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EXECUTIVE SUMMARY 

 

BACKGROUND AND MOTIVATION 
 

In South Africa, irrigated agriculture contributes significantly to the nation's field crop and 

horticultural production while exerting immense pressure on the country's water resources. 

Irrigated agriculture consumes approximately 64% of the available surface water in a country 

where water scarcity is prevalent (de Witt et al., 2021). The challenge of water scarcity is 

further compounded by projections suggesting intensified physical and economic water 

scarcity throughout Southern Africa by 2025 (Mabhaudhi et al., 2018). 

 

Furthermore, the sector is troubled by low water use efficiency, prompting a pressing need for 

enhanced practices and optimal water use (Singels et al., 2019; de Witt et al., 2021). Research 

shows that current irrigation practices routinely overlook the significance of capillary rise from 

root-accessible water tables (Barnard et al., 2021) even though capillary rise from root-

accessible water tables may contribute as much as 40% to crop evapotranspiration 

requirements (Jovanovic et al., 2004; Liu et al., 2022). This oversight might be the direct result 

of decision-makers' inability to comprehend the complexity of the interactions between 

irrigation scheduling decisions and the contribution of root-accessible water tables. Effective 

management of conjunctively using surface water, precipitation and root-accessible water 

tables requires information on the impact of irrigation scheduling decisions on water use and 

crop yield while acknowledging the necessity for irrigators to adjust their irrigation decisions 

to maximize the contribution of the most cost-effective water sources. The complexity of the 

interactions necessitates the use of integrated bio-economic optimisation models to provide 

the necessary information for decision support. 
 

PROBLEM STATEMENT  
 

Integrated bio-economic models that include enough detail to provide decision support to 

improve conjunctive use management of surface water and root-accessible water tables do 

not exist in South Africa, which hampers the conjunctive management of surface water and 

root-accessible water tables.  
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OBJECTIVES 
 

The project's general objective was to develop and apply a bio-economic model to improve 

the conjunctive use and management of surface and shallow groundwater economically.  

 

The following specific objectives were set to achieve the general objective of this research: 

 

• To develop methods and procedures to calibrate complex soil-water-crop simulation 

models using inverse modelling. 

• To develop methods and procedures to integrate a soil-crop-water simulation model 

with a financial accounting model with the purpose of simulating the economic impact 

of alternative conjunctive water use strategies. 

• To develop an algorithm to optimise the conjunctive use of surface and shallow 

groundwater economically using the bio-economic simulation model. 

 

APPROACH AND METHODS 
 

The research team represents the scientific fields of Agricultural Economics and Crop and Soil 

sciences. The research commenced with reviewing the literature on bio-economic modelling 

to define a working conceptual framework to guide the responsibility assignments of the 

different scientific groupings. The review indicated that the choice of simulation to represent 

the biophysical component is extremely important to quantifying the impact of irrigation 

scheduling decisions on crop yield when root-accessible water tables are present. After 

reviewing several simulation models, AquaCrop and SWAP were chosen to represent the 

biophysical part of the bio-economic model.  

 

The project team applied a Differential Evolution algorithm to calibrate both AquaCrop and 

SWAP using measured soil water content, seasonal biomass, and grain yield of maize. The 

measurements originate from lysimeter trials conducted by the Department of Soil, Crop and 

Climate Sciences of the University of the Free State to determine the contribution of root-

accessible water tables to satisfying crop water requirements of maize. 

 

The calibrated biophysical simulation models were linked to a financial model using Visual 

Basic to yield a bio-economic simulation model capable of simulating the financial impact of a 

predefined irrigation strategy. The bio-economic simulation model was then integrated with a 

differential evolution algorithm to optimise the contribution of root-accessible water tables to 
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satisfy crop water requirements by changing the irrigation decisions (i.e. timing and 

application). 

 

The bio-economic optimisation models were applied to demonstrate the economic profitability 

of using root-accessible water tables as a water source by comparing a baseline irrigation 

strategy to an optimised one. The baseline irrigation strategy represents a situation where 

irrigators irrigate to satisfy crop water requirements. The optimised irrigation strategy 

represents irrigation decisions that will maximise the expected margin above the specified 

costs irrespective of the state of nature occurring. The research also evaluated a strategy 

where irrigators respond weekly to changing climatic conditions during the season.  

 

SUMMARY OF RESULTS AND CONCLUSIONS 
 
BIOPHYSICAL MODEL CALIBRATION AND VALIDATION 
 

For AquaCrop, the DECAL calibration process showed good results, especially under non-

limiting conditions. The validation results showed that AquaCrop could satisfactorily simulate 

soil water content, evapotranspiration, water table uptake and grain yield of maize grown on 

sandy soil. Measurements describing crop phenology, such as canopy cover, were not 

necessary for calibration using DECAL under these conditions. Instead, soil water content 

measurements were sufficient, while seasonal above-ground biomass played a crucial role in 

the objective function. The conclusion is that AquaCrop could be calibrated using inverse 

modelling when soil water measurements are available.  

 

For SWAP, the results indicated that the calibrated model performed reasonably well, 

particularly in simulating soil water content and evapotranspiration. However, the validation 

results showed discrepancies in simulating above-ground biomass and grain yield, especially 

under shallow groundwater table conditions. This inconsistency might be due to the lack of 

calibration of soil hydraulic parameters, which were not considered in this study. The 

conclusion is that more complex models may require simultaneous calibration of soil 

properties and parameters determining crop water use and crop yield. In this regard, using 

sensitivity analysis to better understand parameter influences on modelling results can be vital 

for improving model outputs. 

 

Overall, DECAL proved to be a valuable tool in fine-tuning calibration parameters. 
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BIO-ECONOMIC ANALYSES  
 

The results of the baseline irrigation applications showed that water table uptake is negligible 

if the irrigators follow a strategy whereby crop water requirements are satisfied through 

irrigation and rainfall. The expectation is that such a strategy will result in an overirrigation of 

19%. Water table uptake increased on average by 116 mm when water applications were 

reduced from 648 mm to 274 mm without affecting crop yield much. The maximum expected 

outcome of the irrigation strategy indicated substantial increases in water table uptake and 

reductions in water applications, which translate to notable increases in profitability (R2433  

ha-1), mainly due to increased water use efficiency. The conclusion is that the magnitude of 

water table uptake is a function of the decision maker's irrigation management decisions. 

Consequently, irrigators will forgo profits if they irrigate to satisfy crop evapotranspiration 

requirements because their conjunctive water use will be sub-optimal. Furthermore, irrigators 

must thoroughly understand the interrelated linkages between irrigation decisions and the 

state of the soil-water-atmosphere continuum in the presence of root-accessible water tables 

to optimise conjunctive water use. Such understanding requires soil water information and a 

mindset of not refilling the soil water back to field capacity when determining irrigation 

applications. 

 

Results from the optimal sequential irrigation strategy showed negligible changes in the 

economic and biophysical indicators because the root-accessible water table acts as a buffer 

against climatic changes if the irrigation strategy is already devised to consider root-accessible 

water tables. The conclusion is that root-accessible water tables might be an important risk 

mitigation strategy in the presence of electricity load shedding and adverse climatic conditions. 

 

SHORTCOMING 
 

The evolutionary algorithm evaluates the biophysical system's current and possible future 

states and the time-of-use electricity tariff periods to devise an irrigation schedule (i.e. 

calendar of irrigations) to maximise expected profits. Since the evolutionary algorithm uses 

the “prescribed” irrigation scheduling option of the crop simulation model to optimise the 

irrigation schedule, providing a generic irrigation strategy defined by timing triggers and 

irrigation amounts is impossible. Consequently, no generic irrigation scheduling guideline 

could be devised to support better conjunctive water use strategies. However, solving the 

model recursively every week provides irrigation scheduling decision support for the upcoming 

week.  
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RECOMMENDATIONS 
 
CALIBRATING BIOPHYSICAL MODELS  
 

• Clarity on the objective of the calibration is essential when choosing calibration 

parameters. Some processes could be calibrated independently, while the parameters 

of interrelated processes must be calibrated simultaneously. Sensitivity analysis 

should target processes to identify the most influential parameters that need 

calibration. 

• Automated calibration is a powerful tool to finetune calibration parameters. However, 

the calibration objective, selected calibration parameters and the bounds of these 

parameters must be carefully considered to produce realistic calibration parameters.  

 

CONJUNCTIVE WATER USE 
 

• Refilling the soil water content to field capacity is detrimental to maximising the 

contribution of root-accessible water tables to satisfying the evapotranspiration 

requirements of a crop. Irrigation strategies to maximise the contribution of root-

accessible water tables must manage the soil water content so that the capillary fringe 

extends to its maximum level by leaving the soil dryer. 

• Normal irrigation scheduling practices apply during the early stages of crop production 

while the roots have not reached the capillary fringe.  

• Soil water measurements are essential for managing the contribution of root-

accessible water tables to satisfy crop water requirements. Preferably, these 

measurements should include salinity indicators.  

• Indirect estimates of crop water requirements (e.g. satellite imagery) must be 

supplemented with soil water measurements to maximise the contribution of root-

accessible water tables to satisfy crop water requirements. 

• Spatial monitoring of soil water content and water table depths is necessary to inform 

the water user association of any unintended hydrological consequences in the large-

scale adoption of root-accessible water tables as a water source.  

 

FURTHER RESEARCH 
 

• The underlying information that the evolutionary algorithm uses to devise the optimal 

irrigation schedules needs to be further analysed using neural networks to develop 
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general guidelines to improve the conjunctive use of surface water and root-accessible 

water tables.  

• The biophysical models' built-in irrigation scheduling options do not cater to irrigation 

strategies considering the contribution of root-accessible water tables. More research 

is necessary to develop generic strategies considering root-accessible water tables for 

these models.  

• All indications are that maximising the contribution of root-accessible water tables to 

satisfy crop water requirements necessitated a lower soil water content. Research is 

necessary to understand fertiliser uptake and salinity buildup under these conditions.  

• The research used Visual Basic for Applications to implement the DE algorithm to 

calibrate the biophysical models and optimise the contribution of root-accessible water 

tables to satisfy crop water requirements. The process could be done more efficiently 

using modern programming languages like Python. Such implementation will also 

allow capitalising on multithread processing.
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The National Development Plan 2030 (National Planning Commission of South Africa, 2102) 

identifies the need for rural communities to participate fully in the country's economic, social 

and political life. In this regard, irrigated agriculture has been identified as a major role player 

in achieving an integrated rural economy. The Irrigation Strategy for South Africa has set a 

target to increase irrigated land by more than 50% in South Africa (DAFF, 2015). Water 

availability is the major limiting factor in the growth of this sector. On the contrary, the 

government argues that irrigated agriculture, as the largest water user in the country, may 

provide large amounts of water by using irrigation water more efficiently. 

The Water Research Commission (WRC) of South Africa has funded research on the efficient 

use of surface irrigation water, completed over several decades. Annandale et al. (2011) offer 

an excellent review of past irrigation scheduling experiences in South Africa. In particular, four 

irrigation scheduling modelling efforts stand out, namely SAPWAT (Van Heerden and Walker, 

2016), BEWAB (Bennie et al., 1988), PUTU (De Jager et al., 2001), SWB (Annandale et al., 

1999a) and MyCanesim (Singels and Smit, 2009). Several studies also showed the economic 

benefits of alternative irrigation water use strategies to improve surface irrigation water use 

efficiency (Oosthuizen et al., 1996; Venter et al., 2017; Grové et al., 2019). None of the studies 

evaluated the economic benefits of the conjunctive use of surface water and shallow 

groundwater, even though it is estimated that the contribution of shallow groundwater to crop 

water demand may be as large as 65% (Ehlers et al., 2003). According to Ayar et al. (2006), 

shallow groundwater is routinely overlooked when water management alternatives are 

considered in irrigated agriculture. The last mentioned is corroborated by research done by 

Barnard et al. (2017), who showed that irrigation farmers in Vaalharts irrigate according to 

their crop water requirements without considering the contribution of shallow groundwater 

through capillary rise. 

Devising irrigation management strategies to maximise the use potential of shallow 

groundwater is complicated as capillary rise from shallow groundwater is affected by 

groundwater depth, groundwater quality, crop growth stage, crop salt tolerance, irrigation 

frequency and depth of irrigation applications. The complexity of the problem makes it 

impossible to conduct experiments that will cover all the factors at once (Ayar et al., 2006). 

Simulation models provide a powerful means to analyse complex systems and develop water 
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management strategies. In most cases, all the input parameters necessary to model a system 

with a particular model are unavailable. The application of sophisticated models that model all 

the essential processes to maximise the contribution of shallow groundwater to crop growth 

in South Africa is, therefore, scarce. Šimůnek and de Vos (1999) proposed an estimation 

method of unknown parameters using inverse optimisation modelling. Inverse modelling uses 

information from easily measured variables to estimate soil properties, which are usually very 

difficult to obtain. Recently, Sedaghatdoost et al. (2019) applied inverse modelling to estimate 

the SWAP model's soil hydraulic and solute transport parameters satisfactorily. 

Even though a well-calibrated simulation model might be available to simulate conjunctive 

irrigation and shallow groundwater usage, it might still be challenging to optimise conjunctive 

use strategies economically. The interrelated linkages between irrigation management 

decisions, soil water dynamics, water application costs, and the resulting crop yield make the 

problem very complex. The complexity of the problem renders the application of standard 

optimisation methods infeasible. Several researchers (Schutze et al., 2012; Lehmann and 

Finger, 2014; Grové and du Plessis, 2019) have recently demonstrated the feasibility of 

evolutionary algorithms to optimise agricultural water use by integrating biophysical simulation 

models and economic models. 

1.2 PROBLEM STATEMENT 

Integrated bio-economic models that include enough detail to provide decision support to 

improve conjunctive use management of surface water and root-accessible water tables do 

not exist in South Africa, which hampers the conjunctive management of surface water and 

root-accessible water tables.  

1.3 OBJECTIVES 

The project's general objective was to develop and apply a bio-economic model to improve 

the conjunctive use and management of surface and shallow groundwater economically.  

 

The following specific objectives were set to achieve the general objective of this research: 

 

• To develop methods and procedures to calibrate complex soil-water-crop simulation 

models using inverse modelling. 

• To develop methods and procedures to integrate a soil-crop-water simulation model 

with a financial accounting model with the purpose of simulating the economic impact 

of alternative conjunctive water use strategies. 
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• To develop an algorithm to optimise the conjunctive use of surface and shallow 

groundwater economically using the bio-economic simulation model. 

1.4 STRUCTURE OF THE REPORT 

Chapter 1 provides the background and motivation for the research as well as the problem 

statement and objectives of the research.   

 

Chapter 2 contextualises the research domain by providing information regarding the 

hydrological processes governing soil water flow to clarify the necessary modelling 

assumptions made during the research.  

 

A literature review on bio-economic modelling is done in Chapter 3 to inform the development 

of the bio-economic optimisation model to evaluate conjunctive irrigation water use strategies. 

Special attention is given to different models for simulating the interaction between irrigation 

management decisions, soil water dynamics in the presence of root-accessible water tables 

and crop yields.  

 

Chapter 4 discusses the calibration and validation of AquaCrop and SWAP to represent the 

bio-physical component of the bio-economic optimisation model. The first part discusses the 

data and methods used, while the latter discusses the results. 

 

Chapter 5 discusses the development of the bio-economic optimisation model and the results 

from applying the bio-economic optimisation model to evaluate the conjunctive use of surface 

and root-accessible water tables.  

 The conclusions and recommendations for further research are given in Chapter 6. 
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CHAPTER 2: PROCESSES AND SCALE CONSIDERATION OF 
THE RESEARCH DOMAIN 

2.1 INTRODUCTION 

This WRC project is a modelling study. Hence, Chapter 2 provides background regarding the 

soils, groundwater table depths, crop, irrigation volumes, and initial and boundary conditions 

used during modelling. Chapter 2 will also explain why specific assumptions were made during 

modelling.  

2.2 REGIONAL, FARM AND FIELD SCALE 

Figure 2.1 conceptualizes the water flow processes influencing root zone water availability on 

a regional and farm scale. Confined and unconfined (does not have a confining layer on top) 

aquifers are groundwater reservoirs saturated with water composed of confining units such as 

sand and gravel, sandstone, limestone and fractured, crystalline rocks. Groundwater above 

unsaturated rock formations or clay layers is referred to as a perched aquifer because of a 

discontinuous impermeable layer.  

 

 
Figure 2.1: Conceptualization of the water flow processes that influence root zone water 

availability on a regional and farm scale.   
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Typically, four scenarios (or conditions) occur at the farm scale where shallow groundwater 

tables are present and accessible to roots through capillary rise. The first scenario is where 

groundwater below the root zone of the irrigated field flows laterally to lower-laying fields. In 

addition, there will be an artificial drainage flux from the installed subsurface drainage system. 

Local recharge to the groundwater below the irrigated field includes percolation of rain and/or 

irrigation beyond the root zone. Regional recharge is from higher laying areas and fields due 

to leakage of irrigation and/or drainage canals, irrigation dams and over-irrigation of fields. 

Discharge from the groundwater below an irrigated field is through the artificial drainage flux 

and groundwater flow to lower laying areas. No artificial drainage system is present in the 

second scenario, but lateral groundwater flow to lower laying areas is possible. The third and 

fourth scenarios represent a worse case where the groundwater below the root zone is 

stagnant (with no lateral movement possible) with and without an artificial drainage system.   

 

The field scale stretches from a plane just above the canopy to a plane in the shallow 

groundwater and defines the domain of the study (Figure 2.2).  

 

 
Figure 2.2: The domain of the study stretches from a plane just above the canopy to a plane in 

the shallow groundwater   
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Potential crop growth and development: Light interception and carbon dioxide assimilation are 

primary crop growth-driving processes. Light interception by the leaf canopy during the day 

depends on the incoming radiation, the crop leaf area, and the photosynthetic leaf 

characteristics. Carbon dioxide assimilation is possible because of the contra-flow gas 

exchange of carbon dioxide (atmosphere) and water vapour (inside of the leaf) through 

stomates, namely transpiration (Ehlers and Goss, 2003). These processes determine the 

potential gross assimilation rate, i.e. potential photosynthesis. Crops with a root system for 

water uptake and leaves from which water is lost to the atmosphere regularly experience a 

slight water shortage in their tissue during the day. This water shortage is caused by the time 

lag between leaf transpiration and root water uptake, a prerequisite for water flow in the soil-

plant-atmosphere system. As long as this time lag remains small and the root zone water 

content is not depleted below a specific level (i.e. soil water potential decreased), transpiration 

is determined by atmospheric conditions and crop characteristics, namely potential 

transpiration or non-limiting soil conditions.   

 

Soil-crop water flow:  The volume of water arriving at the soil surface (pre-infiltration pool) in 

semi-arid regions (snow is generally limited in these regions) is determined by rainfall and 

irrigation after subtracting evaporation losses from canopy and mulch surfaces. Stem flow 

(gravitational flow through plant surfaces) and surface run-on are also part of the pre-

infiltration pool. Effective infiltration is the fraction of the infiltration pool entering the soil at 

each timestep. The remaining fraction causes ponding or surface runoff. Ponding water can 

evaporate or infiltrate in the following timesteps, while surface conditions and topographic 

characteristics influence runoff. Soil evaporation is driven by atmospheric conditions and/or 

soil water flow, with the latter determined by soil hydraulic properties. Soil water flow 

processes include infiltration, redistribution, percolation (drainage) and capillary rise (from 

shallow groundwater table). When the soil is saturated with water (root-accessible water table 

conditions), lateral flow and subsurface artificial drain discharge (when installed) also occur.  

A part of the downward vertical flux that passes the root zone (percolation) can be redirected 

upward into the root zone, i.e. internal recirculation (Kroes et al., 2009). Hence, capillary rise 

has two sources, namely groundwater and recirculated percolation. Soil water decreases from 

saturation just above the groundwater table to approximately a value equal to field capacity at 

the capillary fringe. Hence, soil water between the capillary fringe and the groundwater table 

is above field capacity, allowing no room for water storage.  

 

Actual crop growth and development:  Water flows in the soil-plant-atmosphere system 

because of differences in water potential, i.e. a water potential gradient. The water potential 

of soils and plants includes the component matric, osmotic, gravimetric and pressure 
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potentials. During the early afternoon, crops often experience a more distinct temporary water 

shortage because root water uptake does not compensate for the accelerated transpiration 

rate, i.e. the total water potential gradient between soil and leaves is small. As soil water is 

depleted (due to evaporation and transpiration), the water shortage will become more severe 

if soil water is not replenished. This is because soil water depletion causes a reduction in soil 

water potential through a decrease in the component soil matric potential (Ehlers and Goss, 

2003). Unfortunately, irrigation and capillary rise from shallow groundwater also transport salts 

into the root zone (salts added through rainfall are assumed negligible). Excessive salt in the 

root zone will also decrease the soil water potential by reducing the osmotic potential. Hence, 

water shortage experienced by crops is due to the combined decrease in matric and osmotic 

potential of soil water (i.e. matric and osmotic stress). A temporary water shortage that 

continues for a longer period will cause tension in plants with an associated reduction in 

potential transpiration (i.e. actual transpiration), which causes the potential gross assimilation 

rate to decrease, yielding actual gross assimilation (actual photosynthesis). Subsequently, the 

first plant process to slow down is cell enlargement and leaf growth (at a water potential of 

around ± -4 bar), followed by transpiration and carbon dioxide assimilation (at around ± -7 

bar). Part of the actual assimilates (photosynthesis) is used to maintain living biomass, i.e. 

maintenance respiration. The remaining assimilates are used for growth respiration. In this 

process, carbohydrates are converted into structural plant material, which takes a certain 

amount of energy (de Wit et al., 2019). Partitioning of dry matter among roots, leaves, stems, 

and storage (grain yield) organs is a function of phenological development, with the fraction 

partitioned to leaves determining its development and light interception. Respiration and 

translocation of assimilates are the last processes to slow down (at a water potential of around 

± -9 and -12 bar, respectively). Part of the living biomass dies during the growing season due 

to senescence.   

2.3 IN SITU FIELD DATA  

Root-accessible water tables within or just below a depth of 2 m from the soil surface occur 

extensively in irrigated regions worldwide, including the Lower Vaal River Basin, central South 

Africa. Weekly and seasonal measurements over four production seasons (2 years) on 19 

farms (34 measurement points) located in Vaalharts and Orange-Riet revealed the following 

(Van Rensburg et al., 2012; Barnard et al., 2021), which informed the modelling conditions 

and assumptions of our study.  

 

• Vaalharts (± 40 000 ha) and Orange-Riet Irrigation Schemes (± 17 000 ha) are located 

in the Lower Vaal River basin and receive its irrigation water from the Vaal River 
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through numerous gravity-fed canals, while Orange-Riet utilizes water originating from 

the Orange River.  

• Both areas are classified as semi-arid, summer rainfall regions with an approximate 

annual rainfall of 427 mm (Vaalharts) and 450 mm (Orange-Riet). 

• Most of the irrigated fields at Vaalharts have a permanent shallow groundwater table. 

At Orange-Riet, localised periodic root-accessible water tables also exist.  

• No evidence was found that soil water content, water table depth, and root zone salt 

content explain the variation in yield over the measuring period. However, there was a 

significant variation in the yields of maize, groundnuts, wheat, barley, and lucerne, 

which can be attributed to other factors.  

• The mean volumetric soil water content over a depth of about 1.8 m fluctuated between 

a matric potential of -6 kPa and -30 kPa, representing field water capacity.  

• Evidence of waterlogging, namely a water table depth of less than 1 m for long periods, 

was limited to 3 fields. At only two fields, the soil's salt content was higher than the 

relevant crop threshold.  

• An evaluation of the pivot points showed that the average water distribution under the 

system (> 85%) was good. For most of the pivot points, more than 85% of the pumped 

water ended up in the field at the crop. The variation in the combined effect, namely 

the system efficiency, was high, with a lower-than-expected average value (only 78%). 

Factors contributing to this atmospheric water loss include an incorrect nozzle package 

and excessive pump pressure.  

• Lucerne received a mean irrigation of 1000 mm. However, there was a significant 

variation in application, around 400 mm. The mean irrigation for the two winter crops 

(barley and wheat) was approximately 600 mm, again with significant variation (± 215 

mm). Maize and groundnuts received a mean of 511 mm and 424 mm, respectively. 

The variation was ± 220 mm.  

• At 59% of the measurement points, the annual irrigation averaged 34% more than the 

irrigation quota. When rainfall is added to irrigation, the average increases to 55% 

more than the quota.  

• Producers did not consider rainfall as a source of water when irrigation scheduling took 

place. This statement is confirmed by a conservative calculation of crop water 

requirements (namely only transpiration), given the measured biomass and 

atmospheric evaporation demand for the season. There was no evidence that 

producers used less irrigation to use the capillary rise of shallow water tables (<2 m 

from the ground surface) as an additional water source.  
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• Overirrigation (rainfall plus irrigation) caused a large amount of leaching. Between 0.9 

and 3 tons of salts per hectare, applied by irrigation, were leached each season. It has 

been found that these salts do not accumulate in shallow water tables, provided they 

can flow laterally from higher to lower parts of the landscape. Where a shallow water 

table is stagnant, the salt content increases dramatically.  

2.4 RESEARCH IMPLICATIONS 

Maize grown in a semi-arid area on sandy-to-sandy loam soils with a groundwater table that 

varies between 1 and 1.8 m from the surface will be the focus of the modelling study. 

Furthermore, the project team argue that the higher rainfall during a maize growing season 

(summer rainfall region) compared to wheat provides an alternative dynamic to the economic 

investigation of conjunctive water use. The impact of rainfall is important as the measured 

data showed that irrigators did not consider rainfall in irrigation management. Consequently, 

it is important to inform irrigators of the importance of considering rainfall in irrigation 

management decisions. The groundwater table's mean depth and electrical conductivity 

were > 1.2 m from the surface and < 250 mS m-1 in sandy loam, loamy and sandy soils. The 

effect of excessive salt in the root zone on soil water availability, i.e. the osmotic potential of 

soil water, which reduces soil water availability, is not part of the study. However, The project 

team acknowledges that the salt load associated with irrigation is important. Monitoring salts 

in the root zone will be necessary when considering conjunctive water use strategies. Sound 

irrigation strategies should ideally aim to i) manage soil matric (water stress) and osmotic 

(salinity stress) potential to maintain optimum yields, ii) reduce the amount of irrigation by 

utilizing rainfall and capillary rise from root-accessible water tables to supplement crop water 

requirements and iii) minimize salt additions and irrigation-induced drainage and leaching 

(Barnard et al., 2021). Hence, our modelling study will focus on non-limiting conditions to 

economically investigate the conjunctive use of irrigation water and root-accessible water 

tables.  
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CHAPTER 3: LITERATURE REVIEW 

“All models are wrong, but some are useful.” 

George E.P. Box. 

3.1 BIO-ECONOMIC MODELLING DEFINED 

Bioeconomic modelling integrates biology with economic decision-making to study the 

interrelated linkages between biological systems and economic decisions while considering 

the consequences of these management decisions on the environment. The multi-disciplinary 

nature of bioeconomic modelling efforts has resulted in a magnitude of models that range in 

their level of integration. On the one end of the continuum of bioeconomic modelling efforts 

are biological systems models that include an economic analysis component. In contrast, on 

the other end, you have economic optimisation models that include some representation of 

the biological system (Brown, 2000). Biophysical systems models that only include an 

economic analysis component do not include decision-making capabilities and are mainly 

used to simulate predefined behaviour. Optimisation models optimise a decision-maker's 

decisions according to an objective function but usually have simplified representations of the 

biophysical system to enable the application of first-order conditions to optimise the system. 

According to Flichman and Allen (2015), the bioeconomic models between the two poles are 

worthy of being called “bioeconomic” models as these models integrate the biophysical and 

economic modules sufficiently.  

 

No bioeconomic model applies to all situations, and researchers have developed different 

bioeconomic models to suit their goals. The following section describes the characteristics 

that distinguish different bioeconomic models. 

3.2 CHARACTERISTICS OF BIO-ECONOMIC MODELS 

3.2.1 POSITIVE OR NORMATIVE APPROACHES 

The researcher/analyst should consider the purpose of the bioeconomic modelling efforts 

before integrating biophysical models with economic models, as the purpose of the modelling 

effort will determine the general approach that is followed. Two broad strands of bioeconomic 

models have developed in literature based on the approach that is followed to pursue the goal 
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of the analyst. Bioeconomic models could be positive or normative (Janssen and Van Ittersum, 

2007). 

 

Positive economic modelling efforts intend to develop models that can simulate the observed 

behaviour of decision-making units and predict how decision-makers will behave in future 

(Louhichi et al., 1999). Statistical inference is commonly used to justify econometric models 

of observed behaviour (Flichman, 1997). From a farming systems point of view, well-calibrated 

biophysical models that can describe how the agricultural system behaves given external 

environmental drivers and the decisions or policies under consideration are invaluable for 

analyses of such choices or policies (Jones et al., 2017). In essence, positive models try to 

describe observed behaviour without any reference to the appropriateness of the behaviour.  

 

Contrary to positive models, normative models include a priori objective functions that are 

optimised to determine optimal behaviour according to the included objective function 

(Graveline, 2016). Consequently, normative models are not calibrated to observed behaviour 

as these models predict how decision-makers “ought” to respond, not “how” they respond. 

Typically, normative bioeconomic models are based on linear or non-linear mathematical 

programming approaches (Graveline, 2016). Purely normative models are criticized for their 

prediction ability and usefulness in policy assessment (Janssen and Van Ittersum, 2007). 

However, several options are available to calibrate normative models. Therefore, calibrated 

normative models could be applied positively (Flichman, 1997; Graveline, 2016).  

 

According to Flichman (1997), calibrating mathematical programming models requires careful 

consideration of the model specification and the utility function used. Proper model 

specification requires a deep understanding and appropriate representation of production 

possibilities, while the utility function implies knowing the objectives of the decision-maker. 

The calibration process is not exact, and the calibration results could be evaluated with the 

Finger and Kreinin similarity index (Finger and Kreinin, 1979). Precise calibration of 

mathematical programming models could be achieved through the positive mathematical 

programming approach developed by Howitt (1995). Positive mathematical programming, 

however, is not without criticism, as some researchers argue that farmer response might be 

distorted if not within the observed initial calibration area (Graveline, 2016). 
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3.2.2 UNIT OF ANALYSIS AND DECISION-MAKING UNIT 

The scope of a bio-economic model is dependent on the questions being asked and the 

decisions and policies being studied (Jones et al., 2017). Consequently, the spatial scale of 

bio-economic models varies from field to regional or landscape scales. 

 

Field scale or enterprise bio-economic models are concerned with choosing management 

practices that will maximise profits, meet production targets or minimise environmental 

consequences for a specific field or enterprise. Typically, production conditions are assumed 

to be spatially homogeneous across the field while modelling the impact of management 

changes on production with detailed crop models (e.g. Lehmann et al., 2014). However, some 

models that support precision agriculture take spatial heterogeneity of field conditions into 

account through multiple crop models (e.g. Basso et al., 2012).  

 

Farm scale models integrate different fields into one decision-making unit. Consequently, 

farm-scale bio-economic modelling allows for the interaction between fields or enterprises to 

be modelled while allocating scarce resource endowments of the farm firm between 

enterprises. An advantage of farm scale modelling is that results could be interpreted in terms 

of equity and address distribution effects (Graveline, 2016). From a development economics 

perspective, farm-scale modelling parallels household modelling. 

 

Bio-economic modelling at larger scales requires some form of aggregation, which may lead 

to bias (Graveline, 2016). Preserving the farm as an essential modelling unit typically involves 

the construction of typical farms since data availability does not allow for the inclusion of a 

farm model for each farm. Alternatively, aggregate regional models are developed to evaluate 

alternative scenarios. The results of these models are then downscaled to smaller areas using 

maximum entropy (Howitt and Reynaud, 2003) or farm scale using a Bayesian framework 

(Gocht and Britz, 2010). Graveline (2016) argues that downscaling approaches do not 

explicitly consider farm-specific conditions and structural changes that might interest 

policymakers. Consequently, farm-scale models might be more appropriate in specific 

settings. 

3.2.3 REPRESENTATION OF BIOPHYSICAL COMPONENT 

Two broad approaches have developed in the literature to model agricultural systems (Brown, 

2000; Jones et al., 2017). The most comprehensive methods try to model the underlying 

biological processes based on the current theoretical understanding. These methods are 

referred to as “mechanistic” or “process-based” approaches. On the other hand, reduced-form 
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approaches estimate empirical functions that summarise the biophysical processes. These 

types of methods are commonly referred to as “functional” approaches. According to Brown 

(2000), a decision needs to be made on the specific processes that need to be modelled and 

the level of detail. Economists have developed various methods to represent the biophysical 

component of the agricultural system being modelled within mathematical programming0F

1 

models or optimisation models that use near-optimal solution techniques1F

2. Irrespective of the 

approach followed, decision-maker responses should allow for intensive and extensive margin 

adjustments (Graveline, 2016). Intensive margin adjustments refer to input combinations per 

hectare, while extensive margin relates to changes in the areas allocated to different crops. 

Next, the methods used to represent the biophysical component in bio-economic 

mathematical programming models and near-optimal models are discussed in more detail.  

3.2.3.1 Mathematical programming models 

The use of mathematical programming as the basis for developing a bio-economic model 

implies that the developer must decide on the representation of the biophysical component 

within a constraint optimisation framework.  

 

The production function forms the basis of the study of production economics. A production 

function represents the physical transformation of inputs into output. As such, it provides a 

reduced-form approach to modelling the biophysical component of bio-economic models. 

When concerning irrigation water use, it is essential to distinguish between a water production 

function (WPF) and a crop water production function (CWPF). The former depicts the 

relationship between applied irrigation water and crop yield (Li, 1998), while the latter is the 

relationship between consumptively used water (evapotranspiration) and crop yield (Stewart 

and Hagan, 1973; Vaux and Pruitt, 1983). The distinction is essential since the decision-maker 

controls applied irrigation water, not evapotranspiration per se. The implication is that the crop 

does not consume all the applied water due to different hydrological processes that result in 

inefficiencies. Consequently, CWPF ignores the processes that cause inefficiencies and is 

therefore more or less independent of the irrigation systems, soils and other factors that 

influence the management of applied irrigation water (English et al., 2002). 

 

The linear relationship between ET and crop yield over a season or within a specific crop 

growth stage has made it a widely applied methodology to directly incorporate the impact of 

 
1  Mathematical programming models refer to the use of linear programming, non-linear programming and 
integer programming. 
2  Near optimal solution techniques refer to the use of evolutionary algorithms.  
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crop water use into mathematical programming models. The relationship between applied 

irrigation water and crop yield is typically incorporated into CWPF by assuming constant 

inefficiencies (Ghahraman and Sepaskhah, 2004; Sadati et al., 2014) or by taking a specific 

level of inefficiency for the level of water availability as a fraction of the required amount 

(Homayounfar et al., 2014). The assumptions mentioned above oversimplify the processes of 

deep percolation and runoff losses that cause inefficient water applications. Consequently, the 

impact of varying irrigation applications on water use is modelled unrealistically (English and 

Raja, 1996). A popular approach to incorporate the non-linear relationship between applied 

water and crop yield is to account for the uniformity with which irrigation water is applied by 

assuming some statistical distribution (Reca et al., 2001; Ortega et al., 2005). The production 

function (WPF or CWPF) approach is criticized by researchers, arguing that the onset and 

duration of ET deficits are a function of the status of the soil water store. Consequently, the 

production function approach is unsuitable for modelling typical intraseasonal irrigation 

decisions regarding the timing and magnitude of irrigation events. Explicit water budget 

calculations are necessary to model intraseasonal water management decisions. A tipping 

bucket approach is typically used to simplify water budget calculations in mathematical 

programming models. However, Grové (2019) has shown that the free-from specification used 

to model water budget calculations that are employed by numerous researchers (Ghahraman 

and Sepaskhah, 2004; Kanooni and Monem, 2014; Sadati et al., 2014) may malfunction under 

certain conditions. Proper functioning water budget calculations result when applying a square 

root approximation of the MIN function inherent in water budget modelling (Grové, 2019).  

 

Metamodeling provides an alternative method to establish the relationship between 

management actions and the impact thereof on the biophysical system being modelled without 

empirical observations. In bio-economic modelling, a metamodel of the biophysical system 

results when the output of detailed process-based agricultural systems models is summarised 

using the statistical estimation of response functions. Within a South African context, Mathews 

and Grové (2017) used a metamodeling approach to model the economic and environmental 

trade-offs of nitrate pollution by estimating metamodels based on the output from SWB (Van 

der Laan et al., 2009). 

 

Another approach that utilises the output of validated process-based agricultural system 

models is where the output from these models is directly included as activities in mathematical 

programming models to represent an “engineering” production function (Flichman, 1997; 

Flichman and Allan, 2015). The engineering production function approach emphasises the 

technical processes that result in the production of outputs and externalities. The programming 

model needs to include several activities to allow for non-linear production presentations 
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(Graveline, 2016) and for substitution between inputs (Hazell and Norton, 1986). Researchers 

who use only a few activities to represent alternative production processes (e.g. Oosthuizen, 

2014) may not appropriately capture the substitution effects. The necessity to include multiple 

alternatives when applying the engineering production function approach creates a strong 

information demand which suits the use of a validated processed-based agricultural systems 

model (Flichman and Allan, 2015). Applying the engineering production function approach 

may require software development to systematically generate alternative activities for the 

mathematical programming model (Dogliotti et al., 2003). The burden of developing large 

mathematical programming models is softened with modern mathematical programming 

languages such as GAMS (GAMS Development Corporation, 2017). 

3.2.3.2 Evolutionary optimisation 

Evolutionary algorithms (EAs) do not rely on first-order optimisation conditions to optimise bio-

economic models. Instead, EAs rely on metaheuristic procedures based on an iterative 

exploration of the search space by a structured means inspired by biological evolution to find 

near-optimal solutions efficiently (Maier et al., 2014). The metaheuristic nature of the 

algorithms does not require simplification of biological processes before commencing 

optimisation. Consequently, EAs can optimise complex agricultural system models. Such bio-

economic models that use EAs to optimise the system could indeed be classified as integrated 

bio-economic models because no simplification of the biophysical processes is necessary. 

Recently, several researchers (Schutze et al., 2012; Lehmann and Finger, 2014; Grové and 

Du Plessis, 2019) have demonstrated the feasibility of EAs to optimise agricultural water use 

by integrating irrigation simulation models and economic models. 

 

The application of EAs is compatible with the engineering production function approach since 

the agricultural systems model represents the production process during optimisation. The 

implication is that a simulation model setup is required for each production function, increasing 

the computational time required to solve the model. However, applying EAs is perfectly suited 

for parallel processing, which will reduce computation time (Maier et al., 2014). 

3.2.4 DECISION-MAKING MODELLING 

3.2.4.1 Objectives of the decision-maker 

The main objective of the economic component of the bio-economic model is to determine the 

set of activities that will satisfy the goals of the decision-maker. Optimisation is core to 

modelling decision-making, which entails specifying the objective function that needs to be 



16 

Literature review 

 

maximised (Janssen and Itersum, 2007). Biological processes are subject to variable weather 

and environmental conditions. Consequently, the outcome of these processes on which 

decision-makers depend to achieve their objectives is uncertain. Under such risky conditions, 

modellers have applied expected utility theory as the most generally accepted basis to guide 

decision analysis considering risk (Hardaker and Lien, 2010). Application of expected utility 

theory requires quantifying the decision-maker’s subjective beliefs (probabilities) about the 

risky outcome variable and determining the preferences (utility) of the decision-maker over 

those outcomes. Biophysical process-based simulation models are essential in quantifying the 

risk of producing under different states of nature (Finger, 2013). Probability and value 

assessments are then integrated to determine choices between risky prospects based on 

expected utility maximization. Risk-neutral behaviour resolves to maximise expected 

outcomes.  

 

Decision-makers might not always be classified as economically rational and may not always 

try to maximise profit, whether the expected profit or profit adjusted for risk aversion. Instead, 

decision-makers might have multiple objectives derived from different dimensions, i.e. 

economic, environmental, biophysical and social (Janssen and Itersum, 2007). Multi-criteria 

decision-making methods (Rehman and Romero, 1993) are relevant when multiple objectives 

need to be considered. Multi-criteria decision-making methods either incorporate different 

goals directly into the objective function using weights or in the constraint set. An example of 

multiple objectives is where an irrigation farmer tries to maximise profits while simultaneously 

trying to end the growing season with a targeted soil water content.  

3.2.4.2 Responsive decision-making 

Risk decision-making is frequently modelled based on the assumption that decisions are made 

before the resolution of the risk and that production is instantaneous (Boisvert and McCarl, 

1990; Dorward, 1999). Consequently, these models do not allow the possibility of managing 

risk sequentially through the season as the risk unfolds and more information is available. 

Modelling adaptive decisions under risk requires a dynamic sequential decision-making 

framework incorporating interactive linkages between the decisions being made and the state 

of the modelled biophysical system. 

 

Modelling adaptive sequential decision-making is especially important in irrigation agriculture, 

where irrigators need to make weekly irrigation decisions within a dynamic stochastic 

environment (Robert et al. 2016, 2017). From a South African perspective, Madende and 

Grové (2020) have shown that the profit margins are higher while the variability thereof is 

lower when sequential decisions are included in their bio-economic irrigation model compared 
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to a model that ignores sequential decision-making. Representing sequential dynamic 

decisions in optimisation models results in large models depending on the number of decision 

nodes and states of nature included. The problem above is referred to in the literature as the 

“curse of dimensionality” (Boisvert and McCarl, 1990; Blanco and Flichman, 2002). Blanco 

and Flichman (2002) developed a solution method to overcome the “curse of dimensionality” 

by applying forward recursion in contrast to the typical backward recursion methods.  

3.2.4.3 Timing of decisions 

The decision-making environment could be static or dynamic (Janssen and Ittersum, 2007). 

Static models ignore the influence of time on decision-making. Static models are typically 

constructed for a single season or year, while dynamic models explicitly account for time by 

dividing the planning horizon into several periods. Robert et al. (2016) argue in favour of using 

dynamic models to model the impact of farmer decision-making on biophysical systems. 

Blanco and Flichman (2002) distinguish between different dynamic modelling approaches, as 

depicted in Figure 3.1. 

 

Intertemporal models optimise decisions that maximise the objective function over the entire 

planning horizon while considering intertemporal trade-offs between periods. Discount rates 

are used to indicate relative preference for current income generation above future income. 

Intertemporal models do not explicitly consider the interactions between decisions made in 

one period and those made in the next.  

 

Recursive models include several periods in the planning horizon, with the end values of one 

period being the starting values of the following period. The optimisation is, however, carried 

out period by period. Thus, the decisions made in the current period depend on the outcome 

of previous periods and are independent of future conditions. Dynamic recursive models also 

include multiple periods, with the end values of one period being the start values of the next 

period. However, one optimisation is done over the whole planning horizon, implying that the 

interaction of decisions between periods is explicitly considered. Dynamic recursive models 

assume complete knowledge of how the biophysical system will react to management 

changes.  
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Figure 3. 1: Different types of dynamic models (Blanco and Flichman, 2002) 

 

Stochastic programming models acknowledge that some decisions are made before the 

uncertain future unfolds and are made sequentially over the planning period. Cognisance 

should be taken that stochastic programming models have short planning horizons subdivided 

into several decision stages. The planning horizon is typically a season or a year. Different 

states of nature are included in the model as discrete distributions of outcomes, and the 

adaptive decision-making process that is modelled could be presented as a decision tree 

(Boisvert and McCarl, 1990). Stochastic programming models are subject to the curse of 

dimensionality since including more states of nature may result in very large models. 

Belhouchette et al. (2012) developed a recursive solution procedure (Figure 2) to overcome 

the problems of solving large models.  

 

Madende and Grové (2020) applied the solution procedure to solve the irrigation problem 

where the irrigator needs to decide on the area to plant and how to schedule his limited 

irrigation water over the season, as depicted in Figure 3.2.  
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Figure 3.1: Forward recursive stochastic decision-making framework where solid squares represent fixed decisions, circles represent possible 

events to unfold, dashed squares represent decisions that will be optimised, triangles represent the outcome, A represents the area, I 
represents the irrigation decisions, T represents decision stage, and S represents the possible state of nature to unfold. 
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Within the forward recursive stochastic decision-making framework, the area decision is made 

in the first stage, and the irrigation scheduling decisions are made sequentially in subsequent 

stages as more information becomes available weekly. Figure 3.2 shows that the first 

optimisation optimises irrigation area and amounts regardless of the state of nature. The 

optimised values will result in the best average outcome across all the states of nature. After 

the first optimisation, the area and the first irrigation decisions are fixed. Subsequent 

optimisations are carried out at each decision stage (week) conditional on information on the 

unfolding state of nature by updating the biophysical model with the state-specific information 

and the optimised irrigation decision of the previous week. Consequently, a separate 

optimisation is done at each irrigation decision stage for each unfolding state of nature.  

 

The time scale over which decisions are modelled within integrated bio-economic models is 

of utmost importance because the timing of decisions dictates the key decision points in the 

biophysical models (Brown, 2000). Consequently, the time scale of decisions significantly 

affects the level of integration and complexity of the model structure necessary to model the 

impact of decisions on the biophysical system being modelled.  

3.3 BIOPHYSICAL MODELLING OF IRRIGATED FIELDS 

Section 3.3 of the literature review provides a synopsis of transient-state mathematical 

biophysical models that allow for potential crop production, for example, temperature, 

radiation, crop characteristics, etc., and the growth limiting factor of water. The review focuses 

on biophysical models specifically applied when producing field crops in irrigated production 

systems on soils with a shallow groundwater table within or below a depth of 2 m.  

 
Hydrology-based models generally emphasize water flow dynamics in the soil-plant-

atmosphere system at different scales. The effect of growth-defining factors (radiation, 

temperature, etc.) and soil water availability on crop growth and development are generally 

the focus of crop models. Models in these two families are sometimes grouped as cropping 

systems, agroecosystems, soil water or soil hydrological models. The complexity and detail 

with which the relevant processes are simulated vary considerably between models, with no 

clear-cut distinction between mechanistic and empirical approaches. Generally, there is a 

continuum between the two approaches, “with mechanistic models always having some 

empirical components” (Tenreiro et al., 2020).   
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3.3.1 RELEVANT MODELS 

Popular crop growth models in chronological order that were developed after 1980 include, 

for example, WOFOST, DSSAT, DAISY, APSIM, STICS, AquaCrop and MONICA. The 

popular hydrology-based models are HYDRUS1D, MIKE-SHE, SWAP, SWIM and HYDRUS-

2D. Table 3.1 provides a list of modelling studies for the past ten years specifically related to 

the presence of root-accessible water tables in cropping systems.  

 

SWAP (Kroes et al., 2009; Kroes et al., 2017) and HYDRUS-1D (Šimunek et al., 2012) are 

popular models for studying water flow under these conditions. WOFOST, a detailed model 

for the dynamic growth of arable crops, is fully integrated into SWAP (a simple module for 

static crop growth is also part of SWAP). WOFOST has been used for over 25 years and 

shares many algorithms and approaches with SUCROS. A clear difference between WOFOST 

and SUCROS is the “myriad of SUCROS versions differing slightly in approach and output” 

compared to “clear version control and proper documentation of WOFOST” (de Wit et al., 

2019). WOFOST also allows the simulation of an extensive range of crop types with a single 

code base by only changing parameter values (de Wit et al., 2019). As an alternative 

combination, SWAP has been successfully combined with EPIC (calibrated and validated) to 

analyse groundwater recharge processes and capillary rise in the Hetao Irrigation District of 

the upper Yellow River basin (Xu et al., 2015). In addition, SWAP was integrated into the 

groundwater flow model MODFLOW2000 and tested using a two-dimensional saturated-

unsaturated groundwater table recharge experiment (Xu et al., 2012). Kroes et al. (2018) used 

SWAP to quantify upward flow and recirculated separately percolation water as well as the 

contribution of capillary rise and recirculated water to crop yield and groundwater recharge 

(this was with grass, maize and potato grown in the Dutch delta).   

 

HYDRUS-1D was coupled with the FAO-56 dual crop coefficient approach by Ren et al. 

(2016). After calibration and validation, a simulation was done for maize, sunflower and 

watermelon grown in the command area of a typical irrigation canal system in Hetao Irrigation 

District. Results showed that large volumes of irrigation water percolated due to over-irrigation. 

The reuse of percolated irrigation water through capillary rise was considerable. Han et al. 

(2015) coupled HYDRUS-1D with a simplified crop growth module from SWAT. The coupled 

model was calibrated and validated using field observations. Namely, soil water content, leaf 

area index, plant height, above-ground biomass and cotton yield grown on soils with root-

accessible water tables at the Aksu water balance station in Xinjiang, northwest of China. 
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Table 3.1: List of modelling studies for the past ten years specifically related to the presence 
of root-accessible water tables in crop systems 

Model coupled Crops Title of paper Reference 
SWAP - grass, maize, 

potato 
Impact of capillary rise and recirculation on 
simulated crop yields 

Kroes et al. 
(2018) 

MODFLOW - Integration of SWAP and MODFLOW-2000 for 
modelling groundwater dynamics in shallow water 
table areas 

Xu et al. 
(2012) 

EPIC - Groundwater recharge and capillary rise in irrigated 
areas of the Upper Yellow River Basin assessed by 
an agro-hydrological model 

Xu et al. 
(2015) 

- date palms Soil salinization and critical shallow groundwater 
depth under saline irrigation conditions in a Saharan 
irrigated land 

Haj-Amor et 
al. (2017) 

- - Irrigation regime and salt dynamics for rise with 
brackish water irrigation in the coastal region of 
North Jiangsu Province 

Wang et al. 
(2014) 

- - Assessing the effects of water table depth on water 
use, soil salinity and wheat yield: Searching for a 
target depth for irrigated areas in the upper Yellow 
River basin 

Xu et al. 
(2013) 

- - Simulation of hydrology following various volumes of 
irrigation to soil with different depths to the water 
table 

Huo et al. 
(2012) 

HYDRUS-1D FAO56 
(dualKc) 

maize, 
sunflower, 
watermelon 

Modeling and assessing field irrigation water use in 
a canal system of Hetao, upper Yellow River basin: 
Application to maize, sunflower and watermelon 

Ren et al. 
(2016) 

FEFLOW-3D cotton, wheat 
and 
vegetables 

A GIS-based approach for up-scaling capillary rise 
from field to system level under soil-crop-
groundwater mix 

Awan et al. 
(2014) 

EPIC maize Modeling soil water-salt dynamics and maize yield 
responses to groundwater depths and irrigations 

Hao et al. 
(2014) 

- wheat Effect of climate change on the contribution of 
groundwater to the root zone of winter wheat in the 
Huaibei Plain of China 

Gao et al. 
(2020) 

- maize Simulation of maize (Zea mays L.) water use with 
the HYDRUS-1D model in the semi-arid Hailiutu 
River catchment, Northwest China 

Hou et al. 
(2017) 

simplified crop 
growth module 
from SWAT 

cotton Evaluating the impact of groundwater on cotton 
growth and root zone water balance using Hydrus-
1D coupled with a crop growth model 

Han et al. 
(2015) 

DSSAT soybean Coupling DSSAT and HYDRUS-1D for simulations of 
soil water dynamics in the soil-plant-atmosphere 
system 

Shelia et al. 
(2018) 

DRAINMOD - canola Evaluating Drainmod-s to predict drainage water 
salinity and groundwater table depth during winter 
cropping in heavy-textured paddy soils 

Davoodi et al. 
(2019) 

- cotton The effect of natural rainfall on salt leaching under 
water table management 

Li et al. 
(2018) 

- - Impact of accurate evapotranspiration estimates on 
DRAINMOD simulation in North Dakota 

Niaghi et al. 
(2017) 

- - Shallow groundwater use and salinity buildup based 
on DRAINMOD predicted field hydrology in irrigated 
areas 

Li et al. 
(2015) 

SWAT DRAINMOD - Shallow water depth algorithm in SWAT: Recent 
developments 

Moriasi et al. 
(2011) 

AquaCrop - maize Evaluating the effect of groundwater table on 
summer maize growth using the AquaCrop model 

Zhao et al. 
(2020) 

- wheat Improving irrigation scheduling of wheat to increase 
water productivity in shallow groundwater conditions 
using Aquacrop 

Goosheh et 
al. (2018) 

AWPM-SG - - Modeling contribution of shallow groundwater to 
evapotranspiration and yield of maize in an arid area 

Gao et al. 
(2017) 
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Model coupled Crops Title of paper Reference 
APSIM - soybean Enhancing APSIM to simulate excessive moisture 

effects on root growth 
Ebrahimi-
Mollabashi et 
al. (2019) 

Unique 
vadose zone 
model 

- maize A unique vadose zone model for shallow aquifers: 
the Hetao irrigation district, China 

Liu et al. 
(2019) 

DSSAT - wheat, maize Estimating of groundwater use by crop production 
simulated by DSSAT-wheat and DSSAT-maize 
models in the piedmont 

Yang et al. 
(2006) 

new model - - Optimizing irrigation and drainage by considering 
agricultural hydrological process in arid farmland 
with shallow groundwater 

Li et al. 
(2020) 

new model - - Development and application of long-term root zone 
salt balance model for predicting soil salinity in arid 
shallow water table area 

Sun et al. 
(2019) 

new model - - Untangling the effects of shallow groundwater and 
deficit irrigation on irrigation water productivity in arid 
region: New conceptual model 

Xue et al. 
(2018) 

 

HYDRUS-1D was also coupled with the EPIC crop growth module by Hao et al. (2014) to 

simulate crop height, leaf area index, above-ground biomass and crop yield. A new soil 

evaporation module was added to describe better soil evaporation where root-accessible 

water tables are present. After calibration and validation, the model assessed groundwater 

table and irrigation impacts on soil water-salt dynamics and maize yields. Awan et al. (2014) 

used HYDRUS-1D to simulate capillary rise at field scale for cotton, wheat and vegetables 

grown on six different hydrological response units in the Shomakhulum Water Users 

Association, Uzbekistan. A simple aggregation approach was used to up-scale capillary rise 

from these hydrological response units to Water User Association levels. FEFLOW-3D was 

used in parallel to simulate groundwater table depths under four improved irrigation schedules, 

which were then used in HYDRUS-1D to quantify the impact of improved irrigation schedules 

on the contribution of capillary rise. Gao et al. (2020) studied how climate change (20111-

2100) will impact groundwater table depths and crops. This was done with a circulation model 

HadGEM2-AO (which performed best in simulating precipitation in the study area) and 

HYDRUS-1D. Simulations showed that the most significant groundwater contribution and 

deep drainage occurred at a groundwater table depth of 1.5 m and that climate change could 

alter the distribution of groundwater contribution during each growing season. Simulations of 

maize grown on shallow groundwater table soils in the semi-arid Hailiutu River catchment of 

the Maowusu Desert, China, with HYDRUS-1D were done by Hou et al. (2017). Results 

revealed that increased groundwater table depth would increase irrigation water requirements. 

Below a depth of 1.57 m, the contribution of groundwater to maize water use was insignificant 

under these conditions.   

 

The FAO model AquaCrop was also used in shallow groundwater table studies by Goosheh 

et al. (2018) and Ahmadi et al. (2015). In the former study, various irrigation schedules for 
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wheat were simulated for 12 years, and the water and salt balance were evaluated under 

shallow groundwater table conditions. The latter study focused on simulations of maize growth 

and soil water content under full and deficit irrigation schedules. DRAINMOD was also a 

popular model for water flow dynamics concerning root-accessible water tables and artificial 

drainage, while new models were also developed recently (Table 3.1).   

3.3.2 CROP GROWTH AND DEVELOPMENT MODELLING 

Palosuo et al. (2011) grouped 8 (WOFOST, DSSAT, DAISY, STICKS, CROPSYST, APES, 

FASSET, HERMES) crop models in terms of the detail with which they treat the major crop 

growth processes (Table 3.2). Leaf area development and light interception are simulated with 

a simpler approach by CROPSYST and DSSAT through a specific leaf area at emergence 

and biomass partitioning factors or a “forcing function with an exogenously defined maximum 

leaf area index” (Palosuo et al., 2011). For example, WOFOST, STICS and DAISY adopt a 

more detailed approach for simulating the effect of temperature and light on leaf expansion at 

different phenological stages. Light utilization simulations by DAISY, FASSET, and WOFOST 

are explanatory descriptions of photosynthesis, respiration, and partitioning of assimilates in 

various growth stages. DSSAT, STICS and CROPSYST employ the descriptive (simpler) 

radiation use efficiency approach. Yield formation, used by the multiple models that depend 

on a fixed harvest index, above-ground biomass, number of grains and partitioning during 

reproductive stages are listed in Table 3.2. 

 
Table 3.2: Approaches applied by various crop models in simulating major processes 

determining crop growth and development as summarised by Palosuo et al. (2011) 
(Abbreviations are provided in the text) 

Model Leaf area 
development and 
light interception 

Light 
utilization 

Yield 
formation 

Crop 
phenology 

Root 
distribution 

APES D RUE Y (Prt) f (T, DL, V) exponential 
CROPSYST S RUE Y (HI, B) f (T, DL, V) linear 
DAISY D P-R Y (Prt) f (T, DL, V) exponential 
DSSAT S RUE Y (HI(Gn), B) f (T, DL, V) exponential 
FASSET D RUE Y (HI, B) f (T, DL) exponential 
HERMES D P-R Y (Prt) f (T, DL, V) exponential 
STICS D RUE Y (HI(Gn), B) f (T, DL, V) sigmoidal 
WOFOST D P-R Y (Prt, B) f (T, DL) linear 

D detailed approach S simple approach RUE radiation use efficiency P-R gross photosynthesis-respiration 
Y yield    Prt reproductive stages HI harvest index   B biomass  
Gn number of grains f crop phenology T temperature   DL day length 
V vernalization 
 

Crop phenology as a function of temperature, day length and vernalization are also included. 

Roots are distributed linearly over depth by CROPSYST and WOFOST, exponentially by 

APES, DAISY, DSSAT, FASSET and HERMES and sigmoidal by STICS. Figure 3.3 shows, 
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as an example, a visual illustration of the major processes and their linkage simulated by 

WOFOST, while Table 3.3 provides the number of parameters required (de Wit et al., 2019). 

The authors distinguish between single-value parameters (scaler) and parameters where the 

value depends on another state, i.e. tabular parameters (usually development stage and 

temperature). Table 3.4 provides the parameters required by AquaCrop. An indication is 

provided whether the various parameters are 1) conservative generally applicable, 2) 

conservative for a given specie but can or may be cultivar specific, 3) depend on environment 

or management and 4) cultivar specific (Raes et al., 2018).   

 
Table 3.3: Number of crop parameters used to describe the various processes (Figure 4) as 

simulated by WOFOST (de Wit et al., 2019) 
Process Scalar Tabular Total 
Phenological development 13 2 15 
Leaf growth, senescence and assimilation 9 3 12 
Root formation 4 2 6 
Respiration 5 1 6 
Transpiration 5 0 5 
Storage organ formation 2 1 3 
Stem formation 2 2 4 

 

 
Figure 3.2: Visual illustration of the major processes and their linkage simulated by WOFOST 

(de Wit et al., 2019).   
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Table 3.4: Number of crop parameters used to describe the various processes as simulated 
by AquaCrop (Reas et al., 2018) 

Process Conservative 1 Conservative 2 Management 3 Cultivar 4 
Crop phenology 6 1 5 4 
Transpiration 2 - - - 
Biomass production 2 - - - 
Yield formation 4 1 - 1 
Water stress 8 - 1 
Salinity stress 2 - - - 

3.3.3 WATER FLOW MODELLING 

Tenteiro et al. (2020) conducted a review in which soil-crop water processes were “structured 

following the fate of water in a hypothetical hydrological unit”. The authors described every 

water flow process (including the fundamentals of modelling approaches) adopted by various 

popular crop models (WOFOST, DSSAT, DAISY, APSIM, STICS, AquaCrop and MONICA). 

Hydrology-based models like HYDRUS1D, MIKE-SHE, SWAP, SWIM and HYDRUS2D were 

also included. The project team believes such a comprehensive review of water flow modelling 

approaches adopted by popular soil-crop water models is limited. Hence, the review paper of 

Tenteiro et al. (2020) will form the basis for understanding the various soil-crop water flow 

approaches and data requirements of relevant popular models.  

 

Water flow processes above the soil surface are shown in Table 3.5. A model like MIKE-SHE, 

which operates at a catchment scale, can allow for run-on as part of the infiltration pool. 

Generally, irrigation must be set up within a management module, assuming no losses 

(DSSAT, APSIM, DAISY, AquaCrop, MONICA, HYDRUS, SWAP, SWIM) or subtracting 

application losses (STICS).  Models that allow for canopy or mulch interception and 

evaporation from plant surfaces, i.e. the interception pool, are limited to STICS, HYDRUS, 

SWAP and MIKE-SHE. AquaCrop provides some interception control, allowing users to define 

the fraction of soil surface wetted by irrigation. Intercepted water from the canopy or mulch 

can be part of the direct evaporation pool or recovered in the infiltration pool through stem 

flow, with the latter process simulated by STICS.  

 

Stemflow is simulated as a function of leaf area index, light extinction coefficient, and an 

empirical crop coefficient that depends on the architecture and wettability of plant surfaces, 

rainfall, and/or irrigation (Brisson et al., 2003). HYDRUS and SWAP use the method of Braden 

(1985) and von Hoyningen-Huene (1981) to simulate the fraction of intercepted water. 

Variables and parameters required include the leaf area index, an empirical coefficient (a, 

assumed as 0.25 by default), b, the soil cover fraction (assumed as 0.33 of leaf area index) 

and the ‘above canopy pool’. The effect of mulch residues on modelling water interception 
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dynamics can be done with STICS. Empirical equations that estimate the quantity of soil cover 

with time are used.   

3.3.3.1 Soil water 

Darcy's and Richard's equations are used for a complex mechanistic approach to model soil 

water processes (hydraulic and hydrodynamic behaviour and continuous water flow in 

unsaturated and saturated soil). Darcy’s and Richard's equations are used. Richard’s equation 

is a non-linear partial differential equation (solved numerically) that combines Darcy’s and the 

continuity equations. The former relates the soil water flux density to hydraulic conductivity 

and soil water potential gradient (which include both the matric and gravimetric potentials) 

over a vertical coordinate. Matric potential is expressed negatively, equivalent to soil water 

tension (positive) or soil water pressure head ( negative).  

 
Table 3.5: Water flow processes simulated by various soil-crop water models 

Process Models Method / Approach 
Surface run-on MIKE-SHE - 
Irrigation DSSAT, APSIM, DAISY, AquaCrop, MONICA, HYDRUS, 

SWAP, SWIM, STICS 
User-defined schedule 
(i), constant or variable 
volumes when soil 
water content threshold 
is reached (ii) and 
planned schedule 
based on growth stage, 
soil water content and 
availability constraints 
(iii) 

Interception pool STICS, HYDRUS, SWAP and MIKE-SHE Braden (1985) and von 
Hoyningen-Huene 
(1981) 

Stemflow STICS Brisson et al. (2003) 
Effective infiltration MONICA, WOFOST Capacity model 

DSSAT, APSIM, STICS, AquaCrop Curve number 
DAISY, HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE, 
SWIM 

Richard’s 

Ponding infiltration DAISY Darcy 
HYDRUS, SWAP, MIKE-SHE Green-Ampt 

Redistribution and 
drainage 

Hysteresis 
Preferential flow 

WOFOST, DSSAT, APSIM, STICS, AquaCrop, MONICA Tipping bucket 
HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE, SWIM Richard’s 

HYDRUS-1D/2D, SWAP 
DAISY, HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE 

Capillary rise STICS, MONICA Predefined 
DSSAT, AquaCrop,  Without updating the 

groundwater table 
DAISY, HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE, 
SWIM 

Update groundwater 
table 

Surface water flow WOFOST, DSSAT, APSIM, AquaCrop, MONICA, 
HYDRUS-1D, SWAP 

HRTf and SATf 

DAISY, STICS HRTf, SATf, THRf 
DAISY, HYDRUS-1D, SWAP Out 
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Process Models Method / Approach 
Subsurface lateral 
flow 

HYDRUS-2D Out, In 

Solute transport HYDRUS-1D/2D, SWAP, SWIM convection-dispersion 
equation 

AquaCrop program parameter that 
describes the global 
capacity for salt 
diffusion 

Evaporative 
demand 

WOFOST, DSSAT,  Penman 
WOFOST, APSIM, DAISY, STCTS, AquaCrop, MONICA, 
HYDRUS-1D, HYDRUS-2D, SWAP 

Penman-Monteith 

DSSAT, APSIM, STICS, MONICA Priestly and Taylor 
DAISY, HYDRUS-1D, HYDRUS-2D Hargreaves 
MIKE-SHE, SWIM Soil vegetation 

atmosphere transfer 
scheme 

Soil evaporation WOFOST, DSSAT, APSIM, DAISY, STICS, MONICA, 
HYDRUS-1D, HYDRUS-2D, SWAP, SWIM 

Integrated through 
Beer-Lambert equation 

AquaCrop, HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-
SHE, SWIM 

Soil cover method 

APSIM, SICTS, AquaCrop, SWAP, SWIM Two-stage method 
Atmospheric 
demand for 
transpiration 

- Penman 
WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop, 
MONICA, HYDRUS-1D/2D, SWAP 

Penman-Monteith 

DSSAT, APSIM, STICS, MONICA Priestly and Taylor 
DAISY, HYDRUS-1D/2D Hargreaves 
MIKE-SHE, SWIM, DAISY, STICS Soil vegetation 

atmosphere transfer 
scheme 

Actual transpiration 
(root water uptake) 

DSSAT, APSIM, STICS, AquaCrop Water stress 
coefficients (Ks) 

WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop, 
MONICA, HYDRUS-1D/2D, MIKE-SHE 

Linear extraction sink 
term (Si) 

APSIM Exponential extraction 
sink term (Si) 

HYDRUS-1D/2D, SWIM Non-linear differential 
equations for extraction 
sink term (Si) 

HYDRUS-1D/2D Compensatory uptake 

 

Hydraulic conductivity is a function of soil matric potential. The continuity equation represents 

the water balance of an infinitely small soil volume. Namely, the change in volumetric soil 

water content over time is determined by the change in soil water flux density over the vertical 

coordinate and a sink term. The sink term generally represents the root water extraction rate. 

The extraction rate by drain discharge in the saturated zone and exchange rate with macro 

pores are sometimes included in models adopting Richard’s equation (SWAP). Darcy’s 

equation is sometimes used without the continuity equation for steady-state flow modelling 

(Richard’s equation is used for transient flows).   
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Models that employ this mechanistic approach to simulate soil water flow processes are data 

intensive. Highly non-linear soil hydraulic functions are required, i.e. functions relating to 

volumetric soil water content, matric potential (soil pressure head) and hydraulic conductivity. 

Parameters like saturated hydraulic conductivity, residual and saturated volumetric soil water 

content, and empirical m, n and α shape parameters are required to describe these functions. 

Different water retentivity and hydraulic conductivity functions or adaptations to the same 

relationships can be used. For example, with SWAP, typically α, n and m parameters will be 

required for a specific soil to describe the relationship proposed by Van Genuchten (1980). In 

HYDRUS, any of four relationships with different parameters can be chosen, i.e. Van 

Genuchten-Mualem, modified Van Genuchten, Brooks-Corey or Kosugi (Šimůnek et al., 

2012). Software packages that could be used to estimate parameters for water retention and 

hydraulic conductivity functions from soil texture and/or bulk density measurements include 

SWCT, SOILPAR, ROSETTA and NEUROPACK (Schaap 2004).   

 

Solving Richard's equation (for example, finite-difference and finite-element methods) is 

difficult due to the hyperbolic nature, rapidly changing boundary conditions and nonlinearity of 

the soil hydraulic functions. As emphasised by Kroes et al. (2017), the “structure of the 

numerical scheme, the applied time and space discretizations, and the procedure for the top 

boundary condition (Van Genuchten, 1982; Milly, 1985; Celia et al., 1990; Warrick, 1991; 

Zaidel and Russo, 1992)” can significantly affect soil water fluxes.   

 

Infiltration:  Effective infiltration (i.e. the fraction of water arriving at the soil surface that 

infiltrates into the soil) is generally simulated with three methods/approaches (Table 3.5). The 

most straightforward approach is the capacity model, which defines maximum infiltration 

capacity as the difference between volumetric soil water at saturation and actual volumetric 

soil water. A popular alternative approach is the “infiltration-loss based method” (Allen, 1991), 

referred to as the USDA curve number method. Potential maximum retention is estimated from 

an empirical parameter determined from tabled values according to land cover and soil 

hydrological group. Probability distribution curves of measured infiltration rates were used to 

classify soil hydrological groups. The third approach for effective infiltration can be defined by 

unsaturated soil water flow, simulated by numerically solving Richard’s equation (DAISY, 

HYDRUS-1D/2D, SWAP, MIKE-SHE and SWIM). Ponding infiltration (when water 

accumulates at the soil surface) can be simulated by, for example, DAISY, HYDRUS-1D/2D, 

SWAP and MIKE-SHE. Theoretically, this happens when the infiltration pool increases at a 

higher rate than the maximum infiltration capacity of the soil. Ponded infiltration is simulated 

through a solution of Darcy’s equation (DAISY) or with the Green-Ampt approach (HYDRUS-

1D/2D, SWAP, MIKE-SHE). According to Tenteiro et al. (2020), effective infiltration 
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approaches “that are based on the hydraulic conductivity of the top soil layer assume that after 

infiltrating into the soil, water is stored in successive layers downward according to a physical 

constraint that is imposed by the drainage ability of the soil (APSIM, STICS, AquaCrop)”. 

 

Redistribution and drainage:  Darcy’s or Richard's equations and a simpler fixed number of 

soil layers cascading (or tipping bucket) approach can be used to simulate redistribution 

(Table 3.5). With the latter approach, the volumetric soil water content at field capacity; drained 

upper limit or upper limit of plant available water) and permanent wilting point; lower limit of 

plant available water) are required as parameters. Generally, for the tipping bucket models, a 

drainage coefficient relates internal drainage to the volumetric soil water content above field 

capacity. With Darcy’s and Richard's equation 2D and 3D soil water flow is possible because 

the flow term q can be defined as one, two or three-dimensional vectors. This will require, 

however, different calibration requirements and computing times. An important phenomenon 

to consider in soil water flow modelling is hysteresis, i.e. the wetting/drying history of the 

specific soil. Hysteresis retard in general water flow, while preferential flow (macropore flow) 

enhances it. The effect of hysteresis is modelled (HYDRUS-1D/2D, SWAP) by using multiple 

soil matric potential and volumetric soil water content relationships.   

 
Capillary rise: STICS and MONICA use capillary rise as an input defined by a lower boundary 

condition where the flux is a function of time. DSSAT and AquaCrop simulate it with 

relationships between groundwater table depth, soil hydraulic properties and actual soil water 

content (or matric potential) (Raes et al., 2017). Capillary could be simulated modelled as a 

function of soil water content (Dirichlet type) and as a function of groundwater table depth 

(Cauchy type). The models above do not simulate the feedback between the unsaturated zone 

and the groundwater table. DAISY, HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE, and 

SWIM use Richard's equation to simulate capillary rise with different approaches while 

updating groundwater table depth (Table 3.5).   

3.3.3.2 Surface water 

Most of the models mentioned above consider surface water flow as a water loss from the 

system. Ponce and Hawkins (1996) distinguished five types of surface water flow loss (as 

described by Tenreiro et al., 2020): 

• Hortonian overland flow is when rainfall and/or irrigation exceeds the infiltration 

capacity of the soil; 

• saturation overland flow is when the soil profile is saturated with water, i.e. a post-

infiltration process; 
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• throughflow is horizontal water flow beneath the soil surface under saturated 

conditions; 

• the direct channel interception flow is runoff that refers to the spatial redistribution of 

rainfall directly intercepted by channels and  

• surface phenomena flow is all the flow driven by crust development, hydrophobic 

layers and frozen ground that do not allow vertical flow.   

 

The DSSAT, APSIM, STICS and AquaCrop models mostly simulate surface water flow loss 

(HRTf, SATf, THRf) through empirical approaches based on the curve number method. 

DAISY, HYDRUS-1D/2D, SWAP and SWIM use Richard’s-based approaches (Table 3.5). 

Surface water flow can also be an inflow to the water balance of neighbouring fields 

(redistribution flow) or a channel inflow. Still, it is not simulated by the models mentioned 

above.   

3.3.3.3 Subsurface water 

Among the models, only Richard’s equation-based models simulate subsurface water flow 

(DAISY, HYDRUS-1D, SWAP, MIKE-SHE, SWIM). These simulations are also limited to 

lateral drainage processes of lateral outflow between the simulated plot and neighbouring 

artificial drainage systems (Table 3.5). This lateral flow to drains is simulated by the Hooghoudt 

equation (Ritzema, 1994) and is assumed to be a system water loss but not a redistributive 

process (Tenreiro et al., 2020).   

3.3.3.4 Evaporation 

Definitions related to evaporation and transpiration are provided below to enhance the 

readability of the relevant sections.   

• Evapotranspiration is the actual transfer of moisture from the surface, i.e. bare soil, 

intercepted water on vegetation, open water and transpiration from within vegetation 

to the atmosphere.   

• Potential evapotranspiration is evapotranspiration that would take place from a well-

watered surface under ambient atmospheric conditions (a synthetic measure of 

evaporative demand).   

• Reference evapotranspiration is evapotranspiration from a well-watered reference 

crop under specific surface moisture conditions by ambient atmospheric conditions 

(synthetic measure of evaporative demand).   

• Crop evapotranspiration is evapotranspiration estimated from a crop surface assuming 

well-watered and stress-free conditions.   
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• Evaporative demand is the “thirst” of the atmosphere for given ambient atmospheric 

conditions (radiation and advective drivers) but with unlimited moisture supply (i.e. 

maximal rate of evapotranspiration). It can be measured by pan evaporation or 

lysimeter or modelled by potential or reference evapotranspiration.  

 

Models like DSSAT and MONICA do not simulate direct evaporation of water intercepted by 

crop canopy from the soil surface and mulches separately (Tenreiro et al. 2020). This is 

because evaporative demand may include all the components together depending on the 

calculation procedure. Five approaches can be used to calculate the evaporative demand of 

which the Penman-Monteith equation is used by most models (Table 3.5). The remaining 

approaches include Penman, Priestly and Taylor, Hargreaves and the Soil Vegetation 

Atmosphere Transfer Scheme (SVAT).   

 

WOFOST, APSIM, AquaCrop, DAISY, HYDRUS and SWAP first calculate evaporative 

demand, which is then partitioned according to the evaporative surface area (i.e. the fraction 

of crop canopy, fraction of uncovered soil, fraction of mulch). The models WOFOST, DSSAT, 

APSIM, DAISY, STICS, MONICA, HYDRUS-1D/2D, SWAP and SWIM follow a Beer-Lambert 

type approach through the leaf area index and an extinction coefficient to calculate an 

evaporation coefficient (Ke, for wet surfaces) to estimate evaporation from soil (Table 3.5). An 

alternative option used by AquaCrop, HYDRUS-1D/2D, SWAP, MIKE-SHE and SWIM is to 

use soil cover through a soil-cover-based method. Some models provide options for both 

approaches; the evaporative demand is required for both approaches. DSSAT can also use 

an adaptation to the original Penman's equation to derive both daily evaporations intercepted 

by crop canopy and soil evaporation, while STICS can simulate evaporation from mulches 

with a similar approach. MIKE-SHE simulated total evaporation (all three components 

included) with the SVAT approach.   

 

Models that use the Beer-Lambert or soil-cover based (soil cover) approaches integrate soil 

evaporation into a single formulation. However, the models APSIM, STICS, AquaCrop, SWAP, 

MIKE-SHE and SWIM divide soil evaporation into two consecutive stages. Ritchie (1972) 

proposed the “two-stage method”, which is based on Philip and De Vries (1957), where soil 

evaporation is limited in the first stage by energy availability and the second stage by water 

availability. AquaCrop calculates a Kr factor to reduce soil evaporation through an exponential 

relation that depends on a decline factor related to relative soil water content. APSIM 

empirically relates the second evaporation stage to the square root of time. A parameter that 

relates soil type to time is required. SITCS simulate the second stage of soil evaporation with 

an empirical parameter that depends on the aerodynamic resistance, the latent heat of 
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vaporization, the water vapour pressure, air temperature, and a diffusion coefficient that is 

related to the bulk density of the evaporative soil layer and the surface temperature (Brisson 

and Perrier, 1991). SWAP and MIKE-SHE, for example, model the second stage of soil 

evaporation as a function of soil water flux density. In this case, a simplified form of the 

numerical solution of Richard’s equation is used to limit (boundary) the maximum upward flow 

rate (van Dam and Feddes, 2000).   

3.3.3.5 Transpiration and root water uptake 

The atmospheric demand for transpiration is conceptually the same as the evaporative 

demand. Models like DSSAT, APSIM, DAISY, STICS, AquaCrop, MONICA and HYDRUS-

1D/2D can be separated into two different calculation procedures. Similar to evaporative 

demand, transpiration demand can be estimated with five different approaches (Table 3.5). 

Potential crop transpiration is simulated by, for example, MONICA by multiplying transpiration 

demand with a crop-specific coefficient. At the same time, AquaCrop uses a transpiration 

coefficient (which is equal to the crop basal coefficient). As with evaporation approaches, 

potential crop transpiration is adjusted to the transpiration surface through a Beer-Lambert 

type integrated approach (using leaf area index) or a green canopy soil cover-based method 

(AquaCrop). SWAP uses an alternative approach, which assumes that the water evaporation 

from the wet canopy reduces potential transpiration.   

 

Actual transpiration or root water uptake is simulated by DSSAT, APSIM, STICS and 

AquaCrop with a stress coefficient (Table 3.5). The relative stress level at the upper and lower 

threshold, a rate factor and a curve shape factor are used in AquaCrop to determine the stress 

coefficient, which reduces potential transpiration. An alternative approach is “actual crop 

transpiration is limited by a water uptake (extraction) sink term, which, in the case of multi-

layer models, is computed separately for each soil layer” (Tenreiro et al., 2020). The water 

uptake sink term depends on a reduction coefficient, which is a function of matric potential or 

volumetric soil water content and a maximum water uptake rate (Ritchie, 1972, 1981; Feddes 

et al., 1978). The maximum water uptake rate depends on the rooting depth and can be 

employed in discrete or continuous schemes. With discrete schemes, the maximum water 

uptake rate is a product of actual transpiration and root density, which can be determined 

separately for each layer or entire root zone. Continued schemes define the maximum water 

uptake rate through an integral equation where the root length density is defined as a function 

of space and time (van Dam et al., 1997; Šimůnek and Hopmans, 2009).   

 

APSIM provides an alternative exponential approach for describing the water uptake sink 

term, which requires a diffusivity constant, the root length density, time and the beginning time 
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of water extraction. The dimensionless water stress reduction coefficient can be postulated 

for matric and osmotic stress. To combine the matric and osmotic stresses, either an additive 

or a multiplicative approach is used (Skaggs et al., 2006). In addition to the modelling 

approaches described above HYDRUS-1D/2D also allows for compensated water uptake, i.e. 

crops can extract more water from non-stressed parts of the root zone.   

3.4 RESEARCH IMPLICATIONS 

The aim of the research is to provide field scale decision-support regarding the conjunctive 

use of irrigation water and root-accessible water tables, which implies a normative approach 

to modelling decision-making. Applying mathematical programming to optimise irrigation 

water use is infeasible due to the complexity of the interaction between irrigation management 

and root-accessible water table dynamics. Consequently, the research must adopt an 

evolutionary optimisation approach to optimise conjunctive irrigation water use by developing 

a bio-economic evolutionary optimisation model. The response of the biophysical environment 

to farmer decision-making needs to be valid, suggesting a positive approach to modelling the 

system. The implication is that the biophysical component of the bio-economic optimisation 

model needs to be calibrated and valid while the proposed management strategy needs to be 

feasible. Crop simulation models typically provide alternative means to trigger the timing of 

irrigation events and to specify the irrigation intensity once an irrigation event is triggered. The 

research team will explore these options to devise the optimal conjunctive irrigation 

management strategy.  

 

The recursive stochastic decision-making framework of Madende and Grové (2020) suggests 

two decision-making stages where different states of nature represent weather risk. The first 

stage is at the beginning of the season when irrigators must decide the area to irrigate based 

on the expected weather conditions across different states of nature. Since our focus is on 

demonstrating the economic value of considering root-accessible water tables as a water 

source to satisfy crop evapotranspiration requirements partly, the area irrigated is assumed to 

be fixed. Therefore, irrigation water availability does not constrain crop production. During the 

second phase, irrigators devise irrigation schedules based on the current status of the 

biophysical system and expected weather conditions across different weather states while 

simultaneously considering time-of-use electricity tariffs. The bio-economic model must be 

solved weekly during the growing season to account for dynamic decision-making. The 

assumption is that irrigators will maximise expected profits across different weather states. 

Consequently, irrigators' risk preferences are assumed to be neutral. 
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A critical part of the bio-economic optimisation model is the biophysical component. The 

project team decided to concentrate on AquaCrop and SWAP after assessing the i) required 

model inputs and parameters, ii) details with which important processes are simulated, and iii) 

integration capabilities with economic and optimisation algorithms. SWAP is considered data-

intensive as many inputs and model parameters are required, while AqauCrop is less so. 

Important differences between the models include: 

 

• AquaCrop adopts the cascading (also called the tipping bucket) approach for soil 

water flow. The relationships between groundwater table depth, soil hydraulic 

properties and actual soil water content (or matric potential) are used to simulate 

capillary rise. AquaCrop, however, does not simulate the feedback between the 

unsaturated zone and the water table (saturated zone).   

• SWAP deals with soil water flow in the unsaturated zone and the upper part of the 

saturated groundwater. The model focuses primarily on one-dimensional vertical 

upward and downward soil water flow by numerically solving Richard’s partial 

differential equation. Three-dimensional interactions with groundwater and artificial 

drains are modelled as additional sinks (drains) and sources (infiltration from 

ditches and drains), which makes SWAP a quasi-3D model.  

• AquaCrop has a water-driven growth engine which is based on the “conservative” 

nature of the relationship between above-ground biomass and transpiration 

(normalised water productivity, WP*) when normalized for atmospheric evaporative 

demand (effect of different climates) (Steduto et al., 2007). The model does not 

calculate biomass partitioning into various organs (e.g. leaves, roots, etc.). Instead, 

a reference harvest index (crop-specific) is used.   

• WOFOST (de Wit et al., 2019), a detailed model for the dynamic growth of arable 

crops, is fully integrated into SWAP. The model uses a radiation-driven growth 

engine and adopts a detailed approach for simulating the effect of temperature and 

light on leaf expansion at different phenological stages. Light utilization simulations 

by WOFOST are explanatory descriptions of photosynthesis, respiration and 

partitioning of assimilates in various growth stages.   

• The Penman-Monteith equation applied to a well-watered reference grass surface 

(ETo, Allen et al., 1998) is used by AquaCrop as an index for the evaporating power 

of the atmosphere.   

• AquaCrop simulates soil evaporation by decreasing ETo with a soil evaporation 

coefficient (related to the fraction of soil surface not covered by the canopy) and 
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an evaporation reduction coefficient. The latter reduces soil evaporation when soil 

water is insufficient to respond to the evaporative demand of the atmosphere.   

• AquaCrop uses daily ETo and the maximum crop basal coefficient (as defined in 

FAO56 and FAO66) to simulate potential crop transpiration, which is adjusted to 

the transpiration surface through the simulated canopy cover.   

• SWAP uses crop and soil factors to convert ETo to potential evapotranspiration of 

uniform surfaces, namely a dry crop canopy (ETp0), wet crop canopy (ETw0) and 

wet bare soil (Ep0). These crop factors are different from the well-known FAO56 

crop factors that depend on the crop development stage and soil cover. Hence, the 

crop factors in SWAP relate to uniform, cropped surfaces and can be larger than 

the well-known crop factors.   

• Potential crop transpiration and soil evaporation fluxes of partly covered soils are 

then determined using the simulated leaf area index and the fraction of the day that 

the crop is wet.   
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CHAPTER 4: AQUACROP AND SWAP CALIBRATION AND 
VALIDATION 

4.1 INTRODUCTION 

After Wallach et al. (2021), calibration is defined as “adjusting model parameters to reduce 

the error between model results and measured data”. The first step often involves deciding 

which measured variables should be included in the calibration process. Wallach et al. (2021) 

highlighted that, in general, as many variables as possible should be included, i.e. to prevent 

“getting the right answer for the wrong reason”. Measurements of seasonal above-ground 

biomass and grain yield are popular choices. Canopy cover, leaf area index and above-ground 

biomass measurements during the growing season are also sometimes used. This also 

applies to soil water and evapotranspiration measurements.  

 

In the second step of calibration, a decision must be made regarding which parameters to 

adjust and the default values of the remaining parameters. Seidel et al. (2018) found that 66% 

of respondents in a web-based survey of crop model calibration practices calibrated less than 

ten parameters. More than half of the cases (61%) involved fitting the model to crop phenology 

data. Wallach et al. (2021) found that the choice of which phenology parameters to adjust is 

based on expert opinion. The authors also found that crop modellers generally aim to adjust 

parameters until some error measure between simulated and measured values is minimised, 

i.e. a frequentist method.  

 

In this project, we refer to the trial-and-error approach for the search of values as the 

‘determination’ of parameters. Furthermore, estimation of optimal parameters refers to using 

an algorithm, also sometimes called inverse modelling. Two methods can be used for model 

parameter estimation. The first is where posterior probability distributions of model parameters 

are provided through general likelihood uncertainty estimation (He et al., 2010; Sun et al., 

2016). Unfortunately, no direct recommendation regarding the optimal solution can be made. 

With the second method, global optimal or near-optimal parameters can be found with an 

optimization algorithm. In any case, the objective function is vital to estimate accurate 

parameters. A single objective function, for example, the mean error between measured and 

simulated grain yield, is often used to estimate crop model parameters, as highlighted 

previously.  

 



38 

Calibration and validation 

 

Until now, to the best of our knowledge, studies where an optimization algorithm was used to 

calibrate AquaCrop and SWAP are rare. Optimization algorithms, however, have been applied 

successfully to assimilate values for specific variables (e.g. canopy cover and above-ground 

biomass) from remote sensing data (e.g. vegetation indices) when calibrating AquaCrop (Jin 

et al., 2016; Silvestro et al., 2017; Wagner et al., 2020). These algorithms have also been 

combined with AquaCrop to determine optimal irrigation schedules at regional and local scales 

(Li et al., 2018; Mwiya et al., 2020; Liu et al., 2021; Guo et al., 2021; Wang et al., 2022). Guo 

et al. (2021) is the only study where an optimization (elite genetic) algorithm was used to 

calibrate AquaCrop. Measured variables in the objective functions for calculating the minimum 

error included in-season canopy cover, above-ground biomass, and seasonal grain yield. 

Three different calculations of the weight factors for these variables were investigated.  

 
The project team decided to use measurements of weekly soil water content, 

evapotranspiration, and seasonal above-ground biomass in an objective function to estimate 

essential parameters for AquaCrop and SWAP. These measurements are available for the 

modelling conditions in the research domain outlined in Chapter 2. After successful calibration 

and validation, the two models were applied in Chapter 5 to evaluate the economic benefit of 

conjunctive use of irrigation water and root-accessible water tables.   

4.2 SYNTHESIS OF PARAMETERS 

4.2.1 AQUACROP 

A description of AquaCrop is available in Steduto et al. (2009), Raes et al. (2009) and Steduto 

et al. (2012). This section will highlight the parameters required by AquaCrop for simulating 

crop growth, development, final yield, and soil-crop-water flow processes under non-limiting 

conditions (Table 4.1).  

 

Simulation of the final yield by AquaCrop happens in four steps on a daily time step. AquaCrop 

simulates the development of green canopy cover using three parameters (Step 1), namely 

initial canopy cover (CCo), a canopy growth coefficient (CGC) and maximum canopy cover 

(CCx). If no values for CCo are available, the user can determine this parameter from the soil 

surface covered by an individual seedling at 90% emergence (CCseedling , cm2) and the plant 

density. Simulations can be done in calendar days (CD) or growing degree days (GDD), i.e. 

time (t) = CD or t = GDD. To simulate a decline in the green canopy cover due to senescence, 

the model requires a canopy decline coefficient (CDC) and time to the start of senescence 

(tsc). AquaCrop can simulate until a defined date or the time to reach physiological maturity 
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(tmt). Some crops can mature before complete canopy decline is achieved. The user can also 

decide to use the time to maximum canopy cover (tmc) instead of CGC.  

 

Table 4.1: Parameters required by AquaCrop for simulating crop growth, development, 
final yield and soil-crop-water flow processes under non-limiting conditions 

Process Parameters Units 

Green canopy cover 

CCo % 
tem t 
tsc t 
tmt t 
CCx % 
CGC (or tmc) % t-1 (t) 
CDC % t-1 

Root expansion 

TAWg % 
Zn m 
Zx m 
n - 
Zer (or tZx) cm t-1 (t) 

Transpiration and root water uptake 

Kc Tr x - 
fage % t-1 
a - 
extraction pattern % 
Sx top m3 m-3.t 
Sx bottom m3 m-3.t 

Biomass production 
WP* g m-2 
fyield % 

Yield formation 
HIo % 
tfl t 
tflperiod t 

Soil water flow 

PWP % 
FC % 
SAT % 
Ksat mm day-1 

Soil evaporation 

Kex - 
fcc % 
fm % 
fw % 
REW mm 
Estage2 - 

 

At the start of the season, a minimum soil water content expressed as a percentage of total 

available water (TAWg) in the minimum effective rooting depth (Zn) determines germination’s 

success. The root zone will expand under non-limiting soil moisture conditions until the 

maximum rooting depth (Zx), which depends on the soil depth, while the root zone expansion 

curve describes the rate of root deepening. The curve depends on a shape factor (n) and 
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average root zone expansion rate (Zer). Alternatively, the user can use the time to maximum 

rooting depth (tZx).   

 

To simulate daily transpiration (step 2), a crop coefficient at maximum transpiration (Ks Tr, x) is 

required. AquaCrop does adjust the canopy cover for micro-advective effects (CC*), which 

needs no parameters because an empirical function based on the work of Adams et al. (1976) 

and Villalobos and Fereres (1990) are used. Ks Tr, x is adjusted for ageing effects, which 

requires a fage crop parameter (reduction expressed as a fraction per day of CCx). Similarly, 

AquaCrop uses a factor (fsen) to adjust Ks Tr, x once senescence is triggered. To determine fsen, 

the user can use a shape program parameter (a) to accentuate or minimise the effect of 

senescence on Ks Tr, x. For the simulation of root water uptake (soil water extraction) due to 

transpiration, the user must set the pattern for water extraction throughout the root zone. 

AquaCrop divides the root zone into four equal parts, each of which the user must specify the 

contribution (%) to total extraction. In addition, the user must specify a maximum root 

extraction parameter for the top (Sx top) and bottom (Sx bottom) parts of the root zone.   

 

AquaCrop uses a water-driven growth engine and requires a normalised crop water 

productivity parameter (WP*) to simulate biomass production (step 3). When yield formation 

starts, the user can reduce WP* for products rich in lipids or proteins with a coefficient (fyield, % 

of WP*). These high lipid or protein products require much more energy per dry weight unit 

than synthesising carbohydrates. The WP* parameter is considered conservative and 

independent of climate. Partitioning biomass into yield (step 4) requires a reference harvest 

index (HIo) and a crop- and cultivar-specific parameter. The time until flowering starts (tfl) and 

duration of the flowering period (tflperiod) are required; both parameters are crop and cultivar-

specific.   

 

The user can specify up to five soil horizons or layers in AquaCrop. Essential parameters for 

each soil layer include volumetric soil water content at the permanent wilting point (PWP), field 

capacity (FC) and saturation (SAT), as well as the saturated hydraulic conductivity (Ksat). In 

addition, the user can specify the stoniness and penetrability of each horizon, which the model 

uses to adjust the total available water (TAW) and the maximum rooting depth, respectively. 

From the entered Ksat, AquaCrop determines the drainage coefficient (𝛼𝛼) for each layer, an 

important parameter to simulate redistribution and deep soil water percolation. The 

relationships between groundwater table depth, soil hydraulic properties and actual soil water 

content (or matric potential) are used to simulate capillary rise. Important capillary rise 

parameters include an a and b parameter, which are determined from Ks. The model, 
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however, does not simulate the feedback between the unsaturated zone and groundwater 

table (saturated zone). 

 

Simulation of soil evaporation requires a maximum coefficient for fully wet and non-shaded 

surfaces (Kex), which, together with canopy cover (1-CC, i.e. exposed soil surface), 

determines evaporation during stage 1, i.e. energy limiting stage. AquaCrop allows adjustment 

of the fraction of soil surface not covered by the green canopy for micro-advective effects (1-

CC*). No parameter is required because an empirical function is used based on data from 

Adams et al. (1976) and Villalobos and Fereres (1990). Users can adjust the Kex parameter 

for the sheltering effect of the withered canopy (fcc), the presence of mulches (fm) and partial 

wetting (fw) of soil through irrigation. In addition, during stage 1 of evaporation, a parameter 

representing readily evaporable water (REW) is required. To simulate soil evaporation during 

stage 2 (dry soil surface), AquaCrop uses a decline factor (Estage2).   

4.2.2 SWAP 

Table 4.2 provides the parameters required by SWAP for simulations under non-limiting 

conditions. The date of sowing or crop emergence is a critical management input in SWAP. 

Germination is represented by the start of the simulation or can be simulated, which requires 

three parameters, namely lower threshold temperature for emergence (TBASEM), 

temperature sum from sowing to emergence (TSUMEMEOPT) and maximum effective 

temperature for emergence (TEFFMX).   

 

The temperature sum from emergence to anthesis (TSUMEA), temperature sum from anthesis 

to maturity (TSUMAM) and effective temperature (DTSM) are required to simulate the length 

of the growth period and phenological development stage (1 < DVS < 2). The latter is a tabular 

function of average daily temperature (TAV) and needs to be specified. SWAP also allows the 

simulation of the effect of day length on development. A parameter for the minimum day length 

for optimum crop development (DLO) and the shortest day length for any development (DLC) 

is required. The project team chose the option where crop development before anthesis 

depends on temperature only. Potential daily biomass production depends on the intercepted 

amount of irradiation. Hence, the time course of green leaf mass, the resulting leaf area index, 

the fraction of irradiation intercepted by the canopy, and the time course of total above-ground 

biomass production are essential. Changing the lower specific leaf area parameter (SLATB) 

can simulate a higher or lower leaf area index. Biomass production is primarily determined by 

the daily photosynthesis rate, simulated with a photosynthesis-light response curve.  
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Table 4.2: Parameters required by SWAP for simulating crop growth, development, 
final yield and soil-crop-water flow processes under non-limiting conditions 

Process Parameters Units 

Germination 
TBASEM °C 
TSUMEMEOPT °C 
TEFFMX °C 

Length of growth period and 
Phenology 

TSUMEA  - 
TSUMAM - 
TAV vs DTSM °C 
DLO Hours 
DLC Hours 

Light interception and 
potential biomass production 
 

Green leaf area SLATB vs DVS ha kg-1 
Assimilation EFF kg CO2 J-1 adsorbed 
Assimilation AMAXTB vs DVS kg ha hour-1 
Initial value LAIEM m2 m-2 
Initial value RGRLAI m2 m-2 day-1 
Green leaf area SPAN Day 
Initial value TDWI kg ha-1 
Green leaf area TBASE °C 
Assimilation KDIF - 
Assimilation KDIR - 
Assimilation TMNFTB vs Min T °C 
Assimilation TMPFTB vs Ave T °C 
Green leaf area SPA ha kg-1 
Green leaf area SSA ha kg-1 
Assimilate conversion CVL kg ha-1 
Assimilate conversion CVO kg ha-1 
Assimilate conversion CVR kg ha-1 
Assimilate conversion CVS kg ha-1 
Maintenance respiration Q10 /10 °C 
Maintenance respiration RML kg CH2O kg-1 day-1 
Maintenance respiration RMO kg CH2O kg-1 day-1 
Maintenance respiration RMR kg CH2O kg-1 day-1 
Maintenance respiration RMS kg CH2O kg-1 day-1 
Maintenance respiration RFSETB vs DVS - 

Grain yield (assimilate 
distribution between organs) 

Partitioning FRTB vs DVS kg kg-1 
Partitioning FLTB vs DVS kg kg-1 
Partitioning FSTB vs DVS kg kg-1 
Partitioning FOTB vs DVS kg kg-1 

Root density distribution and growth 

RDCTB vs Rdepth cm3 cm-3 
RDI cm 
RRI cm day-1 
RDC cm 

Soil water flow upward and downward 

θr cm3 cm-3 
θs cm3 cm-3 
α cm-1 
n - 
I - 
Ks cm day-1 

Potential soil evaporation 
CFBS - 
KDIF - 
KDIR - 

Actual soil evaporation COFRED - 
Potential evapotranspiration of dry or wet canopy CF vs DVS - 
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The initial angle (EFF, light use efficiency for real leaf) is generally constant. At the same time, 

the maximum (AMAXTB, maximum CO2 assimilation rate) is often crop variety specific and 

can decrease due to nutrient shortage and canopy ageing. AMAXTB is specified for a 

particular stage of development (DVS). Leaf area index and light interception at the start and 

end of the growing season may also be calibrated by the leaf area index at emergence 

(LAIEM) and maximum relative increase in leaf area index (RGRLAI) parameters. Both 

parameters affect the initial increase in leaf area index and the duration until the linear growth 

phase starts. During the linear growth phase, a complete light interception occurs. The life 

span of the leaves (SPAN) influences the simulated time course of the leaf area index during 

the final growth period.   

 

The SPAN value must be increased to simulate a more extended period of green leaves and 

a higher leaf area index, thus biomass production near crop maturity. Other parameters that 

may influence light interception and potential biomass production include initial total crop dry 

weight (TDWI), lower threshold temperature for the ageing of leaves (TBASE), extinction 

coefficient for diffuse visible light (KDIF), extinction coefficient for direct visible light (KDIR), a 

reduction factor of AMAX as a function of average daily temperature (TMPF) and a reduction 

factor of AMAX as a function of minimum day temperature (TMNF). The first two parameters 

are specially for simulating green leaf area, while the latter four parameters are associated 

with assimilation. The specific pot (SPA) and stem area (SSA) parameters are related to crops 

other than maize. For the conversion of assimilates into biomass, four parameters that 

represent the efficiency of conversion into leaves (CVL), storage organs (CVO), roots (CVR) 

and stems (CVS) are required. The six parameters used in simulating maintenance respiration 

include the increase in respiration rate with temperature (Q10), the maintenance respiration 

rate of leaves (RML), storage organs (RMO), roots (RMR) and stems (RMS), and the reduction 

factor of senescence (RFSETB) as a function of the development stage.   

 

Parameters used to allocate the produced assimilates to the different organs are important 

because they determine leaf mass, light interception, and economical products (i.e. the grain). 

These parameters are the fraction of total dry matter increase partitioned to the roots (FRTB), 

leaves (FLTB), stems (FSTB) and storage organs (FOTB), which are all a function of the 

development stage.   

 

The specific crop's root density (RDCTB), the initial rooting depth (RDI), the maximum daily 

increase in rooting depth (RRI) and the maximum rooting depth of the crop or cultivar (RDC) 

need to be specified.   
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SWAP deals with soil water flow in the unsaturated zone and the upper part of the saturated 

groundwater. The model focuses primarily on the one-dimensional vertical upward (capillary 

rise) and downward soil water flow by numerically solving Richard's partial differential 

equation. Highly non-linear soil hydraulic functions are required, i.e. functions that relate 

volumetric soil water content to soil pressure head (also known as matric potential) and 

hydraulic conductivity. SWAP uses the Mualem-Van Genuchten functions, which are 

described by six parameters, namely saturated hydraulic conductivity (Ks), residual (θr) and 

saturated volumetric soil water content (θs), and empirical m, n and α shape parameters, 

where 𝑚𝑚 = 1 − 1
𝑛𝑛
.   

 

The Penman-Monteith equation applied to a well-watered reference grass surface (Allen et 

al., 1998) is used in SWAP as an index for the evaporating power of the atmosphere. SWAP 

uses a soil factor (CFBS) to convert ETo to the potential evaporation rate of a wet, bare soil 

(Ep0). Potential evaporation (Ep) is then simulated from the leaf area index as well as an 

extinction coefficient for diffuse (KDIF) and direct (KDIR) visible light. The actual evaporation 

rate is simulated according to Darcy’s law using average hydraulic conductivity between the 

soil surface and the first node, the soil water pressure head in equilibrium with the air relative 

humidity, the soil water pressure head of the first node, and the first node's soil depth. Hence, 

the soil hydraulic parameters (as mentioned above) describing the relationship between 

volumetric soil water content and soil pressure head will be necessary. SWAP also has the 

option to use the empirical evaporation functions of either Black (1969) or Boesten and 

Stroosnijder (1986) in combination with the Darcy flux, which requires a soil evaporation 

coefficient (COFRED). In addition, crop factors (CF) are used to convert ETo to potential 

evapotranspiration of a uniform dry (ETp0) or wet (ETw0) crop canopy. These crop factors are 

different from the well-known FAO56 crop factors that depend on the crop development stage 

and soil cover. Hence, the crop factors in SWAP relate to uniform, cropped surfaces and can 

be larger than the well-known crop factors. Potential transpiration is then simulated using ETp0 

and Ep. Under non-limiting conditions, actual transpiration simulated by both AquaCrop and 

SWAP will be close to potential transpiration.   

4.3 EXPERIMENTAL DATA FOR CALIBRATION AND VALIDATION 

Two datasets of WRC-funded projects done on the same lysimeter facility (i.e. the Department 

of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa) 

were used in calibration and validation. Trial 1 was conducted by Ehlers et al. (2003), and Trial 

2 by Ehlers et al. (2007). The facility is located on the experimental farm of the University of 

the Free State (Department of Soil, Crop and Climate Sciences) in South Africa. The 
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experimental area is 0.245 ha with 30 static lysimeters (1.8 m diameter and 2 m deep, with 

rims of 0.05 m above the soil surface) situated in the middle, i.e. arranged in 2 parallel rows 

of 15 each. The one row of lysimeters contains a homogenous sandy soil (mean 8% silt-plus-

clay) classified as Clovelly Setlagole (according to Soil Classification Working Group, 1991), 

which qualifies as Quartzipsament (according to Survey Staff, 2003). The other row of 15 

lysimeters contains a sandy loam (mean 18% silt-plus-clay) Bainsvlei Amalia soil (according 

to Soil Classification Working Group, 1991), which qualifies as Plinthustalf (according to 

Survey Staff, 2003). Two neutron access tubes in each lysimeter allow soil water 

measurements (0.3 m intervals up to 1.8 m). In contrast, the inner walls and bottom of the 

lysimeters can be accessed through an underground chamber (1.8 m wide, 2 m deep and 30 

m long). A monometer and bucket at the bottom of each lysimeter allow recharging and 

regulation of root-accessible water tables (< 1.8 m from the surface) and drainage 

measurement. A randomised split-plot experiment was conducted with three replications 

during both trials. Soil type was applied at two levels as the main-plot treatments, namely 

Bainsvlei and Clovelly.  

 

The sub-plot control treatment for Trial 1, which is no groundwater table, was used to calibrate 

AquaCrop and SWAP. The control data for the Clovelly soil were used for AquaCrop and the 

Bainsvlei soil for SWAP. The treatment with a constant groundwater table depth of 1.5 m was 

used for validation. Root water uptake from the groundwater was recorded daily and then 

added through the bottom of the lysimeter to recharge the groundwater table and keep it at a 

depth of 1.5 m. The sub-plot treatments for Trial 2 consisted of four irrigation and groundwater 

table salinities (irrigation and groundwater had the same salinity, i.e. 0.2 to 6.0 dS m-1). A 

shallow ground water table was kept constant at a depth of 1.2 m from the soil surface with 

the same procedure described above. Only data from the non-saline control treatment for the 

Bainsvlei soil, with a constant groundwater table at 1.2 m from the surface, were used as 

additional validation.  

 

All the data in the trials, used for calibration and validation, represent optimum conditions for 

crop growth, allowing for maximum root water uptake and grain yield. Measured weekly (w) 

volumetric soil water content (𝜃𝜃(𝑤𝑤)) and evapotranspiration (ET(w)), and seasonal (s) above-

ground biomass (BM(s)) were used in the calibration of AquaCrop and SWAP. In Section 4.5, 

the calibration algorithm is explained. Simulations of weekly soil water content over a depth of 

1.8 m (WC1.8(w)), cumulative evapotranspiration, cumulative water table uptake (WTU, mm) 

and seasonal grain yield were used to validate both models. The same maize cultivar was 

grown during both trials with the agronomic practices listed in Table 4.3.  
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Table 4.3: Agronomic practices of maize for the lysimeter trials done by Ehlers et al. 
(2003) and Ehlers et al. (2007) 

Trial 1 | Ehlers et al. (2003) 2 | Ehlers et al. (2007) 
Cultivar PAN 6335 PAN 6335 
Planting date 6 December 2000 15 December 2004 
Planting depth (cm) 2.5 2.5 
Row width (m) 0.9 0.9 
Planting density (plants ha-1) 50 000 50 000 
Fertilization At planting Top dressing At planting Top dressing 
Nitrogen (kg ha-1) 217 50 217 50 
Phosphorous (kg ha-1) 49 - 49 - 
Potassium (kg ha-1) - - 50 - 
Pest control Curater Decus 

 

4.4 MEASURED, DEFAULT AND PEDOTRANSFER PARAMETERS 

Daily minimum and maximum temperatures and ETo values, as shown in Figure 4.1, during 

the maize growing season of both trials were entered into both models. In addition, default 

carbon dioxide values for AquaCrop were used, while daily radiation measurements were 

entered for SWAP. Rainfall during the growing season of Trial 1 was entered as part of 

irrigation. During Trial 2, the rain shelter was closed; hence, no rainfall values were entered.   

 

The measured, default and pedotransfer function estimated parameters used in AquaCrop are 

shown in Tables 4.4 and 4.5. Soil parameters were entered for five layers, each 0.3 m thick, 

except the last layer, 0.6 m thick. Volumetric soil water at saturation and field capacity were 

obtained from an internal drainage experiment done on each lysimeter (Barnard et al., 2010). 

Field capacity generally refers to the soil water content in the field after 2 to 4 days following 

thorough rainfall and/or irrigation. After two days of drainage, from initial saturated soil profiles, 

the bottom of the various lysimeters was wet, i.e. volumetric soil water content was close to 

saturation, as shown in Table 4.4. This does not reflect these soils' natural drainage condition 

and is typical of lysimeters or pot trials where there is an abrupt, discontinuous boundary from 

the bottom soil layer to the gravel, i.e. soil water at saturation equals lysimeter saturation and 

water content at field capacity equals lysimeter capacity. Under these conditions, a small water 

table develops at the bottom, from where the pressure head must be high enough to transport 

water to the gravel layer beneath. Hence, the saturation and field capacity values entered in 

AquaCrop under lysimeter conditions approximate a soil water profile in equilibrium with the 

groundwater table, illustrated in Figure 4.2.  
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Figure 4.1: Weather data for the 2000-2001 and 2004-2005 maize growing seasons done by Ehlers et al. (2003) and Ehlers et al. (2007), 

respectively, at the lysimeter facility of the Department Soil, Crop and Climate Sciences, University of the Free State.  
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Table 4.4: Measured and pedotransfer function estimated parameters for the Clovelly 
soil used in AquaCrop 

Soil Thickness 
(m) 

Silt 
(%) 

Clay 
(%) 

𝜽𝜽𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 = 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 
(%) 

𝜽𝜽𝑳𝑳𝑳𝑳 = 𝜃𝜃𝐹𝐹𝐹𝐹 
(%) 

𝜽𝜽𝑷𝑷𝑷𝑷𝑷𝑷  
(%) 

Ks 
mm day-1 

Sandy 
(Clovelly) 

0-0.3 4 5 29.5 10.5 4.80 1004.38 
0.3-0.6 3 5 32.2 16.5 4.40 1131.07 
0.6-0.9 3 5 28.8 18.4 4.40 1131.07 
0.9-1.2 3 5 31.0 20.3 4.40 1131.07 
1.2-1.8 3 5 31.9 28.8 4.40 1131.07 
Mean 3 5 30.9 20.6 4.50 1099.40 

 
Table 4.5: Default parameters used in AquaCrop for simulating Trials 1 and 2 as provided in 

Annexes of the reference manual by Raes et al. (2022) 

Process Parameters Units Values 

Green canopy cover 

CCo % 0.33 
tem t DECAL 
tsc t DECAL 
tmt t DECAL 
CCx % 0.95 
CGC (or tmc) % t-1 (t) DECAL 
CDC % t-1 DECAL 

Root expansion 

TAWg % 20 
Zn m 0.3 
Zx m 1.75 
n - 1.5 
Zer (or tZx) cm t-1 (t) 2.3 (980) 

Transpiration and root water uptake 

Kc Tr x - DECAL 
fage % t-1 0.150 
a - 1 
extraction pattern % 40, 30, 20, 10 
Sx top m3 m-3.t 0.0480 
Sx bottom m3 m-3.t 0.0120 

Biomass production 
WP* g m-2 33 
fyield % 100 

Yield formation 
HIo % 44 
tfl t DECAL 
tflperiod t DECAL 

Soil evaporation 

Kex - DECAL 
fcc % 60 
fm % 0 
fw % 100 
REW mm DECAL 
Estage2 - DECAL 

 DECAL = Differential Evolution Calibration algorithm 
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Figure 4.2: Illustration of soil water profile, at saturation (Sat), field capacity (FC) and adjusted 

field capacity (FCadj), in equilibrium with the groundwater as used in AquaCrop 
(Raes et al., 2022).  

 

Under shallow groundwater table conditions, the field capacity within the capillary fringe x m 

is referred to as adjusted field capacity in AquaCrop (FCadj) (Raes et al., 2022). A locally 

developed pedotransfer function, RETEN (Streuderst, 1985), was used to estimate volumetric 

soil water at -1500 kPa from silt-plus-clay, i.e. permanent wilting point (PWP). Saturated 

hydraulic conductivity was determined with Equation 4.1 from silt-plus-clay, developed by 

Ehlers et al. (2003) for the two soils. The initial volumetric soil water at the start of the growing 

season was entered. Default a and b parameters used to simulate capillary rise were 

estimated by AquaCrop from Ks values. Table 4.5 shows the default maize parameters used 

in AquaCrop (i.e. annexes of the reference manual by Reas et al. 2022).  

 

 𝐾𝐾𝑠𝑠 = 2925.8 𝑒𝑒−0.1188(𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆−𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠−𝑐𝑐𝑠𝑠𝑆𝑆𝑐𝑐)             (4.1) 

 

Vertical discretization of the soil profiles that were used in SWAP are shown in Table 4.6, i.e. 

six sub-layers of 30 cm each, with 30 compartments of 1 cm each in the first layer and six 

compartments of 5 cm each in the remaining five sublayers. The first sub-layer represents soil 

physical layer 1, sub-layers 2, 3 and 4 soil physical layer two and sub-layers 5 and 6 soil 

physical layer 3. Table 4.7 provides the Mualem-van Genuchten soil parameters used in 

SWAP. Three physical soil layers were identified based on the silt-plus-clay measurements of 

the Bainsvlei soil, namely 10%, 18% and 24% as physical soil layers 1, 2 and 3. RETEN was 

used to establish the relationship between volumetric soil water and matric suction (pressure 
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head) for the three physical layers from silt-plus-clay measurements. These values were then 

entered in the RETC software package (version 6.02, van Genuchten et al., 1991), which 

estimated the Mualem-van Genuchten parameters, while the saturated hydraulic conductivity 

was determined with Equation 4.1. The measured initial volumetric soil water at the start of 

the growing season was entered.   

 

Table 4.6: Vertical discretization of the soil profile in SWAP 

Sub layer Soil physical 
layer 

Sub layer 
thickness (cm) 

Compartment 
Thickness (cm) 

Number of 
compartments 

1 1 Bv 1 Cv 30 1 30 
2 2 Bv 1 Cv 30 5 6 
3 2 Bv 1 Cv 30 5 6 
4 2 Bv 1 Cv 30 5 6 
5 3 Bv 1 Cv 30 5 6 
6 3 Bv 1 Cv 30 5 6 

 Bv = Bainsvlei soil; Cv = Clovelly soil 

 

Table 4.7: Mualem-van Genuchten parameters of the three identified soil layers in the 
lysimeters describing the soil hydraulic functions used in SWAP 

Soil parameters Physical soil layer 
1 2 3 

Residual volumetric water content (𝜃𝜃𝑟𝑟, cm3 cm-3) 0.033 0.046 0.061 
Saturated volumetric water content (𝜃𝜃𝑠𝑠 cm3 cm-3) 0.336 0.354 0.369 
Alfa of main drying curve (𝛼𝛼, cm-1) 0.0181 0.0196 0.0215 
Parameter n 1.447 1.352 1.315 
Exponent in hydraulic conductivity function (I) 1.795 -3.501 -6.112 
Saturated hydraulic conductivity (Ks, cm d-1) 115.57 56.84 34.02 

 

Table 4.8 shows the default parameters for maize used in SWAP. These parameters were 

obtained from the WOFOST database for maize.   
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Table 4.8: Default parameters used in SWAP for simulating Trials 1 and 2 
Parameters Units Values 
TBASEM °C 6 
TSUMEMEOPT °C DECAL 
TEFFMX °C 30.0 
TSUMEA  - DECAL 
TSUMAM - DECAL 
TAV vs DTSM °C DECAL 
DLO Hours 1.0 
DLC Hours 0.0 
SLATB vs DVS ha kg-1 DECAL 
EFF kg CO2 J-1 adsorbed DECAL 
AMAXTB vs DVS kg ha-1 hour-1 DECAL 
LAIEM m2 m-2 DECAL 
RGRLAI m2 m-2 day-1 DECAL 
SPAN day DACAL 
TDWI kg ha-1 50.00 
TBASE °C 10.00 
KDIF - 0.60 
KDIR - 0.75 
TMNFTB vs Min T °C 0.00 (5.00); 1.00 (8.00) 
TMPFTB vs Ave T °C 0.10 (0); 0.8 (16); 1.00 (20); 0.95 (36); 0.56 (42) 
SPA ha kg-1 0.0 
SSA ha kg-1 0.0 
CVL kg ha-1 0.6800 
CVO kg ha-1 0.6710 
CVR kg ha-1 0.6900 
CVS kg ha-1 0.6580 
Q10 /10 °C 2.00 
RML kg CH2O kg-1 day-1 0.03 
RMO kg CH2O kg-1 day-1 0.01 
RMR kg CH2O kg-1 day-1 0.015 
RMS kg CH2O kg-1 day-1 0.015 
RFSETB vs DVS - 1.00 (0); 1.00 (1.50); 0.75 (1.75); 0.25 (2.00) 
FRTB vs DVS kg kg-1 0.40 (0); 0.34 (0.20); 0.23 (0.50); 0.10 (0.8); 0 (1); 0 (2) 
FLTB vs DVS kg kg-1 0.62 (0); 0.62 (0.33); 0.15 (0.88); 0.10 (1.10); 0 (1.2); 0 (2) 
FSTB vs DVS kg kg-1 0.38 (0); 0.38 (0.33); 0.85 (0.88); 0.40 (1.10); 0 (1.2); 0 (2) 
FOTB vs DVS kg kg-1 0.00 (0.95); 0.50 (1.10); 1.0 (1.2); 1.0 (2)  
RDCTB vs Rdepth cm3 cm-3 1 (0); 0.74 (0.2); 0.30 (0.4); 0.17 (0.6); 0.9 (0.8); 0.05 (1) 
RDI cm 5.00 
RRI cm day-1 2.20 
RDC cm 75 
CFBS - 1.25 
KDIF - 0.60 
KDIR - 0.75 
COFRED - DECAL 
CF vs DVS - DECAL 

DECAL = Differential Evolution Calibration algorithm 

4.5 DIFFERENTIAL EVOLUTION CALIBRATION ALGORITHM 

The main purpose of the Differential Evolution Calibration algorithm (DECAL) is to determine 

the value of the calibration parameters listed in Tables 4.5 and 4.8 for AquaCrop and SWAP, 

which will minimise the simulation error, i.e. the difference between the measured and the 

simulated outcome variables. Three measured variables were used to estimate the composite 

simulation error to be minimised by DECAL. When calculating the composite simulation error, 
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equal weights were assigned to each simulation error. The measured variables that were 

included in the calculation of the composite simulation error in the objective function were 

WC1.8(w), ET(w) and BM(s), as explained in Section 4.3. The normalised root mean square error 

(NRMSE) determined the simulation error of WC1.8(w) and ET(w), while the simulation of BM(s) 

was assessed with the absolute percentage error (PE).  

 

DECAL evolves an initial population of candidate solutions through an iterative mutation, 

crossover, and selection process to generate an updated generation of candidate solutions 

with better performance indicators than the previous generation. During the population 

initialisation phase, a population of NP vectors of different levels of the D calibration 

parameters are randomly generated. Each vector of calibration parameter levels is referred to 

as an individual and represents a candidate solution to the minimised composite simulation 

error. Let’s symbolise each individual in a generation by 𝑋𝑋𝑠𝑠
𝑔𝑔 = �𝑥𝑥𝑠𝑠,1

𝑔𝑔 ,  𝑥𝑥𝑠𝑠,2
𝑔𝑔  ⋯   𝑥𝑥𝑠𝑠,𝐷𝐷

𝑔𝑔 �, for i = 1, 2, … 

NP vectors of d = 1, 2, … D AquaCrop calibration parameters, where g = 0, 1, … G represents 

different generations with g=0 indicating the initial population. Large heterogeneity in the initial 

population (g=0) is key to ensuring that the search space is covered as much as possible. A 

uniform distribution is used to generate the initial search space with Equation 4.2. 

 

 𝑥𝑥𝑠𝑠,𝑑𝑑,𝑚𝑚𝑠𝑠𝑛𝑛
0 + � 𝑥𝑥𝑠𝑠,𝑑𝑑,𝑚𝑚𝑆𝑆𝑚𝑚

0 −  𝑥𝑥𝑠𝑠,𝑑𝑑,𝑚𝑚𝑠𝑠𝑛𝑛
0 �𝑈𝑈(0,1)            (4.2) 

 

Where 𝑈𝑈(0,1) represents a uniformly distributed random number in the range [0,1], where 

 𝑥𝑥𝑠𝑠,𝑑𝑑,𝑚𝑚𝑠𝑠𝑛𝑛
0  and  𝑥𝑥𝑠𝑠,𝑑𝑑,𝑚𝑚𝑆𝑆𝑚𝑚

0  are the minimum and maximum levels of the respective calibration 

parameters. The upper and lower bounds on the calibration parameter levels were taken as 

± 20% of the default values. These bounds ensure that compensating errors that may occur 

between parameters are controlled.  

 

Next, the initial population evolves through a process of mutation and crossover. For each 

target vector, 𝑋𝑋𝑠𝑠
𝑔𝑔, a mutant vector 𝑉𝑉𝑠𝑠

𝑔𝑔is created with Equation 4.3. 

 

 𝑉𝑉𝑠𝑠
𝑔𝑔 = 𝑋𝑋𝑟𝑟1

𝑔𝑔 + 𝐹𝐹 ∙ �𝑋𝑋𝑟𝑟2
𝑔𝑔 − 𝑋𝑋𝑟𝑟3

𝑔𝑔 �               (4.3) 

 

Where r1, r2 and r3 are randomly chosen indexes from 𝑖𝑖 ∈ [1, …𝑁𝑁𝑁𝑁] which need to be different 

from the current generation index i, and F is a constant scaling factor. The exploration 

capability of the mutant generation strategy employed is strong since both the base (r1) and 

the difference vectors (r2 and r3) are randomly generated. Crossover increases the diversity 
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of the population by combining the mutant vector with the target vector to create a trial vector 

𝑈𝑈𝑠𝑠
𝑔𝑔 = �𝑢𝑢𝑠𝑠,1

𝑔𝑔 ,  𝑢𝑢𝑠𝑠,2
𝑔𝑔  ⋯   𝑢𝑢𝑠𝑠,𝐷𝐷

𝑔𝑔 � using Equation 4.4.  

 

 𝑢𝑢𝑠𝑠,𝑗𝑗
𝑔𝑔 = �

𝑣𝑣𝑠𝑠,j
𝑔𝑔        if  U(0,1) ≤ CR or j=r

𝑥𝑥𝑠𝑠,𝑗𝑗
𝑔𝑔        otherwise

             (4.4) 

 

Where 𝐶𝐶𝐶𝐶 ∈ [0,1] defines the crossover probability and 𝑟𝑟~𝑈𝑈[1, D] selects a random index to 

identify a random calibration parameter. The composite simulation errors of the trial vector 

(𝑈𝑈𝑠𝑠
𝑔𝑔) are compared to the composite simulation errors of the current generation (𝑋𝑋𝑠𝑠

𝑔𝑔) to 

determine whether an individual in the trial vector should replace an individual in the current 

population when the trial vector’s composite simulation error was smaller. The processes of 

mutation and crossover are repeated until the stopping criterium is met. Visual Basic for 

Application© code was developed to automate the implementation of DECAL using the 

AquaCrop plug-in program, ACsaV60.EXE, which allows for the automation of multiple 

simulations, i.e. the program executes a list of projects while saving the results in output 

files. The SWAP executable was used to implement DECAL with SWAP. 

4.6 RESULTS AND DISCUSSION 

4.6.1 AQUACROP 

The DECAL estimated parameters for the control treatment showed a high consistency level 

between different Clovelly soil replications. Replication 3, however, had the best NRMSE (< 

5%) for simulations of WC1.8(w) and ET(w), while the simulation of BM(s) had the lowest PE (< 

5%). Table 4.9 provides the DECAL estimated parameters for maize grown on the Clovelly 

soil for replication three without a shallow groundwater table. A visual comparison between 

measured and simulated WC1.8(w) and cumulative ET, using the parameters in Tables 4.4, 4.5 

and 4.9 and the mean irrigation of the three replications, confirms that AquaCrop was 

reasonably well calibrated with DECAL (Figure 4.3). BM(s) and grain yield were over-simulated 

by less than 3% and 1.5%, respectively.  
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Table 4.9: DECAL estimated AquaCrop parameters for maize grown on the sandy Clovelly soil 
for the control treatment of Trial 1 

Process Parameters Units DECAL values 

Green canopy cover 

tem t 51 
tsc t 1519 
tmt t 1805 
CGC (or tmc) % t-1 (t) 1.499 
CDC % t-1 1.987 

Transpiration and root water uptake 
Kc Tr x - 1.28 
tfl t 974 
tflperiod t 186 

Soil evaporation 
Kex - 1.30 
REW mm 6 
Estage2 - 4 

 

 
Figure 4.3: Comparison between measured and AquaCrop simulated soil water content and 

cumulative evapotranspiration (ET) using parameters in Tables 4.4, 4.5 and 4.6 
without a water table  

 

Figure 4.4 shows the validation results, i.e. where simulations were done in the presence of a 

groundwater table at a depth of 1.5 and 1.2 m. WC1.8(w) and cumulative ET were expected to 

be simulated reasonably accurately for the 1.5 m groundwater table depth because this 

treatment was part of Trial 1. Simulations of WC1.8(w) and cumulative ET were also acceptable 

for the 1.2 m groundwater table depth, considering that it was done under different conditions, 

namely Trial 2. Seasonal simulated WTU amounted to 182 and 323 mm for the 1.5 and 1.2 m 

groundwater table depth, which were 28 mm more and 9 mm less than the measured values, 

respectively. BM(s) and grain yield were over-simulated by less than 6% for the 1.5 m 

groundwater table depth and 25% for the 1.2 m groundwater table depth.  
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Figure 4.4: Comparison between measured (ms) and AquaCrop simulated (sm) soil water 

content, cumulative evapotranspiration (ET) and cumulative water table uptake 
(WTU) using parameters in Tables 4.4, 4.5 and 4.6 under a constant water table at a 
depth of 1.5 and 1.2 m  

 

Under non-limiting conditions, the simulated grain yield will compare well to measured values 

when users calibrate AquaCrop to simulate BM(s) accurately. The specified reference harvest 

index and BM(s) determine grain yield. AquaCrop does not reduce the selected harvest index 

due to water, salinity, or fertility stress under non-limiting conditions. Our results revealed that 

no measurements describing crop phenology, for example, green canopy cover or time of 

various development stages, are required to calibrate AquaCrop under non-limiting conditions 

with DECAL. Either WC(w) or ET(w) measurements will suffice. However, BM(s) should be part 

of the objective function. According to Seidel et al. (2018), crop modellers generally use data 

that describe crop phenology in the calibration process. For AquaCrop and maize, specifically, 

canopy cover is primarily used in the calibration process, for example, Abedinpour et al. 

(2012), Shrestha et al. (2013), Hassanli et al. (2016) and Shirazi et al. (2021). The project 

team acknowledge that the accuracy of WC and ET measurements in the objective function 
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is vital in calibration where no crop phenology measurements are available. Under lysimeter 

conditions, researchers can reasonably accurately apply irrigation and quantify drainage 

beyond the measured soil depth. In addition, runoff cannot occur as the lysimeter rims were 5 

cm above the soil surface. This accurate quantification of the soil water balance components 

improves the determination of ET.  

 

The DECAL estimated parameters compare well to the literature. This finding, however, is 

expected as we included bounds, which ensured that the estimated parameter could not differ 

more than 20% from the default values. We believe that including BM(s) measurements in the 

objective function when calibrating AquaCrop improves the separation of ET in evaporation 

and transpiration. The latter is better simulated because of the relationship between seasonal 

BM and transpiration, characterised through a normalised water productivity parameter 

(Steduto et al. 2009).  

 

WTU of maize grown in a sandy soil was simulated well with the DECAL estimated parameters 

for a groundwater table depth of 1.5 and 1.2 m. This result is satisfactory, considering that no 

calibration of the parameters required to simulate WTU (i.e. capillary rise) was done. The 

capillary rise parameters are determined by AquaCrop using the input saturated hydraulic 

conductivity of the soil. Goosheh et al. (2018) and Zhao et al. (2020), respectively, simulated 

WTU of maize and wheat accurately with AquaCrop. The latter authors used AquaCrop to 

improve the irrigation scheduling of wheat and increase water productivity under shallow 

groundwater table conditions.  

 

An essential step in calibrating mathematical bio-physical models is a sensitivity analysis of 

parameters, which was not done in this project. Essential parameters for accurately simulating 

green canopy cover, transpiration, and evaporation with AquaCrop were calibrated using 

DECAL. The project team argue that evapotranspiration must be simulated reasonably well to 

have a good chance of simulating WTU accurately. The global sensitivity analysis method 

EFAST (extended Fourier amplitude sensitivity test) has become very popular when analysing 

AquaCrop parameters (Vanuytrecht et al. 2014; Guo et al. 2020). Lu et al. (2021) highlight 

that determining parameter ranges is critical for robust and trustworthy sensitivity results. 

Parameter ranges should be physically valid and locally reasonable and hence application-

dependent. Parameter sensitivities also depend on the target output, e.g. grain yield, 

transpiration, green canopy cover, evaporation, etc. Lu et al. (2021) found that WP* and time 

of yield formation, i.e. essential parameters for biomass and yield formation, do not influence 

total transpiration. Parameter sensitivities also depend on environmental conditions. A 

sensitivity analysis should be carried out before each model calibration and application. Under 
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low water stress conditions for dryland maize grown near Mean, eastern Nebraska, Monze in 

southern Zambia and Xiaotangshan in northern China, Lu et al. (2021) identified CCx, tfl, 

duration of yield formation, tmt, tsc and fyield as parameters that have a major influence on yield. 

For simulations of transpiration CCx, CGC, tsc and base temperature below which crop growth 

does not occur were identified as the most influential. Guo et al. (2020) found that tsc and tmt 

were the most influential parameters when simulating BM(s) under non-limiting conditions. The 

authors also indicated that CGC and CCx were insensitive to BM(s) but were sensitive to BM 

production during the maize's early and middle growth period. Parameters such as Kc Tr x, WP* 

and tsc also strongly influence BM during different maize growth periods. In addition, it was 

found that CCx, tsc and CGC were sensitive to green canopy development during different 

growth stages. Guo et al. (2020) concluded that these sensitive parameters had a stronger 

influence on green canopy development than BM production during the growing season.  

4.6.2 SWAP 

Table 4.10 provides the DECAL estimated parameters for SWAP. The values represent the 

mean over three replications for the control treatment of the sandy loam Bainsvlei soil. The 

NRMSE for simulations of WC1.8(w) was < 5% and for ET(w) < 20%. Simulated WC1.8 and 

cumulative ET during the growing season are provided in Figure 4.5 and compared well to the 

measurements. BM(s) and grain yield of maize grown on the Bainsvlei soil were over and 

under-simulated by 8.9% and 5.9%, respectively. 

 
Table 4.10: DECAL estimated SWAP parameters for maize grown on the sandy loam Bainsvlei 

soil for the control treatment of Trial 1 
Parameters Units Values 
TSUMEMEOPT °C 94 
TSUMEA  - 994 
TSUMAM - 798 
TAV vs DTSM °C 8 (0); 32 (24); 45 (24) 
SLATB vs DVS ha kg-1 0.0024 (0.0); 0.00220 (0.78); 0.00150 (2.00) 
EFF kg CO2 J-1 adsorbed 0.49 
AMAXTB vs DVS kg ha hour-1 80 (0.0); 80 (1.25); 78 (1.50); 78 (1.75); 56 (2.00) 
LAIEM m2 m-2 0.04836 
RGRLAI m2 m-2 day-1 0.03530 
SPAN day 38 
COFRED - 0.60 
CF vs DVS - 0.21 (0.30); 0.95 (0.50); 1.34 (0.7); 1.38 (1.00); 1.21 (1.40); 0.93 (2) 

 

The validation results, namely where the parameters in Tables 4.7, 4.8 and 4.10 were used 

for simulations done under a 1.5 m and 1.2 m constant groundwater table, are shown in 

Figure 4.6.  
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Figure 4.5: Comparison between measured (ms) and SWAP simulated (sm) soil water content 

and cumulative evapotranspiration (ET) using parameters in Tables 4.7, 4.8 and 4.10 
in the absence of a groundwater table 

 
Figure 4.6: Comparison between measured (ms) and SWAP simulated (sm) soil water content, 

cumulative evapotranspiration (ET) and cumulative water table uptake (WTU) using 
parameters in Tables 4.7, 4.8 and 4.10 under a constant groundwater table at a depth 
of 1.5 and 1.2 m 

 

BM(s) was under-simulated by about 20% for the 1.5 m groundwater table depth and over-

simulated by about 7% for the 1.2 m groundwater table depth. The difference between 
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measured and simulated grain yield amounted to 15% and -26%, respectively. Cumulative ET 

and WTU were simulated worst for the 1.5 m groundwater table depth compared to the 1.2 m 

depth. Up until about 80 days after plant cumulative WTU was over-simulated by SWAP 

compared to the measured values. From 80 days after plant to the end of the season, 

cumulative ET was under-simulated by SWAP. The comparison between measured and 

simulated cumulative ET and WTU were much better at the 1.2 m groundwater table depth. 

At both groundwater table depths, however, the simulation of WC1.8 was poor. The difference 

between the mean simulated WC1.8 over the growing season and the measured value 

amounted to 105 and 123 mm for the 1.5 m and 1.2 m groundwater table depth, respectively. 

SWAP was, however, able to simulate the trend in WC1.8 relatively well during the growing 

season for both groundwater table depths.  

 

Li and Ren (2019) found after an extensive sensitivity analysis of SWAP-WOFOST that n, 𝛼𝛼 

and 𝜃𝜃𝑠𝑠 were the most influential when simulating soil water content. The project team did not 

calibrate any of the soil hydraulic parameters in this study, which could explain the over-

simulation of soil water content compared to the measurements for both the 1.5 m and 1.2 m 

groundwater tables. Wang et al. (2023) highlight several issues related to parameter sensitivity 

analysis, including sampling size, parameter variation range, temporal characteristics of 

sensitivity analyses and multi-variable output. The authors found that for WOFOST 

parameters important to leaf expansion, light interception, assimilation and phenological 

development play a key role in simulation outputs. The project team decided to estimate the 

parameters listed in Table 4.10 with DECAL after consulting the many technical documents of 

SWAP and WOFOST. In a variance-based sensitivity analysis of WOFOST, Confalonieri 

(2010) found that seven out of 34 parameters, primarily related to CO2 assimilation and the 

conversion of photosynthates into plant organs, accounted for approximately 90% of the total 

output variability. No significant differences were observed in the relevance of the WOFOST 

parameters. Hence, parameters with significantly higher relevance compared to others were 

limited.  

4.7 RESEARCH IMPLICATIONS 

For AquaCrop, the DECAL calibration process showed good results, especially under non-

limiting conditions. It was observed that AquaCrop could accurately simulate soil water 

content, evapotranspiration, water table uptake and grain yield of maize grown on sandy soil. 

Measurements describing crop phenology, such as canopy cover, were not necessary for 

calibration using DECAL under these conditions. Instead, soil water content measurements 
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were sufficient, while seasonal above-ground biomass played a crucial role in the objective 

function.  

 

For SWAP, the results indicated that the model performed reasonably well, particularly in 

simulating soil water content and evapotranspiration. However, there were discrepancies in 

simulating above-ground biomass and grain yield, especially under shallow groundwater table 

conditions. This inconsistency might be due to the lack of calibration of soil hydraulic 

parameters, which were not considered in this study. 

 

Sensitivity analysis was emphasized, as understanding parameter influences can improve 

model outputs. Although no sensitivity analysis was conducted in this project, previous studies 

have highlighted the significance of specific parameters for simulating variables like soil water 

content, evapotranspiration and yield. 
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CHAPTER 5: BIO-ECONOMIC ANALYSIS OF CONJUNCTIVE 
WATER USE 

5.1 INTRODUCTION 

Chapter 5 discusses the bio-economic optimisation model, the application of the model to 

improve conjunctive water management and the results from the bio-economic analyses. 

Procedures were developed to link AquaCrop and SWAP to a differential evolutionary 

algorithm to optimise the conjunctive use of surface and root-accessible water tables. 

Consequently, the setup and bio-economic analyses are discussed for both models.  

5.2 BIO-ECONOMIC OPTIMISATION MODEL 

5.2.1 MODEL COMPONENTS AND INFORMATION FLOW 

Figure 5.1 shows the different components of the bio-economic optimisation model and the 

information flow between the components. The bio-economic model has a loosely coupled 

structure, allowing biophysical and economic components to function independently. The main 

purpose of the Differential Evolution (DE) component is to facilitate information transfer 

between the components while evolving the irrigation schedules to one with a higher margin 

above the specified costs (MAS). The structure of the input files and output files necessitates 

biophysical model-specific procedures to integrate a specific biophysical model (i.e. SWAP 

and AquaCrop) with the economic model.  

 

The optimisation commences with the DE component generating alternative irrigation timing 

triggers and indicator values to identify certain irrigation depth options within the crop 

simulation model. The crop simulation model simulates the impact of the irrigation strategy 

(timing option and irrigation depth option) on crop yield by translating the irrigation strategy 

into an irrigation calendar, which shows the calendar day of the irrigation events and the 

irrigation depths. The simulated crop yield and the irrigation calendar are the only information 

passed to the economic model to determine the financial performance of the irrigation strategy. 

The profitability calculation distinguishes between yield and irrigation-dependent costs to 

better reflect irrigation management decisions on profitability.  
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Figure 5.1: Bio-economic optimisation modelling framework showing information flow between 

different components of the bio-economic optimisation model 

 
The DE algorithm repeats the process by applying mutation, crossover and selection to evolve 

the candidate population of irrigation schedules to ones with better MAS indicators until the 

stopping criterium is met.  
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5.2.2 BIOPHYSICAL MODEL 

The modelling framework allows any of the two biophysical models to represent the 

biophysical component of the bio-economic optimisation model. A bio-economic optimisation 

model was developed for AquaCrop and SWAP. The details of these models are discussed in 

Chapter 4. 

5.2.3 ECONOMIC MODULE 

The economic model calculates the total gross margin above the specified costs for a pivot of 

30 ha with an application rate of 12mm/day, which is the key performance indicator for 

evaluating the profitability of an irrigation schedule. A distinction is made in the model between 

costs dependent on irrigation applications and costs dependent on crop yield (i.e. fertilizer and 

harvesting costs). The electricity cost to pump the water represents most of the irrigation-

dependent costs. The electricity cost calculations are based on the Ruraflex time of use 

electricity tariff.   

The following equation calculates the MAS associated with a specific irrigation schedule: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝 × 𝑌𝑌(𝑖𝑖) − 𝑦𝑦𝑦𝑦𝑦𝑦 × 𝑌𝑌(𝑖𝑖) − 𝐼𝐼𝐼𝐼𝐶𝐶(𝑖𝑖) − 𝑀𝑀𝐼𝐼𝐶𝐶           (5.1) 

Where: 
𝑀𝑀𝑀𝑀𝑀𝑀  Margin above the specified costs (R ha-1) 
𝑌𝑌(𝑖𝑖)  Simulated crop as a function of the irrigation schedule (t ha-1) 
𝑝𝑝   Price of maize (R t-1) 
𝑦𝑦𝑦𝑦𝑦𝑦   Yield dependent costs (R t-1) 
𝐼𝐼𝐼𝐼𝐶𝐶(𝑖𝑖)  Irrigation-dependent cost state-specific irrigation schedule (R ha-1) 
𝑀𝑀𝐼𝐼𝐶𝐶  Area-dependent cost (R ha-1) 

 

The first term (i.e. 𝑝𝑝 × 𝑌𝑌(𝑖𝑖)) of the MAS calculation calculates the production income as a 

function of the irrigation schedule by multiplying the simulated maize yield as a function of the 

irrigation schedule with the selling price of maize. The second term (i.e. 𝑦𝑦𝑦𝑦𝑦𝑦 × 𝑌𝑌(𝑖𝑖)) calculates 

the costs that depend on the simulated crop yield as a function of the irrigation schedule, which 

was also taken as the yield expectation. Consequently, 𝑦𝑦𝑦𝑦𝑦𝑦 includes fertilizer costs and 

harvesting costs. 𝑀𝑀𝐼𝐼𝐶𝐶 is the only cost component that does not vary as a function of the 

irrigation schedule and includes costs like fuel, microelements, seed, chemical, harvest, and 

mechanization costs. The calculation of irrigation-dependent costs (i.e. 𝐼𝐼𝐼𝐼𝐶𝐶(𝑖𝑖)) is not 

straightforward because it depends on the required irrigation hours to apply a given amount 

of water. Therefore, the calculation of irrigation-dependent costs is discussed in more detail.  

Equation 5.2 shows all the costs associated with applying irrigation water. 
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𝐼𝐼𝐼𝐼𝐶𝐶(𝑖𝑖) = 𝐸𝐸𝐶𝐶 + 𝐿𝐿𝐶𝐶 + 𝐶𝐶𝑀𝑀𝐶𝐶 + 𝑊𝑊𝐶𝐶              (5.2) 

Where: 
𝐸𝐸𝐶𝐶   Variable electricity costs for crop c (R ha-1) 
𝐿𝐿𝐶𝐶   Total labour costs for crop c (R ha-1) 
𝐶𝐶𝑀𝑀𝐶𝐶   Total repair and maintenance costs for crop c (R ha-1) 
𝑊𝑊𝐶𝐶   Total water costs for crop c (R ha-1) for indirect or direct pricing  

 

The electricity cost calculation does not include fixed costs since fixed electricity costs must 

be paid whether the irrigator applies water or not. Variable electricity costs are calculated as 

follows using the Ruraflex electricity tariff: 

 

𝐸𝐸𝐶𝐶𝑐𝑐 = ∑ �𝑡𝑡𝑡𝑡𝑠𝑠,𝑆𝑆 + 𝑟𝑟𝑦𝑦𝑠𝑠,𝑆𝑆 + 𝑦𝑦𝑦𝑦𝑠𝑠,𝑆𝑆�𝑘𝑘𝑊𝑊𝑁𝑁𝑃𝑃𝑠𝑠,𝑆𝑆 +∑ 𝑡𝑡𝑟𝑟𝑡𝑡𝑠𝑠,𝑆𝑆𝑘𝑘𝑣𝑣𝑡𝑡𝑟𝑟𝑠𝑠,𝑆𝑆𝑠𝑠,𝑆𝑆 𝑁𝑁𝑃𝑃𝑠𝑠,𝑆𝑆        (5.3) 

Where: 
𝑡𝑡𝑡𝑡𝑠𝑠,𝑆𝑆  Active energy charge on day i in timeslot t (R kWh-1) 
𝑟𝑟𝑦𝑦𝑠𝑠,𝑆𝑆  Reliable energy charge on day i in timeslot t (R kWh-1) 
𝑦𝑦𝑦𝑦𝑠𝑠,𝑆𝑆  Demand energy charge on day i in timeslot t (R kWh-1) 
𝑘𝑘𝑊𝑊   Kilowatt requirement (kW) 
𝑁𝑁𝑃𝑃𝑐𝑐,𝑠𝑠,𝑆𝑆  Pumping hours to irrigate crop c on day i in timeslot t (h) 
𝑡𝑡𝑟𝑟𝑡𝑡𝑠𝑠,𝑆𝑆  Reactive energy charge on day i in timeslot t (R kVARh-1) 
𝑘𝑘𝑣𝑣𝑡𝑡𝑟𝑟  Kilovar (kVAR) 

 

The active energy, reliable energy, and demand energy charge are dependent on the kilowatt 

required to pump irrigation water, while the reactive energy charge is dependent on the kilovar. 

However, the reliable energy charge is only applicable during the high-demand season. Both 

active energy and reactive energy consumption are determined by the required pumping 

hours, which are calculated as follows:  

 

𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠 =
𝐼𝐼𝑖𝑖
ղ𝑠𝑠
𝑃𝑃𝑃𝑃×10

𝑞𝑞
                    (5.4) 

Where: 
𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠  Required pumping hours on day i (h) 
ղ𝑠𝑠   Irrigation system application efficiency (%) 
𝑁𝑁𝑀𝑀   Pivot area (ha) 
𝑞𝑞   Flow rate (m3 h-1) 

 

Equation 5.4 shows that 𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠 is differentiated for each day and is a function of pivot 

characteristics (i.e. application efficiency, pivot area, and flow rate). The Ruraflex electricity 

tariff charges are differentiated into different time-of-use timeslots (i.e. off-peak, standard, and 

peak) based on the day of the week and time of the day. The irrigator needs to decide during 

which time-of-use timeslots to irrigate. The assumption is that an irrigator will distribute the 
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required pumping hours over two consecutive days to facilitate energy management. The 

following heuristic is used to allocate the required pumping hours to different time-of-use 

timeslots (Madende, 2017): 
 

𝑁𝑁𝑃𝑃𝑠𝑠,"𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝" = 𝑚𝑚𝑖𝑖𝑚𝑚 �
𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠                      
𝑡𝑡𝑝𝑝ℎ𝑠𝑠,"𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝"               (5.5) 

𝑁𝑁𝑃𝑃𝑠𝑠,"𝑠𝑠𝑆𝑆𝑆𝑆𝑛𝑛𝑑𝑑𝑆𝑆𝑟𝑟𝑑𝑑"  = 𝑚𝑚𝑖𝑖𝑚𝑚 �
𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠  − 𝑁𝑁𝑃𝑃𝑠𝑠,"𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝"    
𝑡𝑡𝑝𝑝ℎ𝑠𝑠,"𝑠𝑠𝑆𝑆𝑆𝑆𝑛𝑛𝑑𝑑𝑆𝑆𝑟𝑟𝑑𝑑"                              (5.6) 

𝑁𝑁𝑃𝑃𝑠𝑠,"𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝"          = 𝑚𝑚𝑖𝑖𝑚𝑚 �
𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠  − 𝑁𝑁𝑃𝑃𝑠𝑠,"𝑜𝑜𝑜𝑜𝑜𝑜−𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝" − 𝑁𝑁𝑃𝑃𝑠𝑠,"𝑠𝑠𝑆𝑆𝑆𝑆𝑛𝑛𝑑𝑑𝑆𝑆𝑟𝑟𝑑𝑑"
𝑡𝑡𝑝𝑝ℎ𝑠𝑠,"𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝"                                                              (5.7) 

Where: 

𝑡𝑡𝑝𝑝ℎ𝑠𝑠,𝑆𝑆 Total available pumping hours during time-of-use timeslot t (i.e. off-peak, 

standard, and peak) for allocating required pumping hours on day i t(h) 

𝑁𝑁𝑃𝑃𝑠𝑠,𝑆𝑆 Day i's required pumping hours allocated to time-of-use timeslot t (i.e. off-

peak, standard, and peak) when irrigating on day i and the next day (h) 
 

The irrigation labour and repair and maintenance costs are calculated using the cost 

estimation procedures developed by Meiring (1989). Irrigation labour costs are calculated as 

follows: 

 

𝐿𝐿𝐶𝐶 = ∑ 𝑅𝑅𝑃𝑃𝑅𝑅𝑖𝑖
24

× 𝑙𝑙ℎ ×  𝑙𝑙𝑙𝑙𝑠𝑠                  (5.8) 

Where: 

𝑙𝑙ℎ Labour hours required per 24 hours of irrigation for a certain pivot size (h) 
𝑙𝑙𝑙𝑙  Labour wage rate (R h-1) 

 

The total repair and maintenance cost is calculated as follows: 

 

𝐶𝐶𝑀𝑀𝐶𝐶𝑐𝑐 = ∑ 𝐶𝐶𝑁𝑁𝑃𝑃𝑠𝑠,𝑐𝑐𝑟𝑟𝑡𝑡𝑠𝑠                   (5.9) 

Where: 
𝑟𝑟𝑡𝑡 Repair and maintenance tariff per 1000 hours pumped for an irrigation 

system (R/1000 hours)  
 

The assumption is that the water tariff is implemented on a volumetric basis. The total water 

charge payable to the water user association is calculated as follows: 

 

𝑊𝑊𝐶𝐶𝑐𝑐 = 𝑦𝑦𝑙𝑙𝑟𝑟𝑐𝑐 ×𝑙𝑙𝑡𝑡                   (5.10) 

Where: 
𝑦𝑦𝑙𝑙𝑟𝑟𝑐𝑐  Crop water requirement as given by WUA for crop c (mm) 
𝑙𝑙𝑡𝑡   Water tariff (R mm-1)  
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5.2.4 DIFFERENTIAL EVOLUTION ALGORITHM 

A DE algorithm was also used to optimise irrigation decisions to improve conjunctive use of 

surface water and root-accessible water tables. Initial simulations indicated that water table 

uptake is a function of irrigation applications. Consequently, only the timing of irrigation events 

and the water applications were considered decision variables. Excluding area irrigated as a 

decision variable simplifies the algorithm because the irrigation applications could be 

generated within specified lower and upper bounds. The working of DEOPT (Differential 

Evolution OPTimisation) is the same as DECAL. However, the objective of DEOPT is to find 

the irrigation decisions that maximise the MAS. The processing of the data input and output 

files is also specific to DEOPT.  

5.3 BIO-ECONOMIC ANALYSES 

Both AquaCrop and SWAP were used in the bio-economic analyses of conjunctive surface 

and root-accessible water tables. In both cases, optimal conjunctive water use was compared 

to a baseline situation, representing no information regarding root-accessible water tables. 

Next, the application of the two models is discussed in more detail.  

5.3.1 BASELINE 

5.3.1.1 SWAP 

A full irrigation strategy represents the baseline whereby the irrigator uses the previous week’s 

observed evapotranspiration and rainfall to calculate the necessary irrigation for the current 

week. Since the strategy does not consider any soil-water information, the strategy ignores 

the possible contribution of root-accessible water tables to satisfy the crop’s 

evapotranspiration requirement of the week. 

For each state of nature, the cumulative difference between the previous week’s crop 

evapotranspiration demand and rainfall was taken as the irrigation requirement of the current 

week. The weekly calculated irrigation requirement was scheduled such that irrigation events 

start on a Friday and consecutively continue until all the water is applied. The reason for 

starting on a Friday is that it is cheapest to irrigate over weekends, according to the Ruraflex 

time-of-use timeslots. The maximum daily application was determined according to the 

application rate of the pivot. The resulting irrigation schedule was used as input in the bio-

economic simulation model to quantify the key economic and biophysical performance 

indicators. 
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5.3.1.2 AquaCrop 

The AquaCrop application baseline was based on farmers' actual water applications. Data 

collected by Barnard et al. (2021) from 19 fields within the Orange-Riet and Vaalharts Irrigation 

Schemes to investigate the best on-farm water and salt management practices was used to 

derive the baseline. The irrigation water amounts obtained from the Barnard et al. (2021) study 

were clustered/ grouped into three irrigation schedules that represent the most used irrigation 

amounts applied during the production season. The irrigation schedules were clustered using 

the K-means cluster analysis in the IBM SPSS Statistics Program (IBM, 2020). The procedure 

identifies relatively homogeneous groups of the selected variables by minimising the 

Euclidean distance from the cluster center. Based on the use of the Elbow rule while 

conducting a Hierarchical Cluster analysis, it was specified in the K-means procedure that the 

data be reduced to three clusters. The seasonal water application for the three clusters is 

274 mm (cluster 1), 347 mm (cluster 2) and 648 mm (cluster 3). The results from the cluster 

analysis confirmed that relative to the crop water requirement, some farmers either over- or 

under-irrigate crops. The seasonal amounts were distributed within the season such that the 

schedules ensured the optimal irrigation distribution. In other words, the dynamics of crop 

production and the economic impact of the irrigation timing provided a maximum margin above 

the specified cost (economic indicator). 

5.3.2 CONJUNCTIVE WATER USE OPTIMISATION 

Optimising realistic irrigation schedules requires including different weather states to uplift the 

assumption of perfect foresight. The DEOPT model allows for optimising irrigation decisions 

while probabilistically representing the state of the soil-crop-atmosphere continuum. Deriving 

optimal irrigation schedules with DEOPT considers the possible contribution of root-accessible 

water tables to satisfying crop evapotranspiration requirements because using root-accessible 

water tables as a potential water source does not come at a cost when the profitability of 

alternative irrigation schedules is evaluated.  

 

The decision-making framework of Madende and Grové (2020) presented in Figure 3.2 

(Chapter 3) is used to guide the optimisation of irrigation decisions to maximise the expected 

margin above the specified costs irrespective of the state of nature and to maximise the margin 

above the specified costs in the presence of state-specific unfolding soil-crop-atmosphere 

information. Next, the application of the decision-making framework for the two objectives is 

discussed in more detail. 
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5.3.2.1 Expected outcome maximisation 

The first decision tree depicted in Figure 3.2 shows that irrigation decisions are made to 

maximise the expected outcome (i.e. margin above the specified costs) irrespective of the 

state of nature occurring for a given irrigation area. Thus, irrigation decisions are made once 

and for all without considering unfolding information on the state of the soil-crop atmosphere 

continuum. A separate biophysical model simulation represents each state. The same 

irrigation decisions apply to all states, and DEOPT evolves the irrigation decisions while 

considering the contribution of root-accessible water tables through separate biophysical 

model simulations for each state. Consequently, the optimised irrigation decisions represent 

the best irrigation water management, regardless of which state of nature unfolds.  

The irrigation decisions that maximise the expected outcome regardless of the state of nature 

were optimised using AquaCrop and SWAP. 

5.3.2.2 Unfolding information maximisation 

The unfolding information maximisation optimisation recognises that irrigation decisions that 

maximise expected outcomes irrespective of the state of nature might be suboptimal for a 

specific state. The second decision tree in Figure 3.2 shows that the irrigator can adjust future 

irrigation decisions based on the expected future state of the soil-crop-atmosphere continuum, 

given the past state of the soil-crop-atmosphere continuum is known when the adjustment is 

made. Consequently, the irrigation decision problem must be solved for each unfolding state 

of nature, exponentially increasing the problem's dimensionality when including more states. 

The assumption is that the irrigator is allowed to adjust irrigation decisions weekly.  

Therefore, 20 DEOPT optimisations are necessary for each unfolding state of nature. After 

each optimisation (i.e. one week), the weather file of the biophysical model representing a 

specific future state of nature is updated with information on the unfolding state of nature. The 

lower and upper bounds of the irrigation amounts are also fixed in DEOPT to correspond with 

the optimised irrigation decisions of the previous week. As a result, only future irrigation 

decisions are optimised.  

The unfolding information maximisation analysis was only done for SWAP. 
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5.4 BIO-ECONOMIC MODEL SETUP AND DATA 

5.4.1 SWAP DATA 

The SWAP optimisation uses the weather database from SAPWAT (Crosby and Crosby, 

1999) to define different weather states. Cluster analysis was used to reduce the 

dimensionality of the weather database to three clusters containing similar weather patterns. 

Cluster analysis is a technique focused on classifying homogeneous cases within themselves 

and heterogeneous between each other (Yim and Ramdeen, 2015).  

Cluster analysis was performed on data covering the growing maize season in the Vaalharts 

area. Two years were considered outliers and removed from the dataset. After the data was 

organized to fit the simulation period, the reference crop evapotranspiration (ETo) and the 

rainfall daily amounts were aggregated to weekly averages. After that, the difference between 

the two was computed and standardized (Jajuga and Walesiak, 2000). The standardized data 

was used to do a hierarchical cluster analysis using Ward's Linkage method using a statistical 

software called Statistical Package for the Social Sciences (SPSS) (IBM, 2020). The 48 years 

of data were reduced to three clusters of 11, 21, and 16 years in each cluster. Only one of the 

cluster members was used to represent the weather pattern of a cluster. The representative 

member was chosen based on the mean absolute deviation (MAD). 

MAD is a statistic measuring the accuracy of the predictions within a set of quantitative 

elements and is useful because the prediction errors are in the same unit as the observed 

data (Khair et al., 2017). The MAD was calculated for each member state within a cluster, 

translating to 11 MAD calculations for cluster 1, 21 MAD calculations for cluster 2, and 16 

MAD calculations for cluster 3. The year with the smallest MAD was chosen to represent the 

weather pattern of the cluster. The probability that each representative weather state could 

occur was calculated as the number of years in a cluster divided by the 48 years of data used 

for the cluster analysis. Consequently, the three states had occurrence probabilities of 33%, 

44%, and 23%. The probabilities were used to calculate the expected performance indicators 

of the irrigation schedules.  

The variation in the identified states is depicted in Figure 5.3. As illustrated in Figure 5.3, the 

differences arose from the main differences between ETo and Rainfall, especially toward the 

end of the period under simulation (week 20), where State 2 has the largest difference between 

ETo and Rainfall, meaning that towards the end of the season, the ETo was greater than the 

rainfall present. In State 1, on the other hand, the difference between ETo and Rainfall in 

weeks 4 and  20 was similar, while State 3 shows a consistent difference from week 4 up until 
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week 16. The identified characteristics of each state of nature, measured by ETo and rainfall, 

set the states apart.  

 
Figure 5.2: Variation of the identified states at various weeks 

Source: Own compilation 

 

DECAL estimated SWAP parameters for maize grown on the sandy loam Bainsvlei soil were 

used in the analyses. The assumption is that the water table depth is 1.5m. 

5.4.2 AQUACROP DATA 

The climate files (.TMP, .ETo and .PLU) were set up using minimum-maximum temperatures 

ETo, and rainfall data collected from the automatic weather station at the Orange-Riet weather 

station for the period 1 January 1983 to 31 December 1994. A default .CO2 file 

‘MaunaLoa.CO2’ was selected to represent the CO2 concentrations of the farm as the weather 

station did not measure the CO2 concentrations. The calibrated and validated crop parameters 

for the Clovelly soil form were used to inform the .CRO, .SOL, .SWO, GWT-files. Aeration 

stress was activated in the .CRO-file. The implication is that in a shallow groundwater table, 

the crop could experience stress and thus reduce crop yields when too much irrigation water 

is applied. The assumption is that the water table depth is 1.5m. 
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5.4.3 ECONOMIC MODEL DATA 

The economic model is generic between the AquaCrop and SWAP applications. The financial 

calculations are based on a 30.1  ha pivot with an irrigation application rate of 12 mm/day. 

The area- and yield-dependent costs for irrigated maize were obtained from the income and 

cost budgets for the summer crops compiled by BFAP et al. (2021), while the variable 

electricity charges are based on the Ruraflex structure for 2020/2021 (Eskom, 2021). The 

costs are given in Table 5.1. The estimated maize price was R2 633 t-1. 

Table 5.1: Irrigated maize production cost estimates (2021) 

Yield dependent costs 
Contracting R ha-1 1470 
Crop insurance R ha-1 308 
Fertiliser R ha-1 8564 
Transport R t-1 285 
Area Dependent costs 
Fuel R ha-1 926 
seed  R ha-1 4975 
Weed Control R ha-1 663 
Pest Control R ha-1 2397 
Variable Electricity Charges  
 
Active Energy Charge      
     Off-peak  R kWh-1 0.72 
     Standard R kWh-1 1.13 
     Peak R kWh-1 1.64 
Ancillary Charges    
     Off-peak  c kWh-1 0.63 
     Standard c kWh-1 0.63 
     Peak c kWh-1 0.63 
Demand Charges    
     Off-peak  R kWh-1 0.41 
     Standard R kWh-1 0.41 
     Peak R kWh-1 0.41 
Other costs 
Labor cost R/24 hours irrigation 12.58 

 

5.4.4 DIFFERENTIAL EVOLUTION ALGORITHM PARAMETERS 

The Differential Evolution algorithm requires the initial population size, maximum number of 

iterations, mutation factor, crossover probability, and the lower and upper bounds on irrigation 

applications. The algorithm generated an initial population of 100 irrigation schedules with 

irrigation events between 6mm and 12mm. The initial population evolved for 500 iterations 

while applying a mutation factor of 50% and a crossover rate of 10%.  
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5.5 SWAP RESULTS 

5.5.1 BIO-ECONOMIC ANALYSIS WITHOUT CONSIDERING WATER TABLE UPTAKE 

The full irrigation management strategy is a strategy where the irrigator, for each state, uses 

the previous week's observed evapotranspiration and rainfall levels to schedule irrigation for 

the current week. Thus, the strategy does not use soil-water information to schedule irrigation 

and ignores the potential contribution of root-accessible water tables. Each state will have an 

irrigation schedule as it differs in evapotranspiration and rainfall levels.  

Table 5.2 shows the bio-economic simulation results for the full irrigation strategy. The full 

irrigation strategy applications vary by 26mm between a minimum of 557mm (State 1) and a 

maximum of 583mm (State 2), with an expected application of 574mm. The variation in maize 

yields was greater when compared to irrigation water applications. Maize yields varied by 

3 329kg ha-1 between a minimum of 10 733kg ha-1 (State 2) and 14 062kg ha-1 (State 3) with 

an expected crop yield of 11 963kg ha-1. The extent of the crop yield variation is attributed to 

the ability of SWAP to capture the impact of different states of nature on potential non-stressed 

crop yields since inspection of the crop results file indicated almost no water stress. 

Although the full irrigation strategy achieved state-specific potential crop yields, the water use 

efficiency of the strategy was low as it varies between a minimum of 1.13 (State 3) and a 

maximum of 1.28 (State 2) with an expected value of 1.19. The water use efficiency results 

show that the full irrigation strategy is expected to supply 19% more water (i.e. rainfall, 

irrigation, and root-accessible water tables) than the crop's evapotranspiration requirement. 

The mismatch between total water supply and crop evapotranspiration requirements results 

in an expected drainage loss of 92mm, which could be as low as 51mm (State 3) and as high 

as 143mm (State 2). The order of magnitude of the drainage losses corresponds with the 

magnitude of the rainfall. The contribution of root-accessible water tables to satisfying crop 

evapotranspiration requirements was less than 7% in all the states.  

The margin above the specified costs of the full irrigation strategy in each state of nature 

directly results from how the biophysical system responded to the full irrigation strategy. The 

expected margin above the specified costs for the strategy was R170 291, which varied 

substantially between R298 022 (State 3) and R94 006 (State 2). The substantial variation in 

the margin above the specified costs directly results from the yield expectation differences 

between states of nature and the production income and expenses dependent on crop yield. 

Expenses dependent on irrigation applications, such as total variable electricity and other 
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irrigation-dependent costs, varied only with R1 714 (R35 720-R34 006) and R508 (R11 564-

R11 056), respectively, for the 30ha pivot.  

Table 5.2: Economic and biophysical indicators when applying a state-specific full irrigation 
strategy without considering root-accessible water table uptake on a 30.1 ha pivot 
(2021) 

  Full irrigation strategy  
 Units State 1 State 2 State 3 Expected 

Probability of occurrence fraction 0.23 0.44 0.33   

Economic indicators           

Margin above the specified costs R  132 960  94 006  298 022  170 291 

Production income R 1 218 329 1 156 890 1 515 716 1 289 433 

Total variable electricity costs R  34 006  35 720  34 100  34 791 
Active energy charge         

Off-peak R  12 869  13 477  14 211  13 579 
Standard R  9 030  9 063  8 338  8 816 
Peak R  1 051  1 617   191  1 016 

Other variable electricity charges R  11 056  11 564  11 361  11 380 
Other irrigation-dependent costs R  60 394  63 169  62 064  62 166 
Yield dependent costs R  534 893  507 919  665 455  566 110 

Biophysical indicators     

Irrigation application mm   557   583   573   574 
Evapotranspiration mm   657   643   664   653 
Rainfall mm   146   199   132   165 
Water table uptake        

Millimetres mm   44   39   45   42 
Percentage of evapotranspiration % 7 6 7 6 

Drainage mm   54   143   51   92 
Yields kg ha-1  11 303  10 733  14 062  11 963 
Water use efficiency fraction 1.14 1.28 1.13 1.19 

 

5.5.2 BIO-ECONOMIC ANALYSIS OF CONJUNCTIVE WATER USE 

5.5.2.1 Optimal Expected Outcome Irrigation Strategy  

DEOPT uses information on the expected state of the soil-crop-atmosphere continuum to 

devise an irrigation schedule that is the best-performing profit-maximizing schedule 

irrespective of the state of nature. Consequently, the algorithm also considers root-accessible 

water tables as a water source to satisfy crop evapotranspiration requirements.  

Table 5.3 shows the bio-economic simulation results when the optimized irrigation schedule 

is applied to each state of nature. The optimal expected outcome irrigation strategy applied 

only 148mm of irrigation, which is 426mm less than the expected irrigation application of the 
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full irrigation strategy. The substantial reduction in irrigation application did not impact crop 

yields in each state of nature much, with absolute deviations from the full irrigation strategy 

being less than 102kg ha-1 across states of nature. 

Reducing irrigation applications of the optimal expected outcome strategy improved the 

expected water use efficiency by 15 percentage points, showing that the strategy uses rainfall 

and root-accessible water tables more efficiently. Drainage losses associated with 

overirrigation and ineffective rainfall were reduced to zero in States 1 and  3, while the 

drainage losses in States 2 were reduced by 86mm. The optimal expected outcome irrigation 

strategy increased the contribution of root-accessible water tables to substantially satisfy the 

crop evapotranspiration requirements across all states of nature. Compared to full irrigation, 

the water table uptake increased by a minimum of 42 percentage points (State 2) and a 

maximum of 46 percentage points (State 3), with an expected increase of 45 percentage 

points. When applying the optimal expected outcome irrigation strategy, root-accessible water 

tables contributed about 51% to satisfy the expected crop evapotranspiration requirement. 

The expected margin above the specified costs for the optimal expected outcome irrigation 

strategy is R 243 553, which is R73 262 higher than that of the full irrigation strategy. The 

reason for the increase in the expected margin above the specified costs is that the reduction 

in irrigation application decreased total variable costs and other irrigation-dependent costs, 

while crop yields were not affected much. The optimal expected outcome irrigation strategy 

did, however, increase the crop yields in State 2 while compromising crop yield in the other 

states. The variable electricity costs decreased by a minimum of R25 509 (State 1) and a 

maximum of R27 223 (State 2), with an expected reduction of R26 294. The other irrigation-

dependent costs decreased by a minimum of R44 353 (State 1) and by a maximum of R47 128 

(State 2), with an expected decrease of R46 125. Expected production income and expected 

yield-dependent costs did not change much because crop yields were not affected much by 

the optimal expected outcome irrigation strategy. Expected production income increased by 

R1 503 while expected yield-dependent cost increased by R660 compared to the full irrigation 

strategy. 
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Table 5.3: Economic and biophysical indicators for the optimal expected outcome strategy considering water table uptake and the changes relative 
to a state-specific full irrigation strategy for a 30.1 ha pivot (2021) 

  Optimal expected outcome irrigation strategy  Change relative to full irrigation strategy 
 Units State 1 State 2 State 3 Expected State 1 State 2 State 3 Expected 

Probability of occurrence Fraction 0.23 0.44 0.33   0.23 0.44 0.33   

Economic indicators                   

Margin above the specified costs R  196 655  174 222  368 680  243 553  63 694  80 216  70 658  73 262 
Production income R 1 207 335 1 167 345 1 513 992 1 290 936 - 10 994  10 455 - 1 725  1 503 
Total variable electricity costs R  8 497  8 497  8 497  8 497 - 25 509 - 27 223 - 25 603 - 26 294 

Active energy charge               
Off-peak R  4 197  4 197  4 197  4 197 - 8 672 - 9 280 - 10 014 - 9 382 
Standard R  1 363  1 363  1 363  1 363 - 7 667 - 7 699 - 6 974 - 7 453 
Peak R   0   0   0   0 - 1 051 - 1 617 -  191 - 1 016 

Other variable electricity charges R  2 937  2 937  2 937  2 937 - 8 119 - 8 627 - 8 425 - 8 443 
Other irrigation-dependent costs R  16 042  16 042  16 042  16 042 - 44 353 - 47 128 - 46 022 - 46 125 
Yield dependent costs R  530 066  512 510  664 698  566 770 - 4 827  4 590 -  757   660 

Biophysical indicators       

Irrigation application mm   148   148   148   148 -  409 -  435 -  425 -  426 
Evapotranspiration mm   557   566   620   582 -  100 -  78 -  43 -  71 
Rainfall mm   146   199   132   165   0   0   0   0 
Water table uptake              

Millimetres mm   273   286   329   297   229   248   284   255 
Percentage of evapotranspiration %   49   51   53   51   42*   45*   46*   45* 

Drainage mm   0   56   0   25 -  54 -  86 -  51 -  67 
Yields Kg ha-1  11 201  10 830  14 046  11 977 -  102   97 -  16   14 
Water use efficiency fraction 1.02 1.12 0.98 1.05 -0.12 -0.16 -0.15 -0.15 

*The relative change is measured in percentage points.  
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5.5.2.2 Optimal Sequential Irrigation Strategy 

The optimal sequential irrigation strategy allows the irrigator to adjust the irrigator's optimal 

expected outcome irrigation strategy for the rest of the season weekly based on the unfolding 

state of nature. The results of the optimal sequential irrigation strategy are given for each state 

of nature in Table 5.4. 

Table 5.4 shows that, contrary to expectation, no substantial adjustments were made to the 

optimal expected outcome irrigation strategy when the irrigator had the chance to react to 

unfolding information regarding the soil-crop-atmosphere continuum. In absolute terms, the 

optimal sequential irrigation strategy does not deviate more than 18mm from the optimal 

expected outcome irrigation strategy in any state of nature. Irrigation adjustments in all states 

of nature resulted in higher crop yields. Interestingly, the total irrigation application was 

increased in State 2 while the applications were reduced in the other two states to increase 

crop yield. The increases were small, with the highest increase (i.e. 100kg ha-1) in State 1. 

The relatively small changes in irrigation applications resulted in an increased root-accessible 

water table contribution in State 1 and State 3 of 14mm and 17mm and a decrease of 7mm in 

State 2. Accordingly, the water use efficiencies changed by one percentage point in absolute 

terms. 

The margin above the specified costs increased with R8 007 and R3 340 in State 1 and 

State 3 because irrigation applications were reduced, and crop yields increased in these states 

of nature. The results for State 2 seem non-optimal because the margin above the specified 

costs of the optimal sequential irrigation strategy reduced the margin above the specified costs 

of the optimal expected outcome strategy with R510. 

5.5.3 DISCUSSION 

The bio-economic simulation results confirm the claims by Barnard et al. (2021) that farmers 

who irrigate to satisfy crop evapotranspiration requirements will have low water use 

efficiencies. The bio-economic optimization results estimated that 51% of maize's crop 

evaporation could originate from root-accessible water tables using optimal irrigation 

management, reducing the irrigation requirements substantially without impacting crop yields. 

This contribution is in line with findings by Jovanovic et al. (2004), who found that the root-

accessible water table can potentially contribute about 40% or more to the crop water demand 

under good (i.e. not optimal as in this research) and Liu et al. (2022) who estimate the 

contribution to be 49%.  
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Table 5.4: Economic and biophysical indicators for a state-specific sequential strategy considering water table uptake and the changes relative to 
the optimal expected outcome irrigation strategy for a 30.1 ha pivot (2021) 

  Optimal sequential irrigation strategy  Change relative to optimal expected outcome 
irrigation strategy 

 Units State 1 State 2 State 3 Expected State 1 State 2 State 3 Expected 

Probability of occurrence Fraction 0.23 0.44 0.33   0.23 0.44 0.33   

Economic indicators                   

Margin above the specified costs R  204 662  173 712  372 020  246 272  8 007 -  510  3 340  2 719 
Production income R 1 219 299 1 170 902 1 514 746 1 295 502  11 964  3 557   755  4 566 
Total variable electricity costs R  8 069  9 376  7 531  8 467 -  428   879 -  965 -  30 

Active energy charge               
Off-peak R  3 970  4 616  3 568  4 122 -  227   419 -  628 -  75 
Standard R  1 220  1 480  1 384  1 388 -  144   117   20   25 
Peak R   101   46   0   43   101   46   0   43 

Other variable electricity charges R  2 778  3 234  2 775  2 978 -  159   298 -  162   41 
Other irrigation-dependent costs R  15 174  17 667  14 091  15 914 -  867  1 626 - 1 951 -  128 
Yield dependent costs R  535 319  514 071  665 029  568 774  5 253  1 562   331  2 005 

Biophysical indicators       

Irrigation application mm   140   163   130   147 -  8   15 -  18 -  1 
Evapotranspiration mm   567   574   623   589   11   8   3   7 
Rainfall mm   146   199   132   165   0   0   0   0 
Water table uptake              

Millimetres mm   288   280   347   304   14 -  7   17   6 
Percentage of evapotranspiration %   51   49   56   51   2 -  2   3   0 

Drainage mm   0   56   0   25   0   0   0   0 
Yields kg ha-1  11 312  10 863  14 053  12 019   111   33   7   42 
Water use efficiency fraction 1.01 1.12 0.98 1.05 -0.01 0.00 -0.01 0.00 

*The relative change in the water table uptake is measured in percentage points
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The bio-economic analyses assume the area limiting case (i.e. 30 ha irrigated irrespective of 

water application rates per hectare). Consequently, the analyses only take into account 

changes in irrigation water use at the intensive margin (i.e. irrigation water applications per 

hectare) (Graveline, 2016). According to Graveline (2016), intensive margin changes will 

create the opportunity to increase the irrigated area (i.e. extensive margin changes) if the 

production area is not limited. The intensive margin changes in irrigation water use using root-

accessible water tables are substantial; therefore, the extensive margin change, if possible, 

would also be substantial. However, widespread use of root-accessible water tables and 

extensive margin changes in water use may result in unintended hydro-ecological 

consequences and the revenues of the water user association responsible for managing 

irrigation water supply. 

The economic benefit of adapting irrigation management decisions was small, contrary to the 

findings of Madende and Grové (2020), who did not consider root-accessible water tables and 

included water scarcity in their analyses. The risk of a short supply of irrigation water is 

reduced in the presence of a shallow groundwater table. Consequently, conjunctive water use 

strategies considering root-accessible water tables provide substantial economic benefit at 

the farm level (i.e. optimal expected outcome irrigation strategy), leaving less potential to 

decrease risk through adaptive decision-making (i.e. optimal sequential irrigation strategy) 

because a shallow groundwater table neutralizes the impact of insufficient water.  

The bio-economic optimization models used a probabilistic representation of the state of the 

soil-plant-atmosphere when optimizing irrigation water applications. Consequently, when 

optimizing irrigation application decisions, the optimization procedure has access to all 

information (i.e. weather states and the cause-and-effect interactions in the SWAP simulation 

model). No effort was made in this research to devise an information dissemination strategy 

to facilitate irrigation management considering root-accessible water tables.  

Developing sound irrigation strategies should aim to i) manage soil matric (water stress) and 

osmotic (salinity stress) potential to maintain optimum yields, ii) reduce the amount of irrigation 

by utilizing rainfall and capillary rise from root-accessible groundwater tables to supplement 

crop water requirements and iii) minimize salt additions and irrigation-induced drainage and 

leaching (Barnard et al., 2021). The conjunctive use strategies evaluated did not consider 

salinity. However, the salt load associated with irrigation and utilization of root-accessible 

groundwater tables are important.  Monitoring of salts in the root zone will be necessary when 

considering conjunctive water use strategies. 
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5.6 AQUACROP RESULTS 

5.6.1 BIO-ECONOMIC ANALYSIS WITHOUT CONSIDERING WATER TABLE UPTAKE 

AquaCrop was used to conduct the economic analysis of applying the farmers' irrigation water 

strategies of 274 mm, 347 mm and 648 mm in the presence of a shallow groundwater table. 

However, the differences between the 274 mm and 347 mm strategies are small; therefore, 

only the results of the 247 mm and 648 mm strategies are discussed.  

 

The expected bio-economic indicators for irrigation applications of 274 mm and 648 mm on a 

Clovelly soil with a constant water table depth of 1.5 m are given in Table 5.5.  
 
Table 5.5: Expected simulation bio-economic indicators for the baseline irrigation strategies 

on a Clovelly soil with a 1.5 m constant groundwater table on a 30.1 ha pivot (2023) 

  Baseline strategy 
 Units 274 mm 648 mm 

Margin above the specified costs R 398 910 
(28 968) 

325 994 
(34 269) 

Gross production income R 1 605 983 
(51 640) 

1 586 940 
(61 088) 

Total variable electricity costs:  16 214 37 911 
   Off-peak R 6 986 17 145 
   Standard R 3 689 7 908 
   Peak R 102 - 
Other irrigation costs:    

   Water costs R 28 560 67 543 

Yield t ha-1 14.90 
(0.48) 

14.72 
(0.53) 

Groundwater table uptake mm 256 
(61) 

140 
(38)  

Drainage mm 48 
(100) 

152 
(134) 

Evapotranspiration  mm 646 
(35) 

760 
(44) 

(Standard Deviation)  

 

Applying 274mm of water results in a crop yield of 14.90 t ha-1.  Water table uptake contributes 

256 mm (40% of the crop water use) to satisfying crop evapotranspiration requirements, while 

48 mm of water is drained from the soil.  

 

The expected gross production calculated for the 274 mm strategy on the 30.1 ha pivot is 

R1 605 983 with a standard deviation of R51 640 (R1 716 ha-1). The low standard deviation 
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of the expected gross production income is due to the low standard deviation in the expected 

crop yield (0.48 t ha-1). The water cost is R28 560. The total electricity cost is R16 214, with a 

relatively high off-peak electricity cost (R6 986) and a relatively low peak electricity cost 

(R102).  

 

The 648 mm irrigation strategy results showed an expected crop yield of 14.72 t ha-1 with a 

standard deviation of 0.53 t ha-1. To produce a 14.7 t ha-1 crop yield, groundwater uptake of 

140 mm (18% of crop water use) is required to meet the evapotranspiration of 760 mm while 

draining 152 mm. The expected gross margin above the specified costs realised is R325 994. 

The expected gross production income is R1 586 940 with a standard deviation of R61 088 

(R2 030 ha-1). The total variable electricity cost estimated is R37 911. However, interesting to 

note is that irrigation does not happen during the peak time-of-use period since the peak 

variable electricity cost is R0. The result could be due to the dynamic of the soil water balance 

and the timing of when irrigation is necessary for crop production. The water cost is estimated 

at R67 543.  

 

Compared to the 648 mm strategy, the 274 mm strategy used less irrigation water and 

recorded lower evaporation (760 mm compared to 646 mm) to produce 0.18 t ha-1 more maize 

yield (14.9-14.72 t ha-1). Because the 274 mm strategy applies less irrigation water, the 

contribution of groundwater to crop water use is 40% compared to the 18% recorded for the 

648 mm strategy. The higher crop yield for the 274 mm strategy resulted in a production 

income increase of R19 043 and an increase in the expected margin above the specified cost 

of R72 916. The large difference in the expected margin above the specified cost is due to the 

reduced production costs.  

 

The 274 mm and 648 mm baseline strategies generally resulted in too much irrigation water 

being applied to the groundwater table soils. Drainage and runoff occurred to some extent in 

the drier production years, increased dramatically during higher rainfall years, and were even 

higher with the application of baseline strategy 648 mm. 

5.6.2 BIO-ECONOMIC ANALYSIS OF CONJUNCTIVE WATER USE 

The optimal expected outcome irrigation strategy was optimised with the DEOPT algorithm 

linked to AquaCrop. The expected bio-economic results for the optimal conjunctive water use 

strategy for the 1 m and 1.5 m groundwater table are given in Table 5.6.  
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Table 5.6: Expected bio-economic indicators for the optimal irrigation strategies on a Clovelly 
soil with a 1.5 m constant groundwater table and the changes relative to the baseline 
strategies of 274 mm and 648 mm on a 30.1 ha pivot (2023) 

  
Optimal expected 

outcome 
irrigation strategy 

Changes in the optimal 
strategies relative to the 

baseline strategies 
   Baseline strategy 
 Unit  274 mm 648 mm 

Margin above the specified costs  R 418 195 19 285 92 201 
Gross production Income  R 1 575 587 -30 396 -11 353 
Total variable electricity costs:  2 268 -35 644 -24 545 
  Off-peak  R 1 422 -15 723 -15 723 
  Standard  R 800 -7 108 -7 108 
  Peak  R 46 46 46 
Other irrigation costs:     

  Water costs R 5 941 -22 619 -61 602 
Yield t ha-1 14.62 -0.28 -0.10 
Groundwater table uptake mm 386 131 247 
Drainage  mm 23 -26 -130 
Evapotranspiration  % 621 -25 -139 

 

The optimal conjunctive water use strategy for maize production on a 1.5 m constant 

groundwater table requires 54 mm of irrigation water. Compared to the 274 mm strategy, the 

optimal strategy results in a 25 mm reduction in evapotranspiration, resulting in a 0.28 t ha-1 

reduction in crop yield. The water table uptake for the optimal strategy is 131 mm higher 

compared to the 256 mm estimated for the 274 mm baseline. Drainage decreases by 26 mm 

from 48 mm. The expected margin above the specified cost for the optimal strategy is 

R418 1950, which is R19 285 more than for the baseline strategy. Since the crop yield for the 

optimal irrigation strategy is 0.28 t ha-1 lower than for the baseline strategy (274 mm), the 

reduction in gross production income is R30 396. Due to the decrease in the amount of 

irrigation water applied from the baseline of 274 mm to the optimal strategy of 54 mm, the 

reduction in water and total variable electricity cost is R22 619 and R35 644, respectively.  

 

Compared to the 648 mm strategy, the optimal irrigation strategy resulted in a 139 mm 

decrease in evapotranspiration and a 0.10 t ha-1 decrease in the estimated expected crop 

yield. The reduced irrigation application amount increases by 247 mm in water table uptake 

while the drainage decreases by 130 mm. The decrease in crop yield resulted in an R11 353 

decrease in the gross production income. Meanwhile, the expected margin above the 

specified costs increased by R92 201. The water and total electricity costs decreased by 

R61 602 and R24 545, respectively.  
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5.6.3 DISCUSSION   

The results of the baseline strategies (274 mm and 648 mm) showed that producers with root-

accessible water tables could over-irrigate their crops when applying irrigation water amounts 

close to the crop water requirement. The results showed that the 274 mm strategy performed 

better than the 648 mm strategy regarding irrigation water use efficiency, use of root-

accessible water tables, crop production and maximising margin above the specified cost. The 

application of larger amounts of irrigation water and the high seasonal rainfall in some 

production years led to waterlogged/ reduced soil aeration conditions, which caused stomatal 

closure and thus resulted in reduced crop yield (Ren et al., 2018). This result is similar to that 

found by Rizzo et al. (2018), who also found that the production season with higher rainfall in 

combination with higher irrigation water use on shallow groundwater table soils may have a 

negative impact on crop yield. Still, in dry years, it may contribute to higher yields. 

 

The 247 mm strategy also contributed to a larger groundwater table to crop water use. The 

estimated groundwater table contribution for production on a 1.5 m groundwater table soil is 

40% and 18% when applying 274 mm and 648 mm of water, respectively. The result confirms 

the argument of Jovanovic et al. (2004) and Gao et al. (2017) that the upward water flux 

increases for the same groundwater depth as the irrigation amount becomes smaller. 

 

The results of the optimal conjunctive water use strategy showed a substantial decrease in 

the optimal amount of irrigation water applied. Even though the reduction in the amount of 

irrigation water applied is large, the reduction in expected crop yield is less than 0.3 t ha-1 

because the shallow groundwater table can contribute enough water for crop production (more 

than 60% of the crop water use) to ensure the minimal reduction in crop yield. The results 

show that farmers over-irrigated their crops in the presence of root-accessible water tables.  

 

The economic benefits of using conjunctive water use strategies are also reasonably large. 

Since the optimal strategy applies less irrigation water, there is sometimes a decrease in crop 

yield and, thus, the gross production income. However, the reduction in gross production 

income of R30 396 (the decline in production income recorded) is small compared to the 

potential savings in production costs (saving R35 644 for total variable electricity cost and 

R22 691 for water costs). The results showed that irrespective of the baseline strategy, the 

estimated gross margin above the specified costs would be higher for the conjunctive water 

use strategies.  
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CHAPTER 6: CONCLUSIONS, SHORTCOMINGS AND 
RECOMMENDATIONS  

6.1 SUMMARY OF RESULTS AND CONCLUSIONS 

6.1.1 BIOPHYSICAL MODEL CALIBRATION AND VALIDATION 

For AquaCrop, the DECAL calibration process showed good results, especially under non-

limiting conditions. The validation results showed that AquaCrop could satisfactorily simulate 

soil water content, evapotranspiration, water table uptake and grain yield of maize grown on 

sandy soil. Measurements describing crop phenology, such as canopy cover, were not 

necessary for calibration using DECAL under these conditions. Instead, soil water content 

measurements were sufficient, while seasonal above-ground biomass played a crucial role in 

the objective function. The conclusion is that AquaCrop could be calibrated using inverse 

modelling when soil water measurements are available.  

 

For SWAP, the results indicated that the calibrated model performed reasonably well, 

particularly in simulating soil water content and evapotranspiration. However, the validation 

results showed that there were discrepancies in simulating above-ground biomass and grain 

yield, especially under shallow groundwater table conditions. This inconsistency might be due 

to the lack of calibration of soil hydraulic parameters, which were not considered in this study. 

The conclusion is that more complex models may require simultaneous calibration of soil 

properties and parameters determining crop water use and crop yield. In this regard, using 

sensitivity analysis to better understand parameter influences on modelling results can be vital 

for improving model outputs. 

 

Overall, DECAL proved to be a valuable tool in fine-tuning calibration parameters. 

6.1.2 BIO-ECONOMIC ANALYSES  

The results of the baseline irrigation applications showed that water table uptake is negligible 

if the irrigators follow a strategy whereby crop water requirements are satisfied through 

irrigation and rainfall. The expectation is that such a strategy will result in an overirrigation of 

19%. Water table uptake increased on average by 116 mm when water applications were 

reduced from 648 mm to 274 mm without affecting crop yield much. The maximum expected 
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outcome irrigation strategy indicated substantial increases in water table uptake and 

reductions in water applications, which translated to notable increases in profitability 

(R2433 ha-1) mainly due to increased water use efficiencies. The conclusion is that the 

magnitude of water table uptake is a function of the decision maker's irrigation management 

decisions. Consequently, irrigators will forgo profits if they irrigate to satisfy crop 

evapotranspiration requirements because their conjunctive water use will be sub-optimal. 

Furthermore, irrigators must thoroughly understand the interrelated linkages between 

irrigation decisions and the state of the soil-water-atmosphere continuum in the presence of 

root-accessible water tables to optimise conjunctive water use. Such understanding requires 

soil water information and a mindset of not refilling the soil water back to field capacity when 

determining irrigation applications. 

 

Results from the optimal sequential irrigation strategy showed negligible changes in the 

economic and biophysical indicators because the root-accessible water table acts as a buffer 

against climatic changes if the irrigation strategy is already devised to consider root-accessible 

water tables. The conclusion is that root-accessible water tables might be an important risk 

mitigation strategy in the presence of electricity load shedding and adverse climatic conditions. 

6.2 SHORTCOMING 

The evolutionary algorithm evaluates the biophysical system's current and possible future 

states and the time-of-use electricity tariff periods to devise an irrigation schedule (i.e. 

calendar of irrigations) to maximise expected profits. Since the evolutionary algorithm uses 

the “prescribed” irrigation scheduling option of the crop simulation model to optimise the 

irrigation schedule, providing a generic irrigation strategy defined by timing triggers and 

irrigation amounts is impossible. Consequently, no generic irrigation scheduling guideline 

could be devised to support better conjunctive water use strategies. However, solving the 

model recursively every week provides irrigation scheduling decision support for the upcoming 

week. 

6.3 RECOMMENDATIONS 

6.3.1 CALIBRATING BIOPHYSICAL MODELS  

• Clarity on the objective of the calibration is essential when choosing calibration 

parameters. Some processes could be calibrated independently, while the parameters 

of interrelated processes must be calibrated simultaneously. Sensitivity analysis 
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should target processes to identify the most influential parameters that need 

calibration. 

• Automated calibration is a powerful tool to finetune calibration parameters. However, 

the calibration objective, selected calibration parameters and the bounds of these 

parameters need to be carefully considered to produce realistic calibration parameters.  

6.3.2 CONJUNCTIVE WATER USE 

• Refilling the soil water content to field capacity is detrimental to maximising the 

contribution of root-accessible water tables to satisfy the evapotranspiration 

requirements of a crop. Irrigation strategies aimed at maximising the contribution of 

root-accessible water tables must manage the soil water content so that the capillary 

fringe extends to its maximum level by leaving the soil dryer. 

• Normal irrigation scheduling practices apply during the early stages of crop production 

while the roots have not reached the capillary fringe.  

• Soil water measurements are essential for managing the contribution of root-

accessible water tables to satisfy crop water requirements. Preferably, these 

measurements should include salinity indicators.  

• Indirect estimates of crop water requirements (e.g. satellite imagery) must be 

supplemented with soil water measurements to maximise the contribution of root-

accessible water tables to satisfy crop water requirements. 

• Spatial monitoring of soil water content and water table depths is necessary to inform 

the water user association of any unintended hydrological consequences in the large-

scale adoption of root-accessible water tables as a water source.  

6.3.3 FURTHER RESEARCH 

• The underlying information that the evolutionary algorithm uses to devise the optimal 

irrigation schedules needs to be further analysed using neural networks to develop 

general guidelines to improve the conjunctive use of surface water and root-accessible 

water tables.  

• The biophysical models' built-in irrigation scheduling options do not cater to irrigation 

strategies considering the contribution of root-accessible water tables. More research 

is necessary to develop generic strategies considering root-accessible water tables for 

these models.  

• All indications are that maximising the contribution of root-accessible water tables to 

satisfy crop water requirements necessitated a lower soil water content. Research is 

necessary to understand fertiliser uptake and salinity buildup under these conditions.  
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• The research used Visual Basic for Applications to implement the DE algorithm to 

calibrate the biophysical models and optimise the contribution of root-accessible water 

tables to satisfy crop water requirements. The process could be done more efficiently 

using modern programming languages like Python. Such implementation will also 

allow capitalising on multithread processing. 
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Erasmus, J.C. (2023). 
Bio-economic analysis of the contribution of shallow water tables to irrigated maize production. 

M.Sc. Agric dissertation, Department of Agricultural Economics, University of the Free State.  

 

ABSTRACT 

The main objective of this study is to evaluate the economic benefits of using shallow 

groundwater as an alternative irrigation water source for two water table scenarios. The bio-

economic simulation model was developed to address the main objective of the research. The 

model includes a calibrated and validated biophysical model that simulates the effect of using 

surface water in conjunction with shallow groundwater for maize production and an economic 

module that determines the margin above specified costs when applying the conjunctive 

water-use irrigation strategies.  The bio-economic simulation model was applied on a farm in 

the Orange-Riet Irrigation Scheme in the Northern Cape to evaluate the economic benefits of 

using shallow groundwater as an alternative irrigation water source for maize produced on a 

1 m and 1.5 m constant groundwater table Clovelly soil. The bio-economic simulation model 

was used to determine the economics of using farmer irrigation strategies where irrigation 

water is distributed optimally, and the quantity of water applied is decided without considering 

the shallow groundwater table. An optimisation component was added to the bio-economic 

simulation model to determine the economics of conjunctive irrigation management decisions. 

The results show that the optimal conjunctive-water use irrigation strategies generated for the 

1 m and 1.5 m groundwater table Clovelly soils utilised more water from the shallow 

groundwater tables than the optimised farmer baseline irrigation strategies. The utilisation of 

the groundwater tables, however, resulted in the following: conjunctive water use strategies 

would use significantly less irrigation water (24 mm on a 1 m and 54 mm on a 1.5 m 

groundwater table); yields were slightly lower than obtained with the baseline irrigation 

strategies (but with no significant difference); drainage was reduced to almost zero in the drier 

production years and nearly 50% less in the wet production years; far lower water and 

electricity costs in comparison to the baseline strategies which ultimately resulted in a larger 

margin above the specified costs for the optimal irrigation strategies. The two main 

conclusions drawn from the study. Firstly, farmers who do not consider the shallow 

groundwater table when making irrigation decisions would over-irrigate their crop, which could 

lead to crop losses. Secondly, shallow groundwater is an economically valuable alternative 

irrigation source. 
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Hadebe, M.R. (2023). 
The economic value of soil-water information in irrigated maize production with shallow 

groundwater tables. M.Sc. Agric dissertation, Department of Agricultural Economics, 

University of the Free State. 

 

ABSTRACT 

Due to water scarcity and competing demands, irrigated agriculture (as the bulk user of 

freshwater resources worldwide and in South Africa) is expected to use water efficiently, which 

involves exploring the use of Root Accessible Water Tables (RAWT) when scheduling 

irrigation. Earlier studies have shown that RAWT uptake can potentially contribute about forty 

percent or more to the crop water demand during the growing season. However, farmers do 

not consider the information on RAWT uptake when scheduling irrigation, and this was true 

for the largest and oldest irrigation scheme in South Africa. The main objective of the study 

was, therefore, to evaluate the economic benefits and improvements in irrigation water use 

efficiency associated with considering RAWT's contribution to crop water demand in irrigation 

scheduling decisions in light of unfolding information about the soil-crop-atmosphere 

continuum for the Vaalharts irrigation scheme. The research first developed a bio-economic 

simulation model consisting of a crop growth simulation model (SWAP-WOFOST) with 

dynamic soil water flow calculations and an economic model to simulate the financial 

implications of the current irrigation practice of satisfying crop water requirements without 

considering the contribution of RAWT. The developed bio-economic simulation model was 

then coupled to a Differential Evolutionary (DE) algorithm to optimise irrigation scheduling 

decisions where the contribution of RAWT to satisfying crop water demand was considered. 

Research results indicate that the RAWT contribute significantly to crop water demand 

(expected value of 51%), and when information regarding RAWT uptake is used, there are 

increases in margins due to the less applied irrigation water, which results in reduced 

irrigation-dependent costs. The less applied irrigation water will result in significant water 

savings for large, irrigated areas. Based on the results, the study recommends that irrigators 

should invest in technology that provides information regarding RAWT uptake. The study 

further recommends that future research investigate the hydrological impact of large-scale 

adoption of water use from RAWT. 
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