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Executive Summary 

 
The available maps and tables describing Mean Annual Precipitation (MAP) and Mean 
Monthly Precipitation (MMP) over Southern Africa are over 10 years old and need updating. 
To do this as well as possible, and to add an important measure of reliability to these 
estimates, new mathematical and statistical tools for infilling gauge data and interpolation 
over space were developed and tested against existing methods and found to be a 
meaningful improvement.  The MAP and MMP maps of areal estimates over quaternary 
catchments in the region were produced for the use of hydrological practitioners and are 
incorporated in an addendum.  Daily, monthly and annual rainfall records were infilled 
where the inter-station distance was small enough to make the estimates meaningful and 
the technique developed was also tested successfully on daily records.  The worth of the 
infilled data were indicated by computing the expected (mean) value, augmented by the 
median and the upper and lower deciles of the distributions of the estimates, as well as the 
probability of dry and of exceeding a pre-determined threshold.   
 
In other work, the links between satellite estimates of rainfall, in particular TRMM, were 
compared against spatially interpolated raingauge data over the TRMM pixels.  The result 
was a reasonable match over months, but a poor match at the daily scale.  As an alternative 
approach, a novel proposal for quantile-quantile adjustment of TRMM (and its successor, 
NASA's GPM) was mooted.  However, with a dwindling raingauge network, it is important (if 
expensive) to augment it with gauges not further apart than 25 km else there is poor 
correlation between them at the daily scale.  Without a reasonably dense gauge network in 
the wetter regions, there is no meaningful way of ground referencing remotely sensed 
rainfall using satellites and radar, whose rainfall measurements we know to be biased. 
Finally, the repaired annual and monthly data, together with their error estimates, and the 
maps and algorithms developed and used, are available on a CD accompanying the report 
and summarised in Chapter 10. 
 
The main product outlined in the first chapter of this report is an update of the MAP maps 
of observed and repaired rainfall records over the Republic of South Africa.  It also offers 
Mean Monthly Precipitation (MMP) maps crafted from observed and infilled data.  In 
contrast to previous studies, we chose to infill the missing data at the scale of interest 
(Annual or monthly, rather than infilling at daily and accumulating) to exploit the far 
stronger spatial correlation between gauges in order to provide more robust estimates of 
the missing values. In addition, the precision of these MAP and MMP maps is indicated by 
sets of estimates of low and high quantiles of the distributions of the data.  The supporting 
material in later chapters describes the new mathematics and algorithms developed 
specifically for this purpose and subsidiary applications of these tools forms the remainder 
of the report.   
 
The following figure is possibly the most important product of this project.  It shows the high 
variability of rainfall in mountainous areas, in contrast to the gradual increase of rainfall 
from West to East of the country.  Also evident is the sparseness of gauges in some areas, 
particularly the dry ones. 
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Figure ES.1 The repaired estimates of Mean Annual Precipitation (mm) at all infilled gauges 

in the daily rainfall data base held by CSAG 
 
The principal endeavour undertaken in this report is to repair the daily, monthly and annual 
rainfall estimates over South Africa and not necessarily in that order.  Not only do we give 
'best' estimates of the repaired values, we also offer the distributions, and hence confidence 
limits, of the estimates.  Once this has been done, we can spatially interpolate the point 
information into the intervening space.  From these interpolations we can make maps. 
 
The map of much interest in the practical implementation of our results is that of MAP over 
the quaternary catchments in the country.  Using the same colour palette as the dotty plot 
above in Figure ES.1, Figure ES.2 is the interpolated map of MAP values of the set of 
repaired gauges in the region.  Its colour legend is specifically designed in intervals to 
bracket the mean precipitation estimates of each quaternary catchment, so no inference is 
required in reading off the upper and lower limits of the MAP on the catchments. 
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Figure ES.2.  The MAP map of quaternaries, created by interpolating infilled gauges of Figure 

ES.1, using Gaussian copulas and quantile-quantile transforms of the data, as described 
in Chapters 3, 4 and 6. 

 
At some daily raingauge locations, measurements are available for more than a hundred 
years. Unfortunately these measurements have been sporadically obtained at a few specific 
sites. For most applications, such as hydrological modelling or flood forecasting, the full 
spatial distribution of precipitation (including the values at unobserved locations) are also 
needed. Remote sensing provides useful additional information – radars and satellite 
observations offer an important insight to the spatial properties of precipitation, but they 
are limited to recent times and are biased relative to gauge measured rainfall. Nevertheless, 
in order to use these methods for hydrological applications in a meaningful way, they have 
to be calibrated to ground truth.  
 
The different spatial (and temporal) scale of the ground measurements and remote sensing 
makes a direct comparison of point scale and remotely sensed spatial estimates of 
precipitation meaningless. Thus our first step is to repair the gauge records using 
appropriate methods, which have been recently devised by Bardossy and Pegram (2014).  
Once that is done we use interpolation methods devised by Bardossy and Pegram (2013) 
which offer precipitation estimates at relatively large spatial scales and provide reasonable 
uncertainty estimates for these. Precipitation interpolation presents a serious challenge if 
one wishes to derive a large number of realizations. 
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The specific problems that presented themselves include the following: 
 

 due to the large number of realizations automatic procedures are needed 

 precipitation has a mixed discrete continuous distribution with the number of zeros in 
the record depending on the aggregation scale – thus specific handling of the zeros is 
necessary 

 precipitation is influenced subtly by external factors such as topography and possibly 
distance from the coast – this dependence should be determined and incorporated in 
the methodology where meaningful 

 Knowledge of the uncertainty of the interpolation is vital for ground truthing of remote 
sensing products or for hydrological modelling – specifically the uncertainty at large 
spatial scales is of great importance 

 Interpolation quality has to be assessed – not only in the sense of squared errors but 
also for possible bias. 

 
Early interpolation methods were based on empirical assumptions and did not provide any 
error estimates.  However, Geostatistical methods have been used for precipitation 
interpolation since the 1980s. They provide reasonable unbiased estimates of precipitation 
together with the estimation of variance over different scales. However the standard Kriging 
based methods have substantial deficiencies for our task, namely: 
 

 they are usually based on fixed spatial stationarity assumptions which do not hold for 
precipitation, for example due to orographic effects  

 they are based on covariances (variograms) which are based on a Gaussian 
(symmetrical) assumption of the raw data, which does not accord with observations, 
due to the physical mechanisms of rainfall generation which result in an asymmetrical 
correlation structure at daily scales 

 they treat the mixed discrete continuous distribution of precipitation (dry areas 
represent a discrete distribution) as a single continuous distribution by default 

 their uncertainty estimates are simply dependent on the spatially stationary covariance 
functions and the network geometry, and not on the measured precipitation values. 

 
In the framework of the research reported by Bardossy and Pegram (2013), we developed a 
methodology for precipitation interpolation, simulation and uncertainty assessment using 
point observations and indirect measurements which we call Dynamic Copula Regression. In 
the first phase we concentrated on the problems related to point-observation-based 
interpolation and simulation. We focussed on an adequate representation of uncertainty at 
different spatial and temporal scales. The goal of this phase was to obtain a realistic ground 
truth for indirect measurements which could then be used in the second phase of the 
research as a basis for the combination of direct and indirect measurements. Quantification 
of uncertainty is crucial, because an optimal combination of the different measurements is 
only possible if their uncertainty is reasonably modelled. 
 
In our recently accomplished research (ibid.), it was found that it was important: 
 

 to find a good method to incorporate external (topographical or geographical) 
information into rainfall interpolation where necessary 
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 to perform rainfall interpolation using a copula based approach 

 to improve the informative contribution of dry stations in the interpolation of 
precipitation 

 to define and test new measures of precipitation interpolation quality 

 to test copula based interpolation uncertainty estimates 

 to develop simulation methodologies to estimate interpolation uncertainty on larger 
spatial scales 

 to test the above methodologies on regions with different topography using rainfall 
depth accumulations in time intervals ranging from daily to annual 

 to develop a copula based interpolation method for the possible incorporation of 
climatological information 

 to separate interpolation error into a random error and a temporally correlated bias 

 to apply the above developed models to improve indirect precipitation estimates using 
radar and satellite information precipitation accumulations where available. 

 
To achieve meaningful infilling of missing data we draw from the paper by Bardossy and 
Pegram (2014), whose contribution became available only half-way through the project.  
Infilling missing data might be an unpleasant and tedious task, but is vital for analysis and 
water resources management, so should not be done in a lackadaisical manner. The 
important thing about the infilled values is that they need to be as good as possible, 
because poor infilling is likely to lead to poor decisions. Traditionally, a range of methods 
has been routinely employed, e.g. Nearest Neighbour substitution through to Kriging, but 
few methods attach a quality estimate to the infilled values. In the 2014 paper (ibid.), a new 
copula based method we choose to call Dynamic Copula Regression, which was developed 
for infilling missing daily, monthly and annual rain gauge data.  The new method was 
compared with six other commonly used methods, in a semi-arid environment with a range 
of rain-rates and interstation distances, in the Southern Cape region of South Africa. For 
daily data it is clear that the copula- based methods are superior to the others in terms of 
point estimation and have the added benefit of providing an estimate of the precision of the 
interpolation, not provided by the others.  
 
It was found that the addition of atmospheric Circulation Patterns (CPs) (Pegram et al., 2013 
and Pegram and Bardossy, 2013) designed to add information for infilling, has a relatively 
small positive effect on the quality of the estimation. The main reason for this is that a small 
number of wet days does not allow a good estimation of the conditional distribution of 
precipitation amounts; note that the average probability of a dry day in the test region is 
86%. A minor improvement of the estimate of the probability of a dry day was however 
observed if CPs were used as conditions. In other regions, with a higher number of wet days, 
a CP-based method might lead to further improvements. Using copula-based methods, the 
estimated probability of a dry day corresponded well with the observed frequency of dry 
days over the test data. The monthly data yield the same conclusion, with the qualification 
that the Expectation Maximisation (EM) algorithm (Pegram, 1989 & 1997) performs as well 
as the copula method.  This is because of the low count of dry months in this region and 
because monthly data are much less skew than daily and do not violate the Gaussian 
assumption of the data used in regression.  Its relative disadvantage compared with the 
copula based method is that it does not routinely offer as valuable a precision estimate.  
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As a result, in this project, the methodologies developed by Bardossy and Pegram (2013, 
2014) are used to perform (i) the infilling of missing point data and (ii) the spatial 
interpolation over intervening areas. The interpolation of rainfall data in individual time 
intervals in Bardossy and Pegram (2013), ranging from a day to a year, was an inter-
comparison of the skill of Ordinary Kriging, external Drift Kriging, Gaussian copulas and 
unsymmetrical v-copulas, with a variety of treatments of altitude as an exogenous variable. 
For time aggregations such as daily and pentads, zero precipitation occurrences were 
treated as censored variables.  We note that in that German study the monthly and annual 
data reported no dry periods (unlike our Southern African data) so that for each selected 
time step the marginal distributions of precipitation amounts were modelled using non-
parametric density estimators, while the dependence structures were estimated using a 
maximum likelihood methodology. Several measures of bias and error structure were used 
to assess the efficacy of the methods over a range of comparative split-sampling studies.  
The result was that the copula-based methods were far more informative than the other 
traditional ones, so that is the procedure we have adopted in this work for two main 
reasons.  The first is that the dry periods were included in the infilling (pointwise) or 
interpolation (space-wise) through a Gaussian transformation accommodating the zeros 
meaningfully into the Dynamic Copula Regression.  The second reason was that the 
Gaussian copula method yielded meaningful error structures that are not spatially uniform, 
but depend on the local precipitation intensity.   
 
Having set the technical stage, this report condenses the advances that have been made in 
the  3 years of this project’s life.  The report deals with the following issues in 11 chapters: 
 

 The first chapter contains the final product – the maps of MAP and MMP together 
with maps of their variability and a comparison with previous estimates 

 In the second chapter we reported on work using Circulation Patterns associated 
with the rainfall regimes, based on the output of WRC project K5/1964 (Pegram et 
al., 2013), but with new regions based on SAWS criteria. 

 Chapter 3 describes the cross-validation of Gauge data, with a view to selecting the 
best infilling procedure, by comparing several standard methods of infilling against 
the new Dynamic Copula Regression method, which is also outlined in this chapter. 

 In Chapter 4 we explain how to visualise the worth of the infilled values, through 
pictorial explanation of the methods, complementing the previous chapter. 

 In Chapter 5 we determine the value of the data and examine the results of the 
infilling. 

 Chapter 6 is a summary of the methodology developed for spatial interpolation 
between the repaired gauges for the production of smooth maps and for estimating 
rainfall amounts over catchments. 

 In Chapter 7, we describe a straightforward spatial Interpolation using the Fast 
Fourier Transform to produce radar-like random fields, as a possible alternative to 
the copula-based methods, developed in Chapter 6. 

 Chapter 8 describes an attempt to develop a method to downscale TRMM rainfall 
data to block averaged daily read gauge rainfall data using regression 

 Chapter 9 introduces a novel idea which is suggested for performing a valid quantile-
quantile transform of TRMM to Block averaged gauge rainfall where there are 
records and then interpolating the methodology to ungauged locations.  Although 
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not exploited in this study, the methodology needs to be recorded and used 
elsewhere. 

 Chapter 10 describes the data and algorithms and indicates how these have been 
archived for access by practitioners. 

 Chapter 11 contains a summary and conclusion to the report. 

 
In memoriam 
 
In spite of all the good new things we are providing in this project, the sad truth is that we 
are working with a dying resource.  The SAWS raingauge network currently has 
approximately 1200 live gauges – about the same number as were recorded daily by 
weather stations and volunteers in the 1930s – down from a peak of near 3000 in the 1970s.  
Unless these are augmented soon, to allow us to infill the records backwards in time using 
the methods devised herein [to be done again once we have 10 years or so of new data], 
there will be insufficient gauged readings of actual rainfall at ground level against which to 
calibrate and adjust radar and satellite estimates of rainfall.    
 
To illustrate the point, the next two images display the change in gauge density in Southern 
Africa over the last 160 years, indicating the total number of active daily recording rain 
gauges in each year.   
 
 
 

 

Year 

Figure ES.3. The total of active daily recording rain gauges in each year, from the daily 
rainfall data-base maintained by CSAG at the University of Cape Town. 

 
We point out that the sudden drop off by approximately 500 gauges in the year 2000 is an 
artefact of the data-set.  Prior to 2000 the database contained gauges from organizations 
other than SAWS, however only SAWS gauges are in the database after 2000.  Nevertheless, 
there is still a very real and concerning drop-off in the number of gauges.   
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Figure ES.4.  An alternative summary of gauge density by year.  The blue vertical lines only 

appear when a year has data; the white space means there were no data recorded at 
that time. 

 
In our opinion, the WRC and other concerned research-orientated bodies with strong voices 
should prevail upon the large institutions currently managing gauge networks (SAWS, ARC, 
DWS) to immediately deploy a complementary set of rain gauges, so that the average 
density over the wetter part of the country is increased to an inter-gauge spacing of closer 
than 25 km.  If the gauges are sparser than 35 km then there is a very small spatial 
correlation link between them at the daily scale and they might as well be treated as 
independent, lonely gauges. 
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infilled values.  The vertical axis has the same limits as that of Figure 5.13 for ease of 
comparison. 

43 

Figure 5.13.  Infillings for set 2 of Target and Controls:  Very wet, showing the corresponding 
intact data and the error bars (10th, 50th and 90th percentiles) of the infilled values.   
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Figure 5.14.  Sample and fitted cdfs of target gauge 45 

Figure 5.15.  A reverse-transformed set of 100 infilled target estimates using DCR. 45 

Figure 5.16.  Infilled monthly data complementing a partly intact record.   46 

Figure 5.17.  Two records [red and blue] which stop and start at different times, but where 
they overlap [purple] are identical.   
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Figure 5.18.  Cumulative plot of the combined overlapping periods of the records shown in 
purple in Figure 5.17.   

47 

Figure 5.19.  Two records, covering overlapping periods for similarly coded gauges.  The red 
record overlaps the blue in two places: between 1950 and 1965, then 1990 to 1993.   

48 

Figure 5.20.  Left panel: the infilled MAP values plotted against the MAP of the observed 
data before infilling.  Right panel: the scaled 80-percentile of interval estimates labelled 
Mean Annual Precision on the y-axis, ranked by MAP, for all filled stations. 
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Chapter 6  
Figure 6.1(a) to (e).  Regression example, comparing relationships of ensemble estimates 

with expected values.  
51 

Figure 6.2.  Results of a day-by-day interpolation: Baden-Würtemburg, December 18, 
1993.  The upper row shows the estimated mean field.  The second row shows 
maps of the standard deviation of the interpolated values (Bardossy and 
Pegram, 2013). The scale of rainfall has a maximum of 60 mm; the standard 
deviations a maximum of 30 mm. 
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Figure 6.3.  Results of a day-by-day interpolation: Baden-Würtemburg, December 19, 
1993.  The upper row shows the estimated mean field and the second row 
shows maps of the standard deviation of the interpolated values, as in Figure 
6.2.  The scale of rainfall has a maximum of 60 mm; the standard deviations a 
maximum of 30 mm. 
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Figure 6.4.  Histogram of the frequencies that the various error models were 
acceptable at the 95% confidence level, based analyses similar to those depicted 
in Figure 4.8 
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Figure 6.5.  The gauges used for interpolation trials are shown against an elevation 

backdrop.  The image, with coordinates at the top left corner (28E, 28S) and of 

the bottom right corner (31E, 31S), shows all gauges available in the CSAG 
database during the 1965-1985 time period.  The orange rectangle is the area 
used for interpolation experiments.  
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Figure 6.6.  An empirical cumulative distribution function (cdf) obtained by ranking 
all observed rainfall records on a chosen day. Note the dry probability p0 of 0.23, 
which indicates that this particular day is quite wet. 
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Figure 6.7.  The combined piece-wise approximation of the empirical cdf in the 
rainfall domain, superimposed on the empirical cdf in Figure 6.6.  The 
approximation is used to transform simulated fields in the Gaussian domain to 
rainfall on the given day.  

56 

Figure 6.8. Averages of 100 sets of simulations of one day over a large area (1 – 

about 100 km), the 0.333 tiles in the two images covering overlapping regions.  
Common strips of the three central tiles are indicated by grey arrows.  Note the 
rainfall stations in the background are to be found in Figure 4.13.  Here, those 
experiencing rain on the day are shown as crosses and the dry stations as black 
dots in the dry grey areas.  Each of these images is the spatial mean of two 
different sets of 100 simulations.   
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Figure 6.9.   The central tile of each panel in Figure 6.8 juxtaposed in their correct 
positions on the left and their standard deviations in the right panels of this 
figure.   As noted in Figure 6.8's caption, these were assembled from 10069 
simulations.  There is no stitching between the stacked tiles. 
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Figure 6.10.   The pair of tiles in Figure 6.6 stitched together in 100 simulations: means and 
standard deviations of the resulting fields are shown in the left and right panels.  
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Figure 6.11.  A 1.25 square region consisting of four tiles – a single conditioned 
realisation stitched together in sequence 
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Figure. 6.12. A time-series of the cross-correlation coefficients computed between 
observed daily rainfall and elevation over region 6 for the analysis period. The 
station elevation reported in the CSAG database was used. 
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Figure. 6.13.  An attempt to discern if there is any seasonality in the correlations. All 

correlations over the 3 square region in Figure 6.5 have been binned according 
to the day of the year (see grey scatter points) and the mean for each day 
computed (red line) 
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Figure. 6.14: Day of year means (on each day over the 20 years) for eight of the nine 

1 blocks shown in Figure 6.5 (repeated here as an insert in place of block 4).  
Compared with Figure 6.13, these blocks have been unpacked. Note that block 4 
of Figure 6.5 has not been included due to a lack of sufficient observations (only 
2). 
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Figure 6.15.  Comparison of the 50th percentile (median) at each 0.01 (about 1 km) 
square pixel based on two different conditional simulation runs of 10 
realisations each.  It is clear that the spatial patterns are very dissimilar, 
especially in the bottom right which contains no gauges, as it is over the sea – 
the coastline is shown by the blue curve.  The dry gauges (dots) are surrounded 
by grey areas; the wet gauges are indicated by crosses. 
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Figure 6.16.   Comparison of the 50th percentile (median) at each 1 km square pixel 
based on two different conditional simulation runs of 100 realisations each.  
Note that the spatial patterns over land are less dissimilar, except for the 
sparsely gauged northwest region. 

68 

Figure 6.17.  Comparison of the 50th percentile (median) at each 1 km square pixel 
based on two different conditional simulation runs of 1000 realisations each.  
Over land the images converge nicely except for the sparsely gauged regions.  
The yellow line indicates a transect through two gauges, which yields the 1 
dimensional plots to follow in Figures 6.18 & 19. 

68 

Figure 6.18.  Transects through the two independent stacks of 100 (left column) and 
1000 (right column) simulation images whose medians are shown in Figures 6.15 
and 6.16, intersecting two gauge observations.  The 4 different trajectories in 
each panel are the 5th and 95th percentiles and the median and mean.   
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Figure 6.19.  The effect of altitude.  Top, middle and bottom rows of this figure are 
respectively 10th, 50th and 90th percentiles of 1000 simulations on block 6 
(middle row right hand side of Figure 6.14).  In the left column of this figure, 
correlation with altitude is not included in the simulation constraints.  In the 
right column there is a 0.2 correlation between rainfall on the day and the 
altitude.  
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Figure 6.20. The effect of altitude.  10th, 50th and 90th percentiles of 1000 simulations 
on block 6 (middle row right hand side).  Left column 0.5 correlation; right 
column 0.75 correlation between rainfall on the day and altitude, the latter 
shown in Figure 6.19.  
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Figure 6.21.  Elevation map sampled from the product of the Shuttle Radar Topography 

Mission – Jet Propulsion Laboratory.  This map was used in the above analysis 
summarised in Figures 6.19 and 6.20.  Note the dry gauges on the day are marked by 
black dots and gauges recording rain are marked by crosses. 
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Chapter 7  

Figure 7.1.  Left panel: Location of the study region; dashed area encloses the radar, 
wind and temperature stations. Right panel: the red dashed circle is 75 km 
radius of the radar coverage; red area is a radar mask; green square area is the 
red area in the left panel; dots are gauge locations; the black dashed square is 
Region 1; Region 2 is intersection of red radar circle and green boundary square; 
dashed blue square is Region 3. 
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Figure 7.2. Gauge locations and amounts of rain on day 13 March 1991.  The region 
is nearly square and covers SAWS 30’ rainfall blocks numbered [230, 231, 232, 
260, 261, 262, 292, 293 and 294] in the Eastern Free State.   
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Figure 7.3.  Cumulative frequency distribution of rainfall values derived from Figure 
7.2. 
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Figure 7.4.  Sample Spectrum of radar image and transformed correlogram. The left 
panel shows the 2D power spectrum of a radar field plotted in 1D [black circles], 
the average of these in discrete bins [red dots] with the best linear fit in log-
space [red line].  In the right panel, the Fourier transformed correlation [black 
circles from red line] is an exponential curve with a correlation distance of 29.7 
km obtained where 1/e intersects the curve. 
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Figure 7.5.  One of 100 random Gaussian fields, 256 km square, FFT filtered to have a 
correlation length of 30 km. 
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Figure 7.6.  After we have interpolated the mean field between the gauges by Gaussian 
Ordinary Kriging, we obtain the image on the left.  The random field in Figure 7.5, when 
merged with the mean field gives us the combined field on the right. 
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Figure 7.7.  Combining of 100 simulations like that in Figure 7.6 [right] we obtain their 
sample mean field on the left, by averaging the 100 simulated images.  The median 
[Q50] field on the right is obtained by finding the median of the 100 simulated values at 
each 1 km pixel. 
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Figure 7.8.  Upper 4 images, sections through gauges ringed in maroon in Figure 7.2, 
showing the mean and standard deviation fields of the Gaussian Kriging and FFT 
simulations. The lines are interpreted as follows: solid blue = Kriged mean; dotted blue 
= Kriged quartiles; inner wiggly red line = 50th percentile of 100 simulations; outer 
wiggly red lines = 25th and 75th percentiles of 100 simulations.  Note their coincidence 
with the Kriged lines and the narrowing of the quartiles when the sections are near a 
gauge.  The lowest pair is an expansion of the curves to give more detail. 
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Figure 7.9.  Same as Figure 7.8, but the sections are through sites with gauges 
removed from the computation.  The vertical dashed lines in this figure, and the 
black dots, respectively indicate the location and value [Gaussianised] at the 
target.  The narrowing of the quartiles is due to the presence of other nearby 
control gauges shrinking the gap and influencing the surface. These are 
representative images – others show better and worse results. 
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Chapter 8  

Figure 8.1.  PRECIS grid and rain gauge sites – Mpumalanga.  Red square is # 6, 
whose gauge weights appear in Table 2 
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Figure 8.2. Location of the subregion of South Africa, chosen to bound Figures 8.3 

and 8.4. The 5 by 5 region chosen [25S to 30S and 25E to 30E] is shown by 
the red square.  
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Figure 8.3. The 5 square subregion of South Africa indicated in Figure 8.2, 
illustrating the layout of rain gauges active within the period 2000-03-01 to 

2010-03-31 and overlaid by the 0.25 TRMM grid (left panel). The right hand 
panel shows the total number of gauges in each grid block active at any time in 
the 121 month period. 
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Figure 8.4. As for figure 8.3, but here showing gauges active on the first day of the 
overlapping data-sets: day (2000-03-01). Note the lower gauge counts in the 
dense cluster in the upper right corner when compared to Figure 8.3. The layout 
of active gauges is not constant throughout the period and this had to be 
accounted for in the analysis, by recalculating the weights, in each gauge-active 
block, on each day. 
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Figure 8.5. A comparison of daily totals from gauges and TRMM on 3 March 2000. 
Panel (a) shows the rainfall amount estimated by the uncalibrated TRMM 
algorithm – uncalibrated means the rainfall estimates are made using only 
satellite data and retrieval algorithms. Panel (b) shows the block averaged gauge 
rainfall recorded on the same day, with grid blocks containing no data coloured 
grey. Panel (c) shows the calibrated TRMM estimate; this is the uncalibrated 
estimate of panel (a) adjusted via a quantile transform to match the gridded 
GPCP rainfall product (Huffman et al., 2010). Note the general agreement on 
raining areas, but with far more zeros in the gauge estimates (b) when 
compared to TRMM (a) and (c). 
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Figure 8.6. The total rainfall accumulations for the 10 year analysis period as 
estimated by each product. The general patterns and amounts show good 
agreement, but the gauge values show considerable noisy variation. This 
variation is explained by the variability in available record lengths which strongly 
affects the total (see Figure 8.7). In addition, note the artefacts in panel (c) from 
the calibration process, particularly in the Southern and Eastern parts, which are 
very ’blocky ’.  The Cape's annual rainfall is severely underestimated by TRMM.  
Even so, we will be wise to downscale the uncalibrated (a) rather than calibrated 
TRMM (c). 
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Figure 8.7. Length of the available gauge record in each block (in days). The total 
analysis period is 3682 days. Several blocks do not have a record spanning the 
entire period – this is usually the result of a block containing only a single gauge 
which is sporadic. 
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Figure 8.8. The mean rainfall values for the 10 year analysis period as estimated by 
each product. The general patterns and amounts show good agreement. The 
values are low, mostly due to the large proportion of zeros in the dataset (we 
have accounted for missing values). The gauge estimates (b) are smoother than 
the totals shown in Figure 8.6 since the length of record has a much smaller 
effect. Particularly noticeable in panel (a) are three isolated very high counts in 
small areas in Gauteng. They appear to be associated with large water-bodies. 
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Figure 8.9. Comparison of time series for a single grid block centred on (30.875 S, 

27.625E). Panel (a) shows the comparative daily time series for the entire 
analysis period, while panel (b) shows the time series for a single year of data at 
the beginning of the period of comparison. There is good agreement on the wet 
and dry periods and the magnitudes of rainfall. However, there are many timing 
mismatches evident [three of them indicated by the green ovals] which reduce 
the correlation between these daily Gauge Block averages and TRMM time 
series to below 0.5.  
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Figure 8.10. Comparison of time series for a single grid block centred on (24.375 S, 
28.875 E). Panel (a) shows the comparative daily time series for the entire 
analysis period, while panel (b) shows the time series for a single year of data. 
There is good agreement on the wet and dry periods and the magnitudes of 
rainfall at the monthly scale. However, there are many mismatches evident at 
the daily scale [three of them indicated by the green ovals] which reduce the 
correlation between the time series. 
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Figure 8.11. The reason behind providing the previous Figures (8.9 and 8.10) is 
illustrated by comparing the Empirical Cumulative Distribution Functions 
(ECDFs) for the two different locations in this pair of distributions. In both cases 
the dry probabilities of the gauge block estimates are higher than the dry 
probabilities of the TRMM estimates. However, in the case of panel 8.11 (b), 
which matches the time relatively dry series shown in Figure 8.10, there is also a 
marked difference between the gauge and TRMM distributions for the higher 
rainfall amounts. 
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Figure 8.12. Rainfall gauges contained in the Global Historical Climate Network 
database (Menne et al., 2012). Panel (a) shows all available gauges in the 
database, while panel (b) shows the subset available during our analysis period. 
It is clear from panel (c), the record of active gauges in the region from 1850 to 
2010, that there is a large die off from the late 1990’s. This is most likely after a 
major collection effort was made, while after 1997 the updates to the database 
relied on the limited gauges of the WMO GTS network. 
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Figure 8.13.  4 areas in RSA with different climates in which to compare the TRMM 
and block averaged precipitation: from North to South, Limpopo, Gauteng, KZN 
coastal and Western Cape coastal.   
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Figure 8.14. scatter-plot between TRMM and BAGD daily data for Block 5 in the 
Gauteng area. 
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Figure 8.15. scatter-plot between TRMM and BAGD monthly data for Block 5 in 
Gauteng. 
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Figure 8.16. scatter-plot between TRMM and BAGD daily data for Blocks 2 and 7 in 
Western Cape. 

101 

Figure 8.17.  Example of fitting different functions to summary data.  These are 
monthly means calculated from TRMM data obtained from Block 7 in Gauteng, 
using Fourier series and numerical filters. 
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Figure 8.18.  Example of fitting a triangular numerical filter to summary data.  These 
are daily standard deviations calculated from TRMM data obtained from a block 
in Gauteng. 
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Figure 8.19.  Year 1 of standardised daily data for Block 3 in Gauteng. 102 

Figure 8.20.  Plot of standardised daily data of Block 3 of the Gauteng group. 104 

Figure 8.21. Means and Standard Deviations of daily data of Western Cape Block 2. 105 

Figure 8.22. Standardised daily data of Western Cape Block 2. 105 

Figure 8.23.  Coaxial traces of the 1st year of two sets of rainfall estimates for 
comparison. 
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Chapter 9  

Figure 9.1.  Cumulative Distribution Functions (cdfs) fitted to the daily data on Block 
9 of the Gauteng group. Green line – Exponential model; Red line – Weibull 
model; Blue crosses [partially hiding the Weibull curve]: data. 
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Figure 9.2. QQ plot of data and the fitted Weibull distribution shown in Figure 9.1 110 

Figure 9.3. cdfs of the TRMM distribution of daily estimates on Gauteng's Block 9 
and its fitted Weibull cdf 
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Figure 9.4. Sequence of calculations to perform a QQ transform of TRMM rainfall to Gauge. 
Blue curve: Weibull model fitted to TRMM as in Figure 9.3; Red curve: Weibull 
distribution fitted to the BAGD data. 

111 

Figure 9.5. Number of active gauges in the Limpopo region from 2000 to 2010.  The 
red squares indicate blocks used for the interpolation experiment. The thick red 
square includes the target block. 
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Figure 9.6.  cdfs of the 6 individual rainfall stations active in the above target block. 114 

Figure 9.7.  Lebrenz's Pilot Area for monthly interpolation of parameters, with 
Ngoepe's Gauteng study area. 
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Figure 9.8 Lebrenz's Figure 4.2 117 
Figure 9.9. Plot of Weibull b versus a before transformation to uncorrelated r and s. 117 
Figure 9.10. plot of standardised Weibull b1 versus a1 118 
Figure 9.11. Decorrelated vectors a2 and b2 of standardised parameters of Figure 9.10 119 

Figure 9.12. Cumulative frequency distributions of block averages of rainfall above 0.1 mm 
on gauges over a 25 by 25 pixel square in 10 000 days. Blue: 1 gauge; green: 2 gauges; 
brown: 3 gauges; yellow: 4 gauges; black: 8 gauges; magenta: 16 gauges; navy blue 625 
sites (full square).   
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Figure 9.13. scatter-plots of gauge-averages and spatial areal averages of rainfall simulations 
over a 25 by 25 pixel square region. 
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Figure 9.14. The cumulative frequency distribution functions of gauge averages [orange] 
over the 625 block square compared to the field's average [black].  
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Figure 9.15. The sample and fitted Weibull distribution functions for 2 and 8 gauges. 
The black curves are the samples' cfdfs and the orange curve the fitted 
distributions. [Horizontal axis mm and vertical axis cumulative probability.] 
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Figure 9.16.  Parameter values of Weibull distribution functions fitted to sample 
curves as in Figure 9.15, for 1, 2, 4, 6, 8, 12, & 16 gauges. [blue: p0;   orange: a;   
grey: b] 
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Figure 9:17. Ensemble of gauge-averaged distributions plotted against the areal 
average, for matching exceedance probabilities.   The purposes of the purple 
arrows and the small orange rectangle are described in the following text. 
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Figure 9.18. Sequence of calculations to perform a QQ transform of TRMM rainfall to 
a Gauge Block Average estimate in Block number 111 as listed in Table 9.1. 
TRMM value on the day is 4.5 mm.  Reading the probability on the Green TRMM 
model curve gives a value of 0.88. The corresponding BAGD value for this 
probability is 2 mm.  P[0] = 0.80 for this site. 
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Chapter 10  

Figure 10.1. Two gauges located in the same SAWS 1-minute block, with different 
but partially over-lapping periods of record. The surprising thing in this case is 
that the rainfall cumulative sums during the overlapping period are identical, 
apart from a 0.5mm difference occurring on a single day. This despite the meta-
data suggesting that the stations are at exactly the same position, with one 
replacing the other at some point. 
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Figure 10.2. Two gauges located in the same SAWS 1-minute block, with different 
but partially overlapping periods of record. In this case the cumulative sums 
during the period of overlap start off following each other, but then begin to 
deviate significantly despite the meta-data suggesting that the stations are 
within 1 km of each other in the central Free State. 
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Figure 10.3. MAP at the stations calculated using both the observed and infilled data. 131 

Figure 10.4: Station based MAP (Figure 10.3) interpolated onto a 0.1 grid, using an 

exponential Kriging variogram with correlation length 0.5 (monthly 

interpolations were done with 0.3 correlation length). 
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Figure 10.5: The gridded MAP from Figure 10.3, bi-linearly interpolated onto a finer 

1 arc minute grid (0.0167). 
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Figure 10.6: The gridded MAP from Figure 10.2 averaged over each of the 1946 
quaternary catchments in the region. 
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Figure 10.7.  Annual accumulations stored in a NetCDF file, as viewed by HDFView. 
The left hand panel shows the variables in the file. In the right hand panel is a 
partial tabular view of the rain (observed annual rainfall total) and the nmissing 
(number of missing days) variables. The bottom panel shows the file metadata 
for the rain variable. 
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Figure 10.8.  Monthly infilled accumulations stored in a NetCDF file, as viewed by 
HDFView. The left hand panel shows the variables in the file. In the right hand 
panel is a partial tabular view of the obs_rain (observed annual rainfall 
total), mean (infilled expected value) and the 90percentile (90th percentile of 
the infilled distribution) variables. The bottom panel shows the file metadata for 
the obs_rain variable. 
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LIST OF ACRONYMS 

BAGD     Block Averaged Gauge Data 
ccc  cross correlation coefficient 
cdf    cumulative distribution function 
cfdf  cumulative frequency distribution function 
CP  Circulation pattern  
CSAG  Climate System Analysis Group – University of Cape Town 
CSIR  Council for Scientific and Industrial Research 
DCR    Dynamic Copula Regression 
DWA  Department of Water Affairs 
DWS  Department of Water and Sanitation 
ECDF    Empirical Cumulative Distribution Function 
EDK  External Drift Kriging 
EM  Expectation Maximisation 
FFT     Fast Fourier Transform 
GHCN    Global Historical Climate Network  
GPM  Global Precipitation Measurement – NASA 
GTS    Global Telecommunication System  
hPa  hectopascal 
KDE  Kernel Density Estimation 
KZN  KwaZulu-Natal 
MAP  Mean Annual Precipitation 
MLR  Multiple Linear Regression 
MMP  Mean Monthly Precipitation 
MSc  Master of Science 
N(0,1)  Normal probability – zero mean, unit standard deviation 
NASA  National Aeronautics and Space Administration 
NN  Nearest Neighbour 
OK  Ordinary Kriging 
QQ  Quantile- Quantile 
R2      Coefficient of determination 
RCM    Regional Circulation Model 
RMSE  Root mean square error 
RSA  Republic of South Africa 
SADC  Southern African Developing Community 
SAST    South Africa Standard Time 
SAWS  South African Weather Service 
SRTM  Shuttle Radar Topography Mission 
SW  South West 
TRMM  Tropical Rainfall Measuring Mission 
WMO    World Meteorological Organisation 
WP   Wet proportion 
WRC  Water Research Commission 
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Chapter 1.   Annual and Monthly precipitation maps 
 
This first important chapter contains a sample of the maps that might be useful to the 
practitioner, to complement those offered in the Executive Summary.   The first set in Figure 
1.1 are the  Annual Precipitation  quantiles of the infilled annual rainfall totals in the CSAG 
data-base, starting at 10% at the top, increasing to the median in the centre and 90% in the 
bottom panel, rendered as dotty plots.  The legend ranges from 0 to 2000, equal count of 
gauges in each interval.  
 

 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1.  Annual rainfall totals at all infilled daily rain gauge sites in the CSAG data-base: 

from top to bottom 10th, 50th & 90th percentiles, whose individual values in the trio of 
maps are to be exceeded 9 years out of 10, 5 years out of 10 and 1 year out of 10 
respectively. 



2 

 

 

 

We next turn to a selection of the monthly plots, at 3-month intervals, for January, April, 
July and October in the next set of four figures.  These show repaired datasets, with 
quantiles of each infilled gauge at 10%, 50% and 90% rainfall at each site, like the annual 
values which were displayed in Figure 1.1.  Note change of values for the colour scale, which 
ranges from 0 to 375 mm with equal numbers of gauges in each interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2.  January: from top to bottom 10th, 50th & 90th percentiles 
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Figure 1.3.  April: from top to bottom 10th, 50th & 90th percentiles 
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Figure 1.4.  July: from top to bottom 10th, 50th & 90th percentiles 
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Figure 1.5.  October: from top to bottom 10th, 50th & 90th percentiles 
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Figure 1.6 displays an ensemble of all monthly rainfall areal means on the quaternary 
catchments, obtained by interpolation of the infilled gauges displayed in quantiles in Figures 
1.2 to 1.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6.  All monthly Means.  The order of the maps is January and February in the first 
row to November and December in the last row; the range of the legends is 0-375 mm, 
with equal numbers of gauges in each interval.  
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We conclude this introductory Chapter with an intercomparison and a sequence of MAP 
maps.  In Figure 1.7, the top image is our new MAP map for the region, interpolated from 
the infilled data shown in Figure ES.1 in the same colour scale; the range in the legend is  
0-2000 mm, where the intervals have similar counts of gauges.  The two lower maps of MAP 
in Figure 1.7, the one by Dent et al. (1987) the lower right by Lynch (2004) included for 
comparison, have a slightly different colour scale from ours.  We draw attention to a zone of 
differences in the North East of RSA; our map shows a drier zone than the other two, 
confirmed precisely by the dotty plot in Figure ES.1.  There is another change apparent in 
the Eastern part of Swaziland; it is clear from Figure ES.1 that there is high rainfall above the 
escarpment, not meaningfully captured by Lynch (2004) who used geographically weighted 
regression.  
 

 
 

   
 
Figure 1.7.  The top image in this Figure is our new MAP map for the region.  This is in a 

different colour scale of the other two maps of MAP, the lower left by Dent et al. (1987) 
the lower right by Lynch (2004) for comparison. 

 
The last set of images in this Introduction, making up Figure 1.8, is a sequence of eight 
separate 20-year periods of MAP starting in 1850 and finishing in 2010.  These are 
assembled from the infilled data-set and show some interesting characteristics.  The first 
thing that is immediately obvious, is the gradual spread of installed gauges from the Cape 
towards the Northeast of Southern Africa over about 80 years.  The second thing is that the 
colours of the dots in the plots do not change by very much between the periods.  This 
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observation leads to three interim conclusions:  (i) the MAP has been remarkably stable 
over the 20th century (ii) the notorious and troublesome interdecadal variations are 
smoothed out by averaging over 20 year periods and (iii) we have more than 20 years of 
observations over Namibia, interrupted some time before 1990.  This is relevant, as in our 
new Dynamic Copula Regression methodology we do not try and infill missing data at 
targets where the overlap with control gauges is less than 20 intervals, not necessarily 
contiguous.  These Northwest observations anchor that area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8. A sequence of eight separate 20-year periods of annually averaged recorded 

gauge rainfall starting in 1850 and finishing in 2010.  All available data were used 
however short, hence the odd anomaly. 
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We will offer a selection of more maps in a later section of the report, but first we outline 
and justify some of the theory behind the infilling procedures that we created and adopted 
to perform the necessary tasks. 
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Chapter 2.  Choosing Circulation Patterns by region conditioned on daily 
rainfall 
 
Based on the work done in WRC project WRC_1964_CC_RAIN (Pegram et al., 2013) we 
started by choosing a set of climatically homogeneous regions and decided to sort the days 
by Circulation Patterns (CPs).  To do this effectively, we had to choose the climate regions. 
 
After the Workshop held in June 2013, where we derived valuable suggestions from the 
participants, we abandoned our original intention of compartmentalising the country into 
drainage regions for the purpose of data repair.  Instead we adopted the 24 Climate Regions 
defined by Kruger (2004), slightly modified by concatenating some of the very small regions 
(mostly in dry areas) with larger ones.  The Kruger map is as follows in Figure 2.1. A map of 
active rainfall stations during the years 1970-1980 follows in Figure 2.2. 
 

 
Figure 2.1.  Climate regions after Kruger (2004) labelled:- 1-9: Savanah; 10-15: Grassland;  

15-20: Karoo; 21: Desert; 22-23: Fynbos; 24: Forest. 
  



11 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.  A map of South Africa showing the active SAWS gauges in the period 1970 to 

1980; percentage of missing data is not taken into account in the figure. 
 
To illustrate the CP-based methodology, we selected region 6 in Figure 2.1 then selected 
some gauges within the region, in different configurations, to classify the 700 hPa 
Circulation Pattern anomalies [CPs], which we found are associated with different types of 
rainfall over this region (Pegram et al., 2013).   
Figure 2.3 displays two random choices of samples from the region to determine the 
sensitivity of the CP choices to different gauge patterns. 

 

 
 

Figure 2.3.  Region 6 of the map in Figure 2.1 with available gauges during the period 1960 
to 1980 [black dots] and two subsets of randomly selected gauges [red dots] for 
conditioning 700 hPa fields into two sets of Circulation Pattern anomalies 

 
We find we get similar CPs, with enough similarity of shape to pick a set, [note that the 
labelling within each set is random, so we match by correlation of shape, not label] and 
obtain Figure 2.4. 
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Figure 2.4.  2 pairs of CPs: top two similar to each other and the bottom two likewise, 

selected from the CPs chosen on the 2 sets of randomly selected gauges in Figure 2.3  
 
This similarity allowed us to settle on one set of CPs per region [and season] because we 
have a robust method. Although interesting, this early work was superseded by the 
methodology summarised in chapter 3.  We will work on the premise that correlations of 
rainfall between successive periods [day, month and year] are so low that the infilling can be 
usefully done at one interval at a time, thus making the use of CPs redundant in this study.  
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Chapter 3.  Selecting a good infilling procedure using cross-validation  
 
We needed to find the best available method of infilling missing data.  In order to select the 
most viable among a range of methods, a good test is the method of cross-validation.  This 
means that we take an intact data-set and pretend that a proportion of the data are 
missing.  The infilled values are compared with the ‘missing’ data using several criteria and 
we then select the most effective method.  For this comparative work, we chose a set of 
gauges in the Southern Cape whose intact records span 32 years.  In the monthly data we 
found that an average of about 5 % of the months were dry, whereas in the daily data, the 
average proportion of dry days was approximately 80 %.  The way that the cross-validation 
was done was that in 32 years, we left out 20 % at a time for each gauge in turn, modelling 
in 2 seasons.   Thus each gauge has each estimated value individually compared against 
every one of the observed data.  For the daily records about 140 000 comparative 
calculations were done; for the monthly, about 4 600.  A map of the region follows in Figure 
3.1 with the sites of the gauges indicated.  This is the most southerly part of Africa, with 
Gansbaai in the South-West corner of the figure, with the Riviersonderend and Langeberg 
Mountains bordering the green plain where the gauges are sited.   
 

 
 
Figure 3.1. Locations of the 13 selected rain gauges used for this study.  
 
The monthly distribution of mean rainfall at Station 1 follows and it is noted that the 
heaviest rainfall is in the second half of the year, justifying the choice of 2 seasons to 
explore. 
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Figure 3.2. Histogram of mean monthly rainfall (mm) at Station 1 from 32 years of data 
 
The statistics of the gauges follow in Tables 3.1 and 3.2.  We note the wide variability 
between the different sites' characteristics, due to the topography, particularly station 7 
nestled near the Langeberg Mountains, useful for testing the relative efficacy of the 
methods. 
 

Table 3.1.  Statistics of daily precipitation for the 13 selected stations in season 1. 
 

Station Mean (mm) Stdev Skewness P[dry] 

1 0.77 3.78 11.47 0.905 

2 1.45 5.89 12.75 0.841 

3 0.72 3.62 9.71 0.918 

4 0.99 4.18 11.75 0.858 

5 0.74 3.91 11.82 0.908 

6 0.92 3.98 9.23 0.893 

7 2.85 8.72 5.24 0.804 

8 1.30 4.80 6.79 0.829 

9 1.33 5.01 6.98 0.882 

10 0.77 4.08 11.21 0.925 

11 1.22 4.66 6.25 0.880 

12 1.08 4.41 8.11 0.874 

13 1.04 4.26 8.53 0.853 
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Table 3.2. Statistics of daily precipitation for the 13 selected stations in season 2. 
 

Station Mean (mm) Stdev Skewness P[dry] 

1 1.70 5.39 7.87 0.829 

2 1.65 5.32 6.14 0.822 

3 1.73 5.41 5.05 0.846 

4 1.39 4.61 7.40 0.820 

5 1.09 3.90 6.36 0.863 

6 1.33 4.53 7.30 0.845 

7 2.23 7.11 6.52 0.808 

8 1.54 5.05 6.94 0.805 

9 1.49 5.31 8.53 0.854 

10 0.89 3.84 7.91 0.896 

11 1.33 5.17 10.43 0.863 

12 1.15 4.33 8.13 0.853 

13 1.17 4.35 8.47 0.832 

 

 
The daily and monthly distributions of Station 1 in Season 2 are shown in Figure 3.3.  The 
daily values are plotted in the top left of the figure on a logarithmic axis and the monthly 
values below left on a linear axis for ease of visualisation.  The Cumulative frequency 
distributions of daily and monthly values are plotted on the right of the figure, where it will 
be seen that the proportion of dry days is 83%, while the proportion of dry months is 8% for 
this station.  These dry days and months will need special treatment when we come to infill 
neighbouring gauges’ missing values. 
  



16 

 

 

 

 
 
Figure 3.3.   Daily and monthly distributions of Season 2 of Station 1; Histograms on the left 

and cumulative frequency distributions [cfds] on the right; daily above, monthly below.  
 
3.1 The Infilling methods used in the intercomparison 
 
We compared the following suite of methods of infilling missing data, many of which are 
well known.  In the following subsections, we will start with a brief mathematical description 
of the well-known methods, followed by a summary of Dynamic Copula Regression in 
Section 3.2.  The seven methods in the intercomparison are: 

 Nearest Neighbour – based on proximity or correlation 

 Nearest Neighbour – scaled by long term means 

 Inverse distance weighting of some controls 

 Linear regression using control with highest correlation coefficient  

 Multiple linear regression  

 Dynamic Copula Regression (Bardossy and Pegram, 2014) [no monthly CPs] 

 The PATCHR algorithm (Pegram, 1997) [applied to monthly data only] 
 
For all the methods, we describe how to infill the targets with information in the controls.  
We distinguish between the missing values ym(t) of the target and the observations yo(t) in 
the target's time series. For the epochs with missing values of the targets, where x(t) = (x1(t), 
…, xo(t)) is the vector of observations at the controls at each epoch t in the record, we define 
the vectors: 
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 {(x(t); ym(t)),  t = 1, 2, …, T1} 
 
For the times with observed target gauge values yo(t) we have: 
 
 {(x(t); yo(t)),  t = T1+1, …, T}  . 
 
3.1.1  Nearest neighbour 
 
The simplest method to infill missing data is to take the nearest neighbouring station and to 
use its observation to substitute for the missing datum. The nearest neighbour can be 
selected geometrically or by taking the station with the highest correlation to the target 
location. The value can be: 

 transferred directly without any change 

 obtained by linear scaling (with the long term means) 

 obtained by quantile-quantile [QQ] transformation 
 
3.1.2 Linear regression 
 
For simple linear regression one uses as control the series i from a set for which xi(t) and y(t) 
have the highest correlation;  then: 
 
 y(t) = a + bxi(t)         (3.1) 
 
3.1.3 Inverse Distance Weighting 
 
Another simple way of finding an interpolated value y at a given point in epoch t using 
Inverse Distance Weighting is an interpolating function: 
 

 y(t) = i wi(t).xi(t)         (3.2) 
 

where wi(t) = si /jsj(t)  
 
where si is the [unsigned] distance between the target y and the controls xi and the 

denominator jsj(t) ensures that the weights si /jsj(t) sum to unity.  In a more general form 
si can be raised to some power, but we stayed with the linear model. 
 
3.1.4 Multiple Linear regression 
 
Instead of a single variable one can also use a few neighbouring observations for the 
estimation of the missing values. The form of the estimator in this case is: 
 

 y(t) =  a0 + i ai(t).xi(t)         (3.3) 
 
where the coefficients {a} are derived using the linear set of Normal equations in the usual 
way.  We note that it is important that the ring of surrounding data should not be more than 
2 deep, else some of the ai(t) become strongly negative (Wesson and Pegram, 2004). 
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3.2  The infilling of daily gauge records using the new method of Dynamic Copula 
Regression 

 
This section outlines the methods we devised for infilling missing data in rainfall records and 
can be applied to daily, monthly and annual data, without modification, except that the 
rather weak CP-conditioned infilling of daily data is replaced by monthly or seasonal 
conditioning in the monthly case.  The annual infilling procedure is season-free, but we are 
sensitive to the need for accounting for any trend inherent in the data.  We used this 
method exclusively for infilling work described in the remainder of the report.  The 
simplified version of the mathematics is given in Section 3.5.1, drawn from Bardossy and 
Pegram (2013). 
 
3.2.1  The Mathematics to deal with dry control stations when others are wet 
 
This section's focus is on how to deal with the thorny problem of infilling missing data at a 
target when there are differing proportions of dry stations in the changing availability of 
controls over a range of chosen days or months; the task is also affected by the distances of 
such dry controls from the target.    
 
For estimation using Dynamic Copula Regression, we assume that each one of a localised 
collection of gauges [12 to 20, say] has its own specific distribution of rainfall. Their 
membership of the set of controls is assessed at the chosen common observation time, 
based on which of the controls has observations and which have not. Once the controls are 
assembled [using a method of grouping them developed and described later in this section] 
the distribution function of the rain-depths at the ith control Xi(t) is determined as Fi(x). The 
distribution function of the target gauge Y(t) we label FY(y). In order to relate these 
observations we assume that the joint (zero truncated) copula of (X1, …, Xk, Y ) is C(u1, …, uk, 
v). The distribution of a missing observation at the target Ym(t0) is given by the conditional 
distribution function: 
 
           P(Ym(t0) < y|X1, …, Xk) = C{FY[y], F1[x1(t0)], …, Fk[xk(t0)]} / C{F1[x1(t0)], …, Fk[xk(t0)]}   
 (3.4) 
 
In order to use this formula one has to obtain the marginal distributions Fi(x) and FY(y) over 
a period when the target and controls have contemporaneous available data. Due to the 
discrete/continuous behaviour of precipitation (dry [discrete] and wet [continuous]) one 
writes all the stations’ distributions as: 
 
 Fi(x) = pi                                if x = 0 
                 = pi + (1 - pi)Gi(x)        if x > 0           (3.5) 
   
Here pi is the probability of a dry record at location i based on the full available record. The 
continuous distribution Gi(x) of the positive values has to be estimated. This is done either 
by fitting a parametric distribution [or a nonparametric distribution using appropriate kernel 
functions] using the observations available for the common time period.  
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Note that the assessment of the individual distributions using the observation of the 
common time period is important. In this way, possible nonstationary behaviour is 
compensated for, if all the observations are subject to the same direction of change during 
the period. The Gaussian copula (the copula of the multivariate Gaussian distribution) is 
used to describe the dependence.  
 

The Gaussian copula is characterized by its correlation matrix .  The correlations are 
estimated either by using the maximum likelihood method [which can accommodate values 
below a threshold] or by substituting for the zero values a predefined normal value.  Thus 
the positive Gaussianised copula values become: 
 

 Ui(t)  = -1Fi (Xi(t))    if    Xi(t) > 0       (3.6) 
 
The zero precipitation amounts are given the probability pi. For these locations, as a first 
choice, one might assign the condition: 
 

 Ui(t)  <  -1(pi)    if   Xi(t) = 0        (3.7) 
     
 
Using these conditions for all the zero values, the correlation matrix of the observation can 
be calculated using a maximum likelihood approach. However the latter inequality in (3.7) 
used to obtain Ui(t) would make the calculations relatively complicated and will likely cause 
difficulties with the correlation matrix (not being positive semidefinite). 
 
A simplification which ensures a stable correlation matrix can be obtained by taking a fixed 
value instead of an interval [this is the copula value, an alternative to the Gaussian y0 
calculated in the text supporting Figure 4.1]: 
 

 Ui(t) = -1 (pi/2)     if        Xi(t) = 0                 (3.8) 
 
The advantage of the copula based method is that it delivers the conditional distribution 
(conditioned on the available measurements at time t) of precipitation at the selected 
target. Based on this formulation, one can calculate point estimators (expected value, 
median and quantiles), and/or one can simulate a possible realization.    
 
3.2.2  An extension to the method of Zero correction to cope with ranges of spatial 
dryness 
 
Although the procedure described in Section 3.5.1 was adopted in Bárdossy and Pegram 
(2013) and Pegram and Bárdossy (2014), the approach has the problem that it assigns the 
same value Ui(t) given in equation (3.8) to all dry days of site i.  More awkwardly, it is 

complicated by those choices (i) on days where all but one of the stations was dry ranging 
through to (ii) those where only a single station was dry. The expected value of the 
constrained normal distribution will differ for these cases. Thus a more sensible 
approximation, given in Bardossy and Pegram (2016) and used in this study, is obtained by 
introducing W(t), the wetted proportion of the n control stations on each day t: 
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 W(t) = #[Xi(t) > 0]/n          (3.9) 
 
then we suggest that a reasonable approximation of the Gaussian value corresponding to a 
zero precipitation value is obtained by taking the relative wetness into account replacing pi 
by pi[1 + W(t)] to give: 
 

 Ui(t) = -1(pi[1 + W(t)]/2)        for all Xi(t) = 0   on the day       (3.10)  
 
The same transformation is applied to the target Y leading to the Gaussianised variable V.  

The argument of -1 can range from pi/2 through to pi depending on the wetted proportion 
of the control stations. 
 
The transformation of the zero precipitation values to quantiles with a given probability, has 
the advantage that the correlation matrix obtained is positive semidefinite; consequently 
the calculation of the conditional distribution is simple and is performed using multivariate 
densities. 
 
Assuming a Normal copula for the dependence means that (U,V) is Normally distributed 
where U(t) = (U1(t), …, Un(t)) is the vector of Gaussianised observation data (controls) and V 
is the target.  Thus the conditional distributions are also Normal.  For the estimation of V*(t) 

this means that its distribution is N[(t),σ(t)], with: 
 

 (t) = T
U,V

-1
UU(t)                 (3.11a) 

and 

 σ2(t) = σ2
V  -  T

U,V
-1
U,V            (3.11b) 

 
using the well-known conditional distribution of a subset of multinormal variables, given the 

other variables in the set.  In (3.11a), T
U,V  =  (Cov(V; U1), …, Cov(V; Un)) is the vector of 

covariances between the vectors of observed points and that of the point to be infilled and 

U is the covariance matrix of the observations/controls. 
 
Two things that are important to notice are the following: 

1. The expected value of the estimated target value V*(t) is (t) which is dependent on 
U(t), the Gaussianised transforms of the observations of the control stations at time 
t, so it can vary in time 

2. The variance of V*(t) is σ2(t) which, in contrast to(t), is independent of the time t, as 
it is constant over time, if the configuration of all the controls remains constant. This 
is a disadvantage inherited from the selection of the Normal copula. However in a 
practical situation, to overcome this problem, up to three of the available control 
stations are chosen in each time interval which have the highest cross correlations 

with the target, so  is modified where necessary to accommodate the missing data 
in the controls.  The smallest number of controls used in any regression is allowed to 
be one.  Therefore the precision of the infilled value will change with circumstances. 

 
Finally, the distribution of the estimator for the unknown precipitation amount Y*(t) is 
obtained by back transforming V*(t) to rainfall space: 
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       G(y)    =    P(Y*(t) < y)   =   [-1{FY (y)) -(t)}/σ(t)]         for   y > 0       
and 

                         =    P(Y*(t) = 0)   =  [-1{pY0 -(t)}/σ(t)]             otherwise       (3.12) 
 
These equations were programmed into the suite of infilling code for this project.   
 
To help the reader grasp the flow of this technical section, we proffer the following passage 
in which the sequence of calculations follows in pseudo-code. Days are chosen by CP, 
months by season, years are not conditioned: 
 

1. Pick a target station together with up to 20 controls surrounding it and assemble the 
subset for a given group in periods of days by CPs, months by season or years 

2. Gaussianise the target, and then all the controls in turn, because the treatment of 
the zeros depends on the number of (i) missing values and (ii) the number of dry 
stations in each period, as indicated above in (3.10) 

3. Do a preliminary cross correlation coefficient [ccc] calculation between all the target 
and control stations for the group using their full Gaussianised records, so that the 
cccs of the controls can be ranked relative to the target from highest to lowest ccc in 
each interval 

4. Once target and controls are all Gaussianised, assemble them in a matrix with the 
target in the first column and the controls, ranked by their cccs with the target from 
highest to lowest, in the remaining columns; pick the three controls most highly 
correlated with the target 

5. Call the Infilling routine to read the matrix, infill the target’s missing data and output 

the repaired Gaussianised target’s data, with mean and stdv [(t) and σ(t)] 
associated with each infilled element 

6. Pass the repaired target vector, with (t) and σ(t) values where appropriate [i.e. 
these are only associated with infilled values], to be reverse Gaussianised using the 
QQ transform to recover the estimated rainfall in mm, as well as the median and 
upper and lower quartiles of the infilled estimates [these will help to define the 
distribution of the infilled data]  

7. Pick a new group for the given target and repeat steps 1 to 6 until all CPs are done, 
then go to 8 

8. Pick a new target and go to 1, until all gauges in a region are infilled, when pick a 
new region and go to 1 until all regions are done then go to 9 

9. Finish.  
 

3.3  Infilling Model intercomparisons 
 
Returning to the results published in Bardossy and Pegram (2014), we start the model 
intercomparison by cross-validating monthly values.   The following three figures summarise 
the results, where the best Bias and Root Mean Square Error [RMSE] should be as small as 
possible and the Correlation [Corr] as large as possible. 
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Figure 3.4.  Histograms of averages of (i) Bias, (ii) Root Mean Square Error and (iii) 

Correlations between the estimated monthly values for all 13 stations, using the 6 
methods without EM: Nearest Neighbour (NN), Nearest Neighbour scaled (NN scaled), 
Inverse distance weighting (Inv Dist), Linear regression (Lin Reg), Multiple linear 
regression (MLR) and Gaussian Copula. 

 
When it comes to Bias, Nearest Neighbour and Linear regression show the smallest bias.  
Nevertheless, the copula-based method is the best of the remaining four methods and is 
marginally the best of all methods with respect to RMSE and Correlation.  It has the added 
advantage of offering a meaningful error estimate with each estimate. 
 
Because monthly records have been routinely infilled in South Africa using the Expectation 
Maximisation (EM) algorithm, as coded as PATCHR by Pegram (1987) for the Department of 
Water Affairs (DWA) and published in Pegram (1987), an independent comparison was done 
using this method.  The following two figures show the results of the infilling; 20% of each of 
8 of the gauges was infilled in 5 steps per gauge and the pooled result of the infilling 
appears in Figure 3.5, where for ease of visualisation, results for only 6 out of the 8 stations 
are displayed. 
 

 
 
Figure 3.5.  Estimates of censored monthly values compared with the observed censored 

values for 6 stations [Observed on horizontal and Estimated on vertical axes].   
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In Figure 3.6, we give a comparison of the EM algorithm (labelled EMA in the figure 
captions) and the Copula-based infilling of all 8 gauges.  The four panels compare (i) the 
monthly means [all good and negligible difference] (ii) the Mean bias [EM has the edge, but 
the values are small] (iii) the RMSE [again EM has a slight edge] and (iv) the cross 
correlations [the copula method is better on balance].  The reason that the EM algorithm 
works so well compared to Dynamic Copula Regression on monthly data is that the wet 
months typically have low skewness, so they would benefit little by being Gaussianised.  This 
does not apply to daily rainfall, so EM was not used for daily comparisons in this study. 
 

 
 
Figure 3.6. Comparison between the EM algorithm [EMA] and the Copula-based infilling of 

all 8 gauges.  The four panels compare (i) the monthly means (ii) the bias  (iii) the RMSE 
and (iv) the cross correlations.  For best results, we would choose the method with the 
lowest score in the first three comparisons and the highest score in the fourth. 

 
When it comes to daily values, we use the estimation methods as were used for monthly 
totals, but we drop the NN scaled method and in its place add the copula method 
conditioned on the CPs identified in Pegram et al. (2013).  The results follow in Figure 3.7. 
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Figure 3.7. Comparison between six methods of infilling daily values at all 13 gauges.  The 

four panels compare (i) the bias (ii) the average absolute difference (iii) the RMSE and 
(iv) the cross correlations of the estimated censored and observed values.   

 
For best results, for daily data, we would choose the method with the lowest score in the 
first three comparisons and the highest score in the fourth.  On balance, the CP-based 
copula method is better than the unconditioned copula, in all but the absolute error mean, 
and is better than all other methods in nearly all criteria; it marginally loses to Nearest 
Neighbour in the Bias comparison.   
 
In summary, we choose the copula-based method as the one to use for data repair, not only 
because of its success in the above tests but because it can give a valuable additional 
product: the error structure of the interpolant, tailored to the local spatial distribution of 
the controls, as well as their rainfall data values.  Although the CP dependent copula is a 
fraction better than the plain copula method for repairing the daily data, we decided that 
the extra effort is not worthwhile for infilling over the whole Southern African region, 
because deriving the CPs over a large region is a challenging and laborious task. 
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Chapter 4.  Determining the value of the infilled values 
 
4.1. How good is Dynamic Copula Regression for infilling?  
 
To determine the value of the infilled values obtained by competing methods, we begin by 
using cross-validation and evaluation of simple error distributions to explain the 
methodology.  In this section, we offer an informal set of images to describe the process.  
The full method is described in Bárdossy and Pegram (2014).  The first step is to Gaussianise 
the data, using a quantile-quantile [QQ] transform by rank.  In this explanation, which is an 
expansion of the methodology described in Section 3.2, the zero values get special 
treatment and are set to  
 

 y0 = - [-1{p0}]/p0         (4.1) 
 

which is the mean of the area below b, where the probability of dryness is p0 = {b} and 

where b = pi[1 + W(t)]/2 is the N(0,1) variate corresponding to zero in the rainfall set;  {b} 

and {b} are respectively the density and cdf of the standard N(0,1) distribution at b.  Figure 
4.1 shows the procedure. 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.  Computing the location of the average of the tail of an N(0,1) distribution below 

point [b]. y0 at the blue cross and b are for a humid environment, whereas y0 at the red 
cross is the centroid of a semi-arid environment with a dry probability P[0] = 0.8, typical 
of South African daily data, whose cutoff is at the red line marked by a red b. 

 
We now present a series of cartoon images to explain the cross-validation procedure.   
 
Choose a set of 1 [fictitious] rainfall data as shown in Figure 4.2 and label some of them as 
targets, leaving the others as controls.  In the procedure, we will remove the red crosses we 
have labelled ‘Target’, then infill them and determine how good the infilled values are. 
 

-4 -3 -2 -1 0 1 2 3 4b 

 

b 
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Figure 4.2.  A 1-dimensional example describing cross-validation to find its value in copula 
space. 
 
Fit a curve through the controls using an interpolator [e.g. Copula-based Kriging] to give the 
blue line shown in Figure 4.3.   Estimate the values at the Targets [green Xs] and calculate 
standard deviation envelopes [the pair of amber curves]. These Kriged envelopes assume a 
Gaussian distribution of the error at each target – the standard deviations [indicated by the 
small gold horizontal lines] will vary with location.  There will be no estimation error at the 
controls. 
 
 

 
 
Figure 4.3.  Use Kriging of the Gaussianised controls to obtain the best interpolator and the 

standard deviation of the estimates along the curve.  Note the standard deviations at 
the sites of the targets, centred on the expected values of the estimates, depicted by 
horizontal gold lines. [An apology:  the continuous gold curves showing the Kriging 
standard deviations were drawn free-hand in Powerpoint and the loops between 
controls 2 and 3 are too wide horizontally; they are technically infeasible because they 
are multivalued vertically in some parts of the segment.  We claim artistic license!] 

 
Next, replace the hidden target values superimposed over the target error distributions.  
The collection of hidden target values should be normally distributed in the target error 
distributions, by the intrinsic Kriging hypothesis.  They are the red X’s in Figure 4.4. 
 
 

Distance

X

X
X

Control Target X

X

X
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Figure 4.4.  Superimpose the hidden target values on the target error distribution estimates 
 
In Figure 4.5, by following the succession of transforms via the green arrows, combine the 
original targets scaled to an N(0,1) distribution [red crosses] on the left of the figure.  Then 
rotate this distribution to the bottom figure, then finally plot the scaled original target 
values on a standard Gaussian distribution curve to obtain their cumulative probabilities F(x). 
 

 
Figure 4.5.  Rotate the assembled standardised original target data relative to the target 

distributions to the horizontal, following the sequence of green arrows; project the 
original targets onto a Normal cdf and note their F(x) values. 

 

In Figure 4.6, we plot the F(x) values against their scaled ranks = j/(n+1), where here n = 3.   

 
 
Figure 4.6.  Plot of the F(x) values [y-axis] against their scaled ranks = j/(n+1) [x-axis]. 
 
If the procedure is good then the points should lie close to the diagonal [see a more realistic 
example below left in Figure 4.7]; if not, then the procedure is biased [see below right]. 
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Figure 4.7.  An acceptable [left] and unacceptable [right] plot of F(x) values of the hidden 

target values against their ranks – a fictitious development of Figure 4.6.  
 
Bardossy and Pegram (2014) applied the Kolmogorov-Smirnoff test for the infillings of 
Seasons 1 and 2 of the monthly Cape data, as shown in Figure 4.8.  The infillings were 
chosen from the 26 monthly RSA data sets estimated by Copulas and subjected to Cross-
validation as described above.     

 
 
Figure 4.8.  Based on the idea in Figure 4.7, the figure shows the infillings from the 26 

monthly RSA data sets for the two 6-month seasons estimated by Copulas; the blue line 
is the 1:1 relationship, the green and turquoise lines are 4 of the 26 cumulative plots, to 
show their individual behaviour; the 22 red lines are the complement of the 26 plots. 

 
In Figure 4.8, 25 out of 26 [= 96%] cumulative [Uniformly distributed] distribution functions 
lie inside the 95% Confidence Limits [indicated by the dashed lines], demonstrating that the 
Copula-based interpolation procedure is successful for the experiment with these 13 Cape 
stations.  What is more, the method yields the precision of the interpolation, offering us a 
way to provide the uncertainty of the estimates. 
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4.2 Correlation Links and how to make them meaningful for Infilling and Interpolation 
 
Consider the following fictitious example which demonstrates how careful one needs to be 
when estimating correlations between samples.  Take two sets A & B of Normal (0, 0.5) 
random numbers, whose sample serial correlation coefficients are negligible -.08 and -.02 
with a mutual cross correlation coefficient at a small 0.13, shown in Figure 4.9. 
 

 
 
Figure 4.9.  Sequences of Gaussian random noise 
 
Take a sine wave of amplitude 1, superimposed on the noises, shown in Figure 4.10: 
 

 
Figure 4.10.  Sequences of Gaussian random noise and a sine wave of period 24 intervals 
 
Add the sine wave to the two series A and B to get 2 new sequences C and D in Figure 4.11. 
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Figure 4.11.  Sequences of Gaussian random noise added to the same sine wave of period 24 

intervals, shown in Figure 4.9, to make series C & D 
 
The result is an increase of the cross correlation coefficient (ccc) from 0.13 between A & B 
to 0.81 between C & D.  This strong ‘relationship’ is due purely to the ‘seasonality’ 
underlying the two new sequences.  The lesson learned is that, when working with sets of 
rainfall time series, we must deal with the seasonality sensibly, usually by standardisation 
and Gaussianising the result. 
 
If we now take the sequences A & B, shown in Figure 1, exponentiate them to make them 
positive and raise them to the power 3 to introduce skew to yield two new series E and F.  
Their ccc becomes 0.52, purely due to the skewness and the fortuitous synchrony of two 
large values:  
 

 
 
Figure 4.12.  Artificially skewed sequences E & F 
 
Sequences E and F (no seasonality added) have not changed their order relative to A & B, 
but the increase in ccc comes from the conjunction of two large values at ‘time step’ 15, 
ringed in green.  The lesson learned here is either to use the Spearman rank correlation 
estimator, or to Gaussianise the series before estimating the ccc by Pearson.  There are 
other benefits of Gaussianisation, to be described in the next section.  
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4.3. Spatial correlation in rainfields on individual days 
 
To determine the spatial correlation links between gauges in a region, we chose Region 6 
which mostly covers the KZN coastal areas.  The period chosen with relatively well 
populated data-sets was 1965 to 1984, i.e. 7305 days of data over 131 stations.  The sites, in 
context, are shown in Figure 4.13. 

 
Figure 4.13.  Map of Region 6 with active gauges at 131 stations during the period 1965 to 
1984. 
 
In Figure 4.14 we show the number of observations (a maximum of 131) on each of the 
7305 days.  These observations over the network include dry days (zeroes), and each day’s 
count is marked by a small blue cross in the figure.  There is an inexplicable fall off of high 
counts at either end of the period. 
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Figure 4.14.  Number of intact observations per day over 20 years, 1965 to 1984 inclusive. 
 
Figure 4.15 displays the number of wet gauges on each day of the same set by calendar day 
over the 20 years, as a wet proportion [WP] of the number of active gauges on each day 
recording more than 0.999 mm. 
 

 
Day of Year 

 

Figure 4.15.  The wetness proportion [WP] of the number of days out of the active gauges 
on a day recording > 0.999 mm.  The black line shows the mean WP for each calendar 
day, while the red line is a smoothed trend-line fitted to those means. 

 
Clearly the Summer and Spring seasons [October to April] are wetter than the others.  The 
fall-off at both ends of the year is inexplicable – we could not work out the reason.  We 
decided to separate the data into classes to determine the links between them.  The 
following Table 4.1 gives counts in each class determined by Wetness Proportion (WP). 
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Table 4.1.  Counts of days experiencing different levels of wetness 
 

CLASSES 1 2 3 4 5 

WP 
i
n
t
e
r
v
a
l
s 

< 0.1 

0.1 < 
0
.
3 

0.3 
<
 
0
.
5 

0.5 
<
 
0
.
7 

0.7 
<
 
1 

Count 3708 1482 773 674 668 

 
We determined the cccs by WP using the following procedure.  From the latitude yi and 
longitude xi values for each gauge in minutes, we get the interstation distance dij in minutes 
of arc as dij = [(xi-xj)

2 + (yi-yj)
2]1/2 in order to build the correlogram for each wetness class. 

This distance dij is proportional to the true great circle distance for gauges that are 
contained within an area the size of region 6.  131 gauges yields 8515 deltas (interstation 
distances).  We count the number of intact days, the number of wet days and the total 
depth of rain above 0.999 mm on each day, then  
 

(1) find the WP for each day 
(2) on each day separately to eliminate the effects of seasonality, Gaussianise the intact 

data, putting the zeroes to y0, the mean of the lower tail of the N(0,1) distribution 
as zi(t) for station i on day t, following Figure 4.1 

(3) then calculate the cccs, cij, over all days with a given WP and station distance dij 
 
This procedure ensures that seasonality has been removed on each day by the 
Gaussianisation, so that we do not fall into the trap described in Section 4.1.  The result is 
the following set of images in Figure 4.16, where we have neglected the driest class 1.   
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Figure 4.16. Individual spatial correlation coefficients [blue crosses] by interstation distance 

[horizontal axis].  The top 4 images show results for the upper 4 classes; the lower two 
images the results for the pooled classes 3, 4 & 5, with points removed and substituted 
by a moving average.  This is given by the red wriggle, which is a moving average of 
various lengths in each class. The yellow and green markers indicate the fitted correlation 
model. The bottom right panel is a segment of the bottom left from the origin to 30 
minutes of arc [about 48 km]. 

 
We note that the Wetness Proportion has very little effect on the correlation models 
obtained, hence pooling the upper 3 classes is a valid decision. 
 
The fitted correlation model in Figure 4.19 is the same in all WP images (shown as the solid 
line with rectangular markers) and is a mixed hybrid exponential model, designed to capture 
the quick drop-off and the long tail which goes negative after 26 minutes of arc, then 
flattens out.  Near the origin, the sharpness of the exponential is modified by the power d in 
the following formula constrained to be greater than 1 (the pure exponential model).  If d = 
2, then this component would be bell-shaped like the Gaussian. 
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The common spatial correlation model is:  
 
 ccc(h)  =  A.exp[-(h/L1)

d] + B.exp[-h/L2] - C     
 (4.2) 
 
with A = 0.6, B = 0.55, C = 0.15, d = 1.5, L1 = 1.2 and L2 = 20 

 
The following Figure 4.17 demonstrates what happens if the rainfall is not first Gaussianised 
day-by-day.  The fitted correlation is unnaturally high because of seasonality, considerably 
higher than those in Figure 4.16, as explained in the section on Correlation Links above. 
 

 
 
Figure 4.17.  Correlation coefficient estimates obtained by temporal Gaussianisation (over 

the whole record), instead of performing the Gaussianisation of rainfalls each day 
individually, before computing the spatial correlations, as was done in Figure 4.16. 

 
In summary, the lessons we can take from the investigations in this section are that we have 
strengthened and augmented the discussions in Chapter 3: 

 Gaussian copulas are superior to other methods of infilling 

 We must de-seasonalise data before computing cross correlation coefficients (cccs) 

 Cross correlation coefficients of de-seasonalised spatial daily are independent of 
wetness 
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Chapter 5.  A look at the data and the results of the infilling procedure 

 
In this chapter we present some images of the data-set we worked with and demonstrate 
the results of the computed infilled missing data with estimates of error-bounds. 
 
The first figure is a time series of the number of active gauges in the CSAG data-base, 
dramatizing the serious recent drop-off in numbers.  This image appeared in the Executive 
Summary as Figure ES.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Years 
 

Figure 5.1.  Count of active gauges in the CSAG data-base over the last 160 years 
 
The next figure is a histogram of the frequency of gauges with altitude, noting that some of 
the CSAG gauges have no altitude recorded. 
 

 
 
Figure 5.2.  Count of gauges by altitude in the CSAG data-base 
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On this page and the next, we show a detail of the number of active gauges in our history.  
The first set in Figure 5.3 shows the history of years with intact data; Figure 5.4 gives some 
detail. 

 
Figure 5.3.  Image of the number of years of gauging with full data.  We have no explanation 

for the pale period in the early 1950s. 
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Years 

 
Figure 5.4.  Gauges in the Eastern Free State alive in calendar years – SAWS gauge 

numbering.  
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5.1 The Infilling procedure described, following the algorithm of Section 3.2 
 
Figure 5.5a shows the availability of 20 control gauges [blue] and a target gauge [red] in 
South-western KwaZulu-Natal.  Their data availability over the period is shown in Figure 
5.5.b as control gauges [black] and the target gauge [red]. The procedure described in 
pseudo-code described in Chapter 3 is used to infill the target with the highest correlated 
gauges available at any epoch.  The steps are repeated and realised below. 
 
Step 1.   Pick a target station, together with up to 11 controls surrounding it and assemble 
the subset for a given CP-group in a season, as shown in Figure 5.5. 
 

 
Figure 5.5a.  An example of selected target and control stations 
 

 
Years 

Figure 5.5b.  Bar-chart of availability of data of 20 gauges (SAWS numbering) for infilling one 
gauge, starting from year 1957.  
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Days 

 

Figure 5.6.  A 50-day period of recorded rainfall at 11 selected stations surrounding the 
target. 
 
Step 2.   Gaussianise the target, and then all the controls in turn, because the treatment of 
the zeros depends on the number of (i) missing values and (ii) the number of dry stations on 
each day, as indicated above.   
 
The result is shown in Figure 5.7; note the different Gaussianised values of the zeros, each 
depending on the number of dry gauges on the day, using Equations (3.9) and (3.10). 
 

 
Days 

Figure 5.7.  Gaussianised data from Figure 5.6 
 
Step 3.   Do a quick preliminary cross correlation coefficient [ccc] calculation between all 
stations for the CP-defined group using their full Gaussianised records, so that the controls 
can be ranked relative to the target from highest to lowest ccc 
Step 4.   Once target and controls are all Gaussianised, assemble them in a matrix with the 
target in the first column and the controls, ranked by their cccs with the target from highest 
to lowest in the remaining columns 
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Step 5.  Call the Infilling routine to read the matrix, infill the target’s missing data and output 

the repaired Gaussianised target’s data conditioned on the CP, with mean and stdv [(t) and 
σ(t)] associated with each infilled element 
 

 
Days 

Figure 5.8.  The infilling procedure, showing the expected value and the range of 2 standard 
deviations calculated in the Gaussian domain.  3 of the controls’ time series are also 
shown; the period is different from Figure 5.7.  Also shown is an intact part of the 
target’s record. 

 
Days 

Figure 5.9.  The same as Figure 5.8, except that the intact part of the target’s record was 
hidden and then infilled, as a visual cross-validation exercise.   

 
The temporal shift between target and the controls on days 370-4 is plausibly due to 
misread gauge data; nevertheless, only 2 of 14 [14%] of the estimates were outside the 
error-bars which contain 69% of the probability [complement 32%], indicating a successful 
infilling.  The next step is to:  
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Step 6. Pass the CP-dependent repaired target vector, with (t) and σ(t) values where 
appropriate [i.e. these are only associated with infilled values], to be reverse Gaussianised 
using the QQ transform to recover the estimated rainfall in mm, as well as the upper and 
lower quartiles of the infilled estimates. 
 
To demonstrate the effect of reverse Gaussianisation of the infilled data, we turn from 
infilling daily data to some annual data to show the result of infilling long sequences of data.  
We offer two sets of targets and controls; one for a medium wet area and another for a 
wetter one.  The 4 separate panels of Figures 5.10 to 5.13 show the observed marginal 
distributions of target and controls and then the associated infillings with error bars for two 
sets of annual data.  The first set is from a moderately wet site (Figures 5.10 and 5.12, with 
MAP of 730 mm), the other set is from a much wetter site (Figures 5.11 and 5.13, with MAP 
of 1010 mm).  Note the near Normality of all the raw data in Figure 5.10, with more skew in 
Figure 5.11. 
 

 
Figure 5.10.  Marginal Distributions for set 1 of Target and Controls before infilling: 

Moderately wet. The result of the infilling of annual data with uncertainty; note the 
different counts of data for each gauge.   
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Figure 5.11.  Marginal Distributions for set 2 of Target and Controls before infilling: Very wet 
 

 
Figure 5.12.  Infillings for set 1 of Target and Controls:  Moderately wet, showing the 

corresponding intact data and the error bars (10th, 50th and 90th percentiles) of the 
infilled values.  The vertical axis has the same limits as that of Figure 5.13 for ease of 
comparison. 
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Figure 5.13.  Infillings for set 2 of Target and Controls:  Very wet, showing the corresponding 

intact data and the error bars (10th, 50th and 90th percentiles) of the infilled values.   
 
In both Figures 5.12 and 5.13, note the variability of precision of the infilling depending on 
the amount of available data as indicated by the error bars.  Where there are more controls, 
the percentile whisker plots are much narrower than where there are few controls which 
typically occur, but not always, in the earlier years of the 20th century.  Also, the heavy 
upper tail of the near Normal distributions in Figure 5.11 leads to some comparatively large 
values in Figure 5.13.   
 
If we take the average of the 80-percentile (or inter-decile) spread, including the zero values 
where there are observations, which we call Mean Annual Precision, and compare it to the 
calculated MAP, we obtain an indication of the precision of the infilling.  This ratio, for all 
stations, comes at the end of this chapter in Figure 5.20, with a summary. 
 
Step7.  Choose another gauge to repair etc. 
 
To achieve these transformations, some other housekeeping details have to be undertaken.  
In particular, to recover the infilled target rainfall values from their Gaussianised infilled 
values, we need a probability distribution of the target.  The following is the procedure: 
 
Fit a sample cdf to the available observed target data, as long as it has 20 or more 
observations.  The sample cdf is fitted by a Gaussian Kernel Density Estimation function 
(KDE) as shown in Figure 5.14.   
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Figure 5.14.  Sample and fitted cdfs of target gauge 
 
Note that we define a wet threshold of minimum sensible measurement, here shown as 1 
mm, and fit an exponential segment in red, between the P[0], here about 0.23, and the P[1] 
values.  We generate many target values where there are no observations using Dynamic 
Copula Regression (DCR) then reverse transform these through the KDEs of Figures like 5.14.  
A typical ensemble of 100 trials is shown in Figure 5.15. 
 

 
Figure 5.15.  A reverse-transformed set of 100 infilled target estimates using DCR. Three 
single realizations are shown in red, blue and gold, while the remainder of 1000 realizations 
are shown as light grey traces. 
 
In Figure 5.15, which treats daily data, we have summarised the many traces with whisker 
plots of 10th-, 50th- and 90th-percentiles.  Note the asymmetry of the highly skewed data and 
infilled values.  In the Figure 5.16 we give the equivalent plot for monthly data. 
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Figure 5.16.  Infilled monthly data complementing a partly intact record.   
 
We found that many monthly data are approximately Normal during the individual months, 
and in support of this observation note that the whisker plots of the infilled targets are 
nearly symmetrical about the medians. This symmetry is also seen in the whisker plots, 
which also vary in aperture with the precision of the estimate of the target.  
 
In summary, the infilling procedure has been carefully (and we think effectively) done using 
as much of the available data as is meaningful and useful.  We are going to have to live with 
the fact that we cannot exactly capture the past but can at least offer some understanding 
of its uncertainty. 
 
5.2. Problems with Data that had to be overcome 
 
We now turn to the thorny issue of the problems inherent in the data-sets, for which we 
tried to find automated solutions, but with some difficulty.  The first is the duality of the 
numbering in some cases.  In Figures 5.17 and 5.18 we show 2 records which, although parts 
are missing, are clones of each other.    These hampered the computations, so that there 
was a need to perform some triage. Problems such as those illustrated here typically appear 
for stations that are closed and moved to nearby locations.  This required developing 
software to weed out the offending gauges from the portion of the data-set used, else the 
infilling programs crashed. 
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Figure 5.17.  Two records [red and blue] which stop and start at different times, but where 

they overlap [purple] are identical.   
 

 
Figure 5.18.  Cumulative plot of the combined overlapping periods of the records shown in 

purple in Figure 5.17.   
 
In Figure 5.18, the total rainfall in the two records differs by 0.5 mm in 4360 mm.   The next 
example shows mixed behaviour. 
 



48 

 

 

 

 
Figure 5.19.  Two records, covering overlapping periods for similarly coded gauges.  The red 

record overlaps the blue in two places: between 1950 and 1965, then 1990 to 1993.   
 
In the first overlapping period [1958 to 1968] shown in Figure 5.19, there is little 
correspondence (cross-correlation for the period = 0.66], but in the second starting in 1990, 
the two are identical.  This is a puzzle because they have the same code and are within a 
kilometre of each other. 
 
We conclude this chapter on infilling with two figures in Figure 5.20 which illustrate the 
relative error associated with each infilled station.  The first compares the infilled MAP 
values with the MAP of the observed data before infilling.  The maximum ratio of spread to 
MAP is 8% and is mostly about 4%. 
 

  
Figure 5.20.  Left panel: the infilled MAP values plotted against the MAP of the observed 

data before infilling.  Right panel: the Mean Annual Precision on the y-axis (average of 
the 80-percentiles of infilled interval estimates), plotted against MAP, for all filled 
stations. 

 
The second image in Figure 5.20 shows the Mean Annual Precision, described in the passage 
following Figure 5.13, computed as the average range of the interquartile spread of 80% (90 
percentile minus the 10 percentile) over the complete record, including intact and infilled 
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values of each station plotted on the vertical axis, compared to the final MAP estimate 
plotted on the horizontal axis.     
 
It is clear that there is some uncertainty associated with the individual estimates, especially 
the infilled short records, as shown in the right panel.  Nevertheless it is comforting to note 
that the MAP, calculated from the mean infilled values, averages out well when compared 
with the observed data before infilling, as shown in the left panel of Figure 5.20. 
 
In summary, we have devised an original and good method of infilling missing data and 
because the records are not unique, they have had to be carefully examined in case we 
make a nonsense of the procedure if the data are inappropriate.  We managed this problem 
with a simple censoring approach, which would have been impossible without high speed 
computers and intelligent software creation.  If we found that (i) there was a portion of a 
control station's record which matched another so that it would cause a singularity in the 
regression matrix, or (ii) if the names were the same, we would choose the longer record 
and abandon the other.  This difficulty with the data set caused us much grief and 
frustration, increasing the infilling time from what should have taken one month to four. 
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Chapter 6. A description of Interpolation after Infilling 
 
6.1.  Why we use ensembles of infilled values for spatial interpolation  
 
Where data are missing, the traditional way of infilling (using regression-based methods) is 
for practitioners to estimate the expected values and ignore their sampling variability.  That 
treatment typically increases the correlation beyond what would have been calculated if the 
data were intact, as shown in Section 4.2.  By resampling the distribution of the errors for 
the purpose of infilling using ensembles, we are able to give a more likely set of fields 
reflecting the true spatial structure better than the simple approach using expected values 
only.  True, it is more work, but the benefits outweigh the effort.  The result is that, when 
we infill missing gauge data, as described in Chapters 4 and 5, we report not only the 
expected value, but also the probability of dryness, the median and the upper and lower 
deciles, from which information we can reconstruct the distributions of the estimates of the 
missing values at each gauge, on the day in question.   
 
When we generate spatially interpolated fields, we fix the observed gauge values on the day 
(or month or year) and sample from the distributions of the missing gauge data estimates.  
It bears repeating that the scheme has three benefits:  (i) we have a better estimate of the 
mean field (with error structures at each infilled pixel in the field); (ii) we can generate 
ensembles of possible spatial fields, matching the observed data, getting sharp estimates of 
the missing values and (iii) the ensembles can be used to determine the uncertainty of the 
fields. 
 
The following 6 images in Figure 6.1 illustrate the points made above.  We took 2 sets of 25 
Normally distributed random numbers, we call x and y, and correlated them.  They are 
plotted, as Figure 6.1 (a) through Figure 6.1 (e), reading from left to right and from top to 
bottom.   
 

 Image (a), plotting y against x, shows that the R2 = 0.3931.   

 In (b), 5 values were removed at random from (a) and the survivors’ (controls) 
regression equation was fitted as 0.7692x + 0.6018, with a consequent drop in R2 to 
0.3576. The estimated (expected) values are shown in red, but are not included in 
the regression line fitted to the blue points in this image.   

 (c) Shows the expected missing values included with the controls after the 
regression; note the increase of R2 to 0.4529, exaggerating the dependence beyond 
the original.  

 In contrast, (d) shows 20 sets of the 5 missing target values, calculated from the 
regression equation of (b) by including random errors and Figure (e) shows them 
combined before fitting a trend line 

 (f), the bottom right panel, shows the trend-line fitted through the ‘observed’ set in 
(b) with the simulated data-sets in (d).  The R2 comes out to a more believable value 
of 0.362, which is closer to that of the original data (0.3931) than the value in (c) 
(0.4529). 
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Figure 6.1(a) to (e).  Regression example, comparing relationships of ensemble estimates 

with expected values.  
 
This simple illustration is the justification for using the distributions (and not just the 
expected values) of the estimates of the missing data values in the gauge records for two 
reasons: (i) a realistic assessment of the value of the infilled data can be made and (ii) these 
distributions contribute realistic uncertainty in the estimation of generated spatially 
interpolated rainfields.  

 
6.2 Why we use Gaussian copulas to interpolate spaces between gauges 
 
Borrowing from our work in Germany (Bardossy and Pegram, 2013), the following images in 
Figures 6.2 and 6.3 show the estimates and associated errors determined by three 
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competing methods of spatial interpolation [the successor to, and extension of, infilling].  
The methods are: Ordinary Kriging [OK], External Drift Kriging [EDK], which uses altitude as 
the exogenous variable, and Gaussian copula estimation.  
 

 
 
Figure 6.2.  Results of a day-by-day interpolation: Baden-Würtemburg, December 18, 1993.  

The upper row shows the estimated mean field.  The second row shows maps of the 
standard deviation of the interpolated values (Bardossy and Pegram, 2013). The scale of 
rainfall has a maximum of 60 mm; the standard deviations a maximum of 30 mm. 
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Figure 6.3.  Results of a day-by-day interpolation: Baden-Würtemburg, December 19, 1993.  

The upper row shows the estimated mean field and the second row shows maps of the 
standard deviation of the interpolated values, as in Figure 6.2.  The scale of rainfall has 
a maximum of 60 mm; the standard deviations a maximum of 30 mm. 

 
In Figure 6.2, in all three images of rainfall interpolation in the upper row, there is not much 
difference between them except that the EDK (SE) which is using Smoothed Elevation as an 
exogenous variable, tends to follow the terrain more than the others.  Note the spatially 
invariant error structures of the Kriging methods, independent of the amount of rainfall.  
The red points are the sites of the gauges and the error structure depends only on 
separation distance – the sparser regions show more green.  On the other hand the 
standard error of the Copula-based interpolation varies not only with sparseness, but also 
with the rainfall amount.  Where it is dry [Southeast of the region where there is low 
precipitation] the error is low and vice versa in the western region.   
 
Figure 6.3 treats the same region on the following day. The same remarks apply to the 
rainfield as to the previous day in Figure 6.2; the wetter parts are less precisely estimated by 
the copula, but the Kriged fields have almost no change to their error structure compared to 
the patterns on the previous day.  It is this ability to discriminate that makes the copula 
infilling and interpolation more truthfully attractive than standard Kriging methods. 
 
In Figure 6.4, we summarise in an image the relevant information in Table 7 of Bardossy and 
Pegram, (2013). To summarise the results of the comparisons of the various methods’ 
abilities to get the interpolations right in terms of their cumulative frequencies, Figure 6.4 
makes it clear that the Gauss copula procedure proposed here is substantially superior to 
Kriging methods for infilling and interpolating rainfall values in periods of days, pentads, 
months and years, in that they achieve scores of around 80% when aiming for 95%, 
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considerably better than the Kriging methods, with or without External Drift, which can only 
achieve about 50%. 
 

 
 
Figure 6.4.  Histogram of the frequencies that the various error models were acceptable at 

the 95% confidence level, based analyses similar to those depicted in Figure 4.8 
 
Now that we have defined the core methodology, we need to look at the data-sets and 
determine how to manage them 

 
6.3 The new art of interpolation applied 
 
A region on the Eastern Seaboard, shown in Figure 6.2 below was chosen for (i) testing the 
spatial interpolation procedure and (ii) assessing the effect of including altitude as an 

exogenous variable; it is a 3 square (approximately 300 km across).  We have picked out 
the gauge sites in small red filled circles and indicated the altitude by colour (sea level is 
black and the highest mountain peak in Lesotho is white).  This domain is to be used to 

demonstrate our experiments.  The coordinates of the top left corner in degrees are (28E, 

28S) and of the bottom right corner (31E, 31S).  The sparse gauges in Lesotho are clearly 
seen in the middle left panel, which we will omit from our analysis.  We number the panels 
1 to 9 from bottom left to top right.  The Umgeni catchment can be discerned in the right-
most block in the middle row, so that Durban is just off the image. The orange rectangle is 
the area used for interpolation experiments. 
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Figure 6.5.  The gauges used for interpolation trials are shown against an elevation 

backdrop.  The image, with coordinates at the top left corner (28E, 28S) and of the 

bottom right corner (31E, 31S), shows all gauges available in the CSAG database 
during the 1965-1985 time period.  The orange rectangle is the area used for 
interpolation experiments.  

 
The first step in the spatial interpolation procedure is to choose a day and determine the 
available gauge readings on that day.  All the observations are assembled for 
Gaussianisation to (i) fit an empirical cumulative distribution function (cdf) to the data then 
(ii) fit a smoothed estimated probability distribution to (i).  We will demonstrate this 
procedure on a day when there are no missing data.   
 
In Figure 6.6 is a frequency distribution function of the recorded rainfalls on a certain day 
over a part of the region.  Notice the awkward kink below the 1 mm value, ringed in red.  
We do not believe that recordings below 1 mm per day are accurate, so fit this range with 
an exponential function.  Values above 1 mm are approximated by a Kernel Density 
Estimation procedure using Gaussian kernels and the hybrid cumulative distribution 
function (cdf) model is shown in Figure 6.7, a repeat of Figure 5.14. 
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Figure 6.6.  An empirical cumulative distribution function (cdf) obtained by ranking all 

observed rainfall records on a chosen day. Note the dry probability p0 of 0.23, which 
indicates that this particular day is quite wet. 

 

 
Figure 6.7.  The combined piece-wise approximation of the empirical cdf in the rainfall 

domain, superimposed on the empirical cdf in Figure 6.6.  The approximation is used to 
transform simulated fields in the Gaussian domain to rainfall on the given day.  

 
6.4 Interpolation using missing data, covariates and TRMM: Methodology  
 
This section outlines the methodology used to obtain the results in the sections that follow; 
the heavier mathematics have been omitted in an attempt to improve its readability.   
 
6.4.1 Use of infilled data 
 
As explained in the discussion leading to Figure 6.1, the use of infilled expected values in the 
gauges with missing values, without taking into account their precision of estimation, is not 
very informative and is likely to increase the spatial correlation spuriously. These estimated 
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expected values are often given the status of an observation by modellers, neglecting their 
uncertainty.  The distribution of the expected infilled values is different from the 
distribution of the observations; they tend to have a positive value, which induces an 
incorrect proportion of wet locations, a reduced variance and a concomitant increase of 
spatial correlation of the set of infilled values.  The formula for the marginal distribution 
used in Figure 6.7 is: 
 

𝐹𝑦𝑖
(𝑧) =  𝑝𝑦𝑖

                                                                 𝑖𝑓 𝑧 = 0                          (6.1) 

             =  𝑝𝑦𝑖
+ (1 − 𝑒−𝑧𝜃𝑦𝑖 ) ( 𝑞𝑦𝑖

− 𝑝𝑦𝑖
)    𝑖𝑓 0 < 𝑧 ≤ 𝛿 

             =  𝑞𝑦𝑖
+ ( 1 − 𝑞𝑦𝑖

) 𝐺𝑦𝑖
(𝑧)                           𝑖𝑓  𝑧 > 𝛿 

 where  
yi is the location of a gauge 
𝑝𝑦𝑖

 is the probability of dryness on the day 

𝑞𝑦𝑖
 is the probability of the threshold  not being exceeded 

  is a selected wet threshold (1 or 2 mm) 
z is the rainfall amount in mm 
𝜃𝑦𝑖

 is the exponent spread constant for the threshold data 

𝐺𝑦𝑖
(𝑧) is the fitted Gaussian Kernel Distribution Estimate (KDE) 

 
The dependence structure of precipitation for the given time interval and for any set of 
locations {𝑥′1 , … , 𝑥′𝑙 } is described with the help of its copula leading to the multivariate 
distribution: 
 

𝐹𝑥′1,….,𝑥′𝑚
 (𝑧1, … , 𝑧𝑙) = 𝐶𝑥′

1,….,𝑥′
𝑚

(𝐹𝑥′
1
(𝑧1), … , 𝐹𝑥′

𝑙
(𝑧𝑙), 𝜃)                       (6.2) 

 

where  represents the parameters of the copula (correlation function parameters for the 
Gaussian copula). 
 
In order to simulate or interpolate precipitation on a given time interval the following 
procedure is adopted: 

1. Missing gauged precipitation values are first simulated using the marginals defined in 
(6.1) using the spatial copula introduced in Section 3.2. 

2. The simulated infilled values and the observed gauge values are merged to an 
observation set  

3. A spatial field of precipitation is simulated using the spatial copula conditioned on 
the extended observation dataset. 

4. Steps 1-3 are repeated K times. 
 
The procedure produces K simulated spatial precipitation fields. The following properties 
hold: 

 For all fields the observed precipitation is reproduced at each observation location 

 For all gauge points with infilled data the distribution is given by Eq. (6.1) 

 The dependence of the spatial field follows the copula defined above. 
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6.4.2 The use of covariates 
 
Covariates can be used with either local (neighbourhood) or global correlations.  If the 
correlation to the normalized covariate is relatively small, then the correlation conditions 
can be directly included into the simulation.  Higher correlations require a two-step 
procedure. There are two cases: 

 The covariate is available for the whole domain D (for example, topography) 

 The covariate is available at a certain number of locations – partly different from the 
precipitation observations – and/or in the form of block values (for example, TRMM). 

 
In case one the fields used for conditioning are obtained by 
  

𝑋 = 𝑟𝑌𝑐 + √1 − 𝑟2 𝑈                                                                                   (6.3)        
 

where Yc is the Gauss transformed topography (or temperature over the domain) and U is 
the unconditional simulated rainfield. 
 
In case two, formula (6.3) can be extended to an arbitrary number of covariates. A 
simultaneous simulation of the variable of interest and the covariates can be performed if 
local conditions apply to the covariates. This requires a good parameterisation of the Gauss-
transformed cross correlation functions. 
 
6.4.3  The use of TRMM (or altitude) as an exogenous variable 
 
Spatial similarity 
One might assume that the precipitation patterns in a given time interval estimated by 
TRMM are correlated to the patterns of the true rainfall. This means that for the block 
averaged precipitation and the TRMM estimates, the correlation is significantly greater than 
zero. Under these circumstances one can simulate spatial fields which combine point 
observations on the ground and are correlated to TRMM according to the estimated 
correlation. 
 
If the correlation is relatively small r < 0:4 simulation can be performed directly with the 
simulation procedure (which is used for all simulations). For higher correlations a mixed 
procedure is needed: 

1. Gauss transform the TRMM data with corrected block variance (according to 
support) 

2. Simulate a spatial field Y conditioned on the above transformed block values using 
the spatial copula. 

3. Add the above simulated Y field to the unconditional fields X used as a basis for 
conditioning with an appropriate weight 

4. Simulate the spatial field of precipitation Zk in the observation dataset and the above 
simulated X fields. 

Steps 1-4 are repeated K times. 
 
The procedure produces K simulated precipitation fields. The following properties hold: 

 For all fields the observed precipitation is reproduced at each observation location 
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 For the simulated blocks the correlation with the TRMM values is the prescribed r (in 
the Gauss domain) from equation (6.3). 

 The dependence of the spatial field follows the copula defined above 
 
In order to have a good match between the patterns an a priori bias removal through a 
block by block QQ transform is beneficial. For this an interpolation of the block or point 
precipitation distributions (over time) can be required, due to the fact that some of the 
blocks do not have any ground observations.  Furthermore, discharge can also be used for 
this purpose to obtain statistics at larger time scales. 
 
Although a potentially useful suggestion, this methodology was not used in this project 
because the correlation between rainfall and TRMM (and altitude) at the daily scale is so 
low, as is shown in Section 6.6 of this chapter and in Chapter 8.  A remedy is suggested in 
Chapter 9. 

 
 
6.5 Interpolation over tiles by stitching, a realisation of the algorithms of Section 6.3 
 
We want to be able to interpolate rainfall between gauges anywhere in the country.  
Because of the variability of rainfall and altitude (let alone seasonality) over the region, the 
spatial interpolation of the gauge rainfall information on any day should be done in a 
localised manner.  This section demonstrates how we devised a means of interpolation over 

1 squares at 0.01 precision, conditioned on those already interpolated, so that there is no 
evidence of discontinuity at the boundaries, which should be invisible in the final product.  
The method is rather like patchwork quilting, but ensuring that the ‘pattern’ is not 
discontinuous at the edges joining the panels/tiles, a choice of terminology which explains 
the section heading.  In other words, we need to ensure statistical continuity over the lines 
of separation. 
 

In Figure 6.8 we show two 1 square blocks, staggered North-South by 0.333, for one day 
over region 6, the rainfall stations given in Figure 4.13.  We have performed two 
independent sets of 100 spatial simulations over each square and averaged the sets. 
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Figure 6.8. Averages of 100 sets of simulations of one day over a large area (1 – about 100 

km), the 0.333 tiles in the two images covering overlapping regions.  Common strips of 
the three central tiles are indicated by grey arrows.  Note the rainfall stations in the 
background are to be found in Figure 4.13.  Here, those experiencing rain on the day are 
shown as crosses and the dry stations as black dots in the dry grey areas.  Each of these 
images is the spatial mean of two different sets of 100 simulations.   

 
Careful inter-comparison shows that there are differences, particularly in the dry grey areas. 

In this case there is no stitching of the 0.333 blocks within either of the 1 regions.  Each 
has been divided into 9 tiles taken together, discernible by vertical and horizontal dividing 
lines.  The central tile in each panel is clipped out and assembled one above the other in the 
left panel of Figure 6.9. 
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Figure 6.9.   The central 0.333 tile of each panel in Figure 6.8 juxtaposed in their correct 

positions on the left and their standard deviations in the right panels of this figure.   As 
noted in Figure 6.8's caption, these were assembled from 100 simulations.  There is no 
stitching between the stacked tiles. 

 
It is evident from Figure 6.9 that there is serious discontinuity at the common edge of the 
upper and lower tiles, much more so in the right panel showing the standard deviations over 
the field.  This is likely caused by the fact that the lower tiles of the pair possess only 4 
gauges and partly covers the Indian Ocean, so there is less restraint (due to sparser data) in 
the lower tile than in the upper.  Figure 6.10 shows the efficacy of conditioning the lower 
tile on the simulation of the upper tile.  There is now no discernible edge. 
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Figure 6.10.   The pair of tiles in Figure 6.6 stitched together in 100 simulations: means and 

standard deviations of the resulting fields are shown in the left and right panels.  
Figure 6.11 completes the set.  The image is a single realisation of an infilled region of 4 

connected tiles, spanning 1.25 square.  The apparently seamless interpolation was 
achieved by starting with one tile and then successively stitching the remaining tiles 
together one-by-one.  This method allows statistical variability over the macro region by 
using a parsimonious simulation methodology. 
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Figure 6.11.  A 1.25 square region consisting of four tiles – a single conditioned realisation 
stitched together in sequence 

 
The conclusion we can draw from the work of this section is that we have devised a 
meaningful, informative and relatively parsimonious method of generating ensembles of 
interpolated rainfields, potentially useful for hydrological applications, besides giving 
estimates of the spread of the interpolated fields. 
 
6.6 Using exogenous variables to improve the interpolation product 
 
We turn now to the determination of the links between rainfall and altitude and start with 
sample correlations between altitude and rainfall, day-by-day over the region. 
 
Figure 6.12 presents the correlation coefficients estimated between gauged daily rainfall 

and altitude on each of the 7305 days of record over the 3 square of Figure 6.5.  The range 
is approximately -0.5 to 0.4 over the years and there is evidence of strong annual variability. 
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Figure. 6.12. A time-series of the cross-correlation coefficients computed between observed 

daily rainfall and elevation over region 6 for the analysis period. The station elevation 
reported in the CSAG database was used. 

 
To get a better feeling for intra-annual variability each of the above data values were 
plotted in Figure 6.13 as a function of the day of the year and an average over the 365 days 
of the year superimposed.  There is evidence of a weak variation of the cccs in this figure. 
 

 
 
 
Figure. 6.13. An attempt to discern if there is any seasonality in the correlations. All 

correlations over the 3 square region in Figure 6.5 have been binned according to the 
day of the year (see grey scatter points) and the mean for each day computed (red line) 

 
We decided to see if there was any spatial variability of the results, smoothed over the year 
by averaging all regions in Figure 6.13.  Figure 6.14 shows the unpacked ccc values for 8 of 
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the 9 blocks of Figure 6.5 (all blocks except # 4, the left middle block of the figure covering 
part of Lesotho which contains only 2 gauges). 
 

 
 

Numbering is from bottom left to top right as in Figure 6.2, omitting 4 – see panel 
below. 

 

7 8 9 

 5 6 

1 2 3 

 

Figure. 6.14. Day of year means (on each day over the 20 years) for eight of the nine 1 
blocks shown in Figure 6.5 (repeated here as an insert in place of block 4).  Compared 
with Figure 6.13, these blocks have been unpacked. Note that block 4 of Figure 6.5 has 
not been included due to a lack of sufficient observations (only 2). 

 
It is evident from Figure 6.14 that the coastal and mountainous regions have different 
correlation linkages between rainfall and altitude over the year.  The strongest correlations 
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are about 0.4 during the dry period of the year and there are some negative ones of about -
0.2 (going down to -0.7 in block 1, the lower left degree block on mountainous slopes) in the 
winter.  Also evident is the distinct variability of the correlations between the blocks, 
justifying the tessellation of the regions into smaller tiles within which to assume spatial 
homogeneity, to determine both gauge-gauge and gauge-altitude cross correlations, where 
meaningful.  Overall, the correlation of altitude and raining days (not dry ones) is 
disappointingly low and will not be used in the sequel; location is more relevant. 
 
6.7 Examples of spatial infilling by simulation 
 
In this section we address the problem of deciding how many simulations are good enough 
to obtain an informative set of individual interpolations such as that displayed in Figure 
6.11. 

 
Investigate the stability of unobserved rainfall distributions 
 
The conditional simulation procedure provides an estimate of the rainfall distribution at 
unobserved locations. A "sufficient" number of realizations is required to provide a good 
estimate of the unknown distributions. An attempt was made to find out how many 
realizations are "sufficient" (K in the algorithm passage of subsection 6.3.1). 
 
The region chosen was contained in the orange rectangle at the lower right of Figure 6.5, 
which includes the coast-line near Durban.  In this part of the investigation, we did not tile 
the region, as only 2 tiles are needed to make the point; we simulated over the subregion as 
an un-partitioned unit.   
 
The variability between the median fields of the two simulated interpolations shown in 
Figure 6.15 is large, especially in sparsely gauged regions when there are few members of 
the ensemble. The large difference is mostly due to the limit of 10 simulations used to 
provide the median surfaces.  We have started the comparisons with a sample of a small 
number of simulations on a day (which was chosen because it had a reasonable spread of 
rainfall) and increase the number progressively in the figures following this one.  It will be 
seen in the sequence of figures that the differences between the two sets of quantiles (and 
means) of the multiple surfaces disappear as the number of simulations increases, until they 
look like smoothed Kriged fields. 
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Figure 6.15.  Comparison of the 50th percentile (median) at each 0.01 (about 1 km) square 

pixel based on two different conditional simulation runs of 10 realisations each.  It is 
clear that the spatial patterns are very dissimilar, especially in the bottom right which 
contains no gauges, as it is over the sea – the coastline is shown by the blue curve.  The 
dry gauges (dots) are surrounded by grey areas; the wet gauges are indicated by 
crosses. 

 
In Figures 6.15 through 6.17, the small black crosses indicate wet rain-gauges on the day, 
whereas the black dots are the locations of gauges which were dry on the day, the latter 
being surrounded by grey areas signifying zero error.  Figure 6.16 shows the result of 100 
and Figure 6.17 1000 runs. 
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Figure 6.16.   Comparison of the 50th percentile (median) at each 1 km square pixel based on 

two different conditional simulation runs of 100 realisations each.  Note that the spatial 
patterns over land are less dissimilar, except for the sparsely gauged northwest region. 

 

 
Figure 6.17.  Comparison of the 50th percentile (median) at each 1 km square pixel based on 

two different conditional simulation runs of 1000 realisations each.  Over land the 
images converge nicely except for the sparsely gauged regions.  The yellow line 
indicates a transect through two gauges, which yields the 1 dimensional plots to follow 
in Figures 6.18 & 19. 
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In Figure 6.18, we show some transects through the sets of simulations to show the 
variation in the quantiles between samples.  These 'slices' follow the yellow line which runs 
through 2 gauges as shown in the right panel of Figure 6.17. 
 

 
 
Figure 6.18.  Transects through the two independent stacks of 100 (left column) and 1000 

(right column) simulation images whose medians are shown in Figures 6.15 and 6.16, 
intersecting two gauge observations.  The 4 different trajectories in each panel are the 
5th and 95th percentiles and the median and mean.   

 
The upper and lower images on the left of Figure 6.18 (100 simulations) are dissimilar in 
shape.  After 1000 realisations they converge quite well, as shown in the right column.  It 
takes an ensemble of 2500 simulated images to provide almost perfect convergence, 
nevertheless a modest number of simulations yields a fair measure of uncertainty.  Note 
that the mean trace (grey) is above the median (blue) because of the skewness on the 
simulated rainfalls.  Note also that there is no error at the gauge locations and that, far from 
the gauges, the 90 percentile range increases dramatically, indicating the imprecision of the 
estimates where networks are sparse. 
 
6.8 Conditional Simulations with Altitude as an exogenous variable 

 
In the next two sets of images in Figures 6.19 and 6.20, we demonstrate the effect of using 
altitude as an exogenous variable, which was not included in the above simulations.  The 
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area is the coastal zone in the middle right panel, number 6, in Figures 6.5 and 6.14, and is 
shown in detail in Figure 6.21. 
 

 
 
Figure 6.19.  The effect of altitude.  Top, middle and bottom rows of this figure are 

respectively 10th, 50th and 90th percentiles of 1000 simulations on block 6 (middle row 
right hand side of Figure 6.14).  In the left column of this figure, correlation with altitude 
is not included in the simulation constraints.  In the right column there is a 0.2 
correlation between rainfall on the day and the altitude.  
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In the images above in Figure 6.19 and below in Figure 6.20, the influence of imposing a 
correlation between altitude and rainfall can be seen.  Note that for zero correlation and 
median surface, in the middle panel on the left of Figure 6.19, the rain at the wet gauges is 
near the coast and is absent at the gauges in the high ground to the Northwest.  However, 
even with a weak correlation of 0.2, rain appears where the gauges are dry in the higher 
ground, as is clear from the middle right panel in Figure 6.19.  The rainfall intensity grows 
there as the correlation increases, so the altitude has a false influence on the spatial 
distribution of rainfall as it increases.  All scales are the same in these images for ease of 
comparison.    
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Figure 6.20. The effect of altitude.  10th, 50th and 90th percentiles of 1000 simulations on 

block 6 (middle row right hand side).  Left column 0.5 correlation; right column 0.75 
correlation between rainfall on the day and altitude, the latter shown in Figure 6.19.  

   
The effect on the spatial distribution of rainfall due to high correlations between rainfall and 
altitude are clearly demonstrated in Figure 6.20, to an absurd degree as even the 10th 
percentile (upper panels) shows exaggerated rainfalls.  The result is that we opted to ignore 
this spurious linkage in our spatial interpolations between gauges. 
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Figure 6.21.  Elevation map sampled from the product of the Shuttle Radar Topography 

Mission – Jet Propulsion Laboratory.  This map was used in the above analysis 
summarised in Figures 6.19 and 6.20.  Note the dry gauges on the day are marked by 
black dots and gauges recording rain are marked by crosses. 

 
 
We conclude this section noting that the relatively weak correlations of the observations 
with altitude as shown in Figures 6.13 and 6.14 might have some value in the interpolation.  
Nevertheless we are worried that using altitude as a surrogate variable might warp the 
rainfield untruthfully as demonstrated in Figures 6.19 and 6.20.  To take account of 
mountainous areas, in the final interpolation of the space between the gauges, we will 
shorten the correlation length in rugged terrain but leave it longer in the flatter areas.   
 
 
  

http://www2.jpl.nasa.gov/srtm/
http://www2.jpl.nasa.gov/srtm/
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Chapter 7.  Spatial Interpolation using simulated radar-like random fields 
 
The commonly used technique used for spatial interpolation is Kriging in its many guises and 
is a precursor to the spatial simulation methodology introduced in Chapter 6.  Spatial 
simulation is valuable where the rainfall characteristics are changing rapidly in space, 
however the method requires care and a relatively deep knowledge of the mathematics to 
enable a good estimate to be made.  As an alternative, where spatial variability of the 
characteristics of rainfall is small, it is tempting to use Kriging, but with the condition that all 
the rainfall variables be Gaussianised as described in Chapters 3 and 4. Kriging offers a field 
of uncertainty described by the Kriging variance, which is not useful for raw daily data unless 
a Gaussianising transform is first performed because of the skewness of the data. Annual 
and perhaps monthly data can be Kriged directly because they are less skew than daily data, 
nevertheless Gaussianisation as introduced in Chapter 3 would be prudent in all cases.   
 
In this chapter, a novel way of interpolating between raingauges on any day over a large 
area is introduced.  The key to the method is to use Gaussian random fields, modelled on 
Gaussianised radar images.  An ensemble of these fields provides not only a measure of 
uncertainty [median and quartiles at each location in the area] but also plausible rainfields 
for rainfall-runoff calculations through catchment modelling.  The idea can be extended to 
areal rainfall simulation, by using a daily rainfall network model like PEGRAIN (Pegram, 
2010) and merging random fields with the gauge values using the correct correlation 
structure for the field, as introduced by Sinclair and Pegram (2005).  This correlation 
structure can be obtained by analysing many daily accumulations of measured radar fields.  
The advantage of this hybrid model is that plausible spatial daily rainfields [as big as desired, 
but typically 200 km across – say 40 000 sq km and as many fields as required] can be 
generated where there is reasonable spatial stationarity.   
 
The computations and images in this section were modified and subsequently published in 
Gyasi-Agyei and Pegram (2014).  The region treated here is in the Free State; and the set of 
gauges taken from WRC project K5/1964 [Pegram et al. (2013)], shown in Figure 7.1.   
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Figure 7.1.  Left panel: Location of the study region; dashed area encloses the radar, wind 

and temperature stations. Right panel: the red dashed circle is 75 km radius of the radar 
coverage; red area is a radar mask; green square area is the red area in the left panel; 
dots are gauge locations; the black dashed square is Region 1; Region 2 is intersection 
of red radar circle and green boundary square; dashed blue square is Region 3. 

 
There are 54 gauge sites in this region of 256 km square so that the mean interstation 
distance is 34 km, but we note the clustering of gauges in some parts.   
 
In Figure 7.2 we have selected a relatively wet day and have left out 10 stations, whose 
amounts are coloured blue, located at the blue circles and can be thought of as targets.  The 
control stations are sited at the locations of the red crosses.  All rainfall amounts on the day 
[13 March 1991] are in millimetres at the crosses in the figure.  The two sites ringed in 
maroon will be used in the cross-validation later in the section; all the blue sites will be 
omitted from the simulation and act as targets; those heavily ringed in blue will be used in 
Figure 7.9. 
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Figure 7.2. Gauge locations and amounts of rain on day 13 March 1991.  The region is nearly 

square and covers SAWS 30’ rainfall blocks numbered [230, 231, 232, 260, 261, 262, 
292, 293 and 294] in the Eastern Free State.   

 
The first step of the analysis is to determine the frequency distribution of rainfall at the 
gauges for the day in question.  This appears in Figure 7.3 and it will be seen that p0, the 
ratio of dry gauges, is 9%.  The highest two readings are used to fit an exponential curve, 
asymptotic to probability 1, to permit extrapolation outside the range of the gauge 
readings; the curve is shown in red.  As noted on the figure, pe and ye are the coordinates of 
the penultimate point and Le is the correlation length of the exponential fit (red curve) 
through this and the last point. 
 

 
Figure 7.3.  Cumulative frequency distribution of rainfall values derived from Figure 7.2. 
 
Each of these points is then QQ transformed onto a Gaussian curve, with the dry readings 

given the value y0 = -[-1{p0}]/p0 as described earlier in the discussion in Chapters 3 and 4 .  
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Thus, the drier the day, the lower will be the values of the dry points in the Gaussian 
domain. 
 
Having Gaussianised the rainfall readings, the next step is to use Ordinary Kriging to 
determine the mean field through the gauge locations and determine the standard 
deviation at each point in the field.  The correlogram is chosen to fit the one obtained from 
the power spectrum of the observed daily rainfall fields.  These were estimated by the S-
band radar at Bethlehem [Free State]; Dr Sinclair created 800 days of radar images from the 
set used by Clothier and Pegram (2001), from 5 minute MRL5 radar images, which were 
analysed to determine spatial structure.  This correlation is much stronger and smoother 
than any computed from the gauges on the day, because the latter comprise only 54 points, 
whereas each radar field contains up to 50 000 estimates of rainfall values.  Figure 7.4 
shows the Sample Spectrum derived from the radar image [left panel] and transformed 
correlogram [right panel] calculated from the red line fitted to the red dots.  
  

 
 
Figure 7.4.  Sample Spectrum of radar image and transformed correlogram. The left panel 

shows the 2D power spectrum of a radar field plotted in 1D [black circles], the average 
of these in discrete bins [red dots] with the best linear fit in log-space [red line].  In the 
right panel, the Fourier transformed correlation [black circles from red line] is an 
exponential curve with a correlation distance of 29.7 km obtained where 1/e intersects 
the curve. 

 
The mean slope of the power spectrum used to correlate [filter] the random field is chosen 

as  = - 2.6, a value adopted from the WRC report on the String of Beads Model [SBM] 
(Pegram and Clothier, 1999 and Clothier and Pegram, 2002).  This number is close to the 

slope of  = -2.59 estimated from the 1D power spectrum shown in the left panel of Figure 
7.4.  
 
The correlation length of the correlogram on the right is 29.7 km, just short of the 
interstation distance of 34 km between gauges, calculated above from the gauges.  What 
this means is that stations near each other will allow the variability of the fitted fields 
between them to be smaller than those which are far apart.  We note that the correlation 
length of an exponential correlation function is where the curve crosses the vertical axis at 
1/e = 0.368, a level explaining 14% of the variance.  Thus, in locations at 60 km separation, 
only 2% of information is translated between them.  What this drop-off of correlation with 
large spacing means is that, in sparse fields, the gauges are sharing little information with 
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each other, hence the need for maintaining raingauge networks at a minimum density of 30 
km spacing.  Figure 7.5 shows one of a set of 100 random Gaussian fields, filtered to have a 
correlation length of 30 km.  Its size of 256 km square is chosen to exploit the computational 
economy of the Fast Fourier Transform (FFT). 

 
Figure 7.5.  One of 100 random Gaussian fields, 256 km square, FFT filtered to have a 

correlation length of 30 km. 
 
This field has structure, in the sense that it has clusters of high [red] regions and valleys of 
low [blue] regions.  We need to statistically stitch this down onto the Kriged surface 
matching the Gaussianised gauge values, using the conditioning technique introduced by 
Sinclair and Pegram (2005).  After we have interpolated the mean field between the gauges 
by Kriging, we obtain the Gaussian mean field image below left in Figure 7.6.  The random 
field above in Figure 7.5, when merged with the mean field using the conditioning algorithm, 
gives us the combined field below right in Figure 7.6, after thresholding at the level 
corresponding to p0.  The white areas are where there is no rain, as the field has been 

thresholded at y0 = -[-1{p0}]/p0.  This is just one of the 100 merged Gaussian fields 
produced for the conditioning.  
  

 
Figure 7.6.  After we have interpolated the mean field between the gauges by Gaussian 

Ordinary Kriging, we obtain the image on the left.  The random field in Figure 7.5, when 
merged with the mean field gives us the combined field on the right. 
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The following pair of images in Figure 7.7 shows (i) the mean field on the left, obtained by 
averaging the 100 simulated images and (ii) the median [Q50] field obtained by finding the 
median of the 100 values at each 1 km pixel. 

 
 
Figure 7.7.  Combining of 100 simulations like that in Figure 7.6 [right] we obtain their 

sample mean field on the left, by averaging the 100 simulated images.  The median 
[Q50] field on the right is obtained by finding the median of the 100 simulated values at 
each 1 km pixel. 

 
There are minor textural differences between these two images in Figure 7.7 and the Kriged 
mean field in Figure 7.6, as expected.  If we had generated very many more fields for the 
simulation, there would have been no detectable differences between the mean and 
median images because they coincide in the Gaussian domain.  We will use the median and 
the quartile images to transform back to rainfall space, in order to obtain the local 
probability distributions in the rainfall domain, because although means and standard 
deviations change their quantiles in the QQ transformation process, the median and 
quartiles maintain theirs, being probabilities. 
 
We next provide some examples of 1D vertical sections across [on latitudes] and down [on 
longitudes] through the 2D images to indicate the behaviour of the quantile surfaces and 
how well they interpolate values at missing points.  The first set of four, of the six in Figure 
7.8, collocate through one or more of the gauge sites, so there is no error at these locations, 
as we do not use a nugget in the variogram that would determine the 2D power spectrum.  
The longitude and latitude are marked on each image, as is the gauge number of the 
intersected gauge location, so they can be identified on Figure 7.2 as heavier maroon rings.  
The y0 threshold is at -1.53 in the Gauss domain for these images, as they all come from the 
same day, where the p0 is 9%. 
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Figure 7.8.  Upper 4 images, sections through gauges ringed in maroon in Figure 7.2, 

showing the mean and standard deviation fields of the Gaussian Kriging and FFT 
simulations. The lines are interpreted as follows: solid blue = Kriged mean; dotted blue 
= Kriged quartiles; inner wiggly red line = 50th percentile of 100 simulations; outer 
wiggly red lines = 25th and 75th percentiles of 100 simulations.  Note their coincidence 
with the Kriged lines and the narrowing of the quartiles when the sections are near a 
gauge.  The lowest pair is an expansion of the curves to give more detail. 

 
The images in Figure 7.9 are of sections through hidden gauge sites, or targets, i.e. the ones 
not included in the merging procedure, and indicated by thick blue circles in Figure 7.2 and 
black dots here. 
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Figure 7.9.  Same as Figure 7.8, but the sections are through sites with gauges removed from 

the computation.  The vertical dashed lines in this figure, and the black dots, 
respectively indicate the location and value [Gaussianised] at the target.  The narrowing 
of the quartiles is due to the presence of other nearby control gauges shrinking the gap 
and influencing the surface. These are representative images – others show better and 
worse results. 

 
In summary, this section has demonstrated that interpolation using Gaussian Kriging 
combined with conditioned artificial random radar fields provides several things of value: 
   

 Firstly we can obtain a reasonable median interpolation field in the rainfall domain 
[or mean field if we want to calculate it];  

 secondly we can determine how good the estimate is through the calculation of the 
median and the quartiles [which can be used, with the mean to calculate the 
standard deviation – which are not very useful in a highly skewed distribution];  

 thirdly we can provide some reasonable simulations of spatial fields modelled on the 
covariance structure of radar images, conditioned on the gauge readings, which yield 
the same uncertainty as the Gaussian Kriging – these can be used to determine the 
uncertainty of interpolating spatial rainfall from gauges over catchments in a 
convenient manner; 

 fourthly, if the random field interpolations could be combined with a gauge network 
stochastic daily rainfall generator like PEGRAIN (Pegram, 2010), to make simulated 
radar fields using the above procedure which we call PEGRAD, then hydrologists can 
use this product as input to either distributed models like PyTOPKAPI (Sinclair and 
Pegram, 2005) or to semi-distributed models like ACRU (Schulze, 1975).   
 

 We consider that this section provides a novel and valuable methodology, which will enrich 
the arsenal of hydrologists, as long as the observed rainfield is spatially homogeneous from 
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the correlation point of view.  We note that this work is one of those serendipitous pieces of 
research which adds value to the whole.  In chapter 6, we have already seen how much 
better copula based interpolation and simulation refine this Gaussian Kriging methodology, 
by exploiting spatial inhomogeneity of the dependence structure, which the method 
described here ignores. 
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Chapter 8. Interpolate daily rainfall on 0.25 grid for TRMM comparison 
 
8.1.  Introduction 
 
We have unfortunately discovered some things which have put a damper on this deliverable 
which we wrote four years ago in the proposal.  The first is that TRMM finished its work in 
April 2015, to be replaced by the Global Precipitation Mission [GPM] satellites which are 
now in operation.  The second is that the availability of raingauge data over RSA in 2010 was 
lower than we hoped – we are currently down to the data from just over 1000 SAWS sites.  
Thirdly, the raingauge data in the SADC countries has declined drastically since the turn of 
the millennium, a large proportion of the overlap time of TRMM and gauges.  Therefore, if 
we are to make estimates of corrected TRMM data over data sparse regions, we are going 
to have to somehow export our quantile-quantile [QQ] transforms from relatively data-rich 
areas.  Fourthly, the gauge density we can obtain in SADC is so sparse that the interstation 
distance is over 300 km in Zimbabwe and Mozambique, so data infilling is out of the 
question. 
 
In this chapter we describe the work we have done to prepare data to bias correct TRMM 
using RSA data; the methodology should be able to be adapted to GPM.  The method of 
interpolation chosen is one we developed for WRC contract K5/1964 (Pegram et al., 2013), 
elaborated on in the next section. This means that, instead of using the methods of infilling 
and interpolation reported in Chapters 3 and 4, we use Multiquadrics limiting the 

interpolation over the 0.25 squares where we have gauge data.  We determine the block 

average rainfall on each day over 0.25 squares matching TRMM, which have active gauges 
on that day – we do not interpolate rainfall into empty squares for TRMM bias correction.  
Furthermore, it was not the task of this project to perform the actual bias correction of 
TRMM data; we contracted to assess feasibility of bias correcting TRMM 3B42RT 3-hourly 
rainfall estimates in two steps: via daily accumulations then disaggregation over RSA since 
2000 and, if meaningful, extend to SADC. 
 
Thus the purpose of the work reported in this chapter was to develop a set of daily rainfall 

totals over some of the 0.25 square pixels of the TRMM 3B42RT grid in blocks containing 
gauges, in order to provide a basis for investigating bias correction of TRMM. This chapter 
describes what we achieved and the methods used to do so. 
 

8.2.  Spatial average of daily data in each 0.25 block 
 

We elected to compute an estimate of the gauged rainfall on each TRMM block containing 
gauges by using the Multiquadric interpolation code developed by Pegram and Pegram 
(1993). This FORTRAN code was wrapped in a Python package interface to make it more 
convenient to use in conjunction with our Python-based workflow.  At the core of the 
Multiquadric approach is the calculation of weights to multiply each gauge value in a given 
block and thereby obtain the spatial average rainfall for the block on each day. The 
configuration of gauges on different days within a given block is sure to change. Since the 
gauge configuration defines the weights, it was necessary to check for active gauges and 
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then compute the possibly different weights for each TRMM block on each day of the 10 
year analysis period – a procedure requiring some deft programming.   

 
The final product of the Multiquadric analysis was a netCDF file containing a large three 
dimensional array of block averaged daily rainfall totals for each TRMM block and all 3682 
days in the analysis period running from 2000-03-01 until 2010-03-31. This overlap period 
was chosen because the TRMM dataset runs from 2000-03-01 until April 2015, while the 
gauge dataset is for the period 1850-01-01 until 2010-03-31. 
 
A similar dataset of daily rainfall accumulations was developed for the TRMM data, being 
careful to match the accumulation times of the TRMM in UTC to those of the gauge 
reporting periods in SAST (a 2 hour shift).  It was important to ensure that the TRMM 
accumulations represented the 24 hour accumulation reported at 08:00 SAST.   
 
We take as an explanatory example of gauge block averaging, the arrangement of gauges in 
the Mpumalanga region and present the following image in Figure 8.1 [was Figure 1].  This 
excerpt in quotes and indented is taken verbatim from WRC contract K5/1964, so figure 
numbers are taken from that text.  The grid shown in Figure 1 in that passage was chosen to 

match the PRECIS RCM grid of 0.44, so this explanation should be read with that in mind – 

the TRMM grid is 0.25, but the method is identical in both cases.  
 

-----////O\\\\----- 
Start of quote. 
 

"The green dots are the SW corners of each of the blocks containing the gauges 
are offset by 0.01′ so as not to dichotomise the gauges; the lilac crosses are the 
coordinates of the PRECIS grid where the RCM rainfall estimates are found; the 
blue diamonds are the sites of the gauges.  The coordinates are in minutes East 
of the Prime Meridian and North of the Equator (hence the negative values on 
the vertical axis).  The box labels count across and then up from the SW corner 
as shown in Table 1, following SAWS numbering convention, with the difference 
that their blocks are 30′ square, whereas the PRECIS blocks are 26.4′ square.  
This mismatch required some careful organisation of coordinates. 
 
"The gauge weights are all calculated by integrated Multiquadrics, restricted to 
those gauges which lie in each box, because inclusion of sites outside the box 
induces negative weights, which we want to avoid.  Also, it seems sensible to 
restrict the box averages to the gauges inside the box, otherwise one is 
importing information from distance. The weights sum to 1.0. The method is 
fully described (with mathematical development) by Pegram and Pegram (1993), 
so the detail of that will not be repeated here, however the method is very close 
to Simple Kriging, but with the important addition of analytically computed 
weighting functions and the restriction to local interpolation.    An example of 
the output of such a computation was performed on Box 6 (denoted by the red 
square) which contains 8 gauges.  The gauge labels, coordinates and weights 
appear in Table 2.  The closer the gauges cluster, the lower their weights, which 
is clear from the details of Tables 2 and 3."  
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Figure 8.1.  PRECIS grid and rain gauge sites – Mpumalanga.  Red square is # 6, 
whose gauge weights appear in Table 2 

 
"Table 1: labelling of PRECIS blocks in the square containing gauges 

 
 
 
 
 

"The block occupations are: 
 
 

 
"Table 2. Labels, coordinates and calculated weights of gauges in Block 6 of 
Figure 1. 

   
 
 
 
 
 
 
 

"Once all weights have been calculated for each box, they are arranged 
in a matrix relating gauge weights in each block with individual gauges.  
This matrix ensures that the correct information is collected in each 
column of box averages, the set for these Mpumalanga blocks appears 
in Table 3. 

  

-1570.81

-1544.41

-1518.01

-1491.61

-1465.21

1808.39 1834.79 1861.19 1887.59 1913.99

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

BOX 1 2 3 0 0 6 7 8 0 10 11 12 0 14 15 16

# GAUGES 1 4 1 0 0 8 4 1 0 16 3 1 0 5 3 1

Gauge X Y Weight 

2 1836 -1536 0.2186 

5 1845 -1533 0.2021 

13 1843 -1520 0.1141 

14 1845 -1526 0.0549 

18 1850 -1527 0.0759 

24 1858 -1531 0.2094 

25 1859 -1526 0.0471 

26 1861 -1520 0.0780 
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"Table 3.  Weights of all 48 Mpumalanga gauges in the 12 occupied 
blocks of Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
"To obtain the daily block averages of the observed gauge data, the 
column matrix of gauge observations (48 in the case of Mpumalanga) is 
post-multiplied by the weight table in Table 3." 

 
-----\\\\O////----- 

 
End of quote. 
 
If the gauge population of a particular block changes, then its gauge weights are 
recalculated for the day in question, as previously mentioned.   
  

active blocks

block gauge 1 2 3 6 7 8 10 11 12 14 15 16

1 1 1 0 0 0 0 0 0 0 0 0 0 0

6 2 0 0 0 0.2186 0 0 0 0 0 0 0 0

2 3 0 0.3691 0 0 0 0 0 0 0 0 0 0

2 4 0 0.0093 0 0 0 0 0 0 0 0 0 0

6 5 0 0 0 0.2021 0 0 0 0 0 0 0 0

2 6 0 0.2805 0 0 0 0 0 0 0 0 0 0

2 7 0 0.3410 0 0 0 0 0 0 0 0 0 0

3 8 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

7 9 0 0 0 0 0.3115 0 0 0 0 0 0 0

7 10 0 0 0 0 0.1117 0 0 0 0 0 0 0

10 11 0 0 0 0 0 0 0.1431 0 0 0 0 0

10 12 0 0 0 0 0 0 0.0745 0 0 0 0 0

6 13 0 0 0 0.1141 0 0 0 0 0 0 0 0

6 14 0 0 0 0.0549 0 0 0 0 0 0 0 0

10 15 0 0 0 0 0 0 0.0636 0 0 0 0 0

10 16 0 0 0 0 0 0 0.1482 0 0 0 0 0

10 17 0 0 0 0 0 0 0.0619 0 0 0 0 0

6 18 0 0 0 0.0759 0 0 0 0 0 0 0 0

10 19 0 0 0 0 0 0 0.0198 0 0 0 0 0

10 20 0 0 0 0 0 0 0.0122 0 0 0 0 0

10 21 0 0 0 0 0 0 0.0071 0 0 0 0 0

10 22 0 0 0 0 0 0 0.0385 0 0 0 0 0

10 23 0 0 0 0 0 0 0.1111 0 0 0 0 0

6 24 0 0 0 0.2094 0 0 0 0 0 0 0 0

6 25 0 0 0 0.0471 0 0 0 0 0 0 0 0

6 26 0 0 0 0.0780 0 0 0 0 0 0 0 0

7 27 0 0 0 0 0.3209 0 0 0 0 0 0 0

11 28 0 0 0 0 0 0 0 0.1604 0 0 0 0

11 29 0 0 0 0 0 0 0 0.4673 0 0 0 0

7 30 0 0 0 0 0.256 0 0 0 0 0 0 0

8 31 0 0 0 0 0 1 0 0 0 0 0 0

10 32 0 0 0 0 0 0 0.1462 0 0 0 0 0

14 33 0 0 0 0 0 0 0 0 0 0.5110 0 0

14 34 0 0 0 0 0 0 0 0 0 0.0551 0 0

14 35 0 0 0 0 0 0 0 0 0 0.019 0 0

14 36 0 0 0 0 0 0 0 0 0 0.1289 0 0

10 37 0 0 0 0 0 0 0.0177 0 0 0 0 0

10 38 0 0 0 0 0 0 0.0637 0 0 0 0 0

10 39 0 0 0 0 0 0 0.0019 0 0 0 0 0

14 40 0 0 0 0 0 0 0 0 0 0.2859 0 0

10 41 0 0 0 0 0 0 0.0298 0 0 0 0 0

10 42 0 0 0 0 0 0 0.0607 0 0 0 0 0

15 43 0 0 0 0 0 0 0 0 0 0 0.3365 0

15 44 0 0 0 0 0 0 0 0 0 0 0.1597 0

11 45 0 0 0 0 0 0 0 0.3723 0 0 0 0

15 46 0 0 0 0 0 0 0 0 0 0 0.5038 0

12 47 0 0 0 0 0 0 0 0 1 0 0 0

16 48 0 0 0 0 0 0 0 0 0 0 0 1

censored
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8.3  Calculating daily rainfall averages on active Blocks 

 
Figure 8.2 shows the region chosen to perform an initial analysis to determine the gauge 
density over a region and refine the application of the Multiquadric method outlined above. 
It will be seen that the range of MAP in the block is fairly representative of that over RSA as 
indicated by the gauge MAP. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2. Location of the subregion of South Africa, chosen to bound Figures 8.3 and 8.4.  

The 5 by 5 region chosen [25S to 30S and 25E to 30E] is shown by the red square.  

 
As mentioned in Section 8.2, the core of the Multiquadric approach is the calculation of 
weights by which to multiply each gauge value in a given block on a given day and thereby 
obtain the block average rainfall for the block. As illustrated, by comparing Figures 8.3 and 
8.4, the configuration of gauges on a day within a given block may change. Since the gauge 
configuration defines the weights, it was necessary to check and possibly re-compute the 
weights for each TRMM block on each day of the 10 year analysis period. 
 
The properties of the two datasets [gauge block averages and TRMM] are presented in 
Figures 8.5 to 8.11, illustrating the salient points drawn from the large data-base. In each 
case the caption provides a full description of the figure’s contents; the story develops with 
the figures, so we do not provide supporting text in the body of the report. 
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Figure 8.3. The 5 square subregion of South Africa indicated in Figure 8.2, illustrating the 

layout of rain gauges active within the period 2000-03-01 to 2010-03-31 and overlaid by 

the 0.25 TRMM grid (left panel). The right hand panel shows the total number of 
gauges in each grid block active at any time in the 121 month period. 

 

 
Figure 8.4. As for figure 8.3, but here showing gauges active on the first day of the 

overlapping data-sets: day (2000-03-01). Note the lower gauge counts in the dense 
cluster in the upper right corner when compared to Figure 8.3. The layout of active 
gauges is not constant throughout the period and this had to be accounted for in the 
analysis, by recalculating the weights, in each gauge-active block, on each day. 

  



89 

 

 

 

 
 
Figure 8.5. A comparison of daily totals from gauges and TRMM on 3 March 2000. Panel (a) 

shows the rainfall amount estimated by the uncalibrated TRMM algorithm – 
uncalibrated means the rainfall estimates are made using only satellite data and 
retrieval algorithms. Panel (b) shows the block averaged gauge rainfall recorded on the 
same day, with grid blocks containing no data coloured grey. Panel (c) shows the 

(a)

(c)

(b)
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calibrated TRMM estimate; this is the uncalibrated estimate of panel (a) adjusted via a 
quantile transform to match the gridded GPCP rainfall product (Huffman et al., 2010). 
Note the general agreement on raining areas, but with far more zeros in the gauge 
estimates (b) when compared to TRMM (a) and (c). 
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Figure 8.6. The total rainfall accumulations for the 10 year analysis period as estimated by 

each product. The general patterns and amounts show good agreement, but the gauge 
values show considerable noisy variation. This variation is explained by the variability in 
available record lengths which strongly affects the total (see Figure 8.7). In addition, 
note the artefacts in panel (c) from the calibration process, particularly in the Southern 
and Eastern parts, which are very ’blocky ’.  The Cape's annual rainfall is severely 
underestimated by TRMM.  Even so, we will be wise to downscale the uncalibrated (a) 
rather than calibrated TRMM (c). 

 
 

(a)

(c)

(b)
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Figure 8.7. Length of the available gauge record in each block (in days). The total analysis 

period is 3682 days. Several blocks do not have a record spanning the entire period – 
this is usually the result of a block containing only a single gauge which is sporadic. 
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Figure 8.8. The mean rainfall values for the 10 year analysis period as estimated by each 

product. The general patterns and amounts show good agreement. The values are low, 
mostly due to the large proportion of zeros in the dataset (we have accounted for 
missing values). The gauge estimates (b) are smoother than the totals shown in Figure 
8.6 since the length of record has a much smaller effect. Particularly noticeable in panel 
(a) are three isolated very high counts in small areas in Gauteng. They appear to be 
associated with large water-bodies. 

(a)

(c)

(b)
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(a) 
 

 
(b) 
Figure 8.9. Comparison of time series for a single grid block centred on (30.875 S, 27.625E). 

Panel (a) shows the comparative daily time series for the entire analysis period, while 
panel (b) shows the time series for a single year of data at the beginning of the period 
of comparison. There is good agreement on the wet and dry periods and the 
magnitudes of rainfall. However, there are many timing mismatches evident [three of 
them indicated by the green ovals] which reduce the correlation between these daily 
Gauge Block averages and TRMM time series to below 0.5.  
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(a) 

 
(b) 
Figure 8.10. Comparison of time series for a single grid block centred on (24.375 S, 28.875 E). 

Panel (a) shows the comparative daily time series for the entire analysis period, while 
panel (b) shows the time series for a single year of data. There is good agreement on 
the wet and dry periods and the magnitudes of rainfall at the monthly scale. However, 
there are many mismatches evident at the daily scale [three of them indicated by the 
green ovals] which reduce the correlation between the time series. 
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(a) 

 
(b) 
 
Figure 8.11. The reason behind providing the previous Figures (8.9 and 8.10) is illustrated by 

comparing the Empirical Cumulative Distribution Functions (ECDFs) for the two 
different locations in this pair of distributions. In both cases the dry probabilities of the 
gauge block estimates are higher than the dry probabilities of the TRMM estimates. 
However, in the case of panel 8.11 (b), which matches the time relatively dry series 
shown in Figure 8.10, there is also a marked difference between the gauge and TRMM 
distributions for the higher rainfall amounts. 
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8.4 Possibility of extending downscaled TRMM gauge blocks to SADC 
 
To date, the only rain gauge database we have discovered that covers the SADC region is the 
Global Historical Climate Network (GHCN) database (Menne et al., 2012).  Figure 8.12 
illustrates the gauge availability for the SADC region. Figure 8.12 (a) paints a promising 
picture with excellent gauge coverage over South Africa and Namibia, and reasonable 
coverage over several other countries. Unfortunately, the situation deteriorates after the 
late 1990’s as shown in Figures 8.12 (8.1b) and 8.12 (c), which show very sparse coverage in 
this period.  It seems unlikely that we will be able to extend the coverage outside of South 
Africa meaningfully, however we will make use of the limited gauge set that is currently 
available to us and pursue possible alternatives. Clearly the gauges do (or did) exist in SADC, 
however the difficult question is how one can obtain the data ... we may be forced to 
perform quantile transforms ’exported’ and based on similar climate regions in South Africa.  
A suggested way forward is mooted in Chapter 9.   We note, on looking back at Figures 8.5, 
8.6 and 8.8, that we might be wise to downscale uncalibrated TRMM directly, because of 
the artefacts present in the calibrated version. 
 

 
                               (a)                                                      (b) 

 
   (c) 
Figure 8.12. Rainfall gauges contained in the Global Historical Climate Network database 

(Menne et al., 2012). Panel (a) shows all available gauges in the database, while panel (b) 
shows the subset available during our analysis period. It is clear from panel (c), the 
record of active gauges in the region from 1850 to 2010, that there is a large die off 
from the late 1990’s. This is most likely after a major collection effort was made, while 
after 1997 the updates to the database relied on the limited gauges of the WMO GTS 
network. 
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The regression methods outlined next in Section 8.5 are a start, however the ideas 
introduced in Chapter 9, composed only very recently, may go some way to ameliorate this 
difficult problem. 
 
8.5   How can we Bias correct TRMM? 

 
The key issues in the bias correction that we undertake here are that we need to correct the 
differences of the TRMM and gauge rainfall estimates in (i) the spatial scale and (ii) the 
temporal scale of the data sampling. The TRMM data are sampled as snapshots at three 
hour intervals, nearly uniformly in space over the region; the gauge estimates are daily 
accumulations at points which are randomly and unevenly scattered in space and are 
effectively limited to RSA.  As for temporal concurrence of the two datasets, we note that 
we only have a 10-year overlap because the TRMM dataset runs from 2000-03-01 until April 
2015, while the gauge dataset spans the period 1850-01-01 until 2010-03-31. 
 
We proceed by doing the following.  The TRMM daily rainfall estimates are clocked at 3-
hour intervals from midnight, so they need to be carefully adjusted relative to the temporal 
pattern of raingauge readings, standardised at 8 am in RSA by SAWS.  The 8 TRMM images 
on each day are then accumulated (taking care of the temporal mismatch) and their rain-

rates converted to daily totals.  The TRMM pixels are 0.25 square, so we need to spatially 
average the raingauge catch on each day over the TRMM pixels for comparison purposes, 
but of course, this can only be done on TRMM blocks where there are gauges. 
 
Once these data have been matched in time and space, the next step is to find statistical 
linkages between the two sets.  The aim is to bias correct the TRMM images in a series of 
steps.  The first is to determine how well they match at the daily scale, then over different 
periods of accumulation: pentads, months and years; we choose pentads instead of weeks 
because there are exactly 73 per year except in a leap-year. Because of the strong seasonal 
signal, one needs to be careful how one calculates simple statistics like cross-correlation.  As 
an example, if we were to take the ten years of monthly totals of gauge and TRMM block-
averages and calculate the cross-correlation coefficients (cccs) the seasonality dominates 
the result, artificially increasing the cccs (as illustrated in section 4.2).  We therefore need to 
'de-seasonalise' the data to determine the true level of information transfer.  This goes for 
months, pentads and days, but of course not years.   
 
The purpose of determining the cccs is to ascertain whether we need to use a coarser 
period than a day to find a useful correlation linkage.   Once we have settled on a period, 
then we can proceed to perform a bias correction of TRMM blocks to gauge-averaged blocks 
using a quantile-quantile (QQ) transformation of the individual periods using the products of 
regression.  It turns out that pentads are usually much better correlated than days, so one 
might scale daily TRMM estimates using the appropriate parent pentad.   We have yet to 
decide how to scale TRMM over areas with no gauge coverage – perhaps over 
geographically similar regions? 
 
The product of the Multiquadric analysis of the block averaged daily gauge data was a 
netCDF file containing a three dimensional array of block averaged daily rainfall totals for 
each TRMM block and all 3682 days in the analysis period running from 2000-03-01 until 
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2010-03-31. This overlap period was chosen because the TRMM dataset runs from 2000-03-
01 until April 2015, while the gauge dataset spans the period 1850-01-01 until 2010-03-31. 
 
A similar dataset of daily rainfall accumulations was developed for the TRMM data, being 
careful to match the accumulation times of the TRMM in UTC to those of the gauge 
reporting periods in SAST (a 2 hour shift).  It was important to ensure that the TRMM 
accumulations represented the 24 hour accumulation reported at 08:00 SAST.   
 
It is important to check the cross-correlations between the uncalibrated TRMM and the 
block-averaged gauges.  In 4 provinces, we chose areas with different climates – Gauteng, 
Kwazulu-Natal, Western Cape and Limpopo – to compare the TRMM and block averaged 
precipitation.   
 
The sites are shown on a map of Southern Africa in Figure 8.13, where the darkness of the 

circles centred in the 0.25 blocks indicates the number of gauges available to be averaged. 
 

 
Figure 8.13.  4 areas in RSA with different climates in which to compare the TRMM and 

block averaged precipitation: from North to South, Limpopo, Gauteng, KZN coastal and 
Western Cape coastal.   

 
To de-seasonalise the data, we needed to ascertain a smoothed mean and standard 
deviation of the daily, pentad and monthly accumulated data.  As explained in the 
introduction, if this was not done then a spuriously high ccc would result, giving false hopes 
for reasonable bias correction using curves like that in Figure 8.11. 
 
We found that the R2 values between TRMM and Block Averaged Gauge Data (BAGD) 
ranged from 0.06 to 0.46 for daily totals, a disappointingly low result.  In contrast the 
accumulations into pentads and monthly totals move the R2 values up to 0.4 and 0.7 
respectively.  Figure 8.14 shows the scatter-plot for Block 5 in Gauteng, typical of daily data. 
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Figure 8.14. scatter-plot between TRMM and BAGD daily data for Block 5 in the Gauteng 
area. 
 
By contrast the monthly accumulations are much improved as shown in Figure 8.15 for the 
same block; the bias has reduced and the R2 increased. 
 

 
 
Figure 8.15. scatter-plot between TRMM and BAGD monthly data for Block 5 in Gauteng. 
 
Unfortunately the rest of the results are not as good as that.  For example, Figure 8.16 
compares the daily totals of Block 2 and Block 7 in the Western Cape. 
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Figure 8.16. scatter-plot between TRMM and BAGD daily data for Blocks 2 and 7 in Western 
Cape. 
 
The R2 of 0.670 Block 2 is reasonably high, but the slope is 0.296, indicating an average bias 
of 2/3.  To confound the problem, Block 7 has nearly the same R2 at 0.687, but the slope is 
1.41, the opposite of Block 2, as shown in Figure 8.16.  This difference is evident in those 
already alluded to between TRMM and gauge data in the Western Cape, as noted in the 
caption of Figure 8.6.  The relationship between TRMM and gauges is therefore very site-
specific, likely due to topography and the number of gauges in each block. 
 
Here follows a summary of the daily, pentad and monthly statistics, preceded by some 
examples of methods used to obtain smoothed estimates of means and standard deviations.  
Figure 8.17 shows the difficulties encountered in fitting smoothing functions where there is 
a high probability of a month in the data being dry.  The curves fitted are Fourier Series (2 
and 4 harmonics) and a triangular numerical filter of 3 weights summing to 1.  In the figure, 
the months are augmented beyond 12 to emphasise the periodicity. 
 

 
 
Figure 8.17.  Example of fitting different functions to summary data.  These are monthly 

means calculated from TRMM data obtained from Block 7 in Gauteng, using Fourier 
series and numerical filters. 
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We abandoned Fourier fitting because of the tendency to go negative as shown in Figure 
8.17 and chose numerical filters instead.  True, we could have used a logit transform to 
ensure positivity but decided to go a more direct route.   Figure 8.18 shows the result of 
filtering standard deviations, each calculated from a given calendar day in the ten-year data-
set.  The smoother is a numerical filter of 31 days, which is longer than the largest gap of dry 
days in the record of observations. 
 

 
 
Figure 8.18.  Example of fitting a triangular numerical filter to summary data.  These are 

daily standard deviations calculated from TRMM data obtained from a block in Gauteng. 
 
Figure 8.19 shows a part of the sequence of standardised daily data for year 1 of Block 3 in 
Gauteng, calculated using the filtered means and standard deviations of the individual 
blocks.  This work was done before the idea of Gaussianisation was introduced as described 
in Chapters 3 and 4.  Instead, not only were Pearson cccs calculated, we calculated 
Spearman rank correlations as well. It turns out that the correlations tend to be spuriously 
high because of the long dry periods of daily rainfall in South Africa. 
 

 
 
Figure 8.19.  Year 1 of standardised daily data of Block 3 in Gauteng. 
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These standardised data were then used to calculate cross-correlations to determine a 
suitable grouping of daily data in order to inform us of the best way to proceed with 
downscaling. 
 
In the following tables and figures we compare the Block Averaged Gauge Data (BAGD) with 
the TRMM data.  One interesting observation was the number of dry days that were 
distributed over the 10 year period, as represented in the following table.  As expected, 
TRMM is wetter than BAGD, recording much more light rain as indicated in Figure 8.11: 
 

Table 8.1.  Number of dry days per year in Block 3 in BAGD and TRMM data over the 10 
years 

 

number of zeros per year  

year 1 2 3 4 5 6 7 8 9 10 mean 

BAGD 255 259 266 284 261 270 269 247 242 235 258.8 

TRMM 199 203 204 221 217 217 215 234 228 243 218.1 

 
From the corresponding standardised values, we calculated the year-by-year cccs and report 
them in Table 8.2. 
 

Table 8.2. For block 3, cccs of the standardised daily data by year. 
 

 Block 3 – Standardised Data Observation by year 

year 1 2 3 4 5 6 7 8 9 10 Mean 

ccc 0.255 0.451 0.454 0.359 0.409 0.476 0.825 0.558 0.491 0.404 0.468 

 
Notably, except for year 1, the coefficients are compatible.  Year 7 is a surprise at 0.825 and 
a scatter-plot of that year 7 is given below in Figure 14.  The high correlation is due to the 3 
large standardised BAGD and TRMM values dominating the values of the lower TRMM 
values and the strong cluster of zeros, transformed as in the example shown in Figure 8.19.  
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Figure 8.20. Plot of standardised daily data of Block 3 of the Gauteng group in year 7, r = 
0.825. 
 
Next, we summarise the cccs obtained from sets of data for the 4 regions as R2 from the 
regressions of standardised data. They are the daily data for the period from March 1st, 
2000 until February 28th, 2010. The total number of data points is 3 652 per dataset used for 
comparison. 
 

 
Table 8.3: BAGD vs TRMM R2 for all Standardised daily data 

 

Block Number 

Standardised Daily: Coefficient of Determination Results (R2) 
Site 1: 

Gauteng 
Site 2:  

KwaZulu-Natal 
Site 3: 

Western Cape 
Site 4: 

Limpopo  

Block 1 0.656 0.120 0.082 0.545 

Block 2 0.638 0.079 0.189 0.333 

Block 3 0.786 0.137 0.154 0.800 

Block 4 0.784 0.193 0.093 0.664 

Block 5 0.480 0.203 0.105 0.259 

Block 6 0.686 0.197 0.132 0.548 

Block 7 0.752 0.212 0.196 0.846 

Block 8 0.507 0.194 0.021 0.514 

Block 9 0.627 0.196 0.086 0.553 

Average 0.657 0.170 0.109 0.562 

 
The TRMM and BAGD datasets for all the blocks yield poor correlations between the 
datasets for the coastal regions (Western Cape and KwaZulu-Natal) but relatively good 
correlations for both Gauteng and Limpopo.   We suspect that the long dry periods in the 
interior are the reason for this difference.  The highlighted value of 0.189 for Block 2 is the 
highest for the Western Cape and the time series appears in part in Figure 8.23. 
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Here follow the means and standard deviations of daily data of Western Cape Block 2 in 
Figure 8.21, followed by the block (by month) standardisation of the daily data in Figure 8.22.  
This procedure overcomes the difficulties experienced with the filtered means and standard 
deviations.  In Figure 8.23 is the plot of the standardised sets of BAGD and TRMM daily 
values. 

 
 
Figure 8.21. Means and Standard Deviations of daily data of Western Cape Block 2. 
 

 
 
Figure 8.22. Standardised daily data of Western Cape Block 2. 
 
The value of R2=0.189 is reflected in Table 8.3, highlighted in yellow.  Clearly there is a very 
tenuous link between the two sets as is exemplified by 1 year of their data plotted coaxially 
in Figure 8.23.  
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Figure 8.23.  Coaxial traces of the 1st year of two sets of rainfall estimates for comparison.  
 
Clearly there is a great deal of mistiming (as noted in Section 8.3) among the odd 
coincidental rainfall measurement as shown in Figure 8.23.  This observation echoes the 
conclusions drawn in the discussion on Figures 8.9 and 8.10. 
 
The data used to obtain the results in Table 8.4 are the pentad data for all 4 sites for the 
period from March 1st, 2000 until February 28th, 2010. The total number of data points is 
730 per dataset used for comparison. 
 

Table 8.4: BAGD vs TRMM R2 for Standardised pentad data 
 

Block Number 

Standardised Pentads: Coefficient of Determination Results (R2) 
Site 1: 

Gauteng 
Site 2: 

KwaZulu-Natal 
Site 3: 

Western Cape 
Site 4: 

Limpopo  

Block 1 0.447 0.142 0.138 0.208 

Block 2 0.489 0.170 0.263 0.283 

Block 3 0.580 0.186 0.221 0.631 

Block 4 0.554 0.258 0.171 0.473 

Block 5 0.417 0.291 0.193 0.131 

Block 6 0.542 0.372 0.202 0.213 

Block 7 0.428 0.262 0.358 0.635 

Block 8 0.419 0.247 0.060 0.477 

Block 9 0.398 0.282 0.159 0.404 

Average 0.475 0.246 0.196 0.384 

 
The TRMM and BAGD datasets for the pentads in all the blocks except in Gauteng, show a 
poor correlation as measured by R2, when compared to the daily data, particularly for 
Gauteng and Limpopo.  
 
The data used below is the set of monthly data for the period from March 1st, 2000 until 
February 28th, 2010. The total number of data points is 120 per dataset used for comparison. 
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Table 8.5: BAGD and TRMM R2 for Standardised monthly data 
 

Block Number 

Standardised Monthly: Coefficient of Determination Results (R2) 
Site 1: 

Gauteng 
Site 2: 

KwaZulu-Natal 
Site 3: 

Western Cape 
Site 4: 

Limpopo  

Block 1 0.075 0.127 0.137 0.275 

Block 2 0.043 0.174 0.193 0.318 

Block 3 0.230 0.228 0.288 0.394 

Block 4 0.333 0.273 0.167 0.361 

Block 5 0.276 0.238 0.138 0.096 

Block 6 0.282 0.326 0.143 0.262 

Block 7 0.351 0.288 0.339 0.187 

Block 8 0.324 0.325 0.060 0.275 

Block 9 0.222 0.346 0.131 0.333 

Average 0.237 0.258 0.177 0.278 

 
 
 
8.6 Summary 
 
The bias, as measured by the regression lines of the raw (unstandardized) data is relatively 
low for the daily R2 values (0.3 to 0.5) and is much improved for the monthly totals (0.7 to 
0.9), no doubt due to the occasional large value.  When it comes to the standardised values, 
the R2 values improve in some areas but are rather inconsistent.  This makes it difficult to 
suggest a global treatment of bias correction.  In other words, the relationships are very site 
specific, so require great care in matching corrections to locations.  In addition, the daily 
data do not yield helpful correction equations as the R2 is low (see Figure 8.22 for example) 
so a plausible solution to the scaling problem is to use the monthly relationships to scale the 
daily values.  Unfortunately, this ruse does not solve the problem on the mistiming of the 
daily TRMM totals when compared to the BAGD values – we are probably going to have to 
live with that.   
 
Given the above, it is likely that TRMM data (and the output of its successor GPM) will be 
useful for large-scale hydrology and agriculture, particularly at the monthly scale, in contrast 
to daily.  Thus crop monitoring and reservoir storage calculations will benefit, but not Flash 
Floods.  The short conclusion is that TRMM is useful for hydrology in a coarse way, but poor 
in detail. 
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Chapter 9.  A new idea for bias-correcting TRMM/GPM rainfall  
 
9.1.  Introduction 
 
TRMM, and its successor GPM, yield measurements of daily rainfall which does not match 
well with ground-based raingauge estimates.  There is therefore a felt need to bias-correct 
these spatially valuable products to be useable for hydrological purposes. Investigations 
reported in Chapter 8 have shown that there is a low correlation between daily block 
averaged gauge data [BAGD] rainfall and TRMM/GPM estimates [which for convenience we 
will call TRMM herein].  This fact implies that regression is not going to be valuable as a 
method of information transfer to enable bias-correction of TRMM, so we need to explore 
the usefulness of a direct Quantile-Quantile [QQ] procedure.   
 
The QQ technique can provide a set of estimated cumulative distribution functions [cdfs] of 
the TRMM block rainfall values which closely match the cdfs of the BAGD estimates, but 
whose values will not necessarily be a good match on a day-by-day basis.  The result is that 
the daily correlations between the TRMM and BAGD time series will likely remain low, at the 
same level as have already been determined, but we judge that with accumulations over 
several days, the amounts will match reasonably well.  Where gauge rainfall data are 
available this QQ method should be straightforward to apply from location to location.  The 
problem then arises: how does one bias-correct TRMM where there are no gauges in the 
TRMM block spaces?  This problem is of particular concern in the SADC region outside our 
borders. 
 
Turning to the problem of sparse raingauge data, especially in SADC countries, we need to 
develop a method of meaningfully interpolating rainfall estimates on the ground which are 
more realistic than the relatively biased TRMM estimates.  We do not think that it is feasible 
to attempt to spatially infill rainfall fields on a given day from gauge data in data-sparse 
regions using regression-based methods like Kriging, as the daily rainfall spatial dependence 
structure has a correlation length of the order of 20 to 40 km depending on the character of 
the rainfall on the day – be it convective to stratiform.  Thus the sparseness of gauge-sites in 
countries outside South Africa means that gauge data cannot be meaningfully interpolated 
because there is far too weak a spatial correlation to allow us to use standard interpolation 
methods if we use the amounts on a given day.  There is a need to think differently. 
 
The idea mooted herein is to interpolate the parameters of the gauge or BAGD rainfall 
probability distributions, rather than the amounts.  The number of these parameters is 2 or 
3, depending on the adopted distribution function that is used to fit the ranked historical 
wet amounts.  The first parameter of importance is the local probability of a dry day, p0.  If 
an Exponential distribution is used for the wet amounts, then it is described by 1 parameter; 
a Weibull distribution has 2 parameters.   The premise adopted here is that these 
parameters are likely to vary relatively slowly over a region with sharp changes in altitude so 
that where there is spatial discontinuity due to topography, we may be well advised to use 
external drift to incorporate the effects of altitude, but that might come later.  At this stage, 
this document will address the idea of spatially interpolating the 2 or 3 parameters of fitted 
pdfs using Multiquadrics, i.e. Ordinary Kriging with a linear variogram. 
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9.2.  The adopted rainfall pdf model 
 
There are 2 candidate probability distribution functions we choose to fit to the wet amounts 
at a given location: Exponential and Weibull as mentioned above.  These have been chosen 
because of their goodness of fit to these data when compared to other distributions 
including Lognormal, Gamma and Gumbel, which are popular for this purpose.  These two 
distributions also come with the added benefit of ease of manipulation, as they are 
mathematically invertible using simple algebra.  The cumulative distribution functions of F(x) 
= p in terms of the variable x with parameters a and b, including the dry probability p0, are: 
 

Exponential pdf:  F1(x) =  p = 1 - (1 - p0) exp(-x/a)   (9.1) 
Weibull pdf:          F2(x) =  p = 1 - (1 - p0) exp(-x/a)b   (9.2) 

 
with their inverses: 
 

Exponential pdf:   x = a[ln{(1-p0)/(1-p)}]    (9.3) 

Weibull pdf:          x = a[ln{(1-p0)/(1-p)}]1/b    (9.4) 
 
The consequence is that if we know p, the quantile determined from the TRMM estimate at 
a given block on a given day, we can immediately obtain x, the transformed rainfall value 
from one of equations (9.3) and (9.4).  We first need to decide whether the more 
economical Exponential is a suitable choice and compare it with the Weibull distribution.  
For example, Figure 9.1 uses data from a BAGD site (no 9) in Gauteng. 
 

 
 
Figure 9.1.  Cumulative Distribution Functions (cdfs) fitted to the daily data on Block 9 of the 

Gauteng group. Green line – Exponential model; Red line – Weibull model; Blue crosses 
[partially hiding the Weibull curve]: data. 

 
There is no contest – in this case [as in others] the Weibull is worth the extra parameter to 
get an excellent fit – please note the divergence of the Exponential from the data in the 
vicinity of 1 to 10 mm of rainfall.  The good fit of the Weibull can be seen in Figure 9.1 but 
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better in Figure 9.2 which shows the double quantile plot and the very good R2.  The 
parameters for the Weibull distribution fitted here are:  a = 5.31 and b = 0.656; it is worth 
noting that the Weibull model's exponent b is significantly different from the Exponential 
model's default value of b = 1. 

 
 
Figure 9.2. QQ plot of data and the fitted Weibull distribution shown in Figure 9.1 
 
Figure 9.3 shows the cdf of the corresponding TRMM distribution of daily estimates on 
Gauteng's Block 9 and its fitted Weibull cdf; again a very good match.   
 

 
 
Figure 9.3. cdfs of the TRMM distribution of daily estimates on Gauteng's Block 9 and its 

fitted Weibull cdf 
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In Figure 9.4 we give a pictorial explanation of the QQ transform.  The example uses the 
BAGD and TRMM daily values from Block 9 in Gauteng treated above.   
 

 
 
Figure 9.4. Sequence of calculations to perform a QQ transform of TRMM rainfall to Gauge. 

Blue curve: Weibull model fitted to TRMM as in Figure 9.3; Red curve: Weibull 
distribution fitted to the BAGD data. 

 
The Blue line in Figure 9.4 is the Weibull distribution fitted to the TRMM data shown in 
Figure 9.3, but now truncated at a more meaningful 0.1 mm, with distribution parameters 
p0 = 0.709, a = 4.66 and b = 0.619.  The Red curve is the Weibull distribution fitted to the 
BAGD data with parameters p0 = 0.733, a = 5.31 and b = 0.656, as fitted to the data in Figure 
9.1.     
 
There is a very close resemblance between the two curves, TRMM and BAGD, which is not 
always the case.  Nevertheless, the QQ procedure is described as follows using Figure 9.4.  If 
we wish to bias correct, via QQ transform, a value of 1.2 mm rainfall estimated using TRMM, 
the sequence of calculations follows the green arrows in the figure.  The upward green 
arrow intersects the blue curve of the TRMM cdf at quantile 0.807 determined from (Eq. 
9.2).  Using this value of 0.807 in the Weibull pdf describing the red curve fitted to the BAGD 
data (Eq. 9.4) gives the transformed rainfall value as 0.97 mm, pictorially described by 
following the downward pointing green arrow.   
 
That should work for an individual site where we have data from both sources.  What to do 
where we do not have gauge data?  The answer offered here is that we interpolate the 
three local distribution parameters of the BAGD data from the observed locations to the 
unobserved ones, using Multiquadrics, i.e. Kriging with a linear variogram. 
 
9.3.  Interpolation of parameters using Multiquadrics 
 
Consider the set of BAGD data in the Limpopo region, summarised in the map in Figure 9.5.  

The maximum number of gauges in each 0.25 block is shown – there are many zeros 
indicating ungauged areas.  In the numbered blocks, it is possible that there are less than 
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this number on any given day in the 11 years available for overlapping gauge and TRMM 
observations.  The green coloured squares are where there are at least some days with 
observations; the heavy red border around the site with 6 gauges indicates a problem site 
which has a p0 = 0.608, whereas the other coloured squares report p0 values of about 0.8 
and above.  The example of interpolation conducted here is to determine what an 
interpolated value of p0 would be at that square used as a target site. 

 
Figure 9.5. Number of active gauges in the Limpopo region from 2000 to 2010.  The red 

squares indicate blocks used for the interpolation experiment. The thick red square 
includes the target block. 

 

In the original gauge data-set, the 0.25 blocks [20 across by 8 down] were numbered from 
left to right starting with zero at the top left corner, so that the blocks in the far right 
column read (from the top) 19, 39, 59, 79, 99, 119, 139, 159.  To compute distances 
between the blocks, we need a coordinate system, so we will number columns from left to 
right as 1, 2, ... 20 and the rows from the top down as 1, 2, ... 8.  The x and y coordinates of 
the control squares with thin red borders (labelled 1 to 7, with the target square number 
132 and labelled 5, highlighted yellow in Table 9.1) are those of the sequence number # 
counted from the top left corner, shown in Figure 9.5. 
 

Table 9.1  Coordinates of control and target squares 
 

blocks chosen from top left corner (1,1) 

Label Sequence No. # x y 

1 76 17 4 

2 90 11 5 

3 111 12 6 

4 122 3 7 

5 132 13 7 

6 137 18 7 

7 149 10 8 

 
The mutual distances, in units of 1 block width, are given in the following matrix G in Table 
9.2, highlighted in yellow. The control blocks are numbered in the first row and column, but 
omitting the target site, label 5 (or # 132).  The final row and column of 1's and a zero, also 
part of the G-matrix, are highlighted in blue and are vectors of the Lagrange Multipliers 
ensuring that the derived interpolation coefficients sum to 1: 
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Table 9.2  Matrix G 
 

 
1 2 3 4 6 7 

 1 0 6.083 5.385 14.318 3.162 8.062 1 
2 6.083 0 1.414 8.246 7.280 3.162 1 
3 5.385 1.414 0 9.055 6.083 2.828 1 
4 14.318 8.246 9.055 0 15.000 7.071 1 
6 3.162 7.280 6.083 15.000 0 8.062 1 
7 8.062 3.162 2.828 7.071 8.062 0 1 

 
1 1 1 1 1 1 0 

 
The inverse of the G matrix above, we call Ginv is given in Table 9.3: 

Table 9.3  Matrix Ginv 
 

-0.2038 0.0500 0.0387 0.0011 0.1401 -0.0261 0.2387 

0.0500 -0.4123 0.3055 0.0371 -0.0307 0.0504 0.0220 

0.0387 0.3055 -0.4947 -0.0160 0.0418 0.1248 -0.1026 

0.0011 0.0371 -0.0160 -0.0750 -0.0046 0.0574 0.4862 

0.1401 -0.0307 0.0418 -0.0046 -0.1795 0.0329 0.3293 

-0.0261 0.0504 0.1248 0.0574 0.0329 -0.2395 0.0264 

0.2387 0.0220 -0.1026 0.4862 0.3293 0.0264 -7.7965 

 
The distances from the target block labelled 5 to the 6 control stations is given in vector 
g(132)T, with a 1 in the 7th cell to match the Lagrange multiplier entries: 
 
 g(132)T =  [  5.000,  2.828,  1.414,  10.000,  5.000,  3.162, 1.000 ] 
 
Next we obtain the weights lambda(132) as a vector from the matrix product g(132)TGinv: 
 
lambda(132)T =  [ 0.0446, -0.0852, 0.6987, -0.0173, 0.1628, 0.1964, -0.0943 ] 
 
The two highlighted numbers which are slightly negative are due to the geometry of the 
gauge network.  It is possible that these will produce negative rainfall if the corresponding 
gauges are wet, but the values are never large, so can be censored at run-time. In this 
application we are interpolating p[0] values, all positive, so there is no problem. Dropping 
the last value -0.0943 in the above row, which relates to the Lagrange Multiplier, we use the 
vector of these 6 weights to vector multiply term by term with the observed values of the 
vector p0 at the 6 control points: 

 
p0 = [ 0.8762, 0.8628, 0.7998, 0.8161, 0.8623, 0.8167] T 
 

Thus we finally obtain the estimate of p0 at our target point at station 5 (# 132) as 0.811, 
quite different from its originally estimated value of 0.615. 
 
On investigation, it turned out that one of the 6 rainfall gauges in the target block # 132 was 
acting quite differently from the others as shown in Figure 9.6, and it seems to have pulled 
down that block's p0  value: 
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Figure 9.6.  cdfs of the 6 individual rainfall stations active in the above target block. 
We now try another example, where there are no data.  We'll 'infill' the target's p0 value, 
choosing site # 0 whose local coordinates are (1,1), i.e. at the top left corner of the Limpopo 
region shown in Figure 9.5.  Its distance vector to the 6 control points, augmented by the 1 
in cell 7, is:  
 

g(0)  = [16.28,   10.77,   12.08,   6.32,   18.03,   11.40, 1.000 ]T  
 

and after pre-multiplying Ginv with this vector we get, removing the 7th entry:  
 

lambda[0] = [ 0.1622, 0.3415, -0.0830, 0.8078, -0.1059, -0.1225 ]T 

 
and multiplying this, term-by-term, with the p0 vector above, we get: p0 = 0.8382 at location 
[0], which is very close to the average p0 value of the 6 control stations: 0.8390, which 
seems to make sense. 
 
9.4.  Interim summary 
 
If all goes well, the procedure described above can be now used to fill in all the missing 
values of p0 in the region.  After that, using the same procedure for determining the p0 
values at the unobserved locations we developed in Section 9.3, we can estimate by 
interpolation the parameters a and b of the Weibull distribution in the places where we do 
not have data.  This will enable us to build plausible surrogate distributions at these 
ungauged places, so that we can bias-correct TRMM/GPM data, as if we had rainfall data at 
these sites, in a meaningful way.  This procedure is more sensible than using regression, 
which usually biases estimates downwards when the correlations are low.   
 
It has to be admitted that this methodology has been applied above in a simple way to only 
two points – one with suspect data the other where there are no data – but this sets the 
stage for a more thorough extension of the method to the many blocks in the 4 regions, 
some as validation, the others as infilling.   
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To summarise the procedure:  
(i) find the p0 values and the 2 Weibull parameters of the BAGD data where they are 
available in gauged blocks over the region, then  
(ii) cross-validate the parameters and see if the blocks with strange behaviour can be 
repaired, then  
(iii) use the good data to infill the empty blocks with the 3 parameters [p0, a & b], then  
(iv) bias-correct TRMM in all the blocks by QQ transform. 

 
Having proved its worth, the idea can then be used to estimate ground rainfall from TRMM 
(or GPM) using QQ transforms on a day-by-day basis, after interpolating Weibull distribution 
parameters over the ungauged regions of RSA and outside our borders. 
 
9.5.  A caution: reconsider the above procedure based on other information 
 
During an October 2015 visit to Stuttgart with for research collaboration with Prof Andras 
Bardossy, Pegram found that things are not as simple as have been recorded above.  
Although in principle the methodology set out above is relatively sound, there are four 
corrective issues which need to be dealt with before carrying on with the work of TRMM 
bias correction.   
 
9.5.1: The first important issue is that the two Weibull parameters are strongly spatially 
correlated with each other once they have been estimated at gauged locations.  They 
cannot be meaningfully interpolated independently as suggested above.  If this procedure 
was used without modification there would be some instances where the distributions 
would likely not make sense.   
 
9.5.2: The second important point is that the spatial interpolation method of Multiquadrics 
turns out to be flawed in the way it was used until now to estimate the daily average spatial 
rainfall on the blocks from the gauges.  The procedure used (based on Pegram and Pegram, 
1993) did not include the constraint of the Lagrange multipliers described in the treatment 
in Section 9.3 above.  This omission has the result that the averages calculated are often 
warped from the true block means.  A good example of this is the estimation of the spatial 
average of the daily rainfall in Limpopo Block # 5, where it might be inferred in Figure 9.5 
that the average p0 value is above 0.7, whereas it was calculated from the block averaged 
data as 0.615.   
 
9.5.3:  The third point is that, sadly, it is not even as simple as described in the example 
given in the preceding sub-section 9.5.2, because on the very driest of wet days, only one 
gauge out of the 6 will be recording, probably gauge # 0679221.  This gauge's pdf is still 
dropping in the region of 0.1 mm/day, whereas all the others have flattened off to dry, 
many below 0.5 mm/day, as shown in Figure 9.6. The take-home point here is that the more 
gauges there are in a block, it is more likely that the calculated p0 will be lower.  In the 
experiment above in Section 9.3, the block averages calculated at target block 5 were based 
on control blocks containing only from 2 or 3 gauges; thus the sparsely populated blocks 
were used to check the value of the one with 6 gauges. Therefore it is important to 
determine the behaviour of block averages of a range of numbers of gauges on a block.  
These are then to be extensively sampled from (and then have their block averages 
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compared to) a set of full spatially simulated daily surfaces of rainfall over the block, to be 
described in Section 9.6.  This approach will then give us a sensible scaling procedure to 
correct the block estimates from 1 or more gauges inhabiting the block. 
 
9.5.4: The fourth important issue, which springs from the first, described in sub-section 
9.5.1, is to find the correct method of interpolation of the Weibull parameters. Figures 9.7 
and 9.8 with the text describing them, are from a PhD thesis (supervised by Prof Bardossy) 
authored by Hans-Henning Lebrenz (2013), entitled 'Addressing the input uncertainty for 
hydrological modelling by a new geostatistical method'.  In it, he models monthly spatial 
rainfall over a region of South Africa.  His pilot study area is shown in Figure 9.7 and 
encompasses our Gauteng Block in Simon Ngoepe's MSc study, shown about middle left. 

 
 
Figure 9.7.  Lebrenz's Pilot Area for monthly interpolation of parameters, with Ngoepe's 

Gauteng study area. 
 
Lebrenz showed that the mean and standard deviation, sampled monthly from 226 gauges 
over 22 years, have the structure shown in Figure 9.8 following.  Although there is strong 
correlation between mean and standard deviation, there is no correlation between the data 
points in the space of the principle components r and s achieved by transformation of the 
data to these axes.  Usefully, there is a unique linear relation between the pair of means and 
variances on the one hand and the principle components on the other.   
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Figure 9.8. Lebrenz's Figure 4.2 
 
Taking this idea further, the advantage of this procedure is that we can separately and 
independently interpolate the uncorrelated r and s values, determined by this 
transformation from the Weibull parameters, of the correctly estimated gauge block 
averages [see subsection 9.5.3 above]. Then at the interpolated locations, we can recover 
the Weibull parameters from r and s to obtain the necessary interdependence between 
them.  To achieve the interpolation, we would then use exactly the same Multiquadrics 
procedure we proposed in Section 9.3, but with safety. 

 
Turning to our daily rainfall data, for the purpose of discussion let us assume that we have 
determined the Weibull a and b parameters of 100 blocks and they plot as in Figure 9.9.   

 

 
 

Figure 9.9. Plot of Weibull b versus a before transformation to uncorrelated r and s. 
 
There is evident structure here and the cross correlation coefficient (ccc) between a and b is 
0.8003.  To transform these parameters to independent values like r and s we first need to 
standardise each sequence by subtracting its mean and scaling by its standard deviation 
given below in Table 9.4: 
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Table 9.4:  Means and standard deviations of a and b. 
 

 a-scaling b-exponent 
Means 4.977 0.598 
stdevs 0.650 0.067 

 
Hence, we obtain the plot of a1 and b1 in Figure 9.10, the standardised versions of a and b: 
 

 
 

Figure 9.10. plot of standardised Weibull b1 versus a1 
 
There is still a ccc of 0.8003 between the standardised variables, as there should be.  We 
need to decorrelate this set of parameters a1 and b1 which form the 2 columns in the 
matrix D, which has 100 rows, to the set a2 and b2.  Decorrelation is performed using the 
following procedure.  
 
Let R be the 2 by 2 correlation matrix between the standardised parameters a1 and b1.  It 
has 1s on the main diagonal and r = 0.8003 on the off-diagonal: 
 

 𝑅 =  [
1 𝑟
𝑟 1

]        (9.5) 

 

We need the inverse square root of this matrix to decorrelate the vectors of pairs of 
parameters.  The sequence of calculations goes as follows.  We first find the 'square root' 
matrix P in the following relationship: 
 

  𝑅 =  𝑃2 =  [
𝑝 𝑞
𝑞 𝑝] [

𝑝 𝑞
𝑞 𝑝] =  [

𝑝2 + 𝑞2 2𝑝𝑞

2𝑝𝑞 𝑝2 + 𝑞2]     (9.6) 

 
By comparing the elements in the two versions of R in (9.5) and (9.6), we obtain 
 

𝑝2 +  𝑞2 = 1 𝑎𝑛𝑑 2𝑝𝑞 = 𝑟.   
 
Substituting r/2p for q in the first of these equations, we get a quadratic in p2: 
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 𝑝2 +
𝑟2

[4𝑝2]
= 1  

 
and solving p2 we get 

      𝑝 =  {[1 ± √1 − 𝑟2 ]/2}
1/2

 

 
So that we choose: 

      𝑝 =  {[1 + √1 − 𝑟2 ]/2}
1/2

      (9.7) 

and 

      𝑞 =  {[1 − √1 − 𝑟2 ]/2}
1/2

      (9.8) 

 
which define P, the square root matrix of R.  For decorrelation, we want the inverse of the 
matrix P, which we will call Q = P-1, which after a bit of manipulation can be obtained as: 
 

 𝑄 =  [
𝑝 −𝑞

−𝑞 𝑝 ] /√1 − 𝑟2 

 
This matrix is determined by r, after substituting for p and q from (9.7) and (9.8).  In our case 
Q, turns out to be  
 

 𝑄 =  [
1.4907 −0.7454

−0.7454 1.4907
] 

 
If we now post-multiply the matrix D [formed by the pair of vectors of the standardised 
Weibull parameters shown in Figure 9.9] by Q we get 2 decorrelated vectors a2 and b2, 
whose pairs are plotted in Figure 9.11. 
 

 
 
Figure 9.11. Decorrelated vectors a2 and b2 of standardised parameters of Figure 9.10 
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Note that the correlation between these vectors a2 and b2 is 0.0009, essentially indicating 
complete independence of these two variables.   
 
This means that we can comfortably interpolate the transformed parameters one set at a 
time using a2 and b2, then reverse-transform each pair to mutually correctly paired Weibull 
parameters a and b at the target sites.  This reverse transformation is performed by post-
multiplying the pair of vectors a2 and b2 by P, the square root of R obtained above, using 
equations (9.7) and (9.8) to substitute for p and q.  The newly interpolated parameters a and 
b are recovered by using the means and standard deviations in Table 9.4, by scaling using 
the standard deviations and adding back the means.  These parameters are then to be used 
in the QQ transform of TRMM at the gauged and ungauged sites.  However, there is more to 
do before completion of the QQ procedure. 
 
In the discussion around Figure 9.6, it was suggested that one gauge had pulled down the p0 
value for the block from 0.8 to 0.6.  It turns out that the answer is not that simple and the 
conclusion drawn was incorrect.  First of all, the lowest cdf value of the supposed culprit at 
0.1 mm is above 0.6 and it is clear that the average of the values of all 6 gauges at 0.1 mm is 
above 0.7.  Thus there is another task to perform before we can complete the task of QQ-
ing TRMM and that is to deal with the problem of the proper estimation of the distributions 
of interpolated gauge block means highlighted in sub-section 9.5.3.  The problem is more 
subtle than we thought and needs to be dealt with in a more rigorous manner, as follows.  
 
9.6.   The point to area transform of daily gauge rainfall to properly QQ TRMM 
 
The purpose of determining the gauge block averages of the rain gauges is to provide 
ground referencing to obtain QQ transforms of TRMM's block estimates of rainfall.  It turns 
out that if we simply average the cdfs of 1, 2 or more gauges over the block, we are ignoring 
a subtle but important fact.  The averages of a small number of gauges' daily catch can be 
very different from the true block averages of rainfall and our estimates need to take this 
fact into account. 
 
 
9.6.1.  An experiment to determine the link between a true rainfall field and averaged 
gauges. 
In a numerical experiment conducted by Prof Bardossy [private communication], a set of ten 
thousand daily images of rainfall on an area 25 km square [the size of a TRMM pixel/block] 
were generated.  Each 1 km pixel on the square was populated with properly spatially 
correlated 'rainfall', generated by a Fourier transform and using a fixed Exponential 
distribution for the amounts, for each set.  The correlation length of the spatial variogram 
was set at 20 km, so the generated rainfields were relatively variable, similar to fields of 
convective rainfall.   
 
The 'true' block average on each image was calculated by numerically averaging all the pixel 
values on each 'day'.  Then a set of evenly spaced points was carefully selected from each 
field as if they were gauge locations; the numbers of sites per image chosen were 1, 2, 4, 8 
and 16 and the location of each site chosen was kept the same for the set of 10 000 
estimates ('days').  Numerically averaging the individual 'daily' gauge samples and using 
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these to compute their cfds yielded sets of gauge block average estimates to compare 
against the distribution of the 'true' spatial averages of the set of full fields.  The numerical 
averaging of the gauge values was done by calculating their simple mean, but because they 
were equally spaced, their averages would match those of Multiquadrics.  The following 
results are thus not only illustrative but very useful. 
 
The cumulative frequency distributions (cfds) of the range of populations of gauge averages 
in the square shown in Figure 9.12 are somewhat surprising and a summary of these 
follows.  Note that the lower bound of the vertical axis in the figure has been set at a 
probability of 0.4 [4000 days] to help in visualising the differences.  We truncate the lower 
estimates of 'precipitation' at 0.1 mm.  The obvious reason is that the value of p0 at a 
threshold of 0.1 mm depends heavily on the number of gauges when they are few, such as 
1, 2 or 3, as shown by the blue, green and brown curves.  There is not much difference 
between cumulative cfdfs when 8 (red curve) or 16 gauges (black curve) are considered and 
the convergence of the latter to the 'true' (navy blue) curve derived from 625 sites is quite 
good.  
  

 
 
Figure 9.12. Cumulative frequency distributions of block averages of rainfall above 0.1 mm 

on gauges over a 25 by 25 pixel square in 10 000 days. Blue: 1 gauge; green: 2 gauges; 
brown:  
3 gauges; yellow: 4 gauges; black: 8 gauges; magenta: 16 gauges; navy blue 625 sites 
(full square).   

 
If we were to threshold the curves at 1 mm, as shown by the vertical axis (because below 
that measurement is technically a 'trace', which suggests that in that interval there is poor 
sampling of fine drizzle), then 4 gauges or more are quite adequate for a good areal 
estimation.  A comparison of rainfall amounts in the vicinity of 0.95 (9500 days out of 10 
000) shows that the 1-gauge curve reads 4.3 which overestimates the areal daily rainfall of 
3.3 by about 1 mm, but that the curves of 4 gauges and above are quite faithful in their 
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estimates of the true values.  It seems we only need to be concerned when there are 
between 1 and 3 gauges used to get average daily rainfall on a 625 km2 area.  A full 
justification of these procedures is given in Section 9.6.2. 
 
In a sense, the paradox of Figure 9.6 and the estimation of the p0 from the average has been 
resolved by Figure 9.12.  The reasons can be summarised as follows. 
 

 The mismatches of p0 estimates previously obtained as described in vpp 9.2 are 
partly because of the comparison of results from a small number of gauges versus a 
larger number 

 The threshold of the lowest block averaged precipitation on a day should be set to 1 
mm which means that only in some limited cases (1, 2 or 3 gauges active in a block) 
do we need to perform a bias correction of the cfdfs of sparsely gauged blocks 
 

9.6.2.  Performing the bias correction of gauge readings to a gauge block average 
The purpose of this sub-section is to provide a method of correcting areal averages obtained 
from a few gauges to what should be a true areal block average.  It contains the detail of the 
procedure to produce Figure 9.12.   As described in section 9.6.1, a set of 10000 'days' of 
correlated rainfall was generated over a 25 pixel-square area, which was sampled at 1, 2, 4, 
8 & 16 locations as if these were gauges.  For each of these sets scatter-plots were 
compiled. Figure 9.13 shows the results for 2 and 8 gauges per block.   
 

 
 
Figure 9.13. scatter-plots of gauge-averages and spatial areal averages of rainfall simulations 

over a 25 by 25 pixel square region. 
 
Figure 9.14 shows the cfdfs of the gauge averages and the areal field averages plotted 
coaxially, for 2 and 8 gauges per block.  The two orange curves are the gauge average cfdfs 
which differ and the black curves are the cfdfs of the 'true' areal averages which are the 
same in both panels. Note the improvement with more gauges recording in the block. 
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Figure 9.14. The cumulative frequency distribution functions of gauge averages [orange] 

over the 625 block square compared to the field's average [black].  
 
We now fit a Weibull distribution model [Equation 9.2] to each of the gauge cfdfs in order to 
smooth the curves for comparison purposes.  The fitted distributions match the samples 
relatively well, particularly above the 1 mm threshold, the 8 gauges better than the 2 gauges 
in the left panel of the figure.  Figure 9.15 following shows the goodness of fit of the Weibull 
distribution to the generated samples. 
 

 
 
Figure 9.15: The sample and fitted Weibull distribution functions for 2 and 8 gauges. The 

black curves are the samples' cfdfs and the orange curve the fitted distributions. 
[Horizontal axis mm and vertical axis cumulative probability.]  

 
The curve on the right of Figure 9.15 for 8 gauges, does not fit too well below 1 mm, an 
exception from the remainder of the curves, but the effect of that will be negligible in 
practice.  The blue diamonds indicate the maximum values estimated by the fitted 
distributions. 
 
Figure 9.16 is a plot of the Weibull distributions' parameters as the number of gauges 
increases.  A value of b = 1 [on the grey curve] indicates that the Weibull simplifies to the 
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Exponential distribution, which happens only for the case of 1 gauge in the area, which 
confirms that the generated distribution is indeed exponential, by design.  The averages of 
more than one gauge yield genuine Weibull distributions as observed in Figure 9.15 above 
and indicated by the grey curve of b in Figure 9.16.   
 

 
 
Figure 9.16.  Parameter values of Weibull distribution functions fitted to sample curves as in 

Figure 9.15, for 1, 2, 4, 6, 8, 12, & 16 gauges. [blue: p0;   orange: a;   grey: b]  
 
The collection of modelled cfdfs obtained from the fitted Weibull distributions is given in 
Figure 9.17, using the parameters displayed in Figure 9.16. 
 
In figure 9.12, it is clear that above 1 mm per day, there is no material distinction between 
the gauge block averages and the 'true' average, as long as there are 4 or more gauges 
active on a given day.  We need to put some energy into transforming areal estimates from 
1 and 2 [maybe 3] gauges.  Figure 9.17 achieves this. 
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Figure 9:17. Ensemble of gauge-averaged distributions plotted against the areal average, for 

matching exceedance probabilities.   The purposes of the purple arrows and the small 
orange rectangle are described in the following text.  

 
The curves in Figure 9.17 are what are to be used to transform rainfall estimated from a few 
gauges on a 625 km2 block to reasonable estimates of the true block averaged on each day.  
The purple arrows intersect all curves.  If a single gauge is reading rainfall on a day, let us say 
28 mm as shown in the left panel of Figure 9.17, then the gauge average is given where the 
arrow meets the horizontal axis at 24 mm.  The image on the right is a blow-up of the lower 
values of the image on the left, showing the detail for 5 mm rainfall and less.  The same rule 
applies to the purple arrows.  If 2 gauges [green curve] average 1.2 mm as shown by the left 
arrow in the right panel, its value should be increased to 1.4 mm on the horizontal axis; the 
second purple arrow in the right image, a single gauge [blue curve] reading 4.3 should have 
its estimate reduced by 1 mm to 3.3 mm, confirming the remark following Figure 9.12.  
 
The orange square in the bottom left of the right image in Figure 9.17 indicates the region 
where we propose there is no transform, but that the estimated areally averaged gauge 
rainfall for the day be set to zero.  We consider it prudent that the lower limit of the 
transformed rainfall be set to 1 mm, which by default applies to all situations where only 1 
gauge is estimating the areal average.  However, if a trace is to be recorded, the transform 
might be set to a lower limit of 0.5mm, but not much less, because that will likely be 
nonsense.  This would apply to all situations where 2 or more gauges are averaged. 
 
For 4 gauges and above, adjustment appears not to be required and the Weibull parameters 
for the 3-gauge case can easily be read off Figure 9.16.  In any case, (i) if the gauge average 
is x and the parameters of the gauge average are p0, a and b and (ii) those of the areal 

average  are ,  and , then we can first calculate p = 1 - (1-p0) exp(-x/a)b and then obtain 

the areal estimate as  = [ln{(1-)/(1-p)}]1/
 .   

 
Alternatively the areal average is calculated directly from x as:  

     = [ln{(1-)/[(1-p0) exp(-x/a)b]}]1/
 .     (9.9) 
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9.6.3.  QQ transforming TRMM observations to Gauge Block Distributions. 
The above treatment achieves the first part of the transform, in that it yields the distribution 
functions of the block averaged gauge values, as if they were true areal averages.  These 

distribution function parameters {,  and  } of the areal averages, where we have 
observations, must next be interpolated over the region where we do not have gauges.  This 
is achieved by using the methodology developed in Section 9.5. 
 
The aim is to determine the Weibull distribution parameters for all TRMM observations at 
all blocks in the region of interest, or alternatively create look-up tables of values and 
matching TRMM quantiles at each block.  Whichever is more handy, on a given day, at a 
TRMM site where there has been rainfall, we want its quantile, determined as a cumulative 
probability from that site's historical distribution. 
 
Therefore, at this stage of the TRMM bias correction exercise, we have devised procedures 
which are able to: 
 

1. Estimate areally averaged rainfall at all blocks containing gauges.   

2. Interpolate the Weibull distribution parameters of the gauge block averages {,  

and }, which will have been established at each ungauged block using Multiquadrics 
after canonical decomposition as described in Sections 9.4 and 9.5.  

3. Obtain the TRMM frequency distributions for each block in the region of interest. 
 

Thus, on a given day, we can take a chosen TRMM block's rainfall estimate, then determine 
its quantile from the TRMM frequency distribution at the block in question.  We next 
perform the QQ transform as in Figure 9.18, where the two probability distributions 
[Weibull] of the TRMM and areally averaged data are known.  We can again apply Equation 
(9.9), but now with the appropriate parameters of TRMM quantile and gauge block average 
estimate.  In this case in Equation 9.9 we make a new substitution of the symbols: the x is 

the TRMM value, the p0, a and b are the TRMM cdf distribution parameters, the ,  and  

are the gauge areal average Weibull parameters and  is the transformed, rescaled TRMM 
rainfall estimate. 
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Figure 9.18. Sequence of calculations to perform a QQ transform of TRMM rainfall to a 

Gauge Block Average estimate in Block number 111 as listed in Table 9.1. TRMM value 
on the day is 4.5 mm.  Reading the probability on the Green TRMM model curve gives a 
value of 0.88. The corresponding BAGD value for this probability is 2 mm.  P[0] = 0.80 
for this site. 

 
9.7.  An application of the QQ transform method to Limpopo block data – to be done in the 
future 
 
It is clear that this chapter reports work in progress and was not part of the mandate of this 
project.  The idea was included here so that (i) we could have the proposed methodology 
published and (ii) could be referred to in a parallel WRC project where it will prove useful: 
"K5/2312 EXSMET – Exporting PYTOPKAPI and HYLARSMET over SADC with EXtended spatial 
and computational capacity of Soil Moisture and EvapoTranspiration for flood and drought 
monitoring". 

 
A forward looking summary:   

 
1. For a sample area, as a proof of concept, choose 6 gauged sites as controls and 10 or 

so targets to keep it manageable, thence obtain the distributions of the gauge 
averages of the raw control data.   

2. Derive the cdfs of the areal averages at the controls and obtain the Weibull 
parameters. 

3. Determine the dependence structure between the a and b Weibull parameters at 
the controls as described in Section 6.5 and decorrelate them to a2 and b2. 

4. Interpolate these parameters to the target blocks using Multiquadrics and 
recorrelate them to a and b sets. 

5. Determine cfdfs of the TRMM at all 16 blocks, targets and controls. 
6. QQ transform the TRMM rainfall estimates at all blocks to areal gauge estimates. 
7. Check the distributions of the TRMM transformed values to cfdfs of the areal gauge 

block averages at the controls and evaluate the effectiveness of the methodology. 
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Chapter 10.  Maps, Data handling and algorithms 
 
In this chapter we outline the source rainfall data used, the data management procedures, 
the products produced and the software developed. All of these materials are provided on 
the accompanying DVD, with the exception of the source daily rainfall data-set, due to 
licensing restrictions. These procedures were discussed and decided upon at the final 
reference group meeting on 20 Jan 2016. 
 
10.1.  Description of source data-set 
 
We obtained a source data-set of daily rainfall records from the UCT Climate Systems and 
Analysis Group (CSAG). This rainfall database was produced during a previous WRC project 
by Lennard et al. (2013). This data-set was selected on the basis that it not only included 
SAWS and ARC station data up to the year 2000 from the Lynch (2004) database and 
additional SAWS station data for the period 2000-2010, but also that extensive quality 
control had been done by Lennard et al. (2013) in order to remove many of the typical 
anomalies in rainfall station data-sets. The applied quality control procedures were based 
on those developed by Durre et al. (2010) for the Global Historical Climate Network (GHCN) 
project. 
 
The CSAG data-set was therefore chosen as a suitably quality controlled collection of daily 
gauge records to serve as the core data-set for this project. However it should be noted that 
despite the hard work done by Lennard et al. (2013), there were still some issues such as 
those illustrated in Figures 10.1 and 10.2 (three images repeated from Figures 5.16, 5.17 
and 5.18 and explained in the captions).  These hampered the computations, so that there 
was a need to perform some triage. Problems such as those illustrated there typically 
appear for stations that are closed and moved to nearby locations.  This required developing 
software to weed out the offending gauges from the portion of the data-set used, else the 
infilling programs crashed. 
 
The CSAG database consists of a large number of station data files which are formatted 
plaintext, with included metadata. We developed Python code to read these files, and later 
converted them into a single database in the form of a NetCDF file to make processing more 
convenient. 
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Figure 10.1. Two gauges located in the same SAWS 1-minute block, with different but 

partially over-lapping periods of record. The surprising thing in this case is that the 
rainfall cumulative sums during the overlapping period are identical, apart from a 
0.5mm difference occurring on a single day. This despite the meta-data suggesting that 
the stations are at exactly the same position, with one replacing the other at some 
point. 

 
 
 
 



130 

 

 

 

 
 
Figure 10.2. Two gauges located in the same SAWS 1-minute block, with different but 

partially overlapping periods of record. In this case the cumulative sums during the 
period of overlap start off following each other, but then begin to deviate significantly 
despite the meta-data suggesting that the stations are within 1 km of each other in the 
central Free State. 
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10.2.  Analysis procedure 
 
Here follows a brief high level outline of the processing steps/algorithms that were devised 
to make the computations required to perform the data repair and the spatial interpolation 

1. Convert 4012 CSAG station files to single NetCDF database.  This necessitated 
developing access speed improvements, a single file containing all data etc. 

2. Compute monthly and annual totals from daily data, taking care of the missing data, 
count nmissing etc.. 

3. Apply the infilling algorithm to monthly and annual data. Infill all time periods with one 
or more missing days.  This required developing procedures to handle the variable 
lengths of record, the availability of neighbours, limit the search radius for 
neighbours, generate ensembles, save distribution parameters etc.  

4. Combine observed data and the expected values of infilled distributions to produce 
the "best" time-series possible, and compute means/percentiles of the time-series at 
each station.  An example is given in Figure 10.1 

5. Spatially interpolate the means of the infilled time-series onto a 0.1 grid as shown in 
Figure 10.2. 

6. Bi-linearly interpolate 0.1 maps to 1 min of arc as shown in Figure 10.3. 

7. Compute the average over each quaternary catchment for both annual and monthly 
maps as shown in Figure 10.4, for example. 

8. Produce Figures 

9. Produce raster data-sets for GIS 

10. Produce shapefiles of quaternary averages for GIS 

 

 
 
Figure 10.3. MAP at the stations calculated using both the observed and infilled data. 
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Figure 10.4. Station based MAP (Figure 10.3) interpolated onto a 0.1 grid, using an 

exponential Kriging variogram with correlation length 0.5 (monthly interpolations were 

done with 0.3 correlation length). 
 

 
 
Figure 10.5. The gridded MAP from Figure 10.3, bi-linearly interpolated onto a finer 1 arc 

minute grid (0.0167). 
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Figure 10.6. The gridded MAP from Figure 10.2 averaged over each of the 1946 quaternary 

catchments in the region.  
 
10.3.  Summary of DVD contents 
A selection of the processed data, high quality PDF Figures and software developed during 
the course of the project are included on an attached DVD. These are summarized below: 
 
Data products 
 

 CSAG station metadata. A CSV file containing the station metadata for each station 
in the CSAG station archive. The file lists the following metadata:  
ID – the station identifier,  
ALTITUDE – Station height in metres above sea level,  
CLEANING – Cleaning level,  
COUNTRY – Country code,  
CREATED  – Date CSAG station file was created,  
END DATE – Date of the last observation,  
FORMAT – CSAG station file version,  
LATITUDE – Latitude in decimal degrees North,  
LONGITUDE – Longitude in decimal degrees East,  
NAME – Station name,  
START DATE – Date of the first observation,  
VARIABLE – Variable recorded (always precipitation), 
RECORD LENGTH – Length of the data record in days [File name csag-gauge-

metadata.csv] 
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 Annual totals. A NetCDF file containing the annual totals for each gauge. The file has 
dimension variables station and time with variables rain, nmissing, lat, lon and elev. 
The station dimension variable contains the station identifier for each station while 
the time dimension variable gives the end date of each annual accumulation period 
(31 Dec each year). The rain variable contains the total of all observed daily rainfall 
for each year at each station (these are partial totals for years with missing daily 
data). The nmissing variable contains the count of missing observations of daily 
rainfall for each year at each station. The lat variable gives the latitude of each 
station. The lon variable gives the longitude of each station. The elev variable gives 
the elevation of each station. [File name csag-station-database-annual.nc]  

 

 Monthly totals. A NetCDF file containing the monthly totals for each gauge. The file 
has dimension variables station and time with variables rain, nmissing, lat, lon and 
elev. The station dimension variable contains the station identifier for each station 
while the time dimension variable gives the end date of each monthly accumulation 
period (last day of each month). The rain variable contains the total of all observed 
daily rainfall for each month at each station (these are partial totals for month with 
missing daily data). The nmissing variable contains the count of missing observations 
of daily rainfall for each month at each station. The lat variable gives the latitude of 
each station. The lon variable gives the longitude of each station. The elev variable 
gives the elevation of each station. [File name csag-station-database-monthly.nc]  

 

 Annual infilled time-series. A NetCDF file containing the infilled annual totals for 
each gauge. The file has dimension variables station and time with variables obs rain, 
p0, pt, mean, 10percentile, 50percentile and 90percentile. The station dimension 
variable contains the station identifier for each station while the time dimension 
variable gives the end date of each annual accumulation period (31 Dec each year). 
The obs rain variable contains the total of all observed daily rainfall for each year at 
each station (these totals are only for years without any missing daily data). The p0 
variable contains the probability of dry for each infilled year. The pt variable gives 
the probability of being below the threshold in an infilled year. The mean variable 
gives the expected value of the infilled distribution for each infilled year. The 
10percentile variable gives the 10th percentile value of the infilled distribution for 
each infilled year. The 50percentile variable gives the 50th percentile (median) value 
of the infilled distribution for each infilled year. The 90percentile variable gives the 
90th percentile value of the infilled distribution for each infilled year. [File name 
infilled-station-database-annual.nc]  

 

 Monthly infilled time-series. A NetCDF file containing the infilled monthly totals for 
each gauge. The file has dimension variables station and time with variables obs rain, 
p0, pt, mean, 10percentile, 50percentile and 90percentile. The station dimension 
variable contains the station identifier for each station while the time dimension 
variable gives the end date of each monthly accumulation period (last day of each 
month). The obs_rain variable contains the total of all observed daily rainfall for each 
month at each station (these totals are only for years without any missing daily 
data). The p0 variable contains the probability of dry for each infilled month. The pt 
variable gives the probability of being below the threshold in an infilled month. The 
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mean variable gives the expected value of the infilled distribution for each infilled 
month. The 10percentile variable gives the 10th percentile value of the infilled 
distribution for each infilled month. The 50percentile variable gives the 10th 
percentile (median) value of the infilled distribution for each infilled month. The 
90percentile variable gives the 90th percentile value of the infilled distribution for 
each infilled month. [File name infilled-station-database-monthly.nc]  

 

 MAP grids at 1 minute spatial resolution. Interpolated Mean Annual Precipitation at 
a spatial resolution of 1 arc minute, as raster grids for use in a GIS package. The 
rasters are provided in two 32 bit floating point formats, GeoTIFF and Arc/Info ASCII 
Grid to facilitate access from a wide variety of GIS and related software packages. 
[File names – mean-annual-precip.tif (GeoTIFF) – mean-annual- precip.asc, mean-
annual-precip.prj (Arc/Info ASCII Grid)]  

 

 MAP averaged over quaternary catchments. A shapefile giving the average of the 1 
arc minute Mean Annual Precipitation raster over each quaternary catchment. The 
attribute MAP is populated with the relevant MAP value. [File names quat-infilled-
mean-annual-precip.shp, quat-infilled-mean-annual-precip.shx, quat-infilled-mean-
annual-precip.dbf]  

 

 MMP grids at 1 minute spatial resolution. Interpolated Mean Monthly Precipitation 
for each month at a spatial resolution of 1 arc minute, as raster grids for use in a GIS 
package. The rasters are provided in two 32 bit floating point formats, GeoTIFF and 
Arc/Info ASCII Grid to facilitate access from a wide variety of GIS and related 
software packages. [File names – mean-*-precip.tif (GeoTIFF) – mean-*-precip.asc, 
mean-*-precip.prj (Arc/Info ASCII Grid)]  

 

 MMP averaged over quaternary catchments. A shapefile giving the averages of the 
1 arc minute Mean Monthly Precipitation rasters over each quaternary catchment. 
The attribute MMP is populated with the relevant MMP value. [File names quat-
infilled-mean-*-precip.shp, quat-infilled-mean-*-precip.shx, quat-infilled-mean-*-
precip.dbf]  
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Here follow two examples of the contents of the files: 

 

Figure 10.7.  Annual accumulations stored in a NetCDF file, as viewed by HDFView. The left 
hand panel shows the variables in the file. In the right hand panel is a partial tabular 
view of the rain (observed annual rainfall total) and the nmissing (number of missing 
days) variables. The bottom panel shows the file metadata for the rain variable. 
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Figure 10.8.  Monthly infilled accumulations stored in a NetCDF file, as viewed by HDFView. 
The left hand panel shows the variables in the file. In the right hand panel is a partial 
tabular view of the obs_rain (observed annual rainfall total), mean (infilled expected 
value) and the 90percentile (90th percentile of the infilled distribution) variables. The 
bottom panel shows the file metadata for the obs_rain variable.  
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Figures 
 
A selection of high quality PDF format figures are included on the DVD. These are 
concatenated into a single PDF document (dvd-figures.pdf) in the root directory. The figures 
are summarized below and most appear in various places throughout this report (where 
they are described in more detail). 
 

 Selected percentiles (10, 50, 90) of infilled annual totals 

 Selected percentiles (10, 50, 90) of infilled monthly totals 

 Mean annual infilled precipitation as recorded at the gauges 

 Mean annual infilled precipitation interpolated onto a 0.1_ (6 min) grid 

 Mean annual infilled precipitation interpolated onto a 0.0167_ (1 min) grid 

 Mean annual infilled precipitation averaged over quaternary catchments from the 1 
min grid. 

 Mean annual infilled precipitation at the gauges, calculated from consecutive 20 year 
periods 

 Mean monthly infilled precipitation as recorded at the gauges 

 Mean monthly infilled precipitation interpolated onto a 0.1_ (6 min) grid 

 Mean monthly infilled precipitation interpolated onto a 0.0167_ (1 min) grid 

 Mean monthly infilled precipitation averaged over quaternary catchments from the 
1 min grid. 
 
 

Software 
 

  Python package for dynamic Copula infilling 

  Selected data processing scripts 

  Selected figure generation scripts 
 
 

Caveats and recommendations for improvements 
 

 The CSAG database still has anomalies to be resolved 

 The CSAG database does not include non-SAWS/ARC gauges which are included in 
the Lynch data-base. These should be blended in. We realized this late and tried to 
effect the merge, but this was beyond our resources. 

 A single coherent daily rainfall Data Base (easily updateable via the WR 2012 series 
etc.) would be a valuable project. However, getting the data providers blessing is 
extremely difficult and possibly very political. 

 Apply infilling technique at daily scale. Code is there, it can work, but main concern is 
data licensing – it's pretty easy to infer the observed data from an infilled time- 
series. 
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Chapter 11.   Summary and Conclusion 
 
A large proportion of the work developed and recorded in this report is original.  We draw 
attention to the new method of infilling and interpolating missing information in data we 
call the Dynamic Copula Regression (DCR) technique.  This method exploits the treatment of 
zeros and Gaussianises the data to obtain not only the best estimate possible of the missing 
value but adds a meaningful error tag to the estimate.  This approach follows Jaswinski's 
(1970) dictum: "An estimate is meaningless unless you know how good it is". 
 
The maps we have produced are slightly different from their forbears, but we are confident 
that they are an honest representation of the rainfall record in Southern Africa.  Remarkably, 
we found that the MAP is very stable over the last 150 years.  We conclude with a summary 
of the messages of the Chapters.  

 
The first Chapter contains samples of the final product – the maps of MAP and MMP 
together with maps of their variability and a comparison with previous estimates.  It 
contains a sample of the maps that might be useful to the practitioner, to complement 
those offered in the Executive Summary.  The last set of images in the Introduction, making 
up Figure 1.8, is a sequence of eight separate 20-year periods of MAP starting in 1850 and 
finishing in 2010.  We noted that the MAP has been remarkably stable over the 20th century 
and that the notorious and troublesome interdecadal variations are smoothed out by 
averaging over 20 year periods.  
 
In the second Chapter we reported on work using Circulation Patterns associated with the 
rainfall regimes, based on the output of WRC project K5/1964, but with new regions based 
on SAWS criteria.  Although these are interesting from a local climate point of view, this 
early work was superseded by the methodology summarised in Chapter 3.  We worked on 
the premise that correlations of rainfall between successive periods [day, month and year] 
are so low that the infilling can be usefully done at one interval at a time, thus making the 
use of CPs redundant in this study. 
 
Chapter 3 describes the cross-validation of Gauge data, with a view to selecting the best 
infilling procedure, by comparing several standard methods of infilling missing data values 
against the new Dynamic Copula Regression (DCR) method, outlined in this Chapter.  For 
this comparative work, we chose a set of gauges in the Southern Cape whose intact records 
span 32 years.  In the monthly data we found that an average of about 5 % of the months 
were dry, whereas in the daily data, the average proportion of dry days was approximately 
80 %.  The way that the cross-validation was done was that, in 32 years we left out 20 % at a 
time for each gauge in turn, modelling in 2 seasons.   We chose the copula-based method 
(DCR) as the one to use for data repair, not only because of its success in the above tests but 
because it can give a valuable additional product: the error structure of the interpolant, 
tailored to the local spatial distribution of the controls, as well as their rainfall data values.  
Although the CP dependent copula is a fraction better than the plain copula method for 
repairing the daily data, we decided that the extra effort is not worthwhile for infilling over 
the whole Southern African region. 
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In Chapter 4 we explain how to visualise the worth of the infilled values, through pictorial 
explanation of the methods, complementing Chapter 3. Again we found that Gaussian 
copulas used in DCR are superior to other methods of infilling.  We also note that it is 
important to de-seasonalise data before computing cross correlation coefficients (cccs), so it 
was surprising to find that cccs of de-seasonalised spatial daily are independent of the area's 
wetness. 
 
 
In Chapter 5 we determine the value of the data and examine the results of the infilling, 
introducing an important quality measure in the guise of quantile error bounds, rather than 
the not very useful mean and standard deviation.  This applies particularly to the estimation 
of precision of the infilling whose distribution is not Gaussian, particularly in the case of 
Daily rainfall records.  We also note the difficulty of coping with 'dirty' data – for example 
those which are supposed to be different but have identical periods of record.  We offer a 
new idea called Mean Annual Precision, which is the average of the interquartile spread of 
80% over the complete record including intact and infilled values of each station.  The less 
the amount and the tighter the infilling, the smaller the Mean Annual Precision and vice 
versa. 
 
Chapter 6 is a summary of a new methodology developed for spatial interpolation between 
the repaired gauges for the production of smooth maps and for estimating rainfall amounts 
over catchments, as an alternative to conventional Kriging methods. Here, we generate 
spatially interpolated fields, we fix the observed gauge values on the day (or month or year) 
and sample from the distributions of the missing gauge data estimates. The scheme has 
three benefits:  (i) we have a better estimate of the mean field (with error structures at each 
infilled pixel in the field); (ii) we can generate ensembles of possible spatial fields, matching 
the observed data, getting sharp estimates of the missing values and (iii) the ensembles can 
be used to determine the uncertainty of the fields.  The key is to use a spatial variant of 
Dynamic Copula Regression to perform the interpolation.  Although we are confident that 
this is a valid procedure for interpolating over mesoscale areas, it is computationally 
demanding and we had to forgo the method in favour of the Gaussian Kriging procedure 
introduced in Chapter 3 when it came to interpolate the space between the 4000 or more 
gauges over the 1.22 million sq km region.  As part of the work in this Chapter, we explored 
the concept of covariates and determined whether these add value to the interpolation.  
We had in mind altitude and TRMM and tried altitude, reserving TRMM for Chapter 9.  We 
found there was a very weak link between daily gauge rainfall and altitude, and showed 
that, even if we used as small a ccc as 0.2, the covariate altitude made rain over places 
where the gauges were dry, so this idea was abandoned, in favour of univariate 
interpolation. 
 
In Chapter 7, we describe a straightforward spatial Interpolation using the Fast Fourier 
Transform to produce radar-like random fields, as a possible alternative to the copula-based 
methods, developed in Chapter 6.  The key to the method is to use Gaussian random fields, 
modelled on Gaussianised radar images.  An ensemble of these fields provides not only a 
measure of uncertainty [median and quartiles at each location in the area] but also plausible 
rainfields for rainfall-runoff calculations through catchment modelling.  The idea can be 
extended to areal rainfall simulation, by using a daily rainfall network model and merging 
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random fields with the gauge values using the correct correlation structure for the field.  
Although it was not used in this MAP map project, it was introduced here as a valid 
alternative to Dynamic Copula Kriging as long as the observed rainfield is spatially 
homogeneous from the correlation point of view. 
 
Chapter 8 describes an attempt to develop a method to downscale TRMM rainfall data to 
block averaged daily read gauge rainfall data using regression.  Unfortunately the timings 
and amounts of the TRMM daily rainfall estimates do not match with daily rainfall catches, 
so the correlations are generally too low to allow regressions to be useful.  This is so even 
after measuring correlations using the Spearman formulation, which works on quantiles and 
not on distributions. Given the above, it is likely that TRMM data (and the output of its 
successor GPM) will be useful for large-scale hydrology and agriculture, particularly at the 
monthly scale, in contrast to daily.  Thus crop monitoring and reservoir storage calculations 
will benefit, but not Flash Floods.  The short conclusion is that TRMM is useful for hydrology 
in a coarse way, but poor in detail. 
 
Chapter 9 introduces a novel idea which is suggested for performing a valid quantile-
quantile transform of TRMM to Block averaged gauge rainfall where there are records and 
then interpolating the methodology to ungauged locations.  This QQ transformation is done 
by using the appropriate and easy-to-manipulate Weibull probability distribution fitted to 
gauge data, where available, and to all TRMM data. Although not exploited in this study, the 
methodology needs to be recorded and used elsewhere. The Chapter reports work in 
progress and was not part of the mandate of this project, nevertheless, the idea was 
included here so that (i) we could have the proposed methodology published and (ii) it could 
be referred to in a parallel WRC project researched by this team, where it will prove useful. 
 
Chapter 10 describes the data used and algorithms used and introduced in the project and 
indicates how these have been archived for access by practitioners. Here we outline the 
source rainfall data used, the data management procedures, the products and the software 
developed. A summary of the filing procedure is made of all of the products which are 
provided on the accompanying DVD, with the exception of the source daily rainfall data-set, 
due to licensing restrictions. 
 
In conclusion, this was a challenging project, introducing and comparing a collection of 
modelling ideas, some new, that would produce a robust and workable methodology for 
infilling and interpolating daily raingauge data over the region at the three useful scales: 
daily, monthly and annual.  We hope that the product becomes trusted and used for the 
common good. 
 
 

...---<<<OOO>>>---... 
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