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EXECUTIVE SUMMARY 

BACKGROUND 

Hydroinformatics provides various constituents of water-related data, among which is water quality. 
Most of the sources of such data, which is usually structured in format, have been internal databases 
of organisations such as water utility companies, private companies and municipalities. This has led to 
the interpretation of water quality within this ambit and where such data is limited or unavailable, it has 
impacted on decision making. Text data, unstructured and available on various online platforms (e.g. 
blogs, chat sites, social media comments, emails, etc), can be an important source of information and 
one that can augment structured data. This has been widely used in marketing for segmenting and 
targeting particular customers and, as a way of assessing brand performance. Insurance, security and 
banking industries have also tapped into this data resource. However, the uptake in water management 
has been very sparse and limited. The low uptake in water management may be related to traditional 
perceptions in scientific fields, in general, that data should be structured and in a format to which 
numerical and deterministic models can be applied. Machine learning techniques have been used with 
notable success for water data in such formats, but have not been fully explored, as they have been in 
other fields, for text mining of unstructured water data available on online platforms. Further, the advent 
of cloud-based systems means that large volumes of such data can be stored together with structured 
data and made available to a wide variety of users. 
 

AIMS 

This study aimed at conducting text mining of water data from Twitter and WhatsApp platforms to 
enhance hydroinformatics, mainly water quality. This was supported by the following other specific aims 
or objectives: 
 

• Developing a framework and guidelines, based on coding and a third-party service, to extract 
text on water quality from online platforms (Twitter and WhatsApp). 

• Collating the data from text mining (on Twitter and WhatsApp), transforming it to structured 
format and modelling it, using machine learning techniques to yield insights into opinions and 
sentiments. 

• To develop, and/or explore from available third-party services, an intermediary database to 
store and curate extracted information – including establishment of quality control protocols. 

 
To achieve these aims, the approach followed for the research is as follows. 
 

METHODOLOGY 

The approach to the study involved: text mining and extraction; processing the text to transform it to 
structured format; using machine learning techniques to model the opinions and sentiments; and 
developing a cloud-based database for curating the mined data and models generated from it.  
 
Mining and extracting text from online platforms 
Text data from comments on online platforms (Twitter and WhatsApp) were mined and extracted. Only 
these two platforms were used by virtue of permission that they granted us to use their data. For Twitter, 
coding using R/RStudio was used to extract data from its platform followed by storing on the Google 
Cloud platform. This was also attempted using a third-party service provider, Fivetran.  
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Twitter comments were general, drawn from users commenting on their timelines (and retweeting) 
about water quality from their service providers in South Africa. No answers were solicited in the form 
of a survey, but rather just a direct mining of the platform using appropriate search criteria. More than 
1500 tweets and retweets were extracted that related to water quality in the country. 
 
For WhatsApp, a group chat was formed of 100 respondents from across the country. They were given 
a set of questions to respond to with respect to their water quality. They were allowed to give responses 
for their areas of primary residence, as well as for any other areas that they visit often, e.g. someone 
living in one district or town or city but working in a different one. The comments were then exported to 
a spreadsheet prior to processing and modelling. 
 
Opinion and sentiment modelling 
Text data was processed, cleaned and transformed from an unstructured to a structured format. The 
latter is a vectorised form that allows text data to be modelled using machine learning techniques. 
Analysis of opinions and sentiments was conducted, allowing for delineation of positive, negative and 
neutral aspects thereof. Different models of word associations/clusters, groupings and networks were 
created using coding (R/RStudio). 
 
Curation in intermediary database and consideration of quality control aspects 
This was conducted through coding and use of a third-party service (Fivetran). For coding, a database 
was created on Google Cloud in which Twitter comments were stored after they were mined. The 
models generated for opinions and sentiments drawn from the comments were also stored on the cloud. 
Storage was also done for WhatsApp comments and models generated from them. A trial version of 
Fivetran was used to demonstrate the possibility of data storage. Quality control aspects determining 
data integrity, security and quality were assessed with respect to the use of online platforms and cloud 
storage. 
 

FINDINGS 

The findings revealed that it was possible to mine and extract text data for water quality from Twitter 
and WhatsApp platforms. The data was successfully processed, cleaned, transformed into structured 
form through vectorisation and modelled with respect to opinions and sentiments. Informative and 
interesting patterns were drawn from opinions and sentiments, delineating them to illustrate where 
respondents or users were satisfied, dissatisfied, trusted or distrusted their water quality. Word clusters, 
word clouds and networks were obtained that revealed these and several other delineations. This was 
further corroborated using word connection strengths (to emphasise strong connection paths among 
words) and polarity distributions that enabled classification of opinions and sentiments as positive, 
negative or neutral. 
 
Coding was successful in creating a database on Google Cloud for storage of both Twitter and 
WhatsApp comments and models. Buckets and folders to contain these were created, such that if 
different teams were to work on a project, the members could access these to make amendments or 
additions. It was possible to create and store data in a cloud database created with Fivetran. However, 
the search-and-store approach that was successfully used for coding could not be accomplished with 
Fivetran, as the source code is based on structured query language (SQL) whose back-end 
components could not be accessed and changed. SQL works with base tables, i.e. structured tables 
from which particular data can be accessed using query-based searches. This could not work for data, 
such as the comments in Twitter, as they are not in the form of base tables, but rather plain, random 
text. These findings would be true for most third-party services, as their codes are customised and 
usually based on SQL, and quite widely used in such services. 
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Quality control of the data, by maintaining data quality, data integrity and data security was identified 
as important in ensuring that data was not compromised at any stage of the chain of custody. This could 
not be implemented comprehensively within the scope of the project, as it would have required a 
substantial time frame and a case study approach. This would ensure elimination of spurious comments 
from any fake accounts and the weighting of users so as to avoid discrepancies that may be caused by 
users, known as influencers, who tend to exert more influence on other users. 
 

CONCLUSIONS 

The study has shown that text data is important and can be mined, processed and modelled to derive 
insights related to hydroinformatics in general. This would be important also in instances where other 
data yields insufficient information about an aspect such as water quality. The study has revealed how 
useful online platforms are as latent repositories of this data.  
 
Machine learning techniques have also proven their utility, with their ability to model such a complex 
data structure as unstructured text data through vectorised transformations into structured data. From 
that, opinions and sentiments were drawn out that revealed important intentions within the comments. 
Various approaches revealed positive, negative and neutral aspects of these. The implication here is 
how far such an approach actually involves the communities who are the users of water, rather than 
drawing inferences only from conventional structured analytical data and surmising from that what the 
community could be experiencing. Text mining in this case brings out indigenous knowledge capabilities 
and makes communities involved in revealing the science behind their water, notwithstanding their 
professional background and level of education.  
 
The creation of an intermediary database using coding proved to be more ideal, as coding is quite 
versatile and gives more leverage to the user and allows for certain aspects to be created from scratch. 
This implied that it is possible to create a platform based on coding that would link text mining, 
processing and modelling, as well as storage, on a cloud platform. The use of coding to extract and 
curate text data also proved to be a lot more cost-effective compared to use of a third-party service 
provider. There was less flexibility provided by these providers as they tend to use SQL that would work 
well with data contained in base tables. As any other component of computing, it is important to protect 
systems and, subsequently, data from being compromised. This will ensure data quality, data integrity 
and data quality. There is a shared responsibility here between the cloud providers and users, with the 
former protecting the underlying cloud infrastructure while the latter protect data and cloud-deployed 
assets. 
 

RECOMMENDATIONS 

The use of text data to augment conventional analytical data is recommended. There is a large host of 
information that can be drawn from online platforms through text mining of comments and building 
models based on them. Within this context, it would be recommended that such projects should involve 
collaboration with researchers in linguistics so that a multi-lingual approach to dealing with online data 
can be pursued. This will address other aspects within indigenous knowledge systems and citizen 
science that have become key areas with a potential to enhance scientific research. South African 
communities are often diverse with multiple languages spoken amongst the people. Tapping into these 
languages and working through their diversity, extracting information from them, and aligning implied 
sentiments in them would be useful. 
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Further, there can be collation of data from diverse sources including conventional data, text data from 
online platforms, other citizen data such as videos and images, and data from sensors. This will allow 
for automated collection, modelling and curation of data from various sources. 
 
Extension of this capability of text mining would be recommended to incorporate a wider scope of 
hydroinformatics beyond water quality. For instance, events such as flooding and climate change can 
be tracked using text mining. The latter can be assessed by, for instance, having a case study in the 
form of a village where agricultural activity and its output can be used as indicators. 
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GLOSSARY 
Application Programming Interface: is a software intermediary that allows two applications to 
communicate with each other. Essentially, it is the messenger that delivers a request to the provider 
and then delivers the response back to the requester. 
 
Big data analytics: is the use of advanced analytical techniques for very large, diverse data sets that 
include structured, semi-structured and unstructured data, from different sources, and of different sizes. 
 
Categorisation: is a type of supervised learning where categories are known in advance and is 
essentially a process of gathering, processing and analysing text documents to put them in the correct 
category based on the link between the content and category. 
 
Citizen science: the collection and analysis of data by members of the general public. It is sometimes 
referred to as public participation in scientific research. 
 
Clustering is an unsupervised technique that finds intrinsic structures in information and arranges them 
into subgroups called clusters to generate labels for objects based on the data. 
 
Hydroinformatics: integrates knowledge and understanding of both water quantity and quality with the 
latest developments in information technology to improve technical and business decision-making 
within the water sector. It straddles data capture, storage, processing, analysis and graphical models, 
and also incorporates the use of modelling, simulation, optimisation and knowledge-based tools and 
systems infrastructure. 
 
Lemmatisation: is a more efficient process, which uses vocabulary and morphological analysis of 
words and removes only the inflectional endings to return the base form of word as output. 
 
Stemming: is a process of removing the ends of words, mostly derivational affixes.  
 
Text categorisation: the process of categorising and labelling words into different parts of speeches, 
also known as tagging. 
 
Text mining: also called text analytics, is an artificial intelligence (AI) technology that uses natural 
language processing (NLP) to transform the free (unstructured) text in documents and databases into 
normalised, structured data suitable for analysis by machine learning. 
 
Text summarisation: is the process of automatically creating a compressed version of a given text that 
provides useful information for the user. 
 
Tokenisation: is the process of breaking up a stream of text, a character sequence or a defined 
document unit, into phrases, words, symbols, or other meaningful elements. 
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CHAPTER 1: INTRODUCTION  
This chapter presents the background to the study, the motivation, aim and objectives as well as some 
research questions that the study sought to answer.  
 
1.1 BACKGROUND 
Successful water management is hinging increasingly on a combination of sources of data beyond the 
conventional structured sources, e.g. those provided by water utility companies, municipalities, 
government departments and agencies. The importance of unstructured data is becoming apparent in 
general and efforts are being directed at tapping into this type of data. This information and/or data 
comes from observations by community members, for instance, and are not conventional or structured 
as is the case with laboratory and scientific field data. This may comprise information gleaned from 
surveys, interviews, blogs, social media commentary, observations recorded by the community, videos, 
photos and some data from gadgets (e.g. sensors) for monitoring water and weather events.  
 
An example is a case where a community observes or identifies that water from their borehole is getting 
fouled over time and shows changes in colour from clear to brownish. This could be associated with 
levels of iron in the water. Or it can be smells that are sensed in the water, indicating contamination by 
organic substances. The other common one is the ability or inability of the water to form a lather with 
laundry soap during the washing of clothes. This is usually associated with elevated levels of alkalinity 
in the water (Nuapia et al., 2021). This data can be combined with other data, e.g. data from sensors 
and integrated into mainstream data from laboratory tests to extract optimal value and obtain a 
comprehensive understanding of water quality.  
 
It is also possible to apply some big data analytical techniques to such data and make some decisions 
based on that. One such method that can be used is hidden Markov chains in which observed states 
change (e.g. temporal or spatial changes in the colour of water). These states, that are essentially 
probability representations, can then be correlated to the underlying prevailing chemistry of the water, 
e.g. a change in the concentration of iron. The iron concentrations can be further classified using fuzzy 
logic, a computational intelligence technique based on set theory. Further, the observations can be 
related to other features such as weather events. For instance, when it rains a lot there could be a 
change in the quality of water that the community observes. If these are recorded, it is possible to link 
different parameters and forms of data to obtain a comprehensive picture of the quality of water and to 
anticipate changes that could potentially occur based on them, making this an early warning system. 
 
1.2 MOTIVATION 
As can be observed, most of the data provided by citizens in the methods described above constitutes 
text data and this can be collated using text mining. Text mining has become an important area of 
research in deep learning, which is a subset of machine learning and, in turn, of artificial intelligence. It 
has been used extensively in areas such as advertising, marketing, product reviews, natural language 
processing (NLP), checks for plagiarism and compiling news feeds. As indicated earlier, some 
examples of such data include social media feeds (e.g. emails, blogs, Twitter, WhatsApp and 
Instagram), surveys such as those done using Survey Monkey and general interviews.  
 
Text mining (also referred to as text analysis) is a process of extracting interesting and significant 
patterns or numeric indices by means of identifying facts, relationships and assertions within textual 
data (Soumen, 2002). Text mining makes text accessible to various algorithms (e.g. machine learning 
algorithms) for further analysis (Bruce et al., 2009). According to Manning et al. (2008), it has become 
an especially important technique in the analytics industry due to the availability of unstructured text 
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data from multiple sources (vide supra). It is a multi-disciplinary field based on information retrieval, 
data mining, statistics, and computational linguistics (Nisbet et al., 2009). 
 
Text mining is important owing to the following reasons: 

1. it helps in smart decision making and knowledge discovery in different areas, 
2. through text mining, data can be visualised in a variety of ways, e.g. graphs, charts and tables, 
3. it is easily adaptable to knowledge-driven organisations and projects, 
4. it can be used to track opinions over time, 
5. text can be indexed and used for predictive analytics, 
6. it can be used for summarising large documents and systematic reviewing of literature by 

pointing out key themes. 
 
Text mining consists of five well-known techniques, namely: information retrieval, information extraction, 
categorisation, clustering and summarisation. 
 

• Information Retrieval (IR) is a process of extracting relevant information from textual database 
based on the user’s query (Smiley et al., 2009). The most renowned IR systems are Google, 
Yahoo and other search engines, which recognise those documents on the World Wide Web 
that are associated to a set of given words (Soumen, 2002). 

 
• Information extraction (IE) is a method of extracting semantic (logic or context) information from 

textual data by identifying relationships and patterns within semi-structured or unstructured text. 
IR works best for the extraction of valuable information from structured data and IE for 
extraction from unstructured data (Nisbet et al., 2009). 

 
• Categorisation is a type of supervised learning where categories are known in advance and is 

essentially a process of gathering, processing and analysing text documents to put them in the 
correct category based on the link between the content and category (e.g. spam filtering based 
on content) (Horto et al., 2003).  

 
• Clustering is an unsupervised technique that finds intrinsic structures in information and 

arranges them into subgroups called clusters to generate labels for objects based on the data 
(Lochbaum et al., 2000). Cluster analysis can be used as a standalone text mining tool to 
achieve data distribution, or as a pre-processing step for other text mining algorithms applied 
to the detected clusters.  

 
• Text summarisation is the process of automatically creating a compressed version of a given 

text that provides useful information for the user (Ratinoy and Roth, 2009). A summary is a text 
that is produced from one or more texts that contains a significant portion of the information, 
reduced in length and keeps the overall meaning as it is in the original texts (Renders, 2004).  

 
Text mining and analytics are umbrella terms describing a range of technologies for analysing and 
processing unstructured and semi-structured text data. The unifying theme behind each of these 
approaches is the need to turn text into a digital form that can be processed by algorithms. Converting 
text into a structured, numerical format and applying analytical algorithms requires knowledge on how 
to combine techniques for handling text, ranging from individual words to documents to entire document 
databases (Smith and Humphreys, 2006). Currently, text mining has not had comprehensive definition 
because of the disparity of fields from where it comes (Vidhya and Aghila, 2010).  
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As indicated earlier, text mining is conducted using deep learning algorithms of which recurrent neural 
networks (RNNs) and convolutional neural networks (CNNs) are some of the most commonly used. 
The former are applicable for sequential data such as words and sentences and works by identifying 
important relationships in them and abandoning redundant or non-essential words. RNN is used in the 
encoder-decoder process which has recently been improved by incorporating the aspect of attention.  
 
Here, even if the words are very far apart in the sentence, the computer may understand their 
relationship by paying attention to each word in the sentence and gleans a global understanding of that 
sentence. 
 
Extensions of these tools can be made to include: 

1. Automatic image caption generation in which, given an image, the system can generate a 
caption to describe the contents of the image. This would be important in analysing photos 
taken by citizens and comparing them to extract important information.  

2. Automatic translation of text: is the task where there are sentences of text in one language that 
should be translated into text in another language. For instance, where citizens have captured 
information for the same water resource in different languages such as Sesotho, IsiZulu, 
Afrikaans, etc and the contents have to be compared and grouped. 

3. Automatic text classification: is the task of assigning a class label given a text document such 
as a review, tweet, comment or email. This is typically sentiment analysis. 

 
Following successful text mining of water data from online platforms as discussed above, the storage 
of this and other related data is possible through the use of cloud-based platforms. This is what has 
informed and motivated this project, notably: extraction of text data from online platforms (Twitter and 
WhatsApp in this case), developing models based on machine learning tools and storing the data in an 
intermediary database on a cloud-based platform. The following outline of the aim, its supporting 
objectives and research questions help to expound on the motivation and communicate its intended 
purpose. 
 
1.3 PROJECT AIMS, OBJECTIVES 
As the preceding discussions have indicated, traditional methods of water data collection and 
interpretation do not optimally make use of all the data that can be potentially collected. This owes to 
their reliance on structured data. Thus, text mining presents an opportunity to harness other possible 
sources of such data that would otherwise remain largely latent and their value unknown. This study 
aimed at enhancing hydroinformatics, mainly water quality, using text mining. 
 
To achieve this aim, the following objectives were pursued: 

1. To develop a framework and guidelines to extract information on water quality from online 
platforms (Twitter and WhatsApp). 

2. To develop and recommend, where available, suitable tools (e.g. deep learning algorithms) for 
text data and information extraction from online platforms based on text mining. 

3. To collate and extract information from text mining (on Twitter and WhatsApp) and visualising 
it using a variety of data analytics tools. 

4. To develop, or explore from available customised versions, an intermediary database to store 
and curate extracted information – including establishment of appropriate quality control 
protocols. 
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1.4 RESEARCH QUESTIONS 
To contextualise the motivation, aim and objectives, the research sought to answer the following 
questions: 

1. Is it possible to extract text data related to water quality from online platforms such as Twitter 
and WhatsApp? 

2. Can the extracted text data be modelled using machine learning techniques to delineate 
opinions and sentiments on water quality contained in the commentary? 

3. Can an intermediary database to store the extracted and modelled text data be developed in 
the cloud (e.g. Google Cloud) from scratch or using a customised platform? 

4. How can quality control aspects be incorporated and ensured for the extraction of text data, the 
developed models and curation in an intermediary database? 
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CHAPTER 2: RESEARCH FRAMEWORK APPROACH 
This chapter presents an overview of the protocols followed in conducting text mining from online 
platforms, modelling of text data and storage on cloud platforms. The process flow involved was: 
extraction of text data from online platforms → building models based on machine learning and deep 
learning → curation of the data in an intermediary database and consideration of quality control aspects. 
The chapter gives a general overview of the framework used to achieve the above process, including 
some theoretical background where necessary to enhance descriptions. Further details that delve into 
the exact protocols followed are furnished in the respective chapters. 
 
2.1 TEXT MINING PLATFORMS 
Text mining followed some generic steps with the ultimate aim to use the outcomes in models to assist 
in gaining useful insights from the water data. Mining was conducted from Twitter and WhatsApp and 
the steps conducted were as follows: 

• Getting authentication from the social website 
• Data visualisation 
• Cleaning and pre-processing 
• Data modelling using standard algorithms such as opinion mining and clustering 
• Anomaly/spam detection, correlations, segmentations and recommendations 
• Visualisation of results 
• Curation in an intermediary database 

 
The analytic process involving the steps above can be summarised into a workflow (Figure 1). 
 

 
 

Figure 1 Text mining analytical process workflow 
 
It would be important to note here that authentication for data usage was only obtained from Twitter and 
WhatsApp and thus the work conducted was limited to these two data sources. However, the 
procedures described herewith would be the same for any other online data source as the text data 
tends to be similar and the approaches to conducting mining and analytics not different. 
 

2.1.1 Data access and collection 
Getting access from the online platform: OAuth 2.0 
Most online platform websites provide an application programming interface (API) access to their data. 
As a third-party, some mechanism is used to get access to users' data, available on these websites. 
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Since the user credentials are protected by social media, blog, and web provider due to obvious security 
reasons, this is where Open Authorisation (OAuth) is used. According to its home page 
(http://oauth.net/), OAuth can be defined as follows: An open protocol to allow secure authorisation in 
a simple and standard method from web, mobile and desktop applications. Details of this project were 
submitted to online platform providers (Twitter and WhatsApp) to allow for authorisation to secure data. 
This allowed the platforms to provide links to collect data related to the research topic. The obtained 
raw data was then processed and normalised as needed (Genc-Nayebi et al., 2017). 
 

2.1.2 Data processing 
The raw data obtained from data retrieval using online platform APIs may not be structured and clean. 
In fact, most of the data obtained from online platform is noisy, unstructured, and often contains 
unnecessary tokens such as Hyper Text Markup Language (HTML) tags and other metadata. Usually, 
data streams from Facebook, Twitter, blogs, WhatsApp, and other survey APIs have JavaScript Object 
Notation (JSON) response objects. Some APIs might return data in other formats, such as Extensible 
Markup Language (XML) or Comma Separated Values (CSV), and each format has to be handled 
properly. Often data contains unstructured textual data which needs additional text preprocessing and 
normalisation before it can be used in any standard data mining or machine learning algorithm. Text 
normalisation was usually done using several techniques to clean and standardise the text. A detailed 
description of this process was presented in our previous study on citizen science (Nuapia et al., 2021). 
Most of the techniques described below for working with text, from converting it from unstructured to 
structured data and modelling are also discussed extensively in that study. 
 

2.1.3 Modelling text data 
2.1.3.1 Tokenisation 
Tokenisation is the process of breaking up a stream of text, a character sequence or a defined document 
unit, into phrases, words, symbols, or other meaningful elements called tokens. The goal of tokenisation 
is to explore words in a sentence. Before doing any kind of analysis on the text using a language 
processor, the words have to be normalised. When doing quantitative analysis on text, it is considered 
as a bag-of-words and key words extracted, their frequency of occurrence evaluated, and the 
importance of each word in the text established. Tokenising provides various kinds of information about 
text such as the number of words or tokens in a text, the vocabulary or the type of words (Pozzi et al., 
2016). The process of tokenisation can be divided into the following operational steps. 
 
Sentence segmentation 
Sentence segmentation is the process of determining the longest unit of words. This task involves 
determining sentence boundaries, and most languages have punctuation to define the end of sentence. 
Sentence segmentation is also referred as sentence boundary disambiguation or sentence boundary 
detection. Some of the factors that affect sentence segmentation is language, character set, algorithm, 
application and data source. Sentences in most of languages are delimited by punctuation marks, but 
the rules for punctuation can vary dramatically. Sentences and sub sentences are punctuated differently 
in different languages. Thus for successful sentence segmentation, understanding uses of punctuation 
in that language is important (Coskun et al., 2018). 
 
Normalising texts 
Normalisation in text basically refers to standardisation or canonicalisation of tokens, which were 
derived from documents in the previous step. Generally, in computer science, this is a process for 
converting data that has more than one possible representation into a standard, normal, or canonical 
form. This can be done to compare different representations for equivalence or similarity; to count the 
number of distinct data structures; to improve the efficiency of various algorithms by eliminating 
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redundancy in calculations; or to make to introduce a meaningful sorting order. The simplest scenario 
possible could be a case where query tokens are an exact match to the list of tokens in document, 
however there can be cases when that may not be true. The intent of normalisation is to have the query 
and index terms in the same form. For instance, if you query “mining,” you might also be expecting 
“mining.” Token normalisation can be performed either by implicitly creating equivalence classes or by 
maintaining the relations between unnormalised tokens (Coskun et al., 2018; Pozzi et al., 2016). 
 
Lemmatisation and stemming 
Grammar in every language allows usage of derivationally related words (or derivatives) with similar 
meaning, which are simply different forms of the same word. Examples are develop, developing, 
developed. The intent of performing lemmatisation and stemming is based on a similar objective of 
reducing inflectional forms and map derived words to the common base form. 
 
Stemming is a process of removing the ends of words, mostly derivational affixes. Lemmatisation is a 
more efficient process, which uses vocabulary and morphological analysis of words and removes only 
the inflectional endings to return the base form of word as output (Gamal et al., 2019). Derivational and 
inflectional affixes may have irregular meaning. For instance, consider an inflectional affix such as the 
plural “s” in word-forms like bicycles, dogs, cars, cats, trees, etc. The difference in meaning between 
their base form and the affixed form is always the same and points to one commonality of their 
reference: “more than one.” 
 
2.1.3.2 Categorising tagging text 
In corpus linguistics, text categorisation or tagging into various word classes or lexical categories is the 
second step in the text mining process after tokenisation. Speech parts such as nouns, pronouns, verbs 
and adjectives play an important role in language. These word classes are not just the salient pillars of 
grammar, but also quite pivotal in many language processing activities. The process of categorising 
and labelling words into different parts of speeches is known as parts of speech (POS) tagging or simply 
tagging. Some of the tagging text approaches to be explored in this project are discussed as follows.  
 
Hidden Markov Models for parts of speech tagging 
Hidden Markov Models (HMM) are conducive for solving classification problems with generative 
sequences. In text mining processing, HMM can be used for phrase chunking and information extraction 
from comments. If words are considered as input, while any prior information on the input can be 
considered as states and estimated conditional probabilities can be considered as the output, then POS 
tagging can be categorised as a typical sequence classification problem that can be solved using HMM 
(Coskun et al., 2018). 
 
There are five elements needed to define an HMM: 

• N denotes the number of states (which are hidden) in the model. For parts of text tagging, N is 
the number of tags that can be used by the system. Each possible tag for the system 
corresponds to one state of the HMM. The possible interconnections of individual states are 
denoted by S = {S1, Sn}. Let qt denote the state at time t. 
 

• Let M denote the number of distinct output symbols in the alphabet of the 
HMM. For parts of speech tagging, M is the number of words in the lexicon of the system. Let 
V = {v1 . vm} denote the set of observation symbols. 
 

• The state transition probability distribution is also called the transition matrix: A = {aij}, 
representing the probability of going from state Si to Sj. For parts of speech tagging, the states 
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represent the tags, so aij is the probability that the model will move from tag ti to tj. This 
probability can be estimated using data from a training corpus:  

  [1] 
 

where: qt denotes the current state, the transition probabilities should also 
satisfy the normal stochastic constraints: 
 

     [2] 
And:  

     [3] 
 

• An observation symbol probability distribution is also called emission matrix B = {bj(k)}, 
indicating the probability of the emission of symbol Vk when the system state is Sj: 

[4] 
 

where: VK denotes the kth observation symbol Ot and the current 
parameter vector, the following conditions must be satisfied: 
 

    [5] 
And:  

     [6] 
 

The initial state probability distribution represents: 𝜋𝜋 = {(𝜋𝜋𝑖𝑖)}𝜋𝜋 = {𝜋𝜋𝑖𝑖} probabilities of initial states. For 
parts of speech tagging, this is the probability that the sentence will begin: 

    [7] 
 
Implementing HMMs 
When implementing an HMM, floating-point underflow is a significant problem. When the Viterbi or 
forward algorithms are applied to long sequences, the resultant probability values are very small, which 
can underflow on most machines. This problem is solved differently for each algorithm. 
 
Viterbi underflow 
As the Viterbi algorithm only multiplies probabilities, a simple solution to underflow is to log all the 
probability values and then add values instead of multiplying. In fact, if all the values in the model 
matrices (A, B, π) are logged, then at runtime only addition operations are needed. 
 
Forward algorithm underflow 
The forward algorithm sums probability values, so it is not a viable solution to log the values in order to 
avoid underflow. The most common solution to this problem is to use scaling coefficients that keep the 
probability values in the dynamic range of the machine, and that are dependent only on t. 
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2.1.3.3 Text Summarisation Clustering 
High dimensional unstructured data comes with challenges of organising, querying, and information 
retrieval. The text summarisation and clustering approach is used to extract hidden themes from 
documents and collections to be able to effectively use it for dozens of purposes such as corpus 
summarisation, document organisation, document classification, taxonomy generation of web 
documents, organising search engine query results, news or article recommendation systems, and 
duplicate content detection (Abuhay et al., 2018).  
 
Topic modelling 
Topic models is used for discovering the underlying themes or topics that are present in an unstructured 
collection of documents. The collection of documents can be organised based on the discovered topics, 
so that it is easy to browse through the document. There are various topic modelling algorithms that 
can be applied to a collection of documents to achieve this. Clustering is an extremely popular technique 
used to group documents, but this does not always fit the requirements. When a text document is 
clustered, the results in each text exclusively belong to exactly one cluster. In this study, two algorithms 
were explored, namely: the Latent Dirichlet Allocation (LDA) and Correlated Topic Model (CTM) 
(Jelodar et al., 2019). This is an intrinsic process, as these algorithms are in the libraries used. 
 
Latent Dirichlet Allocation 
Latent Dirichlet Allocation (LDA) is one of the most widely used topic modelling methods and belongs 
to a class of models that are called generative models. There are latent themes present in every 
document, and each word in the document contributes to the theme or topic, which encodes some 
assumption about the document or collection. By effectively grouping documents with similar underlying 
topics and themes, it is possible solve trivial issues in searching, organising, and summarising huge 
archives of unstructured data. Latent topics can be uncovered pervading the collection of documents 
and annotate the documents according to the topics discovered, which is utilised to extract context, 
summarise, or organise the collection. The idea behind LDA is the assumption of a fixed number of 
topics are distributed over the documents in the whole collection (Jelodar et al., 2019). Each document 
is an amalgamation of multiple topics across the corpus; each topic is an assortment of thousands of 
words, while each word is an entity that contributes to the theme of the document. Still, a document can 
only be observed as a whole with everything else hidden. Probabilistic models of topic modelling have 
the objective to dissect documents to extract those latent features, which can help summarise a 
document or organise a group of them (Jelodar et al., 2019). 
 
The strategy for extracting themes from a collection of documents is as follows: 
 

• Every word in each document is assigned a topic 
• The proportion of each unique topic is estimated for every document 
• For every corpus, the topic distribution is explored 

 
The topic labelled to an observed word depends on a posterior, which takes into account the topic and 
proportion parameters defined, and the assignment of topics to each word in a document, as well as to 
each document in a corpus. The topic can be assumed to be a probability distribution across the 
multitude of words, while the topic models are nothing but a probabilistic relationship between the latent 
unobserved themes and fraction of observed linguistic variables. LDA is a model that uses this process.  
 
This model randomly generates observable data values based on some hidden parameters and follows 
a generative process; in this process a joint probability distribution of all the variables was applied. The 
probability weights for words were calculated and create the topics based on the weight of each word; 
with each topic assigning different weights to different words. For this model, the order of the words 
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does not matter as it will treat each document as a bag of words, this assumption may not be the best, 
since the sequence of the words in the sentence is lost. The order of the documents also does not 
matter. This type of language simplification is very rudimentary and often works because it still helps us 
to understand the semantics of the topics; knowing which words were used in a document and their 
frequencies makes it good enough to make decisions on which topic they belong to (Jelodar et al., 
2019; Alghamdi et al., 2015).  
 
Correlated topic model 
In correlated topic model (CTM), collections were used for better understanding of the correlation 
between the hidden topics in the collection of documents. This technique is useful in instances where 
the relationship between each topic has to be established and the outcomes used to build graphs about 
the topics or build a topic of interest or document browser. This will help in navigating through the 
collection of documents by their topics of interest or preference and make it easy to find the right content 
from a huge set of documents. An LDA model sets the basic principles for topic modelling and correlated 
topic modelling is an extension of this, building upon the LDA model. As explained, LDA model does 
not consider the order in which the words occur or whether the order of the words is lost or is 
exchangeable. LDA is a high dimensional vector model that makes an assumption that the occurrence 
of one topic is not correlated to another topic. For example, an LDA fails to directly model correlation 
between topics, whereas a correlated topic model (CTM) is a hierarchical model and provides better 
insights about the data, resulting in better visualisation. A CTM models the words of each document 
from document-specific random variables and captures the diversity in grouped data that illustrates 
multiple hidden patterns (Alghamdi et al., 2015). A CTM gives better predictive performance but comes 
at the expense of extra computation cost.  
 
For both models; LDA and CTM, the number of topics must be fixed before modelling a corpus and that 
follows a generative process: 
 

• Determine term distribution for each topic 
• Determine proportions of the topic distribution for the document 
• For each word choose a topic, then choose a word conditioned on that topic 

 
For topic modelling, the following steps were followed: 
 

1. Provided data can be in various formats. Creating a corpus or vocabulary out of the given data 
is the first step. 

2. Process the created corpus to remove noisy data. This involves: 
• Tokenising 
• Stemming 
• Stop word removal 
• Removing numbers 
• Removing punctuation 
• Removing terms below certain length 
•  Converting to lower case 

3. Create the document term matrix of the processed corpus. 
4. Remove the sparse entries from the document term matrix. 
5. This matrix can be provided as the input to LDA and CTM 

 
Model selection 
Selecting the number of topics presents some challenges. For instance, to fit a given document-term 
matrix, using the LDA model or the CTM, the number of topics needs to be fixed before modelling. 
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There are various approaches to select the number of topics (Ju et al., 2012). In this study, the following 
were used as provided in the libraries in RStudio:  
 

• Bayesian approach 
• Hierarchical Dirichlet process 
• Cross validation on likelihood approach 

 
Text classification 
Text classification is an extensively used phenomenon in text processing and has widespread utility in 
different domains. Also known as text categorisation, text classification finds its usage in various tasks 
related to information retrieval and management. Spam detection in e-mails, opinion mining or 
sentiment analysis on social media data, priority e-mail sorting, intent identification from user queries in 
chatbots, and automated query answering mechanisms are a few examples where text categorisation 
has proved to be highly effective. There are several algorithms used for text classification. In this study, 
inductive learning and tree-based learning algorithms were used (Coskun et al., 2018). These are 
algorithms that are intrinsic, as they are included in the libraries used. 
 
Inductive learning 
Classification or the supervised learning mechanism in machine learning, is the process of learning 
concepts or patterns generalising the relationship between the dependent and independent variables, 
given a labelled or annotated data. A typical text classification task can be defined as follows: 
 

• Task T: to classify opinions (positive or negative) 
• Performance measure P: percentage of opinions correctly classified 
• Training experience E: Annotated or labelled data to train the model on 

 
For an opinion classification, the training data contains texts as instances and opinions (positive or 
negative) as the outcome variable. The objective is to design a learning mechanism to be able to utilise 
the patterns in the training data to predict/label the outcome variable in an unknown or test dataset. 
 
To learn the target concept or pattern, each instance t along with the associated concept c(t) from the 
training set is presented to the learner. The task assigned to the learning mechanism is to estimate the 
function c, such that the target concept stays generalised over most of the training instances and can 
be applied on unknown instances with high precision. The classifier creates a hypothesis for every 
training instance presented to it in conjunction with the associated label for the given instance. Once all 
the instances are observed, a large set of hypotheses is generated, which are extremely specific in 
nature.  
 
With the inductive learning hypothesis principle, if a hypothesis can effectively approximate the target 
concept over a sufficiently large number of instances, it will also effectively approximate over an 
unknown set of instances. Such a hypothesis needs to be a generalised one as a specific hypothesis 
can approximate over a sufficiently large of number of instances and it would prove to be insufficient to 
approximate over unobserved instances (Pozzi et al., 2016). 
 
Tree-based learning 
In machine learning, the decision tree is a well-known classification algorithm. In this type of classifying 
methodology, a decision tree model is created. When an input is provided for a prediction based on the 
input variable, it traverses through the nodes and reaches the leaf node which is a classifier class. 
When the target variables have a finite set of values, it is called a classification tree. If the target 
variables take continuous values, it is called a regression tree (Gamal et al., 2019). 
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A decision tree is constructed based on input variables. The number of input variables will alter the 
classification output, these input variables are also called attributes. In text mining, when classifying a 
set of documents into different topics, the significant words in the document become the attributes and 
the topics which are the resulting outcome become the classes.  
 
The tree is made up of branches and nodes. Every branch from a node signifies the outcome using one 
of the attributes. The nodes that do not have any branches are called leaf nodes. These nodes are at 
the end of the tree, and they are the final classes of the classification problem. Decision trees are built 
by recursively splitting training data so that each division tends towards one class. Every node that is 
not a leaf node has a branch and each branch is the outcome of one or more attributes which further 
influences how the data will be divided further. The split is made in such a way that the data is distinct 
or as distinct as possible. In machine learning, this is called a pure leaf node; each division is either 
pure or we can improve the performance by increasing the generalisation by pruning the tree.  
 
Partitioning of data for splitting the node depends on the attributes used to split it. To construct the tree, 
we need to select the best splitting attribute. There are various algorithms used to build a decision tree. 
At a high level, these algorithms try to solve the challenges in their own optimal way as explained in the 
following steps (Pozzi et al., 2016; Alghamdi et al., 2015): 
 

1. Select the best attributes for splitting and determine the split values. 
2. Ascertain the number of splits at each node. 
3. Ascertain the order of the attribute that has to be considered for splitting. 
4. Choose the pruning method for the tree: pre pruning or post-pruning. 
5. Choose the growth and stopping criteria for the tree. 

 
In order to perform an optimal split and evaluate the goodness of the split, there are various methods: 

• Gini index - is calculated by subtracting the sum of squared probabilities of each class from 
one. It favours larger partitions and is easy to implement. A feature with a lower Gini index is 
chosen for a split. 

• Information gain - is the reduction in entropy or surprise by transforming a dataset and is often 
used in training decision trees. Information gain is calculated by comparing the entropy of the 
dataset before and after a transformation. It favours smaller partitions with distinct values 
compared to the Gini index. Information Gain = entropy(parent) – [average entropy(children)] 

• Entropy - Entropy is the average rate at which information is produced by a stochastic or 
random source of data. It controls how a Decision Tree decides to split the data. It actually 
effects how a Decision Tree draws its boundaries. Gini Index has values inside the interval [0, 
0.5] whereas the interval of the Entropy is [0, 1]. 

• Gain ratio - is modification of information gain that reduces its bias. Gain ratio overcomes the 
problem with information gain by taking into account the number of branches that would result 
before making the split. It corrects information gain by taking the intrinsic information of a split 
into account. 
 

2.2 CURATION IN INTERMEDIARY DATABASE 
The possibility to use available platforms (e.g. cloud based) was explored using both construction from 
scratch using coding in R and RStudio as well as using a third party or customised platform. For the 
latter, a demonstration version of Fivetran was used. There are a number of such resources available 
now owing to different product offerings available and they generally perform most functions that a user 
may require. 
 
Detailed descriptions of how this was achieved are furnished in chapter 4. 
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CHAPTER 3: TEXT DATA MODELLING 
This chapter presents the findings related to modelling of text data collected from the Twitter and 
WhatsApp platforms. The report describes the development of text mining tools and approaches based 
on different algorithms for analysing text data from these platforms. The workflow comprised the 
following steps: 

• Data setup, including registration 
• Connecting to Twitter via R and searching for tweets. For WhatsApp, comments were collated 

separately 
• Data processing and clean-up 
• Opinion modelling 
• Sentiment analysis 

 

3.1 TEXT DATA MODELLING: USING TWITTER COMMENTS 

The Twitter platform offers some interesting opportunities for text mining. Amongst the platforms 
considered for the study, it was the most accessible with respect to permission and authentication 
granted. Notwithstanding, Twitter offers attractive data structures in that the words in tweets are limited 
(up to 280 characters or Unicode glyphs) and, more often, users aim to get to the points of their 
conversations a lot more precisely. This makes it easier to search for words and phrases. Text mining 
has been shown to be useful in extracting information from such words and phrases by modelling the 
latent sentiments that they contain, thus augmenting structured data. 
 

3.1.1 Classification of opinions from tweets 
3.1.1.1 Data setup 
Loading dataset from Twitter 
Tweets are more than just messages. Each tweet contains some metadata, which is essentially data 
derived from other data. Metadata can be helpful in understanding or attaching meaning to each data 
point. In case of a tweet, its date-time, its source and the number of retweets is what makes up the 
metadata. This additional information and other attributes about each tweet helps us draw various 
insights. Thus, these were taken into account in establishing datasets on water quality comments drawn 
from Twitter. 
 
Application Programming Interfaces 
Twitter's Application Programming Interfaces (APIs) are the gateway to the immense data of Twitter. 
These provide some useful utilities for interacting with Twitter in a programmatic way. APIs may be 
used to develop third party apps along with a way to extract data for analysis/research purposes. For 
this work, aspects of APIs and objects were studied and used for analysis. Some of these included 
follower relationships and velocity. 
 
To enable faster development and hassle-free access, Twitter has libraries available in all major 
programming languages. For this study, the Twitter package for R was used. This package provides 
ways to connect and extract information from Twitter quite easily.  
 
Registering an application 
The first step is to register as a user and then create an app. Twitter requires users to create an app to 
use its APIs. It uses Open Authentication or OAuth to grant access to its APIs and data under certain 
terms and conditions. An app can be easily created by following these steps:  
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1. Log in to the app management console at http://apps.twitter.com. 
2. Once logged in, click on the Create New App button. Fill up the required fields. A callback URL 

is then created. The callback URL is the address that Twitter's API replies to with a response 
to the queries.  

3. Click on Create Your Twitter Application to complete the process. Once done, the user is 
redirected to the app details page which will contain the required details for connecting to it. 

 
The app creation process provides OAuth parameters such as the API Key, API Token, Access Token, 
and Access Token Secret. Together, these four parameters are useful for tapping into Twitter's APIs 
for the required cases. 
 
Connecting to Twitter using R 
After securing the OAuth parameters and credentials, the package “rtweet” was downloaded in R which 
is used for extracting tweets. Within the “Source” or “Console” in R, the following commands were 
executed: 

install.packages("rtweet") 
library (rtweet) 

 
Authentification was conducted to connect to Twitter. This was done by entering the name of the app 
(e.g. Water Research in this case), consumer key and consumer secret - all of which was information 
received when applying for the Twitter API. Once authentication was verified and accepted, connecting 
the app to OAuth was conducted using the following code snippet:  

# load the package 
 
library(twitteR) 
library(httr)   
devtools::install_github("***/rtweet") 
library(rtweet)           
consumerKey <- "(XXXXXXXXXXXXXXX)" 
consumerSecret <- "(XXXXXXXXXXXXXXXX)" 
accessToken <- "(XXXXXXXXXXXXXXXXXXXXXXXXXXXXX]" 
accessTokenSecret <- "(XXXXXXXXXXXXXXXXXXXXXXX)" 
setup_twitter_oauth(consumerKey, consumerSecret, accessToken, accessTokenSecret) 

 
Search Twitter for Tweets 
After setting the above parameters, recent tweets could be searched. The search was conducted for 
tweets with “#Water comments in South Africa.” The rtweet::search_tweets() function was used to do 
the search. search_tweets() requires the following arguments: 

## search for 1000 tweets using the # water comments South Africa 
water <-search_tweets("water  comments  South Africa,” n=1000, include_rts=TRUE, lang= 
"en") 

 
Various arguments can be used to achieve different objectives in the search criteria. Some common 
ones and their meanings are presented (Table 1). The first three have been used in the code snippet 
above. 
 
  

http://apps.twitter.com/
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Table 1 Some arguments used in tweet searches with meanings 
Argument Meaning 

n Integer, specifying the total number of desired tweets to return. Defaults to 100. 
Maximum number of tweets returned from a single token is 18000. 

include_rts Logical, indicating whether to include retweets in search results. Retweets are 
classified as any tweet generated by Twitter's built-in "retweet" (recycle arrows) 
function. These are distinct from quotes (retweets with additional text provided from 
sender). 

lang Language of search, e.g. “en” for English. This will return only searches in English. 
q Query to be searched, used to filter and select tweets to return from Twitter's REST 

API. It must be a character string not to exceed maximum of 500 characters. Spaces 
behave like a Boolean "AND" operator. To search for tweets containing at least one of 
multiple possible terms, separate each search term with spaces and "OR" (in caps). 
For example, the search q = "water quality" looks for tweets containing both "water" 
and "quality" located anywhere in the tweets and in any order. When "OR" is entered 
between search terms, query = "water OR quality,” Twitter's REST API should return 
any tweet that contains either "water" or "quality.” It is also possible to search for exact 
phrases using double quotes. To do this, either wrap single quotes around a search 
query using double quotes, e.g. q = '"water quality"' or use a single backslash, e.g. q = 
"\"water quality\".” 
 
Filters can also be used to enhance queries, e.g. retweets and quotes can be excluded 
by using "-filter:retweets" and "-filter:quotes,” respectively. 

type Character string specifying which type of search results to return from Twitter's REST 
API. The default is type = "recent,” but other valid types include type = "mixed" and 
type = "popular.” 

retryonratelimit Logical argument indicating whether to wait and retry when rate is limited. This 
argument is only relevant if the desired return (n) exceeds the remaining limit of 
available requests (assuming no other searches have been conducted in the past 15 
minutes, this limit is 18000 tweets). Defaults to FALSE. It is set to TRUE to automate 
the process of conducting big searches (i.e. n > 18000). For many search queries, e.g. 
for specialised or specific searches, there would not be more than 18000 tweets to 
return. But for broad, generic, or popular topics, the total number of tweets within the 
API window of time (7-10 days) can easily reach the millions. 

verbose Logical, indicating whether or not to include output processing/retrieval messages. 
Defaults to TRUE. For larger searches, messages include rough estimates for time 
remaining between searches. 

 
3.1.1.2 Data processing and cleanup 
The vocabulary matching approach followed the RTextTools method which was used to create a matrix 
function. The text2vec package is applied to create a vocabulary and training of a document text matrix 
(DTM). The vocabulary was applied to construct a train set DTM and also the new survey data. The 
text2vec’s text organisation functions are illustrated to show another text organisation method that can 
be used for machine learning. The caret (Classification And REgression Training) package was used 
for data preparation and the tm package added for preprocessing functions. The glmnet library was 
loaded to fit the elastic net model for regression, including logistic and multinomial regression using 
coordinate descent. Finally, the pROC library (for the receiver operating curve) was used to help in 
visualising model performance. Their libraries were loaded as follows: 
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library(text2vec) 
library(caret) 
library(tm) 
library(glmnet) 
library(pROC) 

 
The code below is an example of a custom pre-processing function. It helps to reduce errors and make 
the code more concise. Here, only two functions were applied. 

data.clean<-function(x){ 
x<-removePunctuation(x) 
x<-stripWhitespace(x) 
return(x) 
} 
 

The custom function data.clean is applied to the final text vector. Using caret’s createDataPartition, 70% 
of the records were assigned to train with the remaining patient rows becoming the test set. Essentially, 
data partitioning is the act of splitting available data into two portions, usually for cross-validation 
purposes. One portion of the data is used to develop a predictive model and the other to evaluate the 
model’s performance. The code snippet is as follows: 

train<-createDataPartition(water$text,p=.7,  list=F) 
train.water<-water[train,] 
test.water<-water[-train,] 
 

The text2vec library differs in DTM construction because of the use of an iterator. An iterator is a method 
of applying functions in an object. The function is applied as the iterator traverses through the object 
rather than to an entire object. This means that an iterator can apply functions to large objects that may 
be too large to fit in memory. Here “itoken” iterates through “text.” Along the way, “tolower” is applied 
along with another function “word_tokenizer.” The word_tokenizer function wraps str_split to separate 
individual words. The snippets of how this is coded are shown below: 

iter.maker<-itoken(train.water$text, preprocess_function = tolower, tokenizer = 
word_tokenizer) 

 
The iterator object is a set of instructions that are passed to another function create_vocabulary. Here, 
v is a list of unique words and statistics from the “text.” 

v <-create_vocabulary(iter.maker,stopwords=stopwords('en')) 
 

After the above steps, the vocabulary object is passed to a “vectorizer.” The vectorizer allows for the 
creation of a corpus object by instructing R to make a vector of terms. It is apparent from here that this 
is the way the package name “text2vec” came about. Such transformations have also been used, e.g. 
in image processing where images are defined by “tensors” or vectors. 

vectorizer <- vocab_vectorizer(v) 
 
The vectorizer is needed to construct a DTM using the text2vec package. Another iterator is needed to 
create the DTM so itoken is used again. The “it” objects along with the original vectorizer is passed to 
the “create_dtm” function to get a matrix. 
 
After loading the tweets and reviewing the opinion column form, both data sets were converted 
as.character strings.  
 

it <- itoken(train.water$text, preprocess_function = tolower, tokenizer = word_tokenizer) 



 Text mining to enhance hydroinformatics 

17 

dtm <- create_dtm(it, vectorizer) 
 
It can be observed here that essentially text data that is unstructured has been converted to a format 
that is somewhat structured that uses vectors. This was one of the key aspects noted in the report by 
Nuapia et al. (2021) in which unstructured citizen science (mainly text data collected through community 
interviews) was merged with structured analytical water data using machine learning techniques. 
 
For purposes of enhanced understanding and follow through, the above steps are explained further and 
simplified in the following text (Ju et al., 2012; Jelodar et al., 2019). The purpose of an iterator is to learn 
statistics about text that is too large for in‐memory analysis. Thus, an iterator containing a set of 
instructions is created solely to explore the text’s vocabulary. The vocabulary information is held in a 
list, but must be changed to a vector in order to construct a text matrix, the DTM. The iterator is 
“vectorized” using “vocab_vectorizer.” The first iterator is only used for vocabulary construction. Then a 
second iterator is needed to traverse through the text again. This second iterator is passed to 
“create_dtm” with the vectorised vocabulary from the first iterator’s analysis.  
 
The need for two iterators is that both are used for different purposes. The first is for vocabulary and 
the second for the matrix construction (or feature construction). The dtm object is based on simple term 
frequency. i.e. the number of times a word or phrase appears. When working on other data, there may 
be a need for Term Frequency-Inverse Document Frequency (TF‐IDF) weighting instead. This is a 
technique to quantify words in a set of documents by computing a score for each word to signify its 
importance in the document and corpus. However, there was no need to use this technique in this study. 
 

3.1.2 Opinion modelling 
To create the object cv, the sparse matrix train.matrix was passed into the cv.glmnet function followed 
by definition of the outcome or y variable. The sparse matrix contains the word columns but not the 0 
or 1 outcome variable. Thus, the y= parameter uses the column train.water$opinion from the original 
training set. Further, the column contains numbers and must be changed to a categorical variable using 
as.factor.  
 
As indicated earlier, the glmnet package was used that fits generalised linear and similar models by 
using penalised maximum likelihood. By definition, maximum likelihood is a statistical method for 
estimating population parameters (such as the mean and variance) from sample data that selects as 
estimates those parameter values maximising the probability of obtaining the observed data. The 
penalisation aspect there relates to the regression method yielding a sequence of models, each 
associated with specific values for one or more tuning parameters (Alghamdi and Alfalqi, 2015; 
Brownlee, 2019). The glmnet-package fits lasso and elastic-net model paths for regression, logistic and 
multinomial regression using coordinate descent (essentially, optimisation of error in a fixed direction). 
Modelling of opinions on water data involved a series of steps (Genc-Nayebi and Abran, 2017; Gamal 
et al., 2019; Abuhay et al., 2018).  
 
Below is a snippet of part of the code used and some brief explanations of the process leading to 
building the model: 
 

text.cv<-cv.glmnet(dtm,y=as.factor(train.water$Opinion),alpha=0.9,family='multinomial', 
type.measure= 'auc', nfolds=5, intercept=F) 

 
The alpha parameter, which is the mixing input for how regularisation (penalty) is conducted, is 
calculated. As written alpha=1 will ensure that a lasso regression model is created. Lasso regression is 
a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a 
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central point, like the mean and as such the procedure encourages simple, sparse models (i.e. models 
with fewer parameters). 
 
The “family=” parameter defines how the model should behave. The complete family parameter options 
include “Gaussian,” “binomial,” “Poisson,” “multinomial,” “cox” and “mgaussian.” Since the outcome is 
multiple classes, the family is multinomial, forcing the model to build a logistic regression. In logistic 
regression, the model defines a line and then finds a set of coefficients for the line that best separates 
the classes. Its solution is not analytical (as that for linear regression), but rather involving searching 
the space of possible coefficient values using an efficient optimisation algorithm. The “nfolds” input 
defines the number of cross-validation folds to perform. The higher the number, the longer the 
computation time, but the better the reliability of the model. The last parameter “type.measure=” class 
selects the best penalty “lambda,” λ, value from among the cross-validation models based on the lowest 
misclassification rate between clickbait and legitimate headlines. Other measures can be chosen 
depending on the model family and the misclassification implications. The “type.measure” inputs include 
“deviance,” “AUC,” “class,” “mse” and “mae.” 
 
The text.cv object is a list containing the model information. The outcome can be obtained by calling 
plot on the model object. The graphic demonstrates the relationship between the misclassification rate 
and lambda (λ) penalties. Changing the “type.measure” parameter when calling cv.glmnet will change 
the response variable (y axis) accordingly. Within the graph (Figure 2), there are two verticals dotted 
lines. The far left line represents the lambda value which minimises the misclassification rate. The other 
dotted vertical line represents the highest regularisation value within one standard deviation of the 
minimal class error. A model based on the second penalty value will have fewer inputs compared to a 
model using the first dotted line lambda value. This helps to make an informed decision to balance 
complexity against accuracy when making predictions. The plot is obtained by using the code:  
 

plot(text.cv) 

 
Figure 2 Text-only GLMNet model accuracy results 
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In addition to the above predictions of model accuracy, the receiver operating characteristic curve (roc) 
was plotted (not shown here) to determine the sensitivity and specificity of the model. A ROC curve is 
a plot that illustrates the diagnostic ability of a binary classifier system (true positive and false positive) 
as its discrimination threshold is varied. The area under the curve (AUC) was also determined as a 
performance indicator for classification. For a good model, this value should be close to 1.  
 
The code used was as follows: 

train.auc<-roc(train.water$y,as.numeric(preds)) 
train.auc 
 

An AUC value of 0.92 was obtained, implying that the model was performing well. Intersections of the 
same classes denote that the model predicted correctly while class differences would denote incorrect 
prediction. This is determined from a confusion matrix, which is essentially a table that is used to define 
the performance of a classification algorithm. It was constructed as follows from the code: 
 

confusion<-table(preds,train.water$y) 
 
Out of a test set of 210 tweets, 198 were found to be correctly classified while 12 were incorrectly 
classified. To calculate overall model accuracy, sum the diagonal, representing the correct predictions 
for both classes, then divide by all observations. The code below uses the diag function nested inside 
the sum function and then divides that amount by the matrix sum. Diag will extract all values along the 
diagonal, no matter what the size of the matrix. This vector is then summed. In this case, the model 
classified 94.29% (198/210) of tweets correctly. 
 

sum(diag(confusion))/sum(confusion) 
 
With the cross-validation done, it was then possible to conduct predictions on new tweets. This was 
done by establishing a matrix containing values with the same weighting as the training data, along with 
matching column names. The “data.clean” function was then applied to the test set to ensure 
preprocessing consistency. Then the “match.matrix” function was applied to the test tweets. The same 
weighting for headline objects was used. The function “train.dtm” ensured that the columns match 
between the training and test matrices. Any test words that did not appear in the training set were 
dropped. The words in common were retained and columns of zeros appended for any words that were 
in the training set but not in the test set. This is done because it is impossible for the lasso regression 
to make a classification on information that it has not already seen, such as new words in the test set. 
Further, the regression model is expecting to have a value for all columns presented during training, 
thus zeros are used for this purpose where values would otherwise be missing. The code used is as 
follows: 
 

clean.test<-data.clean(test.water$text) 
test.dtm<-match.matrix(clean.test, 
weighting=tm::weightTfIdf, 
original.matrix=train.dtm) 
 

The previous train.dtm and test.dtm were compared by calling the objects in the RStudio console. The 
code below calls both test.dtm and train.dtm: 
 

test.matrix<-as.matrix(test.dtm) 
test.matrix<-Matrix(test.matrix) 
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To make predictions on the test data, the predict function was used with the model object. The predict 
function accepts the cross-validation (cv) model first. Then the response type “class” is specified. With 
“class” the class predictions, 1 or 0, are returned. In contrast, using type ="response" will produce the 
probability for each of the test tweets. The first represented the lambda value that minimised the overall 
misclassification error. The code below specifies the minimum lambda value from the cross validated 
model. That value was captured as cv$lambda.min. To reduce inputs, improve model simplification and 
retention of model accuracy, the specification, s=cv$lambda.1se was used. 
 

preds<-predict (cv,test.matrix,type=’class’, s=cv$lambda.min) 
tweet.preds<-data.frame(doc_row = rownames(test.water),class=preds[,1]) 

 
The second line creates a concise data frame with appropriate column names and references the test 
rows from the original data set. Class is a categorical factor and should be changed to numeric for 
calculating the ROC (Table 2).  

 
Table 2 Sample of first seven rows from tweet.preds 

Observed class Predicted class 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 0 

 
Test Set Evaluation 
The preds object is a matrix with just over 1500 results. Evaluation metrics can be calculated on the 
test set because the test data represents known tweets and outcomes. When the model is applied to 
new headlines, outcomes are unknown and so calculating the ROC is not possible. Thus, practically, 
periodic sampling and classification reviews help to keep the model from becoming irrelevant. With 
capabilities of creating models in the cloud, this is becoming more important as mining and evaluation 
of tweets and comments can be conducted in real time. 
 

3.1.3 Sentiment analysis 
To bring everything together in text mining in this context, the tones, intents and emotions behind the 
tweets have to be established. This is usually achieved using clustering tools. Sentiments can be 
generally classified as positive, neutral, or negative (Figure 3). They can also be represented on a 
numeric scale, to better express the degree of positive or negative strength of the sentiment contained 
in a body of text (Coskun and Ozturan, 2018; Pozzi et al., 2016). Further, they can be separated into 
specific sentiments, e.g. fear, joy, anticipation, etc. The Syuzhet package was applied to generate 
sentiment scores. The package extracts sentiment and sentiment-derived plot arcs from text using a 
variety of conveniently packaged sentiment dictionaries. This can be summed as follows: 
 
library(syuzhet) 

 tweets <- iconv(tweet$text) 
s <- get_nrc_sentiment(tweets) 
barplot(colSums(s), las = 2, col = “red,” “grey,” “green,  ylab = 'Count', 

       main = 'Sentiment Scores for water -Tweets') 
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Figure 3 Sentiments from classification of tweets (n = 1520) 

 
The figure summarises the number of tweets with their general opinions on water quality. For a total of 
1520 tweets collected, 720 tweets have commented to be happy with their quality of water (classified 
as positive), 620 tweets have indicated unhappiness with the quality of their water (classified as 
negative) while 180 tweets did not share positive or negative comments on their water quality (classified 
as neutral).  
 
To conclude, the above tools and approaches have pointed to how feature construction was conducted 
using text drawn from Twitter data. This is easily the core and backbone of text mining as it involves 
conversion of unstructured textual data into a feature-based representation. Since traditional machine 
learning and data mining techniques are generally not designed to deal directly with textual data, feature 
construction is an important preliminary step in text mining, converting source documents into a 
representation that a data mining algorithm can then work with. 
 
Lastly, sentiment analysis was conducted based on emotions and opinions insinuated from the tweets 
to indicate whether the water quality was viewed to be acceptable (positive), unacceptable (negative) 
or whether there was some indifference (neutral). 
 

3.2 TEXT DATA MODELLING: USING WHATSAPP COMMENTS 

The above discussion pertained to commentary extracted from the Twitter platform. These were general 
comments searched for and collected at random and so represented general views about the users’ 
water quality across the country. In this section, the search for comments was directed at WhatsApp 
users through a few questions related to water quality for the sources that they are using or have used 
(Table 3). The respondents (n = 100) were allowed to comment on different areas that they have visited 
or are visiting, thus one person could have comments, for example, for Johannesburg, Pretoria, Free 
State and Limpopo. 
 
Responses to questions were received as text messages, which were then exported from the platform 
and converted into an Excel.xlx format document. This dataset was then loaded onto RStudio. 
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Table 3 Survey questions for WhatsApp 

Provided below are some questions pertaining to water quality. Participants are required to give 
responses as truthfully and unambiguously as possible (try by all means to be descriptive in your 
responses). 
 
When responding, please indicate your Province and District and number the responses using the 
same numbering system as below. 
 
Questions: 

1. Are you satisfied with the taste of drinking water in your area or is there any unpleasant taste 
to it, e.g. metallic, dirt-like, salty, etc? 

2. Is the drinking water in your area clear, or does it contain some discolouration? If discoloured, 
what colour does it appear to be? 

3. Does the drinking water in your area contain any suspended particulate matter, e.g. dust? 
4. Do you trust the drinking water in your area? 
5. Are you generally satisfied with the drinking water in your area? 

 

3.2.1 Text data processing 
The raw data was then processed such that it can be analysed by the algorithm. The data was firstly 
transformed into a corpus, and before any processing occurred, the mean text length of each of the 
responses was determined. Thereafter, the corpus was cleaned by removing stop words, numbers, 
punctuation, and white spaces and converting all words to lowercase. The corpus was surveyed for any 
spelling errors and appropriate corrections were made. For this study, a custom stopword dictionary 
was created to prevent the removal of negation words, which affected the interpretation of the data. The 
corpus was stemmed, where the terms were converted to their root words by removing the prefixes and 
suffixes, and vectorised. 
 
The corpus was transformed into a Term Document Matrix (TDM). Such matrices are used in the bag-
of-words model. Two observables were created by creating a data frame and placing terms and their 
respective frequencies alongside each other (Table 4). The data frame was subsequently organised in 
order of decreasing frequency and the top ten most frequent terms were chosen for further analysis. 
 

Table 4 Word frequency for two observables 
Word Frequency 

Water Water 365 
Not Not 195 

Satisfied Satisfied 130 
Taste Taste 112 
Clear Clear 95 
Trust Trust 83 
Yes Yes 64 
Tap Tap 60 

Sometimes Sometimes 40 
Sediment Sediment 40 

Drink Drink 30 
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The following are examples of some of the codes used for text mining and analytics. 
 
Sample of code for creating a term-document matrix: 
 #build a term matrix 
 
 tdm <- TermDocumentMatrix(corpus) 
 inspect(tdm) 
 tdm_m <- as.matrix(tdm)  
 
Snippet of code for plotting a frequency term graph (based on Table 3.4) is: 

#plotting 
library(ggplot2) 
library(ggthemes) 
tdm_m$word <- factor(tdm_m$word, levels = unique(as.character(tdm_m$word))) 
ggplot(tdm_m[1:20, ], aes(x = word, y = frequency)) + geom_bar(stat = “identity,” fill = 
“lightblue”) 

 
The associations between the word “water” and other terms in the term document matrix were assessed 
as shown below. The code created a data frame consisting of factors for each of the terms and the 
association that correlates to the respective terms. 
 

#word associations 
associations <- findAssocs(tdm, “water,” 0.16) 
associations <- as.data.frame(associations) 
associations$terms <- row.names(associations) 
associations$terms <- factor(associations$terms, levels = associations$terms) 

 
#visualise associations 
ggplot(associations, aes(y = terms))+geom_point(aes(x = water), data = associations, size=2) 
+ theme_gdocs() + geom_text(aes(x = water, label = water), colour = “darkred,” hjust = -.15, 
size = 2) + theme(text =element_text(size = 6), axis.title.y = element_blank()) 

 
The other models created from various codes were for: word network, creating communities, plotting 
dendrograms and creating frequency word clouds. 
 

3.2.2 Sentiment Analysis 
To assess the sentiment in the data, the overall polarity in the data was first assessed. The data was 
scored for the sentiment in each of the responses obtained by calling on the polarity function of the 
Quantitative Discourse Analysis Package in R (qdap library) and a polarity distribution was plotted. A 
snippet of that code is as follows: 
 

# Sentiment Analysis 
library(qdap) 
library(tm)  
library(wordcloud) 
library(ggplot2) 
library(ggthemes) 
options(stringsAsFactors = F) 
sa <- read_excel(“C:\\Users\\uFeli\\OneDrive\\Documents\\cleaned water data.xlsx”) 
sa.polarity <- polarity(sa$response) 
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ggplot(sa.polarity$all, aes(x = polarity, y =..density..)) + theme_gdocs() + 
geom_histogram(binwidth = .25, fill = “lightblue,” colour = “grey60,” size = .2) + 
geom_density(size = .75) 

 
Subsequently, a comparison of the positive and negative words, based on the polarity scoring, was 
conducted. This was achieved using a comparison cloud. The syuzhet library was then used to analyse 
the sentiment in the text. This was achieved by first creating vectors from the data followed by a call to 
the get_nrc_sentiment function. This form of sentiment analysis was unsupervised and relied on the 
model to independently identify patterns. The overall trajectory of the opinions on the emotional valency 
scale was determined and an appropriate graph was plotted. To validate the sentiment data, the overall 
polarity of the data was analysed using the sentimentr package and a five-number summary (least 
value, lower quartile, mean, upper quartile and highest value) was obtained. A snippet of the code for 
this latter analysis is shown below: 
 

library(sentiment) 
sentiment <- sentiment_by(sa_df$response) 
summary(sentiment$ave_sentiment) 

 
Mean text length analysis 
This analysis was conducted to determine the average length of the responses obtained from the 
respondents. The mean text length for each of the responses was found to be 53 characters. This value 
may be used as an indication of the willingness of respondents to provide their opinions regarding water 
quality. 
 
Term document matrix generation 
Sparsity in the term-document matrix was observed to be 99%. This value was high, indicating high 
dimensionality and possibly some attendant problems therewith. A high value was an indicator that the 
model might have overfitted the data or that there was high variance in the dataset. 
 
A plot of associations between words in the corpus (not shown here), where the inclusive lower 
correlation limit was set to 0.16 showed that the that was strongly associated with the word “water” was 
“trust.”  The strength of connections amongst words were assessed using a word network (Fig. 4). 

 
Figure 4 Word network showing connections amongst words 
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A cluster analysis of opinions was conducted and presented (Fig. 5). Clusters on the same heights have 
the same frequencies and those on different heights have significantly different frequency distances. 
From this plot, terms such as “water,” “not,” “satisfied” and “taste” would require further assessment 
since these clusters are in distinct positions on the plot relative to other clusters. 

 
Figure 5 Cluster analysis of opinions 

 
A word cloud plot was used to assess the commonalities existing amongst opinions shared regarding 
water quality (Fig. 6). 
 

 
Figure 6 Word cloud indicating commonalities amongst opinions 

 
For polarity distribution, the qdap library assigned the value -1 to negative sentiment, 0 to neutral 
sentiment, and +1 to positive sentiment and used valence shifters to assign the final polarity score. 
Polarity scores were centred around zero, and the mean score was found to be 0.0. The latter is 
expected since the plot is based on a standard normal distribution with µ = 0. The density of the polarity 
scores appeared to be skewed to the right as most of the data were on the positive scale (not shown 
here). 
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Overall sentiment count was plotted (Fig. 7). The horizontal axis has the emotional valence for which 
the text was analysed. This plot shows that the overall sentiment was positive as the count for the 
positive sentiment is greater than the negative sentiment. 
 

 
Figure 7 Sentiment scores for water quality 

 
The above models were constructed and presented as demonstrations of the possibility of extracting 
text data from online platforms, namely WhatsApp (and Twitter before that), processing this data and 
modelling it based on machine learning techniques. Further demonstrations of this were presented in 
our previous work (Nuapia et al., 2021). 
 
Having conducted text extraction and modelling, it is also important to assess the possibility of curating 
this data in an intermediary database. With continued growth in data available from different sources 
including online sources, data storage has grown in importance. The nature of properties of data in 
these sources presents interesting opportunities and challenges in the continual development of data 
storage capabilities. For instance, erstwhile, simple external drives were sufficient for storing data, but 
this is not sufficient in this age as volumes of data involved require larger and complicated repositories 
such as cloud facilities. This is presented in the following chapter in the context of textual data. 
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CHAPTER 4: CURATION IN INTERMEDIARY DATABASE 
This chapter presents a two-pronged approach to data curation, namely: through coding and use of a 
third-party service. Text data is unstructured, making coding versatile in extracting it from online 
sources, modelling it and curating it in an intermediary database. This owes to the fact that coding gives 
more leverage to the user, allowing for some aspects to be created from scratch. A trial version of a 
pay-per-use third-party service provider, Fivetran, was also used to explore the possibility of using such 
a platform for data acquisition and storage. Capabilities and limitations of using either approach have 
been presented.  
 

4.1 DATA STORAGE CURATION: USING CODING PLATFORM 

Storage is one of the fundamental resources required in technological systems and software 
development. Data centres such as Google Cloud Storage, Amazon Web Services, Alibaba Cloud and 
Microsoft Azure have become a common feature and serve as the foundation of several different 
services (Fig. 8).  
 

 
Figure 8 Cloud deployment models (source: AVI Networks) 

 
Cloud storage is defined as a data deposit model in which digital information including documents, 
photos, music, videos and other forms of media are stored on virtual or cloud servers hosted by third 
parties. It allows for transfer of data to an off-site storage system and for access to them whenever they 
are needed (Rightscale State of the Cloud Report, 2019; CIO ThinkTank, 2022). 
 
The choice of type of cloud storage to be used depends on the needs of the user, which includes 
number of users or accessibility considerations, security considerations (which also inform the quality 
control aspects) as well as cost considerations (Table 5). 
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Table 5 Advantages of different types of cloud storage 
Private cloud storage Public cloud storage Hybrid cloud storage 
Secure Reliable Secure 
Scalable Easily scalable Scalable 
Greater user control Adequate monitoring Greater user control 
Expensive Affordable Affordable 
Suitable for large enterprises Suitable for individuals and 

mid-size companies 
Suitable for individuals and 
mid-size companies 

 
The data curation discussed here is based on Google Cloud which is one of the leading cloud providers 
and, with its supporting platform being the search engine and web browser, it is easily available and 
accessible. As it would be said about its platform, “Google is everywhere.” This ubiquity and availability 
gives Google Cloud the advantage to work well with programming platforms such as RStudio, structured 
query language (SQL), Python and customised or bespoke platforms (third party service providers). 
This has also been made easier by the ease of setting up email accounts, for instance, which, as will 
be demonstrated later, are required when accessing most cloud platforms. 
 

4.1.1 Google Cloud Storage 
Google Cloud provides three main services for different types of storage, namely: Persistent Disks for 
block storage, Filestore for network file storage, and Cloud Storage for object storage. These services 
are at the core of the platform and act as building blocks for the majority of the Google Cloud services 
and, by extension, to the systems that users build on top of it. 
 
Block storage is the traditional storage type, both in the cloud and in on-premise systems. A Google 
Cloud Persistent Disk provides block storage and is used by all virtual machines in Google Cloud 
(Google Cloud Compute Engine). Persistent Disks can be viewed as analogous to USB drives in that 
they can be attached or detached from virtual machines and enable data persistence (promulgation) 
whenever virtual machines are started, stopped or terminated.  
 
Filestore is the fully managed Google Cloud service that provides network file storage. Network file 
storage is similar in some respects to block storage, except that the disk storage is over the network. 
 
Google Cloud Storage involves object storage which can be in different versions (object versioning) or 
fine grain permission (per object or bucket). Files can be added or obtained via a REST API and this 
can expand indefinitely with each object growing up to a huge memory scale. Different objects are 
grouped into unique “namespaces” called buckets and each bucket can hold multiple objects while a 
single object will belong to only one bucket. REST API stands for Representational State Transfer 
Application Programming Interface. An API is a product or program that sends information back and 
forth between a website or app and its user. A REST API generally uses HTTP to accomplish this 
mission in the background. While doing so, it breaks the request down into small packets of information 
that are sent back and forth, but does not keep or remember anything from the transactions thus making 
it safe and secure for users. 
 
This model for storage is widely popular in cloud native systems due to its low cost, serverless approach 
and simplicity. The work of data replication, availability, integrity, capacity planning, etc. is then left to 
the cloud provider. The main drawback of object storage is that there is no other way to access the data 
besides the REST API. 
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The use of this type of storage for text data is demonstrated in the following sections, with the approach 
using the R platform to incorporate text mining, text data modelling, creation of objects (and buckets) 
and their storage or curation on Google Cloud.  
 

4.1.2 Setting up GoogleCloudStorageR 
GoogleCloudStorageR is an R library for interacting with the Google Storage JSON API. The JavaScript 
navigator object (JSON) is used for browser detection. It can be used to get browser information such 
as appName, appCodeName, userAgent, etc. The navigator object is the window property, so it can be 
accessed by window. For example, the following navigator object property will return the browser 
language: 
 
  let url = window.navigator.language; 
 
Other examples of navigator object properties are presented below (Table 6). 
 

Table 6 Some navigator object properties 
Property Description 

appCodeName Returns browser code name 
appName Returns browser name 
geolocation Returns a geolocation object for the user's location 
cookieEnabled Returns true if the browser cookies are enabled 
onLine Returns true if the browser is online 
userAgent Returns browser user-agent header 

 
In order to run Google storage through R, a Google storage application (app) account is needed. It 
should be noted that Google Cloud Storage charges for storage, as do other platforms. A Project can 
be run in Google Project with a credit card added to create buckets, where the charges will apply.  
 
Cloud Storage pricing is based on the following components: 
 

•  Data storage: the amount of data stored in buckets. Storage rates vary depending on the 
storage class of data and location of the buckets. Costs are also dependent on the length of 
time that large amounts of data will be kept. 

• Data processing: the processing done by Cloud Storage, which includes operations charges, 
any applicable retrieval fees, and replication. 

• Network usage: the amount of data read from or moved between buckets. 
 

4.1.2.1 Authentication 
To use any Google API, authentication, which involves concepts such as “service accounts,” 
“Oauth2.0,” and “scopes,” is required. The following steps were followed in this study to establish 
storage in Google Storage using R as a platform.  
 

Step 1: Obtaining an email account – a Gmail account was set up. Any email account can be 
used. As indicated earlier, a Google account is a lot more versatile as a result of easy 
availability and accessibility. 
 
Step 2: Activation of the Google Cloud Console 
While logged in to the email account, Google Cloud Console was visited and terms of service 
agreed to followed by clicking on “Try for free” (Fig. 9).  

https://cloud.google.com/storage/pricing#price-tables
https://cloud.google.com/storage/pricing#process-pricing
https://cloud.google.com/storage/pricing#network-pricing
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Figure 9 Google cloud platform setup 

 
After that, the terms were accepted again, an address and a credit card information added. 
Because, the project has an ID, usually consisting of an adjective, a noun, and a number, this 
was stored in RStudio as vector:   
my_project_id ← “<id>” 
 
Step 3: Setting up the billing account 
 
Return to the Google Cloud Console and look at the left column. Toward the top we clicked 
icon billing account (Fig. 10). A screen displaying “This project has no billing account” 
appeared. Click on a “link a billing account” and set the billing account to “My billing account.” 

 

 
Figure 10 Creating billing account 
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Step 4: Activate additional APIs 
 
To activate additional APIs, the following activities were carried out (Fig. 11): 
Bring out the navigation menu on the left-hand side by clicking the little circle with the three 
horizonal lines in the top left of the screen. Then click on “APIs and services.” Scroll down to 
see list of the APIs which are enabled by default. These include the Google Storage API and 
a few others. Then open the navigation menu on the left again, and click on APIs and services. 
Then click on “Credentials” in the left pane. 

 

 
Figure 11 Activation of additional APIs 

 
Step 5: Set up a service account 

 
A service account was created by clicking on “+Create credentials” at the top and then 
choosing service account (Fig. 12). This was named “Water Research” and created by clicking 
“Create.” 

 

 
Figure 12 Setting up service account 
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Step 6: Download a json file with the service account key 
 
A JavaScript Object Navigation (json) file containing the login details for the service account 
was then generated and saved as a file.  
 
Step 7:  RStudio Setting  
The last step was to store the path to the json file in our .Renviron file so that RStudio can 
authenticate whenever we are working with GCS from R. This commenced by writing the 
following in the console: 
 
usethis::edit_r_environ() 
 
This opened a pane with the .Renviron file. At this stage, we added a line with the 
following: GCS_AUTH_FILE='<full path to the json file stored earlier>', ensuring that all the 
slashes in the filepath are forward slashes. The file was then saved, closed and RStudio 
restarted. The library googleCloudStorageR was loaded, auto-authenticated and was ready 
to communicate with the Google Storage account from within R. library(googleCloudStorage) 

 
4.1.2.2 Creating and inspecting buckets 
Google Storage is a file repository and it keeps files in “buckets.” At least one bucket is needed to store 
files. To inspect the Storage account, the project id should be invoked (as will be shown later).  
 

4.1.3 Working with GoogleCloudStorageR 
GoogleCloudStorageR is a wrapper for the Google Storage API, that is it translates R input into uniform 
resource locators (URLs) that the API can understand. A uniform resource locator is a short string 
containing an address which refers to an object in the web. When the GoogleCloudStorageR functions 
are executed, they are actually sending GET and POST requests to Google and receiving responses 
in return. 
 
As indicated earlier, to invoke the project id, the following procedure was followed.  
 

my_project_id <- "<your project id>" 
gcs_create_bucket("Water_Reasearch_2022,” my_project_id, location = "SA") 
gcs_list_buckets(my_project_id) 
 

At this point, R can be instructed to recognise “Water Research 2022” as a default bucket. This has 
averted the case of adding the bucket id to every subsequent call. 
 

gcs_global_bucket("Water_Research_2022") 
 
More details about the bucket can be obtained with gcs_get_bucket() 

 
gcs_get_bucket() 

 
The bucket’s file inventory is then obtained as follows: 

 
gcs_list_objects() 
write.csv(tweet, "tweet.csv") 
gcs_upload("tweet.csv,” name = "tweet.csv") 
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The contents are checked as follows: 
gcs_list_objects() 

 
Our bucket “Water Research 2022” in this case contained the file (or object) with comments from Twitter 
and a file of their codes and models. Separate files (or objects) can be added to this bucket as can 
separate buckets containing different files. This is dependent on the user’s preferences in relation to 
the project being conducted. 
 
The Google Storage API handles only one file at a time, thus for bulk uploads a loop or an apply function 
is used. This was tested by downloading two random pdfs. 
 

library(purrr) 
download.file("https://cran.r-
project.org/web/packages/googleCloudStorageR/googleCloudStorageR.pdf,”  

              "tweet.pdf") 
download.file("https://cran.r-project.org/web/packages/tweet2/tweet2.pdf,”  

              "tweet2.pdf") 
my_pdfs ← list.files(pattern = "*.pdf")  
map(my_pdfs, function(x) gcs_upload(x, name = x)) 
 

4.1.3.1 Downloading files 
Downloads are performed with gcs_get_object(). It was saved under a different name, using the 
parameter saveToDisk. 
 

gcs_get_object("tweet.csv,” saveToDisk = "tweet.csv") 
 

To download multiple files, a loop or map is used. For instance, if all pdfs in the bucket are to be 
downloaded:  
 

contents ← gcs_list_objects() 
pdfs_to_download ← grep("*.pdf,” contents$name, value = TRUE) 
map(pdfs_to_download, function(x) gcs_get_object(x, saveToDisk = x, overwrite = TRUE)) 
 

4.1.3.2 Deleting files 
The files in the bucket can be deleted with gcs_delete_object(): 
 

gcs_delete_object("tweet§.csv") 
 
To delete several files, a loop or map is required. For example: 
 

contents <- gcs_list_objects() 
map(contents$name, gcs_delete_object) 
 

4.1.3.3 Dealing with folders 
It is not possible to have folders in Google Storage. Rather, files in a bucket are stored side by side in 
a flat structure. It is possible to imitate a folder structure by adding prefixes to filenames (using forward 
slashes). This is important in keeping files organised and for instances where a subset of files in a 
bucket have to be processed. This is illustrated as follows by creating two folders in the working 
directory. The one folder is for csv files and the other for pdfs. 
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dir.create("csvs") 
dir.create("pdfs") 
csv_files <- list.files(pattern = "*.csv") 
pdf_files <- list.files(pattern = "*.pdf") 
file.copy(csv_files, .”/csvs") 
file.copy(pdf_files, .”/pdfs") 

 
To upload the folders, vectors of the files were made in each folder, with the addition of  
“full.names=TRUE to list.files()” to include the folder name. 
 

csvs_to_upload <- list.files(.”/csvs,” full.names = TRUE)  
pdfs_to_upload <- list.files(.”/pdfs,” full.names = TRUE)  

 
The slash part “/” of the file path was then removed before saving to Google Storage. To do this, “gsub()” 
was used. A regular expression (i.e. regex or regexp) is a sequence of characters that specifies a search 
pattern in text (Seewald, 2020). Usually, these are used by string-searching algorithms such as those 
for "find" or "find and replace" operations on strings, or for input validation. Since .and / are special 
characters in regex, a backslash was used for them. 
 

map(csvs_to_upload, function(x) gcs_upload(x, name = gsub("\\.\\/,” ",” x))) 
map(pdfs_to_upload, function(x) gcs_upload(x, name = gsub("\\.\\/,” ",” x))) 
 

The bucket contents can then be checked to ascertain if the files are in “folders.”  
 

gcs_list_objects() 
 

The contents of one bucket “folder” can be downloaded as follows: 
 

contents ← gcs_list_objects() 
folder_to_download ← grep("csvs/*,” contents$name, value = TRUE) 
map(folder_to_download, function(x) gcs_get_object(x, saveToDisk = x, overwrite = TRUE)) 
 

If a “csvs” folder does not exist, R would return an error message. This is because the function 
“gcs_get_object() function cannot create new folders on the hard drive. Thus, if there is a tree of 
subfolders in the bucket this can be maintained (the tree format, that is) by having a destination folder 
with the same folder when downloading. To circumvent this, the forward slash can be replaced by 
something such as an underscore and then reconstructing the folder structure at a later stage. 
 

contents ← gcs_list_objects() 
map(contents$name, function(x) gcs_get_object(x, saveToDisk = gsub("/,” "_,” x), overwrite = 
TRUE)) 

 
To upload a folder that contains many subfolders, the following steps can be taken in which two 
subfolders are created in the csvs folder and some files put in there. 
 

dir.create(.”/csvs/folder1") 
dir.create(.”/csvs/folder2") 
write.csv(WaterQuality1, .”/csvs/folder1/waterquality1.csv") 
write.csv(WaterQuality2, .”/csvs/folder2/waterquality2.csv") 
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To upload the csv folder with subfolders the parameter “recursive = TRUE” is added to 
the list.files() call. The filepath is cleaned as illustrated previously. 
 

files_and_folders ← list.files(.”/csvs,” full.names = TRUE, recursive = TRUE) 
map(files_and_folders, function(x) gcs_upload(x, name = gsub("\\.\\/,” ",” x)))  
 

The bucket can be inspected again using: 
gcs_list_objects() 

 
The preceding discussions have presented an approach of using Google Storage (based on R) for 
secure and permanent curation of data and models generated from various sources, including images, 
videos, audios and text mining data. As indicated previously, most platforms such as Twitter offer limited 
timeframes to access tweets e.g. only up to 10 days. This means that the data and model files should 
be updated continuously. The approach presented here for data curation has the advantage of 
permanently storing data and models compared to other online approaches that provide capacity for 
conducting modelling (on a shared basis), but only store the files temporarily. 
 
Data extraction from sources can be done in real time using third-party service providers such as 
Fivetran. However, this is limited only to data extraction and curation in the preferred destination 
warehouse after which the data user has to conduct the modelling. Essentially, the third-party plays the 
role of a data shuttle. This option is discussed in the following section. 
 

4.2 DATA STORAGE CURATION: USING THIRD-PARTY SERVICE 

As indicated above, the possibility of online data extraction was explored using a trial version of a third-
party service, Fivetran (https://www.generalcatalyst.com/gcamplified/fivetran-making-data-flow/ 
Accessed on 15 May 2022). 
 

4.2.1 Architecture 
Generally, in Fivetran the building blocks of data organisation are tables and schemas (the equivalent 
of buckets in the previous section). While a table is a file organised by rows and columns, a schema is 
a folder that contains multiple tables. In Fivetran, connectors are used that create and manage their 
own schema individually. A connector reaches out to the data source (e.g. Twitter in this study), extracts 
data from it, and writes it to the preferred destination warehouse (Fig. 13). There are two types of 
connectors, namely a push connector and a pull connector. 
 
Pull connectors actively retrieve, or pull, data from a source. Fivetran connects to and downloads data 
from a source system at a fixed frequency. It uses an SSL-encrypted connection to the source system 
to retrieve data using a variety of methods including web service APIs via REST, depending on the 
source system. SSL stands for Secure Sockets Layer and it is the standard technology for keeping an 
internet connection secure and safeguarding any sensitive data that is being sent between two systems, 
preventing criminals and unauthorised people from reading and modifying any information transferred, 
including potential personal details. 
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Figure 13 Different connectors for each of Fivetran’s supported connector types  

(https://www.generalcatalyst.com/gcamplified/fivetran-making-data-flow/ Accessed on 15 May 2022) 
 
In push connectors, such as Webhooks and Snowplow (Fig. 13), source systems send data to Fivetran 
as events. The push connector pipeline is as follows: 
 

1. When the events are received in the collection service, they are buffered in the queue.  
2. The event data are stored as JSON in cloud storage buckets. 
3. During the sync, the data is pushed to the user’s destination. 

 
The former case of push connectors best suits the situation related to this study as data is drawn from 
the source (e.g. Twitter and WhatsApp in this instance) rather than processed and sent by the source 
(i.e. the push case) as this is not possible.  
 
The architecture of a platform such as Fivetran is that it extracts data from the source and loads it as 
raw data in the destination warehouse. The transformation of the data, e.g. modelling is left to the user 
to perform post loading. This approach is commonly called the extract-load-transform (ELT) pipeline. 

https://fivetran.com/docs/events/snowplow
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For their part, Fivetran intends to deliver the information in a cleaned and normalised schema, called 
the canonical schema, at the lowest level of aggregation. Erstwhile, pipelines would pre-aggregate the 
data and scale it down to what would be considered a workable size. This has been changed to allow 
for more control on the part of the user. 
 
Fivetran regularly maintains the connectors and evolve the canonical schema in accordance with 
changes occurring in the source systems. In the case of Twitter, this is a continuous data extraction 
extending beyond the standard 10 days of availability of data on that platform. This in turn means a 
continuous update of the canonical schema to which the data is loaded in the Google Cloud. Then, it is 
left to the user to continuously update the transformation and modelling of new data as it is received. 
 
The steps followed are simply: 
 

• Create one or more source connectors (in our case, Twitter). 
• Connect target destination (in our case, Google Cloud). 
• Fivetran then conducts the extraction, transformation, and loading of data to the destination. 

 
Our approach in this study to use a third-party service provider such as Fivetran is predicated on the 
pathways shown in solid blue lines while that based on independently accessing data from the source, 
processing it and storing it on the cloud is shown by the broken red lines (Fig. 14). The steps and 
procedures to conduct the latter have been described in the preceding section where the RStudio 
platform was used. 
 

 
Figure 14 Data attainment curation using third-party such as Fivetran (solid blue lines) and 

independently using RStudio (broken red lines) 
 

4.2.2 Data process management 
Destination schema are usually named after the connector name or the connector that created them. 
The destination name is permanent and cannot be changed. Fivetran creates, delivers and manages 
the base tables to the user’s destination. Base tables are direct replicas of tables from the source that 
are used as building blocks for the analysis conducted in the destination.  
 
Updates are conducted on the internal representation to identify any schema changes in the source. 
The internal representation is built on Fivetran’s platform, external to the user’s destination and as such 
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any changes can only be done outside the destination. Data loading to the destination occurs using 
queries, e.g. those based on the structured query language (SQL). This is a commonly used language 
for databases and database management (Holywell, 2022). Fivetran uses queries to load data into the 
user’s destination. Since service providers (e.g. Google in our case) charge for storage, they will charge 
when Fivetran loads data into the destination. The costs are dependent on two main factors, namely: 
 

• Data volume: costs are a function of the amount of data, thus loading large amounts of data 
will cost more. 

• Sync frequency: syncing data frequently may cost more, depending on how often updates 
happen in the source. Syncs can be done at intervals of minutes, hours or days.  

 
For other types of data, the creation of base tables is quite easily achievable. A base table is a physical 
structure that contains stored records. This structure can have any physical format as long as it can be 
presented to the user as a collection of rows and columns. Thus, this is easily done for structured data 
such as analytical data or other similarly structured data such as financial records, human resources 
data and marketing data. This type of data works well with SQL as queries can be created using table 
headings and the data pertaining to them called. For example, Fivetran would be able to fetch base 
tables such as Table 7 from an online source, e.g. a cloud-based shared site for a company. Using 
SQL, each variable such as “Expenses” can be assessed for individual selected plants and with respect 
to plant leaders. As such the queries are structured around the table variables. 
 

Table 7 Sample of structured data format 
Plant no. Variable 1 Variable 2 Variable 3 Expenses (ZAR) Lead Scientist 
      
      
      

 
In our study, the data is not in the above format, but is rather in the form of comments (Table 8). This 
means that there is not even a base table to work from or to support table abstraction, making it difficult 
for third party service providers to extract such data using languages such as SQL. 
 

Table 8 Sample of unstructured text data (online commentary Twitter, WhatsApp) 
Comment #1 The water from my tap is brown 
Comment #2 We’re currently using water from a river 
…………… 
…………… 
…………… 
Comment #200 I’ve been drinking bottled water since two years back 

 
It is worth noting here that there are several options for accessing data from sources and storing it in 
preferred data warehouses or data lakes using third party services, notwithstanding the above 
challenges related to unstructured text data. With the increase in data generated by various sources, 
there has also been a correlated growth in companies that provide such third-party services using the 
cloud.  
 
The cloud is inelastic, allowing for gathering large amounts of data from a multitude of data sources and 
scaling to support a large number of users and workloads. The advent of most of these companies has 
seen a growth in listings on stock exchanges such as the Nasdaq, forming a number of what are referred 
to as special purpose acquisition companies (or SPACs) which in itself is a new concept in company 
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listings. In some cases, the new companies become targets for takeover and purchase by bigger 
established technology companies.  
   
The growth trend in such companies is likely to continue for the foreseeable future, as large volumes of 
data are being generated continuously that will require access, manipulation and storage. As this 
occurs, so do concerns increase around data quality, integrity and security. 
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CHAPTER 5: QUALITY CONTROL  
This chapter presents an overview of quality control aspects with respect to storage and maintenance 
of its integrity when using cloud storage. As any other component of computing, it is important to protect 
systems and, subsequently, data from being compromised. This will ensure data quality, data integrity 
and data quality. There is a shared responsibility here between the cloud providers and users, with the 
former protecting the underlying cloud infrastructure while the latter protect data and cloud-deployed 
assets. 
 

5.1 DATA QUALITY INTEGRITY 

A cloud data warehouse is an internet-based repository of data derived from diverse sources. These 
sources include internal organisational operational systems (e.g. data generated from research work) 
and external (e.g. data drawn from online resources). In water quality research, such as that presented 
pertaining to the study, the former sources would typically be analytical data collected from the 
laboratory, while the latter source would be text data collected from online platforms such as Twitter 
and WhatsApp. 
 
Data quality control is easier for internally sourced data as the user has more control on processes 
involved such as sampling, analysis and data analysis. Externally sourced data poses a quality 
challenge owing to the lack of control by the user. This is more pronounced in text type of data such as 
that obtained from interviews and opinion polls. Some websites tend to filter comments coming through 
to them, presenting a risk of having comments that did not originally carry the meanings inferred from 
them at the time of collection. This may be a necessary practice from the part of the sources as they 
tend to contend with prejudice, hate speech and other communication challenges. 
 
In our previous study on citizen science (Nuapia et al., 2021), it was indicated that during the interviews 
conducted, some of the respondents expressed concern at the potential political backlash for any 
negative comments that they could give with respect to their water resources. Thus, opinions collected 
from such individuals would contain some bias and may not reflect the true state of their water 
resources.  
 
Social media is also quite prone to views and opinions of influencers, who usually have a large following 
on those platforms. A typical example here would be that of Tesla founder, Elon Musk who tweeted in 
2021 about “a dog reaching for the moon” which was a veiled reference to speculation on the prospects 
of the cryptocurrency Dogecoin. With a following of over 80 million on Twitter, his tweet led to “crowding” 
on Dogecoin, raising its price by tenfold. This was by no means reflective of the true underlying 
performance of the cryptocurrency. This, together with other misdemeanours such as fake accounts 
and commentary, poses a challenge when dealing with the quality and integrity of online data. 
 
In this study, data quality and integrity could not be ascertained comprehensively as the comments 
were for disparate situations and quite general. While this aspect was important, the main focus 
remained the ability to demonstrate that text mining can be used to obtain data from online platforms 
such as Twitter. 
 

5.2 DATA SECURITY 

One of the foremost challenges in computing is cybersecurity. Established systems usually tend to be 
safer as a result of experience, research and constant efforts towards protection. However, the current 
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dispensation in computing has seen many changes and innovation within a short space of time with 
most of these occurring in the past 15 years or so. Large volumes of data have been produced and 
innovative methods of handling and managing such data are under constant development. Among 
these is cloud data warehousing. As much as the service providers would try to provide a secure 
environment, hackers have also become complicated in their approach, making data that is stored in 
such systems to be under potential threat of being compromised. 
 
There a several instances where databases have been hacked and data compromised. Perhaps the 
most prominent recent case is that of the Colonial Pipeline Company that supplies fuel in the US. It 
suffered a ransomware cyberattack in May 2021 that impacted computerised equipment managing the 
pipeline, causing severe shortages of fuel in the south eastern US. In early 2022, Dischem SA also 
suffered a hacking attack on its customer database, compromising millions of customers’ personal 
information. A typical example of newer and innovative computing tools coming under security threat is 
the hacking of several cryptocurrency wallets in the US in 2021, resulting in the loss of millions of dollars 
in crypto coins. This is concerning especially after most of the companies involved have always touted 
the blockchain network (on which crypto transactions are conducted) as very safe and not prone to 
hacking. In fact, ransomware operates on the blockchain. There has also been a case, in May 2022, of 
hacking of the latest technology, the Metaverse, resulting in tokens (accounts) being stolen.  
 
It is worth noting here that blockchain technology and the Metaverse (based on both virtual and 
augmented reality) will be the main technologies in the near future. While the former is strongly 
associated with crypto assets, its networking concept of decentralisation is gaining preference over the 
conventional centralised control system. It can be observed from here that in future, databases are 
likely to adopt this approach resulting in fast processing and cost reduction related to stages in data 
handling. 
 
In relation to this study, the storage of the text files and modelled data in Google Cloud is backed by 
storage in conventional systems such as hard drives and portable drives. This is possible as a result of 
the small size of the data. As the data size increases, storage will be more reliant on the cloud storage 
platforms and challenges of security will be higher. It would also be worth considering the use of a cloud 
access security broker (CASB) software. The software is placed between cloud service users and cloud 
applications, monitoring cloud usage and ensuring security in the process. This looks to have a potential 
positive growth outlook in this dispensation of increased cloud usage. 
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CHAPTER 6: CONCLUSION RECOMMENDATIONS 
This chapter presents conclusions drawn from the study, encompassing aims and findings. It also 
provides some implications that can be drawn from the study, both theoretical and practical, and lastly 
some recommendations that will be useful for benchmarking future studies and decision-making. 
 

6.1 CONCLUSION 

The study explored how text mining of online data from platforms such as Twitter and WhatsApp could 
enhance hydroinformatics, particularly water quality. It explored the chain of custody, starting from 
extracting text data to processing and modelling this data with respect to opinion and sentiment analysis 
of water quality and its curation in an intermediary database on a cloud-based platform.  
 
Text searching, extraction and processing produced term document matrices, which were further 
simplified to convert unstructured text data into vectorised structured formats, were then modelled using 
machine learning tools. The resulting models of opinions and sentiments revealed the general views 
that users and respondents had regarding the quality of their water. Positive, negative and neutral 
opinions and sentiments were drawn from the comments. These were further analysed to reveal 
connections, for instance, trust or distrust of their water providers, satisfaction or dissatisfaction. Word 
clouds and cluster analysis were also used to enhance delineation of opinions and sentiments. This 
way, it was possible to deduce the positivity, negativity or neutrality thereof. These findings would imply 
that it is possible to extract and model text data from various other online platforms such as emails, 
blogs and chat platforms. 
 
Two approaches were considered for the curation of data in an intermediary database, namely using a 
coding platform (based on RStudio) and a customised platform or third-party service. The former 
approach was based on data obtained through Google Cloud storage accessed from the RStudio 
platform. Twitter and WhatsApp comments were stored in files created on the cloud prior to modelling 
and curating the resulting models in the same cloud warehouse. The customised platform was based 
on Fivetran (a number of other providers can also be used) through a limited trial version. It was 
demonstrated that it is possible to extract data from an online source and store it on the cloud 
warehouse, e.g. Google Cloud in this case. The data processing from there remains the responsibility 
of the user. However, the format of text data that could be extracted was limited to base tables rather 
than random comments as would be obtained from Twitter and WhatsApp. For base tables, the 
structured query language (SQL) is commonly used, abstracting data using query commands referring 
to table labels and variables. Such queries cannot be made for general and unformatted text such as 
that on Twitter and WhatsApp. 
 
In terms of flexibility, the use of coding was found to offer more flexibility, as the user can control 
changes. For instance, the formats for data tables can be manipulated using code at creation and during 
storage. Search formats can also be changed and optimised by use of code, which is not easily 
achievable from customised software such as Fivetran as the back-end code is fixed and not accessible 
or editable. 
 
Aspects of data quality control, namely data quality, data security and data integrity were presented. 
These were discussed with respect to their potential to impact the curation of the data under 
consideration. As a developing technology, cloud storage faces a number of potential threats with 
respect to data quality control aspects. It could also be observed that there is lack of standardisation in 
the technology, with different service providers offering different charges for storage and operational 
support that could be available. Thus, drawing up a due diligence checklist for cloud computing, 
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covering sub-categories such as terms of service, charges, security, and data backup can go a long 
way towards making sure that important aspects are addressed when researching a cloud data 
warehouse provider. 
 

6.2 RECOMMENDATIONS 

Real time collection of data 
As the findings have indicated, coding gives far more leverage in conducting text mining from online 
platforms and the development of an intermediary database for storing the data within the entire chain 
of custody. This gives the user more control over the whole process compared to using customised or 
third-party platforms. Providing effective linkages between text mining; processing of the text data; 
conducting analytics on the text data to develop useful models such as those based on opinions and 
sentiments; and storing the data on cloud platforms remains an important aspect to which future studies 
should be directed. This will make it possible to access text data from online platforms on a continuous 
rather than batch basis (Fig. 15). 
 

 
 
Figure 15 Layout of recommended automated approach to real time collection of text and other 

data, modelling and curating it on cloud platform 
 
Text mining of indigenous languages 
This is important to consider, especially in instances where a community-based case study is used. For 
instance, a WhatsApp group can be set up and respondents requested to answer in their own language, 
e.g. Setswana, Sesotho, Afrikaans, etc. This can then be followed by text mining and modelling 
developed around the language. This will yield more appropriate outcomes with respect to opinions and 
sentiments as respondents will likely be more comfortable in their responses. It is also possible to 
conduct text mining of different indigenous languages simultaneously and drawing comparisons in their 
expressions. This would be useful in communities where people speak different languages. Further, 
consideration of informal and yet popular languages as Tsotsitaal and Iscamtho should also be made. 
 
Broadening the scope of hydroinformatics 
Owing to time constraints, the study focused on one aspect of hydroinformatics, namely water quality 
of drinking water. Other aspects can also be pursued in future studies and these include: flooding 
events, droughts, weather elements (e.g. humidity and temperature), climate change, agricultural 
indicators (e.g. changes in crop yield and nutrient availability), and pollution among others. Because of 
their varied nature, these aspects will require a longer time frame on the project and ideally a specific 
study area. For instance, collating commentary on all these aspects over a period of a year or so in 
KwaZulu Natal where flooding events have increased lately would yield useful insights. An area of a 
few villages can be used as a case study, providing several respondents who will be able to give 



 Text mining to enhance hydroinformatics 

44 

commentary over a protracted period of time. Those comments can then be processed in real time (as 
suggested above), enabling patterns to be identified that will be important as early warning signs once 
there is a sufficient build-up of them. Other citizen data such as videos and images can also be 
incorporated to extend the data beyond just text. 
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APPENDIX 1:  OPINION SENTIMENT MODELS 
 

 
Figure 16 Sample of receiver operating curve (ROC) showing true positive (TP) vs. false 

positive (FP) rate at different classification thresholds 
 

 
Figure 17 Frequency of words plot 
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Figure 18 Word network showing connections to words 

 

 
Figure 19 Communities of words 
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Figure 20 Polarity distribution in sentiment analysis 
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