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EXECUTIVE SUMMARY 

The assessment of flood risk by associating a flood event with the probability of an exceedance or return 
period is the standard approach to design flood estimation (DFE) in most countries (Smithers, 2012; Kang 
et al., 2013). These design flood estimates are essential for designing hydraulic infrastructure such as 
dams, bridges, culverts and other drainage structures (Lamb et al., 2016). A National Flood Studies 
Programme (NFSP) has been initiated to overhaul DFE procedures used in South Africa (Smithers et 
al., 2016). Some of the recommendations in the NFSP include the further development and assessment 
of a continuous simulation modelling (CSM) approach to DFE in South Africa, and updating and 
modernising the SCS-SA method. 

Motivation for a CSM approach to DFE in South Africa includes the following:  
• Rainfall records are generally more numerous, accurate and spatially representative in comparison 

to streamflow records  
• The continuous simulation modelling approach has the potential to overcome many of the 

limitations of event-based rainfall-runoff methods  
• Local and international trends promote the application of continuous simulation modelling 

approaches to design flood estimation  
• The method has significant potential to account for land-use change, climate change and 

operational systems (e.g. dams) within the catchment, which impact on design flood estimates, 
thus making the approach more robust and providing greater confidence in the results 

In addition to the CSM approach, the SCS-SA event-based approach (Schmidt and Schulze, 1987; 
Schulze et al., 1992; 2004) is widely used in practice in South Africa for DFE. The method is, however, 
outdated and was developed using the limited data available at the time.  

Reasonable results have been obtained through several pilot research studies applying the 
agrohydrological model of the Agricultural Catchments Research Unit (ACRU) for DFE in South Africa 
(Smithers et al., 1997;  2001;  2007; 2013; Chetty and Smithers, 2005; Rowe, 2015). However, several 
aspects of the ACRU CSM approach that require further development and refinement have been 
identified, including the estimation of peak discharge, e.g. improving the estimation of catchment lag 
(Gericke and Smithers, 2016), the further investigation of appropriate temporal rainfall distributions and 
disaggregation of daily rainfall, methods to generate or stochastically extend rainfall records, the 
updating of land-cover information and rainfall records, and the further refinement of flood-routing 
methods (Smithers et al., 2013). 

AIMS AND OBJECTIVES 

The aims of this project were the following: 
 
• Refine and update the SCS-SA model for design flood estimation to account for antecedent moisture 

conditions and the joint association of rainfall and runoff using the results and methodology from a 
CSM system 

• Compare the performance of the CSM system to the traditional and updated SCS-SA models 
• Further develop and assess the CSM approach, including the potential incorporation and assessment 

of improved daily rainfall disaggregation methods to account for the temporal distribution of daily rainfall 
• Compare the performance of the ACRU CSM system that was developed to simpler, parameter-

sparse CSM methods applied internationally 
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Hence, this project contributes directly to the objectives of the NFSP by updating and modernising DFE 
methods for South Africa. 

In order to meet the above aims, the following objectives were set: 

• Assess the performance of published and derived SCS curve numbers for DFE in South Africa 
• Further develop and assess the ACRU CSM system for DFE in South Africa 
• Assess the performance of existing methods, or develop a new or improved method to more 

adequately disaggregate daily rainfall within the ACRU model 
• Select and assess the performance in South Africa of a simpler, parameter-sparse CSM used 

internationally and compare the performance with the ACRU CSM that was developed  
• Investigate the potential to incorporate a joint probability approach (JPA) into the updated version of 

the SCS-SA model 
• Develop, configure and assess the CSM system and incorporate the results into an updated SCS-SA 

model 

Five studies to address the first five objectives were undertaken as postgraduate research projects, as 
summarised in chapters 2 to 6. The development and assessment of the SCS-CSM model that was 
developed in the study are detailed in 0. 

AN ASSESSMENT OF THE PERFORMANCE OF PUBLISHED AND DERIVED SCS CURVE NUMBERS 
FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA 

The South African adaptation to the SCS-CN model (SCS-SA) is a commonly used event-based rainfall-
runoff method for DFE on small catchments (< 30 km2). The model is simple to use and only requires 
the selection of a curve number (CN) from a published CN table and daily design rainfall as input to 
simulate runoff volume. The SCS-CN runoff equation was originally developed to transform a daily 
rainfall depth to a runoff depth, which is used to estimate peak discharge. The published CNs were 
derived from observed data from catchments in the USA for selected land-cover and soil classes (Mishra 
and Singh, 2003). The published CNs are widely used internationally. However, the accuracy of the CN 
values that were published by the Soil Conservation Service (SCS) are unknown. 

The use of published CNs limits the application of the SCS-SA model on catchments with land-cover 
classes and hydrological soil groups (HSGs) specific to South Africa. In addition, numerous studies have 
concluded that data-derived CNs result in better runoff estimates. In the SCS-SA model, the coefficient 
of initial abstraction (c) value (0.2) is not consistent with the c value used to calculate the published CNs 
(0.1), thus increasing the uncertainty related to the estimated runoff depths. The aim of this component 
of the study was therefore to investigate whether published CNs from the SCS-SA manual or data-
derived CNs result in better runoff estimates, and to propose a CN-derivation technique that may be 
suitable for use in South Africa with results from a CSM. 

A literature review indicated that the long periods of observed and simulated rainfall-runoff (P-Q) data 
could be used to assess available CN-derivation techniques. The approach used in this study was to 
investigate whether the published CNs could be replicated using observed or simulated P-Q data from 
small South African catchments. Various CN-derivation techniques were tested, and the derived CNs 
were compared to the published CNs. In addition, the current published CNs were evaluated to 
determine if they result in good DFE. The data-derived CNs determined using different methods were 
also evaluated to determine if they result in better DFE compared to the use of published CN values. 
Based on the results that were obtained, the CNs derived using observed annual maximum P-Q events 
and c = 0.1 were closest to the published CNs.  
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Subsequently, the methods that resulted in CNs similar to the published CNs were applied using 
simulated runoff from the ACRU model. The simulated annual maximum runoff depths from ACRU were 
parameterised using the rules developed by Rowe (2019) (ACRUTR-P). This resulted in derived CNs that 
were more similar to the published CNs than the CNs derived using observed P-Q data.  

The published CNs were then assessed to determine whether the design runoff estimated using the 
SCS-CN equation (QT,S), applied with published CN values, resulted in good estimates of design-
observed runoff depths (QT,O).  

The results of the analysis of published CNs indicated that the published CNs resulted in poor estimates 
of QT,O. However, the CNs calculated with c = 0.1 and design-observed P-Q depths for the 10-year return 
period (CN10,0.1) resulted in good estimates of QT,O. Similarly, the CN10,0.1 derived using runoff depths 
simulated with ACRUTR-P (S-CN10,0.1) also resulted in improved estimates of QT,O compared to the 
published CNs. The S-CN10,0.1 values derived using Q values simulated using the conventional ACRU 
(ACRUCON-P) parameterisation resulted in poorer estimates of QT,O. However, when the design peak 
discharges were calculated using the SCS-SA model, the S-CN10,0.1 (ACRUCON-P) generally resulted in 
the lowest mean average error between the observed and design peak discharge values.  

Numerous different CN-derivation methods have been reported in the literature, but no single method 
has been universally accepted to derive CNs. In this study, CN values were calculated for study sites in 
South Africa using both observed P-Q data and simulated Q depths. The statistical comparisons 
between QT,O and QT,S that were done in this study have highlighted the poor performance of the use of 
published CN values in South Africa. The results from this study also indicate that an improvement in 
the use of published CNs is to use local P-Q values and frequency-matched P-Q pairs to determine CNs 
as a function of the return period. The improved performance of the SCS-CN model when using CNs 
derived with simulated Q depths from ACRUTR-P implies that the study could potentially be extended to 
different regions without observed Q data using the simulated Q values. It is, therefore, recommended 
that the currently used published CN tables be updated using the frequency-matching method to include 
land-cover classes that are unique to South Africa, and hence to remove the subjective interpolation 
when selecting a CN for a land cover and an HSG combination that is not included in the published CN 
tables.  

DEVELOPMENT AND ASSESSMENT OF AN IMPROVED CONTINUOUS SIMULATION MODELLING 
SYSTEM FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA USING THE ACRU MODEL 

The methods used to estimate design floods in South Africa are outdated and in need of revision. A 
National Flood Studies Programme was initiated to overhaul DFE procedures in South Africa. One of the 
recommendations of the NFSP is the further development and assessment of a CSM approach to DFE for 
South Africa. Consequently, the aim of this component of the study was to further develop and assess the 
performance of an improved comprehensive CSM system to estimate design flood discharges consistently 
and reliably in small catchments (0−100 km2) in South Africa using the ACRU model.  

The CSM approaches that are applied locally and internationally for DFE were reviewed to identify 
research gaps and serve as a guideline for the development of an enhanced CSM system for DFE in 
South Africa. The literature review highlighted that the CSM approach to DFE has many advantages 
over traditional event-based rainfall-runoff DFE techniques. The literature review includes a list of 
recommendations and steps to develop and adopt a CSM approach for DFE. The first critical step that 
was identified and required was the development of a comprehensive CSM system using the ACRU 
model. This included the structure of the system and how to implement it, including an enhanced land-
cover and soil classification to apply with the system, and default input information and databases to 
use with the system. 
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Subsequently, a comprehensive CSM system for DFE using the ACRU model was developed and 
described in detail. Based on similarities in the runoff-generation equation in ACRU and the SCS-SA 
models, and the fact that the SCS-SA model is relatively simple and widely applied in practice, the CSM 
system was adapted to be consistent with the land-cover classification used in the SCS-SA model. The 
performance of the CSM system that was developed was assessed and verified using observed data.  

Through the assessments and verifications performed, an inconsistency between daily simulated 
stormflow volumes and the volume of stormflow used in the daily stormflow peak discharge equation 
used in the ACRU model was identified. Therefore, a revision was introduced, which is more 
conceptually correct, with only stormflow leaving the catchment on a given day contributing to the peak 
discharge on the day. The revision corrected the inconsistency and significantly improved the results, 
thereby providing an improved methodology to estimate peak discharges more accurately in ACRU.  

Despite the improvement in the results, a general over-simulation of peak discharges was still evident. 
Thus, further investigation of the ACRU stormflow peak discharge computation was performed to identify 
an approach that provided the most acceptable results. This included a performance assessment of 
both the SCS single unit hydrograph (UH) approach and the incremental UH approach. The performance 
of each approach was assessed using both estimated parameters and parameters derived from 
observed data. Comparison of the results from the two approaches indicated that more accurate results 
are obtained when applying the incremental UH approach using either estimated or observed parameter 
inputs. In terms of the incremental UH approach, the approach was identified to be more sensitive to 
the use of synthetic daily rainfall distributions compared to estimated lag times.  

The impact of model configuration on the performance of the developed ACRU CSM system was assessed 
to propose a final CSM system for DFE in South Africa. Results when using site-specific land-cover and 
soil information were compared to those obtained when different sources of input information were used. 
In addition, the most appropriate current databases to use with the CSM system were defined, providing 
users with the most appropriate default information currently available for use in the absence of site-
specific information.  

Lastly, the performance of the revised ACRU CSM system was compared to the widely applied SCS-SA 
model using the same input information. The performance of the revised ACRU CSM system in terms 
of DFE was found to be better than the SCS-SA model. In addition, several advantages of the ACRU 
CSM system over the traditional SCS-SA approaches were identified. Recommendations were made to 
further improve on the CSM system developed in this study. 

ASSESSING THE PERFORMANCE OF TECHNIQUES FOR DISAGGREGATING DAILY RAINFALL 
FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA 

As indicated above, the temporal distribution of rainfall has a significant impact on the magnitude and timing 
of flood peak discharges. In order to improve DFE methods based on event-based or continuous simulation 
rainfall runoff models, it is generally necessary to use sub-daily timestep rainfall hyetographs as input. 
However, the number of recording rain gauges, which provides sub-daily timestep rainfall in South Africa, 
is relatively low compared to those that provide daily data. Rainfall temporal disaggregation (RTD) 
techniques can be used to produce finer-resolution data from coarser-resolution data. Several RTD 
approaches have been applied in South Africa. However, the application of RTD approaches locally is 
relatively limited, both in terms of the diversity of approaches and cases of application, compared to those 
developed and applied internationally. Therefore, a need exists to further assess the performance of locally 
applied RTD approaches, as well as to update the list of available approaches through the inclusion of 
internationally developed and used RTD techniques. This component of the study contains an overview of 
the application of selected RTD approaches on different sets of rainfall data in South Africa and the 
performance of the methods. An extensive literature review was conducted on approaches used for 
disaggregating rainfall data, both internationally and locally. 
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Suitable approaches were identified based on an examination of case studies of their application and on 
simplicity of application, data requirements and performance in regions with similar climates to South Africa. 
A pilot study was performed in which selected local and international RTD approaches were applied to 
disaggregate daily rainfall data. Some approaches were applied in their original form, while others were 
modified. Rainfall days with total depths less than 10 mm were excluded from the assessment.  

Temporal distributions of rainfall were represented by dimensionless Huff curves, which served as the basis 
for the comparison of observed and disaggregated rainfall. It was found that, for daily rainfall, the SCS3, 
SCS4 and Knoesen model approaches performed considerably better than the other approaches at the 
pilot study site. The RTD approaches were further assessed using data from 14 additional rainfall stations 
located in different homogenous rainfall regions. For the additional stations, the Knoesen semi-stochastic 
model’s disaggregated depths provided the most realistic temporal distributions overall, followed by the 
SCS-SA distributions. In additional, an adapted form of the triangular distribution was found to show 
potential for disaggregation when a generalised value for the timing of the peak was utilised. 

AN ASSESSMENT OF SIMPLE CONTINUOUS SIMULATION MODELLING APPROACHES FOR 
DESIGN FLOOD ESTIMATION IN SOUTH AFRICA 

Continuous simulation modelling has been investigated and has received increasing attention in the local 
and international literature as an approach with potential for DFE. In South Africa, the ACRU CSM has been 
used successfully in pilot studies for DFE. However, the model is comprehensive, and the input data 
requirements, time and expertise required to set up the model remain a challenge. Therefore, there is a 
need to evaluate the use of simpler continuous simulation (CS) models for DFE, which have fewer 
parameters, are easy to apply, and are less data demanding. The aim of this component of the study was 
to assess the performance of simple CS models for DFE in South Africa. Simple CS models from local and 
international literature were reviewed and the Modèle du Génie Rural à Quatre Paramètres Journalier 
(GR4J) (daily timestep model) and Génie Rural à Quatre Paramétres Horaires (GR4H) (hourly timestep 
model), developed by airGR and available as open-source software in the R programming language, were 
selected. Their performance was assessed on six catchments in South Africa. The models were set up and 
calibrated for three scenarios at both daily and hourly simulation timesteps, and an additional calibration 
scenario was included for the hourly simulation timestep. Due to rainfall data limitations and errors in the 
data, only three of the six catchments were simulated at both daily and hourly timesteps. A sensitivity 
analysis was also conducted, which assessed the impact of different daily rainfall disaggregation techniques 
on flow simulations. A comparison was undertaken of the GR4J’s performance in the larger and smaller 
catchments to analyse the effect of catchment size on model performance. In general, the models were 
found to perform reasonably well at both daily and hourly timesteps. However, the daily timestep model was 
found to produce better results. At both timesteps, the design peak discharges were generally under-
simulated for both calibration and validation. Only a small improvement in the design flood peak discharge 
estimates was obtained for the hourly timestep simulations (GR4H) compared to the daily timestep 
simulations (GR4J). However, in most cases, the improvement was insignificant and strongly dependent on 
the quality of the data. The use of disaggregation techniques to generate hourly hyetographs from daily 
rainfall data resulted in adequate simulated and observed flows, and demonstrated their usefulness in areas 
where the availability of hourly data is limited, despite further under-simulation of design peak discharges. 
The daily model performed acceptably in both small and large catchments. The potential for the use of a 
simple CSM for DFE in South Africa has been shown in this study. However, a further assessment of the 
models is recommended, including improved calibration techniques using a multi-criteria objective function 
and the development of a method to estimate model parameters at ungauged sites.  
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DEVELOPMENT AND ASSESSMENT OF AN ENSEMBLE JOINT PROBABILITY APPROACH USING 
THE SCS-SA MODEL 

The DFE methods in South Africa are based on the statistical analysis of streamflow data and rainfall- 
based methods. Given the limited availability of observed streamflow and that rainfall data has longer 
records from a spatially denser network than streamflow records, rainfall-based DFE methods are widely 
used at ungauged sites. A key assumption in rainfall event-based methods for DFE is that the exceedance 
probability of the estimated flood is the same as the input design rainfall. This equality of rainfall and flood 
return periods is generally not true given the use of model parameters that represent average conditions 
in the catchment and the impact of antecedent moisture conditions on hydrological responses.   

Hence, a joint probability approach is used, where the key input model parameters, and not only the 
input design rainfall, are treated probabilistically to address the limitations associated with rainfall event-
based DFE methods. The underlying approach to a JPA is that, instead of the use of a single 
combination of input variables to determine flood characteristics, the method uses multiple likely 
combinations of flood-producing parameters to determine the flood characteristics. In this component of 
the study, a JPA was applied using the SCS-SA model.  

The modelling framework used to determine the derived flood frequency curve is based on three 
principal elements: defining the key model inputs with their respective probability distributions and 
correlations, using a stochastic model to synthesise sequences of the selected variables, and selecting 
an appropriate deterministic hydrological model to simulate the flood-generation process. The ensemble 
of the simulated outputs is used to derive the flood distribution. To evaluate the performance of the 
Ensemble SCS-SA model, the results were compared to design values computed from the observed 
streamflow data. A statistical analysis was conducted in conjunction with graphs to assess the 
performance of the model. The Nash-Sutcliff efficiency (NSE) value, absolute relative difference and 
mean absolute relative error (MARE) were used to evaluate the model’s performance. Using readily 
available data, probability distributions were derived for one-day design rainfall, time to peak (TP), 
antecedent moisture conditions and the temporal distribution of daily rainfall. The results produced from 
applying the Ensemble SCS-SA model indicated that the model was performing relatively poorly in terms 
of estimating both the observed design runoff volume and the design peak discharge for all the selected 
test catchments. The use of rainfall duration (TP) in conjunction with the probability distributions of the 
other key input variables in the Ensemble SCS-SA model resulted in significantly improved estimated 
design runoff volume and peak discharges for all the test catchments. The Ensemble SCS-SA model 
has also shown potential and flexibility to deal with uncertainty by accounting for the distributed nature 
of the input variables and taking on values across the full range of their distribution in the modelling 
process, thus avoiding the potential of bias that can occur when adopting a single set of predetermined 
input values. This study has shown the potential and flexibility of the Ensemble SCS-SA model to deal 
with uncertainty, providing opportunity for the expanded application of the model.   

DEVELOPMENT AND ASSESSMENT OF THE SCS-SA CSM SYSTEM FOR DESIGN FLOOD 
ESTIMATION IN SOUTH AFRICA 

CSM for DFE is an emerging approach in design hydrology and overcomes many shortcomings of event-
based models, but requires complex rainfall-runoff models and the availability of long continuous and 
reliable observed or stochastically generated rainfall and climate data series. CSM is the most 
comprehensive tool to account for joint probabilities in flood frequency estimation. The motivation for 
using a CSM approach includes better representation of physical processes, and overcomes the 
restrictive assumptions required for the application of other methods. However, the cost of using a CSM 
approach is greater than other approaches and needs to be offset against the advantages of the CSM 
approach. Advantages of the CSM approach include the estimation of design flows at any simulation 
point and not just at the catchment outlet.  
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No assumptions need to be made about the design event and hydrograph shapes. Antecedent moisture 
conditions are explicitly accounted for, and actual or projected land-cover and climate conditions can be 
simulated. Sources of uncertainty when using a CSM approach include rainfall data, parameter 
uncertainty and the calibration metric used. In South Africa, the ACRU agrohydrological model has been 
used in a number of pilot studies on design flood estimation using a CSM approach. It has been further 
developed in this project.  

The SCS-SA CSM system developed in this study uses Excel as a front-end graphical user interface 
(GUI) to input user information, and Visual Basic code to run compiled executable Fortran code. This 
extracts the required parameters, configures and runs the ACRU CSM, imports results and generates 
design peak discharges and hydrographs.  

The evaluation of the SCS-SA CSM incorporated a number of configuration and simulation scenarios 
for design peak discharge estimation, which includes catchment-specific soils, soils for the dominant 
quinary in the catchment, or each quinary falling in the catchment modelled as a hydrological response 
unit (HRU) using the quinary soil information for the HRU; one-day duration design rainfall or short-
duration rainfall equivalent to time to peak; the “CELRUN” or “DSTORM” design volumes simulated by 
the ACRU model; and land cover specific to the catchment in the study. The model assessment was 
performed on 19 catchments.  

The following conclusions are drawn from the general trends in the performance of the SCS-SA CSM 
on all catchments and for each simulation scenario: generally better performance is evident when using 
DSTORM compared to CELRUN volumes; generally better performance is evident when using time to 
peak compared to using a one-day duration; and generally better performance is evident when quinary 
catchments simulated as HRUs and quinary catchments’ soil information are used, compared to using 
the soil information from the dominant quinary catchment.  

COMPARISON OF RESULTS OBTAINED IN THE STUDY 

The performance of the models used and developed in this project were compared. The standard and 
Ensemble SCS-SA were applied to 19 catchments. The SCS-SA CSM model was applied to 19 
catchments. The ACRU model was applied to 11 catchments. The GR4J was applied to five catchments. 
In order to apply the Ensemble SCS-SA model at sites where no observed time to peak data is available, 
generalised equations were developed using the limited TP data available to estimate TP at sites that 
do not have observed TP data.  

The best performance in terms of design peak discharge estimation was obtained by the Ensemble 
SCS-SA (time to peak) model, followed by the SCS-SA CSM (time to peak duration, quinary soils, 
DSTORM volume), standard SCS-SA model (time to peak) and Ensemble SCS-SA (regional equation 
duration) models, all of which have similarly good performance. The good performance of the Ensemble 
SCS-SA (regional equation duration) model, despite the limited datasets used in the derivation of the 
regionalised equations to estimate time to peak, is encouraging and requires further refinement. It is 
encouraging to note that some of the models developed in this study (the Ensemble SCS-SA and SCS-
CSM models) perform better than the standard SCS-SA (one-day duration) model, which is currently 
used in practice.  

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

The aims of the project have been met and exceeded. The performance of the Ensemble SCS-SA model 
and SCS-SA CSM has resulted in major improvements in the estimation of design peak discharges 
compared to the standard SCS-SA model as currently used in practice.  
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Some significant findings and developments from this study are as follows: 
 
• The best approaches have been identified to determine CNs for the SCS-SA model for South African 

catchments, and South African land-cover and soil classifications using observed rainfall and either 
observed or simulated runoff  

• The use of data-derived catchment-specific CNs resulted in improved performance in the SCS-SA 
model 

• The performance of the standard SCS-SA (one-day duration) model for DFE is improved when the 
time to peak rainfall duration is used  

• The Ensemble approach improved the performance of the SCS-SA model and enables the 
uncertainty to be estimated; it can also tentatively be applied at ungauged sites in South Africa 

• The semi-stochastic Knoesen model and SCS-SA distributions have been found to perform 
acceptably well to disaggregate daily rainfall  

• The use a simple, parameter-sparse CSM for DFE has been shown to have potential, but significant 
further development is required to apply the model at ungauged sites 

• Refinements and improvements to the ACRU model for peak discharge estimation have been 
undertaken and links to parameterise the model using national land-cover and soil classifications 
have been established  

• A SCS-SA CSM system for DFE has been developed, which incorporates many of the results 
obtained in the study, and has been shown to perform reasonably well 

• The models developed in this study (refined ACRU CSM, Ensemble SCS-SA and SCS-CSM) for DFE 
perform better than the standard SCS-SA (D = one day) model currently used in practice 

 
The following recommendations are made: 
 
• The performance of the models assessed in this study should be expanded to include design volume 

estimation, and inconsistencies in the performance of the models for transforming a design volume 
into a design peak discharge should be investigated and resolved  

• The beta version of the SCS-SA CSM system should be further developed to include the Knoesen 
semi-stochastic daily rainfall disaggregation model  

• The Ensemble SCS-SA model should be further developed and refined for use in practice 
• The ensemble approach should be expanded to include other event-based flood estimation models 

used in South Africa.  

CAPACITY BUILDING 

This project has contributed to supporting five postgraduate students. This has resulted in one PhD, one 
MSc Engineering and three MSc studies being completed and degrees awarded. 
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CHAPTER 1: INTRODUCTION 
The assessment of flood risk by associating a flood event with the probability of an exceedance or 
return period is the standard approach to design flood estimation in most countries (Smithers, 2012;  
Kang et al., 2013). These design flood estimates are essential to design hydraulic infrastructure such 
as dams, bridges, culverts and other drainage structures (Lamb et al., 2016). 

A National Flood Studies Programme was initiated to overhaul DFE procedures used in South Africa 
(Smithers et al., 2016). Some of the recommendations in the NFSP include the further development 
and assessment of a continuous simulation modelling approach to DFE in South Africa, and updating 
and modernising the SCS-SA method.  
 
Motivation for a CSM approach to DFE in South Africa includes the following:  
 
• Rainfall records are generally more numerous, accurate and spatially representative in comparison to 

streamflow records  
• The continuous simulation modelling approach has the potential to overcome many of the limitations 

of event-based rainfall-runoff methods  
• Local and international trends promote the application of continuous simulation modelling approaches 

to design flood estimation  
• The method has significant potential to account for land-use change, climate change and operational 

systems (e.g. dams) within the catchment, which impact on design flood estimates, thus making the 
approach more robust and providing greater confidence in the results 

 
In addition to the CSM approach, the SCS-SA event-based approach (Schmidt and Schulze, 1987; 
Schulze et al., 1992; 2004) is widely used in practice in South Africa for DFE. The method is, however, 
outdated and was developed using the limited data available at the time.  

In addition, due to computational limitations and limited databases on catchment characteristics, such as 
land cover and soil, simplified soil moisture adjustment procedures were developed for the median 
condition method (Nathan and McMahon, 1990) and the joint association method (JAM). For example, 
CSM using the ACRU model was performed for only 30 days prior to the five largest rainfall events in each 
year, and moisture adjustments were performed for only 712 homogenous zones defined for South Africa 
based on a simple 3 x 3 x 3 matrix of soil depths, vegetation density and soil texture. Currently, significantly 
more data is available to update the SCS-SA soil moisture adjustment procedures, which can easily be 
updated using a significantly longer record of rainfall and other climate variables (50 years or more, 
depending on data availability from organisations such as the South African Weather Service (SAWS); a 
much finer division of the country into homogeneous zones, where the country has been delineated into 
1 946 quaternary catchments and 5 838 quinary catchments; and detailed information on soil and land 
cover, with national soil and land-cover maps of both natural and current land cover currently available. 

Reasonable results have been obtained through several pilot research studies applying the ACRU 
agrohydrological model for DFE in South Africa (Smithers et al., 1997;  2001;  2007; 2013; Chetty and 
Smithers, 2005; Rowe, 2015). However, several aspects of the ACRU CSM approach that require 
further development and refinement have been identified, including the estimation of peak discharge, 
e.g. improving the estimation of catchment lag (Gericke and Smithers, 2016), further investigation of 
appropriate temporal rainfall distributions and disaggregation of daily rainfall, methods to stochastically 
generate extended periods of rainfall, the updating of land-cover information and rainfall records, and 
further refinement of flood-routing methods (Smithers et al., 2013). 
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Rowe (2015) investigated a methodology to include land management and hydrological condition 
classes used in the SCS-SA model in the ACRU land-cover classification. Further development of and 
investigation into the approach was recommended, including the analysis of additional land-cover 
classes, further independent verification at different geographical locations, and verification of the 
simulated results against observed data in terms of both runoff volumes and peak discharges. In 
addition, further development of a CSM system for DFE for South Africa was recommended.  

The aims of this project are the following: 
 
• Refine and update the SCS-SA model for DFE to account for antecedent moisture conditions and 

the joint association of rainfall and runoff using the results and methodology from a CSM system 
• Compare the performance of the CSM system to the traditional and updated SCS-SA models 
• Further develop and assess the CSM approach, including the potential incorporation and 

assessment of improved daily rainfall disaggregation methods to account for the temporal 
distribution of daily rainfall 

• Compare the performance of the ACRU CSM system developed to simpler, parameter-sparse 
CSM methods applied internationally 

 
Hence, this project will contribute directly to the objectives of the NFSP by updating and modernising 
DFE methods for South Africa. 

The following objectives were set to meet the above aims: 
 
• Assess the performance of published and derived SCS curve numbers for DFE in South Africa 
• Further develop and assess the ACRU CSM system for DFE in South Africa 
• Assess the performance of existing methods, or develop a new or improved method to more 

adequately disaggregate daily rainfall within the ACRU model 
• Select and assess the performance in South Africa of a simpler, parameter-sparse CS model 

applied internationally and compare the performance with the ACRU CSM that was developed  
• Investigate the potential to incorporate a joint probability approach into the updated version of the 

SCS-SA model 
• Develop, configure and assess the CSM system and incorporate the results into an updated SCS-SA 

model 
 
Studies to address the first five objectives have been undertaken as postgraduate studies, which are 
summarised in chapters 2 to 6. These chapters are written as stand-alone papers for publication in a 
journal. Chapter 7 contains an overview of how the developments and results have been incorporated 
into the development of a SCS-SA CSM for DFE in South Africa. A comparison of the results of the 
different approaches developed and tested in the study is included in Chapter 8. Chapter 9 contains a 
discussion on the study and includes conclusions and recommendations for further research. 
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CHAPTER 2: AN ASSESSMENT OF THE 
PERFORMANCE OF PUBLISHED AND DERIVED SCS 

CURVE NUMBERS FOR DESIGN FLOOD 
ESTIMATION IN SOUTH AFRICA 

U Maharaj, JC Smithers and TJ Rowe 

This chapter provides a summary of the progress made in meeting the first objective, listed in Chapter 1, 
i.e. deriving South African-specific curve numbers. Full details of the study are provided in Maharaj (2020).  

2.1 INTRODUCTION 

The Soil Conservation Service stormflow equation was originally developed to transform a rainfall (P) 
frequency distribution to a runoff (Q) frequency distribution (Hjelmfelt, 1991). The curve numbers used 
for the transformation are generally obtained from published tables and are the CNs associated with 
average antecedent moisture conditions (AMC II). They represent the central tendency of the CNs 
derived from observed data. However, the accuracy of the CN values that were published (CNpublished) 
by the SCS is unknown (Woodward et al., 2002; Woodward, 2017), and empirical evidence suggests 
that with the current CNpublished values and hydrologic systems are over-designed (Schneider and 
McCuen, 2005). It is important to recognise that certain aspects of CNs are not perfect. Therefore, 
numerous studies have been undertaken to verify the SCS-CN equation and CNpublished values 
(Hjelmfelt, 1991; Ponce and Hawkins, 1996; Hawkins et al., 2009; Tedela et al., 2011).  

Hawkins (1975) stressed the importance of accurate CN estimates because the SCS-CN model is more 
sensitive to errors in CNs than rainfall. Therefore, estimation of stormflow should focus on the accurate 
determination of CNs, or the use of thoroughly verified CNs. Errors in stormflow estimations are 
particularly sensitive in low rainfall and runoff conditions (Hawkins, 1975), because these situations tend 
to have a bias toward high data-derived CNs. The majority of the files and supporting data that were used 
to develop the SCS-CN method in 1954 were not published (Mishra and Singh, 2003; Hawkins et al., 
2009). Consequently, the CN method did not undergo critical review after it was made available for use 
(Hawkins et al., 2009; Woodward, 2017). The CNpublished values should, therefore, only serve as a guide, 
and users of the method should seek to determine CN values using local P-Q data to account for any 
deviations from the CNpublished values (Hawkins et al., 2009). However, in practice in South Africa, 
guidelines on the use of the SCS-SA model recommend the use of the CNs derived by the United States 
Department of Agriculture (USDA)’s SCS (Schulze et al., 2004; SANRAL, 2013). The availability of 
observed runoff data is limited. Dlamini (2019) developed and evaluated an ensemble joint probability 
approach (JPA) using the SCS-SA model. His results showed that both the ensemble and single-event 
SCS-SA models, when applied with a one-day duration design rainfall and published CNs as an input, 
performed poorly in terms of estimating the observed design runoff volume and design peak discharge. 
These results confirm the need to assess the performance of the published CNs in South Africa. 

According to Hawkins (2014), the CN concept was established in the “quiet past” and is not adequate 
for the “stormy present” of hydrologic engineering. The currently available published CN tables are 
based on soil and land-cover information that does not represent South African soil and land-cover 
classifications. With the uncertainty surrounding the origin and development of the CN values, and the 
sensitivity of the simulated hydrological responses to the CNs used, it is vital to use a CN that best 
represents the land cover, soil type and hydrologic condition of the catchment of interest.  
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Given the availability of spatially explicit information on land cover and soil types in South Africa, the aim 
of this study is to evaluate the currently available published CNs and to select a suitable method to derive 
CNs using observed or simulated rainfall-runoff data for South African catchments. The aim of the study 
reported in this chapter is to investigate whether published CNs from the SCS-SA manual or data-derived 
CNs result in better estimates of runoff when using the SCS-CN equation, and to propose a CN derivation 
technique that is suitable to determine CNs for land-cover classes and soil classification groups used in 
South Africa using the results from CSM. The specific objectives of this study are to do the following:  

• Briefly review the SCS-CN method, and the importance of accurate CN estimates 
• Review methods that are used in South Africa and internationally to derive CNs 
• Assess the performance of different CN derivation methods with observed and simulated runoff 

values to calculate CNs for South African catchments and compare the calculated CNs to the 
currently available published CNs for each catchment 

• Assess if simulated runoff values could be used to determine CNs for land cover and soil 
combinations specific to South Africa 

• Determine whether the currently available published CNs or the data-derived CNs result in more 
accurate estimates of runoff when using the SCS-CN equation to estimate runoff 

2.2 BACKGROUND AND METHODOLOGY 

The SCS-CN method has been retitled the Natural Resource Conservation Service CN (NRCS-CN) 
method. It was formulated in 1954 for environmental conditions dominant in the USA (Rezaei-Sadr and 
Sharifi, 2018). For consistency, the name SCS-CN will be used in this report. The CN is a dimensionless 
parameter that ranges between 0 to 100. Three major physiographic characteristics of a catchment are 
accounted for by the CN (Schulze and Arnold, 1979; Mishra and Singh, 2003). These characteristics 
are represented by means of classes of land use, land cover and soil characteristics (Savvidou et al., 
2016). The SCS-CN runoff equation, which became popular in the late 1950s, was a result of 
approximately 20 years of study, based on P-Q relationships that were derived using data from small 
agricultural catchments located in the USA (Mishra and Singh, 2003; Mishra et al., 2007).  

The SCS-CN runoff equation is a simple algebraic formula that relates a runoff depth to a CN and total 
rainfall depth (P). When using the SCS-CN equation, for runoff to occur, the rainfall must satisfy the 
initial abstractions (Ia), which consist of interception, depression storage and infiltration into the soil 
prior to the commencement of runoff. Once the runoff begins, the quantity of actual infiltration (F) 
increases with increasing rainfall up to the potential maximum soil water retention (S). The actual direct 
surface runoff (Q) also increases with rainfall. The original SCS-CN method was formulated using the water 
balance equation, the proportionality equality and the Ia-S hypotheses shown in equations 2.1 to 2.3 
(Schulze and Arnold, 1979; Mishra and Singh, 2003; Jain et al., 2006). 

(a) The water balance equation: 

P = Ia + F + Q         2.1    

(b) The proportionality equality hypothesis: 

Q
P - Ia  = 

F
S 

                                                       
2.2 

(c) The Ia-S hypothesis: 

Ia = c × S            2.3 

where c = coefficient of initial abstraction (dimensionless). 
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The SCS-CN runoff equation was derived using equations 2.1, 2.2 and 2.3 (Schulze and Arnold, 1979; 
Mishra and Singh, 2003): 

Q = 
(P - Ia)2

(P - Ia + S)               2.4 

The limits of Equation 2.4 are that when P ≥ cS, then Q > 0, otherwise Q = 0 (Schulze and Arnold, 
1979). The CN values may be obtained using look-up tables that have been published by various 
sources (USDA, 1959; Schulze and Arnold, 1979; Schulze and Schmidt, 1987; Schulze et al., 2004). 
The CN may then be used to calculate S (Schulze and Arnold, 1979): 

S = 
25400

CN  –  254 
              2.5 
 

There are numerous ways to define the CN. However, Fennessey and Hawkins (2001) used the 
following four definitions: array table CN, weighted design CN, best CN and asymptotic CN (CN∞). The 
array table CN refers to the CN values that were published by the SCS (i.e. CNpublished). When more 
than one land use and land cover (LULC) or hydrological soil group is identified for a catchment, a 
weighted CN value may be used. This is referred to as the weighted design CN. According to Fennessey 
(2000), the best CN is the CN that has been calibrated for selected return periods (RPs) using historical 
P-Q data from a gauged catchment, such that the standard error of the estimated peak discharges are 
minimised over the period of assessment. When using the asymptotic method of CN derivation, the 
equilibrium, or near-constant CN that is observed for large rainfall depths, is referred to as CN∞.  

If the CN concept were perfect, the weighted CN, determined from the CN tables, should be equal, or 
close to the best CN or CN∞. Figure 2.1 shows each of these CN values derived for 60 small catchments 
in the USA. The catchments are labelled from 1 to 60 on the x-axis, and the CN values, on the y-axis, 
have been ranked by their weighted design CN for ease of observation (Fennessey and Hawkins, 2001). 

 
Figure 2.1 Different CNs that were calculated for 60 catchments (Fennessey and Hawkins, 2001) 

From Figure 2.1, it is clear that the three CN values are not the same. On some catchments, the values 
vary by more than 10 CN units. There are certain cases where the three CN values are similar. However, 
it is more common for the best CN and CN∞ to be similar, and for both to vary from the design CN. 
Numerous other researchers have found that the calculated CN values vary from the tabulated CNs 
(Hawkins et al., 2009; Stewart et al., 2011; Maharaj, 2020). 
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The uncertainty linked to the determination of CNs has been associated with three main sources: the best 
methodology to calibrate the CN and Ia; the procedures used to select the most representative P-Q 
events; and the relationship between Ia and S (Hawkins et al., 2009; Pablo et al., 2017). However, if 
the uncertainty when determining the CN can be reduced, it would result in more reliable estimates of 
CNs (Pablo et al., 2017). 

Both Schulze and Schmidt (1987) and Mishra and Singh (2003) reported that, in most cases, the SCS 
used infiltrometer tests and daily rainfall-runoff records that corresponded to maximum annual flows 
from gauged catchments to compute the CNpublished values. The catchments used were from the USA, 
generally had a single land-cover and soil group, and the catchment sizes ranged between 0.0971 ha 
and 18 650 ha (Woodward et al., 2002; Hawkins et al., 2009; Tedela et al., 2011). Unfortunately, most 
of the original information that was used for deriving CNs was not preserved (Woodward et al., 2002; 
Hawkins et al., 2009). The CN for a single soil and land-cover condition was derived using the largest 
annual storm runoff and the associated rainfall (Woodward et al., 2002; Hawkins et al., 2009). When 
observed P-Qs were plotted, the CN that results in an equal number of data points on either side of the 
CN line was selected as the median, or “average” CN (CNII) for the catchment (Schulze and Schmidt, 
1987; Woodward et al., 2002). 

Bonta (1997) also stated that the CNpublished values were derived from observed P-Q data. However, 
there is no standard technique that is used to derive CNs. Statistical theory indicates that accuracy 
improves with an increasing sample size (Schneider and McCuen, 2005). To reliably estimate the mean 
of the sample, a rule-of-thumb indicates that the sample size should be at least 30 data points. However, 
it is difficult to obtain data for even this relatively small sample size. Therefore, in the study by Schneider 
and McCuen (2005), the sample size was varied when calculating the CN. The results from three CN-
derivation approaches indicated that the sample size essentially had no effect on the bias of the 
calculated CNs, but the accuracy of calculated CNs improved as the sample size was increased. 
Therefore, a large P-Q database would be required to develop a revised, more accurate CN array table 
(Hawkins et al., 2009). A shorter record generally has a limited data range for P and Q because large 
events are not expected to occur in shorter time spans (Schneider and McCuen, 2005).   

Schneider and McCuen (2005) evaluated and assessed the storm event, rank order and Log-Normal 
frequency methods to derive CNs using both observed and simulated P-Q values. The method using 
concepts of the Log-Normal frequency was found to be more accurate than the storm event and rank 
order methods. The Log-Normal frequency method reduced the imbalance of the weights given to the 
P values because taking the logarithm of P depths reduced the values proportionally (Schneider and 
McCuen, 2005). 

The SCS stormflow equation could also be applied using a frequency-matching technique. This technique 
equates rainfall and runoff events that have the same return period. When the chosen RP runoff is 
calculated from the same RP rainfall, the CN is assumed to be constant for all return periods (Hawkins, 
1993). Therefore, when using the frequency-matching technique, the T-year RP rainfall must be paired 
with the T-year RP runoff. The storm runoff does not need to be linked to the rainfall that caused it 
(Hawkins, 1993). The frequency curve transformation of rainfall to runoff using the SCS-CN equations 
satisfies the RP matching application of the SCS-CN method, but the frequency-matching technique is 
not suitable in all cases. This method is not applicable in cases where the annual flood peak CN values 
decrease with increasing rainfall depths (Hawkins et al., 2009). 

The asymptotic method builds on the frequency-matching technique and is based on the secondary 
relationship between the CN and P depth. With this method, a new dataset is created, with rainfall and 
runoff that have equal return periods. The main problem is that the runoff could be disassociated from 
the causative rainfall (Pablo et al., 2017). When using this method, user judgement plays a major role 
in determining the CN (Hawkins et al., 2009).  
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The method may be used with natural or ranked P-Q data, and a catchment may behave in a standard, 
violent or complacent pattern. However, if natural P-Q data is used, it is more difficult to observe the 
catchment behaviour pattern. In the standard and violent cases, if a near-constant CN is apparent at 
higher P values, that portion of the data is selected and the mean CN for the catchment is determined. 
Only the standard and violent cases are suitable for the CN definition because, with the complacent 
case, a single CN∞ cannot be determined for the catchment. 

In almost every case, when using natural or ranked datasets, a secondary relationship between the P 
depth and data-defined CNs is apparent (Hawkins, 1993). The data-defined CNs are not completely 
independent of the P depth and a clear decline in CNs is evident as the rainfall depth increases. This 
bias has been attributed to data censoring, basic errors inherent in the model or partial area effects 
(Hawkins et al., 2009). The decline of CNs with increasing P depths may appear to be counter-intuitive 
because larger Q depths are associated with higher CNs. The counter-intuitive problem can be explained 
using the plot of Q with P and the family of CN curves. A line of Q = C x P, an alternative P-Q model, was 
superimposed on the P-Q and CN plot. A C of a reasonable value, such as 0.2, could be used for the 
Q = C x P line, as this form occurs in nature (Hawkins, 2019). The superimposed line starts at 0 (and 
CN = 100) and then cuts through successively smaller CN lines with increasing P depths. Therefore, 
as Q increases with P, the CN reduces as shown in Figure 2.2. It is important to highlight that real 
catchments do not always work the way the SCS-CN equation dictates. Therefore, the decline in CNs 
with increasing rainfall depth may not occur in all catchments (Hawkins, 2019).   

 
Figure 2.2 Q = C x P plotted in red superimposed on the families of CN responses (Hawkins, 2019) 

2.3 CATCHMENT SELECTION AND DATA USED IN THE STUDY 

Using the information from a detailed literature review of CN-derivation techniques as documented by 
Maharaj (2020) and summarised in Section 2.2, several CN-derivation techniques were assessed using 
six selected test catchments: A9H006, U2H018, U2H020, V1H015, V1H005 and W1H016. The location 
of the catchments used in this study is shown in Figure 2.3. 

The catchments had different HSGs, hydrological conditions and LULC classes. Rowe (2019) provides 
a detailed account of the physical and hydrological characteristics of the six catchments. The methods 
reviewed to derive the CN values have been applied to the selected catchments with appropriate 
observed and simulated P-Q data.  

Table 2.1 contains the relevant characteristics of the catchments that are required to obtain a CN from 
the SCS-SA CN tables.  
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Table 2.1: Catchment information and attributes required to derive the CN (after Rowe, 2019) 

Catchment Province Area 
(km2) 

Revised  
SCS-SA land 
cover class 

Treatment 
(class) type 

Hydrological 
condition 

SCS-SA soil 
group CN 

Cedara 
(U2H020) 

KwaZulu-
Natal 0.26 

Unimproved 
(natural) 
grassland 

2 = in fair 
condition Fair A/B 61 

Cathedral 
Peak IV 
(V1H005) 

KwaZulu-
Natal 0.98 

Unimproved 
(natural) 
grassland 

3 = in good 
condition Good A/B 51 

DeHoek / 
Ntabamhlope 
(V1H015) 

KwaZulu-
Natal 1.04 

Unimproved 
(natural) 
grassland 

3 = in good 
condition Good B 61 

Cedara 
(U2H018) 

KwaZulu-
Natal 1.31 Forests and 

plantations 

Humus 
depth  
> 100 mm 

Loose or 
friable/site prep 
pitting 

B 50 

Zululand 
(W1H016) 

KwaZulu-
Natal 3.30 

Unimproved 
(natural) 
grassland 

3 = in good 
condition Good B 61 

A9H006 Limpopo 16.00 Forests and 
plantations 

Humus 
depth  
> 100 mm 

Loose or 
friable/site prep 
pitting 

B/C 56 

 

 
Figure 2.3 Location of the test catchments used in this study 
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2.4 ASSESSMENT OF METHODS TO BEST DERIVE PUBLISHED CNS 

Based on a detailed review of literature undertaken by Maharaj (2020), as summarised above, several 
CN-derivation techniques were assessed using six catchments distributed across South Africa. 

2.4.1 Observed P-Q data 

Median or “average” CN values were derived using observed daily P-Q depths corresponding to the 
annual maximum flows from gauged catchments, as originally derived from the CN tables published in 
the National Engineering Handbook (NEH) (Schulze and Schmidt, 1987; Mishra and Singh, 2003). The 
daily annual maximum flood (AMF) depths and associated rainfall depths were used to derive CNs 
(AMF CNNEH) for the catchments. The AMF CNNEH values were obtained based on interpretations of the 
P-Q data that were plotted on a family of CN curves. The CN array plots were drawn using a c value of 
0.1 (CNNEH,0.1) and 0.2 (CNNEH,0.2) to test the sensitivity of the CNNEH to the c value. The CN that divided 
the plotted P-Q points into two halves was chosen as the AMF CNNEH value. The results from applying 
this method to the six catchments in the study have generally shown that the AMF CNNEH values were 
larger than the CNpublished values. In addition, the annual maximum series (AMS) of P-Q (i.e. P and Q 
may not be associated) was also used to derive CNs (AMS CNNEH). Table 2.2 contains a summary of 
the CNs that were obtained and includes the mean absolute relative error between the derived and 
CNpublished values. The results were not conclusive when the AMF and associated P were used to derive 
CNs and there were large differences between the tabulated and AMF CNNEH,0.1 and CNNEH,0.2. The 
AMS CNNEH,0.1 values were closer to CNpublished as supported by the MARE of 10%. This method, 
however, is very subjective because the CNII is selected graphically. The choice of the CNII depends 
entirely on interpreting the P-Q scatter plot. In certain catchments, the data points are clustered closely 
together, making it difficult to determine the exact CN value. 

An alternative approach is to separate the observed annual maximum P-Q data into two clusters using the 
K-means clustering algorithm to determine the CN using AMS P-Q values (AMS CNK-Mean). This method of 
data processing enabled the determination of a median CN as prescribed by the NEH (USDA, 1959) in a 
more objective manner. When the K-means algorithm was used to determine the median CN, the AMS 
CNK-Mean,0.2 was closer to the CNpublished values in comparison to the AMS CNNEH,0.2 values. Table 2.2 
contains the CN values that were derived using the K-means algorithm and shows that when a c of 0.1 was 
used, the calculated CN values were much closer to the CNpublished values. Similar to the results obtained 
applying the NEH-4 prescribed approach, the results are not conclusive when c = 0.2 was used to calculate 
the CN. These initial results therefore suggest that the NEH prescribed approach and the K-means 
algorithm provide more consistent results when c = 0.1 is used to calculate the median CN.  

Another possible improvement on the use of CNs from the handbook tables was to use frequency-
matched P-Q pairs to determine the CNs. When frequency distributions were used to derive CNs as a 
function of RP (CNRP), in general, the CN reduced as the return period increased. Taking all the 
catchments into consideration, the CN2,0.1, CN5,0.1 and CN10,0.1 resulted in CNs that were close to the 
CNpublished values (low MARE), as shown in Table 2.2. 

Numerous researchers have highlighted that CNs vary with rainfall depth (Hawkins, 1993; Hawkins et al., 
2009). Therefore, using a single or few rainfall events, such as the annual maximum events, to calculate 
an average or median CN is not ideal. Hence, the asymptotic approach that uses all the rainfall values 
could provide reasonable CN estimates. In this study, when the method was applied, there were 
differences between the CN∞ and CNpublished values. The standard behaviour, and most common pattern 
according to Hawkins et al. (2009), was observed on four of the six catchments. A CN∞ could not be 
determined with the available data on only one of the six catchments (Catchment V1H005). Therefore, 
Catchment V1H005 could best be described as a complacent catchment because the CNs declined 
with increasing P depths, but did not approach a near constant CN∞ value.  
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The CN∞,0.1 values were closest to the CNpublished values on three of the five catchments with a MARE 
of 13.5% between the CN∞,0.1 and CNpublished values. 

Based on the literature that was reviewed, there is clear evidence that high rainfall events are 
associated with lower CN values (Hawkins, 1993; Hawkins et al., 2009; D’Asaro et al., 2014). In this 
study, the highest rainfall value and the associated minimum CN (CNAnnMin) for each year were extracted 
from the daily CNs that were calculated. The mean and median of the CNAnnMin values associated with 
the annual maximum P were then calculated for each catchment. As shown in Table 2.2, the median of 
the CNAnnMin,0.2 values were closest to the CNpublished values (low MARE). 

Subsequently, the annual maximum daily P and Q depths, which may not be associated with the same 
event, were used to calculate CNs (CNAMS). The mean CNAMS values were more consistent with the 
CNpublished values than the use of the median CNAMS values. The total error between the mean CNAMS 
and CNpublished values was higher when c = 0.2 was used to calculate the mean CNAMS, as indicated by 
the higher MARE shown in Table 2.2. When c = 0.1 was used to calculate the CNAMS, the mean CNAMS 
values were much closer to the CNpublished values, as supported by the MARE of 12% shown in Table 2.2. 
A concern with using the AMS of the P-Q depths is that the largest rainfall event may not have caused 
the largest runoff event. Consequently, the annual maximum daily runoff and the associated daily 
rainfall depths were used to calculate the CN (CNAMF) representative of each catchment. The mean and 
median CNAMF,0.1 and CNAMF,0.2 values were larger than the CNpublished values on all the catchments.  

In this study, CNs were also derived using the Log-Normal frequency method (CNLN). The CNLN values 
derived using c = 0.1 (CNLN,0.1) and c = 0.2 (CNLN,0.2) are given in Table 2.2. The CNLN,0.1 and CNpublished 
values were closer (MARE of 14%) compared to the CNLN,0.2 and CNpublished values (MARE of 19%). 
Taking all six catchments into consideration, the CNLN,0.1 values were closer to the CNpublished values on 
four of the six catchments, compared to the CNLN,0.2 values.  

As shown in Table 2.2, there were differences between the CNs calculated using observed P-Q data and 
the CNpublished values. According to the literature that was reviewed, some differences between the calculated 
and CNpublished values were expected. Based on the initial results, the mean of the CNAMS,0.1, CNLN,0.1, CN2,0.1, 
CN5,0.1, CN10,0.1, CN∞,0.1, mean and median of the CNAnnMin,0.2, AMS CNNEH,0.1 and AMS CNK-mean,0.1 provided 
good estimates of the CNpublished values. The CNs that were derived with c = 0.2 were generally higher 
than the CNs derived with c = 0.1, and the CNs derived using observed data and c = 0.1 were generally 
closer to the CNpublished values. The methods discussed in Section 2.4.1 were then applied with 
simulated Q values and c = 0.1, which is consistent with the c value used with the SCS-SA model and 
the c used by Rowe (2019) to develop an improved CSM for DFE in South Africa. The simulated 
approach was used to determine whether simulated Q values may be used to derive CNs for South 
African land use, land cover and hydrological soil groups. The results from applying the methods listed 
above with simulated Q values from ACRU are provided in Section 2.4.  
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Table 2.2: Comparison between published CNs and CNs derived using observed P-Q data 

Catchment 
name 

CNpublishe

d 

CN∞ 
AMS  

CNK-Mean 
Mean CNAMS Mean CNAnnMin Median CNAnnMin  AMS CNNEH CNLN CN10 CN2 CN5 

c = 
0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 c = 0.2 c = 0.1 

A9H006 56 54 47 50 40 54 45 39 27 40 28 50 45 51 42 49 42 52 44 50 42 
U2H018 50 54 48 55 50 67 58 58 42 57 44 65 50 66 56 62 55 67 56 65 56 
U2H020 61 80 77 75 75 69 60 59 44 61 45 70 55 65 55 71 65 70 61 71 65 
VIH015 61 76 71 75 70 74 68 58 44 58 42 75 65 74 67 73 68 73 67 73 67 
V1H005 51 - - 70 60 70 63 61 49 61 49 70 60 70 62 68 61 69 61 68 61 
WIH016 61 62 58 55 50 67 61 54 51 54 42 65 65 66 59 60 54 74 69 66 61 

MARE (%) 
A9H006 56 4 16 11 29 4 20 30 52 29 50 11 20 9 25 13 25 7 21 11 25 
U2H018 50 8 4 10 0 34 16 16 16 14 12 30 0 32 12 24 10 34 12 30 12 
U2H020 61 31 26 23 23 13 2 3 28 0 26 15 10 7 10 16 7 15 0 16 7 
VIH015 61 25 16 23 15 21 11 5 28 5 31 23 7 21 10 20 11 20 10 20 10 
V1H005 51   37 18 37 24 20 4 20 4 37 18 37 22 33 20 35 20 33 20 

WIH016 61 2 5 10 18 10 0 11 16 11 31 7 7 8 3 2 11 21 13 8 0 
MARE (%) 14 14 19 17 20 12 14 24 13 26 20 10 19 14 18 14 22 13 20 12 
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2.4.2 Simulated P-Q values 

The ACRU model, which uses the SCS stormflow equation with a soil water budget to generate runoff, 
was used to simulate runoff for the six study catchments. The daily observed P and simulated Q, 
referred to as simulated P-Q depths, were used with c = 0.1 to calculate the CNs for each of the 
catchments. A prefix “S” was added to the abbreviation for the different CN-derivation methods when 
simulated Q values were used to derive the CN. The conventional rules to parametrise ACRU 
(ACRUCON-P) and the rules developed by Rowe (2019) were used to parametrise ACRU (ACRUTR-P). In 
Section 2.4.2.1, CNs derived using simulated P-Q depths from ACRUTR-P are discussed. The CNs 
derived using simulated P-Q depths from ACRUTR- P and ACRUCON-P are compared in Section 2.4.2.2. 

2.4.2.1  CNs derived using simulated P-Q depths from ACRUTR-P  

The annual maximum simulated P-Q depths were plotted on a CN array, drawn using c = 0.1. In general, 
the plotted points were well distributed on the array. The AMS S-CNNEH values estimated using this 
method and simulated P-Q depths from ACRUTR-P were similar to the CNpublished values as indicated by 
the low MARE between the derived and published CNs (MARE = 5%). The annual maximum simulated 
P-Q depths, from ACRUTR-P, were then used with the K-means clustering algorithm to obtain the  
AMS S-CNK-Mean for each catchment. The AMS S-CNK-Mean values were only similar to the CNpublished 
values in catchments U2H020 and V1H015.  

Similarly, when using ACRUTR-P to simulate P-Q depths, the mean S-CNAMS resulted in good estimates 
of the CNpublished values. When taking all six catchments into account, the mean S-CNAMS values were 
close to the CNpublished values, and the MARE between the CNpublished and the mean S-CNAMS values was 
5%, as shown in Table 2.3. 

Subsequently, design-simulated Q depths from ACRUTR-P were used with design-observed rainfall 
depths (PT,O) to derive S-CNRP values. The S-CNRP values decreased as the return period increased, 
as shown in Table 2.3, and both the S-CN2 and S-CN5 resulted in a MARE of 8% between the CNpublished 
and CNRP values.  

When the asymptotic method of CN derivation was applied using simulated P-Q depths, the S-CN∞ 
values were much easier to identify because all the catchments displayed the standard catchment 
behaviour pattern. The overall error was low between the S-CN∞ and CNpublished values and are given in 
Table 2.3. 

The daily simulated P-Q depths from ACRUTR-P were used to calculate daily CNs. Thereafter, the annual 
minimum CNs were extracted from the daily CN record. The mean and median of the annual minimum 
CN values (S-CNAnnMin) were then calculated and taken to be the CN representative of the catchment. 
As shown in Table 2.3, the mean of the S-CNAnnMin values were generally closer to the CNpublished values 
than the median of the S-CNAnnMin values, as indicated by the lower MARE between the mean  
S-CNAnnMin and CNpublished values.  

When the Log-Normal frequency method was applied using simulated P-Q depths from ACRUTR-P, the 
S-CNLN values were similar to the CNpublished values in three of the six catchments (MARE of 7%).



Further development, updating and assessment of the SCS-SA Model for design flood estimation  
 

13 

Table 2.3: Comparison between CNs derived using the conventional ACRU parameter guidelines (Con-P) and the rules developed by by Rowe (2019) (TR-P) 

Catchment  
name CNpublished 

S-CN∞ AMS  
S-CNK-Mean 

Mean  
S-CNAMS 

Mean  
S-CNAnnMin 

Median 
 S-CNAnnMin 

AMS  
S-CNNEH S-CNLN S-CN10 S-CN2 S-CN5 

Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P Con-P TR-P 
A9H006 56 44 51 45 45 51 54 44 47 45 48 52 50 47 50 39 43 49 52 42 46 
U2H018 50 57 52 35 30 57 50 50 47 51 48 48 50 53 48 49 45 55 51 53 48 
U2H020 61 60 65 35 55 60 64 54 54 54 54 58 62 58 63 54 63 60 65 57 65 
VIH015 61 54 67 55 65 56 67 49 60 49 55 54 65 54 67 50 65 55 67 52 66 
V1H005 51 54 55 55 60 56 58 51 53 50 53 55 57 62 57 51 55 55 59 53 56 
WIH016 61 53 66 40 75 48 61 44 54 44 54 43 60 43 60 38 57 49 65 42 61 
MARE (%) 
A9H006 56 21  9  20  20  9  4  21  16  20  14  7  11  16  11  30  23  13  7  25  18 
U2H018 50 14  4  30  40  14  0  0  6  2  4  4  0  6  4  2  10  10  2  6  4 
U2H020 61 2  7  43  10  2  5  11  11  11  11  5  2  5  3  11  3  2  7  7  7 
VIH015 61 11  10  10  7  8  10  20  2  20  10  11  7  11  10  18  7  10  10  15  8 
V1H005 51 6  8  8  18  10  14  0  4  2  4  8  12  22  12  0  8  8  16  4  10 
WIH016 61 13  8  34  23  21  0  28  11  28  11  30  2  30  2  38  7  20  7  31  0 
MARE (%) 11 8  24  19  11  5  13  8  14  9  11  5  15  7  17  10  10  8  15  8  
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2.4.2.2 Comparison between CNs derived using simulated Q depths from ACRUCON-P and 
ACRUTR-P  

ACRUCON-P and ACRUTR-P were used to simulate Q depths to calculate CNs. The same CN-derivation 
methods applied with simulated Q depths from ACRUTR-P were also applied with simulated Q depths 
from ACRUCON-P. A comparison between the CNs derived using simulated Q depths from ACRUCON-P 
and ACRUTR-P is provided in Table 2.3. When using ACRUCON-P to simulate P-Q depths and derive CNs, 
the S-CN2, the mean S-CNAMS, S-CN∞ and the AMS S-CNNEH were closest to the CNpublished values, as 
indicated by the low MARE values in Table 2.3.  

Based on the results shown in Table 2.3, it is evident that the CNs derived using simulated P-Q depths 
from ACRUTR-P resulted in CN values that were closest to the CNpublished values. In terms of design flood 
estimates, Rowe et al. (2018b) indicated that ACRUCON-P was sensitive to QFRESP and SMDDEP. 
When using ACRUCON-P, QFRESP and SMDDEP are generally set to default values, but Schulze (1995) 
provided guidance on selecting SMDDEP values based on rainfall intensity, soil conditions and 
vegetation density. Subsequently, Rowe et al. (2018b) developed a methodology to parameterise 
QFRESP and SMDDEP using the CNpublished values. The calibrated QFRESP and SMDDEP parameter 
values from Table 11.1 in Rowe (2019) were used to set up ACRUTR-P. Since ACRUTR-P was set up 
using QFRESP and SMDDEP, which were calibrated using the CNpublished values, it was expected that 
the CNs derived using simulated P-Q depths from ACRUTR-P would be closer to the CNpublished values. 
However, when using simulated P-Q depths from either ACRUCON-P or ACRUTR-P, it is possible to derive 
mean S-CNAMS and AMS S-CNNEH values that are similar to the CNpublished values. 

2.4.2.3 Comparison between best derived CNs and CNpublished values 

Table 2.4 contains a summary of the CN-derivation methods that resulted in the lowest MARE between 
the CNpublished values and the CNs derived using observed P-Q data and simulated Q values from 
ACRUTR-P and ACRUCON-P. As shown in Table 2.4, the CNs derived using simulated P-Q depths from 
ACRUTR-P were much closer (lower MARE) to the CNpublished values compared to the CNs derived using 
observed P-Q data (higher MARE). The mean S-CNAMS,0.1 and AMS S-CNNEH,0.1 values derived using 
annual maximum simulated P-Q depths from ACRUTR-P resulted in CNs that were most similar to the 
CNpublished values in the study catchments. The AMS CNNEH,0.1 values derived using observed P-Q data 
performed the best in terms of replicating the CNpublished values. The mean S-CNAMS,0.1 and  
AMS S-CNNEH,0.1 values derived using simulated Q values from ACRUCON-P were also reasonable and 
were comparable to the CNs derived using observed P-Q data. From the above results and in the 
absence of reliable observed runoff data, it is evident that runoff simulated for specific South African 
land cover classes and soils using ACRUTR-P or ACRUCON-P can be used to derive CNs. The CNs derived 
using simulated values also provide a more objective method than the subjective interpolation that was 
originally done by the SCS. 

Table 2.4: Comparison between CNs derived using observed P-Q data and CNs derived using 
simulated P-Q depths 

Catchment 
name CNpublished Mean CNAMS,0.1 AMS CNNEH,0.1 

Observed P-Q ACRUCON-P ACRUTR-P Observed P-Q ACRUCON-P ACRUTR-P 
A9H006 56 45 51 54 45 52 50 
U2H018 50 58 57 50 50 48 50 
U2H020 61 60 60 64 55 58 62 
VIH015 61 68 56 67 65 54 65 
V1H005 51 63 56 58 60 55 57 
WIH016 61 61 48 61 65 43 60 
MARE (%) 
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Catchment 
name CNpublished Mean CNAMS,0.1 AMS CNNEH,0.1 

Observed P-Q ACRUCON-P ACRUTR-P Observed P-Q ACRUCON-P ACRUTR-P 
A9H006 56 20 9 4 20 7 11 
U2H018 50 16 14 0 0 4 0 
U2H020 61 2 2 5 10 5 2 
VIH015 61 11 8 10 7 11 7 
V1H005 51 24 10 14 18 8 12 
WIH016 61 0 21 0 7 30 2 
MARE (%) 12 11 5 10 11 5 

 

2.5 ASSESSMENT OF PUBLISHED AND DERIVED CNS FOR BEST DESIGN RUNOFF VOLUME 
ESTIMATION 

In this section, the performance of design runoff estimation is assessed using published CNs, CNs 
derived from observed P-Q data and CNs derived from simulated P-Q depths.  

2.5.1 Use of published CNs 

The design runoff depth (QT,S), estimated using the SCS-CN equation and calculated using the PT,O and 
CNpublished values for the sites and c = 0.1, was compared to the design runoff depth (QT,O), calculated 
from the observed data using scatter plots and various statistical measures such as MARE, mean 
relative error (MRE) and R2. A linear regression analysis was performed using QT,O and QT,S for the six 
study catchments for all return periods to evaluate the use of the CNpublished values collectively across 
the different catchments. Figure 2.4 shows the QT,O and QT,S that were obtained using the CNpublished 
values to estimate QT,S. 

 
Figure 2.4:  Performance of the SCS-CN method using published CNs at six study catchments and 

for return periods of 2, 5, 10, 20, 50 and 100 years 

As shown in Figure 2.4, there is a good correlation between the QT,O and QT,S calculated using the 
CNpublished values. In general, using the CNpublished values to estimate QT,S resulted in a 34% over-
estimation. The over-estimation is more evident for the larger QT,O values. A summary of the results 
from the statistical analysis of the CNpublished values is provided in Table 2.5. 
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Table 2.5: Evaluation of the performance of the SCS-SA model using published CNs selected for the 
study catchments 

Catchment name MARE MRE 
A9H006 0.56 0.56 
U2H018 0.25 -0.11 
U2H020 0.09 -0.08 
V1H005 0.42 -0.42 
V1H015 0.25 -0.25 
W1H016 0.44 0.34 

Mean  0.34 0.01 
 

The MRE and MARE values that are closer to zero indicate that there is a good fit between QT,O and QT,S. 
The overall best performance of the CNpublished values was in Catchment U2H020. The results presented 
in Table 2.5 were only acceptable in one of the six catchments. Therefore, the CNs derived using 
observed P-Q data were also used to calculate QT,S and evaluate the performance of the SCS-CN 
equation. The results of the analyses are presented in Section 2.5.2.  

2.5.2 Use of CNs derived from observed P-Q data 

In this section, the results from using CNs derived using observed P-Q data to estimate QT,S are 
presented. The CN-derivation methods were used to estimate QT,S. Linear regression analyses, R2, 
MRE and MARE values were used to evaluate the performance of the SCS-CN equation. All the CN-
derivation techniques were individually assessed on each catchment. As an example, the CNs derived 
for Catchment U2H018 using observed P-Q data and the MRE and MARE values are ranked in 
ascending order. A summary is provided in Table 2.6. 

Table 2.6: MARE and MRE values obtained when using the CNpublished and CNs derived using 
observed data to estimate QT,S in catchment U2H018 

Published CN Method Derived CN MRE MARE Rank 

50 

CN10,0.1 55 0.13 0.18 1 

CNLN,0.1 

56 0.18 0.19 2 CN2,0.1 

CN5,0.1 

Median CNAnnMin,0.2 57 0.23 0.23 3 

CNpublished 

50 -0.11 0.25 4 AMS CNNEH,0.1 

AMS CNK-Mean,0.1 

Mean CNAnnMin,0.2 
58 0.28 0.28 5 

Mean CNAMS,0.1 

CN∞,0.1 48 -0.19 0.29 6 
 

In Catchment U2H018, the lowest total error between QT,O and QT,S was obtained when CN10,0.1 was 
used to estimate QT,S. The MRE was less than the MARE, which indicates a combination of both an 
over- and under-estimation of QT,O.  
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The CN2,0.1, CN5,0.1 and CNLN,0.1 resulted in similar MRE and MARE values. Both the MRE and MARE 
were greater than zero. This indicates that a CN of 56 resulted in a consistent over-estimation of QT,O. 
The MRE of 0.13, associated with CN10,0.1, indicates that CN10,0.1 resulted in a lower over-estimation of 
QT,O than QT,S estimated using CN2,0.1, CN5,0.1 and CNLN,0.1.  

In the different catchments, the optimum CN associated with best estimates of QT,O determined from 
the MARE and MRE values was obtained using different CN estimation methods. Therefore, the next 
section contains the results from a comparison of the QT,O and QT,S depths that were calculated using 
the different derived CNs.  

2.5.2.1 Performance of derived CNs on different catchments 

The MARE (in ascending order) and MRE between the QT,O and QT,S depths, calculated using the 
CNpublished values, and the CNs derived using observed P-Q data were calculated. The results are given 
in Table 2.7. In general, CN10,0.1, CN5,0.1, CNLN,0.1 and the mean CNAMS,0.1 resulted in good estimates of 
QT,O (low MARE and MRE). It was, however, evident that the optimum CNs, i.e. the CNs that resulted 
in the lowest MRE and MARE on a catchment differed from the CNpublished values. Furthermore, the 
optimum CNs may have been derived using different methods. As detailed in the next section, the 
single-best CN derivation technique was identified using the PT,O and QT,O data from all six study sites 
for all return periods using the MRE, MARE and linear regression analyses. 

Table 2.7: The average MARE and MRE across all the catchments when using CNpublished and CNs 
derived using observed P-Q data 

CN derivation method MARE MRE 

CN10,0.1 0.12 0.05 

CN5,0.1 0.13 0.09 

Mean CNAMS,0.1 0.17 0.11 

CNLN,0.1 0.17 0.02 

CN2,0.1 0.17 0.12 

Median CNAMS,0.1 0.19 0.08 

Median CNAnnMin,0.2 0.2 -0.04 

Mean CNAnnMin,0.2 0.22 -0.05 

AMS CNNEH,0.1 0.22 0 

AMS CNK-Mean,0.1 0.23 0.05 

CN∞,0.1 0.33 0.2 

CNpublished 0.34 0.01 

Median CNAnnMin,0.1 0.52 -0.5 

Mean CNAnnMin,0.1 0.54 -0.52 
 

2.5.2.2 Identification of the single-best CN-derivation technique for all the study sites 

The QT,S values from all the catchments were used to identify the CN-derivation method that performed 
the best in terms of estimating QT,O, taking all the catchments into account. A summary of the statistics 
when assessing the CN-derivation methods on all catchments for all return periods is provided in 
Table 2.8. The statistics from Table 2.8 indicate that there is a strong linear relationship between the 
QT,O and QT,S, calculated using CN10,0.1, which is overall the highest ranked method.  
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It is also evident that the relationship between QT,S and QT,O was stronger when using data-derived CNs 
such as CN10,0.1 instead of the CNpublished values. This is identified by the higher R2 and smaller MARE 
(Table 2.8) for the CN10,0.1, compared to the lower R2 and higher MARE (Table 2.8) when the CNpublished 
values were used to calculate QT,S.  
 
Table 2.8: Performance of CN-derivation methods assessed using PT,O and QT,O data for all return 

periods on all the catchments 

CN derivation 
method MARE MRE Rank 

(MARE) R2 Rank 
(R2) Slope Rank 

(slope) 
Base constant 
(y-intercept) 

Sum 
of 

ranks  
CNpublished 0.34 0.01 10 0.85 5 1.34 10 -8.73 25 
Median 
CNAnnMin,0.2 0.20 -0.04 6 0.87 3 1.20 3 -8.08 12 
Mean CNAnnMin,0.2 0.22 -0.05 7 0.85 5 1.18 1 -7.63 13 
Mean CNAMS,0.1 0.17 0.11 5 0.85 5 1.26 6 -3.40 16 
CNLN,0.1 0.17 0.02 3 0.82 8 1.18 1 -4.00 12 
CN2,0.1 0.17 0.12 4 0.80 9 1.32 9 -5.20 22 
CN5,0.1 0.13 0.09 2 0.87 3 1.29 8 -6.45 13 
CN10,0.1 0.12 0.05 1 0.91 2 1.23 4 -6.29 7 
AMS CNK- Mean,0.1 0.23 0.05 9 0.94 1 1.26 6 -8.14 16 
AMS CNNEH,0.1 0.22 0.00 8 0.79 10 1.23 4 -5.24 22 
 
The CNs derived using simulated P-Q depths were evaluated. Results from the analyses are provided 
in Section 2.5.3. 

2.5.3 Use of CNs derived from simulated P-Q values 

In Section 2.5.2, the CNs derived using observed P-Q data were evaluated using MARE, MRE, slope 
and R2. In this section, the CNs derived using simulated P-Q depths from ACRUTR-P and ACRUCON-P, 
as presented in Section 2.4.2, were used to estimate QT,S and subsequently evaluate the performance 
of the CN-derivation methods. The results were analysed to determine whether the CNpublished values or 
the CNs derived using simulated P-Q depths resulted in more accurate estimates of QT,O. All the CN-
derivation techniques were assessed individually on each catchment. A summary of the CNs derived 
for Catchment U2H020 using simulated P-Q depths from ACRUTR-P and the MRE and MARE, ranked 
in ascending order, is provided in Table 2.9. 
 
Table 2.9: MARE and MRE values obtained when using the CNpublished and CNs derived using 

simulated Q (ACRUTR-P) values on Catchment U2H020 

CN Method MRE MARE 
64 Mean S-CNAMS,0.1 0.03 0.07 

63 
S-CNLN,0.1 

-0.01 0.07 
S-CN10,0.1 

65 
S-CN2,0.1 

0.07 0.08 
S-CN5,0.1 

62 AMS S-CNNEH,0.1 -0.04 0.08 
61 CNpublished -0.08 0.09 
55 AMS S-CNK-Mean,0.1 -0.29 0.29 

54 
Median S-CNAnnMin,0.1 

-0.32 0.32 
Mean S-CNAnnMin,0.1 
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The lowest total error between QT,O and QT,S was obtained when the mean S-CNAMS,0.1, S- CNLN,0.1 and 
S-CN10,0.1 (MARE = 0.07) was used to calculate QT,S in Catchment U2H020. When the S-CNLN,0.1 and 
S-CN10,0.1 were used to estimate QT,S in Catchment U2H020, the MARE and MRE were 0.07 and -0.01, 
respectively, which indicates that that there was a good correlation between QT,O and QT,S. The negative 
MRE shows that there was a slight tendency to under-estimate QT,O. However, the MRE of 0.03 
associated with S-CNAMS,0.1 = 64 indicates that there was a slight over-estimation of QT,O in comparison 
to when the S-CN10,0.1 or S-CNLN,0.1 was used to estimate QT,S. The CNpublished value resulted in a 
combination of both an under- and over-estimation of QT,O, as indicated by the MRE that was less than 
the MARE. However, in general, the different CN-derivation methods performed differently in the study 
catchments. The MRE and MARE between the QT,O and QT,S calculated using the different derived CNs 
are provided in Section 2.5.3.1. 
 
2.5.3.1 Differences in the performance of derived CNs on the different catchments 

The optimum CNs, derived using P-Q depths simulated from ACRUTR-P, were obtained using different 
methods on the different catchments. Therefore, each different CN-derivation method was assessed 
using the PT,O and QT,O values from all the catchments to identify the CN-derivation method that 
performed the best, taking all the catchments into account. A linear regression analysis was performed 
using the QT,O and QT,S for all catchments for all return periods to evaluate the different derived CN 
values collectively across the different catchments. As summarised in Table 2.10, there is a strong 
linear relationship between the QT,O and QT,S calculated using S-CN10,0.1. This is supported by the high 
R2 and low MARE and MRE shown in Table 2.10.  

Table 2.10:  The average MARE and MRE across all the catchments when using CNs derived using 
Q depths simulated from ACRUTR-P 

CN-derivation method MARE MRE Rank  
(MARE) R2 Rank  

(R2) Slope Rank  
(slope) 

Base  
constant  

(y-intercept) 

Sum of  
ranks  

CNpublished 0.34 0.01 8 0.85 8 1.34 7 -8.73 23 

Median S-CNAnnMin,0.2 0.33 -0.16 7 0.86 6 1.18 2 -9.20 15 

Mean S-CNAnnMin,0.2 0.30 -0.15 6 0.86 6 1.16 1 -8.24 13 

Mean S-CNAMS,0.1 0.24 0.09 5 0.88 2 1.34 7 -6.23 14 

S-CNLN,0.1 0.22 0.03 2 0.88 2 1.29 5 -6.96 9 

S-CN2,0.1 0.23 0.12 4 0.87 5 1.37 9 -6.23 18 

S-CN10,0.1 0.21 -0.08 1 0.89 1 1.23 4 -9.04 6 

AMS S-CNK-Mean,0.1 0.36 -0.05 9 0.65 9 1.21 3 -5.25 21 

AMS S-CNNEH,0.1 0.23 0.03 3 0.88 2 1.29 5 -7.18 10 
 

In comparison to the CNpublished values, the mean S-CNAMS,0.1, S-CN2,0.1, S-CN5,0.1, S-CN10,0.1, S-CNLN,0.1 
and AMS S-CNNEH,0.1 resulted in improved estimates of QT,O in the study catchments. The S-CN10,0.1 
resulted in improved estimates of QT,O on five of the six catchments in comparison to the CNpublished 
values. Overall, S-CN10,0.1 performed best in terms of estimating QT,O, as indicated by the lowest sum 
of rank (SOR) value in Table 2.10. 

In addition to ACRUTR-P, ACRUCON-P was also used to simulate Q depths that were used to calculate 
CNs using the CN-derivation techniques mentioned in Section 2.5.2. The R2, MARE and MRE between 
QT,O and QT,S, calculated using the CNpublished values, and the CNs derived using simulated Q depths 
from ACRUCON-P were calculated. The results are given in Table 2.11. 
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Table 2.11:  The MARE and MRE between QT,O and QT,S depths calculated using CNs derived using 
Q depths simulated from ACRUCON-P  

CN-derivation method MARE MRE Rank  
(MARE) R2 Rank  

(R2) Slope Rank  
(slope) 

Base  
constant  

(y-intercept) 

Sum of 
ranks 

CNpublished 0.34 0.01 5 0.85 8 1.34 9 -8.73 22 

Median S-CNAnnMin,0.1 0.35 -0.26 8 0.89 5 1.10 3 -11.01 16 

Mean S-CNAnnMin,0.1 0.34 -0.25 7 0.90 4 1.11 4 -11.10 15 

Mean S-CNAMS,0.1 0.28 0.06 3 0.89 5 1.27 8 -6.25 16 

S-CNLN,0.1 0.25 -0.11 1 0.91 2 1.12 5 -7.35 8 

S-CN2,0.1 0.27 -0.08 2 0.90 3 1.22 6 -9.33 11 

S-CN10,0.1 0.36 -0.33 9 0.92 1 1.01 2 -11.06 12 

AMS S-CNK-Mean,0.1 0.34 -0.26 6 0.77 9 0.92 1 -3.67 16 

AMS S-CNNEH,0.1 0.29 -0.04 4 0.89 5 1.25 7 -8.32 16 
 
The high MARE values in Table 2.11 indicate that no single CN-derivation method performed consistently 
well when ACRUCON-P was used to simulate P-Q depths and derive CNs. In terms of QT,S estimates, the 
MARE is worse (higher) when using CNpublished compared to S-CNLN,0.1 (lowest MARE), and the R2 is better 
(closer to 1) when using S-CNLN,0.1 compared to the CNpublished values. The MRE was higher and positive 
for CNpublished, compared to the negative, lower value for both S-CNLN,0.1 and S-CN10,0.1, indicating a greater 
tendency for S-CNLN,0.1 and S-CN10,0.1 to under-estimate QT,O. Overall, when using ACRUCON-P to simulate 
Q and derive CNs, the S-CNLN,0.1 resulted in the best estimates of QT,O, as indicated by the lowest SOR 
in Table 2.11. 

2.5.3.2 Comparison between CNs derived using observed P-Q data and simulated Q depths from 
ACRUCON-P and ACRUTR-P  

In this section, QT,O and QT,S, calculated using CNs derived using observed P-Q data and simulated P-Q 
depths from ACRUCON-P and ACRUTR-P, are compared. The comparison was done to determine whether 
the CNs derived using simulated P-Q depths from ACRUCON-P or ACRUTR-P resulted in better estimates 
of QT,O compared to the QT,S calculated using CNs derived from observed P-Q data.  

As shown in Section 2.5.3.1, when ACRUTR-P was used to simulate P-Q depths and derive CNs, the 
overall best performance of the SCS-CN method was achieved when S-CNLN,0.1 and S-CN10,0.1 values 
were used to estimate QT,S. Subsequently, the QT,O and QT,S calculated using CNs derived using 
simulated P-Q depths from ACRUTR-P and ACRUCON-P, were compared. When S-CN10,0.1 values, derived 
using simulated P-Q depths from ACRUTR-P and ACRUCON-P, were compared, S-CN10,0.1 performed 
better than the CNpublished values as mentioned in sections 2.5.3.1 and 2.5.3.2. Overall, S-CN10,0.1, 
derived using simulated P-Q depths from ACRUTR-P (MARE = 0.21 across all catchments), performed 
better than S-CN10,0.1 derived using simulated P-Q depths from ACRUCON-P (MARE = 0.36 across all 
catchments).  

As indicated above, the optimum CNs, i.e. the CNs that resulted in the best correlation between QT,O 
and QT,S with minimal over- or under-simulation, were derived using different methods in the study 
catchments. This was also the case when using observed P-Q data, as mentioned previously. However, 
in general, the CNs derived using ACRUCON-P were lower than the CNs derived using ACRUTR-P. 
Furthermore, no single method performed well on all catchments when using P-Q depths simulated by 
ACRUCON-P to calculate CNs, but the S- CN10,0.1 derived using P-Q depths from ACRUTR-P resulted in 
good estimations of QT,O on five of the six study catchments.  
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The ability of ACRUTR-P to account for different hydrological responses that are used to parametrise the 
SMDDEP and QFRESP in ACRU was identified as a major advantage over ACRUCON-P. Although the 
QFRESP and SMDDEP parameters that were used to set up ACRUTR-P were calibrated using the 
CNpublished values, the S-CN10,0.1 calculated using P-Q depths simulated using ACRUTR-P resulted in 
improved estimates of QT,O compared to the QT,S estimated using CNpublished or the CN values that were 
derived using P-Q depths simulated from ACRUCON-P.  

Table 2.12 contains a comparison of the QT,O and QT,S values calculated using the CNpublished values, 
the CN10,0.1 values derived using observed data and the S-CN10,0.1 values derived using simulated Q 
depths from ACRUTR-P and ACRUCON-P. 

Table 2.12:  Comparison between CN10,0.1 values derived using observed P-Q data and simulated  
P-Q depths (ACRUTR-P and ACRUCON-P) 

Catchment 
CN10,0.1 S-CN10,0.1 

(ACRUCON-P) 
S-CN10,0.1 

(ACRUTR-P) CNpublished 

MRE MARE MRE MARE MRE MARE MRE MARE 

A9H006 -0.02 0.03 -0.14 0.14 0.02 0.03 0.56 0.56 

U2H018 0.13 0.18 -0.15 0.27 -0.31 0.35 -0.11 0.25 

U2H020 0.07 0.08 -0.32 0.32 -0.01 0.07 -0.08 0.09 

V1H005 -0.03 0.04 -0.42 0.42 -0.28 0.28 -0.42 0.42 

V1H015 0.01 0.03 -0.58 0.58 -0.11 0.11 -0.25 0.25 

W1H016 0.11 0.37 -0.37 0.43 0.21 0.40 0.34 0.44 

Mean  0.05 0.12 -0.33 0.36 -0.08 0.21 0.01 0.34 

Slope 1.23 1.01 1.23 1.34 

R2 0.91 0.92 0.89 0.85 
 
As shown in Table 2.12, the CN10,0.1 values resulted in improved estimates of QT,O in all six catchments in 
comparison to the CNpublished values. In addition, the results given in Table 2.12 show that the  
S-CN10,0.1 values derived using ACRUTR-P resulted in better estimates of QT,O (an MRE closer to zero and 
a lower MARE) compared to the S-CN10,0.1 values derived using ACRUCON-P. However, the R2 and slope 
for S-CN10,0.1 (ACRUCON-P) were closer to one than the R2 and slope for S-CN10,0.1 (ACRUTR-P). Based on 
the results obtained from the study catchments, it is evident that the best derived CNs, i.e. CN10,0.1 and  
S-CN10,0.1 (ACRUTR-P and ACRUCON-P), resulted in improved estimates of QT,O compared to the QT,S 
calculated using the CNpublished values. In Section 2.6, the observed design peak discharge for each study 
catchment is compared to the design peak discharge estimated using the SCS-SA model. 
 
2.6 ASSESSMENT OF PEAK DISCHARGE ESTIMATED USING PUBLISHED AND DATA- 

DERIVED CNS  

The peak discharge estimated using the SCS model is a function of catchment area, runoff depth, 
effective storm duration and catchment lag. In the original SCS lag equation, the catchment lag was 
based on physical catchment characteristics. The estimation of catchment lag has frequently been 
attributed to being a source of error when estimating peak discharge using the SCS model (Schulze 
and Schmidt, 1984). In the original SCS peak discharge equation, the calculation of peak discharge is 
done using a dimensionless unit hydrograph, where the catchment response time is only related to 
catchment physiographic factors (Schulze, 1984; Schulze and Schmidt, 1984). This introduces linearity 
to the response factor.  
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The incorporation of non-linear processes in unit hydrograph theory with an adjustment of the unit 
hydrograph according to storm magnitude is particularly important in small catchments where the peak 
discharge rates are subject to varying intensities of rainfall (Schulze, 1984). Therefore, Schulze and 
Schmidt (1984) attempted various procedures to estimate peak flow rates more realistically when using the 
SCS model. Schulze and Schmidt (1984) obtained improved estimates of lag time for ungauged 
catchments when indices of regional rainfall characteristics and climate were incorporated into an empirical 
lag equation (Schmidt-Schulze lag equation). In addition, Schulze (1984) stated that the distribution of 
rainfall is one of the key inputs for hydrological models used for design purposes in small catchments.  
 
The performance of the SCS-SA model using CNpublished values and derived CNs is evaluated in this 
section using data from the following eight catchments: A9H006, V1H005, V1H015, V1H032, V7H003, 
U2H018, U2H020 and W1H016. Design peak discharge values were estimated using the conventional 
SCS-SA model as it is currently applied in practice. The CNpublished values, as well as the CN10 values 
derived by Maharaj (2020), were used with the SCS-SA model. For all the different cases (CNpublished or 
CN10 derived using observed or simulated data), the Schmidt-Schulze lag equation was applied, and 
the generalised extreme value (GEV) was used to estimate the design-observed peak discharges and 
design-observed rainfall depths (PT,O) for the 2-, 5-, 10-, 20-, 50- and 100-year return periods. The 
design peak discharge calculated using the PT,O, CNpublished and CN10 values derived using observed 
and simulated values for the sites, and c = 0.1 was compared to the observed design peak discharge 
values using MARE. Figure 2.5 shows the average MARE between the observed and simulated peak 
discharge for the 2, 5, 10-, 20-, 50- and 100-year return periods for each of the eight catchments. 
 

 
Figure 2.5:  MARE between the design-observed and estimated peak discharge values computed for 

the 2-, 5-, 10-, 20-, 50- and 100-year return periods 

For the results shown in Figure 2.5, the simulated peak discharges were computed using the currently 
utilised SCS-SA model. The model was set up using the catchment areas, slope, mean annual 
precipitation (MAP) and rainfall region from Table 2.1. Four different simulations were done using 
CNpublished, CN10 calculated using observed P-Q data, CN10 calculated using Q depths from ACRUCON-P 
and CN10 calculated using Q depths simulated from ACRUTR-P. It is interesting to note that the different 
CNs resulted in good estimates of the observed design peak discharges in Catchment V1H032, which 
was the largest catchment (67.8 km2). The MARE between the observed and calculated peak discharge 
was averaged using the results for each catchment. The results from the analyses are summarised in 
Table 2.13.  
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Table 2.13:  Average MARE between observed and estimated design peak discharge values  

CN estimation method Average MARE (%) 

CNpublished 453 

CN10,0.1  556 

S-CN10,0.1 (ACRUTR-P) 437 

S-CN10,0.1 (ACRUCON-P) 319 
 

When the design peak discharges were calculated, overall, S-CN10,0.1 (ACRUCON-P) resulted in the 
lowest MARE (averaged across all catchments) between the observed and design peak discharge. 
However, S-CN10,0.1, calculated using Q depths from ACRUCON-P, generally resulted in an under-
estimation of QT,O (Maharaj, 2020) and the CN10,0.1 derived using observed P-Q data. The  
S-CN10,0.1 calculated using Q depths simulated from ACRUTR- P resulted in the best estimates of QT,O 
(Maharaj, 2020). The peak discharge estimated using the SCS peak discharge equation is directly 
proportional to runoff volume (Schulze, 1984). However, as shown in Figure 2.5, the peak discharge 
calculated using derived CNs that resulted in good estimates of runoff volumes (Table 2.12) did not 
result in good estimates of peak discharge.  
 
2.7 DISCUSSION AND CONCLUSIONS 

The SCS-CN equation is an empirical equation that transforms a rainfall depth to a runoff depth. Various 
CN tables have been published in the literature, but information regarding the background and details 
about the calibration of CNs in these tables is rarely provided. This creates misunderstandings regarding 
the quality of data and degree of subjective interpolation used to derive the CNpublished values. There are 
numerous different approaches to derive CNs using observed or simulated P-Q depths. However, the CN 
values derived using the different methods may be dissimilar and could lead to different fundamental 
definitions of the CN. Additionally, the selected data series (ordered or natural, annual maximum series 
or daily event data) may also result in different CNs. Based on the CNs derived using P-Q values from 
the catchments used in this study, it is apparent that not all CN-derivation techniques perform well on all 
the catchments. The differences between the data-derived CNs in different catchments when using 
different methods is evident. The c value also plays a role in the magnitude of the calculated CN. The 
inverse relationship between c and the CN is evident from the results, where the data-derived CNs were 
lower when c = 0.1 was used compared to c = 0.2 to derive the CNs.  
 
One aim of this study was to determine the best method to replicate the CNpublished values that were 
selected for each study catchment. If observed P-Q data is available, the most suitable method currently 
identified to replicate the published CNs is AMS CNNEH,0.1, which resulted in the lowest MARE (10%) 
between the CNpublished and derived CNs. The CNs derived using simulated Q values from ACRUCON-P 
were comparable to the CNs derived using observed P-Q data (similar MARE values). As expected, 
the CNs derived using ACRUTR-P resulted in CNs closest to the published CNs. This was expected 
because the CNpublished values were used to calibrate some of the parameters used with ACRUTR-P. 
Therefore, if observed Q data is not available, the mean S-CNAMS,0.1 and AMS S-CNNEH,0.1 (derived using 
simulated P-Q depths from ACRUTR-P) resulted in derived CN values that were similar to the published 
CNs with the least error (the MARE between the published and derived CNs was 5%). Therefore, if the 
user of the SCS-CN model has confidence in the published CNs, the methods that were identified to 
replicate the published CNs will be useful to derive CNs on catchments with land-cover classes that are 
not currently available in the published CN tables. The user should remove the subjective interpolation 
when no observed data is available for a given LULC and HSG combination.  
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One of the significant issues that emerged from these findings is that the CN is sensitive to c. The results 
from this study indicate that the c value also plays a role in the magnitude of the calculated CN. The inverse 
relationship between c and the CN is evident from the results, where the data-derived CNs were lower 
when c = 0.1 was used compared to c = 0.2 to derive the CNs. The CNs derived using observed data and 
c = 0.1 were generally closer to the CNpublished values. This was unexpected, because the CNpublished values 
were derived using c = 0.2. It is also important to note the inconsistency of the recommendation to use  
c = 0.1 for South Africa with CNpublished values that were derived with c = 0.2. This finding has important 
implications for developing an updated CN table for South Africa, because the c used with the SCS-CN 
equation to estimate QT,S must be consistent with the c used to derive the CN. Therefore, future research 
should focus on the calibration of the c and the CN. In addition to c = 0.1 and c = 0.2, experimentation with 
the use of different c values when calculating CNs using observed P-Q data is required.  

An additional aim of this study was to assess the QT,S values calculated using the CNs derived using 
observed P-Q data or simulated Q depths. The use of the CNpublished values to estimate QT was also 
evaluated by comparing the QT,O and QT,S depths. In general, the CNpublished values resulted in poor 
estimates of runoff with high MARE values between QT,O and QT,S on five of the six catchments. Initially, 
each CN-derivation technique was evaluated separately on each catchment. The different CN-
derivation techniques resulted in different CNs being derived for the same catchment. This led to 
different QT,S values being estimated for the same catchment. However, the best fit for QT,O in most 
catchments was achieved with the data-derived CN10,0.1 values. The CN10,0.1 resulted in a lower MARE 
between QT,O and QT,S than the CNpublished values in all six of the study catchments. The S-CN10,0.1 
calculated using P-Q depths simulated for all RPs from ACRUTR-P also resulted in a lower MARE 
between QT,O and QT,S than the CNpublished values in five of the six study catchments. However, in some 
catchments, the CNs derived using other methods resulted in a better fit (lower MARE) to the observed 
data than CN10,0.1 or S-CN10,0.1. Therefore, the optimum CNs were identified for each catchment. Each 
of the optimum CN-derivation techniques were assessed using the PT,O and QT,O data from all the study 
catchments to identify the single-best CN-derivation technique. When the CN-derivation methods were 
assessed using PT,O and QT,O values from all the catchments, the CN10,0.1 resulted in the best estimates 
of QT,O with the lowest overall MARE and a high R2. When using Q depths simulated from ACRUTR-P, 
the overall best performance of the SCS-CN method was also achieved when the S-CN10,0.1 values 
were used to estimate QT,S. When using Q depths simulated from ACRUCON-P, the overall best 
performance of the SCS-CN method was achieved when S-CNLN,0.1 values were used to estimate QT,S. 

A common misconception is that the published CNs are credible and applicable in all situations. The 
basis for this statement is that the published CN values seem to generally be estimates or judgements 
based on soil and vegetation in the absence of local P-Q data. The most consistent CN-derivation 
technique that can replicate published CNs with the least error was identified. The performance of the 
SCS-CN equation using CNpublished and derived CNs was evaluated by comparing QT,S and QT,O using 
different statistics. The CNpublished values only performed well in one of the study catchments. In general, 
when using the CNpublished values to estimate QT,S, the larger QT,O values were over-estimated and there 
was a better correlation between the lower QT,O and QT,S values. A possible reason for this could be 
that the CNs were derived using P-Q data from catchments in the USA with P-Q patterns that are not 
applicable to local catchments. The results from this study indicate that the CNpublished values are not 
suitable for use in South Africa. Therefore, the different CNs derived using observed P-Q data were 
also assessed to determine whether the data-derived CNs result in better estimates of QT,O.  

From the results presented in this chapter, it is evident that CNs are more accurately defined by 
observed P-Q data or simulated Q values for a specific catchment and not from published CN tables. 
Therefore, it is recommended that the methods that resulted in the lowest MRE and MARE between 
the QT,O and QT,S, such as the CN10,0.1 value derived using observed P-Q data, be used to derive CNs 
for catchments with observed P-Q data in South Africa.  
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Furthermore, in the absence of reliable P-Q data, the results from this study indicate that the S-CN10,0.1 
values calculated using simulated Q depths from ACRUTR-P and the S-CNLN,0.1 calculated using Q 
depths from ACRUCON-P resulted in improved estimates of QT,O compared to the QT,S values estimated 
using CNpublished values. 
 
When the design peak discharges were calculated using the SCS-SA model, overall, S- CN10,0.1 
(ACRUCON-P) resulted in the lowest MARE (averaged across all catchments) between the observed and 
design peak discharge values. The CNpublished and CN10,0.1 values only performed well in terms of 
estimating design peak discharges in Catchment V1H032. However, in terms of estimating runoff depths, 
the CN10,0.1 values resulted in improved estimates of QT,O in all the study catchments in comparison to the 
CNpublished values. In addition, the S-CN10,0.1 values derived using Q depths simulated using ACRUTR-P 
resulted in better estimates of QT,O (an MRE closer to zero and a lower MARE) compared to the S- CN10,0.1 
values derived using ACRUCON-P. The S-CN10,0.1 calculated using Q depths from ACRUCON-P generally 
resulted in an under-estimation of observed Q depths (Maharaj, 2020). In addition, Rowe (2019) stated 
that “the results indicated a tendency of the default implementation of the ACRU model to under-estimate 
daily streamflow volumes and design streamflow volumes”. However, the S-CN10,0.1 values (calculated 
using simulated Q depths from ACRUCON-P), which were much smaller than the published and other 
derived CNs, resulted in the best estimates of design peak discharge values.  
 
From the results obtained in this study, it is evident that the use of both published and derived CNs 
resulted in a large over-estimation of design peak discharges when using the SCS-SA model. This 
indicates that there may be an issue with the model in terms of converting a runoff volume/depth to a 
peak discharge. According to Schulze (1984), the estimates of peak discharge are highly sensitive to 
the rainfall distribution curves used with the SCS-CN model. Therefore, the poor estimates of peak 
discharge obtained in this study may be attributed to the inputs into the peak discharge equation or the 
peak discharge equation used to translate a runoff depth to a peak discharge value. Therefore, the peak 
discharge equation, and the methods used to estimate lag time and effective storm duration, need to 
be analysed and updated if needed.  
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CHAPTER 3: DEVELOPMENT AND ASSESSMENT 
OF AN IMPROVED CONTINUOUS SIMULATION 

MODELLING SYSTEM FOR DESIGN FLOOD 
ESTIMATION IN SOUTH AFRICA USING THE  

ACRU MODEL 

TJ Rowe, JC Smithers, U Maharaj and NS Dlamini 
 

3.1 INTRODUCTION 

The assessment of flood risk by associating the magnitude of a flood event with the probability of an 
exceedance or return period is the standard approach to design flood estimation in most countries 
(Smithers, 2012;  Kang et al., 2013). Smithers (2012) and Smithers et al. (2013) categorise DFE 
techniques used in South Africa into two groups: the analysis of observed flow data, and rainfall run-
off-based methods. Most of the methods used for design flood estimation in South Africa were 
developed in the 1970s and 1980s with the resources and hydrological data available at the time. With 
the extended hydrological records currently available, advances in technology and knowledge, and a 
number of extreme events exceeding previous records, the need to update these methods has been 
well documented in the literature (Alexander, 2002; Smithers and Schulze, 2002; Görgens, 2007;  
Smithers, 2012; Van Vuuren et al., 2013). Consequently, a National Flood Studies Programme, aimed 
at updating and modernising the various approaches to DFE used in South Africa, has been proposed 
and initiated (Smithers et al., 2016). 
 
One of the recommendations contained in the plan for the NFSP is the development and assessment of 
a continuous simulation modelling approach to DFE. Due to the limited availability of streamflow data in 
South Africa, both in terms of the number of gauges and record length, and/or errors and inconsistencies 
in the data, rainfall-runoff methods for DFE are often required and applied in preference to, or in 
combination with, methods based on the analysis of observed flow data. Rainfall records, on the other 
hand, are available from a denser network of gauges, are generally of a better quality, and have longer 
records compared to streamflow data (Schulze, 1989; Smithers and Schulze, 2002; Smithers, 2012). 
Therefore, based on the advantages of the CSM approach alluded to above, the rationale for the further 
development and assessment of a CSM approach for DFE in South Africa is evident. 
 
A CSM approach, like many of the rainfall-runoff methods used in South Africa, is generally applicable 
and well suited to small catchments (0–100 km2). However, it is not limited to this size range. A CSM 
approach to DFE was applied in a pilot study in the 29 036 km2 Thukela catchment (Smithers et al., 2013). 
According to Smithers et al. (2016), the majority of the catchments (55%) for which design floods are 
required in South Africa are relatively small (< 15 km2). In South Africa, the daily timestep ACRU 
agrohydrological model (Schulze, 1995) has provided reasonable results for DFE in several pilot studies 
and investigations (Smithers et al., 1997;  2001;  2007; 2013; Chetty and Smithers, 2005). The model is 
a physical conceptual model, since it is made up of idealised concepts, and is physically based, i.e. 
physical processes are explicitly represented (Schulze et al., 1994). The model is not a parameter-fitting 
or optimising model (Schulze et al., 1994). Therefore, parameters are not directly calibrated. Instead, they 
are assigned based on physical catchment characteristics, as estimated or obtained in the field. The 
performance of the model is verified against observed data (if available). Based on the verification results, 
specific parameters may be adjusted based on a sound conceptual understanding of the hydrological 
processes within a catchment.  
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The CSM approach to DFE may be particularly suited to South Africa for the following reasons. In South 
Africa, climate varies significantly across the country, and significant rainfall variability within relatively 
small areas is common. Therefore, a CSM approach that accounts for spatial differences in rainfall 
would be beneficial and appropriate in South Africa. Although promising results have been obtained 
applying a CSM approach to DFE, no comprehensive CSM methodology applicable at a national scale 
has been developed, such as is available for the event-based SCS-SA model. The SCS-SA event-
based method was adopted from the CN method of the Soil Conservation Service (SCS, 1956; 1972) 
and adapted to South African conditions (Schmidt and Schulze, 1987). The SCS-SA approach (Schmidt 
and Schulze, 1987; Schulze et al., 1992; 2004) is widely used in practice in South Africa for DFE 
(Smithers, 2012; SANRAL, 2013; Smithers et al., 2016) and is generally recommended for use on small 
catchments (0–30 km2). Rowe (2015) initiated preliminary investigations towards the development of a 
national-scale CSM methodology for DFE in South Africa using the ACRU model, and identified 
significant similarities and links between the SCS-SA and ACRU models, including the fact that both 
models use the SCS (1956) runoff equation. 
 
A comprehensive review of CSM for DFE developments to date and potential for application in South 
Africa is provided in Rowe and Smithers (2018). Table 3.1 provides a summary of the steps required to 
develop and establish a national-scale CSM approach for DFE in South Africa. In terms of developing 
a useable system for practitioners, the most critical components from Table 3.1 are steps 3 and 4. As 
identified from the review of the developments towards a national CSM approach in the United Kingdom 
(Savvidou et al., 2016; Calver et al., 2005), and as highlighted by Lamb et al. (2016), this was the critical 
step that was not achieved. Therefore, the successful adoption of this approach will rely on the 
development of a final software tool, with all the necessary inputs and required national-scale 
databases. The idea, as alluded to in Table 3.1, is to base the system (particularly in terms of the user 
interface and options) on the already widely used SCS-SA event-based approach, which will assist in 
the adoption of the approach in practice.  
 
The aim of the study reported in this chapter is to further develop and assess the performance of a 
comprehensive CSM system that can be used to consistently and reliably estimate design flood 
discharges in small catchments (0–100 km2) throughout South Africa, and which can be easily applied 
by practitioners. Specific objectives include the following:  
 
• Review CSM for DFE from both the international and local literature; this has been published 

(Rowe and Smithers, 2018c) 
• Develop a comprehensive CSM system, including the definition of a structure and rules on how to 

implement the system, define a land-cover and soil classification to apply with the system, and 
assign default input information to use with the system 

• Assess the performance of the above CSM system on selected catchments and, based on the 
results, perform any refinements or additional investigations to improve on the CSM system  

• Assess the impact of model configuration and application on the performance of the CSM system 
that was developed and, based on the results, propose a final CSM system for DFE in South Africa  

• Assess and compare the performance of the final CSM system proposed to that of the conventional 
SCS-SA model and associated antecedent soil water adjustment procedures  

 
Full details of the results summarised in this chapter can be found in  Rowe (2019). 
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Table 3.1: Flow chart of the necessary steps required to develop a comprehensive useable CSM 
approach for DFE in South Africa (Rowe and Smithers, 2018) 

STEP 1 

Further development, validation and verification of the ACRU continuous simulation model in terms 
of the following: 
• Input data (climate, soil, land cover), model structure in terms of process representation, and 

how best to set up or package the model in terms of ease of use, while still providing outputs of 
high quality and certainty, i.e. level of detail required 

• Accurate simulations of both day-to-day flows and extreme values in terms of volumes, peak 
discharges (lag time) and complete hydrographs 

• The inclusion of a methodology to account for uncertainty in model parameterisation 

STEP 2 

Further development, assessment and inclusion of national stochastic rainfall generation and/or 
disaggregation techniques: 
• These methods will introduce the ability to account for uncertainty in model time-series inputs, 

as well as increase confidence in estimates of high return-period events (100 years and above) 
• The methods should also provide options to estimate projected climate change scenarios. 

Alternatively, an additional set of rainfall models should be established for this. These 
techniques will be of significant benefit to both the CSM approach and other event-based 
simulation approaches. 

STEP 3 

• Compile all these steps and additional models into a user-friendly, simple software tool that is 
attractive to consultants and government organisations (e.g. Department of Water and 
Sanitation (DWS) and the South African National Roads Agency Limited (SANRAL)) 

• Training courses, workshops and user manuals are critical to the successful adoption of the 
approach. However, if the model options are similar to a tool that is already widely used, i.e. 
the SCS-SA model, this will greatly facilitate the adoption of the approach in practice. 

STEP 4 

• The approach must be continually updated, refined and improved, including, for example, flood 
routing routines and flood forecasting. 

• Close collaboration is needed between practitioners and model developers (researchers). 

 
3.2 DEVELOPMENT OF AN IMPROVED COMPREHENSIVE CONTINUOUS SIMULATION 

MODELLING SYSTEM FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA USING THE 
ACRU MODEL 

To date, reasonable results have been obtained applying the daily timestep ACRU agrohydrological 
continuous simulation model (Schulze, 1995) in a number of pilot studies (Smithers et al., 1997;  2001; 
2007; 2013; Chetty and Smithers, 2005). More recently, Rowe et al. (2018a) developed an approach to 
parameterise the ACRU continuous simulation model for DFE within South Africa to explicitly represent 
land-management practices and hydrological conditions for a range of land-cover classes defined in 
the SCS-SA land-cover classification, which are not represented, or not adequately represented, in the 
ACRU land-cover classification.  
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The most comprehensive land-cover classification available for use with the ACRU model is the 
COMPOVEG database (Schulze, 1995; Smithers and Schulze, 2004b). The COMPOVEG database 
contains the default assigned parameter values required by the ACRU model to represent five land-cover 
categories: urban land uses, agricultural crops, natural vegetation, aquatic systems and commercial 
forests, as classified by Schulze and Hohls (1993). The land-cover classification does not account for 
land-management practices associated with agricultural crops, as accounted for in the SCS-SA 
classification. Since the ACRU model is a daily timestep continuous simulation model, the land-cover 
classification accounts for different crop development stages, i.e. from planting to harvest and seasonal 
changes, and accounts for regional differences in planting dates for specific dominant crops cultivated 
extensively in different parts of the country, such as maize and wheat. The classification also 
distinguishes between commercial and subsistence crops. However, it does not explicitly represent the 
land-management practice and hydrological condition for crops. In terms of natural vegetation, the 
classification includes classes to represent good, fair and poor hydrological conditions for selected land-
cover classes such as veld (grassland). This is, however, not consistently represented for all natural 
land-cover classes. Furthermore, Rowe et al. (2018a) identified that the ACRU model is insensitive to 
the parameters used to represent the different hydrological condition classes in terms of design flood 
estimates. This was particularly concerning, based on the comparative changes in runoff response 
simulated by the SCS-SA model for similar changes in hydrological condition and for similar land-cover 
classes. Rowe et al. (2018a) therefore performed a sensitivity analysis of the model to selected 
parameters to identify which parameters would more adequately represent the change in runoff 
response for different land-management practices and hydrological conditions. Since the CNs in the 
SCS-SA model were calibrated using observed data for a range of land-cover conditions, the results 
simulated by the SCS-SA model were used as a surrogate for observed data to simulate similar 
magnitudes and changes in runoff response in ACRU. This approach was adopted due to the limited 
observed runoff data from small catchments in South Africa and with only a limited range of land-cover 
and soil combinations. Rowe et al. (2018a) identified two flood-sensitive parameters in the ACRU 
model: the quick-flow response coefficient (QFRESP), which partitions stormflow into a same-day 
response fraction and a subsequent delayed stormflow response; and the critical hydrological response 
depth of the soil (SMDDEP). These parameters are currently set to recommended default values and 
have no direct physical meaning (Schulze, 1995). Rowe et al. (2018a), however, developed a 
methodology to estimate these two parameters using SCS-SA CNs. Thus, these parameters were 
related to soil and land-cover characteristics of the catchment via the CN.  

3.2.1 Parameterisation of the ACRU model for DFE 

Rowe et al. (2018a) used the design runoff volumes simulated by the SCS-SA model as a surrogate for 
observed data. The first step was to identify how to represent SCS-SA soil groups (A–D) in the ACRU 
model. Three attempts were made using tabulated soil textural properties to represent SCS-SA soil 
groups. However, these attempts alone were unsuccessful. Manual calibration of the QFRESP and 
SMDDEP parameter values, corresponding to a SCS-SA soil group and land-cover class, was 
undertaken, and used to represent that land-cover class in ACRU. This was achieved by adjusting the 
QFRESP and SMDDEP parameters in the ACRU model until similar runoff volumes to those simulated 
by the SCS-SA model were obtained for the equivalent land-cover class in ACRU. 

Applying a multiple linear regression, a strong relationship between these two ACRU parameters and 
SCS-SA CN values was obtained and consequently preliminary rules and equations were developed to 
represent SCS-SA land-cover classes and soil groups in ACRU. However, the multiple linear regression 
was skewed by the results obtained for SCS-SA soil group C/D. Therefore, a separate multiple linear 
regression analysis was performed for soil group C/D. Equation 3.1 was derived from the multiple linear 
regression for all SCS-SA land-cover classes for all SCS-SA soil groups, excluding SCS-SA  
soil group C/D, to estimate “predicted” CN (CNp) values for given QFRESP and SMDDEP combinations 
as calibrated against actual tabulated SCS-SA CN values. 
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𝐶𝐶𝐶𝐶𝑝𝑝 = 43.91(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃) − 75.52(𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆𝑄𝑄𝑃𝑃) + 53.78  3.1 

The CNp values were then compared to the actual tabulated SCS-SA CN values. Based on the strong 
relationship obtained between the CNp values and the actual tabulated SCS-SA CN values, Equation 3.1 
was used to develop rules to estimated QFRESP and SMDDEP parameter values for tabulated SCS-SA 
CN values. These rules, for all SCS-SA soil groups excluding SCS-SA soil group C/D, are provided in 
Table 3.2. 

Table 3.2: Rules developed for all SCS-SA soil groups, excluding SCS-SA soil group C/D 

Rules 
CN 40–48 CN 48–79 CN > 79 

QFRESP = 0.3 SMDDEP = 0.25 QFRESP = 1 
Input CN 46 79 82 

Rearrange Equation 3.1 to solve for SMDDEP 
or QFRESP SMDDEP QFRESP SMDDEP 

Calculated value 0.28 1.00 0.21 
 
Equation 3.2 was derived to estimate CNp values for given QFRESP and SMDDEP combinations for all 
SCS-SA land-cover classes for SCS-SA soil group C/D: 

𝐶𝐶𝐶𝐶𝑝𝑝 = 32.92(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑃𝑃) − 48.28(𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆𝑄𝑄𝑃𝑃) + 63.91 3.1 

In addition, the rules presented in Table 3.3 were determined for SCS-SA soil group C/D and are 
interpreted in the same manner as the results from Table 3.2. 

Table 3.3: Rules developed for SCS-SA soil group C/D only 

Rules 
CN 57–62 CN 62–85 CN > 85 

QFRESP = 0.3 SMDDEP = 0.25 QFRESP = 1 
Input CN 62 85 88 
Rearrange Equation 3.2 to solve for SMDDEP 
or QFRESP SMDDEP QFRESP SMDDEP 

Calculated value 0.24 1.01 0.18 
 
The rules defined by Rowe et al. (2018a) were only developed and assessed using design runoff 
volumes and not peak discharges. Furthermore, the results were not verified against observed data. 
Therefore, Rowe et al. (2018a) recommended the further development and assessment of the 
approach. This included the further development of a comprehensive CSM system for DFE in South 
Africa, and the verification of the system performance against observed data in terms of both simulated 
streamflow volumes and peak discharges. The next section addresses the first recommendation listed 
above, i.e. the further development of a comprehensive CSM system for DFE in South Africa using the 
ACRU model. This includes defining a complete structure of the system, default datasets and 
classifications to use with the system, and model options.  

3.2.2 Development of a comprehensive CSM system for DFE using the ACRU model 

In order to establish a comprehensive CSM system for DFE using the ACRU model, the following steps 
were required (Rowe, 2019): 
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1. Select and define default model input information to use with the ACRU CSM system for DFE. 
Consequently, the following default datasets were selected: 
a. Rainfall and climate files: The default input rainfall and climate data assigned per quinary, and 

stored in the quinary catchments database (Schulze, 2013) was selected. Alternatively, high-
quality rainfall data from other sources such as research catchments and the Lynch (2003) 
database should be used.  

b. Soil: Soil is represented by the SCS-SA soil groups, as applied in the SCS-SA method, and 
obtained from sources such as the following: 
• The literature, i.e. where detailed soils analyses have been conducted (generally 

restricted to research catchments) 
• The land-type maps (SIRI, 1987)  
• Maps of the SCS-SA soil groups for South Africa, as developed by Schulze (2012), and 

an updated map, developed by Schulze and Schütte (2018), which factors in terrain units. 
Due to their national coverage, these data sources were selected as the default. 
However, comparison with the other data sources, where available or feasible, will be 
performed as this provides a way of validating the accuracy of the maps. 

c. Land cover: The National Land Cover (NLC) dataset of 2000 (ARC and CSIR, 2005), referred 
to as NLC 2000, and an updated 2013/14 version (DEA and GTI, 2015), referred to as NLC 
2013/14, are the most comprehensive coverages of actual land cover in South Africa. This 
land-cover information is a suitable baseline and is used in the CSM system as the default 
land-cover information, unless more detailed information is available, i.e. information that is 
particularly relevant to research catchments, where the vegetation coverage has been 
explicitly described and documented. 
 

2. Using the default land-cover data, a comprehensive land-cover classification for use with the ACRU 
model, similar to the SCS-SA classification, with the parameters required to model each of the NLC 
2000 and NLC 2013/14 land-cover classes, was developed as follows: 
a. Based on the rules developed by Rowe et al. (2018a), a final land-cover classification for use 

with the ACRU model was established. The classification was adopted from the SCS-SA land-
cover classification (Schulze et al., 2004) with modifications to make the classification more 
compatible with the NLC 2000 and NLC 2013/14 land-cover classes. 

b. Appropriate land-cover classes from the final ACRU land-cover classification were assigned 
to each of the 49 different land-cover classes of the NLC 2000 dataset and 72 classes of the 
NLC 2013/14 dataset in order to model these selected default land-cover classes. 
 

3. A structure of how to apply the model, i.e. level of detail and model options, was established to 
provide a consistent methodology to implement the approach. 

Further details on the development of a CSM for DFE using the ACRU model are provided in Rowe (2019). 

3.3 PERFORMANCE ASSESSMENT OF THE IMPROVED CONTINUOUS SIMULATION 
MODELLING SYSTEM DEVELOPED COMPARED TO THE CURRENT DEFAULT ACRU 
MODEL CONFIGURATION 

In the previous section, an improved CSM system for DFE in South Africa was defined. The system 
was developed to consistently and explicitly represent land-management practices and hydrological 
conditions as represented in the SCS-SA model, which are not adequately represented in the current 
default implementation of the ACRU model.  
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3.3.1 Streamflow and peak discharge computation in the ACRU model 

In the ACRU model, several algorithms and parameters are used to transform rainfall into total 
streamflow, i.e. both stormflow and baseflow. This includes partitioning rainfall into the various 
hydrological processes, such as interception, stormflow, infiltration, evapotranspiration and baseflow. It 
is not practical to describe all the details of each of these processes in this section. However, specific 
processes that are particularly relevant to this study, which are needed to understand the methodology 
applied and results obtained, are summarised below. For further details on the information described 
below, refer to Schulze (1995).  

At the heart of the ACRU model is the SCS (1956) runoff equation, which is used to estimate stormflow, 
referred to as STORMF in the ACRU model. In summary, once interception has been abstracted, the 
gross daily precipitation (P), referred to as RFL in the ACRU model, is converted into STORMF, based 
on the soil water deficit (S) and the regression coefficient (c), referred to as the coefficient of initial 
abstraction (COIAM) in the ACRU model. The multi-layer soil water budgeting approach used in the 
ACRU model determines the value of S on a day-by-day basis. This is calculated for a selected critical 
response depth of the soil (SMDDEP). The STORMF generated on a specific day is added to the 
stormflow store (STORMF STORE), which is partitioned into a same-day response fraction (UQFLOW), 
and a subsequent delayed stormflow response, i.e. applying a quick-flow response coefficient 
(QFRESP), which is a surrogate for interflow. The delayed stormflow response is retained in the 
STORMF STORE, to which the next day’s STORMF is added, if any, which is then again partitioned 
based on the QFRESP coefficient.  

In the current publicly available versions of the ACRU model, all the STORMF (Q) generated on the 
day is used to estimate the peak discharge. The peak discharge calculation is derived from the SCS 
(1956) incremental triangular unit hydrograph stormflow peak discharge equation. In the standard 
ACRU model, incremental triangular unit hydrographs are only used if the hydrograph routing option is 
evoked. When the hydrograph routing option is not selected, which is generally the default option, a 
single triangular unit hydrograph is used to calculate stormflow peak discharge, and the effective storm 
duration (∆D) is assumed to be equal to the catchment’s time of concentration (Tc), which is empirically 
related to lag time (L). Based on this assumption and combining the incremental triangular unit 
hydrograph stormflow peak discharge lag time equations simplifies to: 

qp = 0.2083 �
A Q

1.83 L� 
3.2 

Equation 3.3 is the default option in ACRU and was used in this section to estimate the stormflow 
contribution to peak discharge. The simulated baseflow from the model is then added to the ordinates 
of the surface runoff hydrograph, i.e. to provide a complete hydrograph (Schulze, 1995). Rowe (2019) 
provides further details regarding the baseflow contribution to peak discharge. The baseflow 
contribution to peak discharge is, however, generally very small in small catchments where the surface 
and groundwater catchment areas are assumed to be the same.  

3.3.2 Methodology 

The following methodology was applied in this section: 

• Eleven catchments, which included seven research catchments and four DWS-gauged catchments 
(Figure 3.1), with quality-controlled, observed rainfall and streamflow data, were selected to assess 
and compare the performance of the improved CSM system that was developed to that of the 
current default implementation of the ACRU model.  
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• Catchment characteristics such as soil and land-cover information were identified for each 
verification catchment, and were used to parameterise the ACRU model applying both the current 
default implementation of the ACRU model and the improved CSM system that was developed. 

• After setting up the ACRU model with all the required inputs for both scenarios, daily streamflow 
and peak discharge were simulated for all verification catchments for both scenarios. 

• Graphical comparisons of the simulated versus observed daily streamflow and peak discharge 
results were performed. Summary statistics were calculated, including least-square linear 
regression analysis to determine the best-fit regressions for the simulated versus observed results, 
along with the coefficient of determination (R2). In addition, the Nash-Sutcliffe Efficiency ratio of 
the observed versus simulated daily streamflow and peak discharge values was calculated. 

• The annual maximum series was then extracted from both the daily observed and simulated 
streamflow volumes and peak discharges. The GEV distribution was fitted, using L-moments 
(Hosking and Wallis, 1997), to the AMS of the observed and simulated flows to compare how well 
the model simulated the design flood events, i.e. for the 2-, 5-, 10-, 20-, 50- and 100-year return 
periods. For comparison, and to summarise the differences between the observed and simulated 
design values across all return periods, both the MRE and the MARE were used. The MRE 
indicates general over- or under-simulation, while the MARE indicates the total error, which 
complements the MRE and indicates if there is consistent under- or over-simulation, or a 
combination of the two. 

After applying the above methodology, poorly simulated design peak discharges were obtained for both 
scenarios assessed. Therefore, further analysis was performed of the computation of peak discharge 
in the ACRU model.   

3.3.3 Catchments used for verification 

The 11 catchments selected to verify and compare the performance of the CSM system that was 
developed to that of the default implementation of the ACRU model are located as shown in Figure 3.1. 
These include seven research catchments monitored by the Council for Scientific and Industrial 
Research (CSIR), formerly Forestek, and the University of KwaZulu-Natal (UKZN), and four DWS-
gauged catchments. DWS-gauged catchments are indicated with blue dots in Figure 3.1 and research 
catchments are indicated with red dots. There are two catchments located at the Cedara and 
DeHoek/Ntabamhlope research catchment sites (Figure 3.1). 

 
Figure 3.1: Location of catchments used for verification  
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Rowe (2019) provides a detailed discussion of the general climatic and physiographical characteristics 
of the study catchments. In addition, Rowe (2019) provides further details pertaining to data availability, 
collection and processing.  

3.3.4 Results and discussion 

Rowe (2019) provides a detailed example of the typical performance and results obtained from both the 
CSM system that was developed and the default ACRU model configuration for two of the verification 
catchments used in the study: Cathedral Peak IV (V1H005) and DeHoek/Ntabamhlope (V1H015).  

However, in terms of the peak discharge, the model currently uses all the STORMF generated for the 
rainfall event on the day in the stormflow peak discharge equation. as shown in Equation 3.3, which 
represents contribution of the stormflow (surface runoff) to the total peak discharge (QPEAK). However, 
the STORMF generated on the day does not represent the actual fraction of stormflow that exits the 
catchment on the day, since this is partitioned into UQFLOW and a delayed STORMF response, 
conceptualised as interflow, as described above. This is therefore conceptually incorrect and results in 
inconsistent volumes between the UQFLOW volume released on the day, i.e. after applying QFRESP 
to the STORMF STORE, and the volume of STORMF used to calculate the contribution of stormflow to 
peak discharge for the day. In this study, this resulted in a significant over-simulation of QPEAK 
compared to the observed value.  

To improve on the over-simulation of QPEAK and to correct the inconsistency between the UQFLOW 
volume released on a particular day, i.e. after applying QFRESP to the STORMF STORE, and the 
volume of STORMF used to calculate QPEAK for the day, the following revision was applied by 
introducing an additional output variable: UQFLOW ON THE DAY (UQFLOW OTD). Conceptually, 
UQFLOW OTD represents the fraction of STORMF generated on the day that actually exits the 
catchment on the day as surface runoff, i.e. calculated as STORMF x QFRESP = UQFLOW OTD. 
Based on this revised conceptualisation, the use of STORMF in Equation 3.3 was replaced with 
UQFLOW OTD, which represents the fraction of STORMF generated on the day that actually exits the 
catchment on the day as surface runoff. The difference between UQFLOW and UQFLOW OTD, which 
is conceptualised as interflow, is then calculated and added to the baseflow component of the peak 
discharge computation, however, conceptualised as interflow.  

Applying the revised ACRU peak discharge computation corrects the volume inconsistency currently 
applied in the peak discharge estimation and ensures that the same volume of total simulated 
streamflow (USFLOW) on a particular day is used to calculate the total peak discharge for the day, i.e. 
the contributions of both stormflow and baseflow/interflow to peak discharge. In addition, the revised 
stormflow volumes (UQFLOW OTD) used in the stormflow peak discharge equations are conceptually 
correct since these equations, derived from the original SCS (1956) stormflow equations, estimate the 
contribution of surface runoff to peak discharge.  

The results obtained for all verification catchments, as presented for Cathedral Peak IV (V1H005) and 
DeHoek/Ntabamhlope (V1H015), excluding the Lambrechtsbos B (G2H010) catchment, are summarised 
in figures 3.2 to 3.5. Due to particularly poor results obtained for the Lambrechtsbos B (G2H010) 
catchment and challenges associated with modelling this catchment, it was excluded from the analysis. 
As indicated in Figure 3.2, the CSM system provides the most accurate results overall in terms of daily 
streamflow volumes for all verification catchments (excluding the Lambrechtsbos B (G2H010) catchment), 
with NSE, R2 (RSQ) and regression slope values all being higher than those obtained for the default 
implementation of the ACRU model. In terms of daily peak discharges (Figure 3.3), it is evident that 
extremely poor NSE values and high regression slope values are obtained for both the CSM system 
and default implementation of the ACRU model when applying the current peak discharge computation 
procedure.  
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In terms of the revised peak discharge computation, however, the NSE and regression slope values are 
slightly better for the default implementation of the ACRU model compared to the CSM system. The results 
are, however, similar (Figure 3.3). In terms of design streamflow volumes (Figure 3.4), the MARE is worse 
(higher) for the default implementation of the ACRU model compared to the CSM system. However, the 
MRE is lower and negative (-0.08) for the default implementation of the ACRU model compared to the 
higher positive value (0.14) obtained for the CSM system, indicating a greater tendency for the default 
implementation of the ACRU model to under-simulate design streamflow volumes (Figure 3.4). This trend 
is directly translated to the MARE/MRE values in terms of design peak discharges shown in Figure 3.5. 
The results confirm that the current peak discharge computation procedure is inadequate and produces 
extremely over-simulated design peak discharges for both scenarios. 

 
Figure 3.2:   Summary of NSE, RSQ and regression slope values obtained for all verification 

catchments, excluding Lambrechtsbos B (G2H010), for simulated versus observed daily 
streamflow volumes 

 
Figure 3.3: Summary of NSE, RSQ and regression slope values obtained for all verification 

catchments, excluding Lambrechtsbos B (G2H010), for simulated versus observed daily 
peak discharges, applying both the current and revised peak discharge computation 
procedure 
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Figure 3.4:  Summary of MARE and MRE values obtained for all verification catchments, excluding 

Lambrechtsbos B (G2H010), for simulated versus observed design streamflow volumes 

 
Figure 3.5: Summary of MARE and MRE values obtained for all verification catchments, excluding 

Lambrechtsbos B (G2H010), for simulated versus observed design peak discharges, 
applying both the current and revised peak discharge computation procedure 

3.3.5 Conclusions and recommendations 

The initial results indicated that reasonable daily and design streamflow volumes are simulated when 
applying both the CSM system that was developed and the default implementation of the ACRU model 
within the current ACRU structure and computational procedures. However, daily and design peak 
discharges were significantly over-simulated. Further investigation of the computation of peak discharge 
in the current ACRU model structure highlighted an inconsistency between daily simulated stormflow 
volumes and the volume of stormflow used in the daily stormflow peak discharge equation.  

Therefore, revisions were made to the calculation of peak discharge in the model, correcting the volume 
imbalance, which significantly improved the results. Overall, considering both daily and design streamflow 
volumes and peak discharges, the CSM system was identified as providing the most accurate results. 
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This motivates the further development and assessment of the CSM system. In conclusion, however, 
regardless of how the QFRESP and SMDDEP parameter values are estimated, the revision applied to 
the ACRU peak discharge computation in this section should be applied in all future applications of the 
ACRU model to provide more realistic and accurate peak discharge estimates. The simulation of daily 
streamflow from a catchment in the ACRU model is very sensitive to these parameters. It is therefore 
essential to obtain a best estimate of these parameters. This should be considered carefully.  

3.4 PERFORMANCE AND SENSITIVITY ANALYSIS OF THE SCS-BASED PEAK DISCHARGE 
ESTIMATION IN THE ACRU MODEL 

This section assesses the performance and sensitivity of the SCS-based peak discharge estimation 
procedures, as implemented in the ACRU model, for two case study catchments. It includes an 
assessment and comparison of both the single and incremental unit hydrograph approaches. 

3.4.1 Methodology 

The two case study catchments used in this section are the Cathedral Peak IV catchment (Gauging 
Weir V1H005), located on the Little Berg plateau of the Drakensberg mountain range, KwaZulu-Natal, 
near the town of Winterton, and the DeHoek/Ntabamhlope catchment (Gauging Weir V1H015), also 
located in KwaZulu-Natal approximately 20 km from the town of Estcourt in the foothills of the 
Drakensberg.  

The following methodology was applied in this section: 

• The Flood Hydrograph Extraction Software, EX-HYD, developed by Görgens et al. (2007) and 
provided by Gericke (2018), was used to extract complete flood hydrographs from the primary 
streamflow data of the two selected catchments.   

• For Cathedral Peak IV (V1H005), where only a short record of overlapping and consistent 
streamflow and sub-daily rainfall data was available, i.e. 1974–1979, the largest event for each 
year on record was first extracted. This was followed by the second-largest event, the third-largest 
event, etc. until a reasonable sample of 20 events had been obtained. For DeHoek/Ntabamhlope 
(V1H015), the same procedure was followed. However, the record length was significantly longer, 
i.e. 1979–1993. Therefore, the majority of the events selected were the annual maximum events. 
Seventeen events were finally extracted. 

• A Hydrograph Analysis Tool (HAT), developed in Microsoft Excel by Gericke and Smithers (2017), 
was used to further analyse and process each of the events extracted using EX-HYD.  

• The ACRU simulation results obtained from the assessment of the CSM system, i.e. applying the 
revised peak discharge computation procedure, were used to provide the simulated stormflow 
volumes, i.e. UQFLOW OTD, that were required as input into the ACRU stormflow peak discharge 
equations. 

• The Schmidt and Schulze (1984) (S&S) lag time equation was used to estimate the average 
catchment lag time for the two case study catchments. 

• Using all the information above, the performance of the single UH approach, i.e. the default option 
in the ACRU model, was firstly investigated (Step 1). The following procedure was followed: 
Step 1.1: The simulated UQFLOW OTD from the ACRU model was used as input to the single 
UH approach, along with the estimated S&S lag time, to estimate the contribution of stormflow to 
the peak discharge for the day, i.e. for each of the events extracted for the two case study 
catchments. 

Step 1.2: Repeat Step 1.1. However, replace the estimated S&S lag time, i.e. the time that 
remains constant for each event, with the observed lag time estimated for each event, extracted 
from the observed event hydrographs. 
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Step 1.3: Use both the observed stormflow volume and observed lag time for each event to 
calculate the contribution of stormflow to peak discharge. 

• The same procedure was followed to assess the performance of the incremental UH approach 
(Step 2). However, in this case, the temporal distribution of daily rainfall was required. Therefore, 
the procedure was as follows: 
Step 2.1: The simulated UQFLOW OTD from the ACRU model was disaggregated into 
incremental stormflow volumes, based on hyetographs generated using the daily rainfall and one 
of four SCS-SA synthetic regionalised rainfall distributions applicable to each catchment. 
Incremental triangular UHs were then generated for each increment of stormflow volume, using 
the estimated S&S lag time. The incremental UHs were then superimposed onto each other to 
provide a composite surface runoff hydrograph and final stormflow peak discharge estimate.  
Step 2.2: Repeat Step 2.1. However, replace the synthetic regionalised rainfall distributions with 
the observed rainfall hyetographs for each event, and replace the estimated S&S lag time with 
the observed lag time for each event. 
Step 2.3: Use the observed stormflow volume, the observed rainfall hyetographs and the 
observed lag time for each event to calculate the contribution of stormflow to peak discharge. 
Step 2.4: Use the UQFLOW OTD as the input for stormflow and keep this fixed. Then use the 
observed rainfall hyetographs and the estimated S&S lag time for one set of computations. Then 
change this to the synthetic regionalised rainfall distributions and the observed lag time.  

• The results from each of the above analyses are summarised for each catchment using both MRE 
and MARE. 

3.4.2 Results and discussion 

The results obtained from the assessment of both the single and incremental UH approaches are 
presented in this section. A detailed example of the results from the application of the single UH 
approach, for a single event, is provided in Figure 3.6.  

 
Figure 3.6: Observed stormflow hydrograph and simulated stormflow hydrographs obtained for a 

single event at Cathedral Peak IV (V1H005) applying the single UH approach 

From Figure 3.6, it is evident that using UQFLOW OTD and the estimated S&S lag time results in an over-
simulation of the stormflow peak discharge for this event (the solid blue line), i.e. compared to the observed 
stormflow hydrograph (the solid black line). An improvement is observed when UQFLOW OTD and the 
observed lag time are used (the dashed blue line). This result is very similar to that obtained when both 
the observed stormflow and the observed lag time are used (the dashed black line). The results indicate 
that UQFLOW OTD is a reasonable estimate of the stormflow volume for this event, and that the single 
UH approach is sensitive to catchment lag time.  
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A detailed example of the results obtained from the application of the incremental UH approach, i.e. 
applying the methodology, is depicted in Figure 3.7 using the same event as that used for the single 
UH approach described above. The incremental UH approach was used to develop the composite 
stormflow hydrographs depicted in Figure 3.7, based on either the regionalised synthetic rainfall 
distribution defined for the region, i.e. Type 4 rainfall distribution in this case, referred to as Rain T4, or 
the observed rainfall hyetograph. Observed stormflow, observed lag time and the S&S lag time are as 
defined above for the single UH approach.  

As investigated for the single UH approach, the performance of the incremental UH approach was 
assessed using both observed and simulated (UQFLOW OTD) stormflow volumes, and observed and 
estimated S&S lag time for the catchment. However, in this case, the distribution of daily rainfall was also 
accounted for. From Figure 3.7, it is evident that using UQFLOW OTD, the estimated S&S lag time and 
Rain T4 results in an over-simulation of the stormflow peak discharge for this event (the solid blue line), 
i.e. compared to the observed stormflow hydrograph (the solid black line). An improvement is observed 
when UQFLOW OTD, the observed lag time and observed rainfall are used (the dashed blue line). This 
result is very similar to that obtained when all the observed inputs are used, i.e. observed stormflow, 
observed lag and observed rainfall (the dashed black line). The results once again indicate that 
UQFLOW OTD is a reasonable estimate of the stormflow volume for this event, and that the incremental 
UH approach is sensitive to catchment lag time. 

 
Figure 3.7: Observed stormflow hydrograph and simulated stormflow hydrographs obtained for a 

single event at Cathedral Peak IV (V1H005) applying the incremental UH approach 

The final two simulated stormflow hydrographs compare the sensitivity of the incremental UH approach 
to lag time. When the distribution of daily rainfall individually, i.e. if the simulation where UQFLOW OTD 
is used in combination with the observed lag time and observed rainfall (the dashed blue line) is 
considered and the observed rainfall is replaced with Rain T4 (the solid orange line), there is no 
noticeable change in the stormflow peak discharge. However, there is a slight increase when the 
observed lag time is replaced with the estimated S&S lag time (the dashed orange line).  

Therefore, in this case and for this specific event, the incremental UH approach is more sensitive to the 
estimated S&S lag time than Rain T4, i.e. the synthetic rainfall distribution. This is, however, as a result 
of the observed rainfall distribution being very similar to the synthetic T4 rainfall distribution for this 
particular event. The detailed results provided above for both the single UH approach and the 
incremental UH approach, for this single event in the Cathedral Peak IV (V1H005) catchment, provide 
a graphical example of how the peak discharges and stormflow hydrographs were generated for each 
of the respective approaches.   
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The results obtained from both catchments were summarised using MARE and MRE values. The results 
for Cathedral Peak IV (V1H005) and DeHoek/Ntabamhlope (V1H015) are summarised in figures 3.8 
and 3.9, respectively. The results when using UQFLOW OTD and observed stormflow are both provided 
for comparison.  

The performance of the single UH approach was assessed using both observed and simulated (UQFLOW 
OTD) stormflow volumes, with estimated S&S lag time or observed catchment lag times. 

 
Figure 3.8: Cathedral Peak IV: MARE and MRE between observed and simulated stormflow peak 

discharges for both the single and incremental UH approaches 

 
Figure 3.9: DeHoek/Ntabamhlope: MARE and MRE between observed and simulated stormflow peak 

discharges for both the single and incremental UH approaches 

As indicated by the results presented in figures 3.8 and 3.9, the combinations where all the observed 
data was used as input into each of the respective approaches produce the lowest MARE values. This 
is logical and was expected since the observed data is the best estimate of the input parameters 
required for each approach. In addition, there is generally a consistent over-estimation of the peak 
discharges for all scenarios, i.e. the MARE and MRE values are generally the same or very similar 
(Figure 3.8). Similarly, for the DeHoek/Ntabamhlope catchment, when applying the single UH approach, 
MARE is lowest when using the observed runoff and observed lag (0.81). When applying the 
incremental UH approach, however, the MARE is lowest when using observed stormflow, S&S lag time 
and observed rainfall (0.24). This is, however, only slightly lower than that obtained when using 
observed stormflow, observed lag and observed rainfall (0.27).  
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The average percentage increase in MARE for both catchments, for both the single and incremental UH 
approaches when replacing observed inputs with estimated and/or synthetic inputs, is provided in 
Table 3.4. The results when using both observed stormflow and UQFLOW OTD indicate that the single 
UH approach is particularly sensitive to catchment lag time with the MARE increasing by 91% and 87%, 
respectively, when the observed lag is replaced with the S&S lag time. In terms of the incremental UH 
approach, the results indicate that, on average, the approach is more sensitive to the distribution of daily 
rainfall compared to catchment lag time. The average increase in MARE when observed rainfall is 
replaced with synthetic rainfall distributions (Rain T3/T4) is 46% (observed stormflow) and 58% (UQFLOW 
OTD), and only 27% (observed stormflow) and 29% (UQFLOW OTD) when the observed lag is replaced 
with the S&S lag time, keeping all other inputs fixed. When simultaneously replacing both observed rainfall 
and observed lag with synthetic rainfall distributions (Rain T3/T4) and the S&S lag time, the average 
increase in MARE is 186% (observed stormflow) and 182% (UQFLOW OTD), which is substantially higher 
than the combined percentage changes from the individual replacements of each of the two observed 
estimates, i.e. 46% + 27% = 73% (observed stormflow) and 58% + 29% = 87% (UQFLOW OTD).  

The results thus indicate a compounding of the error when both the rainfall distribution and catchment 
lag time are not accurately estimated. The average percentage increase in MARE of Qp estimates 
between the results obtained from the incremental and single UH approaches, when using both 
observed versus estimated and/or synthetic inputs, is also provided in Table 3.4. On average, when 
using the estimated and/or synthetic inputs in both the single and incremental UH approaches, MARE 
is 24% (observed stormflow) and 12% (UQFLOW OTD) higher for the single UH approach compared 
to the incremental UH approach. When using the observed inputs in both the single and incremental 
UH approaches, MARE is 113% (observed stormflow) and 77% (UQFLOW OTD) higher for the single 
UH approach compared to the incremental UH approach.  

Table 3.4: Average percentage increase in MARE for both the single and incremental UH 
approaches when replacing observed inputs with estimated and/or synthetic inputs, and 
between the results obtained from the single and incremental UH approaches 

From To Average percentage 
increase in MARE 

Single UH observed lag, observed 
stormflow 

Single UH observed lag, 
UQFLOW OTD 80 

Including UH observed lag, observed 
rainfall, observed stormflow 

Including UH observed lag, 
observed rainfall, UQFLOW OTD 105 

 

From To Observed 
stormflow 

UQFLOW 
OTD 

Single UH observed lag Single UH S&S lag 91 87 
Including UH observed lag, observed 
rainfall 

Including UH observed lag, Rain 
T3/T4 46 58 

Including UH observed lag, observed 
rainfall 

Including UH S&S lag, observed 
rainfall 27 29 

Including UH observed lag, observed 
rainfall 

Including UH S&S lag, Rain T3/T4 186 182 

Including UH S&S lag, Rain T3/T4 Single UH S&S lag 24 12 
Including UH observed lag, observed 
rainfall Single UH observed lag 113 77 

 
3.4.3 Conclusions and recommendations 

In this study, the influence of three parameters that directly influence the simulation of the contribution of 
stormflow to peak discharges in the ACRU model has been investigated for two methods of hydrograph 
generation.  
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The first method, which is the default option applied in the ACRU model, uses the design stormflow peak 
discharge equation (the single UH approach) and relies only on the simulated stormflow volume and 
estimated catchment lag time. The second method, the incremental UH approach, also requires an 
estimate of both stormflow volume and catchment lag time, as well as the temporal distribution of daily 
rainfall, where a fixed regionalised synthetic rainfall distribution is generally assumed for application in 
South Africa. The lack of reliable sub-daily rainfall data, particularly consistent and accurate short-duration 
rainfall data, was a significant challenge to this study. This resulted in the use of only two pilot study 
catchments. Both the single and incremental UH approaches are sensitive to stormflow volume. Although 
the UQFLOW OTD is a reasonable estimate of the daily stormflow volume, it still tends to over-estimate 
stormflow in general. The single UH approach, which does not account for the distribution of daily rainfall, 
was particularly sensitive to estimated lag time, which varies significantly from event to event. However, 
the incremental UH approach is sensitive to both the estimated lag times and daily rainfall distributions 
used, which vary significantly from event to event.  

Based on the results obtained for the two case study catchments, however, the incremental UH 
approach was identified as being more sensitive to the distribution of daily rainfall used. When applying 
the incremental UH approach, and incorrectly estimating both the daily rainfall distribution and the 
catchment lag time, a compounding of the error obtained is observed. The S&S lag equation was 
identified to provide a relatively good estimate of the average catchment response time. Although less 
satisfactory, the synthetic daily rainfall distributions provided a reasonable average representation of 
the typical rainfall distribution observed in the catchments. The incremental UH approach provides more 
accurate peak discharge estimates compared to the single UH approach, i.e. both when using 
parameters obtained from observed events and when using estimated and synthetic information. The 
results are, however, much improved when using parameters derived from the observed data. This 
indicates the importance of accounting for the variation in daily rainfall distribution and catchment lag 
time on a day-to-day basis. Therefore, to improve on the results obtained from the incremental UH 
approach, methods need to be developed to account for these variations. Lastly, the results highlight 
that accurate simulations of peak discharge may be obtained when applying both the single and 
incremental UH approaches when accurate inputs to the equations are used, validating that the model 
concepts and structure are reasonable to use in practice.  

3.5 IMPACT OF MODEL CONFIGURATION AND PARAMETER ESTIMATION ON THE 
PERFORMANCE OF THE CONTINUOUS SIMULATION MODELLING SYSTEM DEVELOPED 
AND THE ESTABLISHMENT OF A FINAL SYSTEM 

This section assesses the impact of model configuration and parameter estimation, i.e. using different 
sources of input information, such as land cover and soil, on the performance of the CSM system 
developed and assessed in the previous sections. 

3.5.1 Methodology 

This section outlines the methodology applied and results obtained to determine if the incremental UH 
approach with the estimated S&S lag time and synthetic daily rainfall distribution (Weddepohl, 1988) 
consistently performs better than the single UH approach, also using the estimated S&S lag time, for 
all verification catchments (Section 3.3.3). These include operational catchments where short-duration 
rainfall data is not available, which is generally the case when estimating design floods in practice in 
South Africa, due to the scarcity of short-duration sub-daily rainfall data in South Africa.  

The results obtained from the assessment of the CSM system that was developed, i.e. with revision to 
the volume used in the peak discharge computation (UQFLOW OTD), and applying the single UH 
approach, are compared to those obtained when applying the incremental UH approach with synthetic 
rainfall distribution (Weddepohl, 1988) applicable to each catchment. In both cases, the same input 
information was used, and only the peak discharge computation procedure was changed. 
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3.5.2 Results and discussion 

In terms of overall model performance, as indicated by the NSE values for all verification catchments 
(summarised in Table 3.5), it is evident that the incremental UH approach performed better than the 
single UH approach (due to the higher NSE values) for nine catchments. It had slightly lower NSE 
values in catchments V1H032 and X2H027, which are considerably larger than the other catchments. 
Therefore, the results may suggest that the performance of the incremental UH approach deteriorates 
with catchment size, i.e. for catchments outside the recommended size range (< 50 km2) defined for 
the ACRU model (Schulze, 1995). However, the results for these two catchments are only slightly worse 
than those obtained from the single UH approach, whereas, for the remaining catchments, in most 
cases, substantial improvements were obtained when using the incremental UH approach compared 
to the single UH approach. Therefore, in general, the incremental UH approach provides better results 
compared to the single UH approach. The general poor performance of the model with predominantly 
negative NSE values for both the single and incremental UH approaches used to simulate peak 
discharge can be attributed to the simulated stormflow volume on any given day not being 
representative of the observed stormflow volume for that day, variations in the sub-daily temporal 
distribution of daily rainfall from day to day, and variations in lag time from day to day. Therefore, on a 
day-to-day basis, the simulated versus observed comparisons are relatively poor. However, the 
predominant or most typical conditions are accounted for.  

Table 3.5:  Comparison of NSE results between observed versus simulated daily peak discharges 
when applying the single and incremental UH approaches 

Catchment Area (km2) NSE daily peak discharges –  
Single UH approach 

NSE daily peak discharges – 
 Incremental UH approach 

U2H020 0.26 -1.89 -1.20 

V7H003 0.52 -1.12 -0.49 

G2H010 0.73 -23.70 -3.14 

V1H005 0.98 -10.53 -7.47 

V1H015 1.04 -1.24 -0.41 

U2H018 1.31 -10.02 -5.59 

W1H016 3.30 -0.70 0.27 

X2H026 13.82 -6.57 -4.68 

A9H006 16.00 -1.43 -0.83 

V1H032 67.80 0.17 -0.01 

X2H027 77.16 -3.91 -4.49 
 
A comparison of the MRE values between observed and simulated design peak discharges for return 
periods ranging from two to 100 years when applying both the single and incremental UH approaches is 
given in Figure 3.10. The results, similar to the NSE values, indicate that improved design peak discharges 
are obtained for all verification catchments (delivering lower MRE values) when using the incremental UH 
approach, except – once again – for catchments V1H032 and X2H027. However, the results for 
Catchment V1H032 are very similar when applying the two approaches, and the results obtained when 
applying the incremental UH approach are only slightly worse for Catchment X2H027 than when applying 
the single UH approach. The MARE was not presented here since the values are identical to the MRE 
values, i.e. both methods consistently over-estimate the observed design peak discharges. Therefore, 
from the NSE and MRE values obtained, it may be concluded that, in general, the incremental UH 
approach provides better results and should be used as the default option in the CSM system.  
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Consequently, the incremental UH approach will be used in all subsequent investigations and 
assessments in the sections to follow. In addition, there is room for improvement in the results when using 
this approach if the actual distribution of daily rainfall or an improved method of disaggregating the daily 
rainfall into a hyetograph on a day-to-day basis is developed and used. Furthermore, relationships 
between rainfall intensity and catchment lag time have been identified. Therefore, lag time may possibly 
be adjusted based on the distribution of daily rainfall in the future development of the system. 

 
Figure 3.10:  MRE between observed and simulated design peak discharges (two- to 100-year return 

period) when applying the single versus the incremental UH approach 

3.5.3 Conclusions and recommendations 

The aim of this section was to assess the impact of model configuration and parameter estimation on 
the performance of the CSM system that was developed and assessed. The objective was to identify if 
the incremental UH approach with the estimated S&S time lag and synthetic daily rainfall distribution 
(Weddepohl, 1988) consistently performs better than the single UH approach, also using the estimated 
S&S lag time for all verification catchments used in the assessment of the CSM system. The results 
indicated that the incremental UH approach generally performs substantially better than the single UH 
approach, or at least very similarly to the single UH approach, and should be used as the default peak 
discharge computation procedure in the CSM system.  

The results indicate that the current CSM system, i.e. with site-specific land-cover and soil information, 
and the estimated S&S lag time, produced the best results. The S&S lag time equation produced 
substantially better results compared to the SCS lag time equation (SCS, 1972) and must therefore be 
used to estimate lag time in the CSM system.  

It can be concluded that the incremental UH approach should be applied with the CSM system as the 
default option to simulate peak discharges. Site-specific information related to land cover and soil 
should be used in preference to national land-cover and soil maps, where available. If national soils 
maps are used, the Schulze and Schütte (2018) SCS Soil Map must be used to estimate the SCS-SA 
soil group. When using the NLC maps, validation of the land-cover classes should be performed using 
globally available imagery such as Google Earth or other means to identify the most accurate land-
cover class for the catchment of interest. The S&S lag time equation should be used as the default lag 
time equation in the CSM system.  
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It is acknowledged that the CSM system has relied heavily on the SCS-SA land-cover classification. In 
the absence of observed data, the assumption has been made that the hydrological responses from 
the SCS-SA model for these soil and land-cover classes are reasonable. Consequently, it is possible 
that the ACRU CSM system and event-based SCS-SA model may provide similar results. Therefore, 
an assessment is needed of how the results from the CSM system developed compared to those 
obtained from the SCS-SA model.  

3.6 A COMPARATIVE PERFORMANCE ASSESSMENT OF THE FINAL CONTINUOUS 
SIMULATION MODELLING SYSTEM ESTABLISHED IN RELATION TO THE TRADITIONAL 
SCS-SA MODEL 

This section contains a comparison of the performance of the final CSM system that was established 
above with the performance of the traditional SCS-SA model and associated antecedent soil moisture 
adjustment procedures. 

3.6.1 Introduction  

In the previous section, a final CSM system for DFE in South Africa was established using the ACRU 
model (Schulze, 1995). In the absence of observed data, the development of the method relies extensively 
on the SCS-SA land-cover classification, i.e. in terms of representing hydrological responses from specific 
combinations of soil types, land-cover classes, land-cover conditions and land-management practices. 
Consequently, the ACRU CSM system has been modified to use the SCS-SA land-cover classification. 
In addition, there are striking similarities between the ACRU and SCS-SA models. Hence, there is a need 
to compare the performance of the two models for DFE. This is essential to identify if the ACRU CSM 
system provides better DFE estimates compared to the traditional SCS-SA model and, if so, whether it 
justifies the further development and implementation of the ACRU CSM system. It also provides the 
opportunity to assess the performance of the SCS-SA model when applying the initial catchment CN 
(CN-II), the median condition method (MCM) and the joint association method. 

3.6.2 Methodology 

This section summarises the methodology applied in this section. Rowe (2019) provides a detailed 
breakdown of the methodology used to compare the CSM developed with the traditional SCS-SA model. 
The first step was to set up both the ACRU and SCS-SA models.  

In terms of the ACRU model, the same setup was used as was applied in the final CSM system. This 
information was used to simulate continuous time-series of daily simulated streamflow volumes and 
peak discharges.  

When setting up the SCS-SA model (Schulze et al., 2004) the same input information was used to 
determine the CN, whereas for the ACRU model, the QFRESP and SMDDEP parameter values were 
used, which were derived from the SCS-SA CNs based on the rules developed by Rowe et al. (2018a). 
In terms of both models, the S&S lag time equation and the incremental UH approach (Schulze, 1995) 
were used with the synthetic rainfall distribution identified for each catchment, as defined by Weddepohl 
(1988). The difference again was that the peak discharges were simulated on a daily basis in the ACRU 
model, and an extreme value analysis was performed to determine the design values. For the SCS-SA 
model, with the exception of the joint association method, the design stormflow volumes simulated were 
used to simulate design peak discharges. In the case of the JAM, however, simulated stormflow volumes 
at specific non-exceedance percentiles were used to simulate corresponding peak discharges. The 
average MRE and MARE, averaged across all verification catchments for each model simulation, i.e. the 
final ACRU CSM system, the SCS-SA model using CN-II, the SCS-SA model applying the MCM, and the 
SCS-SA model applying the JAM, was then used to assess the overall performance of both models.   
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3.6.3 Results and discussion 

It is important to emphasise that the ACRU model simulates total streamflow, which includes both 
stormflow (surface runoff) and interflow/baseflow. The SCS-SA model, on the other hand, only 
simulates stormflow (surface runoff). Both models, however, use simulated stormflow to simulate the 
contribution of stormflow to peak discharge. In the ACRU model, the baseflow/interflow volume is 
uniformly distributed throughout the day and converted to a constant flow rate, which is added to the 
simulated stormflow peak discharge. However, this contribution to the peak discharge is negligible, 
particularly for design events. It should be noted, however, that the ability of the ACRU model to 
explicitly account for antecedent soil moisture also contributes to the differences observed between the 
design streamflow volumes simulated by the ACRU model and those simulated by the SCS-SA model. 
The overall performance of the ACRU CSM system and the SCS-SA model for all verification 
catchments, excluding the Lambrechtsbos B (G2H010) Catchment, is summarised in Figure 3.11. For 
consistency, the results from the Lambrechtsbos B (G2H010) Catchment were excluded due to 
challenges associated with modelling this catchment and associated poorly simulated results. 

  
Figure 3.11:  Average MARE and MRE values obtained for simulated versus observed design 

streamflow/stormflow volumes (DnV) and design peak discharges (DnQp), averaged 
across all verification catchments, excluding Lambrechtsbos B (G2H010), for both the 
ACRU and SCS-SA models 

When comparing the average MARE and MRE values in terms of design streamflow (ACRU) and design 
stormflow (SCS-SA) volumes, it is evident that the ACRU CSM system produced the lowest MARE 
(0.25) with a positive MRE (0.14), indicating a general tendency to over-estimate observed design 
streamflow volumes. The MARE for the SCS-SA model when using CN-II is only slightly larger (0.29) 
than for the ACRU CSM system. However, the MRE is significantly lower (-0.09), indicating a greater 
tendency to under-estimate the observed design streamflow.  

When using the SCS-SA model applying the MCM, both the MARE and MRE are only slightly lower, 
0.26 and -0.13, respectively, compared to those obtained for the SCS-SA model using CN-II. Therefore, 
in general, the SCS-SA model does not seem to be very sensitive to changes in antecedent soil 
moisture for the catchments assessed. 

The SCS-SA model applying the JAM produced the highest MARE (0.51), with a positive MRE of 0.14. This 
indicates that, in general, there is an over-estimation of the observed design streamflow. However, in many 
cases, there is also significant under-estimation, i.e. as indicated by the relatively lower MRE compared to 
MARE. Overall, however, the JAM did not perform well. As alluded to above, this can be attributed to the 
use of historically assigned rainfall stations with limited record lengths, and the use of frequency analyses 
and not extreme value analyses in the development of the approach and results generated. 

In terms of the design peak discharges, the ACRU CSM system and the SCS-SA model using CN-II and 
applying the MCM provided similar results (Figure 3.11). This again indicates that, in terms of design 
stormflow volumes, both the ACRU CSM system and the SCS-SA model are producing similar values. 
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Therefore, similar design peak discharges are obtained. There are, however, more significant differences 
between the design streamflow and design stormflow volumes from each model, since the ACRU model 
includes the contribution of the interflow/baseflow to the total streamflow. Both the ACRU CSM system 
and the SCS-SA model using CN-II and applying the MCM generally over-estimate design peak 
discharges, with the ACRU CSM system producing the lowest MARE (1.47) and MRE (1.46), and the 
SCS-SA model using CN-II producing the highest MARE (1.66) and MRE (1.63) values, i.e. when 
comparing the results from these three scenarios, excluding those from the SCS-SA model applying the 
JAM. The slightly better results obtained for the ACRU CSM system compared to the SCS-SA using CN-
II and applying the MCM can be attributed to the explicit accounting of antecedent soil moisture and an 
extreme value analysis being performed on the AMS extracted from continuous simulations of daily peak 
discharges. The general over-estimation of the observed design peak discharges can be attributed to one 
or a combination of the following: inaccurate simulations of stormflow volumes for certain design values; 
poor approximation of the actual daily rainfall distribution for design events by the synthetic rainfall 
distribution selected; and inaccurate estimation of the catchment lag time, i.e. as explained in the analysis 
of the results from catchment V1H005 and V7H003 above. Once again, the SCS-SA model applying the 
JAM produced the highest MARE (2.55) and MRE (2.41) in terms of design peak discharges. 

3.6.4 Conclusions and recommendations  

In summary, the results indicated that the ACRU CSM system performed best in terms of simulating design 
peak discharges, particularly design streamflow volumes. It was highlighted that the ACRU model simulates 
total streamflow, i.e. stormflow and interflow/baseflow, while the SCS-SA model only simulates stormflow. 
The contribution of interflow/baseflow to total streamflow for certain catchments was identified as being 
significant. Therefore, the results indicate the benefit of using the ACRU CSM system over the SCS-SA 
model. The results of the SCS-SA model using CN-II and applying the MCM were reasonable and highly 
comparable. However, the SCS-SA model using CN-II and applying the MCM design streamflow volumes 
were under-estimated, in general, across all catchments (MRE = -0.09 and -0.13, respectively), compared 
to the ACRU CSM system, i.e. where a general over-estimation of design streamflow volumes was 
observed (MRE = 0.14). In terms of the design peak discharges, with the exception of the SCS-SA model 
applying the JAM, similar estimates were obtained, on average, for all catchments, with the ACRU CSM 
system producing results slightly better than the SCS-SA when using CN-II and applying the MCM. This 
can be attributed to the explicit accounting of antecedent soil moisture and performing extreme value 
analyses on continuous flow sequences. However, the similarity in the design peak discharge results 
indicates that the design stormflow volumes simulated by the ACRU CSM system and the SCS-SA model 
using CN-II and applying the MCM are similar, which was expected since the ACRU CSM system was 
calibrated against the SCS-SA model’s CN-II values. 

The SCS-SA model applying the JAM performed particularly poorly in terms of simulating both design 
stormflow volumes and design peak discharges. It was noted, however, that the results from the JAM 
are not directly comparable to the results from the ACRU simulations and the other two SCS-SA 
simulations since the method does not use the same rainfall data, and the results are based on a 
frequency analysis performed on simulated flows and not an extreme value analysis. Conversely, the 
CN-II and MCM SCS-SA simulations, and those from the ACRU model are based on results obtained 
from the same rainfall data and from design values obtained from extreme value analyses. The results 
of the SCS-SA model applying the JAM are particularly poor for the 20-year return period, since only 
approximately 20 years of rainfall data was available when developing and applying the approach. In 
addition, for this reason, the method only provides results up to the 20-year return period. Therefore, 
from the results presented in this section, the SCS-SA model using CN-II and applying the MCM should 
be used in preference to the model applying the JAM. However, it is recommended that the ACRU CSM 
system be used to obtain the most accurate results. 
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CHAPTER 4: ASSESSING THE PERFORMANCE OF 
TECHNIQUES FOR DISAGGREGATING DAILY 

RAINFALL FOR DESIGN FLOOD ESTIMATION IN 
SOUTH AFRICA 
R Ramlall and JC Smithers 

 
Abstract 

Design flood estimation methods are used to limit the risk of failure and ensure the safe design of 
hydrological and related infrastructure and for water resources management. In order to improve DFE 
methods, which are based on event-based or continuous simulation rainfall-runoff models, it is generally 
necessary to use sub-daily rainfall data. However, sub-daily rainfall gauges are relatively sparse and 
have shorter record lengths than daily rainfall gauges in South Africa. Rainfall temporal disaggregation 
techniques can be used to produce finer-resolution data from coarser-resolution daily rainfall data. 
Several RTD approaches have been developed and are used in South Africa. However, there is a need 
to review and assess the performance of the available RTD methods. This chapter contains an overview 
of selected RTD approaches on different sets of rainfall data in South Africa and the performance of the 
methods. Temporal distributions of rainfall were represented by dimensionless Huff curves, which 
served as the basis for comparison of observed and disaggregated rainfall. In the case study, it was 
found that the SCS-SA distributions and the Knoesen model approaches performed considerably better 
than the other approaches in the pilot study. The RTD approaches were further assessed using data 
from 14 additional rainfall stations. For the additional stations, the Knoesen model and SCS-SA 
disaggregated rainfall generally provided the most realistic temporal distributions.  

4.1 INTRODUCTION 

The occurrence of floods has numerous negative impacts on society. These include economic losses 
due to infrastructure damage, loss of productive time, injuries and loss of human life (Ward et al., 2016). 
Therefore, the management of flood risk is important to maintaining the overall wellbeing of society 
(Parkes and Demeritt, 2016). Design flood estimation comprises the assessment of flood risk by 
determining the exceedance probability, commonly referred to as return period, of extreme events that 
are potential hazards (Rowe et al., 2018b). This technique is necessary for the planning and design of 
hydraulic and related infrastructure and to ensure that the management of water resources is carried 
out taking safety into consideration (Rowe and Smithers, 2018).  

Rainfall is a highly variable driver of the hydrological cycle, and is a key input in many DFE techniques 
(Smithers et al., 2002). Rainfall data is utilised to determine hyetographs and subsequently hydrographs 
from which peak discharges are obtained, both of which are required for the design of hydraulic 
structures (Arnaud et al., 2007; Hassini and Guo, 2017; Rowe and Smithers, 2018). The temporal 
distribution of rainfall intensity within storms influences both the magnitude and timing of peak 
discharges within a catchment and, as a result, the flood-generation potential of the event (Knoesen 
and Smithers, 2008).  

Design flood estimation can be determined from gauged runoff data where this is available, but is 
generally performed utilising daily rainfall data due to the scarcity of observed runoff data and the 
relative abundance and longer record lengths of daily rainfall as opposed to sub-daily rainfall data (Pui 
et al., 2012). However, such data may not adequately represent the important characteristics of rainfall 
processes occurring at hourly and sub-hourly scales (Smithers and Schulze, 2000; Pui et al., 2012). 
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Therefore, in order to obtain adequate data at finer temporal resolutions, RTD techniques are often 
employed (Pui et al., 2012). RTD methods disaggregate coarser-resolution data, such as daily data, to 
produce data of a finer resolution, such as hourly data (Koutsoyiannis et al., 2003). The finer-resolution 
data can more accurately represent the rainfall hyetographs required for modelling runoff and DFE 
(Koutsoyiannis et al., 2003). RTD techniques have been successfully applied under South African 
conditions to obtain finer-resolution rainfall data (Adamson, 1981; Lambourne and Stephenson, 1987; 
Weddepohl, 1988; Knoesen, 2005; Knoesen and Smithers, 2008). However, the performance of these 
RTD methods needs to be assessed to determine the need for updating RTD methods as a number of 
newer approaches have been developed and successfully applied internationally (Smithers et al., 2002). 
Hence, there is a need to assess the feasibility of new methods for application in South Africa and 
subsequently update the toolbox of RTD techniques.  

The overall aim of this study was to assess the performance of selected RTD methods and to 
recommend the adoption or adaptation of one or more of these approaches for application under South 
African conditions. The study was part of the research conducted for a Master of Science degree at the 
University of KwaZulu-Natal. This chapter provides a brief review of disaggregating coarser-level rainfall 
data into a finer-resolution hyetograph, assessing the performance of selected RTD methods. It also 
makes recommendations for RTD methods to be used in practice and for further research to be 
undertaken. Full details of the study reported are contained in Ramlall (2020).  

4.2 A REVIEW OF METHODS FOR RAINFALL TEMPORAL DISAGGREGATION  

The RTD approaches identified through a review of the literature are broadly classified as either rainfall 
distribution curves or disaggregation models, as shown in Figure 4.1 (Knoesen, 2005). When applied, 
a disaggregation approach should ideally result in a finer timestep hyetograph, which can give a realistic 
representation of sub-daily rainfall (Smithers and Schulze, 2000). The applied approach should 
disaggregate the daily values to sub-daily timesteps, while maintaining the characteristics of the rainfall 
process and the sum of the sub-daily values to the daily total.  

 
Figure 4.1:  Categorisation of rainfall temporal disaggregation approaches (after Knoesen, 2005) 

Rainfall distributions are used in design and modelling applications to determine the distribution of 
rainfall depths or intensities throughout the duration of a storm. These synthetic distributions may be 
used to derive hyetographs and determine the location of peak discharges within the storm duration 
(Chow et al., 1988; Weddepohl, 1988).  
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The RTD approaches could be adapted for use with observed daily data with short record lengths. 
Furthermore, approaches such as Huff curves (Huff, 1967; Huff and Angel, 1992; Bonta, 2004) and the 
average variability method (AVM) (Green et al., 2005; Bhuiyan et al., 2010) have shown potential for 
regionalisation. Therefore, disaggregation curves could be developed and possibly regionalised based 
on general storm patterns for use in disaggregating daily rainfall into sub-daily hyetographs as 
developed by Weddepohl (1988) and Knoesen (2005) in South Africa.  

Stochastic modelling approaches generally simulate sub-daily values using statistical parameters 
derived from observed daily data. An element of randomness is included in sampling procedures 
(Rodriguez-Iturbe et al., 1987; Smithers, 1998; Koutsoyiannis and Onof, 2001). Rainfall processes are, 
by nature, complex, and it is unlikely that a model will be able to describe event characteristics 
completely and accurately. Hence, the use of stochastic models that may produce results similar to 
observed data is justifiable (Kossieris et al., 2018). Furthermore, such approaches are highly applicable 
to continuous simulation modelling, where the aim is to simulate potential outcomes for rainfall event 
processes (Smithers et al., 2002).  

Deterministic model RTD approaches are less commonly applied than stochastic models or distribution 
approaches, due to their parameters being more physically related to rainfall processes, which in some 
cases are difficult and time-consuming to derive (Ormsbee, 1989; Hingray and Ben Haha, 2005). 
Therefore, the variety of models identified was comparatively limited. Given that the rainfall process is 
highly complex, dynamic and difficult to accurately represent with limited data, an approach that 
considers deterministic chaos may more accurately represent physical rainfall characteristics than a 
purely stochastic or deterministic method (Sivakumar et al., 2001).  

Approaches that have been successfully applied in South Africa include the SCS-SA distributions 
(Schulze, 1984; Smithers et al., 2002), triangular distributions (Lambourne and Stephenson, 1987), Huff 
curves (Smithers, 1998), stochastic Bartlett-Lewis rectangular pulse (BLRP) models (Smithers, 1998; 
Smithers et al., 2002) and an adapted semi-stochastic regionalised disaggregation model (Knoesen, 
2005). These approaches are categories of rainfall distributions and stochastic models. A summary of the 
various approaches that were reviewed and their performance in case studies can be seen in Table 4.1. 

Table 4.1: Summary of approaches reviewed and key findings 

Category Approach Reference Location Key findings 

Hyetographs 
derived from 
storm event 
analysis 

Huff curves Huff and 
Angel (1992) 

Nine states in 
the USA  

• Curves developed from a dense rain 
gauge network were applicable over 
nine states because of similar climate 
and rainfall.  

Bonta (2004) USA  • Curves can be developed using point 
data. 

• Potential for regionalisation; a single 
set can be applied over a large area. 

Triangular 
distribution  

Lambourne 
and 
Stephenson 
(1987) 

Vanderbiljpark, 
South Africa  

• Triangular hyetograph was adequate 
for design applications.  

• More accurately represents natural 
storms than Chicago and uniform 
distributions.  
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Category Approach Reference Location Key findings 

Average 
variability 
method 

Green et al. 
(2005) 

Australia  • An unsmoothed, single-design pattern 
AVM temporal distribution for design 
flood applications should be based on 
the 10 highest events for a duration  

• The approach is still applicable for 
estimating probable maximum floods 
despite higher-intensity distributions 
being available.  

Bhuiyan et al. 
(2010) 

Australia  • AVM for determining design rainfall 
temporal patterns successfully 
showed climate change-related 
changes in regional rainfall temporal 
patterns since original derivation. 

Monobe model  Na and Yoo 
(2018) 

Seoul, Korea  • Model over-estimates rainfall peaks in 
comparison to the alternating block 
method (ABM), Huff curves and the 
Instantaneous Intensity Method (IIM). 

• May be useful in design calculations 
where over-design is intended for 
safety, but requires testing under 
different climatic conditions. 

Hyetographs 
derived from 
intensity-
duration-
frequency 
relationships 

Alternating 
block method  

Na and Yoo 
(2018) 

Seoul, Korea • This approach was best suited for the 
estimation of annual maximum rainfall 
events that closely matched observed 
rainfall data. 

Instantaneous 
Intensity 
Method 

Marsalek and 
Watt (1984) 

Canada  • Unrealistic temporal distribution due to 
the assumption that the design storm 
contains all the maximum intensities 
for the various durations.  

• The design hyetograph should 
consider antecedent conditions during 
computation. 

• Inadequate for application for the 
development of design storms for 
Canadian rainfall data.  

Na and Yoo 
(2018) 

Seoul, Korea  • In comparison to the ABM, Huff curves 
and the Monobe model, the approach 
was the most accurate in producing 
peak values close to observed data.  

Stochastic 
models  
 

Bartlett-Lewis 
rectangular 
pulse model  

Koutsoyiannis 
and Onof 
(2001) 

London, UK 
Arizona, USA 

• The model could generate hourly-level 
data capable of aggregating to 
observed daily totals. 

• The approach was applicable in cases 
where limited hourly data was 
available for fitting. 

• Performed well in maintaining 
statistical properties of the rainfall 
process, including proportions of dry 
and wet periods, coefficients of 
variation and skewness of rainfall 
intensities.  
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Category Approach Reference Location Key findings 

Bartlett-Lewis 
rectangular 
pulse gamma 
and modified 
Bartlett-Lewis 
rectangular 
pulse gamma 
models  

Smithers et al. 
(2002) 

South Africa • Historical data statistics were well 
replicated by both models. 

• Design rainfall events estimated by 
the Bartlett-Lewis rectangular pulse 
gamma (BLRPG) model were more 
accurate.  

• Derivation of BLRPG parameters 
using only available daily data allows 
for the estimation of short-duration 
data values down to one-hour time 
frames.  

Neyman-Scott 
rectangular 
pulse 
model  

Frost et al. 
(2004) 

Multiple 
Australian 
cities  

• Model adequately reproduced rainfall 
characteristics of observed pluviograph 
data records. 

• Less capable of reproducing wet 
spells and dry spells, possibly due to 
the range of statistics for which it is 
calibrated. 

Random 
multiplicative 
cascade  
model  

Güntner et al. 
(2001) 

Brazil, 
UK  • Highly accurate in reproducing rainfall 

characteristics at an hourly timestep, 
with performance being generally 
better for semi-arid tropical rainfall.  

• Extreme values were accurately 
estimated in Brazil, while over-
estimated in the UK’s temperate 
climate. 

Random 
multiplicative 
cascade, 
microcanonical 
and canonical 
models 
 
 
 

Pui et al. 
(2012) 

Australia  • For daily to hourly disaggregation, the 
canonical approach under-estimated 
extreme rainfall values, while the 
microcanonical approach generally 
over-estimated them. 

• Models performed reasonably well in 
simulating statistical rainfall properties 
such as the mean values and dry 
periods, but not as well as the Method 
of Fragments (MOF). 

Method of 
Fragments  
 
 

Pui et al. 
(2012) 

Sydney, Perth, 
Caims and 
Hobart in 
Australia  

• For daily to hourly disaggregation, 
MOF performed better than other 
models, such as the RMC and 
randomised Bartlett-Lewis model 
(RBLM) in preserving important rainfall 
event statistical characteristics, as well 
as estimating extreme values. 

Li et al. 
(2018) 

Singapore, 
China  • MOF approaches were capable of 

reproducing characteristics of site-
specific historical rainfall data.  

• Regionalised and multi-site 
approaches were found to better 
represent annual extremes and 
antecedent precipitation values, 
making them more viable for capturing 
the variability in historical rainfall data. 
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Category Approach Reference Location Key findings 

Deterministic 
models 

Constant 
model 

Hingray and 
Ben Haha 
(2005) 

Lausanne, 
Switzerland • Under-estimates rainfall variability and 

extremes. 
• Over-estimates autocorrelations and 

occurrence probability. 
Ormsbee 
discrete 
disaggregation 
model 

Hingray and 
Ben Haha 
(2005) 

Lausanne, 
Switzerland • Under-estimates rainfall variability and 

extremes. 
• Over-estimated autocorrelations at  

10-minute timesteps. 
• Model may be unsuitable when these 

need to be maintained at high-
resolution timesteps.  

Ormsbee 
continuous 
disaggregation 
model 

Ormsbee 
(1989) 

West Virginia 
and Kentucky, 
USA  

• Model adequately predicts the first 
three rainfall moments. 

• Performance is improved with 15-
minute data. 

• Employing synthetic distributions 
instead of average distributions 
produced more accurately predicted 
peak-flow frequencies. 

Chaotic 
approach 

Sivakumar et 
al. (2001) 

Mississippi, 
USA • The model was found to yield 

reasonable disaggregation results. 
• The chaotic framework seemed to be 

more suitable for modelling temporal-
scale transformation dynamics than a 
stochastic framework. 

 

4.3 METHODOLOGY 

Rainfall data was obtained through the research catchments database housed at the Centre for Water 
Resources Research (CWRR) at the University of KwaZulu-Natal, which includes data extracted from 
breakpoint digitised autographic rainfall charts from historical research sites and historical data 
previously supplied by the SAWS (Smithers and Schulze, 2001). One station was randomly selected 
from each of the 15 relatively homogenous extreme rainfall clusters identified by Smithers (1998) and 
Smithers and Schulze (2000). The data for each station was inspected to determine if the record was 
of sufficient length and relatively continuous without extensive periods of missing values. When a 
selected station was found to be unsuitable, another station was randomly selected for the cluster. This 
was repeated until 15 stations had been obtained, as shown in Figure 4.2. 
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Figure 4.2: Locations of rainfall stations utilised in this study 

A pilot study was initially undertaken to develop procedures to apply the methods and develop 
performance indices to assess and compare the performance of the methods. In the pilot study, rainfall 
data from Station C161 (Cedara) in the UKZN research catchments database was utilised to develop 
the methodology for the application of the approaches and assessment of the results. Thereafter, the 
RTD approaches were applied to daily rainfall data from the additional 14 stations using the same 
methodology utilised in the pilot study. Details of the rainfall stations are summarised in Table 4.2. 

Table 4.2: Characteristics of rainfall stations used in this assessment 

Station 
number 

SCS-SA 
rainfall 
region 

Short-duration 
homogenous 

cluster  
(Smithers, 1998) 

Longitude Latitude Available record  
(years) 

0513314 3 1 28° 10' 59.9" -25° 43' 59.9" 29 

0555866 2 2 30° 58' 59.9" -25° 25' 59.9" 20 

C161 3 3 30° 13' 37.9" -29° 35' 12.8" 15 

0193561 3 4 21° 49' 00.1" -30° 21' 0." 35 

0677802 2 5 29° 27' 00.0" -23° 52' 00.1" 39 

Jnk19a 2 6 18° 56' 56.0" -33° 58' 2" 52 

0411324 2 7 32° 10' 59.9" -27° 24' 00.0" 16 

0240808 2 8 30° 57' 00.0" -29° 58' 00.1" 36 

0010425 2 9 21° 15' 00.0" -34° 4' 59.9" 12 

0050887 2 10 23° 30' 00.0" -33° 16' 59.9" 37 

0442811 3 11 29° 58' 00.1" -26° 31' 00.1" 28 

0113025 3 12 21° 31' 00.1" -31° 55' 00.1" 40 

0079811 2 13 27° 28' 00.1" -32° 31' 00.1" 33 

0432237 3 14 24° 37' 59.9" -26° 57' 00.0" 36 

0088293 3 15 20° 40' 00.1" -32° 22' 59.9" 38 
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4.3.1 Characteristics of rainfall data for all stations  

Days with rainfall were identified from the 15-minute data available for the selected rainfall stations. 
Daily rainfall was computed for periods between 08:00 and 08:00 the next day, as per the standard 
timeframe for daily rainfall used in South Africa. Furthermore, following the methodologies in studies 
such as Huff (1967) and Walker and Tsubo (2003), rainfall days with total depths less than 10 mm were 
excluded from the assessment. Rainfall days were sorted into depth ranges. The distribution of rainfall 
days in each depth range per station can be seen in Figure 4.3.  

 
Figure 4.3: Distribution of rainfall days with daily total depths in each range per station 

It can be seen that the majority of rainfall days have total depths in the 10–20 mm and 20–40 mm 
ranges for all stations. The temporal distributions of rainfall on these rainfall days will therefore have a 
greater influence on the generalised temporal distributions produced for each rainfall station.  

The quartile in which the peak of the rainfall occurs is a representation of the period of the rainfall day in 
which the highest rainfall intensity occurs. The quartiles can be determined by dividing the total duration 
into four quarters, giving the first, second, third and fourth quartiles. Early rainfall days would display a 
peak intensity in the first or second quartiles, while later-peaking rainfall days would display peaks in the 
third or fourth quartiles. The distribution of the percentage of rainfall days that displays peaks in each 
quartile thus influences the shape of the set of dimensionless Huff curves produced. The distribution of 
rainfall days with peak intensities in each quartile for each station can be seen in Figure 4.4.  
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Figure 4.4: Distribution of rainfall days with peak intensities in each quartile per rainfall station 

The majority of rainfall days for the selected stations displays peaks in the second quartile of their 
respective durations. The second-highest concentration is in the third quartile. Hence, the generalised 
temporal distributions of rainfall produced are likely to display a higher proportion of rainfall in the middle 
to later sections of the duration.  

4.3.2 Rainfall data used in the pilot study  

Daily rainfall was computed from the 15-minute rainfall data, and daily totals of < 10 mm were excluded 
from the analysis, as described above. Trends in the relationships between daily rainfall parameters 
can be seen in figures 4.5 and 4.6.  

 
Figure 4.5: Relationship between peak intensity and daily total depth for Station C161’s rainfall days 
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Figure 4.6: Relationship between time to peak and daily total depth for Station C161’s rainfall days 

Key trends in the analysis of daily rainfall showed a low correlation between peak intensity and total 
depth. It should be noted that the highest rainfall intensity in a 15-minute duration for the 24-hour daily 
rainfall period was used as the peak intensity for the day. Hence, this peak is not the same as the actual 
peak for the rainfall event. Rainfall events may occur across multiple rainfall days or occur multiple 
times within a 24-hour daily period.  

4.3.3 Selection of RTD approaches 

RTD approaches were selected from those identified from the literature review on the basis of the ease 
of application with the available data in terms of the number of input parameters required, reported 
performance in case studies, and potential for regionalisation in South Africa. The following RTD models 
and distributions were selected for assessment in this study: 

• Huff curves as a means of comparing observed and disaggregated distributions 
• SCS-SA rainfall distributions 
• HRU 1/72 24-hour distribution 
• Triangular distribution 
• Average variability method  
• Knoesen semi-stochastic disaggregation model 

4.3.4 Assessment of performance of approaches 

The performance of the disaggregation approaches was determined by analysing the Huff curves 
produced using the observed 15-minute data and disaggregated daily data. Huff curves were developed 
according to the methodology outlined in Bonta (2004). Percentiles are generalised probabilistic 
representations of dimensionless rainfall events or daily rainfall durations (for 24-hour periods) plotted 
against the corresponding dimensionless accumulated depths. For example, the 90th percentile curve 
shows that 90% of the accumulated event or daily rainfall has occurred. Therefore, 90% of all other 
rainfall temporal distribution profiles lie below this curve (Bonta, 2004). An example of a set of Huff 
curves can be seen in Figure 4.7. 
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Figure 4.7: Huff curves for rainfall days greater than 10 mm from Station C161 

The mean absolute relative error, a single value that quantifies the performance of disaggregation 
approaches and distributions, was used to measure the difference between a percentile Huff curve 
generated from the disaggregated daily data and the percentile curve derived from the observed  
15-minute data, as shown in Equation 4.1. The total MARE (∑MARE) represents the total value for all 
percentiles and is given by Equation 4.2. 

MAREj(%)   =  
∑ |𝑋𝑋𝑛𝑛 − 𝑆𝑆𝑛𝑛|𝑠𝑠
𝑛𝑛=0.1

𝑄𝑄
× 100 

4.1 

∑MARE (%) = (MARE10th +  MARE20th + ⋯+ MARE90th  )   4.2 

where:  
  j    = percentile (10th, 20th, …, 90th)  
 𝑋𝑋𝑛𝑛  = observed dimensionless depth at dimensionless time = 𝑛𝑛 
 𝑛𝑛    = dimensionless duration fraction (0.1, 0.2, … 1.0)  
 𝑆𝑆𝑛𝑛  = disaggregated dimensionless depth at dimensionless timestep = 𝑛𝑛  
 𝑄𝑄    = number of dimensionless duration fraction values               
 
The Nash-Sutcliffe efficiency value is a normalised statistic that can be used to indicate how well the 
plot of observed versus simulated data fits the 1:1 line (Moriasi et al., 2007). The NSE is utilised in 
addition to the MARE to determine the performance of the disaggregation approaches by comparing 
observed and disaggregated Huff curve increments. The NSE ranges between -∞ and 1.0, with a value 
of 1.0 being the optimal value. Values between 0.0 and 1.0 are considered acceptable levels of 
performance (Moriasi et al., 2007). The NSE is determined using Equation 4.3.  
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∑ �𝑌𝑌𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜− 𝑌𝑌𝑖𝑖
𝑜𝑜𝑖𝑖𝑠𝑠�

2
 𝑛𝑛

𝑖𝑖=1

∑ �𝑌𝑌𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜− 𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛�

2
 𝑛𝑛

𝑖𝑖=1
]                                                                                                  4.3 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
im

en
si

on
le

ss
 d

ep
th

 (f
ra

ct
io

n)

Dimensionless duration (fraction)

10% 20% 30% 40% 50%
60% 70% 80% 90%



Further development, updating and assessment of the SCS-SA Model for design flood estimation  
 

59 

where:  

 𝑌𝑌𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠  = the ith observation for the constituent being evaluated 

𝑌𝑌𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 = the ith simulated value for the constituent being evaluated 

𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 = the mean of observed data for the constituent being evaluated 

n = the total number of observations    

4.3.5 Application of rainfall temporal disaggregation  approaches 

A summary of the differences between the application of RTD approaches to daily rainfall is detailed 
below. It should be noted that some of the disaggregation approaches were modified for application on 
daily rainfall. The modifications were based on the following assumptions:  

• Data that was provided in the digitised database was accurate. It was evident that long periods of 
low rainfall values displayed may be an artefact of the digitisation and interpolation procedure 
between two digitised points used for the derivation of the rainfall depths from the original rainfall 
chart data.  

• It is acknowledged that not all the RTD approaches selected for application are designed for 
application on daily rainfall data as obtained from the rainfall stations used in this study. Therefore, 
the methods were either applied directly or in a modified manner, as detailed in Section 4.3.4. 

• Huff curves provide smoother distributions than actual rainfall temporal distributions. 

4.3.5.1 Huff curves 

Huff curves were developed using the depths of rainfall at each 15-minute interval of the 24-hour (08:00 
to 08:00) duration for each rainfall day. 

4.3.5.2 SCS-SA 

Dimensionless depth fractions provided by each distribution were used to produce a distribution of the 
total daily rainfall depth over a 24-hour duration (SCS-SA distributions). It is acknowledged that the 
correct approach for applying the SCS-SA method is to select a single appropriate distribution for a 
rainfall station based on the SCS-SA rainfall region. However, in this study, all the SCS-SA distributions 
were applied to assess if a distribution from another region provides a better fit to the distribution of the 
observed data at the site. A comparison of the four SCS-SA distributions and Huff curves for Site C161 
is shown in Figure 4.8.  
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Figure 4.8: Comparison of SCS-SA distribution curves and observed daily rainfall Huff curves 

4.3.5.3 Hydrological Response Unit 1/72 

The HRU 1/72 distributions were selected from the range of two-hour to 24-hour distributions provided 
in the HRU 1/72 report for characterising design storms (HRU, 1972). The distributions associated with 
the approach each provide a dimensionless distribution of percentage of total depth per corresponding 
percentage of total duration. In order to obtain the fraction of event total for each 15-minute incremental 
timestep, a 10th order polynomial equation was fitted to the cumulative curves. This followed the 
methodology used by Bonta (2004) in the application of Huff curves. For daily rainfall, the HRU 1/72 
24-hour distribution was used to disaggregate daily total depths. 

4.3.5.4 Triangular distribution 

The methodology described in Lambourne and Stephenson (1987) and Chow et al. (1988) was followed 
for application of the triangular distribution. In the first approach in the pilot study, triangular distributions 
for daily rainfall were determined using the available daily rainfall total depth, 24-hour duration and 
observed time to peak (TP) to calculate the peak intensity for a rainfall day (triangular ObsTP approach). 
In a second approach, the median time to peak derived from the observed rainfall days was determined 
and used to derive distributions (triangular median TP approach). The use of the median value time to 
peak was adopted, given the weak relationship between time to peak and total depth, thus making it 
difficult to estimate the time to peak for each rainfall day 

4.3.5.5 Average variability method  

A modified version of the AVM described in Chapter 2 was utilised in this assessment, which did not 
involve an analysis of intense bursts of rainfall. Literature and case studies reviewed described the 
application of the approach for rainfall events. In this assessment, the approach was modified to be 
more suitable for application with the available daily rainfall data.  
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The 24-hour rainfall days were divided into four sections of six hours in duration and the method 
derivation of the AVM temporal pattern, as given in Bhuiyan et al. (2010), was followed. Rainfall data 
for Station C161 was ranked to identify the highest daily rainfall totals in each year on record. Full details 
on the adopted method are contained in Ramlall (2020). 

4.3.5.6 Modified average variability method (AVM-B) 

The methodology used for the initial derivation of the AVM distribution used in this assessment displays 
a limitation relating to the six-hour sections of daily rainfall depths utilised. The use of four six-hour 
sections of rainfall results may not result in disaggregated daily depths with similar peak values to the 
observed rainfall. Therefore, the second approach (AVM-B), which modified the AVM distribution used 
in this study, was developed using 96 sections of 15 minutes in duration, which is the same resolution 
as the observed daily rainfall. 

4.3.5.7 Knoesen semi-stochastic disaggregation model  

The Knoesen model was developed for application on 24-hourly data (00:00 to 00:00). The software 
developed by Knoesen (2005) was utilised to generate 24-hour distributions of total daily rainfall depths. 
For the pilot study, it was determined that Station C161 falls within Range III of the regionalised distribution 
map of R values associated with the model (Knoesen, 2005). The range category (Range III) and daily 
total depths were used as input into the programme to generate 15-minute rainfall depths distributed 
over 24 hours. The stochastic nature of the model results in a different distribution with each successive 
run. For purposes of this assessment, a single distribution was generated for each respective rainfall 
day. The total depth of each rainfall day was used as input into the model to stochastically generate a 
distribution of depths over 24 hours.  

4.4 RESULTS 

The RTD approaches were applied to disaggregate daily rainfall depths at Site C161 in the pilot study 
and then at the additional 14 rainfall stations. The approaches were assessed for their performance in 
approximating the observed temporal distribution of rainfall, as represented by the Huff curves 
developed, using MARE, ∑MARE and NSE values. 

4.4.1 Pilot study 

The Huff curves for two of the worst-performing methods can be seen in figures 4.9 and 4.10.  
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Figure 4.9: Comparison of observed daily rainfall Huff curves to AVM-B curve for Station C161 

 
Figure 4.10: Comparison of observed daily Huff curves and median time-to-peak triangular distribution 

curve for Station C161 

The ∑MARE values for comparisons of observed daily rainfall Huff curves and Huff curves derived from 
daily rainfall depths disaggregated using each RTD approach can be seen in Figure 4.11.  
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Figure 4.11: Total MARE for RTD approaches applied to daily rainfall data at Station C161   

The triangular ObsTP appears to perform the best out of the RTD approaches. However, it should be 
noted that the approach was developed using observed total rainfall depths and the observed time to 
peak, which likely accounts for the good performance. The triangular median TP distribution, which was 
developed using the median time to peak value for all rainfall days and the total daily depth, does not 
perform as well. Considering these factors, the Knoesen model performs the best out of the approaches 
that are not fixed distributions or use observed parameters. The SCS3 and SCS4 distributions are quite 
similar in performance. However, the SCS4 distribution performs the best, despite the rainfall station 
from which the observed data was obtained falling within an SCS3 region. 

The NSE values between the observed and disaggregated Huff curves were determined and can be 
seen in Table 4.3. This serves as an additional assessment of how similar the distributions displayed 
by the disaggregated rainfall curves are to those of the observed rainfall curves.  

Table 4.3: NSE values for comparison of observed and disaggregated Huff curves 

RTD approach 
NSE for each percentile 

Mean 
10th 20th 30th 40th 50th 60th 70th 80th 90th 

SCS1 0.36 0.73 0.89 0.95 0.97 0.94 0.84 0.73 0.42 0.76 

SCS2 0.26 0.69 0.88 0.96 0.99 0.96 0.85 0.73 0.38 0.74 

SCS3 0.10 0.60 0.84 0.94 0.99 0.97 0.83 0.69 0.29 0.70 

SCS4 -0.05 0.51 0.79 0.91 0.97 0.96 0.80 0.65 0.20 0.64 

AVM 0.46 0.72 0.81 0.85 0.86 0.84 0.79 0.72 0.45 0.72 

AVM-B -1.29 -0.59 -0.20 -0.02 0.16 0.30 0.45 0.55 0.73 0.01 

HRU 1/72 24-hour 0.18 0.61 0.81 0.89 0.93 0.95 0.92 0.85 0.63 0.75 

Triangular ObsTP 0.75 0.88 0.92 0.93 0.93 0.92 0.89 0.86 0.77 0.87 

Triangular median TP 0.36 0.72 0.87 0.91 0.93 0.92 0.86 0.78 0.52 0.76 

Knoesen 0.52 0.46 0.55 0.60 0.63 0.61 0.77 0.97 0.96 0.68 
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It can be seen that relatively high NSE values are displayed for each approach, particularly for the 
higher percentiles. An exception to this is the AVM-B approach, which displays values indicative of 
overall poor performance. The results characterised by the NSE values are slightly different to those of 
the MARE and ∑MARE values previously shown, especially by the mean NSE values. The Knoesen 
model is shown to be the second-least accurate RTD approach, based on approximation of the Huff 
curve temporal distributions, according to the NSE values. This is despite the result shown by the MARE 
values, which indicated that the Knoesen model was the best-performing model. However, the NSE 
values provide a fair indication that there is a discernible difference between the observed Huff curves 
and the Huff curves derived from the disaggregated rainfall produced by each approach.  

4.4.2 Daily rainfall disaggregation at all sites  

The daily rainfall data for 14 additional rainfall stations, with one station selected from each of the 15 
homogenous rainfall clusters, was used for the application of RTD approaches using the same 
methodologies from the pilot study. This was undertaken to further assess the performance of the 
selected approaches for the disaggregation of rainfall data in different climatic locations in South Africa.  

The ∑MARE values were calculated for RTD approaches applied at each station to determine the 
overall performance of each approach. The station-specific ∑MARE values for each approach were 
summed across all the rainfall stations, as shown in Figure 4.12. The value for SCS-SA indicates the 
total when the MARE values are applied for the appropriate SCS-SA distribution for each station, i.e. 
based on the appropriate SCS-SA region for each station.  

 
Figure 4.12: ∑MARE values for RTD approaches summed across all stations 
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The approach that provides the least realistic rainfall temporal distribution in terms of Huff curves 
appears to be the AVM-B approach, followed by the AVM distribution. It can be seen that, for all the 
rainfall stations, the approaches that generally display the lowest ∑MARE values are the Knoesen, 
triangular ObsTP and SCS-SA approaches. It is acknowledged that the good performance of the 
triangular ObsTP can be attributed to the methodology used in its application. The approach was 
applied using available timing peak intensity for each application, which improves the performance in 
approximating the observed daily rainfall temporal distribution. The version of the approach that utilises 
a generalised timing of the peak intensity value and hence removes this bias, the triangular median TP 
distribution, does not perform as well and often displays relatively high ∑MARE values. Given the 
abovementioned factors, it can be said that the RTD approach that results in the best overall 
performance for the disaggregation daily rainfall totals into realistic temporal distributions is the Knoesen 
semi-stochastic disaggregation model, followed by the SCS-SA.  

Table 4.4: Mean NSE values for each approach for each rainfall station 

Rainfall 
station 

Mean NSE for each method 

SCS1 SCS2 SCS3 SCS4 SCS-
SA AVM AVM-B HRU 1/72 

24-hour 
Triangular 

ObsTP 
Triangular 
median TP Knoesen 

C161 0.76 0.74 0.70 0.64 0.70 0.72 0.01 0.75 0.87 0.76 0.68 

0010425 0.52 0.46 0.35 0.24 0.46 0.52 0.35 0.53 0.46 0.56 0.96 

0050887 0.70 0.68 0.62 0.55 0.68 0.62 -0.54 0.68 0.84 0.70 0.77 

0079811 0.72 0.69 0.61 0.53 0.69 0.53 0.31 0.73 0.97 0.74 0.97 

0088293 0.54 0.50 0.41 0.31 0.41 0.48 -0.18 0.55 0.96 0.57 0.96 

0113025 0.58 0.54 0.47 0.39 0.47 0.54 0.38 0.58 0.79 0.59 0.83 

0193561 0.66 0.64 0.58 0.52 0.58 0.48 -0.05 0.67 0.83 0.67 0.64 

0240808 0.53 0.47 0.37 0.26 0.47 0.49 -0.61 0.53 0.81 0.55 0.77 

0411324 0.64 0.61 0.54 0.46 0.61 0.42 -0.43 0.61 0.81 0.66 0.85 

0432237 0.54 0.50 0.42 0.34 0.42 0.20 0.32 0.51 0.78 0.56 0.78 

0442811 0.78 0.77 0.74 0.69 0.74 0.61 -0.06 0.78 0.87 0.78 0.61 

0513314 0.74 0.73 0.69 0.63 0.69 0.66 0.26 0.72 0.85 0.74 0.77 

0555866 0.51 0.46 0.35 0.25 0.46 0.53 -0.35 0.50 0.80 0.55 0.76 

0677802 0.51 0.46 0.37 0.28 0.46 0.46 -0.05 0.48 0.79 0.53 0.86 

Jnk19a 0.39 0.30 0.14 -0.02 0.30 -0.01 0.22 0.34 0.83 0.49 0.91 
 

The mean NSE values shown in Table 4.4 are reflective of the results that have previously been shown 
by the ∑MARE values. Overall, the Knoesen model is the RTD approach that provides the temporal 
distributions that are most similar to those of the observed daily rainfall data. The four SCS-SA 
distributions also perform relatively well for stations in their respective recommended regions. However, 
some exceptions noted previously are seen in cases where an SCS-SA distribution not recommended 
for the region may outperform the recommended distribution. It should also be noted that relatively fair 
performance is shown by the triangular median TP approach, which outperforms other approaches in 
some instances and for certain percentiles.   

4.5 DISCUSSION AND CONCLUSIONS 

DFE generally utilises daily rainfall data that is abundantly available in South Africa. Many event-based 
and continuous simulation models require rainfall data to be available in finer timestep resolutions. 
Hence, there is a need for sub-daily timestep rainfall data. Sub-daily rainfall stations are relatively 
sparse and have shorter record lengths compared to daily rainfall stations, both in South Africa and 
internationally.  
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Therefore, a means of disaggregating daily rainfall data into sub-daily rainfall hyetographs is required. 
RTD approaches may be utilised to disaggregate daily rainfall data into shorter temporal resolutions 
from higher temporal resolution data. Several RTD approaches have been applied in South Africa, 
including the SCS-SA distributions, Huff curves, the Knoesen semi-stochastic disaggregation model 
and triangular distribution. However, application of RTD approaches locally is relatively limited 
compared to those developed and applied internationally. The overall aim of this study was to assess 
the performance of selected RTD methods and to recommend the adoption or adaptation of one or 
more of these approaches for application under South African conditions.  

A pilot study was used to develop procedures to apply the methods and develop performance indices. 
Huff curves were utilised for comparison of the observed and disaggregated rainfall depths. 
Furthermore, the MARE, ∑MARE and NSE values served as an index for quantifying the difference 
between curves derived from observed and disaggregated rainfall.  

The Huff curves developed from daily rainfall disaggregated using the Knoesen model, SCS3, SCS4 
and triangular distribution performed well in approximating the observed Huff curves for the pilot study. 
The good performance of the triangular ObsTP distribution was attributed to the inclusion of observed 
parameters in its application. However, the triangular median TP did not perform as well. The triangular 
median TP was developed using a generalised timing of the peak and observed durations in order to 
remove part of the performance bias of the triangular ObsTP. Overall, the best-performing approach for 
disaggregating daily rainfall was SCS4, despite the station falling within a SCS3 region 

The results of the assessment of the RTD approaches according to ∑MARE and NSE values, as shown 
in Section 4.4.2, were different to those seen in the pilot study. The best-performing RTD approaches 
were found to be the SCS-SA distributions and the Knoesen model when the triangular ObsTP is 
appropriately excluded. However, the triangular median TP displayed fair performance and shows 
potential for further investigation into general use. Overall, the Knoesen model provided the lowest 
∑MARE values and most appropriate NSE values across all stations. It can therefore be considered 
the most suitable approach for disaggregating daily rainfall into realistic temporal distributions. An 
additional finding was that, in certain cases, the recommended SCS-SA distribution for a station was 
outperformed by one that was recommended for a different region. This may be explained by some of 
the stations being located at the edge of one region and in close proximity to another region.  

The AVM and AVM-B approaches, which were adapted from the original application of the AVM in 
literature, performed exceptionally poorly and are therefore not recommended for use in disaggregation 
in the forms utilised in this assessment. However, it is noted that the AVM is no longer recommended 
as a temporal distribution in Australia due to limitations relating to the averaging of the distribution and 
use of high rainfall periods in its construction.  

The triangular distribution approaches, including the triangular ObsTP and triangular median TP, have 
shown considerable potential for providing a similar temporal distribution to observed daily rainfall in terms 
of the shape of the distribution when the observed value for the timing of the peak is utilised. Therefore, it 
is recommended that the approach be further developed using generalised values for the timing of the 
peak. This will require relationships between depths and time to peak to be derived at + levels. 
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CHAPTER 5: AN ASSESSMENT OF SIMPLE 
CONTINUOUS SIMULATION MODELLING 

APPROACHES FOR DESIGN FLOOD ESTIMATION IN 
SOUTH AFRICA 

N Mabila, TJ Rowe and JC Smithers 

This chapter provides a summary of the study undertaken by Mabila (2019) to address the fourth 
objective listed in Chapter 1: Select and assess the performance in South Africa of a simpler, parameter-
sparse continuous simulation model applied internationally and compare the performance with the 
ACRU continuous simulation model that was developed. 

5.1 INTRODUCTION 

The use of continuous simulation modelling for design flood estimation (DFE) has received increasing 
attention in local and international literature as an approach that has potential for DFE and which 
explicitly simulates the antecedent moisture conditions and joint association of rainfall and runoff 
(Schulze, 1989; Calver and Lamb, 1995; Calver et al., 1999; Cameron et al., 1999; Reed, 1999; 
Boughton and Droop, 2003; Smithers and Schulze, 2003; Chetty, 2010; Smithers, 2012; Rowe, 2015). 
Thus, many limitations of the conventional event-based methods are overcome with the application of 
CSM. Unlike event-based methods, in the CSM method, a complete hydrograph is obtained and AMC 
are directly accounted for (Boughton and Droop, 2003; Chetty and Smithers, 2005; Smithers, 2012). In 
addition, stochastically generated rainfall can be used to generate long sequences of streamflow 
hydrographs, which further motivate the use of CSM methods over event-based methods. 

Schulze (1989), Smithers and Schulze (2003) and Smithers (2012) advocated for the CSM approach in 
South Africa, highlighting the advantages it has over event-based methods. The CSM approach to DFE 
has been applied with acceptable success in selected catchments in South Africa (Schulze, 1989; 
Smithers and Schulze, 2003; Chetty and Smithers, 2005; 2011; Chetty, 2010; Smithers, 2012; Smithers 
et al., 2013; Rowe, 2015). All these studies used the physically based conceptual ACRU model, which is 
a comprehensive parameter and data-intensive model. Although the results found using the ACRU model 
were reasonable and consistent, input data requirements, the time and expertise required to set up the 
model remain a challenge to many of the model’s users. The use of simple models over comprehensive 
ones has been suggested as a promising approach to represent the processes governing runoff 
generation within a catchment (Nash and Sutcliffe, 1970; Jakeman et al., 1990; Beven, 1993; Jakeman 
and Hornberger, 1993; 1994; Dye and Croke, 2003). Therefore, there is a need to evaluate the use of 
simple CS models for DFE, which have fewer parameters and which are less data demanding. In addition, 
only a limited number of studies have compared comprehensive and simple CS models (Dye and Croke, 
2003). Therefore, the aim of this component of the study is to assess the performance of a selected simple 
CS model and compare the performance to that of the comprehensive ACRU model. 

5.2 BACKGROUND AND METHODOLOGY 

A detailed review of the literature focused on simple parameter-sparse CS models is contained in Mabila 
(2019). From this, the GR4H (hourly timestep simulation) and GR4J (daily timestep simulation) models 
(Le Moine, 2008), which have four parameters, were selected as the simple CS models to be applied 
and assessed. This section contains the details of the steps undertaken to calibrate and verify the 
models and how the model’s performance was evaluated. 
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The ability of the models to reproduce flood peaks, volumes and other hydrograph characteristics was 
tested under different calibration scenarios. Three consistent calibration scenarios were used for both 
the daily and hourly models. However, an additional calibration scenario (Scenario 4) was used with 
the hourly model. The calibration scenarios include the following: 

• Calibration Scenario 1: The models were calibrated to the full available period and verified to the 
same period, referred to as “Calib. All data”. 

• Calibration Scenario 2: The models were calibrated to a shorter subset of the data (preferably a 
wet period) and verified using the rest of the period, referred to as “Calib. Wet period”.  

• Calibration Scenario 3: To improve the simulation of peak discharges, the models were calibrated 
to flows above the 90th percentile threshold of observed flows, referred to as “Calib. Q90”. 

• Calibration Scenario 4: For the hourly model (GR4H), actual streamflow hydrographs at an hourly 
timestep were used for calibration with the observed hourly rainfall data. Consequently, to improve 
the simulation of the largest peaks, calibration to a single high peaked event with high-quality 
rainfall and runoff data was used for calibration in Scenario 4, referred to as “Calib. Single event”. 

Across all the calibration scenarios, the calibration Michel option was used and parameters were 
optimised automatically using the shuffle complex evolution of the American Society of Civil Engineers 
(ASCE)’s global optimisation algorithm (Muttil and Jayawardena, 2008; Bennett et al., 2014; Ling et al., 
2015; Pokhrel et al., 2015). This algorithm uses an iterative process to provide the best set of parameters 
for a given catchment (Perrin et al., 2003). To reduce the challenges of initialisations, the first year of the 
available record was used as a warm-up period. Finally, the GEV distribution was fitted to the AMS of 
the observed and simulated flows using L-moments to assess the performance of the models to 
simulate design values, both in terms of flood volumes and peak discharges. Similar analyses were 
performed on the simulated results from the ACRU CSM system. However, the ACRU model is not 
calibrated, but rather parameterised based on physical catchment characteristics. 

The airGR package (Coron et al., 2018) uses different statistical objective functions to evaluate the 
performance of the GR4J and GR4H models in terms of simulating observed flows for calibration and 
verification purposes. In addition to statistical evaluation procedures, flow data can be visually inspected 
using graphical plots such as flow duration curves, hydrographs and scatter plots to understand the 
differences in flow over time and the data distribution (ASCE, 1993; Legates and McCabe Jr, 1999; 
Moriasi et al., 2007; Vaze et al., 2012). For this study, the NSE objective function was applied to assess 
the general performance of the models. The MRE was used to assess the difference between the 
observed design flood values and the simulated design flood values. 

5.3 RESULTS 

The performance of the airGR models to reproduce the observed hydrograph and the observed flood 
frequency curve at both daily and hourly timesteps for two test catchments, the Cathedral Peak IV 
catchment (V1H005) and the Beestekraalspruit catchment (X2H026), located as depicted in Figure 3.1, 
are presented in this chapter. For clarity, detailed results are provided for the Cathedral Peak IV 
catchment. Thereafter, for brevity, the remainder of the results are summarised using the NSE for 
observed and simulated flows at the daily and hourly timestep, and the MRE for the design values, i.e. 
observed and simulated flood frequency curves. The results obtained from the ACRU model are 
included in this summary for comparison. 

In addition to the limited spatial density of recording rainfall stations in South Africa, i.e. compared to 
daily rainfall stations, the record lengths are generally much shorter than those available for the daily 
stations. Moreover, autographic recording rainfall stations are more prone to errors and missing rainfall 
data.  
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One of the objectives outlined in the methodology is to compare the performance of the daily and hourly 
models. The performance of the hourly model was expected to better approximate the actual daily peak 
discharges, since the daily model only simulates the total runoff volume for the day. Hence, only the 
average daily flow can be calculated. For DFE, it is essential to estimate both design runoff volumes 
and peak discharges. Therefore, it was hypothesised that the hourly model would provide a better 
estimate of the actual peak discharge. Since the hourly rainfall records were shorter than the daily 
records, the daily records were constrained to the same period as the hourly data for the daily versus 
hourly model comparison. The limited availability of hourly rainfall data further limited the comparison 
to only two catchments. This was mainly due to errors and missing data (both flagged and not flagged) 
in the hourly record, and the inability to identify consistent and continuous periods of rainfall and runoff 
data at the hourly timestep at other sites.   

The ability of the model to simulate the observed design values was evaluated by comparing the design 
observed and simulated average daily discharges (ADD), i.e. calculated from the daily observed and 
simulated runoff volumes for all the scenarios simulated, and the design observed and simulated hourly 
peak discharges (HPD) for all the scenarios simulated. Design values for the observed actual daily peak 
discharges (ADPD) are included to highlight that, at the daily timestep and particularly for small 
catchments where the hydrograph often rises and falls within a few hours, the ADD is a poor estimate 
of the ADPD. The MRE between the observed and simulated design values for the daily and hourly 
timesteps are included for comparison, i.e. after investigating the hourly and daily results individually. 

5.3.1 Performance of the GR4J daily model at the Cathedral Peak catchment              

The simulated and observed flow hydrographs obtained from the GR4J daily model at the Cathedral 
Peak IV catchment are shown in Figure 5.1. The observed volumes are well simulated in terms of timing 
and flow magnitudes. The peak flows are generally simulated well, with a few instances of over-
simulation (Figure 5.1). Calibration to the full available record simulated the timing of the rising and 
receding limb of the hydrograph and some of the peak flows well, but the majority of the peak flows 
were under-simulated. Calibrating to a wet period resulted in a good simulation of the observed 
hydrograph with a slight over-simulation of most of the observed peak flows. When calibrating to flows 
above the 90th percentile, the low flows are slightly over-simulated, the intermediate flows are well 
simulated and the peaks are under-simulated. 

 
Figure 5.1: Typical hydrographs from the Cathedral Peak IV catchment (V1H005) showing the 

observed and simulated hydrographs for all the calibration scenarios using the GR4J daily 
timestep model 

The correlation and frequency distribution curves at the daily timestep at the Cathedral Peak IV 
catchment are shown in figures 5.2 and 5.3, respectively. 
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Figure 5.2: Comparison of the observed and simulated flow volumes at the Cathedral Peak IV 

catchment (V1H005) at a daily timestep 

 
Figure 5.3: Frequency distribution of observed and simulated daily streamflow volumes at the 

Cathedral Peak IV catchment (V1H005) 

A good representation of the observed flows was obtained with R2 values over 0.9, and regression 
slopes between 0.9 and 1.05 across all calibration scenarios. The frequency distribution curves show 
slight deterioration of the overall flows, i.e. a slight over-simulation of the low to intermediate flows for 
calibration to a wet period and calibration to flows above the 90th percentile. For calibration to a wet 
period, however, the highest flows, i.e. peaks above the 99th percentile, are slightly better simulated 
with some slight over-simulation. 

Figure 5.4 shows the design ADD, i.e. daily runoff volumes, for the simulated and observed data, as 
well as the observed ADPD at the Cathedral Peak IV catchment. The ADD values for the simulated and 
observed volumes at the Cathedral Peak IV catchment were very similar. A very slight over-estimation 
of the design values at the five-year return period was observed. Calibrating to a wet period generally 
resulted in the best simulation of ADD. As expected, given the daily temporal resolution used in the 
simulations, ADPD was significantly under-simulated across all scenarios. 
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Figure 5.4: The GEV design peak discharges for the simulated scenarios and observed at the 

Cathedral Peak IV catchment (V1H005) at a daily timestep 

5.3.2 Performance of the GR4H hourly model at the Cathedral Peak catchment 

At Cathedral Peak IV, as shown in Figure 5.5, the timing of the rise and descent of the observed 
hydrograph is reasonably well simulated in general. However, the magnitudes are poorly simulated. 
This could be due to the poor quality of the observed hourly rainfall data where there is inconsistent 
phasing compared to the observed streamflow data, as well as missing and erroneous rainfall data that 
is not flagged and is not easily identified. Calibration to all data and to the wet period simulated the 
timing of the rising and receding limb of the hydrograph well, but under-simulated the observed peaks. 
Calibration to flows above the 90th percentile simulated the timing of the events well. However, in an 
attempt to simulate the larger events better, the hydrograph was shifted up, resulting in an over-
simulation of low flows. Despite, the notable shift of the hydrograph, the peak flows were still significantly 
under-simulated. Calibration to a single event simulated the timing of the events poorly and still under-
simulated the peak discharges in general, with the exception of the large event on the 3 March 1979, 
i.e. to which the model was calibrated.  

 
Figure 5.5: Typical hydrographs from the Cathedral Peak IV catchment (V1H005) showing the 

observed and simulated hydrographs for all the calibration scenarios using the GR4H 
model 
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Figures 5.6 and 5.7 further illustrate the under-simulation of the peak flows at the Cathedral Peak IV 
catchment. The shift of the hydrograph when calibrating to flows above the 90th percentile is clearly 
seen in Figure 5.7. The good simulation of the timing of events when calibrating to all data and the wet 
period is shown in Figure 5.6 where the regression line aligns with the 1:1 line. 

 
Figure 5.6: Comparison of the observed and simulated flow volumes at the Cathedral Peak catchment 

(V1H005) at an hourly timestep 

 
Figure 5.7: Frequency distribution of observed and simulated hourly streamflow volumes at the 

Cathedral Peak IV (V1H005) catchment 

At Cathedral Peak IV (Figure 5.8), unlike the daily timestep, there is no consistent trend between all the 
scenarios for the hourly results. The design values for the observed hourly and actual peak discharges 
are under-simulated in general, and to a greater extent for calibration to all data and calibration to flows 
above the 90th percentile. Calibrating to a single large event and to a wet period results in over-
simulation of the observed hourly design values from approximately the 50-year return period. However, 
the actual observed peak discharges are still under-simulated. 
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Figure 5.8: GEV design peak discharges for the simulated scenarios and observed at the Cathedral 

Peak IV catchment (V1H005) at an hourly timestep 

5.3.3 Summary and comparison of GR4J, GR4H and ACRU model performance 

Table 5.1 contains a summary of the NSE values of flow volumes obtained for the two test catchments 
for the GR4J, GR4H and ACRU models. In terms of the GR4J (daily) model, the NSE values for both 
catchments across all three calibration scenarios were reasonably good. However, there was a 
substantial reduction in the NSE values when calibrating to flows above the 90th percentile threshold, 
particularly for the Beestekraalspruit catchment (X2H026). This resulted in particularly poor NSE results 
during validation for the Beestekraalspruit catchment (X2H026). There were only slight differences in 
NSE values in terms of verification when calibrating to all the data compared to calibrating to a wet 
period, suggesting that the daily timestep model will give similar results when using either of these two 
calibration options. The calibration and verification results were, however, noticeably reduced when 
calibrating to flows above the 90th percentile threshold, particularly for the Beestekraalspruit catchment 
(X2H026), suggesting that the model is sensitive to this calibration option. It is therefore likely not the 
most suitable calibration option to use. 

The NSE results from the GR4H (hourly) model generally remained the same or declined when 
compared to the daily results (GR4J model). However, the results from the GR4H model are generally 
still acceptable, with the exception of those obtained when calibrating to flows above the 90th percentile 
and calibration to a single event. Calibrating to flows above the 90th percentile threshold performed 
particularly poorly for the two catchments in terms of the overall flow behaviour. The poor results in 
calibrating to flows above the 90th percentile threshold could be because the model is now only 
calibrating to these higher flows and is therefore not accounting for or influenced by the low flows. It 
therefore simulates the low flows poorly. Moreover, poor-quality observed hourly rainfall data and the 
phasing of the rainfall data compared to the streamflow data may have more of an influence for these 
calibration scenarios, where it is likely that errors in short-duration rainfall data predominantly occur 
during large rainfall events. Calibration to a single event also produced poor verification results because 
only the response from a single peaked event is used to calibrate the model and the wide range of 
responses is not captured. Although these calibration scenarios reduce the overall model performance, 
they are more effective in improving the simulation of peak flows. The results suggest that the hourly 
timestep model (GR4H) is more sensitive to the calibration option selected compared to the daily model 
(GR4J). The model may need to be calibrated differently at an hourly timestep to obtain either accurate 
overall flow behaviour or accurate peak flows. Alternatively, a multi-criteria objective function may be 
required to simultaneously achieve both accurate general flow behaviour and accurate peaks. 
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The NSE values obtained from the ACRU model have been included in Table 5.1 for comparison. Since 
the ACRU model is a daily timestep model, the ACRU results are only comparable to those obtained 
from the GR4J model. The results indicate that the GR4J model provides superior results in terms of 
simulating daily streamflow volumes with NSE values higher than those obtained for the ACRU model, 
particularly for the Beestekraalspruit catchment (X2H026). This is expected since the GR4 models are 
calibrated using observed rainfall and runoff data, whereas the ACRU model is not calibrated, but rather 
parameterised based on physical catchment characteristics, and the simulated results are verified 
against observed data. However, the ACRU model converts the simulated streamflow volumes into 
peak discharges applying the SCS peak discharge equation, whereas the GR4J model does not convert 
volumes to peak discharges. Consequently only the ADD may be calculated. As stated previously, this 
may be a poor approximation of the ADPD, particularly for small catchments where the hydrograph 
rises and falls within a few hours. 

Table 5.1: NSE values for steamflow volumes simulated by the GR4J, GR4H and ACRU models 

NSE 

Catchments 

Calibration Verification 

ACRU 
Calib 

All 
Data 

Calib 
Wet 

Period 
Calib 
Q90 

Calib 
Single 
Event 

Calib 
All 

Data 

Calib 
Wet 

Period 
Calib 
Q90 

Calib 
Single 
Event 

  GR4J (daily) 

Cathedral Peak IV 
(V1H005) 0.94 0.91 0.69   0.94 0.91 0.94   0.76 

Beestekraalspruit 
(X2H026) 0.71 0.71 0.36   0.71 0.71 -0.13   0.22 

  GR4H (hourly)   

Cathedral Peak IV 
(V1H005) 0.53 0.79 0.08 0.89 0.53 0.51 -2.55 -0.02   

Beestekraalspruit 
(X2H026) 0.74 0.75 0.42 0.58 0.74 0.73 0.39 -0.15   

 
The MRE between observed and simulated design streamflow values for the two test catchments for 
the GR4J, GR4H and ACRU models are summarised in Table 5.2. 

In terms of the GR4J model, the ADD is generally slightly under-simulated for both catchments, with 
similar results for all three calibration scenarios. In terms of ADPD, the MRE is significantly higher, as 
expected. The MRE for the ACRU model in terms of ADD is generally slightly higher than that of the 
GR4J model and positive, indicating a slight over-simulation. 

In terms of the GR4H model the HPD and ADPD are under-simulated in both catchments and across 
all calibration scenarios. In addition, there is generally no significant improvement on the simulation of 
ADPD from the daily timestep model (GR4J). Calibrating to all data and the wet period simulated the 
observed flood frequency curve trends well. When calibrating to flows above the 90th percentile and a 
single event, an inconsistent trend of over-simulation and under-simulation was observed. The 
differences in the results obtained from the different calibration options further confirm that a multi-
criteria objective function may be required to simultaneously achieve both the accurate simulation of 
general flow behaviour and accurate peaks. The ACRU model over-simulated ADPD in comparison to 
both the GR4J and GR4H models, which are linked to the SCS peak discharge equation and the lag 
time and distribution of daily rainfall used. Improving the distribution of daily rainfall is being investigated 
in this study, as documented in Chapter 4, with the aim of improving these estimates. 
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In summary, the GR4J and ACRU models performed well in terms of simulating daily design streamflow 
volumes, i.e. ADD. The GR4H model did not provide superior estimates of ADPD compared to the 
GR4J model, which was unexpected. 

Table 5.2: MRE values obtained from the GR4J, GR4H and ACRU models 

MRE 

Catchments 
Calib All Data Calib Wet 

Period Calib Q90 Calib Single 
Event MRE 

ACRU 
ADD MRE 

ADD 
MRE 

ADPD 
MRE 
ADD 

MRE 
ADPD 

MRE 
ADD 

MRE 
ADPD 

MRE 
ADD 

MRE 
ADPD 

  GR4J (daily)   

Cathedral Peak IV 
(V1H005) -0.12 -0.79 -0.11 -0.79 -0.08 -0.78 

  
  0.09 

Beestekraalspruit 
(X2H026) -0.18 -0.80 -0.32 -0.84 -0.17 -0.79 

  
  0.61 

Catchments 
Calib All Data Calib Wet 

Period Calib Q90 Calib Single 
Event MRE 

ACRU 
ADPD MRE 

HPD 
MRE 

ADPD 
MRE 
HPD 

MRE 
ADPD 

MRE 
HPD 

MRE 
ADPD 

MRE 
HPD 

MRE 
ADPD 

  GR4H (hourly)   

Cathedral Peak IV 
(V1H005) -0.76 -0.81 -0.13 -0.34 -0.65 -0.73 -0.21 -0.40 2.26 

Beestekraalspruit 
(X2H026) -0.62 -0.76 -0.71 -0.82 -0.60 -0.75 0.26 -0.20 1.97 

 
5.4 DISCUSSION AND CONCLUSIONS  

The initial results obtained for the two test catchments selected indicate the potential of the GR4J model 
to provide accurate daily and design streamflow volumes, which were identified to be superior to those 
obtained from the ACRU model. The GR4J model, however, needs to be calibrated against observed 
data. Therefore, for the GR4J model to be applicable nationally, and particularly for ungauged 
catchments, a methodology would be required that could transfer parameters to ungauged locations or 
regionalise parameters. This is a significant task that is beyond the scope of this study. In addition, the 
GR4J model does not have the capabilities to estimate peak discharge for the day from simulated 
streamflow volumes. Consequently, the performance of the GR4H model was assessed, which was 
hypothesised to better approximate the ADPD. This was not the case, however, and the results from 
the GR4H model were generally not any better than the ADD values obtained from the GR4J model. 
Based on these results, and due to the challenges associated with obtaining or synthetically generating 
short-duration rainfall data, further experimentation with the GR4H model is not recommended.   

In summary, the potential of the GR4J model for application in South Africa has been indicated. However, 
significant work is required to develop the model into a DFE tool that is applicable at a national scale. 
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CHAPTER 6: DEVELOPMENT AND ASSESSMENT 
OF AN ENSEMBLE JOINT PROBABILITY 
APPROACH USING THE SCS-SA MODEL 

NS Dlamini and JC Smithers 

This chapter provides a summary of the progress made to date regarding the fifth objective listed in 
Chapter 1: Investigate the potential to incorporate a joint probability approach into the updated version 
of the SCS-SA model. 

6.1 INTRODUCTION 

Global climate change has resulted in an increase in the severity and frequency of flooding 
(Charalambous et al., 2013). According to Zaman et al. (2012), reliable flood estimates can provide a 
foundation for dealing with floods, which will be most needed under future extreme weather regimes. 
According to Smithers and Schulze (2003), design flood estimation methods in South Africa are based 
on the statistical analysis of historical streamflow data and rainfall-based methods. According to Schulze 
(1989), Rahman et al. (1998) and Rauf and Rahman (2004), rainfall-based methods have the advantage 
of generally having longer rainfall records at more sites, with better quality, and being more available 
for analysis compared to streamflow records. Smithers (2012) noted that design engineers and 
hydrologists are most frequently faced with situations where there is no, or inadequate, streamflow data 
at the site of interest.  

Rahman et al. (2002) pointed out that, when applying rainfall-based methods and selecting the 
representative input variables that are likely to produce a significant flood, there are no guidelines to guide 
the procedure. Thus, the random choice of fixed values for flood-producing variables, which have a 
probability distribution, can lead to uncertainty, inconsistencies and significant bias in design flood 
estimates for a given return period, and has been widely criticised (Kuczera et al., 2006; Gioia et al., 2008; 
Kjeldsen et al., 2010). According to Charalambous et al. (2013), the thorough treatment of the 
probabilistic aspects of the key input variables should be adopted to significantly improve the limitations 
associated with rainfall-based methods. This can be achieved by adopting a joint probability approach 
with a deterministic model to obtain probability distributed flood hydrographs (Rahman et al., 2002).  

While a number of rainfall event-based methods of design flood estimation are used in South Africa 
(SANRAL, 2013), this study has selected the use of the SCS-SA model (Schulze et al., 2004). The 
SCS-SA model was selected for use in this study as the model is readily available, there is readily 
available data for the key input variables and sufficient operational support is available. 

Hence, the aim of this study is to develop, apply and assess the performance of an Ensemble JPA 
using the SCS-SA model for design flood estimation in South Africa. Specific objectives include the 
selection of test catchments, the development of probability distributions for key input variables using 
readily available data, and the development and application of an Ensemble model configuration, details 
of which are summarised in the following sub-sections. 

6.2 OVERVIEW OF SCS-SA MODEL 

Schmidt et al. (1987) adapted the SCS method for design flood estimation in South Africa based on 
developments and verifications from multiple studies (Schulze, 1979; 1982; Schmidt and Schulze, 1984; 
Dunsmore et al., 1986). These were computerised by Schulze et al. (1992).  
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SANRAL (2013) recommends the SCS-SA method for application in agricultural catchments with areas 
less than 30 km2. According to Smithers (2012), the SCS-SA method is now extensively applied to 
estimate design floods for small urban and rural catchments of less than 30 km2 in South Africa. The 
advantage of using the method is that it can generate full hydrographs and not only peak discharges 
(SANRAL, 2013). Equations 6.1 and 6.2 indicate how the stormflow and peak discharge are estimated, 
respectively (Schulze et al., 2004): 

Q    =  
(P- Ia)2

P + Ia+ S 
6.1 

where: Q = stormflow depth (mm) 
 P = daily rainfall depth (mm) 
 Ia = initial losses (mm) 
 S = potential maximum soil water retention (mm) 
 

  ∆Qp  =     0.2083 × A × ∆Q 
∆D
2  + L

 6.2 

where: ∆Qp = peak discharge of incremental unit hydrograph (m3.s-1) 
 A = catchment area (km2) 
 ∆Q   = incremental stormflow depth (mm) 
 ∆D = unit duration of time (h) 
 L = catchment lag (h) 
 
A number of options to estimate catchment lag are available in the SCS-SA model. The widely used 
Schmidt-Schulze equation (Schmidt and Schulze, 1984) is shown in Equation 6.3: 

L      =      
A0.35 × MAP1.1

41.67× y0.3 × I30
0.87 

 
6.3 

where:  L = catchment lag (h) 
 A = catchment area (km2) 
 MAP = mean annual precipitation (mm) 
 y = average catchment slope (%) 
 I30 = two-year return period 30-minute rainfall intensity (mm/h) 
 
The potential maximum soil water retention is estimated using the curve number, which is an expression 
of the hydrological soil properties, land cover and land-management conditions, as well as the soil 
moisture status of the catchment prior to a rainfall event. The potential maximum soil water retention is 
expressed by Equation 6.4: 

S = 25400
𝐶𝐶𝐶𝐶

-254 6.4 

6.3 GENERAL METHODOLOGY 

The catchments used in the study are shown in Figure 6.1. Most of the catchments were selected in 
regions used by Gericke and Du Plessis (2012). These include the northern interior, summer coastal 
region, central interior and the winter coastal region. The rest of the catchments were selected from the 
study done by Rowe (2019). 
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Figure 6.1: Location of catchments used in the study 

6.3.1 Catchment data and information 

Catchment information such as the catchment slope and altitude were obtained using ArcGIS software, 
and a 30 m-resolution digital elevation model (Van der Spuy and Raddemeyer, 2014) for South Africa. 
The NLC 2000 dataset for South Africa, provided by the Agricultural Research Council (ARC) and the 
CSIR (2005), was used to estimate the SCS-SA land-cover class for each of the test catchments. The 
mean annual precipitation for the test catchments was obtained using information provided by Smithers 
and Schulze (2003) for the centroid of the catchments. The SCS-SA soil group for each catchment was 
obtained from the national SCS-SA soil group map developed by Schulze (2012). Additional catchment 
soil information required by the model, such as soil depth and soil texture, were obtained from the South 
African Atlas of Climatology and Agrohydrology, published by Schulze (2007). The observed streamflow 
data used for comparison was obtained from a historical research catchment database, available from 
the CWRR and the Department of Water and Sanitation. 

Table 6.1 contains a summary of the catchment information and data availability. The catchment area 
ranges in size from 0.26 km2 to 185 km2. Although it is recommended that the model is applicable to 
catchment areas up to 30 km2, catchments with an area larger than the prescribed range were selected 
due to insufficient smaller catchments with reasonable observed data record lengths. Historical 
streamflow data was obtained from multiple sources, as summarised in Table 6.1. The observed record 
lengths ranged from 11 to 70 years.  
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Table 6.1: Summary of catchment information and observed data 

Catchment Catchment 
area  
(km2) 

Record length 
(years) 

Period of 
record 

Data 
source* 

U2H020 (Cedara)  0.26 17 1978–1994 CWRR 

V7H003 (Ntabamhlophe) 0.52 23 1970–1992 CWRR 

G2H010 B  
(Jonkershoek-Lambrechtsbos) 0.73 52 1947–2006 CSIR 

V1H005 (Cathedral Peak IV) 0.98 31 1950–1981 CSIR 

V1H015 (Ntabamhlophe) 1.04 15 1965–1994 CWRR 

U2H018 (Cedara) 1.31 19 1976–1994 CWRR 

W1H016 (Zululand) 3.3 11 1976–1986 CWRR 

X2H026 13.82 27 1966–1992 DWS 

A9H006 16 15 1965–1979 DWS 

C5H022 39 28 1980–2008 DWS 

V1H032 67.8 20 1974–1993 DWS 

A9H002 103 70 1931-2001 DWS 

G4H005 146 57 1957–2013 DWS 

C5H023 185 26 1984–2009 DWS 

CSIR: Council for Scientific and Industrial Research   
CWRR: Centre for Water Resources Research  
DWS: Department of Water and Sanitation 

 
6.3.2 Distribution fitting and assessment 

The SCS-SA model comprises several key input variables that are required to estimate design runoff 
volumes and peak discharges. These include design rainfall (P), catchment response time, temporal 
distribution of rainfall and the antecedent soil moisture conditions, which are related to the CN. Each of 
these input variables has a distribution of potential values. These distributions were estimated as detailed 
below. Freely available software (EasyFit) was utilised to fit probability distributions to each of the key 
input variables. Once the distributions were fitted, 10 000 samples were generated for each of the key 
input variables, from which inputs were randomly sampled to generate the simulated ensemble peak 
discharges. 
 
6.3.2.1 Time to peak 

Gericke (2016) extracted event time to peak information from primary flow data for a number of sites in 
three regions of South Africa. In this study, event time to peak information was extracted for eight 
additional sites. Information from these studies was used to develop the probability distribution for the 
time to peak at each site. 
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Figure 6.2 is an example of the three-parameter Log-Normal probability distribution fitted to the 
observed time to peak data from Catchment X2H026. The histogram in blue represents the frequency 
of the time to peak for given intervals of duration. The orange line represents the probability density 
function fitted to the frequencies. The three-parameter Log-Normal probability distribution fitted the 
observed time to peak relatively well for Catchment X2H026.  

 
Figure 6.2: Probability distribution of time to peak data from Catchment X2H026 

6.3.2.2 Antecedent soil moisture  

The available data for the change in the soil moisture condition (∆S) prior to large storm events was 
limited to the 20th, 50th and 80th percentile values reported by Schmidt and Schulze (1987). These 
values were then extrapolated to the 10th and 90th percentile values, as indicated in Figure 6.3. This 
was done to increase the data available for distribution fitting. A regression was then fitted to the values, 
and the resulting equation was used to extrapolate the data to the 10th and 90th percentile values, 
respectively. A probability distribution was then fitted to the five values of ∆S. Figure 6.4 illustrates a 
uniform probability distribution fitted to the observed data of the change in soil moisture (∆S). The 
distribution indicates that samples will be selected uniformly across the range of the distribution of the 
change in soil moisture. This distribution is a result of the limitation in the available data. 
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Figure 6.3: Regression analysis for ∆S data for Catchment X2H026 

 

 
Figure 6.4: Probability distribution of change in soil moisture data for Catchment X2H026 

6.3.2.3 Temporal distribution 

The data for the temporal distribution was readily available and obtained from Knoesen and Smithers 
(2008). The temporal distributions were then incorporated into the Ensemble SCS-SA model. Figure 6.5 
illustrates a sample of the 480 different temporal distributions that were incorporated into the Ensemble 
SCS-SA model.  
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Figure 6.5: Samples of the 480 different temporal distributions (Knoesen, 2005) 

6.2.3.4 One-day design rainfall 

The rainfall distribution was determined by interpolating the 30th and 70th percentiles from the 10th, 
50th and 90th one-day design rainfall percentiles (Smithers and Schulze, 2003). This process is 
illustrated in Figure 6.6, where a trend line and the resulting equations were used to determine the 30th 
and 70th percentiles for three return periods shown as an example. The estimation of the 30th and 70th 
percentiles was done to have sufficient data points to fit a probability distribution for each return period 
to sample from the fitted distribution. 

 
Figure 6.6: One-day design rainfall confidence intervals for different return periods for Catchment 

X2H026 

Figure 6.7 illustrates derived depth duration frequency curves used when the duration of the input design 
rainfall was conditioned to the catchment response time.  
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Figure 6.7: Derived rainfall depth duration frequency curves for Catchment X2H026 

6.3.3 Ensemble SCS-SA model setup 

Once the distributions for design rainfall, catchment response times, antecedent moisture conditions 
and disaggregation of daily rainfall were determined, the Ensemble SCS-SA JPA model was set up as 
follows. The simulation of runoff volume and peak discharge were simulated in an Excel spreadsheet. 
Two sheets in the spreadsheet were reserved to be used to input the relative sampled distributions and 
store the results of the ensemble events. Since SCS-SA is an event-based model, it had to be refined 
to enable it to run an ensemble of events. This was achieved by using the Visual Basic for Application 
(VBA) code to the model structure to include a loop function. The loop function transfers the sampled 
ensemble inputs into the model individually, then transfers the simulated ensemble results to the 
storage sheet. Once the model has completed simulating the events, VBA code was developed to sort, 
organise and perform statistical analyses on the ensembles. The Ensemble SCS-SA still applies the 
SCS-SA stormflow equation to estimate the runoff volume from an event, and the peak discharge 
equation to estimate the peak discharge. Once the distributions had been fitted, 10 000 samples were 
generated for each of the key input variables, from which inputs were randomly sampled to generate 
the simulated ensemble peak discharges. 

6.3.4 Model evaluation criteria 

To evaluate the performance of the model, the simulated results were compared to the observed design 
peak discharges. Statistics calculated from the simulated ensembles included the median value and 
the 10th and 90th percentiles. The MARE was then used to evaluate the model performance. In terms 
of the simulated ensembles, the median values were used to calculate the MARE. The MARE is a 
measure of the difference between two continuous variables and is an average of the absolute error. 
The MARE (percentage) is expressed by Equation 6.5 (Smithers et al., 2015): 

MARE = 
100
n 

�
| Qi- Qo |

Qo

  n

i =1

 
6.5 

where: Qi = simulated peak discharge (m3.s-1) 
 Qo = observed peak discharge (m3.s-1) 
  n  = number of observations 

y = 14.616x0.3515

R² = 0.9983
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6.4 RESULTS  

The results obtained are summarised in the following sections.  

6.4.1 Ensemble and single-event SCS-SA models using one-day duration design rainfall 
input for Catchment U2H020 

The Ensemble SCS-SA (one-day duration) initially included fitting a probability distribution to the one-
day design rainfall using the 90% confidence intervals for each return period. The standard SCS-SA 
(one-day duration) model uses the one-day design rainfall as input. The probability distributions were 
derived for the other key input variables (antecedent moisture conditions, time to peak and temporal 
distribution). Random samples were generated from the fitted distributions. As an example, Figure 6.8 
shows the simulated and observed design peak discharges for Catchment U2H020. It is evident that 
both the Ensemble SCS-SA (one-day duration) and standard SCS-SA (one-day duration) models are 
consistently over-simulating the observed design peak discharge for all return periods at 
Catchment U2H020. The observed design flood estimates also consistently lie outside the 10th and 
90th percentiles, indicating poor confidence in the estimated design peak discharges. 

 
Figure 6.8: Simulated and observed design peak discharges for Catchment U2H020 using the 

Ensemble and standard SCS-SA (one-day duration) 

It is evident that both the standard SCS-SA (one-day duration) and Ensemble SCS-SA (one-day duration) 
models are performing relatively poorly in terms of simulating the observed design peak discharge using 
one-day design rainfall. However, the results obtained show that the Ensemble SCS-SA model framework 
works and provides an estimate of the confidence limits for all return periods. Since the models did not 
perform well using one-day rainfall, the analyses were repeated using design rainfall depths associated 
with the catchment response time, i.e. design rainfall with a duration equal to the time to peak, as 
detailed in the next section.   

6.4.2 Ensemble and single-event SCS-SA models using design rainfall duration equal to the 
catchment response time for Catchment U2H020 

Figure 6.9 shows the estimated and observed design peak discharge at Catchment U2H020 when the 
duration of the design rainfall input to the Ensemble SCS-SA (time to peak) and standard SCS-SA (time 
to peak) model was conditioned to the catchment response time (time to peak) using a derived 
relationship between the design rainfall depth and a range of durations.  
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It is evident from Figure 6.9 that the Ensemble SCS-SA (time to peak) simulates the observed peak 
discharges relatively well for all the return periods. The standard SCS-SA (time to peak) model also 
simulates the observed peak discharges for the lower return periods relatively well. In addition, all the 
observed peak discharge estimates were within the 10th and 90th percentiles, which provides 
confidence in the simulated peak discharges provided by the Ensemble SCS-SA model. The median 
design peak discharges from the simulated ensembles are also relatively similar to the observed design 
peak discharge. Thus, the median peak discharge estimates are the recommended design values to 
use. The single-event SCS-SA (time to peak) model performed poorly in terms of estimating the 
observed peak discharge as it consistently under-simulated the peak discharge for all return periods. 
However, the results improved when selecting design rainfall duration equivalent to the catchment 
response time.    

 
Figure 6.9:  Simulated and observed design peak discharges for Catchment U2H020 using Ensemble 

and standard SCS-SA (time to peak) 

6.4.3 Performance of Ensemble and single-event SCS-SA on all selected catchments 

As shown in the example in Section 6.4.2, it was found that using a design rainfall duration equal to the 
catchment time to peak has, for both the Ensemble SCS-SA (time to peak) and standard SCS-SA (time 
to peak) models, significantly improved the model’s performance for the peak discharge estimation. 
With the improvements and satisfactory model performance, the models were applied to all selected 
catchments to assess their performance over a wider range of catchments in different climatic regions 
in South Africa. A total of four model applications were performed on the rest of the catchments. These 
include the standard SCS-SA (one-day duration), standard SCS-SA (time to peak), Ensemble SCS-SA 
(one-day duration) and Ensemble SCS-SA (time to peak) models. These model applications are 
variations between using the design rainfall duration equivalent to one day and the design rainfall 
duration equivalent to time to peak.   

Figure 6.20 illustrates the MARE of the peak discharge for all the catchments in the order of the 
catchment size (0.26 to 185 km2). The MARE averaged across all catchments is shown in Figure 6.11. 
It can be seen that the Ensemble SCS-SA (time to peak) model generally has a lower MARE value than 
the other model applications, and the MARE values of the Ensemble SCS-SA (time to peak) model are 
generally less than 50% for the majority of the catchments. The Ensemble SCS-SA (one-day duration) 
and standard SCS-SA (one-day duration) models produced the highest MARE for the majority of the 
catchments, indicating a poor performance in the model for design flood estimates when adopting the 
one-day duration for design rainfall. 
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Figure 6.10: Mean absolute relative error of the estimated peak discharge for all the catchments used 

in the study 

 
Figure 6.11: Average mean absolute relative error of the peak discharge across all the catchments 

used in the study 

6.4.4 Performance of Ensemble and standard SCS-SA models on larger catchments 

The MARE relative to the catchment area was assessed to see if there was any deterioration in the 
performance of the models with increasing catchment area size. This was done for the same 
catchments presented above. Figure 6.12 illustrates the relationship between MARE and catchment 
area, where it is evident that both models seem to be performing relatively well as the catchment area 
increases and the performance of the models does not deteriorate as the recommended maximum 
catchment area (30 km2) for the models is exceeded. 
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Figure 6.12:  MARE of peak discharge estimation versus catchment area 

6.5 DISCUSSION AND CONCLUSIONS  

The results produced by applying both Ensemble SCS-SA (one-day duration) and standard SCS-SA (one-
day duration) models using the one-day duration design rainfall as input, as is the norm when using the 
SCS-SA model, indicated that the models were performing relatively poorly in terms of estimating both 
the observed design runoff volume and design peak discharge for all the selected catchments. Even 
though the probability distributions for the other key input variables are included in the Ensemble SCS-SA 
model, the Ensemble SCS-SA (one-day duration) model still significantly over-estimated the observed 
design runoff volume and design peak discharge for all the return periods. The observed design peak 
discharge estimates consistently fell outside the 10th and 90th percentiles simulated with the 
Ensemble SCS-SA (one-day duration) model, indicating a very low confidence in the design peak 
discharges. The standard SCS-SA (one-day duration) model performed similarly to the Ensemble SCS-SA 
(one-day duration) model, where the model also performed poorly and generally over-estimated both 
the observed design runoff volume and the design peak discharge. 

When short-duration rainfall was adopted, the Ensemble SCS-SA (time to peak) and standard SCS-SA 
(time to peak) models generally simulated the observed design peak discharges relatively well for all 
the return periods for all catchments. Although the standard SCS-SA (time to peak) estimates of the 
observed design peak discharge generally improved compared to the SCS-SA (one-day duration) 
model, it still performed poorly compared to the Ensemble SCS-SA (time to peak) model estimates. 
These results are also supported by the MARE values of the estimated design peak discharges from 
the Ensemble SCS-SA (time to peak) model. It is evident that the Ensemble SCS-SA (time to peak) and 
standard SCS-SA (time to peak) models generally have MARE values less than 40% and 50%, 
respectively for the estimated design peak discharges. This indicates that the Ensemble SCS-SA (time 
to peak) model generally has lower errors in estimating the observed design peak discharges.     

When the Ensemble SCS-SA (time to peak) and standard SCS-SA (time to peak) models were tested on 
larger catchments than the recommended range, the model showed promising results as it estimated the 
observed design peak discharge reasonably well for all the catchments. The MARE of the simulated 
design peak discharges did not increase with an increase in catchment area either, indicating that the 
performance of the Ensemble SCS-SA (time to peak) and standard SCS-SA (time to peak) models do not 
generally decrease as the catchment area increases. 
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This study has demonstrated how a JPA can be applied using ensemble event simulation by adapting 
the single-event SCS-SA model in South Africa. Even though the JPA was generally developed using 
only readily available data to determine the probability distributions, the use of these distributions in the 
application of the Ensemble SCS-SA model showed how it can reproduce the observed design flood 
estimates with reasonable accuracy over a wide range of return periods and for catchments larger than 
the recommended sizes. The Ensemble SCS-SA model has also shown potential and flexibility to deal 
with uncertainty by accounting for the distributed nature of the input variables and taking on values 
across the full range of their distribution in the modelling process, thus avoiding the potential bias that 
can occur when adopting a single set of predetermined input values.  

An unexpected result from this study is the much-improved performance of both the single-event and 
Ensemble SCS-SA models when the duration of the input design rainfall was changed from one day to 
the catchment response time. This could have potential consequences for the application of the SCS-SA 
model in practice. It is recommended to derive more detailed information to fit the probability 
distributions and to develop the Ensemble JPA for other deterministic event-based models for design 
flood estimation in South Africa. 
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CHAPTER 7: DEVELOPMENT AND ASSESSMENT 
OF THE SCS-SA CSM SYSTEM FOR DESIGN FLOOD 

ESTIMATION 

JC Smithers and NS Dlamini 

7.1 INTRODUCTION 

Continuous simulation modelling for design flood estimation (DFE) estimation is a developing field in 
hydrology and takes hydrological processes into account that are not possible in an event model, but 
requires complex rainfall-runoff models and the availability of long continuous and reliable time series 
of hydrological variables (Aronica and Candela, 2007). CSM is the most comprehensive tool to account 
for joint probabilities in flood frequency estimation, and is emerging as a practical tool (Kuczera et al., 
2006). The advantages of using CSM for DFE have been shown in a number of studies, both 
internationally and in South Africa.  

For catchments with limited gauged flow data, the use of CSM to determine flood frequency is an 
alternative to direct frequency analysis (Blazkova and Beven, 2009) and has been used in many studies 
(e.g. Calver and Lamb, 1995; Blazkova and Beven, 1997; 2002; 2004; Calver et al., 1999; 2000; 2001; 
Cameron et al., 1999; 2000; Lamb, 1999; Lamb and Kay, 2004; Chetty and Smithers, 2005; Cameron, 
2006; Smithers et al., 2007; 2013). Both historical rainfall (e.g. James, 1965) and stochastic rainfall 
models (e.g. Beven, 1987) have been used in CSM to estimate flood frequencies. The use of a CSM 
approach simulates the joint association of rainfall and antecedent moisture conditions explicitly. Thus, 
these distributions do not need to be estimated (Kjeldsen et al., 2014).  

The motivation for using CSM is the better representation of physical processes and to overcome 
restrictive assumptions required for the application of other methods (Lamb et al., 2016), but the cost 
of using a CSM approach is more than other approaches and needs to be offset against its advantages 
(Lamb et al., 2016). Advantages of the CSM approach include the estimation of design flows at any 
simulation point and not just at the catchment outlet, no assumptions need to be made about a design 
event and hydrograph shapes, and it is possible to assess the frequency of flow volumes and peak 
discharges (Faulkner and Wass, 2005).  

From the literature reviewed, Vogel et al. (2005) concluded that only three to five parameters are 
necessary for a parsimonious rainfall-runoff model. Models with more than five parameters are used for 
detailed engineering and scientific catchment process studies, but calibration and uncertainty analysis 
are much more challenging (Vogel et al., 2005). Lamb et al. (2016) concluded that integrated 
simulations are possible with a CSM approach. They concluded that the approach remains useful in 
special cases and requires standardised data, resources and models to be more widely applied. 

Given developments in computing technologies, the use of CSM has been shown to be a feasible 
alternative for flood frequency estimation. For example, the Simulation of Hydrographs for flood frequency 
estimation – REGionalised (SHYREG) model was found to result in more stable estimates of flood 
quantiles in France than statistical distributions fitted to the observed data (Arnaud and Lavabre, 2002). 
The SHYREG approach was also applied successfully to 1 535 catchments in France (Odry and 
Arnaud, 2017). For a catchment in the United Kingdom where the Flood Estimation Handbook (FEH)’s 
methods could not be adequately applied, Faulkner and Wass (2005) used a stochastic rainfall model 
to generate 1 000 years of hourly rainfall data, which was used as input to the semi-distributed 
conceptual Probability Distributed Model (PDM) rainfall-runoff model.  
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Parameters from hydrologically similar catchments were transferred to the ungauged catchment and 
the simulated series at the gauged sites was adjusted to improve the correlation of simulated and 
observed flood frequency curves. Costa and Fernandes (2017) successfully used a bounded stochastic 
daily rainfall generator and the 13-parameter Rio Grande rainfall-runoff model in a Bayesian framework 
to derive the flood frequency in the 4 820 km2 American River catchment. A thousand runs of a 10 000-
year series was used to estimate the median frequency curves. They achieved 95% confidence 
intervals and accurate estimates for most return periods with smaller uncertainty than other approaches. 
An additional advantage of the CSM approach was the improved understanding of the dynamic factors 
that result in floods (Costa and Fernandes, 2017). 

Sources of uncertainty when using a CSM approach include rainfall data, parameter uncertainty and 
the calibration metric used (Ball, 2013). When calibrating the CSM model for flood estimation, Ball 
(2013) found it necessary to censor the calibration data to exclude low-flow events. The spatial 
averaging of rainfall was found to impact on more frequent events. The variability of the estimated 
frequency relationship was also found to be larger than a direct frequency analysis of the flow data. 
Lamb (1999) found that calibrating the PDM using squared errors resulted in biased simulated flood 
frequency distributions, but the simulated distributions were acceptable when a range of objective and 
subjective measures was used in the calibration, particularly when the objective function was weighted 
towards to the peak discharges. When using the hydrologic modelling system (HEC-HMS) to simulate 
three catchments in Germany, the best results were obtained when using stochastic rainfall and using 
the probability distribution of the observed peak flows for model calibration. This also gave reasonable 
simulations for general hydrological conditions (Haberlandt and Radtke, 2013). 

In South Africa, the ACRU agrohydrological model has been used in a number of pilot studies to estimate 
design floods using a CSM approach (Smithers et al., 1997; 2001; 2007; 2013; Chetty and Smithers, 
2005). From literature reviewed by Smithers (2012), and more recently by Rowe and Smithers (2018), the 
potential for using a CSM approach to DFE in South Africa is evident. However, Rowe et al. (2018b) 
concluded that significant developments were still required before a CSM system for DFE can be widely 
used by practitioners in South Africa. They recommended a number of steps to do this. Rowe (2019) 
further refined and developed the ACRU model for DFE, including modifications to the ACRU CSM to 
improve verification of DFEs. The assessment of the performance of the ACRU CSM using site-specific 
information derived from national land cover and soil maps showed that the performance of the CSM 
approach was better than the event-based SCS-SA model for DFE in South Africa. The next section 
contains a summary of the CSM that was developed in this study.  

7.2 SYSTEM DEVELOPMENT AND OVERVIEW 

The SCS-SA CSM system has been developed using Excel as a front-end GUI to input user information. 
It uses Visual Basic code to run compiled executable Fortran code, imports results and generates 
hydrographs.  A schematic overview of the system is shown in Figure 7.1. A number of CSV input files 
contain the information to run the system. Hence, the source file containing the parameter value for a 
particular variable can be specified by an expert user. However, this is not required for the general use 
of the system.  

The data input GUI screens are shown in Figure 7.2. Allowance is made for up to 10 HRUs to be 
simulated per catchment. To run the system, the user is required to do the following:  

• Enter the catchment area  
• Enter the average catchment slope and mean annual precipitation 
• Select the lag time estimation method  
• Select the method to disaggregate the daily rainfall into a hyetograph  
• Select the quinary catchment number for each HRU  
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• Select the vegetation class, treatment and condition for each HRU 
• Select either the catchment-specific soil texture and depth or the soil texture and depth parameters 

in the quinary catchments database for each HRU 

Typical results from a simulation are shown in Figure 7.3 and the disaggregated hyetograph and 
simulated hydrograph are shown in Figure 7.4. Based on results of Dlamini (2019) and summarised in 
Chapter 6, who found that the SCS-SA model performed better when the duration of rainfall used as 
input to the model was equal to the time of concentration of the catchment. Options for the user to select 
a duration of either one day or time of concentration are currently built into the model. When the time 
of concentration option is selected for the symmetrical SCS-SA rainfall distributions, the portion of the 
hyetograph with the maximum rainfall intensity for this duration is used to generate the hydrograph.  

Rowe (2019) showed that the total runoff from a catchment simulated by the ACRU model (CELRUN) 
results in unrealistic volumes used in the estimation of peak discharges. Hence, an option was provided 
to select either CELRUN or DSTORM, which is the daily stormflow generated by the ACRU model, 
which runs off from the catchment on the same day as the rainfall.  

Thus, in the beta version of the SCS-SA CSM, the user can select to use either the DSTORM or 
CELRUN runoff depths simulated by the ACRU model. The user can also select to use either one day 
or time to peak as the duration of the hydrograph to estimate the peak discharge.
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Figure 7.1: SCS-SA CSM system overview  
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Figure 7.2: Data input screens 
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Figure 7.3: Example of computed output 

 
Figure 7.4: Example of generated hyetograph and simulated hydrograph 

The use of the ACRU model as the CSM to simulate runoff volumes makes the need to account for 
antecedent soil moisture in an event-based simulation of runoff response redundant, i.e. the median 
condition method for CN adjustment in the current version of the SCS-SA model is not required as the 
soil moisture balance is computed on a daily timestep in the model, and more runoff is generated when 
the soil is wet compared to when the soil is drier. The next section addresses the performance of the 
SCS-SA CSM. 
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7.3 PERFORMANCE OF THE SCS-SA CSM 

In this section, a brief methodology and the results obtained in the study are provided.  

7.3.1 Methodology 

The test-version SCS-SA CSM, as described in Section 7.2, currently incorporates a number of ways 
to model the design peak discharge. Table 7.1 contains a summary of the possible combinations, which 
include using the following: 

• Catchment-specific soil (Catchment Specific), soil for the dominant quinary in the catchment 
(Quinary – dominant) or each quinary in the catchment modelled as an HRU using the quinary soil 
information for each HRU (Quinary – HRU)  

• One-day-duration design rainfall or short-duration rainfall equivalent to time to peak  
• The “CELRUN” or “DSTORM” design volumes, as described in Section 7.2  
• Land cover specific to the catchment  

The simulation scenarios that are run to assess the performance of the SCS-SA CSM are referred to 
as Run 1 to Run 12. These represent the corresponding variable or parameter combinations that were 
adopted. The model runs were performed on a total of 19 catchments, as detailed in the above chapters 
for the various studies undertaken. The MARE for all catchments was averaged for each scenario to 
determine the general trend in the performance of the model when selecting different options and 
combinations of variables or parameters. 

Table 7.1: Simulation matrix for the SCS-SA CSM model runs 

Simulation 
runs 

Parameters or variables 
Soils Rainfall duration Runoff Land cover 

Run 1 Catchment-specific  one day  CELRUN  Catchment-specific  
Run 2 Catchment-specific  one day DSTORM Catchment-specific  
Run 3 Catchment-specific  time to peak CELRUN  Catchment-specific  
Run 4 Catchment-specific  time to peak DSTORM Catchment-specific  
Run 5 Quinary – dominant one day CELRUN  Catchment-specific 
Run 6 Quinary – dominant one day DSTORM Catchment-specific 
Run 7 Quinary – dominant time to peak CELRUN  Catchment-specific 
Run 8 Quinary –  dominant time to peak DSTORM Catchment-specific 
Run 9 Quinary – HRU one day CELRUN  Catchment-specific 
Run 10 Quinary – HRU one day DSTORM Catchment-specific 
Run 11 Quinary – HRU time to peak CELRUN  Catchment-specific 
Run 12 Quinary – HRU time to peak DSTORM Catchment-specific 

 
It is evident from Table 7.1 that runs 1 to 4 use both catchment-specific soils and land-cover information, 
whereas runs 5 to 8 use soil information from the quinary catchments database and catchment-specific 
land-cover information. Where there was more than one quinary overlapping a catchment, two 
scenarios were simulated: the information from the dominant quinary catchment in terms of catchment 
area was selected (Quin – dominant), and each quinary in the selected catchment was simulated as an 
HRU (Quinary – HRU). These are represented by runs 9 to 12. 
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The parameter values from the quinary catchments database were used in the ACRU model, i.e. default 
values as conventionally used. The calibrated ACRU parameter values described in Chapter 3 were 
not used in this assessment. 

7.3.2 Results, discussion and conclusions 

Figure 7.5 illustrates the MARE of design peak discharges averaged for all catchments and for each 
simulation run. From the general trends shown in Figure 7.5, the following conclusions are drawn: 

• Generally better performance is obtained when using the DSTORM compared to CELRUN volume 
as is evident by comparing Run 1 to Run 2, Run 3 to Run 4, Run 5 to Run 6, Run 7 to Run 8, and 
Run 9 to Run 10. This is supported by the consistently lower MARE values. Although, Run 11 and 
Run 12 do not follow this trend, the differences in MARE values are small. 

• Generally better performance is obtained when using time to peak compared to one-day duration, 
as is evident by comparing Run 1 to Run 3, Run 2 to Run 4, Run 5 to Run 7, Run 6 to Run 8, Run 9 
to Run 11, and Run 10 to Run 12.  

• Generally better performance is found when quinary catchments are simulated as HRUs with 
quinary catchments’ soil information compared to soil information from the dominant quinary 
catchment, as is evident by comparing Run 5 to Run 9, Run 6 to Run 10, Run 7 to Run 10, and 
Run 8 to Run 12. 

 

Figure 7.5: Averaged MARE of design peak discharge for each simulation run across all catchments 

The average MRE and linear regression slope of the simulated vs observed design peak discharges 
for each simulation run are shown in Figure 7.6. From Figure 7.6, it is evident that the SCS-SA CSM 
simulates the observed design flood peak discharges reasonably well, and is best for Run 4 (catchment-
specific soil, time to peak duration, DSTORM volume), Run 8 (quinary soil, time to peak duration, 
DSTORM volume), and are slightly under-simulated for Run 11 and Run 12 (Quinary – HRU, time to 
peak duration, and CELRUN and DSTORM volumes, respectively).  

Overall, it is evident that soil information from the quinary catchment gave better results than catchment-
specific soil information. This can be attributed to the source of the information used for the catchment-
specific soil.  
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Generally, there are also improved results when the catchment is simulated as an HRU, with each HRU 
representing a quinary falling within the catchment. The trends in MRE and regression slope are 
consistent with the trends indicated by MARE values.  

 
Figure 7.6: Averaged MRE and regression slope for design peak discharge for each simulation run 

across all catchments 

To determine which simulation run performed the best in terms of having the best MARE and MRE 
values, the runs were ranked for both MARE and MRE values, and the ranks were summed to determine 
the overall rank, as shown in Table 7.2, where it can be seen that the run with the best rank is Run 8, 
and the run with the lowest rank is Run 1.  

Table 7.2: Ranking of simulation runs using MARE and MRE values 

Simulation run 
MARE MRE  Overall 

rank Value Rank Value Rank  

Run 1 375 12 3.49 12  12 

Run 2 272 10 2.44 10  10 

Run 3 110 7 0.49 5  6 

Run 4 90 4 0.13 2  3 

Run 5 344 11 3.17 11  11 

Run 6 255 9 1.77 9  9 

Run 7 95 5 0.32 3  4 

Run 8 79 3 -0.08 1  1 
Run 9 136 8 0.98 8  8 
Run 10 99 6 0.55 7  7 
Run 11 44 1 -0.38 4  2 
Run 12 54 2 -0.53 6  4 
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CHAPTER 8: COMPARISON OF RESULTS  
OBTAINED IN THE STUDY 

NS Dlamini, JC Smithers and U Maharaj 

This chapter contains a summary of results from the various studies detailed in the above chapters, 
including the standard and Ensemble SCS-SA models with both one-day and time to peak design rainfall 
durations, the comprehensive ACRU model , the parameter-sparse GR4J CSM and the SCS-SA CSM.  

8.1 METHODOLOGY 

The standard and Ensemble SCS-SA model were applied to 19 catchments. The SCS-SA CSM was 
applied to 19 catchments. The ACRU model was applied to 11 catchments. The GR4J model was 
applied to five catchments. The ACRU and GR4J models were applied to fewer catchments due to the 
lack of availability of good-quality continuous observed data. For the SCS-SA CSM, only the overall 
best simulation scenario (Run 8) is included in the comparison between the performance of the models. 

In order to apply the Ensemble SCS-SA model at sites where event hydrographs were not available or 
had not been extracted (and hence the TP data for the observed events was not available), a preliminary 
generalised method was developed to estimate TP using the currently available TP data from selected 
regions. This development is detailed in Section 8.2. 

The best methods to determine CNs that are similar to published CNs, or to give the best estimates of 
design runoff volumes, are detailed in Chapter 2. The performance of the CN-determination methods 
to estimate design peak discharges and the impact of different methods to estimate catchment design 
rainfall on the estimation of design runoff volumes are detailed in Section 8.3. 

8.2 ESTIMATION OF DISTRIBUTION OF TIME TO PEAK AT UNGAUGED SITES FOR THE 
ENSEMBLE SCS-SA MODEL 

As detailed in Chapter 6, the ensemble SCS-SA JPA model was applied at sites where event hydrographs 
had been extracted and the event TP has been determined. This data was used to determine the 
distribution of TP at the sites. In order to apply the ensemble SCS-SA JPA model at any location in South 
Africa, the available event TP values were scaled and used to derive a generalised regression model to 
estimate TP at any location in South Africa. This entailed developing a regression equation to estimate 
the mean TP and the standard deviation (SD) of the TP. The estimated mean and SD of TP were used 
with the Log-Normal distribution to generate random TP values for the selected site. 

A total of 78 catchments across different climatic regions were used to develop the regression equations 
using the mean TP and SD of TP for each catchment extracted and used by Gericke (2016). Both the 
mean TP and SD of TP were scaled using the catchment area and then plotted against the catchment 
area, as shown in figure 8.1 and 8.2, respectively. Regression equations were then fitted to the data for 
both the mean and SD of TP. The equations were then used to estimate the mean and SD of TP for 
each catchment used in this study.  

The probability distribution that best fits the observed TP is the Log-Normal distribution. The estimated 
mean and SD of TP were used to estimate the parameters of the Log-Normal distribution. Using the 
fitted Log-Normal distributions, TP values were randomly generated for each catchment and used as 
input to run the Ensemble SCS-SA (regional equation duration) model. 

It is acknowledged that the above approach, which was developed to estimate the distribution of TP at 
an ungauged site, is limited by the sites used in the development, has not been independently verified, 
and has been applied outside the sites used in the development, but the approach was adopted as a 
proof of concept and for possible further development in a subsequent study. 
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Figure 8.1: Scaled mean time to peak relative to the catchment area 

 
Figure 8.2: Scaled standard deviation of the time to peak relative to the catchment area 

8.3 DESIGN RAINFALL ESTIMATION INPUT TO THE SCS-SA CSM FOR CN AND DESIGN PEAK 
DISCHARGE ESTIMATION 

The results from Maharaj (2020) and summarised in Chapter 2 are expanded in this section to estimate 
design peak discharges and assess the impact of three methods to design rainfall estimation (DRE) on 
the catchment: 

• DRE 1: Catchment-specific one-day design rainfall estimated from the daily rainfall data selected 
to represent the catchment, as used by Maharaj (2020) and summarised in Chapter 2.  
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• DRE 2: One-day point design rainfall estimated at the catchment centroid using the regional linear 
moment algorithm and scale invariance (RLMA&SI) approach (Smithers and Schulze, 2003; 
2004a).  

• DRE 3: Average of all one-day point design rainfalls within the catchment estimated using the 
gridded RLMA&SI approach. 

To estimate DRE 2 and 3, ArcGIS was utilised to generate a 1 'x 1' grid of one-day design rainfall across 
South Africa. The Fishnet geoprocessing tool was used to generate the 1' x 1' grid with the correct 
specified dimensions of the cell size height and width, and coordinate system. Once the grid was 
generated, it was clipped to the boundary of South Africa, and the attribute table of the layer was utilised 
to add coordinates for each centroid of the grid using the calculate geometry option in the attribute table. 
Once all coordinates for the 1' x 1' grid points were obtained, the layer was used to overlay with 
catchment boundaries of interest and the 1' x 1' grid coordinates within the catchment boundary were 
extracted. At each point, the one-day point design rainfall was estimated. Thereafter the one-day point 
design rainfall for the catchment centroid was extracted (DRE 2) and all the values within the boundary 
of the catchment of interest were averaged (DRE 3).  

The SCS-SA CSM model was then used to simulate the design peak discharges for the CNpublished and 
CN10 values derived using observed and simulated data for all three design rainfall estimation methods 
(DRE 1, DRE 2 and DRE 3). Figure 8.3 illustrates the averaged MARE for each set of scenarios when 
using DRE 1, DRE 2 and DRE 3 design rainfall values. 

It is evident from Figure 8.3 that, when using the SCS-SA CSM to estimate the observed design peak 
discharge, the CN10 (ACRUCON-P: DRE 2) scenario has the lowest average MARE value, indicating the 
best overall estimate of observed design peak discharge. Similarly, the CN10 values derived using 
ACRUCON-P had the lowest average MARE values for both the DRE 1 and DRE 2 design rainfall 
estimation methods. It is evident that, when adopting the CN10 values derived using the ACRUCON-P 
configuration results in the best overall estimate of observed design peak discharge compared to the 
other CN10 determination methods. 

 
Figure 8.3: Averaged MARE for peak discharge etimation across all catchments for the different CN 

estimation scenarios 

Figure 8.4 illustrates the MRE of peak discharge estimation for each set of scenarios for the different 
model applications. It can be seen from Figure 8.4 that the MRE values are relatively high positive values, 
indicating that there is significant over-estimation of the observed design peak discharges.  
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Furthermore, this can be observed across all the scenarios, indicating that the CNpublished and CN10 
determination methods are all performing poorly in simulating the observed design peak discharges. These 
results are not consistent with good simulations of design runoff volumes as summarised in Chapter 2. 

 
Figure 8.4:  Averaged MRE for peak discharge estimation across all catchments for the different CN 

scenarios 

8.4 OVERALL COMPARISON OF RESULTS OBTAINED IN THE STUDY 

In the overall comparison of model performances, only the best simulation run (Run 8) from the  
SCS-SA CSM was included. It can be seen from the summary graph in Figure 8.5 that the best MARE 
of design peak discharges is obtained by the Ensemble SCS-SA (time to peak) model, followed by the 
calibrated GR4J models, SCS-SA CSM (Run 8), standard SCS-SA model (time to peak) and the 
Ensemble SCS-SA (regional equation duration) models, all of which have similar MARE values. 

 
Figure 8.5:  Averaged MARE for peak discharge estimation for each model application across all 

catchments 
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It is encouraging to note that some of the models developed in this study (Ensemble SCS-SA and  
SCS-CSM) perform better than the standard SCS-SA (one-day duration) model, which is currently used 
in practice.  

Figure 8.6 illustrates the averaged MRE across all models and model scenarios evaluated. It can be 
seen from the summary graph in Figure 8.6, and similar to the MARE results, the best MRE results 
were obtained by the Ensemble SCS-SA (time to peak) model, followed by the SCS-SA CSM (Run 8), 
standard SCS-SA (time to peak) model and the Ensemble SCS-SA (regional equation duration) models, 
all of which have similarly low MRE values. The good performance of the Ensemble SCS-SA (regional 
equation duration) model, despite the limited datasets used in the derivation of the regionalised 
equations to estimate TP, is encouraging and requires further refinement.  

 
Figure 8.6: Averaged MRE for design flood estimation for all model applications across all sites 

Despite the improved estimates of design peak charges by the Ensemble SCS-SA (time to peak) and 
SCS-SA CSM (Run 8), compared to most other models, there are some further inconsistencies in the 
results that require further investigation. For example, the results shown in Chapter 2 indicate that the 
derivation and use of CN10,0.1 and S-CN10,0.1 (ACRUTR-P) resulted in reasonable estimates of design 
runoff volumes, but the above results for design peak discharge estimation indicate relatively poor 
simulations. Hence, some of the good estimations of peak discharge shown by some models used in 
this study may not be consistent with the estimation of design runoff volumes.  
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CHAPTER 9: DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS 

JC Smithers, NS Dlamini and U Maharaj 
 

A list of specific objectives undertaken to meet the aims of this project are outlined in Chapter 1. The 
studies undertaken to achieve these objectives are discussed in the following sections. 

9.1 AN ASSESSMENT OF THE PERFORMANCE OF PUBLISHED AND DERIVED SCS CURVE 
NUMBERS FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA  

The aim of the study reported on in Chapter 2 was to evaluate the currently available published CNs 
and select a suitable method to derive CNs using observed or simulated rainfall-runoff data for South 
African catchments. It was found that the different CN-determination methods resulted in different CN 
values. The CN value was also dependent on the coefficient of initial abstraction used in the derivation.  

If the objective is to use a method that derives CN values closest to the published CN values, then the 
results show that the mean S-CNAMS,0.1 and the AMS S-CNNEH,0.1 (derived using simulated P-Q depths 
from ACRUTR-P) resulted in derived CN values that were similar to the published CNs. These methods 
should be used to derive CNs on catchments with land-cover classes that are not currently available in 
the published CN tables.  

It was found that the CNs derived using observed data and c = 0.1 were generally closer to the CNpublished 
values. This was unexpected, because the CNpublished values were derived using c = 0.2. Hence, future 
studies should focus on the calibration of both c and the CN. 

This study also investigated which CN-determination methods resulted in CNs that, when used in the 
SCS-SA model, resulted in the best estimates of the design volumes computed from the observed data. 
A significant finding is that the use CNpublished values generally resulted in poor estimates of runoff, which 
has an impact on how the model is currently used in practice. The results from the study showed that 
data-derived CN10,0.1 values generally resulted in the best design flows. This method is recommended 
to determine CNs. 

The study also investigated how the estimated design runoff volumes from the different CN-
determination methods can be used as input in the SCS model to determine design peak discharges. 
The design peak discharges obtained from translating the design runoff volume determined from the 
CNs simulated from ACRUCON-P parameterisation consistently resulted in better estimates of the 
observed design peak discharges compared to the other CN-determination methods. 

The study also investigated the use of runoff simulated from two slightly different parameterisations of 
the ACRU model to determine CNs. The CNs determined from the runoff simulated from ACRUTR-P 

generally resulted in a better performance of the SCS model compared to when ACRUCON-P 

parameterisation was used. This result was not unexpected given that CNpublished values were used in 
the calibration of two sensitive parameters in the ACRUTR-P configuration. 

From the results of this study, it is evident that CNs are more accurately defined by observed P-Q data or 
simulated Q values for a specific catchment and not from published CN tables. Furthermore, in the 
absence of reliable P-Q data, the results from this study indicate that the S-CN10,0.1 values calculated using 
simulated Q depths from ACRUTR-P and the S-CNLN,0.1 calculated using Q depths from ACRUCON-P resulted 
in improved estimates of design runoff volumes compared to using the CNpublished values.  
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A significant outcome of this study is that the simulated runoff can be used to determine CNs for a range 
of land-cover and soil combinations appropriate to South Africa. It is recommended that this approach 
be adopted in future studies.  

9.2 FURTHER DEVELOPMENT AND ASSESSMENT OF THE ACRU CSM SYSTEM FOR DESIGN 
FLOOD ESTIMATION IN SOUTH AFRICA 

The ACRU model has been successfully used in a number of pilot studies for design flood estimation. 
The aim of the study reported on in Chapter 3 was to further develop and assess the performance of a 
comprehensive CSM system that can be used to estimate design flood discharges consistently and 
reliably in small catchments (0–100 km2) throughout South Africa, and which can be easily applied by 
practitioners. This led to the identification of some inconsistencies in the way peak discharge is 
calculated in the ACRU model. Some improvements were made to the volume used to estimate the 
peak discharge. The results also showed the improved estimates of peak discharge when the 
incremental unit hydrograph approach was used compared to the currently routinely applied single 
hydrograph approach. Based on the assumption that tabulated CNs used in the SCS model give 
reasonable simulations of volume, two sensitive parameters in the ACRU model were calibrated to 
obtain similar hydrological responses simulated by the SCS-SA model. When the above modifications 
were made, the revised ACRU CSM resulted in reasonable estimates of design volumes and peak 
discharge, and performed better than the current ACRU CSM.  

A significant contribution of this study was the linking of the soil and land-cover parameters required by 
the ACRU model to information derived from national-scale soil and land-cover coverage. In addition, 
land-cover classes for the ACRU model have been extended to include management practices and cover 
conditions as are available for the SCS-SA model. The results from the study also showed reasonable 
performance when the Schmidt-Schulze lag time was used to estimate catchment response times. 

A comparison of the performance of the updated ACRU CSM and SCS-SA models to estimate both 
design volumes and peak discharges indicated improved performance by the ACRU CSM for DFE. The 
comparison also highlighted the relatively small effect the median condition method of CN adjustment 
in the SCS-SA model had on estimated design floods and the poor performance of the joint association 
method as incorporated in the current SCS-SA model. 

9.3 ASSESSING THE PERFORMANCE OF TECHNIQUES FOR DISAGGREGATING DAILY 
RAINFALL FOR DESIGN FLOOD ESTIMATION IN SOUTH AFRICA 

The improved performance when using the incremental unit hydrograph approach, which requires the 
daily rainfall value to be transformed into a hyetograph, led to the investigation of the performance of 
selected RTD methods and to recommend the adoption or adaptation of one or more of these 
approaches for application under South African conditions. The results indicate that the use of a 
triangular distribution performed well when the characteristics of the observed events were available. 
Hence, it is recommended that this option be further investigated by developing methods to estimate 
event characteristics at ungauged sites.  

In general, the results indicate that the Knoesen semi-stochastic disaggregation model performed the 
best when disaggregating daily rainfall data. This model is recommended for use in design flood 
estimation, particularly if ensemble joint probability approaches are used. The currently widely used 
SCS-SA temporal distribution was the second-best performing disaggregation method that did not rely 
on observed event characteristics.  

9.4 ASSESSMENT OF A SIMPLER PARAMETER-SPARSE CONTINUOUS SIMULATION MODEL  

Given the number of input variables and parameters required by a comprehensive CSM, such as the 
ACRU model, a study was undertaken to assess the performance of a selected simple CS model and 
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compare its performance to that of the comprehensive ACRU model. The four-parameter GR4H (hourly 
timestep) and GR4J (daily timestep) models were selected for assessment in this study. Several 
different calibration options were assessed as part of the study to improve model performance.  

The initial results obtained for the two test catchments selected indicate the potential of the GR4J model 
to provide accurate daily streamflow volumes and design streamflow volumes that were identified to be 
superior to those obtained from the standard ACRU model. However, the GR4J model needs to be 
calibrated against observed data. Therefore, for the GR4J model to be applicable nationally, and 
particularly for ungauged catchments, a methodology to transfer parameters to ungauged locations or 
to regionalise parameters would be required, which is a significant task that is beyond the scope of this 
study. In addition, the GR4J model does not have capabilities to estimate the peak discharge for the 
day from the simulated streamflow volumes. Consequently, the performance of the GR4H model was 
assessed, which was hypothesised to better approximate the actual daily peak discharge. However, 
this was not the case. The results from the GR4H model were generally no better than the actual daily 
discharge values obtained from the GR4J model. Based on these results, and due to the challenges 
associated with obtaining or synthetically generating short-duration rainfall data, further experimentation 
with the GR4H model is not recommended.  

In summary, the potential of the GR4J model for application in South Africa has been shown. However, 
significant work is required to develop the model into a DFE tool that is applicable at a national scale. 

9.5 DEVELOPMENT AND ASSESSMENT OF AN ENSEMBLE JOINT PROBABILITY APPROACH 
USING THE SCS-SA MODEL  

The aim of this study was to develop, apply and assess the performance of an ensemble joint probability 
approach using the SCS-SA model for design flood estimation in South Africa, using readily available 
data. While the Ensemble SCS-SA (one-day duration) model improved on the performance of the 
standard SCS-SA (one-day duration) model, the models significantly over-estimated the observed 
design runoff volume and design peak discharge for all the return periods. However, when short-
duration rainfall was used as input to the models, both the Ensemble SCS-SA (time to peak) and 
standard SCS-SA (time to peak) models generally simulated the observed design peak discharges 
relatively well for all the return periods for all catchments, with the Ensemble SCS-SA (time to peak) 
performing the best.  

The use of time to peak is consistent with the theory of catchment flood response, which assumes that 
the peak discharge at a catchment outlet will be when the duration of rainfall is at least as long as the 
catchment response time, i.e. runoff from the furthermost point has reached the catchment outlet, and 
is still remaining. However, this is not consistent with published CNs, which were derived from daily 
rainfall and runoff values. Hence, it is recommended that this approach be further investigated. 

9.6 DEVELOPMENT AND ASSESSMENT OF THE SCS-SA CSM SYSTEM FOR DESIGN FLOOD 
ESTIMATION IN SOUTH AFRICA 

Based on the findings of the studies undertaken in this project, a beta version of the SCS-SA CMS was 
developed and assessed for design flood estimation in South Africa. The system is linked to the quinary 
catchments database. The user can run the system using default ACRU parameter values. Currently, the 
ACRU parameter values calibrated by Rowe (2019) have not been included in the database.  

The performance of various options of the SCS-SA CSM were assessed in 19 test catchments. Similar 
to the results summarised in Chapter 6, the performance of the SCS-SA CSM was better when the time 
to peak option was used compared to the one-day duration option. The use of the DSTORM runoff 
depth in the SCS-SA CSM model performed better in terms of design peak discharge estimation 
compared to using the CELRUN runoff depth. This is consistent with results reported in Chapter 3.  
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The improved performance when simulating a catchment as an HRU and not using the soil and land-
cover attributes of the dominant quinary catchment is consistent with what has been found in other studies. 
However, it was surprising that the use of catchment-specific land-cover and soil information did not give 
the best results. Hence, the manner in which the catchment-specific information was derived needs to be 
reviewed. Based on the results obtained, it is recommended that the SCS-SA CSM model should be 
applied with the quinary catchments configured as HRUs, quinary catchment soil information used, 
duration of design rainfall (time to peak) and using DSTORM as the design volume for design peak 
discharge estimation in South Africa.  

9.7 COMPARISON OF RESULTS FROM THE STUDY 

In a comparison of results from the different studies using the sites where the models were applied, the 
Ensemble SCS-SA (time to peak and regional equation duration versions) and SCS-SA CSM models 
developed in this study generally performed best among the models evaluated in this study. These 
models generally show a much better performance compared to the currently used standard SCS-SA 
(one-day duration) model, and are hence recommended for use in practice. The relatively poor results 
using derived CNs for design peak discharge estimation, despite reasonable estimation of design runoff 
volumes, was not expected and requires further investigation.   

9.8 CONCLUSIONS 

The aims of this project were the following: 

• Refine and update the SCS-SA model for design flood estimation to account for antecedent 
moisture conditions and joint association of rainfall and runoff using the results and methodology 
from a CSM system 

• Compare the performance of the CSM system to the traditional and updated SCS-SA models. 
• Further develop and assess the CSM approach, including the potential incorporation and 

assessment of improved daily rainfall disaggregation methods to account for the temporal 
distribution of daily rainfall. 

As summarised in sections 9.1 to 9.7, these aims have been met and exceeded. The performance of the 
Ensemble SCS-SA and SCS-SA CSM models have resulted in major improvements in the estimation of 
design peak discharges compared to the standard SCS-SA model currently used in practice.  

9.9 RECOMMENDATIONS  

Based on the results from this study, the following recommendations are made: 

• The performance of the models assessed in this study should be expanded to include design 
volume estimation and inconsistencies in the performance of the models for transforming a design 
volume into a design peak discharge should be investigated and resolved.  

• The beta version of the SCS-SA CSM system should be further developed to include the Knoesen 
semi-stochastic daily rainfall disaggregation model.  

• The Ensemble SCS-SA model should be further developed and refined for use in practice. 
• The ensemble approach should be expanded to include other event-based flood estimation models 

used in South Africa.  
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CHAPTER 10: CAPACITY BUILDING 
The students involved in this project and their roles are summarised in Table 10.1. 

Table 10.1: List of students involved in the project 

Name Degree Research topic Status 

Thomas 
Rowe PhD 

Development and assessment of an improved continuous 
simulation modelling system for design flood estimation in 
South Africa Using the ACRU model 

PhD completed and 
degree awarded 

Nkululeko 
Mabila MSc An assessment of simple continuous simulation modelling 

approaches for design flood estimation in South Africa 
MSc completed and 
degree awarded 

Nkosinathi 
Dlamini MSc 

Development and assessment of an ensemble joint 
probability event-based approach for design flood 
estimation in South Africa 

MSc completed and 
degree awarded 

Udhav 
Maharaj 

MSc 
Eng  

An assessment of the performance of published and 
derived SCS curve numbers for design flood estimation in 
South Africa 

MSc Eng completed 
and degree 
awarded 

Ryshan 
Ramlall MSc Assessing and updating techniques for disaggregating daily 

rainfall for design flood estimation in South Africa 
MSc completed and 
degree awarded 
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