology provides an effective means of synthesising and analysing the infor-
mation contained in large data sets such as daily climate records. In particular the theory
enables one to quantitatively distinguish the systematic patterns in climate (such as the
seasonal cycles) from the random fluctuations about these patterns and to express this

information in terms of a statistical model.

As well as providing a concise description of the patterns that exist in the different
components of climate, a statistical model can be used to generate artificial climate sequences
which preserve the properties of real climate sequences, that is, artificial sequences that
are indistinguishable from real climate sequences. Among other things, artificial climate

sequences are useful as inputs to crop growth models which can then be used to determine

1-1
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the distribution of yield, the risk of crop failure due to adverse climate, optimal planting
dates, the potential profitability of irrigation, and so on. For such purposes artificial climate
sequences generated by a good stochastic model are more useful than the original historical
record. Firstly, they are free of the typical imperfections which are especially prevalent
in historical climate records, for example, incorrect recordings and missing cbservations.
Secondly, the historical records presently available in South Africa are mostly quite short

and thus only reflect a small fraction of the different climate sequences that could occur.

It is sometimes argued that artificial sequences generated by a stochastic model con-
stitute no more than complicated extrapolations of the historical record. However, a model
contains more than the information that can be extracted from a single historical record. It
contains our knowledge (in the form of model assumptions) about the behaviour of climate
derived from theory and from observations at other locations. For example, it is reasonable
to assume that certain average properties of climate variables vary smoothly with time.
Such assumptions give the model a structure which may not be evident in a single short

historical record.

The main objective of this project has been to develop a stochastic daily climate model
for South African conditions. The time resolution was taken as one day because climate data
commonly available are recorded on a daily basis. The variables included in the model are
rainfall, maximum and minimum temperature, maximum and minimum relative humidity,
evaporation, wind run and sunshine. In fact the models that have been developed can be
used to model a subset of the set of variables in cases where some of the above set are not
available. Alternatively, it is possible to augment this list if measurements on additional

variables are available.

As already mentioned the model needs to preserve the important properties of daily

climate sequences. These were identified as being:

a) Seasonality, Each of the climate variables exhibits seasonal behavicur, that is, the
recordings fluctuate about a curve which has a cyclical pattern with a period of one year. The
shape of the curve is approximately sinusoidal which suggests that it can be parsimoniously

approximated by a truncated form of its Fourier representation.

b) Wet/dry day effect. The probability distribution of the climate variables on weft

days is different from their distribution on dry days. For example, the maximurm relative

1-2
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humidity is generally higher on wet days than on dry days; and the opposite is true for the
number of sunshine hours. Thus it is necessary to treat dry days and wet days differently

in the model.

c) Autocorrelation. The individual variables exhibit short-term persistence over and
above that attributable to seasonality. Generally there is a positive correlation between
readings on successive days. This type of persistence needs to be incorporated into the

model.

d) Cross—correlation. Apart from the wet/dry day effect already mentioned, the vari-
ables are cross—correlated. For example, there is a positive correlation between minimum
temperature and maximum temperature on the same day. To preserve this property it is

not possible to model the climate variables separately — they have to be modelled jointly.

e) Boundedness. The values of some of the variables are bounded, for example, relative
humidity lies in the range 0% to 100%. Other variables are bounded with respect to others,
for example, the minimum temperature on any one day must not be higher than the maxi-
mum temperature on the same day. To preserve this type of property the variables have to

be transformed.

f) Non—normality. The probability distribution of climate variables does not follow the
normal distribution. This is problematic because there is practically no other multivari-
ate distribution available that is both sufficiently flexible and mathematically tractable to
deal with a phenomenon as complex as climate. It is therefore necessary to transform the

variables to achieve normality.

Taken together these properties indicate that we are dealing with a multivariate time
series which is non-stationary and which contains a number of variables with special prop-
erties. In particular rainfall has the property that it is partly discrete (there is a non—zero
probability that it does not rain) and partly continuous (the rainfall depth on rainy days is
a continuous random variable). There is no standard statistical model which can be applied
directly to such a multivariate time series. A special model has to be constructed for the

daily climate process.

Although there is an extensive literature on the modelling of daily rainfall sequences,
apart from Richardson (1981), very little work has been reported on models which describe

the joint probability distribution of several components of climate. Richardson proposed

1-3
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separating the observations into two sequences; one for observations which occurred on wet
days and one for those which occurred on dry days. For each of these two sequences the
seasonal mean and standard deviation of each variable is estimated separately and then a
new time series (of residuals) is obtained by deseasonalising the original observations using
the appropriate means and standard deviations, depending on whether the observations
occurred on wet days or on dry days. The (multivariate) time series computed in this way
has mean zero and variance unity and is modelled using a single multivariate autoregressive

model.

Richardson’s model (Model 1) is probably the simplest structure that has the potential
of preserving properties (a) to {d), outlined above, in a sufficiently flexible form. To accom-
modate (e) and (f) it is necessary to make suitable transformations of the variables at the
very start of the modelling procedure. Such transformations are required for all the models

which were considered.

At the start of the project Model 1 was fitted to six years of record (1979-1984) at
Elsenburg. The model was found to fit some aspects of the historical records quite well
but performed poorly on certain other aspects. In particular the annual standard deviation
for wind run, maximum and minimum humidity were systematically underestimated. The
(lagged) cross—correlations between some of the variables (e.g. maximum temperature and
minimum temperature) were not preserved by the model. However the most noticeable
deficiency was found to be that the model did not preserve the serial correlation structure of
many of the variables. This was attributed to the lack of flexibility of Model 1 in this respect.
In particular the model is based on the assumption that the serial correlation function does
not depend on the wet/dry status of the days in question. In fact the correlation between
variables on two successive days depends on whether the two days are both wet, both dry,
wet followed by dry or dry followed by wet. It was therefore decided to develop a model
which incorporates additional flexibility in its autocorrelation function, that is, a model
which allows for the serial correlations between variables on successive days to depend on

their wet/dry status.

In developing a model for a process as complex as daily climate there are two conflicting
objectives. On the one hand it is desirable to construct a model that is as flexible as possible
so that it can accommodate as many of the special features of the process as possible.

On the other hand additional flexibility can only be achieved by increasing the number

14



CHAPTER 1 Introduction

of unknown parameters in the model. These parameters have to be estimated from the
historical record. Now, for a record of given length, increasing the number of parameters
that has to be estimated decreases the precision of the estimates, on average. Put differently,
if a model has too many parameters it becomes too specific to the particular historical record
that is available and less representative of the population of typical climate sequences that
could arise. The appropriate complexity of a model depends on the length of the historical
record. In general, simpler models which depend on only a small number of parameters will
outperform more complex models if the historical record is short, but the reverse is true if the
record is large. A second issue is that some of the climate variables are more appropriately
modelled by simpler structures than others. It is therefore not always optimal to use the

same model for all the components of climate.

The strategy that we adopted to circumvent the above difficulties was to develop a
family of models of varying degrees of complexity ranging from the simplest feasible model
to more complex alternatives. This allows one to select the particular model from the family
which is most appropriate for the historical record that is available. In addition the family
which was developed is such that the individual models within the family are compatible
in the following sense. One can use different submodels for each of the individual climate
variables and then combine these into a multivariate model at the last stage of the modelling
procedure. Thus, for example, it is possible to fit a simple model to wind run but a more
complex model to minimum temperature. This compatibility feature of the family thus

allows for additional flexibility.

Three compatible models were developed which we will refer to as Models 3, 4 and
5 (Model 2 was developed as a prototype to the others and is included in the report for
the sake of completeness). Models 3 and 4 are two alternative relatively simple models
whereas Model 5 is more general than each of them. Thus one would expect Models 3
and 4 to be suitable for short data records (as are presently available in South Africa) and
Model 5 to become preferable as the historical data base increases in length. The method of
maximum likelihood was used to estimate the parameters. Since the likelihoood equations
are extremely complex, it was necessary to develop numerical methods to carry out the
estimation. This involved deriving the first and second derivatives of the likelihood function
(given in Chapter 3) and the development of procedures to compute initial estimates of the

parameters.
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One of the major problems which we encountered in applying the estimation procedures
was the presence of missing observations and also of outliers, mainly in the form of incorrect
readings (e.g. outside the admissible range of values). It is necessary to filter the data in
order to remove such outliers before attempting to estimate the parameters — this introduces
additional gaps in the record. Thus the estimation procedure that was developed had to be

able to cope with the problem of missing values.

Some aspects of the lack of fit of Model 1 which were identified at the start of the
project were later found to be attributed, at least in part, to outlying observations. In
fact, a conclusion of this project is that in many respects Model 1 outperforms the more
sophisticated models developed here. All the models considered here are strongly influenced
by outlying observations. This fact makes it necessary to pay special attention to the quality

of the historical record before attempting to fit a model.

In order to objectively determine which member of the family of models is most ap-
propriate in a given situation a model selection criterion is used. The Akaike’s Information

Criterion (AIC) is proposed for this purpose.

Six sites were selected to evaluate the performance of the models considered in this
report. The choice of the sites was, of course, constrained by the availability of suitable
historical records. Within this constraint we attempted to represent, as well as possible, the

various climate regions of South Africa. The sites chosen were:
Elsenburg — South West Cape
Kakamas — Northern Cape
Middelburg — Eastern Central Cape
Nelspruit ~ Eastern Transvaal
Cedara — Natal
Hoopstad — Orange Free State.

The aim of model validation is to establish that the models preserve the important
properties of the historical records, at least to an appropriate degree, so that the generated
sequences can be regarded as representative of the population of sequences which could

occur.

An objective of this project was that the technicalities of the methodology should be
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transparent to the user, that is, the results should be accessible to users with limited or
no knowledge of statistics. Here one must distinguish between the person who fits the
model to observations at a new site and the person who uses the fitted model to generate
artificial climate sequences. A limited amount of training is required to apply the estimation
techniques using the software that is provided, but once the parameters of the model have
been estimated at a particular site, the software provided to generate artificial climate

sequences is accessible to anyone who can run a computer program.

In order to make the methodology accessible to as wide a variety of users as possible,
it was decided at the outset of the project that all the software developed would have to be
such that it could be implemented on micro computers. Secondly, it was decided that no
use should be made of licensed software which may not be available to some potential users.
The programs listed at the back of this report are self-contained — no additional software

is required either to estimate the parameters or to generate artificial climate sequences.
This report is structured as follows:

The preliminary statistical analysis of the data is described in Chapter 2. This includes
a description of the data, the types of difficulties encountered in detecting and dealing with
faults in the data and the statistics computed to identify the structures present in the climate

sequence.

Chapter 3 gives a theoretical description of the five climate models which were inves-
tigated and of the methods used to estimate the model parameters. The contents of the
chapter are technical and very detailed and thus rather demanding of the reader. Fortu-
nately it is not necessary to absorb all this detail in order to understand the remainder of
the report. We recommend that the reader who is not concerned with the mathematical
development of the models simply skip over this chapter. Details on the implementation of
the models to the historical records are given in Chapter 4. The algorithms for implement-
ing the theory are listed in Chapter 5. These include algorithms for generating artificial
climate sequences. These algorithms are intended to bridge the gap between the formulae
given in Chapter 3 and the FORTRAN programs given in Appendix D. Extensive tests were
performed on the fitted models in order to aésess their performance in preserving the impor-
tant properties of climate sequences. The results of this model validation investigation are
summarized in Chapter 6. A summary of the findings of the study and the main conclusions

are given in Chapter 7.
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There are 5 Appendices: Appendix A explains the choice of the Fourier approximation,
L , Appendix B describes the properties of the Fourier series approximation, Appendix
C gives an algorithm, known as the Cholesky decomposition, which rewrites a matrix as a
product of a triangular matrix with its transpose. This is needed to generate normal random
numbers with a covariance matrix ¥ . Appendix D gives information on where a list of the
ANSI FORTRAN 77 programs used in this study can be obtained. Appendix I describes
the EM algorithm, a very general iterative method for maximum likelihood estimation in
incomplete data sets. The EM algorithm is used in this study to estimate and fill missing

values in the climate data sets.



CHAPTER 2

THE DATA SET AND PRELIMINARY ANALYSIS

It is to be expected that data records collected over a long period of time will contain
gaps, and usually the number of gaps increases in proportion with the size of the data set.

The data sets considered in this study are no exception to this.

Gaps occur for two reasons. Firstly, a high proportion of the observations are missing.
Although missing observations are relatively easy to detect, they lead to complications in
the analysis. In particular, the multivariate time series models considered here require
simultaneous observations of all the variables. Furthermore, the serial correlation structure
in the series does not allow one to simply discard observations as one would do if the

observations were serially independently distributed.

Secondly, some of the readings are incorrect (or incorrectly recorded). These are often
quite difficult to detect, especially if the values fall within the feasible range of the variable

under consideration. This problem is particularly difficult to deal with satisfactorily.

This chapter describes the general format of the data sets used, some of the problems
encountered and the method used to overcome them. Finally, some preliminary analyses

performed for initial model identification are discussed.
The data set
(a) Format
The climate variables of interest are:

- rainfall (mm)

- maximum temperature (°C)}

— minimum temperature (°C)

— A pan evaporation {mm)

- sunshine duration (hours)

- windrun (km/day)

- maximum humidity (%)

— minimum humidity (%)
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Not all stations have records for evaporation, however, as it is easily derived from
other climate variables, it is not essential to include it in the models. Whenever readings
are available, evaporation is kept purely to demonstrate the elasticity of the models in that
variables can be omitted or incorporated without the model structure changing. The number

of variables is simply increased.

The unit of measurement for each variable is shown above in brackets following the

variable name.

Three properties of the time series (discussed later) determine how the final data set
for parameter estimation must be constructed. Firstly, simultaneous observations for all
variables are required as one is dealing with a multivariate time series. As data collection of
some variables (humidity, for example) has only been started recently, only years for which
measurements are available for all variables simultaneously can be used. The only exception

is rainfall as it is modelled independently of the other variables.

Secondly, continuous data is required because of the seasonality and serial-correlation
structure in the time series. Large gaps in the data caused by shutting down a station for
a long period of time and then reopening it at a later stage, cannot be treated as missing

“values. Only the sequence previous to or following the closing (depending on which period

is longer) may be used.

Finally, records should begin on 1 January and end on 31 December. This restriction
simplifies the algorithms and the programming. However, it is not necessary to waste data
in order to meet this requirement if only a few months are missing in a year. For example,
if the original available record starts on 1.2.1978, then one should code the days 1.1.1978-
31.1.1978 as missing and then regard the record as starting on 1.1.1978.

(b) Quality

There is always a possibility of readings being recorded incorrectly. The type of record-
ing error which can easily be identified is when the value recorded lies outside the permissible
range, for example a recorded value for sunshine duration of 25 hours. In addition, a variable
may have values which, although within a feasible region, are nevertheless incorrect. This
cannot be established with any certainty. The fact that one is clearly dealing with data sets
that are not “clean” and that preliminary work done showed the models to be extremely

sensitive to “unclean” data, a thorough procedure to detect possible errors in the records is
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necessary.

From model assumptions, the residual time series obtained after fitting Model 1 (ahy
other'mbdel can be used) to the climate series, is normally distributed with mean zero and
standard deviation of unity. Therefore, 99.7% of the residual values should lie within the
interval (-3, 3). In the present case, it is almost impossible to tell whether large residuals
reflect model misfit or poor data, therefore large residuals were examined for possible oc-
currences of outliers, Preceding and succeeding values can give an indication whether or
not these values should be considered as outliers. Observations across the variables at these
times also show what patterns to expect. For example, Barry and Charley (1968) state that

evaporation can be expressed by:

duration of sunshine

mean air temperature

mean air humidity

mean wind speed.

Thus, one would expect to see an increase of evaporation with an increase of sunshine

duration.
Outliers are treated as missing values.
(¢) Treatment of leap years

Whenever a leap year occurs, the value observed on the 29 February is added to the

value observed on 28 February for the variables

rainfall and

t

— evaporation.

For the variables
— maximum temperature
— minimum temperature
— sunshine duration
— windrun
— maximum humidity, and

— minimum himidity,
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the mean of the observed values of the 29 February and 28 February repla.cés the

observed value of 28 February.

If the 28 February has a missing value then it is replaced by the observed value of 29
February.

Distinctive features of the time series useful for model identification

The station chosen for preliminary analyses was Elsenburg in the Cape Province {Lat~
itude 33°51’, Longitude 18°50' ). Any station could have been chosen for this purpose as

they all display similar features.
(a) Seasonality

A simple moving average smooth was used to filter the series. This is given by

L
1
M=sr 1 L_X;L e

where m, is the mean of the time series at time ¢, i.e.
I
my = % ; Tiz

where z;; is the observation made at time ¢ of the ith year,

1=1,2,...,I, I being the number of years for which data is available,

t=1,2,...,365
and L is the lag.

Lags of 10, 25, 50 and 100 days were applied.

Note that in the above equation, because m; is cyclic one has that

Mage = M1
Mggr = M2
Mo = Maas

m_1 = M3ae4
and so on.
Figure 2.1 shows the smooth plots for the various variables.

24



M

CHAPTER 2
FIGURE 2.1

Elsenburg
MAX TEMP

29—

27 ¥

a2s -

23

21

18

17
JAN

DRYS

EVAPO

10 ,

JAN

MAR MAY JUL SEP MOV

DRYS

The data set and preliminary analysis

Simple moving average smooth (lag=50)for all variables of

MIN TEMP

15.2

0
JAN MAR MaY JuL SER NOU
Days
SUNSHINE

11 | S | T T T T T 7
0
4
35
ful
o

NOY

JAN

BDAYS

2-5



CHAPTER 2
WINDRUN
mm@ﬁ| T T T T T T T T
210 -
200
-
a
2
~
£
X
190 -
C1se
178 L | I | ! | I ] | 1
JaN MAR MAY JuL SEP NOVY
DAaYsS
MIN HUM
S1r— T T T T T T T T T
W
o
q
—
ra
In]
0
]
]
o

NQU

DAYS

PERCENTAGE

2-6

sS4

a3

a2

o1

The data set and preliminary analysis

MAX HUM

1 ] I i 1 |

JAN

MAR MAY JuL SEP NOY

DAYS




CHAPTER 2 The data set and preliminary analysis

From the smooth plots it can be concluded that each time series of the variables is

seasonal, has a cyclic period of one year and has a sinusoidal shape.
(b) Autocorrelation
Table 2.1 shows the autocorrelation for each variable up to lags of three.

The following abbreviations for each variable will be adopted in the annotation of tables

and figures:
max temp — maximum temperature
min temp — minimum temperature
evapo — evaporation
sunshine — sunshine duration
max hum — maximum humidity
min hum — minimum humidity

From Table 2.1 it can be seen that the variables are autocorrelated, i.e. there is a

short—term persistence within each variable.

TABLE 2.1 Autocorrelation coefficients

Variable Lagl Lag2 Lag3
rainfall 0.23 0.08 0.05
max temp 0.77 0.59 0.51
min temp 0.69 0.54 0.48
evapo 0.76 0.70 0.66
sunshine 0.52 0.30 0.22
windrun 0.38 0.10 0.02
max hum 0.32 0.15 0.08
min hum 0.53 0.33 0.27

(c¢) Cross—correlation

Intuitively, one would expect climate variables to be related to each other in some way,
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for example one would expect the amount of evaporation to be related to the temperature.
In fact, as already mentioned, evaporation can be expressed approximately in terms of the
other variables. The interdependence among the variables was determined by computing
the lag cross—correlation coefficients of the time series. These cross—correlation coefficients

are shown in Table 2.2. These results confirm that the variables are indeed interdependent.

TABLE 2.2 Cross—correlation coefficients between variables

Variables Lag cross—correlation
R2(j") Rl(.?)i) RD(‘:j) Rl(laj) : R2("33)

max temp — min temp 0.42 0.44 0.52 0.72 0.73
max temp — evapo 0.65 0.74 0.78 0.64 0.56
max temp — sunshine 0.52 0.65 0.63 0.34 0.24
max temp — wind -0.07 -0.17 -0.14 0.07 0.11
max temp — max hum -0.12 -0.21 -0.27 -0.19 -0.08
max temp — min hum -0.42 -0.57 -0.71 -0.39 -0.26
min temp — evapo 0.65 0.61 0.51 0.50 0.48
min temp — sunshine 0.43 0.25 0.06 0.17 0.23
min temp — windrun -0.01 0.22 0.26 0.14 0.07
min temp — max hum -0.17 -0.18 -0.18 -0.05 -0.05
min temp — min hum -0.44 -0.32 -0.07 -0.13 -0.20
evapo — sunshine 0.50 0.59 0.75 0.50 0.39
evapo — windrun 0.09 0.04 0.12 0.12 - 0.13
evapo — max hum -0.12 -0.18 -0.29 -0.30 -0.17
evapo — min hum -0.37 -0.46 -0.61 -0.47 -0.37
sunshine — windrun 0.03 -0.18 -0.20 -0.02 0.08
sunshine — max hum 0.00 -0.06 -0.19 -0.24 -0.15
sunshine — min hum -0.16 -0.33 -0.70 -0.50 -0.32
windrun — max hum -0.05 -0.08 -0.10 -0.12 -0.06
windrun — min hum -0.12 -0.06 0.18 0.17 -0.01
max hum - min hum 0.16 0.32 0.32 0.17 0.07

(d) Time series observations differ depending on the wet or dry status of the

day

It is known that on days that rain occurs, a marked change also occurs in other climatic
variables, for example, temperature and sunshine duration are more likely to be below

normal on rainy days than on dry days. Humidity, on the other hand will be above average on
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a rainy day rather than on a dry day. This property of the climate variables was investigated

to determine whether the difference was significantly distinct.

The observations of all variables were found to be significantly different depending on
whether rain had or had not occurred in that time period. Figure 2.2 shows the mean time
series of each variable conditioned on the wet or dry status of the day. Table 2.3 shows a

comparison of the mean for each variable conditioned on the wet or dry status of the day.

TABLE 2.3 Mean for conditioned time series

Variable Dry state Wet state
max temp 24.14 18.13
min temp 10.43 10.91
evapo 6.71 - 2.76
sunshine 9.73 4.15
windrun 1777 245.8
max hum 91.9 94.3
min hum 36.8 55.1

Having concluded that climatic variables vary depending on whether rain or no rain
has occurred, it remains to examine whether the amount of rainfall is related in any way
to the observations of the climate variables. Figure 2.3 shows the graphs of rainfall versus
each climate variable. From these plots it is concluded that there is no visible pattern to

the values of the climate variables in relation to the amount of rainfall.
(e) Rainfall is a “strange” variable

The rainfall variable is somewhat unusual from a statistical point of view in the sense
that it exhibits different properties from those of the other climatic variables. The distri-
bution of rainfall is both discrete and continuous. The occurrence or non-occurrence of

rainfall is considered as discrete, while on the times that it does rain, the depth of rainfall
has a continuous distribution.
Another distinctive feature of rainfall is that especially in a country like South Africa,

the proportion of rainy days is relatively small.
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FIGURE 2.2 Mean time series conditioned on status of day
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FIGURE 2.3 Daily mean rainfall versus daily mean climate for all variables
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CHAPTER 2 The data set and preliminary enalysis
Concluding remarks

The above preliminary analysis establishes a number of facts. Firstly, the individual
climate variables exhibit seasonal fluctuations and these fluctuations appear to follow a
sinusbidal pattern. This would suggest that the mean function of each variable could be
parsimoniously modelled by means of a truncated Fourier series. Secondly, the individual
variables are serially correlated (even after this seasonal fluctuation has been taken into
account). In other words, the individual climate variables constitute time series and have to
be modelled as such. This preliminary analysis would suggest that an autoregressive model
might be suitable to describe the autocorrelation structure of the variables. Here one has to
keep in mind that the number of parameters in the final model must be kept to a minimum
in order to avoid the usual statistical problems associated with estimating a large number

of parameters. An autoregressive model is ideal in this respect.

Finally, the variables are cross—correlated, that is, they do not vary independently of
each other. It follows that it is not possible to model climate by separately modelling its

component variables; a multivariate time series model is required.

Seeing that the variable rainfall has some extra properties that have to be taken into
consideration and that the remaining climatic variables differ depending on the state of the
rainfall variable, it is proposed that the rainfall variable should be determined independently
of the other variables and then to condition the other variables for a given day on whether

the day was wet or dry.

As no pattern was found between different precipitation amounts and the climate ob-
servations, it was decided to consider a non-rainy day as one with a precipitation amount

of zero and a rainy day as one with a rainfall depth greater than zero.
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CHAPTER 3
THE MODELS

The preliminary analysis described in Chapter 2 established that sequences of climate
variables exhibit a number of distinctive features. In particular the distribution of each
climate variable varies seasonally, the variables are serially correlated, they are dependent,
and finally the distributions of the variables depend on the wet or dry status of the day under
consideration. Any useful model for the simultaneous discription of climate sequences must

of course preserve all these properties.

The models considered here are constructed in two stages. One begins by constructing
a model for the rainfall process. This provides synthetic sequences of wet and dry days. The
remaining variables are then modelled according to the wet or dry status of each day. Thus
the joint distribution of all the variables other than rainfall changes not only with season

but also with changes in wet or dry status.

The rainfall component of the five models to be discussed is common to all five models
and is thus described first. The first of the five models is due to Richardson (1981}, the

remaining four are new.
The rainfall model

Several models have been proposed for simulating daily precipitation. (Gabriel and
Neumann, 1962; Richardson, 1981; Roldan and Woolhiser, 1982; Stern and Coe, 1984; Zuc-
chini and Adamson, 1984.) Most precipitation models are specified by a discrete occurrence
process describing the sequence of wet and dry days, and a continuous distribution function
for the amount of precipitation of days with rain. The parameters of the model are allowed

to vary seasonally.
A model to describe the occurrence of wet and dry sequences of days

A first—order Markov chain is used to describe the occurrence of wet and dry days. By
this one assumes that the state of day ¢ depends on the state of the previous day, t—1.
This does not imply that the state at time ¢ is independent of the state on day ¢—2,{—-3,
etc ..., but rather that the information given by #—1 is equivalent to all the information
given by t—1,t—2 ,etc .... One also assumes that, except for the seasonality, the process

is stationary.
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A first—order Markov chain has been found to be an adequate model for precipitation
occurrence in many different regions. (Gabriel and Neumann, 1962; Caskey, 1963; Weiss,
1964; Hopkins and Robillard, 1964; Haan et al, 1976; Smith and Schreiber, 1973; Woolhiser
and Prengram, 1979; Richardson, 1981; Roldan and Woolhiser, 1982; Zucchini and Adam-
son, 1984.) The order of the Markov chain may of course be increased, but this has to be
done at the cost of increasing complexity and the number of parameters in the model. A
further problem arises if one attempts to increase the order of the Markov chain in arid
areas, namely the estimation of the probability that a rain day follows two or more con-
secutive rain days. In arid areas there are relatively few runs of three or more consecutive
rain days and thus there is hardly any data on which to base estimates of this conditional
probability. (Note that this has to be estimated for each day of the year.) Finally, it was
demonstrated in Zucchini and Adamson (1984) that a first order Markov chain provides an
adequate description of the occurrence of wet and dry sequences of days in the complete

range of South African conditions.
(a) Notation and preliminaries

The day will be used as the time unit. That is, the year is divided into NT(= 365)
equal intervals, denoted by ¢t =1,2,...,NT . A day with total rainfall greater that 0 mm

is considered as a wet day.
The following notation will be used:

R represents the occurrence of rain (i.e. wet day).

&l

represents the non-occurrence of rain (i.e. dry day).
For t=1,2,...,NT

NR(t) is the number of times it was wet in period ¢ .

NR(t) is the number of times it was dry in period ¢ .
NRR(t) is the number of times it was dry in period ¢t — 1 and wet in period ¢t .
NRR(t) is the number of times it was dry in period ¢t — 1 and dry in pericd ¢t .
NRR(t) is the number of times it was wet in period ¢t — 1 and wet in period ¢.

ND(t) = NRR(t) + NRRE(t) is the number of times that it was dry in period ¢t —1 and

there was an observation (wet or dry) in period t.

NW(t) = NRR(t)+ NRR(t) is the number of times that it was wet in period ¢t —1 and
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there was an observation (wet or dry) in period t.
mr/r(t) the probability that period ¢ is wet given that period ¢ — 1 is wet.
& r(t) the probability that period t is dry given that period ¢ — 1 is wet.
Tp /ﬁ(t)' the probability that period t is wet given that period ¢ — 1 is dry.
& /E(t) the probability that period ¢ is dry given that period ¢ —1 is dry.
Then ng/r(t) + 77/p(t) =1
R + WR/-E(t) =1.

Therefore the transition probabilities are fully defined given wr/r(t), 75 z(t) and the

wet or dry state on day ¢ — 1, and one only needs to estimate these two probabilities.
From elementary probability theory we have
NRR(t) ~ B(NW(t), rr/r(t))
NRR(t) ~ B(ND(t), mp%(t)), t=1,2,...,NT

where B{N,n) denotes the binomial distribution with parameters N and = .

(b) Estimation
The functions #wg;r(t) and np /E(t) are estimated using the same method but differ-
ent data. To simplify the notation in what follows, one makes use of the following generic

names:

Let  M(t) ~ B(MM(t), (t)), t=1,2,...,NT.

First we note that the binomial distribution belongs to the exponential family. There-

fore we have a set of independent random variables M(t),t = 1,2,...,NT , each with a

distribution from the exponential family; each M(t) depends on a single parameter =(t)

and the distributions of all M(t), t = 1,2,...,NT , are of the same form (i.e. all bino-

mial). Thus the properties of a generalized linear model are satisfied, and estimates of #(t)

“may be obtained by using the theory for estimation for generalized linear models. (Dobson,

1983.)

The probabilities 7{t)} are assumed to be functions of linear combinations of parameters

1,72y +3¥Ls L < NT . That is

g(x(t)) = At, L)
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where g is the link function and A(t,L) is a linear combination of the «; .

To ensure that the estimated values of n(t) are restricted to the interval [0,1], one

uses the logit link function, given by

g(x(t)) =log (ﬂ) = A(t, L).

1—x(t)

To obtain the linear combination of the ~;, A(t, L) , we look at some of the properties
of #(t) , namely that it is a2 smooth, periodic and approximately sinusoidal shaped function.

Transforming w(t) , using the logistic transformation, to a logit A(t) given by

A =los (205

one obtains a representation which still has the same properties as () , and thus we can
approximate A(t) by the first few terms of its Fourier representation. This approximation

has been used by Stern and Coe (1984) and Zucchini and Adamson (1984).

The exact Fourier representation of A{t) is given by

NT
A =Y wes(t), t=1L2,...,NT
=1 .

where
(8) = cos(w(t — 1)i/2) i =2,4,...
PRI = U sinfw(t — 1)@ - 1)/2) i=3,5,...
991(t)=1; t=1,2,...,NT,
and
_ 2
W= I—V—T".

Define the function A(t,L) by
L
Mt L) =) weit), t=1,2,...,NT; L<NT
i=1

where ¢;(t) is defined as before and L is the order of the Fourier series approximation.

One is thus making the following approximation:

For some L < NT

At, L) At), t=1,2,...,NT.
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A procedure to choose the order of the Fourier series approximation (i.e. the value of
L) will be discussed later. Generally this approximation is accurate for small values of L .
The number of parameters, L, is always chosen to be an odd number. The reason for this
choice is given in Appendix A. An outline .of the properties of the Fourier representation

are given in Appendix B.

The log-likelihood function of the observed values as a function of the probabilities
w(t} , is given by

NT

fr(t); M) = [M(t) log ( 7(?) ) + MM(2) log{1 — 7(2)) + log (MMA’E’};))] .

et 1—m(t)

Therefore, the log-likelihood function of the observed values as a function of the parameters

Y1,%2,---,7L is given by

NT
v M) = Z [M(t)A(t,L) — MM(t)log(t + * 1)) + log (Mj\;?t()t))] )

The score vector U with respect to +y,72,...,7r has elements given by

3y M(t)) X _EM__ .
U, = = ; M(t) — MM(t) 1 oD v;(t)

. NT
=" [M(t) - MM(2)x(t)]e;(t)

eA(t,L)
since Va.r(M(t)) = MM(t) -(H-GA—(“"L))"‘! and
MM(t)e (L)
E(M@) = m and so
IE(M(t) _ MM(t)e D) Var(M(2).

AA(t, L) — (1+ernD))?

Similarly, the information matrix Ipxr has elements given by

NT erMtL)
Ly = ; () er(t) MM(2) (PRI

ML)

Since m = W(t)(l - ﬂ'(t)) it follows that

NT

Lie =Y 0;(t)ert)MM @) ()1 — =(t).

t=1
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The maximum likelihood estimates for <1,7a,...,~z are then obtained by solving the
iterative equation

Iim=1g(m) = [m-1gim-1) 4 g7(m-1)

where m indicates the mth approximation and % is the vector of estimates.

Some initial approximation +(® is used to evaluate I(®) and U®) , then the iterative
equation is solved to give (1) which in turn is used to obtain better approximations for
I and U, and so on until adequate convergence is achieved. When the difference between
successive approximations (™ and ~(™=1) is sufficiently small, (™} is taken as the

maximum likelihood estimate vector.

(c¢) Model selection

Whenever a model is fitted to observed data, two types of discrepancy arise. The
discrepancy due to approximation (the fewer the number of parameters fitted, the higher
the value of this discrepancy) and the discrepancy due to estimation (the more parameters
fitted, the higher the value of this discrepancy). When choosing the number of parameters to

be fitted, one attempts to minimize the combined effect arising from the two discrepancies.

Selection of the number of parameters, L, may be done by using the criterion of
the Kuilbach-Leibler measure of discrepancy. (Linhart and Zucchini, 1982; Zucchini and
Adamson, 1984.)

Under the assumption that for some Lo, A(t) is exactly fitted by Lo parameters, i.e.
At) = A%, Lo), Lo < NT,
the above method leads to the Akaike Information Criterion where
AIC = (v, M(t))+ L

where £(7y; M(t)) is the log-likelihood function given before.

Each value of L leads to a different approximating model. The criterion is computed
for L = 1,3,5,... and the model which leads to the smallest value of the criterion is

selected.

The AIC criterion is much easier to compute than the full Kullbach—Leibler discrepancy
and leads to almost identical results if the discrepancy due to aproximation is small (which

it is in this application).
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The distribution of rainfall on days when rain occurs

Several models have been proposed for the distribution of precipitation amounts given
the occurrence of a wet day. These include the exponential (Todorovic aﬁd Woolhiser,
1975; Richardson, 1981); gamma (Ison et al., 1981; Buishand, 1977; Stern and Coe, 1984);
two-parameter gamma (Buishand, 1978); three-parameter mixed exponential (Woolhiser
and Pegram, 1979); kappa (Mielke, 1973); lognormal and Weibull (Zucchini and Adamson,
1984). |

Woolhiser and Roldan (1982b) found that out of the exponential, gamma and mixed
exponential distributions, the latter fitted the model of precipitation amounts best. Zucchini
and Adamson (1984) found that for stations in South Africa, the lognormal distribution did

not fit some stations, while the Weibull seemed to provide better fits.

Tt is known that the distribution of precipitation depths when rain occurs is positively
skéwed (i.e. smaller amounts occurring more frequently than the larger amounts) and that
it exhibits the same seasonal variability as found with the probabilities =(t) . To account
for this seasonality, the simplest solution is to fit a family of distributions and then to allow
the parameters to change over the year, where these parameters are expressed in terms of

its Fourier series approximation.

The method of modelling precipitation amounts is adopted from Zucchini and Adamson
(1984). Here one does not fit any model initially, the first two moment functions of the
distribution are fitted instead. These are then used to estimate the parameters (by the
method of moments) to any desired two—parameter model. Different families can be fitted

to a single record, e.g. one for the rainy season and a second for the dry season.
(a) Notation
The year is divided into NT equal intervals denoted by ¢t =1,2...,NT",
M(t) represents the number of times that it rained in period t.

R(i,t) represents the rainfall depth on the ith year that it rained in period ¢, where 7 =
1,2,..., M(%).

C represents the coefficient of variation which we assume to be constant for all ¢ (Zucchini

and Adamson, 1984).

u(t) represents the mean rainfall per rainy day in period t=1,2,...,NT .
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(b) Estimating the mean and coefficient of variation

As observed before u(t) can be approximated by its truncated Fourier series represen-
tation and thus reducing the number of parameters to be estimated. That is, we make the

approximation:

pt, L)~ pu(t), t=1,2,...,NT; L<NT

where p(t) is defined as

p,(t)zz Mi‘Pi(t) t=132:"':NT
and

L
p(t,L)=>_ meit) t=1,2,...,NT; L<NT
;=1

and @;(t) is defined as before.
Define m(t) to be the observed means for each period, i.e.
M{z)
m(t)=—1—Z R(i,t) t=1,2,...,NT; i=12,...,M(@2); M) >0
M(t) = 2 H & H ) L H H
where m(t) is not defined when M(t) =0, i.e. it never rained in period .

We use the method of least squares on m(t) to estimate p1,u2,...pur , that is, mini-

mize
NT
> (m(t) - p(t, ))? (1)
t=1

with respect to the p;, = 1,2,...,L. Approximations to the least squares estimators

when some of the M(t) = 0, something which occurs often in arid regions, are given by

= K (i) Z m{t)e:(t) (2)

M(c):-o
where
NT
K@) = > ilt)? i=1,2,...,L.
M) >0

The m(t) in (1) are given the same weight and so periods which had very little rainfall
have a large influence in the estimates of w{t) . To overcome this difficulty, the following

criterion is used instead:
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Minimize
NT M(t)

S = > (RG,Y) - ult, L) (3)

t=1 =1

with respect to u;, ¢=1,2,...,L.

By adding and subtracting m(t) inside the squared term of (3), S{u) can be rewritten

S(p)=5+ 2_: M(t)(m(t) — p(t, L)) (4)
where
NT M(t)
S=30 3 (RG.H - m(e)?

and m(t) is defined as before if M(t)#0 and m(t) =0 if M(t) =

To minimize (4) set its partial derivatives equal to zero:

agﬁf) ~2 Z M(E)(m(t) - nt, L)ei®), i=12,...,L.

These L equations can be solved using the Newton-Raphson iteration method. For

this, we need the second partial derivatives:

3%5(p)
Ouidp;

NT
=2 > M@Bei(t)p;(t), i=12...,L
t=1
Denote the ith element of the vector (¥} by
NT
1B =3" ME)(m(e) - wP e D)ei),  i=1,2,...,L (5)
=1
and the {f,7)th element of the matrix F(X) by
NT
FP =3 MEe:®e;t), 4i=12,...,L (6)
t=1

where k denotes the kth iteration.

Then an algorithm to estimate u;, ¢ =1,2,...,L is given by:
Step 1: Obtain initial estimates p,( ) .,,u)(_rdo) using (2) and compute u®(t, L) .
Step 2: Compute f(*) using (5) and P(*) using (6).
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Step 3: Compute the vector §(*) which is the solution to the system of L linear equations
given by
F k) = 5(k)
Step 4: Set ulktl) = y(k) _ 5(k)

Step 5: Test for convergence, e.g. if the elements of f(¥) are sufficiently close to zero. If

the convergence criterion is met, stop, otherwise increase k& by 1 and go to Step

2.

Note that F(*¥) is symmetric. This fact can be used to reduce the number of compu-

tations performed.

An estimator of C is given by:

G = [ i TMY (RG,1) _ﬁ(t))z] 3
PARRYIOEOY -

(c) Selecting the number of parameters

NT
A(L) =) (u(t) - B, L))?, L=1,8,5,...

would be a sunitable discrepancy on which to base the selection, except that some M(t) are
zero and so only approximately unbiased estimators are available. The reliability of this

criterion is therefore difficult to determine.

If one is prepared to make distributional assumptions, then selection criteria are rela-

tively easy to derive, for example based on the Kullbach-Leibler discrepancy.

A reasonable procedure is to select L for a parametric family of models and then use

the same L in the estimation of u(t) .
(d) Fitting the Weibull family

Zucchini and Adamson (1984) found the Weibull family to fit the rainfall depth models
for stations in South Africa and so this family was used to model the observed rainfall

amounts on days that rain was recorded.

Having estimated the mean value function u(t) and the coefficient of variation, C,
one can apply the method of moments to estimate the parameter functions of the Weibull

distribution.
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Denote the scale parameter by aft), t =1,2,...,NT and the shape parameter by

Now
b

_JT(+2/5)  \°
C‘{F(1+1/B)2 1}

To obtain # as a function of C' a rational function approximation has to be derived

as no closed expression of this function is available.

The following approximation has been obtained from Zucchini and Adamson (1984):

330.5410 + 148.445C + 192.7492C2 + 22.4401C3
1+ 257.1162C + 287.8362C2 + 157.223052

8=
Using the relationship

p(t) = a()T(1 + 1/6) t=1,2,...,NT
we obtain the estimator

s =—PD _ 19, NT.
I(1+1/B)

MODEL FOR CLIMATE SEQUENCES

Little attention has been given to stochastic modelling of climatic variables such as
maximum and minimum temperature, evaporation, sunshine duration, windrun, and max-
imum and minimum humidity. Recently, though, there have been some models proposed
to stochastically simulate possible sequences of maximum and minimum temperature and
solar radiation. (Goh and Tan, 1977; Nicks and Harp, 1980; Richardson, 1981; Larsen and
Pense, 1982.) Bruhn et al (1980) looked at minimum relative humidity as well.

Variables such as temperature, evaporation, sunshine duration, windrun and humidity
are not as difficult to model statistically as precipitation because there is not a high propor-
tion of zero observations and the distributions of these variables are not as skewed as the

rainfall distribution.

In the models that follow, because the cross—correlation between the variables is non
zero, the variables are considered to reflect a continuous multivariate stochastic process with

the parameters conditioned on the wet or dry status of the day.
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Model 1: Multivariate model for climate data proposed by Richardson (1981)

The approach taken here to model the climate variables is the method suggested by
Richardson {1981). The weather variables evaporation, windrun, maximum and minimum

humidity have been added to the multivariate process.
(a) Notation
Partition the year into NT'(= 365) equal intervals, denoted by t=1,2,...,NT .
NV  is the number of variables.
NY is the number of years observed.
W represents the occurrence of rain.
D represents the non—occurrence of rain.
Yit 1is the precipitation amount on period t of year ¢, 1=1,2,...,NY .
S; ¢+ is the generic name for the observation at period # of the ith year.
py  is the generic name for the mean for a dry day on period ¢t (ie. Y;;=0).
ki is the generic name for the mean for a wet day on period ¢ (ie. Y;; > 0).
oy’ is the generic name for the standard deviation for a dry day on period ¢.
o, is the generic name for the standard deviation for a wet day on period ¢.
Xi,t 18 the generic name for the residual component at period ¢ and year 7.
po{J, k) is the lag O cross—correlation coefficient between variables j and k.
p1(7,k) is thelag1 crogs-correlation coefficient between variables 7 and k.
p1(7) is the lag 1 serial correlation for variable j .
(b) The model and assumptions

Each variable is modelled in the same way. The procedure given below to model 8;.

is carried out once for each variable to be included in the multivariate model.

The distribution of S;, is seasonal and so its parameters, e.g. the mean and standard
deviation, are allowed to vary seasonally. As was the case with the parameter functions
of the rainfall model, it can be reasonably assumed that the parameter functions of the
climate variables are smooth, periodic and sinusoidal in shape. This would again lead one

to expect that they can be accurately approximated by the first few terms of their Fourier
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representation.

-

The truncated Fourier representations for the daily means and standard deviations for

wet days and for dry days are given by:

L
p =), ol oult)
=1

f Y>>0
L
o =3 & u(t)
i=1
L
ul =" aPpilt)
i=1
if K,t =0
L
ol =Y Poi(t)
i=1
t=1,2,...,NT
where
cos(w(t — 1)¢/2) , 1=2,4,...,L -1
pit) =14 | : .
sin(fw(t—1)(f-1)/2), i=38,5,...,L
‘Pl(t) =1 ’
w=2r/NT and
oV, oP, £V, ¢P are the coefficients of the respective Fourier series and, L is the order

of the Fourier series approximation, i.e. we assume that for some L < NT

L NT
pe=>  awpi(t) = > aipi(t)
i=1 =1

and
L NT
o= Gpilt) ~ Y Giwslt)
=1 i=1

where the above two equations hold for both wet and dry days. {Whenever W or D is
omitted it means that the equation applies for both.)

The number of parameters, L , does not have to be the same in all instances, i.e. the
number of parameters for the means of wet days can differ from that for dry days. The same
applies for the standard deviations. To avoid complicating the notation, it will be assumed
in what follows that L refers to the number of parameters of the particular parameter

function under consideration.
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The estimation of the Fourier coefficients will be discussed later.

The approach used by Richardson (1981) is to determine the daily means and standard
deviations of each variable conditioned on the wet or dry status of each day where Fourier
series is used to smooth their seasonality. The time series S;; is then reduced to a time
series of residual elements by removing the periodic ‘means and standard deviations. This

residual time series is given by the equations:

Siy — ul .
_i';tTp't__ lf Yi,t=0
Xit =
Sis— u¥ )
i if Y4 > 0.
Oy

This standardization leads to a residual series for each variable that is stationary in the

mean and standard deviation with mean zero and standard deviation of unity.

The serial correlation and cross—correlation coefficients are then calculated to describe

the time dependence and the interdependence {respectively) of the residual series.

The model proposed for generating residual series for each variable is the weakly sta-

tionary process suggested by Matalas {1967) given by
Xit = AXit—1+ B €y (7)

where ¢,; isa (NV x 1) matrix of independent random components that are normally

distributed with mean zero and a variance of unity, i.e.
€4~ NID(0,1}.
A and B are (NV xNV) matrices whose elements are defined in such a way that the
sequence generated will have the desired serial correlation and cross—correlation coefficients.

This model is based on the assumption that the residuals of the variables are normally
distributed and that the serial correlation of each variable may be described by a first—order

linear autoregressive model.
(¢) Estimation
Firstly, a method for estimating the matrices A and B will be considered.
From the properties of the distribution of ¢;; and x:: we have that
Ee;z) =0
and
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E(xizt) = B{xit—1) = 0.

Postmultiplying (7) through by xf:t_l , the transpose of x;:—1 , and taking expecta-

tions we have

E[Xi,tXf:t—ﬂ = AE[Xi.t—IXE:t—il + BE[fi,tX?,‘t—l] (8)

Define

My = E[Xi,t—lxg:t—l]
and

My = Elx:,ixis—1l-

M, is an (NV X NV) matrix whose elements are the lag O cross—correlation coeffi-
cients and M, is an (NV x NV) matrix whose elements are the lag 1 cross—correlation

coefficients.

The matrices may be written as

1 »00(1:2) PO(]-’NV)
M, = PO(?: 1) 1 ces PO(Z::NV)
po(NV,1) .. ... 1
and
p1(1) p1(1,2) ... p(L,NV)
p1(2,1) p1(2) ... p1(2,NV)
My = : :
P(NV,1) pi(NV,2) ... py(DV)

where po(7, k) is the lag O cross—correlation coefficient between variables j and &k, p1(7,k)
is the cross—correlation coefficient between variables § and & with variable k& lagged 1
day in relation to variable 7, and p;(j) is the lag 1 serial correlation for variable 7. We

can thus rewrite (8) as
M= AM, since Ele;sel,_,]=0.

‘Since My is a variance covariance matrix, it is non-singular, and therefore its inverse exists.

The matrix A is given by
A= MM
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Postmultiplying (7) through by xf:t' and taking expectations one gets

My = AMT + BBT
since E[ei,te:{;] = I, the identity matrix.

Therefore, the matrix B is given by the solution to
BBT = My — My M5 *MT.
The Cholesky decomposition (Appendix C) can be used to solve for B .

Now, we will discuss the method to obtain parameter estimates for the coefficients of

the truncated Fourier series.

The functions p; and o; are estimated using the same method but different data

sets. The theory will thus be discussed for the mean function u: only.

Let S: be the daily mean vector for S;; and assume that it is given by the linear

model

-§¢=x;§rﬂ+et, t=1,2,...,NT
with

€y ~ NID(0,0’E);

This is a special case of a generalized linear model because the elements S: are independent

with distributions N(u;,0f) where

pe =z 8.

Also the normal distribution is a member of the exponential family (provided the o} are

regarded as known). In this case the link function, g, is the identity function, i.e.

L

glpe) =pe =) cipi(t) =mn,

i=]
where 3°F | a;p;(t) represents the truncated Fourier series of the mean function p; , and

wi(t) is defined as before.

The log-likelihood function of the observed mean values as a function of the mean
function u; is given by:
NT &2

= S Sepr pf 1
Epe; Se) = Z _20_} + o7 - z;tz - 5105(27”7?) .
t=1
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Therefore, the log-likelihood function of the observed values as a function of the parameters

Qy,0s,...,¢p 18 given by

NT —=2
= ) St E = at‘Pt(t)
e(a; St) — Mt + 1==1
2 [ 207 7
Ef‘_ aipi(t 1
— '"IZT() ~log(2ra?)
The score vector U with respect to oy, as,...,ar has elements given by
98(o; S,) [(St Kt) ]
= VR — t)1
7 aaj ; at J( )
since
E(gt) = Ht
Var(S;) = o? , and
Ops/dny = 1.

Similarly, the information matrix Ip«z has elements given by

Z eit)er(t) (t)m(t)

The maximum likelihood estimates for «y,cs,...,ar are then obtained by solving the

iterative equation

Im=1)g(m) - [(m~1)g(m=-1) | 7(m-1)

where m indicates the mth approximation and & is the vector of estimates.

When the difference between successive approximations &™) and &(™~1 is suffi-

ciently small, &(™) is taken as the maximum likelihood estimate vector.
(d) Model selection

The order of the Fourier series approximation, L , for the conditioned mean func-
tion and for the conditioned standard deviation function is selected by Akaike Information
Criterion, AIC, where

AIC = —f(a;0)+ L

where £(c;8) is the log-likelihood function of the model. Each value of L leads to a
different approximating model. The criterion is computed for a = 1,3,5,... and the

model which leads to the smallest value of the criterion is selected.
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Model 2: Multivariate model for climate data

Although Model 1 appeared to be satisfactory in many respects, it performed poorly
in some respects. In particular the annual standard deviation for windrun, maximum and
minimum humidity were systematically underestimated. The (lagged) cross—correlations
between some of the variables (e.g. maximum temperature and minimum temperature)
were not preserved by the model. However the most noticeable deficiency was found to be
that the model did not preserve the serial correlation structure of many of the variables.
This was attributed to the lack of flexibility of Model 1 in this respect. In particular the
model is based on the assumption that the serial correlation function does not depend on
the wet/dry status of the days in question. In fact the correlation between variables on two
successive days depends on whether the two days are both wet, both dry, wet followed by
dry or dry followed by wet. It was therefore decided to develop a model which incorporates
additional flexibility in its autocorrelation function, that is, a model which allows for the

serial correlations between variables on successive days to depend on their wet/dry status.

Model 2 was developed as a prototype to Models 3, 4 and 5. It attempts to deal with

the mentioned deficiency in Model 1.
(a) Notation
Partition the year into N7T'(= 365) equal intervals, denoted by t = 1,2,...NT .
NV is the number of variables.
NY is the number of years observed.
W represents the occurrence of rain.
D represents the nonboccurfence of rain.
N(D) is the set of time periods t such that period ¢ was dry.
N(W) is the set of time periods ¢ such that period ¢ was wet.
Y:: is the precipitation amount on period ¢ of year ¢, i=1,2,...,NY .
Si,+ 1s the generic name for the observation at time ¢ of the ith year.
g 1s the generic name for the mean for a dry day on period ¢ (i.e. Y;; =0).

pi is the generic name for the mean for a wet day on period ¢ (ie. Y;;>0).
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D

o” is the generic name for the standard deviation for a dry day.

w

o’ is the generic name for the standard deviation for a wet day.

6P is the coefficient of the AR(1) process, given a dry day.

8V is the coefficient of the AR(1) process given a wet day.

C(D) denotes the number of elements in the set N(D).

C{W) denotes the number of elements in the set N(W) . ’
Then T =C(D)+ C(W).

Since all variables are modelled in the same way, the representation will be given for
modelling one variable. The same procedure is then repeated for each of the remaining

climate variables.
(b) Model and assumptions

The Model under comnsideration is given by:

D

S"‘?E’t_ ifY;:=0
Xit =

Sit =By .

SR Y >0

where 7=1,2,...,NY and t=1,2,...,NT.

That is, the residual time series x;: is obtained by removing the periodic mean and
the standard deviation from the observed time series §;;. The resulting time series thus

has a mean of zero and unit variance,

Assume x;: is generated by an autoregressive process of order p (AR(p)) defined as
Xit = b1xit—1 +02Xit—2 + -+ 0pXit-p T+ €it

where {e;:} is a set of independent, normally distributed variables with mean zero and

variance of unity, i.e.
€t ™ NI.D(O, ].)

That is, xi: is regressed on past values of x;: instead of on independent variables
as on the classical multiple regression.

The assumption that ;. is described by an autoregressive process can be substanti-
ated by arguments put forward by Cochrane and Orcutt (1949). The sources of autocorre-

lation in the error term can be:
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(i) When modelling climatic variables, errors in modelling arise from faulty descriptions of
these variables. Since these variables are themselves autocorrelated, this type of error

will be autocorrelated.

(ii) Error terms may arise from omitting variables from the analysis because these variables
are either not available or their importance is not realised or because the influence they
have is so small that it is not convenient to insert them. As already indicated these
variables are autocorrelated and, therefore, one may expect the resulting error terms

to be also autocorrelated.

An autoregressive process of order 1, AR(1}, sometimes called the Markov process, was
chosen to describe x; . The réason for this choice will be discussed later. To simplify the
formula, the theory will only be shown for an AR(1) process from now on. The order of
the process can be increased to any order desired, but this has to be done at the cost of

increasing both the complexity and the number of parameters to be estimated.

The form of x;: is thus given by:

Xit = Oxiz—1 + e
where e; s ~ NID(0,1) i=12,...,NY;t=1,2,...,NT.
The model that incorporates the different wet and dry sequences is given by:
Siyt — uP p Sit-1— BE
€= —oD ] —5 for a dry sequence

or

Sie — up 5£t-1‘#:“£1
eit = "G—WM - BW’T—— for a wet sequence.

The seasonal mean function, y., is approximated by its truncated Fourier series rep-

resentation, i.e.

L
pP =3 Pty iftdy
i=1

and

L
V¥ = E al¥oi(t)  if t wet
i=1

where ¢;(t) is defined as before and L is the order of the Fourier series representation.
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(¢) Estimation
The procedure to estimate the parameters o?,a,67,6" 0P and o%; j=1,2,...,L
is now discussed.

Since e; ¢ ~ NID(0,1), the density function of e;; is given by

flese) = —= exp(= k)

Therefore the joint likelihood function, conditioned on the wet and dry status of the

day is given by
L('l,b) — L(OIJ W GD 9W D W se; t)

= H fleid D) H flei W)

teEN(D) teN(W)
where f(e;:|D) represents the density function of e;: given that a dry day has been
observed, and f(e;:|W) represents the density function of e;; given that a wet day has

been observed.

Substituting the density function, one obtains

1 \? 1
L(Y)={ — exp { —= ei D LS eit|W 2 .
) (\/ﬂ) P{ 2 [tel\%D)( : tEN(ZWW)( : ] }

Making the following transformation

€it =

Se',t — Bt osi,t—l |
c o

where the Jacobian of the transformation is given by

ﬂ, i=1,2,...,NY; t=1,2,...,NT; p=1,2,...,NT
95,
de
= 88: k—1,2, ,T; n=1,2$ !T
1/o 0o ... .. 0
-0/ 1ljc 0 NY NT
= . H 1o=[[I] 1/c
. i=1i=1
0 vee e.. —Bfc l/cr

since we are dealing with a triangular matrix. Taking into account the dry and wet status

of the day, the Jacobian can be rewritten as
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ez | _
851‘:? B

1 1
H oD H oW’
teEN(D) teEN(W)

then the joint likelihood function is given by

o= () ()" ()™

2
1 Sit—pP  p Sip-1- iy
exp {—5 [ Z ( O’D - 9 UD

teN(D)

2
P 3, (e ety

teN(W)

and the log likelihood function is given by

) =-5 10?;(270 C(D) log(a”) — C(W) log(c™)

Z (Sz',t‘ u? _ gD Sit—1 "‘P’P—l)
3] D
teN(D) U 7
2
5; = w S:t 1— ,Uat_
+ Z ( > -0 T e )

teN(W)

2

N | =

Maximum likelihood estimates can be obtained by minimising £(t)} . That is, the first

partial derivatives with respect to the parameters are set to zero.

The first partial derivatives with respect to the parameters are given by

8L() T Sit-1—puP
- = Z ( oD - D

D
08 46N (D) o

Si,t—l - #20.-1
oD

o) Sig = #f  w Sip-1 — pety
Tod= ¥ (Sugps v umsien

teN(W)

Sit-1— NP—G
oW

at(y) _ _ (Si.t - P _ gD R #?—1)
Ba? B LGNZ(D) oP g ol
(—w(t) N 8P p;(t — 1))} )
oD oD |
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() (3:' t—uy o Sito1— #3‘-’1)
= — Tt __ g P A el 3
W Z W W
da; LGN(W] g v
(2540 4 ete=0)]
oW Al
oL(v) - _C) _ Z (Si.t — uf _¢P Sijg—1 — N?—l)
doD oD (e TD) oD oD
(S —pP) 4 gpSit=1 = “e
(oD (aP)?
() _ __C(W) _ Z (Si.t - P}IV _ W Sit-1— .“Kl)
feW = oW sE W) ¥ oW
.__(_S‘:?t — Ju’gv) + BD Si,t—l - #Kl
(cW)? (oW )2

The parameter estimates are given by

> (Sie = BP)Si-1 — BEa)

Z (Si,t-l - ﬁio—l)z
teEN(D)

> (Sie =B (Si-1 - BYy)

W = LENW) (2)
Y (Sie1 - B,
teN(W)
3
-~ 1 I 8- i
7 = | aipy O (Sie = BP =0 (Siams = B2, 3)
teN(D) '
3
1
&V = | ——— (Sie = BY = 8% (Sipo1 - BY,))? (4)
(C(W) te§w)
-1
a0 ={ N (pi(t) - 8Ppi(t-1))*}  [A- M] ()
tEN(D)

where

A= 3 (S0 = 8PS0 a)(@it) - BPps(t - 1))
teN(D)
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and
L . L
M= Y (1D aPer()| 87 | Y aPy(t-1)
teN(D) k=1 k=
[p;(t) = 8P¢;(t ~ 1)]
—1
B = > (ei(t) =W t-1))2 ) [Ar - My (6)
teN(W)
where
Az= 3 (Sin— 7S 0m)(s(t) — 8% (2 — 1))
teN(W)
and
L L
My= Y o) | =87 [ Yo al et - 1)
teN(w) | \ i3} k=1

[pi(t) = 8 3t ~ 1)]
These equations cannot be solved explicitly and therefore have to be solved iteratively.
Note that
p¢ is a function of the a; where the «; are functions of #
¢ is a function of u, and
o is a function of u, and 6.
The following algorithm can be performed to estimate the parameters.

Algorithm

Step 1: Estimate initial u: by approximating by it Fourier series transformation and

estimating the parameters a; by the method mentioned in the previous models.
Step 2: Estimate 6 using (1) and (2)
Step 3: Estimate o using (3) and (4)
Step 4: Estimate u; using (5} and (6)

Step 5: Test for convergence of all parameters, i.e. when the percentage change in pa-
rameter estimates is sufficiently small. If convergence is not met, return to Step
2.

To model the multivariate time series the covariance matrix of the residuals of the

different climate variables is needed.
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The cross—correlation matrix, X, has elements Rz , where

1 NY NT 0B NY NT NY NT
T 2 2 cieeis DI IL DI IS
Rjk = i=1 t=1 i=1 t=1 i=1 t=1 T
[ . NY NT NY NT %z
B3R zeﬁ.z)
i=1 t=1 i=1 t=1 ]
1 %: NZ (M2 (NY s e("’) ik
T i,
| i=1 t=1 i=1 t=1 §

where e(’ ) denotes the residual time series of variable i 7=12,...,NV
and eg,t) denotes the residual time series of variable &, ¢ =1,2,...,NV .
(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models, as is the order of the Fourier series approximation.

A major problem was encountered in Model 2, in that a high proportion of information

is discarded. The reason why this problem occurs is explained by means of an example.

Suppose the following sequence has been observed

day ¢ 1 2 3 4 5 6 7 8 9 10 11 12

status of day D D W D W W D W D D D W

By definition, N(D) and N(W) represent the sets of time periods ¢ such that ¢

was dry or wet respectively. Thus, N(D) consists of the elements
{1,2,4,7,9,10,11},

and N(W) of
{3,5,6,8,12}.

In Model 2, one is only interested in conditioning the parameters into dry and wet
sequences, therefore one is restricting the status of time period t — 1 to be the same as
that of t. Thus, given that day ¢t was dry, the model is given by

D
e = S“'t - p’? _ GD Sirt-'l = K1
H oD oD
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and one does not consider the case of

w
o = Sip—uf B GSi,t—l — By
i,t = O'D O'W .

Similarly for when ¢ is wet.

Therefore, when constructing N(D) and N(W), only sequences of at least two dry

(or two wet) consecutive days can be used. In this case, N(D) has elements
{2,10,11}

and N(W)
{6}.

Thus, a high proportion of the observations are discarded. This led to the development of
Model 3 and therefore Model 2 is of no further interest.
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Model 3: Multivariate model for climate data

The two previous models condition the parameters of the model on the wet or dry
status of the day. When generating climate sequences these models represent conditions in
which a wet day follows a wet day and a dry day follows a dry day but fail to explain the
relationship between conditions such as a wet day following a dry day or a dry day following

a wet day.

To generate representative climate sequences these sequences must be related to the
sequences of rain and no-rain days. To achieve this relationship, the parameters of the

model must be conditioned on the four possible sequences in the rainfall variable:
1. a dry day follows a dry day,
2. a wet day follows a wet day,
3. a wet day follows a dry day,
4. a dry day follows a wet day.
(a) Notation
Partition the year into NT(= 365) equal intervals, denoted by ¢t =1,2,...,NT
NV is the number of variables.
NY is the number of years observed.
represents the occurrence of rain.
D represents the non—occurrence of rain.
DD represents the sequence when day ¢ — 1 was dry and day ¢ was dry.
WW represents the sequence when day ¢ —1 was wet and day ¢ was wet.
DW represents the sequence when day {— 1 was dry and day ¢ was wet.
WD represents the sequence when day {—1 was wet and day ¢ was dry.
T represents the total number of observations, i.e. NYNT .

N(DD) is the set of time periods ¢ such that period ¢ was dry and period -1 was
dry, t =1,2,...,T.

N(WW) is the set of time periods t such that period ¢ was wet and period ¢t -1 was

wet.
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O‘WW
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O'WD
BDD
HWW
HDW
BWD
C(DD)
C(WW)
C(DW)
C(WD)

Then T =

3 The Models

is the set of time periods ¢ such that period t was wet and period t -1 was

dry.

is the set of time periods ¢ such that period ¢ was dry and period ¢t —1 was

wet.

is the precipitation amount of period ¢ of year i, ¢=1,2,...,NY .
is the generic name for the observation at time t of the ith year.

is the generic name for the mean for a dry day on period ¢.

is the generic name for the mean for a wet day on period .

is the generic name for the standard deviation given sequence DD .
is the generic name for the standard deviation given sequence WW .
is the generic name for the standard deviation given sequence DW .
is the generic name for the standard deviation given sequence WD .
is the coefficient of the AR(1)} process given sequence DD .

is the coefficient of the AR(1) process given sequence WW

is the coefficient of the AR(1) process given sequence DW .

is the coefficient of the AR(1} process given sequence WD .

is the number of elements in the set N(DD}.

is the number of elements in the set N(WW).

is the number of elements in the set N(DW).

is the number of elements in the set N(W D).

C(DD) + C(WW) + C(DW) + C(WD).

(b) Model and assumptions

The time series S5;; is reduced to a time series of residual elements, x;:, by removing

the periodic means and the standard deviation for the appropriate sequence, i.e.

Xi.c - Six— pt

a

This results in a time series with zero mean and standard deviation of unity, which is

assumed to follow an AR(1} process, i.e.

Xit =0 Xijp-1 + €in
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where e;: ~ NID(0,1) i=12,...NY; t=1,2,...,NT.
The model that incorporates the different wet—dry sequences is then given by:

. DD . DD
Si,t — B ¢PD Si -1 — B

€t = — _bD DD if day t — 1 was dry and day ¢ was dry.

_ Su=nl ww Siem1 -y

€it = — ww —WW if day ¢t — 1 was wet and day t was wet,

_ Sie— p’ — gDW Sijt-1— pily

= T DW S DW if day t — 1 was dry and day ¢t was wet.

. D , W
A St,t = Hi gwD Ss,t—l Py
€4 = ———7 — —_—

, WD WD is day ¢ — 1 was wet and day t was dry.
o

The parameter yu, for this model, and for the models following, was only conditioned
on the rain and no-rain status of the day. This was done to simplify the model, otherwise for
each sequence one would have two equations. For example, if sequence DD has occurred,
then

Sz‘,t - P'? _ ¢PD Sz‘,t-l - P":D_1

€t = - DD ~DD if the sequence DD D was observed

or
DD . WD
Sie — py _ gPp Sit-1 — i1

€it=—""—pp ~BD if the sequence W DD was observed

This not only increases the number of parameters to be estimated but in addition we
are no longer assuming that all the information we need of previous values of the model is

given by the value of the previous day. The state of the second previous day is also required.

As already discussed, it is reasonable to appproximate the mean function pg; by its

truncated Fourier representation, i.e.
L
pP = aPei(t) iftdry
i=1
and

L
pl = af ity if ¢ wet

i=1

where ¢;(t} is defined as before and L is the order of the Fourier series approximation.
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(¢) Estimation

The procedure to estimate the parameters a?,a}”,§P0,§WW WD DWW, aPP oW,

oPW WP, §=1,2,...,L is now discussed.

Maximum likelihood estimates can be obtained by observing that since e;, ~ NID(0,1),

then the density function of e;; is given by

1 1,
fleig) = e GXP("2 € 1)
Therefore the joint likelihood function conditioned on the four different sequences is given
by

W _DW_ W
L(4) = L(a?’a?‘,0DD,9WW’0WD,9DWO.DD’O,W ,aPW WD, ¢ )

= JI fedpD) [ Fledww) J[ fledDW) J[ FleinlWD)

teN(DD) tEN(WW) tEN(DW) teN(WD)

where f(e;DD) represents the density function of e;; given that the sequence DD has

been observed, and similarly for the other density functions.

1 \7 1 2 ' 2
=(E) eXpy—5 Z (ei | DD)" + E (e; s WW)

teN(DD) teN(WW)

+ Y (WP Y (ei,tIWDf”

teN(DW) tEN(WD)

One now makes the following transformation

eis = Sa',ta_ Be g Sit—1 — -1 .

o

The Jacobian of the transformation is given by

Oeit| i=1,9,....N¥; t=12,..,NT; p=1,2,.. NT.
65:',17
_ || k=197 n=1,2,....T
= BSn TR =1,4,...,103 = dy&yeeyd.
lje 0 ... .. 0
_8/c /o 0 0 T NY NT
= . :H 1/0’=H H 1/0'
- k=1 i=1 i=1
0 vii enn =80 1fo '

since we are dealing with a triangular matrix,
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Taking into account the conditional sequences imposed on e;; , the Jacobian is given
by

Oe; 1 1 1 1
3—;«:§=HUT§H;W -w 1l w5

t€N(DD) teEN(WW) ten(ow) 7 teN(WD)

Then the joint probability density function of 5;: is given by

1 \T { 1\ S(DD) 1 C(WW) 1\ SPw) 1 \CWD)
w=(z) =) () (@) ()

2
Si,t - #PD DD S:‘ t—-1— I’tD—g
exp{— [ Z ( 7DD —f 50D
teN(DD)

[N

2
n (S,',t—#t 0WWS1t 1 — My 1)
oW SWW
teN(WW)
2
Sie—ul _ gpw Sit-1 = By Si - 1 #t
+ oDW
teN(DW)
2
+ Si,t—#P_BWD ltl
oW D
tEN(WD)

and the log likelihood is given by:

() = - log(2r) ~ C(DD) log(o™P) — C(WW) log(s™ ™)
— C(DW) log(e®%W) — C(W D) log(c" D)

2
1 Z I DD Sipm1 — pP8
2 »DD ;DD

teN(DD)

Sit — p Sip-1— 11\
it T He ww Qit- t—1
D
teN(WW) :

Sit #t pw Sit-1 — #?—1
+ Z ( aOW — 0 DWW

2
Sit =P wpSie-1—piYy
+ Z ( ogWD B aWD ’

tEN(WD)

2

Maximum likelihood estimates can be obtained by minimising £(1) and thisis achieved

by setting its partial derivatives with respect to the parameters equal to zero.
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The first partial derivatives with respect to the parameteers are given by:

oUY) _ ) Sig—uP® o ppSi-1 — w2 (Sig-1 — p
560D = oDD o DD DD

teN{DD)}
oL(y) _ Z Sit—py - Sip—1— plty Si-1 = piy
VW — ) oW W dWW gWW
teN
OL(v) _ T Sit =1t _ gow Sig=1 = #21\ (Sie1 = py
99DW S aDW oDW aDW
te
9¢(+) _ Z Sip — .utD _gWD Sit-1— #K1 Sit-1~ #Kl
5WD ~ o) gWD oW D gWD
tEN
9e(y) _ ,U«t _¢DD Sip-1 ~ pPf
aa? ( ) O.DD DD
teN(DD
( (t) L 02Pps(t = 1))
oDD
Z (5 —pf _ gpw Sit-1 = #:D—1) (BDWSPj(t - 1))
DW oDW aDW
N(DW
Z S GWD S; i~1 — lu't—l\ —ij(t)
) O-WD oWD I\ gWD
N
ouy) _ [ Sl _ g Sic W)
aww gWW
tEN(WW)
—9;i(t) BWW?’J(t _ 1))
aww aWW
Sit = N pw Jit-1 — #31 —p;(t)
+ Z ( ODWt — 0 aDW O.DJW
teN(DW)

Sie — pwy wD Ji—1— pi¥ %Dy (t—1)
+ E ( gWD 8 ogWD a.v:;/D
wD

ot(y) _ C(DD) S (Si.t —uPP DD Jit=1 = #P—]{)

DD — - _DD DD DD
o o LI DD) o o
_(Si.t—#t) GDDSht 1— B 1
(oDD)2 (¢DDY2
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oL) _

g WW —

0Ly) _

HaDW T

0Uy) _

doWD —

The Models
C(WW) _ Z: (Si,t —p _gvW i1 = #Kx)
gWW cWW “gWW
teN(WW)
(__ (Sit = pf") + 9w i1 — P’KI)
(cWW)2 (e W2
C(DW) Sie— pyy goW Sit—1 — By
gDWw Z oDW T oDPW
tEN(DW)
(_ (Sit—pl") + gDWSI"f-l — #?-1)
(eDW)2 (cDW)2
C(WD) Sie — b gwp Sit-1 = [
wD E wD WD
o rengwny L O o
(i —p) 4 gWD i1 — pir,
(cWD)z (cWD)2
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The parameter estimates are given by:

Z (Si,f - ﬁ’?)(si,t—l - ﬁﬁ-l)

§DD _ teN(DD)

S (Sit1 - BE, Y

teN(DD)

Y (Sie =B )(Sip-1 — BEY)

ﬁww _ tEN(WW)

z (St 1“‘.”t 1)2

tEN(WW)

> (Sit =B )(Sie — ﬁ't—l)

a‘DW . tEN(DW)

Z (Si.t—l - ﬁ?-—-l)z

teN(DW)

Z (Sit — BY)(Si-1 — B{y)

GwWD _ teN(WD).

B Z (Sit-1 — Bfey )

teN{WD)

1
2

- AP = 0P (Siee1 — Ii?_l))z)

tEN(DD)

EWW - (EEP;_—W;) z (S;‘,t - ﬁrr - WW(S'JJ—I - ﬁKl))z)

1
2

teEN(WW)
3
1 -
aDW Z (Sr ¢ — ﬁW _ BDW(S iy — ﬁD ))2
C(DW) nET b -1
teN(DW)
3
- 1 o
gDl = (C’(WD) Z (8i¢ — P AWD(Sg t—1 = Ut—l))z)
tEN(WD)
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where

and
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The estimate for o)’ is given by

The Models

a}”={(—3’;7v1w—)z ) (soj(t))z—(a—w%aww > wilt=1)es(t)

tEN(WW) tEN(WW)

4 (EVJW)Z @Yy ST (gt 1))
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tEN(DW)

-1
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te N(W D)

where
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and
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These equations cannot be solved explicitly and therefore the Newton—Raphson itera-
tion method is used to solve them. The second partial derivatives are required to use this

method and these are given by
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The following algorithm is used to estimate the parameters.

Algorithm

Step 1: Estimate initial 7; by approximating by its Fourier series representation and

estimating the parameters a; by the method mentioned in the previous models.
Step 2: Estimate initial §PD ,§W W,§DW and §WP using the following formula:

> (Sut— BP)(Si-1— BEy)
gDD _ teN(DD)

E (Si,t—l - ﬁ?—-l)z

teN(DD)

Similarly for %W §PW and WD .
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Step 8: Estimate initial &7P,6%%W ,5PW and WP using the following formula:

1
2

gPP = Z (Si— —BD (Si,t- 1““Nt 1))
C(DD) -1 teN(DD)
Similarly for %W ,6PW and WD .

Step 4: Compute f% and F(®  where f*) is the vector of first partial derivatives and

F() s the matrix of second partial derivatives, computed at the kth iteration.

Step §: Compute the vector 6‘*) which is the solution to the system of NP linear equations

FR§E) = fk),

where NP represents the number of parameters.
Step 6: Set Bkt = g(k) _ §(8) where B¥) contains the parameter estimates at the kth
iteration.

Step T: Test for convergence, for example, if the elements of f (!) are sufficiently close to
zero. If the convergence criterion is met then stop, otherwise increase & by 1 and

return to step 4.

The cross—correlation matrix, ¥ , has elements given by:

| NY NT B NY NT 0 NY NT (k)
R‘ = = = = t= I.—
* '1 NY NT e NY NT 2'%
o ( )
thz; 1=1§ ]
: lNY NT (k) NY NT " 2] %
FSs g (S5
T;; i=ltz=;e ]

where e(J ) denotes the residual time series of variable 5h i=1,2,...,NV

and egﬁ) denotes the residual time series of variable k, £ =1,2,...,NV .

(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models, as is the order of the Fourier series approximation.
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Model 4: Multivariate model for climate data

(a) Notation

NV

NY

DD
WWw
bw

WD

N(DD)

N(WW)
N(DW)
N(WD)

Yit

Partition the year into NT(= 365) equal intervals, denoted by ¢t =1,2,...NT .
is the numbér of variables,

is the number of years observed.

represents the occurrence of rain.

represents the non—occurrence of rain.

represents the sequence when day ¢ — 1 was dry and day t was dry.

represents the sequence when day ¢ — 1 was wet and day ¢ was wet.

represents the.sequence when day t—1 was dry and day { was wet.

represents the sequence when day t — 1 was wet and day ¢ was dry.

represents the total number of observations, i.e. NT NY .

is the set of time periods ¢ such that period ¢ was dry and period ¢ -1 was dry,

t=1,2,...,T.

is the set of time periods ¢ such that period ¢ was wet and period t —1 was wet.
is the set of time periods ¢ such that period ¢ was wet and period ¢{—1 was dry.
is the set of time periods ¢ such that period ¢ was dry and period ¢ -1 was wet.
is the precipitation amount on period t of year i, ¢ =1,2,...,NY .

is the generic name for the observation at time ¢ of the ith year.

is the generic name for the mean for a dry day on perid t.

is the generic name for the mean for a wet day on period .

is the generic name for the standard deviation for a dry day on period t.

is the generic name for the standard deviation for a wet day on period ¢ .

is the coefficient of the AR(1) process.

(b) Model and assumptions

Following the procedure suggested by Richardson {(1981), the time series ' Si,¢ is reduced

to a time series of residual elements, Xit » by removing the periodic means and standard
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deviations, i.e.
Si,t - Ht

Xit=——"""".

Ot
This standardization leads to a time series for each variable that is stationary in the mean

and standard deviation with mean zero and standard deviation of unity.

The model proposed is assumed to follow an AR(1) process, i.e.

Xit =0 Xijt—1+ €it

where e;; ~ NID(0,1) :=1,2,...,NY; t=1,2,...,NT.

The model that incorporates the different rain sequences is then given by:

D §. i —uD
€t = Sig D#t -8 "t_lD e if day t — 1 was dry and day ¢ was dry.
oy T
or
. Sit—uy¥ Sito1—pul¥
eip = —= W‘ut Sy Reall 1w P21 if day ¢t — 1 was wet and day ¢ was wet.
gt 01y
or
W S — D
ey = Sit W‘ut -8 l't_lD i1 if day t — 1 was dry and day ¢t was wet.
g T
or
gD Sea i — W
€t = Sid Dut - "t_lw Bior g day t — 1 was wet and day t was dry.
a4 Ti-1

Here again the mean and standard deviation functions, u; and o:, are approximated by

their respective truncated Fourier representation, i.e.

} if ¢ dry

L } if t wet
off = & pi(t)
i=1

where ¢;(¢) is defined as before and L is the order of the Fourier series approximation.

L
ul =" aPei(t)
i=1

L
of =) EPei(d)
i=1

L
pl =" ol ou(t)
i=1

(¢) Estimation
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Since e;; ~ NID(0,1), the density function of e;; is given by
1 1,
fleis) = T eXP(_Qei,t)'

The joint likelihood function, conditioned on the four different sequences is given by:
L(¢) = L(a_?a Of}V,ffaE}Vﬁ; ei,t)
= JI flexddDy [ FledWw)

teEN(DD) TEN(WW)
IT  sesowy I HedwD)
teN(DW) tEN(W D)

where f(e;: DD) represents the density function of e;; given that the sequence DD has

been observed, and similarly for the others.

1 T 1 2 2
- (%) e""{“a[ O, (DD + 3 (i WW)

teEN(DD) tEN(WW)

+ 2 (dDW) 4 B (e,-,tlwn)z”.

tEN(DW) teN{W D)

One now makes the following transformation:

€is = Sit —pe 0 Sit-1 — -1 .

T Oi-1

The Jacobian of the transformation is given by

1/0’1 0 0
'—'9/0'1 1/0’2 0 e 0
0 cer uen —0/oags 1/026s
36:‘,1: . .
85,0 | ¢ :
1/0’1 0 e e 0
—9/0’1 1/0’2 0 .o 0
0 cee vv. —8fo3gs 1/036s
_ﬁ ﬁ 1
=1 i=1 g

Taking into account the conditional sequences imposed on e;; , the Jacobian is then

given by
stl= 11 - I =
. - D w-
435‘4’ tEN(DD) gt TEN(WW) Tt
. 1EN(W D) TEN(DW)
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The joint probability density function is thus given by

w=(%) 11 5 10 &
2m tEN(DD) OtD 1EN(WW) ot
tEN(WD) tEN(DW)
2
1 Sit = pf -5';,:_1 - J”'tD—l
exp {—2[ E ( o7 0
teN(DD)
n (Si't_“,“rv—e i,t— 1_Ju't 1)
tEN(WW) 7t
W
+ (&,t W#t _g Sit1 = )
tEN(DW} at 0‘3—1
Y -
+ (S,,t Dut _e Sit— 1 Hi_ 1)
teN(W D) T
and the log-likelihood is given by:

() = ——103(210 > logaP)~ ) log(ef")
1EN(DD) TEN(W W)
1EN(W D) 1EN(DW)

. _,.D ) D o\ 2
_ 1 Z (S;,t D#t —8 S‘,t——lD Jut—1)
2 gy T 1
teN({DD)
2
Sit — uy Site1— uiy
+ Y ( : 0
tEN(WW) ¢ -1
2
Sit —pl 4 i1 = by
+ Z oW - P
te N(DW) t t-1
Sip — pup Sip—1— piy
+ Y ('apfﬂa W
teN(W D) t -1

Maximum likelihood estimates can be obtained by minimising £(%) and this is achieved
by setting its partial derivatives with respect to the parameters equal to zero
The first partial derivatives with respect to the parameters are given by
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24¢2) - (Si,t - uP _p Sit-1— #tD-1) (Si,t——l - ﬂ?q)
09 teN(DD) of o, o,
N Sit—pl¥ p Sipc1— 4\ [ Sip—1— ply
o oV oV
tEN(WW) ¢ t—-1 t—1
+ Sit — pl¥ p Sito1— pdy Sit—1 — pi,
o oD oD
tEN(DW) ¢ t-1 t—1
Si,t — ﬂ? 9 Si.t—l - #K1 Si,t—l - ﬂ?-f.l
+ ol - oW oW .
teN{W D) t t-1 te1

s __| oy (3,-.: ~ 4P _ g Sip —u?_l) (—wj(t) ;. feilt - 1))
D G'P 0'31 ai‘D 0.11?—1
teN(DD)
+ Z (S,‘,t - ul¥ _ Sit-1— #P—l) (G‘Pj(t — 1))
ag’v O'D_ gy
teN(DW) -1 -1
Sit— [J,P Si,t—l - ﬂpil _(P.f(t)
* Z ( P ’ oty ?

teN(WD) It
oY) _ _ T (Si,t —ny g Sit— #5’51) (—w(t) ; beilt = 1))
dai” LEN(WW) off of’s ot ot _

Sit —pl¥ 8 6-1 — 1. —p;(t)
o (S Serpel) (o
teN(DW) t -1
Sijt—1 — P‘Ki) (9<Pj(t - 1))]

Sit — up
by (Bt g Beg £
teN(WD) ¢ t-1 £—1

(Si,t = #? iy Sit-1— #?—1)

) pi(t)
== 2 | X - -
% rENGw D) % teN(DD) t 01
S;' - uP S.! Ly = p)_l
('( o L oi(t) +6 —ory it - 1))
Sie — pg Sit-1— ,ll»f:'_l) ( Sito1—pu?y
f ( | -6 9 — wi(t—1
ten%;vv) o’ o2, @D ¥ )
Sit — pP Sn_l—uril)( (Sit— £P) )
+ ( , 5 (s »
tGN(ZWD} of oV, (aP)? i(®)
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aew) 2 (t) Siu— p¥
- > -l X e
HEN(W W) teEN(WW) t
tEN(DW)
(S = pd) Sip—1 = pity
——t = pt)+ 8
( (Ut ) i) (‘73‘:1)2

w
Si,t-—l - #t_l)
7%
9t

ei(t-1)

Sip— pl¥ 3u-1—,uf)_1) ( (8:¢— pu)
+ ( | -0 = - @;(t)
tel\%W) o o, (wa)z v
Sit — uf Sit-1— #’Kl) ( Sieo1—ul¥y
+ ( : - — 8 — wi(t—1}
tEN(EWD) i ofy CHAE ?

The equations obtained when the partial derivatives are set to zero can be solved using

the Newton-Raphson iteration method. For this, the second partial derivatives are required.

These are given by:

2
uy) __| oy ("‘_H:J‘_fp—_:) Py (f-—f‘u)
0606 tEN(DD) atD—l 1EN(WW) at—l
tEN(DW) tEN(W D)
823(1”) Z {(Si,t —uf _9 Sit—1— ru'tq-l) (—‘Pj(t))
888a7 e NDD) op o, af

®;(?)

+ (“ j + gﬁf’j(t— 1)) (Si,t-1 *#?—1)}
C’tD ‘79-1 ‘73?—1

-8

Sit-1

Sit— w
+ 2 {( tawﬂt

tEN(DW) t

) (24
(52 (22

+ 3 (“Pfj(t)) (Sf,t—l‘;#%‘_’l

g a
tEN(WD) £ t—1
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The following algorithm is used to estimate the parameters.

Algorithm

Step 1: Estimate initial Z; and &; by aproximating by its Fourier series representation

and estimating the parameters «; and §; by the method mentioned in the pre-

vious models.
Step 2: Estimate initial ] using the following formula:
§= T EtT=2 (Si,t - ﬁt)(si,t—l - ﬁt-1)
(T~ DT (Sig-1 = Bemr?

where 7i; depends on the status of day ¢ and [i;_; depends on the status of day
t—1.

Step 3: Compute f* and F®) where f(*¥) is the vector of first partial derivatives and

F is the matrix of second partial derivatives, computed at the kth iteration.

Step 4: Compute the vector §¥) which is the solution to the system of NP linear equations
FR) 5k — f0)
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where NP is the number of parameters in the model.

Step 5: Set G5+ = g(R) _§(K) where B(¥) contains the parameter estimates computed

at the kth iteration.

Step 6 Test for convergence, for example, if the elements of f(*) are sufficiently close to
zero. If the convergence criterion is met then stop, otherwise increase & by 1 and

return to step 3.

The cross—correlation matrix, > , has elements given by

lNYNT()(k) lNYNT()NYNT ®
T ea,Jt €+ — T Z Z e,ft €t
R: =1 t=1 i=1 =1 =1 i=1
ik = i
| NY NT " L (NYNT 1z
EY S - 7 (1342
i=1 t=1 i=1 i=1
. o1
| NY NT Y | [NY.NT ® ﬂ 2
FY 3 - 7 (S 3 4)
| =1 t=1 i=1 i=1 ]
where
es’jt) denotes the residual time series of variable 7; ji=1,2,...,NV
and
egi) denotes the residual time series of variable k; £ =1,2,...,NV .

(d) Model Selection

The order of the autoregressive process is chosen in the same way as in the previous

model as is the order of the Fourier series approximation.

3-35



CHAPTER 3 , The Models

Model 5: Multivariate model for climate data

(a) Notation

NV

NY

Partition the year into NT{(= 365) equal intervals, denoted by t=1,2,...NT .
is the number of variables.

is the number of years observed.

W represents the occurrence of rain.

DD
ww
DW

WD

N(DD)

N(WW)
N(DW)
N(WD)

Yit

Sit

represents the non—occurrence of rain.

represents the sequence when day ¢ — 1 was dry and day ¢ was dry.
represents the sequence when day ¢ — 1 was wet and day t was wet,
represents the sequence when day ¢ — 1 was dry and day ¢ was wet.
represents the sequence when day ¢t — 1 was wet and day ¢ was dry.
represents the total number of observations, i.e. NT NY .

is the set of time periods t such that period ¢ was dry and period t—1 was dry,

t=1,2,...,T.

is the set of time periods ¢ such that period t was wet and period ¢ —1 was wet.
is the set of time periods ¢ such that period ¢ was wet and period ¢—1 was dry.
is the set of time periods ¢ such that period ¢ was dry and period ¢ -1 was wet.
is the precipitation amount on period ¢ of year ¢, i=1,2,...,NY .

is the generic name for the observation at time ¢ of the ith year.

is the generic name for the mean for a dry day on period ¢.

is the generic name for the mean for a wet day on period ¢ .

is the generic name for the standard deviation for a dry day on period t.

is the generic name for the standard deviation for a wet day on period ¢.

is the coefficient of the AR(1) process, given sequence DD .

is the coefficient of the AR(1) process given sequence WW .

is the coefficient of the AR(1) process given sequence DW .

is the coefficient of the AR(1) process given sequence WD .
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(b) Model and assumptions

Model 5 is formulated in the same manner as that of Model 4, except that here it is
assumed that the coefficient of the AR(1) process, &, varies according to the wet/dry status

of the present and previous day.

Therefore, the time series §;; is once again reduced to a residual time series x;: by

removing the periodic mean and standard deviation, i.e.

Si,t — Mt

Xit =
o

Assume that this residual time series follows an AR(1) process, i.e.
Xi,t = 0 Xit-1+ €t
where e;; ~ NID(0,1) ¢=1,2,...,NY;t=1,2,...,NT.
The model incorporating the different wet/dry sequences is given by:

D D
Sit — Py _gbp Sit-1 = Py
D D

€t = if day ¢t — 1 was dry and day ¢ was dry.
‘ g¢ Ot-1
or
Se . —uW Sy — W
et = % L % if day ¢ — 1 was wet and day ¢ was wet.
, Tt Ti1
or
Sie—ul Si-1— uP
€t = ""’-’tw—“t . '—’tlD—'u't——l if day t — 1 was dry and day ¢ was wet,.
Ty Oi-1
or
g, — D iy —uW
eit = "’:G—D’u* —-g%>p -—%m if day t — 1 was wet and day t was dry.

t Oy

The mean and standard deviation functions are approximated by their respective trun-

} if t dry
L
pt =3 ol eit)
121 } if ¢ wet
off = i)
i=1

cated Fourier representation, i.e.
L
D D
He = Z o pilt)
i=1

L
of =Y EPwi(t)
i=1
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where ;(?) is defined as before and L is the order of the Fourier series approximation.

{c) Estimation

The density function of e;: is given by

since e; 4 ~ NID(0,1).

fless) = 7= exp(=gek)

The joint likelihood function, conditioned on the four different sequences is given by:

L(¥) = L(af, o] &P, 617 ,6PP, 877 0PW gWD ey )

i

Il fedDD)

teN(DD)

te N(DW)

1955

f(e,-,tIWW)

1

tEN(WW)

fleidDW) [  flewsWD)

teN(WD)

II

(—I—)T exp _: Z (e |DD)2
var 2 te N(DD) ‘

>

te N(WW)

(eid WW)+ 3" (el DW)?

teEN(DW)

3 (e,—,t|WD)2j[ } :
teN(WD)

Make the following transformation

Cig =

Sig—pe 6 Sit-1— pi1
g i1

The Jacobian of the transformation is

36,‘ t

2

0Sip

1/0’1 0 0
_9/0'1 1/0’2 0 0
0 voo 0 —8/0364 1/036s
1/0’1 0 [ e 0
-—0/0’1 1/0’2 0 . 0
0 veo 0 —8/036s 1[03es
B NY NT 1
=1 t=1 Ut
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Taking into account the conditional sequences imposed on e€;: , the Jacobian is then

given by
36,“13 ) H i 1
FY- N D H W
83"3’ enop) Tt cenowwy Tt
tEN(WD) LEN{DW)

The joint probability density function is thus given by:

w=(7) I % 1 4

=\ D T

27 tEN(D D) g¢ tEN(WW) o
tEN(W D) tEN(DW)

2
1 Sip = pg pp Sit-1 — #?—1
LA DY (“?D_ -
teN(DD) t t-1

2
(Sm —u¥ ww Sie-1 - #1‘11)
+ —w 0w
teN(W W) 7 Ti-1
' 2
S"t - }.LW DW Si,t—l — Ju‘tD—l
+ Z: (.’J—Wf —@ —_gj-)—
teEN({DW) i -1

2

Sig—pP _ gwpSig=1 =m0y

+ Z D oW
teN(W D) t t-1

and the log-likelihood is given by:

f(¢)=—§log(2fr)- > log(of)—~ D log(o}")

tEN(DD) HEN(W W)
1EN(W D) LEN(DW)

2
1 Sie =P .ppSit-1—piy
-3 E : (____ —gPP el

D
g a
tEN(DD} t t=1

2
Sit— ﬂw ww Sit-1— #r&
I e

tEN(WW) Ut o-f—].
2
Z Sit — nl¥ gDW Sit-1— g,
+ o - oD
tEN(DW) t t-1

2
+ Z (Sz',t'- M? _gwD Si,t—ll; #K1)

D
g a
teEN(WD) t t=1

To obtain maximum likelihood estimates for the parameters, £(¢)) is minimized. To

minimize £(1) , its first partial derivatives with respect to the parameters are set to zero.
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The first partial derivatives with respect to the parameters are given by

BE(":b) . Sit— IJ/fD _ gD Si,t-—l - ﬂ'tD 1 Si -1 — P'P 1
340D = > oD oD oD

teN(DD) t -1

‘%(‘/’) ( ewwsst 1 Hio 1) (Stt -1 = M4 1)
(%WW teN(WW)
oly) _ (S«,t*m enws,t 1 A 1)( i1 — .u't—l)
96P% = tEN(DW)
82(1/)) (Sht 9WDS= t—1 1)( ii—1 .u’t 1)
6" tEN(W D)

o) _ _ { > (S oS u?_l) (20 4 e

aa.ﬂp teN(DD) alp atD-l UP . 6?—1
N E (Si,t _;V#?r _ gDW Si,t—lD_ NP—1) (GDW¢£(t - 1))
ten(pw) © 7 o1 oy
Sit — if Sig—1 = pf1\ ( —ei(¥)
p Y (Rt ogroduny 1
teN(WD) t-1 ¢
33("/’) #t W Sit-1— ﬂil)
w -
tEN(WW) oy Ti-1
( :(t) L 8 et - 1))
o o
+ (Si,t —pf gDW Jist—1 = #?—1) (_‘Pj(t)
of of o
teN(DW)
+ (Si.t ~#P _ gwpSit1 = Hﬁfq) (GWD%(?’ - 1))
of af’y af¥y
teN(W D)
ol(y) ‘Pa(t) (Si i =B  appSit-1— #P-q)
J6t T Pt gDDEE-l T Rl
D
2 z;m tag;m) i o1
tEN(W D)
(et 2mtl 4 o0y 1yt =)
( ) (of1)
Si.t_ My DWS t—l )u't 1 DW :t—l ,U't 1
+ W 87" pj(t - 1)——‘)—2
tEN(DW) t 1
Sit — Mt wpSit—1— B 1)(
+ (— a (t)
i\ o =) (oo it
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0L(y) _ . %(t) )y (Si,t — " gww Sit-1 — #}"11)
W — W
a¢;" wnemwy O tEN(WW) t Tt-1
tEN(DW)

Sieo1 — ul¥
( OB o +9“’Wsoj(t—1——(am‘§ )

Sf’f_ w Si,t—l_lu’tD—I W
(B -t (e %t

+ E W
LMD of |
D Siooq —u¥ Sitm1 — uiv
by (Shf—D”t_e“’D—‘t—lW&‘i) (o“’%,-(t—n%)
tEN(WD) Gt Ut__l (at—l)

The Newton—Raphson method is used to solve the system of equation. For this the

second partial derivatives are required and these are given by

2U) 5 (s,',t_l - u&)z
98P oePo teN(DD) afD-l

02 4(4) 0% 4(y) 0*4(1)
96DDogWW ~ §gDDgDW — 5DDagWD

’(y)  _ ) {(Si,t — e DD Sit=1 — MP_1) (-‘P;‘(t— 1))
8PP da? re MDD opP o, o2,
n ("‘Pi}t) n GDD‘P,;)(t - 1)) (Si,t—ll;‘ M?-1)}
4 Tt-1 Tte1

Uy | M) _
960D3a¥ ~ 9GPDREY

3% Sit— pp Sijt—1 = pgl Sii—1 — gl
(¥) — E {( t = t _ gDDZut ID t 1) (—goj(t—l) 5 zt 1)
g% -1 (o)

96PDoEP teN(DD)

Siz = uf | oD Sit-1 — B Sit=1 — Py
+ (TR +0Pes 1 )( )}
A=y HO el - D=0 o7,
) 3 (Si.t—l - u}”‘il)z
DGV W ggww CNOPW) at“_fl
PUy) __ y) )
36w W 965 ~ g W ggWD ~ gW W oD
() _ Z {(S:t—:”: éww Si-1 "#K1) (—%(t— 1))
Vool ~ Lo A\ oF o’y 011
. ( sog(t) + 6’W""w(t—l)) (S;,t_l —ul‘il)}
Gt 551 aﬁl
() ~0
98 OED
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The following algorithm is used to estimate the parameters
Algorithm

Step 1: Estimate initial z; and &; by approximating by its Fourier series representa-
tion and estimating the parameters o; and £; by the method mentioned in the
previous models.

Step 2: Estimate initial 8°0,8"W §PW and "D using the following formula:

a‘DD _ EtGN(DD) (Si'af - ﬁ?)(si.f—l - ﬁ?—l)
ZteN(DD)(Si,f—l - #P_ﬂz

-Similarly for §WW,§DW and %D .
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Step 3: Compute f(¥) and F(¥ , where f(¥ is the vector of first partial derivatives and

F(®) is the matrix of second partial derivatives, computed at the kth iteration.

Step 4:

FRI§E — £

where NP represents the number of parameters.

Step 5:

iteration.

Step 6:

zero. If the convergence criterion is met then stop, otherwise increase k£ by 1 and

return to step 3.

The cross—correlation matrix, 5 , has elements given by

NY

Z

i=1 ¢

R =

&) (k)

tt 1,

NY NT

ZZ

1t=1

Compute the vector §(¥) which is the solution to the system of NP linear equations

Set Ak+1) = g(¥) _ §(¥) where B(¥) contains the parameter estimates at the kth

Test for convergence, for example, if the elements of f(*¥) are sufficiently close to

NY NT

ZZ( (J)

1-..1 t=1

NY NT

23Sy

1—1 t=1

NY NT

2D e

=1 =1

7|
7

NY NT

225

i=1 it=1

1
27
J)

(k)
t

;

(S

i
2

where eEf’? denotes the residual time series of variable j, j7=1,2,...,

and egf? denotes the residual time series of variable k,

(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models as is the order of the Fourier series approximation.
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CHAPTER 4
MODEL IMPLEMENTATION

This chapter gives details of the implementation of the proposed time series models
to describe historical climate series. In particular, the model selection process is described
step by step, the parameter estimates are given and the results of tests to check the model

assumptions are discussed.

Six stations were chosen for study which broadly represent the various climate regions
of South Africa. Table 4.1 lists them together with the years for which simultaneous obser-
vations of all climate variables were recorded. The stations marked with an asterisk indicate

those stations for which the variable evaporation was not available.

Considerable difficulties were experienced in obtaining suitable data sets for model
implementation. This refers to problems in obtaining stations for which all the climate
variables of interest are recorded as well as to the quantity and the quality of the available
data. Thus, cne is restricted by the stations one can fit the climate models to, and the
quantity and quality of the historical records determines the performance of the models. As
already mentioned, the models are sensitive to “unlcean” data records and relatively short
historical records lead to three problems. Firstly, the precision of the estimates decreases
as a large number of parameters are estimated using very few data values. Secondly, the
effective record length for the conditioned estimates is further reduced as the models separate
the sequences into wet and dry sequences. Thirdly, the fact that the record length of the
stations are quite small, combined with the fact that there are missing observations in the
records means that the historical data might not wholly be representative of the long term

climate for that particular location.

Since rainfall was considered to be the primary variable and all other variables are
conditioned on whether a given day was wet or dry, it was modelled independently of all

other variables.

Simple Markov chain to describe the occurrence of wet and dry sequences of

days.

The logit transformation of the probabilities w(t), ¢t =1,2,...,NT is given by

A(t) =log (1%(;)&—))
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Table 4.1 Climate Stations

Station Province Years available
Elsenburg Cape 1979-1984
Kakamas Cape 1975-1986
Middelburg Cape 1977-1986
Nelspruit* Transvaal 1981-1987
Cedara* Natal 1980-1989
Hoopstad* Orange Free State 1981-1989

where A(t) is represented by a Fourier series approximation, i.e.

L .
At) = Z vidi(t), t=1,2,...,NT
i=1

and ¢;(t) is defined as in Chapter 3.

The parameters ; have to be estimated for the probability that a wet day is preceded
by a wet day (P(R|R)) and for the probability that a wet day is preceded by a dry day
(P(R|R)) . For each of the probabilities the order of the Fourier series approximation , L,

has to be selected.

The selection of the appropriate L was based on Akaike’s Information Criterion, where
AIC = —{(y; M(t)+ L

where £(y;M(t)) is the log likelihood function of a particular model. The criterion is
computed for L =1,3,5,... and the model which leads to the smallest value of the criterion

is selected.

Table 4.2 gives the optimal number of parameters for P(R|R) and P(R|R). The
values of I for P(R|R) and P(R|R) ranged between 1 and 3 and between 1 and 5
respectively, with modes 3 and 5. A choice of 3 parameters for both models was decided
upon for the following reasons. Firstly, the method of model selection employed here is less
stringent than conventional tests of hypotheses, and therefore generally leads to a selection
of more parameters. Thus a choice of 3 parameters would be preferable to 5. Secondly, the

length of the historical record plays a role in determining o and it must be kept in mind

4-2



CHAPTER 4 Model Implementation

that the results here have been obtained with a relatively small data set, thus making the
selection of fewer parameters inevitable. Zucchini and Adamson (1984a) chose 5 parameters
for both models, but their data sets (typically 40 years) were large enough to warrant that

number of parameters,

TABLE 4.2 Optimal number of parameters to estimate
P(R|R) and P(R|R)

Station Model
P(R|R) P(R|R)

Elsenburg 3
Kakamas -
Middelburg
Nelspruit
Cedara
Hoopstad

—_ L L e
G T LT QO e L

The station Kakamas presented a problem in obtaining convergence when estimating
the parameters for P(R|R) . This can be explained by the rare occurrence of rainfall, and
in particular that of consecutive days of rainfall in Kakamas. Moreover, the few years of
records available for estimation intensify this problem. That is, when preparing the array
N RR(t) required for parameter estimation, where N RR(t) represents the number of times
it was wet in period ¢ —1 and wet in period {, most of the entries are zero and therefore
there are very few values on which to compute parameter estimates leading to difficulties in

achieving convergence.

Zucchini and Adamson (1984b) have computed parameter estimates for Kakamas, and
as rainfall is modelled independently of the other climate variables, these estimates were

used.

It is important to note that the readings were recorded by multiplying each value by
ten, i.e. a record of 10.2 is given as 102. This convention was used throughout the study
and applied to all results given in this report with the exceptions indicated below. This does

not affect the generation of climate sequences which can be easily converted to the original
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units by dividing by ten. The only exceptions to this were the variables wind run, maximum

humidity and minimum humidity for the stations Nelspruit, Cedara and Hoopstad.

The parameter estimates for the probability that a wet day follows a wet day and that

a wet day follows a dry day are given in Table 4.3.
The distribution for rainfall on days when rain occurs.

The mean rainfall per rainy day in period ¢, u(t) , can be approximated by its truncated

Fourier series representation

L
p(ty = > pigi(t), t=1,2,...,NT"
i=1
where ¢;(t) is defined as in Chapter 3.

The parameters p; need to be estimated and the order of the Fourier series approx-
imation selected. A 3-term Fourier series approximation was chosen following arguments

similar to those in the previous section.

Table 4.4 shows the parameter estimates for mean rainfall and the estimate for the
coefficient of variation. It is sometimes easier to work with the Fourier series coefficients
in their polar form, therefore the amplitude and phase representation of the mean rainfall
is also given. From these parameter estimates, parameters of the corresponding Weibull
distribution can then be estimated by the method of moments (see Zucchini and Adamson
1984a)).

MODEL FOR CLIMATE SEQUENCES
Transforming the data set

Preliminary work carried out to asssess the feasibility of modelling climate on a daily
basis highlighted some weaknesses in the models. Firstly, although the models satisfactorily
preserved the mean and standard deviation, they failed to preserve the extreme values.
This problem arises because some climate variables lie within permissible boundaries with
some variables having a high frequency of values near or on an upper or lower limit so
that it is expected that simulated sequences will occasionally have values that exceed these
boundaries. Secondly, some minimum temperature values were slightly higher than the

corresponding maximum temperature value. The same occurred with the humidity variable.

The problem that generated values fall outside their respective admissible range can of

course be easily overcome by simply setting the generated values to the appropriate boundary
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TABLE 4.3 Parameter estimates for P(R|R) and P(R|R)

Station Variable Parameters Polar Form
T e 3 amplitudes phases
© O @ O @
Elsenburg P(R|R) -0.143 -0.398 -0.148 -0.143 0.425 203.19
P(R|R) -1.593 -0.487 -0.249 -1.593 0.547 210.00
Kakamas P(R[R) -1.194 0.241 0.221 106.59 84.75
P(R|R) -3.367 0.810 0.321 51.69 92.34
Middelburg P(R|R) -0.281 0.175 0.032 -0.281 0.178 10.57
P(R{R) -2.054 0.558 0.195 -2.054 0.591 19.54
Nelspruit P(R|R) -0.204 0.391 -0.133 -0.204 0.413 345.94
P(R|R) -1.567 1.294 -0.037 -1.567 1.295 363.34
Cedara P(R|R) 0.293 00918 -0.180 0.293 0.935 353.76
P(R|R) -0.888 1.488 -0.13¢ -0.888 1.494 359.61
Hoopstad P(R|R) -0.192 0.251 -0.017 -0.192 0.252 361.03
P(RIR) -1.927 1.201 0.190 -1.927 1.216 9.1

value whenever they fall outside the range. Such a procedure is easy to implement but it
does change the parameter functions of the generated process (for example the mean),
’unless the percentage of such points is quite small in which case the resultant bias will
be small. Alternatively, one can transform the data. The transformation used ensures
that the generated climate sequences lie within the admissible regions and that maximum
temperature/humidity values will be greater than minimum temperature/humidity, while
the characteristics displayed by the climate series remain unchanged. No transformation

was performed on variables which the models described adequately.
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TABLE 4.4 Parameter estimates for the disiribution of rainfall on days when

rain occurs

Station Variable Parameters Polar Form
1ir fia i3 amplitudes phases
0 O (2 (1) (2)
Elsenburg mean 64.73 -12.65 14.64 64.73 19.35 132.66
coeff.var 1.2216
Kakamas mean 62.56 20.86 2.60 30.99 128.25
coeff,var  1.0637
 Middelburg mean 52.94 17.85 -1.01 52.94 17.88 361.72
coeff.var  1.3688
Nelspruit mean 64.63  20.35 6.34 64.63 21.31 17.54
coeff.var  1.5305
Cedara mean 53.98 5.01 -0.21 53.98 5.01 362.60
coeff.var  2.1594
Hoopstad mean 63.91 0.45 -4.94 63.91 4.96 279.01
coeff.var 1.4534
The general transformation used is of the form
a— VNTF)
Ve =log| ——————
TF g (VNTF ~

where a is the upper bound of the variable and & is the lower bound. Vrp represents

the variable in its transformed state and Vnyrp represents the variable in its original form.

The models are then implemented on the transformed time series. The simulated

sequences are easily changed back to the original units by reversing the transformation,
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that is
a+be5TF

SNTF = o T T 1
where SyTr represents the simulated series in the original form and Strp represents the

simulated series in a transformed state.

The above transformation has the property that

&> SNTF > b,

By a suitable choice of @ and b, one can prevent maximum temperature being less than
minimum temperature. Similarly for humidity. For example, specifying a¢ = max tempyrp
when transforming minimum temperature (i.e. condition minimum temperature on maxi-

mum temperature), one obtains that
max temp > min temp > b.

Alternatively, one can condition maximum temperature on minimum temperature by spec-

ifying b = min tempyrp when transforming maximum temperature, obtaining

¢ > max temp > min temp.

Unfortunately the choice of which variable should be conditioned is not obvious. An
option can only be verified by implementing the model and then examining the simulated
sequences to check whether the properties of the climate sequences are being preserved.
Usually one can get an indication of which variable to condition when one fits the model
to the untransformed time series. If for one variable it is noted that the properties are not
being retained as well as for its corresponding variable, then it would be advisable to first

try the transformation where the “worse behaving” variable is conditioned.

In the case of sunshine duration, the upper bound was allowed to vary seasonally with

time instead of being a constant. Define the upper limit by B(t) , where

B(t) = ave + 5 + (?) cos ((%) (t+ 11)) ., t=1,2,...,NT

where .
smax -+ $min
ave = — 3

amp = smax — smin and
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smax and smin are chosen so that B(t) > sunshine duration observed at time % .

Care must be taken that one does not divide by zero, which can happen at times when
the lower limit is zero and a zero observation occurs. This problem can be overcome by

adding a small value (e.g. 0.01) to all observations.
Model 1: Multivariate model for climate data proposed by Richardson (1981).

Table 4.5 shows the transformations used for each station. Only the lower and upper

bounds are given in the table as the form of the transformation is given above.

The historical data for each of the climate variables was conditioned on the wet or dry
status of the day, thus obtaining a mean function and a standard deviation function for each
of the conditioned data sets. The mean and standard deviation were both approximated by

a truncated Fourier series representation. That is
L

Mt = E a;i(t) and

i=1

L
or=) &dilt), t=1,2,...,NT
i=1

where ¢;(t) is defined as in Chapter 3 and where L does not have to be of the same order

for both of the mean and the standard deviation function.

For the purposes of model selection the truncation level L , which determines the family
of approximating models being fitted, was varied and the fit in each case was examined.
The decision on which order of approximation to use was based on Akaike’s Information
Criterion (AIC). Tables 4.6 — 4.9 show the value of AIC and the choice of the order of

_approximation is given in square brackets. The percentage decrease of the criterion is given
in parentheses whenever the value of AIC continued to decrease after five parameters had
already been fitted. Here the number of parameters selected is based on the model which
leads to a decrease in the criterion of more than 5 percent. This decision was taken for
reasons mentioned in the previous section on the undesirability of fitting a large number of

parameters to the models.

The values of L ranged between 1 and 5, with a mode of 3 for both the mean function
given a dry day and for the mean function given a wet day. Therefore, a 3—term Fourier series
approximation is estimated to be appropriate. Different L values for each variable for a
particular station were not chosen in order to simplify the implementation and interpretation

of the complete (multivariate time series) model.
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TABLE 4.5 Transformations for Model 1

Variable Station

Elsenburg Kakamas  Middelburg Nelspruit  Cedara Hoopstad

Max Temp unchanged a=490 a=400 a=420 a=400 a=410

b=min temp b=min temp b=min temp b=min temp b=min temp

Min Temp a=max temp a=320 a=250 a=250 unchanged a=230
b=0 b=-50 b=-90 b=0 b=-100

Evapo square a=300 square N/A N/A N/A
root b=0 root N/A N/A N/A

Sun a=B(t) a=B(t) a=B(t) a=B(t) a=B(t) a=B(t)

smax=134 smax=136 smax=139 smax=130 smax=132 smax=135
smin=94 smin=100 smin=100 smin=110 smin=102 smin=110

b=0 b=0 b=0 b=0 b=0 b=0

Wind a=10000 a=10000 a=10000 a=1000 a=1000 a=1000

b=0 b=0 b=0 b=0 b=0 b=0
Max Hum a=1001 a=1001 a=1001 a=101 a=101 a=101
b=min hum b=min hum b=min hum b=0 b=0 b=min hum

Min Hum a=1000 a=1000 a=1000 a—max hum a=max hum a=100

b=0 b=0 b=0 b=0 b=0 b=0
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TABLE 4.6 Model selection criteria (AIC) for the mean function for non—-rainy

days
Variable L Station
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

1 327261 345 357 341 339 351
3 78867 331 335 343 341 3338

Max Temp 5 72626 333 337 339
7 72133(0.4%) ,

Selected I5] (3] £3] (1] 1] (3]
1 355 407 397 465 350496 464

Min Temp 3 346 333 336 344 49924 339
5 348 333 337 340(1%) 34256 338(0.3%)
7 33719(2%)

Selected (3] (3] [3] (3] (5] (3]
1 1098 414 737

Evapo 3 391 332 370
5 390(0.3%) 334 379

Selected (3] [3] (3]
1 403 343 370 528 494 359

Sun 3 399 345 372 479 475 359
5 400 473 476

Selected (3] (1] [1] (3] (3] (1]
1 340 339 334 331 330 328

Wind 3 337 332 334 332 329 330
5 338 334 330

Selected (3] (3] {1] (1] (3] (1]
1 376 383 385 347 389 389

Max Hum 3 375 356 364 343 371 345
5 377 358 365 344 373 345

Selected [3] (3] (3] (3] (3} [3]
1 345 338 336 361 370 343

Min Hum 3 341 332 333 341 346 340
5 342 333 335 342 348 342

Selected (3] (3] (3] [3] (3] (3]
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TABLE 4.7 Model selection criteria (AIC) for the mean function for rain days

Variable L Station
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

1 285827 341 372 357 347 354
Max Temp 3 107685 341 347 351 346 340

5 104150(3%) 349 354 346 343
Selected (3] (1] [3] (3] 3] (3]

1 340 340 348 349 215468 348
Min Temp 3 342 333 332 330 42050 330

5 335 333 332 36230 332

7 35482(2%)
Selected [1] (3] (3] 3] 5] 3]

1 1196 355 1154
Evapo 3 756 353 841

5  748(1%) 355 832(1%)
Selected (3] (3] (3]

1 951 457 970 1541 1251 661
Sun 3 865 458 947 1354 1177 657

5 855(1%) 940(0.7%) 1331(2%) 1130(4%)  654(0.5%)
Selected (3] 1] (3] 3] 3] (3]

1 338 327 333 328 328 337
Wind 3 340 330 334 330 330 337
Selected 1] (1] 1] [1] (1] (1]

1 371 504 446 346 352 366
Max Hum 3 375 504 438 347 352 359

5 439 356(0.8%)
Selected [1] [1] (3] 1] 1} (3]

1 339 337 349 372 392 360
Min Hum 3 337 339 . 350 375 388 360

5 338 389
Selected (3] 1] 11] 1] [3] (1]
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TABLE 4.8 Model selection criteria (AIC) for the standard deviation function
for non-rainy days

Variable L Station
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

1 30600 327 327 327 321 327

Max Temp 3 29683 329 329 329 323 329
5 29003(2%)

Selected (3] (1] (1] f1] {i] (1}
1 327 327 327 332 20944 327

Min Temp 3 329 329 329 333 19404 329
5 18588(4%)

Selected (1] i1] 1] {1} (3] (1]
1 339 327 328

Evapo 3 340 329 329

Selected [1) (1] [1]
1 367 327 354 504 442 333

Sun 3 365 329 355 489 439 331
5 367 484(1%) 441 333

Selected (3] [1] [1] (3] [3] [3]
1 327 327 327 327 321 327

Wind 3 329 329 329 329 323 329

Selected (1] (1] [1] (1] (1] (1]
1 348 333 332 327 321 327

Max Hum 3 342 334 331 329 324 329
5 344 332

Selected [3] (1] (3] (1] 1] [1]
1 327 327 327 327 321 327

Min Hum 3 329 329 329 329 323 329

Selected [1] [1] [1] (1] {1 1]

4-12



CHAPTER 4 Model Implementation

TABLE 4.9 Model selection criteria (AIC) for the standard deviation function
for rain days

no of
Variable parameters Station
Elsenburg Kakamas Middelburg Nelspruit Cedara ~ Hoopstad
1 51315 332 329 329 327 329
Max Temp 3 48654 334 331 331 329 331
5 479T1(1%)
Selected (3] [1] (1] 1] (1] (1]
1 327 327 328 327 15941 327
Min Temp 3 329 329 329 329 15330 329
5 15221(1%)
Selected [1] 1] [1] (1] (3] 1]
1 457 332 497
Evapo 3 457 333 497
Selected (1] 1] [1]
1 619 382 702 744 665 572
Sun 3 547 381 691 686 625 572
5 545(0.4%) 383  689(0.3%) 683(0.4%) 602({4%)
Selected (3] [3] [3] (3] (3] [1]
1 329 327 327 327 327 330
Wind 3 330 329 329 329 329 332
Selected 1] [1] [3] (1] 1] 1
1 360 392 357 328 328 333
Max Hum 3 355 392 360 330 332 335
5 355
Selected 3] 1] 1] [1] (1] (1]
1 327 329 329 342 338 333
Min Hum 3 330 331 332 342 336 335
5 338
Selected (1] [1] [1] (1] (3] (1]

The values of L ranged between 1 and 3, with a mode of 1, for both the standard

deviation function given a dry day and for the standard deviation function given a wet day.
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Again a 3-term Fourier series approximation was chosen to simplify programming by having

a common approximation order.

Tables 4.10—4.15 show the parameter estimates for the mean function and for the stan-

dard deviation function, both conditioned on the wet or dry status of period ¢ .

The resulting time series obtained by subtracting the fitted mean function and by
dividing through by the fitted standard deviation function should be a time series with a
mean of zero and a standard deviation of unity. Since the mean value functions and the
standard deviation functions which were fitted are based on truncated Fourier series, that
is, on approximating models, the means of the residual series would not be exactly zero and
the standard deviations would not be exactly one. However, deviations in this respect were

found to be quite small. (Table 4.16.)

TABLE 4.10 Parameter estimates for the mean and standard deviation function
for Nelspruit

Variable Day Mean Function Standard deviation function

Status &1 Qs Gs &1 ?;:2 €3

Dry 1.1406 0.0461 0.0021 0.5492 0.0722 -0.1045

Max Temp

Wet 0.7439 -0.3820 -0.2312 0.7346  -0.0129 -0.1027

Dry -0.0768 -1.1420 -0.2058 0.4849 -0.1264 0.0172
Min Temp '

Wet -0.3966 -0.8404 -0.2213 0.3666 -0.0469 0.0026

Dry -0.8305 0.6966 -0.2708 1.5700 0.4211 -0.2742
Sun

Wet 2.2995 -1.2331 -1.1324 3.1566 -0.8673 -0.5615

Dry 1.9637 0.0005 0.1367 0.2404 0.0175 -0.0155
Wind

Wet 2.0005 -0.0579 0.1554 0.2789 -0.0069 -(.0338

Dry -1.4305 -0.0110 -0.2614 0.5754 -0.0945 -0.0809
Max Hum

Wet -2.1826 0.1480 -0.0467 0.7114 0.0075 -0.0685

Dry -0.2314 -0.4867 -0.0223 0.5471 -0.0377 -0.0490
Min Hum

Wet  -0.9015 0.0100 0.1507 0.7902 -0.1771 - -0.0605
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TABLE 4.11 Parameter estimates for the mean and standard deviation function
for Kakamas

Variable Day Mean Function Standard deviation function
: Status o g a3 €1 €2 3

Dry 0.1820 -0.4165 -0.0206 0.3912 0.0299 -0.0215
Max Temp

Wet 0.7169 -0.1589 -0.1176 0.5849 0.0534 -0.1207

Dry 0.0561 -0.8786 -0.2398 0.4488 0.0249 -0.0311

Min Temp

Wet  -0.2287 -0.6914 -0.2603 0.3976 0.0583 -0.1232

Dry 0.9503 -0.9578 0.0770  0.4293 0.0004 -0.0106
Evapo

Wet 1.4808 -0.3786¢ -0.1080 Q.7570 -0.0814 -0.1750

Dry -1.8580 -0.0062 0.0217 0.8455 0.0029 0.1077
Sun

Wet 0.5187 -0.0863 -0,1922 1.3270 -0.2649 0.1156

Dry 1.4858 -0.3014 0.0995 0.4098 -0.0406 -0.0231
Wind

Wet 1.2041 0.0066 0.0779 0.3349 -0.0073 -0.0103

Dry -0.0944 0.5486 -0.1002 1.3666 -0.2549 0.0597
Max Hum .

Wet  -0.7814 0.0296 -0.2719 1.4821 -0.2785 -0.1268

Dry 1.1816 0.2893 -0.0566 0.4990 0.0249 -0.0066
Min Hum

Wet 0.4772 -0.0064 -0.0173 0.5523 -0.0303 -0.0673
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TABLE 4.12 Parameter estimates for the mean and standard deviation function
for Middelburg

Variable Day Mean Function Standard deviation function
Status al &2 &3 51 fz 63

Dry -0.1424 -0.5116 -0.0217 0.5336 0.0718 -0.0156

Max Temp :

Wet 0.4120 -0.7261 -0.1572 0.6608 0.0509 -0.0500

Dry 0.2575 -0.8132 -0.1849 0.527¢ -0.1576 -0.0816
Min Temp

Wet  -0.1811 -0.7344 -0.2009 0.4172 -0.0803 -0.0499

Dry 7.9960 19682 -0.4032 1.3287 -0.1210 -0.1113
Evapo

Wet 6.1770 2.1295 0.0773 2.0379 -0.2645 -0.2099

Dry  -2.0452 0.0167 0.0293 1.2232 0.0837 0.0880
Sun

Wet 0.6383 -0.5181 -0.3849 1.9803  -0.4339 -0.2604

Dry 1.4977 -0.0610 0.1297 0.4592 -0.0855 -0.0228
Wind

Wet 1.4042 0.0481 0.1328 0.4821 -0.1459 -0.0122

Dry -1.3432 -0.4132 -0.2987 1.2128 -0.2591 -0.1682
Max Hum

Wet  -1.2860 -0.3606 -0.1579 1.1107  -0.1790 -0.0987

Dry 1.1904 0.1649 -0.1501 0.5000 -0.0057 -0.0314
Min Hum

Wet 0.5364 0.2806 0.0152 0.6164 -0.0767 -0.0799
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TABLE 4.13 Parameter estimates for the mean and standard deviation function
for Elsenburg

Variable Day Mean Function Standard deviation fuflgtion
Status &y Qs s &1 €2 3

Dry 238.22 48.57 19.04 38.38 3.179 -0.0134

Max Temp

Wet 193.53 46.05 21.63 25.71 5.296 3.317

Dry 0.3177 -0.2871 -0.1851 0.5278 -0.1475 -0.0450
Min Temp

Wet -0.4954 -0.0572 -0.1013 0.5552 -0.1558 -0.0066

Dry 7.680 2.787 0.0901 1.0026 -0.0536 0.0270
Evapo

Wet 4.961 2.506 0.1371 1.8950  0.0165 -0.0899

Dry -1.6113 -0.2528 -0.0514 095756 -0.2123 0.0104
Sun

Wet 1.1820 -1.0978 0.2018 1.9234 -0.9789 0.3166

Dry 1.6157 -0.2502 0.0089 0.3923 -0.0539 -0.0276
Wind

Wet 1.2347 0.0298  0.1007 0.4737 -0.1934 -0.0040

Dry -2.2258 0.1167 -0.1301 0.8527 -0.1969 0.1334
Max Hum ‘

Wet -2.0879  0.0697 -0.0156 04737 -0.1934 -0.0040

Dry 0.5553 0.2438  0.0887  0.4858 -0.0842 -0.0051
Min Hum

Wet -0.1166 0.4444 0.0339 0.6925 -0.3514 0.0798
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TABLE 4.14 Parameter estimates for the mean and standard deviation function

for Cedara

Variable Day Mean Function Standard deviation function

o~ -~ o~

Status &y Cia Oig E 1 52 ES

Dry  0.0677 -0.1084 0.0099 05117 00419  -0.0775

Max Temp

Wet 0.8100 -0.1902 -0.1313 0.8119  0.0833 -0.1253

Dry 96.367 56.733 11.619 26.661 -3.558 -2.103
Min Temp

Wet 111.379  46.644 13.587 22.168 -0.926 -2.553

Dry -1.383 0.4607 -0.1772 1.2118 0.2792 -0.1978
Sun

Wet 2.0787 0.2088 -0.9158 3.3718 0.3074 -0.6914

Dry 1.7602 -0.0816 0.1776 0.2919 -0.0758 -0.0153
Wind

Wet 1.6711 -0.0878 0.1973 0.321¢ -D.0127 -0.0353

Dry -2.0807 -0.3614 -0.2952 0.9552 -0.1621 -0.0217
Max Hum

Wet: -3.0247 -0.2189 -0.1216 0.8008¢  0.1149 0.0001

Dry -0.0548 -0.5256 -0.0813 0.6235 -0.0317 -0.0688
Min Hum

Wet -1.1142 -0.2502  0.0721 1.0571 -0.0468 -0.1675
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TABLE 4.15 Parameter estimates for the mean and standard deviation function

for Hoopstad

Variable Day Mean Function Standard deviation function

Status 0 Giy &3 a 52 &

Dry -0.3482 -0.4120 0.0216  0.4415  0.1293 -0.0081

- Max Temp
Wet 0.2494 -0.5653 -0.0547 0.6324 0.0222 0.0372
Dry -1.4750 -1.1625 -0.2069 0.4701 -0.0122 -0.0174
Min Temp
Wet  -0.6601 -0.8644 -0.1761 0.3764 -0.0442 -0.0151
Dry  -1.7544 0.1099 0.1206 0.7901 0.2790 0.0360
Sun .
Wet 0.66(_]0 -0.4369  -0.0254 1.8220 -0.1887 0.1484
Dry 2.1065 -0.2612 0.2238 0.5323 -0.0128 -0.0153
Wind
Wet 1.8836 0.0616 0.3142 0.4281 0.1357 0.0514
Dry  -0.4700 0.5763 -0.4229 0.7188 -0.1011 0.0364
Max Hum
Wet  -0.7645 0.2807 -0.3057 0.7501  -0.0202 0.0191
Dry 0.9651 0.0142 -0.2402 0.5565 0.0808 -0.0154
Min Hum

Wet 0.0503 0.1797 -0.0793  0.7935 -0.0143 0.0135
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TABLE 4.16 Mean and standard deviation of residual time series obtained by
standardizing the data

Variable Station
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad
Max Temp M -0.010 0.002 -0.007 0.0007 -0.02 0.006
SD 1.09 1.04 1.05 1.08 1.08 1.06
Min Temp M 0.004 -0.004 0.002 -0.0005 -0.01 -0.002
SD 1.08 1.03 1.07 1.10 1.08 1.06
Evapo M -0.003 -0.0004 0.006
Sb  1.12 1.05 1.05
Sun M -0.007 0.006 -0.002 0.011 0.02 0.0009
SD  1.16 1.06 1.12 1.22 1.17 1.13
Wind M -0.015 -0.003 0.0002 0.192 -0.007 0.013
SD  1.09 1.03 1.05 1.12 1.11 1.15
Max Hum M  0.012 -0.002 0.002 0.004 -0.009  -0.004
sD  1.19 1.05 1.06 1.07 1.06 1.09
Min Hum M -0.010 -0.0003 0.004 0.003 -0.01 -0.006
sSD 1.05 1.06 1.10 1.08 1.07

1.10

Another assumption made by the model is that the residual time series follows an au-

toregressive process of order 1. If this is true then py = p¥ where p; is the autocorrelation

with lag k. This assumption (or more precisely, this approximation) was checked by com-

paring Pk, k= 1,2,3,4 with 5%¥, and was found to be reasonable except for a few cases

(Table 4.17). It is possible to increase the order of the autoregressive process to these cases,

but this has be be done at cost of increasing the complexity and number of parameters in

the model, and therefore not advisable.

The results of the above checks would suggest that the residual series do seem to satisfy

the required assumptions of the model. It is therefore reasonable to approximate each of the

seven series by the sum of a seasonal component and a residual component, to approximate

the seasonal component by a 3—term Fourier series and finally to approximate the standard

deviation of the residual series by a 3~term Fourier approximation.
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CHAPTER 4 Model Implementation

Model 1, proposed by Richardson (1981) is given by:
Xig = A Xijt-1+ B €

where x;; is the residual series at time period ¢ of year ¢. Display 4.1 gives the esti-
mated A matrix for the various stations and Display 4.2 gives the estimated B matrix.
The order of the climate variables in these displays is as follows: maximum temperature,
minimum temperature, evaporation, sunshine duration, windrun, maximum humidity and

finally minimum humidity.
Model T: Multivariate model for climate data

Models 3, 4 and 5 were developed as an alternative to Model 1 in an attempt to deal
with a deficiency in Model 1, namely the assumption that the autocorrelation function of
each variable is assumed invariant with respect to wet/dry and dry/wet day boundaries.
Each model varies in complexity and emphasizes a slightly different aspect of the joint

distribution of the variables. Table 4.18 shows the fundamental assumptions of each model.

The models depicted here are complex, describing several distinguishing properties
of the climate series. No one model will be “best” in all respects or for all sites. In
general, simpler models can be expected to outperform the more complex ones when the
historical record at the site is small, whereas the opposite will be true when the record is
long.  Statistically one can select the appropriate model for each variable using Akaike’s

Information Criterion (AIC) where
AIC = —£(tp;e;¢) + L

where £(v;e;;) is the loglikelihood function of the model and L is the number of parame-
ters. The model producing the lowest AIC value is chosen as the model that best described
that particular elimate variable. It must be noted that Models 3, 4 and 5 are not hierarchical
and therefore a model with a larger number of parameters does not imply that the value of

its loglikeliliood function will be smaller.
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r 069 -—-0.49 -—-0.02 0.05 -—-0.03 -0.08 -0.047
0.17 0.09 -0.03 0.01 -0.03 -0.05 0.02
0.26 -0.25 -~0.02 -0.03 -0.08 0.14 0.19
Elsenburg | —0.156 —0.07 0.02 0.13 003 -001 -0.05
0.22 0.19 -0.01 0.07 0.16 -0.19 -0.22
0.04 -0.02 0.01 0.07 0.00 0.26 0.02
L 0.12 -0.21 -0.07 0.08 -0.08 0.08 0.51 J

- 0.40 0.25 0.05 -0.07 0.06 —-0.10 0.047
—0.09 0.74 0.02 0.04 0.00 0.17 -0.07
—0.07 0.13 0.26 -0.01 0.02 -0.14 0.07
Kakamas 0.16 —-0.20 0.06 0.18 -—-0.01 -0.15 0.03
—-0.45 -0.08 0.09 0.06 017 -0.02 -0.02
0.06 -0.28 0.01 0.00 -0.03 0.32 0.13
0.11 -0.05 0.10 0.09 -0.06 0.24 0.64

- 0.40 0.3 —-0.01 -0.06 0.03 -0.18 -0.037
—0.04 039 -0.07 001 -0.04 0.19 0.07
0.23 -0.18 0.25 —-0.05 0.03 0.27 0.11
Middelburg 0.11 —-0.08 -0.02 0.15 0.03 -0.16 0.01
—0.58 0.06 -—-0.09 0.14 012 -0.23 -0.12
6.11 -0.01 0.04 0.00 .05 0.24 0.06
. 0.10 -0.02 -0.08 0.10 -0.04 0.28 0.59 |

[ 0.43 023 -0.15 0.38 -0.08 0.071
0.13 0.46 0.00 -0.03 0.06 0.04
0.22 0.07 0.03 0.38 0.03 0.01

Nelspruit | o064 _007 -002 015 ~0.06 —0.02
—0.03 002 006 —030 016 002
| —0.10 -004 004 —027 017 0.08l
T 016 -0.28 -010 016 —005 —0.07]
~0.10 045 005 -0.14 -0.07 -0.04
0.07 -003 003 0.4 -002 -—0.07
Cedara

-0.03 0.13 0.02 0.22 0.05 0.01
0.01 -0.05 0.08 -0.18 0.09 0.09
L —0.03 0.08 0.12 -0.15 0.06 0.19 ]

- 040 024 -007 012 —019 —0.211
007 052 008 0.1 004 0.04
u 4| 009 -012 000 -003 -010 -0.10
oopstad | 447 _011 002 043 005 0.07
_0.05 —-0.07 006 —0.05 036 0.3
| _0.09 —-001 011 —0.13 023  0.47]

DISPLAY 4.1 The estimmated matrix A
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" 0.76 1
0.46 0.86

036 0.00 0.84

Elsenburg { —0.34 -0.33 —-0.34 0.75

0.20 0.18 -0.35 -0.03 0.80

005 -0.19 007 005 -005 093

{ 057 027 014 -005 004 -0.08 0.60l

r 0.80
—-0.15 0.73
0.40 0.31 0.80
Kakamas 0.31 -0.19 0.15 0.83
0.01 0.30 0.41 -0.08 0.74
—0.25 -0.27 -0.05 0.05 -0.06 0.75
| —0.43 ~0.05 -0.08 -0.08 0.02 0.10 0.59

- 0.77 .
—-0.34 0.87

—0.36 -0.34 0.68

Middelburg 044 —-0.07 -0.32 0.77

0.00 0.30 —-0.49 -0.11 0.58

0.00 -0.41 0.20 001 -0.11 0.84

L—0.56 —0.10 0.20 -0.09 0.08 -0.02 0.55 ]

- 0.84 T
—-0.40 0.80
Nelspruit 0.61 0.00 0.66
-0.03 -0.02 -0.08 0.98
-0.31 0.00 -0.08 -0.27 0.83
L. -0.66 -0.02 -0.07 0.02 -0.08 0.63

" 0.92

0.20 0.83

0.66 0.08 0.72

-0.22 -0.17 -0.02 0.95
-0.45 0.0 0.04 -0.10 0.87
L—0.71 0.01 -0.16 -0.03 0.01 0.63 J

Cedara

- 077
—0.34 080
040 —020 0.89
Hoopstad | o1 007 001 0.84
_0.05 —005 —0.04 —006 093
| _056 004 -012 -001 004 0.57.

DISPLAY 4.2 The estimated matrix B

Thus, one does not restrict the generation of the climate variables to any particular
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TABLE 4.18 Assumption of the different models

Model Assumptions

Model 1 - seasonal mean function
— seasonal standard deviation function
- constant autocorrelation coefficient across different rain — no rain sequences

— conditioned on wet and dry sequences only

Model 3 - seasonal mean function
— constant standard deviation function
— different autocorrelation coeflicients across different rain — no rain sequences

— conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences

Model 4 - seasonal mean function
— seasonal standard deviation function
- constant autocorrelation coefficients across different rain — no rain sequences

— conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences

Model 5 - seasonal mean function
— seasonal standard deviation function
— different autocorrelation coefficients across different rain — no rain sequences

- conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences.

model, but each variable is generated according to the model that “best” describes it. The
multivariate model to generate simultaneous daily climate sequences will be referred to as
Model T, where, for each climate variable, Model T is constructed by selecting between

Models 3, 4 and 5 for the model that produces the lowest AIC.
The following algorithm is used to implement Model T.
Algorithm
Step 1: Implement Model 3 to obtain parameter estimates and AIC for each variable.

Step 2: Implement Model 4 to obtain parameter estimates and AIC for each variable.
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Step 3: Implement Model 5 to obtain parameter estimates and AIC for each variable.

Step 4: Construct Model T by choosing for each variable the model producing the lowest
AIC.

Step 5: Obtain the estimated cross—correlation matrix, $ , whose elements are given by:

NY NT NY NT NY NT

1 (@ 0 _ L ; k
IPILEL R DI I DI
Riy = i=1t=1 i=1 t=1 i=1 =1
FT e 1
INYNT ()2 1 NY NT G 27 2
T Z (eift) T T? (Eze{ft)
i t=1 {=1 =1 t=1
| NY NT * | [NYNT 213
L (Zzeg;)
| =l t=1 i=1 t=1
where eg‘jt) denotes the residual time series of variable j§, j=1,2,...,NV and where

for each j the residual series is the series obtained after the model producing the lowest
AIC for variable j has been fitted and eSf? denotes the residual time series of variable

k, k=12,...,NV, the residual series obtained in the same way as above,
Implementing Models 3, 4 and 5

The transformations applied to these models are the same as those in the previous
model except for the variables maximum temperature and minimum temperature of
the station Nelspruit. Here the bounds are given by

o = 420, and
b=10
for maximum temperature, and
4 = max temp
b=10
for minimum temperature.

Models 3, 4 and 5 are implemented by following the respective algorithms given in
Chapter 3. The initial estimates for the mean function and for the seasonal standard
deviation function are the same as the estimates of Model 1 and therefore need not
be recomputed. Only when a different transformation to that applied in Model 1 is
used, is it necessary to compute initial estimates for the mean function and the seasonal

standard deviation function.
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The selection of the order of the Fourier series approximation for the mean function
and the standard deviation function was based on the initial estimates of these functions

and so a choice of a 3—term Fourier series was made for both functions.

The estimation of the parameters is accomplished by iteration. The procedure
described in the algorithms is that of Newton—Raphson. This method, although con-
verging within a few iterations, was found to be sensitive to the initial values given.
On occasions where convergence was not reached, a conjugate gradient method was
used for parameter estimation. The computer programs for this procedure are given in
Appendix D. The advantages of this method is that one gets convergence and only the
vector of first derivatives needs to be computed. The disadvantage is that it is time

consuming and takes a large number of iterations to converge.

In our implementation a particular parameter estimate was deemed to have con-
verged when its value changed by less than 0.01% in successive iterations. The estima-

tion procedure was deemed to have converged when all estimates had converged.

Akaike’s Information Criterion for the selection of a model for each variable is
given in Table 4.19. The lowest AIC value is shown in bold and the corresponding
model is selected to generate climate sequences for that variable. This model selection

is performed for each of the stations.

Values with an asterisk indicate the model that was finally selected, although it
did not produce the lowest AIC. This choice was necessary in some instances because of
the relatively few occurrences of rainfall in some stations. More importantly, at some
sites consecutive rainy days seldom occur. Thus, in Models 3 and 5 the estimation of
the autocorrelation coefficient given that the sequence WW was observed, is based on
very few observations, and consequently, it is possible to obtain inadmissible estimates.
Similarly, when the sequence WD or DW was observed. In such cases, generally Model
4 was chosen as it gave acceptable estimates since here the autocorrelation function is

not conditioned and all observations are used in the estimation.

Parameter estimates for the mean function, the standard deviation function and

the coefficient of the autoregressive process of order 1 are given in Tables 4.20-4.25 for

each station.
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Table 4.19 Akaike’s Information Criterion for Models 3, 4 and 5

Variable Meoedel Station
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad
Mod 3 21190 3393 5751 2151 5781 2610
Max Temp Mod 4 21174 3537 5796 2030 5745 2088
Mod 5 21160 3502 5749 2006 5726 2773
Med 3 3579 2994 5474 4684 26594 3191
Min Temp Mod 4 3484 2902 5178 4502 26594 3193
Mod 5 3467 2962 5162 4472 26562 3182
Mod 3 7102 5018 12721
Evapo Mod 4 7124 5124 12710
Mod 5 7091 5080 12697
Mod 3 7458 10528 12716 10742 12645 8458
Sun Mod 4 7263 10669 12841 10951 12786 8511
Mod 5 7241 10665 12822 10953 12758 8505
Mod 3 2557 4528 4664 493 2105 3973
Wind Mod 4 2477 4499 4536 607 2182 4463
Mod 5 2483 4501 4539 565 2057 3760
Med 3 5799 13644 11890 4900 8101 6579
Max Hum Mod 4 5544 13799% 11712 4879 8080 6614
Mod 5 5542 13587 11717 4859 8078 6573
Mod 3 3012 3951* 5653 4961 7047 4266
Min Hum Mod 4 2952 3972 4876 4903 7067 4541
Mod 5 2926 3929 5668 4904 7054 4312

The estimate of the cross—correlation matrix, > , 1s obtained by following Step 5 of the
algorithm given in this chapter. Problems arise when computing this formula when missing
observations occur in the residual series. A simple approach to estimate the cross—correlation
matrix in the presence of missing values, is to restrict the analysis to time periods t with
all variables observed. However, this method discards a considerable amount of data and
the estimate obtained is biased. A more efficient approach is to estimate the missing values

and to replace them by their estimate.

Makhuvha (1988) investigated several methods of estimating the missing values in rain-

fall records. She concluded that of the methods compared, the EM algorithm is the most
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TABLE 4.20 Parameter estimates of Model T for Elsenburg

Sta- Mean N Standard Deviation Autocorrelation coefficient
Variable  tus &1 Gia Gis £ (DD) & (WwW) & (DW) (WD) (DD) (Ww) (DW) (WD)

D 231.18 4872 1901  33.55 1.8024 0.2573 0.5794 0.3459 0.3872  0.5942
Max Temp

W 20450 53.68 2274  20.03 6.6864 3.1137

D 0.3022 -0.2020 -0.1657 0.5212 -0.1354 -0.0546 0.2342 -0.0720 0.2671  0.0520
Min Temp
. W -0.4868 -0.0160 -0.0984 0.6016 -0.1326 -0.0079

D 7.6192 2.7414 0.0900 1.0359 -0.0949 0.0635 0.3227 -0.0491  0.1168  0.0920
Evapo

W 5.0406 2.5638 -0.1071 2.1324 0.2682 -0.0206

D -1.6281 -0.2424 -0.0765 1.0764  -0.2902 0.0525 0.0009 0.1173  0.2808  0.1036
Sun

W 0.9495 -1.1892 0.0193  2.2477 -1.0441 0.2785

D 1.6108 -0.2549 (0.0180 0.3955 -0.0433 -0.0349 0.2780
Wind

W 1.2669 -0.0216 0.0709 0.5073 -0.1575 -0.0129

D 22759  0.0996 -0.1112 0.8724  -0.2045 0.1318 0.3436 0.2144  0.2482  0.2042
Max Hum

W .2.0439 0.0681 0.0147 0.8779 -0.3449 0.1664

D 0.5042 0.2483 0.0683 04446  -0.0893 0.0071 0.5027 0.1687  0.3148  0.3223
Min Hum

W -0.0733 0.4691 0.0451 0.5791 -0.0833 0.0936
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TABLE 4.21 Parameter estimates of Model T for Kakamas

Sta- Mean R Standard Deviation Autocorrelation coefficient
Variable tus oy Oig oz & (DD) £ (WW) & (DW) (WD) (DD) (WW) (DW) (WD)

D 0.1627 -0.4202 -0.0276 0.3367 1.0537 0.6734 0.6167 0.4781 0.4354 - 04171 0.4551
Max Temp

w 0.3463 -0.1978 -0.0721

D 0.0488 -0.8637 -0.2536 0.3342 0.0154 -0.0237 0.6947 0.3330 0.7680 0.4741
Min Temp

W -0.0969 -0.8725 -0.2746 0.3321 0.0307 -0.0707

D 0.9368 -0.9685 0.0712 0.4108 1.2381 0.7372 0.6606 0.2930 06665 0.5014 0.3466
Evapo

w 1.1845 -0.7191  0.0049

D -1.7212 0.0064 -0.0003 0.7934 1.4352 1.8488 1.6322 03372 0.0280 0.0585 -0.0044
Sun

w 0.5658 -0.0440 -0.1465

D 1.4873 -0.3020 0.1002 0.3989 -0.0255 -0.0251 0.2629
Wind

w 1.3139 -0.0322 0.0648 0.3927 -0.0213 -0.0013

D -0.1501 0.4878 -0.1316 1.1771 -0.2202 0.0032 0.5277
Max Hum

w 0.6801 0.1684 -0.1280 1.6941 -0.4360 0.0031

D 1.1912 0.2866 -0.0486 0.3697 1.0398 0.5222 0.5177 06781 0.7747 0.7354 0.6003
Min Hum

W 0.9306 0.2392 -0.0246

¥ HHLIVHD
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TABLE 4.22 Parameter estimates of Model T for Middelburg

Sta- Mean N Standgrd Deviatior,l_ Autocorrelation coefficient
Variable tus &1 &2 63 61 (DD) 62 (WW) 63 (DW) (DD)

D -0.1750 -0.6214 -0.0207 0.4972 0.0700 -0.0271 0.3351 0.6246
Max Temp

W -0.0466 -0.5426 -0.0733 0.7664 -0.0019 -0.0046

D 0.2309 -0.7800 -0.2229 0.5073 -0.1471 -0.0584 0.3855
Min Temp

W -0.1527 -0.7246 -0.1868 (.4616 -0.1031 -0.0569

D 7.9724 1.9607 -0.3904 1.2470 -0.0886 -0.1185 0.3723
Evapo

W 6.9672 1.8639 -0.2865 2.2131 -0.1846 -0.2240

D -2.0811 0.0179 0.0070 1.1915 3.0527 1.8217 0.2798
Sun

W 0.0118 -0.3549 -0.2383

D 1.5048 -0.0641  0.1327 0.4486 -0.0718 -0.0270 0.3153
Wind

W 1.3822 (.0314 0.1695 0.4822 -0.1150 -0.0313

D -1.3835 -0.4246 -0.3003 1.2037 -0.2473 -0.1653 0.2501
Max Hum

w -1.0464 -0.4250 -0.2633 1.2606 -0.1815 -0.14023

D 1.1584 0.1583 -0.1487 0.4467 0.0138 -0.0290 0.4710
Min Hum

w 0.7990 0.1551 -0.0416 (.6503 -0.1175 -0.0814
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TABDLE 4.23 Parameter estimates of Model T for Nelspruit

Sta- Mean N Standgrd Deviatiori Autocorrelation coefficient
Variable tus a1 o) as ¢ (DD) £ (WW) ¢ (DW) (WD) (DD) (WW) (DW) (WD)

D -0.5530 -0.2091 -0.0618 0.3496 (.0415 -0.0825 0.5130 0.1883 0.3870 0.2989
Max Temp

W -0.3810 -0.4587 -0.1973 0.4045 0.0255 -0.0425

D 0.0386 -0.7716 -0.1403 0.5612 -0.1514 -0.0713 0.3813 0.0797 0.1556 0.0717
Min Temp :

W -0.5269 -0.2497 -0.0071 Q.7003 -0.2251 -0.0818

D -1.0839 05190 -0.1531 1.4358 3.9054 2.7535 3.2377 0.1700 0.2423 0.1597 0.1180
Sun

w 1.4841 -0.9117 -1.0326

D 2.0032 -0.0014 0.1453 0.2386 0.3743 0.2590 0.3336 0.0001 0.3037 0.1856 0.1613
Wind

W 2.0175 -0.0235% 0.1640

D -1.4927 -0.0301 -0.2512 0.5749 -0.0730 -0.08%6 0.3661 0.1056 0.1539 0.2178
Max Hum :

W -2.0923 0.1254 -0.0859 0.7741 -0.0250 -0.0804

D -0.2500 -0.4921 -0.0472 0.5716 -0.0267 -0.0580 0.19523
Min Hum

W -0.8250 -0.1266 0.1330 0.9221 -0.2392 -0.0032

¥ HHLAVHD
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TABLE 4.24 Parameter estimates of Model T for Cedara

Sta- Mean N Sta.ndgrd Deviatiori Autocorrelation coefficient
Variable tus o s Qs ¢y (DD) & (WW) & (DW) (WD) (DD) (WW) (DW) (WD)

D 0.0817 -0.1206 0.0067 0.55611 0.103b6 -0.0839 0.2398 0.1117 0.0036 0.0444
Max Temp

W 0.7722 -0.1986 -0.0917 0.8740 0.0132 -0.0792

D 97.70 51.43 14.11 23.82 -2.624 -0.781 0.6092 0.3651 0.5537 0.3714
Min Temp

W 110.28 46.56 14.04 21.60 -2.705 -1.667

D -1.6666 0.2819 -0.2128 1.2486 42278 2.8030 2.1725 0.1643 0Q.1914 -0.1618 -0.0123
Sun

w 1.4590 0.1536 -0.6015

D 1.7531 -0.0856 0.1766 0.3146 -0.0541 -0.0150 0.2607 0.0794 0.0000 0.1909
Wind

w 1.6761 -0.0900 0.1703 0.3782 -0.0339 -0.0351

D -2.1008 -0.3668 -0.3021 1.0044 -0.1101 -0.0460 0.1672 0.1115 -0.0599 0.1598
Max Hum

w -3.0014 -0.2200 -0.0672 0.8444 0.0607 -0.0111

D -0.0160 -0.4920 -0.0928 0.6204 1.2461 0.9200 0.7907 0.2142 0.2060 -0.0295 0.0743
Min Hum _

W -0.8004 .0.2833 0.0296
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uonvIUIWdwy 12po



ey

TABLE 4.25 Parameter estimates of Model T for Hoopstad

Sta-~ Mean R Standgrd Deviatioxl Autocorrelation coefficient
Variable tus &y Qg a3 ¢ (DD) & (WW) & (DW) (WD) (DD} (WW) (DW) (WD)

D -0.5078  -0.5004 0.02b4 0.2893 0.8638 04752 7 0.5262 0.5808 0.8066 0.7517 0.6951
Max Termp

W -0.3431 -0.6375 -0.0210

D -0.2257 -1.1626 -0.2329 0.3919 -0.0033 -0.0244 0.5082 (0.4282 05456 0.3609
Min Temp

w -0.5434 -1.0062 -0.2076 0.3728 -0.0538 0.0099

D -1.8242 0.0955 0.0975 0.6753 29114 1.6379 1.2875 0.2845 0.2008 0.0003 0.1339
Sun

w 0.0924 -0.3002 -0.0487

D 2.0979 -0.2117 0.2139 0.4114 0.0001 -0.0514 0.4733 0.5789 0.0003 0.5387
Wind '

W 2.0284 -0.0710 0.2737 0.4468 0.0452 -0.0037

D -0.5581 0.4988 -0.4000 0.6267 -0.0181 -0.0186 0.5338 0.2678 0.2790 0.2456
Max Hum

W -0.7064 0.2786 -0.2623 0.8009 -0.0600 ~0.0189

D 1.1107 0.0944 -0.2305 0.3903 1.0292 0.8553 0.6209 0.5566 0.8081 0.7663 0.6498
Min Hum

A 0.7927 0.1593 -0.1760
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UONDIUIWIAUW] 19POJY



CHAPTER 4 : Model Implementation

efficient method that can be applied for the estimation of missing records, and in terms of
accuracy, it performs at least as well as the other methods. The EM algorithm is a very
general iterative method for maximum likelihood estimation in incomplete data sets. It

comprises of the following steps:

1. Missing values are replaced by estimated values.
2. Parameters are estimated.
3. Missing values are re-estimated assuming that the new parameter estimates are correct,
4. Parameters are re—estimated and so forth, iterating until convergence.
A detailed explanation and the theory of the EM algorithm is given in Appendix E.

The estimates of the cross—correlation matrix for each station are given in Display 4.3.
The matrices are symmetrical, therefore only the upper triangle is given. The order of the

climate variables in the display is as follows:

maximum temperature, minimum temperature, evaporation, sunshine duration, windrun,

maximum humidity and finally minimum humidity.

The results described in this chapter would suggest that the models are not inconsistent

with the historical record.
The selected models have the following number of parameters:
The model for rainfall occurrences: has 6 parameters.
The model for rainfall depth: has 4 parameters.
Model 1: has 161 parameters.
Model 3: has 126 parameters.
Model 4: has 119 parameters.
Model 5: has 140 parameters,

Of course the tests described in this chapter cover only some limited aspects of the fit.

The issue of model validation is considered more exhaustively in Chapter 6.
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[ 1.000

Model Implementation

0.606 0.440 —0.430 0.235 0073  0.711-
1.000 0219 —0.507 0.281 —0.154 0.614
1.000 —0550 —0.201 0128  0.451
Elsenburg 1.000 —0.066 0.025 —0.466
1.000 —0.127  0.162
1,000 —0.072
i 1.000 ]
r1.000 —0.038 0385 0193 0.000 0006 —0.027
1.000 0.204 —0.234 0012 —0010  0.028
1.000 0.102 —0.012 —0.021 ~—0.002
Kakamas 1.000 —-0.007 0.112 0.062
1.000  0.040 0.188
1.000  0.307
i 1.000 .
F1.000 —0.354 —0488 0413 0036 0014  0.0027
1.000 —0.170 —0.270 0141 —0015 0.013
1.000 —-0.386 —0.349 —0.027  0.002
Middelburg 1.000 0.056 0.007 —-0.002
1.000 —0.187 —0.251
1.000 —0.231
i 1.000
1.000 —0.650 0.620 —0.155 —0.328 ~—0.7187
1.000 —0.668 0082 0307  0.637
Nelsprait 1000 —0.123 —0.349 —0.594
1.000 —0.225  0.059
1.000  0.231
i 1.000
1.000 0.060 0.680 —0.236 —0.461 —0.480
1.000 0,130 —0.112 0.029 —0.028
Cedara 1.000 —0.164 —0.305 -0.403
1.000 -—0.039  0.095
1.000 0212
1.000
F—1.000 —0.343 0351 -0.398 0.086 0.0267
1.000 —-0.375 0.165 —0.082 —0.013
i 1 1.000 —0.139 —0043  0.023
oopsta 1.000. —0.083 —0.007
1.000 —0.002
i 1.000.

DISPLAY 4.3 Estimated cross—correlation matrices for each station
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CHAPTER &

ALGORITHMS

This chapter describes the various procedures to be followed during model implemen-

tation and later during generation of climate sequences.

“Custom built” computer programs to carry out the preliminary analysis, to fit the
models, to validate the models and finally to generate climate sequences have been written
in ANSI 77 FORTRAN. The programs written conform to the full ANSI standard except
for programs 6 and 8 where the array CLIMA is dimensioned using the HUGE attribute,
which is an extension to the full ANSY standard. This was necessary when the climate
data sefs consisted of more than 9 years of daily data. Standard Fortran programs without
this attribute should be no problem on a mainframe. Appendix D gives information where
a listing of these programs (referred to in the algorithms below) can be obtained. The

algorithms described here were all implemented on an IBM compatible PC micro-computer.
The following algorithms are discussed in this chapter:

— Algorithm for fitting the rainfall model.

- Algorithm for generating artificial rainfall sequences.

— Algorithm for ﬁt.ting Model 1 to climate sequences.

— Algorithm for generating climate sequences using Model 1.

— Algorithm for fitting Model 3 to climate sequences.

— Algorithm for fitting Model 4 to climate sequences.

— Algorithm for fitting Model 5 to climate sequences.

— Algorithmn for implementing Model T.

— Algorithm for generating climate sequences using Model T.
Algorithm for implementing the rainfall model

The following information is required for the parameter estimation programs and must

be computed from the historical record:

NT the number of periods in the year (e.g. 365 for daily data).



CHAPTER 5 Algorithms

NY the number of years of data (including the missing values).
Foreach t=1,2,...,NT,

NW(t) the number of times it was wet in period ¢ — 1 and there was an observation in

period t.
NRR(t} the number of times it was wet in period ¢ — 1 and wet in period £.

ND(t) the number of times it was dry in period t — 1 and there was an observation in

period ¢.
NRR(t) the number of times it was dry in period ¢t — 1 and wet in period t.
R(i,t) the ith non—zero rainfall depth in period ¢, i=1,2,...,NR(t).
NR(t) the number of times it was wet in period .
Algorithm for estimating the probabilities of wet and dry sequences
| Step 1: Prepare data sets NW(¢) and NRR(t).
— Program 1

— if any of the NW(t) are equal to zero, then delete time period ¢ from data

set.
Step 2: Estimate the parameters for the probability that a wet period follows a wet period.
— Program 2.
Step 3: Prepare data sets ND(f) and NRR(?).
- Program 1

— of any of the ND(t) are equal to zero, delete time period ¢ from the data

set.
Step 4: Estimate the parameters for the probability that a wet day follows a dry period.
- Program 2.
Algorithm to estimate the mean rainfall in wet periods
Step 1: Prepare the data sets NR(f) and R(i,?).
— Program 1.

Step 2: Estimate the parameters of the mean.

5-2



CHAPTER 5 ' Algorithms
Step3d: Estimate the coefficient of variation.
— Program 3 (does Steps 2 and 3).
Algorithm for generating artificial rainfall sequences
Step 1: Set initial state of day to be dry.
Step 2: Generate uniform random number between 0 and 1, inclusive (U/(0,1)).

Step 3: If U(0,1) random number is less than the probability of a wet day following a

day with the status of the previous time period then
— the status of the present time period is wet.
Otherwise
- the status of the present time period is dry.
Step 4: If present state is wet than determine the rainfall depth.
Step 5: Repeat steps from Step 2 until enough rainfall sequences have geen generated.
— Program 4.
Algorithm for implementing Model 1 to climate sequences

The following information is required for the parameter estimation programs and must

be computed from the historical records:
NT the number of periods in the year.
NY the number of years of data.
NV the number of variables in the model.
For each t=1,2,...,NT and for each variable
m{t) the mean of the climate variable at time ¢ .
s(t) the standard deviation of the climate variable at time %.
For each variable do:

Step 1: Condition data set according to the wet or dry status of the day. That is, a record

is kept of the time periods that had rain and the time periods that had no rain.
~ Program 3.

For each conditioned data set do Step 2 — Step 6:
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Step 2: Compute the daily mean vector, m(t) .
- Program 6.
Step 3: Estimate the parameters of the mean.
- Program 7.
Step 4: Compute the daily standard deviation vector, s(t) .
- Program 8.
Step 5: Estimate the parameters of the standard deviation.
- Program 7.

Step 6: Obtain the standardized residual series by subtracting the estimated daily mean

function and dividing by the estimated daily standard deviation function.
- Program 9.

Step 7: Once the residual time series has been calculated for each variable, estimate the

lag 0 and lag 1 cross—correlation coefficients.
— Program 10.
Step 8: Using estimates obtained in Step 7 compute the matrices 4 and B.
- Program 11.
Algorithm for generating artificial climate sequences using Model 1
Step 1: Generate rainfall sequence (algorithm given above)
For each variable do:

Step 2: Generate a normal random number from a distribution with a mean of zero and a

standard deviation of unity (N(0,1)).

Step 3: Generate residual time series by:
Xit=AXit-1+ B € b
— the initial condition of the residual time series is taken to be equal to zero, i.e.
X100 = 0.

Step 4: Generate climate sequences by:

S, = { Xit Of +A; if wet
1,,t -_— . ~D -~ .
Xijt O + My if dry.
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Step 5: Repeat all of the above steps until the desired amount of climate sequences have
been generated. So that the generating process has a chance of stabilizing itself,

the first year of data generated is ignored.
~ Program 12.
Algorithm for implementing Model 3 to climate sequences

The following information is required for the parameter estimation programs and must

be computed from the historical records:
NT the number of periods in the year.
NY the number of years of data.
NV the number of variables in the model.
T the total number of observations.

N(DD) the set of time periods ¢ such that period ¢ was dry and period f— 1 was dry,
t=1,2,...,T.

N(WW) the set of time periods ¢ such that period ¢ was wet and period £ —1 was wet.
N(DW) the set of time periods t such that period ¢ was wet and period ¢ —1 was dry.
N(W D) the set of time periods ¢ such that period ¢{ was dry and period t—1 was wet.
C(DD) number of elements in the set N(DD).
C(WW) number of elements in the set N(WW).
C(DW) number of elements in the set N(DW).
C(WD) number of elements in the set N(WD).
For each variable do:

Step 1: Estimate initial parameters of the mean function by performing Step 1 through to

Step 3 of the algorithm for parameter estimation of Model 1.

Step 2: Prepare the data sets of possible sequences, i.e. N(DD), N(WW), N(DW) and
N(WD) . Compute C(DD),C(WW),C(DW) and C(WD).

~ Program 13.
Step: 3: Estimate initial autocorrelation coefficients for each of the possible sequences.

- Program 14.
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Step 4:

Step 5:

Step 6:

Estimate initial standard deviation function for each of the possible sequences.
— Program 15.

Estimate parameters of the mean function, standard deviation function and the

autocorrelation coefficients, iterating until convergence is met by all parameters.
— Program 16 {(or Program 17).

Obtain residual time series by

Sit— Bt 2 Sit—1— i
€t = = —~ ¢ =
o &

where [iy,f;—1, g and & are chosen depending on which sequence the time periods

t and t—1 satisfy.

Algorithm for implementing Model 4 to climate sequences

The information necessary for parameter estimation programs is the same as for

Model 3.

For each variable do:

Stepl:

Step 2:

Step 3:

Step 4:

Step 5:

Estimate initial parameters of the mean function by performing Step 1 through to

Step 3 of the algorithm for parameter estimation of Model 1.

Estimate initial parameters of the standard deviation function by performing Step

4 and Step 5 of the algorithm for implementing Model 1.
Estimadte initial autocorrelation coefficient.
- Program 18.

Prepare the data sets of possible sequences, N(DD),N(WW),N(DW) and
N(WD) . Compute C(DD},C(WW),C(DW) and C(WD).

— Program 13.

Estimate parameters of the mean function, standard deviation function and the

autocorrelation coeflicient, iterating until covergence is met by all parameters.

~ Program 19 (or Program 20).
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Step 6: Obtain residual time series by:

Sit =t = Siio1 — Hee
eie = it - H _ g Dist-t He-1

gt Ot-1

where Ji;,fiy1,8; and G;.; are chosen depending on which sequence the time

periods t and t—1 satisfy.
Algorithm for implementing Model 5 to climate sequences

The information necessary for parameter estimation programs is the same as for

Model 3.
Tor each variable do:

Step 1: Estimate initial parameters of the mean function and of the standard deviation
function by performing Step 1 through to Step 5 of the algorithm for implementing
Model 1.

Step 2: Estimate initial autocorrelation coefficients for each of the possible sequences by

performing Step 3 of the algorithm for implementing Model 3.

Step 3: Prepare the data sets of possible sequences, N(DD),N(WW),N(DW) and
N(WD). Compute C(DD),C(WW),C(DW) and C(WD).

- Program 13.

Step 4: Estimate parameters of the mean function, standard deviation function and auto-

correlation coefficients, iterating until convergence is met by all parameters.
— Program 21 {(or Program 22).

Step 5: Obtain residual time series by:

Sie — fie 7 Sit-1— PBe-1

€it = =
a Tt-1

where [, ft—1,0t,0¢0—1 and 6 are chosen depending on which sequence the time

periods ¢ and t— 1 satisfy.
Algorithm for implementing Model T

Step 1: From each residual time series obtained after fitting Models 3, 4 and 5, select for
each variable the residual series from the model which produced the lowest Akaike’s

Information Criterion.
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Step 2:

Step 3:

Step 4:

Record, for each variable the time perioids ¢ for which a missing observation

occurs.

- Program 23.

Use the EM algorithm to estimate and replace missing values by this estimate.
- Program 24.

Estimate the cross—correlation matrix, X .

- Program 25.

Algorithm for generating artificial climate sequences using Model T

Step 1:

Generate rainfall sequence.

For each variable do:

Step 2:

Step 3:

Step 4:

Generate N(O,ﬁ) random number.

Generate climate values according to the model chosen for that variable. For

example, if Model 3 is chosen, then _
Sit=H:t+70 [ei,t Ml s 13 e 1]
where iy, fit—1,6 and 8 are chosen depending on the sequence ¢ and ¢t —1

satisfy.
If Model 4 is chosen, then

- -~ AS. - _h—
Sit = s + 5y [ei,t + 8 M]
O¢-1

where i, Jit—1,0: and G:—; are chosen depending on the sequence ¢ and ¢t-—1

satisfy.

If Model 5 is chosen then

~ -~ Iy S -1 i -
Tt-1

where [, fI;—1,6¢,0:—1 and @ are chosen depending on the sequence ¢ and t—1

satisfy.

Repeat above steps until the desired amount of climate sequences have been

generated.

- Program 26.



CHAPTER 6
GOODNESS OF FIT

Once a model has been identified and the parameters estimated, it remains to decide
whether the model is adequate. Model validation is applied with the object of assessing the
performance of the model and to uncover any possible lack of fit. In particular one wants
to assess whether the mode] proposed and parameters estimated preserve the properties of
the process being examined. This chapter summarizes the results of the checks carried out

on Model 1 and Model T described in Chapter 3.
Validation of rainfall model

The rainfall model has been shown to be satisfactory in the various regions of South
Africa (Zucchini and Adamson, 1984). They performed extensive checks on the properties

of the model such as:

(a} the annual mean and standard deviation and the distribution of annual totals and sum

of & running totals, k=1,2,...,5,
(b) the monthly means and standard deviations,
(c) the expected number of wet days at different times of the year,
{d) the distribution of runs of wet and dry days,
(e) the distribution of n-day extreme rainfall.

The Markov chain/Wejbull model adopted was found to preserve these properties. A
number of these checks were repeated in this study. For a more complete model validation

procedure see Zucchini and Adamson (1984).

Historical data (daily observations) were obtained for the weather stations Elsenburg,
Kakamas, Middelburg, Nelspruit, Cedara and Hoopstad. More information on these records

was given in Chapter 4.

Fifty years of simulated daily data were compared with the historical data on an annual,

monthly and daily basis.

Table 6.1 gives both the historical and simulated annual mean number of wet days.

This property has been adequately preserved by the model.
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TABLE 6.1 Mean number of wet days per year

Station Historical Simulated
Elsenburg 91 92
Kakamas 16 19
Middelburg 63 63
Nelspruit 96 95
Cedara 150 149
Hoopstad 72 80

The mean number of wet days for each month has also been adequately preserved by

the model (Figure 6.1)

It is especially important that the occurrence of wet days by season be adequately
modelled as the generation of the other climate variables is conditioned on the occurrence of
wet or dry days. The above results indicate that the Markov chain/Weibull model preserves

the properties of the rainfall sequence at those locations.

The fits of the truncated Fourier series for the probability of having a wet day given a
preceding wet day, and for the probability of having a wet day given the preceding one was

dry, for each station, are shown in Figures 6.2 — 6.7. The fits are generally good.

The interpretation of these figures requires some explanation. These are not ordinary
regression equation fits with normally distributed residuals. The smooth line indicates the
fitted probability for a binomial random variable where the number of trials is also random.
The outcomes are discrete values representing the number of successes in a series of Bernoulli
trials. This is analogous o a situation in which a coin, which has a probability p of landing |
heads, is tossed » times and the fraction of times the coin landed heads is recorded. The
smooth line would then represent the (smoothly varying probability) and the points on the
graph the proportion of heads. The visual impression that one gets from such a diagram
might suggest that the fit is poor (because oﬂe is used to interpreting regressions with
normally distributed residuals, that is continuous random residuals) when in fact the fit is

very good. The latter is the case in Figures 6.2 - 6.7.
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FIGURE 6.1 Historical and simulated mean number of wet days
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FIGURE 6.2 Empirical probabilities and estimates based on a 3 parameter
model for P(W|W) and P(W|D) for Elsenburg

ELSENBURG - P(W/W)

JAN MAR MAY JUL SEP NOU

DRYS

ELSENBURG -~ P{W-D)

« .o w - . ¥ as e ss o - PR -

JAN MAR MAY JuL SEP NOU

DAYS

64



PROBABILITY

PROBABILITY

CHAPTER 6 Goodness of Fit

FIGURE 6.3 Empirical probabilities and estimates based on a 3 parameter
model for P(Wi{W) and P(W|D) for Kakamas
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CHAPTER 6
FIGURE 6.4 Empirical probabilities and estimates based on a 3 parameter

model for P(W|W) and P(W|D) for Middelburg

MIDDELBURG - P(W/W)

Goodness of Fit

1 T r 1 T T T f T | T T
0.8 — —
9.8 — . j—
0.4 — . —
2.2 — —

*
o L ] L | -k — ) | 4 1 .
JAN MAR MAY auL SEP Nou
DAYS

MIDDELBURG - P(W/D>

JAN MAR MaY JuL SEP NOY

DAYS

66



PROBABILITY

PROBABILITY

CHAPTER §

Goodness of Fit

FIGURE 6.5 Empirical probabilities and estimates based on a 3 parameter
model for P(W{W) and PW|D) for Nelspruit

NELSPRUIT = P<(W W)

JAN MAR

MAY JUL SEP : NOUV

DAYS

NELSPRUIT - P((W/D>

. CRT e b 4em

JAN MAR

MAY JuL SEP NOU

DAYS

6-7



PROBABILITY

PROBABILITY

CHAPTER &

Goodness of Fit

FIGURE 6.6 Empirical probabilities and estimates based on a 3 parameter
model for P(W|W)} and P(W|D) for Cedara
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FIGURE 6.7 Empirical probabilities and estimates based on a 3 parameter
model for P(W{W) and P(W|D) for Hoopstad
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Validation of Climate Madel

To consider the climate model as adequate in preserving the characteristics of the
climate, the multivariate properties of the weather variables must be investigated as well as

the univariate characteristics of each individual variable.

The following parameters and parameter functions must be preserved if one jis to con-

sider the climate model as satisfactory:

(a) the annual mean and standard deviation for each climate variable for the unconditioned

data and the data conditioned on the wet or dry status of the day,

(b) the monthly means and standard deviations for each variable for the unconditioned

data and the data conditioned on the wet or dry status of the day,
(c) the extreme values of each climate variable, i.e. maximum and minimum daily values,

(d) the autocorrelation within each variable for the unconditioned data and the data con-

ditioned on the wet or dry status of the day,
(e) the cross—correlation over all climate variables.

The checks above test either the multivariate part of the climate model, e.g. the cross—
correlation over all- variables, or the individual characteristics of each variable, e.g. the

monthly means and standard deviations for each variable.

Again fifty years of simulated daily climate sequences were compared with the historical

data on an annual, monthly and daily basis.
The following abbreviations are used in tables and figures:
Max Temp — Maximum Temperature
Min Temp — Minimum Temperature
Evapo — Evaporation
Sun — Sunshine Duration
Wind — Wind run
Max Hum — Maximum Humidity
Min Hum — Minimum Humidity

His — Historical Data
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Mod 1 — Simulated data using Model 1
Mod T — Simulated data using Model T'.
Validation of annual properties

Table 6.2 shows the comparison of historical and simulated annual means for each
variable and each station. This statistic has been adequately preserved by both models
when the variables are conditioned on a wet day and when they are conditioned on the dry
status of the day (Tables 6.3 — 6.4). There is however a slight underestimation of the annual
mean for wet sequences by Model T for the variables wind run, maximum and minimum
humidity at some of the stations. For Middelburg. the annual mean of wind run is slightly

overestimated by Model T.
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TABLE 6.2 Comparison of historical and simulated annual mean -

Station
Variable @ Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 22,7 28.9 23.7 26.4 22.8 25.9
Max Temp Mod 1 22.7 28.9 23.5 26.3 22.8 26.1
Mod T , 224 29.2 244 26.1 22.9 27.9
His 10.5 13,1 6.8 13.3 10.1 7.9
Min Temp Mod 1 10.7 13.1 6.7 13.3 10.1 8.1
Mod T 10.5 13.2 6.8 13.4 10.2 8.4
His 5.7 8.9 6.4
Evapo Mod 1 5.7 8.9 6.3
Mod T 5.6 9.1 6.5
His 8.3 9.8 9.2 7.3 6.9 9.2
Sun Mod 1 8.2 9.8 9.1 6.7 6.5 9.0
Mod T 8.3 9.8 9.3 7.2 6.9 9.4
His 194.7 194.9 195.8 121.1 1584 123.8
Wind Mod 1 193.0 196.0 195.4 125.6 1575 123.1
Mod T 192.5 195.0 195.4 1226 1583 119.8
His 92.5 62.2 80.3 81.8 88.8 74.0
Max Hum Mod 1 92.8 62.9 80.4 82.0 89.0 74.0
Mod T 92.8 63.2 80.9 8§2.2 89.0 73.8
His 41.4 25.6 26.7 47.9 52.6 32.9
Min Hum Mod 1 41.2 24.9 26.6 48.4 53.2 32.9
Mod T 41.9 24.9 26.4 48.0 51.1 28.1
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TABLE 6.3 Comparison of historical and simulated annual mean given a wet
day

Station
Variable Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 18.1 28.9 24.0 26.2 22.3 26.8
Max Temp Mod 1 18.1 27.8 23.5 25.9 22.3 27.1
Mod T 19.0 30.5 26.5 26.4 22,5 30.2
His 10.9 17.8 10.9 16.6 13.0 13.6
Min Temp Mod 1 11.0 16.6 10.8 16.6 12.9 13.7
Mod T 11.4 16.7 10.6 16.6 12.8 13.2
His 2.8 7.2 5.2
Evapo Mod 1 2.6 6.4 5.0
Mod T 2.8 8.8 6.1
His 4.2 5.7 6.0 4.6 4.4 6.0
Sun Mod 1 3.8 5.5 5.3 3.8 3.7 5.4
Mod T 4.3 5.3 6.3 4.7 4.3 6.5
His 2458 219.2 205.1 121.0 1711 142.8
Wind Mod 1 242.9 215.0 203.6 126.2 169.9 138.7
Med T 2354 213.5 211.3 123.8 1703 129.7
His 94.3 75.8 83.3 87.8 95.0 81.7
Max Hum Mod 1 94.2 77.8 84.4 88.3 95.2 80.8
Mod T 93.4 56.2 80.3 87.0 94.9 76.1
His 55.1 39.2 36.4 61.6 68.6 47.3
Min Hum Mod 1 55.0 384 36.6 62.9 69.5 47.3
Mod T 54.0 29.7 - 31.5 59.5 65.8 34.2
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CHAPTER 6 Goodness of Fit

TABLE 6.4 Comparison of historical and simulated annual mean given a dry
day

Station
Variable Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 24.1 28.9 23.6 26.5 23.3 25.6
Max Temp Mod 1 24.2 28.9 23.5 26.5 23.2 25.8
Mod T 23.5 29.2 23.9 26.0 23.3 27.2
His 10.4 12.9 5.0 12.2 8.1 6.3
Min Temp Mod 1 10.5 12.9 5.8 12.1 8.1 6.6
Mod T 10.2 13.0 6.0 12.2 8.4 7.1
His 6.7 9.0 6.6
Evapo Mod 1 6.7 9.1 6.6
Mod T 6.6 9.1 6.6
His 9.7 10.0 9.9 8.2 8.7 10.0
Sun Mod 1 9.7 10.0 9.9 7.8 8.5 10.0
Mod T 9.6 10.0 9.9 8.1 8.6 10.1
His 117.7 193.7 193.9 121.2 1494 118.6
Wind Mod 1 176.3 195.0 193.7 125.4 1487 118.8
Mod T 178.1 184.1 192.2 122.2 1499 117.1
His 91.9 61.6 79.6 79.6 84.5 72.1
Max Hum Mod 1 92.3 62.1 79.5 79.8 84.7 72.2
Mod T 92.6 63.5 81.1 80.5 84.9 73.2
His 36.8 25.0 24.7 43.1 41.3 20.1
Min Hum Mod 1 36.6 24.2 24.5 43.2 41.6 29.0
Mod T 37.9 24.6 25.3 43.9 40.9 26.5
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CHAPTER 6 Goodness of Fit

We note that there is a much smaller number of wet days in the year than there are
dry days at the stations in this study. In particular Kakamas where observations of rainfalt
constitute only 4% of the data record. It would be therefore (statistically) surprising if all

the parameter functions associated with wet days fitted the historical record very closely.

The annual standard deviation has been well described by both models for the cases
when the variables are conditioned on the wet and dry status of the day as well as for the case
when they are not (Tables 6.5 — 6.7). Again it is seen that for some stations, the standard
deviation statistic for the simulated sequences of wind run and minimum humidity differ
slightly from that of the historical record. In these instances, Model T generally performs
better than‘ Model 1.

TABLE 6.5 Comparison of historical and simulated annual standard deviation

Station
Variable  Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 5.9 6.8 6..5 4.4 5.2 5.8
Max Temp Mod 1 5.7 6.8 6.5 4.5 5.1 5.8
Mod T 5.7 6.7 6.3 4.4 5.2 6.0
His 3.8 6.6 6.1 5.2 5.1 7.1
Min Temp Mod 1 3.7 6.6 6.1 5.2 4.9 7.1
Mod T 36 6.5 6.2 5.2 4.8 7.0
His 3.7 4.6 3.2
Evapo Mod 1 3.7 4.7 3.2
Mod T 3.7 4.8 3.3
His 3.6 24 3.0 3.6 3.7 2.7
Sun Mod 1 3.6 2.2 3.0 3.8 4.1 2.9
" Mod T 3.6 22 3.0 3.9 4.1 2.8
His 86.7 75.2 82.6 32.2 54.5 63.3
Wind Mod 1 76.7 S 71.1 74.6 301 48.1 61.3
Mod T 78.6 71.7 76.6 324 51.1 57.0
His 6.9 22.0 17.5 10.7 12.5 15.9
Max Hum Mod 1 5.7 21.8 16.3 10.4 12.2 15.4
Mod T 6.1 22.1 15.3 10.8 12.4 14.3
His 15.2 10.4 11.9 16.9 22.6 15.6
Min Hum Mod 1 14.4 7.6 11.2 16.7 22.5 15.0
Mod T 14.7 10.4 10.7 16.6 223 14.0
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TABLE 6.6 Comparison of historical and simulated annual standard deviation
given a wet day

Station
Variable  Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 4.5 6.2 7.1 5.1 5.6 5.6
Max Temp Mod 1 4.2 5.8 7.1 5.1 5.6 5.8
Mod T 5.0 6.9 6.6 4.9 5.7 6.0
- His 33 5.4 5.1 3.3 3.5 4.2
Min Temp Mod 1 3.4 5.1 5.1 35 3.6 4.3
Mod T 3.5 5.5 54 4.0 3.8 5.0
His 2.6 3.9 3.2
Evapo Mod 1 2.5 34 3.2
Mod T 2.8 5.4 4.0
His 34 3.3 3.6 3.6 3.6 3.5
Sun Mod 1 3.4 3.2 3.7 4.0 4.3 3.8
Mod T 3.8 3.6 4.3 4.6 4.6 4.2
His 113.7 68.2 85.3 37.7 56.5 65.3
Wind Mod 1 96.6 54.4 75.0 33.7 50.4 60.6
Mod T 100.8 64.3 82.6 374 54.8 62.1
His 4.1 20.0 16.1 8.0 5.5 13.1
Max Hum Mod 1 4.5 16.6 12.3 8.0 5.0 12.9
Mod T 6.1 25.7 14.7 9.5 5.5 14.5
His 15.4 14.6 15.4 15.1 18.8 191
Min Hum Mod 1 13.4 7.6 i3.6 14.6 18.5 17.6
Mod T 15.4 15.6 14.2 16.9 20.2 20.4

One of the difficulties that arose when modelling climate variables was that the variables
‘are bounded with values lying outside these boundaries being inadmissible, for example,
having negative sunshine. Also, some variables have a high frequency of values near or on
an upper or lower limit so that it is expected that simulated sequences will occasionally
have values that exceed these boundaries. Transformations were applied to the climate
variables to overcome this problem. To verify that the simulated sequences of climate
variables were adequately restrained within their boundaries and at the same time that
extreme values simulated closely resemble those of the historical record, the maximum and

minimum values simulated for each variable were compared with those observed in the
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TABLE 6.7 Comparison of historical and simulated annual standard deviation
given a dry day

Station
Variable = Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 5.5 6.8 6.3 4.1 4.8 5.8
Max Temp Mod 1 5.2 6.8 6.4 4.2 4.7 5.8
Mod T 5.4 6.6 6.2 4.2 4.8 5.9
His 3.9 6.6 5.9 - 5.2 5.0 6.9
Min Temp Mod 1 3.9 6.7 6.0 5.1 4.7 - 6.9
Mod T 36 6.5 6.0 5.1 4.6 6.9
His 3.5 4.6 3.2
Evapo Mod 1 3.4 4.7 3.1 -
Mod T 34 4.8 3.1
His 2.5 2.1 2.3 3.0 24 1.8
Sun Mod 1 2.2 1.8 2.1 3.1 2.3 1.5
Mod T 2.4 1.9 2.3 3.2 2.5 1.5
His 67.5 75.3 81.9 29.9 51.2 61.6
Wind Mod 1 60.1 .7 74.3 28.6 44.3 60.9
Mod T 63.4 72.0 74.9 30.3 46.6 55.2
His 7.5 21.9 17.7 10.7 14.0 15.9
Max Hum Mod 1 6.0 21.8 16.9 10.2 13.9 15.5
Mod T 6.1 21.8 i5.4 10.7 14.1 14.2
His 12.0 9.7 9.9 14.6 17.8 11.9
Min Hum Mod 1 11.5 7.0 9.4 14.2 17.3 11.4
Mod T 11.9 9.9 9.5 i4.5 174 11.2

historical record. Tables 6.8 and 6.9 show these comparisons.

As can be seen from the tables, the extreme values simulated compare favourably with
those observed in the historical record. Even for those variables that show a slight difference
in the extreme values, when a count was taken of those values of the simulated sequence that
lay either above the maximum or below the minimum values observed in the historical data,
the percentage of such values was found to be negligible, that is, the highest percentage

observed was 0.4%.
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TABLE 6.8 Comparison of historical and simulated minimum values

Station
Variable Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 10.0 9.5 5.0 13.1 7.8 5.6
Max Temp Mod 1 6.9 7.4 2.6 8.5 4.5 5.4
Mod T 4.8 7.2 1.1 8.6 3.7 3.9
His 1.7 -2.5 -8.0 0.0 -4.0 -8.1
Min Temp Mod 1 1.1 -2.3 -8.2 0.9 -104 -7.8
Mod T 1.3 -3.0 -8.3 0.7 -5.5 -8.3
His 0.0 0.5 0.0
Evapo Mod 1 0.0 0.5 0.0
Mod T 0.0 0.1 0.0
His 0.0 0.0 0.0 0.0 0.0 0.0
Sun Mod 1 0.0 0.1 0.0 0.0 0.0 0.0
Mod T 0.0 0.0 0.0 0.0 0.0 0.0
His 40.0 35.1 62.2 26.0 22.0 14.0
Wind Moed 1 17.0 34.0 17.3 45.3 41.9 14.0
Mod T 19.3 32.8 23.0 344 37.2 15.7
His 50.0 12.0 18.0 30.0 220 200
Max Hum Mod 1 384 - 113 8.9 19.8 10.4 20:3
Mod T 34.5 1.9 17.5 18.7 6.7 18.9
His 12.0 1.0 5.0 9.0 2.0 7.0
Min Hum Mod 1 8.7 7.1 3.7 3.1 1.2 3.6
Mod T 8.6 0.6 3.0 3.9 0.6 0.3
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TABLE 6.9 Comparison of historical and simulated maximum values

Station
Variable  Data  Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

His 40.8 438 38.0 39.8 37.3 39.0
Max Temp Mod 1 42.1 44.6 37.8 39.5 38.0 39.5
Mod T 42.3 47.4 39.3 40.1 38.2 40.6
His 20.9 29.8 22.5 23.3 21.1 214
Min Temp Mod 1 25.3 28.6 21.1 22.9 23.1 21.1
Mod T 24.1 28.8 21.6 26.9 22.9 21.1
His 18.5 24.0 18.0
Evapo - Mod 1 18.8 23.7 20.2
Mod T 22.8 28.2 28.3
His 13.3 © 135 13.6 12.9 13.0 13.4
Sun Mod 1 13.7 14.0 13.9 13.0 13.2 13.4
Meod T 13.7 14.0 13.9 13.0 13.2 13.5
His 7333 5310 583.1 420.0 4530 396.0
Wind Mod 1 705.1 583.7 614.1 301.7 468.3 584.3
Mod T 681.3 564.6 640.7 341.5  449.7 592.3
His 100.0 100.0 100.0 100.0 10090 100.0
Max Hum Mod 1 100.0 100.0 100.0 100.0 1000 100.0
Mod T 100.0 100.0 100.0 100.0 100.0 100.0
His 95.0 30.0 85.0 97.0 1000 97.0
Min Hum Mod 1 93.9 62.5 86.2 94.5 99,7 93.5
Mod T - 85.9 90.2 86.7 98.2 99.3 99.3
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Validation of monthly properties

It is important that the monthly characteristics of each climate variable, mainly the
mean and standard deviation, be adequately described by the models. The monthly means
and standard deviations of the simulated sequences for each station were compared to those
of the respective historical record. Figures 6.8 - 6.14 show the monthly means of each

station for the various climate variables.

From the figures it can be seen that the monthly means have been successfully pre-
served by both models. Model T slightly overestimates the monthly means of maximum
temperature for the station Hoopstad, but the highest difference between the means of the
simulated sequence and that of the historical data still lies within 3°C of the observed
monthly mean. Model T fails to preserve the monthly means for the variable minimum
humidity of the station Hoopstad. Here the monthly means are underestimated. Model 1

fits the data reasonably well for this variable.

Figures 6.15 — 6.21 show the monthly standard deviations of each station for the various
climate variables. The monthly standard deviations have been preserved by both ﬁodds.
The variables wind run, maximum humidity and minimum humidity show the greatest differ-
ences between the standard deviations of the observed sequence and those of the generated
sequence. For these variables the models tend to slightly underestimate the monthly stan-
dard deviations. Looking at the original sequence of these three variables we see that they
do not follow an approximate sinuscidal shape, one of the assumptions made when fitting
the mean by a truncated Fourier series, so it seems that these observable differences may be

accountable for this.

The mean and standard deviation functions of each variable differ significantly depend-
ing on the wet or dfy status of the day. It is therefore necessary that monthly means and
standard deviations should also be preserved by the models when the climate variables are
conditioned on wet and dry days. Figures 6.22 - 6.28 show the monthly means for each
station when the climate variables are conditioned on wet days. Figures 6.29 - 6.35 gives

the monthly means when the climate variables are conditioned on the dry days.

6-20



Goodness of Fit

CHAPTER 6
"FIGURE 6.8 Monthly means for maximum temperature
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FIGURE 6.9 Monthly means for minimum temperature
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FIGURE 6.10 Monthly means for evaporation
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FIGURE 6.11 Monthly means for sunshine duration
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FIGURE 6.12 Monthly means for
- HIS
KAKAMAS +
KM/ DAY » :gg-j,'-
280 T T T T T T T

248,.

200

ite

120t -
Ba i 1 i 1 i 1 1 1 1 i

1 2 34 5 6 7 8 9101112

MONTH

~ HIS

MIDDELBURG + MOD1

KM/DAY x MOOT
288 T T 13 T ] 1 T T T T

240} .

£ 54

200 s y

LK

168 “
i2er -
86 1 J 1 1 H 1 11 | 1 1
1 2 3 4 8 6 7T 8 9 181112
MONTH
- HIS
ELLSENBURG + MODL1
M/DAY » MODT
2890 IS S I TN e S S m—
248 B!
gf‘-\
208t
i16er 1
iz2er ]
se YRR SR T AN TR VAN NN T S
1 2 3 45 58 7T 8 9 1611 12
MONTH

Goodness of Fit

wind run
- HIS
NELSPRUIT + MOD1
KM/DAY * MDDT
280 T T T T T T T | — T
240 B
200 7]
igor 7
* :&QQ
120f= e y
"h—.h“ _ ‘-(;/"_‘
Se ] ] 1 | J 1 1 1 L 1
1 2 3 4 5 6 7T 8 8 191112
MONTH
- HIS
CEDARA + MOD1
KM/DAY » MODT
288 T T | B — I
248 b
208 =

168K

i2er 7
86 L ] 1 1 1 3 1 I 1 1
L1 2 3 4 5 6 7T 8 9181112
MONTH
- HIS
HOOPSTAD - MOD1
280 T T T T T T T
240 .
2e0r 7
160} s NG
- ¥
i £
1zef ‘:\ x .
NIJ{
88 11 1 J )3 1 1 L 1 1 -
1 2 3 4 5 68 7 8 9 101112

6_25 MONTH



CHAPTER 6

FIGURE 6.13
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Goodness of Fit

FIGURE 6.14 Monthly means for minimum humidity
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FIGURE 6.15 Monthly standard deviations for maximum temperature
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FIGURE 6.16 Monthly standard deviations for minimum temperature
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FIGURE 6.17 Monthly standard deviations for evaporation
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CHAPTER 6
FIGURE 6.18 Monthly standard deviations for sunshine duration
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CHAPTER 6
FIGURE 6.19 Monthly standard deviations for wind run
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Goodness of Fit

FIGURE 6.20 Monthly standard deviations for maximum humidity
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CHAPTER 6 Goodness of Fit

FIGURE 6.21 Monthly standard deviations for minimum humidity
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CHAPTER 6 Goodness of Fit
FIGURE 6.22 Monthly means for maximum temperature for wet days
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CHAPTER 6 Goodness of Fit

FIGURE 6.23 Monthly means for minimum temperature for wet days
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CHAPTER 6 Goodness of Fit

FIGURE 6.24 Monthly means for evaporation for wet days
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FIGURE 6.25 Monthly means for
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CHAPTER 6 Goodness of Fit
FIGURE 6.26 Monthly means for wind run for wet days
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Goodness of Fit

FIGURE 6.27 Monthly means for maximum humidity for wet days
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Goodness of Fit

FIGURE 6.28 Monthly means for minimum humidity for wet days
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FIGURE 6.29 Monthly means for maximum temperature for dry days
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Goodness of Fit

FIGURE 6.30 Monthly means for minimum temperature for dry days
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CHAPTER 6§ Goodness of Fit
FIGUE 6.31 Monthly means for evaporation for dry days
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FIGURE 6.32 Monthly means for sunshine duration for dry days
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FIGURE 6.33
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Goodness of Fit

FIGURE 6.3¢ Monthly means for maximum humidity for dry days
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FIGURE 6.35 Monthly means for minimum humidity for dry days
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CHAPTER 6 Goodness of Fit

These figures show that monthly means are adequately preserved by both models, in
particular, the models fit the monthly means very well on dry days. The same results are
observed for the station Hoopstad for the variables maximum temperature and minimum
humidity as when the sequences were treated as a whole. For the sequences of wet days,
differences are observed between monthly means of the simulated sequences and the monthly
means of the observed sequences, in particular for the variables wind run, maximum humid-
ity and minimum humidity. As already mentioned there are relatively few observations of
rainfall at these stations and therefore one does not expect the models to fit the historical
records on wet days very accurately. This is supported by comparing the results obtained for
the stations Kakamas and Cedara when the variables are conditioned on wet days. Kakamas
is the station for which fewer rainfall days are observed, and Cedara is the station at which
most rainfall days are observed, of the stations in this study. It is clear that both models

preserve the monthly means for Cedara but do not perform as well for Kakamas.

The plots also show that generally, Model 1 fits the data better than Model
T. This can be explained by observing that for Model 1 one is only separating the sequences
into dry and wet days, while for Model T one separates the sequences into four parts, that
is, into dry—dry, wet-wet, dry-wet and wet-dry sequences. Therefore the model parameters
for Model T are estimated using very few observations especially when dealing with a wet

sequence,

Figures 6.36 — 6.42 show the monthly standard deviations when the climate variables
are conditioned on wet days. Figures 6.43 — 6.49 show the monthly standard deviations
when the climate variables are conditioned on dry days. These plots show that both models
have preserved monthly standard deviations when the climate variables are conditioned on
dry days. Here again, very similar results are obtained to those when the sequences are
taken as a whole. Generally, the models preserve the monthly standard deviations when the
variables are conditioned on wet days. Some differences are observed between the simulated
sequences and the historical records. These differences can be explained again for the reasons
mentioned above. Where differences between simulated and historical sequences occur, it
can be noted that generally Model T tends to overestimate the standard deviations, while

Model 1 tends to underestimate them.
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FIGURE 6.36 Monthly standard deviations for maximum temperature for wet
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FIGURE 6.37 Monthly standard deviations for minimum temperature for wet
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CHAPTER 6 Goodness of Fit
FIGURE 6.38 Monthly standard deviations for evaporation for wet days
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FIGURE 6.39 Monthly standard deviations for sunshine duration for wet days
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FIGURE 6.40 Monthly standard deviations

for wind run for wet days
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FIGURE 6.41

wet days
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CHAPTER 6 Goodness of Fit
FIGURE 6.42 Monthly standard deviations for minimum humidity for wet days
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FIGURE 6.43

Monthly standard deviations for maximum temperature for

dry days
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dry days
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Goodness of Fit
FIGURE 6.44 Monthly standard deviations for minimum temperature for



CHAPTER 6 Goodness of Fit
FIGURE 6.45 Monthly standard deviations for evaporation for dry days
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FIGURE 6.46 Monthly standard deviations for sunshine duration for dry days
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FIGURE 6.47 Monthly standard deviations for wind run for dry days
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FIGURE 6.48 Monthly standard deviations for maximum humidity for

dry days - HIS - HIS
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FIGURE 6.49 Monthly standard deviations for minimum humidity for dry days
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Autocorrelation property

One of the properties exhibited by the historical record is that of autocorrelation,
that is, within each climate variable there is a short—term persistence. For example, the
temperature observed on a given day is statistically related to the temperature observed on

the previous day.

To determine whether the models were successful in reproducing the autocorrelation
structure that is present in the historical data, the autocorrelation coefficients (of up to a
lag of four days) of each variable in the simulated sequence were compared to those of the
historical record (Figures 6.50 — 6.57). From these comparisons it can be concluded that
both models have described the autocorrelation property very well. Any differences observed
between the simulated and historical sequences are mostly within 0.1 of the historical record.
The variables that show these differences are generally sunshine, maximum humidity and
minimum humidity. It must be noted here that the models assume an autoregressive process
of order 1, that is, a lag of one day, and the bigger differences observed occur for lags of two
or more days. Models with a higher autoregressive order might describe the autocorrelation
structure of these variables, but this would mean increasing the complexity and the number

of parameters in the models.

The autocorrelation coefficients of the simulated sequences were compared with those
of the historical data, both for wet (Figures 6.57 — 6.63) and for dry sequences (Figures
6.64 - 6.70). The plots show that the autocorrelation structure in the simulated sequences
closely resembles that of the observed data. Again the differences that are observed between

the simulated and the historical sequences are mostly within 0.1 of the historical record.
Cross—correlation property

The cross—correlation coefficients for lag -1, 0 and 1 were used in the simulation tech-
nique. Therefore, it is ﬁecessary that the models should maintain this property. Figures
6.71 — 6.91 show the comparison of the historical and simulated cross—correlation coeffi-
cients for all climate variables. Generally, the models have successfully preserved the cross—
correlation coeflicients, in particular the lag 0 cross—correlation. The only exceptions to
this are the cross-correlation coefficients of the simulated sequence of Model T, between the |
variables maximum and minimum humidity and the other climate variables, in particular for

the stations Kakamas, Middelburg and Hoopstad. The cross—correlation of other variables
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FIGURE 6.50 Autocorrelation coefficients for maximum temperature
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CHAPTER 6 Goodness of Fit
FIGURE 6.51 Autocorrelation coefficients for minimum temperature
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CHAPTER 6 Goodness of Fit
FIGURE 6.52 Autocorrelation coefficients for evaporation
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CHAPTER 6 : Goodness of Fit
FIGURE 6.53 Autocorrelation coefficients for sunshine duration
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FIGURE 6.54

Autocorrelation coefficients for wind run
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CHAPTER 6 Goodness of Fit

FIGURE 6.55 Autocorrelation coefficients for maximum humidity
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CHAPTER 6 Goodness of Fit
FIGURE 6.56 Autocorrelation coefficients for minimum humidity
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FIGURE 6.57 Autocorrelation coefficlents for maximum temperature for

wet days -HIS ~ HIS
KAKAMAS + MODL NELSPRUIT + MOD1L
x MODT * MODT

- HIS - HIS
MIDDELBURG + MOD1 CEDARA + MOO1
* MODT = MODT
1 i T 1 T 1 3 T T 1
\ "
i
3
@.8F 1
1
3
A
e.8F -
A
E)
A
e.4f b 4
W
R
8.2 * R~ A
. .o
T Kemm =
e 1 i 1 a 1 1 L
9 1 2 3 4 0 1 2 3 4
DAYS SAYS
- HIS - HIS
ELSENBURG + MODL HOORSTADR + MOD1L

* MODT * MODT




CHAPTER 6 7 Goodness of Fit
FIGURE 6.58 Autocorrelation coefficients for minimum temperature for
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FIGURE 6.59 Autocorrelation coefficients for evaporation for wet days
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FIGURE 6.60 Autocorrelation coefficients for sunshine duration for wet days
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FIGURE 6.61 Autocorrelation coeflicients for wind run for wet days
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CHAPTER 6 Goodness of Fit
FIGURE 6.62 Autocorrelation coefficients for maximum humidity for wet days
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FIGURE 6.63 Autocorrelation coefficients for
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FIGURE 6.64 Autocorrelation coefficients for maximum temperature for

dry days - HIS -~ HIS
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FIGURE 6.65 Awutocorrelation coefficients for minimum temperature for
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Goodness of Fit

FIGURE 6.66 Autocorrelation coefficients for evaporation for dry days
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FIGURE 6.67 Autocorrelation coefficients for sunshine duration for dry days
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FIGURE 6.68 Autocorrelation coefficients for wind run for dry days

- HIS
KAKAMAS + MOD1
* MODT
1, T T T
R T :
T - G ——-—T
e 1 1 1
-] 1 = 3 4
DAaYS
-~ HIS
MIDOEL BURG + MOD%
* MODT
1.1 T T T

ELSENBURG

6-83

Goodness of Fit

- HIS
NELSPRUIT + MODL
* MODT
T T
_:;ﬁl::m”tﬂmmwuq
] I
2 3 4
DAYS
-~ HIS
CEDARA + MOD1
* MODT

- HIS
HOOPSTAD

+ MOD1

= MODT

DAYS



CHAPTER 6 Goodness of Fit
FIGURE 6.69 Autocorrelation coefficients for maxtmum humidity for dry days
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FIGURE 6.70 Autocorrelation coefficients for minimum humidity for dry days
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FIGURE 6.71 Cross—correlation coefficlents for maximum temperature and

minimum temperature
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FIGURE 6.72 Cross—correlation coefficients for maximum temperature and

evaporation
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FIGURE 6.73 Cross—correlation coefficients for maximum temperature and

sunshine duration
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FIGURE 6.75 Cross—correlation coefficients for maximum temperature and

maximum humidity
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FIGURE 6.76 Cross—correlation coefficients for maximum temperature andf t

minimum humidity
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Goodness of Fit

FIGURE 6.77 Cross—correlation coefficients for minimum temperature and

evaporation
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FIGURE 6.78 Cross—correlation coefficients for minimum temli?fﬁfﬁi O{;xfczlt
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FIGURE 6.79 Cross—correlation coefficients for minimum temperature and

wind run
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Goodness of Fil

FIGURE 6.80 Cross—correlation coefficients for minimum temperature and

maximum humidity
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FIGURE 6.82
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FIGURE 6.83 Cross-correlation coefficients for evaporation and wind run
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FIGURE 6.84 Cross—correlation coefficients for evaporation and maximum
humidity
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FIGURE 6.86 Cross-correlation coefficients for sunshine duration and wind

run
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FIGURE 6.87
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Goodness of Fit

FIGURE 6.88 Cross—correlation coefficients for sunshine duration and minimum

humidity
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FIGURE 6.89

humidity
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FIGURE 6.90
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FIGURE 6.91 Cross—correlation coefficients for maximum humidity and

minimum humidity
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CHAPTER 6 Goodness of Fit

sometimes also differ from the historical cross—correlation coefficients for lags 1 and -1, but

generally this difference is quite small.

Summary

If one reflects on the complexity of the climate process and in particular on the large
number of properties which the models are required to preserve, it can be reasonably con-
cluded that the models perform remarkably well. All but a few of the relevant parameter
functions and cross—correlations are preserved faithfully by the models. One other factor
that one must keep in mind when evaluating the performance of the models is the quality
and quantity of the historical record. For the model parameters to truly reflect the proper-
ties of climate variables there must be enough data records to have a representative sample
of the climate variables. It is difficult to be specific about how long a record needs to be in
order to be representative. Very roughly, and based on our experience, we would recommend

the minimum of 20 years of record before one can feel confidence in the results.
There are a number of weaknesses displayed by the models. The most important are:

(i) Model T does not retain the property of the monthly means in the variable minimum
humidity for Hoopstad. It also does not preserve the monthly means on wet days for the
variables maximum humidity and minimmum humidity for most stations, in particular

those that have relatively few rainfall observations.

(ii) Model 1 does not retain the property of monthly standard deviations in the variable
minimum humidity for Kakamas. It also does not preserve the monthly standard de-
viations on wet days for the variables maximum humidity and minimum humidity for

some stations.

(iii) Model T shows a weakness in maintaining the cross-correlation coefficients of maximum
humidity and minimum humidity and the other variables in particular for the stations

Kakamas, Middelburg and Hoopstad.

A choice of model at this point is not straightforward as the performance of the models
is neither perfect nor totally without merit, but each model shows strengths and weaknesses.

A criterion to base our preference on any particular model can be based on factors such as:

(a) Implementation costs, that is derivation of theory for parameter estimation, complexity

of model in terms of number of parameters needed and the computational simplicity

aspect of the model.
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(b) Preservation of climate variable properties by the model.

Model T is the more complex of the models in terms of computational difficulty. The
model parameters are estimated iteratively and therefore more time consuming. It is also
the most flexible of the models in that each variable is allowed to be modelled by a model

that “best” describes it. In Model 1 all climate variables have the same structure.

Generally Model 1 appears to perform as well and sometimes better than Model T
in describing some aspects of the climate variables. However, Model T ca,nnc;t be simply
dismissed as it does perform better than Model 1 in some aspects and one must bear in
mind that in Model T the climate sequences are separated into four, while Model 1 only
separates them into two. Thus fewer observations are available for the estimation of some of
the parameters of Model T. An increase in the length of the historical record may therefore

result in an improved performance by Model T.
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CHAPTER 7
SUMMARY AND RECOMMENDATIONS

This chapter gives a brief summary of the study performed followed by the main research

findings and finally by recommendations.

Summary

Five stochastic models to describe daily climate sequences of South Africa were consid-
ered. The climate variables included in these models are rainfall, maximum and minimum
temperature, maximum and minimum humidity, evaporation {when records available), sun-
shine duration and wind run. Except for rainfall, which is an essential component of ail
the models, this list of variables may be either reduced or augmented. Thus the mod-

elling procedure which has been developed is not restricted to this particular set of climate

variables.

The models are required to preserve important properties exhibited by the daily climate
sequences. These properties are seasonality, wet/dry day effect, autocorrelation, cross—
correlation and boundedness. Suitable transformations need to be applied to the climate

variables at the start of the modelling procedure to take care of the property of boundedness.

The technique employed was firstly to model rainfall using a first~order Markov chain
with seasonal parameters to describe the occurrence of wet and dry days, while the Weibul
distribution was used to describe the rainfall depth of wet days. The rainfall mean was
allowed to vary seasonally. This model provides synthetic sequences of wet and dry days.
Finally, the remaining climate variables were modelled according to the wet or dry status

of each day.

The first model considered was proposed by Richardson (1981), where a stationary
residual series is obtained by subtracting the seasonal mean and dividing by the standard
deviation of each climate variable, each of the functions conditioned on the wet and dry
status of the day. A weakly stationary process suggested by Matalas (1967) is used to
model the residual series. It is assumed that the residual series is normally distributed and
that the serial correlation of each variable can be described by a firsti—order autoregressive

process.
Three models, referred to as Model 3, 4 and 5 (Model 2 was developed as a prototype
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to the others) were developed to incorporate additional flexibility in the autocorrelation
structure of Model 1. That is, the autocorrelation structure is allowed to depend on the wet

and dry status of the day as well as that of the previous day.

The three new models which were developed form a compatible family of models of
varying degrees of complexity. This feature leads to a number of advantages. It allows one
to select relatively simple models for sites where historical records are short (as is presently
the case at practically all sites in South Africa) and to change the selection to a more complex
model when the records become sufficiently long. In addition it is possible to assemble the
final multivariate model for a site from components from any of the three model types.
Thus, for example, it is possible to apply Model 3 to wind run, Model 4 to minimum and

maximum temperature and Model 5 to the remaining variables.

The problem of deciding which model or model combination is most appropriate for a
particular site can be determined objectively. The Akaike Information Criterion was found
to be suitable for this purpose and has been incorporated in the software package which was

developed for this project.

Apart from the mathematical development of the new models, one of the most difficult
obstacles that had to be overcome in the course of the project was that of controlling the
range of extreme values generated by the models. In part this problem arises because some
of the climate variables must fall within fixed boundaries and, in addition, some of these
variables (for example maximum humidity) exhibit a high frequency of occurrence on or near
their boundaries. Suitable transformations had to be found to ensure that the generated
value would remain within their aﬁpropriate bounds. The results of our validation tests

indicate that this type of difficulty can be successfully overcome.

A second problem that had to be solved related to the presence of gaps in the historical
records. As well as the gaps that were present in the original record one has to add the gaps
which are created by filtering out observations that are clearly incorrect (for example, that
fall outside their permissible range). The number of missing values in the historical records
used in this report ranged between 1% and 13% of the data. The serial correlation and
cross—correlation structure of climate variables does not allow one to simply ignore missing
values. Special methods had to be developed to deal with this problem. We found that
a procedure based on the EM algorithm can be used to satisfactorily estimate the missing

values thereby filling the gaps in the historical records.
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The results of model validation for the rainfall model confirm the findings of Zucchini
and Adamson (1984), namely that the assumptions regarding the characteristics of daily
rainfall sequences, the rationale of model structure and the parameter estimation techniques
are particularly successful in providing a model that can adequately reproduce the properties

of daily rainfall sequences.

The requirement for an accurate simulation of the occurrence of wet and dry days is
very important in the present study as these simulated sequences are used to determine
the generation procedure to be adopted by the other climate variables. This component of
the rainfall model was found to be very successful in preserving the characteristics of the

occurrence of wet and dry days.

As already mentioned, the multivariate models for climate data were required to meet
certain specifications. Namely, they had to preserve properties such as seasonality, wet/dry
day effect, autocorrelation, cross—correlation as well as annual, monthly and daily properties,
in particular the mean and the standard deviation functions. Tests of the multivariate
models for climate data showed that the models were capable of representing almost all the

characteristics exhibited by the historical data.

Whenever the models showed differences between the simulated and historical se-
quences, it was noted that it usually was for the variables wind run, maximum humidity
and minimum humidity and mainly for the case where these sequences were conditioned on
wet days. Further investigation revealed that the stations where these differences occurred

were those for which relatively few rainfall records are observed.

When evaluating the performance of the climate models one must bear in mind the fact
that the length of the historical records determines in a way the performance of the models.
A relatively short historical record leads to three problems. Firstly, one is estimating a
large number of parameters with very few data values thus decreasing the precision of the
estimates. Secondly, because the models separate the sequences into wet and dry sequences,
the effective record length for the conditioned estimates is further reduced, in particular
for the wet sequence as rainfall events in some parts of South Africa are relatively rare.
Thus long records of climate observations are needed to compensate for the lack of rainfall
events. Thirdly, the fact that the record lengths of the stations in this study are quite
small, combined with the fact that there are missing observations in the records means that

the historical data might not wholly be representative of the long term climate for that
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particular location.

The climate variables investigated in this study have a very complex joint distribution.
Each variable exhibits a number of distinctive features and in addition the variables are
interdependent. Any model which is to usefully describe climate sequences must preserve
these properties. This study has shown that it is feasible to model climate on a daily basis
and that there are at least four models which can be used to do so. Either Model 1 or a
combination of Models 3, 4 and 5 can be used. A choice between Model 1 and Model T is
not clear. Both models show some weaknesses and some merits. Model 1 does appear to
perform better than Model T for those stations that have few rainfall observations, such as
Kakamas. It is also less time consuming in parameter estimation as it does not estimate them
iteratively, However, Model T (that is, a combination of Models 3, 4 and 5) does outperform
Model 1 in some instances and we would expect that this will become increasingly the case

as the historical records become longer.

The software which was developed in this project covers both the parameter estimation
and the generating of artificial sequences for all the models that have been described in this
report. The programs were coded in FORTRAN and make no use of licensed software. In
addition they can be implemented on micro computers thereby making the methodology

easily accessible to a wide range of users.
Recommendations
Quality of historical records

The main obstacle to the application of the techniques described in this report on a
large scale is the lack of suitable historical records. This refers to both the quantity and
the quality of available data. The records which were used for this report represent some of
the best available in South Africa. Nevertheless, for the purpose of modelling daily climate,
they are barely adequate. Although there is little that can be done to increase the length
of records except to wait for more data to be collected, it should be possible to improve
lthe quality of historical records. In particular it would be useful if some measure of the
reliability of the observations were also recorded on a regular basis. As we have repeatedly
pointed out in the body of the report, one of the problems which we encountered was that
of identifying incorrect observations. This task would be considerably simplified ifone had

some index of reliability associated with (ideally) each recording or set of recordings.
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Transfer of technology

For the methods developed in this project to realise their full potential it will be nec-
essary to calibrate the models at many more sites. As was pointed out in the report, no
special training is required to use the programs for generating climate sequences once the
parameters of the model have been estimated. However, some training is required to use the
program to prepare the data for estimation and to carry out the estimation for a new site.
We estimate that, with instruction, it would require two to three weeks for a competent

programmer to learn how to use the methodology.

We recommend that the Computing Centre for Water Research {CCWR) be approached
to acquire the expertise to implement the estimation techniques and with the help of users,
gradually build up a data base of estimates of the model parameters for as many sites as
possible in South Africa. The CCWR already offer a similar data product, namely the
parameter estimates of a daily rainfall model for 2550 sites in South Africa. These arose
from a previous Water Research Commission pi‘oject (Zucchini and Adamson (1984)). The
CCWR also offer the artificial rainfall generating program which can be applied to any of
these sites. Thus the programs developed in the course of this project constitute a logical

extension of a service that the CCWR already offer.
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APPENDIX A

The choice of the Fourier approximation, L

The order of approximation of the Fourier representation of a function, A(t) , is always
taken to be an odd integer. This restriction is made partly for programming convenience

and partly for the following reason:

If we rewrite the Fourier representation of A(¢,L) by its polar form, we get

» .
oo + Za,—cos (Izvi;"((t -1)- ﬂ;)) , Lodd

A, L) = o (t-1)
2mi 2rp(t -1
Go +;a, cos (“ﬁ((t -1)- ﬂ=)> + ay, cos —nNT L even
where
Go =71

i .
o= (¥4 +45)®,  i=1,2,..,p

NT : .
B: = — arctan (7———2”_1) , 1=1,2,...,p
1 T2i

and p is the integer part of % . The «; is called the amplitude and g; is called the

phase of the ith harmenic.

If L is even, then the highest harmonic does not have a phase parameter. Thus the
quality of the fit of the model depends on the time origin selected. If L is odd we obtain

the same degree of approximation for all time origins.
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APPENDIX B

Properties of the Fourier series approximation

We have used the Fourier representation of A(t) as the basis for obtaining approxima-
tions. Other representations are also feasible, e.g. polynomials or rational functions. There
are several reasons for selecting the Fourier representation rather than other possibilities.
Firstly, A(t) is known to be approximately sinusoidal in shape and consequently we can
expect that even for small values of L, the approximation A(t,L) = A(t) will be reason-
ably accurate. Secondly, A(¢,L) is periodic, which is a property that A(¢) is known to
have. Thirdly, the individual components in the representation are orthogonal, which is a

convenient mathematical property.



APPENDIX C
The Cholesky decompaosition

For A an (n X n) symmetric, positive definite matrix, there exists a unique lower

triangular matrix F with positive diagonal elements such that
A=FFT

This is known as the Cholesky decomposition. An algorithm to reduce a matrix A to its

Cholesky decomposition is given below.
Notation
fi; is the ¢jth element of the matrix F .
a;; is the igjth element of the matrix A .
Algorithm
Step 1. Set fi1 =+/a11
Step 2: For 7 =2,3,...,n
Set fj1 = %ﬁ-

Next 7.

Step 3: For t =2,3,...,n—1

Set fi; =

i-1
w3013
J=1
For j=14+1,i42,...,n.
i1
aij— Y fiekin
k=1
fii

Set fj,' =
Nezt 7.
Nezxt 1.

Step 4:

n—1
Set fun = .| Gnn — Z f,fj.
—
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APPENDIX D

A listing of the FORTRAN programs referred to in Chapter 5 are obtainable from the CCWR.
The address is:

Computing Centre for Water Research
c/o University of Natal

P O Box 375

Pietermaaritzburg

3200

Tel. (0331) 63320 ext. 177/178

Fax (0331) 61896



Step 5: End.

The elements of F above the main diagonal are defined to be zero. The above al-

gorithm does not set them to zero, so if necessary the following step should be inserted

.

immediately preceding “Next j ” in Step 3:

Set f;; =0.



APPENDIX E

The EM algorithm

In any data record collected over a long period of time, one would expect to encounter

gaps, where the number of gaps usually increases proportionally with the size of the data

set.

Factors which contribute to the occurrence of these gaps may be, for example, loss of
records, temporary absence of observers, breakdown of measuring devices or simply incorrect
recordings noted. Whatever the reason for their occurrence, gaps in climate variables are

problematic for the following reasons:

Firstly, the cross—correlation structure present in the multivariate time series will be
destroyed if there are missing values present. Secondly, the autocorrelation structure breaks
down when gaps occur and finally, the seasonal structure disappears if the data is not

complete.

An effective way of dealing with incomplete data sets is to “fill” these gaps with data.
A recent method known as the EM algorithm has been shown to work very satisfactorily
when estimating missing values in rainfall data (Makhuvha, 1988). In fact, out of the
several methods investigated, the EM algorithm was chosen as the most efficient method for
estimation of missing rainfall records, and it performs at least as well as the other methods

in terms of accuracy.

The theory and definition of the EM algorithm given here has been extracted from
Makhuvha 1988. The same terminology has been adhered to, with only slight changes to

suit it to the present problem.

Literature focuses attention on estimating model parameters in the presence of miss-
ing observations. However, we are interested in the missing values themselves. Thus the
convergence criteria is based on the estimated missing values rather than on the successive

parameter estimates.
General description of the EM algorithm

The EM algorithm is a method which iteratively computes maximum likelihood esti-
mates when some observations are missing. Let Z be a complete data set matrix of n

observations on k climate variables, where k> 2 and n > k + 2. We assume that the
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data is generated by a model described by a density function f(Z|¢) indexed by unknown
parameter ¢ . Given the model and parameter vector ¢, f(Z|¢) is a function of Z , that

is, of the observations.

Definition: The likelihood function L{¢$|Z) is any function of ¢ which is proportional
to f(Z|¢) when given the data value Z .

We denote the log-likelihood function by
(¢, Z) = tnL($, Z).

Let Z = (Zops, Imis) where Z,p, denotes the observed values of Z and Zn;, de-

notes the missing values of Z . Write

Dobs = (Zobs,l; Zobs,2; ‘- ;Zobs,n)

where Z,y,; represents the set of climate variables having observationat 1,:=1,2,...,n.

Let f(Z|¢) = f{Zobs, Zmis|$) denote the density function of the joint distribution of
Zobs and Znmis . To obtain the marginal probability density of Z,u, , the missing data
Zmis 18 integrated out. That is,

f(zobslqb) = f f(zobmzmislqb)dzmis- . (1)

The likelihood function of ¢ based on Z,,, is defined to be any function of ¢ pro-
portional to f(Zyps|¢) :

L(ﬁt’,zobs) & f(Zobs|¢)-

In situations where values are missing at random, L(¢, Zobs) Is called the true likeli-
hood of ¢ based on the observed data Z,,s . By making use of the complete data specifi-
cation f(Z|¢) , the EM algorithm is used to estimate the parameter. ¢ which maximizes

f(Zobsl¢) - In other words, we try to maximize the likelihood function

L(‘ﬁ’; Zobs) = f f(zobs, Zmis[¢)dzmis (2)
with respect of ¢ .
Definition of the EM algorithm

The EM =algorithm has a useful and simple interpretation when the complete data Z

has a distribution from the regular exponential family defined by
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b(Z) exp(¢t(2)T)

f(Z|¢) = a(qb) (3)

where
¢ denotes a {1 x R) vector of parameters,
t(Z) denotes a (1 X R) vector of complete data sufficient statistics, and
a and b are functios of ¢ and Z respectively.

The parameterization of ¢ in (3) is unique up to an arbitrary non-singular (R x R}

linear transformation, as is the corresponding choice of t(Z) .

We restrict our attention to only one class of the exponential type of distribution,
namely, the Multivariate Normal distribution. We say that a distribution is Multivariate

Normal if its density function is given by:

1218, 2) = 2n) 2|5l expl-3 (2 — wT27H(E - w) 4

where
ZT = (2, Zy ... Z),

p=(p1 B2 .- B,

0'% e O1k
= (5)
0';,3'
(73 7% SN 0‘2

where o;; is the covariance of the ith and jth component of Z .

Suppose we are dealing with more than one set of observations, that is, we have a

matrix of n sets of observations such that

Z]_]_ Z12 ree Zlk
Z. Z e Z

g=|"1 T TR ()
an an R Zﬂ.k

The likelihood of the observations (8) is

L1, 2|2) = (2r) F*[2| Fexp [—% 3 (% - w2z - u)] (7)



Using (7) we can find the sufficient statistics for the parameters,

e y=nk i oy=a 1 - 1 —25?
L(p,2|2) = (27) 2|2 T exp [—En tr(ufus 1)] exp l:--z—Ztr(Z.;Z,-Z?]< 2_1)]

=1

=nk

= (27) 5" | T exp [—-;—n tr(pT,uz-l)]'

n k k
1
exp —52 E E [Zig'ﬂia'g'£+zig'ziiag'ﬂ]
i= 7=11£=1

1
=nk n

1
= (o) 3| oxp |~ r(uTum )

1 n H1d1 1 n
exp "EZ(ln ® Z;)T : 3 (Z:; ® Z:)T o,
i=1 l—"kgk 1'=1l
Therefore
' Y1 1n®Z;
t(z) = | &=t ;
() (E?=1 Zi®Z )
[ p1g1 ]
| eeex
#= -301 (©)
|~ 295 ]
where

¢ is a vector of parameters, and
t(Z) is the sufficient statistics for ¢ since it does not depend on any parameter.

Since the statistics ¢(Z) is sufficient for the parameter ¢ , it therefore has all the

relevant information contained in Z for inference about the parameter.
The E step and the M step of EM.

Each iteration of the EM algorithm involves two steps which are called the expectation

step (E step) and the maximization step (M step). The steps given below may be applied if

equation (7) satisfies the conditions of it being a class of the exponential type of distribution.

Suppose that ¢{?) denotes the current value of ¢ after p cycles of the algorithm.

The next cycle involves the following two steps:

E step: At the (p+1) cycle, the E step is the computation of the conditional expectation

of the complete data sufficient statistics given:
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M step:

i) the observed data Zobs = {Zobe,1,- -1 Bobsn) and
ii) the estimated value of the parameter from the pth cycle.

That is, we compute

1) = E[t(Z)] Zovs, 2.  (10)

At the (p+1) cycle, the M step is the maximization of the complete data likelihood
function in which the complete data sufficient statistics ¢(Z) has been replaced
by its conditional expectation obtained in the E step. We set the derivatives of
the complete data likelihood function to zero and determine ¢(P+1) , i.e. as the

solution of the equation

E(t(2)|g) = ¢'7) (11)

which defines the maximum likelihood estimator of ¢ under the assumption that

(7) is a class of the exponential family.

We now show how the E and M steps of the EM algorithm are obtained under the

assumption that the distribution is multivariate normal.

If, at the pth iteration, ¢#{P) denotes the current estimates of the parameters, then the

E step of the algorithm consists of calculating:

where

and

&

n b
. (Z ZiJ'lZobs,‘ﬁ(p)) N Z Zs'(f}’ F=12...
i=1

i=1

E (Z Zijzitlzobs;‘f’(p)) = E Zj(‘jp)sz) + CJ(Z): Ja‘e = 1: L 3k,
i=1

=1

z{ =z, if Z.; is observed

= E(Z;j|Zobs i, 7)) if Z;; is missing

Cj(.f‘? =0 if Z;; or Z;s are observed
= COV(Z,'_,', Z,'leobs,,',tﬁ(p)) if Z;; or Z;e are missing

Missing values Z;; are therefore replaced by the conditional mean of Z;; given the

set of values Zgp,; observed for that observation.
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Similarly, the maximization step (M step) is found from equation {8). The new esti-

mates ¢(PtL) of the parameters are estimated as follows:

1< .
#§p+1)=;Z zlp) i=1,2,... .k
=1

13

(p+1)
e

2=

E (Z Zijzillzobs) - #5-"“)#5”“)

i=1
1 - L ) -
= ;Z [(z_;(;J _ #§p+ Nz — pety + cJ(.‘;)] . 45,0=1,2,... k.
i=1

Estimation of missing values using the EM

The method described here estimates the missing data point, say ., , by using all the
records, i.e. estimated and real records. In this method all the observations are utilized

after the initial estimation stage,
Algorithm

Suppose we are considering a climate variables matrix Z of dimension n X (k+1).
Partition the Z matrix into a vector of observations in the target variable, y , of dimension
(n x 1) and a matrix of observations in the control variables, X , of dimension (n x k) .
Note that any variable in the Z matrix can be regarded as the target variable, depending

on which variable’s missing values we are currently estimating.
Suppose we wish to estimate the missing value y; :

Cycle 0

Step 1

Construct the vector y* from y and the matrix X* from the (nxk) matrix X , by
eliminating from both all the rows which contain one or more missing observations in either.
For example, because y, is one of the missing observations then the f£th row in both y
and X is eliminated. Suppose that y* ends up with n* entries, then X” isan (n* xk)
matrix. The vector y* and matrix X* should now contain no missing observations. Check
that there is sufficient data to regress y*. on X* . If there is not then some of the control

variables will have to be removed and one must begin again.
Step 2

Calculate the least squares estimates of the regression parameters using the target

variable vector y* and the matrix of control variables X* . That is find:
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E(O) — (X-uTX*)-—IX*Ty*

and
B =7 - X"§©
where
. 1 n* .
¥y = n* Z Y
1=1
and

. 1 n% . '
X =—inj 7=12,...,k
i=1
and where the superscript {0) represents-the initial estimation cycle.
Estimate the missing record y; using the regression model:

k
u? =857+ =By

=1
where z4;, (§ = 1,2,...,k) are the observed values from the control variables matrix
5 ‘

Step 3

After all the missing values in matrix Z have been estimated, create a new “data”

matrix, say Z(©) containing estimates obtained in place of missing vallues.
Cycle b
Step 1

Suppose that the new data matrix created in the previous cycle is Z(*~1) | then parti-

tion Z(-1) into a matrix of control variables X(*~1) and a vector of the target variable
y(b'_'l) .

Step 2

Calculate the least squares estimates by using the new target variable vector y{®—1)
and the matrix of control variables X(~1) | where superscript (b — 1) represents the

previous cycle. That is find:
E(b) — (X(b—-l)Tx(b—1))—lx(b—1)Ty(b—1)

and



- —1) _ F-1)%
3((3 FO-1) _ 1 50)
where

1
Zb-1) _ 1 {6—1)
g = Z v,

and

ey 1
XtV _ 2 Z 27V, j=12,.,k

=

Re-estimate the missing record yq :

B _ A 1=150)
w” = Bg) + Z : :

b—1

Convy
5
o
where b represents the current iteration; b — 1 represents the previous cycle.
Step 3
If all the missing values in the current variable have been estimated, then check for

convergence by using the following criterion:

n—n*

Crit —Z E CONV gy
=1 i=

where n; is the number of observed values in the current variable.

Step 4

If Crit € F,F a small number close to zero, then y, is considered the required

estimate of the missing value and the re—estimation if discontinued, otherwise repeat Steps

1, 2 and 3.
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APPENDIX D

PROGRAMS

In this appendix, we give a listing of the FORTRAN programs which were
developed to implement the methodology discussed in this report. The
programs listed here are set for 7 climate variables, excludirg rainfall,
and for 12 years of historical records.

PROGRAM 1

C = e e, ——————

C «««r-+» PROGRAM TO COMPUTE VECTORS REQUIRED FOR PARAMETER

C ESTIMATION OF RAINFALL MODEL.

C e A e o B i o . e S o o o e o s o o o o i T . o o e e

C NWW(T) = THE NUMBER DF TIMES IT WAS WET IN PERIOD T—-1 AND

Ch WET IN PERIOD T.

C NDW(T) = THE NUMBER DOF TIMES IT WAS DRY IN PERIOD T-1 AND

c WET IN PERIOD T.

c R(I,T) = THE Ith NON-ZERO RAINFALL DEPTH IN PERIOD T,

c I = 1, 2, cuennenns y NR(T)3 T =1, 2, .veveeaa, NT.
Cc NR{(T) = THE NUMBER OF TIMES IT WAS WET {(NON-ZERO RAIN) IN

Cc PERIOD T. '

C NW{(T) = THE NUMBER OF TIMES IT WAS WET IN PERIOD T-1 AND THERE
C WAS aN OBSERVATION IN PERIOD T (i.e. THERE WAS NOT A
c GAF ON PERIOCD T».

C ND(T) = THE NUMBER OF TIMES IT WAS DRY (ZERO RAIN) IN PERIOD
cC T-1 AND THERE WAS AN OBSERVATION IN PERIOD T.

cC FOR EACH T = 1,2,...,NT (WHERE NT = THE NUMBER OF PERIODS IN
Cc THE YEAR):

C THE ABOVE ARRAYS ARE REQUIRED BY THE ESTIMATION ALGORITHMS

C AS FOLLOWS: -

C 1) NW( 3 AND NWW( } ARE REQUIRED TO ESTIMATE THE

C PARAMETER FOR THE PROBABILITY THAT A WET PERIOD

C FOLLOWS A WET PERIOD.

C ii) ND( ) AND NDW( ) ARE REGUIRED TO ESTIMATE THE

cC PARAMETERS FOR THE PROBABILITY THAT A WET PERIOCD
Cc FOLLOWS A DRY PERIOQD.

C iii}) NR( } AND R( , )} ARE REQUIRED 7O FIT THE PQRQMETERS
C OF THE MEAN RAINFALL RAIN IN A WET PERIOD AND THE
c _ COEFFICIENT OF VARIATION. '

C THE DUTAUT OF THIS PROGRAM IS GIVEN IN TWO PARTS. NAMELY, THE
C FIRST PART:

cC T (T=1,2,....,40NT}, N, NWW, ND, NDW, N, NR

c THE SECOND PART:

C R(I,T) {I=1,2,....,NR(T); T=1,2,....,NT).



00

o000 O00n

MAIN PROGRAM

...... NT = THE NUMBER OF PERIODS IN THE YEAR {(e.g. 363 FOR
DAILY DATA)
...... NY = THE NUMBER OF YEARS OF DATA (INCLUDING THE MISSING

VALUES)

...... NRT = THE MAXIMUM VALUE GBIVEN FOR THF DIMENSION OF THE

ARRAY RI(I,T)

...... RAIN = THE ARRAY THAT CONTAINS THE DATA
IND = AN INDICATOR OF THE STATUS OF THE

PREVIOUS PERIOD

-1 => PREVIOUS OBSERVATION MISSING

0 => PREVIOUS PERIOD WAS DRY
1 => PREVIOUS PERIOD WAS WET

INTEGER NT,NY,NRT,IND,T
PARAMETER (NT=365)
PARAMETER (NY=12)
PARAMETER (NRT=50)
INTEGER N(NT)
INTEGER NR (NT)
INTEGER NW(NT)
INTEGER NWW ( NT)
INTEGER ND(NT)
INTEGER NDW (NT)
REAL R(NRT,NT)

15 FORMAT (7 (14))

25 FORMAT (8 (F9.2))

OPEN(UNIT=12,FILE="\WATER\DATANCLIMA.DAT"  ,STATUS="0LD")
OPEN(UNIT=10,FILE="\WATER\DATA\NCOUNTS.DAT ' ,STATUS="UNKNOWN " )
OPEN(UNIT=20,FILE="\WATER\DATA\RAIN.DAT  ,STATUS="UNKNOWN" )

N(I) = 0
NR(I) = O
NW(I) = O
NWW(I) = O
ND(I) = O
NDW(I) = ©
DO 20, J = 1, NRT
R(J,I) = 0O
20 CONT INUE
10 CONT INUE
IND = -1
DO 30, J = 1, NY
DO 40, I = 1, NT

READ (12,%) RAIN
IF (RAIN .EQ. ©O) THEN
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40
30

S0

60

70

N(I) = N(I) + 1

IF (IND .EQ. O) THEN
ND(XI) = ND(I) + 1

ELSEIF (IND .EQ. 1) THEN
NW(I) = NW(I) + 1
IND = ©

ELSEIF (IND .EQ. -1) THEN
IND = ©

ENDIF

ELSEIF (RAIN .GT. 0)

NR(I) =

NR(I) + 1

R(NR(I),I) = RAIN

IF (IND .EQ. O) THEN

THEN

NDW(I) = NDW(I) + 1
IND = 1
ELSEIF (IND .EQ. 1) THEN
NWW(I) = NWW(I) + 1
ELSEIF (IND .EQ. -1) THEN
IND = 1
ENDIF
ELSEIF (RAIN .LT. 0) THEN
IND = -1
ENDIF
CONT INUE
CONT INUE
DO SO0, I = 1, NT
N(I) = N{(I) + NR(I)
ND(I) = ND(I) + NDW(I)
NW(I) = NW(I) + NWwW(I)
CONTINUE

...... THE VECTORS COMPUTED ARE WRITTEN OUT

DO 60, I
WRITE
CONT INUE
DO 70, T
WRITE
CONT INUE

STOP
END

= 1, NT
(10,19)

= 1, NT
(20,25)

I, NW(I),

(R(I,T},

D-3
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NWW(I), ND(I),
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NR(T))
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NR(I)



PROGRAM 2

...... PROGRAM T0O COMPUTE PARAMETER ESTIMATES FOR RAINFALL
MODEL - PROBABILITIES OF WET & DRY SEQUENCES

O000n

...... THIS PROGRAM USES THE GENERIU NOTATION MM(T) & M(T)
TO REPRESENT THE RELEVANT ARRAYS AS FOLLOWS:
1) WHEN WE ARE ESTIMATING THE PROBABILITY THAT A
WET PERIOD FOLLOWS A WET PERIOD, THEN
MM(T) = NW(T)
M{T) = NWW(T)
1i) WHEN WE ARE ESTIMATING THE PROBABILITY THAT A
WET PERIOD FOLLOWS & DRY PERIOQD, THEN
MM(T) = ND(T}
M{T) = NDW(T}
1i1) WHEN WE ARE ESTIMATING THE PROBABILITY THAT PERIOD
T IS WET, THEN
MM(T) = N{(T)
M{T)} = NR(T)

NP = NUMBER OF PARAMETERS TO BE FITTED
THETA(NP} = VECTOR OF PARAMETERS ESTIMATED
AM{0O:K) = CORRESPONDING AMPLITUDES, K = (NP-1)/2

PH(K) = CORRESPONDING PHASES

P(NT) = CURRENT ESTIMATES 0OF PROBABILITIES
L(NT) = CURRENT ESTIMATES OF LOGITS

DER(NT) = VECTOR OF 1ST PARTIAL DERIVATIVES
DERZ2 (NT,NT) = MATRIX OF 2ND PARTIAL DERIVATIVES
PHI{NP,NT) = MATRIX OF FOURIER TERMS

DonNDoonQooOonDOoonO0nDnNO0nNOp0n0n

DELTA = CONVERGENCE CRITERION

INTEGER NP,K,NT,ITER,T,MAXITER, NPMAX , KMAX
PARAME TER (NPMAX=13)
PARAMETER (KMAX=({NPMAX~1)/2)
PARAMETER (NT=365)

REAL MM(NT)

REAL M(NT)

REAL PI, LOGIT
PARAMETER (PI=3.141593)

REAL AM (0 : KMAX)

REAL PH(KMAX )

REAL P(NT)

REAL L(NT)

REAL DER (NPMAX )

REAL DER2 (NPMAX , NPMAX )
REAL THETA (NPMAX )

REAL PHI (NT,NPMAX)
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noon

w»a o

15
25
35
45
55
&5
75
85

10

FORMAT (4X,2F4.0) -—--—-—- PROB (W/W)
FORMAT (12X,FF4.0) ————- PROB (W/D)
FORMAT (20X,2F4.0) -—---— PROB (W)

FORMAT (4X,2F4.0)
FORMAT (12X,2F4.0)
FORMAT (20X,2F4.0)

FORMAT (' EPS, MAXITER = )

FORMAT (° ...... DID NOT CONVERGE')
FORMAT (/, ' +ueves’, 13, ' ITERATION',/)
FORMAT (/, ' AMPLITUDE: *)

FORMAT (/, ° PHASBE: )

FORMAT (9F8.3)

FORMAT (° OPTIMAL PARAMETERS TO BE FITTED:
FORMAT (° INITIAL ESTIMATES: °, F10.4)

OPEN (UNIT=4,FILE="CON")
OPEN (UNIT=2,FILE="LPT1")

Ty I4)

OPEN (UNIT=10,FILE='\WATER\DATANCOUNTS.DAT"  ,STATUS="0LD"}

...... INPUT DATA

PRINT 15
READ (4,%) EPS, MAXITER

DO 10, T = 1, NT
READ (10,5) MM(T), M(T)
CONTINUE '

CALL TRIG (PHI,NPMAX,NT)

...... DIFFERENT AMDUNT OF PARAMETERS FITTED AT A TIME.
PROGRAM STOPS ONCE DOPTIMAL NO., OF PARAMETERS ARE FITTED

CRITOD = 10 x*x 10
DO 300, NP = t, NPMAX, 2
WRITE (9,%) °'NC. OF PARAMETERS FITTED =

"y NP

...... COMPUTE INITIAL ESTIMATES OF THE PROBABILITIES

AND LOGITS

DD 20, T = 1, NT
IF (MM(T) .GT. O) THEN
P(T} = M{T) / MM(T)
ELSE
P(T) = -1
GOTO 20
ENDIF
IF (M(T) .EQ@. 0) THEN
L(T) = -5
ELSEIF (M(T) .EQ. MM(T)) THEN
L(T) = 5

ELSEIF {(M{T) .GT. 0.00001).AND. (M(T)
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L(T) = LOG (P(T) / (1-P(T)))
ENDIF
20 CONTINUE

PO 30, I = 1, NP
TO = 0O
TL = 0
DO 40, T = 1, NT
IF (MM(T) .GT. 0.00001) THEN
TO = TO + L(T) % PHI (T,I)
T1 = T1 + PHI (T,I) %% 2

ENDIF
40 CONT INUE
THETA (I) = TO 7/ T1
WRITE (9,85) THETA (1)
30 CONT INUE

...... ITERATIVE ESTIMATION OF PARAMETERS

IC = 0
DO 200, ITER = 1, MAXITER
WRITE (9,35) ITER

... COMPUTE 1ST AND 2ND DERIVATIVES

DO 50, I = 1, NP
DER (I) = O
DO 60, J = 1, NP
DER2(I,J) = O
60 CONTINUE
50 CONT INUE
DELTA = O
DO 70, T
LOGIT
DO 80, I
LOGIT
80 CONT INUE
TO = EXP (LOGIT)
PROB = TO / (1+TO)
TL = M(T) - MM(T) % PROB
T2 = MM(T) % PROB / (1+T70)
DELTA = DELTA + ABS (P(T) - PROB)
P(T) = PROB
DO 90, I = 1, NP
DER(1) = DER(I) + T1 % PHI(T,I)
DG 100, J = 1, I
DER2(I,J) = DER2(I,J)-T2XPHI(T,I}XPHI(T,J)
100 CONT INUE
90 CONT INUE
70 CONT INUE
DO 110, I = 1, NP
DO 120, J = I+1i, NP
DER2(1,J) = DER2(J,I)
120 CONT INUE

NT
ETA(L)
2, NP
LOGIT + THETA(I) % PHI(T,I)

[/

1
T

Wi XLe
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110 CONTINUE
CALL LINEAR (NPMAX,NP,DER,DERZ2,THETA)
ses... TESTING FOR CONVERGENCE

IF (DELTA .GT. EPS) THEN

IC = 0
ELSE
IC =1
ENDIF
IF (IC) 200, 200, 400
200 CONT INUE

WRITE (9,23)

...... TRANSFORMING PARAMETERS TO THEIR AMPLITUDE AND PHASE
REPRESENTATION

400 K = (NP-1) / 2
CALL AMPHA (AM,PH,THETA,NPMAX,KMAX,K,PI,NT)

...... MODEL. SELECTION

LLK = O
DO 210, T = 1, NT
IF (MM{T) .BT. 0.000001) THEN
LLE = LLK+M(T)*LOG(P(T) )+ (MM(T)-M(T))XLOG{1-P(T))
ENDIF
210 CONT INUE
CRIT = -LLK + NP
IF (CRIT .LT. CRITO) THEN
LO = NP
CRITO = CRIT
ELSE
WRITE (9,73} LO
STOP
ENDIF
300 CONTINUE

STOP
END



PROGRAM 3

C _____________________________________________________
C Ceeees PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR THE
c DISTRIBUTION OF RAINFALL DEPTHS.
C ______________________________________________________
C ieenn THE FOLLOWING NOTATION IS USED:
C NP = NUMBER OF PARAMETERS IN THE MEAN FUNCTION
C R(,) = MATRIX OF RAINFALL DEPTHS OBSERVED
C DER() = VECTOR OF 1ST PARTIAL DERIVATIVES
C DER2() = MATRIX OF 2ND PARTIAL DERIVATIVES
c Q() = VECTOR OF AVERAGE OBSERVED RAINFALL IN EACH PERIOD
C THETA() = VECTOR OF PARAMETER ESTIMATES
C AM() = CORRESPONDING AMPLITUDES
C PH() = CORRESPONDING PHASES
C F() = CURRENT ESTIMATE OF THE MEAN
C SO() = OBSERVED DAILY STANDARD DEVIATIONS
c SF() = FITTED DAILY STANDARD DEVIATIONS
C DELTA = CONVERGENCE CRITERION
INTEGER NP,NT, T, ITER,K,MAXITER
PARAMETER (NP=3)
PARAMETER (NT=365)
PARAMETER (K=(NP=1)/2)
INTEGER NR(NT)
REAL R(50,NT)
REAL P1,DENOM,NUM
PARAMETER (PI=3.141593)
REAL COEFF ,DELTA
REAL DER (NP ) , SOLN(NP)
REAL DER2 (NP, NP)
REAL PHI (NT,NP)
REAL Q(NT},F(NT),SO(NT),SF (NT)
REAL THETA(NP)
REAL AM(0:K)
REAL PH(K)
5 FORMAT (6(4X), 14)
15 FORMAT (14(15))
25 FORMAT (' EPS, MAXITER = °)
35 FORMAT (° .uvu.. DID NOT CONVERGE')
45 FORMAT (/, ' +.....’, I3, * ITERATION',/)
S5 FORMAT (/, ° AMPLITUDE: ')
6s FORMAT (/, ° PHASE: °)
75 FORMAT (9F8.3)
85 FORMAT (' OPTIMAL PARAMETERS TO BE FITTED: °, 14)
95 FORMAT (° INITIAL ESTIMATES: ‘', F10.4)
105 FORMAT (' COEFFICIENT OF VARIATION: ', F10.4)

OPEN (UN1T=4,FILE="CON’)
OPEN (UNIT=9,FILE="LPT1")
OPEN (UNIT=10,FILE="\WATER\DATA\RAIN.DAT ' ,STATUS="0LD")
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10

20

40

30

&0

S0

80
70

OPEN (UNIT=20,FILE="\WATER\DATANCOUNTS.DAT  ,STATUS="0LD")

... INPUT DATA

PRINT 25

READ (4,%) EPS, MAXITER

DO 10, T = 1, NT
READ (20,5) NR(T)
CONT INUE
DO 20, T = 1, NT
READ (10,%) (R(I,T), 1 = 1, NR(T))
CONT INUE '

CALL TRIG (PHI,NP,NT)
...... COMPUTE INITIAL ESTIMATES

DO 30, T = 1, NT
IF (NR(T) .GT. 0) THEN
TERMO = ©

DO 40, I

TERMO

CONTINUE
Q(T) = TERMO / NR(T)
ENDIF
CONT INUE
Do so, 1
TERMO
TERM1

DD 60, T = 1, NT

IF (NR(T) .NE. O) THEN

1, NR(T)
TERMO + R(I,T)

o

NP

Honh

1,
o
0

TERMO = TERMO + Q(T) % PHI(T,I)
TERML = TERM1 + PHI(T,I} *x 2
ENDIF
CONTINUE
THETA (I) = TERMO / TERM1
WRITE (9,95} THETA (1)
CONTINUE

...... ITERATIVE PARAMETER ESTIMATION

IC =0
DO 100, ITER = 1, MAXITER
WRITE (9,45) ITER

ee--+. COMPUTE 1ST & 2ND PARTIAL DERIVATIVES

DO 70, 1 =1
DER(I) =
bo 8o, J
DER2Z2(I,J
CONTINUE
CONTINULE

1, 1
}



DO 96, T = 1, NT
TERMO = THETA(1)
DO 180, I = 2, NP ,
TERMO = TERMO + THETA{I) % PHI(T,I)

non

1890 CONT INUE
F{T) = TERMO
4] CONTINUE

DO 110, T = 1, NT
IF (NR(T) .BT. 0) THEN
DO 120, I = 1, NP
DER(I) = DER(I) - NR(T) % (Q(T) - F(T)) % PHI(T,I)
DO 130, J = 1, I
DER2(I,J) = DER2(1,3)+NR(T)¥PHI(T,I)*PHI(T,J)

130 CONTINUE

120 CONTINUE
ENDIF

110 CONTINUE

DO 140, I = i, NP
DO 150, J = I+i, NP
DER2(1,J) = DERZ2(J,I)
150 CONT INUE
140 CONT INUE

CALL LINEAR (NP,NP,DER,DER2,THETA)

...... CONVERGENCE TEST
DELTA = ©
DO 170, I = 1, NP
DELTA = DELTA + ABS (DER(I))
170 CONTINUE
IF (DELTA .GT. EPS) THEN
IC =0
ELSE
IcC =1
ENDIF
IF (IC) 100,100,2
100 CONTINUE
WRITE (9,35)
2 DO 200, T = 1, NT
TERMO = THETA{(1)
DO 220, I = 2, NP
TERMO = TERMO + THETA(I) % PHI(T,I)
220 CONTINUE

...... COMPUTE FITTED VALUES

F(T) = TERMO
200 CONTINUE

...... OUTPUT OBSERVED AND FITTED DAILY MEANS
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300

5290

210

PRINT %, T, Q{(T), F(T)
CONT INUE

w-:+.. COMPUTE THE COEFFICIENT OF VYARIATION

DENOM = ©
NUM = O
DO S10, T = 1, NT
DO %20, I = 1, NR(T)

NUM = NUM + (R(I,T) - F(T)) %% 2
CONTINUE
DENOM = DENOM + NR(T) % (F(T) %x 2)
CONTINUE

COEFF = SGERT (NUM s DENOM)
WRITE (9,1035) COEFF

+e.... COMPUTE THE AMPLITUDE AND PHASE REPRESENTATION
CALL AMPHA (AM,PH,THETA,NP,K,K,PI,NT)
ee.... COMPUTE THE FITTED AND DBSERVED STANDARD DEVIATIONS

STOP
END
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PROGRAM 4

C _____________________________________________
C teenn. PROGRAM TO GENERATE RAINFALL SEQUENCES
C _____________________________________________
INTEGER NT,NY,NP,PSTATE,STATE
C e PSTATE = PRESENT STATE OF DAY
C eeeenn STATE = PREVIOUS STATE OF DAY
PARAMETER (NT=365)
PARAMETER (NY=51)
PARAMETER (NP=3)
C eanenn NT = £ OBSERVATIONS PER YEAR
o NV = £ VARIABLES
C e NY = £ YEARS TO BE GENERATED
C e, NP = £ PARAMETERS IN SEASONAL MODEL
INTEGER SEED
REAL RAIN
REAL GAM {2,NP)
REAL PHI (NP,0:NT)
REAL AMP (O:NP)
REAL PHASE (NP)
COMMON IDUML, IDUMZ
15 FORMAT (F9.2)
25 FORMAT (° GIVE 2 -VE Nos. TO INITIALIZE RANDOM GENERATOR' ,/)

OFPEN (UNIT=9,FILE="LPT1")

OFPEN (UNIT=12,FILE="\WATER\DATANEST.DAT ' ,STATUS="0LD"}

OPEN (UNIT=10,FILE="NWATER\NDATANSIMU.DAT ,STATUS=" UNKNOWN )
OPEN (UNIT=22,FILE="CON")

C vernnen COMPUTE THE FOURIER SERIES TERMS
CALL COSSIN (PHI,NP,NT)
DO 60, I = 1, NP
PHI (I,0) = PHI (I,NT)
60 CONT INUE

P1=3.14159

C ... READING PARAMETER ESTIMATES
READ (12, %) (GAM (1,J), J = 1, NP)
READ (12, %) (BGAM (2,J), 3 = 1, NP)
READ (12, %) (AMP (I), I = 0, 1)
READ (12, %) (PHASE (I), I = 1, 1)

READ (12, %) CV
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PRINT
READ (

IpuMi
I1DuM2

CAaLL C
ALPH
GAMM
BI =1
W = 0.

INPUT SEED TO START RANDOM NUMBER GENERATOR. M™MUST BE

NEGATIVE NUMBER.

25
22, %) SEED (1), SEED(2)

SEED (1)
SEED (2)

COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL

DEPTH

ALBET (BETA,CV)
1 + 1 / BETA
-GAMMA (ALPH)
/BETA
01721421

SET INITIAL STATE 0OF DAY TO BE DRY
SET INITIAL CLIMATE VALUE TO ZERO

STATE = 1 ==> DRY
STATE = 2 ==> WET
=1

I = 1, NY

COMPUTE PROBABILITY THAT A WET DAY FOLLOWS A WET DAY,
THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)
GENERATE A UNIFORM RANDOM NUMBER BETWEEN O AND 1.

UNIFOR = URAN (IDUM)

IF (UNIFOR .LT. PI) THEN
PSTATE 2

ELSE
PSTATE

ENDIF

]

1

GENERATE RAINFALL DEPTH

CALL DEPTHS (IDUMZ,NP,RAIN,J,AMP,PHASE,GAMM,BI,W)

DUTPUT GENERATED SEQUENCES
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40
30

IF (I .NE. 1) THEN
WRITE (10,15) RAIN

ENDIF
UPDATE THE STATE OF THE PREVIOUS DAY

IF (PSTATE .NE. STATE) THEN
STATE = PSTATE
ENDIF

CONTINUE
CONT INUE

STOP
END
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PROGRAM S

c  ————m——m———e—eme e - e ———————
» "vee... PROGRAM TO CONDITION DATA SET ACCORDING TO TH WET &
» DRY STATUS OF THE DAY
C e e i o il e il ke e e e e ke S A P s e o ke L S S S AL S T T — o i ML o . o e o e b ke Al ke i Aok S B ey
INTEGER NY,NT
PARAME TER (NY=12)
PARAME TER (NT=365)
INTEGER SEG(2,NY,NT)
INTEGER COUNT(2,NY)
REAL OBSN
15 FORMAT (14(15))
25 FORMAT (15)

DO 20, J = 1, 2
DO 40, I = 1, NY

COUNT (J, I) = ©O
40 CONTINUE
20 CONTINUE

OPEN (UNIT=B,FILE='\WATER\DATANCLIMA.DAT ,STATUS="0LD")

DO 10, J = 1, NY
DO 50, I = 1, NT
READ (B, %) DOBSN
IF (OBSN .EQ. 0) THEN
COUNT {1, J} = COUNT (1, J) + 1
SEQ@ (1, J, COUNT (1, J)) = I
ELSEIF (OBSN .GT. 0} THEN
COUNT (2, J) = COUNT (2, J) + 1
SEQ (2, J, COUNT (2, J)) =1
ENDIF :
50 CONTINUE
10 CONT INUE

OPEN (UNIT=10Q0,FILE="'\WATER\DATA\SEQ2.DAT’ ,5TATUS="UNKNOWN" }

DO 60, I = 1, NY
DO 30, J = 1, 2
WRITE (10, 25) COUNT (J, I)
WRITE (10, 15) (SE@ (J, I, K), K = 1, COUNT (J, I))
30 CONT INUE
60 CONT INUE

STOP
END
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PROGRAM &

15
25
35
a3
S5
&5
75
B8O
23

&0
50

INTEGER NV, NY ,NT,NPARM

PARAMETER (NV=7)

PARAME TER (NY=12)

PARAMETER (NT=365)

PARAMETER (NPARM=11)

INTEGER SEQ (2,NY,NT)

INTEGER COUNT (2,NY)

INTEGER DENOM (NT)}

REAL MU (2,NT)

REAL PHI (NT,NPARM)

REAL THETA,OMEGA, P

PARAMETER (PI = 3.14159265)

DIMENSION CLIMA[HUGE] (NY,NT)

FORMAT (11F6.2)

FORMAT (14 (15))

FORMAT (I5)

FORMAT (18X ,F9.2)

FORMAT (27X,F9.2)

FORMAT (36X%,F9.2)

FORMAT (45X,F10.2)

FORMAT (S5X,F10.2)

FORMAT (65X ,F9.2)

FORMAT (9X,F9.2)

OPEN (UNIT=30,FILE="\WATER\DATA\MEAND.DAT  ,STATUS
OPEN (UNIT=20,FILE=" \WATER\DATA\PHID.DAT  ,STATUS=
OPEN (UNIT=32,FILE='\WATER\DATA\MEANW.DAT  ,STATUS
OPEN (UNIT=22,FILE='\WATER\DATA\PHIW.DAT ,STATUS=
DPEN (UNIT=24,FILE='\WATER\DATA\SEQZ2.DAT ,STATUS=
OPEN {(UNIT=18,FILE='\WATER\DATA\CLIMA.DAT ,STATUS
...... INPUT SE@ OF DRY & WET DAYS

DO SO, I = 1, NY

DO 60, J = 1, 2
READ (24, 25)
READ (24, 15)
CONT INUE
CONTINUE

COUNT (J, I)

(se@ (J, I, K), K = 1, COUNT

NT
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IF (K .EQ. 1) THEN

READ (18,95) CLIMA (I, J)
ELSEIF (K .EQ. 2) THEN

READ (18,35) CLIMA (1, J)
ELSEIF (K .EQ. 3) THEN

READ (18,45) CLIMA (I, J)
ELSEIF (K .EQ. 4) THEN

READ (18,55) CLIMA (I, J)
ELSEIF (K .EQ. 5) THEN

READ (18,65) CLIMA (I, J)
ELSEIF (K .EQ. &) THEN

READ (18,75) CLIMA (I, J)
ELSEIF (K .EQ@. 7) THEN

READ (18,85) CLIMA (I, J)

ENDIF
20 CONT INUE
10 CONT INUE
C iieann COMPUTE MEAN VECTOR FOR WET & DRY DAYS
DO 310, M = 1, 2
DO 320, J = 1, NT

DENOM (J) = ©
MU (M,J) = -999.0

320 CONT INUE
DO 330, I = 1, NY
DO 370, J = 1, COUNT (M,I)

L = 5EQ (M, I, J)

IF (CLIMA (I,L) .NE. —-999) THEN
IF (MU (M,L) .LE. -900) THEN

MU (M,L) = 0.0

ENDIF
MU {(M,L) = MU (M,L) + CLIMA (I,L)
DENOM (L) = DENOM (L) + 1

ENDIF
370 CONT INUE
330 CONT INUE

DO 380, J = 1, NT
IF (MU (M,J) .NE. -999) THEN
MU (M,J) = MU (M,J) / DENOM (J)

ENDIF
380 CONT INUE
310 CONTINUE

DO 130, M = 1, 2

DMEGA = 2 %X PI / NT
KK = (NPARM - 1) / 2
DO 510, T = 1, NT
PHI (T,1) =1
510 CONT INUE



JZ2 = 31 + 1
THETA = OMEGA % J
A =2 % COS (THETA)

PHI (1,J1) = 1

PHI (2,J1) = A / 2

PHI (1,J2) = O

PHI (2,J2) = SIN (THETA)

DO 530, T = 3, NT

PHI (T,J1) = A % PHI (T-1,J1) - PHI (T-2,J1)
PHI (T,J2) = A ¥ PHI (T-1,J2) - PHI (7-2,32)
530 CONT INUE
520 CONT INUE

vevean SHRINK MEAN & FOURIER VECTOR BY OMITTING MISSING DBSNS.

NC = O
DO 120, I = 1, NT
IF (MU (M,I) .NE. -999) THEN
MU (M,I-NC) = MU (M,I)
DO 140, L = 1, NPARM

PHI (I-NC,L) = PHI (I,L)
140 CONTINUE
ELSE
NC = NC + 1
ENDIF
120 CONT INUE

...... OUTPUT OF MEAN & FOURIER VECTORS FOR DRY & WET DAYS

IF (M .EQ. 1) THEN
PRINT %, ‘NO. OBNS ON DRY DAYS: ‘', NT - NC
DO 80, I = 1, NT - NC
WRITE (30, %) MU (M,I)
WRITE (20, 5) (PHI (I,L), L = 1, NPARM)
80 CONTINUE
ELSE
PRINT ¥, "NO. OBNS ON WET DAYS: ', NT - NC
DD 40, I = 1, NT - NC
WRITE (32, %) MU (M,I)
WRITE (22, 5) (PHI (1,L), L = 1, NPARM)

40 CONTINUE
ENDIF
130 CONTINUE
REWIND 18
30 CONT INUE
8TORP
END
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PROGRAM 7

15
23
33

20

..... -~ PROGRAM TO ESTIMATE FARAMETERS FOR THE MEAN AND
STANDARD DEVIATION FUNCTIONS
~=> NB THIS PROGRAM IS DESIGNED TO ESTIMATE
PARAMETERS FOR A DRY SEQUENCE. IT CAN ALSO
BE USED FOR WET SEQUENCES BY READING THE
APPROFPRIATE INPUT DATA FILES

INTEGER NT,NV,NPARM,PI
PARAMETER (NT=3&5)
PARAMETER (NV=7)

PARAME TER (NPARM=11)
PARAMETER (PI1=3.141593)
REAL LLK

REAL MU (NT,1)

REAL. MEAN (NT)

REAL PHI (NT,NPARM)
REAL TRSP (NPARM,NT)
REAL SOLN (NPARM, NPARM)
REAL RESULT (NPARM,NT)
REAL BETA (NPARM,1)

FORMAT (/,7)
FORMAT (F10.3)
FORMAT (A13,I14,A11)

CPEN {(UNIT=9,FILE="LPT1")

OPEN (UNIT=4,FILE="CON") ;

OPEN {(UNIT=12,FILE="\WATER\DATA\MEAND.DAT' ,STATUS="0LD")
OPEN (UNIT=14,FILE="\WATER\DATA\PHID.DAT  ,STATUS="0LD")

WRITE (9,%) "INITIAL ESTIMATES FOR MEAN (DRY) FUNCTION-
WRITE (9,15)

WRITE (6&,%) ' MAXIMUM NUMBER OF PARAMETERS TO BE FITTED®
READ (&6,%) NPT
DO 30, K = 1, NV

CRITO = LOX%10

DO 20, I = 1, NT
READ (12,%) MU (I,1)
READ (14,%) (PHI (I,L), L =1, NPT)
CONT INUE

DO 100, NP = 1, NPT, 2
CALL TRNSP (PHI,NP,NT,TRSP,NPARM,NT)
CALL XNP (TRSP,PHI,SOLN,NP,NT,NT,NP,NPARM,NT,NT,NPARM)
CALL INVNP (NP,SOLN,NPARM)
CALL XNP (SOLN,TRSP,RESULT,NP,NP,NP,;NT,NPARM,NPARM,
NPARM,NT)
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10

&0
50

40

100
200

30

CALL XNP (RESULT,MU,BETA,NP,NT,NT,1,NPARM,NT,NT,1)
OUTPUT OF PARAMETER ESTIMATES

WRITE (9,%) ‘BETA ESTIMATES FOR VARIABLE: ', K

DO 10, I = 1, NP
. WRITE (9,%) BETA (I,1)

CONT INUE

DD 50, I = 1, NT
MEAN (I) = 0.0
DO 60, L = 1, NP
MEAN (1) = MEAN (I) + BETA(L,1) % PHI(I,L)
CONTINUE
CONT INUE
LLK = ©
DO 40, I = 1, NT
LLK = LLK + (MU(I,1) - MEAN (I))%x%2

CONT INUE
LLK = ~LLK/2 - (NT/2) % LOG (2%PI)

CRIT = —LLK + NP

WRITE (9,%) ‘ AKAIKE"S INFD CRITERION FOR VARIABLE
WRITE (9,%) CRIT

WRITE (9,35) ° WHEN FITTING' ,NP, ‘' PARAMETERS’

WRITE (9,15)

IF ({CRIT .LT. CRITD) THEN
LL = NP
CRITO = CRIT

ELSE
GOTO 200

ENDIF

CONT INUE
WRITE (F,%) ~ NUMBER OF PARAMETERS CHOSEM: *, LL

sSTOP

END

CONTINUE
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PROGRAM 8

INTEGER
FPARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
REAL

REAL

REAL

REAL
DIMENSION
REAL

NV, NY ,NT , NPARM , NP
{(NV=7)

(NY=12)

(NT=365)

(NPARM=3 )

(NP=11)

SEQ (2,NY,NT)

COUNT (2,NY)

MU (2,NT)

SIBMA (2,NT)

PHI (NT,NP)

ALPHA (NV,2,NPARM)
CLIMALHUGE] (NY,NT)
DENOM (NT)

S FORMAT (11F5&.2)

15 FORMAT (14(15))
25 FORMAT (15)

35 FORMAT (18X,F9.2)
45 FORMAT (27X ,F9.2)
55 - FORMAT (36X,F9.2)
65 FORMAT (45X ,F10.2)
75 FORMAT (55X,F10.2)
as FORMAT (&5X,F9.2)
95 FORMAT (9X,F9.2)

OPEN (UNIT=40,FILE="\WATER\DATA\NSIGMAD.DAT  ,STATUS="UNKNOWN" )
OPEN {UNIT=20,FILE="\WATERADATA\PHD.DAT ,STATUS="UNKNOWN" )
OPEN (UNIT=42,FILE="\WATER\DATA\SIGMAW.DAT" ,STATUS="UNKNOWN" )
OPEN (UNIT=22,FILE="\WATER\DATA\PHW.DAT  ,STATUS="UNKNOWN" )
OPEN (UNIT=24,FILE="\WATER\DATA\SER2.DAT  ,STATL'S="0LD")

OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT' ,8TATUS="0LD")

OPEN {(UNIT=10,FILE="\WATER\NDATANEST-M.DAT  ,STATUS="0LD")

c «asa.s INPUT OF PARAMETER ESTIMATES FOR MEAN FUNCTION

DO 170, K = 1, NV
DO 40, M= 1, 2
READ (10,%) (ALPHA (K,M,I), I = 1, NPARM)
40 CONT INUE
170 CONT INUE

C ennns . INPUT SEQ DOF DRY & WET DAYS
DO SO, I = 1, NY

DO 60, J = 1, 2
READ (24,25) COUNT (J,1) .
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READ (24,15) (SEQ (J,I,K), K = 1, COUNT (J,1))
&0 CONTINUE

S0 CONT INUE
PO 30, K = 1, NV
DO 10, I = 1, NY
DO 20, J = 1, NT

IF (K .EQ@. 1) THEN

READ (18,95) CLIMA (I, J)
ELSEIF (K .EQ. 2) THEN

READ (18,35) CLIMA (I, J)
ELSEIF (K .EQ. 3) THEN

READ (18,45) CLIMA (I, J)
ELSEIF (K .EQ. 4) THEN

READ (1B8,55) CLIMA (I, J)
ELSEIF (K .EQ. S) THEN

READ (18,65) CLIMA (I, J)
ELSEIF (K .EQ. &) THEN

READ (1B,75) CLIMA (1, J)
ELSEIF (K .EG. 7) THEN

READ (18,83) CLIMA (I, J)

ENDIF
20 CONT INUE
10 CONTINUE

CALL TRIG (PHI,NP,NT)
...... GENERATE MEAN VEQTDR

CALLL. GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)
...... COMPUTE STD DEV VECTOR FOR WET & DRY DAYS

DO 330, M =1, 2
DO 310, I = 1, NT

DENOM (I) = ©
SIGMA (M,1} = -999.0
310 CONTINUE

DO 320, J = 1, NY
DO 370, I = 1, COUNT (M,Jd)
L = SEQ (M,J,1)
IF (CLIMA (J,L) .NE. ~-999) THEN
IF (SIGMA (M,L) .EQ. -999) THEN

sSIGMA (M,L) = 0.0
ENDIF
SIGMA{M,L) = SIGMA(M,L)+(CLIMA(JI,L)~-MU(M,L) ) %xx%x2
DENDOM (L) = DENOM (L) + 1
ENDIF
370 CONT INUE
320 CONTINUE

DO 380, I = 1, NT
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IF (SIGMA (M,I) .NE. —-99%9) THEN
SIGMA (M,1) = SQRT(SIGMA (M,I) / DENOM (I))
ENDIF
380 CONT INUE
330 CONT INUE

...... SHRINK STD DEV VECTOR & FOURIER VECTOR BY OMITTING MISSING
OBSERVATIONS

DG 130, M = 1, 2
NC = O
DO 120, 1 = 1, NT
IF (SIGMA (M,I} .NE. —999) THEN

SIGMA (M,I-NC) = SIGMA (M,I)
DO 140, L = 1, NP
PHI (I-NC,L) = PHI (I,L)
140 CONT INUE
ELSE
NC = NC + 1
ENDIF
120 CONT INUE

...... OQUTPUT OF STDE DEV & FOURIER VECTORS FOR WET & DRY DAYS

IF (M .EQ. 1) THEN
PRINT %, 'NO. OBNS ON DRY DAYS: ', NT - NC
DO 70, I = 1, NT - NC
WRITE (40, %) SIGMA (M,I)

WRITE (20, S) (PHI (I,L), L = 1, NP)
70 CONT INUE
ELSE '
PRINT %, ‘NO. OBNS ON WET DAYS: ‘', NT - NC
DO 80, I = 1, NT - NC
WRITE (42, %) SIGMA (M,I)
WRITE (22, 5) (PHI (I,L), L = 1, NP)
80 CONTINUE
ENDIF
CALL TRIG (PHI,NP,NT)
130 CONT INUE
REWIND 18

30 CONTINUE

sTORP
END
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PROGRAM 9

C ——————————————————————————————————————————————————
L veea. . PROGRAM TD STANDARDIZE RESIDUAL TIME SERIES
C __________________________________________________
INTEGER NV, NY ,NT , NPARM
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NPARM=3 )
REAL CLIMA (O:NV)
REAL MU (2,NV,NT)
REAL SIGMA (2,NV,NT)
REAL PHI (NT,NPARM)
REAL PSI (NV,2,NPARM)
REAL ALPHA (NV,2,NPARM)
5 FORMAT (3F 10.6)
35 FORMAT (5F9.2,2F10.2,F9.2)

OPEN (UNIT=12,FILE="\WATER\DATA\CLIMAR.DAT ,STATUS="UNKNOWN")
OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT ,STATUS='0LD")
OPEN (UNIT=10,FILE="\WATER\DATA\NEST-M.DAT  ,STATUS="0LD")
OPEN (UNIT=40,FILE="\WATER\DATA\EST-S.DAT’ ,STATUS="0LD")

c eeesees INPUT DF PARAMETER ESTIMATES FOR MEAN AND STANDARD
c DEVIATION FUNCTION

DO 10, K = 1, NV
DO 20, M= 1, 2
READ (10,%) (ALPHA (K,M,I), I = 1, NPARM)
20 CONT INUE
10 CONT INUE

DO 60, K = 1, NV
DO 70, M= 1, 2
READ (40,%) (PSI (K,M,I), I = 1, NPARM)
70 CONT INUE
60 CONT INUE

CALL TRIG (PHI,NPARM,NT)
C eeennn GENERATE MEAN AND STANDARD DEVIATION VECTORS
CALL GAVSTD (MU,PHI,NT,NPARM,ALPHA,NV,PSI,SIGMA)

DD 30, ! = 1, NY
DO 40, J = 1, NT
READ (18,35) (CLIMA (K), K = 0, NV)
IF (CLIMA(O) .EQ. O) THEN
M =1
ELSE
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M= 2
ENDIF
DO 50 , K = 1, NV
IF (CLIMA (K) .NE. —-999) THEN
CLIMA(K)=(CLIMA(K)-MU(M,K,J))/SIGMA(M,K,J)

ENDIF
50 CONT INUE
...... OUTPUT OF STANDARDIZED TIME SERIES
WRITE (12,35) (CLIMA (K), K = 0, NV)
40 CONT INUE
30 CONTINUE
STOP
END
PROGRAM 10
C T T T
C i PROGRAM TO COMPUTE CROSS-CORRELATION COEFFICIENTS
» FOR LAGO AND LAG1.
C ________________________________________________________
INTEGER NY, NT, NV
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NV=7)
INTESER DENOM(0O:1)
REAL CLIMA{NY,NY%NT)
REAL CROSS(0:1)
REAL. AVEG (NV) , DEV{NV)
REAL CLAGO (NV,NV)
REAL CLAGL (NV,NV)
25 FORMAT (9F8.3)
35 FORMAT (9X,4F9,2,2F10.2,F9.2)
45 FORMAT (7F9.3)

ODPEN (UNIT=9,FILE="LPT1")

OPEN (UNIT=10,FILE="\WATER\DATANCLIMAR.DAT  ,STATUS="0LD")
OPEN (UNIT=20,FILE="\WATER\DATANLAGO.DAT ' ,STATUS="UNKNOWN ")
OFPEN (UNIT=30,FILE="\WATER\DATA\LAGL.DAT ,STATUS="UNKNOWN" )
OPEN (UNIT=4,FILE="CON")
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10

40

&0

S0

30
20

F0

NTIME = NY % NT
DD 10, I = 1, NTIME

READ (10,353) (CLIMA (K,I), K = 1, NV)
CONT INUE

CALL AVSTD3I (CLIMA,AVEG,DEV,NY,NT,NV)

DO 30, KK = 1, NV
DO 40, I =0, 1

CROSS (I) = 0.0
DENOM (I) = 0.0
CONTINUE

DO 50, I = 0, 1
DO &0, J = 1, NTIME-I
IF ((CLIMA(K,J).GT.-900).AND. (CLIMA(KK,J+1)
.GT.-900)) THEN
CROSS(I1)=CROSS(I)+{({(CLIMA(K,J)~AVEG(K) )X
(CLIMA(KK,J+I)~AVEG(KK)))
DENOM(I) = DENOM(I) + 1
ENDIF
CONT INUE
IF (DENOM(I).GT.0) THEN

CROSS(I)={CRDSS(1)/DENOM{I) )/ {DEV(K)XDEV(KK))

ENDIF
CONTINUE
CLAGO{K,KK) = CROSS{O)
CLAG1(K,KK) = CROSS(1)
CONT INUE

CONTINUE

DO 90, K = 1, NV

WRITE (20,45) (CLAGO(K,KK), KK =

WRITE (3C,45) (CLABLl(K,KK), KK = 1, NV)
CONTINUE

STOP
END

D-26



PROGRAM 11

c ———————————————————————————————————————————————————————
C «..... PROGRAM TO COMPUTE THE MATRICES A & B FOR MODEL1
C ———————————————————————————————————————————————————————
INTEGER NV
PARAMETER (NV=7)
REAL CLAGO (NV,NV)
REAL CLAGL (NV,NV)
REAL - ACNY,NV)
REAL B(NV,NV)
REAL ' INV(NV,NV)
REAL TRSP (NV,NV)
REAL TERM(NV,NV)
15 FORMAT (7F9.3)

OPEN (UNIT=2,FILE="LPT1")

OPEN {UNIT=20,FILE="'\WATER\DATA\LAGO.DAT  ,STATUS="0LD")

OPEN (UNIT=30,FILE="\WATER\DATA\LAGL.DAT  ,STATUS="0LD")

OPEN (UNIT=40,FILE='\WATER\DATANA.DAT’ ,STATUS="UNKNOWN" )
OPEN (UNIT=3C,FILE="\WATER\DATANB.DAT  ,STATUS="UNKNDWN")

DO 10, K = 1, NV

READ (20,15) (CLABO (K,KK), KK = 1, NV)
10 CONT INUE
DO 20, K = 1, NV
READ (30,15) (CLAGY (K,KK), KK = 1, NV)

20 CONTINUE

CALL INVT (CLAGO, INV,NV)
CALL MULT (CLAGL, INV,A8,NV,NV, NV,NV)

DO 30, K = 1, NV
WRITE (40,15) (A(K,KK), KK = 1, NV)
30 CONT INUE

CALL TRANSP (CLAGL,NV,NV,TRSP)
CALL MULT (A, TRSP,TERM,NV,NV,NV,NV)
CALL SUBTR (CLAGO,TERM,NV)

CALL CHOLKY (B,TERM,NV)

DO 40, K = 1, NV
WRITE (S0,15) (B(K,KK), KK = 1, NV)
40 CONT INUE

STOP
END
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PROGRAM 12

C _________________________________________________________
C  aeeas.an PROGRAM TO GENERATE CLIMATE SEQUENCES ACCORDING TO
cC MODEL 1.
C _________________________________________________________
C  aeeess INTEGER VARIABLES
INTEGER NT,NV,NY,NP,PSTATE,STATE
c e s e PSTATE PRESENT STATE OF DAY
E  aeeaes STATE PREVIQOUS STATE OF DAY
C i eeeens PARAMETER STATEMENTS
PARAMETER {NT=3465)
PARAMETER (NY=51)
PARAMETER {NV=7)
PARAMETER (NP=3)
C ceeees NT = £ OBSERVATIONS PER YEAR
C  teeees NV = £ VARIABLES
C csasse. NY = £ YEARS TO BE GENERATED
C  idesns NP = £ PARAMETERS IN SEASONAL MODEL
INTEGER SEED (9
REAL RAIN
REAL GAM (2,NP)
REAL PHI (NP,Q:NT)
REAL RAND (NV,1)
REAL SIGMA {2,NV,0:NT)
REAL MU (2,NV,0:NT)
REAL DBSEN (NV,1)
REAL RES (NV,1)
REAL TEMP (NV}
REAL AMP (O:NP)
REAL PHASE (NP)
REAL A {NV,NV)
REAL B (NV,NV)
REAL C (NT)
COMMODN IDUM1, IDUMZ, IDUM3, IDUM4, IDUMS, IDUMS, IDUM?
15 FORMAT (5F9.2, 2F10.2, F9.2)
23 FORMAT (° BIVE 9@ -VE Nos. TO INITIALIZE RANDOM GENERATOR' ,/)
CPEN (UNIT=9,FILE="LPT1")
OPEN (UNIT=10,FILE="\WATERANDATA\SIMU.DAT ,STATUS=" UNKNOWN ")
OPEN (UNIT=22,FILE="CON")
c «assas COMPUTE THE FOURIER SERIES TERMS
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&0

330

50

10

CALL COSSIN (PHI,NP,NT)
DO &0, 1 = 1, NP

PHI (I,0) = PHI {I,NT)
CONTINUE

PI=3.14159
SMAX=135
SMIN=110
AVE=(SMAX+SMIN) /2
AMPS=EMAX-SMIN
DO 33C, I = 1, NT
C({(I) = AVE+{AMPS/2)%COS((2%PI/NT)%x(I+11))
CONT INUE :

...... READING PARAMETER ESTIMATES
CALL DATAL1 (GAM,MU,SIGMA,NP,NV,AMP,PHASE,CV,PHI,A,B,NT)

...... INPUT SEEDS TO START RANDOM NUMBER GENERATOR. MUST BE
NEGATIVE NUMBER.

PRINT 25
po 56, I1I =1, @9
READ (22, x) SEED (II)

CONT INU

IbUMLI = SEED (1)
IDUM2 = SEED (2)
IDUM3 = SEED (3)
IDUM4 = SEED (4)
IDUMS = SEED (5)
IDUM& = SEED (6)
IDUM7 = SEED (7)
IDUMB = SEED (B)
IDUM? = SEED (9)

cesas. COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL
DEPTH

CALL CALBET (BETA,CV)
ALPH = 1 + 1 /7 BETA
GAMM = GAMMA (ALPH)
BI = 1 /BETA

W= 0.01721421

ver e SET INITIAL STATE OF DAY TO BE DRY
ceees SET INITIAL CLIMATE VALUE TO IT'S MEAN AT TIME ZERO

...... STATE = 1 ==> DRY
. STATE = 2 ==> WET
STATE = 1
DO 10, I = 1, NV
OBSN (I1,1) = 0.0
CONT INUE
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DO 30, I = 1, NY
DO 40, J = 1, NT

L . e — —————_— - —

-+ss.. COMPUTE PROBABILITY THAT A WET DAY FOLLOWS A WET DAY, OR
THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)
...... BENERATE A UNIFORM RANDCOM NUMBER BETWEEN O AND 1.

UNIFOR = URAN8 (IDUMB)
IF (UNIFDR .LT. PI) THEN

PSTATE = 2
ELSE

PSTATE = 1
ENDIF

...... GENERATE A NORMAL RANDOM NUMBER

CAl.L GRANDZ (RAND,NV)

CALL MODEL1 (RAND,NV,SIGMA,MU,J,0BSN,PSTATE,NT,A,B,RES)
..... DETERMINE WHETHER IT RAINED AND SET RAIN VALUE

> DID NOT RAIN
> RAINED

ihn
Hon

0
1

i

D

—

rd
Ho

IF (PSTATE .EQ. 1) THEN
" RAIN = O
ELSE
RAIN = 1
ENDIF

IF (RAIN .EQ. 1) THEN
CALL DEPTH3 (IDUM9,NP,RAIN,J,AMP,PHASE,GAMM,BI,W)
ENDIF

...... TRANSFORM VARIABLES TO THE ORIGINAL UNITS
TEMP(2)=(230-100%EXP(RES(2,1)))/(EXP(RES(2,1))+1)
TEMP(1)={410+TEMP(2Z)XEXP(RES(1,1)))/(EXP(RES(1,1)}+1)
TEMP(3)=(C{J)-0.01-(0.0C1L¥EXP(RES(3,1})))/(EXP(RES(3,1))+1)
TEMP(4)=(10CO0/(EXP(RES(4,1))+1))-0.01
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TEMP(S)=101/(EXP(RES(5,1))+1)
TEMP(6)=TEMP(3)/ (EXP(RES(&6,1))+1)

C e DUTPUT GENERATED SEQUENCES
IF (I.NE.1) THEN
WRITE (10,15) RAIN, (TEMP (K), K = 1, NV)
ENDIF
T .. UPDATE THE STATE OF THE PREVIOUS DAY

IF (PSTATE .NE. STATE) THEN
STATE = PSTATE

ENDIF
40 CONTINUE
30 CONT INUE
sSTOP
END
PROGRAM 13
C et A — ——————————
C e PROGRAM TD PREPARE DATA SETS OF POSSIBLE WET/DRY
C SEQUENCES
C ______________________________________________________
INTEGER NY,NT,PREV,RAIN
PARAMETER (NY=12)
PARAMETER (NT=365)
INTEGER SEQ (4,NY,NT)
INTEGER COUNT (4,NY)
REAL CLIMA
S FORMAT (F9.2)
15 FORMAT (14(IS))
25 FORMAT (I95)
PREV = 0
DO 20, J =1, 4
DO 40, I = 1, NY
COUNT(J,I) = ©
40 CONT INUE
20 CONT INUE

OPEN (UNIT=8,FILE="\WATER\DATA\CLIMA,DAT ' ,STATUS="0LD")
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20
10

30
60

DO 10, J = 1, NY
DO S50, I = 1, NT
READ (8,5) CLIMA
IF (CLIMA .EQ. O) THEN
RAIN = O
ELSEIF (CLIMA .GT. 0) THEN
RAIN = 1
ELSEIF (CLIMA .EQ. -999) THEN
RAIN = 2
ENDIF
IF ((RAIN .NE. 2) .AND. (PREV .NE. 2)) THEN
IF (RAIN .EG. PREV) THEN
IF (RAIN .EQ@. 0) THEN
COUNT(1,J) = COUNT(1,J) + 1
SEQ#1,J,COUNT(1,J)) = I
ELSE
COUNT(2,J) = COUNT(2,J) + 1
SEQ (2,J,COUNT(2,J)) = 1
ENDIF
ELSE
IF (RAIN .EQ@. O) THEN
COUNT(4,J) = COUNT(4,J) + 1
SEG(4,J,COUNT(4,J)) = 1
ELSE
COUNT(3,d) = COUNT(3,J) + 1
SEQ (3,d,COUNT(3,d)) = 1
ENDIF
ENDIF
ENDIF
PREV = RAIN
CONT INUE

CONTINUE

OPEN (UNIT=10,FILE="\WATER\DATA\SEQ.DAT ' ,STATUS=" UNKNOWN")

DO &0, I =
DO 30, J

1, NY
:1’

4

WRITE (10, 23) COUNT(J,I)

WRITE
 CONTINUE
CONTINUE

STOP
END

(10,

13) {(SEQ(J,I,K),
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25
35
45
53
&3
79
85
25
105

130
140

0

o B i e e Ty T ——— ke 0. . T A T o o s A e A T T bl ol S, AL, A, T o e e ke i Al . e e e . e b

...... PROGRAM TO COMPUTE THE AUTOCORRELATION COEFFICTIENT
CONDITIONED ON WET/DRY STATUS OF THE DAY

INTEGER NY ,NV,NT,NPARM, P, PP, NRAU
PARAMETER (NRAU=4)

PARAMETER (NY=12)

PARAMETER (NV=7)

PARAZTER (NT=365)

PARAME TER (NPORM=3 )

INTEGER COUNT (NRAU,NY)
INTEGER SEQ@ (NRAU,NY,NT)
INTEGER SUM (NRAU)

REAL CLIMA (NY,NT)

REAL MU (2,NT)

REAL PHI (NT,NPARM)
REAL ALPHA (NV,2,NPARM)
REAL RAU (NRAU)

FORMAT (/)

FORMAT (9X,F9.2)
FORMAT (18X,F9.2)
FORMAT (27X,F9.2)
FORMAT (36X,F%.2)
FORMAT (45X ,F10.2)
FORMAT (55X,F10.2)
FORMAT (65X,F9.2)
FORMAT (I5)

FORMAT (1415)

OFPEN (UNIT=9,FILE='LPT1")

OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT ,STATUS="0LD")
OPEN (UNIT=10,FILE="\WATER\DATANEST-M.DAT ,8TATUS="0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\SEQ.DAT ,S5TATUS="0LD"}

«eaaes INPUT SEQUENCE OF DRY/WET DAYS

DO 140, J = 1, NY
DO 150, I = 1, 4
READ (12,95) COUNT (1,J) |
READ (12,105) (SEQ (I,J,K), K = i, COUNT (I,J))
CONT INUE
CONT INUE

.... INPUT OF PARAMETER ESTIMATES FOR THE MEAN FUNCTION

DO 170, K = 1, NV
DO 90, M= 1, 2
READ (10,%) (ALPHA (K,M,I), I = 1, NPARM)
CONTINUE
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170 CONT INUE

CALL TRIG (PHI,NPARM,NT)
DO 220, JJ = 1, NRAU
DD 230, I = 1, NY

SUM {(JJ)y = SUM (JJ) + COUNT (JJ,I)
230 CONTINUE
220 CONTINUE

DO 30, K = 1, NV
D0 10, 1 1,
DO 20, J = 1, NT

...... INPUT ONE VARIABLE AT A TIME

IF (K .EQ. 1) THEN

READ (18,25) CLIMA (I,J)
ELSEIF (K .EQ. 2) THEN

READ (18,35) CLIMA (I1,J)
ELSEIF (K .EQ. 3) THEN

READ (18,45) CLIMA (I,J)
ELSEIF (X .EQ. 4) THEN

READ (18,55) CLIMA (I,J)
ELSEIF (K .€Q@. S) THEN

READ (18,65) CLIMA (1,J)
ELSEIF (K .EQ. &) THEN

READ (18,75) CLIMA (I,J)
ELSEIF (K .EQ. 7) THEN

READ (18,85) CLIMA (I,J)

ENDIF
20 CONT INUE
10 CONT INUE

...... GENERATE MEAN VECTOR
CALL GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)
...... COMPUTE AUTOCORRELATION
WRITE (9,%) "INITIAL ESTIMATES FOR RAU OF VARIABLE: ',
DO 120, JJ =1, 4
NUM = O
DENDOM = O
CNT = O
CNT2Z = O

IF (JJ.EQ. 1) THEN

M=1
L= 1
ELSEIF (JJ .EQ. 2) THEN
M= 2
L= 2
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130
110

200

120

30

ELSEIF
M =
L =

ELSEIF
M
L

ENDIF

DO 110
DO

(JJ .EG. 3) THEN
2
1
(JJ .EQ. 4) THEN
1
2
s I = 1, NY
130, J = 1, COUNT (JJd,I}
P = SEQ (JJ,I,J)
N =0
IF ((P .EGQ. 1) .AND. (1 .EG. 1)) THEN
50TO 130
ENDIF
IF ((P .EQ. 1) .AND. (I .GT. 1)) THEN
N = 1
PP = 3465
ELLSE
PR = SEQ (JJ,1,J) - 1
N = O
ENDIF
IF ((CLIMA(I,P).NE.-999).AND.(CLIMA(I-N,PP) . NE.
-99%9)) THEN
NUM = NUM+(CLIMA(I,P}-MU(M,P} )% {(CLIMA(I-N,PP)-
MU(L,PP))
ELSE
CNT = CNT + 1
ENDIF

IF (ELIMA(I-N,PP).NE.-999) THEN

DENOM = DENOM+(CLIMA(I-N,PP)-MU(L,PP))Xx2
ELSE
CNT2 = CNT2 + 1

ENDIF
CONTINUE
CONT INUE
NUM = NUM/(SUM(JJ)=-1-CNT)
DENOM = DENOM/{SUM(JJ)~CNT2)
RAU (JJ) = NUM / DENOM
WRITE (9,%) RAU (JJ)
CONT INUE
WRITE (9,5)
REWIND 18
CONT INUE
STOP
END
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C ——————————————————————————————————————————————————————————————
. ernenn PROGRAM TO ESTIMATE INITIAL STANDARD DEVIATION FUNCTION
C -- MEAN VECTOR GENERATED
C ______________________________________________________________
INTEGER NY ,NV,NT ,NPARM, P, PP, NRAU
PARAMETER (NRAU=4)
PARAMETER (NY=12)
PARAME TER (NV=7)
PARAMETER (NT=365)
PARAME TER (NPARM=3)
INTEGER COUNT (NRAU,NY)
INTEGER SEG (NRAU,NY,NT)
INTEGER SUM (NRAU)
REAL SIGMA (NRAU)
REAL CLIMA (NY,NT)
REAL MU (2,NT)
REAL PHI {NT,NPARM)
REAL ALPHA (NV,2,NPARM)
REAL RAU (NRAU,NV)
S FORMAT (/)
15 FORMAT (F9.2)
25 FORMAT (9X,F9.2)
35 FORMAT (18X,F9.2)
45 FORMAT (27X ,F9.2)
5S FORMAT (36X ,F9.2)
65 FORMAT (45X,F10.2)
75 FORMAT (55X%,F10.2)
85 FORMAT (65X,F9.2)
95 FORMAT (I5)
105 FORMAT (1415)

OPEN (UNIT=9,FILE="LPT1")

OPEN (UNIT=18,FILE="\WATER\DATA\CLIMA.DAT ,STATUS='0LD")
OPEN (UNIT=10,FILE="\WATER\DATA\EST-M.DAT’ ,STATUS="0LD"}
DPEN (UNIT=14,FILE="\WATER\DATA\RAU-M.DAT ,STATUS="0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\SEGQ.DAT  ,STATUS="0LD")

€ eiean. INPUT SEQUENCE OF DRY/WET DAYS
DO 140, J = 1, NY
DO 150, I = 1, 4
READ (12,95) COUNT (I,J)
READ (12,105) (SEQ (1,J,K), K = 1, COUNT (I,J))
150 CONTINUE
140 CONT INUE
C «..+.. INPUT DF PARAMETER ESTIMATES FDOR THE MEAN FUNCTION
DO 170, K = 1, NV
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DO 90, M= 1, 2
READ (10,%) (ALPHA (K,M,I), I = i, NPARM)
90 CONTINUE

170 CONT INUE
...... INPUT OF PARAMETER ESTIMATES FOR RAU
DO 470, K = 1, NV
READ (14,%) (RAU (I,K), I = 1, NRAU)
470 CONT INUE
CALL TRIG (PHI,NPARM,NT)
DO 220, JJ = L, 4
DO 230, I = 1, NY
SUM (JJ) = SUM (JJ) + COUNT (JJ,I)
230 CONT INUE
220 CONT INUE
DO 30, K = 1, NV
DO 10, I = 1, NY
DO 20, J = 1, NT

IF (K .EQ. 1) THEN

READ (18,25) CLIMA (I, J)
ELSEIF (K .EQ. 2) THEN

READ (18,35) CLIMA (I, J)
ELSEIF (K .E@. 3) THEN

READ (18,45) CLIMA (I, J)
ELSEIF (K .EQ. 4) THEN

READ (18,5%5) CLIMA (I, J)
ELSEIF (K .EQ. 5) THEN

READ (18,65) CLIMA (1, J)
ELSEIF (K .EQ. &) THEN

READ (18,75) CLIMA (I, J)
ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I, J)

ENDIF
20 CONT INUE
10 CONTINUE

...... GENERATE MEAN VECTOR
CALL GMEAN (MU,PHI ,NT,NPARM,ALPHA, K,NV)
...... COMPUTE STANDARD DEVIATIONS

WRITE (9,%) "INITIAL ESTIMATES FOR SIGMA OF VARIABLE: ',
po 120, JJ =1, 4
IF (JJ.EQ. 1) THEN
M=1
L =1
ELSEIF (JJ .ER. 2) THEN
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M= 2
L =2
ELSEIF (JJ .EQ@. 3) THEN
M= 2
L = 1
ELSEIF (JJ .EQ. 4) THEN
M = 1
L =2
ENDIF
NUM = O
CNT = ©
DO 110, I = 1, NY
DO 130, J = 1, COUNT (JJ,I)
P = SEQ (JJ,I1,d)
N = 0

IF ((P .EQ. 1) .AND. (I .EQ@. 1)) THEN
CNT = CNT + 1

60TO 130
ENDIF
IF ((P .EQ. 1) .AND. (I .GT. 1)) THEN
N =1
PP = 355
ELSE
PP = SEQ (JJ,I,J)-1
N =0
ENDIF
IF ((CLIMA(I,P).NE.-999).AND.{CLIMA(I-N,PP).NE.
& ~999)) THEN
NUM = NUM+(CLIMA{I,P)-MU(M,P)-RAU(JIJI,K)*x(CLIMA
& (I-N,PP)—MU(L,PP)))X%x2
ELSE
CNT = CNT + 1
ENDIF
130 CONTINUE
110 CONT INUE
200 SIGMA (JJ) = SGRT(NUM/(SUM(JJ)-1-CNT))
WRITE (9,%) SIGMA (JJ)
120 CONTINUE
WRITE (9,5)
REWIND 18
30  CONTINUE
STOP
END

D-38



PROGRAM 164

" —— — — — o, w—

C teeeas PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 3
C _________________________________________________________
INTEGER NV,NY,NT,NP,NPARM,NRAU,CONVG, T
PARAMETER, (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=369)
RARAMETER (NP=12)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL RESID (NV,NY,NT)
REAL MU (2,0:NT)
REAL LNLIKE,AKAIKE,PI
PARAMETER (PI=3,141593)
REAL CLIMA (NY,0:NT)
REAL ALPHA (2,NV,NPARM)
REAL SIGMA (NRAU,NV)
REAL DER (NP)
REAL DERZ (NP,NP)
REAL PHI (NPARM,Q:NT)
REAL RAU {NRAU,NV)
REAL THETA (NP)
REAL A (NP,0:NP)
5 FORMAT (/)
15 FORMAT (' ESTIMATES OF MEAN FOR DRY DAYS:', 3F10.4)
29 FORMAT (° ESTIMATES OF MEAN FOR WET DAYS: , 3F10.4)
39 FORMAT (° ESTIMATES OF STANDARD DEVIATIONS: , 4F10.4)
55 FORMAT (° ESTIMATES OF AUTOCORRELATION: ', 4F10.4)
&5 FORMAT (7F10.4)
75 FORMAT (° AKAIKE"S CRITERION FOR VARIABLE: , 14, I1s:°,
85 FORMAT (9X,F9.2) '
5 FORMAT (18X,F9.2)
105 FORMAT (27X,F9.2)
115 FORMAT (36X,F?.2)
125 FORMAT (45X,F10.2)
135 FORMAT (55X,F10.2)
145 FORMAT (65X ,F9.2)
155 FORMAT (1I5)
165 FORMAT (1415)

OPEN (UNIT=18,FILE='\WATER\DATANCLIMA.DAT  ,STATUS="0OLD")

OPEN (UNIT=12,FILE=

‘\WATER\DATANSEQ.DAT  ,STATUS="0LD ")

F30.4)

OPEN (UNIT=14,FILE="\WATER\DATA\RESI.DAT ' ,STATUS="UNKNOWN" )
OPEN (UNIT=2,FILE="LPT1")
OPEN (UNIT=6,FILE="CON')

CALL COSSIN (PHI,NPARM,NT)
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DO 10, I = 1, NPARM
PHI (I,0) = PHI (I,NT)
10 CONT INUE

...... INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INTAL3 (EPS,MAXITER,ALPHA,SIGMA,RAU,NPARM,NV,NRAU)
DO 20, K = 1, NV
CONVG = 1
DO 130, I = 1, NY
DO 140, J = 1, NT
IF (K.EQ.1) THEN
READ (18,85) CLIMA (I, J)
ELSEIF (K.EG.2) THEN
READ (18,95) CLIMA (I, J)
ELSEIF (K.EQ.3) THEN
READ (18,10%) CLIMA (I, J)
ELSEIF (K.EQ.4) THEN |
READ (18,115) CLIMA (I, J)
ELSEIF (K.EQ@.S) THEN
READ (18,125) CLIMA (I, J)
ELSEIF (K.EQ.&6) THEN
READ (18,135) CLIMA (I, J)
ELSEIF (K.EQ.7) THEN
READ (18,145) CLIMA (I, J)
ENDIF
140 CONT INUE
IF (I.EG@.1) THEN
CLIMA (I,0) = CLIMA (1,1) - 0.5
ELSEIF (I.NE.1) THEN
CLIMA(I,0) = CLIMA(I-1,NT)
ENDIF
130 CONT INUE

REWIND 18
IF (K .EQ. 1) THEN
DO 150, KK = 1, NY
DO 1460, I = 1, 4
READ (12,155) COUNT (I,KK)
READ (12,165) (SEQ@ (I,KK,J), J = 1, COUNT (I,KK))
160 CONTINUE
150 CONTINUE
ENDIF

...... ITERATIVE ESTIMATION OF PARAMETERS

CALL NEWT3 (ALPHA,SIGMA,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,
& COUNT, DER,DER2,PHI ,EPS,NP,NV,K,A, THETA, NRAU ,CONVG)

...... OUTPUT QF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
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WRITE (9,35) (SIGMA (J,K), J = 1, NRAU)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)

C eeeeas COMPUTE RESIDUAL MATRIX

IF (CONVG.EQ.1) THEN
DO 30, M = 1, 2

DO 40, I = O, NT
MU (M,I) = 0.0
DO 50, L = 1, NPARM
MU(M,I) = MU(M,I)+ALPHA(M,K,L)*PHI(L,I)
50 CONT INUE
40 CONT INUE
30 CONT INUE

DO 60, I = 1, NY
DO 70, J = 1, NT

RESID (K,I,J) = -999.00
70 CONT INUE
60 CONT INUE
LNLIKE = O
TERM = O
DD BO, J =1, 4
IF (J .EQ. 1) THEN
M= 1
L =1
ELSEIF (J .EQ. 2) THEN
M= 2
L = 2
ELSEIF (J .EQ@. 3) THEN
M= 2
L =1
ELSEIF (J .EQR. 4) THEN
M = i
L =2

ENDIF
DO 90, I = 1, NY
DO 100, KK = 1, COUNT (J,I)
T = SE@ (J,I,KK)
IF ((CLIMA(I,T).NE.~999).AND.(CLIMA(I,T-1)

& .NE.-999)) THEN _
RESID(K,I,T)=(CLIMA(I,T)=-MU(M,T))/SIGMA(JI,K)
& ~RAU(J,K) X ((CLIMA(I,T—1)-MU(L,T-1))/
& SIGMA(J,K))
LNLIKE = LNLIKE + (RESID(K,I,T))*x2
ENDIF
TERM = TERM + LOG(SIGMA(J,K))
100 CONT INUE
90 CONTINUE
80 CONT INUE
LNLIKE = —( (NYXNT)/2)%LOG(2%PI)-TERM-LNLIKE/2
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AKAIKE = —-2%LNLIKE+2XNP

WRITE (9,75) K, AKAIKE
ENDIF
20 CONTINUE

DO 110, I = 1, NY
DO 120, T = 1, NT
WRITE (14,65) (RESID (K,1,T), K = 1, NV)
120 CONTINUE
110 CONT INUE

STOP
END
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PROGRAM 17

C __________________________________________________________

c ...... PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 3

C USING CONJUGATE GRADIENT METHODS IN MULTIDIMENSIONS

C __________________ — —_———,—,—— e T e E——_——E——— e — — —
INTEGER NV, NY ,NT ,NP,NPARM,NRAU, T
PARAME TER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=3463)
PARAMETER (NP=14)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
REAL THETA (NP)
REAL LNLIKE ,AKAIKE,PI
PARAMETER (PI=3.141593)
REAL MU (2,0:NT)
REAL RESID {(NV,NY,NT)
COMMON K, ICOUNT (NRAU,NY ), ISEQ({NRAL,NY, NT},CLIMA(NY,0:NT),

& ALPHA (2 ,NV,NPARM) . SIGMA { NRAU NV),PHI(NPARM O:NT),
& RAU (NRAU, NV ) 5 TSCALE (3 ,NV)
S FORMAT (/)
15 FORMAT ESTIMATES OF MEAN FOR DRY DAYS:’', 3IF10.4)

(
(°
25 FORMAT (° ESTIMATES OF MEAN FOR WET DAYS:', 3F10.4)
.
{’
(r

35 FORMAT ESTIMATES OF STANDARD DEVIATIONS: , 4F10.4)
55 FORMAT ESTIMATES OF AUTDCORRELATION: , 4F10.4)
65 FORMAT PARAMETER ESTIMATES FOR VARIABLE: ', I4)
75 FORMAT (‘ CONVERGE ACHIEVED IN ', 14, ' ITERATIONS')
115 FORMAT (3X, F5.0)
125 FORMAT (9X,F9.2)
135 FORMAT (18X,F9.2)
145 FORMAT (27X,F9.2)
155 FORMAT (36X,F9.2)
165 FORMAT (45X,F10.2)
175 FORMAT (S5X,F10.2)
185 FORMAT (&5X,F9.2)
195 FORMAT (1I5)
205 FORMAT (1415)
215 FORMAT (7F10.4) '
315 FORMAT (° AKAIKE"S CRITERION FOR VARIABLE:', 14, ° 1S:', F30.4)

OPEN (UNIT=14,FILE="\WATER\DATA\RESIT.DAT ,STATUS="UNKNOWN")
OPEN (UNIT=18,FILE="\WATERNDATANCLIMA.DAT ,STATUS="0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\SER.DAT ,STATUS="0LD")

OPEN {(UNIT=9,FILE="LPT1")

OPEN (UNIT=6,FILE='CON")
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CALL COSSIN (PHI,NPARM,NT)
Do 10, I = 1, NPARM

PHI (1,0) = PHI (I,NT)
CONT INUE

...... INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES
CALL INT3 (ALPHA,SIGMA,RAU,NPARM,NV,NRAU, ISCALE)

PRINT %, "WMICH VARIABLE TO BE ESTIMATED?'
READ (&6,%) K

DO 20, I = 1, NY
DO 30, J = 1, NT
IF (K .EQ. 1) THEN
READ (18,125) CLIMA (I, J)
ELSEIF (K .EQ. 2) THEN
READ (18,135) CLIMA (I, J)
ELSEIF (K .EQ. 3) THEN
READ (18,145) CLIMA (I, J)
ELSEIF (K .ER. 4) THEN
READ (18,155) CLIMA (I, J)
ELSEIF (K .ER. 5) THEN
READ (18,165) CLIMA (I, J)
ELSEIF (K .ER. &) THEN
. READ (18,175) CLIMA (I, J)
ELSEIF (K .EQ. 7) THEN
READ (18,185) CLIMA (I, J)
ENDIF
CONT INUE
CLIMA (1,0) = CLIMA (I,1) - 0.5
CONT INUE

DO 40, KK = i, NY
DO 50, I =1, 4
READ (12,195) ICOUNT (I,KK)
READ (12,205) (ISEQ (I1,KK,J), J = 1, ICOUNT (I,KK))
CONT INUE
CONT INUE

...... ITERATIVE ESTIMATION OF "PARAMETERS
WRITE (92,65) K

...... TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE

VECTOR
DO 60, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)XISCALE(3,¥"
THETA (J+3) = ALPHA (2,K,J)*ISCALE(3,K)
CONTINUE
DO 70, J = 1, NRAU
THETA (J+6) = SIGMA (J,K)X¥ISCALE(2,K)
THETA (J+10) = RAU (J,K)*ISCALE(1,K)
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70 CONT INUE
CALL POLRIB {(THETA,NP,TOL,ITER,FMIN)

++.-.. UPDATE PARAMETER ESTIMATES
DG BO 3 = 1, NPARM

ALPHA (1,K,J)
ALPHA (2,K,J)

THETA (J)/ISCALE(3,K)
THETA (J+3)/ISCALE(3,K)

80 CONTINUE
PO 90, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)/1SCALE(2,K)
RAU (J,K) = THETA (J+10)/ISCALE(1,K)
0 CONT INUE

WRITE (9,75) ITER
...... CUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,95)

WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (SIGMA (J,K), J = 1, NRAU)
WRITE (9,55) (RAU (J,K}, J = 1, NRAU)
WRITE (9,5)
...... COMPUTE RESIDUAL MATRIX
DC 100, M = 1, 2
pe 120, I = O, NT
MU (M,1) = 0.0
DO 130, L = 1, NPARM -
MU (M,I} = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
130 CONTINUE
120 CONT INUE
100 CONTINUE

DO 180, I = 1, NY
DO 190, J = 1, NT

RESID (K,I,J) = —-999.00
190 CONT INUE
180 CONT INUE
LNLIKE = ©
TERM = O
DO 140, J = 1, 4
IF (J .EQ. 1) THEN
M= 1
L= 1
ELSEIF (J .EQ. 2) THEN
M= 2
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L =2

ELSEIF (J .EQ. 3) THEN
M=2
L =1

ELSEIF (J .EQ. 4} THEN
M =1
L =2

ENDIF

DO 150, I = 1, NY
DO 160, KK = 1, ICOUNT (J,1)
T = ISE@ (J,I,KK) _
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-1}).NE.-999))

& THEN
RESID(K,I,T)=(CLIMA(I,T)-MU(M,T))/SIGMA(J,K)-RAUJ(J,X)
& X({CLIMA(I,T-1)-MU(L,T=-1))/SIGMA(J,K))
LNLIKE = LNLIKE + (RESID(K,I,T))*x2
ENDIF
TERM = TERM + LOG(SIGMA(J,K)}}
160 ' CONT INUE
150 CONT INUE
140 CONT INUE
LNLIKE ~{({NYXNT)/2)*%LOG(2%PI)-TERM-LNLIKE/2

AKAIKE ~Z2XLNLIKE+2%NP

WRITE (9,315) K, AKAIKE
DO 200, I = 1, NY

DO 170, T = 1, NT
WRITE (14,215) (RESID (K,I,T), K = 1, NV)

170 CONT INUE
200 CONTINUE
STOP
END
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«e++.. PROGRAM TO COMPUTE THE AUTOCORRELATION COEFFICIENT
-—- FOR UNCONDITIONED DATA SET

INTEGER NY ,NV ,NT ,NPARM
PARAMETER {NY=12)

PARAMETER (NV=7)

PARAMETER (NT=365)

PARAMETER (NPARM=3)

REAL RAIN (NYXNT)

REAL CLIMA (NYXNT)

REAL MU {(2,NT)

REAL PHI (NT,NPARM)
REAL ALPHA (NV,2Z,NPARM)
FORMAT (/)

FORMAT (F9.2)
FORMAT (9X,F9.2)
FORMAT (18X,F9.2)
FORMAT (27X,F%9.2)
FORMAT (36X,F9.2)
FORMAT (45X ,F10.2)
FORMAT (55X,F10.2)
FORMAT (&5X,F9.2)

CPEN (UNIT=%,FILE="LPT1")
OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT  ,STATUS="0LD")
OPEN (UNIT=10,FILE="\WATER\DATA\NEST-M.DAT  ,STATUS="0LD")

...... INPUT OF RAINFALL DATA

DO 40, J = 1, NYXNT
READ (18, 15) RAIN(J)

CONTINUE

REWIND 18

...... INPUT OQF PARAMETER ESTIMATES FOR THE MEAN FUNCTION

DO 170, K = 1, NV
DO 90, M= 1, 2
READ (10,%) (ALPHA (K,M,I), I = 1, NPARM)
CONTINUE
CONT INUE

CALL TRIG (PHI,NPARM,NT)
DO 30, K = 1, NV
DO 10, I = 1, NYXNT

...... INPUT ONE VARIABLE AT A TIME
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10

IF (K .EQ. 1) THEN
READ (18,25) CLIMA (I)
ELSEIF (K .EQR. 2) THEN
READ (18,35) CLIMA (1)
ELSEIF (K .EQ. 3) THEN
READ (18,45) CLIMA (I)
ELSEIF (K .EQ. 4) THEN
READ (18,55) CLIMA (1)
ELSEIF (K .EQ. %) THEN
READ (18,65) CLIMA (1)
ELSEIF (K .EQ. &) THEN
READ (18,75) CLIMA (1)
ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I)
ENDIF

CONTINUE.

- s v

CAl.L GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)

CNT

NUM

DEN

COUNT

cou
DO

GENERATE MEAN VECTOR

COMPUTE AUTOCORRELATION

on

oo

8]y o

0

NT2 =

20, 2

IF (R
™

ELSE
M

ENDIF

IF (J.GT.NT*(CNT+1)) THEN
CNT = CNT + 1

ENDIF

I = J-NTXCNT

IF (I .EQ. 1) THEN

2, NYXNT

0
AIN(JI) .EQ.0) THEN
=1

2

IT = 3&5
ELSE

11 = 1-1
ENDIF

IF (RAIN (J-1).EQ.0) THEN
L =1

ELSE
L =2

ENDIF

IF ((CLIMA(J).NE.-999).AND.(CLIMA(J-1).NE

.=99%9)) THEN

NUM = NUM+(CLIMAGI)-MUM, D)) ¥ (CLIMA(I=-13-MU(L,I1))

ELSE
COUNT = COUNT + 1
ENDIF

IF (CLIMA(J-1).NE.-99%) THEN

D-48



20

30

DENOM = DENCM+(CLIMA(JI=-1}-MU(L,II))%%2

ELSE
COUNTZ = COUNTZ2 + 1
ENDIF

CONTINUE

IF (RAIN (NYXNT).EG.O} THEN
L =1

ELSE
L =2

ENDIF

IF {CLIMA(NYXNT).NE.-999) THEN
DENOM = DENOM+{CLIMA(NYXNT)-MU(L,NT))xx2

ELSE
COUNTZ = COUNT2 + 1
ENDIF

NUM NUM/ (NYXNT-1-COUNT }
DENOM = DENOM/ (NYXNT-COUNT2)
RAU = NUM / DENOM

Il

WRITE (9,%) "INITIAL ESTIMATE FOR RAU OF VARIABLE:

WRITE (9,%) RAU
WRITE (9,5)
REWIND 18

CONTINUE

STOPR
END
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FPROGRAM 19

C _________________________________________________________
C «.e... PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 4
C _________________________________________________________
INTEGER NV,NY ,NT,NP,NPARM,NRAU,CONVG, T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=13)
PARAMETER (NPARM=3)
PARAMETER (NRAU=1)
INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL CLIMA (NY,0:NT)
REAL ALPHA (2,NV,NPARM)
REAL PSI (2,NV,NPARM)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
REAL THETA (NP)
REAL A (NP,O:NP)
5 FORMAT (/)
15 FORMAT (° ESTIMATES OF MEAN FOR DRY DAYS:', 3IF10.4)
25 FORMAT (° ESTIMATES OF MEAN FOR WET DAYS: ', 3F10.4)
35 FORMAT (° ESTIMATES OF VAR FOR DRY DAYS:', 3F10.4)
45 FORMAT (' ESTIMATES OF VAR FOR WET DAYS:', 3F10.4)
55 FORMAT (° ESTIMATE OF AUTOCORRELATION: , F10.4)
65 FORMAT (9%,F9.2)
75 FORMAT (18X ,F2.2}
85 FORMAT (27X,F9.2)
?5 FORMAT (36X%,F9.2)
105 FORMAT (45X,F10.2)
115 FORMAT (55X%,F10.2)
125 FORMAT (&65X,F9.2)
135 FORMAT (1I5)
145 FORMAT (1415)

OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT ,STATUS="0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\SEQ.DAT’ ,STATUS="0LD")
OPEN (UNIT=9,FILE="LPT1")

OPEN (UNIT=6,FILE="CON")

CALL COSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM
PHI (I,0) = PHT (I,NT)
10 CONT INUE

C caaaas INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES
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30

&0
=1¢]

CALL INITIAL (EPS,MAXITER

DD 20, K = 1, NV
CONVG = 1
DO 30, I = 1, NY

DO 40, J = 1, NT
IF (K.EG.1) THEN
READ (18,65)
ELSEIF (K.EQ.2)
READ (18,75)
ELSEIF (K.EB.3)
READ {(18,85)
ELSEIF (K.EQ.4)
READ (18,995)
ELSEIF (K.EQ.5)
READ (18,105)
ELSEIF (K.EQ.4)
READ (18,115)
ELSEIF (K.EQ.7)
READ (18,125)
ENDIF
CONT INUE
IF (I.ER.1) THEN
CLIMA (1,0) = CL
ELSEIF (I.NE.1)
CLIMA(I,O) = CLI
ENDIF
CONTINUE

REWIND 18
IF (K .EG. 1) THEN
DD 50, KK = 1, NY
DO &0, I = L, 4
READ (12,135)
READ (12,145)
CONT INUE
CONT INUE
ENDIF

,ALPHA,PSI,RAU, NPARM, NV ,NRAU)

CLIMA
THEN
CLIMA (I, J)
THEN
CLIMA (I, J)
THEN

CLIMA (I, J)
THEN

CLIMA (I, J)
THEN

CLIMA (1, J)
THEN

CLIMA

(I, J)

(1, J)

IMA (I,1) - 0.5

THEN

MA{I-1,NT)

COUNT {(I,KK)
(SEQ (T1,KK,J), J =

ITERATIVE ESTIMATION OF PARAMETERS

a8 8w

CALL NEWT4 (ALPHA,PSI,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,
COUNT ,DER,DER2,PHI ,EPS,NP,NV,K,A, THETA, NRAU, CONVG )

CUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,95)

WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) {(ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (PSI (1,K,L), L = 1, NPARM)
WRITE (9,45) (PSI (2,K,L), L = i, NPARM)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)
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...... COMPUTE RESIDUAL MATRIX

I ((CONVG.EQ.1).0R.(K.EQ.7)} THEN
CALL MARES {(RAU,ALPHA,PSI,PHI,COUNT,SEG,CLIMA,NT,NY,

ENDIF
20 CONTINUE

STOP
END

NPARM, NV, K, NRAU, NP , CONVG)

...... PROGRAM TQ COMPUTE PARAMETER ESTIMATES FOR MODEL 4
USING CONJUGATE GRADIENT METHODS IN MULTIDIMENSIONS

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
REAL
REAL
PARAMETER
REAL
REAL
REAL

EOMMON

NV, NY ,NT,NP,NPARM,NRAU, T
(NV=7)

(NY=12)

(NT=345)

(NP=13)
(NPARM=3)
(NRAU=1)

THETA (NP)
AKAIKE ,LNLIKE,PI
(PI=3.141593)

MU (2,0:NT)
SIGMA (2,0:NT)
RESID (NV,NY,NT)

K, ICOUNT(4,NY),ISEQ(4,NY,NT),CLIMA(NY,0:NT),

ALPHA(2,NV,NPARM) ,PSI(2,NV,NPARM) ,PHI (NPARM,0:NT),
RAU (NRAU,NV ) , ISCALE (3,NV)
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395
45
55
65
75
115
205
3095
405
505
605
705
8095
P05
105
1295
135

30

220

10

FORMAT

{
FORMAT (° ESTIMATES OF MEAN FOR DRY DAYS: ', 3F10.4)
FORMAT (° ESTIMATES OF MEAN FOR WET DAYS: ', 3F10.4)
FORMAT (' ESTIMATES OF VAR FOR DRY DAYS:’', 3F10.4)
FORMAT (° ESTIMATES OF VAR FOR WET DAYS:', 3F10.4)
FORMAT (° ESTIMATE OF AUTOCORRELATION: , F10.4)
FORMAT (‘ PARAMETER ESTIMATES FOR VARIABLE: ', 14)
FORMAT {° CONVERGE ACHIEVED IN *, 14, ' ITERATIDNS'
FORMAT (3X, F5.0)
FORMAT (9X,F9.2)
FORMAT (1BX,F9.2)
FORMAT (27X,F9.2)
FORMAT (36X,F9.2)
FORMAT (45X,F10.2)
FORMAT (55X,F10.2)
FORMAT (&5X,F9.2)
FORMAT (15)
FORMAT (141S)
FORMAT (7F10.4)
FORMAT (° AKAIKE"S CRITERION FOR VARIABLE: , 14,

OPEN

OPEN (UNIT=12,FILE="\WATER\DATA\SEQ.DAT  ,STATUS="0LD")

oPEN
OPEN
OPEN

TOL

)

IS:

b

(UNIT=18,FILE="\WATER\DATA\CLIMA.DAT ,STATUS="0LD")

(UNIT=9,FILE="LPT1")
({UNIT=6,FILE="CON")

F30.4)

(UNIT=14,FILE="\WATER\DATA\RESIT.DAT  ,STATUS="UNKNOWN" )

= 0.0000000001

CALL COSSIN (PHI,NPARM,NT)
DO 30, I = 1, NPARM

PHI (1,0) = PHI (I,NT)
CONT INUE

. INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL
PRINT %,
READ (&,%) K

DO 10, 1 = 1, NY
bo 220, J = 1, NT

IF (K .EQ. 1) THEN
READ (18,205) CLIMA
ELSEIF (K .EQ. 2) THEN
READ (18,305) CLIMA
ELSEIF (K .EQ. 3) THEN
READ (18,405) CLIMA
ELSEIF (K .EQ. 4) THEN
READ (18,505) CLIMA
ELSEIF (K .EQ. S) THEN
READ (18,605) CLIMA
ELSEIF (K .EQ@. &) THEN
READ (18,705) CLIMA
ELSEIF (K .EQ. 7) THEN
READ (18,805) CLIMA
ENDIF

CONT INUE
CLIMA (I,0) = CLIMA (I,1)
CONT INUE
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REWIND 18
DO 440, KK = 1, NY
DO 330, I = 1, 4
READ (12,905) ICOUNT (I,KK)
READ (12,105) (ISEQ (I,KK,J), J = 1, ICOUNT (I,KK))
330 CONTINUE
440  CONTINUE

ITERATIVE ESTIMATION OF PARAMETERS

L N R R A

WRITE (9,65) K
TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE

VECTOR
DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)¥ISCALE(3,K)
THETA (J+3) = ALPHA (2,K,J)*ISCALE(3,K)
THETA (J+&) = PSI (1,K,J)XISCALE(2,K)
THETA (J+9) = PSI (2,K,J)%ISCALE(2,K)
20 CONT INUE
DO 70, J = 1, NRAU
THETA (J+12) = RAU (J,K)*ISCALE(1,K)
70 CONTINUE

CALL POLRIB (THETA,NP,TOL,ITER,FMIN)
...... UPDATE PARAMETER ESTIMATES

DO 40 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+6)/1SCALE(2,K)
PS1 (2,K,J) = THETA (J+9)/ISCALE(2,K)
40 CONT INUE

DO 80, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)
80 CONT INUE
WRITE (9,75) ITER

..... . OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)

WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (PSI (1,K,L), L = 1, NPARM)
WRITE (9,45) (PSI (2,K,L), L = 1, NPARM)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)

WRITE (9,5)
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13¢
120

1560
130

F0
&0
50

110
100

sae s COMPUTE RESIDUAL MATRIX

DO 50, M = 1, 2
DO 60, I = O, NT
MU (M,I) = 0.0
SIGMA (M,1) = 0.0
DO 90, L = 1, NPARM

MU (M,1) = MU (M,I) + ALPHA (M,K,L) ¥ PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) % PHI (L,I)
CONT INUE
CONT INUE

CDONT INUE

DO 100, I = i, NY
DO 110, J = 1, NT

RESID (K,I,J) = -999.00
CONTINUE
CONT INUE
LNLIKE = O
TERM = O
DO 120. J = 1, 4
IF (J .EQ. 1) THEN
M= 1
L =1
ELSEIF (3 .EQ. 2) THEN
M= 2
L =2
ELSEIF (J .EQ@. 3) THEN
M= 2
L =1
ELSEIF (J .EQ@. 4) THEN
M= 1
L =2

ENDIF
DO 130, I = 1, NY
DO 140, KK = 1, ICOUNT {J,%)
T = ISEQ (J,1,KK)
IF ((CLIMA(I,T).NE.-999).AND. (CLIMA(I,T-1).NE.-999))
THEN '
RESID(K,I,T) = (CLIMA(I,T)=-MU(M,T))/SIGMA(M,T)~RAU(1,K)
XK((CLIMA(I,T—1)-MU(L,T-1})/SIGMA(L,T-1))

LNLIKE = LNLIKE + (RESID(K,I,T))%%2

ENDIF
TERM = TERM + LOG(SIGMA(M,T))
CONT INUE
CONT INUE
CONT INUE
LNLIKE = —((NYXNT)/2)¥LOG(2%PI)-~-TERM-LNLIKE/Z
AKAIKE = —-2XLNLIKE+2%NP

WRITE (9,135) K, AKAIKE

DO 150, I = 1, NY
DD 160, T = 1, NT
WRITE (14,125) (RESID (K,1,T), K = 1, NV)
CONT INUE
CONT INUE

sToP
END
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PROGRAM 21

C _________________________________________________________
c ve.... PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL S
C _________________________________________________________
c PROGRAM EST-MS
C ______________
INTEGER NV ,NY,NT ,NP ,NPARM, NRAU,CONVG, T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=15)
PARAME TER (NPARM=3)
PARAMETER (NRAU=4)
INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL CLIMA (NY,O0:NT)
REAL ALPHA (2,NV,NPARM)
REAL PSI (2,NV,NPARM)
REAL DER (NP}
REAL DER2 (NP,NP)
REAL PHI (NPARM,O:NT)
REAL RAU (NRALI,NV)
REAL THETA (NP)
REAL A (NP,O:NP)
5 FORMAT (/)
15 FORMAT (' ESTIMATES OF MEAN FOR DRY DAYS: ', 3F10.4)
25 FORMAT (' ESTIMATES OF MEAN FOR WET DAYS:', 3F10.4)
35 FORMAT (° ESTIMATES OF VAR FOR DRY DAYS:', 3F10.4)
45 FORMAT (' ESTIMATES OF VAR FOR WET DAYS:', 3F10.4)
S5 FORMAT (‘ ESTIMATE OF AUTOCORRELATION:', 4F10.4)
75 FORMAT (9X,F9.2)
85 FORMAT (18X ,F9.2)
95 FORMAT (27X,F9.2)
105 FORMAT (36X,F9.2)
115 FORMAT (45X ,F10.2)
125 FORMAT (55X,F10.2)
135 FORMAT (65X ,F9.2)
145 FORMAT (I5)
155 FORMAT (1415)

OPEN (UNIT=18,FILE="\WATER\DATANCLIMA.DAT ,8STATUS="0LD")
OPEN {(UNIT=12,FILE="\WATER\DATA\NSEQ.DAT  ,STATUS="0LD")
OPEN (UNIT=9,FILE="LPT1")

CALL COSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM
PHI (I1,0) = PHI (I,NT)
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10 CONTINUE

..... . INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INITIAL (EPS,MAXITER,ALPHA,PSI,RAU,NPARM,NV,NRAU)
DO 20, K = 1, NV
CONVG = 1
DO 30, I = 1, NY
DO 40, J = 1, NT
IF (K.EG.1) THEN
READ (18,75) CLIMA (I, J)
ELSEIF (K.EQ.2) THEN
READ (18,85) CLIMA (I, J)
ELSEIF (K.EG@.3) THEN
READ (18,95) CLIMA (I, J)
ELSEIF (K.EGQ.4) THEN
READ (18,10%5) CLIMA (I, J)
ELSEIF (K.EQ.S) THEN
READ (18,115) CLIMA (I, J)
ELSEIF (K.EQ.6) THEN
READ (18,125) CLIMA (I, J)
ELSEIF (K.EQ.7) THEN
READ (18,135) CLIMA (I, J)
ENDIF
40 CONT INUE
IF (I.EG.1) THEN
CLIMA (I,0) = CLIMA (I,1) ~ 0.5
ELSEIF (I.NE.1) THEN
CLIMA(I,0) = CLIMA(I-1,NT)
ENDIF
30 CONT INUE

REWIND 18
IF (K .EQ. 1) THEN
DO 50, KK = 1, NY
DO &0, I = 1, 4
READ (12,145) COUNT (I,KK)
READ (12,155) (SEQ (I,KK,J}, J = 1, COUNT (I,KK))
&0 CONT INUE
50 CONT INUE
ENDIF

...... ITERATIVE ESTIMATION OF PARAMETERS

CALL NEWTS (ALPHA,PSI,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,
& COUNT,DER,DER2,PHI ,EPS,NP NV, K, A, THETA,NRAU, CONVG)

...... OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)

WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (PSI (1,K,L), L = 1, NPARM)
WRITE (9,45) (PSI (2,K,L), L = 1, NPARM)
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WRITE (9,35 (RAU (J,K), J = 1, NRAU)
WRITE (9,95)

sess.. COMPUTE RESIDUAL MATRIX
IF ((CONVG.EQ.1).0R.(K.EG.7)) THEN
CALL MBRES (RAU,ALPHA,PSI,PHI,COUNT,SEG,CLIMA,NT,NY,
NPARM, NV, K, NRAU , NP, CONVG)
ENDIF
CONT INUE

STOP
END
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C __________________________________________________________
E eeaes PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL S
» USING CONJUGATE GRADIENT METHODS IN MULTIDIMENSIONS
C ________ n . ———— e o S " o i T e 497 T T A T ——— T — —— = i s — Ty o
INTEGER NV, NY,NT,NP,NPARM,NRAU, T
PARAMETER (NV=7)
PARAME TER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=16)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
REAL THETA (NP)
REAL LNLIKE,AKAIKE,PI
PARAMETER (PI=3.141593)
REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL RESID (NV,NY,NT)
COMMON K,1COUNT (4,NY), ISEQ(4,NY,NT),CLIMA(NY,O:NT),
& ALPHA (2, NV ,NPARM) ,PST{2,NV,NPARM) ,PHI (NPARM,O:NT},
& RAU (NRAU,NV) , ISCALE (3,NV)
5 FORMAT (/)
15 FORMAT (' ESTIMATES OF MEAN FOR DRY DAYS:', 3F10.4)
25 FORMAT (° ESTIMATES OF MEAN FOR WET DAYS: ', 3F10.4)
35 FORMAT (‘' ESTIMATES OF VAR FOR DRY DAYS:', 3F10.4)
45 FORMAT (’ ESTIMATES OF VAR FOR WET DAYS:', 3F10.4)
55 FORMAT (' ESTIMATES OF AUTOCORRELATION:', 4F10.4)
65 FORMAT (° PARAMETER ESTIMATES FOR VARIABLE: ', I14)
75 FORMAT (° CONVERGE ACHIEVED IN ', 14, ' ITERATIONS')
105 FORMAT (3X, FS.0)
205 FORMAT (9X,F9.2)
305 FORMAT (18X ,F9.2)
405 FORMAT (27X,F9.2)
505 FORMAT (36X ,F9.2)
605 FORMAT (45X,F10.2)
705 FORMAT (55X,F10.2)
805 FORMAT (&5X,F9.2)
905 FORMAT (I5)
115 FORMAT (1415)
315 FORMAT (7F10.4)
415 FORMAT (° AKAIKE"S CRITERION FOR VARIABLE: ', I4, * IS:’', F10.4)

OPEN (UNIT=14,FILE="\WATER\DATA\RESIT.DAT ,STATUS="'UNKNOWN" )
OPEN (UNIT=18,FILE="\WATER\DATA\CLIMA.DAT ,STATUS="0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\SEQ.DAT  ,STATUS="'0L.D")

OPEN (UNIT=9,FILE="LPT1")

OPEN {(UNIT=46,FILE="CON")
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TOL = 0.0000000001

CALL COSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM

PHI (I,0) = PHI (I,NT)
CONT INUE

.e.... INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES
CALL INT4 (ALPHA,PSI,RAU,NPARM,NV,NRAU, ISCALE)

PRINT %, ‘WHICH VARIABLE TOQO BE ESTIMATED?"
READ (&,%) K

DO 20, I = 1, NY
DO 30, J = 1, NT
IF (K .EQ. 1) THEN
READ (18,205) CLIMA (I, J)
ELSEIF (K .EQ. 2) THEN
READ (18,305) CLIMA (I, J)
ELSEIF (K .EQ. 3) THEN
READ (18,405) CLIMA (I, J)
ELSEIF (K .EQ@. 4} THEN
READ (18,505) CLIMA (I, J)
ELSEIF (K .EQ. S) THEN
READ (18,605) CLIMA (I, J)
ELSEIF (K .EG@. &) THEN
READ (18,705) CLIMA (I, J)
ELSEIF (K .EQ. 7) THEN
READ (18,80%) CLIMA (I, J)
ENDIF
CONTINUE
CLIMA (I1,0) = CLIMA (I,1) - 0.5
CONT INUE

REWIND 18
DO 40, KK = 1, NY
DO S0, I = 1, NRAU
READ (12,905) ICOUNT (I,KK)
READ (12,115) (ISEQ (1,KK,J), J = i, ICOUNT (I,KK))
CONT INUE
CONT INUE

...... ITERATIVE ESTIMATION OF PARAMETERS
WRITE (9,65) K

...... TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
VECTOR

DO &0, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)*ISCALE(3,K)
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THETA (J+3) = ALPHA (2,K,J)*ISCALE(3,K)
THETA (J+&) = PSI (1,K,J)*ISCALE(2,K)
THETA (J+9) = PSI (2,K,J)*ISCALE(2,K)
CONTINUE
Do 70, J = 1, NRAU
THETA (J+12) = RAU (J,K)*ISCALE(1,K)
CONT INUE

CALL POLRIE (THETA;NP,TDL,ITER,FMIN)
...... UPDATE PARAMETER ESTIMATES

DO 80 J = 1, NPARM

ALPHA (1,K,J) THETA (J)/ISCALE(3,K)

ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+&)/ISCALE(2,K)
PSI (2,K,J} = THETA (J+9)/ISCALE(2,K)
CONT INUE
DO 90, J = 1, NRAU
RAU (J,K) = THETA (J+12)/1S8CALE(1,K)
CONTINUE

WRITE (9,75) ITER

QUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (PSI.-(1,K,L), L = 1, NPARM)
WRITE (9,45) (PSI (2,K,L), L = 1, NPARM)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)
...... COMPUTE RESIDUAL MATRIX
DO 100, M = 1, 2
DO 120, I = O, NT
MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 130, L = 1, NPARM
MU (M,1) = MU (M,1) + ALPHA (M,K,L) ¥ PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) % PHI (L,I)
CONT INUE
CONT INUE
CONTINUE

DO 140, I = 1, NY
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DO 150, J = 1, NT
RESID (K,1,J) = -999.00
CONT INUE
CONT INUE
LNLIKE = 0
TERM = ©

DO 160, J = 1, 4
IF (J .EQ. 1) THEN
1

m
T~
ul
-

(J .EQ., 2} THEN
2
2
(J .EQ. 3} THEN
1
(J .EQ. 4) THEN

1
2

m m
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ENDIF
DO 170, I = 1, NY
DO 180, KK = 1, ICOUNT (J,I1)
T = ISEQ (J,I,KK)
IF ({CLIMA(I,T).NE.-99%9).AND.(CLIMA(I,T~1).NE.-999))
THEN
RESID(K,I,T) = (CLIMA(I,T)=MU(M,T))/SIGMA(M,T)-
RAU(J,K)¥((CLIMA(I,T-1)-MU(L,T-1))/
SIGMA(L,T-1})
LNLIKE = LNLIKE + (RESID(K,I,T))%x2

ENDIF
TERM = TERM + LDG(SIGMA(M,T))
CONTINUE
CONTINUE
CONT INUE
ENLIKE = =((NYX¥NT)/2)%LDG(2%P1 )-TERM-LNLIKE/2
AKAIKE = —-2%XLNLIKE+2%NP

WRITE (9,415) K, AKAIKE

DO 190, I = 1, NY
DO 200, T = 1, NT
WRITE (14,315) (RESID (K,I,T), K = 1, NV)
CONT INUE
CONT INUE

STOP
END
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PROGRAM 23

C _________________________________________________________
C ++v... PROGRAM TO RECORD TIME PERICDS FOR WHICH A MISSING
C OBSERVATION DCCURS
C _________________________________________________________
INTEGER NV, TIME , BOUND
PARAMETER (NV=7)
PARAMETER (TIME=4380)
PARAMETER { BOUND=500)
INTEGER SEGMISS (NV,BOUND)
INTEGER COUNT (NV)
REAL CLIMA (NV)
15 FORMAT (14(15))
25 FORMAT (15)

OPEN (UNIT=10,FILE="\WATER\DATA\RESIDU.DAT  ,STATUS='0LD")
OPEN (UNIT=8,FILE='\WATER\DATA\SEGM.DAT ' ,STATUS="UNKNOWN ")
DD 20, K = 1, NV

COUNT (K) = O

20 CONT INUE

DO 10, J = 1, TIME

READ (10, *) (CLIMA (K), K = 1, NV)

DO 30, K = 1, NV

IF (CLIMA (K) .LT. -%900) THEN

COUNT (K) = .COUNT (K} + 1
SEQMISS (K, COUNT (K}) = J
ENDIF
30 ' CONTINUE
10 CONT INUE

DO 60, K = 1, NV
WRITE (8, 25) COUNT (K)
WRITE (8, 15) (SEQMISS (K, I), I = 1, COUNT (K))
60 CONT INUE

STORP
END
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FPROGRAM 24
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2.« A PROGRAM TO PATCH THE MISSING OBSERVATIONS IN A
GIVEN DATA SET USING THE EM-ALGORITHM
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In this program there are missing observations in almost all the
the variables.

The variables are read as one big matrix which consists of a
column of the dependent variable - which should always be the
first column, and the of the columns being the matrix of the
independent variables.

Each row of data represents an observation and where a "-999" is
encountered, that would be representing a missing observation.

The data is stored in a matrix called the Z-matrix, and that is
subdivided into :
Y—-matrix = A matrix of the dependent variable
X—-matrix = A matrix of the independent wvariables

The maximum dimensions of the matrices are:

Dependent variable : i
Independent variables : 25
Observations : 100

Note that only one Y-variable can be patched at a time, and
therefore we can only have one Y-variable at a time. If
there are missing observations inm more than one variable, then
it is therefore necessary to swop the variable s columns so
that the variable which needs to be patched is always in the
first column of the matrix.

Note again that most of the routines which are in this program
were copied from the pragrams written by Dr Ross Sparks.

cea.s. VARIABLES DECLARATION

INTEGER NOBS, NSTAT, IV, DV
PARAMETER (NOBS=4380)
PARAMETER(NSTAT=7)
PARAMETER (1V=12)

PARAMETER (DV=1)

PARAMETER (NI=500)

w--2+. NOBS = Number of all the records
NSTAT = Number of all the stations i.e. target & control
IV = Number of contreol stations

DV = Number of target stations
REAL Z (NOBS,NSTAT)

D-64



oOo0n

REAL TMAT (NOBS,NSTAT)
REAL ZCEN(NOBS,NSTAT), PATCH(NOBS)

REAL MEANZ (NSTAT,DV), MEANZZ(DV,NSTAT)

REAL ZTZ(NSTAT,NSTAT)

REAL TEMP1(NSTAT), TEMPO, TEMP2

REAL MEAN1(NSTAT), MEANZ(NSTAT)

REAL BHAT(NSTAT,DV), BETA(7,NI), CONV(DV,DV)
INTEGER COUNT (NSTAT)

INTEGER SEQGMISS (NSTAT,S500)

INTEGER ROW, COL, ROUND, NROW

INTEGER NROUND

1 FORMAT(9F8.0)
2 FORMAT(20F6&6.0)

OPEN (UNIT=9,FILE="LPT1"}
OPEN (UNIT=10,FILE='\WATER\DATA\RESIDU.DAT ' ,STATUS="0LD")
OPEN (UNIT=20,FILE="\WATER\DATA\SEQM.DAT ,STATUS="0LD")

+ssese This DO-LOOP reads a matrix of all the rainfall
stations and all the observations in a MATRIX Z.

DO 10 ROW = 1, NOBS
READ(10,%) (Z(ROW,COL), COL = 1, NSTAT)
10 CONTINUE

sseees Thig DO-LOOP reads a vector of the amount of missing
values for each variable in MATRIX COUNT and a matrix of
the specific times when missing values occur for each of
the variables in a MATRIX SEQMISS.

DO 20, K = 1, NSTAT
READ (20,%) COUNT (K)
READ (20,%) (SEQMISE (K,I), I = 1, COUNT (K))
20 CONTINUE

esv... FIND THE MEANS OF THE DIFFERENT COLS, I.E. FIND THE MEAN
OF ALL THE OBSERVATIONS IN COL 1, £0L2, ETC.

DO 110 COL = 1, NSTAT
MEANZ(COL,1) = 0.0
MEAN1{COL) = 0.0
DO 100 ROW = 1, NOBS
IF (Z(ROW,COL) .NE. =~999) THEN

MEAN1(COL) = MEAN1(COL) + Z(ROW,COL)
ENDIF
100 CONT INUE
MEANZ (COL,1) = MEAN1{COL) /s (NOBS - COUNT (COL))

110 CONTINUE

...... SUBSTITUTE THE MISSING OBSERVATIONS BY THE
CALCULATED MEANS
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DO 130 COL = 1, NSTAT
DO 120 K = 1, COUNT (COL)
ROW = SEQMISS (COL.,K)
Z(RDW,COL) = MEANZ(COL,1)
120 CONTINUE
130 CONTINUE

NROUND = 1

12121 CALL CNTRAL {ZCEN,NOBS,NSTAT,Z,NOBS,NSTAT,NOBS,NSTAT)
CALL TMUL.T(ZCEN,NOBS,NSTAT,ZTZ,NSTAT,NSTAT,NSTAT,NOBS,NSTAT)
CALL INV(ZTZ,NSTAT,NSTAT)

DO 167 COL = 1, NSTAT
MEANZ2(COL) = 0.0
DO 163 K = 1, COUNT (COL)
ROW = SEGMISS (COL,K)

MEANZ(COL) = MEAN2(COL) + Z(ROW,COL)
163 CONTINUE
MEANZZ (1,C0L) = (MEAN1(COL) + MEAN2Z(COL)) / NOBS

167 CONTINUE
ROUND = 1

13131 DO B10 ROW = 1, NSTAT
TEMPL(ROW) = (-1.0) % ZTZ(ROW,ROUND) / ZTZ(ROUND,ROUND)
810 CONTINUE

TEMPZ = 0.0
DO 830 RDW = 1, NSTAT
IF (ROW .NE. ROUND) THEN
TEMP2 = TEMP2 + MEANZZ(1,ROW) % TEMP1(ROW)
ENDIF
830 CONTINUE

TEMPO = MEANZZ{1,ROUND) - TEMPZ2
TEMP1{ROUND} = TEMFO
DO 45C ROW = 1, NSTAT
BETA(ROW,NROUND) = TEMP1(ROW)
430 CONTINUE
IF (NROUND .6T. 1) THEN
DO 460 ROW = 1, NSTAT :
BHAT(ROW,1) = BETA(ROW,NROUND) - BETA{ROW,NROUND-1)
4460 CONT INUE

CALL TMULT(BHAT ,NSTAT,DV,CONV,DV,DV,DV,NSTAT,DV)

D-66



210

192

200

220

958

ENDIF

eesse. PATCH THE MISSING OBSERVATIONS
DO 210 ROW = 1, NOBS

PATCH (ROW) = Z (ROW,RDOUND)
CONT INUE

b0 200 K = 1, COUNT (ROUND)
ROW = SEQMISS (ROUND,K)
PATCH(ROW) = 0.0
Po 192 COL = 1, NSTAT
IF (COL .EGQG. ROUND) THEN
GO0 TO 192
ENDIF

PATCH(ROW) = PATCH(ROW) + Z(ROW,COL) % TEMP1(COL)

CONT INUE
PATCH(ROW) = TEMP1(ROUND) + PATCH(ROW)

CONT INUE

DO 220, ROW = 1, NOBS
TMAT (ROW,ROUND) = PATCH (ROW)
CONT INUE

IF (NRDUND .GT. 1) THEN
IF {(CONV(1,1) .LT. ©.0000001) THEN
WRITE (%,%) 'VALUES PATCHED AFTER ", NROUND,
CALL PPMAT (BETA,NSTAT,NROUND,NSTAT, NROUND)
CAaLlL PMAT (TMAT,NDBS,NSTAT,NOBS,NSTAT)
CALL PPMAT (TEMP1,NSTAT,DV,NSTAT,DV)
GO TO 998

ENDIF
ENDIF

ROUND = ROUND + 1

IF {ROUND .GT. NSTAT) THEN
NROUND = NROUND + 1

ALTERATIONS.

CALL COPY (TMAT,NOBS,NSTAT,Z,NOBS,NSTAT,NOBS,NSTAT)

IF {NROUND .GT. NI) THEN

WRITE (9,%) ‘NO CONVERGENCE AFTER ', NI, ° ITERATIONS.-

GOTO 998
ENDIF
50 TO 12121
ENDIF

GO TO 13131

sT0P
END

D-67



PROGRAM 25

c _____________________________________________________
C venens PROGRAM TO ESTIMATE THE CORRELATION MATRIX AND
C THE VECTOR OF VARIANCES.
C _____________________________________________________
INTEGER NT, NY , NV
PARAMETER (NT=4380)
PARAMETER (NV=7)
REAL TERM (5)
REAL CORR (NV,NV)
REAL RES (NV, NT)
REAL VARI (NV)
5 FORMAT (7 F10.4)
15 FORMAT (/, ° THE CORRELATION MATRIX: )
25 FORMAT (' THE VARIANCE OF EACH VARIABLE: °)
OPEN (UNIT=10,FILE='\WATER\DATA\RESI.DAT ,STATUS='0LD")
OPEN (UNIT=12,FILE="\WATER\DATA\CORR.DAT ' ,STATUS="UNKNOWN" )
OPEN (UNIT=9,FILE='LPT1")
DO 26, T = 1, NT
: READ (10, %) (RES (K, I), K = 1, NV)
20 CONT INUE
DO 40, I = 1, NV
CORR (1, I) = 1
30 CONT INUE
DO 60, K = 1, NV
DO 70, J = K+1, NV
DO 120, II = 1, 5
TERM (II) = O
120 CONTINUE
DO 80, I = 1, NT
TERM (1) = TERM (1) + RES (K, I) % RES (J, I)
TERM (2) = TERM (2) + RES (K, 1)
TERM (3) = TERM (3) + RES (J, I)
TERM (4) = TERM (4) + RES (K, I) %xx 2
TERM (5) = TERM (5) + RES (J, I) %% 2
80 CONT INUE
TERM (1) = TERM (1) / NT
TERM (4) = SGRT ((TERM (4) / NT) - (TERM (2) / NT) %xx 2)
VARI (K) = TERM (4) %% 2
TERM (S) = SQRT ((TERM (5) / NT) - (TERM (3) / NT) %% 2)
TERM (2) = TERM (2) % TERM (3) / NT %x 2
TERM (1) = TERM (1) - TERM (2)
TERM (4) = TERM (4) % TERM (S)
CORR (K, J) = TERM (i) / TERM (4)
70 CONT INUE
60 CONT INUE
TERM (2) = O
TERM (4) = O

D-68



DO 10, I = 1, NT
TERM (2) = TERM (2} + RES (NV, I)

TERM (4) = TERM (4) + RES (NV, I) %xx 2
10 CONT INUE
VARI (NV) = (TERM (4) / NT) - (TERM (2) / NT ) *x 2

WRITE (9, 295)
WRITE (9, 5) (VARI (K), K = 1, NV)
WRITE (9, 15)
DO 110, K = 1, NV
WRITE (9, 5) (CORR (K, J), J = K,
WRITE (12, S5) (CORR (K, J), J = K, NV)
110 CONTINUE

STOP
END
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PROGRAM 26

C __________________________________________________________
o PROGRAM TO GENERATE CLIMATE SEQUENCES USING MODEL T
C __________________________________________________________
INTEGER NT ,NV,NV3,NV4 ,NVS,NY ,NP ,PSTATE ,STATE, A, NRAU
C ev.... PSTATE = PRESENT STATE OF DAY
C e STATE = PREVIOUS STATE OF DAY
PARAMETER (NT=365)
PARAMETER (NY=51)
PARAMETER (NV=7)
PARAMETER (NV3=3)
PARAMETER (NVa=1)
PARAMETER (NV5=2)
PARAMETER (NP=3)
PARAMETER (NRAU=3)
C eeae.. NT = £ DBSERVATIONS PER YEAR
C eeen. NV = £ VARIABLES
c . NY = £ YEARS TO BE GENERATED
C eenen. NP = £ PARAMETERS IN SEASONAL MODEL
INTEGER SEED (9)
REAL RAIN
REAL GAM (2,NP)
REAL PHI (NP,O:NT)
REAL RAU3I (NRAU,NV3)
REAL RAUS (NV4)
REAL RAUS (NRAU,NV5)
REAL DECOMP (NV,NV)
REAL RAND (1,NV)
REAL SIGMA3 (NRAU,NV3)
REAL SIGMA4 (2,NV4,0:NT)
REAL SIGMAS (2,NV5,0:NT)
REAL MU (2,NV,0:NT)
REAL OBSN (NV), TEMP (NV)
REAL AMP (O :NP)
REAL PHASE (NP)
REAL CORR (NV,NV)
REAL C (NT)
COMMON IDUM1, IDUM2, IDUM3, IDUM4 , IDUMS, I1DUM& , I DUM7
15 FORMAT (4F9.2, 2F10.2, F9.2)
25 FORMAT (° GIVE 9 —-VE Nos. TO INITIALIZE RANDOM GENERATOR',/)

OPEN (UNIT=9,FILE="LPT1")
OPEN (UNIT=10,FILE="\WATER\DATA\SIMU.DAT’ ,STATUS="UNKNDOWN")
OPEN (UNIT=22,FILE="CON")
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«+ss.. COMPUTE THE FOURIER SERIES TERMS

CALL COSSIN (PHI,NP,NT)
DO 60, I = 1, NP

PHI (I,0) = PHI (I,NT)
CONT INUE

PI=3.141359
SMAX=135

SMIN=110
AVE=(SMAX+SMIN) /2
AMPS=SMAX-SMIN

po 330, I = 1, NT
C(I) = AVE+(AMPS/2)%COS( (2%PI/NT)*(I+11))

CONT INUE

...... READING PARAMETER ESTIMATES

CALL DATA (GAM,RAU3,RAU4,RAUS,MU,SIGMAI,SIGMA4,SIGMAS,NP,NV,AMP,
PHASE ,CV,PHI ,CORR,NT ,NRAU,NV3,NV4 ,NV5)

«se++.. COMPUTE THE CHOLESKY DECOMPOSITION OF THE CORRELARTION
MATRIX. INPUT MATRIX HMERE AS WELL.

CALL CHOLESKY (DECOMP,CORR,NV)
...... TRANSPOSE COVARIANCE MATRIX
CALL GTRANP (DECOMP,NV)

...... INPUT SEEDS TO START RANDOM NUMBER GENERATOR. MUST BE
NEGATIVE NUMBER. '

PRINT 25
DO 50, II = 1, 9
READ (22, %) SEED (II)

CONT INUE
IDUM1 = SEED (1)
IDUM2 = SEED (2)
IDUM3 = SEED (3)
IDUM4 = SEED (4)
IDUMS = SEED (5)
IDUM& = SEED (6)
IDUM7 = SEED (7)
IDUMB = SEED (8)
IDUMS = SEED (9)

...... COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL
PEPTH

CALL CALBET (BETA,CV)
ALPH = 1 + 1 / BETA
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GAMM = GAMMA (ALPH)
Bl = 1 /BETA
W = 0.01721421

cC «+ss.. STATE

STATE

SET INITIAL STATE OF DAY TQO BE DRY
SET INITIAL CLIMATE VALUE TO ZERO

STATE 1

2

=1

DO 10, I = 1, NV
OBSN (1) = MU (STATE,I,0)
10 CONT INUE

D0 30,
ja[u]

c feamas

C' LI N )

C ll‘n---

80

I = 1, NY
40, J = 1, NT

=> DRY
=> WET

GENERATE RAINFALL VALUE

COMPUTE PROBABILITY THAT A WET DAY FOLLDOWS A WET DAY,

THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)

GENERATE A UNIFORM RANDOM NUMBER BETWEEN O AND 1.

UNIFDOR = URAN8 (
IF (UNIFOR .LT.
PSTATE = 2

ELSE
PSTATE = 1
ENDIF

IDUM8)
PI) THEN

GENERATE A NORMAL RANDOM NUMBER

CALL GAUSS (DECOMP,RAND)

DO 80, K = 1, NV
IF ((K.EG.1).
CALL MOD3

ELSEIF ((K.EQ
CalLl. MODS

ELSEIF ((K.EQ
CaLL MCDh4

ENDIF
CONT INUE

OR.(K.EQ.4).0R.(K.EQ.6)) THEN
(RAND,STATE,NV3,NV,5IGMAZ, MU, RAU3, K,
J,0BSN,PSTATE ,NT,NRAU)
.2).0R.(K.EG.5)) THEN

(RAND,BTATE ,NV5,NV,S5IGMAS,MU,RAUS K,
J,0BSN,PSTATE ,NT,NRAU)

.3)) THEN
(RAND,STATE ,NV4 ,NV,SIGMAS ,MU,RAUS , K,
J,0BSN,PSTATE,NT)
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30

...... DETERMINE WHETHER IT RAINED AND SET RAIN VALUE

~ase.- RAIN = 0 ==> DID NOT RAIN
seseas RAIN =1 ==> RAINED
IF (FSTATE .EG. 1) THEN
RAIN = O
ELSE
RAIN = 1
ENDIF

IF (RAIN .EQ. 1) THEN
CALL DEPTH3 (IDUMZ,NP,RAIN,J,AMP,PHASE,GAMM,BI, W)
ENDIF

...... TRANSFORM VARIABLES TO THE ORIGINAL FORM

TEMP({2)=(230~100XEXP(OBSN(2}))/(EXP(ODBSN(2))+1)
TEMP({1)=(410+TEMP (2)%EXP (OBSN(1)))/{EXP(OBSN(1))+1)
TEMP(3)=(C(J)-0C.01-(0.0IXEXP(OBSN(3)})))/(EXP{OBSN(3))+1)
TEMP(4)=(10000/ (EXP(OBSN(4))+1))-0.01
TEMP(&)=100/(EXP{OBSN(&))+1)
TEMP(S)=(101+TEMP(&)XEXP{DBSN(S3)))/ (EXP{OBSN(S5))+1)

v e.s QUTPUT GENERATED SEQUENCES
IF (I .NE. 1) THEN
WRITE (10,15) RAIN, (TEMP (K), K = 1, NV)
ENDIF
...... UPDATE THE STATE OF THE PREVIOUS DAY
IF (PSTATE .NE. STATE) THEN
STATE = PSTATE
ENDIF

CONT INUE
CONTINUE

STOP
END
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SUBROUTINES
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ce.... THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
PARAMETERS BY THE NEWTON-RAPHSON METHOD FOR M3,

SUBROUTINE NEWT3 (ALPHA,SIGMA,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,

P L e TR Y — — = —— . T Ty MR SR e T — T T} . W T o o o o o o e e e Al T T o o i R M T o — —— T o o o o o b b i s

INTEGER COUNT (4,NY)

INTEGER SEQ@ (4,NY,NT)

REAL A (NP,O:NP)

REAL SIGMA (NRAU,NV)

REAL ALPHA (2,NV,NPARM)

REAL PHI (NPARM,O:NT)

REAL DER (NP)

REAL. DER2 (NP ,NF)

REAL CLIMA (NY,O:NT)

REAL THETA (NP)

REAL RAU (NRAU,NV)

FORMAT (° THE SUCCESSIVE THETA VALUES FOR VARIABLE: ‘', I4)
FORMAT (° .... DID NOT CONVERGE')

FORMAT (/, * +..- ', 13, ~ ITERATION', /)

OPEN (UNIT=9,FILE="LPT1")

IC = 0
WRITE (9,15) K

...... TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE

VECTOR
DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)
THETA (J+3) = ALPHA (2,K,J)
CONT INUE

DO 70, J = 1, NRAU
THETA (J+&6) = SIGMA (J,K)
THETA (J+10) = RAU (J,K)
CONT INUE
ve.... ITERATIVE PARAMETER ESTIMATION
DO 10, ITER = 1, MAXITER

se+s+. VECTOR OF 1ST DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
IS COMPUTED

CALL M3DERV (NPARM,NY,NT,ALPHA,SIGMA,RAU,CLIMA,SEQ,COUNT,
DER,DER2,PHI,NP,NV, K, NRAU)
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DO 40, KK = 1, NP
DO 50, J = KK, NP
DER2 (J,KK) = DER2 (KK,J)
CONT INUE
CONT INUE
PRINT 35, ITER

...... NEW PARAMETER ESTIMATES ARE COMPUTED
CALL NEWPARM (NP,DER,DER2Z,THETA,EPS,IC,A)
...... UPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM

ALPHA (1,K,J) = THETA (J)
ALPHA (2,K,J) = THETA (J+3)
CONT INUE
DO B0, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)
RAU (J,K) = THETA (J+10)
CONT INUE

...... TEST FOR CONVERGENCE

IF (IC) 10,10,40
CONT INUE

WRITE (9,25)

CONVG = ©

RETURN
END

SUBROUTINE CALBET (BETA,CV)

REAL NUM, DENOM
C2 = CV %xx 2
C3 = CV %x 3

NUM = 339.5410 + 148.4445%xCV + 192.7492%C2 + 22.4401%C3
DENOM = 1 + 257.1162%CV + 287.8362%C2 + 157.2230x%C3
BETA = NUM / DENDM

RETURN
END
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REAL A (NP,O:NP)

REAL DER (NP)

REAL DER2 (NP,NP)

REAL THETA (NP)

FORMAT (° MATRIX IS SINGULAR')

FORMAT (° NEW PARAMETER ESTIMATES: °, F10.4)

ORPEN (UNIT=9,FILE="LPT1")

THIS SETS UP THE A MATRIX WHICH IS USED IN SOLVING THE SYSTEM
OF EQUATIONS

DO 10, I = 1, NP

A (1,0) = DER (I)
DO 20, J = 1, NP
A (I,3) = DERZ (I,J)
CONTINUE
CONTINUE

THIS SOLVES THE SYSTEM OF EQUATIONS
THE DIFFERENCE BETWEEN THE VYALUE OF THETA (G) IN THIS
ITERATION AND IN THE PREVIOUES ITERATION ARE STORED IN A (Q,0)

DO 30, i1 = 1, NP

Iz = I1
Tt = 0
DO 40, I3 = I1, NP
IF (ABS (& (I3,11)) .BT. (ABS (T1))) THEN
12 = I3
Ti = A (I3,I1)
ENDIF
CONT INUE

iIF (T1 .EQR. ©O) THEN
WRITE (9,15)
STOP
ENDIF
IF (I2 .NE. I1) THEN
poO 50, 10 = 0, NP
TEMP = A (I1,10)

A (11,I0) = A (12,10)
A (12,10) = TEMP
CONT INUE
ENDIF

T2 =1 7/ (A {(I1,1I1))
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NG = NP
DO 60, I4 = 0, NGB
A (I1,14) = A (I1,14) % T2
60 CONT INUE
DO 70, I3 = 1, NP
IF (It .NE. I3) THEN
T2 = A (13,11)
A (I3,0) = A (I3,0)-A(I1,0)% T2
DO 80, IO = 1i, NP

A(I3Z,I10) = A(I3,10) - A(I1,10) % T2
80 CONT INUE
ENDIF
70 CONT INUE
30 CONT INUE

...... CONVERGENCE TEST

ERIT = 0O
DO 205, I = 1, NP
CRIT = CRIT + ABS(A(I,0))
205 CONTINUE
IF (CRIT .GT. EPS) THEN

IC = ¢
ELSE

Ic =1
ENDIF

..... THIS EXTRACTS THE NEW PARAMETER VALUES

DD 90, I = 1, NP
THETA (I) = THETA (I) - A (I1,0)
WRITE (9,25) THETA (1)
PRINT 25, THETA (1)
90 CONT INUE

RETURN
END
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veensn THIS SUBROUTINE COMPUTES THE VECTOR OQOF FIRST DERIVATIVES
AND THE MATRIX OF SECOND DERIVATIVES FOR MODEL3S.

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)

REAL CLIMA (NY,O:NT)
REAL MU (2,0:365)

REAL SIGMA (NRAU,NV)
REAL DER (NP)

REAL DERZ (NP,NP)

REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

DO 10, M = 1, 2
DO 30, I = O, NT

MU (M,I) = 0.0
DO 40, L = 1, NPARM
MU (M,I) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
CONT INUE
CONT INUE
CONT INUE
PO BO, I = 1, NP
DER (1) = 0.0
DO 90, J = 1, NP
DER2 (I,J) = 0.0
CONT INUE
CONTINUE
CALL M3IDERL (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER,
NV, K, NRAU)
CALL M3DERZ(NY,NT,NP,NPARM,COUNT,SEG,SIGMA,RAL,PHI ,DERZ,NV,K,
NRAU )
CALL M3IDER3(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI ,DER2,
NV, K, NRAU )
CALL M3DERA4(NY,NT,NP,COUNT,SEG,CLIMA,MU,SIGMA,RAU,DERZ,NV,K,NRAU)
RETURN
END
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THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 3.

* % » a2

& RAU,PHI ,DER, NV, K ,NRAL)
INTEGER EOUNT (NRAU,NY)
INTEGER SEQ (NRAU,NY,NT)
INTEGER T,P
REAL CLIMA (NY,0:NT)
REAL MIDDLE
REAL DER (NP)
REAL MU (2,0:NT)
REAL SIGMA {NRAU,NV)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
DO 850, LL = 1, NPARM
DO 870, M = 1, 2
IF (M .EQ. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N =1
NN = 2
J =
Kk = 3
ENDIF
«v.... THE VARIABLE DER1 COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION
DER1 = O
DO 10, IY = 1, NY
DO 330, T = 1, COUNT (M,1Y)
P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(]IY,P-1)
& .NE.-929)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)-RAU(M,K)X
& {((CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,K)})
DER1 = DER1+MIDDLEX (—PHI(LL,P)/SIBMA(M,K)+RAU(M,K) X
& PHI{LL,P~-1)/8IGMA(M,K})
ENDIF
330 CONTINUE

DO 350, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
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IF {(CLIMA{IY,P).NE.-99F).AND.(CLIMA(lY,P-1)

& .NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(J,K)-RAU(JI,K)X
& ((CLIMA(IY,P=1)-MU(NN,P-1)}/SIGMA(JT,K)))
DER1 = DERI+MIDDLEX(RAU(J,K)*PHI (LL,P-1)/5SIGMA
& (J,K))
ENDIF
350 CONTINUE

DO 360, T = 1, COUNT (KK,I1Y)
P = SEQ (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

& NE.-F99)) THEN
MIDDLE=((CLIMA(IY,P}-MU(NN,P))/SIGMA(KK,K)-RAU(KK,K)
& ¥ ((CLIMA(IY,P-1)-MU(N,P=-1))/SIGMA(KK,K)))
DER1 = DERI+MIDDLE¥(-PHI{(LL,P)/SIGMA(KK,K))
ENDIF
360 CONT INUE
10 CONT INUE
IF (M .EQ. 1) THEN
DER (LL) = —-DER1
ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DER1
ENDIF
870 CONTINUE

850 CONTINUE

THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT I8 COMPUTED AS WELL AS THE DERIVATIVE
W.R.T. THE STANDARD DEVIATIUONS

DO 20, 1y = 1, NY
DO 700, T = 1, COUNT (1,1Y)
P = GEQ (1,IY,T)
IF ({CLIMA({IY,P).NE.-929) , AND.{CLIMA(IY,P-1)

& NE.-999)) THEN
PART1 = (CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,K)
MIDDLE = PART1-RAU(1,K)*PARTZ2
DER{11) = DER(11)+MIDDLEXPARTZ2
PARTL = —((CLIMA(IY,P)-MU(1,P))/SIGMA(L1,K)xx2)
PARTZ2 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,K)%X%2)
DER(7)=DER(7)-MIDDLE®(PART1+RAU(1,K)*PARTZ2)-1/SIGMA(1,K)
ENDIF
700 CONTINUE

DO 701, T = 1, COUNT (2,1Y)
P = SEQ (2,I1Y,T) :
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)
& NE.-999)) THEN
PARTL1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)
PART2 = (CLIMA(IY,P-1)-MU(2,P~1))/SIGMA(2,K)
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MIDDLE = PART1-RAU(2,K)XPART2
DER(12) = DER(12)+MIDDLEXPARTZ2

PART1 = —-((CLIMA(IY,P)—-MU(2Z2,P))/SIGMA(2,K)*x2)
PART2 = ((CLIMA(IY,P-1)-MU(2,P-1})/SIBMA(Z,K)%Xx%x2)
DER(B)=DER(8)-MIDDLLEX{PART1+RAU(2,K)XPART2)-1/SIGMA(2,K)
ENDIF
701 CONTINUE

DO 702, T = 1, COUNT (3,1Y)
P = SEQ (3,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1)
& NE.-999)) THEN

PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)
PARTZ = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)
MIDDLE = PART1-RAU(3,K)XPART2
DER(13) = DER{13)+MIDDLEXPART2
PARTL = —((CLIMA(IY,P)-MU(2,P))/SIGMA{3,K)*¥2)
PARTZ2 = ((CLIMA(IY,P-1)~MU(L1,P-1))/SIGMA(3I,K)Xx%2)
DER(9)=DER(%)-MIDDLEX (PARTL1+RAU(3,K)¥PART2)~1/SIGMA(3,K)
ENDIF
702 CONT INUE

DO 703, T = 1, COUNT (4,1Y)
P = SEQG (4,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA{IY,P-1)
& .NE.-999)) THEN

PART1 = (CLIMA(CIY,P)-MU(1,P))/SIGMA(4,K)
PARTZ = {(CLIMA{IY,P-1)-MU(2Z,P-1)}/SIGMA(4,K)
MIDDLE = PART1I-RAU(4,K)XPARTZ2
DER(14) = DER{14)}+MIDDLEXPART2
PARTL = ~((CLIMA(IY,P)-MU{1,P))/SIGMA{4,K)XX2Z)
PART2 = ((CLIMA(IY,P-1)-MU(2,P~-1))/SIGMA(4,K)X%x2)"
DER(10)=DER(10)-MIDDLEX (PART1+RAU(4,K)XPART2)~1/SIGMA(4,K)
ENDIF
703 CONTINUE
20 CONTINUE
RETURN
END
. SUBROUTINE TO SUBTRACT TWO MATRICES

. S o ke S S . ek o e oy T —— — —— ——— . . S — A Vit T —————

SUBROUTINE SUBTR (CLAGO,TERM,NV)

REAL CLAGO (NV,NV)
REAL TERM (NV,NV)

NV
1, NV
,J) = CLAGO (I1,J) — TERM (I,J)

DO 10, I = 1,
DG 20, J =
TERM (1
20 CONTINUE
10 CONT INUE

RETURN
END
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...... THIS SUBRDUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES:
ALPHAJD-ALPHAiD, ALPHAID-ALPHA1W, ALPHALIW-ALPHAjJjW FOR
MODEL 3.

SUBROUTINE MIDER2Z (NY,NT,NP,NPARM,COUNT,SEQ,SIGMA,RAU,FPHI,

& DERZ2,NV, K,NRAU)
INTEGER COUNT (NRAU,NY)
INTEGER SEQ (NRAU,NY,NT)
INTEGER T,P
REAL MIDDLE
REAL. DER2 (NP,NP)

REAL SIGMA (NRAU,NV)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)

OPEN (UNIT=9,FILE="LPT1")

DO 10, LL = 1, NPARM
DO 20, LLL = 1, NPARM
DO 36, M = 1, 2
IF (M .EQ. 1)THEN

N =2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N =1
NN = 2
J =4
KK = 3
ENDIF

-ves-. THE VARIABLE DER COMPUTES THE 2ZND DERIVATIVES FOR
ALPHAD-ALPHAD AND ALPHAW-ALPHAW WHILE DER3 COMPUTES
ALPHAD-ALPHAW

DER = O
DER3 = O
DO 40, IY = 1, NY
DO 50, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)

PART = (-PHI(LL,P)/SIGMA{M,K))+RAU(M,K)¥PHI(LL,P-1)
& /SIGMA(M,K)
PART2 = (-PHI{(LLL,P)/SIGMA(M,K))+RAU(M,K)XPHI
& (LLL,P-1}/SIGMA(M,K)
DER = DER+PARTXPART2
50 CONTINUE
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DO 60, T = 1, COUNT (J,I1Y)
P = SEQ (J,IY,T)
PART = (RAU(J,K)XPHI(LL,P-1)/SIBMA(I,K))

PARTZ = (RAU(J,K}*PHI(LLL,P-1)/SIGMA{JI,K))
DER = DER+PARTXPARTZ
&0 CONTINUE

DO 70, T = 1, COUNT {(KK,IY)
P = SEQ (KK,IY,T)

PART = (-PHI(LL,P)/SIGMA(KK,K))
PART2 = (~PHI(LLL,P)/SIBMA(KK,K))
DER = DER+PARTXPARTZ2
70 CONTINUE
40 CONTINUE
IF (M .EQ. 1) THEN
DERZ (LL,LLL) = —-DER
ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,LLL+3) = -DER
ENDIF
30 CONT INUE

DO 80, 1Y = 1, NY
DO 90, T = 1, COUNT (3,1Y)
P = SEQ (3,IY,T)

PART = (RAU(3,K)%PHI (LL,P-1)/SIGMA(3,K))
DER3 = DER3I+PARTX(-PHI(LLL,P)/SIGMA(3,K))
20 CONT INUE

DO 100, T = 1, COUNT (4,1IY)
P = SEQ (4,1Y,T)

PART = (—-PHI(LL,P)/SIGMA(4,K))
DER3 = DERJI+PARTX* (RAU(4,K)¥PHI(LLL,P-1)/SIGBMA{4,K))
100 CONT INUE
80 CONT INUE
DERZ (LL,LLL+3) = —-DER3J
20 CONT INUE
10 CONT INUE
RETURN
END

SUBROUTINE TMULT(MATZ2,M2,N2,PROD,M3,N3,11,KK,JJ)

C e e e ————
REAL MAT2(M2,N2), PROD(M3,N3)
DO 7000 I = 1,I1,1
DO 7010 J = 1,JJ,1
PROD(I,J) = 0.0
DO 7020 K = 1,KK,1
PROD(I,J) = PROD(I,J) + MAT2(K,.) ¥ MAT2(K,J)
7020 CONT INUE
7010 CONT INUE
7000 CONTINUE
RETURN

END
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THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:

RAU-ALPHAJD, ALPHAjW-SIGMA FOR MODELS3.

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
OPEN
DO 850, LL =
DO 870,
IF (M
N
NN
J
KK
ELSEI
N
NN
J
KK
ENDIF

COUNT (4,NY)
SEQ (4,NY,NT)
T,P

CLIMA (NY,O:NT)
MIDDLE

DER2 (NP,NP)

MU (2,0:NT)
SIGMA (NRAU,NV)
PHI (NPARM,O0:NT)
RAU (NRAU,NV)

(UNIT=9,FILE='LPT1")

1, NPARM
M=1, 2

.EQ. 1) THEN
= 2

= 1
=3

= 4
F (M .EQ. 2) THEN
= 1

=2
= 4

= 3

nan

THE VARIABLE DER1 COMPUTES THE 2ND DERIVATIVES FOR RAU-
ALPHA, WHILE DER4 COMPUTES THE 2ND DERIVATIVES FOR ALPHA-
SIGMA

DER1
DER4
PC 10, IY = 1, NY
DO 530, T = 1, COUNT
P = SER (M,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.{CLIMA(IY,P-1)
.NE.-999)) THEN

u i

V)
o

(M, 1Y)

PARTL = (CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)
PARTZ = (CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,K)
MIDDLE = PART1-RAU(M,K)XPART2

DER! = DER1+MIDDLEX (—PHI(LL,P~1)/SIGMA(M,K) )+

(—PHI(LL,P)/SIGMA(M,K)+RAU(M,K)¥PHI (LL,P-1)
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330
10

550
20

/SIGMA(M,K) ) *PART2

PARTL = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)%x2)
PART2 = ((CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,K)xXx2)
PARTS = PHI(LL,P)

PART6 = PHI(LL,P~1)

DER4 = DER4+MIDDLEX (PARTS/ (SIGMA(M,K)*%2)—-RAU
(M,K)XPART&/ (SIGMA(M,K)¥X¥2) )+ (-PART]
+RAU (M, K) XPART2) ¥ (-PARTS5/S1GMA
(M, K)+RAU(M, K} XPART&/SIGMA (M, K) )

ENDIF
CONTINUE
CONT INUE

IF (M .

EQ. 1) THEN

DER2(LL,11) = DER1
DERZ(LL.,7) = —-DER4

ELSELIF

(M .EQ. 2) THEN

DER2(LL+3,12) = DER1
DER2(LL+3,8) = -DERA4

ENDIF

DER1
DER4
DO 20,

)
o _
IV = 1, NY

DO 550, T = 1, COUNT (J,I1IY)

P

= SEG (J,1Y,T)

IF ((CLIMA(IY,P).NE,—-999).AND.(CLIMA(IY,P-1)

NE.-999)) THEN
PART1 (CLIMACIY,P)-MU(N,P))}/SIGMA(J,K)
PARTZ2 (CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(J,K)
MIDDLE = PART1-RAU(J,K)*PARTZ
DER1 = DERi1+MIDDLEX (-PHI(LL,P-1)/SIGMA(J,K))+
(RAU(J,K)*PHI(LL,P-1)/SIGMA(J,K))*PART2

(L 1}

PARTL = ((CLIMA(IY,P)-MU(N,P})/SIGMA(JI,K)%X%2)
PART2 = ((CLIMA(IY,P—-1)-MU(NN,P-1))/SIGMA(J,K)**2)
PARTS = PHI{LL,P)

PARTS = PHI(LL,P-1)

DER4=DER4+MIDDLEX (=RAU(J,K)¥XPART&/ (SIGMA (J,K) Xk2) )
+{-PART1+RAU(J, K) XPART2) XRAU(J ,K ) XPARTS
/SIGMA(J,K)

ENDIF
CONTINUE
CONTINUE
IF (M .EG. 1) THEN
DER2(LL,13) = DER1

DER2(LL,9) = -DER4
ELSEIF (M .EQ. 2) THEN
DERZ (LL+3,14) = DER1
DERZ(LL+3,10) = -DER4
ENDIF
DERL = O
DER4 = O
DO 30, IY = 1, NY

DO 560, T = 1, COUNT (KK,IY)
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30

870
850

10030
10020

10010
10000

P = SEG (KK,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PARTZ = (CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(KK,K)
DER1 = DER1i+(-PHI(LL,P)/SIGMA(KK,K))*PART2
ENDIF
IF ((CLIMA(IY,P).NE.-99%).AND.(CLIMA(IY,P-1)
.NE.-999)) THEN
PARTL = (CLIMA(IY,P)~MU{(NN,P))/SIGMA(KK,K)
MIDDLE = PART1-RAU(KK,K)XPARTZ2

PARTL = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(KK,K)XX2)
PART2 = ((CLIMA(IY,P—1)-MU(N,P-1))/SIGMA(KK,K)%%x2)
PARTS = PHI(LL,P)

PART6 = PHI(LL,P-1)

DER4=DER4+MIDDLEX (PARTS/(SIGMA(KK,K)}*%x2) )+
(-PARTL+RAU(KK,K)¥PART2) % (-PARTS/SIGMA(KK,K))

ENDIF
CONT INUE
CONT INUE
IF (M .EQ@. 1) THEN
DER2(LL,14) = DER1
DERZ(LL,10) = ~DER4
ELSEIF (M .ER. 2) THEN
DER2(LL+3,13) = DER1
DER2(LL+3,9) = -DER4
ENDIF
CONT INUE
CONT INUE
RETURN
END

SUBROUTINE COPY(MAT1,M1,N1,MAT2,M2,N2,DIM1,DIM2)

INTEGER DIM1,DIMZ2

REAL MATL(

M1,N1), MAT2(M2,N2)

DO 10020 I = 1,M2,1
DO 10030 J = 1,N2,1
MAT2(1,J} = 0.0
CONT INUE

CONTINUE
DO 10000 1

= 1,0IM1,1

DO 10010 J = 1,DIM2,1
MAT2(1,J) = MAT1(I,J)
CONTINUE

CONT INUE
RETURN
END
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THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
RAU-SIGMA, RAU-RAU, SIGMA-SIGMA FOR MODEL3

& NV, K, NRAU)
INTEGER COUNT (NRAU,NY)
INTEGER SEQ (NRAU,NY,NT)
INTEGER T,P
REAL CLIMA (NY,O0:NT)
REAL MIDDLE
REAL DER2 (NP,NP)
REAL MU {2,0:NT)

REAL SIGMA (NRAU,NV)
REAL RAU (NRAU,NV)

OPEN (UNIT=9,FILE="LPT1")

++-. THE 2ND DERIVATIVE FOR RAU-RAU, SIGMA-SIGMA AND
RAU-SIGMA ARE COMPUTED

DO 20, IY = 1, NY
DO 330, T = 1, COUNT (1,IY)
P =SEQ (1,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PARTZ = (CLIMA(IY,P-1)-MU{1,P-1))/SIGMA{]l,K)
DER2 (11,11) = DER2 (11,11)-(PART2%X%2)
ENDIF
IF ((CLIMA(IY,P).NE.-29%).AND.(CLIMA(IY,P-1)
& NE.-9%99)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)-RAU(1,K)X
& {((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,K)}))
PARTI = ((CLIMA{IY,P)-MU(1,P))/S5IGMA({1,K)*%%2)
PART4 = ((CLIMA(IY,P-1)-MU(L1,P-1}}/5IGMA(L1,K)X%2)
DER2(7,7) = DER2(7,7)+MIDDLEX {2XPART3/SIGMA(1,K)-2*
& RAU(1,K)*¥PART4/SIGMA(L,K) )+ ( (-PART3I+PART4
& ¥RAU(L ,K) ) %%2)—-1/(SIGMA(1,K)X%2)
DER2(11,7) = DERZ2(11,7)})+MIDDLEX (-PART4)+(-PART3I+RAU{1,K)
& XPARTA } ¥PARTZ2
ENDIF
330 CONT INUE

DO 340, T = 1, COUNT (2,1IY)
P = S8EQ (2,1Y,T)
IF (CLIMA(IY,P-1).NE.~-999) THEN

PART2 = (CLIMA{IY,P-1)-MU(2,P-1))/SIGMA(2,K)
DERZ2 (12,12) = DER2(12,12)-(PART2%x2)
ENDIF '
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IF ((CLIMA(IVY,P).NE.-99%9).AND.(CLIMA(IY,P-1)

& .NE.,-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(2,P))/SIBMA(2,K)-RAL(2,K)X
& ({CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(Z2,K)))
PART3 = ((CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)%%2)
PART4 = ((CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,K)*x2)
DER2(8,8)=DER2(8,8)+MIDDLE* (2XPART3/SIGMA(2,K)—2X
& | RAU(2,K)¥PART4/SIGMA(2,K) )+ ( (-PART3+PART4
& KRAU(2,K) ) ¥%2)—1/(SIGMA(2,K) X%2)
DER2(12,8)=DER2(12,8)+MIDDLEX (—PART4)+(-PARTI+RAU(2,K)
& XPART4 ) ¥PART2
ENDIF
340 CONT INUE

DO 350, T = 1, COUNT (3,1Y)
P = SEQ (3,I1Y,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PARTZ = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)
DER2 (13,13) = DERZ (13,13)—(PART2X%2)
ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)
& .NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(2,P))/SIBMA(3,K)-RAU(3,K)*
& ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)))
PART3 = ((CLIMA{IY,P)-MU(Z,P))/SIGMA(3,K)X%2)
PART4 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)%x2)
DER2(9,9)=DER2(9,9}+MIDDLEX (2XPART3/SIGMA(3,K)-2%
& RAU(3,K) ¥PART4/SIGMA(3,K) )+ ( (-PART3+PART4
& KRAU(I,K) ) X%2) -1/ (SIGMA(3,K)%Xx2)
DER2(13,9)=DERZ(13,9)+MIDDLEX (-PART4) +{ ~PART3I+RAU(3I,K)
& XPART4) XPART2 :
ENDIF
350 CONT INUE

DO 360, T = 1, COUNT (4,1Y)
P = SEQ (4,1Y,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PART2Z = (CLIMAC(IY,P-1)-MU(2,P~1))/SIGMA{4,K)
DER2 (14,14} = DER2Z (14,14)-(PART2%%2)
ENDIF
IF ((CLIMA(IY,P).NE.-29%).AND. (CLIMA(IY,P-1)
& LNE.-99%)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(1,P))/SIGMA(4,K})—RAU{(4,K)¥*
& ((CLIMA(IY,P-1)-MU(2,P-1))/SI6MA(4,K)))
PART3 {{(CLIMA(IY,P)-MU(1,P))/SIGMA{4,K)%¥%X2)

Il

PART4 = ((CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(4,K)*X%2)
DER2(10,10)=DER2(10,10)+MIDDLEX (2XPART3/SIGMA(4,K) -2
& RAU(4,K)¥PARTA4/SIGMA(4,K) )+ ( (~-PART3+PART4
& XRAU(4,K))X%2)—1/(SIGMA(4,K)*%x2)
DER2(14,10)=DER2(14,10)+MIDDLEX (-PART4 )+ (-PARTI+RAU(4,K)
& XPARTA) XPART2
ENDIF
360 CONT INUE
20  CONTINUE
DER2(7,7) = —DER2(7,7)
DER2(8,8) = —-DER2(8,8)
DER2(9,9) = -DER2(9,9)
DER2(10,10) = -DER2(10,10)
RETURN
END
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70

...... THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
PARAMETERS BY THE NEWTON-RAPHSON METHOD (M4).

SUBROUTINE NEWT4 (ALPHA,PSI,RAU,NPARM,MAXITER,NT,NY,CLIMA,SER,

INTEGER COUNT (4,NY)

INTEGER SEG (4,NY,NT)

REAL A (NP,O:NP)

REAL PSI (2,NV,NPARM)

REAL ALPHA (2,NV,NPARM)

REAL PHI (NPARM,O:NT)

REAL DER (NP)

REAL DER2 (NP,NP)

REAL CLIMA (NY,O0:NT)

REAL THETA (NP)

REAL RAU (NRAU,NV)

FORMAT (' THE SUCCESSIVE THETA VALUES FOR VARIABLE: ', I14)
FORMAT (' .... DID NDOT CONVERGE' )

FORMAT (/, ' .... ', 13, ° ITERATION', /)

OPEN (UNIT=%2,FILE='LPTL1")

IC = O
WRITE (9,15) K
...... TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
VECTOR
DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)
THETA (J+3) = ALPHA (2,K,J)
THETA (J+&) = PSI (1,K,J)
THETA (J+9) = PSI (2,K,J)
CONT INUE

DO 70, J = 1, NRAU
THETA (J+12) = RAU (J,K)
CONT INUE
.ve... ITERATIVE PARAMETER ESTIMATION
DO 10, ITER = 1, MAXITER

...... VECTOR OF 1ST DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
IS COMPUTED

CALL MADERV (NPARM,NY,NT,ALPHA,PSI ,RAU,CLIMA,SEG,COUNT,
DER,DERZ,PHI ,NP,NV,K,NRAU)
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40

30

80

10

50

ccC
cc
cC

310
50

DO 40, KK = 1, NP
DO 50, J = KK, NP
DER2 (J,KK) = DER2 (KK,J)
CONTINUE
CONT INUE
PRINT 35, ITER

...... NEW PARAMETER ESTIMATES ARE COMPUTED
CALL NEWPARM (NP,DER,DERZ,THETA,EPS,IC,A)
ca.-.. LPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM

ALPHA (1,K,J) = THETA (J)
ALPHA (2,K,J) = THETA (J+3)
PSI (1,K,Jd) = THETA (J+6)
PSI (2,K,J) = THETA (J+9)
CONT INUE
DO B0, J = 1, NRAU
RAU (J,K) = THETA (J+12)

CONT INUE
...... TEST FOR CONVERGENCE

IF (IC) 10,10,60
CONT INUE
WRITE (9,25)
CONVG = ©O

RETURN
END

SUBROUTINE PMAT(MAT,M,N,DIM1,DIM2)

e —— i ——— e e S o e e R A b e e P e ey ER S B o e o g e ke o

REAL MAT(M,N)}
INTEGER DIML,DIM2

OPEN (UNIT=12,FILE="\WATER\DATA\RESI.DAT  ,STATUS=" UNKNOWN’ )

¥¥% THIS ROUTINE PRINTS OUT A MATRIX OF SIZE M BY N
¥¥% EACH ELEMENT IS PRINT IN A FIELD OF . CHARACTERS WITH
*¥% TWO DECIMAL PLACES {I.E. NNN NNN.NN)

DO 50 I = 1,DIM1,1
WRITE (12,510) (MAT(I,3), J = 1,DIM2)
FORMAT(* ~,7(F10.4))

CONT INUE

RETURN

END
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..... . THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
AND THE MATRIX OF SECOND DERIVATIVES FOR MODELA4.

INTEGER COUNT (4,NY)
INTEGER SEQ@ (4,NY,NT)
REAL CLIMA (NY,0:NT)
REAL MU (2,0:365)

REAL SIGMA (2,0:365)
REAL DER (NP)

REAL DERZ (NP,NP)

REAL PSI (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

DO 10, M = 1, 2
DO 30, I = O, NT
MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 40, L = 1, NPARM
MU (M,I) = MU (M, 1) + ALPHA (M,K,L) % PHI (L,I)
SIGMA (M,I) = SIGMA (M,1) + PSI (M,K,L) % PHI (L,I)
CONTINUE
CONT INUE
CONT INUE

DO 8O, I = 1, NP
DER (I) = 0.0
DO 90, J = 1, NP
DERZ (1,J) = 0.0
CONT INUE
CONTINUE

CALL M4DER1 (NY,NT,NP,NPARM,COUNT,SER,CLIMA,MU,SIGMA,RAU,PHI,DER,
NV, K, NRAU) :

CALL M4DERZ2{NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
NV, K , NRAU) :

CALL M4DER3I(NY,NT,NP,NPARM,COUNT,SER,CLIMA,MU,SIGMA,RAU,PHI,DERZ,

NV, K , NRAU)

CALL M4DERA4 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI ,DERZ,
NV, K, NRAU )

RETURN

END
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THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 4,

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,P
REAL CLIMA (NY,O:NT)
REAL MIDDLE
REAL. DER (NP)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
DO 850, L = 1, NPARM
DO B70, M = 1, 2
IF (M .EG. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ@. 2) THEN
N =1
NN = 2
J = 4
KK = 3
ENDIF

THE VARIABLE DER1 COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR

THE VARIANCE FUNCTION
DERZ = O
DER1 = O
DER3 = O .
Do 10, IY = 1, NY

DO 330, T = 1, COUNT (M,IV)

P = SEQ (M,1Y,T)

IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.
~999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)-RAU(L,K)xX
((CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-1)})

DER1 = DER1+MIDDLEX(-PHI(LL,P)/SIGMA(M,P)+RAU(1,K)X
PHI(LL,P-1)/SIGMA(M,P-1))

PARTL = (- ((CLIMA(IY,P)-MU{M,P))/SIGMA(M,P)X%x2)X
PHI(LL,P))
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PART2 = ((CLIMA(IY,P-1)~MU(M,P-1))/SIGMA(M,P—1)%%2)

& xPHI(LL,P-1)
DER3 = DER3+MIDDPLEX(PART1+RAU(1,K)*PART2)
ENDIF
DER2 = DERZ2+PHI(LL,P)/SIGMA(M,P)
330 CONTINUE

DO 350, T = 1, COUNT (J,1Y)
P = SEQ (J,IY¥Y,T)
IF ((CLIMA(IY,P).NE.-929).AND.(CLIMA(IY,P~1).NE.

& -29%9)) THEN
MIDDLE = ((CLIMA(IY,P)—-MU(N,P)}/SIGMA(N,P)~-RAU(1,K)X
& ((CLIMA(IY,P—1)-MU(NN,P-1))/SIGMA(NN,P-1)))
DER1 = DER1+MIDDLEX (RAU(1,K)*PHI(LL,P-1)/SIGMA -
& (NNpP_l))
PART2 = ((CLIMA(IY,P-1)}-MU(NN,P-1))/SIGMA(NN,P~1)
& XK2)kPHI(LL,P-1)
DER3 = DER3+MIDDLEX(RAU(1,K)¥PART2)
ENDIF
350 CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEG (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -99%)) THEN
MIDDLE =((CLIMA(IY,P)—MU(NN,P))/SIGMA(NN,P)-RAU(1,K)
& X((CLIMA(IY,P-1)=-MU(N,P=1))/SIGMA(N,P-1)))
DER1 = DER1+MIDDLEX(-PHI(LL,P)/SIGMA(NN,P))
PARTL = (=((CLIMA(IY,P)}-MU(NN,P))/SIGMA(NN,P)XX2)x%
& PHI(LL,P))
DER3 = DER3I+MIDDLEXPARTL
ENDIF
DER2 = DERZ2+PHI(LL,P)/SIGMA(NN,P)
360 CONT INUE
10 CONT INUE
IF (M .EQ. 1) THEN
DER (LL) = -DER1
DER (LL+&6) = (-DER3-DERZ2)
ELSEIF (M .EQ@. 2) THEN
DER(LL+3) = ~DERL
DER(LL+9) = (~DER3-DER2)
ENDIF
870 CONTINUE

850 CONT INUE

...... THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT IS COMPUTED

DER (NP) = O
DO 20, IY = 1, NY
DO 700, T = 1, COUNT (1,1Y)
P = SEQ (1,IY,T) ~
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA{IY,P-1).NE.-999))
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& THEN

PARTL = (CLIMA(IY,P)-MU(1,P))/SIGMA(L,P)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))}/SIGMA(Ll,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)XPART2)XPART?2
ENDIF
700 CONT INUE

DO 701, T = 1, COUNT (2,1Y)
P = SEQ (2,1Y,T)
IF ({(CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

& THEN
PARTL = (CLIMA(IY,P)-MU(Z,P))/SIGMA(2,P)
PARTZ = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)
DER(NP) = DER(NP)+{PART1-RAU(1,K)*PART2)XPART2
ENDIF
701 CONT INUE

DO 702, T = 1, COUNT (3,1Y)
P = SEQ (3,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.{CLIMA(IY,P-1).NE.=-999))
& THEN

PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA{2,P)

PART2 = (CLIMA(IY,P-1)~MU(1,P-1))/SIGMA(1,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF

702 CONT INUE

DO 703, T = i, COUNT (4,IVY)
P = SEQ (4,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-99%))

& THEN
PARTL = (ELIMA(IY,P)-MU(1,P))}/SIGMA{L,P)
PARTZ2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P~1)
DER(NP) = DER(NP)}+(PART1-RAU{1,K)*PARTZ)*PART2Z
ENDIF
703 CONTINUE
20 CONT INUE
RETURN
END

...... SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX
SUBROUTINE TRNSP (PHI,NP,NTT,TRSP,NPARM,NT)

REAL PHI (NT,NPARM)

REAL TRSP (NPARM,NT)

DO 10, I = 1, NP
DO 20, J = 1, NTT
TRSP (I,J) = PHI (J,I)
20 CONT INUE
10 CONTINUE
RETURN
END
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csseases THIS SUBROUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES:
ALPHAID-ALPHALID, PSIjD-PSIiD, ALPHAJD-PSIiD, ALPHAjW-
ALPHALIW, PSIjW-PSIiW, ALPHAjW-PSIiW FOR MODEL 4

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT}
INTEGER T,P

REAL CLIMA (NY,O0:NT)
REAL MIDDLE

REAL DER2 (NF,NP)
REAL MU (2,0:369)
REAL SIGMA (2,0:3465)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

DO B850, LL = 1, NPARM

DO 870, LLL = 1, NPARM
DO 880, M = 1, 2

IF (M .EQ. 1)THEN

N = 2
NN = 1
J =3
KK = 4

ELSEIF (M .EQ. 2) THEN
N =1
NN = 2
J =4
KK = 3

ENDIF

...... THE VARIABLE DER COMPUTES THE 2ND DERIVATIVES FOR

ALPHA-ALPHA, DER3 THE DERIVATIVES PSI-PSI AND DER4 THE
DERIVATIVES ALPHA-PSI

DER = 0
DER3 = O
DER4 = ©O
DO 10, 1Y = 1, NY
DO 330, T = 1, COUNT (M,IVY)
P = SEQ (M,IV,T)
PART = (-PHI(LL,P)/SIBGMA(NN,P))+RAU(L1,K)*PHI(LL,P-1)

/SIGMA(NN,P-1)

PARTZ2 = (-PHI(LLL,P)/SIGMA(NN,P}}+RAU{1,K)*PHI(LLL,
P=-1)/5IGMA(NN,P-1)

DER = DER+PART*PART2

IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.
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—-%9%)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P}-RAU(1,K)X
((CLIMA(IY,P-1)-MU(NN,P-1)})}/SIGMA(NN,P-1)))

PART1 = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)*%2)
PART2 = ((CLIMA(IY,P-L)-MU(NN,P-1))/SIGMA(NN,P-1)X%2)
PART3 = PHI{LLL,P)

PART4 = PHI(LLL,P-1)

PARTS = PHI(LL,P)

PARTS = PHI(LL,P-1)

DER3 = DER3+MIDDLEX(2X%PART1/SIGMA(NN,P)XPARTIXPARTS
-2%RAU(1,K)XPART2/SIGMA(NN,P-1) XPART4XPARTS ) +
(-PART1¥PART3+PART2XRAU(1,K ) XPARTA ) % ( ~PART 1
PARTS+PARTZ2XPARTAX¥RAU(1,K) ) ~PARTI*PARTS/
(SIGMA{NN,P)XXx2)

DER4 = DER4+MIDDLEX (PART3I*PARTS/ (SIGMA(NN,P)X%2) -~
RAU(1,K)XPARTAXPARTS/ (SIGMA(NN,P—1)XX2) )+ (-
PART1XPART3I+RAU(1,K)*PART2XPART4) X { —-PARTS/
SIGMA(NN,P)+RAU(1,K)XPART&/SIGMA(NN,P-1))

ENDIF

CONT INUE

DD 350, T = 1, COUNT (J,I1Y)

P = SEQ (J,IY,T)

PART = (RAU(1,K)*PHI(LL,P-1)/SIGMA(NN,P-1))

PART2 = (RAU(1,K)%PHI(LLL,P-1}/SIGMA(NN,P~1))

DER = DER+PART¥PART2

IF ((CLIMA{IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

-59%)) THEN

MIDDLE = ({CLIMA(IY,P)-MU(N,P))}/SIGMA{N,P)~RAU(1,K)X

((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-1)))

PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA{NN,P~-1)%%2)
PARTY = PHI(LLL,P}

PART4 = PHI(LLL,P-1)

PARTS = PHI(LL,P)

PART6 = PHI(LL,P-1)

DER3 = DER3JI+MIDDLE*(-2%RAU(1,K)*¥PARTZ2/SIGMA{NN,P-1)%
PARTAXPARTS )+ (RAU( L, K)XPART2XPARTA )X (RAU(1,K) X
PART2XPARTS)

DER4 = DER4+MIDDLEX (—RAU{1,K)*PARTAXPARTSL/ (SIGMA (NN
yP-1)%%2) ) +RAU(1,K)XPARTZ¥PART4XRAU( 1 ,K) XPARTSL/
SIGMA(NN,P-1)

ENDIF

CONTINUE

DO 360, T = 1, COUNT (KK,IY}

P = SEQ (KK,IY,T)
PART = (-PHI(LL,P)/SIGMA(NN,P))

PART2 = (~PHI(LLL,P)/SIGMA(NN,P})

DER = DER+PARTXPART2

IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P—-1).NE.

-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(1,K)*
((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-1)))
PARTL = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P) %X 2)
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PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PARTS = PHI(LL,P)
PARTS = PHI(LL,P-1)
DER3 = DER3+MIDDLEX (2%PART1/SIGMA(NN,F ) )*PART3IXPARTS
& +(—-PARTLXPART3) % (-PART1*PARTS5)-PART3IXPARTS/
& (SIGMA(NN,P)%xX2)
DER4 = DER4+MIDDLEXPART3XPARTS/{SIGMA(NN,P)%Xx2Z)+
& (—PART1XPART3% {~PARTS5/SIGMA(NN,P) })
ENDIF
3&0 CONTINUE
10 CONTINUE

IF (M .EQ. 1) THEN

DERZ (LL,LLL) = -DER
DER2 (LL+&6,LLL+&) = ~DER3
DER2 (LL,LLL+&6) = —-DERS4
ELSEIF (M .EQ. 2) THEN
DERZ (LL+3,LLL+3) = -DER
DER2 (LL+9,LLL+9) = -DER3
DER2 (LL+3,LLL+%) = —-DER4
ENDIF
880 CONT INUE
870 CONT INUE

850 CONT INUE

RETURN
END

eneses THIS FUNCTION COMPUTES THE GAMMA FUNCTION OF X GIVEN

BY:
THE DEFINITE INTEGRAL BETWEEN O & INFINITY OF THE
FUNCTION:
Y XX (X-—-1) % EXP{-Y)
w.r.t. VY

F (A .BE. 10) THEN

=G % A
A=A+ 1
GOTO 4
ENDIF
2 T = (1 + (0.08333I33 + 0.00347222 - 0.002681327 / &) / A) / A
GAMMA = EXP(-1 %X A + (A — 0.5) % LOG(A) + 0.918937)%TXA/G

RETURN
END
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«sev++ THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
RAU-ALPHAjD, RAU~-PSIjD, RAU-RAU, RAU-ALPHAIW AND
RAU-PSIjW FOR MODEL 4
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SUBROUTINE M4DER3 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,P
REAL CLIMA (NY,0:NT)
REAL MIDDLE
REAL DER2 (NP,NP)
REAL MU (2,0:3&5)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
DO 850, LL = 1, NPARM
DD 870, M = 1, 2
IF (M .EQ. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK = 3
ENDIF
...... THE VARIABLE DER1 COMPUTES THE 2ND DERIVATIVES FOR RAU-
ALPHA, WHILE DER3 COMPUTES THE 2ND DERIVATIVES FOR RAU-
PSI
DERL = O
DER3 = O

Do 10, IY = 1, NY
DO 530, T = 1, COUNT (M,1Y)
P = SE@ (M,IY,T)
IF ({(CLIMA(IY,P).NE.-999}).AND.(CLIMA{IY,P-1).NE.
-999)) THEN
PART1 (CLIMA{IY,P)-MU(M,P))/SIGMA(M,P)
PART?Z2 (CLIMA(IY,P~1)-MU(M,P-1))/SIGMA(M,P-1)
MIDDLE = PART1~RAU(1,K)*PART2
DER1 = DER1+MIDDLEX (-PHI(LL,P-1)/SIGMA(M,P-1))+
(-PHI(LL,P)/SIGMA(M,P)+RAU(L,K)*PHI (LL,P-1)
/SIGMA(M,P—-1))%PART?Z

(|
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DER3 = DER3Z+MIDDLEX (PART2/SIGMA(M,P-1))%(—-PHI
& (LL,P—1))+( (PART1/SIGMA(M,P) )X (—-PHI (LL,P) )+RAU
& (1,K)% (PART2/SIGMA(M,P-1))*PHI (LL,P-1))XPART?2
ENDIF
530 CONTINUE

DO 5SSO, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
& -99%)) THEN
PART1 = (CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)
PART2 = (CLIMAR(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-1)
MIDDLE = PART1-RAU(1,K)*PART2

DER1 = DER1+MIDDLEX (-PHI(LL,P-1)/SIGMA(NN,P-1))+
& (RAU{1,K)XPHI(LL,P-1)/SIGMA(NN,P-1))%PART2
DER3 = DER3+MIDDLEX (-PHI(LL,P-1)/SIGMA(NN,P-1))x%
& PARTZ2+(RAU(L1 ,K)¥PHI(LL,P=-1)/SIGMA(NN,P-1) )X
& PRARTZX %2
ENDIF
550 CONTINUE

DO 560, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PART2 = (CLIMA(IY,P-1)-MU(N,P-1)}/SIGMA(N,P-1)
DER1 = DER1+(-PHI(LL,P)/SIGMA{NN,P))*PART2
ENDIF
IF ((CLIMA{IY,P).NE.-9%99).AND.(CLIMA(IY,P—-1}).NE.
& =-?29)) THEN
PART3 = ((CLIMA(IY,P)-MU{NN,P)}/SIGMA(NN,P))
MIDDLE = (PART3-RAU(1,K)}X*PART2)
DER3 = DER3+(-PHI(LL,P)/SIGMA(NN,P))xPARTIXPARTZ2
ENDIF
560 CONT INUE
10 CONT INUE

IF (M .EQ. 1)} THEN
DER2(LL,NP) = DER1
DERZ (LL+6,NP) = DER3

ELSEIF (M .EQ. 2) THEN

DER2 (LL+3,NP) = DER1
DERZ (LL+9,NP) =DER3J
ENDIF
870 CONT INUE

850 CONTINUE
...... THE 2ND DERIVATIVE RAU-RAU 1S5 COMPUTED

DERZ (NP,NP) = O
DO 20, IY = 1, NY
DO 330, T = 1, COUNT (1,IVY)
P = SEG (1,IY,T)
1F (CLIMA(IY,P-1).NE.-999) THEN
PARTZ = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,P~1)
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DER2(NP,NP)} = DERZ(NP,NP)+PART2%XxX2
ENDIF
CONT INUE

DO 340, T = 1, COUNT (2,1Y)
P = SEQ@ (2,1Y,T) :
IF (CLIMA(IY,P-1).NE.-999) THEN

PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(Z,P-1)
DERZ(NP,NP) = DER2(NP,NP)+PARTZXX%2
ENDIF
CONT INUE

DO 350, T = 1, COUNT (3,IVY)
P = SEQ (3,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,P-1)
DERZ(NP,NP) = DERZ(NP,NP)+PART2%%x2
ENDIF
CONTINUE

DO 3&0, T = 1, COUNT (4,1IY)
P = S5EQ (4,1Y,T)
IF (CLIMA(IY,P-1}).NE.-999) THEN

PARTZ = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)
DERZ (NP,NP) = DERZ(NP,NP)+PART2XX2
ENDIF

CONTINUE
CONT INUE
DERZ (NP,NP) = —DER2 (NP,NP)
RETURN
END

L e e e . g T i . . T . A MBS b e . e e e e i ) M T b e o . o e e . . T S Y e S ———————— . e

...... THIS SUBROUTINE COMPUTES PI=PROBABILITY THAT A WET DAY
FOLLOWS A WET DAY OR THE PROBABILITY THAT A WET DAY
FOLLOWS A DRY DAY,

——  ———————————— . — " AT bk ok ok o o e o e e A o A . P ek o o o o e . e g

INTEGER STATE
REAL L AMBDA
REAL GAM (2,NP)
REAL PHI (NP,O0:NT)
REAL PI
LAMBDA = ©O
DO 10, I = 1, NP
LAMBDA = LAMBDA + GAM (STATE,I) % PHI (I,K)
CONT INUE
PI = EXP (LAMBDA) / (1 + EXP (LAMBDA))
RETURN
END
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THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
ALPHAjD-ALPHAiIW, ALPHAJD-PSIiW, PSIjD-PSIiW AND
ALPHAJW-PSIiD FDR MODEL 4.

INTEGER
INTEGER
INTEGER

REAL
REAL
REAL
REAL
REAL
REAL

DO 850, oL
DO 870, LLL = 1, NPARM

COUNT (4,NY)

SEQ (4,NY,NT)
T,P

CLIMA (NY,O:NT)
DERZ (NP,NP)

MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,O:NT)
RAU (NRAU,NV)

1, NFPARM

THE VARIABLE DER COMPUTES THE 2ZND DERIVATIVE ALPHAD-
ALPHAW, DER3 THE DERIVATIVE ALPHAD-PSIW, DER4 THE
DERIVATIVE PSID-PSIW AND DERS THE DERIVATIVE ALPHAW-

PSID
DER = O
DER3 = O
DER4 = 0
DERS = O
DO 10, IY = 1, NY
DO 350, T = 1, COUNT (3,1IY)

P = SEG (3,IVY,T)

PART = (RAU(1,K)¥PHI(LL,P-1)/SIGMA(1,P-1))

DER = DER+PARTX (-PHI(LLL,P)/SIGMA(2,P))

IF (CLIMA(IY,P).NE.-999) THEN

DER3 = DER3I+PARTX (-PHI (LLL,P)/SIGMA(2,P))%{(CLIMA

(IY,P)-MU(2,P))/SIGMA(2,P))

ENDIF

IF ((CLIMA(IY,P).NE.~-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN

PART2 = ((CLIMA(IY,P-1)-MU(1,P—-1))/SIGMA(1,P-1)%X%2)
*¥PHI (LL,P-1)

PARTL = (—(CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)XX2)x
PHI (LLL,P)

DER4 = DER4+(PART1XRAU(1,K)*PARTZ2)

ENDIF

IF (CLIMA(IY,P-1).NE.~999) THEN
PART (-PHI{LL,P)/SIGMA(2,P))
DERS DERS+PARTXRAU(1,K)*PHI(LLL,P-1)/8IGMA{1,P~1)x%
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(CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(L1,P—1)
ENDIF

CONTINUE

DO 360, T = i, COUNT (4,1Y)

P = SEQ (4,IY,T)

PART = (-PHI{LL,P)/SIGMA(1,P))

DER = DER+PART* (RAU(1,K)¥PHI(LLL,P-1)/SIGMA(2,P-1))

IF (CLIMA(IY,P-1).NE.-999) THEN

DER3 = DERI+PARTX(RAU(1,K)*PHI (LLL,P-1)/SIGMA(2,P-1)
y % (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P~1)

ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
~999)) THEN
PARTL = (—((CLIMA(IY,P)-MU(1,P))/SIGMA(L1,P)%X2)%
PHI(LL,P)) _
PART2 = ((CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)%X%2)X

PHI(LLL,P~1)
DER4 = DER4+RAU(1,K)*PART2XPART1
ENDIF
IF (CLIMA(IY,P).NE.-999) THEN

PART = (RAU(1,K)Y¥PHI(LL,P-1)/SIGMA(2,P-1})
DERS = DERS+PARTX{-PHI(LLL,P)/SIGMA(1,P))*(CLIMA
{IY,P)-MU{1,P))/SIGMA(1,P)
ENDIF
CONT INUE
CONTINUE
DER2 (LL,LLL+3) = -DER
DERZ (LL,LLL+9} = -DER3
DER2 (LL+6,LLL+9) = -DER4
DERZ (LL+3,LLL+&) = —-DERDS
CONTINUE
CONTINUE
RETURN

END

SUBROUTINE PPMAT(MAT,M,N,DIM1,DIM2)

REAL MAT(M,N)
INTEGER DIM1i,DIM2

OPEN (UNIT=9,FILE="LPT1")

¥xx THIS ROUTINE PRINTS OUT A MATRIX OF SIZE M BY N
Xix EACH ELEMENT IS PRINT IN A FIELD OF . CHARACTERS WITH
¥xx TWO DECIMAL PLACES (I.E. NNN NNN,NN)

WRITE (9,5020}

DO S000 1 =
WRITE (9
FORMAT ( °

CONTINUE

1,DIM1,1
,5010) (MAT(1,J), J = 1,DIM2)
©,7(F15.6))

WRITE (%9,35020)

FORMAT (/)
RETURN
END
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sseae: THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
PARAMETERS BY THE NEWTON-RAPHSON METHOD FOR MS.

SUBROUTINE NEWTS (ALPHA,PSI,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)

REAL A (NP,0:NP)

REAL PSI (2,NV,NPARM)

REAL ALPHA (2,NV,NPARM)

REAL PHI (NPARM,O:NT)

REAL DER (NP)

REAL DERZ (NP,NP)

REAL CLIMA (NY,O:NT)

REAL THETA (NP)

REAL RAU (NRAU,NV)

FORMAT (' THE SUCCESSIVE THETA VALUES FOR VARIABLE: *, I4)
FORMAT (° .... DID NOT CONVERGE")

FORMAT (/5 ° +... °, I3, ° ITERATION', /)

OPEN (UNIT=9,FILE="LPT1")

IC =290

WRITE (9,15) K

...... TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
VECTOR

DG 20, J = 1, NPARM
THETA (J)} = ALPHA (1,K,J)

THETA (J+3) = ALPHA (2,K,J)
THETA (J+6) = PSI (1,K,J)
THETA (J+9) = PSI (2,K,J)
CONT INUE
DO 70, J = 1, NRAU
THETA (J+12) = RAU (J,K)
CONT INUE

...... ITERATIVE PARAMETER ESTIMATION
DD 10, ITER = 1, MAXITER

...... VECTOR OF 18T DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
IS COMPUTED

CALL MSDERV (NPARM,NY,NT,ALPHA,PSI,RAU,CLIMA,SER,COUNT,
DER,DER2,PHI,NP,NV, K, NRAU)
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DO 40, KK = 1, NP
DO 50, J = KK, NP
DER2 (J,KK) = DER2 (KK,J)
CONT INUE
CONT INUE
PRINT 35, ITER

...... NEW PARAMETER ESTIMATES ARE COMPUTED
CALL NEWPARM (NFP,DER,DER2,THETA,EPS,IC,A)
...... UPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM

ALPHA (1,K,J) = THETA (J)
ALPHA (2,K,J) = THETA (J+3)
PSI (1,K,J) = THETA (J+&)
PSI (2,K,J) = THETA {(J+9)

CONT INUE

DO 80, J = 1, NRAU
RAU (J,K) = THETA (J+12)

CONTINUE
...... TEST FOR CONVERGENCE

IF (IC) 10,10,60
CONTINUE
WRITE (9,25)
CONVG = 0

RETURN
END

FUNCTION DIM1 (X)

INTEGER NPMAX
PARAMETER {NPMAX=20)

COMMON /ONE/ NPP,THET (NPMAX),DERI (NPMAX)
DIMENSION XT(NPMAX)

OPEN (UNIT=9,FILE='LPT1")
DO 10, J=1,NPP
XT(J)=THET (J)+X*DERI(J)

CONT INUE
DIMI=FUNC (XT)

RETURN
END
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caeaee THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
AND THE MATRIX OF SECOND DERIVATIVES FOR MODELS.

L . . e s i B Al il i U e . . et TS R PTR Y n n  ll rt MM W H P o o o e e e b ke GO S T o e e WAL P e o el S e Ak M AL e A o

SUBROUTINE MSDERY (NPARM,NY,NT,ALPHA,PSI,RAU,CLIMA,SEQ,COUNT,

— o ————————— o T T i T — - W Y T G ——————— o — . i ST S T U o e e Sy o e

INTEGER COUNT {4 ,NY)
INTEGER SEQ (4,NY,NT)

REAL CLIMA (NY,O0:NT)
REAL MU (2,0:365)

REAL SIGMA (2,0:365)
REAL DER (NP)

REAL DER2 (NP ,NP)

REAL PSI (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)

PG 10, M = 1, 2
DO 30, I = 0, NT
MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 40, L = 1, NPARM
MU (M,I) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) % PHI (L,I)
CONTINUE
CONT INUE
CONT INUE

DO B0, I = 1, N
DER (I) =
po 90, J = 1, NP
DER2 (1,J) = 0.0
CONT INUE
CONTINUE

CALL MSDER1 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI ,DER,
NV, K, NRAU)

CALL MSDER2(NY,NT,NP,NPARM,COUNT,SEG,CL IMA,MU,SIGMA,RAU,PHI,DER2,
NV, K, NRAU)

CALL MSDERJ(NY,NT,NP,NPARM,COUNT,SEG,CLIMA,MU,SIGMA,RAU,PHI ,DER2,
NV, K, NRAU)

CALL MSDERA4(NY,NT,NP,NPARM,COUNT,SEQR,CLIMA,MU,SIGMA,RAU,PHI,DERZ,
NV, K,NRAU)

RETURN
END
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THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL S.

SUBROUTINE MSDER1 (NY,NT,NP,NPARM,COUNT,SEG,CLIMA,MU,SIGMA,

INTEGER COUNT {NRAU,NY)
INTEGER SEQ (NRAU,NY,NT)
INTEGER T,P
REAL CLIMA (NY,O:NT)
REAL MIDDLE
REAL DER (NP)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
DO 850, LL = i, NPARM
DO 870, M = 1, 2
IF (M .EQ. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J =4
KK = 3
ENDIF

THE VYARIABLE DER1 COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2Z2 AND DER3I COMPUTE THE DERIVATIVE FOR

THE

DER2
DER1
DER3

v

onon

DO 10,
DO 330, T = 1, COUNT (M,IVY)

ARIANCE FUNCTION
0

0

0

IY = 1, NY

P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIBMA(M,P)-RAU(M,K)X
((CLIMA(IY,P~1)=MU(M,P-1))/SIGMA(M,P-1)))

DER1 = DER1+MIDDLEX (—PHI(LL,P)/SIGMA(M,P)+RAU(M,K}x
PHI(LL,P-1)/SIGMA(M,P-1))

PARTL = (~((CLIMA(IY,P)~MU(M,P))/SIGMA(M,P)%X%2)X
PRI(LL,P))
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PART2 = ((CLIMA(IY,P-1)-MU(M,P-1))/8SIGMA(M,P-1)X%2)
¥PHI(LL,P-1)
DER3 = DER3I+MIDDLEX {PART1+RAU(M,K)¥PART2)
ENDIF
DER2Z = DERZ+PHI(LL,P}/SIGMA(M,P)
CONT INUE

DO 350, T = 1, COUNT (J,I1VY)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
~-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)~RAU(J,K)X
((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-1)))
DER1 = DER1+MIDDLEX(RAU(J,K)*PHI(LL,P-1)/SIGMA
(NN,P—1})
PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-1)
XX2)KPHI(LL,P-1)
DER3 = DER3+MIDDLEX (RAU(J,K)*PART2)
ENDIF
CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF ((CLIMA(IY,P}.NE.-999).AND,(CLIMA{IY,P-1).NE.
-999)) THEN
MIDDLE=( (CLIMA{IY,P)=-MU{NN,P))/SIGMA(NN,P)-RAU(KK,K)
X( (CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-1)))
DER1 = DER1+MIDDLEX(—PHI(LL,P)/SIGMA(NN,P))

PARTL = (~({(CLIMA(IY,P)—-MU(NN,P))/SIGMA(NN,P)¥Xx2)x
PHI(LL,P))
DER3 = DER3+MIDDLEXPART1
ENDIF
DER2 = DER2+PHI(LL,P)/SIGMA(NN,P)
CONTINUE
CONT INUE
IF (M .EQ. 1) THEN
DER (LL) = —DER1
DER (LL+&6) = (-DER3-DER2)
ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DER1
DER(LL+9) = (-DER3-DER2) .
ENDIF
CONTINUE

CONTINUE

«+vasas THE DERIVATIVE WITH REGPECT TO THE AUTOCORRELATION
CDEFFICIENT 1S COMPUTED

DO 20, 1Y = 1, NY
DO 700, T = 1, COUNT (1,IY)
P = SEQ@ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.
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& -992)) THEN

PART1 = (CLIMA(IY,P)-MU(1,P))/SIGMA(L,P)
PART2 = (CLIMA(IY,P-1)-MuU(l1,P~1))/SIGMA{1,P-1)
DER(13) = DER({13)+(PART1-RAU(1,K)XxPART2)XPARTZ2
ENDIF
700 CONT INUE

DO 701, T = 1, COUNT (2,1Y)
P = SEG (2,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGBMA(2,P-1)
DER{14) = DER(14)+(PART1-RAU(2,K)XPARTZ2)¥PART2
ENDIF
701 CONT INUE

DO 702, T = 1, COUNT (3,1Y)
P = SE@ (3,IY,T)
IF ({CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
& -999)) THEN

PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(Z,P)
PART2 = (CLIMA(LY,P-1)-MU(1,P-1))/SIGMA(L1,P-1)
DER{15) = DER(15)+(PART1-RAU(3,K)¥PART2) *PARTZ2
ENDIF
702 CONT INUE

DO 703, T = 1, COUNT (4,1IY)
P = SEQ (4,1Y,T)
IF ({CLIMA(IY,P).NE.-99%9).AND.{CLIMA(IY,P-1).NE,

& -993)) THEN
PART1I = (CLIMA(IY,P)-MU(L1,P))/SIGMA(1,P)
FART2 = (CLIMA{IY,P-1)-MU(Z2,P-1}))/8IGMA(2,P-1)
DER{NP) = DER{NP)+(PARTL1-RAU(4,K)¥PARTZ2)¥PART2
ENDIF
703 CONTINUE
20 CONTINUE
RETURN
END

e ————— i T —————— k. 7B, T T T 1 e b e B D T o . . . e e SR, . e e s e e . o At T e . e e . g

SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX

e e e e e e e e e e — " - = —— - " T T ——— " — — ——————— ———" —

SUBROUTINE TRANSP (PHI ,NPARM,NT,TRSP)

REAL PHI (NT,NPARM)
REAL TRSP (NPARM,NT)

DO 10, I = i, NPARM
DO 20, J = 1, NT

TRSP (I,J) = PHI (J,1)
20 CONTINUE
10 CONT INUE
RETURN

END
D-108



o0ono0n

THI

ALPHAjD-ALPHAILD,
ALPHALW,

S SUBROUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES:
PSIjD-PSIiD, ALPHAJD-PSIiD, ALPHAjW-
PSIjiW-PSIiW, ALPHAJW-PSIiW FOR MODEL 5.

C ___________________________________________________________
& RAU,PHI,DER2,NV,K,NRAU)
C _______________________
INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,P
REAL CLIMA (NY,0:NT)
REAL MIDDLE
REAL DER2Z (NP,NP)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,O0:NT)
REAL RAU (NRAU,NV)
DO 850, LL = 1, NPARM
DO 870, LLL = 1, NPARM
DO 880, M = 1, 2
IF (M .EQ. 1)THEN
N =2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N =1
NN = 2
J =4
KK = 3
ENDIF
C v-v... THE VARIABLE DER COMPUTES THE 2ND DERIVATIVES FOR
C ALPHA—-ALPHA, DER3 THE DERIVATIVES PSI-PSI AND DER4 THE
C DERIVATIVES ALPHA-PSI
DER = 0
DER3 = ©
DER4 = ©
DO 10, 1Y = 1, NY
DO 330, T = 1, COUNT (M,IY)
P = SEQ (M,1Y,T)
PART = (—-PHI(LL,P)}/SIGMA(NN,P))+RAU(M,K)*PHI(LL,P~-1)
& /SIGMA(NN,P-1)
PART2 = (~-PHI(LLL,P)/SIGMA(NN,P))}+RAU(M,K)%*XPHI
& (LLL,P-1)/SIGMA(NN,P-1)
DER = DER+PARTXPART2
IF ({CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.-99%))
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& THEN

MIDDLE = ((CLIMA{IY,P)—MU(NN,P))}/SIGMA(NN,P)-RAU(M,K)*
& ((CLIMA(IY,P-1)-MU{NN,P-1))/SIGMA(NN,P-1)))

PARTL = {(CLIMA(IY,P)-MU{NN,P))/SIGMA(NN,P)XX2)

PART2 = ((CLIMA(IY,P—1)-MU(NN,P-1))/SIGMA(NN,P-1)%X%2)

PART3 = PHI(LLL,P)

PART4 = PHI(LLL,P-1)

PARTS = PHI(LL,P)

PART6 = PHI(LL,P-1)

DER3 = DER3+MIDDLEX (2%PART1/SIGMA(NN,P )} ¥PARTIXPARTS
-2¥RAU(M,K)¥PARTZ2/SIGMA(NN,P-1) ¥PART4XPARTS ) +
(—PARTL¥PART3+PART2XRAU(M,K)XPARTA )} ¥ (-PART 1 x
PARTS+PART2XPART&XRAU (M, K) ) -PART3IXPARTS/
(SIGMA(NN,P ) %x%x2)

DER4 = DER4+MIDDLE* (PARTIXPARTS/ (SIGMA(NN,P)*x2)-RAU
(M,K)XPART4%PARTSL/ (SIGMA(NN,P-1)%%2) )+ (~PART1
¥PART3I+RAU(M,K) XPART2XPART4 ) ¥ (-PARTS/SIGMA
{NN,P)I+RAU(M,K) XPART&/SIGMA(NN,P-1))

o o R

X go o

ENDIF
330 CONT INUE

DO 350, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
PART = (RAU(J,K)XPHI(LL,P-1)/SIGMA(NN,P-1))
PART2 = (RAU(J,K)}¥PHI(LLL,P-1)/SIGMA(NN,P-1))
DER = DER+PARTXPART?Z2
IF ((CLIMA(IY,P).NE.=-999).AND.(CLIMA({IY,P-1).NE.-999))
& THEN

MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(J,K)X
& ({CLIMA(IY,P-1)-MU(NN,P—1))/SIGMA(NN,P-1)))
PART2 = ((CLIMA(IY,P=1)-MU(NN,P—1))/SIGMA(NN,P-1)%Xx2)
PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PARTS = PHI(LL,P)
PARTG = PHI(LL,P=1)
DER3 = DER3+MIDDLEX (-2%RAU(J,K)XPART2/SIGMA (NN,P-1)%
& PARTAXPART& )+ (RAU(J, K) XPART2XPART4) % (RAU(J,K)
& ¥PART2XPARTS)
DER4 = DER4+MIDDLEX (—RAU(J,K)*PART4XPARTL/ (SIGMA
& ' (NN,P-1)%%2))+RAU(J,K)*PART2¥PART4XRAU (J , K ) X
& PART&/SIGMA (NN,P-1)
ENDIF
350 CONT INUE

DO 360, T = 1, COUNT (KK,1Y)
P = SEQ (KK,IY,T)
PART = (~PHI(LL,P)/SIGMA(NN,P))
PART2 = (—-PHI(LLL,P)/SIGMA(NN,P))
DER = DER+PARTXPART?Z
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.-999))

& THEN
MIDDLE = ((CLIMA(IY,P)-MU(NN,P))/SIBMA(NN,P)-RAU(KK,K)
& _ ¥({CLIMA(LIY,P=1}-MU(N,P-1)}/SIGMA(N,P-1)})
PART1 = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P) %% 2)
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PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PARTS = PHI{(LL,P)
PARTS = PHI(LL,P-1)

DER3 = DER3I+MIDDLEX (Z2XPART1/SIGMA(NN,FP) ) XPART3I*PARTS

& +(-PARTL*PART3) * (~PART1*¥PARTS) ~PART3IXPARTS/
& (SIGMA(NN,P)XX2)
DER4 = DER4+MIDDLEXPART3IXPARTS/ (SIGMA(NN,P)%x2)+
& (-PART1XPART3% (—~PARTS/SIGMA (NN,P)))
ENDIF
360 CONT INUE
10 CONT INUE
IF (M .EQ. 1) THEN
DER2 (LL,LLL) = -DER
DER2 (LL+6&,LLL+6) = —DER3
DERZ (LL,LLL+&6) = —~DERA4
ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,LLL+3) = -DER
DER2 (LL+9,LLL+9) = -DER3
DERZ (LL+3,LLL+9) = -DER4
ENDIF
880 CONT INUE
870 CONT INUE
850  CONTINUE
RETURN
END

SUBROUTINE CNTRAL (MAT,M,N,MATOR,M1,N1,DIM1,DIMZ)

C | ———m—eeemmm e e e e e e e e e
REAL MAT(M,N), MATOR(M1,N1i)
INTEGER DIMi, DIM2
REAL AVE (25)
DO &000 J = 1,DIM2,1
AVE(J) = 0.0
DO 6010 I = 1,DI ,1
AVE(J) = AVE(J) + MATOR(I,J)
6010 CONT INUE

AVE(J) = AVE(J) / FLOAT(DIM1)
6000 CONTINUE

CC ¥xkAVE(J) NOW CONTAINS THE AVERAGE OF THE ELEMENTS IN EACH
cc x¥xxCOLUMN OF THE MATRIX S 3

DO 6020 I = 1,DIM1,1
DO 6030 J = 1,DIM2,1

MAT(I,J) =MATOR(I1,J) - AVE(J)
&£030 CONT INUE
&020 CONTINUE
RETURN

END

D-111



0o0ao0on

n0oan

THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
RAU-ALPHAjD, RAU-PSIiD, RAU-RAU, RAU-ALPHAJW AND
RAU-PSIjW FOR MODELS

SUBROUTINE M3DER3 (NY,NT,NP,NPARM,COUNT,SEG,CLIMA,MU,SIGMA,RAU,

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,P
REAL CLIMA (NY,0:NT)
REAL MIDDLE
REAL DER2 (NP,NP) .
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,O0:NT)
REAL RAU (NRAU,NV)
DO 850, LL = 1, NPARM
DO 870, M = 1, 2
IF (M .EQ. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N =1
NN = 2
J = 4
KK = 3
ENDIF

.+».. THE VARIABLE DERL1 COMPUTES THE 2ND DERIVATIVES FOR RAU-
ALPHA, WHILE DER3I COMPUTES THE 2ND DERIVATIVES FOR RAU-

PSI
DER1 = ©
DER3 = 0
DO 10, IY = 1, NY
DO 530, T = 1, COUNT (M,IV)
P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P~1).NE.
-999)) THEN
PARTL = (CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)
PARTZ = (CLIMA(IY,P-1)-MU(M,P~1))/SIGMA(M,P-1)
MIDDLE = PART1-RAU(M,K)*PART2
DER1 = DER1+MIDDLEX(—PHI(LL,P-1)/SIGMA(M,P-1))+

(-PHI(LL,P)/SIGMA(M,P)+RAU(M,K)¥PHI(LL ,P—1)
/SIGMA(M,P-1))XPART2
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DERSI = DERI+MIDDLEX (PART2/SIGMA(M,P=1))%(—-PHI
(LL,P-1))+( (PART1/SIGMA(M,P) )% (-PHI (LL,P))+RAL

&
& (M, K)X(PARTZ2/SIGMA(M,P=1) ) *¥PHI (LL,P-1))*%PART2
ENDIF
030 CONTINUE
10 CONTINUE
IF (M .EQ. 1) THEN
DERZ2(LL,13} = DER1

DER2(LL+&6,13) = DERS
ELSEIF (M .E@. 2) THEN

DERZ2 (LL+3,14) = DER1
DERZ (LL+2,14) =DER3
ENDIF
DER1 = O
DER3 = O

DO 20, IY = 1, NY
DO 550, T = 1, COUNT (J,1Y)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE,-999).AND.(CLIMA(IY,P-1).NE.
& -999)) THEN
PARTL = (CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)
PARTZ = (CLIMA(IY,P-1)-MU{NN,P~1))/SIGMA(NN,P-1)
MIDDLE = PART1-RAU(J,K)*PART2
DERL = DER1+MIDDLEX(-PHI(LL,P-1)/SIGMA(NN,P-1))+
(RAU(J,K)¥PHI(LL,P~1)/SIGMA(NN,P~1))XPART2

&
DER3 = DER3+MIDDLEX (—PHI(LL,P-1)/SIGMA(NN,P—~1) )%
& PARTZ2+ (RAU(J KX *PHI{LL ,P-1)/SIGMA(NN,P-1) )%
& PART2X% %2
ENDIF
o950 CONTINUE
20 CONT INUE
IF (M ,EQ. 1) THEN
DER2(LL,15) = DER1
DER2(L.L+6,15) = DER3

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,16) = DER1
DER2Z (LL+9,16) =DER3

il

ENDIF
DER1 = O
DER3 = ©

DO 30, IY = 1, NY
DO 560, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN

PART2 = (CLIMA(IY,P-1)-MU(N,P-1})/8SIGMA(N,P-1)
DER1 = DER1+(-PHI(LL,P}/SIGMA(NN,P))*PART2
ENDIF

IF {((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P~1).NE.
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560
30

870
850

330

340

350

360
40

-999)) THEN

PART3 = ((CLIMA(IY,P)=-MU(NN,P))/SIGMA(NN,P))
DER3 = DER3+(-PHI(LL,P)/SIGMA(NN,P))XPARTI*PART2
ENDIF
CONT INUE
CONT INUE
IF (M .EQ. 1) THEN
DER2(LL,16) = DER1
DER2(LL+6,16) = DER3

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,15) = DER1
DERZ (LL+9,15) =DER3
ENDIF
CONT INUE
CONT INUE

"

...... THE 2ND DERIVATIVE RAU-RAU IS COMPUTED

DO 40, IY = 1, NY
DO 330, T = 1, COUNT (1,IY)
P = S8SEQ (1,IY,T)
IF (CLIMA(IY,P-1).NE.-99%9) THEN

PART2Z = (CLIMA{IY,P-1)-MU(1,P-1))/SIGMA(1,P-1)
DERZ (13,13) = DER2 (13,13}-(PART2*¥x*2)
ENDIF
CONT INUE

DO 340, T = 1, COUNT (2,IVY)
P = SEQ@ (2,IY,T)
IF (CLIMA(IY,P-1).NE.~999) THEN

PARTZ = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(Z,P-1)
DERZ (14,14) = DER2(14,14)-(PART2%%2)
ENDIF
CONTINUE

DO 350, T = 1, COUNT (3,1Y)
P = SEQ (3,1IY,T)
IF {(CLIMA(IY,P—-1).NE.-%99) THEN

PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGBMA(1,P-1)
DER2 (13,13) = DERZ (195,15)-(PART2Xx%2)
ENDIF
CONTINUE

DD 360, T = 1, COUNT (4,1IY)
P = SEQ (4,1IY,T) ‘
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(2,P-1}}/SIGMA(Z,P-1)
DER2 (NP,NP) = DERZ (NP,NP)—(PART2%%2)
ENDIF
CONT INUE
CONT INUE

RETURN
END
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THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
ALPHAID-ALPHAiLiW, ALPHAJD-PSIiW, PSIJD-PSIiW AND
ALPHAJW-PSIiD FOR MODEL S

SUBROUTINE

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL

DO 850, LL
DO 870,

MSDER4 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,

COUNT (4,NY)

SEQ (4,NY,NT)
T,P

CLIMA (NY,O:NT)
DERZ (NP,NP)

MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,0:NT)
RAU (NRAU,NV)

= 1, NPARM
LLL = 1, NPARM

...... THE VARIABLE DER COMPUTES THE 2ND DERIVATIVE ALPHAD-
ALPHAW, DER3 THE DERIVATIVE ALPHAD-PSIW, DER4 THE
DERIVATIVE PSID-PSIW AND DERS THE DERIVATIVE ALPHAW-

PSID

DER

DER3
DER4
DERS

0

0
]
0

DO 10, IY = 1, NY
DO 350, T = 1, COUNT (3,1Y)

P = SEQ (3,1Y,T)

PART = (RAU(3,K)XPHI(LL,P-1)/SIGMA(1,P~1))

DER = DER+PARTX (-PHI(LLL,P)/SIGMA(Z,P))

IF (CLIMA(IY,P).NE.-999) THEN

DER3 = DERI+PARTK(-PHI(LLL,P)/SIGMA(2,P))%{ (CLIMA

(1Y,P)-MU(2,P))/SIGMA(2,P))

ENDIF

IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1}.NE.
-99% THEN

PART2 = ((CLIMA(IY,P-1)-MU(1,P-1})/SIGMA(1,P-1)%%2)
XPHI(LL,P-1)

PARTL = (~(CLIMA(IY,P)~MU(2,P))/SIGMA(2,P)%*¥2)x
PHI(LLL,P)

DER4 = DER4+(PART1XRAU(3,K)XPARTZ)

ENDIF

IF (CLIMAR{IY,P-1).NE.~-999) THEN
PART (=PHI(LL,P)/SIGMA(2,P))
DERS DERS+PARTXRAU(3I,K) XPHI (LLL,P-1)/SIGMA(1,P-1)X
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& (CLIMA(LY,P-1)-MU(1,P-1})/SIGMA({Ll,P-1)
ENDIF
350 CONTINUE

DO 360, T = 1, COUNT (4,1IY)
P = GEQ (4,I1Y,T)
PART = (—PHI{LL,P)/SIGMA(1,P))
DER = DER+PART¥(RAU(4,KK)XPHI(LLL ,P-1)/8SIGMA(2Z,P-1))
IF (CLIMA(IY,P-1).NE.~-99%) THEN
DER3 = DER3+PARTX¥(RAU(4,K)XPHI(LLL,P-1)/SIGMA(2,P-1

& YIXK(CLIMA(IY,P-1)-MU(2,P-1))/5I6MA(2,P-1)
ENDIF
IF {(CLIMA(IY,P).NE.-99F).AND.(CLIMA(IY,P-1).NE.
& =999)) THEN
PART1 = (—((CLIMA(IY,P)-MU(1,P))/SIGMA(L,PIxx2)x%
& PHI{(LL,P))
PARTZ2 = ((CLIMA(IY,P-1)}-MU(Z2,P-1))/SIGMA(Z2,P-1}%x2)X
& PHI{LLL,P-1)
DER4 = DER4+RAU(4,K)¥PART2XPART1
ENDIF ‘

IF (CLIMA(IY,P).NE.-999) THEN

PART = (RAU(4,K)%PHI(LL,P-1)/SIGMA(2,P-1))
DERS = DERS+PARTX(-PHI(LLL ,P)/SIGMA(L1,P))%x (CLIMA
& (IY,P)-MU(L1,P))}/SIGMA(L1,P)
ENDIF
360 CONT INUE
10 CONT INUE
DER2 (LL,LLL+3) = -DER
DERZ (LL,LLL+9) = —-DER3
DERZ (LL+6&6,LLL+?) = —~DER4
DERZ (LL+3,LLL+&6) = ~DERS
870 CONTINUE
850 CONTINUE
RETURN
END

...... THIS SUBROUTINE GENERATES RAINFALL DEPTH ON DAYS
WHEN RAIN OCCURS

REAL AMP (O:NP)

REAL FPHASE (NP)

REAL RAIN

AM = (AMP (O} +AMP (1) ¥COS(WX ((K=1)-PHASE (1)) )+AMP(2)XCOS(2%XWX
& ((K-1)-PHASE(2))))} / GAMM

UNIFOR = URAN% (IDUMZ)
RAIN = AM ¥ (-1 % LOG(UNIFOR)) xx%x BI

RETURN
END
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THIS SUBRDUTINE READS IN THE PARAMETER ESTIMATES 0OF THE
RAINFALL MODEL AND OF THE CLIMATE MODEL.

———— T — . . . . et = i ol e o (e A A T S T o M o ke i R L N L e ol o — —— ——————

REAL GAM (2,NP)
REAL PSI4 (2,1,3)

REAL PSIS (2,4,3)

REAL ALPHA (2,7,3)

REAL SIGMAZ (NRAU,NV3)
REAL SIGMASG (2,NV4,0:NT)
REAL SIGMAS (2,NV5,0:NT)
REAL MU (2,NV,0:NT)

REAL PHI (NP,O:NT)

REAL RAUZ (NRAU,NV3)
REAL RAU4 (NV4)

REAL RAUS (NRAU,NVS)
REAL AMP (O:NP)

REAL PHASE (NP)

REAL CORR (NV,NV)

FORMAT (7F10.3)
CPEN (UNIT=12,FILE="\WATERNDATANEST.DAT  ,STATUS="0LD")

1, NP)
1, NP)

READ (12, %) (GAM (1,J), J
READ (12, %) (BAM (2,J), J
DO 30, K = 1, NV
DO 10, M = 1, 2
READ (12, X) (ALPHA (M,K,J), J = 1, NP)
CONT INUE
IF ((K.EQ.4).0R.(K.EG.&)) THEN
IF (K.EQ.4) THEN

KK = 1

ELEEIF (K.EQ.&) THEN
KK = 2

ENDIF

READ (12,%) (SIBMA3 (L,KK), L = 1, NRAU)
READ (12,%) (RAU3 (L,KK), L = 1, NRAU)
ELSEIF (K .EQ@. 5) THEN
KK = 1
DO 20, M = 1, 2
READ (12, %) (PSI4 (M,KK,J), J = 1, NP)
CONT INUE
READ (12,%) RAU4G (KK)
ELSEIF ((K.EQ.1).0R.(K.EQ.2)}.0R.(K.EQ.3).0R.(K.EQG.7})) THEN
IF (K.EQ.1) THEN
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120

30

80

READ (12, X)) (AMP

READ (
READ (

Lo 80,

KK =1
ELSEIF (K.EQ.Z) THEN

KK = 2

ELSEIF (K.EQ.3) THEN
KK = 3

ELSEIF (K.EQ.7) THEN
KK = 4

ENDIF

DO 120, M = 1, 2

READ (12, %) (PSID

CONTINUE

(M,

KK,J3)y, 3 = 1, NP)

READ (12, ¥) (RAUS (I,KK), I = 1, NRAU)
ENDIF
CONTINUE

I I

(1), =
12, %) (PHASE (I), I
12, %) CV

o, 1)

1,

INPUT CORRELATION MATRIX

I =1, NV

READ (12, x) (CORR (I,J), J
CONT INUE

s & & 8 a 2

DO 40,
DO

1)

= I, NV)

COMPUTE THE MEAN AND STD.DEV. FUNCTION

M= 1, 2
50, 1 = 0, NT
SIGMASG (M,1,1)
SIGMAS (M,1,1)
SIGMAS (M,2,1)
SIGMAS (M,3,I)
SIGMAS (M,4,1)
DO 70, K = 1,
MU (M,K,I) = 0.0
DO 60, L = 1, NP

|2 T T |
QOO0 00
[eNeoRoNoRe]

z
<

+ ALPHA(M,K,L) % PHI(L,I)

MU(M,K,I) = MU(M,K,I)
IF ((K.EQ.1).0R.(K.EQ.2).0R.(K.EQ.3).0R.{(K.EQ.7})
THEN
IF (K.EQ.1) THEN
KK = 1
ELSEIF (K.EQ.2) THEN
KK = 2
ELSEIF (K.EQ@.3) THEN
KK = 3
ELSEIF (K.E@.7) THEN
KK = 4
ENDIF

SIGMAS (M, KK,

ELSEIF (K.EQ.D)
KK = 1
SIGMA4 (M, KK,

Iy =
THE

I) =
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SIGMAS (M, KK, I)+PSIS(M,KK,L) X

PHI (L, 1)
N

SIGMA4 (M, KK, 1)
PHI(L,I)

+ PSI4(M,KK,L)
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ENDIF

60 CONT INUE
70 CONTINUE
30 CONTINUE
40 CONT INUE
RETURN
END

...... THIS SUBROUTINE COMPUTES THE CHOLESKY DECOMPOSITION
OF 4 MATRIX

SUBROUTINE CHOLKY (DECOMP,CORR,NV)

— e e e ————— e i b b B R A —d e ok ey . o —

REAL CORR (NV,NV)
REAL DECOMP (NV,NV)
...... COMPUTE CHOLESKY DECOMPOSITION

DO 40, I = i, NV
DO S0, J = 1, NV

DECOMP (1,J) = O
50 CONT INUE
40 CONT INUE
DECOMP (1,1) = SQRT (CORR (1,1))
DO 60, J = 2, NV
DECOMP {(J,1) = CORR (1,J) / DECOMP (1,1)

60  CONTINUE
DO 70, I = 2, NV-1
TERM = 0
DO 80, J = 1, I-1
TERM = TERM + DECOMP (I,J) %% 2
80 CONT INUE
DECOMP (I,I) = SQRT (CORR (1,I) - TERM)
DO 90, J = I+1, NV
TERM = O
DO 100, K = i, I-1
TERM = TERM + DECOMP (I,K) % DECOMP (J,K)

100 CONTINUE
DECOMP (J,I) = (CORR (I,J) - TERM) / DECOMP (I,I)
F0 CONTINUE
70 CONT INUE
TERM = 0

Lo 110, J = 1, NV-1

TERM TERM + DECOMP (NV,J) %% 2
110 CONT INUE
DECOMP (NV,NV) = SGRT {(CORR (NV,NV) - TERM)
RETURN

END
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THIS SUBROUTINE READS IN THE PARAMETER ESTIMATES OF THE
RAINFALL MODEL AND OF THE CLIMATE MODEL 1.

SUBROUTINE DATALl (GAM,MU,SIGMA,NP,NV,AMP,PHASE,CV,PHI,A,B,NT)

REAL GAM (2,NP)
REAL PSI (2,7,3)
REAL ALPHA (2,7,3)
REAL SIGMA (2,NV,0:NT)
REAL MU (2,NV,0:NT)
REAL PHI (NP,0:NT)
REAL AMP (O:NP)
REAL PHASE (NP)
REAL A (NV,NV)
REAL B (NV,NV)
5 FORMAT (7F10.3)
OPEN (UNIT=12,FILE='\WATER\DATA\ESTL.DAT’,STATUS="'0LD")
DO 10, M = 1, 2
READ (12, %) (GAM (M,J), J = 1, NP)
10 CONT INUE
DO 20, K = 1, NV
DO 30, M = 1, 2
READ (12, %) (ALPHA (M,K,J), J = 1, NP)
READ (12, %) (PSI (M,K,J), J = 1, NP)
30 CONT INUE
20 CONT INUE
READ (12, %) (AMP (I), I = 0, 1)
READ (12, %) (PHASE (I), I = 1, 1)
READ (12, %) CV
...... INPUT A & B MATRICES
DO BO, I = 1, NV
READ (12, %) (A (I,J), J = 1, NV)
80  CONTINUE
DO 180, I = 1, NV
READ (12, %) (B (I,J), J = 1, NV)
180  CONTINUE
.+... COMPUTE THE MEAN AND STD.DEV. FUNCTION
DO 40, M = 1, 2
DO 50, I = 0, NT
DG 70, K = 1, NV
MU (M,K,I) = 0.0
SIGMA (M,K,I) = 0,0
DO 60, L = 1, NP
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MU (M,K,I) = MU (M,K,1)} + ALPHA (M,K,L) % PHI (L,I)

SI1GMA (M,K,I) = SIGMA (M,K,I) + PSI (M,K,L) ¥
& PHI (L,I)

50 CONT INUE
70 CONTINUE
50 CONT INUE
40 CONTINUE

RETURN

END
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..+ A ROUTINE TO GENERATE PSEUDO RANDOM NUMBERS FROM A
GAUSSIAN DISTRIBUTION WITH A MEAN OF ZERO AND A
STANDARD DEVIATION OF UNITY AS SPECIFIED BY THE USER.
THIS ROUTINE REFERENCES UNIF TO GENERATE THE UNIFORMLY
DISTRIBUTED RANDOM NUMBERS. '
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SUBROUTINE GRANDZ (NRAND,NV)

REAL NRAND (1,NV)
EOMMON IDUML, IDUMZ, IDUM3, IDUMA, IDUMS, IDUMS, IDUM7
R1 URANL (IDUM1)

n

R2 URANL1 (IDUM1)

T = SERT(-2%LOG(R1))

NRAND(1,1) = T % SIN (46£.283185%R2)
Ri URANZ (IDUMZ)

R2 URANZ (IDUMZ)

T = SQRT{-2%LOG(R1))

NRAND(1,2) = T % SIN (6.28B3185%R2)
R1i URAN3I (IDUM3)

R2 URAN3 (IDUM3)

T = SGRT(-2%LOG(R1)}

NRAND(1,3) = T % SIN (56.283185%R2)
R1 URAN4 (IDUM4)

R2 URAN4 (¢ IDUM4)

T = SOQRT(-2xLOG(R1))

NRAND(1,4) = T x 5IN (&6.283185%R2)
R1 URANS (IDUMS3)

R2 URANDS (IDUMS)

T = SART(-2%LOG(R1)) ‘
NRAND(1,5) = T % SIN (46£.283183%R2)
Rl = URANS& (IDUMS)

R2 URANS (IDUMS)

T = SART({-2Z2%LOG(R1))

NRAND(1,8) = T x SIN (6.2B3185%R2)
R1 URAN7 (IDUM7)

R2 URAN7 (IDUM7)

T = SART(-2%LOG(R1))

NRAND(1,7) = T % SIN (6.283185%R2)

]

non

RETURN
END
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23

20
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REAL A (13,0:13)
REAL DER {NPMAX)

REAL DERZ2 (NPMAX ,NPMAX)

REAL THETA (NPMAX)

FORMAT (° MATRIX IS SINGULAR')

FORMAT (° NEW PARAMETER ESTIMATES:

OPEN (UNIT=%,FILE="LPT1’)

cesres THIS SETS UP THE A MATRIX WHICH IS USED IN SOLVING

THE SYSTEM OF EQUATIONS

DO 10, I = 1, NP
A (1,0) = DER (1)
DO 20, J = 1, NP
A (I,J) = DER2 (I,J)
CONT INUE
CONT INUE

...... THIS SOLVES THE SYSTEM OF
THE DIFFERENCE BETWEEN THE VALUE OF THETA({Q)
ITERATION AND THE PREVIODOUS ITERATION IS STORED IN A(Q,0)

DO 30, I1 = 1, NP
I2 = It
TL =0
DO 40, I3 = I1, NP
IF (ABS (A (I3,I1)) .GT.
12 = 3
Ti = A (I3,I1)
ENDIF
CONTINUE
IF (T1 .EQ. ©O) THEN
PRINT 15
STOP
ENDIF

IF (I2 .NE. IL) THEN
DO SO0, 10 = O, NP
TEMP = A (I11,I0)

A (I1,10) = A (I2,10)
A (12,10} = TEMP
CONT INUE
ENDIF
T2 =1 / (A (I1,I1))
NQ = NP
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DO &0, 14 = 0, NO
A (I1,14) = A (I1,I4) % T2
CONT INUE
DO 70, I3 = 1, NP
IF (I1 .NE. 13) THEN
T2 = A (13,I1)

A (I3,0) = A (IZ3,0)-A(IL,0r% T2
DO 80, 10 = I1, NP
A(I3Z,I0) = A(I3,I0) — A(IL,10) x T2
CONTINUE
ENDIF
CONTINUE

CONT INUE
..... THIS EXTRACTS THE NEW PARAMETER VALUES

DO 90, I = 1, NP

THETA(L) = THETA(I) - a(l,0)
WRITE (9,23) THETA(IL)

CONT INUE

RETURN

END

s+« THIS SUBROUTINE COMPUTES TOTAL MEANS AND STD DEVS
TO BE USED IN THE COMPUTATION OF CROSS-CORRELATIONS

INTEGER DENDM (7)
REAL CLIMA (NV,NYXNT)
REAL AVEG (NV)
REAL DEV (NV)
DO 10, K = 1, NV
AVEG (K) = 0.0
DEV (K) = 0.0
DENOM (K} = O
CONT INUE

DO 30, K = 1, NV
DO 20, I = 1, NYXNT
IF (CLIMA (K,I) .GT. -900) THEN

AVEG (K) = AVEG (K} + CLIMA (K,I)
DEV (K) = DEV (K) + (CLIMA (X,I) %xx 2)
DENDOM (K) = DENOM (K) + 1
ENDIF
CONTINUE

DEV (K) =SART( (DEV(K)—( (AVEG(K)*%2)/DENOM(K)))/DENOM(K))
AVEG (K) = AVEG(K)/DENOM(K)

PRINT %, AVEG (K)

PRINT %, DEV (K)

CONT INUE

RETURN
END
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...... THIS SUBROUTINE COMPUTES THE CHOLESKY DECOMPOSITION
OF A MATRIX

Oonoo

REAL CORR (NV,NV)
REAL DECOMP (NV,NV)
5 FORMAT (7F10.3)

...... FILL IN SYMMETRICAL PART OF MATRIX

DO 20, I = 1, NV-1
DO 30, J = I+1, NV

CORR (J,1) = CORR (I,J)
30 CONT INUE
20 CONT INUE
...... COMPUTE CHOLESKY DECOMPOSITION

DO 40, I = 1, NV
DO S50, J = 1, NV

DECOMP (1,Jd) = 0O
50 CONT INUE
40 CONT INUE
DECOMP (1,1) = SART (CORR (1,1))
DO 60, J = 2, NV
DECOMP (J,i) = CORR (1,J) / DECOMP (1,1)

60  CONTINUE
DO 70, I = 2, NV-1
TERM = O
DO 80, J = 1, I-1
TERM = TERM + DECOMP (1,J) %% 2
80 CONTINUE
DECOMP (I,1) = SGRT (CORR (I,I) — TERM)
DO 90, J = I+1, NV
TERM = 0O
DO 100, K = 1, I-1
TERM = TERM + DECOMP (I,K) % DECOMP (J,K)
100 CONTINUE
DECOMP (J,1) = (CDRR (I,J) - TERM) / DECOMP (I,1)
90 CONT INUE
70 CONT INUE
TERM = O
PO 110, J = 1, NV-1
TERM = TERM + DECOMP (NV,J) %X 2
110 CONT INUE
DECOMP (NV,NV) = SGRT (CORR (NV,NV) - TERM)

RETURN
END
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...... THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODELDS

SUBROUTINE MODS (RAND,STATE,NVS,NV,SIGMAS,MU,RAUS,K,J,0BSN,

ot e o v . T T— T A s o . oy o o o e ke e ek AT A ke o At ik i Ak R S ML o Ak e i o o o o — — e itk

—— e

INTEGER PSTATE, STATE

REAL RAUS (NRAU,NVS)
REAL RAND (1,NV)

REAL OBSN (NV)

REAL SIGMAS (2,NVS,0:NT)
REAL MU (2,NV,0:NT)

FORMAT (7F10.3)

IF ((STATE .EQ. 1) .AND. (PSTATE .EG. 1)) THEN

JJ = 1

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EGQ. 2)) THEN
JJ = 2

ELSEIF ((STATE .EQ. 1) .AND. (PSTATE .EQ. 2)) THEN
JJd = 3

ELSEIF ({(STATE .EQ. Z2) .AND. (PSTATE .EQ. 1)) THEN
JJ = 4

ENDIF

IF {(J-1 .EGQ. O) THEN

L. = NT
ELSE

L =J-1
ENDIF

IF (K.EQ.2) THEN

KK = 1
ENDIF
OBSN (K) = SIGMAS(PSTATE,KK,J)*x{RAND{1,K)+RAUS(JIJI,KK)X (OBSN(K)-
MU(STATE,K,L))/SIGMAS(STATE ,KK,L))+MU(PSTATE,K,J)
RETURN
END

D-125



NDo0On

...... THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODEL3

SUBROUTINE MOD3 (RAND,STATE,NV3,NV,SIGMA3,MU,RAUI,K,J,0BSN,

INTEGER PSTATE, STATE
REAL RAU3 (NRAU,NV3)
REAL RAND (1,NV)

REAL OBSN (NV)

REAL SIGMA3 (NRAU,,NV3)
REAL MU (2,NV,0:NT)

FORMAT (7F10.3)

IF ({(STATE .E@. 1) .AND. (PSTATE .EQ. 1)) THEN
JJ =1

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EQ. 2)) THEN
JJ = 2

ELSEIF ((STATE .EQ. 1) .AND. (PSTATE .EQ. 2)) THEN
Jd = 3

ELSEIF ((STATE .EQ@. 2) .AND. (PSTATE .EQ. 1)) THEN
JJ = 4

ENDIF

IF (J~1 .EGQ. O) THEN

L = NT
ELSE

L = J-1
ENDIF

IF (K.EQ.1) THEN

KK =1
ELSEIF (K.EQ.3) THEN
KK = 2
ELLSEIF (K.EQ@.4) THEN
KK = 3
ELSEIF (K.EQ.7) THEN
KK = 4
ENDIF
DOBSN (K) = SIGMA3(JJ,KK)*(RAND(1,K)+RAU3(JJI,KK}x{OBSN(K)-
MU(STATE,K,L}) /7 SIGMA3(JJI,KK))+MU(PSTATE,K,d)
RETURN
END

D-126



O000

a5
S5
65

140

...... THIS SUBROUTINE COMPUTES THE AMPLITUDE & PHASE
REPRESENTATION

SUBROUTINE AMPHA (AM,PH,THETA,NPMAX ,KMAX,K,PI,NT)

REAL AM (O KMAX )
REAL PH ( KMAX)
REAL THETA (NPMAX )
FORMAT (/, ' AMPLITUDE: ')
FORMAT (/, ° PHASE: ')

FORMAT (9F8.3)
OPEN (UNIT=9,FILE="LPT1")

AM(O) = THETA(L)

DO 140, I = i, K
TA = THETA (2%I)
TB = THETA(2%I+1)

AM({1) = SERT(TAXX2 + TBXX2)
IF (TA .LT. 0) THEN
PH(I) = ATAN(TB / TA) + PI

ELSEIF (TA .EQ. O) THEN
IF (TB .GE. 0) THEN
PH(I) = 0.5 % PI
ELSE
PH(I) = 1.5 %PI
ENDIF
ELSEIF (TA .GT. ©0) THEN
IF (7B .GE. 0) THEN

PH(I) = ATAN (TB/TA)
ELSE
PH(I) = ATAN(TB/TA) + 2 % PI
ENDIF
ENDIF
PH(I) = PH(I) % NT / (2%PIXI)
CONT INUE -

WRITE (9,45)
WRITE (9,65) (AM(I),I=0,K)
WRITE (9,55)

WRITE (9,65) (PH(I),I=1,K)

RETURN
END
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THIS SUBROUTINE COMPUTES THE MATRIX OF SIN AND COS TERMS FOR

THE FOURIER TRANSFORMATION. THIS DIFFERS FROM THE SUBROUTINE

COSSIN IN THAT HERE THE MATRIX PHI HAS DIMENSION GIVEN BY:
-—=> PHI (NT,NPARM)

REAL P1
PARAMETER (PI = 3.14159265)
REAL PHI (NT,NPARM)
REAL THETA

REAL OMEGA

INTEGER T

OMEGA = 2 ¥ PI / NT

K = (NPARM - 1) / 2

0O 10, T = 1, NT
PHI (T,1) = 1

CONTINUE
po 20, J = 1, K
Ji =2 % J

J2 = Ji + 1

THETA = OMEGA % J
A =2 % COS (THETA)

PHI (1,J1) = 1
PHI (2,J1) = A / 2
PHMI (1,J2) = O
PHI (2,J2) = SIN (THETA)
DO 30, T = 3, NT
PHI (T,J1) = A % PHI (T-1,J1) — PHI (T-2,J1)
PHI (T,J2) = A& % PHI (T-1,J2) - PHI (T~2,J2)
CONT INUE
CONT INUE
RETURN
END
..... . SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX. THE

RESULT IS WRITTEN INTO THE SAME MATRIX.

REAL DECOMP (NV,NV)
DO 10, I = i, NV
DO 20, J = I+1, NV
TEMP1 = DECOMP (I,J)
TEMP2 = DECOMP (J,1)
DECOMP (I,J) = TEMPZ2
DECOMP (J,I1) = TEMPL
CONT INUE
CONTINUE
RETURN
END
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...... SUBROUTINE TO BRACKET THE MINIMUM

SUBROUTINE BRACK (A,B,C,FA,FB,FC,DIM1)

PARAMETER
PARAMETER
PARAMETER

{GLD=1.618034)
(GLIM=100.)
(T=1.E-20)

OPEN (UNIT=9,FILE="LPT1")

FA=DIM1(A)
FB=DIML(B)
WRITE (9,%) ' FA FB', FA, FB
IF (FB.GT.FA) THEN
DUM=A
A=B
B=DUM
DUM=FB
FB=FA
FA=DUM
ENDIF
C=B+GLDX (B-A)
FC=DIM1(C)
WRITE (9,%x) ° FC°, FC
IF (FB.GE.FC) THEN
R=(B-A) % (FB-FC)
Q=(B-C) % (FB-FA)
U=B-( (B—C)*Q@-(B-A)*R)/(2.¥SIGN(MAX (ABS(Q-R),T),Q-R) )
UL IM=B+GL IMX (C-B)
IF ((B-U)%{(U-C).6T.0.) THEN
FU=DIM1(U)
IF (FU.LT.FC) THEN

A=B
FA=FB
B=U
FB=FU
GOTO 1
ELSEIF (FU.GT.FB) THEN
C=U
FC=FU
GOTO 1
ENDIF
U=C+GLDX (C~B)
FU=DIM1(U)
ELSEIF ((C—U)%(U-ULIM).BT.0.) THEN
FU=DIM1 (U)
IF (FU.LT.FC) THEN
B=C
c=U

U=C+GLDX* (C-B)
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FB=FC
FC=FU
FUu=DIM1 ()
ENDIF
ELSEIF ((U-ULIM)%(ULIM-C).GE.O.) THEN
U=uULIM
FU=DIML1(U)
ELSE
U=C+GLD*(C-B)
FU=DIML1{U)
ENDIF
A=8
B=C
C=U
FA=FB
FB=FC
FC=FU
50TO 1
ENDIF

RETURN
END

SUBROUTINE MULT (FIRST,SECOND,THIRD,ROWX,COLX,ROWA,COLA)

v o i e —— il o A e e R T i —— " s e i T i Ly P i Tt o o o o o P Al ot

INTEGER ROWX ,COLX ,ROWA,COLA, TEST
REAL FIRST (ROWX,COLX)

REAL SECOND (ROWA,COLA)

REAL THIRD (ROWX,COLA)

TEST=1

DO 40, KK = 1, ROWA
DO 50, JJ = 1, COLA
IF (SECOND (KK,JJ) .EG. —-999.0) THEN
TEST=0
ENDIF
CONTINUE
CONT INUE

IF (TEST.EQ.1) THEN
IF (COLX .NE. ROWA) THEN
PRINT %, 'MATRICES ARE NOT COMPATIBLE’
ELSE
DO 10, I = 1, ROWX
pe 20, J = i, COLA
THIRD (I,J) =-0
DO 30, K = i, COLX

THIRD(I,J) = THIRD(I,J)+FIRST(I,K)XSECOND(K,J)

CONT INUE
CONT INUE
CONT INUE
ENDIF
ENDIF

RETURN
END
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FUNCTION BMIN (AA,BB,C,DIM1,EPS,XMIN)

INTEGER MAXITER
PARAMETER (MAXITER=100)
PARAMETER (CG=.3819660)
FPARAMETER {(T=1.0E-10)
REAL HALF

A=MIN(AA,C)
B=MAX (AA,C)
V=8B

W=v

X=V

E=0.
FX=DIML1(X)
FV=F X

FW=FX

DO 10, I=1,MAXITER
HALF=0.5% (A+B)
TOL=EPSXABS (X )+T
T2=2.%TOL
IF (ABS(X~HALF).LE.(T2-.5%(B-A))) THEN
GOTO 3
ENDIF
IF (ABS(E).BT.TOL) THEN
R=(X—W) % (FX=FV)
Q=(X=V) X (FX-FW)
P=(X=-V)%Q- (X—W) ¥R
@=2.%(Q-R)
IF (Q.GT.0.) THEN
P=—P
ELSE
G=-0
ENDIF
TEMP=E
E=D
IF ((ABS(P).GE.ABS(.5%GXTEMP)).OR. (P.LE.QX(A-X)) .OR.
(P.GE.Q@X(B~X))) THEN
60TO 1
ENDIF
D=P/Q
U=X+D
IF ((U-A.LT.T2).0R.(B-U.LT.T2)) THEN
D=SIGN(TOL ,HALF—X)
ENDIF
GOTO 2
ENDIF
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IF (X.GE.HALF) THEN
E=A-X
ELSE
E=B-X
ENDIF
D=CG*E
IF (ABS(D).GE.TOL) THEN
U=X+D
ELSE
U=X+8SIGN{(TOL,D)
ENDIF
FU=DIM1{U)
IF (FU.LE.FX} THEN
IF (U.LT.X) THEN
B=X
ELSE
A=X
ENDIF
V=W
FV=FW
W=X
Fi=FX
X=u
FX=Fu
ELSE
IF (U.LT.X}) THEN
A=U
ELSE
B=U
ENDIF
IF ((FU.LE.FW).0OR.(W.EQ.X)) THEN
V=W '
FV=FW
W=U
FW=FU
ELSEIF {(FU.LE.FV).0OR.{(V.EQ.X}.0R.{V.EQ.W)} THEN
v=u
Fv=FU
ENDIF
ENDIF
CONT INUE

PRINT %, "DID NOT CONVERGE
XMIN=X
BMIN=FX

RETURN
END
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«.. THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 3 FOR USAGE IN NUMERICAL RECIPES.

INTEGER T,P,NV,NY,NT,NP,NPARM, NRAU
PARAMETER (NV=& ,NY=7 ,NT=365,NP=14 ,NPARM=3 , NRAU=4 )
COMMON K, ICOUNT (NRAU,NY) , ISEQ (NRAU,NY ,NT) ,CLIMA(NY,0:NT),

ALPHA (2, NV, NPARM) , SIGMA(NRAU,NV) ,PHI (NPARM,O:NT),
RAU(NRAU,NV) , ISCALE (3,NV)

DIMENSION THETA (NP}, DER (NP)
REAL MU (2,0:NT}
REAL MIDDLE

«vuas. UPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM

ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3}/ISCALE(3,K)
CONTINUE

DO 170, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)/ISCALE(2,K)
RAU (J,k) = THETA (J+10)/ISCALE(1,K)

CONT INUE

DO 10, M = 1, 2
DO 20, I = 0, N
MU (M,I) = 0.0
DO 30, L = 1, NPARM
MU (M,1) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
CONT INUE -
CONT INUE
CONT INUE

T

N0

DO 40, I = 1, NP

DER (I) = 0.0
CONTINUE
DO SO0, LL = 1, NPARM
DO 60, M = 1, 2
IF (M .EQ. 1) THEN
N = 2
NN = 1
J =3
KK = 4
ELSEIF (M .EQ. 2) THEN
N = i
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DO 70, IY = 1, NY
DO 80, T = 1, ICOUNT (M,IY)
P = ISEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)}.NE.-999
& y) THEN
MIDDLE = ((CLIMA(IY,P)~MU(M,P))/SIGMA(M,K)-RAU(M,K)x
& ((CLIMA(IY,P-1)=-MU{M,P=1))/SIGMA(M,K)))
DER1 = DER1+MIDDLEX (-PHI(LL,P)/SIGMA(M,K)+RAU(M,K) X
& PHI(LL,P-1)/SIGMA{M,K))
ENDIF
80 CONTINUE
DD 90, T = 1, ICOUNT (J,1Y)
P = ISEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999
& )) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P})/SIGMA({J,K)-RAU(J,K}*
& ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(JI,K)))
DERL1 = DER1+MIDDLE¥{(RAU(J,K)*PHI(LL,P-1)/SIGMA
& (J,K))
ENDIF
Q0 CONT INUE
DO 100, T = 1, ICOUNT (KK,IY)
P = ISEQ (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999) .AND.(CLIMA(IY,P-1).NE.-999
& )) THEN
MIDDLE=¢ (CLIMA(IY,P)-MU{NN,P))/SIGMA(KK,K)-RAU(KK,K)
& ¥ ((CLIMA(IY,P-1)~MU(N,P-1))/SIGMA(KK,K)))
DER1 = DER1+MIDDLEX (-PHI (LL,P)/SIGMA(KK,K))
ENDIF
100 CONTINUE
70 CONTINUE
IF (M .EQ. 1) THEN
DER (LL) = -DER1
ELSEIF (M .EQ@. 2) THEN
DER(LL+3) = -DER1
ENDIF
&0 CONT INUE
50 CONT INUE

NN = 2

J =4

KK = 3
ENDIF

THE VYARIABLE DER! COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION

THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATICN
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COEFFICIENT IS COMPUTED AS WELL AS THE DERIVATIVE
W.R.T. THE STANDARD DEVIATIONS

DO 110, IY = i, NY
DO 120, T = 1, ICOUNT (1,1Y)
P = ISEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999

& )) THEN
PART1 = (CLIMA(IY,PI-MU(1,P))/SIGMA(1,K)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1)}/8SIGMA(1,K)

MIDDLE = PART1-RAU(1,K)XPART2
DER(11} = DER(11)+MIDDLEXPART2

PARTL = —((CLIMA(IY,P)-MU{1,P))/SIGMA(1,K)%XX2)
PARTZ = ((CLIMA(LY,P-1)}-MU(1,P-1})/SIGMA(Ll,K)%xx%x2)
DER(7) = DER(7)-MIDDLEX (PART1+RAU(L1,K)¥PART2)~1/SIGMA(1,K)
ENDIF
120 CONT INUE

DO 130, T = 1, ICOUNT (2,1Y)
P = ISEQ (2,1Y,T)
IF ((CLIMA(IY,P).NE.=999).AND.(CLIMA(IY,P-1).NE.-999

& ) THEN

PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,K)
MIDDLE = PART1-RAU(Z2,K)XPART2
DER(12) = DER(12)+MIDDLEXPARTZ2
PART1 = —((CLIMA(IY,P)=MU(2,P))/SIGMA(2,K)%XX2)
PART2 = ((CLIMA{IY,P-1)-MU(2,P-1))/SIGMA(2,K)%%2)
DER(8) = DER(8)-MIDDLEX(PART1+RAU(2,K)¥PART2)-1/SIBMA(2,K)
ENDIF

130 CONT INUE

DO 140, T = 1, ICOUNT (3,1Y)

P = ISBEQ (3,I1Y,T)
IF {((CLIMA(IY,P)}.NE.-999).AND.(CLIMA(IY,P-1).NE.~-997

& ' )J) THEN

PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(I,K)
PARTZ2 = (CLIMA(IY,P-1)-MU(L1,P-1))/SIGMA(3,K)
MIDDLE = PART1-RALI(3,K)XPARTZ2
DER(13) = DER(13)+MIDDLEXPART2
PART1 = —({CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)%x%2)
PART2 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3I,K)%*%x2)
DER(9) = DER(9)-MIDDLEX(PARTL+RAU(3I,K)XPART2)-1/SIGMA(3,K)
ENDIF

140 CONT INUE

DO 150, T = i, ICOUNT (4,1Y)
P = ISEQG (4,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P~1).NE.-999
& Yy THEN
PART1 = (CLIMA(IY,P)-MU(1,P))/SIGMA(4,K)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(4,K)
MIDDLE = PART1-RAU(4,K)*PART2
DER(14) = DER(14)+MIDDLEXPARTZ
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PART1 = = ((CLIMA(IY,P)-MU(1,P))/SIGMA(4,K)xx2)
PART2 = ((CLIMA(IY,P-1)-MU{2,P-1))/SIGMA{4,K)%x%x2)
DER(10)=DER(10)—-MIDDLEX (PART1+RAU{4,K)¥PART2)-1/8IGMA{4,K)
ENDIF

150 CONT INUE

110 CONT INUE

DO 200, I = 1, NP
DER(1) = -DER(I)
200  CONTINUE
RETURN
END
...... SUBROUTINE TO MINIMIZE ALONG A LINE

SUBROUTINE MINL (THETA,DER,NP,FMIN)

INTEGER NPMAX
FARAMETER {NPMAX=20)
PARAMETER (EPS=1.E-4)

EXTERNAL DIM1
DIMENSION THETA(NP) ,DER{NP)
COMMON /ONE/ NPP, THET (NPMAX),DERI (NFPMAX)

OPEN (UNIT=2,FILE="LPT1")

NPP=NP
DO 10, J=1,NP
THET (J)=THETA(J)
DERI (J)=DER(J)
10 CONT INUE

cALL BRACK (A,B,C,FA,FB,FC,DIM1)
FMIN=BMIN (A,B,C,DIM1,EPS,XMIN)
DO 20, J=1,NP
DER{J)=XMINXDER(J)
THETA(J)=THETA(J)+DER(J)
20 CONT INUE

RETURN
END
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...... THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 4 FOR USAGE IN NUMERICAL RECIPES.

O00 M

SUBROUTINE DFUNC (THET&,DER)

INTEGER T,P,NV,NY,NT,NP,NPARM, NRAU

PARAMETER - (NV=6,NY=7,NT=365,NP=13,NPARM=3 ,NRAU=1)

COMMON K, ICOUNT(4,NY),ISEQ(4,NY,NT),CLIMA(NY,0:NT),
& ALPHA(2,NV,NPARM) ,PSI (2,NV,NPARM) ,PHI (NPARM, O:NT),
& RAU(NRAU,NV) , ISCALE (3,NV)

DIMENSION THETA (NP), DER (NP)

REAL MU (2,0:NT)

REAL SIGMA (2,0:NT)

REAL MIDDLE

...... LUPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,Jd) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(Z,K)
160 CONT INUE

DO 170, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)

170 CONTINUE
DO 10, M = 1, 2
DO 20, I = O, NT
MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 30, L = 1, NPARM
MU (M,I) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)

gsIGgMA (M,I) = SIGMA (M,I) + PSI (M,K,L}) ®* PHI (L,I)
30 CONTINUE

20 CONTINUE
10 CONTINUE
DO 40, I = 1, NP
DER (I) = 0.0
40 CONT INUE
DO 850, LL = 1, NPARM
DO 870, M = 1, 2
IF (M .EG. 1) THEN
N =2
NN = 1
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330

350

J =3

KK = 4
ELSEIF (M .E@. 2) THEN
N =1
NN = 2
J =4
KK = 3
ENDIF
THE VARIABLE DER1 COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR
THE VARIANCE FUNCTION
DER2 = 0
DER1 = ©O
DER3 = ©O
DO 310, IY = 1, NY
DO 330, T = 1, ICOQUNT (M,IV)
P = ISEG (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)}-RAU(1,K)X
((CLIMA(IY,P—1)-MU(M,P-1))/SIGMA(M,P~1)))
DER1 = DER1+MIDDLE(-PHI(LL,P)/SIBGMA(M,P)+RAU(1,K)X
PHI(LL,P~-1)/SIGMA(M,P-1))
PARTL = (—((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)%Xx2)x
PHI (LL,P))
PART2 = ((CLIMA(IY,P-1)~-MU(M,P-1))/SIGMA(M,P-1)%%2)
XPHI(LL,P-1)
DER3 = DER3I+MIDDLE* (PART1+RAU(1,K)¥PART2)
ENDIF
DER2 = DER2+PHI(LL,P)/SIGMA(M,P)
CONT INUE
DO 350, T = i, ICOUNT (J,IY)
P = ISEQ (J,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(1,K)X
((CLIMA(IY,P-1)-MU(NN,P~1})/SIGMA(NN,P-1)))
DER1 = DER1+MIDDLEX(RAU(1,K)*PHI(LL,P—1)/SIGMA
(NN,P-1))
PART2 = ((CLIMA(IY,P-1)=MU(NN,P-1))/SIGMA(NN,P-1)
XX2)KPHI (LL,P-1)
DER3 = DER3+MIDDLE* (RAU(1,K)*PART2)
ENDIF
CONT INUE
DO 360, T = 1, ICOUNT (KK,IY)
P = ISEQ (KK,IY,T)
IF ({(CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN
MIDDLE =((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)-RAG(1,K)

X((CLIMA(IY,P-1)-MU(N,P-1)}/SIGMA(N,P-1)))
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702

DER1 = DER1+MIDDLEX (~PHI(LL,P)/SIGMA(NN,P))

PART1 = (—{{CLIMA(IY,P)~MU(NN,P)}/SIGMA(NN,P)xx2)xX
PHI(LL,P))

DER3 = DER3I+MIDDLEXPART1

ENDIF
DER2 = DERZ+PHI(LL,P)/SIGMA(NN,P)
CONTINUE
CONTINUE
IF (M .EQ. 1) THEN
DER (LL) = -DER1
DER' (LL+6) = (-DER3-DERZ2)
ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DERI1
DER(LL+9) = (-DER3-DERZ)
ENDIF
CONTINUE

CONTINUE

THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT 1S COMPUTED

DER (NP) = O
DO 420, IY = 1, NY
DO 700, T = 1, ICOUNT (1,1Y)
P = ISEQ (1,IY,T)
IF ({(CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.-999))

THEN
PART1 = (CLIMA(IY,P)-MU(1,P))/SIGMA(L,P)
PART2 = (CLIMA(IY,P-1)~MU(1,P-1))/SIGMA(1,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)XPART2)*PART2
ENDIF
CONT INUE

DO 701, T = 1, ICOUNT (2,IY)
P = ISEQ (2,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

THEN
PART1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(2Z,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))}/8I1GMA(Z,P-1)
DER(NFP) = DER(NP)+(PART1-RAU(1,K)¥PART2Z) ¥PARTZ
ENDIF
CONT INUE

DO 702, T = 1, ICOUNT (3,IV)
P = ISEQ (3,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P-1).NE.=-99%))

THEN
PART1 = (CLIMA(IY,P)-MU(2Z,P))/SIGMA(2,P)
PART2 = {(CLIMA{IY,P-1)-MU{1,P~-1)})/8IGMA(L,P-1)
DER(NP) = DER(NP)+(PARTI1-RAU(1,K)*PART2)*PARTZ
ENDIF
CONT INUE
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po 703, T = 1, ICOUNT (4,IY)
P = ISEG (4,1Y,T)
IF ((CLIMA(}Y,P).NE.—???).AND.(CLIMA(IY,P—l).NE.~999))
& THEN
PART1 = (CLIMA(IY,P)-MU(1,P))/SIGMA(1,P)
PARTZ = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PARTZ

ENDIF

703 CONTINUE
420 CONTINUE

DO 200, I = 1, NP

DER(I) = —-DER(I)

200 CONT INUE

RETURN

END

— ——— o ————— T ———— o o T T s Ak M e e P B, T ML b B e e B A AL ol e e T — e e o

THIS SUBROUTINE COMPUTES THE MATRIX OF SIN AND COS TERMS FOR
THE FOURIER TRANSFORMATION

——— i —————— T _————— o e ot T s o o e e Y NS W o o o o g L L A b e e e e o T i o T — i T et

— o —— — S — ——— — ——— —— ] ———— " L —————

REAL PI
PARAMETER (PI = 3.14159265)
REAL PHI (NPARM,0:NT)
REAL THETA
REAL OMEGA
INTEGBER T
OMEGA = 2 % PI1 / NT
K = (NPARM - 1) / 2
PO 10, T = 1, NT
PHI (1,T) = 1
10 CONTINUE
DD 20, J = 1, K
JL =2 % J
J2 = Ji + i

THETA = OMEGA X% J
A= 2 % COS (THETA)

PHI (J1,1) = 1
PHI (J1,2) = A /7 2

PHI (J2,1) = ©O

PHI (J2,2) = SIN (THETA)

po 30, T = 3, NT

PHI (J1,T) A X PHI (J1,7T-1) - PHI (J1,T-2)

PHI (J2,T) A X PHI (J2,T-1) - PHI (J2,T-2)
30 CONTINUE
20 CONT INUE
RETURN

END
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IS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES

FOR MDDEL 5 FOR USAGE IN NUMERICAL RECIPES.

. L o o o o e . i ———— ——————— ——— — Yt o T . T Yo T e, o RS il i e T g, .

INTEGER T,P,NV,NY,NT,NP,NPARM, NRAU
PARAMETER (NV=6,NY=7 ,NT=365,NP=16,NPARM=3 ,NRAU=4)
COMMON K, 1COQUNT (4,NY), ISEQ(4,NY,NT),CLIMA(NY,0:NT),
ALPHA (2 ,NV,NPARM) ,PS1 (2, NV,NPARM) ,PHI (NPARM,0:NT) ,
RAU (NRAU, NV) , ISCALE (3,NV)
DIMENS IDN THETA (NP), DER (NP)
REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL MIDDLE
...... UPDATE PARAMETER ESTIMATES
DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+&)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(Z,K)
CONT INUE
DO 170, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)
CONT INUE
DO 10, M = 1, 2
DO 20, I = 0, NT
MU (M,I) = 0.0
SIGMA (M,1) = 0.0
DO 30, L = 1, NPARM
MU (M,1) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) % PHI (L,I)
CONT INUE
CONT INUE
CONT INUE
DO 40, I = 1, NP
DER (1) = 0.0
CONT INUE
DO 850, LL = i, NPARM
DO 870, M = 1, 2
IF (M .EQ. 1) THEN
N =2
NN = 1
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330

350

J = 3

KK = 4
ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK = 3
ENDIF

THE VARIABLE DER1 COMPUTES THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR

THE VARIANCE FUNCTION

DERZ = ©

DERL = ©

DER3 = 0O

DD 50, IY = 1, NY

DO 330, T = 1, ICOUNT (M,IY)
P = ISEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
-999)) THEN
MIDDLE = ({CLIMA(IY,P)-MU(M,P))/SIBGMA(M,P)—RAU(M,K)%
((CLIMA(LIY,P-1)-MU(M,P-1))/SIGMA(M,P~1)))
DERL = DERL+MIDDLEX(-PHI(LL,P)/SIGMA(M,P)}+RAU(M,K)X
PHI(LL,P-1)/SIGMA(M,P—1))
PART1 = (~((CLIMA(IY,P)=MU(M,P))/SIGMA(M,P)%X2)xX
PHI(LL,P))
PART2 = ((CLIMA(IY,P-1)~MU(M,P-1))}/SIGMA(M,P-1)%%2)
*PHI (LL,P-1)
DER3I = DER3+MIDDLEX (PART1+RAL(M,K)¥PART2)
ENDIF
DERZ = DER2+PHI(LL,P)/SIGMA(M,P)
CONT INUE

DO 350, T = 1, ICOUNT (J,1Y)

P = ISEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
~-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(J,K)X
((CLIMA(IY,P-1)-MU(NN,P-1))/SIBMA(NN,P-1)))
DER1 = DER1+MIDDLEX (RAU(J,K)¥PHI (LL ,P-1)/SIGMA
(NN,P-1))
PART2 = ((CLIMA(IY,P=1)-MU{NN,P-1))/SIGMA(NN,P-1)
*X2) ¥PHI (LL,P-1) :
DER3 = DER3+MIDDLEX (RAU(J,K)*PARTZ2)
ENDIF
CONTINUE
DO 360, T = 1, ICOUNT (KK,IY)
P = ISER (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

-999)) THEN

MIDDLE=((CLIMA(IY,P)-MU(NN,P)}/SIGMA(NN,P)-RAU{KK,K)
X({CLIMA(IY,P-1)-MU(N,P~-1))/SIGMA(N,P-1)})
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DERiLi = DER1+MIDDLEX{(-PHI(LL,P}/SIGMA{NN,P))

PARTL = (—((CLIMA{IY,P}-MU(NN,P)}/SIGMA(NN,P)X%x2)X
& : PHI(LL,P))
DER3 = DERI+MIDDLEXPART1
ENDIF
DER2 = DER2Z+PHI(LL,P)/SIGMA(NN,P)
350 CONTINUE
50 CONTINUE
IF (M .EQ. 1) THEN
DER (LL) = -DER1
DER (LL+&) = (-DER3I-DERZ2)
ELSEIF {M .EQ. 2) THEN
DER(LL+3) = —-DER1
DER(.L.+9) = (—-DER3-DERZ2)
ENDIF
870 CONTINUE

850 CONTINUE

...... THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT IS COMPUTED

DO 60, IY = i, NY
DO 700, T = 1, ICOUNT (1,IY)
P = ISEQ (1,1Y,T)
IF ((CLIMA(IY,P).NE.-999).AND. (CLIMA(IY,P=1).NE.~-999))
& THEN
PARTL = (CLIMA(IY,P)-MU(1,P))/SIGMA(1,P)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(L,P-1)
DER(13) = DER(13)+(PART1-RAU(1,K)*PART2)*PART2
ENDIF
700 CONT INUE

DO 701, T = 1, ICOUNT (2,IY)
P = ISEQ (2,IY,T)
IF ((CLIMA(IY,P).NE.-99%).AND. (CLIMA(IY,P-1).NE.
& -999)) THEN '

PARTL = (CLIMA(IY,P)-MU(2,P)}/SIGMA(2,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)
DER(14) = DER(14)+(PART1-RAU(Z,K)*PART2)XPART?2

ENDIF '

701 CONT INUE

DO 702, T = 1, ICOUNT (3,IY)
P = ISEG (3,1Y,T) -
IF ((CLIMA(IY,P).NE.-999).AND, (CLIMA(IY,P-1).NE.

& -999)) THEN
PARTL1 = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,P-1)
DER(15) = DER(15)+(PART1-RAU(3,K)*PART2)*PART2
ENDIF
702 CONT INUE
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DO 703, T = 1, ICOUNT (4,1Y)
P = ISEQ (4,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
PARTL = (CLIMA(IY,P)-MU(1,P))/SIGMA(1,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-1)
DER{NP) = DER(NP)+(PART1-RAU(4,K)XPART2)XPART2
ENDIF
703 CONT INUE
60  CONTINUE
DO 200, I = 1, NP
DER(1) = =-DER(I)
200  CONTINUE
RETURN
END
...... SUBROUTINE TO COMPUTE THE INVERSE OF A MATRIX WHEN

NOT PUTTING THE SOLUTION INTO THE OLD MATRIX

SUBROUTINE INVT (CLAGO, INV,NV)

REAL INV (NV,NV)
REAL CLAGO (NV,NV)
REAL RESULT (7,7)

DO S0, K = 1, NV
DO 60, KK = 1, NV

INV (K,KK) = CLAGO(K,KK)
&0 CONTINUE
50 CONTINUE

DO 10, I = 1, NV
DIAG = 1 / INV (I,I)
INV (I,I) = 1
DO 20, J = 1, NV
INV (I,J) = INV (I,J) % DIAG
20 CONT INUE
DO 30, K = 1, NV
IF (I .NE. K) THEN
DIAG = INV (K,I)

INV (K,1) = 0O
DO 40, J = 1, NV
INV (K,J) = INV (K,J) - INV (I,J) % DIAG
40 CONTINUE
ENDIF

30 CONT INUE
10 CONT INUE

RETURN

END
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...... SUBROUTINE TO COMPUTE (.OG LIKELIHOOD FUNCTION FOR
MODEL 3.

0onNnOoo

C _____________________
INTEGER T,NV,NY,NT,NP,NPARM, NRAU
PARAMETER (NV=6&,NY=7 ,NT=365,NP=14,NPARM=3 ,NRAU=4 )
COMMON K, ICOUNT { NRAU,NY) , ISEG{NRAU,NY ,NT) ,CLIMA(NY,O:NT),
& ALPHA(2,NV ,NPARM} , SIGMA (NRAU,NV) ,
& PHI (NPARM,0:NT) ,RAU(NRAU,NV) , ISCALE (3,NV)
REAL MU (2,0:NT)
REAL UNLIKE,PI
PARAMETER (P1=3.141593)
DIMENSION THETA(NP)
...... UPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM
ALPHA (1,K,J)
ALPHA (2,K,J)
160 CONT INUE

THETA (J)/ISCALE(3,K)
THETA (J+3)/ISCALE(3,K)

DC 170, J = 1, NRAU

SIGMA (J,K) = THETA (J+6)/ISCALE(2,K)
RAU (J,K) = THETA (J+10)/ISCALE(1,K)
170 CONT INUE
DD 10, M = 1, 2
DO 20, I = O, NT
MU (M,I) = 0.0
DO 30, L = 1, NPARM
MU (M,1) = MU (M,I) + ALPHA (M,K,L) x PHI (L,I)
30 CONT INUE
20 CONT INUE
10 CONT INUE
LNLIKE = ©
TERM = 0
DO 40, J = 1, 4
IF (J .EQ. 1) THEN
M= 1
L = 1
ELSEIF (J .EQ. 2) THEN
M= 2
L = 2
ELSEIF (J .EQ. 3) THEN
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M= 2
L=t
ELSEIF (J .EQ. 4) THEN
M =1
L = 2
ENDIF
DO 50, I = i, NY
DO &0, KK = 1, ICOUNT (J,I)
T = ISEQ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-1).NE.-999))
THEN
RESID = (CLIMA(I,T)-MU(M,T))/SIGMA(JI,K)-RAU(J,K)
X((CLIMA(I,T=1)-MU(L,T~1))/SIGMA(J,K))
LNLIKE = LNLIKE + (RESID)*x2
TERM = TERM + LOG(SIGMA(J,K))
ENDIF
CONT INUE
CONT INUE
CONT INUE
FUNC = —(—( (NYANT)/2)%LOG(2%PI)~TERM-LNLIKE/2)
RETURN
END
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...... SUBROUTINE TO COMPUTE LOG LIKELIHOOD FUNCTION FOR
MODEL 4.

INTEGER T,NV,NY,NT,NP,NPARM, NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=13,NPARM=3,NRAU=1)
COMMON K, ICOUNT (4,NY), ISEQ(4,NY,NT),CLIMA(NY,O:NT),

ALPHA({2,NV,NPARM} ,PSI (2,NV,NPARM) ,
PHI (NPARM, O :NT) ,RAU(NRAU,NV) , ISCALE (3,NV)

REAL MU (2,0:NT)

REAL SIGMA (2,0:NT)

REAL LNLIKE,PI

PARAMETER (PI=3.1415%3%) .
DIMENSION THETA(NP)

...... UPDATE PARAMETER ESTIMATES

DD 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,k)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)

PSI (1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/I1SCALE(2,K)
CONT INUE

DO 170, J = i, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)
CONTINUE

DO 10, M = 1, 2
DO 20, I = O, NT
MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 30, L = 1, NPARM
MU (M,I) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)

SIGMA (M,I) = SIGMA (M,I) + PSI(M,K,L) % PHI (L,I)

CONTINUE
CONT INUE
CONTINUE

LNLIKE
TERM = ©

]
O

DO 40,
IF
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ELSEIF (J .EQ. 2) THEN

M =2
L =2

ELSEIF (J .EQ. 3) THEN
M= 2
L =1t

ELSEIF { .EQ. 4) THEN
M=1
L =2

ENDIF

DO 50, I = 1, NY
DO &0, KK = 1, ICOUNT (J,I)

T = ISEQ (J,1,KK)

IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-1).NE.-999))
THEN
RESID = (CLIMA(I,T)-MU(M,T)}/SIBGMA(M,T)-RAU(1,K)

X((CLIMA(I,T-1)-MU(L,T~1))/SIGMA(L,T~1))

LNLIKE = {NLIKE + {(RESID)%x?2
TERM = TERM + LOG(SIGMA(M,T))

ENDIF
CONT INUE
CONT INUE
CONT INUE
FUNC = —(—((NYXNT)/2)XLOG(2%PI)~-TERM-LNLIKE/2)
RETURN
END
...... THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES

SWUBROUTINE INT3 (ALPHA,SIGMA,RAU,NPARM,NV,NRAU, ISCALE)

INTEGER ISCALE (3,NV)

REAL ALPHA (2,NV,NPARM)
REAL SIGMA (NRAU,NV)
REAL RAU (NRAU,NV)
FORMAT (° ALPHA PARAMETERS = )
FORMAT (° SIGMA PARAMETERS = )
FORMAT (‘ RAU PARAMETER = *)

OPEN (UNIT=4,FILE="CON")
OPEN (UNIT=4,FILE="\WATER\DATANINIT.DAT ,STATUS="0LD")

DO 20, K = 1, NV
READ (4,%) ISCALE (1,K),ISCALE(2,K), ISCALE(3,K)
DO 10, M =1, 2
READ (4,%x) (ALPHA (M,K,I), I = 1, NPARM)
CONT INUE

READ (4,%) (SIGMA (L,K), L = 1, NRAU)
READ (4,%) (RAU (L,K), L = 1, NRAU)
CONT INUE
RETURN
END
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...... SUBROUTINE TO COMPUTE LOG LIKELIHOOD FUNCTION FOR
MODEL 5.
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INTEGER T,NV,NY,NT,NP,NPARM, NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=16,NPARM=3 , NRAU=4 )
COMMON K, ICOUNT(4,NY), ISEQ(4,NY,NT),CLIMA(NY,0:NT),

ALPHA (2,NV,NPARM) ,PS1(2,NV,NPARM) ,
PHI (NPARM,O:NT) ,RAU(NRAU,NV) , ISCALE (3,NV)

REAL MU (2,0:NT)

REAL SIGMA (2,0:NT)

REAL LNLIKE,PI

PARAMETER (PI=3.141593)

DIMENSION THETA(NP)

...... UPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)

PSI (1,K,J)
PSI (2,K,J)
CONT INUE

THETA (J+&6)/1SCALE(2,K)}
THETA (J+2)/1SCALE(2,K)

w u

DO 170, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)
CONT INUE

DO 10, M = 1, 2
D0 20, 1 = 0, NT

MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 30, L = 1, NPARM
MU (M,I) = MU (M,I) + ALPHA (M,K,L) % PHI (L,I)
SIGMA (M,I) = SIGMA (M,I1) + PSI(M,K,L) % PHI (L,I)
CONT INUE
CONT INUE
CONTINUE
LNLIKE = O
TERM = O

DO 40, J = 1, 4
IF (J -EQ. 1) THEN

M= 1

L = 1

I
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ELSEIF (J .EQ. 2) THEN
M =

J .EG@. 3) THEN

2
2
(
M = 2
1
(J .EQ. 4) THEN
1
2
ENDIE
DO SO, I = 1, NY
DO &0, KK = 1, ICOUNT (J,I)
T = ISEQR (J,1,KK)
IF ({CLIMA(I,T).NE.-999).AND. (CLIMA(I,T-1).NE.-999))
THEN
RESID = (CLIMA(I,T)-MU(M,T))/SIGMA(M,T)-RAU(JI,K)
X{((CLIMA(I,T-1)-MU(L,T-1))/SIGMA(L,T~1))
LNLIKE = LNLIKE + (RESID)%Xx2
TERM = TERM + LOG(SIGMA(M,T))
ENDIF
CONTINUE
CONTINUE
CONT INUE

FUNC = —(—((NYXNT)/2)¥LOG(2%PI)-TERM-LNLIKE/2)}

RETURN
END

. e e i e e i ————————— i i bt o i ot Tt o T T . . o g

SUBROUTINE XNP (FIRST,SECOND, THIRD,ROWX,COLX,ROWA,COLA,RX,

———— - ——— T — T T S Y A T — T ———— T T S — " T - T T A A T AR Al i b e e e i e b e —

CX,RA,CA)}
INTEGER ROWX ,COLX ,ROWA,COLA,RX,CX,RA,CA
REAL FIRST (RX,CX)
REAL SECOND (RA,CA)
REAL THIRD (RX,CA)

IF (COLX .NE. ROWA) THEN
PRINT %, 'MATRICES ARE NOT COMPATIBLE®
ELSE
DO 10, I = 1, ROWX
DO 20, J = i, COLA
THIRD (I,J) = O
DO 30, K = 1, COLX
IF (SECOND (K,J) .NE. -999.0) THEN
THIRD(I,J) = THIRD(I,J)+FIRST(I,K)XSECOND(K,J)
ENDIF
CONTINUE
CONT INUE
CONTINUE
ENDIF

I

RETURN
END
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SUBROUTINE INV(MATT ,NN,MM)

REAL MATT{NN,NN), INVER(25,25)
REAL MATR1(25,25)

11 =0
SIT = I1 + 1
MATRI(IILII) = 1,0 /7 MATT(I11,11)
DO 40 3 = 1, MM
DO 30 I = 1, MM
IF (J .EQ. II .AND. I .EQ. II1) THEN
INVER(I,J) = (—-1.0) % MATR1(1I,II}
ELSEIF (J .EQ. II .AaND. I .NE. II) THEN
INVER(I,J) = MATT(I,J) ¥ MATR1(I1I,II)
ELSEIF (I .EQ. II .AND. J .NE. II) THEN
INVER({I,J) = MATT(1,J) % MATRI(II,II)
ELSE
INVER(I,J) = MATT(I,J) - ((MATT(I,II) *
& MATT(II,J)) ¥ MATRL(II,II))
ENDIF
CONTINUE
PRINTX, (INVER(I,J), I = 1, MM}
CONTINUE

CALL COPY(INVER,25,25,MATT,NN,NN,MM,MM)
IF (11 .LT. MM} GO 70 20

RETURN
END

vaee. SUBROUTINE TO GENERATE A VECTOR ACCORDING TO THE MODEL:-
S(t) = ALPHA(L)XPHI({i,t)

e T e e e e T — S AL M i ——— A i T —— s i o o o o o e A} B Bk Al T o o o o T ey o Yo e e e . e v

REAL MU (2,NT)
REAL PHI (NT,NPARM)
REAL ALPHA (NV,2,NPARM)
DO 10, M = 1, 2
DO 20, J = 1, NT
. MU (M,J) = 0.0
DO 30, I = 1, NPARM
MU (M,J) = MU (M,J) + ALPHA (K,M,I) % PHI (J,1)
CONT INUE
CONTINUE
CONT INUE
RETURN

END
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...... THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODEL4

PSTATE,NT)
INTEGER PSTATE, STATE
REAL RAU4 (NV4)
REAL RAND (1,NV)
REAL OBSN (NV}
REAL SIGMA4 (2,NV4,0:NT)
REAL MU (2,NV,0:NT)

FORMAT (7F10.3)

IF (J-1 .EQ. 0O) THEN

L = NT
ELSE

L =J-1
ENDIF

IF (K.EQ@.3) THEN

KK = 1

ELSEIfF (K.EQ.6) THEN
KK = 2

ENDIF

OBSN (K) = SIGMA4(PSTATE,KK,J)*(RAND(1,K}+RAU4(KK)% (OBSN(K) -
MU(STATE,K,L))/SIGMA4(STATE ,KK,L) )+MU(PSTATE,K,J)

RETURN
END
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...... THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODEL3J

INTEGER PSTATE
REAL RAND (NV, 1)

REAL SOLN (7,1)

REAL RES (NV,1)

REAL OBSN (NV, 1)

REAL SIGMA (2,NV,0:NT)
REAL MU (2,NV,0:NT)
REAL A (NV,NV)

REAL B (NV,NV)

5] FORMAT (7F10.3)

CALL MULT (B,RAND,SOLN,NV,NV,NV,1)
CALL MULT (4,0BSN,RES,NV,NV,NV,1)

DO 10, K = 1, NV
OBSN (K,1) = RES (K,1) + SOLN (K,1)

10 CONT INUE
DO 20, K = 1, NV
RES (K,1) = OBSN (K,1)%SIGMA(PSTATE,K,J)+MU(PSTATE,K,J)
20 CONT INUE
RETURN
END

——— . — ——— ——————————— —— T T —— i —— —————— T T T o S 2

SUBROUTINE INVNP (NP,SOLN,NPARM)

REAL SOLN (NPARM, NPARM)

DO 10, I = 1, NP
DIAG = 1 / SOLN (I,I)

SOLN (I,I) = 1
DO 20, J = 1, NP
SOLN (I,Jd) = SOLN (I,J) % DIAG
20 CONTINUE

DO 30, K = 1, NP
IF (I .NE. K) THEN
DIAG = SOLN (K,I)
SOLN (K,I) = 0
PO 40, J = 1, NP
SOLN (K,J) = SOLN (K,J) - SOLN (1,J) * DIAG

40 ' CONT INUE
ENDIF
30 CONT INUE
10 CONT INUE
RETURN
END
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+-+.-. THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
ITERATIONS TO BE PERFORMED
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SUBROUTINE INITIAL (EPS,MAXITER,ALPHA,PSI,RAU,NPARM,NV,NRAU)

REAL ALPHA (2,NV,NPARM)
REAL PSI (2,NV,NPARM)
REAL RAU (NRAU,NV)
FORMAT EPS, MAXITER = °)
FORMAT ALPHA PARAMETERS = ‘)

FORMAT
FORMAT

PSI PARAMETERS = 7))
RAU PARAMETER = )

Ny A,

OPEN (UNIT=4,FILE="CON")
OPEN (UNIT=4,FILE="\WATER\DATA\NINIT.DAT ,STATUS="0LD")

READ (4,%) EPS, MaAXITER
DO 20, K = 1, NV
DO 10, M =1, 2

READ (4,%) (ALPHA (M,K,I), I = 1, NPARM)
READ (4,%x) (PSI (M,K,I), I'= 1, NPARM)
CONT INUE
READ (4,%) (RAU (L,K), L = 1, NRAU)
CONTINUE
RETURN

END
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...... THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
ITERATIONS TO BE PERFORMED

SUBROUTINE INT4 (ALPHA,PSI,RAU,NPARM,NV,NRAU, ISCALE)

INTEGER ISCALE (3,NV)

REAL ALPHA (2,NV,NPARM)
REAL PSI (2,NV,NPARM}
REAL RAU {NRAU,NV)
FORMAT (° ALPHA PARAMETERS = ')
.FORMAT (" PSI PARAMETERS = ")
FORMAT (° RAU PARAMETER = )

OPEN (UNIT=4,FILE="CON")
OPEN {UNIT=4,FILE= \WATER\DATANINIT.DAT  ,STATUS="0LD")

DO 20, K = 1, NV
READ (4,%) ISCALE (1,K), ISCALE (2,K), ISCALE(3,K)
DO 10, M =1, 2
READ (4,%) (ALPHA (M,K,I1), I = 1, NPARM)
READ (4,%) (PSI (M,K,I), I = 1, NPARM)
CONT i NUE
READ (4,%) (RAU (L,K), L = 1, NRAU)
CONT INUE

RETURN
END
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THIS SUBROUTINE GENERATES RANDOM NORMAL NUMBERS WITH
MEAN ZERO AND STD. DEV. OF 1 AND THEN IS TRANSFORMED
INTO A RANDOM NUMBER WITH STD. DEV. OF SIGMA.

INTEGER NV

PARAMETER (NV=7)

INTEGER ROWX ,ROWA,COLX ,COLA
REAL DECOMP (NV,NV)

REAL NRAND (1,NV)

REAL RAND (1,NV)

FORMAT (7F10.3)
...... GENERATE RANDOM NORMAL (0,1) NUMBER
CALL GRANDZ2 (NRAND,NV)

...... GENERATE RANDOM NORMAL (0,5) NUMBER

ROWX = 1

ROWA = NV
COLX = NV
COLA = NV

CALL MULT (NRAND,DECOMP,RAND,ROWX,COLX,ROWA,COLA)

RETURN
END
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...... SUBROUTINE TO GENERATE A VECTOR ACCORDING TO THE MODEL :-
Stt) ALPHA (L) *PHI(i,t) &
S(t) PSI(i)xPHI(i,t)
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REAL MU (2,NV,NT)
REAL SIGMA (2,NV,NT)
REAL PHI (NT,NPARM)
REAL ALPHA (NV,2,NPARM)
REAL PSI (NV,2,NPARM)
DO 10, M = 1, 2
DO 20, J = 1, NT
DO 40, K = 1, NV
MU (M,K,J) = 0.0
SIGMA (M,K,J) = 0.0
DO 30, 1 = 1, NPARM
MU (M,XK,J) = MU{M,K,J)+ALPHA(K,M, T)¥PHI(J,1)
SIGMA(M,K,J) = SIGMA(M,K,J)+PSI(K,M,I)¥PHI(J,1)
30 CONT INUE
40 CONTINUE
20 CONTINUE
10 CONT INUE
RE TURN
END
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SUBROUTINE M4RES

(RAU, ALPHA ,PSI,PHI ,COUNT,SEG,CLI

MA,

1S:', F30.4)

INTEGER COUNT (4,NY)

INTEGER SEQ (4,NY,NT)

INTEGER T,CONVG

REAL AKAIKE ,LNLIKE,PI

PARAMETER (PI=3.141593)

REAL CLIMA (NY,O0:NT)

REAL MU (2,0:365)

REAL SIGMA (2,0:3&5)

REAL RESID (7,12,365)

REAL PSI (2,NV,NPARM)

REAL. ALPHA (2,NV,NPARM)

REAL PHI (NPARM,O:NT)

REAL RAU (NRAU,NV)

FORMAT (7F10.4)

FORMAT (° AKAIKE"S CRITERION FOR VARIABLE:', 14,
OPEN (UNIT=14,FILE='\WATER\DATA\RESI4,DAT  ,STATUS="UNKNOWN" )

OFPEN
IF (CONVG.EQ.O)
GOTO 250
ENDIF

DO 10, M = 1, 2
DO 20, 1 = O,
MU (M,I) =
SIGMA (M, ]
DO 30, L =
MU (M, I
SIGMA
CONT INUE
CONT INUE
CONT INUE

NY
1,
K, I

DO 80, I = 1,
DO 90, J =
RESID (
CONT INUE
CONT INUE
LNLIKE = ©
TERM = 0O
DO 40,

J=1, 4

(MyI) =

(UNIT=9,FILE="LPT1")

THEN

NT
0.0

} = 0.0

1, NPARM

y = MU (M,I)
SIGMA (M, 1}

+ PSI (M,K,L)

NT

yJ) = ~999.00
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IF (J . 1) THEN
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1
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2
2
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2
1
(J .EQ. 4) THEWN
1

2
ENDIF
DO 50, I = 1, NY

DD 60, KK = 1, COUNT (J,1)
T = sEQ@ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-1).NE.~999))
THEN
RESID(K,I,T) = {(CLIMAR(I,T)-MU{M,T))/SIGMA(M,T)-RAU(1,K)
¥((CLIMA(I ,T-1)-MU(L,T-1))/SIGMA(L,T—-1))
LNLIKE = LNLIKE + (RESID(K,I,T))**¥2

ENDIF
TERM = TERM + LOG(SIGMA(M,T))
CONT INUE
CONT INUE
CONT INUE
LNLIKE = —( (NYXNT)/2)%LOG(2%PI1)-TERM-LNLIKE/2
AKAIKE = -2XLNLIKE+2XNP

WRITE (9,15) K, AKAIKE

IF (K .EQ. 7) THEN
DO 100, I = 1, NY
DO 70, T = 1, NT
WRITE (14,5) (RESID (K,I,T), K = 1, NV)
CONT INUE
CONT INUE
ENDIF

RETURN
END
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INTEGER
INTEGER
INTEGER
REAL
PARAMETER
REAL
REAL
REAL
REAL
REAL
REAL
REAL.
REAL

FORMAT (7F10.4)

COUNT (4,NY)
SEQ (4,NY,NT)
T,CONVG

LNLIKE ,AKAIKE,PI
(PI=3.141593)
CLIMA (NY,O0:NT)

MU (2,0:365)

SIGMA (2,0:365)
RESID (7,12,365)
PSI (2,NV,NPARM)
ALPHA (2,NV,NPARM)
PHI (NPARM,0:NT)
RAU (NRAU,NV)

FORMAT (' AKAIKE"S CRITERION FOR VARIABLE: , 14,

QFEN (UNIT=14,FI

LE="A:RESIDU.DAT  ,STATUS="UNKNOWN " )

:°, F10.4)

OPEN (UNIT=14,FILE="\WATER\DATA\RESIS.DAT ' ,STATUS="UNKNOWN" )

OPEN {(UNI¥=9,FIL

IF (CONVG.EQ.O)
GOTQ 250
ENDIF

DO 10, M = 1, 2
DO 20, I = O,
MU (M,I) =
SIGMA (M, I
DO 30, L =
MU (M,
SIGMA (
CONT INUE
CONT INUE
CONT INUE

DO 80, I = 1, NY
DO 90, J = 1,
RESID (K,I
CONT INUE
CONTINUE
LNLIKE = 0
TERM = O

E='LPT1")

THEN

NT

0.0

) = 0.0

1, NPARM

) = MU (M,I) + ALPHA (M,K,L) % PHI
M,I) = SIGMA (M,I) + PSI (M,K,L) % PHI

NT
yJ) = —999.00
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DO 40, J = 1, 4
IF (J .EQ. 1) THEN

M =
L =

ELSEIF (J .EQ. 2) THEN
M= 2
L= 2

ELSEIF (J .EQ. 3) THEN
M= 2
L =1

ELSEIF (J .EBQ. 4) THEN
M =1
L = 2

ENDIF

DO 50, I = 1, NY
DO 60, KK = 1, COUNT (J,I)
T = SEQ@ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-1) ,NE.-999))
THEN

RESID(K,I,T) = {CLIMA(I,T)=-MU{M,T))/SIGMA(M,T)~
RAU(J,K) ¥ ((CLIMA(I,T-1)-MU(L,T-1))/
SIGMA(L,T-1))

LNLIKE = LNLIKE + (RESID(K,I,T))*%2

ENDIF
TERM = TERM + LOG(SIGMA{(M,T))
CONTINUE
CONTINUE
CONT INUE
LNLIKE = ~( (NYXNT)/2)LOG(2%PI)})-TERM-LNLIKE/2
AKAIKE = -Z2¥ULNLIKE+2Z¥NP

WRITE (9,15) K, AKAIKE

IF (K .EQ. 7) THEN

DO 100, I = 1, NY
DO 70, T = 1, NT
WRITE (14,5) (RESID (K,I,T), K = 1, NV)
CONT INUE
CONT INUE
ENDIF
RETURN
END
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INTEGER
PARAMETER
PARAMETER
PARAMETER
REAL

DIMENSION

———— it 27tk R} A kb o heh ol B ke e T o e et i . T

NPMAX ,MAXITER
(NPMAX=20)
(MAXITER=200)
{EPS=1.E-10)
NUM

THETA(NP) , GRAD({NPMAX) ,DIR(NPMAX) ,DER (NPMAX )

OPEN (UNIT=9,FILE="LPTL")

FTHETA=FUNC(THETA)
WRITE (9,%) 'FTHETA', FTHETA
CALL DFUNC(THETA,DER)
DO 10, J=1,NP
GRAD (J)=-DER(J)
DIR(J)=GRAD(J)
DER(J)=DIR(J)

CONT INUE

pg 20, I=1,MAXITER

ITER=I

CALL MINL (THETA,DER,NP,FMIN)
WRITE (9,%) "FMIN’, FMIN

IF (2.%ABS(FMIN-FTHETA) .LE.TOL*{ABS(FMIN)}+ABS(FTHETAR)+EPS) )

RETURN
FTHETA=FUNC{THETA)
CALL DFUNC(THETA,DER)
DENOM=0.,

NUM=0,
Do 40,

J=1,NP

DENOM=DENOM+GRAD (J } % %2
NUM=NUM+(DER(J)+GRAD(J ) ) XDER(J)
CONTINUE
IF (DENCM.EQ.O.)}) RETURN
GAMMA=NUM/DENCM

DO S0,

J=1,NP

GRAD(J)=-DER({J)
DIR(J)=GRAD(J)+GAMMAXDIRH(J)
DER(J}=DIR(J)

CONTINUE
CONT INUE
PRINT %, "DID NOT CONVERGE-
RETURN
END
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FUNCTION URAN1 (SEED)

DIMENSION R(97)

PARAMETER (M1=23%200,1A1=7141,IC1=54773,RM1=3.8580247E~6)
PARAMETER (M2=134454,1A2=8121,IC2=28411,RM2=7,4373773E-6)
PARAMETER (M3=243000,1AR3=45461,1C3=5134%)

PATA INIT /0O/

IF (SEED.LT7.0.0R,INIT.EQ.0) THEN
INIT=1
IX1=MOD(IC1-IDUM,M1)
IX1=MOD(IALXIX1+IC1,ML1)
[X2=MOD(IX1,M2)
IX1=MOD(IALXIX1+IC1,M1)
IX3=MOD(IX1,M3)
b0 10J = 1,97
IXL{=MOD(IALXIXI1+IC1,M1)
IX2=MOD(IAZ%IX2+1C2,M2)
R(J)=(FLOAT(IX1)+FLOAT{IX2)*¥RM2)*RM1
CONTINUE
SEED=1
ENDIF
IX1=MOD(IAL¥IX1+ICL1,M1)
IX2=MOD(IAZXIX2+1C2,M2)
[X3=MOD(IA3%IX3I+IC3,M3)
J=1+(F7%KI[X3) /M3
IF (J.GT.97.0R.J.LT.1) PAUSE
URAN1=R(J)
R(J)=(FLOAT(IX1)+FLDAT(IX2)%RM2Z)*RM1

RETURN
END
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THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
ITERATIONS TO BE PERFORMED

e e A o e . o M e e M ih RA e o o i kA s i o oy ——

SUBROUTINE INTAL3I (EPS,MAXITER,ALPHA,SIGMA,RAU,NPARM,NV,NRAL)

REAL ALPHA (2,NV,NPARM)

REAL SIGMA (NRAU,NV)
REAL RAU (NRAU,NV)
FORMAT EPS, MAXITER = )

15
23
35

10

20

(°
FORMAT (° ALPHA PARAMETERS =
FORMAT (° SIGMA PARAMETERS =
FORMAT (' RAU PARAMETER = ")

OPEN (UNIT=4,FILE="CON")

OPEN (UNIT=4,FILE="\WATERADATANINIT.DAT ' ,STATUS="0LD")

READ (4,%) EPS, MAXITER
DO 20, K = 1, NV
DO 10, M = 1, 2

)
)

READ (4,%) (ALPHA (M,K,I), I = 1,
CONT INUE
READ (4,%) (SIGMA (L,K), L = 1, NRAU)
READ (4,%) (RAU (L,K), L = 1, NRAU)

CONTINUE

RETURN
END
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