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EXECUTIVE SUMMARY

1 INTRODUCTION

One reasen, why groundwater has been neglected previously, is because it is invisible and, therefore, difficult
to manage and control, especially in the Karoo sediments that underlie a large part of the country, Groundwater
is, however, just another physical phenomenon and therefore subjected to well-known physical principles. The
question thus arises whether these principles cannot be used to manage and control groundwater resources more
efficiently? Judging from the available literature, and previous experience, the answer Lo this question would
scem to be yes. However, groundwater is a natural three-dimensional phenomenaon, Large quantities of data are
therefore needed, should one wish to investigate the phenomenon in detail, Previous investigations of this nature

have consequently concentrated more on a two-dimensional representation of the phenomenon, but this may
not be sufficient for aquifers in highly heterogeneous sediments, .

2 PURPOSE OF THE PRESENT PROJECT

During an investigation of groundwater pollution in the Atantis aquifer, it became clear that a groundwater

-dimensional phenomenon, The Institate for
Groundwater Studies, at the University of the Orange Free State, therefore decided to try to investigate the

conditions under which two- and three-dimensional models can be used effectively in the simulation of
groundwater phenomena.

Two difficulties, often encountered in the use of large quantities of data, are: (a) how to represent the data in
a meaningful and attractive way and (b) how to obtain estimates of unknown data. The present investigation

was 1o exception to this rule. A rescarch proposal ‘A Comparative Study of Two-and Three-dimensional
Groundwater Models’ was therefore put before the Water Research Commission, The purpose of this project,
as stated in the final contract with the Commission, was as follows:

An investigation into the yse of two- and three-dimensional models in the simulation of groundwater
phenomena, with special reference 1o: {a) the advantages and disadvantages of two- and three-

dimensional models, (b) effective estimates for unknown values required by the models and (c) the
graphical representation of groundwater data,

The proposal was accepted by the Commission and work on the project began in January 1989, The present
report describes the investigations carried out under this project, which ended in December 1991,

3 STRUCTURE OF THE REPORT

volumes. These volumes are:
(1) A Comparative Study of Two-and Three-dimensional Groundwater Models,

(2} TriangularIrregularMeshes and their Applicationin the Graphical Representation of Geohydrologic
Data,

(3) A Comparison of Spatial Bayesian Estimation and Classical Kriging Procedures.

—iii -




iv Executive Summary

‘The following discussion will, consequently, be based on this division.

4 A COMPARATIVE STUDY OF TWO-AND THREE-DIMENSIONAL GROUNDWATER
MODELS

4.1 General

Primitive three-dimensional numerical models for groundwater flow phenomena had already been developed
by 1973, butitis only in the last couple of years that these models have been applied extensively in practical
investigations. Strangely enough, nowhere in the available literature is there any reference to a comparative
study of two- and three-dimensional models that could be used as a criterion in decidin g when to can use a two-
dimensional model, and when would a three-dimensional model be sufficient.

The three-dimensional problems, normally encountered in practice, have no analytical solutions. The computer
programs, developed for the present investigation, had therefore to be based on the numerical solution of the
flow and mass transport equations, There is no doubt that a finite difference approximation of these equations
would be the easiest to implement on a computer, The majority of computer models for three-dimensional
groundwater phenomena, available today, are consequently based on this approximation, However, the
approximation does not allow the implementation of certain finer physical details, such as mixed or flux

boundary conditions, with ease. The models developed in this study were consequently ali based on the finite
element approximation,

There s very little physical difference between the conceptual models for saturated and unsaturated groundwater
fiow. The program for variably saturated flow, being the more complex, was therefore developed before the
program for saturated flow. There were two main reasons for adopting this philosophy. The first was that it
would be easier to adapt the variably saturated flow to saturated flow, than the converse, and the second that
the variably saturated flow program would be able to handle saturated flow conditions as well. The possibility
thus existed that one program could handle all situations to be covered in this investigation. However, it soon

became clear that a separate saturated flow program would execute much faster than the variably saturated flow

program. Three programs were, therefore, developed during the investigation.
. Program SAT3 - for the simulation of saturated groundwater flow.
Program SUF3 ~ for the simulation of variably saturated groundwater flow,
Program SUM3 - or the simulation of saturated and variably saturated mass transport,

4.2 Discussion

A good knowledge of the underlying physical principles is of the utmost importance, when a conceptual model
is applied to a physical phenomenon. The principles related to the modelling of groundwater flow phenomena
have been covered extensively in a previous report: ‘Modelling Groundwater Contamination in the Atlantis
Aquifer’, to the Water Research Commission. No attempt was therefore made to discuss them again here. The
main principles of groundwater flow and contaminant transport, needed to understand the programs, are

summarized in Chapiers 2 and 3, The finite element approximations used in the three programs are described
in Chapter 4,

The generation of a suitable mesh is the most tedious and time consuming aspect in using a finite element

approximation to solve a given differential equation. A special three-dimensional mesh generator was therefore
adapled as part of the investigation, This generator is discussed in Chapter 5,

It is extremely difficult (many computer scientists will say impossible) to ensure that a computer program,
especially those with the size developed for this investigation, is free of errors, However, this does not exempt

the developer from his responsibility to ensure that the program is o the best of his knowledge free from serious
errors,

There are a number of methods that can be used to ‘debu g’ acomputer program. The method almost universally
used with programs developed for the simulation of physical phenomena, is to compare the program’s output

with analytical solutions of simplified conceptual models for the phenomenon. This approach was also followed
in this investigation,
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Program SAT3 was de-
bugged first, This was done
by comparing its output with
the two-dimensional ana-
lytical solutions of Muskat
for a circular homogeneous
aquifer with Dirichlet and
zero flux boundary condi-
tions, as described in Chap-
ter 6.. These solutions were
not only useful in the de-
bugging of the program, but
they also demonstrated that
a two-dimensional model
may be considered as equi-
valent to a three-dimen-
sional model, when work-
ing with a confined, homo-
geneous aquifer. The gra-
phical representation of the
piezometric heads inFigure
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1, clearly supports this con-
clusion,

The debugging of the program for vari-
ably saturated flow was considerably
simplified by the availability of the saty-
rated flow program, This is illustrated in
Chapter 7, where it is shown that Pro-
grams SUF3 and SAT3 yielded identi-
cal results when applied to the same
fully saturated aguifer,

Program SUF3 was also compared with
Program UNS AT 2 for two-dimensional
unsaturated flow, as a further precau-
tion. These results demonstrated that a
two-dimensional model is _sufficient,
even for a variably saturated aquifer,
provided that it is homogeneous,

The discussion of the associated three-
dimensional mass transport program in
Chapter 8, had, unfortunately, to be lim-
ited to its debugging phase alone. The
reason for this was that no suitable data
could be found foramore detailed analy-

sis. Nevertheless, a comparison of the num
dimensional model is sufficient for a ho

Figure 1 Comparison of the piezometric heads for a komogeneous circular
aquifer computed from Muskat's analytical solutions and Program SAT3,

The program MODFLOW, of the United States Geological Survey,

dimensional, satrated groundwater flow that it is often considered as the industry standard in rri‘any

groundwater circles, The program was consequently used as a final check on Program SAT3, This comparié'on,
which was based on a homogencous, confined aquifer, is described i

programs yielded almost identical piezometric levels in the case 0

is so frequently used in modelling three-

n Chapier 6, As shown in Figure 2, the two
f a homogeneous, single layer aquifer.
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Figure 2 Comparison of the piezometric heads for a circular,
homogeneous aquifer, with Dirichlet boundary conditions, com-
puted with the Programs SAT3 and MODFLOW.

erical results with an analytical solution, confirmed again, that a two-
moegeneous aquifer,

The main conclusion, derived from the discussion above, and the resuits in Chapters 6 to 8, is that there is
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absoluiely no need to use a three-dimensional model when working with homogeneous aquifers. The question

thus arises what the situation will be in the case of heterogencous aquifers? The answer to this question is taken
up in Chapter 9,

In the original proposal to the Water Research Commission, it was anticipated that piezometers would be
installed in the Atlantis, Saldanha and Zululand aquifers, and that the piezometric levels could be used in this
study, Unfortunately, this expectation never materialized This meant that the discussion in Chapter 9 had 1o be
restricted to hypothetical aquifers, since the available piezometric levels for these aquifers, are not sufficient
for the present purpose, There was, however, one exception in the case of the Atlantis aquifer, where piezometric
levels, observed during a previous investigation around the infiltration pan, could be compared with those
calculated from the model. The Atlantis aquifer is in this area mainly confined to the Witzand and Duynefontein
members of the Bredasdorp Formation, that are in dircct hydraulic contact with one another, The Witzand
member, which lies on top, is slightly less permeable than Duynefontein The model used in this study, therefore,
consisted of a two-layer aquifer, with slightly different hydraulic conductivities. Since the water levels did not

differ considerably at the time of the observations, the same initial piezometric levels were ascribed to both
layers

One would normally expect
that the drawdowas in the two
layers of such an aquifer will
behave very similarly, even if
water is pumped only from the
lower layer. However, as
shown in Figure 3, this is not
the case. The piezometric level
in the lower layer decreases
more rapidly than in the top
layer, as the distance from the
pumped borchole decreases, It
was thus rather satisfactory to
find that the numerical model
yielded a similar result, be it
only qualitatively,

Groundwater Level (m)

| --EB- July 1987 (S) =0~ Jan 1988 (S)
The previous result is clearly i July 1987 (D) &~ Jan 1988 (D)
of considerable importance for R S S SRS S M B — .
conventional aquifer tests in 100 200 300 400

heterogeneous aquifers, as it Distance from Recharge Basin (m)
means thatitis not only impor-
tant at what depth a pump is
installed, but also at what dis-
tances observations are taken
for the test.

Figure 3  Comparison of theobserved water levels in the shallow (8) and
deep boreholes in the Attanis aquifer, when viewed from the infiltration pond
towards the Witzand preduction field,

Another unexpected result that emerged from the study, is that the average drawdown in a layered aquifer may
follow the type curve of a completely different kind of aquifer. This is illustrated by the excellent fit between
the average drawdown in the same two-layer aquifer, used in the discussion above, and the type curve of a
phreatic aquifer in Figure 4. This suggests that it would be foolish to try to analyse drawdowns in a

heterogeneous aquifer with a conventional type curve, unless the type curve is confirmed by direct observations
on the physical nature of the aquifer,

4.3 Conclusions

The results of the present study can be summarized by saying that a two-dimensional model can be used to
analyse the data from a heterogeneous aquifer, provided that the following conditions are satisfied.

(@)  The production and/or observation boreholes must penetrate the aquifer fully,

(b)  Water must be pumped from ali layers simultaneously and not from one layer alone.
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(¢}  Vertical anisotropy in the aquifer is negligible,

It will obviously be ¢xtremely {
- difficult to meet these condi- 10

tions in practical situations, The
only conclusion to be reached is
that itis well-nigh impossible to
derive meaningful results for a
heterogeneous aquifer, by ana-
lysing the data with a two-di-
mensional model, This conclu-
sion has far reaching conse-
quences for investigations of
multi-layered aquifers, such as

those in the Karco sediments of | ~— Neuman
South Africa. It implies, for ex- - & Computed
ampile, that the appropriate way,

to investigate these aquifers, is 102 Tl il il il
to observe and analyse the be- 10° 10" 102 1} ¢ pS 108
haviourofeach layer separately. Time (s)

This means that the conven-

Eg?i%?;ﬁig?ﬁﬁe$ﬁxg Figure 4 (?omparison of the averaged computed drawdc.awn in'a two-layer
tigation of heterogeneous aqui- confined aquifer and the Neuman type curve for a phreatic aquifer.

fers, What needs to be done in this case, is to use more refined observation methods and to analyse the data with
athree-dimensional model, For example, one should observe the behaviour of the different water-bearing strata
with piezometers, installed in every layer, and not with a partially penetrating borehole as is usually done,
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4.4 Recommendations

The most important question to answer at this s

tage, is whether groundwater researchers (and practitioners) in
South Africa, are interested in understanding

the behaviour of the heterogeneous aquifers in the couniry
quantitatively, or if a general, qualitative description will do? The indifferent approach, presently in use, will
be sufficient for the second alternative, but not for the first, However, it must be kept in mind that both
-approaches have their own advantages and disadvantages, before selecting a specific approach.

The descriptive approach has two important advantages. (a) It is relatively cheap and easy to implement and
(b) can supply a solution in the short term, However, it has been shown, in other countries, that a descriptive
solution may sometimes cause more damage to the environment than the problem it was supposed to solve. In
addition, the approach cannot provide a reliable framework to nanagement an aquifer efficiently,

The quantitative approach is not without its difficulties either. Two particularly important aspects that must be

taken into account in this approach are: () how accurately does the conceptual model represent the aquifer, and
(b) what is the quality of the data supplied to the model. There is litle doubt, that modern
groundwater models can handle very complex phenomena, What is missing,
on the physical and chemical properties of aquifers and cost-effective meth
This applies in particular to the execution of an aquifer test, which is the ¢
to study the physical properties and behaviour of an aquifer. These obse
procedures be followed in the investi gation of a heterogeneous aquifer,
(a)  Obtain a better insight into the physical behaviour of the aquifer. One way to achieve this, is to re-
evaluate existing aquifer test data with conventional models and the three-dimensional models
developed during this study,
(b)  Supplement the investigations in (a) with more refined field observations, using methods such as
ordinary and cross-borehole packer lests and geophysical surveys,
(c)  Give more attention o the development of novel and versatile methods for the observation of the
physical properties of an aquifer, A methed, that seems (o be Very promising, is to complement
drilling with a seismic survey, using the drill as the source of the seismic waves,

conceptual
however, is sufficient information
0ds to determine these properties.
nly viable method, available now,
rvations suggest that the following
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The implementation of the recommendations above, will certainly require more money and suitably trained

personnel than the conventional approach, However, the history of science and engineering indicates that the

rewards from such an effort usually outweigh the original cost by far.

5 TRIANGULAR IRREGULAR MESHES AND THEIR APPLICATION IN THE GRAPHI-
CAL REPRESENTATION OF GEOHYDROLOGIC DATA

51 General

A contour map is without any doubt the method most often used to represent a regionalized variable—a variable
that varies in space and or time— graphically. Before the appearance of computers, these maps were usually drawn
by hand. Although this is a relatively easy task, it is rather time-consuming, Considerable emphasis has thus been
placed on computer graphics to draw contour maps, after computers became commercially available, However, the
use of computers for the generation of graphical output raises many mathematical problems, For example it is well-
imown thatclassical geometry, which forms the basts for the drawing board and drafting practices, isnotalgerithmic
in nature, In other words, the principles cannot be implemented easily on a computer. Other techriques must
therefore be used to derive computer algorithms that exploit the arithmetic power of the computer effectively.

"The basic aim of any contouring method is to delineate a regionalized variable through a series of continuous lines
that trace prescribed values of the variable on a plane. This suggests that the computerization of a contour map is
best achieved with a two-module system. One that discretizes the domain on which the input data is defined and
another to represent the contour lines visually. These objectives, unfortunately, are often mutually exclusive. The
best one can hope for is a computer package thatrepresents the variable as accurately as possible in an acsthetically
acceplable form. Nevertheless, it will be difficult to develop a contouring package that will satisfy all users.

The main aim in developing the package TRICON, was to have a program available that could be used to generate
high quality contours of geohydrologic data. However, many of the principles usedin the development of TRICON,
also apply to other regionalized variables, such as rainfall. The program is thus notrestricted to geohydrologic data,

Regionalized variables are usually associated with very large areas, Therefore, i is practically impossible to
measure them at all points of interest—Ileast at points where their values may coincide with prescribed contour

values. The variable is, consequently, mostly known at a number of points {considerably less than needed to
generate smooth contour lines) scattered throughout the domain.

In the days of hand-drawn centours, the deficiency in data points was overcome by using a ruler and pencil to
interpolate between the measured values. The same principle can of course also be applied in computer
generated contour maps, provided that one can automate the interpolation procedure. Since interpolation is a
well-defined mathematical procedure, this would not seem to present serious problems. Unforiunately, the
theory is far less deveioped for two- and higher dimensional domains, than one-dimensional domains. The
majority of contouring algorithms, available today, are consequently based on tensor products of one-
dimensional interpolation polynomials, This approach is straightforward to apply in cases where the regional-
ized variable is defined on a square grid, but not when observed at arbitrary spaced points.

There are two methods that can be used to circumvent the discretization of arbitrary spaced point: (a) assign

weighted values of the variable to a square grid, overlaid on the observation points, and (b) use an irregular

triangular finite element mesh. From a theoretical point of view, one would expect the latter procedure to yield
the most accurate results, However, the error, associated with two-dimensional triangular interpolauon, is a

function of the element shape. The theoretical advantage of a triangular mesh may thus be nullified, if the
triangles are not chosen with care., )

52 Discussion

The characteristics of geological data, more specifically geohydrologic data, presents special problems that
need to be taken into account, when devising a contouring package for them. These characteristics and some
of the existing methods, for the computation of contour lines, are discussed in Chapter 2.

Chapter 3 is a brief description of work done previously on the computation of triangulations. These methods,
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unfortunately, often result in degeneracies, which arise when four or more data
method, that avoids degeneracies completely, was consequently developed. This method is also introduced and
discussed here, Although the method does notalways yieldaunique triangulation, in the case ofdegenerate data,
it enables one to handle all types of data—even data defined on a Square mesh—without difficulties

points are co-circular. A new

The direct triangulation of the data has the advantage thaterrors, caused by inte
are eliminated. The contours derived from such a triangulation, therefore, re
as accurately as the data permit.

mpolation to rectangular meshes,
flect the information in the data,

The triangulation method was also extended to discontinuous regionalized variables and domains with holes,
withoutany difficulties. This was achieved by using the segmentation of curves to select only those points from

a given curve that influence the contour lines significantly. The split-and-merge method used for this purpose
is described in Chapter 4,

A new method, referred (o as the method of extra points, that can be used to approximate discontinuous
regionalized variables holes in the domain, is introduced and discussed in Chapter 5. This chapter also contains
a compiete description of the methods employed to '
trace and smooth the contourlines, The cffectiveness 216
of these methods can be judged from the contour

lines in Figure 5, ,

Itis relatively easy to extend the methods in Chapter
3 to include interpolation and the computation of 219
groundwater velocities. These applications are dis-

cussed in Chapter 6. Two interpolation methads, that
are particularly useful over a triangulated domain,

are; triangular and inverse distance weighted gradi- E

ent interpolation, Both these methods are very accu- N
rate and can be quite useful in the interpolation of g P
geohydrologic data, provided that the interpolation &
points lie within the domain of the data, e

Triangular interpolation has another advantage in
that it allows one to derive values groundwater 225
velocities, from piezomelric heads, which can then
be mapped on the domain as shown in Figure 6. This
application is particularly useful in investi gations of

groundwater pollution problems, where it can be \
used to determine preferential flow directions. 228 L L i

516 514 512 510 508
53 Conclusions Y (x162) (m)

—_— ]
The package, TRICON is particularly useful for the

contouring and interpolation of any set of values, Flig.u?e 5 Co.ntours (.)f the p iezometric. levels in the
associated with a two-dimensional regionalizedvari- ¥ “"tY Of the infilltration pond at Atlantis,

able. The program is also able to draw contours of the difference between two related regionalized variables
(e.g., groundwater levels and topography) and to compute groundwalter velocities and display them graphically,

The package, which is on-1ine and menu driven, consists of sevenm
domain, The second and third modules compultes the contour lines
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TRICON was developed in the C-language ona
personal computer. It is therefore limited to the 216
maximum of 640 KB (kilobytes) addressable
memory, generally availabie on IBM, or IBM-
compatible computers. In this format the pack-
age can bandle up to 800 data points. Another 220
version, TRIBIG, that can handle more than
2 000 datapointsisavailable, However, TRIBIG
cannot be used to produce graphical output—
TRICON must be loaded, after TRIBIG ended,
for that purpose.

X (x10%) (m)
2
Q2

TRICON was developed on amachine equipped
with a numeric co-processor to decrease execn-
tion time. Another version, that does not depend
on a co-processor, is available, but is signifi-
cantly siower than the one with the coprocessor.

228

Anyone interested in TRICON should thus to & L .
try to have a coprocessor installed in the ma-
chine on which the package is implemented. 232 4 . ;
519 516 513 510 507
54 Recommendations Y (x10%) (m)

There is a tendency today in scientific circles to

t . . . .
move fl:om thle personal comp}l ter to a Figure 6 Groundwater velocities around the infiliration
workstation, This type of compuler is not only

faster than a personal computer, but can also pound at Atlantis, computed from the piezometric Leads.

handle considerably larger sets of data, These machines also use the UNIX operating system, which is much
more versatile than the DOS operating system on a personal computer, This factor, and the interest shown by
scientists from abroad, for a UNIX version of package, su ggest that it may be advantageous to implemented the
package also on a modern workstation, or ‘affordable’ supercomputer. Such a conversion will also mean that

the package could be implemented on the risc computer of the Computing Centre for Water Research, at the
University of Natal in Pietermaritzburg,

6 A COMPARISON OF SPATIAL BAYESIAN ESTIMATION AND CLASSICAL KRIGING
PROCEDURES

6.1 General

Environmental variables, such as rainfall, transmissivity of an aquifer and piezometric groundwater levels, vary
in space, or time, in ways too complex to represent them with simple deterministic functions, Moreover, it is
extremely difficult to measure these variables at all positions of interest. Therefore, it is often necessary either
to interpolate or extrapolate the measured values, if values are needed at points where no measurements were
taken. The classical interpolation methods are all based on the assumption that the variable of interest can be
represented by a smooth function, and are therefore uscless for this purpose. What one really need in these
circumstances, is a method that not only yields an estimate of the variable, but also the error in the estimate,

The mostappropriate way to describe the spatial variability of environmental variables, is torepresent them with
random functions. This approach has the advantage that it allows one to describe an environmental variabie in
statistical terms, through the Theory of Regionalized Variables, The best known estimation method, based on
this approach, is Ordinary Kriging, or Kriging as it is conventionally known,

Since Kriging is a linear procedure, difficulties are experienced, if the variable to be estimated contains a non-
linear trend, or drift as it is called in geostatistical literature, This led to the introduction of what is known today
as Universal Kriging. Universal Kriging is, unfortunately, numerically unstable and often singular, Various
otherapproaches, such as the subtraction of trends, have consequently been proposed in the literature, However,
the majority of these methods do not satisfy the basic principles associated with a random variable. Their results
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' cannot therefore always be analysed in a statistical meaningful manner.

There are many situations in the environmental (and exact) sciences where a given variable correlates with
another one. For example, groundwater levels often follow

the surface topography of the aquifer, see Figure
7. If the latter variable can be sampled more frequently than the first, then one coyld surcly use this information
10 improve estirnates of the first variable,
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Figure 7 Schematic representation of the correlation between

groundwater levels and opography in
the Hendrina aquifer. _
The first method introduced that used this principle is Cokriging. The method is, from the mathematical point
of view, not much more than an extension of Ordinary Kriging to two ormore variables, It is thus relatively easy
to implement on a computer. However, Cokriging is a very expensive method, as far as computer time and

resources are concerned. The method has, therefore, not achieved the same attention as Ordinary or Universal
Kriging, until very recently.

Bayesian Kriging is another method that uses (his principle. In this approach the classical statistical analysis
of Ordinary Kriging is replaced by a Bayesian stali

stical analysis, The beauty of the Bayesian approach is that
it allows one 1o express prior knowledge of the variable with a ‘qualified guess’ that can be included in the
estimation, The method, unfortunately, still uses the optimization techniques of Ordinary Kriging. It was
therefore considered worthwhile to place the technique within a well-formulated Bayesian framework.
Previous work has shown that Ordinary Kriging yields excellent estimates for transmissivities and storage
coefficients, but not groundwater levels. The present study was consequently mainly limited to the estimation
of groundwaler levels,

6.2 Discussion

A review of the available literature revealed
Cokriging and the Bayes method — are the on
variables, and their associated errors. The in

that the four methods — Ordinary Kriging, Universal Kriging,
ly methods able to produce reliable estimates of environmental
vestigation was, therefore, restricted 1o these four methods,

Terms such as, regionalized variable, semi-variogram and linear estimation, that play an important part in
geostatistical estimation theory, are summarized in Chapter 2, This is followed by a discussion of the three
Kriging methods, Ordinary, Universal and Cokriging in Chapter 3, However, the purpose of this chapter is only
to introduce the reader to the basic terminology and not to describe the theory in depth,
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The work done on the Bayes method is described in
Chapter 4, Since this work is mostly new, the discus-
sion is fairty complete. Estimation procedures for both
univariate and multivariate random functions are dis-
cussed. A new semi-variogram for univariate func-
tions, shown in Figure 8, is also introduced there.

The Bayes method is, in mathernatical terms, an
explicit method, while the Kriging methods are all
implicit methods. This is an important advantage that
the Bayes method has over the Kriging methods, for it
means that the method can be implemented easily on a
computer, There are no complex and ill-conditioned
sets of linear equations to be solved, as is the case with
all three Kriging methods, only the inversion of a
single well-behaved correction matrix.

Theapplication and evaluation of the various methods,
as to their efficiency in estimating groundwater levels,
are discussed in Chapter 5. Water levels from four case
studies, the Dewetsdorp aquifer, Zululand coastal ag-
uifer, the ‘Pit and Trench’ site at Oak Ridge National
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Tigure 8  Schematic representation of the semi-
variogram, developed for the Bayes method.

Laboratory and Hendrina power station site, were used for this purpose. An idea of the accuracy of the method
can be obtained from the estimates of water levels for the Dewetsdorp aquifer, in Table 1.

Table1  Estimates of the groundwater levels for 15 boreholes in the Dewetsdorp aquifer, using the four

estimation methods described in the report.

Groundwater Levels (inamsl)
Observed Estimated
Borehole  Topography Orvdinary  Universal Cokriging Bayes
Kriging __Kriging
1 1560,00 1486,20 1503,80 1507,56 1492,37 1490,62
2 1506,40 1493,60 1493,69 1496,49 1495,08 149544
3 1522,30 1518,00 1495,31 1521,48 150712 1508,18
4. 1539,00 1526,00 1495,50 1531,50 1517,40 1520,64
5 1565,80 1529,80 1522,65 1528,43 1537,94 1540,34
6 1541,00 1533,00 1496,96 1516,84 1517,47 1522,84
7 1555,00 1544,70 1507,50 1515,60 1526,96 1533,27
8 1558,70 1547,00 1498,21 1519,60 1529,66 1536,23
9 1573,00 1571,00 1539,60 1562,08 1551,73 1552,05
10 1623,00 1583,00 1552,02 1574,99 1582,58 1587,83
1 1590,00 158590 1529,37 1577,57 1559,61 1562,21
12 1606,30 1595,00 152841 1554,94 1566,29 1573,44
I3 1615,00 1603,00 1533,06 1614,16 1578,53 1582,18
14 1615,00 1603,60 1533,39 1610,98 1578,36 158215
15 1636,30 1610,90 1549,35 1579,15 1591,07 159846
%m
6.3 Conclusion

The present investigation has shown that the univariate Bayes method is a versatile estimation procedure for
the estimation of groundwater levels. The method also has the advantage that one can use any expert knowledge
about a given regionalized variable as a qualified guess. For example, the qualified guesses for groundwater
levels near a production field, can be reduced, relative to the water levels further afield. However, difficulties
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were experienced to derive a svitable qualified guesses for some regionalized variables. It is therefore

recommended that the method be used, whenever the user can establish a suitable qualified guesses, otherwise
it may be better to use Ordinary Kriging.

An attempt was also made to expand the method to multivariate variables. However, the method did not yield

very satisfactory resuits, when it was applied torainfall data from a few rainfall stations in the Orange Free State.
The main reason for this was the lack of a suitable, multivariate semi-variogram..

6.4 ‘Recommendations

The program used in this investigation of the Bayes method, is still in the research stage. The method,

nevertheless shows considerable promise. It may thus be worthwhile to develop a commercially more viable
package, should the need for such a package arise. :

7 SUMMARY AND CONCLUSIONS

Insufficient observational data prevented a detailed comparison of two- and three-dimensional models for
actual aquifers. Numerical experiments with hypothetical and theoretical aquifers have shown that a two-
dimensional model can be used in the study of a homogeneous aquifer, ora single layer, heterogeneous aquifer,
provided that the production and observation boreholes penetrate the aquifer fully. A two-dimensional model,
however, should never be used to interpret data from a maulti-layer aquifer.

The three-dimensional models developed during this investigation were able to handle quite complex situations.
However, the results did show that a three-dimensional model is not sufficient to interpret the behaviour of water
levels in a heterogeneous aquifer. What is also needed, are observation methods that can be used to delineate
the exact nature of a heterogeneous aquifer, This poses a rather severe problem for future investigations of
heterogencous aquifers, since there are very few of these methods available today. More attention should (hus
be given to the development of sophisticated ohservational methods, if one wants to understand the behaviour
of heterogeneous, especially multi-layer aquifers, better, This may seem (o be a formidable and expensive task,

but there arc quite a number of steps that can alrcady be taken. To quote just one example, it would be foolish

lotry to analyse data with one of the conventional models, should the borehole lithology indicate that the aquifer
is multi-layered. '

The Bayes method developed in this investigation proved to be more efficient than either Universal Kriging or
Cokriging in the estimation of groundwater levels, and in tracing the movement of contaminated water near an
abandoned coal field., Although the lack of sufficient data prevented its application to three-dimensional water
levels, the method could be very useful in the estimation of water levels for three-dimensional models.

The original idea behind the third objective of the study was to have an efficient contouring package for
arbitrarily spaced data, As the package developed, it became clear that the algorithms nsed could be easily
adapted for other purposes as well, Two such applications that were included in the present package are: an

- interpolation technique and the compulation of groundwater velocities. Although the contouring section of the
package and groundwater velocity calculations are restricted o two-dimensions, the package has already been -
used with success in investigations of multi-layer aquifers. Preliminary calculations have also shown that the
interpolation technigue could be extremely useful in the processing of data for three- dimensional models. This

applies especially in situations where one does not have a suitable variable to use as qualified guess or covariate
for the Bayes and Cokriging methods, respectively.

B 4 e
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

There can be no doubt that the availability of clean water is of utmost importance in any
country, and yet is often taken for granted. South Africa has a particularly acute problem in
this regard, because of the semi-arid climate and rapid increase in its population. The
Department of Water Affairs and Forestry indeed already has projected that all available
surface water resources will be used tully, by the year 2020. However, there is one source of
water that has been largely neglected this far in the country, and that is groundwater.
One reasen for this negligence is that groundwater is invisible, and therefore difficult
to manage and control. This is especially true in those parts of the country underlain by the

highly heterogeneous Karoo sediments. Groundwater is, however, just another physical

phenomenon and therefore subjected to well-known physical principles. The question thus

arises whether these principles cannot be used to manage and control groundwater resources
more efficiently? Judging from the available literature, and previous experience, the answer
to this question would seem to be yes, provided that these principles are fully understood.
Groundwater could thus become a valuable, additional source of water, if managed correctly,

Another reason why it is necessary to understand the behaviour of groundwater better, is the
worldwide problem of groundwater pollution. This problem has already received some attention
in South Africa (Bothaezal., 1990; Cogho et al., 1990; Levin, 1988). However, more work needs
to be done, before the pollution ofthe couniry’s groundwater supplies can be combated effectively
on a national scale. The evaluation of the impact that new and existing waste disposal sites have
on the groundwater and environment, as requ'u'éd by the Environment Conservation Act of 1983,
could contribute significantly towards this goal, if conducted in a scientific manner,

There is no doubt that the most efficient method to solve the problem of groundwater
pollution, is through a better understanding of the underlyin g physical and chemical
principles (Cherry, 1989: Schiifer and Kobus, 1989). This implies that attention should be

given, not only to observations of the pollution, but also to the causes of the pollution and the
offects it may have on the environment,

1.2 -CONCEPTUAL MODELS FOR GROUNDWATER PHENOMENA

The motion of groundwater is largely controlled by two fundamental forces in nature—
gravity and fluid pressure. It is thus not too difficult to develop a suitable conceptual model

-1




2 Conceptual Models for Groundwater Phenomena

for groundwater flow (Botha et al., 1990). The advantages of such a model are twofold: it
combines the basic physical principles into a logical structure and provides a relatively cheap
method with which to study the general behaviour of groundwater flow (Mercer and Faust, 1980).

Groundwater is by its very nature a three-dimensional phenomenon; in other words, it
depends on all three dimensions of space and time. Since a conceptual model is worthless
without the support of sufficient observational (experimental) evidence, a large volume of
data will be needed, if groundwater phenomena are to be investigated with a three-
dimensional model. This poses a major difficulty for the use of conceptual models in
groundwater studies, because an aquifer cannot be studied under laboratory conditions.
Previous applications of conceptual models in groundwater investigations have conse-
quently been restricted to two-dimensional versions of the conceptual models. Although a
simplified n\wdel can be quite useful, there are situations where this is not the case (Bear,
1979). Consider for example the multi-layered aquifer of which a schematic view is shown
in Figure 1-1. It is not difficult to see that a two-dimensional model will never be able to
describe the horizontal and vertical movements of water in this aquifer. There is thus a
definite demand for three-dimensional models in groundwater investigations, and this
demanz will increase as more complex groundwater resources are tapped.

Man’s ability, to define conceptual models for groundwater phenomena, has vastly
outpaced the methodoiogy

formeasuring the relational
parameters in these models.
The measurement of the
physical properties of het-
erogeneous subsurface ma-

terials must therefore be
considered as the central

challenge to modern sub-

surface hydrology (Dane
and Moltz, 1991). However,
the new ‘affordable’

emi-confined Aquifer
gy 1

supercomputers, with their  pigyre 1-1 Graphical representation of the different ag-

parallel and multiprocessor uifers, and thus flow patterns, in a typical multi-layer aquifer.
options, also place new de-

mands on the computational methods used with these models. It is thus of considerable
importance that efforts should be made to develop methods that allow a more efficient
implementation of existing (and future) conceptual models.

There are essentially five ways in which conceptual models can be applied more
efficiently in practice.




Purpose and Scope of the Present Study

*  Select the conceptual model carefully,

Use more efficient computational techniques in the implementation of the models,

*  Develop more accurate and visually attractive graphical displays for the observa-
tional data and computational results, '

Develop more efficient estimation procedures for observational data.
*  Develop new and better observational methods,
The first two of these alternatives is addressed in this first volume of the report, while more

efficient graphical techniques to compute and display contours, are discussed in Volume I,
entitled;

Triangular irregular meshes and their application in the
geohydrological data.

Itis, and always will be, difficult to have enoughinformation on
aconceptual modelin investigations of groundwater

graphical representation of

water levels when using
phenomena. Anew Bayesianestimation
procedure, developed as part of this investigation, is introduced and discussed in Volume II1
of this report;
A comparison of spatial Bayesian estimation and classical Kriging procedures.
The development of better observational methods is too vast a subject to do justice to

itin a project with a limited objective, such as the present one. No attempt will therefore be
made to discuss it any further here,

13 PURPOSE AND SCOPE OF THE PRESENT STUDY

Investigations conducted during the Atlantis project (Botha et al., 1990), made it clear that
two-dimensional conceptual models are notatways able to simulate groundwater phenomena
accurately. However, three-dimensional models require such vast quantities of data and are
80 much more complex computationally, that they should only be applied when really
necessary. This raises the problém of finding suitable criteria that can be used in deciding
when 10 use a two-dimensional and when a three-dimensional model. Since such criteria
could not be found in the available literature, or from other colleagues, the Institute for
Groundwater Studies put a research proposal before the Water Research Commission,
entitled: ‘A Comparative Study of Two-and Three-dimensional Groundwater Models’. The
objectives of this study were ag follows:
An investigation of two- and three-dimensional models in the simulation of ground-

water phenomena, with speciql reference to: (a) the advantages and disadvantages
of two- and three-dimensional models, (b)

required by the models and (c) the graphic
The Commission accepted this proposal and wo

effective estimates for unknown values
al representation of groundwater datq.

rk on the project began in J anuary 1989, The
present volume is a report of the work done under objective (a) of the proposal.




4 Purpose and Scope of the Present Study

A search for computer programs that implements the three-dimensional flow and mass
transport conceptual models efficiently, was met without success. The only alternative was
thus to develop the programs almost from scratch,

The physical background, needed for the practical implementation of these programs,
is discussed at length in the report of the Atlantis project. No attempt will therefore be made
torepeatthem inany detail. However, the basic principles, needed to understand the new flow
and mass transport programs, are discussed briefly in Chapters 2 and 3. Since the programs
were developed anew, the opportunity was taken to devise new and more efficient al gorithms
for them. These algorithms and the numerical approximations used in them are discussed in
Chapter 4.

A problem, associated with all computer implementations of conceptual models, is the
generation of a suitable spatial grid, needed in the discretization of the govemning equations
(Botha and Pinder, 1983). Ascan beexpected, this problem is more acute for three- than two-
dimensional models. Fortunately, it was not necessary to develop a new grid generator, since
a suitable one was found in the Computer Physics Communications Library (Pissanetzky,
1984). This generator and some minor modifications, required to run it on the available
computer facilities, are discussed in Chapter 5.

Two separate programs were developed for the conceptual three-dimensional ground-
water flow model. The first, developed specifically for saturated flow, is discussed in Chapter
6 and the second, for variably saturated flow, in Chapter 7, while the program for mass
transport is discussed in Chapter 8.

The original project proposal envisaged an evaluation of the newly developed numerical
models with data from the Atlantis, Saldanha and Zululand aquifers. Unfortunately, the
required data for the latter two aquifers did not realize by the time the project had to be
completed, while the data from the Atlantis aquifer were insufficient. The evaluation,
therefore, had to be limited to hypothetical, saturated aquifers. This approach has the
advantage that it was possible to prescribe exact relational parameters for the models. A
number of these investigations, which have a considerable bearing on the Karoo aquifers in
South Africa, are described in Chapter 9. However, this meant that it was unnecessary to
apply the Bayesian method in Volume III in conjunction with the numerical models. The -
contouring technique, described in Volume II, proved to be very useful on the other hand,
especially in delineating the position of different piezometric levels. Indeed, it is extremely
difficult to interpret the results of the three-dimensional models without the use of a
contouring package such as TRICON (Buys et al., 1992),

In conclusion, it should be mentioned that this investigation gained considerably from
the installation of a Convex 120 ‘affordable’ supercomputer by the University of the Orange
Free State in 1991. Indeed, some of the simulations would not have been possible without this
computer. A copy of these programs will be supplied to the Computer Centre For Water
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Research, on the Campus of Natal University at Pictermaritzburg,
has been installed recently. Researchers who want to use the
computational power, can therefore approach this Centre.

where a similar machine
se models, but lack the




CHAPTER 2

.THE CONCEPTUAL MODEL FOR GROUNDWATER MOTION

21  GENERAL

The conceptual model used in this study of groundwater flow, is the porous medium model, A
complete description of the model can be found in Bear and Bachmat (1990), Botha et al (1990)
and Bear (1979, 1972), The present discussion is therefore limited to those principles that play an
important role in the implementation of the model on a computer and its practical application.
A conceptual model is build around two basic quantities—varigbles and relational
parameters (Botha eral., 1990). The porous medium model for groundwater flow contains
one dependent variable and two relational parameters besides the spatial coordinates and
time. These are: the piezometric head, hydraulic conductivity and specific storativity (Botha
et al., 1990). The piezometric head and hydraulic conductivity are discussed in Section 2.2,
This is followed by a discussion of the porous continuum and its associated parameters in

Section 2.3, The conceptual model, its associated initial and boundary conditions and the
'forcing function,_for borehole's,, are discussed in Section 2.5,

22 FLUID PRESSURE IN A POROUS MEDIUM

2.2.1 The Piezometric Head

The motion of all luids on earth, not subjected to artificially applied forces, are governed by
two fundamental forces—the fluid pressure, p(x,1), and gravity. The effect of these two forces

are conventionally combined into g single variable, known as Hubert's potential or the
piezometric head, defined by the equation

O, 0)=h+z 2.1)

where z is the elevation of the fluid above a suitable reference datum, and

h(X,1) = L” dplpg (2.2)

the pressure head. The compressibility of water is so sm

all that the pressure head is often
simply taken as

h(x,1) = plpg 2.3)

although this is strictly only valid for incompressible fluids.
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8 The Porous Continuum

2.2.2 Hydraulic Conductivity

The flux of water through a porous medium—the volume of water flowing through aunitarea,
per unit of time, normal to the direction of flow—is a very important quantity in the flow of

groundwater. Based on the pioneering work of the French engineer Henri Darcys, this flux is
conventionally expressed in the form

q=-K(x,)Vé(x,r) (2.4)

where V@(x,?) is the gradient of the piezometric head and K(x,1) the hydraulic conductivity,
of the medium. The dimension of q is {1..T-1]. It has consequently become acommon practice
to refer to q as the Darcy velocity, although it is not really a velocity. |

The hydraulic conductivity, K(x,f), which describes the ease with which water can flow
thrmigh the porous medium, is in general a symmetric second rank tensor. In other Words, the
value of K depends on the direction in which it is measured (Botha et. al,, 1990). Such a
medium is called anisotropic. If K is not a function of x, the medium is said to be
homogeneous, otherwise it is heterogeneous. The porous media, associated with grouﬁdwa-
ter flow phenomena, vary from uniform, or homogeneous isotropic (K = a constant
throughout the medium), to heterogeneous anisotropic [K = K(x,1)].

Groundwater levels tend to follow the topography of the terrain closely (Van Sandwyk
etal., 1992), Tt is thus often assumed that groundwater flow is parallel to the earth’s surface.
This can only be true, according to Equation (2.4), if

D.¢(x,6)=0

The piezometric head in such an aquifer, will thus always remain constant, in the vertica]

direction. In other words the piezometric head in such an aquifer must satisfy the hydrostatic
equation

¢(x,t) = h+ z = constant

in the vertical direction.

2.3 THE POROUS CONTINUUM

2.3.1 Porosity

The volume of fluid thata porous medium can hold, is determined completely by the volume
of its pores. One can thus expect that this quantity will play an important role in the study of
fluid flow through a porous medium. The volume of pores will obviously depend on the
volume of porous material considered, and is thus not a particularly useful concept. Most
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descriptions of a porous medium are consequently based on the concept of porosity, defined
by the equation

AV, + AV,
€= lim —¥__la
Avi?:wo AV 2.3)

where

AV=AV, +AV, +4V,

is the total volume of porous material, and AV, AV, and AV, the volume of walter, solids and
air in AV, respectively (Botha et al., 1990),

The proper volume elemeny, AV, was introduced in Equation (2.5) to account for the
experimental fact that the ratio
o= AV, + AV,
AV

is not a constant in natural porous materials, as one might expect intuitively, but a function
of AV. From the mathematical point of view, this element should be large enough to hide any

microscopic properties of the medium, butalso small enoy gh to allow & (and other Quantities
derived from it) to be differentiable.

2.3.2 Water Contents and Saturation

The porosity is a very convenient measure for the volume of voids in a porous medium,
However, it is often as important to know how much fluid the medium contains in the study
of flow through an unsaturated, or variably saturated, porous medium, This quantity is
conventionally measured in terms of cither the water contents of the medium defined as,

8= lim —Aﬁ"—

2.6
AV-3AV, AV 2.6)

or the water saturation

S, = 0/¢

The advantage of the latter quantity is that it allows one to express the water contents of a
porous medium directly in terms of its porosity, -

2.3.3 Density

Another quantity that blays a particular Important role in the flow of subsurface fluids is
density. Because a porous material does not consist of 2 single component, density is a rather
ambiguous term to use in the case of 4 porous medium. This ambiguity is usually circum-
vented by introducing not one, but three densities, These densiﬁes, defined in terms of the
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proper sample volume, introduced in Equation (2.5), and the mass fractions
AM = AM,, + AM, + AM,

are:
(a) Density of solids p, = AM,/AV,
(b) Dry bulk density p,, = (AM, + AM,)/AV
(c) Wet bulk density p,, = AM/AV

2.3.4 The Moisture Retention Curve

It has been observed experimentally that the curvature of the menisci, formed by the remaining
capillary water with the matrix grains, decreases, if capillary water is removed from an unsaturated
porous medium. However, Laplace’s equation for capillary pressure requires that a decrease in
radius must be accompanied by a decrease in the pressure of the water. The pressure in an
unsaturated porous medium is thus closely related to the volume of water contained by the
medium. This relation, known as the moisture retention curve, can be conveniently expressed
mathematically in terms of the volumetric water contents 6, defined in Equation (2.6), as

Y= y(8) 2.7)

where = ~h is known as the matric pressure head of the fluid.
The moisture retention curve, of which an exam-

ple is shown in Figure 2~1, cannot be expressed in

simple mathematical terms. It is not only highly non- _

linear, but also shows a hysteresis effect. This means o~

that the curve is double legged, with one leg valid %

during the drying cycle (desorption) and the other one E

during the wetting cycle (sorption). This behaviour of E

the retention curve and the fact that it is difficult to | =

withdraw water from the unsaturated zone, are prob- 3

ably the reasons why geohydrologists have not paid

much attention to the unsaturated zone in the past. 8 -
It is interesting that the moisture retention " Moisture Contents (8) °

curve generally does not approach infinity along
the matric pressure axis as the moisture contents
decreases, but along a line through a small positive

Figure 2-1 Schematic illustra-
tion of a soil moisture retention curve.

value of 6. This quantity, known as the residual water contents, is usually denoted by the

symbol 8,. The water contents of a soil are consequently often expressed in terms of its
reduced water contents
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©=(6-6,)/(6,-6,) (2.8)

where 6; (= g) is the saturated water contents of the medium.

Viewed from a mathematical point of view, one should be able to represent the moisture
retention curve by a smooth and continuous relation. However, since the curve can only be
. determined experimentally, this is not possible. The curve is consequently often approxi-
* mated in practice by a smooth function. One function used for this iﬁurpose is the function

O =[1+(ay)"™ (2.9)

originally proposed by Van Genuchten (1980), where the parameters ¢ and n may be
considered as characteristic constants for a particular soil. Van Genuchten suggested in his
original paper that m should be taken as (1 - 1/n), butin a later paper (Van Genuchten and
Nielsen, 1985) that it should be considered as an independent third characteristic constant.
However, a detailed study has shown that his original prdposal fi
South African soils better. The variably saturated flow model, d
consequently based on Van Genuchten’s ariginal proposal.

A particular advantage of the Van Genuchten approximation in Equation (2.9) is that it
allows one to express the unsaturated hydraulic conductivity in the very simple form

ts the experimental data of
iscussed in Chapter 7, was

K(0) =K,0"%[1-(1-@Vmynp (2.10)

where K; is the saturated hydraulic conductivity. Since @1s a function of v, K(©) will also
be a function of wand thus the pressure head £ (Botha et al., 1990).

2.3.5 Specific Storativity

The volume of fluid that can be stored i (or retrieved from) a porous medium, is a very
important quantity in the management of groundwater resources. The water contents, 6,
would obviously be an ideal measure to use for this purpose. However, since both the
subsurface of the earth and water are compressible materials, 8 depends on the forces actin g
on the medium. It is thus not a very useful measure for saturated flow.

The quantity universally used to measure the volume of fluid in the saturated zone i the
specific storativity, or simply storativity, which is related to the compressibility of the medium, ¢,
and the compressibility of water, f3, through the equation (Bear, 1979; Bear and Bachmat, 1990)

So = pglo(l-€) + ef] (2.11)

where p is the density of water and g the acceleration of gravity.

If the dependence of P on the fluid pressure is neglected, Equation (2.1 1) can also be
expressed in the form (Botha etal., 1990),
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1 AV,

AV, Ap

where AV, is the volume of water added to (or withdrawn) from a porous medium with
volume AVp, and A¢ is the resulting change in piezometric head. This equation is the basis
for the common interpretation of storativity as the volume of water released from a unit
volume of aquifer, per unit decline in piezometric head.

0

24 THE CONCEPTUAL MODEL FOR GROUNDWATER MOTION

2.4.1 Mathematical Formulation

Groundwater flow is a physical phenomenon and thus subject to the law of mass conserva-
tion. The easiest way to derive a conceptual model for groundwater flow is thus to combine
the law of mass conservation with Darcy’s law in Equation (2.4). By following this
procedure, itcan be shown (Botha etal., 1990; Huyakom etal., 1986b; Huyakorn and Pinder,

1983) that the most general conceptual model for groundwater flow is described by the
equation

D,[pB(x, 0} =V ¢ [pK(x,)Vo(x, 0]+ p £(x,1) (2.12)
where

Flx,0) = Volume of fluid entering a volume of porous material per unit time
1) =

(2.13)

Volume of porous material
is known as the strength of any sources or sinks that may be present in the medium.
Although density-dependent flow phenomena are ofien encountered in groundwalter
investigations (e.g., the problem of sea-water intrusion), the present investigation will be
restricted to density-independent flow problems. This means that one can divide Equation
(2.12) throughout with p to obtain the somewhat simpler equation

D,[8(x,1)] =V [K(x,)V(x,0]+ f(x,1) (2.14)

Equation (2.14) is a three-dimensional partial differential equation, which contains
different dependent variables on its left- and right-hand sides. Such a formulation is not very
useful when a differential equation has to be solved analytically. Equation (2.14) is
consequently usually transformed into an equation with one dependent variable. This can be
achieved by using the water retention curve, defined in Equation (2.7), to replace 8 with ¢.
However, Allen (1985) has shown that it is easier to satisfy the law of mass conservation in
a numerical approximation based on Equation (2.14), than in one that is based on the

transformed equation. The two numerical flow models, developed in this investigation, were
consequently based on Equation (2.14).
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Equation (2.14) may be somewhat perplexing to someone not acquainted with unsatu-

rated flow. However, it is not too difficult to show (Botha et al., 1990) that Equation (2.14)
reduces indeed to the better known equation

SoD9(x.1) = V o [K(x,) Vo (x,1)] + f(x,5) C(2.15)

where Sy is the storativity, defined in Equation (2.11), for saturated flow.
Equation (2.15)is amuchsimpler equation than Equation (2.14), from the mathematical
point of view. However, the superior numerical properties su ggest that it still would be more

advantageous to use Equation (2.14) in developing a computer model for saturated flow. Ag
will be shown in Chapter 6, this is indeed the case,

2.4.2 Initial and Boundary Conditions

The solution of any partial differential equation always contains a number of integration
constants, that have to be determined in one way or another. The method, universally used
for this purpose, is to associate the equation with an interior domain (2say)anda boundary
( Q say), as shown in Figure 2-2. The integration constants can then be determined by
prescribing suitable initial and boundary con-
ditions (Botha and Pinder, 1983).

Ttis usually not very difficult to choose a
suitable initial condition fora given equation.
All thatis needed, is to know how the depend-
ent variable varies over Q at a certain mo-
ment, usually taken as £, =0. An initial condi-
tion for Equation (2,14) can, for example, be
expressed in the form

P(x.00) = §(x) (xeQ)  (2.16)

where din(x) is the piezometric head at the time ~
t=0.

Figure 2-2 Schematic representation
In contrast to what one may expect, the  of the domain, Q, of a differential equation

theory of differential equations allows only and its associated boundary, Q.

three types of boundary conditions to be associated with the differential equation

Lu(x,1) = f(x,1)
These are (Hildebrand, 1976):

(a) Dirichlet conditions (or boundary conditions of the first type)
0d(x, Ju(x, ) = y(x,t)
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(b) Neumann conditions (or boundary conditions of the second type)
Bx,6)Vu(x,t) = y(x,1)
(¢) Cauchy conditions (or boundary conditions of the third type)
o(x, u(x, ) + B(x,)Vu(x,t) = v(x,1)

where a(x,1), (x,f) and 7(x,?) are known functions of x (e ) and £, If v(x,1) =0, the conditions
are said to behomogeneous, otherwisc they are known as non-homogeneous boundary conditions.

Dirichlet boundary conditions are usually associated in groundwater flow with a body
(or bodies) of surface water (rivers, lakes or oceans) that intersects an aquifer. A suitable
Dirichlet boundary condition for Equation (2.14) will thus be of the form

Bx,6) = 9y(x,1) (x&dQ,, t>0) 2.17)

where ¢(x.) is the known piezometric head in the body of surface water,

Neumann boundary conditions, also referred to as flux boundary conditions, are
probably the most frequently used (and misused) type of boundary condition in groundwater
flow phenomena. This type of boundary condition is usually associated with a flux of material

across the boundary Q. A suitable Neumann condition for Equation (2.14), would thus be
of the form

q(x,t)on =-[KVo(x,)]en=g,(x,) (x€dQ,,t>0) (2.18)

where n is the outwardly directed unit vector, normal to the boundary 2Q, see Figure 2-2.

Cauchy boundary conditions are usually associated with semi-permeable boundaries in
groundwater flow phenomena. Boundaries of this type occur where a thin layer of low
permeable material separates a porous domain and a body of water, €.g., at the bottoms of

recharge ponds (artificial and natural), rivers and lakes. A Cauchy boundary condition is
usually expressed in the form

neKVo(x, 1)+ Kid(x,t) = Kipo(x,1) (x€dQ,t>0)

when applied to Equation (2.14), where ¢y is the piezometric head in the semi-permeable
layer and K= Ko/, with [ the thickness and K the vertical hydraulic conductivity of the semi-
permeable layer,

A Cauchy boundary is a rather special kind of boundary and not easy to apply in
groundwater flow problems. It was consequently not implemented in the numerical flow
models discussed in Chapters 6 and 7.

It is important to note that the types of boundary conditions can be mixed freely when
appliedto a given differential equation. The only constraint is that the conditions should cover
the boundary, €, fully.

Although the three types of boundary conditions introduced above are the only
boundary conditions allowed for, by the theory of partial differential equations, there is
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nothing that prohibits a change in boundary condition from one type to another as time
progresses. Two types of boundary conditions, that occur

quite frequently in groundwater
flow phenomena, and precisely do this, are prec

Ipitation-evaporation and seepage boundary
conditions. These conditions will now be discussed in more detail,

2.4.3 Precipitation/Evaporation Boundary Conditions,

Precipitation and evaporation boundaries are usually associated with the surface of the earth,
They differ mathematically only in the sense that the fluxes associated with them have

opposite directions. However, since the physical processes involved are quite different, the
boundaries are usually treated as separate boundaries.

In deriving the conceptual model for groundwater flow, it is customarily assumed that

fluxes out of the domain represent a loss, and fluxes into the domain a gain in the volume of

water contained by the domain (Botha e¢ al., 1990), Precipitation thus should be considered

as a positive flux, even though it is directed towards the earth’s surface. However, such an

interpretation is in direct contrast to the routine interpretation of ‘up’ as positive in a right

handed Cartesian coordinate system. Many discussions of groundwater flow therefore
sometimes use a coordinate System rotated through 180", However, this ¢convention will not

be followed here. The positive z-axis will always be taken as normal to the earth’s surface in
the direction of the atmosphere.

To derive suitable expressions for precipitation events, consider the situation of an

unsaturated soil surface with a hydraulic conductivity Ky, subject to a rainfall intensity R.

Everyday experience indicates that on reaching the earth’s surface, the rain immediately
begins toinfiltrate, if the surface is not saturated. However, i
to form ponds on the surface rather than infiltrate. This phe
be explained as follows.

nheavy rainstorms, the rain tends
nomenon, known as ponding, can

Rainwater can only infiltrate into the soil surface if the normal rainfall intensity is larger

than or equal to the normal flux through the surface. This situation can be described
mathematically through the inequality

neR=nekR>neK Vo

where k is the unit Cartesian vector in the z-direction and R the intensity of the rain. This
yields the non-homogeneous Neumann condition

neKVo=nekr (2.19)

as the condition R must satisfy in order for waterto infiltrate the soil surface. The soil’s ability
to transmit water is not without a limit, however, This limit is reached, for any value of Vo,

when the soil becomes saturated, i.e., when the hydraulic conductivity of the surface, K, Say,
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is equal to its saturated hydraulic conductivity, K. The rainfall boundary condition assumes
in this case the form

neKk=nekR=ne[N,-Rlk=0
There is thus a limit to the rate at which a soil can absorb rain, given by
R=N;, or R=K,

in the case of anisotropic and isotropic soils respectively, where N, is the saturated equivalent of

N=NZ+NZ+ N2 (220) | |

Ponded Water
with
Ny=nK. +nK, +nK,
Ny=nKy+nK,+ n,Kyy

N, =nK,+nK, +nK,

and K,y the uv-th component of K_As soon

as this limit is reached, the rain begins to

pond and the boundary condition has to be Figure 2=3  Definition of the various sym-

o . bols used in describing the distribution of
changed to the Dirichlet condition water on and in the earth’s subsurface.

oD =¢,(x,0)=h,(x,)+z5 (2.21)

where hy(x,t) is the depth of the ponded water on the surface, shown in Figure 2-3.

The earth’s surface looses water through either one of two phenomena: evaporation and
transpiration. Although there are situations where one of the processes completely domi-
nates the other (bare soil surfaces and dense forests, for example), they usually occur
simultaneously, hence the designation evapotranspiration. Evapotranspiration is first con-
trolled by the atmospheric conditions prevalent at the surface of the earth. However, just as
the infiltration rate of rain is controlled by the hydraulic properties of the soil, so is
evapotranspiration. For no matter how large the atmospheric evaporation demand (AED)
may be, the earth’s surface cannot supply more water than what can be transmitted through
the upper soil layers, or plant roots. The actual rate of evapotranspiration, E, is thus controlled
by an inequality of the form

neK,Vé>neE
and not the AED. The boundary condition to be used with evapotranspiration is thus the non-
homogeneous Neumann condition

neKVé=neE =nekE (2.22)

However, the ability of a soil to yield water, is limited by its residual water contents, 8y, or
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the equivalent residual matric head, Ar. Evapotranspiration is thus also limited by an
inequality of the form

ne[N, —-Ek>0

where N, is the equivalent of N in Equation (2.20) when K =K, the residual hydraulic
conductivity of the soil. If this condition cannot be satisfied, the boundary condition has to
 be changed to the Dirichlet condition

P0G = ¢ (x,0) =h,(x,0) + 7, (2.23)

Itis thus of the utmost importance that the modeller of groundwater flow should have a good
knowledge of the prevailing climatic conditions if he is to prescribe effective boundary
conditions for evapotranspiration,

Experimental evidence suggests that precipitation is always accompanied by evapo-
transpiration from the earth’s surface. However, the magnitude of evapotranspiration is then
usually much smaller than the rainfall intensity, with the result that it can be neglected, The
only noteworthy exception 1o this rule is that of a barren hot surface, where the rain may
evaporate the moment it reaches the soil surface. |

2.4.4 Scepage Boundary Conditions

A phreatic aquifer can be divided naturally into three domains: a permanently unsaturated,
a drainable and a permanently saturated domain, see Figure 2-4. As used here, the term
drainable domain refers to an unsaturated part of the aquifer that becomes saturated during
recharge events. The drainable domain can thus be characterized as a domain that will tend

to replenish the unsaturated and saturated domain, when water is withdrawn from the latter.
The drainable domain is thus not static,

The drainable domain in a phreatic aquifer
is often exposed to the atmosphere along val-
leys, the shores of oceans and lakes and tiver
banks. Water will thus tend to drain from the
domain towards the atmosphere, ifthe domainis
saturated, h(x,f) > 0; thereby creating a seepage
face, see Figure 24, This situation can be
described mathematically through a Dirichlet
boundary condition of the form

Aumosphere

(X, 1) = Py (x,) =z (2.249) . _
Figure 24 Schematicrepresentation of
This condition must, however, be changed to  the different domains in a phreatic aquifer.
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arainfall orevaporation boundary condition, as soon as the domain becomes unsaturated, i.e.,
if the pressure head h(x,r) < 0. The correct boundary condition to use with a seepage face is
thus either a Dirichlet condition, given by Equation (2.24), and a rainfall or evaporation
boundary as described by Equations (2.19) to (2.21), and Equations (2.22) to (2.23),
respectively. |

It is impossible to determine the state of the soil surface in advance for precipitation,

- evaporation, or seepage boundaries. These boundary conditions can thus only be applied
iteratively.

2.5 .SOURCES AND SINKS

Boreholes are otten represented as point sources when solving the two-dimensional equiva-

lent of Equation (2.14) (Botha et al., 1990). This is achieved by expressing the source term,
Sx.t) of Equation (2.14), in the form

Fx,8)=0(08(x -xy)

where xp is the position of the point source, Q(f) the rate at which water is discharged from
the aquifer and &x — xg) the Dirac delta function, defined by the equation

[,8()8(x - xq)dx = g(x;) S g oS ST S TS F

Original Piezometric-‘g =05 T ‘;. @

. 8o o D oy .
This approach can, unfortunately, no longer ianae NIRRT Zo.
be applied in the case of Equation (2.14), '.-x‘é,"-.c-’,:,-". Expiped
. . > A e

since the thickness of the aquifer cannot be |57 : ;’“ Loge 9 o]

neglected. One has thus to use either a line
source, which cannot be represented easily

| Blometic Lol
by a Delta function, or another approach. ’fq%ﬁ""’"’“"’v"ﬁ"’*

The first possibility would be to deter- | |- D
mine fix,t) directly from its definition in
Equation (2.13). However, this implies that
the volume of the aquifer from which the

R S S

Wiz, 1)

HIPIEE NS olgin NSy ppgor e

Figure 2-5  Distributionof the piczome-
tric head near a borehole, before and after
water is withdrawn must be known, which is pumping was initiated.

never the case. Vos (1984) circumvent the
problem by equating the volume of porous material with the total volume of the aquifer. This
may be true for a uniform aquifer, but not for a heterogeneous layered aquifer.

A borehole is not part of the aquifer, but forms a boundary of the aquifer, as can be seen
by comparing Figures 2-2 and 2-5. It would thus be mathematically more correct to treat a
borehole as a boundary to the aquifer and not as a source or sink. The only difficulty
associated with this interpretation is what type of boundary condition to use in practice.
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A possibility, that immediately presents itself, is to consider the borehole as a seepage face,
sincea borehole is opento the atm osphere. However, aborehole usually contains a certain volume
of water in it, The Dirichlet boundary condition in Equation (2.24) has thus to be changed to

D= (x0=w(z,1) [h(x,0)20]

where w(z, ) is the water pressure head along
the side of the borehole, sec Figure 2-6,

At first sight it would seem as if this
approach does not allow one to specify a
dischafge rate for the borehole. However, this
is nottrue. To see this, let O(x, 1) be the rate at
which water is discharged from the borehole
and Qu(x, 1) the rate at which the aquifer
discharges water to the borehole, subject to
the boundary condition in Equation (2.25),
The water level in the borehole will clearly
rise, if O(x, £) < Qu(x, t},witha corresponding
increase in w(z,t), and conversely. The effect
that Q(x, 1) has on the boréhole, and thus the
aquifer, is therefore implicitly contained in
w(z, £).

Aninteresting situation arisesin thecaseof
afully penetrating borehole, if O(x, £) and w(z, £)
are both constant. This implies that V¢y(x, #)
(and thus the Darcy flux through the side of the
borehole) must be consﬁant, whenever w(z, ) =
wo2d, where disthethickness of the aquifer, see
Figure 2-6, These assumptions allow one to
replace the Dirichletconditionin Equation(2.25)

with the more manageable Neumann boundary
condition

fotal discharge

(2.25)

Domain 5[]

Figure 2-6  Illustration of the different
saturation zones near a borehole drilled into
a single layer aquifer. .

3
g

| Aquifer 2

Aquifer?_i

Figure 2-7 Graphical idealization of a
multi-layer aquifer, :

_O(x,1)

gn(X,t) =

total area of borchole ~ 2ard

where g, (x, ) is the normal Darcy flux throu
the borehole (Huyakorn and Pinder, 1983).

(2.26)

gh the side of the borehole and r the radius of

The Neurnann boundary condition in Equation (2.26) s, strictly speaking only valid for a
confined aquifer, continuously in contact with the borehole. Tt cannot be used for a phreatic, or
discontinuous multi-layer aquifer, such as the one shown schematically in Figure 2-7,
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There is one aspect of treating a borehole as a seepage boundary that needs to be
considered in more detail, before leaving this discussion—the evaporation condition. The
water that leaves a seepage face, when the evaporation condition applies, will invariably be
in the form of water vapour. Therefore, it would seem to be more correct not to take this loss
into account, when calculating w(x, #) in Equation (2.25) for a phreatic or discontinuous
multi-layer confined aquifer.

A seepage boundary can only be applied iteratively, as noticed in Section 2.4.4. Since
the present investigation was more concerned with continuously layered confined aquifers,
the Neumann condition, Equation (2.26), is the only condition implemented for boreholes in
the numerical models discussed in Chapters 6 and 7.




CHAPTER 3

THE CONCEPTUAL MODEL FOR GROUNDWATER
CONTAMINATION

3.1 GENERAL

The previously held believe by man that waste buried in the soil surface is safely disposed
of, is today responsible for one of the greatest threats to the earth’
What man did not seem to realize, is that the waste may be dissolved by water infiltratin ginto
the earth’s surface and accumulate in the groundwater, From there it can be transported, over
vast distances, to enter rivers, streams and lakes that feed the surface reservoirs,

Groundwater is to some extend better protected from pollution

s potable water resources.

than surface water, by the
unsaturated zone of the earth’s surface, However, this property and the slow speed at which

groundwater normally moves, make it very difficult to clean a contaminated aquifer,

It is possible to clean a contaminated aquifer by pumping the contaminated waler out.
Nevertheless, the procedure can be simplified and streamlined, if it is supplemented with a
conceptual model of the aquifer (Princeton University Water Resources Pro gram, 1984; Kauffmann
and Kinzelbach, 1990). Such a mode] can also be extremely useful in an evaluation of the impact
that existing and new waste disposal sites may have on the environment (Huyakom et, al,, 1984).

The conceptual model most widely used in the study of groundwater pollution today,
is the hydrodynamic dispersion equation. This equation contains one dependent variable—
the concentration of dissolved solids—and atleast two relational parameters—flow velocity
and the dispersion coefficient, Since groundwater flow velocities can be obtained directly
from the flow model, see Chapter 2, they will not be discussed here.

Many of the pollutants found in groundwater are chemically reactive. These reactions
should thus be included in the conceptual model whenever there is a possibility for them to
occur. This is not difficult, if the chemical reaction rates of the reactions are known. The only
problem is that these reaction rates are often not known and that they, moreover, vary
considerably from one aquifer to another. The present model was therefore restricted to the
two most common types of reactions——adsorption and decay. This assumption introduces
two additional relational parameters into the model. These relational parameters, which are
related to the concentration of the pollutant, are discussed in Section 3.2, together with the
hydrodynamic dispersion tensor. This is followed by a discussion of the actual conceptual
model and its associated boundary conditions in Section 3.3.

—21 -
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3.2 BASIC TRANSPORT PROCESSES IN GROUNDWATER

3.2.1° Introduction

The conceptual model for hydrodynamic dispersion,'in use today, is described in a number
- of books and treatises (Bear and Bachmat, 1990; Botha et. al., 1990; Dagan, 1989; and Bear,
| 1979). The present discussion will therefore be limited to aspects that are particularly
important in the development of a numerical, mass transport model,

3.2.2 Basic Principles

A physical phenomenon can only be studied quantitatively, if at least one of its characteristic
features can be measured. The most fundamental feature in groundwater flow is certainly the
concentration of the dissolved solids; i.e., the quantity of solids dissolved in a unit volume
(or mass) of water. The measure conventionally used in measuring concentration in
groundwater pollution studies is the volumetric concentration, defined as

c=(mlv)

where m_ is the mass of dissolved solids in the volume of fluid v.

The concentration of a non-reactive dissolved solid is usually notinfluenced by the solid
itself, or the physical properties of the container. There are, however, two well-known
exceptions to this rule: (a) where the mass of a dissolved solid tends to decay exponentially
with time (as in the case of radioactive materials) and (b) where the solid is adsorbed by the
walls of the container. The reaction rate of the first type of reaction can be conveniently
expressed through an equation of the form

D, (t) = —Am,(t)

where my(f) is the number of ions in solution at time ¢ and A, the decay constant, is a
characteristic constant of the decaying chemical compound. This type of reaction can thus
be easily incorporated into the conceptual model. The same is, unfortunately, not true in the
case of adsorption, since this does not depend on the concentration alone, but also on factors
such as the temperature and acidity of the solution. Nevertheless, the available experimental
data indicate that the fraction of dissolved solids, 8, adsorbed by a porous medium can be
described by a relation, or isotherm, of the form (Bear, 1979)

s=ml(m, +m)=m,/m, = f(c,1)

where m, is the mass of dissolved solids adsorbed by a volume of porous material with mass
m; and total mass m;,
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The isotherms observed in groundwater pollution studies can be quite complex. The
present model was therefore limited o materials whose adsorption properties can be
described by the simple Freundlich isotherm (Bear, 1979)

s=K,c

where Ky is known as the volumetric distribution coefficient,

3.23 The Dispersion Coefficient

Experimental evidence indicates that a pollutant starts to disperse in all directions as soon as
itis introduced into an aquifer, see Figure 3-1. Although very little is known of the physical
processes that are responsible for this behaviour, one obvious candidate is molecular
diffusion. This form of dispersion can be described mathemati

cally through a Fickian type
of equation

Jm=-6D, Ve (3.1)
where J,, is the molecular diffusive flux and

D, =TD

the molecular diffusion tensor. The diffusion tensor thus consists of two factors: the ordinary

diffusion coefficient of the substance, D, and the fortuosity tensor, T. The tortuosity tensor

was introduced by Scheidegger (1974) to account for the tortuous paths a molecule has to
travel in a porous medium. '

-

Figure 3-1 Dispersion of a slug of pollution introduced into an aquifer with flow
restricted to the x-direction as a function of time.

The molecule of a dissolved solid can be expected to collide frequently with the matrix,
when moving through a porous medium. Such a collision must change the velocity of the
colliding molecule, accordin gto Newton’s second law of motion. These changes in velocity
could obviously also contribute to the dispersion. The problem with this interpretation is that
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the changes in velocity occur on the pore or microscopic level; a quantity very rarely observed
in groundwater investigations. However, it is not unreasonable to assume that the micro-
scopic velocity, v*, is related to the seepage velocity of groundwater through the equation

ov =q+qq

- where 8 denotes the volumetric water contents of the medium, q the usual Darcy velocity and
qo deviations in 6v” from q, caused by the collisions between the dissolved molecules and
porous matrix. By using this assumption the mass flux of dissolved solids per unit area of
porous medium can be expressed as

Jp=tatJy=clq+qp) (3.2)

The terms J; = cq and J4 = cqp are consequently often referred to as the advective and
dispersive fluxes, respectively. Notice that J,, is caused by the usual flow of the water, while
Ja is caused by the collisions between the dissolved molecule and the porous matrix.

Based on his examination of a number of laboratory experiments, Bear (1972) suggests
that the dispersive flux can be described mathematically by the equation

Qg = -GDdVC (3.3)

where p is again the density of the fluid. Bear (1972) also uses a number of theoretical
arguments o show that the ij-th component of the dispersion tensor, Dy, is given by

0Dy, 5y = Crqdy(ay, ~ er)gq;lq (3.4)

where g is the magnitude of the Darcy velocity, q.4i(i=1,2,3)its three Cartesian components

and
5 = {1 (i=))
Y 10 otherwise

the Kronecker delta. The two parameters, ¢, and orr, are known as the longitudinal and
transverse dispersivities, respectively. It may scem strange that there are only two param-
cters, even though hydrodynamic dispersion is a three-dimensional phenomenon. However,
experimental and observational experience indicates that dispersion is of the same magni-
tude, in the plane perpendicular to the main direction of flow.

It is interesting to note that the molecular diffusion and the dispersive flux are linear
functions of Vc. The total flux of dissolved solids, attributable to hydrodynamic dispersion,
is thus given by the sum of Equations (3.1) and (3.2) and conventionally expressed as

J=J,+J,=-p6D,Vc

where
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D,=D,+D, | (3.5)

is known as the coefficient of hydrodynamic dispersion, or dispersion tensor.
3.3 THE HYDRODYNAMIC DISPERSION EQUATION

331 General

There are a number of methods that can be used to derive the hydrodynamic dispersion
equation (Botha ez, al., 1990; Bear and Verruijt, 1987; Voss, 1984; Huyakorn and Pinder,
1983; and Bear, 1979, 1972). Although these equations are a
there are some subtle differences in their physical interpret
developed in this investigation was consequently based on ¢

mass transport equation, as it is sometimes called,

1 equivalent mathematically,
ation. The computer program
he hydrodynamic dispersion or

ACE: +opK0)+Ve(qe)=Ve (6D, Vo)A@ c+ pbch).+ fes (3.6)

where ¢, is the concentration of the source term and fx,¢) its strength. This form of the
hydrodynamic dispersion equation is the one used in the majorily of published numerical models.

Equation (3.6) is nothing else than a mathematical description for the law of mass
conservation as it applies to the masses of the dissolved solids and fluid, However, each of the
components must also satisfy the law separately. The possibility thus exists that EQuation (3.6)
contains a number of redundant terms, That this is the case has been shown by Botha et al. (1990),
The program for mass transport in Chapter 8 was consequently based on the reduced equation

(60 +p,K )Dic+qVe =V *(6D,Vc)- A0 oK)+ fle, —¢) 3.7)

There are four basic assumptions that should be taken into account when using Equation
(3.7), in groundwater contamination studies. These are: (a) deformations of the porous
medium can be neglected, (b) the flow is density independent, (c) the concentration of the
pollutant decays exponentially and (d) reactions between the pollutant and aquifer material
can be described by a simple Freundlich isotherm, Equation (3.7) can be simplified somewhat

under certain conditions, for example when working with stable materials, or a conservative
tracer, the terms containing A (or K,) can be dropped.

3.3.2 Initial and Boundary Conditions

The hydrodynamic dispersion and groundwater flow equations are both parabolic partial
differential equations, see Equations (3.6) and (2.12) respectively. The initial and boundary
conditions to use with Equation (3.6) are, therefore, very similar to those of Equation (2.12).
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The initial condition can thus again be expressci as

c(x,0)=co(x) (xeQ) (3.8)
while the boundary conditions will be a combination of either a Dirichlet condition

c(x,0)=c(x,t) (xe Y, t>0) (3.9)

with ¢1 a known function of x and ¢, a Neumann condition

ne §DVe(x,f)=nec,q,(x,t) (xe aQ,) (3.10)

and a Cauchy condition

neqc—ODVe(x,0)l = necgo(x,f) (xedQ,) @G.1D

where ¢, is the concentration of dissolved solids in the boundary flux q,(x,t). Although these
boundary conditions can be applied in the same manner as those of the flow equation, there
are a few subtle differences that need to be taken care of. For example, a homogeneous
Neumann boundary condition is often used in the modelling of groundwater flow (Pinder and
Gray, 1977), especially when the boundaries of an aquifer are not known precisely. However,
there are very few (if any) natural materials that are not subject to molecular diffusion
processes. The use of a homogeneous Neumann boundary condition in modelling a
contaminated aquifer, could therefore lead to a considerable overestimation of the contami-
nation, if the condition does not apply. Indeed, all indications are that one should never use
a homogeneous Neumann boundary condition in the modelling of hydrodynamic dispersion,
unless there is sufficient observational evidence to support it.

An aquifer is often contaminated by a sudden leak, or spill, of hazardous materials at the
earth’s surface. Since the concentration of the materials can usually be determined, it would
be quite natural to use a Dirichlet type boundary condition in such a situation. However, Batu
and Van Genuchten (1990) has pointed out recently, that such an approach can also lead to
an overestimate of the pollution, and thata Cauchy type condition would be more appropriate
in such a situation.

Another fallacy often committed in the modellin g of hydrodynamic dispersion is to use
the same type of boundary condition with the dispersion equation than the one used with the
flow equation. However, this need not be true in general as the following argument will show.
In the case of groundwater flow a Neumann boundary condition can be regarded as a control
of the mass of fluid that enters or leaves the domain, £, but not in the hydrodynamic
dispersion. Here the flux of mass is controlled by the Cauchy condition, as an application of
Equations (3.1) and (3.2) to both sides of the boundary will show. A Neumann boundary

condition in the flow equation should thus always be replaced with a Cauchy boundary
condition in the dispersion equation.
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Figure 3-2  Vertical cross-sections through (a) a clean aquifer with a pollution source
and (b) a polluted aquifer with a sink.

3.3.3 Sources and Sinks in Hydrodynamic Dispersion

Itis rather interesting to compare the source term of the flow and hydrodynamic dispersion

equations. The source term for the flow equation is a simple function, fix, 1), that changes si an
when a source is replaced by a sink, but does not vanish

(unless the source or sink itself
vanishes). The source term in the dispersion equation, Jx,0(

Cs—C), Consists on the other l{_é__ind
of two factors: the first of which describes the strength of the source (sink) and the second

the difference in concentration between the source (sink) and aquifer. Since a sink. by its very

definition, withdraw water from an aquifer; this water must h

ave exactly the same concen-
tration as the water in the aquifer, i.e., ¢, =

¢, see Figure 3-2, The source term thus vanishes
from Equation (3.6) whenevera sink(s)is presentinthe aquifer. Care should thus beexercised
with the source term, when using the hy

drodynamic dispersion equation as the governing
equation for contaminant transport







CHAPTER 4

NUMERICAL APPROXIMATIONS

4.1 GENERAL

The major objective of this project was to evaluate the differences between two— and three-
dimensional conceptual models in the simulation of groundwater phenomena. This could
only be achieved with models that use the minimum assumptions and approximations. Since
very few analytical solutions are known for the three-dimensional flow and dispersion
equations, numerical methods had to be used for the solution of the governing equations,
There are a number of analytical solutions and computer programs (Botha et al., 1990,
Voss, 1984; Walton, 1984; McDonald and Harbaugh, 1983; Davis and Neuman, 1983; Pinder
1974) available at the Institute for Groundwater Studies, suitable for the
groundwater flow phenomena. However, the Computer programs for thre
phenomena are all based on a number of ad hoc assumptions that donot sati
this investigation. It was consequently necessar

simulation of
e-dimensi_onal
fy the needs of

y to develop new computer programs for
three-dimensional flow and dispersion phenomena. Some of the algorithms used for this

purpose had to be developed from scratch, The discussion in this chapter will therefore be
devoted mainly to these algorithms. The programs themselves are described in Chapters 6
through 8, where they are also used to discuss some relations betwe
dimensional conceptual models.

Areview of the literature (Botha and Pinder, 1983; Zienkiewicz, 1977; Pinder and Gray,
1977) indicated that the Galerkin finite element approximation would be the most efficient
method to use for the present purpose. Although the basis functions for the two-dimensional
Galerkin finite element approximation are widely discussed in the literature (see the
references sited above), the same cannot be said of the three-
more detailed discussion of the tri-linear basis functions,
therefore included in Appendix A,

en two-and three-

dimensional basis functions. A
used in this investigation, are

The numerical solution of the saturated and unsaturated flow and hydrodynamic
dispersion equations is frequently discussed in the literature. However, no reference could
be traced for the solution of the variably saturated flow equation, described by Equation
(2.14). Work done earlier on the two-dimensional variably saturated flow equation (Botha,
1986), has shown that the method proposed by Allen (1985) for the unsaturated flow equation
can be readily adapted for the variably saturated flow equation, This approximation and its
specialization to the saturated flow equation are discussed in Section 4.2, The approximation
for the hydrodynamic dispersion equation ig discussed in Section 4.3,

~29 ..
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4.2 DISCRETIZATION OF THE FLOW EQUATION

4.2.1 Variably Saturated Flow

As has been shown in Section (2.3.4) the relation between the moisture content and pressure
head is highly non-linear. The governing equation for variably saturated flow

D,[p6(x,1)] =V o[ pK(x, )V p(x, )] + pf (x,1) (2.12)

is thus also highly non-linear, at least in the unsaturated part of the domain.

It is rather unusual to try to solve a differential equation, such as Equations (2.12) and
(2.14), with two dependent variables, 8(x,f) and &(x,f). One possibility, to prevent this
double-dependent variable formulation, is to replace 9(x,t) with ¢(x,£). This can be done quite
easily by using the moisture retention curve in Equation (2.7). Unfortunately, there does not
exist an efficient numerical approximation for this ¢-based equation that conserves mass
(Milly, 1985). However, Allen (1985) and Celia et al. (1 990) have shown that this difficulty
can be avoided, if Equations (2.12), or (2.14), is used directly.

Allen’s method is based on the observation that any function, such as p&(x,t), can always

be expanded over an interval [#,, #,+1] in terms of the linear Lagrange interpolation
polynomial as |

PO, 1)y =1,(HpB(x,t,)+ L (DPOX,t, )+ E(T)

(Bothaand Pinder, 1983). Substitution of this expression for &(x,1), but without the error term

E(7), into Equation (2.12) and collocating the resulting equation at f = #,,1, yields the non-
linear, backward finite difference approximation

pO™ ! (x)~ p8” (x) = ALV o [pK(X, b, )VP(x,1,,1)] + A tpf(x,t,.)  (4.3)

where the superscripts, n and n + 1, refers to an approximation of p&(x,r) at times ¢, and #,,, 1,
respectively.

Equation (4.3) is still a non-linear equation and must thus be solved iteratively. There
are anumber of methods thatcan be used for this purpose (Botha and Pinder, 1983). However,
there exists a very effective Newton-Raphson type iteration method for the solution of
Equation (4.3). To show this, let h,';“ (x) be the solution of Equation (4.3) after m iterations
at the time step #,41. The solution after (mm +1) iterations can then be expressed in the form

Rl (%) = B (x) + K7 (%) (4.4)

where Sh*\ (x) represents a presumably small correction to ;"' (x). Since 6™*!(x) and

K(x,?) are both functions of h(x,?), see Equations (2.7) and (2.10), Taylor’s theorem can be
invoked to write
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k]|
POnLs = pOt + 5h1 D, pgrt (4.5)
and
PKL = pKEH + SR D, oK H (4.6)
~ Substitution of Equations (4.4) to (4.6) into Equation (4.3), now yield
(P8, + 8H D0 ~ p6"] = AV o [(oK "™ + SR oD YV + Ghith + 2))
+Apf(x,1,,)
or, after rearranging the terms on the right-hand side and assuming that the terms
| AWV o (SR DRIV 4 51 4 o1
are of second order magnitude,
[DWp O™ = AtV » (RIAVYISHI, = {6+ — g4 AV [PK Vgt
+ AP f(X,t41) (4.7)

Equatidn (4.7) has one major advantage above similar approximations for the variably
saturated flow equation (Milly, 1985)—it conserves mass. To see this, consider the integral
on the right hand side of Equation (4.7) over the domain Q

jQ RMAQ = —_[Q[p nt —pO"1dQ + At jQV *[PKIVor 140 + Arjgp F(%, 141 )AQ
= __J'Q [p 6:1+l _perl]dg + Atjan{Png+1V¢;+l] ends+ Arjnpf(x,t,,ﬂ_)dﬂ |

where n is a unit vector normal to the boundary ( Q) of 2, and use was made of the
divergence, or Gauss’, theorem (Hildebrand, 1976). The three terms on the right hand side
of this equation represent, respectively, a change in the water content of £2, the flux of water
through the boundary of Q and the yield of sources (sinks) during the period Az. The righthand
side, therefore, represents in effect the mass balance for variably saturated flow. This means
that if Equation (4.7) is iterated until R satisfies a prescribed tolerance, the solution of
Equation (4.7), ¢"" (x,#) will also satisfy the law of nass conservation within this tolerance,
The only difficulty experienced with the practical application of Equation (4.7} is that
the first term on the right hand side will vanish ag soon as the domain becomes saturated,
However, this is not a serious difficulty, since D,[pB(x,t)]can also be expressed as

D;(p8) = D, (p6)D;h

through the chain rule of differentiation. The first term on the right hand side of this equation

can be written in a more convenient form by replacing 6 with the water saturation, S, , as
defined in Section 2.3.3. This yields
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Dy (p6) = D, (peS,,) = 8,,Dy (pe) + peD, (S, )
=S,[eD,p +pD,e1Dyp + peDy(S,,)
=S, [epf + p(1 - e)exlpg + peD,(S,,)
=pS,[pglef + a(l~ &)+ peD,(S,,)
=pS,50 +pCh)

where Sg is the specific storativity of the medium, C(h) the moisture capacity and Equation
(2.2) was used, to express A in terms of p. The other two parameters

a=(1- e)"les and fB= p”lDPp

are the compressibility coefficients of the medium and water, respectively. Substitution of

this expression into Equation (2.12}, and using the same assumptions as in the derivation of
Equation (4.7), allows one to express Equation (4.7) in the form

[pSo — AtV » (pKE I VISAYY = —[pS (B! — )]+ AV o [pKMygnt])
AP f(X,y.1) (4.8)

This is the approximation to use in the saturated domain of variably saturated flow.

It is important to note that Equations (4.7) and (4.8) have been derived for density-
dependent flow. However, density-dependent flow wil® *:ot be discussed in this report, as has
already been stated in Section 2.5.1. The programs, described in Chapters 6 and 7, are
consequently based on the density-independent versions of Equations (4.7) and (4.8).

Equations (4.7) and (4.8) are fundamentally just two elliptic partial differential equa-
tions. The finite element method is thus the most efficient method with which to solve them

numerically (Botha and Pinder, 1983). This yields a system of linear equatlons which can
be expressed in matrix form as

(A —AtB)ShY = C+ At(BD' + D+ F) (4.9)
where A and B are matrices with elements
ay = [[[ [CHR™) + 8,5, (B g () 0 (x)d2
by = [[[ KV (x)V e, (x)d

and C, D, F and ®},"! vectors with components

¢ =[], €" - ¢ pina
.= [ KO W= [ Vo
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fi = [ £ e x0d

r+l _. . n+l
mi — ¥m (xi’tnﬂ)

The variable { is used here to denote either 8 or Sph, while @i(x) denotes the i-th three-

dimensional, finite element basis function. Care should thus be taken, notto confuse ¢;(x)and

the piezometric head ¢(x,t). These algorithms have been implemented in the Program SUF3,
~ discussed in Chapter 7, that can be used to simulate variably saturated flow.

4.2.2 Fuily Saturated Flow

The primary basis, for the iteration schemes in Equations (4.7) and (4.8), is the assumption

that the correction term Sh+! will vanishif mis sufficiently large. The left hand sides of hoth
equations must thus also vanish when this is true. Since z is inde

pendent of time, Equation
(4.8) can be rewritten as

So(@m'! = ¢") = AV e [Py gty +Arf(x,r,,;1) (4.10)

in this case. However, this is exactly the well-known backward finite difference approxima-

tion for the fully saturated flow equation, Equation (2.15). This shows that Equation (4.8) is

indeed the correct approximation to use with saturated flow in the mo

del for variably
saturated flow.

Itis important to note that Equation (4.10) reduces to a linear eIlip-tic equation for fully
saturated flow, since K does not depend on the piezometric head thep. Because it is always
easier to solve a linear than a non-linear differential equation (Botha and Pinder, 1983), a
Separate compulter program, SAT3, was consequently developed for Equation (2.15). This
program was again based on the Galerkin finite element approximation, described above, but
this time with Equation (4.10) as basis. This program 1s used in Chapter 6 to discuss the
behaviour of various types of saturated aquifers,

Experience, gained to date, indicates that the linear model executes from two to four
times faster than the variably saturated model, However, the program does not provide for
rainfall and seepage boundary conditions, because they can only be applied iteratively and
the variably saturated model converges very quickly in the case of a saturated domain,

4.3 THE HYDRODYNAMIC DISPERSION EQUATION

The computer program developed for contaminant transport, SUM3, has as conceptual
rmodel the linear hydrodynamic dispersion equation

(6 +p, K )Dic+qVe=Ve CHAZEYI(:E PoKy)c+ fle, —c) (3.7)
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Itis important to note that Equation (3.7) contains four parameters (the three components of
qand 6) thatdepend on the flow field. Therefore, it cannot be solved if the solution of the flow
equation is not known. Since the Galerkin finite element method was used to solve the flow
equation, it would be advantageous to use the same method for Equation (3.7).
The first step in the discretization Equation (3.7) is to approximate ¢(x, 1) with a linear
Lagrange interpolation polynomial, over the interval [tn, th+1], and then collocate the
| approximation at the time step ¢ = #;41. This yields again an elliptic type of equation, given
by
(9n+l '*'P;,K.g)(C"H _ C") — At[v ® (G"HD,,VC"“) —qe Vcn+l

_?b(enﬂ +pbKd )cn+l + f(c:+l - cn-l-l)]
or after rearranging the terms

(6"+1 +pbKd)C"+l + At[q ® anH _ V . (enHI_)hvcm-!.) _;L(enﬂ +pbKd )Cn-l»l
= (8™ +p,K,)e" + At f(e]™ - )]

An application of the Galerkin finite element approximation to this equation again yields a
system of linear equations, but this time of the form

(A +AIB)C™ = AC" +F (4.11)

where A and B (= B, + B, + B;) are matrices with elements

a; = [[[ (6" +p,K,)p0,a0
by =[], 0 Vo,a0

by = |[[ 6" DV, e Vg
by =Af[] (6™ +p,K)¢.0d0

and C” and F are vectors with components

c; =c"(x;)

fi= [l -epdas [ ome@ e e,

Itshould be noticed that the source term has been kept on the right hand side of Equation
(4.11). The reason for doing this is that the term vanishes in the case of a sink. However, it
must be remembered that the term feo+ in Equation (4.12) has to be transferred to the left hand
side of Equation (4.11) in the case of a source.

Although the Galerkin approximation in Equation (4.1 1) is easy to apply in theory, it
places a much greater burden on computing resources than the flow equation. The main
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reason for this is that the coefficient matrix (A +ArB
full coefficient matrix has thus to be stored and not

) is no longer a symmeiric matrix. The

only its upper triangle, as for the flow
equation (Huyakorn and Pinder, 1983). Moreover, the solution determined from Equation
(4.11) tends to oscillate, unless the finite element grid is sufficiently refined (Bear and
Bachmat, 1990; Huyakom et al., 1986a; Huyakom and Pinder, 1983). The situation thus
frequently arises where one has to use a more refined grid for Equation (4.11), than is
necessary for the flow equation. Some of the existing computer programs (e.g., Yeh and
Ward, 1981) allow one to use different grids for the flow and hydrodynamic dispersion
equations. However, this practice tends to introduce interpolation errors into the computed
concentrations and is also cumbersome to implement, This

option was therefore not
implemented in Program SUMS3. '




CHAPTER 5

THE GRID GENERATOR

5.1 GENERAL

The accuracy attainable with the finite element method in solving partial differential
equations depends ultimately on the sizes of the elements in the grid used for this purpose.
One has therefore often to refine the grid a number of ti

mes, before an acceptable solution
is obtained,

The generation of a finite element grid is at best a very time consuming exercise, the
~more so the higher the dimensions of the problem are. A grid generator is thus almost a
necessity when solving three-dimensional partial differential equations, with the finite
element method. An atlempt was made to develop a three-dimensional grid g
this investigation, but abandoned when it was realized that the visual representation of such
a grid requires a study on its own. The program KUBIK, developed by Pissanetzky (1984)
for a mainframe computer, was consequently used in the present investiga
code of this program is freely available from the Computer Physics Commy
in Dublin. It was thus relatively easy to adapt it for the microcompu

investigation. This generator is discussed briefly in Section 5 .2, whileits pra
is illustrated in Section 5.3.

enerator during

tion. The source
nications Library
ters used in this
ctical application

52 STRUCTURE OF THE GENERATOR

The main objectives of a grid generator are threefold: (a) to divide the domain of interest into
a number of elements, (b) to compute the coordinates of the nodes of each element and (c)
to number the nodes and elements uniquely, The generator, KUBIK, used in this study, has
two very desirable properties, as far as the present study is concerned. The first is, that it
developed spec ifically for the hexahedral elements, discussed in Appendix A, and the sec
that it allows the user to divide the domain in subdomains, each with its own grid spac
The last property is particularly useful in groundwater pollution studies,

The form of a finite element grid and the sizes of its elements depend very much on the
problem for which it is required (Botha and Pinder, 1983). An automatic grid generator
should therefore always be able to display the grid visually, so that the user can verify and

change the grid interactively. The additional ability of KUBIK to rotate the visual display of
the grid, is of considerable value ip the generation of

There are a number of methods that can be used

was
ond

ing.

three-dimensional grids,

1o generate a finite element grid for a

—37.
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given or global domain, Q2 (Thompson, 1977). The simplest method is probably to choose
suitable lines along the boundary of Q and represent them as edges of a rectangular or local
domain. The advantage of this procedure is that it is much easier to cover the local domain
automatically with elements, than the irregular global domain. This is especially true if the
coordinates of the local domain are expressed in terms of integers. These regular elements
can then be transformed to the global domain, by associating their edge nodes with suitable
global coordinates, chosen from the lines used to define the local domain. This method is also
used by KUBIK. '

It is standard practice in finite ele-

ment work to number the nodes anti-
clockwise around anelement, and in such
a way that the bandwidth of the coeffi-
cient matrix is minimized. As shown in

Figure 5-1, a three-dimensional
hexahedral element contains six bound-
ary sides, or facets as they are sometimes
called. A special numbering convention
has therefore to be used in the generation
of a three-dimensional finite element grid.
KUBIK achieves this by numbering the

nodes on every side of an element such

Boundary side number (1) Node number

that it appears anti-clockwise to an out-
side observer who looks directly towards
that side, see Figure 5-1.

Figure 5-1 Example of a hexahedral ele-
ment in three-space and the numbering conven-
Two major changes were made to  tion used by KUBIK.

the original program KUBIK for the

present study. The first one was to replace all the subroutine calls to a mainframe graphics
library with calls to a personal computer graphics library, PLOT 889, available at the Institute
for Groundwater Studies. The second one was to provide an interface that allows the user to
specify which boundary sides (maximum three) of the domain must be drawn. The reason for
doing this was to circumvent the inability of the original program to handle hidden lines and
nodes. This revised program, called QBIK, was implemented on a IBM-compatible personal

computer with 4 Mb of extended memory.

5.3 PRACTICAL APPLICATION OF PROGRAM QBIK

The example, chosen to illustrate the application of QBIK, is taken from the discussion of the
unsaturated flow model in Chapter 7. This problem consists of a soil column subject to a
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rainfall boundary conditionon top, a seepage boundary on the left hand side and a fixed water
level along the bottom edge of the left hand side, see Figure 5-2. The theory of fini
(Botha and Pinder, 1983) indicates that such boundary conditions are best hand
a grid with elements that increase gradually in size from thege boundaries, Thi
illustrated graphically in Figure 5-2.

te elements
led by using
§ principle is

Figure 5-2 Schematic representation of the domain,use'd in this discussion of Program

QBIK. Dark grey areas represent subdomains that require more refined
finite element grids.

The input to program QBIK is quite simple. All that the user needs to do, is to specify

the coordinates of element nodes along the edges of the local domain and their associated

global coordinates from the corresponding global domain, as in Table 5~1.The program then
computes the nodal coordinates of all local elements b

y interpolation and transforms them
to the global domain.

1

Table 5-1 Local and global coordinates used to generate the finite element

gridin Figure
5-3 for subdomain A in Figure 5-2,
Local Coordinates Cartesian Coordinates
—_—te 1t | y oz
1 1 1 0,0 00 00
1 4 1 0,0 51,0 0,0
1 4 13 0,0 51,0 0,0
1 1 13 a,0 0,0 0,0
9 1 1 400,0 0,0 1220,0
9 4 13 400,0 51,0 1220,0
9 4 13 400,0 51,0 1220,0
9 1 13 400,0 0,0 12200
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domain. This can be achieved, by merely dividing the global domain into separate subdomains,
and to specify a different distribution of local elements in each of these subdomains. For
example, one can divide the domain of Figure 5-2 into the different subdomains delineated
by the different shades of grey in Figure 5-3 and then add them together, The user must of
cause be careful to ensure that the elements are continuous across the boundaries of two such
subdomains, if he wants to use conforming elements.

Figure 5-3 The finite element grid generated for the global domain in Figure 5-2, with

Program QBIK, The different shades of grey denote the subdomains into
which the domain was divided. ' 4

In conclusion it should be mentioned that Program QBIK is a very efficient program,

as far as computer resources are concerned. This efficiency allowed us to generate all grids ‘
used in this report on a personal computer.




CHAPTER 6

THE SATURATED FLOW PROGRAM

6.1 INTRODUCTION

It is extremely difficult, if not impossible, to debug a computer program completely,
especially one with the size of the programs developed for this investigation. Nevertheless,

this does not free the developer from his responsibility to ensure that the program is, to the
best of his knowledge, free of serious errors.

There are a number of methods that can be used in debugging a computer program for

the simulation of a physical phenomenon, Four methods, frequently employed for this
purpose, are: '

(2) To compare the output from the program with analytical solutions of simplified
conceptual models for the phenomenon, '

(b} Toensure that the output from the program satisfies the convergence criteria of the
numerical approximations used in the development of the program.

(¢} Toensure that the program satisfies the basic physical laws that govern the specific
phenomenon, e.g., the law of mass conservation in fluid flow and mass transport.

(d) To compare the output from the program with that from another, perhaps less

sophisticated program. '

The same approach was also followed in this investigation. The only difference is that the

approxiraation, used for the solution of the groundwater flow equation, satisfies the law of

mass conservation implicitly, see Section 4.2.1. More attention will, therefore, be paid to the

other three methods in the discussion of the flow equation,

As shown by the discussion in Section 2.5, the saturated and unsaturated groundwater
flow equations differ physically very little, The program, SUF3, for variably saturated flow,
being the more complex, was therefore developed before the program, SAT3, for saturated
flow. One reason for thig approach was that it is easier to adapt the program of a general
phenomenon to a more special phenomenon, than conversely. Another reason was that the
variably saturated flow program can handle saturated flow conditions as well. The possibility
thus existed that one program could handle all situationg of interest in thig investigation.
However, it soon became clear that a separate saturated flow program would have definite
advantages. For example, the saturated flow Program executes much faster than the variably
saturated flow program, Since the numerical approximations in the two programs are
identical, the saturated flow program was used during the initial debugging phase. The
discussion in this chapter will therefore be restricted to the saturated flow program SAT3,

-4] -




4?2 Comparison of the Numerical Saturated Flow Model with Analytical Models

The discussion starts with a comparison of the numerical three-dimensional flow model and
two analytical solutions for the two-dimensional flow model in Section 6.2. Theconvergence rates
of the numerical model in both time and space are then discussed in Section 6.3. This is followed
by acomparisonof Program SAT3 with the well-known program MODFLOW of McDonald and
Harbaugh (1988)in Section 6.4. The significance of these comparisons for the application of two-

and three-dimensional models is discussed in Section 6.5

6.2 COMPARISON OF THE NUMERICAL SATURATED FLOW MODEL
WITH ANALYTICAL MODELS

No analytical solution of the three-dimensional groundwater flow equation, suitable for the
debugging of Program SAT3, could be found in the available literature. The only alternative was
thus to restrict the flow to the horizontal plane and compare the results with suitable (wo-
dimensionalanalytic solutions. This approachis of course notwithoutitsdifficulties. The majority
of analytical solutions for groundwater flow problems [e.g., the Theis equation (Theis, 1935)],
have been derived with the assumption that the borehole is a point source, centred in an infinite
aquifer. These solutions therefore tend to infinity as the distance from the borehole tends to zero,
The numerical solution, on the other hand, will always be finite, due the assumption that the
borehole forms a Neumann boundary (See the discussion in Section 2.6.)

Aboundary at infinity can be simulated on a computer either by an iterative method (Botha,
1971), or infinite elements (Zienkiewicz, 1977). The former method has the disadvantage that it
can take a considerable number of iterations, before an acceptable approximation is found, while
infinite clements need special procedures. Since all aquifers are finite in extent, it was not thou ght
worthwhile to corplicate the program further, by making provision for infinite boundaries.

Two analytical solutions for the two-dimensional flow equation that do not suffer from
a boundary at infinity are those of Muskat (1946). These solutions, which are very similar to
the Theis solution, have been derived with the assumption thatthe borehole, which discharges
at a constant rate (J, is situated at the centre of a uniform aquifer with radius R, thickness d,
hydraulic conductivity K and storativity Sp. The first solution,

- .
r0=do-0r)= E%B"l“!;‘ -2 J“i’i";’f;}"(;‘_’;f” 6.1)

i=1

where Jo(z) and Ji(z) are the zeroth and first order Bessel functions of the first kind,
respectively and x = K/Sy, while ¢; must satisfy the equation _

TR =0 (i=12,..)

This solution is valid for an aquifer subject to the initial piezometric level ¢, and Dirichlet
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boundary condition

PR =¢y (120) (6.2)

homogeneous Neumann boundary condition

DY(RN=0 (t20) (6.3)

The drawdown in such an aquifer is given by

o

=00- 00 =-2{ L2 4531 o D ToPexp(-12h)
s(r,1) = ¢y ¢(r,r)—de{4(r + 4} 3 InF ,Z’ 2:?13():,-) J(6.4)

where

The other symbols all have the same meanin 8 as before, except that @; is now defined by the
equation.

The Muskat solutions can be applied to any radially symmetric three-dimensional aquifer,
such as the one shown in Figure 6-1, with the additional Neumann boundary conditions

D,¢(r,0,t)= D, o (r, 40, =0 (6.5)
(Botha et.al, 1990). The first debugging of
Program SAT3 was consequently based on
thishypothetical aquifer, with parameters sum-
marized in Table 6-1. The reason for this was
that the radial symmetric Muskat solutions
could be used to detect 8ross erfors in the
program,
The finite element grid used in the com-
putation consisted of 36 angular slices, every
one dividedinto curved elements withnodesat

Figure 6~1 Schematic representation
radial distances of 0,01;0,05,0,1;0,5; 1; 2;4;  ofthe hypothetical aquiferusedin debugging
8 16:32; 64; 128,256, 512 and 768 m, and ar  Program SAT3,

heights of 0; 20 and 40 m. The borehole wag
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Table 6-1 Dimensions and hydraulic parameters of the aquifer used with the Muskat
aquifer in debugging Program SAT3.

Dirichlet Problem Neumann Problem
R(m)| d(m)| gy (m)| K(md)| So(m)| @w’-d-Y| K na)| So Y [ @ mid?)

76801 400 | 600 [ 10 691.2
—— e e L e ) 30 L 8010° ] 6912

As shown by the 60 o
drawdowns in Figure 6— 50
2, there is excellent 58
agreement between the 7 57 .
analyticalandcomputed | 5 56
drawdowns, except in % 55
the vicinity of the bore- | & 54
hole. One reason for this E 53
behaviour is the differ- | & 52 A gﬂﬁﬁg: Eﬁ:igﬁiﬁg
ent methods used to ac- 5t -~ Neumann (Analytical)
count for the borehole in 50 ¢ Neumann (Numerical)
the two solutions—a 49 b b e
point source 'in the ana- 0 100 200 Is;g?ﬁal ;?fmncf(z?n) 600 700 800
lytical solution and a

non-zero flux Neumann Figure 6~2  Comparison of the analytical and numerical

boundary inthe numeri-  solutions of the Muskat aquifer as a function of the distance from
cal solution, It was thus the borehole (7 =72 h),

necessary 1o establish what influence the radius of the borehole may have on the numerical
solution,

The possible influence of the finite radius (ry) of the borehole on the numetical solution,
was investigated by successively removing the elements at radial distances of 0,01;0,1;0,5
and 1,0 m from the finite element grid, The drawdowns, computed with a fixed time step of
0,5 (h), are éompared with the analytical solutions of Equation (6.1) in Table 6-2. Although

the approximation errors at small values of r are relatively large (at least from the numerical

point of view), the results show that r, does not play a particularly important part in the
solution. This behaviour accords with an earlier result of Bakkes and Botha (1982) that the
influence of the singularity, caused by the representation of the borehole as a point source in
the analytical solution, is restricted to a small area in the immediate vicinity of the borehole.

Two causes for concern remain, however. The first is the large numerical errors in Table
6-2 and the second the oscillations near r = 64 and 128 m. A natural impulse would be to
ascribe this behaviour of the numerical solution to errors in the program. However, the
possibility also exists that the finite element grid was too coarse, or that the time step was too
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large. The only way to clarify the reason for such a behaviour is

to study the convergence
properties of the numerical approximation in more detail,

Table 62  Comparison of the analytic and computed piezometric heads in the aguifer of
Figure 6-1 for the parameters in Table 6-1, with different values of ro [t= At

=0,5 (h)]
Radial Piezometric Head (m) Approximation | Piezometric Head (m) | Approximation
_ Distance (m) Analytical Numerical Error Analytical Numerical Error
ro= 0,01 ’ rop=10,1
1 57,973 58,272 ~2,985,10-! 57,973 58,272 ~2,982.10-1
2 58,448 58,718 ~2,699,10-! 58,448 58,718 -2,697.10-1
4 58,919 59,148 ~2,289.10-! 58,919 59,147 ~2,288.10~1
8 59,370 59,532 -1,620.10-1 59,370 59,532 -1,619.1¢-1
16 59,756 59,823 -6,638.10-2 59,756 56,823 -6,635.10-2
32 59,970 59,970 -3,319.10-4 59,970 59,970 —3,281.104
64 60,000 60,000 ~2,136.104 60,000 60,000 -2,136.104
128 60,000 60,000 +1,144,10-5 60,000 60,000 +1,144.10-5
256 60,000 60,000 +0,000.10+0 60,000 60,000 +0,000.10+0
ro =0,5 ro=1
1 57,973 58,267 -2,935,10-1 57,973 58,255 -2,821.10°1
2 58,448 58,715 -2,661.10-1 58,448 58,706 -2,577.1071
4 58,919 59,145 —2,264.10- 58,919 59,139 ~2,208.10-1
8 59,370 59,531 -1,606.10-! 59,370 59,528 -1,576.10-1
16 59,756 59,822 —6,586.10-2 59,756 59,821 -6,469,10-2
32 59,970 59,970 -2,441.104 59,970 59,970 -4,578.10-5
64 60,000 60,000 -2,174.104 60,000 60,000 -2,174.104
128 60,000 60,000 +1,144.10-5 60,000 60,000 +1,144,10-5
256 60.000 60,000 +0.000.10*° | 60,000 60,000 +0.000.10+0
. P+ 00000 _+0.000.10%0 _

6.3 CONVERGENCE OF THE NUMERICAL SOLUTION

6.3.1 General

There are two advantages in studying the convergence properties of a numerical method,
when applied to a differentia] equation of the form

Lu(x,t) = f(x,1) (6.6)

It allows one to: (a) track down programming errors and (b) chooses an optimal grid and time
steps for the approximation (Zienkiewicz, 1977). To show this, let #(x,t) be the finite element
solution of Equation (6.6). If there are no numerical, or programming, errors in the program
then one should have that (Botha and Pinder, 1983; Strang and Fix, 1973)

lim ”u(x,t) - ﬁ(x,t)" =0
Ap,Ar—0

where Ap=max(Ax, Ay, Az), with Ax, Ayand Azthe elementsizesin the x-,
respectively, and At the time step used in the discretization. It i thus p

-and z-directions
ossible to decide
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whether a2 computer program contains programming, or other errors, by solving Equation
(6.6) over a series of grids with various element sizes and time steps. Previous experience
indicates that one can be confident with the approximation, if the errors decrease continu-
ously with a refinement in either the grid, or time step, or both,

It would be ideal to use an analytic solution of Equation (6.6) in the convergence tests, but
this is rarely possible in practice. Convergence studies are consequently often based on a
numerical solution, obtained from a grid with suitably small values of ¢ and p. This approach
will thus also be used in the convergence studies discussed below, whenever the necessity arises.

6.3.2 Convergence in Time

The convergence rate of the numerical solution for the saturated flow equation was again
studied with the hypothetical aquifer in Figure 6-1 and the parameter values in Table 6-1.
The finite element grid was also kept the same in the horizontal plane, but the number of
elements in the z-direction was increased from 2 to 3. Equations (6.2) and (6.5), with dr=060
m, were again used as the initial and boundary conditions. Piezometric levels were computed,
over a period of 2 hours, with time steps of 1, 5, 15, 30, 60 and 120 minutes,

The convergence rates of the nu-

08 [

merical solution are displayed graphi- - = (1},01 (m) o r=16(m}

(m) wr=32(m)

cally in Figure 6-3, These rates are 07 [
clearly in excellent agreement with the m=1,583.10"
theoretical rate of O(Ar) (Botha and
Pinder, 1983) for the backward finite
difference approximation of the time

derivative, used in Program SATS3. As

e 2
Lh [=)]

Absolute Error (E)
=
I

- 03 | =1.567.103....-
shown by the results in Figure 6-2, the F e
numerical solution converges rapidly 02 | o o
towards the analytical solution at large o b m=6481.1014 |

S : JUUUN - FERTTLE b

values of r. This explains the decrease . e =.- 6
. p . O 0 E:--'"l [ ' A 'l L 16|596! Ilon . |
in slope (m) of the convergence rate in 0 20 4 60 8 100 120
Figure 6-3. These results suggest that Time Step (Af) (min) J

there is no numerical or programming

errors in the section of Program SAT3 Figure 63  Convergence of the numerical
solution for the saturated flow equation, as afunction

that handles the time discretization, of time at different distances from the borehole.,

6.3.3 Convergence in Space

The computer resources, available at that stage of the project, could not handle a more refined
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z]

(See Figure 6-5.)

A theoretical analysis (Botha and Pinder, 1983) shows that the finite element approxi-
mation error for the spatial part of the flow equation should be of the form

e =0(pf,) where Pmax = max(Ax, Ay, A7) (6.7)

and Ax, Ayand Azare again the side lengths of 2 typical element, Tt would thus be ideal
the element sizeg ag equal as possible in an investigation of the spatial convergenc
However, as shown in Figure 6-6, the increments in the xy-plane

Ax=(r, ~r)cos8 and Ay =(r +r)sin @
are non-linear, It is therefore not easy to devise
increments in the x- and y-directions. This difficut
the radii of the elements repeatedly,
element. The fina] grid was obtained b

a grid for a radial domain with equal
y was avoided to some extent by halving
until all the nodes in Figure 6-7 were assigned to an
y reducing the angle (26) of the an gular slices from 10°
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Figure 6-5  The radial finite element grid used with the hypothetical aquifer of Figure
64 in studying the spatial convergence of program SAT3.

to 5°. This approach yielded grids with maximum increments give: in Table 6-3. The
numerical solutions for three of the grids, with a constant time step of 1 h, are compared with

Table 6-3  Maximum sizes of clements used in studying the spatial convergence of
program SATS3, for the hypothetical aquifer in Figure 64.

GridNo _ Apy, | GridNo  Ap . | GridNo __ 4p

= Chmak .
1 527,018 994 2 298,415 288 3 209,415 893
4 _ 183, 1__53 073 5 107.108 379 .

the Muskat solution, of Equation (6. 1) in Figure 6-8.

A first impression of the results in Figure 6-8 is that the numerical solution of the
saturated flow equation, computed with Program SATS3, only converges if r > 70 m.
However, the influence of the logarithmic singularity in the analytical solution at the origin
cannot be ignored completely. This possibility was investigated by comparing the conver-
gence of the results for the 26= 10 grids, with that of the 2§ = 5° grid. The results for distances
0f 0,08; 1,0 and 9,0 m in Figure 6-9, show that the convergence rates do indeed satisfy the
gencral quadratic behaviour, required by Equation (6.7).

Aninteresting feature of Figure 6-9 is that the numerical errors at the distances of 0,08
and 1,0 m tend to a limit us Ap,qy increases. This behaviour is contrary to the general theory
of numerical approximation theory, but can probably be ascribed to the Appgy. used in
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Figure 66 Schematic representation of a radial
finite element in the horizontal Plane of Figure 6-4.

drawing Figure 6-9, which is the diameter of the largest -
elements in the grid. These elements are all situated on the
boundary of the domain, see Figure 6-5, their influence
could therefore decrease after a certain distance.

6.4  COMPARISONOF SAT3WITHMODFLOW

The program MODFLOW of the United States Geologi-
cal Survey (McDonald and Harbaugh, 1988) is frequently
used in the modelling of three-dimensional groundwater
flow. Since the program is well documented and able to
handle most of the boundary conditions met in practice, it
is often considered as the industry standard in ground-
water circles, It was thus thought worthwhile to compare
Program SAT3 with MODFLOW, as a final check for
possible numerical and programming errors.

One disadvantage of MODFLOW is that it is based
on a finite difference approximation of the saturated flow
equation. It cannot therefore hand]e Neumann conditions
on curved boundaries with the same case and accuracy as
SATS3. The square, confined aquifer, presented graphi-
cally in Figure 6-10, was therefore chosen for this study.
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Figure 6-8  Spatial convergence of the program SAT3, for the hypothetical aquifer in
Figure 64 and three of the grids in Table 6-3. (Af =1 h.)

It was assumed that the aquifer has the homogeneous parameters, given in Table 6-1, with
zero-flux boundary conditions on all sides.
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Figure 6-9 Convergence of the numerical solution of Equation 6-1, for three distances
from the centre of the borechole,

Another disadvantage of MODFLOW is that it is restricted to an equally spaced grid in
the xy-plane. A very fine grid of 250x250 nodes, had therefore to be used in the xy-plane, with
four elements in the vertical direction, to ensure that the finite element and finite difference
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&

| Figure 6-10 The hypothetical homo
and MODFLOW,

solutions are comparable near the borehole.

geneous aquifer used in comparing Programs SAT3

Both programs were ysed to compute piezometric heads over a period of 72 hours with
a fixed time step of 0,5 (h) and a pumping rate of 172,8 (m3.d‘1). The results, which are
summarized in Table 6—4, show that the two sets of piezometric heads are in excellent
agreement. These results and the convergence properties of the solution for Muskat’s

problem can be taken as a clear indication that SAT3 does not contain serious numerical or
programming errors. '

Table 6-4  Computed piezometric heads for the aquifer in Figure 6-9 at diagonal distances
of  (m) from the borehole as a function of time,

Time (h) Piezometric Head {m) Time (h) Piezometric Head {m)
MODFLOW SAT3 MODFLOW SAT3

0,0 60,00 60,00 36,0 58,37 58,38
0,5 59,73 59,73 38,0 58,36 58,36
2,0 59,31 59,32 40,0 58,34 58,35
40 59,08 59,09 42,0 58,32 58,33
6,0 . 58,95 58,96 44,0 58,30 58,31
8,0 58,86 58,87 46,0 58,20 58,30
10,0 58,79 58,80 48,0 58,27 58,28
12,0 58,73 58,74 50,0 58,26 58,26
14,0 58,68 58,69 52,0 58,24 58,25
16,0 58,64 58,64 54,0 58,23 58,24
18,0 58,60 58,61 56,0 58,21 58,22
20,0 58,57 58,57 58,0 58,20 58,21
22,0 58,53 58,54 60,0 58,18 58,19
24,0 58,51 58,51 62,0 58,17 58,18
26,0 58,48 58,49 64,0 58,16 58,16
28,0 58,46 58,46 66,0 58,14 58,15
30,0 58,43 58,44 68,0 58,13 58,14
32,0 58,41 58,42 70,0 58,12 58,12
340 | 5830 5840 | 70 58,10 58,11
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6.5 DISCUSSION

The results above indicate that there is no cross programming or numerical errors in Program
SAT3 and that the program can be used with confidence in the simulation of three-
dimensional saturated, groundwater flow problems,

It is not mathematically correct to compare the solution of two- and three-dimensional
conceptual models. This is especially true, if the two-dimensional model has been derived
from the corresponding three-dimensional model by a mathematical reduction of dimensions
(Bear, 1979; Botha et. al., 1990). However, if zero-flux boundary conditions are applied
along two parallel sides of a uniform, confined aquifer, the three-dimensional model reduces
to a two-dimensional model in the remaining dimensions. It is thus fair to interpret the

preceding results as saying that there is no need to use a three-dimensional model, for a
uniform, confined aquifer.




CHAPTER 7

THE UNSATURATED FLOW PROGRAM

7.1 INTRODUCTION

The approach to debug the saturated flow program before the variably saturated program,
SUF3, had the advantage that the debugging of SUF3 could be limited to a study of the
iteration convergence and the application of rainfall and seepage boundary conditions.
However, one difficulty remained. No known analytical solution for unsaturated flow could
be found in the literature. The only alternative was thus to search for a problem that had been
solved with another numerical model. Such a problem is presented by the drainage problem,

drainage problem.,
7.2 THE DRAINAGE PROBLEM

7.2.1 Description of the Problem

Hedstrom et gl, (1971), to obtain a better understanding of the drainage of agricultural soils
and to design better subsurface drainage systems. In the experiment on which the model

problem is based a flume 12 200x51%1 220 mm was packed with Poudre Sand, see Figure
7-1. The reason for using Poudre Sand was that

extensively and are well documented (Davis and Neuman, 1983; Case er al., 1983). The
saturated hydraulic conductivity for the sand is: K = 6,440.10-5 (m.s~t), and its porosity £ =
0,348. The experimentally determined moisture retention curve of the sand, and its Van

Genuchten approximation, given by Equation (2.9), is shown in Figure 7-2.

7.2.2 Comparison of Program SUF3 with Program UNSAT?2

The first step in the evaluation of Pro

gram SUF3 was to apply it to the drainage problem,
discussed above,

and to compare the results with that of Program UNSAT?2 (Davis and

-53 -
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Neuman, 1983). The same initial and boundary conditions, applied by Davis and Neuman

9(x,0) = ¢o(x) =0
qf;(x,)’,z =1 220) = 103,5 (mm.d“‘l)

were consequently used for this purpose.

Centre Line

Figure 7-1 Schematic representation of the flume used by Duke (1973) and Hedstrom
et al. (1971) in studying the drainage problem.
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Figure 7-2 Graphs of the experimentally determined moisture retention curve and
associated Van Genuchten approximation for Poudre Sand.

The flow system in Figure 7--1 will obviously be symmetrical about the centre line
between the drainage ditches. It is thus natural to considered this centre line as the right hand
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side boundary of the flow domain, and to prescribe a zero flux Neumann boundary condition
along this side, as Davis and Neuman did. The same boundary condition was also prescribed
along the two vertical faces of the flume to convert the problem to three-dimensions, This
meant that Davis and Neuman’s point Dirichlet boundary (at the intersection of the soil

" column and drain) had to be converted to a line boundary, and the seepage face and rainfall
boundary to surfaces, see Figure 7-3,

Previous experience with Pro-
grams UNSAT? and SUFF (an ear-
lier two-dimensional version of Pro-
gram SUF3) by Botha and Van Blerk
(1990) have shown that the iteration
convergence of both programs de-
pends on the time step and maximum

element size, Therefore, one would

_ _ Figure 7-3 The physical dimensions and bound-
expect program SUF3 to behave in a ary conditions used with the drainage problem in the
comparison of Programs UNSAT? and SUF3,

similar fashion. Consequently, it was
decided to base the finite clement

grid forPro gram SUF3 on the one used by Davis and Neuman in their investigation of the drainage
problem. This grid, of which a vertica] cross-section is shown in Figure 7-4, differed only from
the one of Davis and Neuman in that the four triangularelements, near the Dirichletboundary, was

replaced by seven rows of rectangularelements. This was done because both Programs QBIK and

SUF3 cannot handle triangularelements. The grid wasextended to three dimensions by repeating

it three times along the other horizontal (y-)axis. This yielded a grid with 11523 elements

and
4 900 nodes.

1250
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Figure 7-4 Vertical cross-section of the three-dimensional grid used with Program
SUF3 in comparing it with Program UNSAT?.

Davis and Neuman (1983) used an initial step of At =0,005 (d) in their investigation of
the drainage problem. However, Program SUF3 did not converge within 5 iterations with the
initial time step At = 0,005 (d) and iteration error of 0,01 (m). The initial time step in both
programs was consequently reduced to 0,001 (d). This time step was kept constant until the
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time ¢ = 0,005, after which the time steps given by Davis and Neuman were used, The
simulated elevations of the phreatic surface, z(0) = z(h JI(p=0), are compared graphically in
Figure 7-5, after 1 and 8 d.

0.75

0.50 |-

Height of Phreatic Surface (m)

—— UNSAT2 (1d)
+ SUF3(1d)
----- UNSAT?2 (8d)
0.25 " SUF3 (8d)
B I i S S e
O-OO||||||\1||||\}|||||||||g|||wr|
0 1 2 3 4 5 6

Distance from Drain (m)

Figure 7-5 Comparison of the phreatic surfaces, z(0), in the flurne simulated with
Programs SUF3 and UNSAT2 after 1 and 8 days.

Although the two phreatic surfaces in Figure 7-5 show the same general behaviour,
there are significant differences, especially far from the drain. One reason for this behaviour
is that the three-dimensional grid is more refined along the bottom boundary, than the two-
dimensional one used by Davis and Neuman at distances far from the drain, see Figure 74,
However, therc is another one. Program UNSAT? uses linear interpolation between the data
points of the moisture retention curve to obtain values for the matric head, whereas SUF3 uses
the Van Genuchten approximation. As can be seen from Figure 7-2, the experimental
retention curve differs considerably from the Van Genuchten approximation near 6, and 6,.
Since the phreatic surface coincides with 8y, it would have been a surprise, if the two programs
did yield identical phreatic surfaces.

Another indication that program SUF3 does not contain serious errors, is the way in
which the two solutions behave with time. The variably saturated and saturated flow
equations, see Equation (2.12), are essentially parabolic differential equations, although the
variably saturated one is non-linear. The solution of a parabolic, partial differential equation
always consists of two components: a smooth, stationary component and an exponentially,
decaying, transient component (Botha and Pinder, 1983). The transient component usually
decays very quickly with time, which leaves only the smooth stationary component at large
times, see for example Equations (6.1) and (6.4). The numerical sclution of a parabolic
equation obviously must posses the same properties. (Otherwise the solution would not be
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consistent, that is represent the true solution of the differential equation in al] aspects.) Time-
dependent approximation errors, such as errors made in approximating rainfall and seepage
boundary conditions discretely, should thus decay with time, Therefore, one would expect
the two solutions to converge towards one another in time, if other errors are ignored, which
is exactly what happens in Figure 7-5,

7.3 CONVERGENCE OF THE NUMERICAL MODEL

7.3.1 Iteration Convergence

It is of the utmost importance to keep the number of iterations as small as possible in the
numerical solution of a non-linear €quation, such as the variably saturated flow equation.
Indeed, it is usually considered ideal, if the number of iterations does not increase more
rapidly than the inverse of the specified iteration error,

As shown by the discussion in Section 4.2.1, the iteration algorithm used in Program
SUF3 conserves mass implicitly. Therefore, one would expect it to use fewer iterations than
an algorithm that does not conserve mass, Unfortunately, it is extremely difficult to derive
an explicit estimate for the number of iterations that the program will use. The iteration
convergence was therefore investigated empirically.

The approach used for this
. 35
purpose, was to solve the drain- (= /=305 » 1-60s 212130,
age problem for 480 s with dif- 30 e r=2405 @ 24505
ferent time steps and iteration 8 25 - "
- - ::5|460'
errors and to count the number E ; n A |
of iterations. These results, see = 20 S
Figure7-6,show thatthe number E 15 |-
of iterations increases logarith- g 0 B m=2606300 e
mically with the inverse of the | % v g e b
iteration error, which is consid- S =
erably IeSS than the anticipated 0 - dol IIIII!I Ll l!l!lll L \JHII' Ll |rrm| L] l!ﬂlll (NIRRT
linear dependence. The iteration 0% 10 102 108 10t 105 qpe
algorithm in Program SUF3 Inverse of Iteration Error

|
therefore must be considered ag

) . _ Figure 7-6 Convergence properties of the iteration
near optirnun, if not optimum. '

algorithm in Program SUF3.
Itis natural to interpret the

results in Figure 7-6 ag indicating that any one of the time steps could be used in an actual
simulation. Such an interpretation would not be correct, however, This can be seen by
comparing the slopes of the lines in Fi gure 7-6. The sharpincrease in slope of the At =480 (s) line,
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t there are significang approximation errors in the
piezometric heads for thig time step. Thig conjecture is confirmeg b

piezometric heads in Tabe 7-1, at the three nodes, A, B and CinFi
especially noticeable for the matric head at Node C,

Yy the comparison of
gure 7-4. The error is

Table 7-1 Comparison of the matric heads, at r = 480

(5), computed with Program SUF3
for the same time Steps used in Figure 7

Matric Heads

Iteration Error ___ 105 10-3 10-1
. uA-_\ﬁ_
ode e p.=480 (5

N
A -3,999 993 10-02 -3,999 993, 19-02 -3,999 994,10-02
B ~6,002 041.10-01 -6,002 041,10-01 -6,002 0191001
C =1,716 785,10+00 =L,716 720,10+00 =1,702 288,10+00

Time Step = 240 (s)
A ~4,000 000,10-02 ~4,000 000,10-02 -4,000 000,10~02
B -6,002 913.104(;1) -6,002 913.104&11 ~6,002 9()1.10~g(lJ
C ~2,046 178.10+ =2,046 173.10+ —2,038 526.10+
Time Step = 120 (s) .

A -4,000 006.10-02 -4,000 006.10-02 4,000 006.10-02
B
C

A

B

C

A

B

~6,003510.10-0!  _gn03 5101001 _g 503 095.10-0
=2:309 397.10+0__ 2309 367 10+00 =2,107 468.10+%
Time Step = 60 (s)

—4,000 008.10~02 ~4,000 008,10-02 -4,000 008,10-02

~6,003 866.1001  _g/g03 8661091 _g003 645,10-01

=2486 SBLI0*0  _o'4g¢ 380.10%  _» 348 873.10+00
Time Step = 30 (s)

—4000 0081002 4500 008,10-%2 4 505 008.10-02

—6,004053,10-01  _g 54 053,109 _g 003 984,10-01

C =2,587 287.10+00 =2.587 253.10+00 =2,541 125.10+00

ple the two time steps Ar = 30

(s)and Ar=240 (s). Ascan be seen from Table 7-1 ythereisnot a very big difference between

Since the time step At =30 (s) requires onl
the 22 of At = 240 (see Figure 7-6), At =

However, it would take 8 steps, and thys approximately 48 iterations, just to reach a time of
240 (s) with Ar = 30 (s)! On the other hand, if one would really like to achieve an error 10 -3,

for all matric heads, the matric heads for the pointCin Table 7—2 indicate that one should not
use a time step > 30 (s). There is thug no a
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are discussed in the next section.

7.3.2 Convergence in Time and Space

problem is non-linear, there isa possibility that the convergence may not be linear across the
domain of the problem. _ |

The convergence of Program SUF3, as a function of the time step, was mvestigated by
solving the drainage problem with the grid in Figure 7-7, for time steps of 1, 2, 4,8, 16 and
32 s. The reason for using this grid was that experiments had shown that it yielded a more
accurate solution near the rainfall boundary, than the one ip Figure 7-4,
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The convergence results for the last four time Steps, at the three nodes, A,Band Cin
Figure 7-7, are shown in Figure 7-8 and Table 7-2, using the matric heads forAf=1gas
reference values. These results indicate that the convergence is still linear, but that there is
softhe errors. Thig s especially true of the largesterrors,
associated with the matric head at point C near the rainfal] boundary.

The spatial convergence of Program SUF3 was investigated with three grids—the grid
in Figure 7-7 and two derivatives. The first derivative, see Figure 7-9, was obtained by
doubling, and the second by halving the element sizes in the vertical plane of the grid given
Figure 7-7. The number of elements in the y-direction, was keptat three
in Figure 7-9 (b), with its 19 012 nodes and 13 §24 elements, is the Ia
available computin g facilities could handle,

The convergence of Program SUF3 was investigated by solving the drainage problem
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Figure 7-8 Convergence of Program SUF3 for the drainage problem as a function of the
time step.

(@)

(b}

Figure 7-9 Vertical cross-sections of the three-dimensional grids used to investigate the
convergence of Program SUF3 as a function of the element size.

with all three grids and a time step of 600 (s). The same problem was also solved with the grid
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and Cin Figure 7-7, are compared graphically in Figure 7—-

10. The solution, therefore, does
indeed converge with a refinement of the grid, but non-li

nearly. This is illustrated by the
considerable differences in the powers (m) of the power function, that fitted the data the best

in a linear least Squares sense, which are also given in Figure 7-10,
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'Figure 7-10 Graphical representation of the spatial convergence of Program SUR3,

7.4 CONCLUSIONS







CHAPTER 8

THE MASS TRANSPORT PROGRAM

8.1 INTRODUCTION

The computer program to simulate the movement of contaminated groundwater in three
dimensions was developed from the conceptual model, described in Chapter 2, and the
algorithms in Chapter 4. The main reason for this was that use could be made of more modem
and accurate numerical algorithms, than those found in existing programs.

The program, called SUM3, can simulate the movement of any conservative tracer, and

non-conservative tracers that decay exponentially, or are adsorbed linearly by the porous

medium. It was further assumed that the contaminant will only be present in small quantities,

with the result that transport could be decoupled from the flow program. However, the

program needs information on the groundwater ve . cities and water contents of the medium,

from either of the programs SAT3 or SURS. One of these programs must therefore be run
before SUM3 can be used, or the user must supply suitable values for the velocities and water
contents at all nodes,

The size of SUM3 is almost double that of Pro gram SAT3 (or SUF3) for the same grid.
The reason for this is that the coefficient matrix in the finite element approximation of the
hydrodynamic dispersion equation is asymmetric, see Equation (4.9). The decoupling of
transport and flow is thus fortunate, as it means that many simulations can still be done on
personal computers and workstations. Nevertheless, more sophisticated computers will be

needed for real world applications. Tn fact, all major simulations conducted with SUM3
during this investigation, were carried out on the vector com

puter of the University of the
Orange Free State.

Program SUM3 can handle all types of sources and sinks, encountered in practice. The
program also provides for three types of boundary conditions: time-dependent Dirichlet,
Cauchy and rainfall conditions. The prescribed values of these boundary conditions must all
be specified nodewise, along the boundary of the domain. Aquifer properties,

hand, must be specified for every soil type, present in the domain of intere
also applies them nodewise.

on the other
st, butthe program

The Jack of suitable data precluded the application of Program SUM3 to an actual real
- world problem, However, various methods were used to debug the program extensively.
These methods are described in Section 8.2. Extensive tests were also conducted on the

convergence properties of the numerical algorithms,

used in the program. These tests are
described in Section 8.3.

-63 -
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8.2 DEBUGGING OF THE PROGRAM

8.2.1 The Model Problem

The philosophy used in debugging Program
SUMS3, was to compare the computed con:
centrations with analytical concentrations,
The latter concentrations were derived from
the solution of a semi-infinite, two-dimen-
sional, model aquifer; discussed by Cleary
and Ungs (1978). This model considers a
cleanaquifer, subjected to a finite strip source,
along the side parallel to the y-axis, at the time
£=0. It is further assumed that the flow in the
aquifer is uniform and in the direction of the
x-axis, in other words perpendicular to the
source, as in Figure 8-1. The analytical solu-
tion of Equation (3.7), subject to the bound-
ary and initial conditions

Figure 8-1 Graphical representation of

the Cleary-Ungs two- -dimensional strip source
problem.

e(x,y,0)=0
c(0,9,1) = {go exp(-7H (y<ysy,)

D.c(x,y,)=0(x > +o0);

is of the form

c(xy,1) = c'(x)explw(x, )] ;

otherwise

Dyc(x,y,0) =0 (y — +oo); (8.1)

¥ D (y, T) ~vi(y, 7)ldr (8.2)

where 7is a constant, taken as zero in the following discussion,

(x)=

Vi _rt[

u(x, 'r)—-l—g—exp HA

4F

w(x,

T
@T

-tz lp X
4 @x} 4@;:}

} (s =u,orl)
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and the other parameters are ag defined in Chapter 3..
The model problem was
adapted to three-dimensions, by
extending the strip source over the
full depth of the aquifer, and speci-
fying a zero-flux concentration con-
' dition onits top and bottom bounda-
ries. This aquifer is presented
graphically in Figure 8-2,
The dimensions of the model
aquifer had 1o be restricted to

8x8x2 m to ensure that the initial \

debugging could be done Pnaper- Figure 8-2 Graphical representation of the three-
sonal .computer. However, this dimensional aquifer, and associated parameters, used
meant that the contamination I 9ebugging program SUM3.

grid, two elements were added at each of the points marked with the symb
8~3. This resulted in a grid with 34x36 horizontal elements,

graphically with the analyﬁcal solution in Figure 8-4.
The fits between the numerical

exception of the ¢ = 0,062 54 results, excellent. However
explanation of thig behaviour,

The hydrodynamic dispersion ¢quation, Equation (3.7), is (like the variably saturated
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Figure 8-4 Comparison of the numeric

al and analytical solutions for the aquifer in
Figure 8-2, along the lines (x, 4, 1) and (4, y, 1), at the times indicated,

flow equation) essentially a parabolic different;

Darcy velocity (¢). The same line of reasonin
of the phreatic surfaces in Fi gure 7

alequation, especially for small values of the
g used in Section 7.2 to explain the behaviour
=3, thus also applies here. This appIies in particular to the
imation to handle the discontinuity between the boundary

and initial conditions in Equations (8.1) along the y-axis at the time ¢ = 0. The numerical
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solution in Figure 84 thus behaves exactly in the way one would expect theoretically,

8.3 CONVERGENCE OF THE NUMERICAL MODEL

8.3.1 Convergence in Time

-~ Jud ging from the results in Figure 8-4 it would secm as if the numerical solution of the model
aquifer converges quite rapidly in time. This conjecture was investigated by solving the
model problem, over the 34x36x2 element grid, for 1 d, with time Sieps varying between
0,031 25 and 1 d. The results are compared with the analytical solution of Cleary and Ungs

in Table 8-1 and Figure §-5,

Table 8-1 Absolute errors in the numerical solution of the model problem, along the
lines (1, y, 1) and (4, ¥, 1), for different time steps. (¢ =1 d)

Time Step

Absolute Error

(d)

(1.y,1) (4, 1)

0,031 250
0,062 500
0,125 000
0,250 000
0,500 000

1,000 000
ES

Theresultsin Table §—1 and Fig-
ure 8-5 confirm the anticipated con-
vergence of the solution up to a time
Step of 0,125 d, after which the nu-
merical solution began to diverge, This
behaviour is not peculiar to Program
SUMS3, but has also been observed
with other mass transport programs,
such as Femwaste (Yeh and Ward,

- 1980), and even with programs for the
groundwalter flow equation. Numeri-
cal experiments conducted with these
programs, have shown that the behay-
four is caused by using a too coarse
finiteelement grid, when solvin gequa-
tions that are subject to discontinuous
boundary and initial conditions, Inall

1,167.10-3 2,538.10-3
1,005.10-3 2,010.10-3
5,506,104 5,454,104
1,008.10-3 4,325.10-3
7,174,10-2 2,105,103
3,272,103 6,734.10-3

-
0.1 p
= a4 o @4y
o) -
&
W
R
=3 | -
8
< 0001 |-
0,0001 1 Lot o L |
0,01 0,1 1

Time Step (d)

Figure 8-5 Convergence of the numerical solu-
tion obtained for the model equation with Program
SUM3, asa function of the time stepatthe two points
(1,4,1) and (4,4,1).

Cases, encountered thus far, the divergence disappeared, when the finite element grid was
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refined in the immediate neighbourhood of the discontinuity,

8.3.2 Convergence in Space

The computationally correct approach, [ 01 ﬁ
towards the investigation of the Spatial - ’ —= (14,1) -o- (44.1)
convergence of Program SUM3, would [

be to compare the numerical solution

with the analytical solution of the model
aquifer. However, the large differences
between the analytical and numerical
solutions of the model aquifer, at early
times, made this impossible. The con-
vergence tests, described below, were
consequently all based on the solution 0.001 , e
of the (34x36x2) grid, with a time step 1 10

0.01 - .

Absolute Error

of 0,125 d. The results of the tests, Element Size (m) N
given in Table 8-2 and Figure 8-6,
show that the convergence rate again

Figure 8-6 Convergence of Program SUM3

for the model aquifer as a function of the element
satisfies the quadratic behaviour asso- size, at the time ¢ = 0,25 d_

ciated with linear elements.

Table 8-2 Absolute errors in the concentrations, computed with SUMS3, for three grids in
Figure 8-3, with a constant time step of 0,25 (d), atthe nodes (1,4,1)and 4,4,1).

Element Size Absolute error
(1,4,1) (4,4.1)
1 1,755.10-3 3,308.10~3
2 5,274.10-3 8,350.103

4 1,227.10-2 1,94510-2
\N

8.4 DISCUSSION

The convergence rates obtained for the model problem and the excellent agreement between
the numerical and analytical solutions, at not too early times, indicate that Program SUM3
can be used with confidence in the simulation of groundwater contamination problems. This

will especially be the case if suitable care is taken of discontinuities between the boundary
and initial conditions.




9.1 GENERAL

relational Paramelers, oy, qrpangd D, these Parameters always 4ppear in conjunction with the flow
velocity (see the discussion in Chapter 3). Ope would, therefore, CXpect that the flow velocity wilt
Play animportan roleinamagg Uansport model, Previousex perience with two

in the discussion to follow,
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and one whose parameters follow a Gaussian distribution. This is followed by a discussion
of two- and three-layered aquifers in Section 9.3. The results are summarized in Section 9.4,

9.2 THE SINGLE-LAYER AQUIFER

9.2.1 The Homogeneous Uniform Aquifer

The theory of the reduction of dimensions
(Botha et ai., 1990) indicates that there
should beno difference between the results
of two- and three-dimensional models,
when applied to a homogeneous uniform
aquifer. This hypothesis was tested by
fitting the water-levels computed for the
three-dimensional homogeneous uniform
aquifer in Section 6.2 to the Theis (1935)
and Muskat (Equation 6.1) type curves, for
two setsof hydraulic parameters and pump-
ing rates, given in Table 9-1. The first set
of parameters (the same as those used in
Section 6,2) was chosen to ensure that the
drawdown cone does not reach the bound-
ary of the aquifer, and the second that it
does. The solutions for a three day period,
observed at a distance of 11 m from the

~— Muskat 1 ~=-= Muskat 2
« Numerical1l ¢ Numericat 2

|7}
(=]

Piezometric Head (m)
oh
oC

RELX-3-PY 20 000.00000080.00

¥,
-]
1 + i i ]

56-IIIIIIJI\ll\llllll\'ll!‘l
0 15 30 45 60 75

Time (h)

Figure 9-1 Comparison of the Muskat solu-
tion in Equation (6.1) and the piezometric levels
computed with SAT3 for the hydraulic param-
eters in Table 9-1,

pumping hole, are shown in Figure 9-1 as a function of time. The fitted parameters are compared
with the prescribed model parameters in Table 9-1.

The results in Table 9-1 show that there is no significant difference between the prescribed

Table 9-1 Hydraulic conductivity (K) and specific storativity (Sp) values, determined
from fits of the Muskat and Theis type curves to the piezometric levels of

Figure 9-1.

Type Curve K (m.d Sp(ml) Pumping rate (m*.s1)
Three-dimensional Model 1,000 1,437.10-5 2,0.10~3
Muskat _ 0,998 1,598.10°5
Theis 1,000 1,508.10-5

%
Prescribed value 4000 8000.10°3 8,0.1073
Muskat 4,038 8,799,106
Theis 4,470 6,413,10-6
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hydraulic parameters, and those derived from fittin g type curves to the solution of the three-
dimensional model, if the drawdown does notreach the boundary. However, the Theis parameters
areless accurate inthe case where the drawdown doreach the boundary, as one would expect, since

model with confidence in the analysis of ahomogeneous uniform aquifer, provided that the model
satisfies the basic geometrical properties of the aquifer.

9.2.2 An Aquifer with Quadratically Distributed Parameters

Inthis aquifer it was assumed that the hydraulic parameters and pumping rate vary with depth
according to the function

F(2) = a(z+1)? | ©1

where a.=5.10-3, 5.10~8 and 1,25.105 for K, Soand Q respectively,

and z is measured from
the bottom of the aquifer,

A common assumptionin the analysis of aquifer tests with a two-dimensional type curve
is that the fitled parameters fepresent an average, across the thickness of the aquifer, of their
three-dimensional equivalents. This hypothesis was tes
simulated over a period of three days, with the paramete
average values, defined by the equation

ted by comparing the drawdowns,
rvalues in Equation (9.1) and theijr

F@y= a0 a(z+124;

Judging from the com parison of prescribed and average values in Table 9~2, one would
intuitively expect the drawdowns at the top and bottom of the aquifer to differ considerably
from those computed for the average parameters. However, the results in Figure 9-2 show
that this is not the case. The piezometric heads computed with the variab

le and average
parameters, were exactly the same at all elevations.

Table 9-2 Comparison of the quadratically distributed hydraulic conductivity, specific

storativity and pumpin grates ata few depths in a hypothetical aquifer with
their average values,

Depth (m) K(z) (m.d-1) S¢(z) (m'1) Q(z) (m3s1)

z=0 0,005 5,000,10-8 1,250.10-3

z=20 2,205 2,205.10°5 5,513,103

z=40 8,405 8.405.10-3 2,101.10-2
Average value 2,872 2

872.10-5 7,179.10-3
e BRI 7079103

‘There are two reasons that can be advanced for this behaviour, The first is the way in which
the parameters have heen prescribed—low values at the top and large values at the bottorn, Less
water was therefore pumped from the top than the bottom of the aquifer. The second reason is that
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Figure 9-2 Computed piezometric heads in the model aquifer for the average hydraulic
parameters at all elevations, as a function of the time.

the borehole penetrated the aquifer fully. There was this no area alon g the borehole where pressure
could build up. A second numerical experiment was therefore performed, to try to establish what
are the contribution of each of the two causes on the observed piczometric levels.

9.2.3 An Aquifer with Gaussian Distribute Parameters

Inthisexperiment the specific storativity of the aquifer was distributed in the form of a Gauss curve

So(2) = ayexpl-(z=b)*/c}]  (a,=1,0-107, b=15,¢, = 11,555 2) 9.2)

while the hydraulic conductivity was distributed antisymmetrical Gaussian

K(z)=ky - apexpl~(z-b)*/ch]  (k, =4,5;a,=4b=15c, =10,41316) (9.3)

as shown in Figure 9-3. The pumping rate was taken as Q = 2,5.10-3K. Values of these
parameters, at a few representative elevations above the reference datum, and their height-
averaged values are given in Table 9-3. Incidentally, it is interesting that the average values
of So and K occur at z=24,70 and 24,28 m, respectively, and not at z = 20 m as is
conventionally assumed in the analysis of aquifer tests with two-dimensional models
(Kruseman and De Ridder, 1991).

The piezometric heads computed for three elevations in an observation borehole, at a
distance of 11 m from the pumped borehole, are compared with those for the average
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Figure 9-3 Graphs of the of Sy and K as functions of elevation above the bottom of the

aquifer,

Table 9-3 Values of Sy, K and 0 ata few elevations above the bottom of the aquifer and

their average valueg computed from Equations (7.1) and (7.2).

Height (m) K(z) (m.d-1) S¢(2) (mrl) Q (2} (mis7))

0 3,598 1,854,105 8,994,103
15 0,100 1,000.104 2,500.104
20 0,924 8,292.10°5 2,309.10°3
35 4,000 5,000.10-6 1,000,102
40 4.087 9,271,107 1,022,102
Average valug 2293 4,945.10-5 5.733.10°3

parameters in Figure 9-4,

on the values of the piezometric heads, but that this influence is restricted to early times. This

behaviour is more noticeable in graphs of the piezometric head versus elevation, as in

Figure 9-5. The deviations sometimes observed, when fitiin gwater-

levels to theoretical type
curves at early times, may thus be ascribed to non-homogeneous a

quifer parameters.
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Figure 9—4  Graphs of the piezometric heads at three elevations in an observation
borehole, 11 m from the pumped borehole, computed with the Gaussian
distributed hydraulic parameters. The piezometric heads for the average
parameters are also shown for comparison.
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Figure 9-5  Profiles of the piezometric levels in an aquifer with Gaussian distributed
hydraulic parameters, and of an aquifer with parameters equal to the average
(constant) values of the Gaussian parameters.

Table 9—4 show that the two sets of average values also differ considerably. Care must
therefore be exercised, when analysing data from partially penetrating boreholes in a
heterogeneous aquifer, with a two-dimensional conceptual model. This applies in particular
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to the analysis of aquifer test data, with conventional typ
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General

Time (h) __i\@iggiﬁezometric Heads (m)
(a) (h)
0,000 277 778 59,999 972 59,995 785
0,001 319 444 59,999 952 59,972 557
0,005 772 569 59,988 021 59,906 919
0,020 201 866 59,850 784 39,797 097
0,071 525 743 39,533 629 59,623 375
0,242 718 828 59,084 530 59,366 533
0,820 495 490 58,588 002 59,051 944
2,770 491 722 58,076 217 538,710 066
0,234 300 818 57,564 616 58,352 459
18,234 300 820 57,262 818 58,138 559
27,234 300 820 37,084 482 58,011 758
36,234 300 820 36,958 431 57,922 032
45,234 300 820 56,861 070 57,852 691
54,234 300 820 56,781 828 57,796 240
63,234 300 820 36,715 110 37,748 705
72,000 000 000 36,657 627 57,707 749

MULTI-LAYER AQUIFERS

€ curve methods,
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directed towards the study of multi-layer aquifers,

Two models of multi-layer aquifers, shown schematically in Figure 9-7, were used for
this investigation. The aquifer in Figure 9-7(a) consisted of two water-bearing formations,
with different hydraulic parameters, while the one in Figure 9-7(b) consisted of two water-
bearing formations with the same hydraulic parameters, but separated through a semi-
_ confining layer. The prescribed boundary and initial conditions were in both cases taken as

¢(r,0,2,0)=0; @(R,0,z,t>0)=60
D,¢(r,6,0,t>0)=0; D,¢(r,6,40,:>0)=0

<L
el R

"i’*iBorehoc’ B

K=005md};8 =2510" w!,Q=25105ms! K=005md! 8, =2510"m; Q=0
il
[K=Smdh§,=2510m%Q=2510"m s |
(@ (b)

Figure 9-7 Graphical representation of the model aquifers used in the study of multi-
layer aquifers.

The finite element grid of Figure 6-5 was again used in the discretization the aquifers,
but with a different number of nodes in the vertical direction. The two-layer aquifer was
divided vertically into 20 equally spaced elements, and the three-layer aquifer into 20
variably spaced elements, with nodes as given in Table 9-5.

Two-layer aquifers occur frequently in unconsolidated, sedimentary deposits. The
Aflantis aquifer in the Cape Province is probably the best known example of such an aquifer
in South Africa (Miiller and Botha, 1986; Wright, 1991). Unfortunately there is, not much
information on three-layer aquifers available in South Africa. However, Boehmer (1991)
suggested that the discrepancies between S-values obtained from aquifer tests and recharge
studies in the Karoo aquifers, observed by Kirchner et al. (1991), can be explained by a three-
layer aquifer. His main idea is that recharge is confined to an upper aquifer with a high Sp,

but low K value, and that the aquifer tests were conducted in a lower laying confined aquifer
with a high X, but low Sp value.
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Table 9-5  Vertical spacing of the élements in the finite element grid used with the

aquifer in Figure 9-7(b).

Node Elevation | Node Elevation | Node Elevation | Node Elevation
1 0,000 2 2,500 3 5,000 4 7,500
5 10,600 6 12,500 7 15,000 8 17,50
0 20,000 10 20,250 11 20,500 12 20,750
13 21,000 14 23,375 15 25,750 16 28,125
i7 30,500 18 32,875 19 35,250 20 37,625
21 40.000
e e

e —
e e e i}

9.3.2 The Two-layer Aquifer

The values of the aquifer parameters, K and S, used in the investi gation of the two-layer
aquifer, were chosen such that the initial piezometric head of 60 m was not lowered by more
than 5 m, during the simulation period. The yield was again distributed evenly over the length

of the borehole and prescribed as a Neuman boundary condition. The normal flux, q, for
aquifer 1 is, for example, given by

q=0Q/2nrrl=2,487.10" m.s~!

where r = 0,08 m is the radius of the borehole and I =20 m the thickness of the aquifer.
‘Two numerical experiments were conducted with the two-layer aquifer, with the
assumption that the yield in each aquifer was proportional toits hydraulic conductivity, given
inFigure 9-7(a). Inthe firstexperiment it was assumed that the borehole wasnot cased, Water
could, therefore, enter the borehole along its full length,
The computed piezometric heads in the centre of each aquifer and 11 m from the

pumped borehole, are compared graphicallyin Fi gure 9--8 with the depth-averaged piezome-
tric head, defined as

6(x,y,1) = (A2, 180YY." [9(x,¥,2,,8)+ $(x,y,2,0)],

where ¢(x,y,2,,,t) (m=u,l) is the piezometric head at the upper (or lower) vertical node of
the e-th element in the z-direction, and N is the number of elements in the z-direction. The
reason for including the average piezometric heads, in Figure 9-8, is that they correspond
theoretically to the water-levels in an open borehole (Botha ez al., 1990).

Two results that follow immediately from Figure 9-8 are: (a) it took a considerable time for
the piezometric heads in the upper aquifer to respond to variations in the piezometric levels of the
lower aquifer, and (b) the piezometric heads in botk aquifers ultimately approach the average
value. However, this behaviour should not be surprising, if it is kept in mind that the hydraulic
conductivity of the lower aquifer was considerably larger than that of the upper aquifer. -

The fact that the piezometric heads in both aquifers ultimately approach the average
value, suggested that it may not be too wrong to analyse aquifer tests from such aquifers with
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conventional two-dimen- 60,25
sional type curves. The pro-
gram AQTESOLVE, devel-
oped by Gerarghty and
Millar (1990) was conse-
quently used to fit a Theis
typecurve to the drawdowns,
derived from the average

ta

=l

-1

wn
|

¥

59,25 -
piezometric heads. The re- [ | *z=10(m)

. * 2= 30 (m) .
sults are shown in Table 9-6, — Average

Althoughthereisgoodagree- 58,75 [ el ed ST BT AT
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ted §-value is more than two Figure 9-8  Computed piezometric heads at the centre of
times less than the prescribed  each layer in the two-layer aquifer and the vertically averaged
value. This is rather disturb-  piezometric head, when the pumped borehole penetrates both
ing, since it means that the Aduifers. (Distance from the pumped borehole = 11 m.)

Piezometric Head (m)

fitted S-value will always underestimate the water bearing capacity of the aquifer.

There is obviously no reason to fit a Theis type curve to the drawdowns, except that it
is the one commonly used in the analysis of aquifer tests. Indeed, the results in Figure 9-9
show that the Neuman type curve, fora phreatic aquifer (Neuman, 1975), fitted the data much
better. (The Neuman curve actually yielded the best fit of all the curves available in
AQTESOLVE.) This shows that one should not try to fit a type curve to aquifer test data,
without a sound knowledge of the physical properties of the aquifer.

Table 96  Comparison of the prescribed hydraulic parameters and those derived from
fitting a Theis type curve to the average drawdowns in Figure 9-8.

— |__T(mldD) s
Prescribed 101,00 5,050.10°3
Fitted 130,56 1,828.10-3

—_—l—

Table 9-7  Aquifer parameters obtained by fitting the average piezometric heads in
Figure 9-9 (o the Neumann type curve for a phreatic aquifer,

Prescribed Parameters Neumann Parameters
K (lower) (m.d-1) 5,0 K y (m.d-hH 3,65
K(upper) md™h) 50102 [ g (g1 3,86.10°2

So (lower) (m~1) 2,5.10-6 So (m™Y) 3,00.106
So (upper) (m-1) 2,5.104 S 3,00.104

As shown in Table 9-7, the numerical values of the Neuman parameters, for the fit in
Figure 9-9, compare favourably with the actual prescribed parameters. It is thus tempting to
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equate these two sets of parameters. How

parameters have a completely different physicalinterpretation. These
are only valid for a two-dimensional horizontal model.
In the second experi- - [

ment, with the two-layer
aquifer, it the borehole was
assumed to be cased off in
the upper aquifer. In other
words, water was pumped
only {from the lower aquifer.
As can be seen from Figure
9-10, the piezometric heads
are very similar to those in
Figure 9-8. However, there
isone major difference—the
piezometric heads, at the dif-
ferentelevations, donotcon-
verge to the average piezo-
metric head. Serious errors
could, therefore, be made, if

observed water-levels are equated with the average

Figure 9—

Comparison of the average
confined aquifer and the N

piezometric heads computed for the two-layer
eumann type curve for a phreatic aquifer.

ever, this cannot be done, becanse the Neuman

parameters, moreover,
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Figure 9-10 Computed piezometric heads at the centre of
eachlayerin the two-layer aquifer and the vertically averaged

piezometric head, if the upperaquifer was cased off. (Distance
from the pumped borehole = 11 m.)

piezometric heads in such an aquifer,

11 displays the drawdowns, as a function of distance, of the two-layer aquifer,

where the upper aquifer was cased off. A rather interesting conclusion, that follows




80 Multi-Jayey Aquifers :
60 :

(m)

g
2
B
g
£
<
3
&

Figure 911
radial distance, ing in the lower aquifer.

immediately from this graph, is that 5
production borehole (in a two-layer
aquifer) may ryp dry before the upper
aquifer is depleted, if Pumping is re.
stricted 1; the loweraquifer. This con-

3

clusion jg confirmed by observationg E
of piezometric heads in the Aflantis ;g 5
aquifer, shown i Figure 9-12 (Botha 5
¢t al, 1991; Wrighi, 1991, 1, would | §

. . 50
thus be wise 1o Sereen a production

borehole across both aquifers in
two-layer aquifer, uplegg the water
Quality in ope of the aquifers i unac-
Ceptable,
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9.3.3 The Three-LayerAquifer

Figure 9-15 Piezometrie levels observed ip the

\ . . well pointg WPz, 03, 09 and WP 01, 04, 10 at
the main purpose of g fnvestiga- Atlantis in July 1987 g January 1988
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Figure 9-13  Computed piezometric heads in the three-layer aquifer as a function of the

time; (a) when water is withdr_awn from the full thickness of the aquifer and
(b) only from the bottom layer.

observation point 11 m from the pumped borehole,

are presented in Figure 9-13. A
comparison of Figures 9-13 with Figures 9-8 and 9—

10 shows that the piezometric heads of
the three-layer aquifer behave similarly to the piezometric heads in a two-layer aquifer, if
differences in the hydraulic parameters are neglected.
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Figure 9-14  Vertical profiles of the piezometric heads in Figure 9-13.

The movement of water in an aquitard is conventionally assumed to be vertical when
the ratio of its hydraulic conductivity, K,

and that of the water bearing layers, K, is = 0,01
(Bear, 1979). Since the ratio of K,

to K, for the three-layer aquifer in Figure 9-7(b), is
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precisely 0,01, it would be interesting to see how far the piezometric heads satisfy this
assumption. The piezometric heads in Fi gure 9-14 show that this assumption would be valid,
if water is withdrawn only from the bottom layer, but not when withdrawn across the full
thickness of the aquifer. Indeed, Figure 9-14(a) shows that the vertical gradient in the
piezometric head disappears almost completely, shortly after pumping began. It is of course
- possible that the present result is caused by the assumption that the confining layer can store
water. However, it is difficult to see why the confining layer would in one case contribute
significantly towards the water balance in the borehole and not in the second one, especially
ifitis kept in mind that water was withdrawn at the same rate from the bottom layer in both
Figures 9-14(a) and 9-14(b). The only conclusion is thus that the confining layer has no

influence on the piezometric heads, if it separated two aquifers with the same hydraulic
parameters.

9.4 SUMMARY AND CONCLUSIONS

The main result of the present investigation of heterogeneous aquifers can be summarized in
saying that it could be dangerous to place too much confidence in results derived from an
analysis of their water-levels with a two-dimensional conceptual model. The only situation
where such an analysis would be useful, is when observations are made with boreholes that
penetrate the aquifer fully. These results confirm again, that it would be wise to obtain as

much information as possible on the physical and geometrical properties of the aquifer,
before analysing the results with a particular model,

It will obviously be extremely difficult to meet the conditions ab
situations, with the observational techniques available today. Nevertheless, the present
results leaf one with no other choice. It may thus be worthwhile to try to develop better and
cost effective observation methods, which would yield the data required by a three-
dimensional model of these aquifers, rather than fiddle around with two-dimensional models.

This applies especially to the multi-layered (perhaps multi-porous) aquifers in the Karoo
sediments of South Africa.

ove in practical




CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

The first primitive three-dimensional numerical models for groundwater flow phenomena
were developed roundabout 1973, but it is only in the last couple of years that these models
have been applied extensively in practical investi gations. Strangely enough, thou gh, is there
nowhere in the available literature any reference 1o a comparative study of two- and three-
dimensional models, The aim of the present study was to try to fill this gap; particularly to
establish suitable criteria that can be used in deciding when to use a two-dimensional model
and whena three-dimensional modelin groundwater investigations. The reason for thisisthat
a three-dimensional model requires considerably more obsetvational data and computer
resources, thana two-dimensional model. It thus stands to reason that one should prefer a two-
dimensional model, whenever possible.

Although geohydrologists paid very little attention to three-dimensional models in the
past, recent experience (Botha ef al., 1990) has shown that there are situations where the
behaviour of an aquifer cannot be explained with a two-dimensional model.

The three-dimensional problems normally encountered in practice, cannot be solved
analytically. It was thus necessary to solve the groundwater flow and mass transport
~ equations numerically. There is no doubt that a finite difference approximation of these -
equations is the easiest to implement on a computer. The majority of computer models for
three-dimensional groundwater phenomena, now available, are consequently based on this
approximation. However, the approximation does not allow one to implement Neumann,
- Cauchy, or seepage boundary conditions; with ease, Moreover, some of the available
computer models, especially those for variably saturated flow, do not conserve mass. The
opportunity was therefore taken to develop completely new models.

There is very little physical difference between the cénceptual models for saturated and
unsaturated groundwater flow. The program for variably saturated flow, being the more -
complex, was therefore developed before the program for saturated {low, The main reason
for this philosophy was that it is easier to adapt the program for variably saturated flow to
saturated flow, than the other way round. Another reason was that the variably saturated flow
program can handle saturated flow conditions as well. The possibility thus existed that one
program could handle all situations of interest in this investigation. However, it soon became
clear that a separate saturated flow program would have definite advantages. For cxample,
the saturated flow program executes much faster than the variably saturated flow program.

—83 -
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Three programs were, therefore, developed during this investigation.

*  Program SAT3 - for the simulation of saturated groundwater flow,

*  Program SUF3 - for the simulation of variably saturated groundwater flow.

*  Program SUM3 - for the simulation of saturated and variably saturated mass
transport.

The programs were evaluated extensively by comparing their output with the two-
dimensional analytical solutions of: (a) Muskat for a circular homogeneous aquiferin the case
of SATS3, and (b) the infinite strip source problem of Cleery and Ungs (1978) in the case of
SUM3. Program SAT?3 was also compared with the ‘industry standard’ three-dimensional
program for saturated flow, MODFLOW of McDonald and Harbaugh (1988). No analytical
solution was available for the variably saturated flow problem at the time of the evaluation,
Program SUF3 was therefore evaluated with the help of the two-dimensional variably
saturated program UNSAT?2 (Davis and Neuman, 1983).

In the original proposal to the Water Research Commission, it was anticipated that
observational data from the Atlantis, Saldanha and Zululand aquifers could be used ag
examples for the practical implementation of the computer models. Unfortunately, the
available data for these aquifers, at the end of the contract period, were not sufficient.
Hypothetical aquifers had therefore to be used instead.

Three types of aquifers were used for this study: a single layer aquifer, a two-layer and
a three-layer aquifer. The results of these investigations indicated that a two-dimensional
model is really only suitable in the case of a homogeneous aquifer, with uniform thickness.
However, there are a few special conditions where a two-dimensional model can be used for
a heterogeneous aquifer. These are:

(a) The aquifer must be approximately uniform and parallel with the soil surface,

(b) Vertical anisotropy in the aquifer must be negligible,

(¢) The production and observation boreholes must penetrate the aquifer fully,

(d) Water must be pumped from al layers in a multi-layer aquifer and not from one
layer alone. In other words no water bearing formation must be cased off in
production and observation boreholes, |

It is not too difficult to satisfy the last two conditions, but it is unlikely that natural
aquifers, especially those in hard-rock formations will satisfy the first two. Therefore, one
most likely will have to analyse these types of aquifers with a three-dimensional model. This
conclusion has obviously far reaching consequences for investigations of multi-layered
aquifers, such as those in the Karoo sediments of South Africa. One particularly important
consequence is that conventional observation methods, such as measuring water levels in
partially (even fully) penetrating boreholes, cannot be used in the investigation of these
heterogeneous aquifers. What is needed heie, are methods that reveal the three-dimensional
properties of the aquifer. This implies that one should use piezometers, and multi-level
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samplers to measure piezometric heads and concentrations, respectively, in these aquifers.

The study of the two-layer aquifer with the same initia] piezometriclevelsin both layers,

but different hydraulic conductivities and storativities, yielded two interesting results. The

first is that the piezometric level in the lower layer of a two-layer aquifer tends to decrease
more rapidly than in the top layer, near a borehole, if the upper layer is cased off, even though
the hydraulic conductivity of the lower layer is higher than that of the upper layer. The second
is that the average drawdown in such an aquifer may resemble the type curve of acompletely
different kind of aquifer. These results have two important implications for the conventional
analysis of aquifer tests with type curves.

() TItshows that the results of aquifer tests in heterogeneous aquifers may depend on
both the depth at which the pump is installed and the distance(s) where observa-
tions are taken. _

(b) Drawdowns in heterogeneous aquifers should only be analyzed with conventional

lype curves, if the assumptions made in the derivation of the type curve, is justified
by the physical nature of the aquifer.

9.2 RECOMMENDATIONS

The most important lesson learned from the present investigation is that nature is just too
subtle for man to comprehend without suitable observational data. The choice between two-
and three-dimensional groundwater models, therefore, should never be based on mathemati-
cal arguments, or some preconceived ideas of the investigator, but observational evidence.

This conclusion leads to two natural approaches in groundwater investigations—the descrip-
~ tiveapproach and the quantitative approach. The choice of which one of the two approaches
to use, will ultimately be determined by the objective of the investigation, If the objective is
merely to obtain a broad general gualitative description of an aquifer, the descriptive
approach will be sufficient, However, if the objective is to utilize the aquifer efficiently, the
quantitative method has to be used.

The descriptive approach has two advantages over the more quantitative approach: (a}
it is relatively cheap and easy to implement and (b) it can supply a short term solution.
Nevertheless, numerous studies, for example Cherry (1989), have shown that the descriptive
approach may not provide a reliable framework for the efficient management of an aquifer.

The previous statement should not be interpreted as if the quantitative approach is
without any difficulties. Two particularly important aspects that must be taken into account
in this approach are: (a) how accurately does the conceptual model represent the aquifer, and
(b) what is the quality of the data supplied to the model, There is little doubt, that modern
conceptual groundwater models are able to handle very complex phenomena, What is
missing, however, is sufficient information on the physical and chemical propertics of
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aquifers and cost-effective methods to determine these properties. The last remark applies in
particular to an aquifer test, which is the only method availahle Now to study the physical
properties and behaviour of an aquifer.

There exists a considerable body of data, particularly aquifer test data, in South Africa,
These data have, unfortunately, been gathered and analyzed with the descriptive approach in
mind. Nevertheless, it would be 4 considerable waste of time and money ifthe data are simply
to be ignored. A more responsible approach in future, quantitative investigations of South
African aquifers would thys Scem to be as follows:

(@) Re-evaluate the existing aquifer tegt data with conventional type cyrve methods

and the three-dimensional models developed during this study, with the view to
~ obtain a better insight into thejr physical properties.

(b) Supplement the investigations in (a) with more refined field observations, such ag

ordinary and cross-borehole packer tests, ’

(c) Pay more attention to the development of novel and versatile methods for the

observation of the physical propertics of an aquifer,




APPENDIX A

THE THREE-DIMENSIONAL ISOPARAMETRIC
TRANSFORMATION

Al DEFINITION

A fundamental concept in the finite element approximation of differentia] equations is the
discretization of the global domain, Q(x,y,2), into smaller (usually irregular) subdomains, or

elements Q,. However, it is not casy to perform the necessary caleulations, if Q, is not

‘, ={x,y,z},t0

elements in the local coordinates § = {£, 7, &}. Although there are various ways in which such

a transformation can be performed, it i

and Gray, 1977; Zienkiewicz, 1977), The isoparametric transformations for one- and two-
dimensional elements are readily availab)

e in the references given above, but not for three-
dimensional elements, The present discussion will therefore he restricted to the three-
dimensional transformation.

1. Tt is thus quite casy to derive suitable expressions for them. For example, the polynomials
associated with the unit cube [0,1]®[0,1]®[0,1] in Figore A~1(b) can be expressed as

Pl ) =[(1- Ey—(1- 260871 - )= =2~ ¢, - (1 424})5] (A.1)
where &,, N =0or1, see Figure A-1(b).

X =§1 XOAEMLY y= Z;l YPAEME), 2= t);l LPdE.1.8) (A.2)
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considered here.) It is for this reason that the transformation is known as an isoparametric
transformation,

e

Y

Z

0,0,1)f=

(15,}'5,25)

1,0)

o, ' )? 00,0 @00

o,
(@ (b)

JyI,aI)

Figure A-1 Schematic representation of a three-dimensional finite element (a) in local
and (b) in global coordinates.

A2 TRANSFORMATION OF DERIVATIVES

The approximation of a differential equation by the finite element method does not only
involve the transformation of function values, but also function derivatives (Botha and
Pinder, 1983). Of particular importance in this connection are the first partial derivatives of

a function. Consider therefore the function, ¢(x), which can also be expressed through the
isoparametric transformation in Equation (A-2) in the form

P00 = 05, 0.0, 36, {2 )]

The chain rule of differentiation can now be invoked to express the first partial derivatives
of p(x) as

Dgo Do
Dyo [=]| Dyp (A.3)
ngo D,p
where
Dgx Dﬁy Déz
J=(Dnx Dyy Dyz (A4)
Dyx D,y DCZ

is the so-called Jacobi matrix of the transformation, This matrix and more particularly its
determinant, also known as the Jacobian of the transformation,
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J = det(]) géx g&y gﬁz DﬁanyDCZ+D§yD,,zD¢x_+ DézD,]xD;y
=actlly=Dyx Dyy D=
’ sz D;?y DZZ “D'g XDnchy - DgJ’DqJCDgz - DéanyDg-x

is of paramount importance in any mapping. The reason for this isthata map is only possible
if its inverse, and thus that of its Jacobi matrix

quDcz - DCyDﬂZ DHZDCI - anDg'J’ quDCx - Dngny
= EETo)) DgzDyy = DyyD,z DyxDyz~ DyxD; x DyyDyz~ Dy YDgx
PyiDyy=Dezbyy  DyxDyz - DyiDex DyyDyx—Dyap,y

J—l

exists. This will be true iff J 0.

The Jacobi matrix of the isoparametric transformation in Equation (A.2), and its

Jacobian, canbe computed readily by substitutin g Equation (A.2)in Equation (A.4) toobtain
{Botha and Pinder, 1983: Zienkiewicz, 1977)

Nz
Doy Deo, ... Deoy p yl 21
J=| Dpoy Do, ... Doy :2 :2 :2
Drgy Dpo, o Droy '
¢ ‘ ¢ N VN oy
where D1, denotes the 1-th derivative of the basis function g(&,1n,0). Explicit expressions
for these derivatives can be readily derived from €xpressions of the Lagrange interpolation
polynomial used in the map. The expressions for the tri-linear polynomials of Equation (A.1)
are, for example, given by

Doy (E,m,0)
Dn@ijk(gv B C)
Droy (€. m.8)

i

“A=2EA = n)~(-2n) - g) - (1~ 20, )¢
2= )= A-26)EN0-G) - (1-2200] (as)
268~ U-28)00 - )~ (1 - 27

il

A2 TRANSFORMATION OF INTEGRALS

A21 General

volume integrals-

|
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and surface integrals
oA = ﬁanq(x, ¥,z) ® n(x,y,z)dA (A7)

where n(x,y,z) is the outwardly directed unit vector, normal to the surface area dA. The
integralsin Equations (A.6) and (A.7) obviously mustalso be mapped onto local coordinates,
if the finite element approximation is computed in local coordinates. The discussion of these
maps is simplified considerably by introducing the tangent vector to a space curve G.
Consider therefore first the vector

Ar _Ax Ay | Az

[l AR VRl v
where Ar is the difference of the two radii vectors r and r + Ar in Figure A-2 and Ay the line
segment bounded by them. It is clear from Figure A-2 that the vector
dr _ .. Ar_.dx . dy

lim _.=i-._+J—-..+kii-..= iD,x+ jD,y+kD,z (A.8)

T =25 _ Z
“du Aus0Au du “du du

will be tangential to the curve € at the point P,
hence the name tangent vector. It should be
noticed that nothing had been said about the
measure of u. The vector T, can thus be ex-
pressed conveniently in the form

T, =ID,rle, =he, (A9)

where h,, is the magnitude of T, and €, & unit
vector in the direction of T,

Figure A2 Graphical representation

of the tangent vector to a space curve.
A2.2 The Volume Integral

It is obviously easy to transform the integrand in Equation (A.6), given the relation between

the old (x = {x,y.z}) and new (u = {u,v,w}) sets of coordinates. The transformation of the

elementary volume element is, however, more complicated. Consider for this purpose the

two coordinate systems in Figure A-3. The elementary radius vector, dr, can now be

expressed in terms of the new coordinates, u, through the chain rule of differentiation as
or or

ar
dr = —du+—dv+—
r ot ! v Y awdw

= hdue, + h,due, +h, due,,

where use was made of the unit vectors defined by Equation (A.9). The variables u can only
serve as a set of coordinates, if v and w remain constant along the curve defined by u(x, y, 7)
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dr,

Figure A-3  Tilustration of the wo coordinate systems used in derivin ganexpression for
the transformation of the volume integral.

and conversely. The differential hudu may thus be taken as the elementary arc length along

the curve u = u(x, ¥, 2),and similarly for h,dv and hydw. The elementary volume element in
a set of orthogonal coordinates, u, is thug given by, see Figure A4,

dv =hhh, dudvdw =l(h,due,)e (h,dve,)x (h,dwe,) (A.10)
since (e %e,xe,,) =1, by definition, It is well-known that %
the triple product on the right hand side of Equation -

(A.10)canalso beexpressed in the form (Spiegel, 1959) R
dV = det(Ndudy dw

where
Dx Dy Dy
det(J)=|D,x Dy D,zl|= hyhh,
D,x D,y D,

Figure A~4  Illustration of the el-
is again the Jacobian of (he transformation, The ementary volume element in the trans-

volume integral in Equation (A.6) can thus be ex- formed space.
pressed in the new coordinates as

V= e POy, wydet(J)dQy

where Q' denotes the volume in the new coordinate system and d4CY = dudvdw, with

Fuv,wy=r {x(u), y(u), z(u)). As has been shown above, it is relatively simple to compute
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det (J) in the case of an isoparametric transformation.

A.2.3  The Surface Integral

The transformation of the surface integral in Equation (A.7) is hampered, not only by the
presence of the elementary surface area dA, but also the normal unit vector n. Both these
quantities must therefore be transformed to the new coordinate system. To achieve this,
consider the coordinates (r, s), in Figure A-5. The same line of reasoning used in the
derivation of Equation (A.8) can now be used to construct the two tangential vectors

T.=iDx+ jD,y +kD,z = h,dre, AL
Ty =iD;x + jD;y + kD;z = h dse, A1)

/}m) i

i
/ J!,g, .f! % .r-rrr;,»r

.- .j...,, )
L

Figure A~5  Parametric coordinates on the surface of g three-dimensional surface.

The elementary surface area dA’ to use in the transformation can thus be expressed as, sce
Figure A-6,

dA" =T, x T,|= hh,drds (A.12)
where

Figure A6 Schematic representation of the tangent plane to the three-dimensional

surface $(x, y, 2).



Transformation of Integrals 93

T, XT, =iy, + I + kI, =N, (A.13)
with
Dp Dy
pq = qu D.;q =Drstq_qu sP

thé Jacobian of the two global coordinates D énd ¢ under the map (p,q) = (r,5).
The plane spanned by the vectors T, and T, is, by definition, tangential to the surface
&(x,y,2) atthe point P (see Figure A-6). This implies that the vector Ny, in Equation (A.13),

will be parallel to the unit normal vectorn in Equation (A.7). The surface integral in Equation
(A.7) can thus be expressed in the new coordinates (r,5) as

A =130, AL, 8), y(r,8), 2(r,5)] 9 m, dAY (A.14)
where dA” is given by Equation (A.12) and

g =Nrs/Nrs

the unit vector normal to the plane spanned by T, and Ts, with N, the magnitude of N,
The most suitable approximation to use for the boundary surface, Felx,y, 2),0f a three-
dimensional element would thus be one that can be parameterized in 3 similar way as the

mapping of the global coordinates x to local coordinates £. This can be readily achieved by
expanding the global coordinates as

X= Zglxz@(ﬁ, o)

where M is the total number of boundary nodes in the element, Q,, and #1(p, o) the nvo-

dimensional Lagrange interpolation polynomial associated with the node ! (= m, n). This
polynomial can be conveniently expressed, in the case of bi-linear a
square [0, 11®[0,17, as

pproximation over the

¢mn(p’ O') = [(1 "P,‘) '_(1 - sz)p][(l - Jn) - (l - 20}1)0-]
where p,,,0, =0orl.

$
{
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