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EXECUTIVE SUMMARY 

BACKGROUND & MOTIVATION 

 

Indigenous root and tuber food crops (RTCs) exhibit broad agro-ecological adaptability to marginal 

environments, flexibility in mixed farming systems, ability to produce reasonable yields where most 

crops cannot, and thus are suitable for production by resource-poor farmers. In addition, their capacity 

to provide high levels of carbohydrates and nutrients makes RTC production the basis for improving 

food and nutrition security, particularly at the smallholder household level. Despite the many perceived 

benefits of producing RTCs, these crops remain side-lined and forgotten, i.e. underutilised. 

 

In the past, research attention has been mainly focused on cereal crops such as wheat, rice and maize, 

despite the importance of RTCs in sub-Saharan Africa. Furthermore, RTC production and trade has 

been neglected in favour of other cash crops such as tea, coffee, cotton and cocoa. The neglect of 

RTCs has also led to the prolonged use of traditional landraces and production techniques that are not 

necessarily suited to producing high yields. Disproportionate attention has also been given to individual 

RTCs regarding research on water use characterisation. For example, there has been extensive 

research on potato and cassava, with some work done on sweet potato. However, information on the 

water use of taro, tannia and yam remains scarce. The range in water use figures reported in the 

literature for certain RTCs is large, with taro emerging as having high crop water use. 

  

PROJECT AIMS 

 

The project’s overall objective was to measure and model the water use, yield and nutrient content  of 

selected RTCs where little or conflicting information currently exists. Knowledge gaps were identified 

from a literature review of five RTCs (Aim 1; cf. Chapters 2 & 3), which were then addressed through 

field work (Aim 2; cf. Chapters 4 & 5) that focused on (i) an orange flesh sweet potato (OFSP; cultivar 

199062.1), and (ii) an upland, eddoe type taro landrace called Dumbe dumbe. A crop simulation model 

was partially calibrated and used to model crop evapotranspiration (ET) and yield (Y) of each crop (Aim 

3; cf. Sections 4.3.7 & 5.3.7). The model was then run at a national scale to estimate Y and ET, from 

which crop water productivity (CWP) was calculated as Y/ET. The product of CWP and nutrient content 

provided another useful metric called nutritional water productivity (NWP). Maps showing the spatial 

variability in Y, CWP, NWP, crop cycle and risk of crop failure were developed to improve existing 

knowledge on these two RTCs (Aim 5; cf. Chapter 6). Model simulations were also used to develop 

land suitability maps for both crops (Aim 4; cf. Chapter 8) and to derive site-specific crop coefficients. 

The latter were used as input for a hydrological model to assess the impact of crop production on 

downstream water availability (Aim 6; Chapter 7). This final project report represents Aim 7, a synthesis 

of the above information to help promote the sustainable production of OFSP and taro. 

 

OVERVIEW OF INDIGENOUS ROOT & TUBER FOOD CROPS 

 

There is a need to diversify marginal farming systems, and to produce more crop and nutrient yield 

using less water. A noteworthy strategy is to grow crops that have economic potential and are drought-

tolerant and nutrient-dense. RTCs, which are also referred to as “drought insurance” crops, have 

emerged as a plausible option in addressing food and nutrition insecurity under climate variability and 

change. RTCs produce underground food and include sweet potato (Ipomoea batatas), cassava 

(Manihot esculenta), taro (Colocasia esculenta), tannia (Xanthosoma spp.) and yam (Dioscorea spp.). 

Their broad agro-ecological adaptability, especially in marginal environments and mixed farming 

systems, make them central to addressing malnutrition in poor rural households. 
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Of these five RTCs, sweet potato and taro have been prioritised for further research in South Africa. 

Sweet potato and taro are mostly cultivated in the Limpopo, North West, Mpumalanga, KwaZulu-Natal 

and Eastern Cape provinces. Commercial producers regard sweet potato as a cash crop, whereas 

smallholder farmers produce it mainly for household consumption, but sell the surplus to local markets. 

Although the literature review highlighted the suitability of RTCs to a wide range of agro-ecologies, it 

did not provide the amount of water required for their successful production. Research on crop water 

use of RTCs is scarce in comparison to legume and cereal crops. This has led to a lack of credible 

values of crop water requirements and water productivity of RTCs. The lack of information has limited 

the extent to which these crops can be recommended for production in new areas. If these crops are to 

form part of crop choices for farmers, knowledge is required on production systems and food value 

chains, crop water use, water productivity, nutrition and health, as well as future production scenarios 

under projected climate change concerning water availability. 

 

The nutrient content of RTCs is becoming a key component towards their mainstreaming, especially in 

terms of improving dietary diversity. Nutritional composition requires consideration of both proximate 

and mineral composition, as well as bioactive compounds. This information was extracted from the 

available literature and summarised in tables presented in this report, which highlight numerous 

desirable nutritional and health benefits of RTCs. The tables show a wide range of reported nutrient 

contents, which highlights the need to study linkages between different growing environments and 

nutrient composition. Nutrient contents are needed for the calculation of NWP for evaluating impacts of 

agricultural production on food and nutrition security, especially under limited water availability. 

 

The national policy on Food and Nutrition Security recognises the role of underutilised crops that are 

nutrient-dense for improving dietary diversity in South African households. Taro has high nutritional 

value, especially in terms of protein digestibility and mineral composition. Sweet potato provides more 

protein, carbohydrates and fibre than cassava and its mineral composition (e.g. Mg, K & P) is also 

superior to that of cassava. More importantly, orange flesh sweet potato (OFSP) can help address 

vitamin A deficiency in women and children in South Africa. Hence, of the five underutilised RTCs, 

OFSP and taro exhibit the most potential for addressing national priorities such poverty alleviation, 

unemployment and inequality, by creating new value chains in rural areas. OFSP and taro have 

therefore been prioritised for further research in South Africa. New research projects that target these 

two RTCs are required to address existing knowledge gaps. The funding of this research project 

highlights the Water Research Commission’s commitment to this strategy. The literature review was 

then extended, focusing specifically on OFSP and taro. 

 

OVERVIEW OF SWEET POTATO & TARO 

 

Prior to the start of this project, evidence-based research that provided credible estimates of taro’s water 

requirements in South Africa were almost non-existent. The literature review identified only two studies 

on taro’s water use, thus highlighting the fact that taro is one of the most under-researched RTCs. A 

wide range of crop water requirements have been reported in the literature, based largely on anecdotal 

evidence. The variability in crop water requirements is largely due to genotype differences in taro. 

Lowland taro (KwaNgwanase) has higher optimum crop water requirements compared to upland taro 

(e.g. Umbumbulu landrace), because the latter genotype exhibits greater stomatal control. Hence, 

yields and CWP are generally higher for upland taro compared to lowland taro.  

 

As noted previously, sweet potato is more nutritious than cassava and has a shorter growing season. 

When compared to white flesh sweet potato, orange flesh cultivars contain much higher levels of (βeta-

carotene (β-c), and thus their cultivation should be promoted to alleviate vitamin A deficiency, especially 

in rural households. Although sweet potato is more drought tolerant than taro, mechanisms that allow 

for drought avoidance usually have a high yield penalty. Despite this, sweet potato can produce good 

yields with high higher amounts of β-c under water limited conditions, which results in high CWP and 
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NWP. The latter was higher for most elements (especially β-c) under water-limited conditions, compared 

to optimum conditions, as shown in numerous studies.  

 

Both sweet potato and taro are regarded as dual-purpose crops, since both their leaves and tubers can 

be consumed. Furthermore, CWP increases with decreasing water application for both crops. It is clear 

that more research has been conducted on sweet potato than taro in South Africa. In addition, crop 

parameters have been developed for both sweet potato and taro, which is important to note, as it 

facilitated the crop modelling work undertaken by this project. Based on the evidence mentioned above, 

this project focused its attention on the two prioritised RTCs. 

 

MEASUREMENT OF WATER PRODUCTIVITY: SEASON 2 

 

Introduction 

Field trials were conducted at Fountainhill Eco-estate (Wartburg, KwaZulu-Natal) with sufficient fetch to 

facilitate crop evapotranspiration measurements using two micrometeorological techniques. In the first 

season (2020/21), the taro trial was abandoned because it was initially affected by excessive weed 

growth, then severely damaged by animals (bush pigs). Sweet potato was not planted because a 

postgraduate student decided not to pursue his MSc study due to concerns related to the COVID-19 

pandemic. In the second season (2021/22), crop water use, yield and nutrient content of sweet potato 

and taro were measured at two trial sites at Fountainhill. A brief summary of the methodology and main 

findings are presented next. 

 

Materials and methods 

Crop establishment: Planting of taro corms and OFSP vines was completed at site 1 and 2 on 19 

November and 14 December 2021, respectively. Both trials were planted at a target density of 20,000 

plants ha-1. At each site, an organic fertiliser was applied at a rate based on fertility results for nitrogen. 

 

Crop water use: Crop water use was estimated using the eddy covariance (EC) and surface renewal 

(SR) methods. The EC method is considered the “gold” standard, and thus provides the most reliable 

estimate of crop water use. Since SR is calibrated against EC, it provides similar results. Sensible heat 

flux was estimated using (i) the classic method, and (ii) dissipation theory.  

 

Crop yield and water productivity: For each trial, a total of 15 plants were harvested from two 

representative rows. Plants were separated into leaves, vines and storage roots/tubers. Each 

component was weighed to obtain fresh mass, then air/oven dried to obtain dry mass. CWP in dry kg 

m-3 was determined as the ratio of yield (dry kg ha-1) to crop ET (m3). CWP was estimated using crop 

ET measured using the EC method, since it is more accurate than the SR method. 

 

Nutritional water productivity: NWP in dry g m-3 was calculated as the product of CWP (dry kg m-1) and 

nutrient content (g kg-1). The latter was measured for root/tuber and leaf samples in a laboratory. In 

addition to total C, N and S, the following elements were measured: β-carotene, B, Ca, Cu, Fe, K, Mg, 

Mn, Mo, Na, P and Zn. 

 

Crop modelling: Both the AquaCrop and SWB models were evaluated for their ability to simulate the 

water use and yield (biomass and root storage) of OFSP. Existing crop parameter values were sourced 

from the literature. A partial calibration was done, where measured data was used to adjust (i.e. fine-

tune) certain crop parameters (e.g. phenological growth stages) to better represent local landrace and 

growing conditions. Climate data required by AquaCrop was measured by each EC tower and a nearby 

automatic weather station at Fountainhill. All soil-related model inputs (i.e. soil water retention 

parameters and saturated hydraulic conductivity) were measured in the laboratory. Both models were 

evaluated by comparing simulated vs observed above-ground biomass and storage root growth over 

the growing season and at harvest using four statistical measures. 
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Results and discussion 

Yield measurements: The harvested fresh and dry storage root yield of OFSP (at 118 DAP) was 34.89 

and 12.12 t ha-1 respectively, resulting in a fresh:dry ratio of 2.88 and a dry harvest index (HI) of 55%. 

Due to the threat of animal damage, OFSP was harvested prematurely, which may have affected the 

yield. For taro, the harvested fresh and dry tuber yields (at 217 DAP) were 11.79 and 4.91 t ha-1 

respectively. Hence, the fresh:dry ratio was 2.40 and the HI was of 76%. The nutrient composition of 

OFSP leaves was higher than for the storage roots for almost all minerals, especially Ca, Mg and Mn. 

 

Crop water use: Taro’s canopy cover development is slower than for OFSP, which means less surface 

shading and higher soil water evaporation rates in the initial growth stage. Taro can take up to 49 days 

to emerge, which highlights the need to keep taro plantings weed free for two months after planting. 

Despite the difference in season length, the EC method provided similar ET measurements of 354 vs 

358 mm, compared to 322 and 330 mm from the SR methods. Both the EC and SR methods account 

for the evaporation of intercepted water, which is not considered by the soil water balance method. 

CWP was higher for OFSP than taro (3.42 vs 1.37 dry kg m-3), which is important to note. 

 

Crop modelling: Although the SWB model performed slightly better at simulating above-ground biomass 

than AquaCrop, it substantially under-estimated root yield. Hence, SWB significantly under-estimated 

CWP when compared to AquaCrop. NWP was also under-estimated due to poor simulation of CWP. 

Hence, the decision was made to use AquaCrop for modelling the water productivity of both RTCs. 

 

MEASUREMENT OF WATER PRODUCTIVITY: SEASON 3 

 

Introduction 

In the third season (2022/23), crop water use, yield and nutrient content for OFSP and taro were 

measured in a greenhouse at UKZN. Both crops were grown under water-stressed (deficit irrigation) 

and non-stressed (fully irrigated) conditions. A brief summary of the methodology and main findings are 

presented next. 

 

Materials and methods 

Experimental setup: OFSP and taro were planted in four raised beds (two beds per crop) in a 

greenhouse on 27 October 2022. In each bed, two rows (0.60 m apart) were planted at a spacing of 

0.30 m between plants, i.e. 55,556 plants ha-1. Prior to planting, an organic fertiliser was applied to each 

bed at a rate determined from fertility measurements. A drip irrigation system was installed to supply 

two beds with 30 and 100% of OFSP’s water requirement. The latter was calculated as the product of 

ETO measurements and a single crop coefficient, which was adjusted to match the crop’s growth stage. 

An automatic weather station was installed inside the greenhouse to determine daily ETO. Kemprin® 

was sprayed regularly to prevent the outbreak of red spider mites, particularly in the two taro beds. 

 

Crop development: Weekly measurements of plant height, leaf number and leaf area were made over 

the growing season. The latter was used to estimate canopy cover development. In addition, chlorophyll 

content leaf temperature and stomatal conductance were measured as indicators of plant health. 

Diurnal measurements of leaf water potential and stomatal conductance were also made for OFSP. 

  

Results and discussion 

During load shedding, extreme temperatures (> 55°C) were experienced in the greenhouse, which 

provided clear evidence that both RTCs are heat tolerant crops. OFSP’s leaf number is much higher 

than for taro, which resulted in higher LAI (and transpiration), as well as greater biomass production. 

For OFSP, the initial gain in LAI for the unstressed treatment was lost midway through the growth cycle. 

This suggests that under water limiting conditions, sweet potato can still produce high leaf area, which 

is important for reducing soil water evaporation, and maintaining biomass production. Leaves exhibited 
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higher nutrient content than roots/tubers for most of the mineral elements tested (same result obtained 

in season 2). Furthermore, nutrient contents were higher when the RTCs were water stressed. 

 

Measurements and observations from the unstressed treatment were used to fine-tune existing 

parameter values available for both RTCs. To further improve model performance, adjustments were 

made to stress-related parameters using data from the water stressed treatment. These modified 

parameters provided better estimates of biomass and yield for both crops when water stressed, 

especially for OFSP. This achievement, which represents a valuable contribution by this project, was 

important for the modelling work described next, especially for the rainfed model runs. 

 

MODELLING & MAPPING OF WATER PRODUCTIVITY 

 

Introduction 

As noted previously, the AquaCrop model was selected to estimate the attainable yield of OFSP and 

taro. This model is ideally suited to performing multiple seasonal simulations of crop yield in 

environments where water availability is limited. The model has been successfully linked to the climate 

and soil databases for all 5,838 altitudinal zones, which facilitates simulations at the national scale. 

 

Materials and methods 

The 1,946 quaternary-level catchments were initially delineated by the Department of Water Affairs. 

Thereafter, each quaternary boundary was sub-divided into three smaller zones of similar altitude, 

resulting in less spatial variation in climate and soils. In the past, these zones were referred to as quinary 

sub-catchments but in this report, are called relatively homogeneous response zones (HRZs). 

 

Climate input: Each HRZ has 50 years (1950-1999) of observed rainfall and temperature, which was 

revised in December 2019. Reference evapotranspiration was estimated from observed temperature, 

with daily wind speed set to 2 m s-1. Monthly adjustment factors were used to derive rainfall estimates 

deemed more representative of each HRZ. Daily temperatures were adjusted using lapse rates to 

account for the altitude difference between the climate station and HRZ. 

 

Soil input: For each HRZ, hydrological soil characteristics (e.g. depth, field capacity and permanent 

wilting point) were revised for both the A- and B-horizons in February 2022. This information was 

obtained from data available for each terrain unit (e.g. crest, scarp, midslope, footslope & valley bottom) 

within each land type. This improved the spatial accuracy of soil data for each HRZ. Saturated hydraulic 

conductivity was estimated for the A-horizon using well-known equations. 

 

Planting date: For the majority of the HRZs, the first viable planting date occurs in November or 

December and thus, were selected as fixed planting dates for modelling purposes. The day of planting 

was set to the beginning of the month (not mid-month) to facilitate more accurate estimation of crop ET, 

and thus derivation of crop coefficients. 

 

Plant density: Typical plant densities were obtained from the literature for each crop to represent 

smallholder and commercial farming. For this study, a plant density of 31,447 and 55,556 plants ha-1 

was selected for sweet potato. For taro, a plant density of 10,000 and 27,778 plants ha-1 was selected. 

Model parameters: Default model parameters for both crops were obtained from the literature. Data 

collected during the third season facilitated a partial calibration of the model for both crops. The 

validation was done by comparing simulations against observations from the previous season. 

  

Minimising computational expense: The process of running both AquaCrop for each HRZ has been fully 

automated to minimise computational expense. Considerable effort was also spent on reducing model 

run time. In 2015, a national model run for sorghum took 62 hours to complete, which was reduced to 
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13 hours in 2020. For this project, the run time was further reduced to ~3 hours. However, additional 

effort is still required in the future to further minimise AquaCrop’s run time. 

 

Modelling approach: The automation procedure facilitated the simulation of data for 49 consecutive 

seasons (1950/51 to 1998/99) using daily climate data as input, from which long-term means and other 

useful statistics (e.g. inter-seasonal variability) were generated. AquaCrop was run for all 5,838 HRZs, 

regardless of whether the zone is deemed suitable for rainfed crop production. This approach facilitated 

the use of model output to identify areas best suited to the cultivation of OFSP and taro. For each HRZ, 

the crop model simulated attainable yield and accumulated ET under rainfed conditions. Model runs 

were then repeated for irrigated conditions to obtain maximum yield and water use, from which monthly 

crop coefficients were calculated for input into ACRU. Hence, four national crop model runs (i.e. for two 

planting dates & two plant densities) were performed for both rainfed (stressed) and irrigated 

(unstressed) conditions. Since AquaCrop was used to derive crop coefficients for each HRZ, the crop 

model runs were completed before the hydrological model runs. 

 

Results and discussion 

Crop yield modelling: Yield maps developed from AquaCrop output for rainfed conditions clearly 

highlight low and high potential areas for OFSP and taro production. Large parts of the country’s interior 

region are deemed too cold for crop cultivation, whereas the western areas are too dry for rainfed 

cultivation. Planting date has a larger impact on crop yield than plant population and yields are generally 

higher when OFSP is planted in November than December. Taro planted in November produces higher 

yields in Limpopo, compared to a December planting for the other provinces. The risk of failure for 

OFSP is relatively low compared to taro. 

  

Crop and nutritional water productivity: Maps of spatial variation in CWP indicate that taro is less water 

use efficient than OFSP, due to lower yield simulations. As expected, yield increases with plant density, 

and thus CWP and NWP are higher. CWP is lower for OFSP planted in November when compared to 

December. Inter-seasonal variation in CWP for both RTCs is lower for the December planting compared 

to November. Taro is more water efficient at producing Fe, whereas OFSP is more water efficient for K 

production. OFSP is most efficient at producing β-c along the coastal region of the Eastern Cape. 

 

HYDROLOGICAL IMPACTS OF CROP PRODUCTION 

 

Introduction 

The ACRU model was used to assess the impact of OFSP and taro production on downstream water 

availability at the catchment scale, relative to the water use by natural vegetation. This model was the 

preferred choice in numerous other studies that assessed the impacts of land use change on runoff 

response, simply because ACRU does not require extensive parameterisation in ungauged catchments. 

 

Materials and methods 

Model inputs: The same climate and soil data available for each HRZ was again used as input for 

ACRU. However, reference evapotranspiration was adjusted to A-pan equivalent values using monthly 

pan factors available for each HRZ. 

 

Rainfall:runoff parameters: Most of the ACRU input parameters that represent rainfall:runoff response 

(and the land cover/use) are physically based, and thus are measurable. Parameter values used in this 

project were the same as those used in the previous studies involving the HRZ configuration. However, 

some parameters were estimated as they were difficult to measure. For example, the coefficient of initial 

abstraction was calculated from rainfall seasonality and distance from the coastline.  

 

Baseline land cover: Parameter values have been determined for 121 hydrologically relevant clusters 

of natural vegetation types. For example, remotely sensed values of LAI were used to derived monthly 
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crop coefficients for each vegetation cluster. In 2020, the Department of Water and Sanitation adopted 

these clusters as the new baseline against which all potential stream flow reduction activities should be 

assessed, thus replacing the previous Acocks veld types to represent natural vegetation. To date, the 

new baseline has been used to assess stream flow reduction potential of (i) sorghum and soybean in 

2020, (ii) two bamboo species in 2022, (iii) 15 commercial forestry species, hybrids and clones in 2023, 

and (iii) OFSP and taro (this project). 

 

Proposed land use: Parameter values were determined for OFSP and taro using approaches adopted 

in other similar studies to assess stream flow reduction potential. ACRU is sensitive to monthly crop 

coefficient inputs, and thus considerable effort was spent on deriving suitable values for both crops, as 

well as for the fallow period. AquaCrop was used to calculate unique crop coefficients for each HRZ, 

where irrigation was used to artificially remove crop water stress. The use of AquaCrop to derive a 

unique set of monthly crop coefficients for each HRZ is more robust than using the same monthly values 

obtained at Fountainhill for all HRZs. The von Hoyningen-Huene equation was used to estimate monthly 

interception loss using LAI measurements from season 3 for each crop. The fraction of active roots in 

the topsoil horizon was estimated from the topsoil depth. 

 

Minimising computational expense: Running ACRU for all altitude zones has been computationally 

automated as part of previous WRC-funded projects. In the past, a national run took approximately 8.5 

hours to complete. Effort was again spent on reducing model run time, with ACRU now taking ~40 

minutes to complete a national run. This time saving allows for additional modelling scenarios to be 

considered, i.e. multiple planting dates and plant densities. 

 

Results and discussion 

With the exception of only 30 HRZs, the cultivation of OFSP or taro is unlikely to significantly affect the 

quantity of water available to downstream users. Furthermore, the least impact on downstream water 

users occurs when taro and OFSP are planted in November and December, respectively. Hence, there 

is little to no potential of DWS declaring these crops stream flow reduction activities. 

 

MAPPING OF LAND SUITABILITY 

 

Introduction 

A land suitability map identifies areas deemed suitable for crop production, thus providing both 

smallholder and commercial farmers with alternative crop choices. AquaCrop output was analysed to 

determine whether each HRZ is considered suitable for rainfed production of OFSP and taro. The FAO 

(1976) approach was used to classify land as either suitable (S) and not suitable (N) for crop production. 

Suitability was further classified as either high (S1), moderate (S2) or marginal (S3). Similarly, N1 and 

N2 classifies a zone as either currently or permanently unsuitable for crop production, respectively. 

 

Materials and methods 

Different methods have been used to develop land suitability maps, which are categorised as either (i) 

traditional (i.e. simple), or (ii) modern (i.e. complex) methods. Numerous land suitability studies were 

assessed, of which nine are presented in this report. Very few of the reviewed studies made use of 

model simulations to determine land suitability. A three-tier approach was utilised to identify HRZs best 

suited to the cultivation of each RTC as follows: 

 

Elimination of unsuitable areas (tier 1): HRZs deemed unsuitable for RTC production were eliminated 

using the following criteria and thresholds: (i) crop cycle > 365 days (too cold); (ii) mean annual rainfall 

< 400 mm (too dry); (iii) number of yield simulations < 20 out of 49 (too risky); (iv) high inter-seasonal 

variation in CWP (too variable); and (v) low CWP, thus indicating low yield potential or high water use. 
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Classification of suitable areas (tier 2): The remaining zones were then deemed suitable for RTC 

production and grouped into three suitability classes using CWP. The threshold for marginal (S3) 

suitability was set as half a standard deviation below the mean CWP value. Similarly, the threshold for 

highly suitable areas (S1) was taken as half a standard deviation above the mean. The remaining 

suitable zones were classified as moderately suitable (S2). 

 

Consideration of current land use (tier 3): Land use data was also used to eliminate unsuitable crop 

production areas. Currently unsuitable (N1) land uses include commercial forestry and sugarcane 

production areas. Similarly, protected areas and large water bodies were classified as permanently 

unsuitable (N2) land uses. 

 

Subsistence farming areas: The final step involved determining the portion of suitable production areas 

(S1, S2 and S3) located within existing subsistence farming areas. 

 

Results and discussion 

Elimination of unsuitable areas: Long crop cycles exceeding 365 days that resulted from cold 

temperatures eliminated the most HRZs for both RTCs (2,486-3,307 zones), followed by zones deemed 

too dry for rainfed crop production. Of the 5,838 HRZs, 3,694 and 4,266 did not satisfy the selected 

criteria and thresholds for OPSP and taro respectively, and thus were excluded from further analysis. 

 

Classification of suitable areas: The remaining 2,144 (OFSP) and 1,572 (taro) HRZs were considered 

suitable for crop production. Of these, only 23% were highly suitable for OFSP and taro production. 

Hence, most of the production areas were classified as moderately suitable. When compared to OFSP, 

less areas are suited to taro production. Colder regions are better suited to OFSP production than taro. 

 

Consideration of current land use: After considering existing land use, suitable OFSP and taro areas 

were reduced by 19 and 22%, respectively. This highlights the importance of eliminating unsuitable land 

uses, since it provides more realistic assessments of land suitability.  

 

Subsistence farming areas: Only 68% of suitable OFSP areas were located within existing subsistence 

farming areas, of which the majority was classified as moderately suitable. Similarly, only 49% of 

existing subsistence farming areas were deemed suitable for taro production, most of which was 

deemed marginally suitable. These results can help guide policy makers to target specific regions for 

promoting increased production of RTCs under rainfed conditions. 

 

SUMMARY & GENERAL CONCLUSIONS 

 

The literature review focused on five RTCs, namely cassava, sweet potato, taro, tannia and yam. Of 

these, sweet potato and taro have been prioritised for further research in South Africa. All RTCs store 

edible carbohydrates (starch) in underground roots, tubers, corms, stems and rhizomes. Nutritionally, 

the protein content of roots and tubers is low, except for yam. Taro is superior in terms of protein 

digestibility and mineral composition. The upland, eddoe type uses less water than the dasheen type 

and can be grown in less fertile soils. The orange flesh cultivars of sweet potato contain higher amounts 

of β-carotene, which is a precursor of vitamin A, and thus can help alleviate vitamin A deficiency in 

South Africa. Sweet potato is also the most drought tolerant of the five RTCs considered in the review. 

 

Field work conducted at Fountainhill Eco-estate therefore focused on OFSP and an upland, eddoe type 

of taro. In the first season, the taro trial was severely damaged by weed infestation and animals. In 

season 2, OFSP was harvested prematurely due to the threat of animal damage. Sweet potato 

produced 12.12 dry t ha-1 vs 4.91 dry t ha-1 for taro. Since both crops used similar amounts of water 

(~355 mm), which was measured using the EC and SR methods, the CWP of OFSP was much higher 

compared to taro (3.42 vs 1.37 dry kg m-3). This project also demonstrated the benefit of estimating 
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crop evapotranspiration using the SR method, which is far superior to the simple soil water balance 

approach. Crop coefficients were also determined for the fallow period, which were required as input 

by the ACRU hydrological model. 

 

In season 3, OFSP and taro were grown under water stressed (deficit irrigation) and unstressed 

(optimum irrigation) in a greenhouse. Both crops survived extreme temperatures (> 55°C) during load 

shedding events, and thus should be considered heat stress tolerant. For the unstressed treatment, 

yields of 19.35 and 8.14 dry t ha-1 were obtained for OFSP and taro, respectively. AquaCrop simulated 

CWP of OFSP more accurately than the SWB model. Measurements from season 3 were also used to 

partially calibrate the AquaCrop model for both crops, which was then validated against observations 

from season 2. These modified parameters provided better estimates of biomass and yield for both 

crops under water stressed conditions, especially for OFSP. 

 

Using the improved crop parameters, AquaCrop was run at a national scale for all 5,838 HRZs, which 

facilitated the development of land suitability maps for both RTCs using model simulations. The model 

was run for irrigated and rainfed conditions, each with two planting dates and plant densities. Maps of 

simulated crop yield, crop cycle and CWP were developed for both crops, which highlighted the spatial 

variability of these metrics. Both crops are more water use efficient along the coast and adjacent interior 

in the KwaZulu-Natal and Eastern Cape provinces. Nutrient content of roots/tubers and leaves was 

measured in a laboratory, then multiplied by CWP  to map NWP. Since CWP was higher for OFSP 

compared to taro, NWP should also higher. However, taro is more water efficient at producing Fe, 

whereas OFSP is more water efficient for K production. 

 

AquaCrop was also run to simulate crop water use for unstressed (i.e. irrigated) conditions, from which 

monthly crop coefficients were calculated as input for the ACRU hydrological model. This approach 

facilitated the derivation of a unique set of monthly crop coefficients values for each HRZ. ACRU was 

then run to determine the potential reduction in runoff that may occur due to a land use change from 

natural vegetation to rainfed production of OFSP and taro. The results showed that neither crop has the 

potential to significantly impact downstream water availability. 

 

Simulated output from AquaCrop was also used to identify potential cultivation areas using a three-tier 

approach. The land suitability maps showed that OFSP can be grown in more areas when compared 

to taro, again highlighting the potential of this OFSP. The consideration of existing land use resulted in 

more realistic maps highlighting areas that can be planted to both RTCs. Compared to taro, OFSP can 

be grown in more areas and is more water use efficient, and thus OFSP exhibits greater potential for 

being mainstreamed into existing agricultural systems. 

 

Overall, the maps provide valuable information on expected crop yields and how they are influenced by 

planting date and plant density. They identify regions in the country with high productivity potential, 

where the crop is most efficient at producing storage root/tuber yield as well as nutrient yield. The risk 

of crop failure maps identify areas where climate variability may result in seasonal crop failures. Hence, 

the maps provide farmers with valuable information on alternative crop choices and expected yields. 

  

NEW KNOWLEDGE CREATION & INNOVATION 

 

The following outcomes were achieved for the first time in this project: (i) the water use of OFSP and 

taro was measured using two micrometeorological techniques; (ii) more representative climate and soil 

datasets were used as input for AquaCrop and ACRU; (iii) AquaCrop was run with a single-layer (not a 

two-layer) soil profile; (iv) improved parameter values for OFSP and taro were developed; (v) the 

automation procedure was revised to run AquaCrop and ACRU more efficiently at the national scale; 

(vi) OFSP was modelled and mapped at the national scale using AquaCrop; (vii) maps of NWP were 

developed for both RTCs; (viii) risk of crop failure was mapped for both crops; (ix) land suitability maps 
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were produced from AquaCrop output using a novel approach; (ix) land suitability maps were developed 

for OFSP; and (x) the hydrological impact of OFSP and taro production non downstream water 

availability was assessed. These outcomes further improved the validity of model simulations. 

 

KNOWLEDGE GAPS ADDRESSED 

 

The range in water use figures reported in the literature for RTCs is large, with taro exhibiting high water 

use relative to other RTCs. This project provided accurate water use values for OFSP and taro 

measured using two micrometeorological techniques. It also addressed knowledge gaps on: (i) spatial 

variability in CWP and NWP of OFSP; and taro; (ii) where OFSP can potentially be cultivated; and the 

(iii) hydrological impact of OFSP and taro production on downstream water availability. Revised maps 

of taro’s yield, water productivity and crop cycle were also produced, which supersedes previous work. 

 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This project has highlighted the value of national scale crop modelling. However, model accuracy 

depends more on input data quality, rather than on the model itself. Most importantly, model calibration 

and testing requires high quality measured datasets obtained from well-designed field experiments. 

Such experiments are needed across (i) different agro-ecological zones, and for (ii) multiple seasons. 

Acquiring such datasets is costly and time consuming, and thus long-term funding commitments are 

vitally important.  Furthermore, the climate dataset for each HRZ needs to be extended beyond 1999, 

preferably by an additional 20 years. National assessments of agricultural and hydrological response to 

climate variability would provide better assessments of risk using this extended dataset. Since 2014, 

considerable effort has resulted in much reduced model run times for AquaCrop and ACRU, which has 

facilitated additional modelling scenarios to be considered. However, more work is needed to further 

improve model performance so that additional scenarios can be modelled. 

 

CAPACITY BUILDING AND KNOWLEDGE DISSEMINATION 

 

During the four year project, two Honours students and one MSc student have graduated. One part-

time PhD student is expected to complete his degree in 2024. He also participated in the PhD Teacher 

Training Programme at UKZN. Field work conducted at Fountainhill involved the nearby Swayimane 

community (near Wartburg, KwaZulu-Natal) who assisted with planting and weeding. Disseminating 

results from this project and engaging with stakeholders was achieved via nine presentations and four 

popular articles. In addition, the PhD student plans to publish three chapters of his thesis. 

 

THE WAY FORWARD 

 

For the successful adoption of indigenous RTCs by all farmers (from subsistence to commercial), 

reliable estimates of water use and yield are needed, including maps that show where these crops can 

potentially be grown. Reliable water use estimates will also help guide future research such as breeding 

programmes and hopefully, reverse the current status of RTCs as being neglected and underutilised. 

Furthermore, increased production of RTCs is the catalyst needed to facilitate agricultural 

diversification. The knowledge gained in this project should also help to promote the production of RTCs 

(especially OFSP), thus facilitating the expansion of agricultural production in the country. This 

expansion will help to (i) revive and improve crop cultivation by smallholder farming in rural 

communities, (ii) bring underutilised arable land back into production, and more importantly, (iii) reduce 

the level of poverty in rural areas by creating new jobs and allowing smallholder farmers to participate 

in RTC food value chains. It is also envisaged that national and household food security will improve 

due to increased cultivation of nutrient-dense RTCs, especially those that are dual purpose (both 

roots/tubers & leaves are edible), such as OFSP and taro.  
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1 INTRODUCTION 

1.1 BACKGROUND & RATIONALE 

Agriculture is important for many rural communities in South Africa, underpinning their food and nutrition 

security, as well as their rural socio-economic development (van Averbeke and Khosa, 2007). 

Considering the country is described as arid and semi-arid, more than 90% of crop production occurs 

under rainfed conditions (Kahinda et al., 2008). Field crops occupy 92% of the land within rural 

communities and maize, the nation’s staple crop, accounts for more than 70% of the cropped land area 

under rural production. The dominance of rainfed maize production suggests that production systems 

within rural communities are homogenous, and water is a major limiting factor to production (Waongo 

et al., 2015). As a result, yields are lower (< 1 t ha-1) than commercially produced maize (> 10 t ha-1) 

and cannot contribute to food and nutrition security (Lahiff and Cousins, 2005). Furthermore, climate 

shocks in the form of floods, drought and heat waves increases the risk of crop loss within poor rural 

communities (Hoffman et al., 2018). 

 

Although irrigation may seem an obvious solution to increasing agricultural water productivity in 

response to climate extremes (Molle and Berkoff, 2007; van Averbeke and Khosa, 2007), it is generally 

argued that irrigation is an expensive option and not necessarily readily accessible to most rural 

farmers. Water scarcity and increased climate variability necessitates technologies with high water 

productivity for sustainable food production. There is also a need to address malnutrition and hidden 

hunger in poor rural communities, thus highlighting the need to grow more nutrient-rich crops. 

Therefore, the challenge is to diversify current farming systems, produce more crop and nutrient yield, 

whilst using less water and to reduce the environmental footprint of agriculture. A noteworthy solution 

is to expand the production of underutilised and indigenous crops that are known to be drought-tolerant 

and nutrient-dense. 

 

Root and tuber crops (RTCs), also referred to as “drought insurance” crops, have emerged as a 

plausible option in addressing food and nutrition insecurity under climate variability and change. Drought 

tolerant and water use efficient crops are considered important “future” crops because of their resilience 

to drier conditions and ability to produce higher yields under rainfed agriculture, whilst using less water 

(Chivenge et al., 2015). While the energy from RTCs is about one-third that of an equivalent weight of 

cereals (maize, rice and wheat), they contain more protein and fibre when compared to major cereal 

crops, as well as more potassium and vitamin C. Root and tubers are also considered among the most 

energy productive crops, producing 5,600 kcal m-3 of energy in potato, compared to 3,860 kcal m-3 for 

maize, 2,300 kcal m-3 for wheat and 2,000 kcal m-3 for rice (Daryanto et al., 2016). Their broad agro-

ecological adaptability, especially in marginal environments and mixed farming systems and their ability 

to produce reasonable yields where most crops cannot, make them central to addressing malnutrition 

and hidden hunger in poor rural households (Palao et al., 2019). Even with their vast potential, RTCs 

remain underutilised and poorly researched. Available information is limited and fragmented, which 

prevents these crops from being front runners in drought adaptation and improved food and nutrition 

interventions. 

 

Although RTCs belong to different botanical families, they all store edible starch in underground roots, 

tubers, tubers, roots, corms, stems and rhizomes. This project initially considered five RTCs, namely 

sweet potato, cassava, tannia, tannia and yam. The latter three are the most under-researched of the 

five RTCs. For taro, a wide range of crop water requirements have been reported in the literature, based 

largely on anecdotal evidence. It is against this backdrop that necessitated the interest in better 

understanding the water use, yield and nutrition characteristics of RTCs. Such information facilitates 

the calculation of two useful metrics called crop and nutritional water productivity, which represent the 

amount of yield and nutrients produced per unit of water consumed by the crop. This knowledge is 
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needed to facilitate their transition from being “the crops of the poor”, to urban foods and even industrial 

crops. 

 

1.2 PROJECT OBJECTIVE & SPECIFIC AIMS 

The overall objective of this project was to measure and model the water use and yield of selected 

RTCs currently in production, where little or conflicting information currently exists. The specific aims of 

this four-year project were as follows: 

1: Review of production systems, water use and yield of indigenous root and tuber crops currently 

in production, as well as a review of the nutritional and health benefits of these crops. 

2: Address major knowledge gaps through field work by measuring the water use and yield of 

crops where little or conflicting information currently exists. 

3: Model the water use and yield of these crops once the crop model has been tested using field 

trial results. 

4: Develop recommendations on crop suitability for production in different agro-ecological zones. 

5: Improve existing knowledge of water use efficiency and nutritional water productivity of these 

crops. 

6: Assess the hydrological impact of crop production on downstream water availability. 

7: Synthesise the above information to help promote the sustainable production of indigenous root 

and tuber food crops. 

 

All of the aims were successfully met, despite some challenges that were experienced, as discussed in 

the next section. 

 

1.3 PROJECT SCOPE & REPORT STRUCTURE 

In November 2019, the Centre for Water Resources Research (CWRR), based at the University of 

KwaZulu-Natal (UKZN) in Pietermaritzburg, was awarded a four-year project funded by the Water 

Research Commission (WRC). This project (No. C2019/2020-00088) is titled “Water use of indigenous 

root and tuber food crops”, with funding that totalled R2 million. The four-year project commenced in 

April 2020 and ended in March 2024. As noted in the original project proposal, this project was 

conducted in specific phases, each linked to a specific aim and Deliverable report, as shown in Table 

1-1. Phase 1 focused on the planning component centred around the literature review (Aim 1) that was 

reported in the 1st Deliverable (September 2020). A systematic review of available literature from 

January 2000 to July 2020 was undertaken to meet the first aim, which is summarised in Chapter 2. 

The 2nd Deliverable represented a progress reported up to February 2021, and thus was not linked to a 

specific aim. 

 

The literature review was used to guide which crops were considered for the field work (Aim 2) 

undertaken in Phase 2. The decision was made to focus on sweet potato and taro, considering these 

two crops are currently produced by many rural communities in KwaZulu-Natal. The literature review 

was then extended for these two crops, which is summarised in Chapter 3. Using the methodology 

described in the 3rd Deliverable (September 2021), field trials were conducted over two seasons to 

measure the water use, yield and nutrient content of orange flesh sweet potato (OFSP) and taro 

(Chapter 4). At the trial site (Fountainhill Eco-estate, Wartburg, KwaZulu-Natal), taro was planted during 

the first season (2020/21), which was initially affected by excessive weed growth, then destroyed by 

bush pigs. The trial site was subsequently fenced off to prevent animal damage in the second season. 

OFSP was not planted because an MSc student decided to deregister due to concerns related to the 

COVID-19 pandemic. 
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Table 1-1 Guide to the chapter that addresses each project aim 

Phase Aim Deliverable Chapter Topic 

1 1 1 
2 

3 

Literature review 

OFSP & taro 

2 2 3 
4 

5 

Field trials 

Greenhouse experiment 

3 3 4 
6 

7 

Methodology: 

modelling & mapping 

4 

5 

3 

5 
5 6 AquaCrop modelling 

6 

6 
6 

7 ACRU modelling 

4 8 Land suitability mapping 

7 7 
this 

report 
Synthesis of all Deliverables 

 

During the second season (2021/22), taro was re-planted and OFSP was planted for the first time at a 

second site. In mid-December 2021, the lattice mast and all equipment was relocated to improve the 

upwind fetch distance, during which the CS650 probes and/or wiring were likely damaged. The 

replacement of these sensors was unfortunately delayed to 9th February 2022. Despite both trials being 

fenced and strengthened with netting, bush pigs burrowed under the fence, which was made relatively 

easy at site 2 (OFSP) by the loamy sand soil texture. Due to the threat of animal damage, OFSP was 

harvested prematurely, and thus the observed yield may have been lower than what could have been 

achieved. In addition, problems in appointing and paying casual workers resulted in higher weed loads 

in January 2022 at both trial sites, which may have negatively affected final yields. Due to the failure of 

the DS-2 instrument at site 2, which performs ultrasonic measurements of wind speed at canopy level, 

sensible heat could not be calculated using dissipation theory. 

 

After the Farm Manager at Fountainhill admitted that both trial sites were prone to animal damage, the 

decision was made to conduct the final season of experiments (2022/23) in a more controlled 

environment, namely a greenhouse at UKZN (Chapter 5). However, growing conditions in the 

greenhouse were severely affected by stage 6 load shedding and load reduction events, which caused 

air temperatures to exceed 55°C when the extraction fans stopped working. Despite the harsh 

conditions experienced over the growing season, both crops survived the extreme temperatures. 

 

Phase 3 represented the modelling component (Aim 3) as described in the 4th Deliverable (November 

2021) and updated in the 5th Deliverable (September 2022). Existing crop parameter files for sweet 

potato and taro were obtained from the literature and tested against field-based measurements from 

season 2. The calibration of AquaCrop was then improved using data from season 3. The model was 

then run to simulate the water use, yield and crop water productivity of the selected RTCs (Chapter 6). 

 

Phases 4 and 5 pertained to the analysis and interpretation of crop model output, which was also 

discussed in previous two deliverables and summarised in Chapter 6. Crop water productivity (CWP) 

was determined from modelled output as the ratio of dry tuber yield to crop evapotranspiration 

accumulated over the growing season. Thereafter, nutritional water productivity was calculated as the 

product of CWP and nutrient content of roots/tubers (Aim 5). 

 

In Phase 6, the hydrological impact of RTC production on downstream water availability was assessed 

using a hydrological model (Aim 6). The accepted and transparent methodology was described in the 

4th Deliverable and updated in the 6th Deliverable. The ACRU hydrological model was run to estimate 

crop water use relative to that used by natural vegetation. This comparison was used to determine if 

OFSP or taro has the potential to significantly reduce water availability to downstream users. Initial 
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model results were reported in the 6th Deliverable (November 2022), with the final results presented in 

this report (Chapter 7). 

 

A novel approach was developed to meet Aim 4, i.e. development of land suitability maps using selected 

output from the crop model. The methodology was first described in the 4th Deliverable, then updated 

in the 6th Deliverable with some initial results. The final land suitability maps for sweet potato and taro 

are presented in Chapter 8. The last aim (Aim 7) pertains to a synthesis of all Deliverables produced 

by this project, i.e. this final project report. 
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2 OVERVIEW OF UNDERUTILISED ROOT & TUBER FOOD CROPS 

In this chapter, an overview is provided of underutilised indigenous root and tuber crops (RTCs), with a 

particular focus on their water use. The latter was used to determine which RTCs the field work would 

focus on. Potato is not considered an underutilised crop in South Africa, and thus was excluded from 

the literature review. 

 

2.1 RTC CLASSIFICATION 

RTCs are plants which store edible starch material in underground roots, tubers, corms, stems and 

rhizomes (Figure 2-1). These crops belong to different botanical families as shown in Table 2-1. Sweet 

potato (Ipomoea batatas) and cassava (Manihot esculenta) are root crops. Edible aroids store starch in 

corms and underground stems. They are commonly referred to as cocoyams and include taro 

(Colocasia esculenta), elephant foot yam (Amorphophallus paeoniifolius) and tannia (Xanthosoma 

sagittifolium). Yams (e.g. Dioscorea alata). are tuber crops and belong to the Dioscoreaceae family. 

Chandrasekara and Kumar (2016) identified other globally important root and tuber crops such as edible 

rhizomes, which include canna (Canna edulis) and arrow root (Maranta arundinacea). 

 

 
Figure 2-1 Images of a) sweet potato plant and root, b) cassava plant and root, c) taro plant 

and tuber, d) tannia tuber, e) yam tuber and f) yam plant 
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Table 2-1 Classification and origin of root and tuber crops in sub-Saharan Africa (Lebot, 

2019) 

Common name Botanical name Family name Centre of origin 

Sweet potato 

(root) 
Ipomoea batatas Convolvulaceae Central America 

Cassava (root) Manihot esculenta Euphorbiaceae 
Origins unresolved; Assumed: 

Brazilian-Bolivian region 

Taro (corm) Colocasia esculenta Araceae 
Origins unresolved; Assumed: 

northeast India and New Guinea 

Tannia (corm) Xanthosoma spp. Araceae Mexico, Brazil, Antilles 

Yam (tuber) Dioscorea spp. Dioscoreaceae East and West Africa 

 

2.2 GLOBAL, REGIONAL & LOCAL PRODUCTION 

Root and Tuber Crops (RTCs) are amongst the most commonly consumed food staples and provide 

one of the cheapest sources of energy and vital nutrients. Globally, cereals are the primary source of 

carbohydrates, with the secondary source being starchy RTCs. Asia is the main producer of RTCs, 

followed by Africa, Europe, and America. Cassava, potatoes and sweet potatoes make up 90% of global 

production (FAOSTAT, 2013). 

 

Of the five RTCs discussed in Section 2.1, only yam is of sub-Saharan Africa (SSA) origin (Lebot, 

2019). However, crop diversification and adoption in SSA has domesticated and indigenised the other 

five RTCs to an extent where cassava, potato and sweet potato are now the three major RTCs produced 

in SSA, with yam as fourth (Lebot, 2019). Of the RTCs grown across SSA, cassava currently dominates 

production, but the demand for the crop varies among the different regions (FAOSTAT, 2019). To date, 

the aggregate value of yam, cassava, potato and sweet potato exceeds all other SSA staples, including 

cereals which annually produce an average of 169 million tons on 108 million ha of land (Sanginga and 

Mbabu, 2015). In West Africa, it is grown as a cash crop, and its fresh roots exhibit higher income 

elasticity for demand than grain cereals. The cultivation of aroids is mainly in the coastal forest regions 

of West and Central Africa, as well as in the highland regions of East Africa, where they are often 

intercropped with bananas (Lebot, 2019). Aroids receive minimal production attention in SSA in 

comparison to the previously discussed RTCs (Mabhaudhi and Modi, 2015). This is primarily due to 

high crop water requirements and associated low tolerance to drought, which makes them unsuitable 

for production in the arid and semi-arid regions of SSA.  

 

According to Allemann et al. (2004), cassava is mostly cultivated in the warmer lowveld regions of the 

Limpopo and Mpumalanga provinces, as well as in KwaZulu-Natal (Makhathini Flats). Since sweet 

potato became indigenised in South Africa, it has been grown mostly in subtropical areas (Laurie, 2010). 

Limpopo (Hoedspruit, Marble Hall, Burgersfort, Levubu), Mpumalanga (Nelspruit), KwaZulu-Natal and 

Western Cape provinces are the major production areas (Laurie et al., 2015; Motsa et al., 2015b). The 

estimated area under sweet potato production is 2,000-3,000 ha (Allemann et al., 2004). Although taro 

originated in the Indo-Malay region (Mabhaudhi, 2012), it has become a staple crop in rural households 

along the coastal regions of KwaZulu-Natal and the Eastern Cape. Taro is less commonly cultivated in 

the Mpumalanga and Limpopo provinces (Modi and Mabhaudhi, 2016), as well as the Western Cape 

(Modi and Mabhaudhi, 2013).  

 

Emerging crops like sweet potato and cassava have more potential for commercialisation in the food 

industry. In addition, cassava can provide a source of industrial starch, including starch for bio-ethanol 

production in South Africa (Kunz et al., 2015a). Cassava exhibits the highest potential considering the 

crop produces 27-37 g of starch per 100 g of fresh weight, compared to 18-28 g for other RTCs 

(Olanrewaju et al., 2009). Lesser-known crops such as yam, taro and tannia remain mostly 

underutilised, despite also having potential as industrial crops (Allemann et al., 2004). Based on a 
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survey of 498 households in Sekhukhune (Limpopo province), Faber et al. (2009) found that 67.5% of 

the households consumed root and tuber crops. For the majority of the households, food was purchased 

from small trading stores (51%) and supermarkets in towns (47%). 

 

2.3 RTC NEGLECT IN SSA 

More research attention has been given to cereal crops, despite the secondary importance of RTCs in 

SSA, which is difficult to understand. Since the 1950s, food policy in the region has focused on achieving 

growth and self-sufficiency in cereals such as wheat, rice and maize. Furthermore, RTC production and 

trade has been neglected in favour of other cash crops such as tea, coffee, cotton and cocoa. The 

historical production of RTCs in SSA has been largely driven by areal expansion as opposed to yield 

improvements (Kenyon et al., 2006) resulting from technological innovations (e.g. improved varieties 

and production techniques). 

 

Disproportionate attention has also been given to individual RTCs regarding research on water use 

characterisation (growth and development) and adaptation to variations in water availability. There has 

been extensive research on potato and cassava since they predominantly feature in semi-arid 

agriculture systems (Figure 2-2). For example, potato production in South Africa is promoted along with 

other staple cereals, with yield improvement emanating from both technological advancements and 

improved varieties. On the other hand, tannia has traditionally been a subsistence crop, grown 

exclusively for consumption with little or no surplus crop for trade in local markets. This explains the 

lack of research on the crop, scarcity of information regarding crop water use (Figure 2-2) and lack of 

tannia production statistics, particularly in South Africa. This neglect of RTCs has led to the prolonged 

use of (not necessarily high-yielding) traditional landraces and production techniques. 

 

 
Figure 2-2 Number of published articles from January 2000 to July 2020 looking at water use 

(WU), water productivity (WP) or water use efficiency (WUE) and drought/water 

stress for selected root and tuber crops 

 

2.4 AGRONOMY OF RTC PRODUCTION 

Although most RTCs originate from hot, humid climates, they have become indigenised to the drier and 

cooler regions of South Africa. They have also become adapted to marginal farming areas within the 
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country. However, several authors have pointed out issues of poor crop establishment, low yield and 

poor storage and susceptibility to pests and diseases (Ray and Sivakumar, 2009; Weerarathne et al., 

2017). Although cultivating low input crops like RTCs on marginal lands presents many advantages, 

parallel disadvantages like the lack of agronomic information may restrict the promotion of major crop 

species within smallholder farming systems. To exploit the full potential of RTCs for food and nutrition 

security and rural development, research into aspects of localised crop and soil management strategies 

need to be formulated (Wezel et al., 2015). Generating site-specific information regarding plant 

densities, fertiliser application rates, planting dates, water requirements, weeding, pest and disease 

control, and harvest techniques is essential for upscaling production of RTCs (Wezel and Soldat, 2009). 

This is especially important considering that the efficient use of limited resources such as water can be 

enhanced through best agronomic practices. Therefore, further research is required on the various 

agronomic aspects of RTCs within the context of South Africa. To date, WRC-funded research has 

resulted in production guidelines being developed for amaranth, bambara nut, sorghum and taro 

(Mabhaudhi et al., 2023). 

 

2.4.1 Propagation material 

Vegetative parts can propagate RTCs and these include tubers (potato & yam), stem cuttings (cassava), 

vine cuttings (sweet potato), as well as side shoots, stolon, or corm-heads (taro & tannia) (Daryanto et 

al., 2016). This method of propagation offers an advantage to small-scale, low-income farmers who 

may otherwise not be able buy seed that is associated with cereals and small grain production. Also, 

vegetative propagation means that they can be multiplied “true to type”, i.e. their genotype is fixed 

(Almekinders et al., 2019). At the same time, this propagation method makes them more vulnerable to 

the build-up of viruses and other pathogens (Almekinders et al., 2019; Ibsa et al., 2013; Tegg et al., 

2015). According to Thomas-Sharma et al. (2016), the gap between actual and potential yields is 

caused in part by losses to pests and diseases that accumulate in successive cycles of vegetative 

propagation. 

 

In South Africa and many parts of Africa, there are no organised seed systems for cassava, sweet 

potato and aroids, causing the value chains to remain rudimentary due to unavailability of clean certified 

quality seed (seed, cuttings, tubers or stolons). Commercially, the African Centre for Crop Improvement 

(ACCI) used to produce cassava seedlings for the Agricultural Research Council (ARC) but has since 

stopped due to funding restrictions. Livingseeds® and Durandts produce and market sweet potato 

cuttings. For taro and tannia, farmers produce their suckers or receive them from neighbours or 

relatives. 

  

Reproducing the planting materials of these crops presents complex problems and many logistical 

issues for their extensive use. In summary, the production of propagules is mainly an issue for 

smallholder farmers because of: 

• absence of formal seed systems (except potato);  

• lack of knowledge of phytosanitary measures and quarantine issues related to the safe 

movement of germplasm, plants and planting material across national borders;  

• lack of consistent supplies of good quality planting material; 

• variable demand for clean planting material; 

• bulkiness and perishability of planting materials; and 

• use of traditional varietal mixtures, including local varieties. 

 

2.4.2 Plant density 

Plant density has a considerable influence on growth and development of RTCs and is closely 

correlated with the architecture of the vegetative parts that affect biomass partitioning. According to 

Lebot (2019), the average density for yam varies depending on planting methods (10,000 plants ha-1 
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on mounds; 20,000 plants ha-1 on ridges). In Ethiopia, the highest average total yield (49.85 t ha-1) were 

obtained at 25,000 plants ha-1 (Tsedalu et al., 2014). Ambe (1995) observed yield of 37 t ha-1 when 

sweet potato was planted at 20,000 plants ha-1.  

 

For all RTCs, increasing plant densities above a threshold will increase the non-marketable yield of 

RTCs (Ambe, 1995; Lebot, 2019; Sadras et al., 2012). Orkwor et al. (1998) reported a recommended 

plant population of 10,000 plants ha-1 for yam, but higher plant populations up to 20,000 plants ha-1 are 

associated with increased tuber yield and reduced tuber size (Igwilo, 1994). 

 

2.4.3 Fertiliser recommendations 

Generally, RTCs can thrive under low soil fertility; however, nutrient deficiencies can cause a reduction 

in growth (Lebot, 2019). Cassava can deplete soil nutrients due to its high efficiency in nutrient 

absorption (Ezui et al., 2016). The recommendation for Nitrogen (N) fertilisers is between 30 and 90 kg 

N ha-1 (Lebot, 2019). Sweet potato is more sensitive to Phosphorus (P) deficiency, which can reduce 

growth by 50% (Lebot, 2019). Improving water and soil N can increase sweet potato and taro yields; 

however, water availability has a stronger and more positive relationship than N with yield (Hartemink 

et al., 2000; Vidigal et al., 2016). According to Lebot (2019), nutrient requirements of taro have shown 

that when plants are fertilised with 100 kg N ha-1, 50 kg P ha-1 and 100 kg K ha-1, they produce twice 

the root biomass of unfertilised taro. 

 

2.4.4 Climate and site requirements 

Research on water use of RTCs is scarce in comparison to legume and cereal crops. Unlike cereals 

and pulses, they are big plants that cannot be grown easily in pot experiments in greenhouses. It is 

therefore difficult to secure the controlled conditions necessary for reliable physiological studies. This 

has led to the scarcity of standard and credible values of crop water requirements, water productivity 

and water use efficiency of RTCs. Absence of key water use information and how this may affect 

nutritional quality of RTCs stem from the lack of adequate research. The lack of information on water 

use has also limited the extent to which these crops can be recommended for production in new areas 

from a water productivity and nutrition standpoint. If these crops are to form part of crop choices within 

South Africa, knowledge is required on crop water use, water productivity, nutrition and health benefits, 

as well as future production scenarios under projected climate change concerning water availability.  

 

A systematic review was undertaken to quantify the amount of knowledge on a) crop water use and 

drought adaptation mechanisms, b) nutritional value, and c) tools and methods that can aid in improving 

data availability of RTCs within South Africa. This information is summarised in Table 13-1 in Section 

13. Optimising rainfed production and effectively utilising scarce water resources available for RTCs 

production in South Africa requires particular attention to rainfall requirements. Successfully cultivation 

of cassava requires an annual rainfall of between 1,000-3,000 mm, but it can tolerate lower rainfall if it 

is well distributed (Daryanto et al., 2016). Sweet potato grows well in areas receiving a well-distributed 

annual rainfall of 1,000-2,000 mm to achieve highest yield potential. Similar to cassava, sweet potato 

is also adapted to areas receiving less than 1,000 mm of rainfall; however, crop competition for 

resources should be managed (Gomes and Carr, 2001). Yam can grow in areas with as little as 500-

700 mm of rainfall (e.g. in southern Madagascar), but yields are lower than when produced under higher 

rainfall conditions (Lebot, 2019). Well-distributed rainfall, or the irrigation equivalent of 1,500 mm during 

the total growth cycle is needed for high yields and commercial production (Lebot, 2019) 

 

Aroids such as taro can be grown throughout the year provided there is sufficient rainfall and no frost 

(Lebot, 2019). Aroids are best adapted to high temperatures, moist environments with high humidity. 

According to Mabhaudhi et al. (2013a), rainfall of 200-300 mm month-1 is ideal for optimum growth and 

production for taro provided evenly distributed rainfall. According to Mabhaudhi et al. (2013a), taro is 

perceived as one of the least water-efficient food crops (Uyeda et al., 2011), which has resulted in lack 
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of attention in not only breeding attempts, but crop water relations as highted in Figure 2-2 (cf. Section 

2.3). 

 

Mabhaudhi and Modi (2015) observed a wide yield response in taro to different levels of water 

availability, suggesting that there is a need to optimise agronomy under water scarcity. Except for taro, 

RTCs are generally sensitive to water-logged conditions and require well-drained soils for maximum 

production. However, it is important to note the above-mentioned rainfall requirements do not indicate 

the amount of water required for their successful production. 

 

2.5 NUTRIENT CONTENT 

Nutritional information can be subdivided into three composition categories, namely (i) proximate (e.g. 

caloric energy and fat, protein and carbohydrate composition), (ii) mineral (both major and minor), and 

(iii) bioactive (e.g. antioxidants, phenols, flavonoids, saponins and carotenoids). The list of minerals, 

vitamins and compounds given in Table 2-2 is not considered exhaustive as it does not list, for example, 

sulphur-containing amino acids such as methionine and cystine. 

 

Table 2-2 List of nutritional constituents of root and tuber crops 

Proximate 
Mineral (mg kg-1) 

Bioactive 
Major Minor 

Energy (kcal) Calcium (Ca) Iron (Fe) Vitamin A (IU) 

Crude fat (%) Magnesium (Mg) Copper (Cu) Vitamin C (mg) 

Protein (%) Potassium (K) Selenium (Se) Thiamine (mg) 

Carbohydrates (%) Zinc (Zn) Nickel (Ni) Riboflavin (mg) 

Total sugars (% fresh weight) Manganese (Mn) Lead (Pb) Niacin (mg) 

Starch (g) Phosphorus (P) Sulphur (S) Vitamin B-6 (mg) 

Crude fibre (%) Sodium (Na) Boron (B) Vitamin E (mg) 

Dry matter (% fresh weight) Copper (Cu) Iodine (I) Vitamin K (𝜇g) 

Moisture (%) Sulphur (S) Silicon (Si) Total ascorbic acid (mg) 

Ash (%) Cobalt (Co) Bromine (Br) Folate (𝜇g-DFE) 

Nitrogen free extract (%) Nitrogen (N)  Antioxidant activity (% LP) 

   Phenols (mg/g) 

   Flavonoids (mg) 

   Saponins (%) 

   Carotenoids (𝜇g/100g) 

 

2.5.1 Proximate composition 

Proximate composition of foods includes moisture, ash, lipid, protein and carbohydrate contents (Kabuo 

et al., 2015). These food components may be of interest in the food industry for product development, 

quality control or regulatory purposes. Nutritionally, roots and tubers have great potential to provide 

economic sources of dietary energy in the form of carbohydrates (Table 13-2 in Section 13). The 

energy from tubers is about one-third of that of an equivalent weight of rice or wheat due to the high 

moisture content of tubers (Chandrasekara and Kumar, 2016). However, high yields of roots and tubers 

give more energy per land unit per day compared to cereal grains. Overall yam contains a high amount 

of protein, fibre and crude fats when compared with the other RTCs. In general, the protein content of 

roots and tubers is low, except for yam. Despite RTCs having been domesticated in SSA, crops such 

as taro and tannia are not yet fully explored for their nutritional and health benefits (Chandrasekara and 

Kumar, 2016). 
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2.5.2 Mineral composition 

The wide range in mineral elements that occur in RTCs is shown in Table 13-3 (cf. Section 13). 

Minerals can generally be classified as 

 

• significant minerals (or macronutrients) such as calcium (Ca), potassium (K), magnesium (Mg), 

sodium (Na), phosphorus (P), cobalt (Co), manganese (Mn), nitrogen (N), chlorine (Cl) and 

Zinc (Zn), as well as 

• essential minor and trace minerals (or micronutrients) such as iron (Fe), copper (Cu), selenium 

(Se), Nickel (Ni), lead (Pb), sulphur (S), boron (B), iodine (I), silicon (Si), bromine (Br). 

 

The importance of optimal mineral intake to maintain good health is widely recognised. RTCs are an 

important source of different dietary minerals. For instance, taro is deemed to have superior nutritional 

value over other major RTCs, especially in terms of protein digestibility and mineral composition (Fe, 

Ca, Mg and P) and is also a good source of Na and K (Lebot, 2019). Yellow yam exhibits the highest 

levels of minerals, except for P and Na (Omoruyi et al., 2007). 

 

2.5.3 Bioactive compounds 

The bioactive compounds and vitamins for RTCs are presented in Table 13-4 in Section 13. RTCs 

contain numerous antioxidative, hypoglycaemic, hypocholesterolaemia, antimicrobial and 

immunomodulatory bioactive compounds. Several bioactive constituents such as phenolic compounds, 

saponins, bioactive proteins, glycoalkaloids and phytic acids are responsible for these health benefits. 

Orange flesh sweet potato contains high levels of vitamin A, B, C, E and K, all of which help with 

antimicrobial and immunomodulatory activities that assist in recovery from illness (Govender et al., 

2019; Kruger et al., 2018). Yam contains some chemical constituents like good amounts of anti-oxidants 

and vitamin C, which play an essential role in anti-ageing and collagen formation. Yellow or orange 

varieties of sweet potato, yam, and cassava contain β-carotene, which is a pre-cursor to vitamin A, and 

thus can play a crucial role in alleviating vitamin A deficiency. Although vitamin A, iodine, and iron are 

classified as “the big three”, deficiencies of other micronutrients such as folate, zinc, vitamin B12 and 

vitamin D are also important (Chandrasekara and Kumar, 2016). 

 

2.5.4 Anti-nutritional factors 

Apart from cassava, which contains cyanogenic glucosides, cultivated varieties of most edible roots and 

tubers do not contain any serious toxins (Lebot, 2019). Three of the sugars which occur in plant tissues, 

namely raffinose, stachyose and verbascose, are not digested in the upper digestive tract and so, are 

fermented by colon bacteria to yield the flatus gases, hydrogen and carbon dioxide. For example, sweet 

potato contains raffinose (i.e. one of the sugars responsible for flatulence), where the level of raffinose 

depends on the cultivar (FAO, 1990). Generally, processing methods (e.g. drying, soaking or boiling) 

can be effective in reducing the amount of anti-nutritional factors available in tubers down to tolerable 

levels. 

 

2.5.5 Linking nutrient content to water productivity 

In pursuing food and nutrition security, the wide range of existing food production systems require 

different approaches to the sustainable utilisation of genetic diversity (Padulosi et al., 2013). Apart from 

adding variety to a diet, RTCs offer numerous desirable nutritional and health benefits. The recognition 

of their valuable nutrient content is becoming a key component towards their mainstreaming, especially 

in terms of improving dietary diversity. Dietary diversity plays a significant role in the attainment of 

sustainable agricultural practices and strategies to alleviate malnutrition. 
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There is a wide range in mineral contents reported for RTCs, as shown in the tables in Section 13. 

Similar to other crops, the mineral composition of RTCs is affected by genotype and stage of 

development, as well as environmental factors such as soil type, soil pH, soil organic matter content, 

fertilisation, water availability and weather conditions. In addition, sampling issues can also affect 

nutrient content. Therefore, it particularly important to study linkages between growing environments 

and nutrition. From a water availability standpoint, this can be achieved through quantification of 

nutritional water productivity. 

 

Nutritional water productivity (NWP) is an emerging concept that combines information on the nutritional 

value of crops with crop water productivity. According to Renault and Wallender (2000), NWP (nutrition 

unit m-3) is calculated as: 

 

𝑁𝑊𝑃 = 𝑁𝐶 ∙
𝑌

𝐸𝑇
 Equation 1 

 

where NC is the nutrient content (mg kg-1 or g kg-1) or caloric energy (MJ kg-1 or kcal kg-1) of food, Y is 

crop yield (dry kg ha-1) and ET is crop evapotranspiration (m-3 ha-1). For this project, the preferred units 

of NC are dry g kg-1 (cf. Section 2.5.6). The latter represents the amount of soil water a) lost by 

evaporation, and b) utilised for biomass accumulation via transpiration (Dong et al., 2018). Crop 

evapotranspiration accumulated over the growing season is referred to as crop water use. However, 

the ratio of Y to ET is referred to as crop water productivity (or CWP in dry kg m3 ha-1) as follows: 

 

𝐶𝑊𝑃 =
𝑌

𝐸𝑇
 Equation 2 

 

where ET (or crop water use) is multiplied by 10 to convert depths (in mm) into volumes (in m3). This 

metric is useful in identifying crops that produce “more crop per drop”, i.e. crops that produce more yield 

and/or use less water and thus, are considered more water use efficient. In the literature, CWP is often 

(incorrectly) called water use efficiency (WUE), and thus these two terms are used interchangeably. 

Although both terms seek to address the notion of “more crop per drop” (Zhou et al., 2012), they are 

different, since WUE is defined as the ratio of biomass accumulation or yield to water applied, i.e. 

amount of rainfall and/or irrigation applied to the crop. Hence WUE does not account for unproductive 

losses, such as, inter alia, soil water evaporation, runoff or deep percolation.  

 

When the above two equations are combined, NWP is therefore the product of nutrient/energy content 

per kg of edible portion (C) and CWP: 

 

𝑁𝑊𝑃 = 𝑁𝐶 · 𝐶𝑊𝑃 Equation 3 

 

NWP combines crop nutrient content with CWP, which makes it a useful metric for evaluating 

agricultural impacts on food and nutrition security, especially under limited water availability (Nyathi et 

al., 2019b). The index provides a way of understanding the complex and dynamic interlinkages between 

a crop’s nutrient content and its water use, which should allow for holistic assessment of water, food 

and nutrition security (Chibarabada et al., 2017; Nyathi et al., 2019b). High NWP values indicate more 

nutrients for less water consumed by the crop. NWP is considered a useful metric that can help identify 

(and promote) crops that are nutrient dense and/or have low water use and thus, exhibit high NWP. For 

example, potato’s NWP is higher than that of cereals, producing 5,626 kcal m-3, compared to maize 

(3,856 kcal m-3), wheat (2,279 kcal m-3) and rice (1,989 kcal m-3) (Renault and Wallender, 2000). The 

quantification of NWP within agricultural systems is in its infancy, with Chibarabada et al. (2017) 

evaluating NWP for legumes (e.g. bambara nut and cowpea), whilst Nyathi et al. (2019b) considered 

African leafy vegetables (e.g. amaranth sweet potato). 
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2.5.6 Converting nutrition units 

Data on food composition is expressed in a various ways depending on, inter alia, national conventions, 

practices of various institutions and journal requirements. Since nutritional data was aggregated from 

different sources for this project, it is necessary to convert units to standardise them, which allows for 

data comparison. Unit conversion is a common source of error, and thus FAO/INFOODS published 

guidelines in 2012 (FAO, 2012b). The denominator often causes the most confusion and ambiguity as 

composition data is reported as per: 

• 100 g; 

• edible and/or inedible portion; and 

• total food, total lipid or total protein. 

 

Some references fail to provide an unambiguous description of the dominator (e.g. per 100 g), thus 

limiting the usefulness of the nutrient composition data. FAO (2012b) also recommended that certain 

units should be avoided, such as parts per million (ppm), parts per billion (ppb) and percentages (%). 

Since metric units are preferred, measured nutritional composition was converted to g kg-1 of edible 

portion (Table 2-3). However, edible portion must also differentiate between leaves and roots/tubers.  

 

Table 2-3 Conversion factors for nutritional composition data (FAO, 2012b) 

Units 
Conversion to 

mg kg-1 g kg-1 

μg/100 g x 10-2 x 10-5 

mg/100 g x 101 x 10-2 

g/100 g x 104 x 101 

% x 104 x 101 

μg/kg x 10-3 x 10-6 

g/kg x 103 x 100 

ppm x 100 x 10-3 

ppb x 103 x 100 

 

Since crop models such as AquaCrop output CWP in dry kg per m3 of evapotranspired water, it is 

important to convert all compositional data from fresh weight to dry matter. Scientific articles often report 

data per 100 g of dry matter, as it allows for direct comparisons without the influence of changing water 

content. Furthermore, scientific journals and laboratories should urge the publication of water contents 

for all data when expressed per dry matter, as it allows for the conversion to fresh weights if needed 

(FAO, 2012b). Water contents (WC) should be expressed in % and the following equation can be used 

to convert nutrient contents (NC) from a fresh weight (NCFRE) to a dry weight (NCDRY) basis: 

 

𝑁𝐶𝐷𝑅𝑌 =  𝑁𝐶𝐹𝑅𝐸  𝑥 
100

100 −  𝑊𝐶
 =  

𝑁𝐶𝐹𝑅𝐸

1 − 𝑊𝐶/100
 Equation 4 

 

A simpler method is to convert CWP from dry kg m-3 to fresh kg m-3 using a similar equation, i.e. divide 

the dry value by dry matter content expressed as a fraction, i.e. 1 – WC/100. Either method requires 

the moisture content of the leaves and root/tuber to be known. 

 

2.6 RESEARCH AGENDA FOR UNDERUTILISED CROPS 

Of the five underutilised RTCs, two (sweet potato and taro) have been prioritised for further research in 

terms of their existing potential and body of knowledge (Mabhaudhi et al., 2017a; Modi and Mabhaudhi, 

2016). Within South Africa, sweet potato and taro have potential to contribute towards addressing 

national priorities such as the poverty-unemployment-inequality and water-food-nutrition-health nexus 

by creating new value chains in marginal areas. According to the strategy proposed by Mabhaudhi et 
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al. (2017a), there is need for investment in research, development and innovation. These investments 

should be targeted in a way that develops and promotes new value chains for the two prioritised RTCs. 

Human capacity development and knowledge management, including indigenous knowledge, should 

support such investments to ensure sustainability (Allemann et al., 2004; Duque and Villordon, 2019; 

Mabhaudhi et al., 2017a, 2017b). The strategy outlined by Mabhaudhi et al. (2017a) aligns with existing 

policies and provides new knowledge that can be used to inform new policies that either specifically 

target or include RTCs. For example, the national policy on Food and Nutrition Security (DAFF, 2014) 

recognises the role of underutilised crops for improving dietary diversity in South African households. 

The general inclusion of RTCs into existing production systems also addressed certain Sustainable 

Development Goals (SDGs) such as no poverty (SDG1), good health and well-being (SDG3), gender 

equality (SDG5), reduced inequality (SDG10) and responsible consumption (SDG12). In all this, the 

role of champions is critical as they are needed to drive the strategy at various levels. As a way forward, 

new research projects that target prioritised RTCs and address knowledge gaps need to be initiated. 

 

2.7 SUMMARY & CONCLUSIONS 

Based on the literature review, OFSP and taro were selected for field-based work for the following 

reasons: 

1) OFSP and taro of the only RTCs that have been prioritised for further research in South Africa 

(cf. Section 2.5.6). 

 

2) Availability of propagation material: Taro corm heads can be purchased from smallholder 

farmers in Swayimane (near Wartburg, KwaZulu-Natal). OFSP vines are available from the 

College of Agriculture at Cedara (near Merrivale, KwaZulu-Natal). 

 

3) Taro is one of the most under-researched RTCs (Figure 2-2; cf. Section 2.3) and exhibits high 

water use, with a wide range, i.e. 1,750-2,500 mm (Section 2.4.4). 

 

4) Taro has high nutritional value, especially in terms of protein digestibility and mineral 

composition (Fe, Ca, Mg and P) and is also a good source of Na (Section 2.5.2). 

 

5) Although the water use of sweet potato and cassava are similar (700-1,500 mm), sweet potato 

provides more protein, fibre and carbohydrates. In addition, the mineral composition of sweet 

potato is superior to that of cassava, especially for Mg, K and P. More importantly, sweet potato 

can help address vitamin A deficiency in women and children in South Africa.  

 

In addition, crop parameters for the AquaCrop model have been developed for (i) OFSP by Nyathi et 

al. (2016; local study) and by Rankine et al. (2015; international study), and (ii) taro by Mabhaudhi 

(2012), which were later modified by Mabhaudhi et al. (2014b; local study). This is a very important 

consideration since the crop modelling work presented in Chapter 6 would not be possible without the 

crop parameter values. The parameterisation of AquaCrop for a new crop represents a complex process 

as described by Mabhaudhi (2012), where crop parameters for taro and bambara nut Mabhaudhi et al. 

(2014a) were developed from his PhD field work. 

 

The literature review highlighted the scarcity of research on water use of RTCs in comparison to legume 

and cereal crops. Unlike cereals and pulses, RTCs are large plants that cannot be grown easily in 

greenhouse pot experiments. It is therefore difficult to secure the controlled conditions necessary for 

reliable physiological studies. This has led to the scarcity of standard and credible values of crop water 

requirements, water productivity and water use efficiency of RTCs. For this project, large field trials 

were conducted at Fountainhill Eco-estate (Wartburg, KwaZulu-Natal) with sufficient fetch to facilitate 

crop evapotranspiration measurements using two micrometeorological techniques, namely the eddy 
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covariance and surface renewal. Thereafter, OFSP and taro was grown in raised greenhouse beds (not 

pots) under two water treatments representing water stressed and unstressed conditions. The literature 

review was extended, with the focus on sweet potato and taro only, and results are presented in the 

next chapter. 
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3 OVERVIEW OF SWEET POTATO & TARO 

The focused review on sweet potato and taro was undertaken by a postgraduate student (Mr Thando 

Mthembu) as part of his MSc degree. The sections that follow were summarised from his MSc 

dissertation (Mthembu, 2023) and provide additional information on the water use, yield, nutrient content 

and water productivity for both crops. Where appropriate, information gleaned from the initial literature 

review (previous chapter) was included here. 

  

3.1 CLIMATE & SITE REQUIREMENTS 

3.1.1 Sweet potato 

Sweet potato (Ipomoea batatas) is well suited to subtropical and tropical growing conditions (Dladla et 

al., 2019), where average night-time temperatures range from 15-25°C (Masango, 2015). Although 

regions where annual rainfall ranges from 750-1,000 mm are most suited to sweet potato, 500 mm is 

acceptable, provided that all other conditions are optimal (Masango, 2015). An air temperature range 

from 21-29°C is considered optimum for sweet potato. The crop can tolerate average temperatures as 

low and high as 18 and 35°C, respectively (DAFF, 2011). The crop’s ability to adapt easily to a wide 

range of ecologies suggests it has the potential to produce high yields (Motsa et al., 2015a). However, 

sweet potato can also be produced with low inputs under sub-optimal weather conditions and on 

marginal soils (Motsa et al., 2015a). According to Dladla et al. (2019), such growing conditions are 

associated with uneven rainfall distribution, high temperatures and high evapotranspiration rates. Sweet 

potato is well suited to loamy, sandy and clayey soil textures (Masango, 2015). 

 

Sweet potato can grow to a height of approximately 1 m and takes between 4 to 5 months to reach 

physiological maturity (DAFF, 2011). Planting from mid-November to mid-December is considered ideal 

to ensure optimum production and the crop is usually harvested from April to May (DAFF, 2011). 

However, due to the crop’s short season length, plantings in early January can also be considered. 

Rooting depth is typically 0.5 to 0.6 m (Masango, 2015). It is recommended that sweet potato is planted 

with an inter-row spacing of 0.9-1.06 m and between plant spacing of 0.3 m, which translates to a 

population of 31,447 to 37,037 plants ha-1 (DAFF, 2011). Optimum spacing for sweet potato is 0.3 m 

between plants and 0.6 m between rows (55,278 plants ha-1). However, row spacing can be decreased 

to 0.5 m (66,600 plants ha-1) or increased to 0.9 m (~37,000 plants ha-1). 

 

Sweet potato is a short-cycle crops of three to four months in length (Dong et al., 2018). Their short 

growing cycle allows for flexible planting and harvesting times and also permits quick production of 

foods to augment “hunger months”, i.e. a period of several months between sowing and harvest when 

people do not have food to satisfy their food requirements to meet their necessary caloric and nutritional 

needs (Allemann et al., 2004; Beletse et al., 2013). 

 

Sweet potato is generally considered a drought tolerant crop, but the selection for appropriate 

genotypes for drought conditions remains a priority. Therefore, sweet potato (cassava and yam) 

produce more “yield per drop” than major cereal crops. The plant has several coping mechanisms, such 

as reducing leaf area with increasing water stress, as well as leaves that wilt permanently at a much 

lower water potential (-1.3 MPa) when compared to other crops (Ravi et al., 2014; Sunitha et al., 2013). 

This is because sweet potato leaves accumulate large quantities of proline (Saravanan and Ravi, 2012). 

In addition, the crop’s leaf area decreases as water stress increases (Nedunchezhiyan et al., 2012). 

 

However, mechanisms that allow for drought avoidance usually have a high yield penalty, i.e. water 

stress inhibits the growth of sweet potato. Water stress may delay tuber initiation, thus reducing the 

final yield. Water stress during tuber bulking can also lead to malformation of tubers. According to Önder 
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et al. (2015), water deficits of 20 to 40% under drip irrigation caused a crop yield decrease of 25 to 50%. 

Regarding genotype differences, there is a difference between white- and orange flesh tubers. 

 

3.1.1.1 White flesh cultivars 

In general, white flesh cultivars (e.g. A40) have a lower nutrient content than orange flesh cultivars. This 

typically translates to lower nutritional water productivity. Thus, white flesh sweet potato (WFSP) should 

not be grown, especially in rural communities where vitamin A deficiency is a known problem. 

 

3.1.1.2 Orange flesh cultivars  

Orange flesh sweet potato (OFSP) cultivars (e.g. A45 and 199062.1) are good sources of natural β-

carotene (van Jaarsveld et al., 2006), is a precursor of vitamin A. The higher β-carotene gives the flesh 

its more orange colour, which explains why the vitamin A content of OFSP is considerably higher than 

that of WFSP. According to Labadarios et al. (2005), vitamin A deficiency in South Africa remains a 

health issue for growing children and teenage women. The consumption of boiled OFSP cultivars can 

therefore improve low vitamin levels (Low et al., 2017). These cultivars should therefore be promoted 

in developing countries (Wenhold et al., 2007). Masango (2015) recommended that the South African 

Medical Research Council and the Agricultural Research Council should promote the production of 

foods rich in natural β-carotene, such as OFSP. 

 

3.1.2 Taro 

Taro grows optimally in warm conditions where frost occurrence is minimal (Sibiya, 2015). It grows well 

in areas with (i) elevations ranging from 0-1,800 m, (ii) average temperatures range from 21-27°C, and 

(iii) annual rainfalls exceeding 800 mm (Modi and Mabhaudhi, 2016). Although tannia and taro possess 

similar growth habits, tannia is more drought tolerant and sensitive to waterlogging compared to taro. 

This is reflected in the crop water requirement differences of both these crops, where taro requires 250-

500 mm more water. 

 

Taro (Colocasia esculenta) can reach a height of 1-2 metres over a 6-8 month growing season 

(Miyasaka et al., 2003; Deo et al., 2009). Although taro takes 7 months (210 days) on average to mature, 

authors differ on how to define the different growth stages (Mabhaudhi, 2012). The root system is 

considered fibrous and grows mainly in the top metre of soil (Joubert and Allemann, 1998). According 

to DAFF (2010), a planting date from mid-November till December is recommended for taro to achieve 

optimum crop development. However, planting dates up to April can be viable in warmer areas. 

Mabhaudhi et al. (2023) also stated that the best planting time is between December and April, but 

plantings can be made any time during the year if moisture is adequate. 

 

An inter-row spacing of 1.3 m and an intra-row spacing of 0.4 to 0.5 m is recommended to achieve a 

population of between 20,000 and 25,000 plants ha-1. For small areas, the distance between rows and 

plants should be 1 m, i.e. 10,000 plants ha-1 (DAFF, 2010). In KwaZulu-Natal, a common row spacing 

of 0.6 m is used, where the plants are also planted 0.6 m apart, resulting in a plant density of 27,778 

plants ha-1. According to Mabhaudhi et al. (2023), plant density should range between 6,000 and 10,000 

plants ha-1 for smallholder plots but should be increased to 15,000-20,000 plants ha-1 for commercial 

cultivation. 

 

Shange (2004) reported that taro can grow in well-drained, aerated soils, and soils that experience 

waterlogging for prolonged periods. However, to ensure maximum growth, the crop prefers sandy loam 

soils with good drainage and high organic matter content (Shange, 2004). The wide range in suitable 

soils and crop water requirements reported in Section 2.4.4 (cf. Chapter 2) is primarily due to genotype 
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differences in water use and drought tolerance. There are two genotypes, namely upland and lowland 

taro, which are described next. 

 

3.1.2.1 Upland taro 

Upland taro (e.g. Umbumbulu landrace) generally has lower optimum crop water requirements and yield 

potential compared to lowland taro. Among the dasheen and eddoe types of taro, eddoe type is more 

tolerant to drought conditions since eddoes are hardier than the dasheens and can be grown in rainfed 

conditions in less fertile soils (Sunitha et al., 2013). Stomatal regulation plays a role in acclimation of 

taro water stress. The increase in stomata and leaf area between 4 and 6 months of crop growth 

indicates more transpiration loss from the crop canopy, which eventually increases water requirements 

during this period. Mabhaudhi et al. (2013b) showed that stomatal conductance was lower under low 

water availability. Stomatal closure is a drought avoidance mechanism (Ferreira-Silva et al., 2008; 

Otieno et al., 2012), which allows the crop to minimise transpiration. It is widely accepted as a major 

limitation to photosynthesis and biomass production under drought stress. However, mechanisms that 

allow for drought avoidance usually have a high yield penalty. 

 

In contrast, have a greater degree of stomatal control and, thus, can minimise water loss via 

transpiration. Therefore, upland taro landraces exhibit higher water productivity compared to the 

lowland landrace (cf. Section 3.2.2). Hence, this landrace is better suited to water-scarce conditions 

(Uyeda et al., 2011; Mabhaudhi, 2012), where it can produce sufficient yields and, thus, can positively 

contribute to food security. 

 

3.1.2.2 Lowland taro 

Lowland taro (e.g. KwaNgwanase landrace) has a higher crop water requirement than upland taro, and 

thus some farmers grow the crop in waterlogged areas such as marshes and wetlands (Everson and 

Mengistu, 2011), particularly along the coastal regions of KwaZulu-Natal. Thus, lowland taro landraces 

are highly tolerant of waterlogging. The crop is also grown in the Limpopo and Mpumalanga provinces, 

including the Pondoland region of the Eastern Cape. Since lowland landraces are more sensitive to 

conditions of limited water availability, they should not be considered for low-input farming under rainfed 

conditions in South Africa. Yields and crop water productivity are generally lower for lowland taro when 

compared to upland taro (cf. Section 3.2.2). 

 

However, Everson and Mengistu (2011) found that lowland taro grown in a Cyperus latifolius marsh 

where water availability is non-limiting to growth, did not necessarily produce high evapotranspiration 

rates. They calculated the crop coefficients (KC) as the ratio of measured ET (using an eddy covariance 

system) and reference crop evapotranspiration (ETO). Daily KC values (4 in November 2009 and 6 in 

January 2010) varied between 0.46 and 0.81, suggesting that lowland taro was relatively conservative 

in terms of water use (Everson and Mengistu, 2011). 

 

3.2 CROP WATER USE, YIELD & WATER PRODUCTIVITY 

3.2.1 Sweet potato 

Using the soil water balance method, Masango (2015) estimated the water use of rainfed and irrigated 

sweet potato. Four water treatments were considered as shown in Table 3-1. Crop evapotranspiration 

(ET) of the TT1W treatment was 38% greater than that of the TDRY treatment, yet there was only a 7.1% 

difference in yields. This is because crop growth and the degree of yield reduction resulting from water 

deficits depend on various factors, such as the timing and duration of the water deficit (FAO, 2002). 

Pandey et al. (2000) reported that CWP increases by improving yield or decreasing ET. From Table 

3-1, CWP was highest under the TDRY treatment and decreased with increasing irrigation. Under water 
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limited relative to optimum conditions (Motsa et al., 2015b), sweet potato can produce higher yields, 

and thus higher CWP, as shown in the table below. 

 

Table 3-1 Yield and water balance components per treatment for sweet potato, from which 

crop water use (ET) and water productivity (CWP) were estimated (Masango, 2015) 

Treatments 
P 

(mm) 

I 

(mm) 

∆S 

(mm) 

ET 

(mm) 

Yield 

(dry t ha-1) 

CWP 

 (kg m-3) 

TDRY 301 50 -7 298 7.6 2.55 

TO2W  232 89 321 6.6 2.06 

TO1W  282 83 365 6.5 1.78 

TT1W  447 31 478 7.1 1.49 

TDRY = rainfed with supplemental irrigation; TO2W = irrigated once every two weeks; TO1W = irrigated once in a 
week; TT1W = irrigated twice in one week; P = precipitation; I = irrigation; ∆S = change in soil water content 

 

Dladla et al. (2019) studied the water use, yield and CWP of three cultivars of sweet potato under two 

different agronomic practices (flattened and peaked ridges) at two locations (Umbumbulu and 

Fountainhill in KwaZulu-Natal, South Africa). Total biomass production comprises the above-ground 

biomass and root yield and at Fountainhill, was 60-70% lower than at Umbumbulu (Table 3-2). Similarly, 

fresh root yield was higher at Umbumbulu (13.2 to 35.5 t ha-1) than at Fountainhill (7.6 to 17.8 t ha-1). 

Although yields were lower at Fountainhill, the HI was approximately 30 to 50% higher when compared 

to Umbumbulu. This suggests that at Umbumbulu, the crop produced greater above-ground biomass 

than root yield. This can be due to the environment at Umbumbulu favouring vine and leaf growth at the 

expense of root growth. However, it could also be due to tubers at Umbumbulu being harvested before 

the completion of tuber yield formation. 

 

Dladla et al. (2019) calculated the water use of sweet potato as a residual of the soil water balance 

equation (Table 3-2). Plants at Fountainhill used approximately 50% more water than at Umbumbulu. 

The authors indicated that sweet potato at Fountainhill took longer to reach maturity, which may have 

contributed to its higher water use due to the longer crop cycle. The higher water use and lower sweet 

potato yield at Fountainhill resulted in lower CWP estimates (0.74 to 2.08 kg m-3) relative to Umbumbulu 

(2.17 to 6.67 kg m-3), as shown in Table 3-2. Dladla et al. (2019) stated that the results obtained at 

Umbumbulu were in the same range as those from previously conducted studies (e.g. Önder et al., 

2015). 

 

Table 3-2 Water use and yield components of three sweet potato cultivars (A40, A45 and 

199062.1) under two ridge types (peaked and flattened) at Fountainhill (FH) and 

Umbumbulu (UM) (Dladla et al., 2019) 

Site 
Ridge 

type 
Cultivar 

Total 

biomass 

(t ha-1) 

Fresh 

yield 

 (t ha-1) 

ET 

(mm) 

CWP 

 (kg m-3) 

HI 

(%) 

FH Peak 

A40 

A45 

199062.1 

24.7 

21.5 

20.7 

17.8 

16.0 

13.7 

   911 

1,042 

   660 

1.95 

1.54 

2.08 

72.1 

74.4 

66.2 

FH Flat 

A40 

A45 

199062.1 

11.6 

12.3 

13.1 

  9.0 

  7.6 

  8.0 

   992 

   944 

1,077 

 0.91 

 0.81 

 0.74 

77.6 

61.8 

61.1 

UM Peak 

A40 

A45 

199062.1 

77.3 

60.1 

69.9 

35.5 

22.5 

31.1 

   532 

   548 

   558 

6.67 

4.11 

5.57 

45.9 

37.4 

44.5 

UM Flat 

A40 

A45 

199062.1 

61.3 

44.0 

56.6 

22.9 

13.2 

22.4 

   655 

   609 

   615 

3.50 

2.17 

3.64 

37.4 

30.0 

39.6 
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Planting sweet potato on ridges maximises biomass production and yield, as ridging allows for root 

expansion and improved water conservation (Table 3-2). Thus, CWP values were lower for flattened 

ridges due to lower yields when compared to values for peaked ridges. In contrast, Bombik et al. (2013) 

reported that sweet potato biomass and yield favoured flattened ridges. 

 

Table 3-3 shows the dry tuber yield, total biomass (above-ground biomass and root yield), ET and CWP 

of OFSP, which were obtained from open-field experiments conducted at Rooiland (Pretoria, South 

Africa) over two seasons (Nyathi, 2019). Measurements were obtained from six treatments as indicated 

in the table. As expected, dry tuber yield was: 

• highest for the W1F1H1 treatment (i.e. no water and soil fertility stresses, as well as no leaf 

harvesting), and 

• lowest for the W2F2H2 treatment, which combined water and soil fertility stresses with leaf 

harvesting.  

 

ET values were lower during the first (2013/14) season relative to the second (2014/15) (Table 3-3), 

which could be attributed to the shorter growing period of 130 vs 150 days. CWP values ranged from 

1.05 to 2.71 dry kg m-3 and 1.18 to 2.78 dry kg m-3 for the 2013/14 and 2014/15 seasons, respectively. 

The water-stressed with no leaf harvesting treatment (W2F2H1 and W2F1H1) resulted in the highest 

exhibited CWP of 2.71 and 2.78 dry kg m-3, respectively. This is supported by Motsa et al. (2015b), who 

noted that sweet potato could produce high yields, and thus higher CWP under water-stressed 

conditions. This shows that sweet potato has the potential to be grown by rural-poor households under 

low agricultural input where crops are mostly rainfed. 
 

Table 3-3 Dry tuber yield, total biomass, ET and CWP of OFSP (Nyathi, 2019) 

Season Treatments 

Total 

biomass 

(t ha-1) 

Tuber 

yield 

(t ha-1) 

ET 

(mm) 

CWP 

(kg m-3) 

S1 

W1F1H1  13.0 10.0 491 2.04 

W1F1H2  10.0   5.7 427 1.33 

W1F2H1    0.0   8.1 460 1.76 

W1F2H2   8.8   4.7 446 1.05 

Mean 10.5   7.1 456 1.56 

W2F1H1   8.2   5.8 244 2.38 

W2F1H2   8.7   5.8 257 2.26 

W2F2H1   7.1   5.9 218 2.71 

W2F2H2   7.4   4.4 231 1.90 

 Mean   7.9   5.5 238 2.31 

S2 

W1F1H1 20.0 17.0 658 2.58 

W1F1H2 14.0 11.0 629 1.75 

W1F2H1 13.0 11.0 595 1.85 

W1F2H2 10.0   7.1 592 1.20 

Mean 14.3 11.5 619 1.85 

W2F1H1 15.0 13.0 467 2.78 

W2F1H2 14.0 11.0 462 2.38 

W2F2H1   8.2   6.5 447 1.45 

W2F2H2   7.7   5.2 439 1.18 

 Mean 11.2   8.9 454 1.95 

W1 = optimum irrigation; W2 = deficit irrigation; F1 = optimum fertiliser application; F2 = no fertiliser application; 
H1 = no leaf/vine harvesting; H2 = leaf/vine harvesting; S1 = 2013/14; S2 = 2014/15 
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Leaf harvesting can therefore cause substantial reductions in tuber yield production (Nyathi, 2019), 

possibly due to reduced crop photosynthesis. Although yields were lower due to leaf harvesting, it 

shows that sweet potato is a dual-purpose crop. The stressed treatment combinations with no leaf 

harvesting produced reasonable amounts of dry total biomass and tuber yield, thus illustrating the 

capability of OFSP to survive under water-stressed conditions.  

 

3.2.2 Taro 

Mabhaudhi (2012) investigated the ET and yield of two taro landraces grown over two seasons and 

found that yields declined with decreasing irrigation (Table 3-4). Compared to the fully irrigated 

treatment, tuber yield was 15% and 47% lower for the moderate and deficit treatments, respectively. 

Under conditions of limited water availability, corm mass (not corm number) is more important 

(Mabhaudhi, 2012). The reduction of yield due to limited water availability is caused by reductions in 

canopy growth and production of biomass (Badr et al., 2012), which was supported by the findings of 

Mabhaudhi (2012) 

 

Upland taro (Umbumbulu landrace), which is more adapted to water-limited conditions, produced higher 

fresh yields than upland taro (KwaNgwanase landrace). Hence, the latter landrace was negatively 

affected by water-limited conditions, especially in the second season. Upland taro has good stomatal 

control, enabling it to minimise water loss through transpiration and thus, produces more biomass and 

yield than lowland taro (Mabhaudhi, 2012). 

 

For CWP, differences were observed between both seasons with CWP increasing with decreasing 

irrigation level, especially in the second season. The upland and lowland taro landraces had an average 

CWP of 0.32 and 0.15 kg m-3, respectively. Hence, upland taro was approximately twice more water 

use efficient than the lowland landrace, which is supported by Uyeda et al. (2011). However, taro’s 

CWP is relatively low when compared to measured values for tree crops such as avocados (1.2-1.6 kg 

m-3) and indigenous fruit trees (2.0-2.5 kg m-3). 

 

Table 3-4 Yield, harvest index and CWP of two taro landraces grown under a rainshelter at 

three irrigation levels over two seasons (Mabhaudhi, 2012) 

Season  
Irrigation 

treatment  

Land- 

race 

Fresh 

yield 

(t ha-1) 

Harvest 

index 

(%) 

CWP 

(kg m-3) 

S1 

Deficit 
UM 

KW 

  6.10 

  4.32 

87 

86 

0.15 

0.11 

Moderate 
UM 

KW 

  9.31 

  3.83 

90 

86 

0.17 

0.07 

Optimum 
UM 

KW 

  9.00 

  4.23 

85 

57 

0.12 

0.06 

S2 

Deficit 
UM 

KW 

12.96 

  5.70 

62 

71 

0.53 

0.17 

Moderate 
UM 

KW 

22.32 

10.70 

74 

82 

0.49 

0.22 

Optimum 
UM 

KW 

23.90 

17.33 

63 

79 

0.44 

0.27 

S1 = 2010/11; S2 = 2011/12; UM = Umbumbulu (upland taro);  KW = KwaNgwanase (lowland taro) 
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3.3 NUTRITIONAL WATER PRODUCTIVITY 

3.3.1 Sweet potato 

Sweet potato is regarded as a drought-tolerant crop that can also supply substantial vitamin and mineral 

amounts (Leighton, 2008). Sweet potato provides adequate amounts of starch and protein and is 

nutrient-dense as the tubers and leaves also contain nearly all nutrients (both macro and micro), and 

substantial amounts of vitamin C (Mabhaudhi et al., 2019).  

 

Masango (2015) investigated the response of OFSP tubers under four water treatments. From Table 

3-5, OFSP grown mainly under rainfed conditions (with only supplemental irrigation; TDRY) exhibited the 

highest nutritional water productivity (NWP) of 1,177 mg m-3 for β-c (β-carotene). This further highlights 

the water use efficiency and nutritious benefits of OFSP. 

 

Table 3-5 Nutritional water productivity of β-carotene (NWPβ-c) for OFSP (Masango, 2015) 

Treatment NWPβ-c (mg m-3) 

TT1W    656 

TO1W    718 

TO2W    796 

TDRY 1,177 

TDRY = mostly rainfed with supplemental irrigation; TO2W = irrigated once every two weeks; 
TO1W = irrigated once in a week; TT1W = irrigated twice in one week; β-c = β-carotene 

 

Mulovhedzi (2017) estimated the NWP for OFSP and WFSP under three water treatments (Table 3-6). 

For both OFSP and WFSP, the NWP for Fe, Zn and β-c was higher under rainfed vs optimum irrigation. 

Although both white and orange flesh sweet potato can contribute to alleviating malnutrition in term of 

Fe and Zn content, OFSP has a much higher β-c content than WFSP, especially under rainfed 

conditions. Thus, the cultivation of OFSP should be promoted, instead of WFSP. 

 

Table 3-6 Nutritional water productivity (NWP) of orange and white flesh sweet potato under 

three water treatments (Mulovhedzi, 2017) 

Cultivar Treatments 
NWP (mg m-3) 

Fe Zn β-c 

OFSP 

Optimum irrigation 

Supplemental irrigation 

Rainfed 

14.5 

12.6 

11.7 

  7.0 

  6.7 

  6.4 

  95.9 

  93.9 

108.5 

WFSP 

Optimum irrigation 

Supplemental irrigation 

Rainfed 

16.5 

13.9 

19.0 

  7.6 

  7.6 

12.0   

  11.4 

  18.6 

  22.2 

 

Table 3-7 presents the nutrient content (NC) for Fe, Zn and β-c (β-carotene) of OFSP tubers expressed 

on a dry mass basis, as measured by Nyathi et al. (2019a) over two seasons. OFSP tubers are rich in 

β-c with mean values of 2,250 and 1,980 mg kg-1 for the non-harvested (H1) and harvested (H2) leaves, 

respectively. Furthermore, β-c was higher under water stressed conditions, irrespective of leaf 

harvesting. For the water and soil fertility stress (W2F2) treatment, tuber contents of Fe and Zn were 

higher when leaves were not harvested compared to when they were harvested. This suggests that 

under low agricultural input, Fe and Zn content in OFSP tubers can be maximised, provided there is no 

leaf/vine harvesting. Nyathi et al. (2019a) noted that leaf/vine harvesting should not be considered for 

market-oriented farming due to the high potential of reduced yields and nutritional concentrations of Fe 

and Zn. In general, nutritional water productivity (NWP) for Fe, Zn and β-c was higher under deficit 

irrigation, compared to optimum irrigation. As expected, NWP was higher when the crop was fertilised, 
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compared to the non-fertilised treatment. Furthermore, NWP was higher when no leaves were 

harvested, compared to leaf harvesting. 

 

Table 3-7 Nutrient content of OFSP tubers obtained for the 2013/14 and 2014/15 growing 

seasons (Nyathi et al., 2019a) 

Treatments 

Nutrient content 
(mg kg-1) 

Nutritional water 
productivity (mg m-3) 

Tubers  Leaves Tubers 
Fe Zn β-c Fe Zn β-c Fe Zn β-c 

H1 

W1F1S1 39 17 2,350 n.d. n.d. n.d. 84 35 4,906 
W1F1S2 45 13 2,210 n.d. n.d. n.d. 116 33 5,675 
W1F2S1 51 14 1,850 n.d. n.d. n.d. 64 18 2,401 
W1F2S2 70 11 2,210 n.d. n.d. n.d. 135 23 4,665 

Mean 51 14 2,155    100 27 4,412 
W2F1S1 29 14 1,820 n.d. n.d. n.d. 99 46 6,119 
W2F1S2 87 12 2,480 n.d. n.d. n.d. 210 27 5,966 
W2F2S1 38 17 2,140 n.d. n.d. n.d. 107 45 3,838 
W2F2S2 112 13 2,930 n.d. n.d. n.d. 160 19 4,307 

Mean 67 14 2,343 n.d. n.d. n.d. 144 34 5,058 
           

H2 

W1F1S1 46 16 2,140 530 320 430 61 21 2,875 
W1F1S2 35  9 1,730 480 250 370 60 16 2,689 
W1F2S1 48 16 1,820 690 300 630 63 20 2,367 
W1F2S2 70 10 1,730 440 200 380 139 20 3,256 

Mean 50 13 1,855 535 268 453 81 19 2,797 
W2F1S1 43 13 2,030 450 310 440 80 24 5,893 
W2F1S2 62 10 2,180 480 260 480 99 15 3,336 
W2F2S1 27 14 1,930 450 300 470 55 28 3,724 
W2F2S2 38 11 2,290 460 260 480 47 13 2,712 

Mean 43 12 2,108 460 283 468 70 20 3,916 
H1 = no leaf/vine harvesting; H2 = leaf/vine harvesting; W1 = optimum irrigation amount; W2 = deficit irrigation; 
F1 = optimum fertiliser application; F2 = no fertiliser application; S1 = 2013/14; S2 = 2014/15; β-c = β-carotene 

 

Table 3-8 provides the NC of sweet potato cultivars grown under optimum and deficit conditions 

(Mabhaudhi et al., 2019). Mabhaudhi et al. (2019) reported that in some instances, the protein content 

of sweet potato cultivars increases with increasing water use, which was not the case of the 199062.1 

cultivar. β-c was higher under the water deficit treatment for all cultivars, but this was not the case for 

all elements. This again highlights sweet potato’s ability to produce higher amounts of β-c under water-

limited conditions. The β-c content of the orange flesh cultivars (A45 and 199062.1) for both water 

treatments was considerably higher than that for the white flesh (A40) cultivar. Thus, the cultivation of 

OFSP cultivars should be promoted rather than white flesh cultivars. The β-carotene content of OFSP 

tubers shown in Table 3-8 was substantially lower than that obtained by Nyathi (2019) (cf. Table 3-7), 

which cannot be explained (i.e. unlikely due to cultivar differences alone).  

 

Mabhaudhi et al. (2019) also estimated the NWP of sweet potato (Table 3-9). For at least one of the 

cultivars, the change in NWP from deficit to optimum water treatment was statistically significant 

(Mabhaudhi et al., 2019). As expected, the NWP of β-c for OFSP (A45 and 199062.1) is much higher 

than for WFSP (A40). However, under optimum conditions the β-c content and NWPβ-c of the A45 

cultivar is more than twice that of the 199062.1 cultivar. The most significant finding is that NWP was 

higher for all elements under water-limited conditions, compared to optimum conditions, regardless of 

the cultivar. This trend was also observed in all the above-mentioned studies (Masango, 2015; 

Mulovhedzi, 2017; Nyathi et al., 2019a), including a study by Lundqvist et al. (2021) in Ethiopia, which 

also showed that the NWP of minerals and vitamins was substantially higher under the stressed 

treatment, compared to the non-stressed water treatment. 
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These results show that sweet potato has the potential to produce a higher amount of nutrients per unit 

of water consumed under water-stressed conditions. Thus, this crop has the potential to sustain poor 

rural households located in marginal areas, as OFSP produces not only relatively high yields (Motsa et 

al., 2015b; Masango, 2015) but also a high amount of nutrients, whilst efficiently using water. 

 

Table 3-8 Nutrient content of three sweet potato cultivars under two water treatments 

(Mabhaudhi et al., 2019) 

Water 

treatment 
Cultivar 

Nutrient content 

(g kg-1) (mg kg-1) 

Fat Pro Fe Zn β-c Ca Mg Na 

Optimum 

A40 

A45 

199062.1 

  7.3 

  9.1 

14.3 

75.1 

61.8 

43.0 

399 

622 

529 

  9.0 

15.4 

13.4 

   2 

198 

  53 

5.3 

2.4 

4.8 

1.3 

0.7 

0.9 

2.1 

2.4 

0.8 

Deficit 

A40 

A45 

199062.1 

  7.5 

  9.4 

  1.4 

53.6 

38.9 

53.8 

868 

269 

428 

16.8 

11.0 

14.4 

  29 

232 

101 

5.1 

1.3 

4.6 

1.2 

0.6 

1.0 

1.0 

1.0 

1.1 
Pro = Protein; β-c = β-carotene 

 

Table 3-9 Nutritional water productivity of three sweet potato cultivars under two water 

treatments (Mabhaudhi et al., 2019) 

Water 

treatment 
Cultivar 

Nutritional water productivity 

(g m-3) (mg m-3) 

Pro Fat Fe Zn  β-c Ca Na Mg 

Optimum 

A40 

A45 

199062.1 

   354 

   295 

   352 

  34 

  43 

117 

1,877 

2,968 

4,325 

  42 

  72 

106 

       9 

   945 

   433 

25.4 

11.9 

62.8 

  9.88 

11.45 

  7.36 

  5.58 

  3.82 

  7.36 

Deficit 

A40 

A45 

199062.1 

   555 

   499 

1,405   

  77 

121 

268  

8,968 

3,464 

7,978 

176 

141 

261 

   300 

2,976 

1,881    

52.7 

16.7 

85.7 

10.33 

14.11 

22.47 

12.40 

  7.70 

18.64 
Pro = Protein; β-c = β-carotene 

 

3.3.2 Taro 

The high nutritional value of taro is one of the main reasons for promoting its commercial-scale 

production. Mabhaudhi et al. (2016a) stated that taro leaves are (i) high in minerals (e.g. Na, Zn and 

Fe) and vitamins (e.g. A, B and C), and (ii) suitable for human consumption. Vitamin B and C complexes 

(niacin, thiamine and riboflavin) found in taro leaves and corms are essential for a healthy diet. The 

starch contained in the corms is generally high (70-80% dry weight basis) and highly digestible 

(Mabhaudhi et al. ,2023). Therefore, taro may be consumed as a source of carbohydrates and protein 

(11% dry weight basis) (Mabhaudhi et al., 2016a; 2023). Taro’s high potassium-to-sodium ratio is 

recommended for people with high blood pressure (Modi and Mabhaudhi, 2016). Vitamins B (niacin, 

riboflavin and thiamine) and C are present in appreciable quantity in corms and leaves of taro 

(Mabhaudhi et al., 2023). 

 

Table 3-10 provides the mineral composition of upland taro tubers (Umbumbulu landrace), which is 

higher under deficit irrigation, when compared to fully irrigated conditions (except for Cu). However, 

when NWP is considered, it is higher under water-stressed conditions for all elements (including Cu). 

This is the same trend observed for sweet potato (cf. Section 3.3.1) and supports the finding by 

Chivenge et al. (2015) that certain nutrient-dense RTCs can address nutrition insecurity issues in 

environments that are water scarce. 
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Table 3-10 Average nutritional content of taro tubers (UM landrace) under two water 

treatments (Shelembe, 2020) 

Water 

treatment 

Nutrient content (mg kg-1) 

Na Fe Al Mn Cu 

Optimum 229.91 45.77 39.48 6.19 4.59 

Deficit 371.77 83.27 62.93 7.84 3.56 

 Nutritional water productivity (mg m-3) 

Optimum 1,487.33 269.29 255.87 39.33 29.79 

Deficit 2,889.41 643.33 486.45 58.90 27.73 

 

3.4 SUMMARY & CONCLUSIONS 

The CWP metric measures how efficiently a plant utilises water and converts it into yield (Masango, 

2015). Modi and Mabhaudhi (2020) stated that the main aim of crop production is to produce “more 

crop” while using water efficiently. It is crucial to improve water productivity within existing rainfed 

agricultural systems (Renault and Wallender, 2000). Compared to staple food crops such as maize and 

soybean, RTCs exhibit resilience under water stressed conditions and can produce higher yields using 

less water. Both sweet potato and taro are regarded as dual-purpose crops, as both their leaves and 

tubers can be consumed. Although sweet potato leaves can be harvested during the growing season, 

this reduces tuber yield (Islam, 2006; Nyathi, 2019).  

 

Sweet potato is known for its lower water use under rainfed conditions (Masango, 2015), and thus is 

considered water use efficient with a moderate to high NWP (Masango, 2015; Mabhaudhi et al., 2019). 

Due to sweet potato’s drought tolerance (Motsa et al., 2015b), the crop can adapt to a wide range of 

agro-ecologies and thus, has the potential to produce high yields under water-stressed conditions 

(Motsa et al., 2015a). Masango (2015), Mulovhedzi (2017) and Mabhaudhi et al. (2019) reported that 

sweet potato exhibits high NC and CWP values, which translates to high NWP values under water 

limited relative to optimum conditions. This highlights the crop’s ability to respond well to soil water 

deficits. Furthermore, OFSP tubers and leaves exhibit substantially higher β-carotene levels than (i) 

WFSP tubers, and (ii) other indigenous RTCs (e.g. taro). 

 

Taro landraces have a lower CWP compared to that of other RTCs, such as potato and sweet potato 

(Uyeda et al., 2011; Badr et al., 2012; Mabhaudhi, 2012). Taro yields are negatively affected by 

decreasing water application rates, due to lower biomass production. Hence, reducing the amount of 

applied irrigation did not substantially increase taro’s CWP (Mabhaudhi, 2012). Certain RTC landraces 

struggle under water-limited conditions due to a lack of defensive mechanisms that enable the crop to 

consume water while maintaining canopy expansion and biomass production efficiently (Badr et al., 

2012). For example, upland taro landraces exhibit better stomatal control, and thus are more water use 

efficient when compared to lowland taro landraces. 

 

From the literature review, more information exists for sweet potato when compared to taro. However, 

Nyathi (2019) highlighted the importance of future research assessing NWP across agro-ecologies. To 

address the knowledge gaps, field trials were conducted to measure the water use, yield and nutrient 

content of OFSP and taro under rainfed conditions, from which information on CWP and NWP was 

gleaned. The methodology and results pertaining to the field trials is presented in the next chapter.  
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4 MEASURENT OF WATER PRODUCTIVITY: SEASON 2 

4.1 INTRODUCTION 

Field trials were conducted in KwaZulu-Natal with sufficient fetch to facilitate crop evapotranspiration 

measurements using two micrometeorological techniques, namely the eddy covariance and surface 

renewal. In the first season (2020/21), animal damage was first observed on 11th January 2021. The 

initial damage caused by porcupine was then gap filled. However, bush pig attracted to the corm’s sugar 

content caused significant damage over the next 10 days. A decision was taken in mid-February to 

discontinue the field trial due to (i) difficulty in obtaining additional material for further gap filling, and (ii) 

excessive weed growth. The latter was caused by high rainfall and hot temperatures experienced since 

planting and limitations in hiring casual workers from Swayimane for manual weeding. OFSP was not 

planted because a postgraduate student decided not to pursue his MSc study due to concerns related 

to the COVID-19 pandemic. In the second season (2021/22), crop water use, yield and nutrient content 

of OFSP and taro were measured at two trial sites at Fountainhill Eco-estate. A summary of the 

approach taken and main findings are presented next. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Site description 

Fountainhill Eco-estate (29°26'57"S; 30°32'41"E; elevation 851 m a.s.l.) is located about 32 km north-

east of Pietermaritzburg along the R614 road to Wartburg in the uMshwathi Local Municipality of 

KwaZulu-Natal, South Africa. It represents an agro-ecological model that blends commercial agriculture 

(primarily sugarcane and avocado production) and conservation. Of the total 2,243 ha eco-estate, 780 

ha is utilised for commercial agriculture, with the balance set aside for conservation of biodiversity in 

the Umgeni catchment (Musokwa et al., 2020). All revenues derived from commercial operations are 

invested in a trust fund to support the main goal of the eco-estate. Fountainhill offers the eco-estate and 

its facilities for research purposes and works closely with three universities (KwaZulu-Natal, Rhodes 

and Potchefstroom). A research symposium is held annually at the eco-estate to provide feedback on 

research undertaken on the farm, including topics of relevance to sustainable agriculture and 

conservation (source: Fountainhill website). 

 

Fountainhill Estate is situated within the Moist Midland Mistbelt agro-ecological zone, with natural 

vegetation biomes being a mixture of Valley Thicket and Natal Central Bushveld Savanna (Low and 

Rebelo, 1996). Soil textures in the Wartburg region are mainly fertile loamy sand and sandy loam soils 

with medium to high drainage, which is ideal for agricultural crop production (Modi and Mabhaudhi, 

2020). However, climate and soils across the eco-estate vary considerably. Soils range from 350 mm 

in depth with clay contents of 5% or less, to deep and heavy clays. More than 34% of the soils are 

extremely sandy with clay contents below 13%. High value crops are grown on deep, well-drained soils 

where annual rainfall exceeds 1,000 mm and where possible, clay contents are 18% or more. 

Cultivation is restricted to areas with adequate agricultural potential that receive on average at least 

640 mm of rainfall per annum (source: Fountainhill website). Climate data was obtained from the South 

African Sugarcane Research Institute (SASRI) weather portal for an automatic weather station (AWS) 

located at Bruyns Hill and Fountainhill (Table 4-1).  

  

https://fountainhill.co.za/wp-content/uploads/2023/05/FHE-perspective-report-combined_v4-2.pdf
https://fountainhill.co.za/wp-content/uploads/2023/05/FHE-perspective-report-combined_v4-2.pdf


Crop and nutritional water productivity of sweet potato and taro 

27 
 

 

Table 4-1 Climate data obtained from two automatic weather stations located at Bruyns Hill 

and Fountainhill 

Location 
Mean annual 

Mean monthly 

temperature (°C) Data range 

Rainfall (mm) Temperature (°C) Minimum Maximum 

Bruyns Hill 
568-1,094 

(830) 
17.9 11.8 24.0 

Jan 2000 to 

Aug 2021 

Fountainhill 603-853 17.5 10.2 24.8 
Jan 2016 to 

Dec 2021 

 

In July 2020, an initial site visit was conducted where the Project Team met with the Farm Manger to 

discuss the location of two suitable trial sites and the issue of potential threat of animals such as bush 

pig and porcupine. The Farm Manager mentioned that monkeys were likely to be the only nuisance 

affecting crop cultivation, adding that vehicle access gates must be kept closed to prevent larger 

animals from entering the trial sites.  

 

Fountainhill is not ideally suited for the optimum growth of OFSP (Dladla et al., 2019) or taro. Hence, 

above-ground biomass and tuber yield are lower compared to more sub-tropical sites such as 

Umbumbulu. Since the project wanted to include the nearby Swayimane community to assist with 

establishing, weeding and harvesting the field trial, Fountainhill was chosen as the experimental site. 

Both OFSP and taro are grown by the subsistence and smallholder farmers within the Swayimane 

community, thus proving a source of material for the trials, especially for taro. 

 

4.2.2 Planting material 

OFSP and taro planting material were obtained from two locations in KwaZulu-Natal. The planting 

material is considered well suited to growing conditions at Fountainhill. For both crops, it was necessary 

to establish a nursery for propagating healthy planting material ahead of planting. This was important 

due to the large area of each trial. Based on the literature review, this project only considered one 

common cultivar of OFSP (199062.1). The orange flesh cultivar was selected due to its high β-carotene 

content, which is a precursor of vitamin A (Chivenge et al., 2015). In September 2021, approximately 

100 vines were obtained from the horticultural greenhouse at the College of Agriculture in Cedara, 

KwaZulu-Natal, South Africa. 

 

Corms of the Dumbe dumbe landrace were sourced from local smallholder farmers located in 

Swayimane, who were compensated for their produce. Dumbe dumbe is an upland (eddoe type) 

landrace characterised by a central corm and numerous edible side cornels (Lebot, 2019). In order to 

eliminate propagule size effects, corms were initially selected for uniform plant size (Singh et al., 1998). 

Propagules were treated with a bactericide and fungicide (Sporekill®) to prevent rotting during 

sprouting. 

 

The vine cuttings (or slips) of OFSP and sprouted corms of taro were then propagated (i) at UKZN’s 

research farm (Ukulinga), and (ii) in raised greenhouse beds located at UKZN in Pietermaritzburg 

(Figure 4-1). An automated drip irrigation system was programmed to deliver 10 mm of water daily. 

Although the propagation of planting material began two months prior to the target planting date, 

insufficient OFSP material was produced to only cover a 50 m by 50 m area (2500 m2) and not 6,400 

m2 as originally planned. 
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(a) (b) 

Figure 4-1  Propagation of (a) orange flesh OFSP (199062.1 cultivars) and (b) taro (Dumbe 

dumbe landrace) in rasied greenhouse beds located at the University of KwaZulu-

Natal in Pietermaritzburg 

 

4.2.3 Experimental design  

This rainfed study was conducted at two sites selected for field trials within the Fountainhill Eco-estate 

as shown in Figure 4-2. Trial site 1 was 9,750 m2 (130 by 75 m) in size and was allocated to taro. Trial 

site 2 was approximately 130 by 50 m (6,500 m2), which was allocated to OFSP. Both trial sites provided 

sufficient fetch to accurately measure crop water use using two micrometeorological techniques 

described in Section 4.2.5. 

 

 
Figure 4-2 Satellite-based image showing the location of the two trial sites at Fountainhill Eco-

estate (source: Google Earth®) 
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4.2.4 Agronomic practices 

Land preparation involving mechanical ploughing and disking of both trial sites was completed by 

Fountainhill staff in early November 2021, which was delayed by equipment breakdowns. This resulted 

in the trials being planted later than initially excepted. Mechanical ploughing was necessary to ensure 

that weeds were removed prior to planting. However, the agronomic practices described next were 

completed mainly by two postgraduate students working on the project, together with staff from UKZN’s 

Ukulinga research farm as well as casual workers from the local Swayimane community. 

 

4.2.4.1 Planting 

Planting of taro corms and OFSP vines was completed at site 1 and 2 on 18-19 November and 13-14 

December 2021, respectively. Trial establishment involved 20 workers from the Swayimane community. 

Both trials were planted at a target density of 20,000 plants ha-1 (1 m row spacing and 0.5 m plant 

spacing). Sweet potato vines were hand planted on ridges, whereas taro corms were individually sown 

at a depth of 0.15 m in furrows that were opened up mechanically. Trial establishment involved 20 

casual workers from the Swayimane community. 

 

4.2.4.2 Fencing 

Although both trial sites were already fenced off, a second (inner) fence was installed at site 1 and 

strengthened with netting, to prevent further animal damage in the second season. At site 2, the fence 

was also reinforced with netting and secured with heavy logs to prevent animals destroying the growing 

roots. These tasks were completed with the assistance of staff from the UKZN’s research farm. This 

was necessary after the Farm Manager eventually admitted that both trial sites are highly susceptible 

to animal damage, and thus are no longer used by the farm for sugarcane production. 

 

4.2.4.3 Fertilisation 

Based on the results of soil fertility tests (cf. Section 4.2.6.2), the required fertiliser application rates 

were calculated for both trial sites, including the number of fertiliser bags that needed to be purchased. 

An organic fertiliser called Gromor Accelerator® (30 g kg-1 N, 15 g kg-1 P and 15 g kg-1 K) was applied 

at a rate of 5,333 and 3,333 kg ha-1 to site 1 (taro) and site 2 (OFSP), respectively. The fertiliser 

application rate was calculated by accounting for the amount of pure Nitrogen (in kg ha-1) recommended 

by Cedara (cf. Section 4.3.2.1), the pure Nitrogen content of the Gromor Accelerator® fertiliser and the 

trial site area. Fertiliser granules were applied 10 cm away from each transplanted vine or corm. 

 

4.2.4.4 Pest and weed control 

During sweet potato propagation, the crops were sprayed with Kemprin insecticide (a/l cypermethrin), 

diluted at a rate of 185 ml per 16 L of water. The same insecticide was sprayed halfway through the 

growing season at the experimental site at the same dilution rate. 

 

Prior to planting and midway through the growing season, weed growth was controlled by spraying both 

trial sites with Gramoxone (pre-emergent herbicide) at a dilution rate of 200 ml per 16 L of water. 
However, high temperatures and frequent rainfall events that occurred after planting, resulted in rapid 

weed development. Due to the university being closed in the last week of December 2021, it was not 

possible to organise casual workers to assist with weeding. Hence, this task was delayed to the end of 

January 2022, which not only influenced initial crop growth but also delayed crop measurements to the 

9th of February (57 DAP). 
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4.2.5 Instrumentation 

Crop water use refers to the amount of soil water a) lost by evaporation, and b) utilised for biomass 

accumulation via transpiration. Various methods are used to measure crop water use, of which 

hydrological approaches (e.g. soil water balance and lysimetric measurements) are the most common. 

More recently, micro-meteorological techniques (e.g. eddy covariance and surface renewal) have also 

been used to assess crop water use. The soil water balance method was used to estimate crop water 

use, which was then compared to measurements obtained by the eddy covariance and surface renewal 

techniques, as explained next. 

 

For the soil water balance method, runoff plots were only installed at trial site 1 as the gradient was 

deemed sufficient to produce overland flow. Weekly field visits were undertaken to measure runoff and 

crop growth, as well as to ensure that other instrumentation was working correctly. Daily rainfall 

measurements were obtained from the AWS located on the eco-estate. No irrigation was applied since 

the trials were rainfed. The CS650 soil moisture probe (Campbell Scientific Inc, Utah, USA) was used 

to directly measure volumetric soil water content. Three probes were installed at depths of 0.15, 0.30 

and 0.60 m, considering the rooting depth of OFSP and taro seldom exceeds 0.60 m (Mabhaudhi, 2012; 

Masango, 2015; Mulovhedzi, 2017). Furthermore, a hard layer of sandstone was found below 60 cm, 

which prevented the installation of additional sensors to measure drainage beyond the effective rooting 

zone. Soil water content measurements were made every 15 to 30 minutes, then averaged to hourly 

and daily values and stored using a CR1000 data logger (Campbell Scientific, Utah, USA).  

 

A lattice mast tower was setup at trial site 1 and 2 in June and August 2021, respectively (Figure 4-3). 

On each tower: 

• an eddy covariance (EC) flux system was installed at 1.5 m (Campbell Scientific Inc., Logan, 

Utah, USA), which consisted of a three-dimensional sonic anemometer (Campbell Scientific 

Inc., Logan, Utah, USA) for measuring sonic temperature, wind speed and direction, as well as 

an infrared gas analyser (IRGA) (Campbell Scientific Inc., Logan, Utah, USA) for measuring 

atmospheric CO2 concentrations (Nordbo et al., 2012); 

 

• a surface renewal (SR) system was installed which consisted of two type-E fine wire 

thermocouples connected to two arms for measuring air temperature at high frequency above 

the canopy (1 m) and within the turbulent boundary layer (3 m) (Nagler et al., 2005; Nordbo et 

al., 2012). 

 

  

(a) (b) 

Figure 4-3  Micrometeorological equipment installed at the (a) taro and (b) OFSP trial sites 

located within the Fountainhill Eco-estate 
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The EC and SR methods were connected to a CR3000 and CR1000 data logger (Campbell Scientific, 

Utah, USA), respectively. The high frequency (10 Hz) measurements of wind speed, wind direction, 

sonic temperature and air temperature (via thermocouples), together with 2- and 30-minute averages, 

were calculated and stored by the data loggers for further analysis. All instrumentation was powered by 

two 12V DC batteries secured in a strongbox near each lattice mast. Battery voltage was monitored 

weekly and batteries were changed once their voltage dropped below 12.2V DC. At trial site 2 (OFSP), 

a solar panel was installed to help recharge the batteries to minimise battery replacements. 

  

Other relevant sensors required to complete the shortened energy balance equation were also installed. 

These included soil heat flux plates (HFP01-15) (Delft, Netherlands) at 8 cm, soil temperature averaging 

thermocouples (TCAV-L) (Campbell Scientific Inc., Utah, USA) at 2, 5 and 8 cm, a NR-LITE net 

radiometer (Kipp and Zonen, Delft, Netherlands) at 3 m and a Vaisala HMP45C-L temperature and 

relative humidity probe (Campbell Scientific Inc., Utah, USA) at 2 m. In addition, two DS-2 sonic 

anemometers (Decagon Devices, Washington, USA) were installed to measure wind speed and 

direction above the canopy (1 m) and within the turbulent boundary layer (2 m). 

 

4.2.6 Data collection 

At both sites, weekly measurements of crop growth (e.g. plant height, leaf number, leaf area index & 

biomass accumulation) and health/stress indicators (chlorophyll content index, stomatal conductance 

& leaf temperature) began on 9 February 2022 in four (1 m by 1 m) quadrants, each with four plants, 

i.e. 16 plants in total. Destructive sampling was also conducted every week for sweet potato, but every 

two weeks for taro. 

 

4.2.6.1 Climate 

Using data collected by the sensors attached to each lattice mast and buried in the ground, the Penman-

Monteith method (Equation 5) was used to calculate hourly and daily reference evapotranspiration 

(ETO in mm d-1) for a hypothetical grass surface (Allen et al., 1998). The equation requires daily net 

radiation (Rn in MJ m-2 d-1), air temperature (T in °C), wind speed (u2 in m s-1) and relatively humidity 

(RH in %) measured at 2 m above the ground: 

 

𝐸𝑇𝑂 =  
0.408∆(𝑅𝑛 − 𝐺)  +  𝛾

900
𝑇 +  273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆  +  𝛾(1 +  0.34𝑢2)
 Equation 5 

 

For daily estimates of ETO, soil heat flux density (G in MJ m-2 d-1) is presumed to be zero. The saturated 

vapour pressure (es in kPa) is calculated from daily maximum and minimum air temperature, from which 

the actual vapour pressure in kPa (ea) is estimated using relative humidity (es·RH/100). The term (es - 

ea) represents the vapour pressure deficit (kPa) and Δ is the slope of the vapour pressure curve (kPa 

°C-1). The altitude of the site is required to estimate the atmospheric pressure in kPa, which is then used 

to determine the psychrometric “constant” (γ) in kPa °C-1. 

 

ETO was estimated using FAO’s ETO Calculator utility (version 3.2; FAO, 2012a), which is based on the 

FAO56 (Penman-Monteith) method described by Allen et. al. (1998). It is important to note that ETO 

was calculated from daily climate variables, which is slightly less accurate than daily totals derived from 

hourly-derived values, especially for the summer months (Kunz et al, 2020). However, it is generally 

accepted that the accuracy gained by using hourly data does not warrant the effort required. Although 

most crop simulation models can calculate ETO within the model, the preferred approach was to 

calculate this variable externally for error checking purposes. For example, it is unknown why ETO 

values calculated by the SWB crop model were lower than those calculated using ETO Calculator 

(ETO_SWB = 0.81·ETO_FAO + 0.54; R2 = 0.967. 
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4.2.6.2 Soil fertility 

During the first season, soil samples were taken for the top 15 cm from trial site 1 (August 2020) and 

site 2 (February 2021) for fertility analysis. The analysis was undertaken by the Cedara laboratory at 

the College of Agriculture (KwaZulu-Natal) using recognised techniques as described by Manson and 

Roberts (2001). 

 

4.2.6.3 Soil depth and texture 

Soil depth was randomly augured across both sites, which is at least 1.2 m deep, i.e. no layer restricting 

root development was found. Soil samples augured at three depths (0.15, 0.30 & 0.60 m) were taken 

at both trial sites, then sent to the College of Agriculture (Cedara, KwaZulu-Natal) to determine particle 

size distribution as described by Manson and Roberts (2001). Fractions of sand, silt and clay were also 

determined in the soil and water laboratory at UKZN using the hydrometer method. Soil texture was 

then determined using the USDA classification system adopted by South Africa’s taxonomic soil 

classification system (SCWG, 1991). 

 

4.2.6.4 Dry bulk density 

Undisturbed soil cores taken at three depths were placed in an oven at 105°C for 24 hours, after which 

the dry soil mass was measured. The length and diameter of the soil core was measured to determine 

its volume. Thereafter, the dry bulk density was calculated, which was then used to estimate the porosity 

of the soil using standard equations. 

 

4.2.6.5 Soil water content 

Soil water content was determined from gravimetric samples taken infrequently, which were converted 

to volumetric content using the (i) measured dry bulk density measurements, and (i) the density of water 

at 20°C. As noted in Section 4.2.5, soil water content was monitored at each site using CS650 probes 

installed at three depths. 

 

Trial site 2 (OFSP) was visited on 20th December 2021 because the CS650 probes were providing 

intermittent measurements. The sensors and/or wiring were likely damaged when the lattice mast was 

moved the previous week. The replacement of these sensors was unfortunately delayed to 9th February 

2022, after a set of unused CS616 probes were eventually sourced. These probes were then calibrated 

against gravimetric samples, which showed that they under-estimated soil water content by 6% (site 1) 

and 3% (site 2), and thus all measurements were adjusted accordingly. 

  

4.2.6.6 Soil water retention 

In the soil and water laboratory at UKZN, the soil water retention curve for each depth was obtained 

using the controlled outflow method using the detailed methodology described by Mokonoto (2018). 

The soil water retention curve is determined from observations of the amount of water (in mL) released 

in a certain amount of time at a given pressure (Adhanom et al., 2012; Marshall and Holmes, 1988). In 

essence, each soil core was initially saturated with water, then allowed to drain naturally to determine 

the soil water content at saturation. The sample was then desorbed of water at suction pressures 

ranging from 10 to 33 kPa to determine field capacity. Further readings were taken at increasing 

pressures, which were then used to determine soil water retention curves using the van Genuchten 

(1980) equation. From the soil water retention curves, volumetric water content (in %) at field capacity 

(FC) and permanent wilting point (PWP) were estimated using a pressure head of -10 and -1500 kPa, 

respectively.  
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4.2.6.7 Saturated hydraulic conductivity 

Saturated hydraulic conductivity (KSAT) represents the ease of water flow when a saturated soil is 

subjected to a hydraulic gradient. KSAT typically decreases with increasing soil depth due to the 

presence of less organic matter and more clay (Karuku et al., 2012). At each trial site, KSAT was 

measured using the constant-head permeameter method for each undisturbed core obtained at the 

three depths. This method involves applying Darcy’s law to saturated soil cores (Klute, 1965). 

 

4.2.6.8 Crop development  

During the growing season, the following crop parameters were measured: (i) plant height, (ii) leaf 

number, (iii) leaf area index, (iv) biomass accumulation, and (vi) root/tuber formation. Measurements 

(and observations) were again undertaken using protocols developed by the Crop Science discipline at 

UKZN. 

 

Plant height: Plant height refers to the distance from the soil surface to the tip of the youngest developing 

leaf (before floral initiation) or the growing panicle tip (post floral initiation). Plant height was measured 

every week using a tape measure. 

 

Leaf number: Leaves that were fully unfolded, expanded and photosynthetically active (i.e. with at least 

a 50% green leaf area) were manually counted each week. 

 

Leaf area index: Leaf area index (LAI) represents the ratio of one-sided leaf area per unit ground surface 

area occupied by the plant (LI-COR, 2010). A portable leaf area meter (model LAI-2200, LI-COR, 2010) 

was used to measure LAI. To ensure adequate light interception by the canopy, measurements were 

taken from above and below the crop canopy on sunny days. 

 

Canopy cover: Canopy cover (CC in %) development was estimated from LAI measurements using the 

Beer-Lambert equation as follows:  

 

𝐶𝐶 =  100 · (1 − 𝑒−𝑘·𝐿𝐴𝐼) Equation 6 

 

where k represents the light extinction coefficient. A value of 0.85 was used for OFSP (Masango, 2015). 

For taro, Bernardes et al. (2011) provided 15 measurements of k, which ranged from 0.44-0.91 (average 

of 0.68). 

 

However, another preferred method of calculating CC uses LAI measurements to compute the diffuse 

non-intercepted radiation (DIFN). This method was not used in season 2 because the data card in the 

LAI meter was faulty. DIFN values enable CC development to be calculated using the following equation 

as suggested by Mabhaudhi et al. (2014b): 

 

𝐶𝐶 = 100 · (100 − 𝐷𝐼𝐹𝑁) Equation 7 

 

Crop phenology:  

Crop development was observed at various phenological stages over the growing season. These 

include the time from transplanting/sowing to: 

• recovered plant, 

• maximum rooting depth, 

• maximum canopy cover, 

• start of leaf senescence 

• start of yield formation, and 

• harvest maturity. 
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For example, when at least 10% of the crop foliage has senesced without the formation of any new 

foliage, then leaf senescence has occurred (Mabhaudhi et al., 2014b). Crop phenological stages were 

initially recorded in calendar days, which were then converted to growing-degree days (GDD). The 

same method used by the AquaCrop model was adopted, which is called “Method 3”. The latter was 

adapted from “Method 2”, that was initially developed by McMaster and Wilhem (1997). 

 

Destructive sampling techniques were employed to measure above- and below-ground biomass 

production (fresh & dry weight basis). Randomly selected plants were removed from the field. The plants 

were weighed to determine fresh mass, then oven-dried at constant temperature (75°C) for 48 hours 

and re-weighed to obtain dry mass.  

 

4.2.6.9 Crop health 

Chlorophyll content index (CCI) and stomatal conductance (SC) were used as indicators of plant health. 

Measurements (and observations) were again undertaken using protocols developed by the Crop 

Science discipline at UKZN. For example, the adaxial (upper) surface of the second youngest, fully 

unfolded leaf was used for CCI measurements over the measurement period. Furthermore, SC was 

measured weekly between 12h00 and 13h30 on days with sufficient sunlight with minimal to no cloud 

cover. 

 

4.2.6.10 Final biomass and yield 

A total of 30 plants from two rows were harvested at the end of the season. Harvested plants were then 

separated into leaves, vines/stems and roots/tubers. Each component was weighed before and after 

being air/oven dried. Final accumulated biomass and root/tuber yield were measured, from which the 

harvest index was calculated, i.e. as the ratio of root/tuber yield to total biomass, then expressed as a 

percentage. 

 

4.2.6.11 Crop water use 

Daily crop water use was measured using the EC and SR methods (cf. Section 4.2.5). The SR method 

was calibrated against the method. The 30-minute averages of latent energy flux (λET in W m-2) 

calculated by the data logger were multiplied by a factor 0.000734 to convert them into equivalent 

depths of crop evapotranspiration (ET in mm). This factor equals the number of seconds in 30 minutes 

(1800 s) divided by the latent heat of vapourisation λ (2.454 × 106 J kg-1). The half-hourly ET estimates 

were then summed for daylight hours (i.e. when Rn was positive) to obtain daily values. Seasonal crop 

water use was estimated by summing daily ET values from planting to physiological maturity. 

 

From the daily measurements of crop ET and ETO, daily crop coefficients were calculated, then 

averaged to monthly values. Monthly crop coefficients were determined for the fallow period prior to 

planting (from July/August to November/December) and after harvest (April/May to July/August), similar 

to the approach adopted by Kunz et al. (2020). Even though these KC values were determined for non-

standard conditions where plant water stress was not alleviated by irrigation, they were needed for the 

hydrological modelling component of this project (cf. Chapter 7). 

 

4.2.6.12 Nutrient content 

After the trials were harvested, OFSP and taro samples were peeled and sliced, then stored in a deep 

freeze at -20°C to preserve nutrient content. In June 2022, frozen material was oven-dried at 60°C (for 

48 hours), then milled and ashed. The material was sent to a laboratory at the Institute for Commercial 

Forestry Research (ICFR) for analysis of nutrient content. The following elements were measured: B, 
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Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, and Zn. For Mo analysis, a standard was imported from the US. In 

addition, total C, N and S were also determined. 

 

All OFSP and taro samples sent to the ICFR laboratory were scanned with a near-infrared (NIR) 

spectrometer to develop calibration models for each measured parameter. The advantage of this is that 

future samples do not require laboratory analysis, just a single NIR scan to obtain nutrient content. For 

example, Magwaza et al. (2016) used a pool of 104 sweet potato varieties to develop a NIR model to 

predict protein content in sweet potato. The results demonstrated that NIR can rapidly and accurately 

predict protein content and is cheaper than laboratory analysis. 

 

β-carotene content was determined by the Horticultural laboratory at UKZN. Two fresh root/tuber 

samples were peeled, chopped into cubes and freeze-dried at -80°C for 96 hours. The samples were 

blended to form a powder, mixed with hexane, acetone and saturated NaCl, then vortexed and 

centrifuged to achieve phase separation. The top layer was extracted and filtered, then injected into a 

High-Performance Liquid Chromatography (HPLC) system. β-carotene content was then calculated 

from peak area generated from a standard calibration curve (Biehler et al., 2010; Biswas et al., 2011). 

The β-carotene was not undertaken for OFSP leaves (only roots) or taro. 

 

4.2.6.13 Water productivity 

Aim 5 of this project relates to improving knowledge of crop and nutritional water productivity of RTCs 

(cf. Section 1.2). These two metrics were calculated using the equations given in Section 2.5.5. 

 

4.2.7 Crop modelling 

A preliminary analysis was undertaken to determine the feasibility of using default crop parameters, 

with little to no adjustment, to estimate crop water productivity using two crop simulation models 

(CSMs). The methodology used is briefly described next. For more detail, the reader is referred to 

Mthembu (2023). 

 

4.2.7.1 Model selection 

For this exercise, the SWB and AquaCrop models were chosen, which are described in Section 6.2.1 

(cf. Chapter 6). 

 

4.2.7.2 Model inputs 

Climate data: Rainfall data was obtained from the AWS located at Fountainhill Eco-estate. Air 

temperature was measured site 2 with the EC method. ETO was calculated using net radiation, air 

temperature, relative humidity and wind speed from the EC method (cf. Section 4.3.1). Climate files 

required by both CSMs were developed using the daily rainfall, temperature (maximum and minimum) 

and ETO data measured over the growing season. The default ambient carbon dioxide (CO2) 

concentrations packaged with the AquaCrop model for Mauna Loa (Hawaii) were used for the 

simulations. 

 

Soil data: A detailed description of soil characteristics at each trial site was provided in Section 4.3.2. 

Based on field observations, roots did not extend beyond 0.6 m and thus, the soil profile depth was set 

to 60 cm. From experience, AquaCrop provides better simulations when using a single soil layer as 

opposed to two layers (i.e. A- and B-horizons). Hence, observations at each of the three depths (0.15, 

0.30 & 0.60 m) were depth weighted to provide values for a single profile, as shown in Table 16-7 

(Section 16.3). Total available water is the difference between field capacity and permanent wilting 

point, expressed in mm per m of soil depth. Readily evaporable water was also estimated from field 

capacity and permanent wilting point as per the equation (2.23s – 4; p 2-266) provided by Raes et al. 
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(2018). The curve number was based on KSAT values measured for the topsoil as recommended in the 

AquaCrop manual (Raes et al., 2018). The SWB model also requires the dry bulk density and a depth-

weighted value of 1.7 was used. Two additional parameters required by the model are the drain factor 

and drainage rate, which were set to 0.7 and 70 mm d-1, respectively. The initial soil water content of 

44.2 mm was obtained from the volumetric water measurements provided by the CS650 soil moisture 

sensors. 

 

Field management: For the field management options in AquaCrop, the non-limiting fertility option was 

selected since the trials were fertilised at the required rate (cf. Section 4.2.4.3). No mulch layer was 

considered to mimic field conditions. Factors that affect surface runoff were also not invoked, due to the 

flat terrain at the experimental site. Since the field trial was kept relatively weed-free from 57-118 DAP, 

the option to suppress canopy cover development due to the presence of weeds was not considered. 

An irrigation file was not created as the crop was grown under rainfed conditions. 

 

4.2.7.3 Model parameters 

AquaCrop: As explained in Section 5.2.6.3, the decision was made to use crop parameters derived by 

Rankine et al. (2015) and Beletse et al. (2013), but where possible, replace certain values obtained 

from the field work conducted in season 2. 

 

SWB: The SWB model was calibrated and validated for OFSP (Resisto cultivar) by Masango (2015) 

using data from a field trial undertaken at Hatfield experimental farm (University of Pretoria, Gauteng) 

during the 2011/12 season. 

 

Calibration: A minimal calibration was done following guidelines developed by Steduto et al. (2012), 

where certain parameters were fine-tuned, i.e. adjusted to values observed or measured in the second 

season. The list of 18 parameters published by Rankine et al. (2015), together with corresponding 

values from Beletse et al. (2013) and the parameter values that were adjusted using field observations 

from the season are presented in Table 16-9 (cf. Section16.3). For example, maximum canopy cover 

(CCx in AquaCrop) is one of the important parameters to fine-tune (Steduto et al., 2012). Based on 

observations (cf. Figure 4-24 in Section 4.3.7.1), a value of 92% was used for OFSP. The maximum 

rooting depth of 0.6 m was observed at physiological maturity after digging a trench between the rows. 

Most of the crop phenological parameters were initially observed in calendar days, which were then 

converted to growing-degree days as suggested by Raes (2016b) (cf. Table 16-8 in Section16.3). The 

maximum evapotranspiration of 7.1 mm was measured at 112 DAP by the EC method (Reddy, 2024). 

For the SWB model, a minimal calibration was also done where nine parameters were adjusted to better 

represent the 199062.1 cultivar grown at Fountainhill as shown in Table 16-10 (cf. Section16.3). 

 

4.2.7.4 Model simulations 

For both models, the planting date and plant density were set to the 14th of December 2021 and 20,000 

plants ha-1, respectively. This was done to mimic field conditions as described in Section 4.2.4.1. Crop 

water use and yield simulated by SWB and AquaCrop were used to calculate the crop water productivity. 

In addition, simulations of LAI (SWB), CC (AquaCrop), biomass accumulation, tuber yield and soil water 

content were compared to field measurements. The results are presented in Section 4.3.7. 

 

4.2.7.5 Model evaluation 

Four statistical measured were used to evaluation model performance, namely the (i) coefficient of 

determination (R2), (ii) root mean square error (RMSE), (iii) Nash-Sutcliffe efficiency coefficient (NSE), 

and (iv) Willmott’s index of agreement (d). The number of observations (n) was also provided to help 

with the interpretation of the statistics. Each statistical measure is explained in Section 5.2.6.5. 
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4.3 RESULTS AND DISCUSSION 

This study focused on measuring the water use, yield and nutrient content of two prioritised RTCs, 

namely OFSP and taro. A field trial was conducted for each crop at the Fountainhill Eco-estate during 

the 2021/22 season. Results obtained from both trials are presented next. 

 

4.3.1 Climate data 

Daily climatic data was obtained from an online data portal developed and maintained by SASRI for an 

AWS located at Fountainhill Eco-estate (AWS-512; 29°27'02" S; 30°32'42" E; 853 m a.s.l.). 

Measurements began on 13 August 2015, and thus are not shown due to incomplete record. Annual 

means/totals of precipitation (P), incoming solar radiation (RS), air temperature (T), relative humidity 

(RH), sunshine duration (SD), wind run (WR), reference grass evapotranspiration (ETO) and A-pan 

evaporation (EPAN) are shown in Table 4-2. 

 

Table 4-2  Annual means/totals of climate variables measured by the AWS located at 

Fountainhill Eco-estate near Wartburg 

YR 
P RS TMAX TMIN RHMAX RHMIN SD WR ETO EPAN 

(mm) (MJ m-2 d-1) (°C) (°C) (%) (%) (h) (km d-1) (mm) (mm) 

2016 700 15.1 24.7 10.5 80 53 5.6 125 3.1 3.6 

2017 853 16.0 24.4 10.1 75 52 6.3 166 3.3 3.9 

2018 682 15.7 24.5   9.9 80 53 5.8 201 3.5 4.1 

2019 603 15.4 25.3 10.5 77 51 5.7 135 3.2 3.7 

2020 757 16.1 24.9   9.9 77 51 6.2 118 3.2 3.8 

2021 793 14.3 24.0 9.7 81 54 5.1 129 2.9 3.5 

2022 977 14.2 24.2 10.2 81 58 5.0 100 2.8 3.3 

 

Climate data representative of Fountainhill was also obtained from another nearby SASRI AWS situated 

at Bruyns Hill near Wartburg (AWS-455; 29°25'00" S; 30°41'00" E; elevation 990 m a.s.l.). This AWS is 

located approximately 14 km from the Fountainhill AWS. The Bruyns Hill station has a 22-year climate 

record from 1 January 2001 onwards (Table 4-3). A comparison of the 7-year averages (AVE1) from 

both stations indicates that Fountainhill receives less rainfall than Bruyns Hill (766 vs 996 mm), but 

conditions are drier (RHMAX of 77 vs 89%) and windier at Fountainhill (139 vs 100 km d-1), which means 

slightly higher reference evapotranspiration rates (3.1 vs 2.9 mm). In addition, missing data at 

Fountainhill can be infilled with values from Bruyns Hill after adjusting for the altitude difference between 

the two AWSs (853 vs 990 m a.s.l.). 

 

Table 4-3  Annual means/totals of climate variables measured by the AWS located at Bruyns 

Hill near Wartburg 

YR 
P RS TMAX TMIN RHMAX RHMIN SD WR ETO EPAN 

(mm) (MJ m-2 d-1) (°C) (°C) (%) (%) (h) (km d-1) (mm) (mm) 

2016    982 14.3 24.1 11.7 75 52 5.1 110 3.0 3.5 

2017 1,095 14.4 23.9 11.5 95 42 5.2   96 2.8 3.3 

2018    851 15.3 24.3 11.1 93 42 5.7 100 3.0 3.5 

2019    835 14.9 24.8 11.6 79 50 5.5 103 2.9 3.5 

2020    851 16.1 23.8 11.8 93 44 6.3 102 3.0 3.5 

2021 1,098 15.3 23.1 11.6 95 46 5.8   95 2.7 3.2 

2022 1,263 14.9 23.1 12.1 95 49 5.5   93 2.7 3.2 

AVE1    996 15.0 23.9 11.6 89 46 5.6 100 2.9 3.4 

AVE2    877 15.2 24.0 11.8 78 51 5.7 139 3.2 3.8 

AVE1 = average from 2016 to 2022; AVE2 = average from 2001 to 2022 

 

https://sasri.sasa.org.za/pls/sasri/weatherweb/r/home/login_desktop
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Installation of the EC and SR equipment began in June (at site 1) and August (at site 2) 2021 at 

Fountainhill. The micrometeorological systems were finally removed from the field on the 6 September 

2022, after an entire year of ET data had been collected. The Fountainhill and Bruyns Hill stations only 

measure incoming solar radiation (RS), and thus outgoing longwave radiation (RL) is estimated. 

However, daily net radiation (RN) measured by the EC method at the taro site was used to estimate ETO 

(cf. Section 4.2.6.1), since it is more accurate than RN calculated from measured RS and estimated RL. 

Temperature, relative humidity and wind speed data measured by the EC methods were also used to 

calculate ETO, since the data better represented each trial site. ETO calculated from data measured at 

by the EC method at the taro site was compared to that obtained from the Fountainhill station, as shown 

in Figure 4-4. The graph shows the Fountainhill station under-estimated ETO when compared to the 

EC method, probably due to the Fountainhill station not being properly maintained as a result of the 

COVID-19 pandemic and associated lockdown periods. It also highlighted the importance of accurately 

calculating reference evapotranspiration for the trial sites. Based on this, it would have been better to 

install a tipping bucket rain gauge at the trial site. 

 

 
Figure 4-4 Reference evapotranspiration (ETO) measured by the eddy covariance (EC) system 

compared to that obtained from the Fountainhill (FH) weather station 

 

 As shown in Figure 4-5, the daily average air temperature ranged from 7.6 to 28.2°C (coldest: -0.1°C; 

hottest: 35.3°C). Frost was likely on 199 and 215 DAP due to low minimum temperatures. Daily ETO 

ranged from 0.7 to 8.1 mm for the trial sites. ETO is higher during periods of no rainfall and also 

decreases during periods of low temperatures. Since rainfall was not measured at the trial sites, daily 

data was obtained from the Fountainhill AWS. There was no rainfall data for 28 February 2022, which 

was corrected to 0 mm when compared to data from the Bruyns Hill AWS. It is worth noting that an 

unusually large rainfall event of 86.6 mm occurred in the late afternoon on 14th April (148 DAP of taro). 

Similarly, on 26th May 2022 (188 DAP), another large event of 101.1 m was recorded. Both events 

resulted in significant runoff events from the taro trial site. A total of 473 mm of rainfall fell over the 

OFSP growing period of 118 days, compared to 844 mm for the taro season (217 days). The hot and 

wet conditions experienced from 30-50 DAP resulted in excessive weed growth after planting. For the 

majority of the growing season, the maximum air temperature did not exceed 35˚C and thus, did not 

negatively affect crop development and yield. 

 

 

y = 0.7462x + 0.0225

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

E
T

O
-

F
H

 (
m

m
)

ETO - EC (mm)

R2 = 0.8941

RMSE = 1.176 



Crop and nutritional water productivity of sweet potato and taro 

39 
 

 

 
Figure 4-5 Variation in maximum (brown line) temperature, minimum (grey line) temperature, 

ETO (blue line) and rainfall (black bars) from 19 November 2021 (0 DAP) to 27 June 

2022 (220 DAP) at Fountainhill Eco-estate 

 

4.3.2 Soil properties 

In the first season, soil samples were taken at three depths (0.15, 0.30 & 0.60 m) from both trial sites 

to determine soil fertility, texture and water content (gravimetric & volumetric). Furthermore, undisturbed 

soil cores were obtained from open pits to determine bulk density, soil water retention and saturated 

hydraulic conductivity. The results from the analyses are presented next. 

 

4.3.2.1 Soil fertility 

The soil fertility tests highlighted the acidity of the soil, which was not corrected with an application of 

lime. The results were used to determine appropriate fertiliser application rates at both trial sites (cf. 

Section 4.2.4.3). The low clay content at site 2 (OFSP) indicates the soil is sandier in texture. The 

results highlight the variability in soils across the Fountainhill Eco-estate, as mentioned in Section 4.2.1, 

and indicate the importance of detailed analyses to be done for each trial site. 

 

Table 4-4  Chemical properties of soil samples taken at two trial sites at Fountainhill Eco-

estate in the first season 

Trial 

site 

Soil fertility characteristics 

Mg L-1 % 

P K Ca Mg Zn Mn Cu pH Org. C N Clay 

1 14.5 201.0 735.5 177.5 4.4 8.7 21.0 2.4 1.3 0.1 25.5 

2 239.5 378.5 913.5 159.0 4.8 28.2 17.0 4.0 1.9 0.1 12.5 

 

4.3.2.2 Soil texture 

The soil textural analysis shown in Table 4-5 for trial site 1 indicates that the top 0.3 m is dominated by 

sandy loam, which then transitions into a sandy clay loam at 0.6 m. This suggests that clay translocation 
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occurs at site 1, which involves the mechanical transfer (eluviation) of clay particles from the topsoil by 

percolating water and the redeposition of the clay particles in the subsoil (illuviation). For site 2, a loamy 

sand texture is dominant and there is no evidence of clay translocation. The fine silt fractions are similar 

for both sites and values relatively consistent (range 3-5%). The low clay and high sand content at site 

2 explains why animals could easily burrow under the perimeter fence and netting to eat the OFSP.  

 

Table 4-5  Soil particle size distribution and textural classes for three depths at each trial site 

Trial 

site 

Soil depth 

(m) 

Particle size distribution (%) Soil textural 

class Clay Fine silt Sand 

1 

0.15 17 3 80 Sandy loam 

0.30 16 4 80 Sandy loam 

0.60 34 3 63 Sandy clay loam 

2 

0.15 8 5 87 Loamy sand 

0.30 8 4 88 Loamy sand 

0 60 7 4 89 Loamy sand 

 

4.3.2.3 Soil water retention 

Soil bulk density (ρb) and soil porosity (Φ) were calculated using standard equations. The soil water 

retention parameters (SAT, FC and PWP) and saturated hydraulic conductivity (KSAT) were determined 

using the methods described in Section 4.2.6.4 to Section 4.2.6.7, respectively. For FC, values 

obtained at a suction pressure of 10 kPa were used (not 33 kPa). Soil porosity (Φ) agrees favourably 

with saturation (SAT), especially for site 2, which validates the soil water retention parameters obtained 

from the outflow pressure method. From the results presented in Table 4-6, the bulk density values are 

slightly higher than expected, considering ideal bulk densities range from 1.1 to 1.6 g cm-3 for clayey 

and sandy textured soils, respectively. Bulk densities exceeding 1.4-1.7 g cm-3 may affect root growth 

and values above 1.5-1.8 g cm-3 will likely restrict root growth (USDA, 1999).  

 

Table 4-6  Measurement of soil bulk density, soil water retention and soil hydraulic 

conductivity for trial sites 1 and 2 

Soil 
property 

Units 

Site 1 Site 2 

Sample depth (m) Sample depth (m) 

0.15 0.30 0.60 0.15 0.30 0.60 

ρb g cm-3 1.7 1.7 1.7  1.5  1.8  1.8 

Φ % volume  32  38  36   40   32   32 

SAT % volume  35  38  40   40   31   32 

FC % volume  25  23  23   31   21   20 

PWP % volume  10  11  10     7     5     8 

KSAT mm d-1  84    6    8 541 137 764 

 

Bulk density, soil water retention parameters and saturated hydraulic conductivity were also calculated 

using the Soil-Plant-Air-Water (SPAW) utility (Table 4-7), which was developed by the United States 

Department of Agriculture (Saxton and Willey, 2009). This software utility is based on a set of pedo-

transfer equations described by Saxton and Rawls (2006), which are updated versions of the original 

equations presented by Saxton et al. (1986). The input values required by SPAW are the particle size 

distribution (cf. Table 4-5) and organic matter content. The latter input was derived by multiplying the 

topsoil’s organic carbon content (cf. Table 4-4 in Section 4.3.2.1) by a factor of 1.724 (Howard, 1965). 

The default value in SPAW of 0.5% for soil organic carbon was used for the other two depths. 
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Furthermore, soil compaction, soil salinity and gravel content were not measured at Fountainhill and 

thus, default values in SPAW were used. 

 

Table 4-7  Calculation of soil bulk density, soil water retention and soil hydraulic conductivity 

for trial sites 1 and 2 using the SPAW utility 

Soil 
property 

Units 

Site 1 Site 2 

Sample depth (m) Sample depth (m) 

0.15 0.30 0.60 0.15 0.30 0.60 

ρb g cm-3  1.5  1.6 1.6    1.4    1.6    1.5 

Φ % volume   42   40  41     47     42     42 

SAT % volume   42   40  41     47     42     42 

FC % volume   18   16  30     13     10       9 

PWP % volume   12   10  21       8       5       4 

KSAT mm d-1 757 770  67 2,055 1,859 2,073 

 

A comparison of measured (Table 4-6) against calculated (Table 4-7) soil properties indicates the 

importance of measuring these values, especially when they are needed for the calibration and/or 

validation of crop simulation models. SPAW over-estimated SAT and FC compared to measured values. 

FC in the laboratory was determined at a suction pressure of 10 kPa, whereas SPAW is based on 33 

kPa. However, the largest discrepancy occurred between measured and calculated KSAT values, where 

measured values were much lower than calculated values. In addition, measured values were lower 

than the range 200-2000 mm d-1 given by Raes et al. (2018) for group I (sandy) soils, especially at trial 

site 1. 

 

4.3.3 Crop development 

OFSP: At both trial sites, regular measurements of crop growth (plant height, leaf number, leaf area, & 

biomass accumulation) and stress (chlorophyll content index, stomatal conductance & leaf temperature) 

began on 9 February 2022 in four (1 m by 1 m) quadrants, each with four plants, i.e. 16 plants in total. 

Destructive sampling was also conducted every week for OFSP and every two weeks for taro. The 

OFSP and taro trial was harvested in April and June 2022, respectively. This section provides a 

summary of the climate, soils, crop growth, water use, yield and nutrient content data obtained from the 

field trials conducted at Fountainhill. 

 

4.3.3.1 Plant height 

OFSP: The crop reached its maximum height of 69 cm at 112 DAP (Figure 4-6), which equates to an 

average increase of approximately 4 cm per week. This height reached was taller than the maximum 

value of 0.5 m provided by Pereira et al. (2021b) (cf. Table 16-13 in Section 16.4). 

 

Taro: The crop reached its maximum height of 54 cm after 157 DAP (Figure 4-9), which is much shorter 

than the maximum value of 1.2 m suggested by Pereira et al. (2021b) (cf. Table 16-13 in Section 16.4). 

However, pant growth was likely affected by weedy conditions up to 86 DAP. Plant measurements only 

began after the trials were weed free. 
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Figure 4-6 Plant height of OFSP grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Mthembu, 2023) 

 

 
Figure 4-7 Plant height of taro grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Reddy, 2024) 

 

4.3.3.2 Leaf number 

OFSP: From Figure 4-8, a similar trend was noted where leaf number (LN) steadily increased over the 

growing season until 112 DAP, after which it started to decline. From 57-112 DAP, LN increased on 

average by 9 every week, reaching a maximum value of 127. This value is substantially higher than that 

(~80) reported by Dladla (2017), who also grew sweet potato under peaked ridges at the same 

experimental site. The difference may have been due to the fertiliser application, which was not done 

by Dladla (2017). From 86 to 112 DAP, which represents the vegetative stage, LN increased from 80 

to 127. 
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Figure 4-8 Leaf number of OFSP grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Mthembu, 2023) 

 

Taro: Average LN peaked at ~12 at 141 days after planting (Figure 4-9). However , the plants continued 

to grow as shown in Figure 4-9. When compared to OFSP (Figure 4-8), taro has far fewer leaves, 

which affects both leaf area and transpiration rates.  

 

 
Figure 4-9 Leaf number of taro grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Reddy) 

 

4.3.3.3 Leaf area index 

OFSP: The measured LAI trend for OFSP over the growing season is shown in Figure 4-10. LAI peaked 

at 3.02 m2 m-2 at 112 DAP. The measured LAI values were comparable to those reported by Nyathi et 

al. (2016), which ranged from 1.8 to 4 m2 m-2. 

 

Taro: As shown in Figure 4-11, LAI peaked at 0.72 m m-2 at 136 DAP when leaf number stopped 

increasing (Figure 4-9). The shape of the LAI cure is almost identical to the leaf number curve. Taro’s 

LAI was much lower compared to OFSP (Figure 4-10), due to the lower number of leaves. 
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Figure 4-10 Leaf area index of OFSP grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Mthembu, 2023) 

 

 

 
Figure 4-11 Leaf area index of taro grown under rainfed conditions over the 2021/22 growing 

season at Fountainhill (Reddy, 2024) 

 

4.3.3.4 Canopy cover 

OFSP: As noted in Section 4.2.6.8, canopy cover (CC) was estimated from LAI using the Beer-Lambert 

equation (Figure 4-12). An extinction coefficient of 0.85 (Masango, 2015) was used. As expected, CC 

followed a similar trend to LAI (cf. Figure 4-10). Maximum CC of 92.3% was reached at 112 DAP, which 

are both important parameters required by the AquaCrop model. 
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Figure 4-12 Estimated canopy cover of OFSP grown under rainfed conditions over the 2021/22 

growing season at Fountainhill (Mthembu, 2023) 

 

Taro: CC was estimated from LAI using the Beer-Lambert equation (Figure 4-13). An extinction 

coefficient (k) of 0.68 (Bernardes et al., 2011) was used. However, k was determined from the season 

3 experiment (cf. Section 5.3.7.2), and thus was also used to estimate CC using a value of 0.81. 

Maximum values of 38.8 (k = 0.68) and 44.3% (k = 0.81) were reached at 136 DAP when LAI peaked 

at 0.72 (Figure 4-11). 

 

 
Figure 4-13 Estimated canopy cover of taro grown under rainfed conditions over the 2021/22 

growing season at Fountainhill (Reddy, 2024) 

 

4.3.3.5 Biomass accumulation 

OFSP: The accumulation of fresh biomass, measured weekly over the growing season, is presented in 

Figure 4-14. The decline in fresh above-ground biomass (AGB) after 100 DAP marked the translocation 

of carbon assimilates from above- to below-ground development, which results in reduced AGB and 

increased tuber yield. This is similar to findings reported by Al-Jamal et al. (2001), Belehu (2003) and 

Masango (2015).  
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Figure 4-14 Fresh biomass accumulation of OFSP grown under rainfed conditions over the 

2021/22 growing season at Fountainhill (Mthembu, 2023) 

 

The difference between the fresh (Figure 4-14) and dry biomass accumulation (Figure 4-15) was 

substantial during the latter stages of the measurement period. During the initial stage of crop 

development, the fresh crop had a low water content therefore, a small amount of water was lost during 

the oven-drying process. However, as the crop grew, the roots and leaves accumulated larger amounts 

of water. Therefore, large differences between fresh and dry biomass accumulation were observed 

towards the end of the growing season. Masango (2015) found that over a growing season, the dry total 

biomass of sweet potato exhibits a sigmoidal curve, which was also observed here. 

 

 
Figure 4-15 Dry biomass accumulation of OFSP grown under rainfed conditions over the 

2021/22 growing season at Fountainhill (Mthembu, 2023) 

  

Taro: The accumulation of fresh biomass, measured weekly over the growing season, is presented in 

Figure 4-16. No decline in fresh AGB was noted, which occurred for OFSP (Figure 4-14). Tuber 

formation began after 136 DAP and was completed ~30 days later. These two values are required as 

input parameters for the AquaCrop model, namely the (i) start of yield formation (line no. 56), and (ii) 

length of the harvest index buildup period (line no. 60). 
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Figure 4-16 Fresh biomass accumulation of taro grown under rainfed conditions over the 

2021/22 growing season at Fountainhill (Reddy, 2024) 

 

Differences between fresh (Figure 4-16) and dry biomass accumulation (Figure 4-17) are due to the 

storage of water in the leaves, stems and tubers. Therefore, the tuber formation period is much clearer 

and shows a rapid growth phase from 136 to 150 DAP. The reason for the large decline in tuber mass 

from 150 to 178 DAP is unclear but may be related to a loss of starch or root mass.  

 

 
Figure 4-17 Dry biomass accumulation of taro grown under rainfed conditions over the 2021/22 

growing season at Fountainhill (Reddy, 2024) 

 

4.3.4 Crop health 

4.3.4.1 Chlorophyll content index 

The chlorophyll content index (CCI) was measured over the growing season as it can be used to indicate 

plant health and the plant’s ability to capture photosynthetically active radiation (Devnarain et al., 2016). 

CCI can also indicate plant senescence and maturity, as it increases during plant development, then 

starts to decrease towards (or after) the maturity stage. 

 

OFSP: CCI showed an increasing trend until 100 DAP, reaching a maximum value of 58.1% (Figure 

4-18). The CCI trend was similar to that obtained by Dladla (2017) who obtained a maximum CCI value 

of approximately 65%. The slow decline in CCI towards the end of the season is due to the “stay-green” 

trait of OFSP, which is similar to other crops such as sorghum. 
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Figure 4-18 Chlorophyll content index of OFSP grown under rainfed conditions over the 

2021/22 growing season at Fountainhill (Mthembu, 2023) 

 

Taro: CCI peaked on 75.5% at 123 DAP, then decreased towards the end of the season, which may 

indicate the start of senescence (Figure 4-19). The decline was more apparent from 164 DAP and far 

more noticeable when compared to OFSP (Figure 4-18). 

 

 
Figure 4-19 Chlorophyll content index of taro grown under rainfed conditions over the 2021/22 

growing season at Fountainhill (Reddy, 2024) 

 

4.3.4.2 Stomatal conductance 

Stomatal conductance (SC) is the rate at which carbon dioxide (CO2) and water vapour diffuses in and 

out of leaf stomata, respectively (Mabhaudhi, 2012). The opening and closing of stomata determine the 

rate of diffusion, and thus SC can be considered an important indicator of plant water stress (Cornic 

and Massacci, 1996). One of a crop’s defence mechanisms to water stress is stomatal closure, which 

reduces the transpiration and photosynthetic rates and increases leaf temperature. These changes 

result in reduced plant growth. Higher transpiration rates increase the flow of CO2 into plant leaves, thus 

implying more photosynthesis and increased plant growth. 

 

OFSP: The relationship between stomatal conductance (SC) and leaf temperature (LT) is shown in 

Figure 4-20. After 70 DAP, LT declined steadily in response to ambient conditions, which gradually 
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cooled towards the end of the growing season (118 DAP). However, the highest SC of the season 

(1,256 mmol m-2 s-1) was measured at 86 DAP. This was due to the warm and less humid conditions 

that resulted in high transpiration rates. Furthermore, 20.6 mm of rainfall occurred on day 83, and thus 

there was sufficient soil water that resulted in a high transpiration rate (i.e. high SC). The yellowing of 

leaves and stunted crop growth, which occurs due to crop water stress, was not observed during the 

growing season. The results also showed no evidence that water stress over a prolonged period 

occurred during the growing season, especially during critical stages of crop development. The tuber 

initiation and filling development stages are critical for tuber growth, and thus water stress should be 

avoided during these stages. 

 

Taro: Leaf temperatrue peaked at 32.7°C at 115 DAP, then declined towards the end of the season in 

response to the cooling weather conditions (Figure 4-21). Low SC rates at 107, 141 and 206 DAP co-

incided with cool, cloudy and rainy conditions when ETO was 1.1, 0.8 and 1.4 mm, respectively. 

Similalry, SC peaked at 115 and 129 DAP during warm and sunny conditions when ETO exceeded 4 

mm. 

 

 
Figure 4-20 Stomatal conductance and leaf temperature of OFSP grown under rainfed 

conditions over the 2021/22 growing season at Fountainhill (Mthembu, 2023) 

 

 

 
Figure 4-21 Stomatal conductance and leaf temperature of OFSP grown under rainfed 

conditions over the 2021/22 growing season at Fountainhill (Mthembu, 2023) 
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4.3.5 Crop water use and yield 

4.3.5.1 Crop evapotranspiration 

At both trial sites, the eddy covariance (EC) and surface renewal (SR) methods provided water use 

estimates for both crops. The EC method is considered the “gold” standard and provides the most 

reliable water use estimate. However, due to the cost and complexity of implementing this technique, 

cheaper alternatives such as SR are gaining popularity. Energy fluxes were calculated using two 

methods (direct & energy balance), which produced very similar results. Since the infrared gas analyser 

is more susceptible to moisture effects than the standard 3D ultrasonic anemometer, the latter 

instrument was preferred for EC measurements.  

 

The classic SR method, referred to as SR-1, requires calibration against the EC method to obtain the 

so-called alpha factor. Hence, SR-1 will always provide similar results to those obtained from the EC 

method. In addition, sensible heat flux was also calculated using dissipation theory (SR-DT). An 

improved method called SR-2 does not need calibration against the EC method. Sensible heat is 

calculated using Monin-Obukhov similarity theory ,which requires measurements of wind speed at 

canopy height (using a DS-2 sensor), LAI measurements and the height from the ground to the lowest 

leaf. However, Masanganise et al. (2022) recently showed that SR-DT was more accurate in estimating 

soybean ET compared to SR-2. Furthermore, SR-DT requires fewer input parameters and thus, is more 

robust and less expensive compared to SR-2. Hence, sensible heat flux was not estimated at site 1 for 

taro. 

 

Results show that SR tends to under-estimate crop water use when compared to the EC method (Table 

4-8). Sensible heat flux could not be calculated using dissipation theory (SR-DT) at site 2 due to the 

failure of the DS-2 sensor (suspected lightning damage). The high frequency measurements have 

shown that when the fine-wire thermocouple is cold or wet, sensible heat flux is over-estimated and 

thus, latent heat flux approaches zero, i.e. ET = 0 mm. This can occur (i) during and after rainfall events, 

and (ii) in the early morning after dew formation (i.e. when air temperature is below dew point 

temperature). The thermocouples also need to be kept free of spider webs and will under-estimate ET 

in dusty environments. However, when compared to EC, SR provides better estimates of soil water 

evaporation for bare soil conditions. Furthermore, the SR method is much cheaper and easier to install 

than the EC method. 

 

Table 4-8 Comparison between observed crop water use (ET) for OFSP and taro grown under 

rainfed conditions at Fountainhill Eco-estate during the 2021/22 season 

Method 
Crop water use (ET in mm) 

OFSP Taro 

EC 354.0 357.8 

SR-DT - 349.1 

SR-1 322.2 330.4 

 

From the daily measurements of crop ET and ETO, daily crop coefficients were calculated, then 

averaged to monthly values for the fallow period prior to planting (Sep-Nov 2021) and after harvest 

(May-Aug 2022) as shown in Table 4-9. A 2nd order polynomial was fitted through the measured KC 

values (R2 = 0.9825) to predict values for Mar and April of 0.76 to 0.53, respectively. Even though these 

KC values were determined over the fallow period for non-standard conditions, they were needed for 

the hydrological modelling component of this project (cf. Chapter 7). The KC values obtained in this 

project were higher than those measured consecutively from May to October 2017 at Baynesfield 

(KwaZulu-Natal) by Masanganise (2019). One of the reasons for the difference in crop coefficients is due 

to the higher weed load at Fountainhill during the fallow period. At Baynesfield, far fewer weeds 

emerged after the maize crop was harvested, which is attributed to the regular use of herbicide 
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(Roundup) at this commercial farm. Hence, the fallow KC values obtained in this project better reflect 

smallholder farming systems, where weeds are not regularly sprayed. For comparison, Mbangiwa (2018) 

determined crop coefficients at Baynesfield during a fallow period in summer. 

 

Table 4-9 Monthly crop coefficients (KC) estimated for the fallow period at Fountainhill and 

Baynesfield 
1Site Year Dec Jan Feb May Jun Jul Aug Sep Oct Nov Source 

FH 
2021/

22 
   0.38 0.26 0.20 0.27 0.29 0.44 0.62 Reddy (2024) 

BF 2022    0.26 0.15 0.10 0.18 0.22 0.40  
Masanganise 

(2019) 

BF 
2012/

13 
0.54 0.98 0.95      0.18 0.52 

Mbangiwa 
(2018) 

1FH = Fountainhill; BF = Baynesfield  

 

4.3.5.2 Final yields and harvest index 

OFSP: From the beginning of March 2021, animals began burrowing under the perimeter fence, which 

was strengthened with netting and weighted down using heavy logs (Figure 4-22a). The animals 

therefore gained entry to trial site 2 to dig up and eat the OFSP roots (Figure 4-22b). The decision was 

therefore made to harvest the trial on 11 April (118 DAP), which was justified considering the severity 

of animal damage that occurred in the following week. The roots were completely destroyed by the 

animals by the second week after harvest. 

 

  
(a) (b) 

Figure 4-22 Evidence of animal entry (a) and damage (b) to OFSP roots grown at Fountainhill 

Eco-estate (trial site 2) during the 2021/22 season 

 

A total of 15 plants were harvested from two representative rows, totalling 30 plants and 109 roots. 

Plants were separated into their separate components (leaves, vines & roots). Each component was 

weighed to obtain the fresh mass. Owing to the volume of harvested material, samples were then air-

dried (not oven-dried) in a greenhouse over seven days to obtain dry mass. Harvested yields were then 

scaled up to a per hectare basis. The leaves, stems and vines contribute to the above-ground biomass, 

while the total biomass includes the above-ground biomass and the storage root yield. The fresh and 

dry storage root yield obtained at harvest was 34.89 and 12.12 t ha-1, respectively. The fresh and dry 

above-ground biomass was 11.02 and 9.81 t ha-1, respectively. 
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The fresh root yield is slightly higher than the range 7.6 to 32.2 t ha-1 reported by Masango (2015), 

Mulovhedzi (2017) and Dladla et al. (2019). However, the dry tuber yield was substantially higher than 

values reported by Masango (2015) and Mulovhedzi (2017), which ranged from 6.5 to 7.6 t ha-1 and 7.5 

to 8.7 t ha-1, respectively. The dry yield is within the 4.4 to 17 t ha-1 range reported by Nyathi et al. 

(2019a). 

 

From the results, a fresh:dry ratio of 2.88 and a harvest index (dry yield) of 55%.were calculated. The 

fresh:dry ratio is required to convert dry yields simulated by crop models to fresh yields and is also 

important for the dried foods industry. This harvest index was within the ranges of 22-77% (Bhagsari 

and Doyle, 1990) and 37-81% (Bouwkamp and Hassam, 1988). In addition, the harvest index was 

comparable to values reported by Masango (2015), Mulovhedzi (2017) and Yeng et al. (2012), which 

ranged from 41-63%. Although sweet potato is mainly consumed fresh, it is important to conduct 

research on dry yield for the dried foods industry (Mulovhedzi, 2017), as well as for calculating fresh 

yields from dry yields simulated by crop models. However, for dual-purpose crops such as sweet potato, 

relatively high HI values are desirable since the leaves are edible. 

 

Taro: The taro trial was weeded again in April and May 2022 and the trial was finally harvested on 24 

June, as (i) dew formation in the early morning was resulting in leaf tip burn, and (ii) animals had begun 

to damage the outer rows of the trial. A total of 15 plants were harvested from two representative rows, 

totalling 30 plants. An allometric study was then undertaken, where the plants were separated into their 

separate components (leaves, stems, roots & tubers). Each component was weighed to obtain the fresh 

mass. The samples were then oven-dried for 48 hours at 60°C to obtain the dry mass of each 

component (Figure 4-23). Harvested yields were then scaled up to a per hectare basis. 

 

  
(a) (b) 

Figure 4-23 Oven-drying of taro (a) leaves, stems and roots, and (b) corms that were harvested 

on 24 June 2022 

 

The mass of fresh and dry material was used to calculate a final yield of 11.79 fresh t ha-1 and 4.91 dry 

t ha-1, respectively. Hence, the fresh to dry mass ratio is 2.40, which as mentioned previously, is required 

to convert dry yields simulated by the crop models to fresh yields. 

 

4.3.6 Crop and nutritional water productivity 

4.3.6.1 Nutrient content 

OFSP: Measured nutrient content of OFSP is presented in Table 14-1 (Section 14). Ca, Mg and Na 

levels were substantially higher than those reported by Mabhaudhi et al. (2019). Similarly, Fe and Zn 

levels were much higher than values obtained by Nyathi et al. (2019a). Foliar samples showed higher 
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values compared to the roots for almost all elements (cf. Table 14-3 in Section 14). In particular, the 

leaves had much higher (10-30 times) contents for Ca, Mn, Mg and B  

 

Taro: For taro tubers, measured mineral contents (Table 14-2 in Section 14) were compared to values 

obtained by Shelembe (2020) for two water treatments, as shown in Table 4-10. The values for Ca and 

Mg obtained in this project are within the ranges provided by Shelembe (2020). However, Fe and Zn 

values were much higher, and Na is considerably lower. 

 

Table 4-10 Comparison of nutrient content of taro tubers obtained in this project to those from 

Shelembe (2020) for two water treatments 

Element 
Nutrient content (mg kg-1) 

Rainfed Stressed Unstressed 

Ca 1,240 1,700 900 

Cu 7 4 5 

Fe 284 83 46 

Mg 1,281 1,600 1,100 

Na 29 372 230 

Zn 137 90 91 

Source Table 14-2 Shelembe (2020) 

 

The variation in nutrient content is also evident from the data shown in Section 14, especially for the 

OFSP foliar samples. It is important to note that similar to other crops, nutrient composition of RTCs 

also varies across, inter alia, varieties, climatic conditions, water availability, other environmental 

conditions (e.g. soil type and properties) and harvesting methods (Uusiku et al., 2010). This makes it 

particularly important to study linkages between growing environments and nutrition and health. It also 

makes it difficult to compare nutrient contents from different studies. However, this project has added 

to the existing knowledge base on nutrient content of RTCs, as provided in Section 3.3 (cf. Chapter 

3). 

 

Both crops were low in B and Cu, but especially Mo. African soils are typically deficient in B, Cu, Fe and 

Zn (Kihara et al., 2020). Therefore, when aiming to maximise micronutrient availability, foliar sprays 

consisting of these micronutrients should be applied regularly to the growing crop. Mo is tightly bound 

to clay particles, especially in acidic soils, and thus is not readily available for plant uptake. The soil pH 

at both sites was low especially at the taro site, which should have been corrected with agricultural lime 

to help increase the availability of applied N, P and K. including Mo.  

 

Overall, the results confirm that both OFSP and taro are dual-purpose crops, where both the 

roots/tubers and leaves are edible and exhibit high nutritional value are . The results support the finding 

by Chivenge et al. (2015) that a RTCs are known to be nutrient-dense, and thus their consumption can 

(i) address nutrition insecurity issues, and (ii) help to alleviate malnutrition. 

 

4.3.6.2 Crop water productivity 

One of the main aims of this project is to improve the knowledge on the efficiency and productivity of 

water required for rainfed production of RTCs (cf. Aim 5 in Section 1.2). Crop water productivity (CWP; 

dry kg m-3) is defined as the attainable yield (dry kg ha-1), relative to crop water use (i.e. ET in m3) 

accumulated from planting date to physiological maturity date. Crop water productivity increases by 

either improving yield or reducing ET (Pandey et al., 2000). 

 

OFSP: From observations, a CWP of 3.42 dry kg m-3 was calculated from dry yield and water use 

obtained from the EC method. In comparison, Mulovhedzi (2017) and Masango (2015) provided CWP 

values of 2.18 and 2.55 kg m-3, respectively. Nyathi et al. (2019a) obtained CWP values ranging from 
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1.05 to 2.78 kg m-3 for irrigated (supplemental) and fully fertilised experiments for two seasons, where 

leaves were not harvested. 

 

Taro: A CWP of 1.37 dry kg m-3 was calculated for taro, which is much lower than that for OFSP, due 

to taro’s lower yield. A CWP of 3.29 fresh kg m-3 was estimated, which is much higher than the range 

of 0.06 to 0.53 fresh kg m-3 reported by Mabhaudhi (2012).  

 

4.3.6.3 Nutritional water productivity 

CWP (dry kg m-3), derived using water use measured by the EC method, was then multiplied by the 

measured nutrient content (in g kg-1 of edible portion) to obtain nutritional water productivity (NWP; in g 

m-3). The NWP metric is most sensitive to NC since CWP is a constant value. Results are presented in 

Table 14-4 (cf. Section 14) for OFSP (roots and leaves) and taro tubers. For OFSP, leaves exhibited 

higher NWP values than roots, especially for Ca, B, Fe, Mg, Mn and S. However, for 6 of the 11 

elements, taro’s NWP was lower than that of OFSP. 

 

For taro, no comparison could be made with figures determined by Shelembe (2020) as fresh (not dry) 

yields were given and crop water use was based on the amount of irrigation applied in the two 

treatments (not actual crop ET) (cf. Section 3.3.2).  

 

The NWP values obtained in this study for OFSP roots are much higher than other published values 

(e.g. Mabhaudhi et al., 2019; Nyathi et al., 2019b), especially for Ca, Fe, Mg, Na and Zn (cf. Section 

3.3.1). Lunqvist et al. (2021) reported values that range from 1.885 to 2.945 g m-3. The NWP for β-

carotene content in tubers (0.51 g m-3) was higher than values reported by Mulovhedzi (2017), which 

ranged from 0.09 to 0.11 g m-3 but was similar to the range of 0.43 to 1.88 g m-3 given by Mabhaudhi et 

al. (2019) for the same cultivar. OFSP is known for its high β-carotene content. Laurie et al. (2012) 

recommended that breeding programmes should aim to improve NWP in OFSP roots and leaves. 

 

4.3.7 Crop modelling 

For OFSP, the AquaCrop and SWB models were evaluated by comparing simulated and observed 

canopy cover (CC) development, leaf area index (LAI), above-ground biomass accumulation and 

storage root yield over the growing season. The model’s ability to predict the final biomass, yield and 

crop water use under rainfed conditions was also evaluated. Model performance was evaluated using 

the following four statistics: (i) root mean square error (RMSE), (ii) Nash-Sutcliffe efficiency coefficient 

(NSE), and (iii) Willmott’s index of agreement (DI), and (iv) the coefficient of determination (R2). Each 

statistic is described in more detail in Section 5.2.6.5. 

 

4.3.7.1 Canopy cover 

A problem with the data storage card in the LAI-2200 canopy analyser (LI-COR, USA) resulted in 

corrupted DIFN values. Hence, CC development could not be estimated from DIFN, and was therefore 

estimated using the Beer-Lambert equation. A light extinction coefficient (k) of 0.85 obtained from 

Masango (2015) was used in this study. 

 

In AquaCrop, it is important to obtain good agreement between simulated and observed canopy cover 

(cf. Section 5.2.6.4). As shown in Figure 4-24, AquaCrop under-simulated initial CC development for 

OFSP, which resulted in a relatively high RMSE of 9.5%. A NSE of 0.765 indicates the model’s ability 

to provide reasonable simulations of CC development, which is in contrast to the high Willmott’s D-I and 

R² of 0.954 and 0.957, respectively. 

  



Crop and nutritional water productivity of sweet potato and taro 

55 
 

 

 
Figure 4-24 Comparison between simulated (AquaCrop) and observed canopy cover 

development for OFSP grown under rainfed conditions over the 2021/22 season at 

Fountainhill (after Mthembu, 2023) 

 

Transpiration is directly related to CC, whereas soil water evaporation is proportional to the area of 

uncovered soil (i.e. 1 – CC). Achieving high canopy cover is therefore important in reducing soil water 

evaporation losses and improving biomass production via maximising transpiration. As leaves grow, 

evaporation from the soil surface decreases (due to shading effects) and transpiration from leaf surfaces 

increases. Canopy coverage of about 70 to 80% for crops results in higher transpiration. The under-

estimation of CC in the early- to mid-stages of development will result in higher simulation of soil water 

evaporation and reduced transpiration, thus resulting in lower biomass production (cf. Section 4.3.7.3. 

 

4.3.7.2 Leaf area index 

AquaCrop does not simulate leaf area index (only canopy cover development). Hence, a comparison 

of simulations against observations was only undertaken for the SWB model. A good correlation (R² = 

0.938) between simulated and observed leaf area index (LAI) was obtained using the SWB model 

(Figure 4-25). The model slightly over-estimated LAI from 57-86 DAP. However, from 94-117 DAP, the 

model under-estimated LAI. peak LAI was not well simulated as indicated by the RMSE of 0.364 m2 m-

2. Overall, SWB’s ability to simulate LAI was deemed very good. 
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Figure 4-25 Comparison between simulated (SWB) and observed leaf area index for OFSP 

grown under rainfed conditions over the 2021/22 season at Fountainhill (after 

Mthembu, 2023) 

 

4.3.7.3 Biomass accumulation 

AquaCrop: Although the R² between simulated and observed above-ground biomass (AGB) 

accumulation was reasonable (0.614), the other statistical measures indicated that AquaCrop under-

estimated this variable for most of the growing season (Figure 4-26). Observations showed that leaf 

and vine biomass production increased rapidly after ~78 days and peaked at 100 DAP, then decreased 

after senescence. 

 

 
Figure 4-26 Comparison between simulated (AquaCrop) and observed dry above-ground 

biomass for OFSP grown under rainfed conditions over the 2021/22 season at 

Fountainhill (after Mthembu, 2023) 

 

SWB: Similar results were obtained from the SWB model as shown in Figure 4-27, which also under-

estimated AGB accumulation. Masango (2015) also showed that AGB was under-simulated by the 

model. However, SWB (and AquaCrop) predicted the final biomass well. 

 

 
Figure 4-27 Comparison between simulated (SWB) and observed above-ground biomass for 

OFSP grown under rainfed conditions over the 2021/22 season at Fountainhill 

(after Mthembu, 2023) 
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4.3.7.4 Storage root yield 

AquaCrop: Dry storage root yield was under-estimated by AquaCrop, despite the high R² and D-I values 

(Figure 4-28). The high RMSE (2.643 t ha-1) and low NSE are likely due to the consistent under-

estimation of root yield, especially during the mid-season growth stage. However, the simulation did 

improve slightly towards the end of the growing season. 

 
Figure 4-28 Comparison between simulated (AquaCrop model) and observed dry storage root 

yields for OFSP under rainfed conditions over the 2021/22 growing season (after 

Mthembu, 2023) 

 

SWB: The high R² value of 0.964 between simulated and observed root yield again shows this statistical 

indicator can be misleading. The SWB model under-estimated root yield (Figure 4-29), which resulted 

in a high RMSE, negative NSE and low DI. A negative NSE indicates poor model performance (FAO, 

2015; Zhong and Dutta, 2015). Annandale et al. (2005) stated that the SWB model was originally 

designed for predicting crop water use, and not for predicting crop yield. They added that various 

consultants reported they did not get sufficiently accurate yield and biomass simulations, which may 

explain the model’s poor performance. AquaCrop provided a better simulation of root storage yield 

when compared to the SWB model. 

 

 
Figure 4-29 Comparison between simulated (SWB model) and observed dry storage root yields 

for OFSP under rainfed conditions over the 2021/22 season at Fountainhill (after 

Mthembu, 2023) 
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4.3.7.5 Final biomass and yield 

The modelling results showed that the SWB model substantially under-estimated the observed dry yield 

of OFSP, despite the minimal calibration that was undertaken (cf. Section 4.2.7.3). This suggests that 

the model did not adequately account for the translocation of assimilates from the leaves, vines and 

stems to the roots as the crop approached maturity. This issue is further highlighted by the under-

simulation of HI by the SWB model. AquaCrop also under-estimated the final root yield, but to a far 

lesser extent. The HI simulated by AquaCrop was 48%, which indicates an almost equal sharing of 

assimilates between above-ground biomass and root formation. Dry yields simulated by the models 

were converted to fresh yields using the fresh:dry ratio obtained from observations. 

 

Table 4-11  Simulated versus observed data for final root yield, total biomass and harvest 

index for OFSP grown under rainfed conditions at Fountainhill 

Method 

Final root yield 

(kg ha-1) 

Above-ground 

biomass 

 (kg ha-1) 

Harvest 

index (%) 

Fresh Dry Ratio Dry Dry 

Observed 34,890 12,120 2.88   9,810 55 

Simulated (AquaCrop) 27,693   9,620 2.88 10,340 48 

Simulated (SWB) 12,954   4,500 2.88   8,900 34 

 

4.3.7.6 Soil water content 

Soil water content (SWC) was measured using CS616 probes installed on day 57 after planting, due to 

the failure of the CS650 probes. As shown in Figure 4-30, SWC water content was closer to permanent 

wilting point than field capacity throughout the season, due to the high drainage rate of the sandy soil 

found at trial site 2. However, this did not negatively effect on crop development, which suggests that 

OFSP can utilise soil water held at higher matric potentials than other crops. 

 

 
Figure 4-30 Comparison between profile water content measured by CS616 probes at 

Fountainhill and simulations by the SWB and AquaCrop model (after Mthembu, 

2023) 

 

0

5

10

15

20

25

0

5

10

15

20

25

57 62 67 72 77 82 87 92 97 102 107 112 117

R
a
in

fa
ll
 (

m
m

)

S
o

il
 w

a
te

r 
c
o

n
te

n
t 

(%
)

Days after planting

Rainfall SWC - CS616 AquaCrop model

SWB model FC PWP



Crop and nutritional water productivity of sweet potato and taro 

59 
 

 

According to Annandale et al. (2005), the SWB model is well suited to simulating crop water use and 

soil water content (SWC). Other studies also reported that AquaCrop is a valuable tool for simulating 

SWC (e.g. Pereira et al., 2015). However, neither model adequately estimated SWC when compared 

to measurements from the CS616 probes. For most of the measurement period, the AquaCrop model 

simulated a higher SWC relative to the SWB model (Figure 4-30). The SWB model’s initial SWC was 

set at 18%, which was obtained from the CS650 probes at planting. For AquaCrop, the default option 

was used, which assumes the initial SWC is at FC (23%). This decision was due to AquaCrop’s 

sensitivity to water stress at emergence (FAO, 2017). 

 

4.3.7.7 Crop water use 

Both models were used to estimate crop water use as ET accumulated over the growing season. When 

compared to the value of 354 mm measured by the EC method, both models over-estimated crop ET. 

Even though the site 2 was completely flat and the soil had a high sand content (loamy sand texture), 

both models simulated runoff. In AquaCrop, the coefficient of initial abstraction (Ia) was changed from 

0.20 (version 4 or below; Raes et al., 2012) to 0.05 (version 5 or above; Raes et al., 2018), based on 

research by Woodward et al. (2003). Thus, version 5 or later generates more runoff than previous 

versions. The SWB model also uses a single value for Ia of 0.20, whereas ACRU requires monthly 

values (COIAM), with the default value being 0.20. 

 

AquaCrop simulated no capillary rise due to the sandy soil texture, whereas the SWB model does not 

account for capillary rise. However, SWB calculates interception loss, but AquaCrop does not. Although 

both models simulated relatively similar ET, AquaCrop simulated much less transpiration compared to 

SWB. This is explained by the under-simulation of canopy cover development in the early- to mid-stages 

of development (cf. Figure 4-24 in Section 4.3.7.1). 

 

Table 4-12  Simulated (AquaCrop and SWB) vs measured ET for OFSP  

Variable (mm) 
Aqua- 

Crop 

SWB 

Precipitation (P) 472.9 472.9 

Irrigation (I)   

Runoff (R) 46.9 65.4 

Drainage (Dr) 97.3 64.2 

Change in soil water content (∆S) 31.9 8.3 

Crop water use (ET) 376.7 388.4 

Transpiration (T) 164.6 216.3 

Soil water evaporation (E) 212.1 172.1 

 

4.3.7.8 Crop water productivity 

From observations, a CWP of 3.42 kg m-3 was calculated from dry yield and water use obtained from 

the EC method as shown in Table 4-13. CWP values of 2.55 and 1.16 were kg m-3 were calculated 

From the AquaCrop and SWB model simulations, respectively. The low CWP simulated by the SWB 

model was largely influenced by the low tuber yield. AquaCrop was able to better predict observed CWP 

when compared to the SWB model. 
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Table 4-13  Comparison between simulated and observed crop water productivity of OFSP 

grown under rainfed conditions  

 Method 
Tuber yield 

(dry kg ha-1) 

Water use  

(ET in m3) 

Crop water 

productivity 

(kg m-3) 

Measured 12,120 3,540 3.42 

AquaCrop   9,620 3,767 2.55 

SWB   4,500 3,884 1.16 

 

4.3.7.9 Nutritional water productivity 

NWP was estimated as the product of nutrient content and model-derived CWP. These values were 

then compared to observed NWP for each element. The results shown in Table 4-14 highlight the 

importance of the models to adequately simulate yield and CWP. Hence, the minimal calibration of each 

model is vital for accurate simulations of CWP and NWP. 

 

Table 4-14 Observed versus estimated NWP of OFSP for the 2021/22 season at Fountainhill 

Element 

NWP (g m-3) 

Observed 
AquaCrop 

model 

SWB 

model 

K 79.59 59.38 26.93 

P 11.56 8.62 3.91 

Ca 4.69 3.50 1.59 

Mg 3.46 2.58 1.17 

β-c 0.68 0.50 0.23 

Na 0.22 0.16 0.07 

Fe 0.14 0.11 0.05 

Zn 0.05 0.04 0.02 

Mn 0.04 0.03 0.01 

B 0.02 0.01 0.01 

Cu 0.01 0.01 0.00 

Mo 0.00 0.00 0.00 

 

4.4 SUMMARY AND CONCLUSIONS 

Based on the literature review presented in Chapter 3, one common cultivar of OFSP (199062.1) was 

selected for further study based on its high β-carotene content. Vines were obtained from the College 

of Agriculture in Cedara (KwaZulu-Natal). An upland (eddoe type) taro landrace called Dumbe dumbe 

was sourced from smallholder farmers in Swayimane. Vine cuttings of OFSP and sprouted taro corms 

were then propagated two months prior to the target planting date. Taro and OFSP were planted on 19 

November and 14 December 2021 respectively, at a target density of 20,000 plants ha-1 at two trial sites 

within the Fountainhill Eco-estate near Wartburg (KwaZulu-Natal). Both trials were initially affected by 

excessive weed growth, which was finally cleared on 9th February 2022. Prior to planting, a lattice mast 

was installed at each trial site and fitted with EC (e.g. 3D sonic anemometer) and SR (e.g. fine wire 

thermocouple) equipment to measure crop water use. 

 

A total of 16 plants were randomly selected, which underwent regular measurements of plant height, 

leaf number, leaf area index, chlorophyll content index, leaf temperature and stomatal conductance. 

Leaf area index was then used to estimate canopy cover development using the Berr-Lamber equation. 
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Root/tuber formation and above-ground biomass accumulation were also determined from random 

destructive sampling. Phenological growth stages were also recorded as the time from 

transplanting/sowing to (i) recovered plant, (ii) maximum rooting depth, (iii) start of leaf senescence, (iv) 

start of yield formation, and (iv) physiological maturity. The final above-ground biomass and root/tuber 

yield was measured from 30 plants harvested 118 and 217 DAP for OFSP and taro, respectively. 

 

Results showed that storage root development for OFSP starts early and continues throughout most of 

the season, whereas taro tubers form later in the season and develop rapidly. Taro’s height, leaf number 

and LAI were all lower than expected, which may have been a consequence of weed competition. 

OFSP’s leaf area is much higher than for taro, especially before and during the vegetative growth phase. 

This is due to OFSP’s higher leaf number when compared to taro. This resulted in more canopy cover 

and greater shading of the soil surface, leading to less soil water evaporation. Hence, soil water 

evaporation is dominant for approximately two months after taro is planted, which highlights the need 

for proper weed maintenance before and after emergence. This helps to explain why both crops used 

a similar amount of water, despite the difference in crop cycle (118 vs 217 days). 

 

Due to the threat of animal damage at Fountainhill, OFSP was harvested prematurely, and thus 

observed yields may be lower than what could have been achieved. Summarised results are presented 

in Table 4-15 for both RTCs. Since the SR method was calibrated against EC, it will always produce 

similar results of crop water use. The EC method is considered the “gold” standard, and thus water 

productivity (crop and nutritional) calculations were based on EC estimates of crop water use. From the 

literature review, taro has a lower CWP when compared to OFSP. This was confirmed by results 

obtained in season 2, where taro’s CWP was much lower than that for OFSP (1.37 vs 3.42 kg m-3), due 

mainly to the yield difference (4.91 vs 12.12 dry t ha-1).  

 

Table 4-15 Measured data for OFSP and taro grown in the second season (2021/22) at 

Fountainhill 

Variable Method OFSP Taro 

Harvest index 
Fresh 76 63 

Dry 55 76 

Tuber yield (t ha-1) 
Fresh 34.89 11.79 

Dry 12.12 4.91 

Fresh/dry ratio  2.88 2.40 

Water use (mm) 

EC 354 358 

SR-DT - 349 

SR-1 322 330 

CWP (kg m-3) EC; Dry 3.42 1.37 

 

Harvested tuber and foliar samples were analysed to determine nutrient content for the following 

minerals: β-c, B, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn. In addition, total C, N and S were also 

measured. Nutrient contents were then multiplied by CWP to estimate nutritional water productivity 

(NWP). OFSP leaves exhibited higher nutrient contents compared to the roots for almost all of the 

analysed minerals. Taro tubers contained more nutrients for most minerals (except K) when compared 

to OFSP storage roots. This highlights the dual-purpose nature of OFSP and taro, where both the 

roots/tubers and leaves are edible and exhibit high nutritional value. 

 

For the modelling exercise, considerable effort was spent on creating reliable, error-free climate files 

for use in AquaCrop and SWB. The estimation of ETO should be undertaken accurately as possible, as 

was done in this project, especially if such data is used for (i) model calibration and/or validation, and 

for (ii) calculating of crop coefficients. Soil parameters required by both crop models (e.g. saturation, 

field capacity, permanent wilting point) were determined from laboratory measurements, which provided 

more accurate values compared to simulations by the SPAW model. Default (i.e. initial) crop parameters 
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for OFSP required by both crop models were sourced from the literature. Crop parameters were then 

fine-tuned (i.e. partially calibrated) to better represent local crop and growing conditions at trial site 2. 

The AquaCrop and SWB models were run to simulate CC, LAI, AGB and storage root yield of OFSP 

over the growing season. Since AquaCrop and SWB do not simulate LAI and CC respectively, model 

comparisons were done on biomass, storage root yield and soil water content. Although SWB 

performed slightly better when simulating biomass than AquaCrop, it substantially under-estimated 

storage root yield. This resulted in a large under-estimation of CWP by the SWB model when compared 

to AquaCrop. If CWP is under-estimated, then NWP will also be lower than observations. Based on the 

preliminary modelling results for OFSP, AquaCrop performed much better than SWB, and thus was 

selected to model the water use of both RTCs, as described in Chapter 6. Since the trials were rainfed 

(not irrigated), only a limited number of parameters could be adjusted. Hence, further work was required 

to improve AquaCrop simulations by adjusting other crop parameters, which is described in Section 

5.2.6, with results presented in Section 5.3.7.  
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5 MEASUREMENT OF WATER PRODUCTIVITY: SEASON 3 

5.1 INTRODUCTION 

In the final season, research efforts continued to address Aim 2 (cf. Section 1.2), namely to measure 

the water use and yield of OFSP and taro. As noted in Chapter 4, various problems were experienced 

at Fountainhill in the previous two seasons, especially trials being damaged by animals. Furthermore, 

the budget allocated to field work had been exhausted, mainly due to the (i) cost of taro corms 

purchased from Swayimane smallholder farmers to establish trials with sufficient fetch for the EC and 

SR to accurately estimate crop ET, and (ii) travel expenses associated with weekly visits to/from 

Fountainhill Eco-estate. Hence, there was a need to reduce field work-related expenses. Four raised 

beds (two for each crop) located in the same greenhouse on the Agric campus in Pietermaritzburg were 

secured for exclusive use by this project. Results from the greenhouse experiment were used to finalise 

crop parameters for OFSP and taro, which were required by AquaCrop for the national-scale model 

runs. This work formed part of Mr Reddy’s PhD study. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Planting material 

OFSP vines (199062.1 variety) were grown in other raised beds in the same greenhouse, from which 

cuttings (or slips) were propagated. This was important since no material was available from the 

horticultural greenhouse at the College of Agriculture in Cedara (KwaZulu-Natal). The sweet potato 

vines and leaves were also inspected for any disease and when identified, were discarded from the rest 

of the material. 

 

An eddoe type taro landrace (Dumbe dumbe) was obtained from the Swayimane community at no cost. 

Material with a well-defined root system was stored in a cool, dark room to help slow down the 

physiological process of starch breakdown (i.e. remobilisation of assimilates), before being planted into 

the two beds. Corms that were smaller in size with no defined root structure or were decomposing were 

discarded to prevent the spread of diseases or contamination with other taro corms. 

 

5.2.2 Experimental design  

Four raised beds were used in the greenhouse (two for each RTC). Two beds were fully irrigated to 

meet 100% of crop water requirement (i.e. non-stressed treatment) and the other two received deficit 

irrigation (30% of crop water requirement). 

 

5.2.3 Agronomic practices 

5.2.3.1 Site preparation 

The greenhouse tunnel beds were prepared prior to planting by hand ploughing with the help of 

Ukulinga staff. Hand hoes were used to manually remove weeds and for turning the soil to ensure a 

smooth seedbed. 

 

5.2.3.2 Planting 

The four raised beds in the greenhouse tunnel were planted on the 27th of October 2022. In each bed, 

two rows (0.60 m apart) were planted at a spacing of 0.30 m between plants, i.e. 55,556 plants ha-1. 

Planting rows were opened using hand hoes and individual OFSP vines and taro corms were 
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transplanted/sown. Once the taro emerged, gaps that appeared between plants in each bed were filled 

using material planted in an adjacent bed (Figure 5-1). 

 

Orange flesh sweet potato (199062.1 variety) 

  
 

 
 

Taro (Dumbe dumbe landrace) 

  
100% of CWR 30% of CWR 

Figure 5-1 Sweet potato and taro grown under two water treatments (i.e. 30% and 100% of 

CWR) 

 

5.2.3.3 Fertilisation 

Prior to the commencement of the experiment, soil samples taken at 0.15 m and 0.40 m from each of 

the four beds were sent to the ICFR laboratory for soil fertility and textural analysis. Based on the soil 

fertility results, fertiliser application quantities for each bed were calculated. Gromor Accelerator (0.30 

N: 0.15 P: 0.15 K) was applied to each of the four beds based on the soil fertility calculations. Gromor 

Accelerator was chosen due to its slow release of nutrients into the soil making it readily available for 

both crops during the growing period and is less harmful to the crops (i.e. prevents root and leaf burn). 

A further top dressing of fertiliser was not applied during the growing period. 
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5.2.3.4 Pest and weed control 

Prior to planting, the beds were sprayed with a contact herbicide (Gramoxone) to control weeds. A 

dilution of 150 ml of herbicide per 16 L of water was used to spray each of the four beds. A period of 

approximately one week was allocated for spraying and settling prior to planting. When necessary, 

weeds were manually removed from the beds throughout the growing season. 

 

Observations of white fly infestations and red spider mites were sprayed with Applaud insecticide. The 

taro beds were mostly affected by the spider mites. A dilution of 30 to 60 ml per 16 L of water of Applaud 

was used. Insects such as grasshoppers, ants and caterpillars were also observed. Kemprin insecticide 

was sprayed using a dilution of 32 ml per 16 L of water. Pest control was important to prevent a breakout 

in the greenhouse that could have affected adjected experiments. 

 

5.2.4 Instrumentation 

For the partial calibration of AquaCrop to be successful, the following was required: 

 

• measurements of net radiation, wind speed, air temperature and relatively humidity (minimum & 

maximum) inside the greenhouse; 

• calculation of the evaporating power of the atmosphere (ETO) using the FAO56 (Penman-Monteith) 

method described by Allen et al. (1998); 

• recordings of weekly irrigation volumes applied to each water treatment; 

• measurements of physical soil characteristics in each bed; and 

• observations of crop phenology and life cycle for each crop; 

5.2.4.1 Climate 

A battery-powered automatic weather station was installed inside the greenhouse. Daily reference 

evapotranspiration was calculated using FAO’s ETO Calculator utility (FAO, 2012a) using 

measurements of: 

• solar radiation (CMP3 pyranometer; Kipp and Zonen, Delft, Netherlands), 

• air temperature and relative humidity (Vaisala HMP60; Campbell Scientific Inc., Utah, USA), 

and 

• wind speed (DS-2 ultrasonic anemometer; Decagon Devices, Washington, USA). 

 

5.2.4.2 Irrigation system 

Irrigation equipment was purchased from a local irrigation company and installed to facilitate both water 

treatments. The irrigation system included a 24V AC irrigation controller (Hunter X-core), two water 

meters, two solenoid valves, dipper lines, emitters, piping and connections. A pressure reducing valve 

was also purchased to reduce the incoming water pressure from 5 to 2 bars, which is required for drip 

irrigation systems. 

 

5.2.4.3 Soil water content 

Eight CS655 soil water probes (Campbell Scientific Inc., Utah, USA) were ordered from the supplier in 

late September 2022, yet were only delivered in mid-January 2023. Due to the delay in obtaining these 

probes, four CS650 and four CS616 probes were also installed at two depths (0.15 and 0.40 m). This 

facilitated a comparison of the different sensors manufactured by Campbell Scientific (CS). Despite the 

reported accuracy of the CS655 probes being ±3%, they were calibrated according to the procedure 

outlined in the product manual (Campbell Scientific, 2021).Calibration is deemed important when dry 

bulk density exceeds 1.55 g cm-3, which was not the case for the greenhouse beds. 
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5.2.5 Data collection 

5.2.5.1 Climate and soil water content 

The automatic weather station was connected to a CR1000 data logger (Campbell Scientific Inc., Utah, 

USA), together with the CS655 and CS616 probes. The CS650 probes were connected to a CR300 

logger (Campbell Scientific Inc., Utah, USA). Both data loggers were installed in waterproof boxes and 

powered by two 12V DC 100 Ah batteries housed in a strong box. Weather variables were measured 

at 15-minute intervals, from which hourly and daily values were calculated and stored by the data logger. 

The data logger was linked to a data telemetry system so that current conditions could be easily 

monitored online (Figure 5-2). 

 

 
Figure 5-2 Web-based monitoring of weather conditions (insider and outside), soil water 

content and battery status in the greenhouse at UKZN over the 2022/23 growing 

season 

 

5.2.5.2 Other soil properties 

Prior to planting, a small pit was dug in each of the four soil beds to obtain undisturbed soil cores at a 

soil depth of 0.30 m soil to determine dry bulk density. The cores were dried in an oven for 24 hours at 

a constant temperature of 105°C, then weighed to determine mass of solids. The length and diameter 

of each core was measured to calculate the volume of soil, from which soil bulk density was calculated. 

The undisturbed soil cores were also used to determine soil water retention parameters such as 

saturation (SAT), field capacity (FC) and permanent wilting point (PWP) using the controlled outflow 

pressure method in the soil water laboratory at UKZN. Outputs from the outflow pressure apparatus 

were used to create soil water retention curves via the Van Genuchten equation. From these curves, 

volumetric water content (%) at FC was estimated at a pressure head of -10 and -33 kPa. Similarly, 

PWP was obtained at a pressure of -1500 kPa, respectively. Saturated hydraulic conductivity (KSAT) 

was measured for each core using the constant head permeameter method. 
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5.2.5.3 Crop growth and yield 

Initial canopy cover: Once the experiment was established, the mean leaf area was measured at 90% 

emergence and used to estimate the initial canopy size (cm2 per plant). This variable was required by 

the AquaCrop model to estimate initial canopy cover (CCO). Thereafter, the following measurements 

were made weekly throughout the growing season. 

 

Canopy cover development: Leaf area index (LAI) was measured using a LAI-2200 plant canopy 

analyser (LI-COR Inc., Nebraska, USA), from which diffuse non-intercepted radiation (DIFN) was 

calculated. DIFN represents the fraction of sky not obscured by the plant’s canopy (LAI-2200, 2010). 

Canopy cover (CC) development (in %) was then calculated as 100·(1 – DIFN), as suggested by 

Mabhaudhi (2012). CC development was also estimated from measured LAI using the Beer-Lambert 

equation, which required a crop-specific parameter called the light extinction coefficient (k). This 

coefficient was measured for both crops using an AccuPAR model LP-80 ceptometer (Decagon 

Devices, Pullman, Washington, USA). Measurements of k were then compared to values sourced from 

available literature (cf. Section 4.2.6.8). 

 

Plant height and leaf number: Plant height (from the base of the stem to the top of the canopy) and leaf 

number (fully formed leaves) were also measured. 

 

Plant health: Chlorophyll content index (CCI) was measured weekly on dry, fully expanded and exposed 

leaves using a chlorophyll content meter (SPAD CCM-200 PLUS, Opti-Sciences, USA). Stomatal 

conductance (flux of carbon dioxide entering, or water vapour exiting, through the stomata of a leaf) 

was measured weekly (around midday) using a steady state leaf porometer (Model SC-1, Decagon 

Devices, USA). In addition, diurnal measurements were also made for sweet potato when the plant 

reached the end of the vegetative growth stage. No measurements were made for taro because the 

leaves were too thick for the instrument. 

 

Phenological development: The time taken to reach each phenological stage was recorded in calendar 

days when 50% or more of the experimental plant population exhibited diagnostic signs of that particular 

growth stage. Measurements of CCI were used to help determine the onset of senescence. The depth 

of growing roots was also closely monitored from emergence until the maximum rooting depth was 

obtained. The time in calendar days to reach maximum rooting depth and maximum canopy cover (CCX) 

was also recorded, which were required by AquaCrop was inputs. 

 

Biomass accumulation: Using destructive sampling, biomass accumulation (or total dry matter) was 

determined by measuring the mass of a representative plant (with the roots removed prior to weighing). 

 

5.2.5.4 Crop water requirement 

Weather data (solar radiation, air temperature, relatively humidity & wind speed) measured inside the 

greenhouse was used to calculate daily reference crop evapotranspiration (ETO), from which maximum 

evapotranspiration (ETC) was estimated via the single crop coefficient (KC) approach. For both crops, a 

KC value of 1.10 was used ((Table 16-13; cf. Section 16.4). Incremental increases in regular 

measurements of LAI for OFSP were used as a guide to increase KC over the growing season, such 

that KC increased from 0.20 (at planting) to 1.10 when LAI peaked at 3.0 m2 m-2. The irrigation depth to 

be applied when soil water content depleted by 40% of total available water (TAW) was calculated for 

each treatment, with the average being 12 mm (Table 5-1).  
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Table 5-1 Estimation of irrigation demand for each water treatment 

% of 

CWR 

Bed 

no. 

FC 

(% vol) 

PWP 

(% vol) 

AWC 

(mm m-1) 

ERD 

(m) 

TAW 

(mm) 

Allowable 

depletion 

Irrigation 

depth 

(mm) 

100 3 & 4 37.5 29.5 80 0.40 32 0.40 12.8 

30 1 & 2 43.5 36.5 70 0.40 28 0.40 11.2 

 

Daily ETC values were accumulated daily and when the total reached 12 mm, this irrigation depth was 

then applied to both raised beds receiving 100% of crop water requirement (CWR). For the water deficit 

treatment, 30% of ETC was accumulated daily, and thus intervals between irrigation events were longer. 

However, when extreme temperatures occurred in the greenhouse during regular load shedding and 

load reduction events (extraction fans stopped working), additional irrigation was applied to the crop to 

help ensure survival. Hence, the volume of irrigated water applied was recorded daily, which was then 

used to calculate the final irrigation depth applied to each treatment. 

 

5.2.5.5 Nutrient content 

As noted in Section 4.2.6.12, OFSP and taro samples (tubers & leaves) were sent to the Cedara 

laboratory (College of Agriculture, Cedara, KwaZulu-Natal) for nutrient analysis. In addition, samples 

were analysed by the Horticultural laboratory at UKZN to determine β-carotene content of OFSP. Ni 

comparison to the ICFR laboratory, the Cedara laboratory was unable to measure B or Mo but they did 

measure Al. 

 

5.2.6 Crop modelling 

5.2.6.1 Model selection 

As noted in Section 4.4, AquaCrop was selected to model the water use and yield of OFSP and taro. 

However, further work was required to fine-tune the crop parameters to improve model simulations, 

especially for taro. This was done using data from season 3 as described next. 

 

5.2.6.2 Model inputs 

Raes et al. (2018) noted that before running the AquaCrop model, it is important the following is done 

correctly: 

 

• Rainfall and air temperature (minimum, maximum and mean) data is measured at or nearby the 

experimental site. 

• The evaporating power of the atmosphere (ETO) is correctly determined using the FAO56 (Penman-

Monteith) method described by Allen et al. (1998). 

• Physical soil characteristics (e.g. soil depth, soil water retention and KSAT) of the various soil 

horizons are well defined. 

• Crop phenology and crop cycle are fine-tuned to the environment and the crop species. 

• Field management practices that affect soil surface runoff, reduce soil water evaporation (mulches), 

and crop development and production (soil fertility) are specified correctly. 

 

5.2.6.3 Model parameters 

AquaCrop (version 6.0) can simulate the growth, productivity and water use of 15 herbaceous crops 

(Raes et al., 2018). However, model parameters for RTCs such as sweet potato and taro have not been 

provided by FAO. In order to run AquaCrop, initial crop parameters were sourced from the available 

literature, as described next. 
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The Water Research Commission (WRC) has funded research on underutilised indigenous crops, 

which has led to the development of AquaCrop parameter files for OFSP and taro. For example, WRC 

Project No. K5/2171 titled “Nutritional water productivity of traditional vegetable crops” (Nyathi et al., 

2016) developed crop parameters for OFSP. Beletse et al. (2011; 2013) also developed crop 

parameters for OFSP (Isondlo cultivar) using experiments undertaken at the ARC’s rain shelter facility 

(Roodeplaat, Gauteng) across two seasons. Similarly, Rankine et al. (2015) used default AquaCrop 

parameters for potato (Raes et al., 2018), then developed calibrated values for OFSP for Jamaica. 

Pushpalatha et al. (2021) and Lamaro et al. (2023) also published calibrated parameter values for India 

and Ethiopia, respectively. For certain parameters, Lamaro et al. (2023) used the same values derived 

by Beletse et al. (2013). 

 

WRC Project No. K5/1771 titled “Water use of drought tolerant crops” (Modi and Mabhaudhi, 2013) 

developed crop parameters for bambara nut and taro. The calibration and validation of bambara nut 

was published by Mabhaudhi et al. (2014a). For taro, crop parameters were initially developed by 

Mabhaudhi (2012), then published by Mabhaudhi et al. (2014b). The authors concluded that despite 

canopy cover being under-estimated for rainfed conditions, the model was able to simulate final 

biomass and yield reasonably well. However, further research was required to improve simulations 

under water deficit conditions. Thereafter, Mabhaudhi et al. (2016a) adjusted certain crop parameters 

for taro to further improve simulations under rainfed conditions, which were then used to model the 

impacts of climate change on taro production. These parameters were also used to model the impacts 

of climate change on taro production as part of WRC Project No. K5/2717 (Kunz and Mabhaudhi, 2023).  

 

For each study mentioned above, four calibration (and validation) statistics were extracted for canopy 

cover (CC): (i) root mean square error (RMSE) or normalised RMSE (NRMSE), (ii) Nash-Sutcliffe 

efficiency coefficient (NSE), and (iii) Willmott’s index of agreement (DI), and (iv) the coefficient of 

determination (R2). Table 16-1 and Table 16-2 (cf. Section 16.1) show the calibration and validation 

statistics extracted for canopy cover development. No calibration or validation statistics for OFSP were 

provided by Pushpalatha et al. (2021) and Lamaro et al. (2023). The studies were ranked using RMSE 

for CC. RMSE represents the average magnitude of the squared residual errors, with values ranging 

from 0 (excellent) to positive infinity (poor). Analysis of the residual error (i.e. the difference between 

model predictions and observations) can be used to detect systematic error (Moriasi et al., 2007). Based 

on the results, the locally developed crop parameters developed by Nyathi et al. (2016) and Mabhaudhi 

et al. (2014b) should provide the best simulations of crop water use and yield of OFSP and taro, 

respectively. 

 

Unfortunately, this project was unable to obtain crop parameter files for OFSP from the primary authors 

(Dr Yacob Beletse and Dr Melvin Nyathi). This was deemed important since (i) not all parameter values 

are published, and (ii) values reported in journal papers often contain errors. For example, the 

parameter values published by Beletse et al. (2013) and Nyathi et al. (2016) as shown in Table 16-3 

(cf. Section 16.2). Likely errors in parameter values are highlighted in red in the tables. For example, 

the canopy growth/decline coefficients (increase/decrease per growing degree-day), which are 

important parameters describing canopy growth/decline, were much larger than expected. From 12 crop 

parameter files released with AquaCrop version 6, the canopy growth coefficient (CGC) ranges from 

0.00500-0.01615, whereas the canopy decline coefficient (CDC) ranges from 0.00150-0.01000 (Raes 

et al, 2018). As shown in Table 16-3 (cf. Section 16.2), CGC and CDC are deemed too high, and thus 

likely mistakes. 

 

Parameter files were obtained from Rankine et al. (2015) and Pushpalatha et al. (2021) as shown in 

Table 16-4 and Table 16-5, respectively (cf. Section 16.3). There latter parameter values were 

compared to those published by Lamaro et al. (2023), with likely errors again highlighted in red (Table 

16-5 in Section 16.3). Hence, the decision was made to use parameters derived by Rankine et al. 
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(2015) and where possible, derive crop parameters values from the field work conducted in season 2. 

For taro, parameter files were sourced from Prof. Tafadzwa Mabhaudhi (cf. Table 16-6 in Section 16.3) 

and the latest version (2016) was used in this project, due to possible errors in CGC and CDC published 

by Mabhaudhi et al. (2014b).  

 

5.2.6.4 Parameter fine-tuning 

As noted above, crop parameters for both crops were obtained from the available literature, which were 

then partially calibrated using experimental observations from the greenhouse experiment. Hence, the 

default parameter values were fine-tuned to better represent local crop and growing conditions. The list 

of crop parameters provided by Steduto et al. (2012; Table 2 on p 44) that should be adjusted was used 

as a guide. This process highlights the importance of developing high quality data from well designed 

and executed experiments for the partial calibration of model parameters. No changes were made to 

parameters related to soil fertility or soil salinity stress. Some of the important parameters that were 

changed are described next. 

 

Crop type and planting method (lines 4 & 5): For the crop type, option 3 was selected to reflect a 

root/tuber crop. For OFSP, the crop was transplanted (option 0), whereas taro was sown (option 1). 

 

Base and upper temperature (lines 8 & 9): In AquaCrop, two crop parameters are required that specify 

temperature thresholds when crop development ceases, i.e. the base (TBSE) and upper (TUPP) 

thresholds. These values are used to calculate accumulated heat units across the growing season in 

growing degree-days. 

  

Basal crop coefficient (line 35): The basal crop coefficient (KCB) is an important input parameter that 

determines the maximum rate of transpiration under non-stressed growing conditions. Pereira et al. 

(2021a; 2021b) provided updated standard parameter values (e.g. KC and KCB) for those originally 

published by Allen et al. (1998). The authors also derived news values for new crops, including RTCs 

such as sweet potato and taro. Hence, KCB was set to the values shown in Table 16-13 (cf. Section 

16.3). 

 

Maximum effective rooting depth (line 38): The raised beds have a 40 cm soil profile, below which is a 

thin layer of gravel and plastic sheeting that prevents any drainage beyond the rooting zone, i.e. at a 

depth of 0.45-0.50 m. 

 

Reference harvest index or HIO (line 64): In AquaCrop, HI slowly increases from the start of root 

enlargement/tuber formation and should reach the reference value (HIO) shortly before the physiological 

maturity date. HIO was determined from measurements of final yield and biomass from the non-stressed 

treatment (cf. Section 5.3.5.1). 

 

Canopy related factors: Since AquaCrop is a canopy-level model (cf. Section 6.2.1.1), simulated 

canopy cover must first be matched to observations. Hence, it is important for AquaCrop to accurately 

simulate canopy cover development, since it determines the rate of transpiration, which is then used to 

estimate biomass accumulation, from which crop yield is determined. As shown in Figure 5-3, 

AquaCrop requires seven important parameters that determine the shape of the green canopy 

development curve. 
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Figure 5-3 Parameters required by AquaCrop to simulate canopy cover development (Raes et 

al., 2012) 

 

The seedling leaf area (in cm2; line no. 43) is measured at emergence and together with plant density 

as inputs, is used by the model to compute initial canopy cover (CCO). , CCO is generally very small 

(e.g. ~1%), and thus can only be slightly adjusted. Measurements of leaf area index (LAI; cf. Section 

5.3.3.3) were used to compute diffuse non-intercepted radiation (DIFN), which represents the fraction 

of sky not obscured by the plant’s canopy (LAI-2200, 2010). CC development (in %) was then calculated 

as 100·(1 – DIFN), as suggested by Mabhaudhi (2012). Alternatively, CC can also be estimated from 

LAI using the Beer-Lambert equation. The canopy (or light) extinction coefficient was determined by 

finding the value that produced the smallest root mean square error (RMSE) between CC determined 

via the DIFN and Beer-Lambert methods.  

 

From the CC curve, maximum canopy cover (CCX in %; line 50) and the time to reach CCX was 

determined as inputs required by AquaCrop. CCX is typically reached at mid-season and ranges from 

75 to 100% based on the crop type and plant density. The model then calculates the canopy growth 

coefficient (CGC; line 46), which is the percentage increase in CC per day or degree day) from inputs 

of CCO, CCX and the time taken to reach CCX (in calendar days). CGC is a conservative parameter and 

typically ranges from 0.03 to 0.40 (i.e. 3 to 40%) per day. Hence, this parameter cannot be increased 

above 0.40. AquaCrop also calculates the canopy decline coefficient (line no. 51) from observations of 

time to start of canopy senescence and physiological maturity. 

 

Phenological growth stages: The model requires parameter values for certain phenological growth 

stages as shown in Table 16-14 (cf. Section 16.4), which are observed in calendar days. These values 

are stored in the crop parameter file from line no. 53 to 57. The parameters related to phenological 

growth stages can be adjusted by ± 7 days since observations are typically done weekly or bi-weekly. 

Although flowering in RTCs is linked to photoperiod, it seldom occurs, especially for taro (Mabhaudhi, 

2012). 

 

The start of canopy senescence is defined as the time when green leaf area declines as a result of (i) 

yellowing of leaves (under optimal conditions with no water stress), or (ii) when significant senescence 

of lower leaves has begun. The time to start of senescence can be based on declining chlorophyll 

content (cf. Section 5.3.4.1). The time to reach maturity, which is closely linked to the time to canopy 

senescence, occurs when only ~5% of maximum green leaf area remains on the canopy. The 
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stabilisation of root/tuber growth was used to detemine the physiological maturity date (cf. Section 

5.3.3.5). 

 

Crop determinacy linked with flowering: This important parameter indicates whether crop determinacy 

is linked with flowering or pod formation (line no. 58). Root and tubers are indeterminant crops, and 

thus crop determinacy is unlinked with flowering. Hence, the parameter value must be set to 0 to indicate 

the vegetative growth period stretches from sowing till canopy senescence (Figure 5-4). In other words, 

the canopy continues to develop (i.e. increase in plant height) after flowering has occurred. 

 

 
Figure 5-4 Period of potential vegetative growth for determinant and indeterminant crops 

(Raes, 2016a) 

 

Root expansion: The model requires the minimum (Zrmin; line no. 37) and maximum (Zrmax; line no. 38) 

rooting depths, as well as the time required to reach Zrmax as inputs, which are then used to calculate 

the (i) root expansion rate (in cm day-1), including the daily maximum root water extraction rate (m3 of 

soil water per m3 of soil) in the (ii) top, and (iii) bottom quarter of the root zone. 

 

Conversion to growing degree-days: Running AquaCrop in growing degree-day (GDD) mode and not 

calendar day (CD) mode produces more reliable yield estimates, especially in cooler (i.e. higher altitude) 

areas. In GDD mode, the influence of cold temperature stress on phenology and canopy expansion are 

accounted for. For example, the model inhibits the conversion of transpiration into biomass at low 

temperatures (Steduto et al., 2012). Kunz et al. (2015a) noted that AquaCrop runs much slower in GDD 

compared to CD mode, considering a simulation of 49 consecutive seasons for soybean took 55.1 vs 

1.2 seconds to complete. 

 

Once the fine-tuning of certain parameter values is complete, parameter values related to phenological 

growth stages should be converted from CDs to GDDs, i.e. thermal time (Table 16-14 in Section 16.4). 

These values in GDDs are stored in the crop parameter file on lines 69 to 74. This step is normally done 

in the model, which also converts the CGC and CDC parameters to represent the fraction of canopy 

cover growth and decline per degree-day (line no. 75 and 76). AquaCrop uses “Method 3” to calculate 

thermal time, which was adapted from “Method 2” developed McMaster and Wilhem (1997). The model 

does not adjust the minimum temperature when it drops below the base temperature, which is believed 

to better represent the damaging or inhibitory effects of cold temperatures on plant processes (Steduto 

et al., 2012), Growing degree-days (GDD) are calculated in AquaCrop as follows: 
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1. If the minimum air temperature (TMIN) exceeds TUPP, it is adjusted to TUPP. 

2. The maximum air temperature (TMAX) is adjusted to fall in the range TBSE to TUPP. 

3. TAVE is then calculated from the adjusted TMAX and TMIN values and cannot be below TBSE. 

4. GDD are calculated as TAVE – TBSE and accumulated over the growing period. 

 

5.2.6.5 Model evaluation 

Evaluation of model performance provides a quantitative estimate of the model’s ability to reproduce 

an observed variable or to assess the impact of partially or fully calibrating the model (Krause et al., 

2005). Several statistical indicators are used to evaluate model performance, each with its own 

strengths and weaknesses. Hence, an ensemble of different indicators should be used to sufficiently 

assess model performance (Willmott, 1984). 

 

The deviation percentage (also known as the percentage error) was used to measure how well the 

model performed in predicting final biomass and yield. This statistic is defined as 100·(simulated – 

measured)/measured (Hsiao et al., 2009). According to Dua et al. (2014), deviations within ±6% are 

considered negligible. For the assessment of canopy cover simulation, the following four statistics were 

used: (i) normalised root mean square error, (ii) Nash-Sutcliffe efficiency coefficient, (iii) Willmott’s index 

of agreement, and (iv) the coefficient of determination. Each statistic is discussed next in more detail. 

 

Normalised root mean square error (NRMSE) 

RMSE calculates the average magnitude of the squared residual errors, with values ranging from 0 

(excellent) to positive infinity (poor). This statistical indicator does not distinguish between over- or 

under-estimation. Analysis of the residual error (i.e. the difference between model predictions and 

observations) can be used to detect systematic error (Moriasi et al., 2007). Since RMSE can be large 

depending on the units of the variable, NSE is often given with RMSE (Zhong and Dutta, 2015). Hence, 

a preferred statistic is the normalised root mean square error (or NRMSE), where RMSE is divided by 

the mean of observed values and expressed as a percentage. A simulation is considered excellent if 

NRMSE is smaller than 10%, and poor if larger than 30% (Table 5-2). NRMSE is easier to interpret as 

the range (and units) is always 0-100%. 

 

Nash-Sutcliffe efficiency (NSE) coefficient 

The NSE coefficient compares the relative magnitude of the residual variance [i.e. (P - O)2] to the 

variance of the observations, i.e. (O - Ō)2 (Nash and Sutcliffe, 1970). NSE indicates how well the plot 

of observed versus simulated data fits the 1:1 line (Moriasi et al., 2007), with a value of 1 indicating a 

perfect match between predictions and observations (Table 5-2). As NSE approaches zero, model 

predictions are as accurate as the observed data average (Ō), whereas negative values indicate model 

predictions are worse than Ō. Hence, NSE can be used to assess and quantitatively describe the 

accuracy between observed and simulated model outputs. 

 

Willmott’s index of agreement (D-I) 

D-I was developed by Willmott (1981; 1982; 1984) and is a commonly used statistic to assess 

agreement between observed and predicted data. The value ranges between 0 (complete 

disagreement) and 1 (complete agreement) (Table 5-2). It represents the ratio of the sum of squared 

residual errors to the “potential error”. The latter is defined as the sum of the squared absolute values 

of the differences between predicted values and the mean observed value and differences between the 

observed values to the mean observed value (Willmott, 1984). 

 

Since D-I squares the residual variance between predicted (P) and observed (O) values [i.e. (P - O)2], 

it is overly sensitive to extreme values or outliers (Moriasi et al., 2007). This is also true for NSE and 

RMSE. Furthermore, none of these three statistics (including R2) can differentiate between over- and 
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under-estimation. For example, a model that systematically under- or over-estimates the observations 

can still have good statistical measures (Krause et al., 2005). 

 

Coefficient of determination (R2) 

R2 is defined as the square of the Pearson correlation coefficient (r). When the trend in linear, it indicates 

the proportion of variation in measured data that is explained by the model (Moriasi et al., 2007). Values 

range from 0 (poor) to 1 (excellent) and values above 0.5 are typically considered acceptable (Table 

5-2). However, this statistical indicator can be misleading, since models can exhibit high R2 values, yet 

consistently over- or under-estimate when compared to observations (Krause et al., 2005). The 

accuracy of the R2 statistic is also sensitive to the sample size (n), i.e. small samples can exhibit high 

R2 values (Mabhaudhi et al., 2014a). Hence, the sample size should also be given to help with the 

interpretation of each statistical measure. This highlights the importance of including other statistical 

indicators to test model robustness. 

 

Table 5-2 Interpretation of commonly used statistical indicators of model performance (FAO, 

2015) 

Interpretation NRMSE (%) NSE D-I R2 r 

Very good  ≤ 5 0.80 to 1.00 0.90-1.00 0.81-1.00 0.90-1.00 

Good  6-15 0.60 to 0.79 0.80-0.89 0.64-0.80 0.80-0.89 

Moderately good 16-25 0.40 to 0.59 0.65-0.79 0.49-0.63 0.70-0.79 

Moderately poor 26-35 0.00 to 0.39 0.50-0.64 0.25-0.48 0.50-0.69 

Poor 36-45 -10.00 to 0.00 0.25-0.49 0.00-0.24 0.00-0.49 

Very poor  > 46 < -10.00 0.00-0.25   < 0.00 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Climate data 

Climate measurements began on 13 October 2022 and the crop was planted on 27 October. Since taro 

was harvested on 04 June 2023, data is shown for the 220-day growing period. The monthly averages 

shown in Table 5-3 reflect growing conditions in the greenhouse where temperatures and relative 

humidity are typically elevated when compared to outside conditions. Wind speed was determined by 

the temperature-controlled extraction fans, and thus remained fairly constant. Solar radiation was lower 

than outside measurements was due to the opaque plastic roofing. 

 

Table 5-3  Monthly means/totals of climate variables measured by the AWS located inside the 

greenhouse at UKZN 

Month 
CWR (mm) RS TMAX TMIN RHMAX RHMIN u2 ETO 

100% 30% (MJ m-2 d-1) (°C) (°C) (%) (%) (m s-1) (mm) 

Nov 2022 19 8 8.80 32.0 17.4 90.92 39.92 0.14 2.2 

Dec 2022 35 12 7.57 34.8 19.6 90.10 43.28 0.18 2.0 

Jan 2023 68 25 10.32 40.5 20.6 87.29 32.94 0.20 2.7 

Feb 2023 43 16 5.70 33.2 21.6 88.53 45.59 0.18 1.5 

Mar 2023 77 30 9.05 37.1 20.8 88.20 37.73 0.20 2.2 

Apr 2023 62 26 8.00 34.0 16.5 86.50 30.05 0.21 1.8 

May 2023 43 18 5.28 31.7 14.3 90.11 34.29 0.23 1.3 

 

From the above table, the hottest conditions were experienced in January 2023 but does not reflect the 

daily variation, especially in maximum temperatures. The latter peaked at 58.8°C on 14 January 2023, 

followed by 58.1°C and 56.0°C on 20 and 17 January, respectively. In total, TMAX exceeded 35°C on 86 

of the 220 days (Figure 5-5). These extreme temperatures occurred when the two extraction fans 

stopped working due to stage 6 load shedding. TMIN peaked at 25.6°C on 11 January 2023, and 
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gradually declined to 7°C on 27 May 2023. Minimum relative humidity is typically lowest on extremely 

hot days, with the lowest value (8.90%) recorded during the period of 12 to 16 January 2023 when TMAX 

exceeded 50°C (Figure 5-6). RHMAX remained relatively constant and peaked at 100% on 29 May 2023. 

Average daily wind speed was recorded using a DS-2 sonic anemometer, which was affected by load 

shedding events that caused the two extraction fans to stop working (Figure 5-7). The maximum value 

of 0.31 m s-1 occurred on 17 January 2023 when TMAX reached 56.0 °C, and never dropped below 0.10 

m s-1. Although incoming solar radiation (RS) peaked at 15.59 MJ m-2 on 09 January 2023 (Figure 5-10), 

this did not result in the highest ETO value of 4.3 mm, which occurred on 14 January when TMAX and 

RHMIN was the highest and lowest, respectively. RS was zero MJ m-2 on 12 December 2022, when TMAX 

and TMIN in the greenhouse were 21.8 and 21.5°C, respectively. This indicated cloudy conditions, which 

was confirmed when the same instrument (CMP3 pyranometer) recorded 6.11 MJ m-2 outside the 

greenhouse and TMAX and TMIN varied by only 5.2°C. Figure 5-8 shows that ETO is largely driven by RS, 

which is confirmed in Figure 5-9 since RS explained 93.9% of the variation in ETO, particularly for ETO 

< 1.5 mm. This highlights an important finding that for irrigation scheduling in greenhouses, RS 

measurements are essential for accurate ETO estimation. 

 

 
Figure 5-5 Variation in temperature (maximum & minimum) measured inside the greenhouse 

over the 220-day growing period in season 3 

 

 
Figure 5-6 Variation in relative humidity (maximum & minimum) measured inside the 

greenhouse over the 220-day growing period in season 3 
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Figure 5-7 Variation in average wind speed measured inside the greenhouse over the 220-day 

growing period in season 3 

 

 
Figure 5-8 Variation in average daily ETO and incoming solar radiaton measured inside the 

greenhouse over the 220-day growing period in season 3 

 

 
Figure 5-9 Variation in reference evaporation (ETO) explained by incoming solar radiation (RS) 

measured inside the greenhouse for season 3 
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As mentioned previously, crop growth in the greenhouse was affected by extreme temperatures 

recorded during frequent two-hour load shedding events (stage 5+) when the exhaust fans stop working 

(i.e. no generator backup). Extreme air temperatures were first experienced during the December 2022 

period as shown in Figure 5-10, which highlights seven events where temperatures exceeded 40°C. 

Temperatures ranging from 40 to 55°C were typically recorded between 10 am and 2 pm (cf. Figure 

5-11) when load shedding coincided with very hot conditions (i.e. outside air temperatures > 30°C). 

 

 
Figure 5-10 Daily air temperature measuremed inside a greenhouse during December 2022 

 

 
Figure 5-11 Half-hourly temperatures recorded on 15 December 2022 by three sensors inside 

a greenhouse at UKZN, where temperatures peaked during two load shedding 

events 

 

The high temperatures experienced over most of the growing season resulted in severe leaf turgor loss 

for sweet potato (Figure 5-12b) and leaf curling for taro, i.e. leaf edges curl/roll inwards and die off to 

reduce leaf area and transpiration loss (Figure 5-13b). To prevent crop loss during the extreme 

conditions, attempts to spray the greenhouse roof with cold water made no difference to inside 

temperatures. Despite the extreme temperatures experienced over the growing season, both crops 

survived, which indicates their tolerance to heat stress. From observations, both sweet potato and taro 

tolerate temperatures up to 35°C, which therefore explains the physiological responses observed in 

Figure 5-12 and Figure 5-13 due to the extreme conditions (> 40°C). 
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(a) (b) 

Figure 5-12 (a) Healthy vs (b) heat-stressed leaves of OFSP during the 2022/23 season 

 

  
(a) (b) 

Figure 5-13 (a) Healthy vs (b) heat-stressed leaves of taro during the 2022/23 season 

 

Due to a municipal transformer fault that occurred on 07 March at 2 pm, which coincided with a UKZN 

generator failure, the Agric campus experienced both load reduction and load shedding up to 10 March 

2023. Although the generator was repaired on 09 March, it kept overheating and shutting down. The 

following day (Friday), additional air vents were installed in the side of the generator to improve cooling. 

This was important considering load reduction occurred from 6:00 am to 11:30 am on Friday. The 

transformer was finally repair in the late evening. The power outages are clearly evident in Figure 5-2 

(cf. Section 5.2.5.1), which shows 10 extreme temperature conditions (> 40°C) that occurred from 01 

to 10 March.  

 

5.3.2 Soil properties 

5.3.2.1 Soil fertility 

The laboratory results for soil fertility show high concentrations of macro- (i.e. P and K) and micro-

nutrients (Ca and Mg) but low concentrations of nitrogen in the beds (Table 5-4). Hence, nitrogen 

fertiliser was added to the four beds. The range in pH values was favourable for both OFSP and taro 

cultivation, negating the need to add lime to the soil. 
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Table 5-4 Soil fertility results for topsoil samples from each of the four greenhouse beds 

Treatment 
N 

Org. 

C 
pH Ca P K Mg Na 

% KCL mg kg-1 

1 - Taro - stressed 0.16 2.34 5.53 2,009.89 458.40 216.51 179.21 52.36 

2 - OFSP - stressed 0.19 2.77 5.66 2,229.82 687.34 242.07 179.41 46.15 

3 - Taro - unstressed 0.19 2.96 6.21 2,534.81 618.74 213.38 205.92 55.20 

4 - OFSP - unstressed 0.18 2.51 6.15 2,324.78 497.54 237.43 201.01 58.67 

 

5.3.2.2 Soil texture 

Results obtained from the ICFR laboratory show that the top 0.15 m is dominated by a clay loam. Soil 

texture then transitions into a clay over the next 0.25 m (Table 5-5). Clay textured soils have higher 

water holding capacity compared to other soil textures, and thus provided favourable conditions for the 

cultivation of OFSP and taro. 

 

Table 5-5 Soil particle size distribution and textural classes for the four beds at soil depths 

of 0.15 m and 0.40 m 

Treatment 

Coarse silt 

and sand 
Fine silt Clay 

Soil textural 

class 

0.15 0.40 0.15 0.40 0.15 0.40 0.15 0.40 

1 - Taro - stressed 23.66 26.84 36.13 31.50 40.21 41.66 Clay Clay 

2 - OFSP - stressed 44.44 27.71 19.71 31.43 35.86 40.85 Clay Loam Clay 

3 - Taro - unstressed 36.83 22.82 26.21 38.74 36.96 38.44 Clay Loam Clay Loam 

4 - OFSP - unstressed 40.48 21.15 21.51 38.61 38.00 40.25 Clay Loam Clay 

 

5.3.2.3 Soil water retention 

Soil water retention parameters such as saturation (SAT), field capacity (FC) and permanent wilting 

point (PWP), were determined from undisturbed cores taken at 0.30 m in each bed (Table 5-6). The 

values correlate well with the soil texture results shown in Table 5-5, since high clay content in the four 

beds results in higher soil water retention and dry bulk density. The latter values showed no evidence 

of soil compaction as expected. Estimates of saturation from dry bulk density agreed favourably with 

measured values as shown in the table below. 

 

Table 5-6 Estimation of soil water retention results using the outflow pressure method 

Treatment 

Dry 

bulk 

density 

Soil water retention 

KSAT SAT FC PWP 

Est. 0 kPa  10 kPa 33 kPa 1,500 kPa 

g cm-3 % volume mm day-1 

1 - Taro - stressed 1.36 49 48 43 39 30 60.9 

2 - OFSP - stressed 1.60 40 39 37 34 28 69.1 

3 - Taro - unstressed 1.49 44 44 41 38 29 82.2 

4 - OFSP - unstressed 1.52 43 43 40 37 30 70.1 

 

Bulk density, soil water retention (SAT, FC & PWP) and saturated hydraulic conductivity (KSAT) were 

also calculated using the SPAW utility (Saxton and Willey, 2009) as shown in Table 5-7. SPAW required 

the particle size distribution (cf. Table 5-5) and organic matter content. The latter input was derived by 

multiplying the topsoil’s organic carbon content (cf. Table 5-4) by a factor of 1.724 (Howard, 1965). 

Estimated values for each bed were depth-weighted. A comparison of the results in Table 5-6 and 
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Table 5-7 showed that SPAW under-estimated dry bulk density and PWP, yet over-estimated SAT and 

KSAT. This highlights the importance of measuring these values, especially when they are needed for 

the calibration and/or validation of crop simulation models, as was noted in Section 4.3.2.3. 

 

Table 5-7  Calculation of soil bulk density, soil water retention and soil hydraulic conductivity 

for the soil in each greenhouse bed using the SPAW utility 

Treatment 

Dry bulk 

density 

Soil water retention  

KSAT SAT FC PWP 

0 kPa  33 kPa 1,500 kPa 

g cm-3 % volume mm day-1 

1 - Taro - stressed 1.30 51 39 25   99.3 

2 - OFSP - stressed 1.32 50 38 25 111.6 

3 - Taro - unstressed 1.27 52 38 24 162.5 

4 - OFSP - unstressed 1.30 51 38 25 117.8 

 

5.3.3 Crop development 

5.3.3.1 Plant height 

Plant height measured for OFSP and taro for both water treatments (i.e. 30% and 100% of CWR) is 

shown in Figure 5-14. As expected, plant heights for the unstressed water treatment for both crops are 

higher than the stressed treatment. The difference in plant height between the two treatments is more 

pronounced for taro when compared to OFSP. Optimum water conditions therefore result in a faster 

growth rate. In general, taro stems and leaves grow much taller than OFSP vines since vines branch 

out horizontally rather than vertically. 

 

 
Figure 5-14 Measured plant height for OFSP and taro for both water treatments, i.e. 30% and 

100% of crop water requirement (CWR) 

 

5.3.3.2 Leaf number 

Leaf number measured for OFSP and taro for both water treatments is shown in Figure 5-15. For the 

unstressed treatment, taro and sweet potato produced more leaves compared to the stressed 

treatment. The difference in leaf number due to water treatment is more pronounced for OFSP than 

taro. Nitrogen forms an essential nutrient in the promotion of leaf development and chlorophyl content. 
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However, this benefit is lost if the plants are water stressed. Since OFSP has far more leaves than taro, 

this will increase the leaf area index and transpiration rate, which in turn, should translate to higher 

biomass accumulation and root/tuber yield. 

 

 
Figure 5-15 Measured leaf number for sweet potato and taro for both water treatments (i.e. 30% 

and 100% of CWR) 

 

5.3.3.3 Leaf area index 

When compared to OFSP, taro has much larger leaves but far fewer in number. Hence, due to the 

higher number of OFSP leaves compared to taro (Figure 5-15), OFSP will have a larger surface area 

for sunlight absorption and transpiration. This should result in higher photosynthetic rates and increased 

growth of OFSP compared to taro. As expected, leaf area index (LAI) is higher for OFSP than taro 

(Figure 5-16) and is highest for the unstressed treatment. Since LAI is higher for OFSP than taro, more 

of the ground area is shaded, which reduces solar radiation reaching the soil surface and results in 

lower soil temperature and soil water evaporation. Taro also has a longer growing season, and thus a 

slower growth rate, which means less surface shading and higher soil water evaporation rates 

(especially after establishment). For OFSP, the initial gain in LAI for the unstressed treatment was lost 

from at 87 DAP. This suggests that under water limiting conditions, sweet potato can still produce high 

leaf area, which is important for reducing soil water evaporation. 
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Figure 5-16 Measured leaf area index for OFSP and taro for both water treatments (30% and 

100% of CWR) 

 

5.3.3.4 Canopy cover 

It is important to note that canopy cover (CC; Figure 5-17) is derived from LAI (cf. Figure 5-16) and 

thus, the two variables are directly proportional to one another. Hence, they follow similar trends with 

low values at planting, which peaked during the vegetative and tuber initiation stages for both 

treatments. The higher production of leaves and shorter growing season for OFSP resulted a higher 

canopy closure compared to taro. This is important with respect to crop ET since less unproductive 

water loss through soil water evaporation results in more water availability for crop development. 

 

 
Figure 5-17 Estimated canopy cover for OFSP and taro for water both treatments (i.e. 30% and 

100% of CWR) 
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5.3.3.5 Biomass accumulation 

As expected, total fresh biomass production was lower for the stressed treatment (Figure 5-18) 

compared to the unstressed treatment (Figure 5-19) for OFSP and showed no signs of senescence. 

Root/tuber formation began after 65 DAP for both treatments and continued to grow until the crop was 

harvested. According to the literature, sweet potato has three distinct growth phases characterised by 

an (i) initial phase of rapid growth of adventitious roots (but slow vine growth), an (ii) intermediate phase 

of rapid vine growth, including leaf area increase and storage root initiation, and (iii) a final stage of 

storage root bulking (but no vine growth). This growth pattern is not apparent from the curves shown in 

the figures below. Furthermore, the translocation of photosynthates from leaves/vines to the storage 

roots as the crop approaches maturity is also not clear. 

 

 
Figure 5-18 Total fresh biomass accumulation for OFSP (30% of CWR) 

 

 
Figure 5-19 Total fresh biomass accumulation for OFSP (100% of CWR) 
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For taro, the total fresh biomass production peaked at 1,003 g for the stressed treatment ((Figure 5-20), 

compared to 1,266 g for the unstressed treatment (Figure 5-21). However, a reduction in biomass 

production was evident from 142 DAP. More importantly, tuber formation began much later in the 

season (172 DAP) compared to OFSP and again tubers continued to grow until the crop was harvested. 

Similar graphs for total dry biomass production are shown in Section 15. 

 

 
Figure 5-20 Total fresh biomass accumulation for taro (30% of CWR) 

 

 
Figure 5-21 Total fresh biomass accumulation for taro (100% of CWR) 
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Chlorophyll content index (CCI) was measured as an indicator of both plant health and its ability to 
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fertiliser applied to the beds. Nitrogen is an important nutrient for promoting leaf development and is a 

vital component of chlorophyll. OFSP is a vine crop that produces more leaves when compared to taro, 

and therefore can consume more nitrogen over the growing period. Combined with water limiting 

conditions, CCI for OFSP should be lower than compared to taro. The fact that taro could maintain 

chlorophyll content during stressed conditions indicates that its photosynthetic apparatus remained 

functional even under stressed conditions, which is an attractive adaptive mechanism. Towards the end 

of the season, CCI of OFSP decreased after 148 DAP, which was not expected due to its “stay-green” 

trait (Adugna and Tirfessa, 2014; Borrell et al., 2014; Klein and Jordan, 2014). Hence, senescence may 

have started between 134-148 DAP for both crops. 

 

 
Figure 5-22 Measured chlorophyll content index for OFSP and taro for both water treatments 

(i.e. 30% and 100% of CWP) 

 

5.3.4.2 Leaf temperature  

Leaf temperature is an indicator of how actively a crop transpires during its growing season. The leaf 

temperature measured for OFSP and taro for both treatments (i.e. 30% and 100% of CWR) are shown 

in Figure 5-23. The leaf temperature for the unstressed treatment should be lower than the unstressed 

treatment, since actively transpiring leaves should be cooler than the ambient air. Since measurements 

were mostly taken on a Friday at around noon, the peaks in leaf temperature indicate when 

measurements coincided with load shedding from 12 pm to 02 pm. In general, OFSP leaves were hotter 

than taro leaves, but this does not necessarily indicate less transpiration. The highest leaf temperatures 

for OFSP (both treatments) on day 78 after planting coincided with the hottest TMAX of 58.8°C recorded 

over the growing season (Figure 5-5; cf. Section 5.3.1). TMAX exceeded 50°C from 77-80 DAP and 

134-136 DAP, thus indicating a stressful environment for the crops. 
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Figure 5-23 Measured leaf temperature for OFSP and taro for both water treatments (i.e. 30% 

and 100% of CWR) 

 

5.3.4.3 Stomatal conductance 

Stomatal conductance also indicates how actively a crop transpires during its growing season and is 

influenced by climatic conditions as well as other crop growth parameters (e.g. leaf number). An 

increase in leaf number will increase the number of stomata found on the leaves, thus influencing 

transpiration rates, which affects biomass accumulation as well as root/tuber yield. The stomatal 

conductance measured for OFSP and taro for both treatments (i.e. 30% and 100% of CWR) is shown 

in Figure 5-24. As expected for both crops, stomatal conductance is higher for the unstressed water 

treatment compared to the stressed treatment, especially when leaf temperature was highest (i.e. 78 

and 134 DAP). Under both treatments, OFSP has higher stomatal conductance than taro. This is due 

to the greater leaf number, resulting in a larger surface area for absorption of solar radiation, and thus 

higher leaf temperature. The larger leaf surface area results in more stomatal openings, and thus higher 

stomatal conductance and transpiration rates. 
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Figure 5-24 Measured stomatal conductance for OFSP and taro for both water treatments (i.e. 

30% and 100% of CWR) 

 

As shown in Figure 5-23 and Figure 5-24, there is a direct relationship between leaf temperature and 

stomatal conductance, where an increase in leaf temperature results in higher stomatal conductance, 

and thus higher transpiration rates. This is often a result of higher solar radiation absorbed by leaf 

surfaces (Figure 5-8). On day 78 after planting, there is a significant increase in stomatal conductance 

for OFSP (both treatments) when compared to taro (Figure 5-24), which correlates well with higher leaf 

temperature (Figure 5-23), as well as higher solar radiation (Figure 5-8) and air temperature (Figure 

5-5).  

 

5.3.4.4 Diurnal leaf water potential 

OFSP: Diurnal leaf water potential of OFSP was measured for both water treatments and indicates the 

amount of water in the leaves. As transpiration increases, leaf water potential decreases as water is 

lost from the leaves via the stomatal openings. Leaf water potential was highest before sunrise, then 

rapidly decreased after 7:00 am, reaching its lowest value at 1 pm (Figure 5-25). This was in response 

to the peak in stomatal conductance (and transpiration) at 11 am, which resulted in the highest rate of 

water loss from the leaves. At 1 pm, there was less water in leaves of stressed plants compared to 

unstressed plants, which meant lower transpiration and reduced stomatal conductance. Leaf water 

potential is therefore highly influenced by weather conditions and thus, increasing air temperature and 

net irradiance, and decreasing relative humidity (Figure 5-27) induce higher transpiration rates, leading 

to decreasing leaf water potential. From the literature (Ravi et al., 2014; Sunitha et al., 2013), sweet 

potato leaves wilt permanently at leaf water potentials of -1.3 MPa. However, a lower value of -1.4 MPa 

was measured at 1 pm. 

 

Stomatal conductance peaked one hour before noon in response to maximum solar radiation, and as 

expected, was highest for the unstressed treatment (Figure 5-26). Reduced stomatal conductance 

results in closure of stomatal openings, and thus lower transpiration rates and higher leaf water 

potential. Lower transpiration can result in reduced growth, thus affecting the quantity and quality of 

biomass and final yield. Leaf water potential is therefore useful as it can be used to indicate plant water 

stress during the day. 
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Figure 5-25 Measured diurnal leaf water potential for OFSP for both water treatments (i.e. 30% 

and 100% CWR) 

 

 
Figure 5-26 Measured stomatal conductance for OFSP for both water treatments (i.e. 30% and 

100% of CWR) 
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Figure 5-27 Diurnal weather conditions such as average air temperature (Tair_avg), average 

relative humidity (RH_avg) and net irradiance (Rn) 

 

Taro: No measurements were made for taro because the leaves were too thick for the instrument. 

 

5.3.5 Crop growth and yield 

5.3.5.1 Final yields and harvest index 

For sweet potato, determining the time to reach senescence was difficult since the storage roots 

continued to grow (Figure 5-18 & Figure 5-19; cf. Section 5.3.3.5), espcially if conditions are suitable 

(i.e. no soil water stress) as was the case in the greenhouse. Sweet potato also exhibits delayed leaf 

senescence when water stressed (i.e. “stay-green” trait). For taro, tillering at the end of the season can 

reduce the decline in LAI, thus making it harder to determine when senescence has started. For RTCs, 

dew formation or the first frost typically kills the leaves, thus determining the time to harvest. In addition, 

when roots/tubers begin to split due to continued growth, farmers typically harvest the crop to halt any 

further decline in crop quality. Both crops were finally harvested in May and June 2023 as shown in 

Table 5-8. 

 

Table 5-8 Final biomass, yield and harvest index obtained at the end of season 3 

Bed - crop - treatment 
Harvest 

date 
DAP 

Harvest 

index (%) 

Biomass 

(dry t ha-1) 

Yield 

(dry t ha-1) 

4 - OFSP - unstressed 2023/05/07 192 78.2 19.354 15.143 

2 - OFSP - stressed 2023/05/13 198 72.3 16.948 12.250 

3 - Taro - unstressed 2023/06/04 220 80.9   8.144   6.588 

1 - Taro - stressed 2023/06/04 220 76.0   5.903   4.505 

 

The maximum rooting depth measured at harvest for each crop and treatment is shown in Table 5-9. 

The unstressed (fully irrigated) treatment should have encouraged shallower roots, which was not the 

case for both crops. Furthermore, there was no correlation between the rooting depths and the clay 

contents shown in Table 5-5 (cf. Section 5.3.2.2), except for the fine silt content at 0.40 m. 
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Table 5-9 Maximum rooting depths for OFSP and taro at the end of season 3 

Bed - crop - treatment 

Maximum 

rooting depth 

(m) 

1 - Taro - stressed 0.34 

2 - OFSP - stressed 0.35 

3 - Taro - unstressed 0.38 

4 - OFSP - unstressed 0.39 

 

5.3.6 Nutrient content 

The measured β-carotene content of OFSP storage roots is shown in Table 5-10 and values for the 

stressed treatment (i.e. 30% of CWR) compare favourably with those obtained from season 2 (Table 

14-1; cf. Section 14.1). In addition, lower β-carotene contents were obtained for the unstressed 

treatment (i.e. 100% of CWR), which is consistent with findings from other studies (e.g. Mabhaudhi et 

al., 2019; Nyathi et al., 2019a), as discussed in Section 3.3.1. 

 

Table 5-10 β-carotene (β-c) content of OFSP storage roots grown in a greenhouse during the 

2022/23 season 

Rep 
β-c content (g kg-1) 

Unstressed Stressed 

1 0.101 0.206 

2 0.101 0.205 

3 0.101 0.206 

Ave 0.101 0.206 

 

The mineral composition of roots/tubers (and leaves) for both OFSP and taro is presented in Table 14-5 

and Table 14-6 (cf. Section 14.2), respectively. K was again the most abundant element in both 

roots/tubers and leaves for both RTCs. Leaves exhibited higher nutrient contents compared to the 

roots/tubers for both crops for almost all of the analysed minerals, expect for Na (OFSP), K (taro) and 

P (taro). Taro tubers contained more nutrients for most minerals (except K) when compared to OFSP 

storage roots. This highlights the dual-purpose nature of OFSP and taro, where both the roots/tubers 

and leaves are edible and exhibit high nutritional value. Thus, the consumption of both RTCs can help 

address hidden hunger, as well as improve household food security. 

 

For OFSP storage roots, nutrient content was highest for the stressed treatment for Al, β-c, Fe, K, Mg, 

Mn, C and N but not for Ca, Cu, Na, P and Zn. Similarly, the stressed treatment resulted in higher 

nutrient content in taro tubers for Al, Fe, Mg, Mn, P, Zn, C, N and S, but not for Ca, Cu, K and Na. 

Compared to nutrient data from season 2 at Fountainhill, K, P, Zn and N content of OFSP tubers were 

much lower, whereas Fe and Na content were much higher. For taro, Mn and Na were lower, yet Zn 

was higher. As noted in Section 2.5.5, mineral composition of RTCs is affected by genotype and stage 

of development, as well as environmental factors such as soil type, soil pH, soil organic matter content, 

fertilisation, water availability and weather conditions. 

 

5.3.7 Crop modelling 

5.3.7.1 Model setup 

In the model, the day after planting was set to 28 October 2022 and the plant density was set to 55,556 

plants ha-1 to match the greenhouse experiment (cf. Section 5.2.3.2). The simulation period was linked 

to the growing cycle, i.e. day one after sowing/transplanting to physiological maturity. The management 
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options were also set to reflect actual experimental conditions: (i) no fertility stress (i.e. fully fertilised), 

(ii) no weed stress (weed-free experiment), (ii) no salinity stress (municipal water used for irrigation), 

and (iv) no contours/buds (raised beds were flat). In addition, a management (.MAN) file was created 

with the option “practices preventing runoff are present”, and thus the model ignores the CN II value. 

This sets the option “surface runoff affected or completely prevented by field surface practices” to 1. 

Finally, the initial soil water content was set to field capacity to match conditions in the greenhouse. 

 

The volume of drip irrigation applied to each water treatment (stressed and unstressed) was determined 

after each irrigation application, which was then converted to depths. These depths were then used to 

create an irrigation (.IRR) file in AquaCrop. A rainfall (.PLU) file was created with zero daily values from 

27 October 2022 to 04 June 2023. Maximum and minimum air temperature recorded inside the 

greenhouse were used to create an input temperature data (.TNX) file for AquaCrop. Similarly, daily 

ETO was estimated from measurements of solar radiation, relative humidity, air temperature and wind 

speed using FAO’s ETO Calculator utility (cf. Section 4.2.6.1). These values were then used to create 

the reference evapotranspiration data (.ETo) file required by AquaCrop. 

 

Soil samples taken from the four raised beds in the greenhouse were analysed to determine soil fertility 

(at 0.15 m), soil texture (at 0.15 and 0.40 m), soil water retention and saturated hydraulic conductivity 

(at 0.30 m). From the results (cf. Section 5.3.2), an AquaCrop soil input (.SOL) file was created (cf. 

Table 16-11 in Section 16.4) for a single soil layer (0.40 m deep). To further prevent AquaCrop 

generating runoff from the raised beds in the greenhouse, CNII was set to 10, which equates to a KSAT 

value approaching 3,000 mm day-1.  

 

5.3.7.2 Model calibration 

The calibration procedure was outlined in Section 5.2.6.4 and is similar to that followed by Mabhaudhi 

et al. (2014b). For each crop, the initial calibration involved matching observed CC to simulated CC 

using data from the unstressed treatment (i.e. 100% of CWR). Where possible, parameter values were 

set according to measurements and observations. Thereafter, data obtained from the stressed 

treatment was used to fine-tune the calibration of CC development, as well as to adjust stress factors 

related to canopy expansion, stomatal control and canopy senescence. Finally, the calibration was 

evaluated by comparing observed and simulated final biomass and yield. Model performance was 

evaluated using four statistical measures described in Section 5.2.6.5. 

 

OFSP: Crop parameters developed by Rankine et al. (2015) were partially calibrated (i.e. fine-tuned) 

as follows:  

 

1) The base temperature (line no. 8) was decreased from 15 to 10°C to match the value for taro. 

However, 8°C was most commonly used in the literature (e.g. Beletse et al., 2013; Lamaro et 

al., 2023; Pushpalatha et al., 2021). 

 

2) The basal crop coefficient (KCB; line no. 35) was set to 1.05 as suggested by Pereira et al. 

(2021b; Table 16-13; cf. Section 16.4). 

 

3) The maximum rooting depth (line no. 36) was reduced to 1.20 m. This value agrees with the 

range of 1.00-1.20 m provided by Pereira et al. (2021b; Table 16-13; cf. Section 16.4). 

However, the observed rooting depth at harvest was only 0.39 m. 

 

4) Using the maximum allowed value for the soil surface covered by a transplanted crop (i.e. 50 

cm2; line no. 43), together with the actual plant density of 55,556 plants ha-1, the model 

calculated the initial canopy cover (CCO) at 0.83%. This was larger than values of 0.42% and 

0.63% obtained by Beletse et al. (2013) and Nyathi et al. (2016), respectively. 
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5) Measurements of LAI were used to estimate canopy cover (CC) development via the DIFN 

method. The maximum value (CCX; line no. 50) was set to 91%. Using an extinction coefficient 

of 0.80, the Beer-Lambert equation produced very similar CC values, with CCX also being 91%. 

 

6) Based on observations, the number of days for transplanted vines to recover (line no. 52) was 

set to six days. 

 

7) The time to maximum rooting depth (line no. 53) was estimated at 93 days.  

 

8) The start of senescence (line no. 54) was set to 150 days to replicate the “stay-green” trait of 

sweet potato. As shown by the CC development curves for both water treatments (Figure 5-17; 

cf. Section 5.3.3.4), CC did not decline as the crop approached physiological maturity. Sweet 

potato exhibits delayed leaf senescence when water stressed, which is referred to as the “stay-

green” trait, i.e. the plant’s ability to retain greenness (no reduction in chlorophyll content) during 

tuber formation 

 

9) Although tubers continued to grow from 142 to 172 DAP, the time to reach physiological 

maturity (line no. 55) was set to 160 days when CC development peaked (Figure 5-17; cf. 

Section 5.3.3.4). In addition, chlorophyll content index declined after 148 DAP (Figure 5-22; 

cf. Section 5.3.4.1). 

 

10) The start of yield formation (line no. 56) was based on observations where root/tuber formation 

started sometime between 65 to 82 DAP and was adjusted to 68 days to improve the calibration 

(Figure 5-18 & Figure 5-19; cf. Section 5.3.3.5). 

 

11) The length of the HI buildup period (line no. 60) was set to 92 days to finish at physiological 

maturity (i.e. 160 – 68 = 92 days). This is based on evidence that showed roots/tubers continue 

to grow after 172 DAP. 

 

12) The model calculated the CGC parameter (line no. 46), based on the time to reach maximum 

canopy cover (Figure 5-17; cf. Section 5.3.3.4). The value was then adjusted to 11.14% per 

day to improve the simulation of canopy over development. 

 

13) The CDC parameter (line no. 51) was set to the lowest value of 3.0% to mimic little to no 

senescence due to the crop’s “stray-green” trait. 

 

14) The normalised water productivity parameter (WP*) was not changed (remained at 20 g m-2), 

which represents the upper limit for C3 crops. 

 

15) The harvest index was set to 78% based on final biomass and yield values of 19.354 and 

15.143 dry t ha-1 respectively, which were measured at harvest from the unstressed water 

treatment. 

 

Once the partial calibration process was finalised using observations from the non-stressed water 

treatment, the stress coefficients affecting canopy expansion (line no. 11-13), stomatal control (line no. 

14-15) and canopy senescence (line no. 16-17) were adjusted to achieve the best fit between 

simulations and observations for the 30% water treatment. For example, due to sweet potato’s “stay-

green” trait, the upper threshold of the soil water depletion factor for canopy senescence (line. No. 16) 

was set to 0.80. This means early canopy senescence is extremely tolerant to water stress. The shape 

factor (line. No 17) was set to 3, which means the stress coefficient (KS) declines slowly from 1 (no 

stress) to 0 (full stress) as the soil water content approaches permanent wilting point. Delayed leaf 

senescence facilitates continued photosynthesis even during water-stressed conditions, which can 

result in continued root/tuber growth and larger end-season yields when compared to other senescent 
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cultivars/landraces. A list of parameters that were fine-tuned for OFSP is given in Table 16-15 (cf. 

Section 16.4). 

 

Taro: As shown in Table 16-16 (cf. Section 16.4), crop parameters developed by Mabhaudhi et al. 

(2016a) were partially calibrated (i.e. fine-tuned) as follows: 

 

1) The basal crop coefficient (KCB; line no. 35) was set to 1.05 as suggested by Pereira et al. 

(2021b; Table 16-13; cf. Section 16.4). 

 

2) The maximum rooting depth (line no. 36) was set to 0.40 m, based on observations at harvest 

of 0.38 m. This value agrees with the range of 0.30-0.40 m provided by Pereira et al. (2021b; 

Table 16-13; cf. Section 16.4), as well as observations of 0.30-0.45 m made by Mabhaudhi et 

al. (2014b). 

 

3) Using the maximum allowed value for the soil surface covered by a transplanted crop (i.e. 25 

cm2; line no. 43), together with the actual plant density of 55,556 plants ha-1, the model 

calculated the initial canopy cover (CCO) at 0.28%. 

  

4) Measurements of LAI were used to estimate canopy cover (CC) development via the DIFN 

method. The maximum value (CCX) was set to 70% (line no. 50). Using an extinction coefficient 

of 0.81 resulted in very similar CC values being calculated via the Beer-Lambert equation, with 

CCX being 69%. 

 

5) Based on observations, the number of days from sowing to emergence (line no. 52) was set to 

14 days. Mabhaudhi (2012) noted that emergence can take up to 49 days. However, due to the 

warm conditions experienced in the greenhouse during the two weeks after planting, crop 

emergence was accelerated. 

 

6) The time to maximum rooting depth (line no. 53) was estimated at 35 days. 

 

7) The start of senescence (line no. 54) was set to 170 days since the CC development curve 

showed no decline at the end of the season (Figure 5-17; cf. Section 5.3.3.4). However, 

measurements of chlorophyll content index showed a decline between 134-148 DAP (Figure 

5-22; cf. Section 5.3.4.1). 

 

8) The length of the crop cycle (line no. 55) was set to 180 days when CC development peaked 

(cf. Figure 5-17; cf. Section 5.3.3.4). However, the crop was only harvested at 220 DAP to 

allow for additional time to observe a decline in CC, but this did not occur. 

 

9) The start of yield formation (line no. 56) was set to 130 days based on observations where 

root/tuber formation only began after 142 DAP, but before 172 DAP (cf. Figure 5-20 & Figure 

5-21; cf. Section 5.3.3.5). 

 

10) The length of the HI buildup period (line no. 60) was set to 50 days to finish at physiological 

maturity (i.e. 180 – 130 = 50 days). 

 

11) Based on the time to reach maximum canopy cover (Figure 5-17; cf. Section 5.3.3.4), the 

model calculated the CGC parameter value (line no. 46). It was then adjusted to of 24.74% per 

day to improve the simulation of canopy over development. 

 

12) The CDC parameter was again set to the lowest value of 3.0% to mimic no senescence of the 

canopy as shown in Figure 5-17 (cf. Section 5.3.3.4. The same approach was used by 

Mabhaudhi et al. (2014b). 
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13) The normalised water productivity parameter (WP*) was not changed (line no. 61), i.e. 

remained at 15 g m-2, which represents the lower limit for C3 crops. 

 

14) The harvest index was set to 80% (line no. 64) based on final biomass and yield values of 8.14 

and 6.58 dry t ha-1, respectively. 

 

15)  The possible increase in HI due to water stress before the start of yield formation (line no. 65) 

was decreased from 10% to 0% (i.e. no impact), as HI declined from 81 to 76% due to water 

stress. 

 

16) Similarly, the coefficient describing a positive impact on HI due to restricted vegetative growth 

during yield formation (line no. 66) was decreased from 10 to 0 (i.e. no impact). 

 

17)  The coefficient describing a negative impact on HI due to stomatal closure during yield 

formation (line no. 67) was set to 10% to mimic the decline in observed HI from 81 to 76% 

caused by water stress. 

 

18) Finally, the stress coefficients affecting canopy expansion (line no. 11-13), stomatal control (line 

no. 14-15) and canopy senescence (line no. 16-17) were adjusted to achieve the best fit 

between simulations and observations for the 30% water treatment. 

 

It is important to note that the calibration of taro was very sensitive to the maximum rooting depth (Zrmax; 

line no. 38). Mabhaudhi et al. (2014b) stated that although observed Zrmax ranged between 0.30-0.45 

m, the parameter was set to 0.80 m, which provided better simulations for both irrigated and rainfed 

conditions. However, this was not the case in this project. When Zrmax was increased to 0.8 m, AquaCrop 

grossly over-estimated CC development, biomass production and final yield for both water treatments. 

This may have been the reason why Mabhaudhi et al. (2016a) reduced Zrmax to 0.30 m, as shown in 

Table 16-6 (cf. Section 16.2). Hence, Zrmax was set to 0.40 m to match observations, which concurs 

with values published by Mabhaudhi et al. (2014b) and Pereira et al. (2021b). 

 

5.3.7.3 Canopy cover simulation 

Unstressed water treatment: As shown in Figure 5-3 (cf. Section 5.2.6.4), the rate at which CC initially 

develops in AquaCrop is determined by the CGC parameter (line no. 46) and is typically concave-

shaped, whereas CC decline is typically convex-shaped. However, for the unstressed water treatment, 

initial CC development followed a convex shape (i.e. very fast development), especially for OFSP 

(Figure 5-17; cf. Section 5.3.3.4), likely due to extremely high temperatures (~55°C) experienced in 

the greenhouse during frequent load shedding and load reduction events. When the soil surface area 

covered by an individual seedling (line no. 43) was set to measured values, AquaCrop grossly under-

estimated initial canopy development, which resulted in lower final biomass and yield values when 

compared to observations. Rankine et al. (2015) also noted that AquaCrop under-estimated CC 

development for both irrigated and rainfed treatments for approximately 66 DAP. To correct this, the 

parameter was set to the maximum allowable value (25 & 50 cm2 for a sown and transplanted crop, 

respectively). This resulted in the initial CC development curve being convex shaped, which provided a 

better match to observations (Figure 5-28), especially for OFSP (unstressed treatment). However, the 

disadvantage is AquaCrop’s tendency to then over-estimate the final biomass and yield when compared 

to measurements. 
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Figure 5-28 Comparison of simulated against observed canopy cover development for OFSP 

and taro (unstressed water treatment) 

 

Stressed water treatment 

For the stressed water treatment, AquaCrop again over-estimated initial CC development during the 

vegetative growth stage, especially for OFSP (Figure 5-29), which also resulted in over-simulation of 

biomass production and final yield. This was due to the high values used for the soil surface covered 

by a sown/transplanted crop (line no. 43). In contrast, AquaCrop produced a very good simulation for 

taro’s CC development, as shown in Figure 5-29. 

 

As both crops approached physiological maturity, CC decline due to senescence was not apparent, 

especially for OFSP due to its “stay-green” trait. Mabhaudhi et al. (2014b) stated that unless frost occurs 

and kills off the foliage, taro’s canopy is maintained through winter as a perennial crop. Hence ,if weather 

conditions are favourable, roots/tubers continue to grow until they start to split open, and thus should 

be harvested immediately to avoid further deterioration on product quality. It is therefore difficult to 

determine when the RTC has reached physiological maturity. These issues, together with the initial 

rapid development of CC may help to explain why calibration of RTCs in AquaCrop is difficult, as 

highlighted by Rankine et al. (2015). 

 

 
Figure 5-29 Comparison of simulated against observed canopy cover development for OFSP 

and taro (stressed water treatment) 
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Model evaluation: Using the guidelines provided in Table 5-2 (cf. Section 5.2.6.5), the calibration of 

CC for OFSP is considered “good” (NRMSE) to “very good” (NSE, D-I, R2 & r) for the unstressed 

treatment, whereas for the stressed treatment, the calibration is deemed “moderately good” to “very 

good” (Table 5-11). In comparison, Nyathi et al. (2016) obtained values of 12.10% and 0.77 for RMSE 

and R2 (irrigated treatment), respectively (cf. Table 16-1 in Section 16.1). In contrast, Rankine et al. 

(2015) obtained lower RMSE values across two seasons when simulating CC development under 

rainfed conditions (4.48-9.42%) but higher RMSE values for the irrigated treatment (10.86-25.20%). 

However, statistics were derived from only 3-5 measurements of CC between 50-150 DAP, compared 

to statistics derived from 19 measurements in this project. 

 

Table 5-11 Calibration statistics for canopy cover development for OFSP and taro under two 

water treatments 

RTC 
Water 

treatment 

RMSE 

(%) 

NRMSE 

(%) 
NSE D-I R2 r n 

OFSP 
Unstressed   8.8 12.1 0.83 0.96 0.92 0.96 

19 
Stressed 12.0 17.8 0.74 0.93 0.76 0.87 

Taro 
Unstressed 14.0 27.8 0.19 0.84 0.71 0.84 

22 
Stressed   3.4   8.6 0.94 0.99 0.98 0.99 

 

Similarly, taro’s calibration of the stressed treatment is also deemed “good” to “very good”, whereas for 

the unstressed treatment, it ranged from “moderately poor” to “good” (Table 5-11). The calibration of 

taro for unstressed conditions undertaken by Mabhaudhi et al. (2014b) achieved RMSE, D-I and R2 

values of 2.38%, 0.92 and 0.79, respectively. However, the statistics were developed from 8 

measurements of CC between 100-200 DAP, whereas in this project, 22 measurements from 16-178 

DAP were used. However, when tested against rainfed trial data, Mabhaudhi et al. (2014b) stated that 

CC development was poorly simulated, with RMSE, D-I and R2 values of 20.17%, 0.65 and 0.02, 

respectively. The authors highlighted the model’s limitation to effectively capture taro growth under 

water deficit conditions, which was not the case in this project. 

 

Simulation of final biomass and yield: As shown in Table 5-12, AquaCrop successfully simulated the 

final biomass and yield of both RTCs for the water stressed treatment since deviations were within ± 

6% (cf. Section 5.2.6.5). This outcome is in contrast with other studies (e.g. Heng et al., 2009; Hsiao 

et al., 2009; Patel et al., 2011), which showed AquaCrop’s inability to accurately simulate water stressed 

conditions. 

 

For OFSP, the model over-estimated the final biomass and root yield for the unstressed treatment by 

26.8 and 23.8% respectively (Table 5-12). In comparison, Rankine et al. (2015) reported larger 

deviations ranging from -70.7 to -19.5% and -76.0% to 8.7% for final (total) biomass and root yield of 

sweet potato, respectively. For unstressed taro, AquaCrop grossly over-estimated the final biomass 

and yield by 89.7% and 83.3%, respectively (Table 5-12). 

 

Table 5-12 Comparison of observed final biomass, yield and harvest index of OFSP and taro 

to AquaCrop simulations for both water treatments 

RTC 
Water 

treatment 

Harvest 

index (%) 

Biomass 

(dry t ha-1) 

Yield 

(dry t ha-1) 

Deviation 

(%) 

Obs Sim Obs Sim Obs Sim 
Bio- 

mass 
Yield 

OFSP 
Unstressed 78.2 76.4 19.35 24.54 15.14 18.75 26.8 23.8 

Stressed 72.3 76.4 16.95 15.95 12.25 12.18  -5.9  -0.6 

Taro 
Unstressed 80.9 78.1   8.14 15.46   6.59 12.07 89.7 83.3 

Stressed 76.3 69.5   5.90   6.19   4.51   4.31   4.9  -4.4 
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In total, 20 and 22 parameters were adjusted to improve the simulation of OFSP and taro, respectively. 

This is similar to the 21 parameters adjusted by Mabhaudhi (2012) when calibrating AquaCrop for 

bambara nut and taro. Overall, the calibration for both crops can be considered good, especially for the 

water stressed treatments, given that the model was simulating two landraces. Calibrating AquaCrop 

for OFSP was much easier than for taro. Rankine et al. (2015) stated that parameterising AquaCrop for 

RTCs is more difficult than for other crop types. According to Raes et al. (2018), potato represents one 

of the least reliable parameterisations in AquaCrop when compared to other crops such as maize and 

soybean. 

 

Various reasons for AquaCrop’s poor performance for RTCs such has potato and sweet potato are as 

follows: Several studies (e.g. Lebot, 2019) reported that the water requirements of sweet potato are 

site- and time-specific, which therefore makes parameterisation difficult. Furthermore, the crop is 

sensitive to over-irrigation. For example, yield data used by Rankine et al. (2015) to parameterise 

AquaCrop had higher values for rainfed compared to irrigated conditions. Hence, a short period of water 

stress appeared to stimulate root development of sweet potato. Lebot (2019) also reported that over-

irrigation in Taiwan reduced storage root yields, which may be due to reduced aeration. 

 

Rankine et al. (2015) found that irrigation improved the uniformity of storage roots, which led to better 

AquaCrop yield predictions. They also showed that AquaCrop does not adequately simulate water-

stressed conditions. They reported a very low yield (2.6 t ha-1) due to sweet potato’s failure to form 

storage roots since the rainfed trial received about half the amount of water of the irrigated treatment 

(11 t ha-1). However, AquaCrop simulated a yield of 7.3 t ha-1 for both water treatments. Other studies 

have also reported AquaCrop’s inability to adequately simulate conditions of high water stress (e.g. 

Heng et al., 2009). Hence, AquaCrop may struggle to accurately predict yields for rainfed conditions, 

since observed yields are more variable. 

 

5.3.7.4 Model validation 

A validation was undertaken by testing AquaCrop’s ability to predict CC development, as well as final 

biomass and yield measured at Fountainhill in season 2. As shown in Table 5-13, AquaCrop predicted 

OFSP’s final biomass well (0.81% deviation) but over-estimated the final yield by 39.3%. This is due to 

the large difference between observed and simulated HI (i.e. 55.3 vs 76.4%). If the HIO parameter (line 

no. 64) is changed from 78 to 55%, the simulated yield becomes 12.23 dry t ha-1, which represents a 

0.87% deviation. However, HI varies from 22-81% in the literature (cf. Section 4.3.5.2). ). In contrast, 

Pushpalatha et al. (2021) obtained excellent agreement between observed and simulated yields for 

cassava and sweet potato, with percentage differences ranging from 0.08 to 5%. However, the authors 

used a relatively high HIO of 85%, which is similar to 90% used by Beletse et al. (2013). 

 

Table 5-13 Comparison of observed final biomass, yield and harvest index of OFSP and taro 

at Fountainhill in season 2 to AquaCrop simulations under rainfed conditions 

RTC 
Water 

treatment 

Harvest 

index (%) 

Biomass 

(dry t ha-1) 

Yield 

(dry t ha-1) 

Deviation 

(%) 

Obs Sim Obs Sim Obs Sim 
Bio- 

mass 
Yield 

OFSP Rainfed 55.3 76.4 21.93 22.11 12.12 16.88 0.81  39.30 

Taro Rainfed 86.4 77.9 5.68 14.38 4.91 11.21 153.22 128.21 

 

However, AquaCrop grossly over-estimated taro’s final biomass and yield by 153.2 and 128.2%, 

respectively. The model failed to adequately simulate the very slow CC development observed under 

rainfed conditions in season 2. CC development was over-simulated by the model, due to the high CGC 

parameter of 27.4% (line no. 46) (Figure 5-30). CC peaked at 44% on 136 DAP), whereas the model 

simulated 69% (58 DAP). This outcome was expected, based on CCX (line no. 50) and CGC (line no. 
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46) parameter values of 69% and 24.736% per day, respectively (cf. Table 16-16 in Section 16.4). 

Mabhaudhi et al. (2014b) also obtained a poor simulation of CC under rainfed conditions, with RMSE, 

D-I and R2 values of 20.17%, 0.645 and 0.018, respectively. In contrast, AquaCrop simulated a final CC 

of 91% (line no. 50) for OFSP, which agreed favourably with the measured value of 90%. This explains 

why AquaCrop was more successful in simulating OFSP than taro. Further testing of both crop 

parameter files is therefore required for rainfed conditions. 

 

 
Figure 5-30 Comparison of observed and simulated canopy cover development for OFSP and 

taro under rainfed conditions in season 2 

 

5.3.7.5 Conversion to GDDs 

AquaCrop was then used to convert the phenological growth stages and canopy growth/decline 

coefficients to thermal time. Extremely warm conditions were experienced in the greenhouse over the 

growing season, especially during frequent load shedding and load reduction events between 

December 2022 and March 2023. This resulted in a rapid accumulation of growing degree-days 

(GDDs), with the total length of OFSP’s crop cycle being 2,533 GDDs. This value is almost double the 

1,294 GDDs derived by Rankine et al. (2015) for sweet potato grown in in a tropical climate (Jamaica). 

Since AquaCrop is run in GDD mode for the national-scale simulations, the high value is likely to affect 

the yield simulations and in particular the land suitability assessments. For taro, the crop cycle increased 

from 2,580 (Mabhaudhi et al., 2016a) to 2,824 GDDs. The crop parameter files in GDD format were 

then used to perform the national-scale simulations, with results presented in the next chapter. 

 

5.4 SUMMARY AND CONCLUSIONS 

A greenhouse experiment was conducted at UKZN in season 3 due to the need to reduce field work-

related expenses and the problems experienced at Fountainhill regarding animals damaging the trials. 

The same OFSP cultivar (199062.1) and taro landrace (Dumbe dumbe) studied in season 2 were 

planted in two adjacent beds that received 100% of crop water requirement (CWR). Similarly, each crop 

was planted in another two beds and subjected to water stress, i.e. irrigated to 30% of CWR.  

 

The two crops were planted on the same date (27 October 2022) and plant density (55,556 plants ha-

1). Prior to planting, the four raised beds were fully fertilised, where recommended application rates for 

each crop were based on soil fertility measurements. The raised beds were kept weed-free throughout 
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the growing season. Pesticides were used to control outbreaks of insects, especially red spider mites 

that favoured the taro plants. These measures were necessary to maximise crop growth. 

 

From measured soil texture, the topsoil (0.15 m) is dominated by a clay loam that transitioned to clay 

at lower depths (0.40 m). Soil water retention was measured for each bed, then compared to estimates 

derived from textural data using the SPAW model. The results highlight the importance of measuring 

soil properties, especially when used for modelling purposes. 

 

An automatic weather station was installed inside the greenhouse to accurately estimate ETO, from 

which maximum crop evapotranspiration was determined using the single crop coefficient approach. 

Results showed that 94% of the variation in ETO was explained by solar radiation, thus highlighting the 

importance of measuring the latter variable inside greenhouses for accurate irrigation scheduling. Soil 

water sensors monitored water content at two depths (0.15 and 0.4 0m). 

 

Regular measurements of plant height, leaf number, leaf area index, chlorophyll content index, leaf 

temperature and stomatal conductance were conducted over the growing season. Leaf area index was 

then used to estimate canopy cover development. Root/tuber formation and above-ground biomass 

accumulation were also determined from random destructive sampling from 65-172 DAP. Final (total) 

biomass and root/tuber yield was determined after OFSP and taro were harvested on 198 and 220 

DAP, respectively. 

 

Results showed that OFSP has a much high leaf number compared to taro, which translates to higher 

leaf area and canopy cover. From LAI measurement, maximum canopy cover was estimated 91 and 

69% for OFSP and taro, respectively. Although leaf number was higher for the unstressed treatment as 

expected, leaf area was the same from 87 DAP for OFSP. Chlorophyll content was higher for taro than 

OFSP. Due to the larger leaf area, stomatal conductance for OFSP was higher than for taro, which 

means higher transpiration rates. Diurnal measurements for OFSP from 4 am to 7 pm showed that 

reduced stomatal conductance results in closure of stomatal openings, and thus lower transpiration 

rates and higher leaf water potential. 

 

For both water treatments, final (total) biomass ranged from 16.95-19.35 and 5.90-8.14 dry t ha-1 for 

OFSP and taro, respectively Similarly, storage root/tuber yields ranged from 12.25-15.14 and 4.51-6.59 

dry t ha-1 for OFSP and taro, respectively. This resulted in harvest index value of 72-78 and 76-81% or 

OFSP and taro, respectively. The yields for the water stressed treatment were similar to those obtained 

from season 2 of 12.12 and 4.91 dry t ha-1 for OFSP and taro, respectively, 

 

Harvested root/tuber and leaf samples were analysed to determine nutrient contents for 13 minerals, 

as well as β-c. OFSP leaves exhibited higher nutrient values compared to the storage roots for all of 

the analysed minerals, except for Na. The results were similar to those obtained from samples taken 

during season 2. Similarly, taro leaves were more nutritious than tubers for all minerals except K and 

P. Furthermore, taro tubers contained more nutrients for most minerals (except Can and Na) when 

compared to OFSP storage roots. This again highlights the dual-purpose nature of OFSP and taro, 

where both the roots/tubers and leaves are edible and exhibit high nutritional value. Results also 

showed that nutrient contents were higher for stressed OFSP and taro, compared to unstressed plants. 

This trend has been reported in other studies (cf. Section 3.3) and highlights the suitability of growing 

both crops in marginal areas. 

 

From the preliminary modelling results obtained from season 2, further work was required to improve 

AquaCrop simulations of yield. Hence, default (i.e. initial) AquaCrop parameters for OFSP and taro 

were sourced from the literature, then fine-tuned (i.e. partially calibrated) using growth and yield data 

measured in the greenhouse during season 3. Considerable effort was spent on creating reliable, error-

free climate files for use in AquaCrop, especially for ETO estimates. Soil water retention parameters 
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required by AquaCrop (e.g. saturation, field capacity, permanent wilting point) were determined from 

laboratory measurements, which provided more accurate values compared to SPAW simulations. 

AquaCrop was calibrated to simulate CC, biomass production and root/tuber yield. Calibration results 

showed AquaCrop’s ability to successfully simulate the final biomass and yield of both RTCs for the 

water stressed treatment. However, the model over-estimated the final biomass and root/tuber yield for 

the unstressed treatment, especially for taro. The calibration was then tested against observations from 

season 2, which again showed an over-estimation of taro’s yield. 
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6 MODELLING OF CROP WATER PRODUCTIVITY 

6.1 INTRODUCTION 

As noted in Section 1.3, phase 3 of this project represented the crop modelling component. Crop 

modelling is the simulation of crop development using numerically integrating processes (Sinclair and 

Seligman, 1996). Crop models are important as they can be used as tools for decision making, yield 

forecasting and for assessing climate change impacts (Mabhaudhi, 2012). However, the modelling of 

water use and yield of RTCs has not been given the same attention as that given to conventional crops. 

In South Africa, taro has been modelled using the AquaCrop model (Mabhaudhi, 2012; Mabhaudhi et 

al., 2014b; Mabhaudhi et al., 2016a) and sweet potato was modelled using the SWB model (e.g. 

Masango, 2015; Mthembu, 2023). 

 

A preliminary analysis was undertaken to determine the feasibility of using default crop parameters, 

with little to no adjustment, to estimate crop water productivity of OFSP using the AquaCrop and SWB 

models. The methodology was presented in Section 4.2.7 and the results given in Section 4.3.7 (cf. 

Chapter 4). The SWB model was evaluated, despite not being able to run at a national scale in “batch 

mode”, as reported by Kunz et al. (2015b). Since AquaCrop simulated crop water productivity more 

accurately than the SWB model, AquaCrop model was therefore selected to meet the aims of this 

project. The model can be run at a national scale using climate and soils data currently available for 

each of the 5,838 homogeneous response zones. The altitude range across each zone is much smaller 

compared to the quaternaries, and thus variation in climate and soils is far less. Hence, each zone is 

considered relatively homogeneous in response. AquaCrop is well suited to estimating yield in areas 

where crop growth is mostly water and/or temperature limited. The model has also been used in various 

other WRC-funded projects to assess crop yield and water productivity of underutilised crops. This 

chapter therefore provides a description of the AquaCrop model, and the methodology used to model 

the yield and water use of OFSP and taro across the entire country, including Lesotho and eSwatini. 

 

6.2 METHODOLOGY 

6.2.1 Model description 

6.2.1.1 AquaCrop 

AquaCrop (Raes et al., 2009; Steduto et al., 2009; Steduto et al., 2012) was developed by the Food 

and Agricultural Organisation (FAO) and designed to simulate yield response of several crops to water 

availability. The model has a water-driven growth engine (Steduto et al., 2009) and thus, is particularly 

suited to simulating yield response to water availability, i.e. simulating yields where water is a key 

limiting factor in crop production. Hence, AquaCrop is a simplified interpretation of the effects of water 

stress on crop productivity. Although the model is simple, it emphasises the fundamental processes 

involved in crop productivity and response to water deficits, both from a physiological and an agronomic 

perspective (Steduto et al., 2009). Features that distinguishes AquaCrop from other crop models include 

the: 

• normalised water productivity parameter, 

• use of canopy cover instead of leaf area index for biomass production, and 

• effects of water and temperature stress on biomass production and crop yield. 

Version 6 was released in March 2017 (Raes et al., 2018), which has been successfully parameterised 

to simulate the daily growth, productivity and water use of 16 herbaceous crops. Although version 7 

was released in August 2022 with new crop parameters for cassava (Wellens et al., 2022) and alfalfa 

(Raes et al., 2023), version 6 was used in this project. The structural components of the model are 
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shown schematically in Figure 6-1, which shows the model requires daily rainfall, minimum and 

maximum temperature as well as reference crop evapotranspiration (ETO) as climatic input data. ETO 

is determined using the FAO56 (or Penman-Monteith) method described by Allen et al. (1998). The 

basic concepts and fundamental calculation procedures are briefly described next. 

 

 
Figure 6-1 The structural components of AquaCrop, including stress responses and the 

functional linkages between them (Steduto et al., 2012) 

 

AquaCrop simulates crop yield in four sequential steps. Firstly, canopy cover development is simulated, 

in particular leaf and root expansion. Temperature (i.e. thermal time) governs both canopy cover 

development pollination success. Canopy cover development affects, inter alia, the rate of crop 

evapotranspiration. Secondly, the model calculates transpiration (Tr) and soil water evaporation (E) 

separately using the dual crop coefficient method. This approach is especially useful during periods of 

incomplete ground cover when E is high (e.g. as for taro). Since crop evapotranspiration is affected by 

soil water content, the model also simulates the following processes using a soil water balance 

approach: (i) runoff via the SCS-based method, (ii) infiltration into the topsoil, (iii) drainage out of the 

root zone (i.e. deep percolation), and (iv) capillary rise. 

 

Thirdly, transpiration (Tr in mm) is used to estimate biomass production (B in g m-2) via the biomass 

water productivity parameter (WP in g m-2 mm-1). This crop-specific input parameter represents the 

amount of above-ground dry matter (g) produced per unit land area (m2), per unit of water transpired 

(mm). WP varies with crop physiology and is higher for C4 (30-35 g m-2) than C3 crops (15-20 g m-2). 

To improve the model’s robustness and applicability across different climates, both Tr and WP are 

normalised by ETO. WP is also normalised by ambient CO2 levels, which is then called WP*. Hence, 

WP is expected to increase over time due to anthropogenic increases in ambient CO2 concentration. 

WP is therefore an important parameter in AquaCrop that behaves conservatively and is not affected 

by water stress, i.e. remains virtually constant over a wide range of environments (Steduto et al., 2009). 

 

In the fourth step, Yield (Y in g m-2), which is the harvestable portion of the biomass, is calculated using 

the harvest index. The model requires a reference harvest index as an input parameter, which is 

adjusted on a day-by-day basis over the yield formation period. This approach also enhances the 
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robustness of the model. No other partitioning among the various plant organs occurs, thus avoiding 

the complexity of partitioning processes that are the most difficult to model (Steduto et al., 2009).  

 

AquaCrop version 6 onwards can model the influence of weed growth on crop production. Weeds 

reduce the crop’s canopy cover and therefore, crop transpiration and crop production are reduced. In 

addition, weeds affect the soil water balance and may affect the timing and magnitude of soil water 

stress experienced during the season, which could indirectly affect crop development and production. 

In AquaCrop, weeds also suppress soil water evaporation and increase transpiration (crop + weed). 

Hence, the modelling of weeds in AquaCrop reduces crop yield and increases total evapotranspiration, 

which results in reduced crop water productivity. 

 

It is important to note that for version 6 of the model, the cold stress coefficient is now applied to the 

basal crop coefficient (KCB), which is obtained from the crop parameter file. In previous versions of 

AquaCrop, this temperature stress coefficient was applied to biomass water productivity. This means 

that crop transpiration during cold periods will be less and thus, biomass production is also lower. 

Reduced transpiration also results in a wetter root zone and lower water stress later in the season. 

 

6.2.1.2 Other crop models 

As noted in Sections 4.2.7 and 4.3.7, the SWB model was used to simulate OFSP by Masango (2015) 

and as part of this project, by Mthembu (2023). The SWB model is a mechanistic, real-time, soil water 

balance model, which was originally developed by Annandale et al. (1999) as an irrigation scheduling tool. 

However, SWB is also a field-scale crop growth model that has been developed for a number of crops 

(Jovanovic and Annandale, 1999; Jovanovic et al., 1999). The model’s “scenario generator” allows 

multiple crop and irrigation scenarios to be easily configured. Jovanovic and Annandale (2000) developed 

a newer version of the model (SWBPro), which was used in this project. The model has been applied 

widely in South Africa to estimate crop water use and for irrigation scheduling (e.g. Annandale et al., 

2002). However, problems were experienced in obtaining the latest model version from the Department 

of Plant and Soil Sciences (University of Pretoria) and the software developer’s website. Hence, an 

older version (no. 19.05.2010) of the model was run. Although challenges were also experienced in 

running SWB on a Windows 10/11 computer, various workarounds were found to get the model to run. 

This may explain why the model is no longer available for download. 

 

Other crop simulation models that have been successfully used to estimate the water use and yield or 

RTCs include: (i) Agricultural Production Systems Simulator (APSIM; Keating et al., 2003), (ii) Decision 

Support System for Agrotechnology (DSSAT; Jones et al., 1998), and (iii) Light Interception and 

Utilisation (LINTUL; Kooman and Haverkort, 1995). For a brief description of each of these models, the 

reader is referred to Mthembu (2023). Although two other sweet potato models (MADHURAM and 

SPOTCOMS) have been developed, their application is limited. In contrast, many crop models have 

been developed for both potato and cassava (Raymundo et al., 2014). 

 

6.2.2 Model inputs 

6.2.2.1 Homogeneous response zones 

AquaCrop (and ACRU) were run at a national scale using the 5,838 relatively homogeneous regions. 

In the past, these regions were referred to as quinary sub-catchments, as they were derived by dividing 

each of the 1,946 quaternary catchments into three sub-catchments of similar altitude, i.e. 1,946 * 3 = 

5,838). Since the altitudinal range across each sub-catchment is relatively small, the spatial variation in 

climate and soils is also deemed minimal, and thus are considered relatively homogeneous. For this 

project, they are referred to as homogeneous response zones (HRZs), to avoid confusion with recent 

updates. Since the quaternary boundaries were updated in 2018, new zones of similar altitude were 

developed, which are now referred to as altitude zones. This is necessary since each quaternary was 

https://www.up.ac.za/plant-and-soil-sciences
https://www.nbsystems.co.za/downloads.html


Crop and nutritional water productivity of sweet potato and taro 

104 
 

 

also subdivided into hydrological sub-catchments, which are true quinaries that represent a 5th level 

sub-division of the primary catchment. The process of running AquaCrop for each HRZ has been fully 

automated, where a national model run takes less than 3 hours to complete (cf. Section 6.2.4). 

 

6.2.2.2 Climate data 

Kunz et al. (2020) significantly improved the rainfall and temperature data originally developed for each 

HRZ as follows: 

• The driver rainfall station for 11 quaternary catchments (i.e. 33 HRZs) was changed to improve 

the representation of the rainfall in those catchments.  

• The SAWS ID numbers of each of the driver rainfall stations was checked, which resulted in 

317 corrections. For each of the 1,240 driver stations, rainfall data was then re-extracted from 

the Lynch (2004) database and compared to the original climate files and no errors were found. 

However, for very few occurrences where the daily value had not been patched by Lynch 

(2004), these were simply set to 0 mm.  

• A total of 13 extreme rainfall events (> 400 mm) were found. Of these, four values were 

appropriately corrected when compared to rainfall data from neighbouring gauges. 

 

Daily temperature deemed representative of each HRZ was revised by Kunz et al. (2020), which is now 

based on observed data, thus replacing values originally derived from the gridded temperature 

database developed by Schulze and Maharaj (2004). A temperature station was selected for the driver 

rain gauge assigned to each HRZ. Thereafter, a lapse rate adjustment was undertaken to account for 

the altitude difference between the temperature station and the average value for each HRZ. Using the 

FAO56 version of the Penman-Monteith equation (Allen et al., 1998), daily reference evapotranspiration 

(ETO in mm) for each HRZ was then calculated from mainly temperature data, assuming a daily default 

value of 2 m s-1.  

 

A new climate file was generated for each HRZ in ACRU-composite format, which contains daily data 

from 1950 to 1999. This was done by combining the extracted daily rainfall data (and quality codes) 

with the lapse rate-adjusted temperatures (and quality codes) and the estimated ETO data. Each climate 

file was called “obstmp_xxxx.txt”, where xxxx represents the unique HRZ identifier (sub_cat) that ranges 

from 0,001 to 5,838. The reader is referred to Kunz et al. (2020) for a full description of the 

improvements made and error checking that was undertaken. 

 

Finally, the revised climate files in ACRU format were then converted to the format required by 

AquaCrop using a utility develop in Fortran. The model requires a climate (.CLI) file, which contains the 

names of the daily rainfall (.PLU), air temperature (.TNX), reference evaporation (.ETo) and 

atmospheric CO2 (.CO2) files. The format of the .PLU, .TNX and .ETo files are almost identical, with 

five header lines that provide station details, but more importantly, the start date of the climate record, 

followed by the daily time series data (Raes et al., 2018). The Fortran utility four climate files per HRZ, 

i.e. 23,352 individual files totalling 5.41 GB. Monthly adjustment factors were applied to the rainfall data 

from each driver station to improve its representativeness of the HRZ. 

 

6.2.2.3 Soil properties 

Soil water retention: SAT, FC and PWP for each soil horizon were derived for up to five terrain units 

within each of the 7,082 land types across South Africa (Clulow et al., 2023b). Hence, soil properties 

are now available for 27,473 terrain unit polygons, which were used to provide area-weighted values 

for each of the 5,838 HRZs. The improved soil properties for South Africa were then merged with 

previous values for Lesotho and eSwatini using other soil databases, since land type data does not 
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exist for these two neighbouring countries (SIRI, 1987). Hence, improved values for PWP, FC and SAT 

were obtained for both soil horizons in each HRZ.  

 

Soil depth: From the terrain unit polygons, the area-weighted depth of the A- and B-horizons was 

derived for each HRZ. It is important to note that the maximum soil depth recorded for each land type 

was 1.2 m, i.e. standard soil auger depth (SIRI, 1987). As shown in Figure 6-2, the topsoil ranges from 

0.1-0.3 m in depth in 80.7% of all HRZs. Since the total soil depth is 1.2 m, the maximum subsoil depth 

is 0.9 m, with 84.3% of all HRZs less than 0.4 m (Figure 6-3). However, the total soil depth is below 0.3 

m in 30.4% of all HRZs, which is considered too shallow for RTC production. In 50% of all HRZs, the 

total depth ranges from 0.3-0.6 m (Figure 6-4). The remaining 19.6% of all HRZs have a total depth 

exceeding 0.6 m. 

 

 
Figure 6-2 Depth of the A-horizon determined from the terrain unit soil polygons for all HRZs 

 

 
Figure 6-3 Depth of the B-horizon determined from the terrain unit soil polygons for all HRZs 

 

 
Figure 6-4 Total soil depth determined from the terrain unit soil polygons for all HRZs 

 

Total available water: TAW (mm) represents the total amount of water in the soil profile that is available 

to plants. It is calculated as the product of effective root depth (ERD in m) and plant available water 
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(PAW in mm m-1). The latter is also commonly referred to as available water capacity (AWC in mm m-

1) and is the amount of soil water held between field capacity and permanent wilting point, i.e. PAW = 

AWC = FC – PWP. TAW reflects the changes in FC, PWP and soil depth of each horizon between the 

previous (TAWOLD) and revised (TAWNEW) soils properties for each HRZ. As shown in Figure 6-5, 

TAWNEW is 82.3% of TAWOLD, and thus TAWNEW < TAWOLD. This will likely result in reduced yields 

simulated by AquaCrop. 

 

 
Figure 6-5 Comparison of total available water between the previous (TAWOLD) and revised 

(TAWNEW) soil properties for each HRZ 

 

TAWNEW – TAWOLD is therefore negative for 88.1% of all HRZs (Figure 6-6). The majority (70.9%) of 

these differences range from 0 to -20 mm. The difference is zero for 387 HRZs located in Lesotho and 

eSwatini since the soil properties in these HRZs was not updated. The largest difference of -107.9 mm 

occurred in zone no. 3,214, where TAW decreased from 110.3 to 2.4 mm, due to the large decrease in 

soil depth from 1.08 to 0.03 m. Similarly, the largest increase in TAW was 43.2 mm in zone no. 162 (i.e. 

from 41.2 to 84.5 mm), due to the lower soil water retention values, particularly for PWP for the B-

horizon. 

  

 
Figure 6-6 Differences in total available water (TAW) between the revised (TAWNEW) and 

previous (TAWOLD) soil properties for each HRZ  
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Readily evaporable water: REW expresses the maximum amount of water (mm) that can be extracted 

during stage I evaporation from a 4 cm soil surface layer. An equation provided by Raes et al. (2018) 

was used to derive REW (in mm) from the A-horizon’s soil water content at FC and PWP (in vol %). 

 

Saturated hydraulic conductivity: KSAT represents the speed that soil water moves downward through 

the saturated pore spaces in soil. A pedo-transfer function developed by Saxton and Rawls (2006) was 

used to estimate KSAT from soil water retention parameters (SAT, FC & PWP in vol %) for each soil 

horizon, as detailed by Kunz et al. (2020; cf. Equation 13). Values range of 35 to 3,000 mm day-1 

depending on soil texture (Raes et al., 2018). 

 

Curve number: AquaCrop also requires the curve number (CNII) for antecedent moisture class II (AMC 

II), i.e. a soil water content halfway between field capacity and permanent wilting point. CNII was 

determined from estimated KSAT for the topsoil. For example, if KSAT ≤ 35 mm d-1, then CNII is 77 for 

hydrological soil group D in good condition (Table 2.14d; p 2-165; Raes et al., 2018).This represents 

the highest runoff potential for soils with a high silt and clay content, which conduct water slowly through 

the soil profile, i.e. more runoff production due to reduced infiltration. At run time, the model adjusts CNII 

based on the calculated wetness of the topsoil layer to a depth of 0.3 m (Figure 6-7). 

 

 
Figure 6-7 The rainfall-runoff relationship as a function of the topsoil wetness (RAES, 2016a) 

 

One-layer vs two-layer soils: Although soil properties were derived for both the A- and B-horizons for 

each HRZ, the decision was made to depth weight the soil water retention parameters (SAT, FC & 

PWP) and KSAT to create a one-layer soil profile. However, REW and CNII were calculated from the soil 

properties for the A-horizon. This was done because AquaCrop more accurately simulated final yield 

using a single soil layer as opposed to two layers (i.e. topsoil & subsoil), as noted in Section 4.2.7.2. 

The impact of this decision on simulated yield is shown in Section 6.3.1.3. 

 

6.2.2.4 Planting date and density 

Under rainfed conditions, rainfall variability is an important determinant of crop yield. Thus, selecting a suitable 

planting date is important to ensure that critical growth stages do not coincide with dry spells. Based on an 

analysis of 50 years of rainfall and temperature data available for each HRZ (cf. Section 6.2.2.2), Figure 6-8 

shows the first planting date: 
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• could not be determined for 26.2% of all HRZs, thus indicating their unsuitability for crop 

production, 

• occurs in either November or December for most (68.8%) of the HRZs, and 

• occurs in October or January for a few (5.1%) HRZs. 

 

Since the crop model was used to derive monthly crop coefficients (KC) for unstressed growing 

conditions, the planting day was set to the beginning of the month (not mid-month) so that the initial KC 

value was averaged from 30 days of crop water use simulations (not 15 days). Hence, the 1st of 

November and 1st of December were selected as the two planting dates used in this project, which is 

the same approach adopted by Kunz et al. (2020).  

 

 
Figure 6-8 Histogram of the average planting month determined from 50 years of climate 

record for each of the 5,838 altitude zones (Kunz et al., 2020) 

 

For each crop, two plant densities were used that represent smallholder and commercial farming 

environments, e.g. 10,000 and 27,000 plants ha-1 for taro, respectively (cf. Section 3.1.2). For sweet 

potato, DAFF (2011) recommended plant densities ranging from 31,447 to 37,037 plants ha-1 (Section 

3.1.1), whereas Beletse et al. (2013) used 41,447 plants ha-1. However, international modelling studies 

on sweet potato used values of 55,556 (Amaro et al., 2023), 83,000 (Pushpalatha et al., 2021) and 

90,000 (Rankine et al., 2015) plants ha-1 for Ethiopia, India and Jamaica, respectively. Therefore, plant 

densities of 31,447 and 55,556 plants ha-1 were used to represent smallholder and commercial farming 

environments, respectively. Ideally, a third plant density should be considered for each crop, but this 

represents additional four national model runs for AquaCrop (and ACRU). 

 

6.2.2.5 Management options 

For the national scale runs, the management file for AquaCrop was setup to reflect the following: (i) no 

soil fertility stress, (ii) no contours or soil bunds to reduce runoff, and (iii) no weed stress. Since crop 

coefficients should be obtained under standard (i.e. non-stressed) growing conditions, AquaCrop has a 

useful feature to estimate a crop’s irrigation water requirements, where irrigation water is added to the 

soil profile to artificially relieve crop water stress. Hence, irrigation was invoked in AquaCrop to relieve 

plant stress, which was assumed to occur when the soil water content dropped below 60% of readily 

evaporable water (cf. Table 7-3 in Section 7.2.3.2). 

 

6.2.3 Model parameters 

The field trials conducted at Fountainhill in the second season were under rainfed conditions (cf. 

Chapter 4). Furthermore, the trials were initially affected by weed growth up to 82 and 57 DAP for 

OFSP and taro, respectively. Such growing conditions may have affected the attainable biomass 

production and root/tuber yield. Since growing conditions were not considered optimum in terms of 

minimal water stress, only a limited number of crop parameters could be adjusted. Despite the few 
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adjustments made, AquaCrop under-estimated the final yield of OFSP and taro by 21% (cf. Section 

4.3.7.5) and 64% (results not shown), respectively. Mabhaudhi (2012) stated that further work was 

required to improve taro simulations for rainfed conditions. Furthermore, Table 16-6 (cf. Section 16.2) 

highlights likely errors in parameter values obtained from the literature. Hence, there was a need to 

improve the calibration for both RTCs. 

 

Using measurements of crop growth and yield from season 3, additional model parameters for OFSP 

and taro were fine-tuned as described in Section 5.2.6. These modified parameters provided better 

estimates of biomass and yield for both crops, as shown in Section 5.3.7, especially for OFSP. For the 

stressed water treatment, AquaCrop accurately simulated the final yield of OFSP and taro, with 

deviations of -0.6 and -4.4%, respectively. This represents a valuable contribution by this project. 

However, the model over-estimated the yield for unstressed conditions, especially for taro. Overall, 

additional work is needed to refine the calibration of OFSP and taro and to further test the model for 

rainfed conditions. This requires high-quality datasets from other locations and crop seasons than those 

used in this project. This is particularly important for RTCs since large variations exist between 

landraces. Crop parameters shown in Table 16-14 to Table 16-16 (cf. Section 16.4) were used for the 

national scale model runs. 

 

6.2.4 Minimising computational expense 

Running AquaCrop at a national scale for 5,838 HRZs, each with 50 years of dally climate data and 

representative soil data, is computationally expensive. This ability was first developed in 2015, where a 

national run took up to 16 days to complete, and a summary of the methodology is provided in Section 

17.1. Since then, additional improvements were made in 2019, and again in 2023 for this project. This 

effort has been worthwhile considering a national model run now takes under three hours to complete. 

A detailed and technical description is provided in Section 17.2 (2019 improvements) and Section 17.3 

(2023 improvements) to assist other researchers and modellers to improve model performance and to 

benefit from the experience gained over the past nine years. It is important to note that this work, which 

is considered innovative, was only possible due to funding received from the WRC. 

 

6.2.5 Modelling approach 

AquaCrop was then run at the national scale using climate and soils data currently available for each 

of the 5,838 HRZs (homogeneous response zones; also referred to as altitude zones and previously 

called quinary catchments). For both rainfed and irrigated conditions, model runs were undertaken for: 

 

• two RTCs (OFSP and taro); 

• two planting dates (1st of November and 1st of December); 

• two plant densities representing smallholder 

o (i.e. 31,447 and 10,000 plants ha-1 for OFSP and taro respectively); and 

• commercial farming environments 

o (i.e. 55,556 and 27,778 plants ha-1 for OFSP and taro respectively). 

 

The above modelling scenarios were required to meet Aim 3 (cf. Section 1.2), i.e. to model the water 

use and yield of selected RTCs. AquaCrop output was then used to meet the following project aims: 

 

• Aim 4: develop land suitability maps for each RTC (cf. Chapter 8); 

• Aim 5: map the spatial variability in crop yield, crop cycle and water productivity (CWP and 

NWP; this chapter); and 

• Aim 6: derive monthly crop coefficients for each HRZ as input for the ACRU model (cf. Chapter 

7). 
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Kunz et al. (2015b) developed a utility to calculate statistics for most of AquaCrop’s (version 4) output 

variables. The utility was used to extract simulated output for each of the 49 simulated seasons (1950/51 

to 1998/99). It then calculated the following 19 statistics for each output variable: mean, variance, 

standard deviation, coefficient of variation, skewness, kurtosis, minimum, maximum, sum and number 

of seasons, as well as 10th to 90th percentiles. This stats utility was modified by Kunz et al. (2020) to 

include new variables outputted by version 6 of AquaCrop. Recently, the utility was thoroughly checked 

by comparing results with those calculated in MS Excel for each output variable. 

 

For the irrigated runs, the utility also calculated monthly crop water use (ETC in mm) as the sum of 

transpiration (Tr) and soil water evaporation (E), i.e. crop evapotranspiration accumulated over the 

growing season for unstressed conditions. From this, monthly crop (or water use) coefficients (KC) were 

calculated as the ratio of crop ETC to ETO. The values obtained for each season were then averaged to 

obtain long-term monthly crop coefficients, where a unique set of values was calculated for each HRZ. 

This procedure has been fully automated to minimise computational expense. 

 

6.3 RESULTS AND DISCUSSION 

Output from the national-scale AquaCrop model runs facilitated the mapping of simulated crop yield, 

crop cycle, CWP and NWP for OFSP and taro. Four maps were produced per crop since the model 

was runs for two planting dates, each with two plant densities. The maps clearly highlight the spatial 

variability of these metrics, especially due to changes in planting date and plant density. Areas in light 

grey identify HRZs where the statistic is zero, i.e. average (AVE) or coefficient of variation (CV). These 

are highlighted separately for better interpretation of maps. For example, a zero CV in crop yield 

indicates all seasonal yields were identical, which only occurs when they are all zero. Furthermore, 

areas in white identify HRZs where no statistics were produced. This occurs when three or less seasons 

were simulated by the model (i.e. too few data points), which is discussed next in more detail. 

 

The HRZs coloured white are simply too cold for crop production. In these areas, the crop cycle is 

typically longer than 365 days in all 49 seasons, resulting in average yields that are either 0 t ha-1 or very 

low (< 0.1 t ha-1). As explained in Section 17.3.5, the model is no longer run for these zones to improve 

performance, and thus the average yield is set to -999 to indicate no (i.e. missing) value. This value was 

used (and not zero) so that these zones can be distinguished from those with a very small average yield 

that rounds to 0 t ha-1. This decision not only resulted in better model run times, but also prevented 

seasonal yield averages from being skewed by zero values. This new approach therefore eliminates 

average yields close to 0 t ha-1 since the yield is set to -999. Furthermore, it prevents the coefficient of 

variation in seasonal yield from being 0%, which as explained in Section 6.3.1.2, is misleading. 

 

6.3.1 Yield 

6.3.1.1 Average yield 

Yield estimates are in dry tons per hectare (dry t ha-1) and were derived using AquaCrop for each of the 

5,838 HRZs (or altitude zones). The model was run in GDD mode to simulate the effects of temperature 

on crop production. The mean yield was calculated from up to 49 seasonal estimates (1950/51-

1998/99). Dry yields can be converted to fresh yields using the dry:fresh ratios derived from 

observations in season 2 (cf. Section 4.4) and season 3 (Section 5.4). The accuracy of yield estimates 

is largely dependent on the success of the calibration. The partial calibration procedure is described in 

Section 6.2.3 but more details can be found in Section5.3.7. 
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All four maps produced for each crop highlight the suitability of the eastern seaboard for rainfed crop 

production, which is not surprising since the same areas currently produce commercial timber and 

sugarcane, which have higher rainfall requirements than most crops. Although an average yield was 

simulated for each HRZ, the entire zone may not be suitable for crop production due to current land 

uses, which is discussed further in Section 8.4.3. Furthermore, each altitude zone is considered a 

homogeneous response zone, which does not consider microclimatic effects. In general, the higher 

plant density produced higher yields, particularly in areas with sufficient rainfall, i.e. along the eastern 

seaboard of South Africa and eSwatini. However, such increases are only visible when the mean 

seasonal yield crosses a mapping range. 

 

The two planting dates were derived by Kunz et al. (2020) from an analysis of historical climate data 

from 1950-1999. However, weather is known to vary between seasons, which affects the selection of 

planting dates. Hence, it is acknowledged that planting dates should be determined using climate 

forecasts, rather than using historical data. Access to seasonal weather forecasts is recommended so 

that farmers can select appropriate planting dates. Despite this, the maps show the impact of planting 

date on attainable yields, thus highlighting the month that produced the higher yield. 

 

The spatial extent of the maps was largely influenced by two factors. Firstly, the model is no longer run 

for HRZs where the climate is deemed too cold for economically viable crop production. These zones 

were identified using crop cycle, which typically exceeds 365 days. Since both RTCs are frost sensitive, 

the first severe frost is likely to kill the leaves, and thus the crop should be harvested. This decision not 

only reduces model run time, but also prevents many zero (or very small) seasonal yields from being 

simulated, which tend to skew the mean statistics. These zones are marked as unsuitable on the maps 

and not coloured (i.e. appear white). These cold HRZs are clearly identify in red in Figure 8-5 and 

Figure 8-6 (cf. Section 8.4.1). Secondly, the extremely warm conditions experienced in the greenhouse 

during frequent load shedding and load reduction events during season 3 resulted in a rapid 

accumulation of heat units (in GDD). Hence, the thermal time to reach physiological maturity was higher 

than expected, especially for OFSP. This resulted in the simulation of zero or very low yields in the 

cooler interior regions of the country.  

 

The four maps for each RTC represent rainfed conditions where attainable yield is not affected by weed 

growth, soil fertility, soil salinity or pests and diseases. Hence, actual yields will be lower, especially in 

low-input farming systems. A comparison of the four maps is useful for assessing the impact of (i) 

November vs December plantings, and (ii) low vs high plant densities. For the lower density scenario, 

it may have been better to model fertility and weed stress. According to Nyathi et al. (2016), sweet 

potato is ideally suited for two diverse farming systems practised in South Africa, namely (i) low external 

input agriculture that encourages use of on-farm inputs, and (ii) high input agriculture, which promotes 

the use of off-farm resources such as irrigation, fertiliser and pesticides (Daberkow and Katherine, 

1988). Nyathi et al. (2016) ran AquaCrop for three different locations for both low (water-stressed; no 

fertiliser) and high (irrigated; fertilised) inputs. Results showed potential yield increases for OFSP of 

173-309% (Table 6-1). Nyathi et al. (2016) encouraged all stakeholders to use AquaCrop for decision 

making, and also for identifying suitable locations where crops can grow optimally. 
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Table 6-1 Simulations of OFSP yield at three locations under low and high input agriculture 

(Nyathi et al., 2016) 

Characteristic Dzindi Tugela Ferry Dingleydale 

Province Limpopo KwaZulu-Natal Mpumalanga 

Latitude (S) 23°01’ 28°44’ 24°41’ 

Longitude (E) 30°26’ 30°27’ 31°10’ 

Rainfall (mm) < 500 700 600 

Altitude (m) 712 699 478 

Yield (t ha-1) 

- low input 

- optimum 

- increase (%) 

 

  3.0 

10.5 

 250 

 

2.6 

7.1 

173 

 

  3.2 

13.1 

 309 

 

OFSP: Figure 6-9 to Figure 6-10 show average OFSP yields for two plant densities (i.e. 31,447 and 

55,556 plants ha-1) and two planting dates (1st of November and 1st of December). These maps, which 

were produced for the first time in this project, highlight the potential of OFSP production in the country, 

especially since the crop produces larger yields compared to taro. A comparison of the maps indicates 

larger yield changes due to the planting date rather than plant density. Irrespective of the plant density, 

there is a general decrease in yield due to the later planting (December), most notably along the eastern 

seaboard. 

 

Taro: Figure 6-11 to Figure 6-12 show average taro yields for two plant densities (i.e. 10,000 and 

27,778 plants ha-1) and the same two planting dates. Owing to the longer crop cycle of 180 days (vs 

160 days for OFSP), cooler areas (at higher altitudes) in the interior of the country are less suited to 

taro production. Taro yields are higher along the eastern seaboard when planted in December, 

especially at the higher density. However, the Limpopo province is better suited to a November planting. 
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(a) 

 

 

 
(b) 

Figure 6-9 Averaged seasonal yield for OFSP planted in November at a density of (a) 31,447 

and (b) 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-10 Averaged seasonal yield for OFSP planted in December at a density of (a) 31,447 

and (b) 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-11 Averaged seasonal yield for taro planted in November at a density of (a) 10,000 and 

(b) 27,000 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-12 Averaged seasonal yield for taro planted in December at a density of (a) 10,000 and 

(b) 27,000 plants ha-1 
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6.3.1.2 Coefficient of variation 

The simple yield models developed by Smith (2006) only provide one yield estimate using long-term 

(i.e. annual) climate data, whereas AquaCrop provides up to 49 seasonal yields from 1950/51 to 

1998/99. From this, the inter-seasonal variation in crop yield (YCV) can be determined, which represents 

a major advantage of using AquaCrop. This useful statistic describes how the yield varies over the 49 

consecutive seasons. However, it is important to fully understand the impact of zero yields on this 

statistic. 

 

The model typically simulates a zero yield when the crop fails to germinate or dies early in a particular 

season, due to the seasonal climate being too cold or too dry. Furthermore, if the crop cycle is beyond 

365 days (i.e. season’s climate is too cold), the model is no longer run (i.e. no yield estimate) and the 

yield is marked as missing, i.e. -999 (cf. Section 17.3.5). Hence, the number of simulated seasons will 

be less than 49. If the total number of simulated seasons is three or less, then no statistics (e.g. YAVE, 

YCV, etc.) are calculated since there are too few data points, i.e. YCV is set to -999. Such areas are 

deemed unsuitable for crop production and are coloured white on the maps. This prevents instances of 

YCV being 0% (i.e. identical yield values of 0 t ha-1). 

 

Table 6-2 provides a clearer understanding of how YCV is affected by the number of seasons with zero 

yields, relative to the total number of simulated seasons. YCV is 0% when all simulated seasons have zero 

yield and reaches a maximum value of 700% when 48 of the 49 seasons have a zero yield. A YCV value 

of 0% can therefore be misleading, especially when YCV is mapped is classes, since < 5% identifies 

zones that are highly suited to crop production (due to low yield variability), yet it includes zones where 

all simulated yields are zero (i.e. zones too cold for crop production). Hence, it is best to map YCV of 0% 

separately (coloured grey on the maps), thus highlighting all zones also deemed unsuitable for crop 

production. Hence YCV > 0% should then be used to classify highly suitable cropping areas. As 

highlighted in Table 6-2, if most of the simulated seasons have zero yield values, this results in high YCV 

values. 

 

Table 6-2 Effect of zero yields on the coefficient of variation in seasonal yield (YCV) 

YCV (%) No. of zero yields Total no. of seasons 

0 n n 

245 5 6 

265 6 7 

400 15 16 

412 16 17 

436 18 19 

469 21 22 

480 22 23 

500 24 25 

600 35 36 

671 44 45 

678 45 46 

686 46 47 

693 47 48 

700 48 49 
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As shown in Figure 6-13 for taro planted in November at a density of 10,000 plant ha-1, low YCV is 

associated with high average yields, which is expected. Average yields exceeding 10 dry t ha-1 (17 in 

total) exhibited YCV values ranging from 14.8 to 45.1%. For YCV > 150%, average yields were below 

1.46 dry t ha-1. Average yields below 0.35 dry t ha-1 typically exhibit high YCV values exceeding 134%. 

From Table 6-2, a YCV of 700% indicates the average was calculated from only one non-zero yield. This 

was the case for 12 HRZs, where the average yield ranged from 0.00 to 0.10 dry t ha-1. YCV was 0% for 

a total of 40 zones where the average yield was zero dry t ha-1. 

 

  
Figure 6-13 Relationship between non-zero seasonal yield averages for taro and the inter-

seasonal variability in yield across 2,452 HRZs, as simulated by the AquaCrop 

model 

 

OFSP: As noted above, high YCV is typically associated with low yields, and thus crop cultivation in 

these areas should be avoided. Such zones are typically located in the drier western parts of the country 

that are associated with erratic (i.e. more variable) monthly rainfall. As expected, YCV is lower along the 

eastern seaboard of the country where rainfall is sufficient to support not only rainfed crop cultivation, 

but commercial timber and sugarcane production. More zones had a low YCV (1-20%) for the November 

planting, in particular along the coast of KwaZulu-Natal (Figure 6-14) and are best suited to crop 

production. 

 

Taro: As shown in Figure 6-16 and Figure 6-17, YCV for taro is higher than for OFSP, particularly for a 

December planting. This indicates taro yields are more variable across the 49 seasons compared to 

OFSP, especially in the Limpopo province. It is important that the average yield and YCV maps are 

interpreted together, which will help explain why yields are lower in certain regions where YCV is higher. 

There are more zones with YCV of 0% (coloured grey on the maps), which are much easier to identify 

compared to the OFSP maps. The November planting at the lower density produced more zero YCV 

values in the Northern Cape province. This highlights the importance of mapping HRZs where YCV is 

0%, so that these zones are not classified as highly suitable (i.e. YCV < 20%). 
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(a) 

 

 

 
(b) 

Figure 6-14 Inter-seasonal variation in yield for OFSP planted in November at a density of (a) 

31,447 and (b) 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-15 Inter-seasonal variation in yield for OFSP planted in December at a density of (a) 

31,447 and (b) 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-16 Inter-seasonal variation in yield for taro planted in November at a density of (a) 

10,000 and (b) 27,000 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-17 Inter-seasonal variation in yield for taro planted in December at a density of (a) 

10,000 and (b) 27,000 plants ha-1 
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6.3.1.3 Impact of revised soil data 

Using the same (i) taro parameter file, (ii) planting date (15th November), and (iii) plant density (20,000 

pants ha-1) used by Mabhaudhi et al. (2016a) and Kunz and Mabhaudhi (2023), AquaCrop was run with 

the previous (i.e. old) and revised (i.e. new) soil properties. Average yields (Y in dry t ha-1) were then 

compared and as shown in Figure 6-18, YNEW is 93.9% of YOLD, i.e. YNEW < YOLD. This is expected since 

TAWNEW < TAWOLD (cf. Section 6.2.2.3). 

 

However, YNEW – TOLD is negative for 51.7% of all HRZs (Figure 6-19). The majority (83.1%) of the 

differences range from -0.25 and 0.25 dry t ha-1. The yields were identical for 1,033 HRZs, of which 387 

HRZs have the same soils in Lesotho and eSwatini (i.e. not updated). The largest difference of -3.05 

dry t ha-1 occurred in zone no. 4,630, where the average yield decreased from 4.66 to 1.61 dry t ha-1, 

due to a decrease in TAW of 33.9 mm. Similarly, the largest increase in average yield was 3.33 dry t 

ha-1 in zone no. 3,326 (i.e. from 1.89 to 5.22 dry t ha-1), yet TAW was almost identical (100.1 vs 100.2 

mm). This illustrates that changes in TAW do not always explain yield differences. 

 

 
Figure 6-18 Comparison of taro yields simulated using the previous (YOLD) and revised (YNEW) 

soil properties for each HRZ 

 

 
Figure 6-19 Differences in taro yields simulated using the revised (YNEW) and previous (YOLD) 

soil properties for each HRZ 
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The decision to run AquaCrop with a single-layer soil profile (cf. Section 6.2.2.3) for the first time 

impacted simulated taro yields as shown in Figure 6-20. Yields were simulated in 3,231 HRZs, with the 

remaining 2,607 zones being mostly too cold (and too dry) for taro production. On average, yields 

increased by 11.1% due to the change from two-layer to one-layer soils for al a HRZs. Hence, as shown 

in Figure 6-21, the difference in yield obtained from a one-layer soil vs a two-layer soil (YieldLAY1 – 

YieldLAY2) is positive for 59.1% of the 3,231 HRZs. The largest yield increase of 1.20 dry t ha-1 occurred 

in zone no. 4,711, where the yield changed from 1.90 to 3.10 dry t ha-1. The majority (85.3%) of the 

differences range from -0.25 and 0.25 dry t ha-1, and thus are considered relatively small. The yields 

were identical in 1,058 HRZs, of which 387 HRZs have the same soils in Lesotho and eSwatini (i.e. not 

updated). However, all data points below the 1:1 trendline (solid black line) indicate yield decreases, 

with the largest being 2.55 dry t ha-1 in zone no. 3,375, where the yield declined from 4.83 to 2.28 dry t 

ha-1. In a few zones, yields up to 1.4 dry t ha-1 decreased to zero dry t ha-1. It is also worth noting that a 

single-layer soil profile provided no speed improvement in terms of the total model run time. 

 

 
Figure 6-20 Comparison of taro yields simulated using the revised soils for two-layer vs one-

layer soil profiles 

 

 
Figure 6-21 Differences in taro yields simulated using the revised soils for one-layer vs two-

layer soil profile in each HRZ 
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6.3.2 Crop cycle 

AquaCrop defines the length of the crop cycle from the number of days after emergence to when the 

yield peaks, i.e. physiological maturity. It is different to the growing season length, which is the number 

of days from planting to physiological maturity. Hence, the crop cycle is always shorter than the season 

length. Maps of crop cycle are useful as they help identify areas too cold for crop production (shown in 

white on the maps) and in which HRZs a crop will reach physiologically maturity faster than in others. 

As mentioned before, the crop model is no longer run if the crop cycle exceeds 365 days. If this occurs 

in 46 of the 49 seasons, the average statistic is not generated and the zone is marked as unsuitable for 

crop production (i.e. -999). Such HRZs are coloured white on the maps, which are mostly located in the 

country’s interior in the higher altitude or mountainous areas. 

 

Zones with long crop cycles (300-365 days) are coloured green on the maps and typically are adjacent 

to the colder (white) HRZs. It is clear from the maps that crop cycle shortens towards the warmer, lower 

altitude (i.e. coastal) areas, with certain parts of the Limpopo (northern & eastern), Mpumalanga 

(eastern) and KwaZulu-Natal (northern-eastern) provinces exhibiting the shortest crop cycles. For both 

RTCs, crop cycles were longer when planted in December as a longer season is required to accumulate 

sufficient heat units to reach physiological maturity. 

 

OFSP: As expected, plant density had little to no impact on crop cycle when compared to the planting 

date. For the December planting of OFSP, the maps are identical (Figure 6-23). OFSP planted in 

November at either density (31,447 or 56,667 plants ha-1) had similar crop cycles. Large variations in 

crop cycle (due to plant density) may indicate that a zone is not well suited to crop production, and thus 

yields will be low with high variation between seasons. 

 

Taro: For taro, more differences in crop cycle were noted, particularly in the drier western parts of the 

country. However, taro production is unlikely viable in these areas due to the low attainable yields (cf. 

Section 6.3.1.1) and high YCV values (cf. Section 6.3.1.2). There are more unsuitable areas for taro 

when compared to OFSP due to the longer thermal time required to reach physiological maturity (2,822 

vs 2,533 GDDs; cf. Table 16-14 in Section 16.4). Taro can take up to 49 days to emerge (Mabhaudhi, 

2012), and thus is unlikely to fully mature within 100 days. The crop can take up to 300 days to mature 

(Mugiyo et al., 2021b).  
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(a) 

 

 

 
(b) 

Figure 6-22 Averaged crop cycle for OFSP planted in November at a density of (a) 31,447 and 

(b) 55,556 plants ha-1 
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(b) 

Figure 6-23 Averaged crop cycle for OFSP planted in December at a density of (a) 31,447 and 

(b) 55,556 plants ha-1 
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(b) 

Figure 6-24 Averaged crop cycle for taro planted in November at a density of (a) 10,000 and (b) 

27,000 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 6-25 Averaged crop cycle for taro planted in December at a density of (a) 10,000 and (b) 

27,000 plants ha-1 
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6.3.3 Risk of crop failure 

Kunz and Mabhaudhi (2023) calculated the risk of crop failure (RCF) as the ratio of the number of zero 

yields, to the total number of seasons (i.e. 49), which is expressed as a percentage. For HRZ no. 1,509, 

the model simulated 19 seasons of zero yield. For the other 30 seasons, the model “crashed” with a 

“division-by-zero” error, and thus no model output was produced. This typically occurs when the climate 

is too cold for viable crop production. Hence, RCF was calculated as 38.8% (i.e. 100*19/49). 

 

For this project, RCF was defined as the number of zero yields divided by the number of simulated 

seasons. Hence, for zone no. 1,509, RCF is 100% (i.e. 100*19/19), which is more than double the value 

obtained by Kunz and Mabhaudhi (2023). In other words, when the model “crashed”, the yield should be 

assumed zero for all 30 seasons. Therefore, there are 49 zero yields (19 + 30) out of 49 simulations, which 

gives a RCF of 100%. 

 

However, crop failure can also be defined as a 10% or more decline in yield compared to the mean 

yield, i.e. a 10% negative deviation from the mean (Caparas et al., 2021). Instead of using means, some 

studies adopted deviations from a trendline of yield vs time. The use of these definitions of crop failure 

should be investigated in future studies. 

 

Maps showing the spatial variability in RCF were produced for OFSP and taro. They clearly highly areas 

in the country where crop production is not viable, mostly due to cold temperatures (coloured white on the 

maps) and/or erratic rainfall (coloured red on the maps). If RCF is 50% it indicates the model simulated a 

zero yield (i.e. crop failure) every second season. Such areas are not deemed unsuitable for crop 

production, especially for subsistence farmers. 

 

OFSP: The RCF for OFSP is relatively low, For the majority of HRZs, the RCF for OFSP was low, i.e. 

< 5%, which indicates the model simulated a zero yield across 20 seasons (on average). However, RCF 

increases for HRZs located adjacent to cold areas (coloured white). In the Free State, a December 

planted was associated with lower crop failure risk (Figure 6-27). The maps show low RCF for the 

Northern Cape province, which indicates very few zero yields were simulated across the 49 seasons. 

As mentioned previously, maps should not be interpreted “in isolation”, as the yield and YCV maps show 

the western parts of the country are not suited to rainfed crop production. 

 

Taro: The RCF is higher to taro compared to OFSP, especially in the Limpopo and North West 

provinces. In these provinces, a December planting (Figure 6-29) was associated with higher risk 

compared to November (Figure 6-28). As expected, the drier Northern and Western Cape provinces 

are associated with high risk of crop failure. 
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(b) 

Figure 6-26 Risk of failure for OFSP planted in November at a density of (a) 31,447 and (b) 

55,556 plants ha-1 
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(b) 

Figure 6-27 Risk of failure for OFSP planted in December at a density of (a) 31,447 and (b) 

55,556 plants ha-1 
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(b) 

Figure 6-28 Risk of failure for taro planted in November at a density of (a) 10,000 and (b) 27,000 

plants ha-1 
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(b) 

Figure 6-29 Risk of failure for taro planted in December at a density of (a) 10,000 and (b) 27,000 

plants ha-1 
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6.3.4 Crop water productivity 

6.3.4.1 Average CWP 

Aim 5 of this project is to improve the knowledge on the productivity of water required for the rainfed 

production of RTCs (cf. Section 1.2). Crop water productivity (CWP) is the attainable yield (in dry kg 

ha-1), relative to crop water use (i.e. actual evapotranspiration in m-3) accumulated from planting to 

physiological maturity. Hence, the CWP metric is sensitive to crop yield, which is influenced by crop 

management. This metric can also be used as an indicator to assess the performance of a system and 

to identify the environments in which (or management strategies by which) the yield per unit water can 

be maximised (Raes et al., 2018). CWP measures the trade-off between carbon gain and water loss of 

agricultural ecosystems and understanding its dynamics and controlling factors is essential for 

predicting ecosystem responses to environmental variability 

 

Underutilised crops can exhibit higher CWP when stressed in comparison to non-stressed conditions. 

CWP is most useful for determining if crops are grown in optimum environments as opposed to those 

produced in sub-optimum areas. AquaCrop is designed to improve water productivity of rainfed and 

irrigated crops by helping to identify constraints to crop production. The model can also help to develop 

strategies to maximise crop water productivity, especially under water-deficit growing conditions. 

Hence, the model was used to estimate the CWP of OFSP and taro at a national scale. However, root 

and tubers are indeterminant crops, which continue to form new leaves after initiation of tuber formation. 

Hence, AquaCrop will struggle to accurately simulate crop evapotranspiration of indeterminate crops, 

since the model will reduce transpiration towards the end of the season. This is especially true for OFSP 

that exhibits the “stay-green” trait. Hence, the model is likely to under-estimate measured crop water 

use, and thus over-estimate CWP. 

 

The seasonally averaged CWP under rainfed conditions was determined for each planting date and 

density scenario, i.e. four maps per crop. Estimates of averaged CWP (in dry kg m-3) were derived using 

AquaCrop for up to 49 seasons. The maps follow similar trends to the yield maps, which highlights the 

sensitivity of this metric to yield input. Areas in white indicate HRZs not suited to crop production, i.e. 

too cold for crop production. When the CWP is zero dry kg m-3, this indicates the average yield estimate 

was also zero dry kg ha-1 (shown in light grey). 

 

It is important to note that CWP maps can be misinterpreted. A relatively high CWP can occur when 

crop evapotranspiration is low. It is therefore recommended that the CWP maps are interpreted in 

conjunction with the yield and crop cycle maps. Various ways to increase CWP of underutilised crops 

include: 

• modifying crop eco-physiology (e.g. intercropping), 

• harvesting of rain water and conserving soil water, 

• improving agronomic practices, 

• planting more drought-tolerant varieties/landraces, and 

• using decision support tools (e.g. remote sensing, gene mapping and climate modelling) for 

better decision making. 

 

The CWP maps highlight the same trend of higher CWP along the eastern seaboard, compared to the 

western regions. The maps show that large parts of the country’s interior region, especially towards the 

western areas, are too cold and/or too dry for rainfed crop production, and thus yield and CWP are very 

low. In general, high yield is associated with high CWP. The maps show that both crops are most water 

use efficient along the coastal regions of KwaZulu-Natal and the Eastern Cape, including the adjacent 

interior. In these areas, the model simulated the highest yields, which resulted in high CWP. Hence, 

RTC production by smallholder famers should be promoted in these areas where the crop is most water 

use efficient. 
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Due to the drought tolerance of RTCs, they have the potential to use water more efficiently when 

compared to other food crops (Hadebe et al., 2017). This can be assessed by comparing CWP values 

of different crops. For example, the maps show that CWP of taro is much less than for OFSP, as 

observed in Season 2 (1.37 vs 3.42 dry kg m-3). This is due to the lower yields simulated for taro, when 

compared to OFSP. However, the comparison of measured and simulated CWP values is not advised. 

Furthermore, the comparison of CWP values derived from fresh yields will be higher than those from 

dry yields. 

  

OFSP: Maps of seasonally averaged CWP for OFSP representing two planting dates and two plant 

densities are shown in Figure 6-30 to Figure 6-31. Unsuitable areas (shown as white) indicate no CWP 

was calculated, since these HRZs are considered too cold for viable crop production, and thus the 

model was not run. As expected, CWP improves at higher density due to increased yields. Furthermore, 

CWP is lower in November (Figure 6-30) when compared to December (Figure 6-31). 

 

Taro: CWP improves when the crop is planted in November in the Limpopo and North West provinces. 

However, CWP is higher for the December planting along the coastal regions of KwaZulu-Natal and the 

Eastern Cape. 

 

6.3.4.2 Coefficient of variation 

Maps of inter-seasonal variation in crop water productivity (CWPCV) were also produced for both RTCs 

and are presented in Section 18. As expected, CWPCV is lower along the eastern seaboard of the 

country where rainfall is sufficient to support rainfed crop cultivation. 

 

OFSP: In general, CWPCV for OFSP is lower for the December planting (Figure 6-31) when compared 

to November (Figure 6-30). However, YCV was lower for the November planting, in particular along the 

coast of KwaZulu-Natal (Figure 6-14), as noted in Section 6.3.1.2. 

 

Taro: As shown in Figure 6-32 and Figure 6-33, CWPCV for taro is higher than for OFSP, particularly 

for a December planting. CWPCV also declines when taro is planted in December, particularly in parts 

of the Limpopo and North West (north-eastern) provinces, Mpumalanga (eastern) and KwaZulu-Natal 

(north-eastern). This indicates taro yields are more variable across the 49 seasons compared to OFSP, 

especially in the Limpopo province. 
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(b) 

Figure 6-30 Averaged seasonal CWP for OFSP planted in November at a density of (a) 31,447 

and (b) 55,556 plants ha-1 
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(b) 

Figure 6-31 Averaged seasonal CWP for OFSP planted in December at a density of (a) 31,447 

and (b) 55,556 plants ha-1 
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(b) 

Figure 6-32 Averaged seasonal CWP for taro planted in November at a density of (a) 10,000 and 

(b) 27,000 plants ha-1 
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(b) 

Figure 6-33 Averaged seasonal CWP for taro planted in December at a density of 27,778 plants 

ha-1 
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Figure 6-34 shows the map of taro CWP derived by Kunz and Mabhaudhi (2023). CWP estimates are 

much lower when compared to those shown in Figure 6-32b. Hence, the maps shown above supersede 

previous taro maps developed by Mabhaudhi et al. (2016a) and Kunz and Mabhaudhi (2023), since the 

following was significantly improved in this project: (i) crop parameters, (ii) climate and soil input data, 

and (iii) methodology for running AquaCrop. The improvements help to explain  

 

 
Figure 6-34 Seasonal crop water productivity (average of 49 seasons) for taro per quinary sub-

catchment as simulated by AquaCrop (Kunz and Mabhaudhi, 2023) 

 

6.3.5 Nutritional water productivity 

CWP (dry kg m-3) was multiplied by the measured nutrient content (in g kg-1 of edible portion) to obtain 

nutritional water productivity (NWP; in g m-3). Nutrient content of storage roots/tubers and leaves was 

measured by the ICFR laboratory (cf. Table 14-1 and Table 14-2; cf. Section 14.1). NWP combines 

information of nutritional value with that of crop water productivity. The result is an index or metric that 

includes nutritional value-based output per unit of water consumed during crop growth. This concept is 

important in addressing food security issues, especially in arid and semi-arid regions where malnutrition 

remains high. Maps of NWP for both RTCs were produced for two important minerals, namely Fe and 

K. Maps of NWPβ-c and NWPZn were also developed for OFSP and taro, respectively. 

 

The NWP maps were produced using CWP values for OFSP and taro planted in November at a lower 

density, which represents smallholder farms. Hence, the spatial distribution in NWP matches that for 

CWP, i.e. HRZs with high yield will exhibit high CWP and thus NWP. From Figure 6-35, it is clear that 

NWPFe for taro tubers is higher than for OFSP storage roots, despite taro’s lower CWP (cf. Figure 6-32 

in Section 6.3.4.1). From the tables shown in Section 14.1, K is by far the most abundant mineral 

element in OFSP storage roots and taro tubers. The K content and CWP of OFSP storage roots is 

higher than that for taro tubers, and thus NWPK for OFSP is greater (Figure 6-36). 
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(b) 

Figure 6-35 NWPFe for (a) OFSP and (b) taro planted in November at the lower density 
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(b) 

Figure 6-36 NWPK for (a) OFSP and (b) taro planted in November at the lower density 
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OFSP storage roots contain β-c, which is a precursor to vitamin A. Hence, the consumption of OFSP 

can address vitamin A deficiency among women and children in South Africa. Figure 6-37 shows that 

OFSP grown along the coastal regions of the Eastern Cape province should produce the highest 

content of β-c per unit of water consumed. Hence, NWPβ-c is at least double that for the majority of the 

Limpopo and North West provinces. 

 

 
Figure 6-37 NWPβ-c for OFSP planted in November at a density of 31,447 plants ha-1 

 

Zn deficiency is recognised as a global public health challenge (Stein, 2010), which can be addressed 

by promoting the consumption of taro. Taro tubers contain about 137 mg of Zn per dry kg of tuber (Table 

14-2; cf. Section 14.1), compared to 14 mg per dry kg of OFSP storage root. Hence, taro tubers are a 

good source of this vital nutrient, which is important for boosting human immune systems. Taro can 

therefore address hidden hunger among vulnerable communities located in KwaZulu-Natal and the 

Eastern Cape, especially along the coast and adjacent interior. However, Gerrano et al. (2021) 

evaluated the mineral composition of 14 taro accessions (13 from KwaZulu-Natal) and showed that 

mineral content varied significantly (p < 0.05) among the genotypes (Table 13-5 in Section 13.1). 
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Figure 6-38 NWPZn for taro planted in November at a density of 10,000 plants ha-1 

 

6.4 SUMMARY AND CONCLUSIONS 

Limited information exists on how water stress, temperature and soil type affect the yield of OFSP and 

taro across South Africa. Conducting experiments in different agro-ecological zones can be time 

consuming and costly (Nyathi et al., 2016). When calibrated and validated with data from well-designed 

experiments, crop models can help lower the overall costs of field experiments with regards to time and 

space (Mabhaudhi, 2012). Although such models can provide reasonable estimates of crop productivity, 

they are not a substitute for field experiments.  

 

To meet the objectives of this project, a large number of AquaCrop simulations were undertaken. This 

was made possible since crop parameters already existed for both RTCs, which were then fine-tuned 

using data from season 3 as described in Section 5.2.6. These modified parameters provided better 

estimates of biomass and yield for both crops, as shown in Section 5.3.7, especially for water stress 

conditions. This represents a valuable outcome of this project. 

 

Since a national model run is computationally expensive, considerable effort was spent on reducing 

model run time. A detailed and technical description of the speed improvements was provided in this 

report (cf. Section 17) so that other researchers and modellers can benefit from experiences gained 

over the past nine years. It is important to note that this work, which is considered innovative, was only 

possible due to funding received from the WRC. The significant speed improvements achieved to date 

allow for other modelling scenarios to be considered, e.g. multiple planting dates and plant densities. 

 

AquaCrop was run at a national scale for all 5,838 HRZs, regardless of whether or not the zone is 

deemed suitable for rainfed crop production. This was done so that model output could be used to 

identify suitable crop production areas (cf. Chapter 8). For each HRZ, the model was run with 50 years 

of daily input climate data, which produced 49 consecutive seasons of simulated data. Model runs were 

completed for both rainfed and irrigated conditions, where the latter was used to derive crop coefficients 

for non-stressed growing conditions. The crop coefficient were required as input by the ACRU 

hydrological model to assess the potential impact of rainfed crop production on downstream water 

availability (cf. Chapter 7). AquaCrop was run for two plant densities representing small- and large-
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scale production systems, each with two planting dates (01 November and 01 December). Since the 

modelling was undertaken for two RTCs, this equates to over 4.57 million seasonal simulations. 

 

From the modelled results, national scale maps of attainable yield were produced for OFSP and taro, 

including maps on inter-seasonal variation in yield. In addition, maps showing the length of the crop 

cycle and potential risk of crop failure were also produced. Maps showing spatial variation in CWP and 

NWP were also produced, including inter-seasonal variation in CWP. The maps for OFSP were 

produced for the first time by the project. They provide valuable information for planning purposes, 

especially in areas where no (or insufficient) data exists on crop growth. The yield maps clearly highlight 

low and high potential production areas for OFSP and taro. They identify large parts of the country’s 

interior region, especially towards the western areas, which are too cold and/or too dry for crop 

cultivation under rainfed conditions. The following are important trends that were identified: 

 

• In general, higher plant density produces more crop yield (as expected). 

• Planting date has a larger impact on crop yield than plant population. 

• Yields are higher when OFSP is planted in November than December. 

• Taro yields are higher along the eastern seaboard if planted in December,  

• Taro yields are higher in the Limpopo province when planted in November. 

• OFSP’s CWP is higher than that for taro, due to higher storage root yields for OFSP.  

• YCV is lower when OFSP is planted in November, especially along the coastal region of 

KwaZulu-Natal. 

• YCV for taro is higher than for OFSP, particularly for a December planting. 

• As expected, plant density had little to no impact on crop cycle compared to planting date, 

especially for OFSP. 

• When compared to OFSP, less areas are suited to taro production. 

• Colder regions are better suited to OFSP production than taro. 

• The risk of failure for OFSP is relatively low compared to taro. 

• For taro, a December planting is associated with a higher risk of crop failure. 

• CWP improves at higher density due to increased yields. 

• CWP is lower for OFSP planted in November when compared to December. 

• CWP improves when taro is planted in November in the Limpopo and North West provinces. 

However, CWP is higher for the December planting along the coastal regions of KwaZulu-Natal 

and the Eastern Cape. 

• CWPCV for OFSP and taro is lower for the December planting compared to November. 

• CWPCV for taro is higher than that for OFSP, particularly for a December planting. 

• NWPTARO > NWPOFSP for Fe. 

• NWPTARO < NWPOFSP for K. 

• For β-c, NWPOFSP is highest along the coastal region of the Eastern Cape. 

• For Zn, NWPTARO is highest along the coastal region of KwaZulu-Natal and the Eastern Cape. 

 

Although model output can be used to support decision-making, it should not be used to derive 

recommendations for best management (Debaeke and Aboudrare, 2004). Making decisions or drawing 

conclusions using only one variable (e.g. crop water productivity), whilst ignoring other variables (e.g. 

yield or crop cycle), must be avoided. The maps provided in this chapter help to identify areas in the 

country with high yield and productivity potential. The maps will prove useful to both small- and large-

scale farmers, as they provide information on crop choice and expected yields for specific planting dates 

and plant densities. It is envisaged that the knowledge gained in this project will help promote the 

production of root and tuber crops, particularly in rural communities, thus resulting in poverty alleviation 

as well as the expansion of agricultural production. The maps showing the spatial variation in OFSP 

yield and NWP were produced for the first time by this project. 
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7 HYDROLOGICAL IMPACTS OF CROP PRODUCTION 

7.1 INTRODUCTION 

Agricultural expansion, facilitated by increased production of root and tuber food crops (RTCs), will 

result in land use changes, which may have a negative impact on available water resources, even if 

crops are rainfed. Therefore, one of the main outcomes of this project was to model the hydrological 

impact of RTC production on downstream water availability (cf. Aim 6 in Section 1.2).  

 

Schulze (2023) produced a comprehensive report highlighting local and international verification studies 

that have been undertaken regarding ACRU. Results showed that ACRU can adequately simulate 

changes in runoff that may result from land use changes over time. ACRU was run for the first time in 

2009 to assess land use change and climate change impacts on hydrological response. Since then, 

ACRU has been used extensively in many other WRC-funded projects to assess the impact of land use 

change on hydrological response. For example, the model was run in 2022 to assess the stream flow 

reduction potential of 15 commercial forestry species/hybrids/clones as part of WRC Project No. 

K5/2791 using model inputs obtained from field work (Clulow et al., 2023a) and remote sensing (Clulow 

et al., 2023b). ACRU has also been used to quantify the stream flow reduction potential of bamboo 

(Everson et al., 2021), sorghum and soybean (Kunz et al., 2020) and other crops such as sugarcane 

and sugarbeet (Kunz et al., 2015c). 

 

7.2 METHODOLOGY 

7.2.1 Model description 

ACRU is an integrated hydrological model that has been frequently used to assess the impacts of land 

use change and climate change on the following: 

• daily storm flows, base flows and total runoff, 

• accumulated daily stream flows from all upstream catchments, 

• peak discharge, sediment yields and recharge to groundwater, and 

• daily soil water content and evapotranspiration. 

 

ACRU operates on a daily time step, which is important since flow regimes and sediment yield are 

highly correlated with individual rainfall events (Schulze, 1995). The model is sensitive to changes in 

land cover, land use and land management that impact runoff response. ACRU is a physical model 

where processes are represented explicitly with initial and boundary conditions. It is also a conceptual 

model where important processes are coupled (Figure 7-1), and thus is considered a physical-

conceptual model of intermediate complexity. Total evaporation from a vegetated surface consists of 

both soil surface evaporation (E) and transpiration (Tr), which is governed by rooting distributions. 

These two processes were modelled separately for improved simulation accuracy. During periods of 

sustained plant stress, when the soil water content of both the upper and lower soil horizons falls below 

40% of plant available water (for example), transpiration losses are reduced in proportion to the level 

of plant stress. When plant available water increases above this threshold in either soil horizon, plant 

stress is relieved and evaporative loss recovers to the optimum value, at a rate dependent on the air 

temperature. In ACRU, runoff response variables are used to govern the portion of storm flow exiting a 

catchment on a particular day (as quick flow), as well as the portion of base flow originating from the 

groundwater store, which contributes to runoff generation (Schulze, 1995). For a more detailed 

description of ACRU, the reader is referred to Schulze (2023; cf. Chapter 4). 
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Figure 7-1 Structure of the ACRU agro-hydrological modelling system (Schulze, 1995) 

 

7.2.2 Model inputs 

A brief description of the climate and soil data available for each of the 5,838 HRZs was provided in 

Sections 6.2.2.2 and 6.2.2.3, respectively. Since ACRU requires A-pan equivalent reference 

evaporation, FAO56 ETO was adjusted using the method developed by Kunz et al. (2015b). This 

adjustment was based on a modified version of the PenPan equation, which was successfully applied 

in Australia to estimate A-pan equivalent evaporation. The adjustments suggest that A-pan equivalent 

evaporation exceeds FAO56 reference evapotranspiration by a factor ranging from 17 (for summer) to 

51% (for winter) for southern Africa. The reader is referred to Kunz et al. (2015b) for more detail on the 

PenPan method. 

 

Two other ACRU parameters, namely ABRESP and BFRESP, were also derived for each HRZ. These 

represent the fraction of “saturated” soil water that is redistributed each day from the topsoil into the 

subsoil horizon, and from the subsoil horizon into the intermediate/groundwater store. They were also 

determined for each terrain unit per land type (cf. Section 6.2.2.3), from which area-weighted values 

were then calculated for each HRZ. 

 

7.2.3 Land cover parameters 

ACRU requires seven key parameters to model the water use of the vegetation layer (Table 7-1). These 

variables are required to consider four processes, namely canopy interception loss, evaporation from 

the canopy (of transpired and intercepted water), evaporation of water from the soil surface and soil 

water extraction by plant roots (to quantify transpiration). In the context of assessing stream flow 

reduction potential, water use of the vegetation layer is defined as the difference in runoff generated by 

the land cover (e.g. crop) to that generated by natural vegetation. Thus, to determine the hydrological 

impact of land use change to OFSP and taro production, it is necessary to first define the baseline 

vegetation against which water use comparisons are made. 
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Table 7-1 Key variables (monthly values) in ACRU that account for land cover/use (Smithers 

and Schulze, 1995) 

Parameter Definition 

CAY 
A monthly consumptive water use (or “crop”) coefficient, which reflects the ratio of 
water use by vegetation under conditions of freely available soil water to the 
evaporation from a reference surface (e.g. A-pan equivalent). 

ELAIM 
Monthly LAI values. Can be used to calculate monthly interception losses and/or to 
determine the crop’s consumptive water use. 

VEGINT 
Monthly interception loss values, which can change during a plant’s annual growth 
cycle. They estimate the magnitude of rainfall that is intercepted by the plant’s canopy 
on a rainy day. 

ROOTA 
The fraction of plant roots that are active in extracting soil moisture from the A-horizon 
in a given month. This fraction is linked to root growth patterns during a year and 
periods of senescence brought on, for example, by a lack of soil moisture or by frost. 

COLON 

Extent of colonisation of plant roots in the B-horizon. Determines the amount of water 
that may be extracted by the plant from the B-horizon. Hence, this variable reflects the 
extent to which the subsoil is “colonised” by roots. Total evaporation from the B-horizon 
is suppressed by the fraction COLON/100. Default in ACRU: 100%. 

PCSUCO 
The fraction (expressed as a percentage) of the soil surface covered by a mulch or 
litter layer. This layer suppresses soil water evaporation. However, 20% of the soil 
water evaporation still takes place with 100% cover. Default in ACRU: 0%. 

CONST 
Fraction of plant available water at which plant stress sets in. The plant’s physiological 
characteristics determine the onset of wilting in response to drier soil conditions. 

FOREST 
Specifies whether evaporation from a wet canopy occurs at potential rate (for short  
vegetation) or at an enhanced rate (if more than 50% of the catchment is forestry). 

 

7.2.3.1 Baseline land cover 

Prior to 2019, the Department of Water and Sanitation (DWS) supported and accepted the use of 

“natural vegetation” as depicted by the Acocks (1988) veld type map as a reasonable standard or 

reference land cover against which impacts of land use change were assessed. However, DWS has 

recently adopted the vegetation clusters derived by Toucher et al. (2020) as the new baseline. The 

2012 vegetation map produced by the South African National Botanical Institute (SANBI) identified 435 

vegetation types, which were simplified into 121 hydrologically relevant vegetation groupings called 

clusters. For each cluster, Toucher et al. (2020) derived appropriate values for the seven parameters 

shown in Table 7-1. For example, remotely sensed leaf area index (ELAIM) for each vegetation cluster 

was used to derive monthly crop coefficients (CAY). Monthly LAI values were also used to estimate 

monthly interception loss (VEGINT) using the von Hoyningen-Huene (1983) equation. This new 

baseline has already been used in two projects (Clulow et al., 2023b; Kunz et al., 2020). 

 

7.2.3.2 Root and tuber crops 

CAY 

Monthly crop coefficients (KC) are an important ACRU model input that is used to estimate water use of 

the vegetation layer. Sensitivity analyses conducted by Angus (1989) and Toucher et al. (2020) showed 

that ACRU is highly sensitive to changes in CAY and slightly sensitive to changes in both ROOTA and 

VEGINT. For this reason, it is therefore important to accurately determine representative CAY values 

for OFSP and taro for use in ACRU.  

 

The methodology to derive representative CAY values for each HRZ involved running AquaCrop for 

non-stressed conditions to determine maximum crop evapotranspiration (ETC), from which CAY was 

calculated as the ratio of ETC to reference evapotranspiration (ETO). Hence, a unique set of monthly 

CAY values were calculated for each HRZ, which is more robust than using one set of values derived 

from field work for all HRZs. This approach was first used in WRC Project K5/2491 (Kunz et al., 2020), 
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which assessed, inter alia, the hydrological impact on runoff generation that may result from a land use 

change from natural vegetation to sorghum and soybean cultivation. 

 

The decision to set the planting date to the 01 November and 01 December (not day 15) was important, 

since ETC values were summed over 30 (or 31) days, and thus CAY calculated for the first month was 

considered more accurate since CAY estimated from 15 days of data is typically higher. For each HRZ, 

the average crop cycle simulated by AquaCrop in days was divided by 30 to determine the crop cycle 

length in months, which varied from 4 to 12 months for OFSP and 5 to 12 months for taro. The maximum 

length of 12 months was expected as the crop cycle was restricted to a maximum of 365 days. 

 

AquaCrop is no longer run for cold seasons where the crop cycle exceeds 365 days (cf. Section 17.3.5). 

This decision was made to reduce model run time. Furthermore, if three or less seasons (out of 49) are 

simulated, averaged seasonal ETC cannot be calculated (i.e. too few data points). When this occurs, 

the crop coefficient is set to -999 to indicate no data, i.e. missing value. For zones where no ETC was 

simulated for any month, KC was therefore not calculated. Since these HRZs are unsuitable for crop 

production, CAY was set to monthly values derived for natural vegetation by Toucher et al. (2020). This 

was done so that differences in runoff generation that may result from a land use change from natural 

vegetation to crop production was zero (i.e. no stream flow reduction potential).  

 

Since taro takes up to 300 days (or 10 months) to mature (Mugiyo et al., 2021b), crop cycles of 11-12 

months are considered too long. Furthermore, taro is frost sensitive (cf. Table 13-1 in Section 13.1) so 

is unlikely to survive the cold winter months, especially June to August. Hence, the decision was made 

to reduce the maximum crop cycle to 10 months for taro (and 7 months for OFSP). For months with no 

AquaCrop-derived CAY values (e.g. from April/May to October), crop coefficients for the fallow period 

were used, which were derived from measured ET for weedy conditions at Fountainhill over season 2 

(cf. Section 4.3.5.1). 

 

The smallest and largest CAY values calculated from AquaCrop output for each month across all 5,838 

HRZs is shown in Table 7-2. It is important to note that ETC simulated by AquaCrop is limited by the 

basal crop coefficient (KCB) input parameter, which was set to 1.05 for both crops (Table 16-13; cf. 

Section 16.4) . The values highlight the potential of each RTC to utilise approximately the same amount 

of water as the reference crop (hypothetical short, green grass). 

 

Table 7-2 Minimum and maximum monthly crop coefficients for OFSP and taro across all 

5,838 HRZs 

RTC 

Planting 

date/ 

density 

Stat Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

OFSP 

01 Nov/ 

31,447 

Min 

Max 

0.26 0.20 0.20 0.20 0.31 0.31 0.23     

0.95 1.01 1.00 0.95 0.86 0.73 0.64     

01 Dec/ 

31,447 

Min 

Max 

 0.28 0.20 0.20 0.31 0.31 0.23 0.20    

 1.01 1.00 0.95 0.86 0.74 0.67 0.60    

01 Nov/ 

55,556 

Min 

Max 

0.28 0.20 0.20 0.20 0.31 0.31 0.23     

0.95 1.01 1.00 0.95 0.86 0.73 0.64     

01 Dec/ 

55,556 

Min 

Max 

 0.31 0.20 0.20 0.31 0.31 0.23 0.20    

 1.01 1.00 0.95 0.86 0.74 0.66 0.59    

Taro 

01 Nov/ 

10,000 

Min 

Max 

0.20 0.20 0.20 0.20 0.31 0.31 0.26 0.20 0.20 0.20  

0.95 1.01 1.00 0.95 0.86 0.74 0.78 0.63 0.68 0.58  

01 Dec/ 

10,000 

Min 

Max 

 0.20 0.20 0.20 0.31 0.31 0.26 0.20 0.20 0.20 0.20 

 1.01 1.00 0.95 0.86 0.74 0.78 0.64 0.68 0.62 0.67 

01 Nov/ 

27,000 

Min 

Max 

0.20 0.20 0.20 0.20 0.31 0.31 0.26 0.20 0.20 0.20  

0.95 1.01 1.00 0.95 0.86 0.74 0.78 0.63 0.68 0.58  

01 Dec/ 

27,000 

Min 

Max 

 0.21 0.20 0.20 0.31 0.31 0.26 0.20 0.20 0.20 0.20 

 1.01 1.00 0.95 0.86 0.74 0.78 0.63 0.68 0.61 0.67 
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Everson and Mengistu (2011) reported daily KC values ranging from 0.46-0.81 (average of 0.60) for 

lowland taro grown in the Mbongolwane wetland catchment in KwaZulu-Natal. These values are 

relatively low considering taro was planted on raised beds cleared of sedge (Cyperus latifolius) and 

furrows were created to increase water flow (i.e. relatively unstressed conditions). However, values 

were only calculated for 4 and 6 days in November 2009 and January 2010, respectively.  

 

ACRU requires monthly KC values calculated using the A-pan as the reference evaporation (EPAN). 

Since monthly KC values for OFSP and taro are based on FAO56 reference evapotranspiration (EETO), 

they were adjusted using monthly pan coefficients (EPAN/EETO). The latter ratios were calculated by Kunz 

et al. (2015b) for each HRZ and range from 1.16 t o1.51. They are always greater than unity (i.e. 1) 

since EPAN > EETO, especially during the winter months. Hence, crop coefficients for OFSP, taro and the 

fallow period (KC_ETO) were multiplied by the inverse of monthly pan coefficients for each HRZ to 

determine pan adjusted crop coefficients (KC_PAN) as follows: 

 

𝐾𝐶_𝑃𝐴𝑁 =  𝐾𝐶_𝐸𝑇𝑂 ∗
𝐸𝐸𝑇𝑂

𝐸𝑃𝐴𝑁

=
𝐸𝑇𝐶𝑅𝑃

𝐸𝐸𝑇𝑂

𝑥
𝐸𝐸𝑇𝑂

𝐸𝑃𝐴𝑁

=
𝐸𝑇𝐶𝑅𝑃

𝐸𝑃𝐴𝑁

 Equation 8 

 

In summary, the following procedure was followed to determine the A-pan equivalent crop coefficients 

for each RTC, which were required as input by ACRU: 

• AquaCrop was run with an option to relieve water stress by artificially applying a minimum 

amount of irrigation water. 

• Monthly ETC (maximum evapotranspiration) was calculated for each season and then 

averaged. 

• Similarly, average ETO (reference evapotranspiration) was calculated and used to determine 

monthly KC values. 

• Crop coefficients (KC_ETO) were then adjusted to A-pan equivalent values (KC_PAN) using the pan 

coefficient (EPAN/ EETO). 

• Any adjusted value below 0.20 was set to this value, which represents the minimum soil water 

evaporation that can occur from a bare soil. 

• The average crop cycle was used to determine the end-season month (e.g. May/June and 

August/September for OFSP and taro, respectively), beyond which KC values were set to values 

determined for the fallow period at Fountainhill during season 2. 

• Zones with 12 missing crop coefficients were not considered suitable for crop production, and 

thus missing values were replaced with A-pan equivalent crop coefficients for natural 

vegetation. 

 

VEGINT) 

For OFSP and taro, monthly canopy interception values required as input by ACRU were estimated 

using the von Hoyningen-Huene (1983) equation, which uses LAI and gross rainfall (Pg in mm) to 

estimate daily interception loss (IC in mm) as follows: 

 

𝐼𝐶 =  0.30 +  0.27𝑃𝑔 +  0.13𝐿𝐴𝐼 –  0.013𝑃𝑔
2 +  0.0285𝑃𝑔 ∙

𝐿𝐴𝐼 –  0.007𝐿𝐴𝐼2  

Equation 9 

 

This equation was also used to estimate VEGINT for the 121 vegetation types representing baseline 

land cover, i.e. natural vegetation (cf. Section 7.2.3.1). Weekly LAI measurements for the non-stressed 

water treatment in season 3 were used to calculate IC. A software utility was developed by Kunz et al. 

(2020) to estimate daily interception loss from 1950 to 1999, from which long-term monthly averages were 

calculated for each of the 5,838 HRZs, then used as input for ACRU for each modelling scenario. 
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ROOTA 

ROOTA represents the fraction of plant roots that are active in extracting soil water from the A-horizon. 

From the literature, Kunz et al. (2020) found that 60‐80% of the fine-root volume for most crops is found 

in the top 20 cm of soil. Similarly, the majority of crop roots occur in the upper 30 cm of the soil profile. 

Based on this, the depth of the A-horizon (DEPAHO) was used to set ROOTA to: 

• 0.70 if DEPAHO ≤ 20 cm, 

• 0.85 if 0.20 < DEPAHO ≤ 25 cm, and 

• 1.00 if DEPAHO > 25 cm.  

 

When ROOTA is set to 1, it indicates that evapotranspiration mainly takes place from the A-horizon. 

Toucher et al. (2020) noted that setting ROOTA to 1 resulted in large increases in simulated stream 

flow and greater increases in simulated base flow. For the fallow period, ROOTA was set to 0.70 since 

the roots of weeds would tend to extract soil water from the likely wetter B-horizon since the A-horizon 

would be dried out by the crop roots during the crop growing season. 

 

COLON 

In ACRU, it is assumed that the topsoil is 100% colonised by roots, i.e. roots can extract all available 

soil water in the A-horizon. COLON therefore reflects the extent to which the subsoil is colonised by 

roots. When ROOTA is set to 1 (e.g. during the fallow period), COLON is ignored in ACRU, but should 

be set to 0. However, COLON was set to 100% due to reflect weedy conditions during the fallow period. 

ROOTA was used to set COLON to: 

•   70% if ROOTA is 1.00, 

•   85% if ROOTA is 0.85, and 

• 100% if ROOTA is 0.70.  

 

PCSUCO 

The percentage of the soil surface covered by mulch, litter and stones (PCSUCO) is used in ACRU to 

suppress soil water evaporation. For the baseline, Toucher et al. (2020) estimated monthly PCSUCO 

values from CAY. Since it is important to maintain weed-free conditions for up to 7-8 weeks after 

planting, PCSUCO was set to 0% for the first two months. In addition, OFSP and taro do not shed dead 

leaves, and thus there was no litter layer build-up at the end of the season. Hence, PCSUCO was set 

to 0% for the crop growing season. For the fallow period, PCSUCO was set to 33.3% based on 

observations of prolific weed growth at site 1 during the second season. 

 

CONST 

CONST represents the onset of plant water stress. For the baseline, the default value of 0.40 was used 

for all vegetation types. Allen et al. (1998: 163-165) provided values for the depletion fraction (p) for a 

range of crops including root and tubers (Table 7-3), which represents the fraction of plant available 

water that can be depleted before moisture stress occurs. Pereira et al. (2021a; 2021b) provided 

updated KC, KCB and p value for numerous crops, including RTCs such as cassava, sweet potato and 

taro. Since CONST is equivalent to 1 – p, a value of 0.60 was used for both crops, which indicates they 

are less drought tolerant. For the altitude zones where the crop cannot grow, CONST was set to the 

default value of 40% to mimic the natural vegetation setting. 

 

FOREST 

For both crops, FOREST was set to zero (i.e. no enhanced wet canopy evaporation).  
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Table 7-3 Values of the depletion fraction (p) provided by Allen et al. (1998) and Pereira et al. 

(2021a; 2021b) 

Root and 
tuber crops 

Allen et al. 
(1998) 

Pereira et al. 

(2021a; 2021b) 

Beets 0.50 0.45 

Cassava (year 1) 
Cassava (year 2) 

0.35 
0.40 

0.50 
0.50 

Potato 0.35 0.40 

Sweet potato 0.65 0.40 

Parsnip 0.40 0.40 

Taro  0.40 

Turnip 0.50 0.50 

Sugarbeet 0.55 0.55 

 

7.2.4 Rainfall:runoff parameters 

Key parameters and variables that influence runoff generation in ACRU are shown in Table 7-4. 

Sensitivity analyses (e.g. Angus, 1989; Toucher et al., 2020) indicate that ACRU is most sensitive to 

changes in rainfall input (CORPPT) and highly sensitive to changes in certain soil-related parameters 

(e.g. SMDDEP). The monthly rainfall (CORPPT) and pan evaporation (CORPAN) adjustment factors 

were developed by Kunz et al. (2020) and Kunz et al. (2015b), respectively. The effective rooting depth 

(EFRDEP) is assumed to be the total soil depth, i.e. the sum of the A-horizon (DEPAHO) and the B-

horizon (DEPBHO) depths in each HRZ. 

 

The remaining four parameters in Table 7-4 are difficult to measure and thus, values were obtained 

from previous studies involving ACRU that best represent the scale of the HRZs. For example, Kunz et 

al. (2020) set SMDDEP to the thickness of the topsoil as suggested by Smithers and Schulze (1995). 

The catchment’s storm flow response fraction (QFRESP) was set to a value of 0.30 as used in previous 

studies (e.g. Warburton et al., 2010; Schulze, 2011; Kunz et al., 2020; Everson et al., 2021; Clulow et 

al., 2023b).  

 

Table 7-4 Key parameters and variables in ACRU that influence rainfall:runoff response 

Variable Definition Value Source 

CORPPT 

Monthly precipitation adjustment 
factors (e.g. to account for 
differences in monthly rainfall 
between the selected driver 
station and spatially averaged 
estimates for the subcatchment) 

12 monthly values 
unique to each altitude 

zone 
Kunz et al. (2020) 

CORPAN 

Monthly A-pan adjustment factors 
(e.g. to adjust Penman-Monteith 
evaporation estimates to A-pan 
equivalent evaporation) 

12 monthly values 
unique to each altitude 

zone 
Kunz et al. (2015b) 

EFRDEP 
Effective soil depth for 
colonisation by plant roots 

DEPAHO + DEPBHO Clulow et al. (2023b) 

SMDDEP 
Effective soil depth from which 
storm flow generation takes place 

DEPAHO Clulow et al. (2023b) 

QFRESP 
Storm flow response fraction for 
the catchment 

0.30 Clulow et al. (2023b) 

COFRU Base flow recession constant 0.009 Clulow et al. (2023b) 

COIAM 

Coefficient of initial abstraction 
that accounts for vegetation, soil 
surface and climate influences on 
storm flow generation 

0.15-0.35 Kunz et al. (2020) 
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Similarly, the base flow recession constant (COFRU) was set to 0.009 (or 0.9%) as was used by Clulow 

et al. (2023b). In ACRU, the coefficient of initial abstraction (COIAM) varies month-to-month according 

to changes in rainfall intensity and vegetation growth (Schulze 1995). COIAM typically varies from 0.15 

to 0.35 (default of 0.20) and unique monthly values were determined for each HRZ by Kunz et al. (2020), 

based on rainfall seasonality and distance from the coastline. The parameter values shown in Table 

7-4 were used for both the baseline simulation, as well as for each crop modelling scenario. 

 

7.2.5 Minimising computational expense 

For previous WRC-funded projects (e.g. Everson et al, 2021; Kunz et al., 2015c; Kunz et al., 2020; 

Clulow et al., 2023b; Schütte et al., 2023), significant improvements were made to the model to reduce 

run time, thus minimising computational expense. In 2015, a national run took approximately 8.5 hours 

to complete, which was reduced to 51 minutes in 2020 (Kunz et al., 2020). In 2023, the model run time 

was further reduced to 40 minutes (Clulow et al., 2023b). It is important to note that this work, which is 

considered innovative, was only possible due to funding received from the WRC. 

 

7.2.6 Modelling approach 

As noted previously (cf. Section 7.1), ACRU has been extensively used to assess stream flow reduction 

potential that could result from various land use changes (e.g. Clulow et al., 2023b; Everson et al., 2021; 

Kunz et al., 2020). For this project, ACRU was run at the national scale to estimate runoff response for 

all 5,838 HRZs, regardless of whether sweet potato or taro can successfully be grown in the zone. 

 

7.2.6.1 Estimation of runoff 

The approach followed was similar to that used in previous SFRA studies and was as follows: 

• For each HRZ, daily climate data and soil information was obtained from existing databases 

described by Kunz et al. (2020) and Clulow et al. (2023b) respectively, then used as input to 

ACRU (cf. Section 6.2.2). 

• The ACRU model was run to simulate mean monthly and annual runoff (MAR) response for: 

o baseline conditions (MARBASE), i.e. the runoff produced from a land cover of natural 

vegetation, and 

o each root and tuber crop (MARCROP), assuming a 100% change in land cover. 

• For the baseline, ACRU input parameters derived by Toucher et al. (2020) for each vegetation 

cluster (cf. Section7.2.3.1) were used to represent natural vegetation. 

• For taro and sweet potato, the parameter values given in Section 7.2.3.2 were used. 

 

7.2.6.2 SFRA assessment 

In the context of assessing stream flow reduction potential, crop water use is defined as the reduction 

in MAR that may result from a land use change from the baseline (base) to crop cultivation (crop), i.e. 

MARBASE – MARCROP. Although this reduction can be expressed in absolute (i.e. mm) terms, it is more 

appropriate to consider runoff differences in relative (i.e. %) terms. Hence, the simulated reduction in 

MAR is expressed as a percentage change relative to the baseline, i.e. MARREDN = 100∙(MARBASE – 

MARCROP)/MARBASE. If the relative impact on runoff exceeds 10%, the proposed land use change may 

be declared as a SFRA (Jewitt et al., 2009b). 

 

7.3 RESULTS AND DISCUSSION 

The purpose of the national ACRU model runs was to (i) quantify the stream flow reduction potential of 

RTC production on available water resources in South Africa, and (ii) assess the feasibility of declaring 

a specific RTC as a Stream Flow Reduction Activity (SFRA). ACRU was used to estimate the mean 

annual runoff (MAR) produced from a land cover of OFSP or taro (MARCROP), as well as that from the 
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baseline (MARBASE), i.e. natural vegetation. Crop “water use” is defined as the difference in mean annual 

runoff from these two land covers, i.e. MARDIFF = MARBASE – MARCROP.  

 

7.3.1 Crop water use 

For the two planting dates and plant densities, the absolute reduction in MAR resulting from a proposed 

land use change from natural vegetation to OFSP cultivation (i.e. MARDIFF) ranged from -117 to 62 mm 

(Table 7-5). Relatively similar differences in runoff were simulated for taro (Table 7-5). When this 

reduction is positive, more runoff is produced from natural vegetation than from the crop (i.e. MARBASE 

> MARCROP). This means the crop uses more water than natural vegetation (ETCROP > ETBASE), which 

occurred in a maximum of 1,058 and 781 HRZs for OFSP ad taro, respectively. Hence, OFSP may 

have a greater impact on catchment water resources than taro, which is linked to the longer crop cycle. 

 

The potential reduction in annual runoff appears more sensitive to planting date, rather than plant 

density. For OFSP, a November planting is likely to result in a larger reduction in runoff compared to a 

December planting. In contrast, a positive reduction on MAR occurred in more zones for a December 

planting, as shown in Table 7-5. As expected, the higher plant density resulted in a larger impact on 

annual runoff. 

 

Table 7-5 Absolute reduction in mean annual runoff resulting from a proposed land use 

change from natural vegetation to OFSP production 

RTC 
Planting date 

(month) 
Plant density 
(plants ha-1) 

MARDIFF 
(mm) 

MARBASE > MARCROP 

(number of HRZs) 

OFSP 

11 31,447 -117 to 62 1,035 

11 55,556 -116 to 62 1,058 

12 31,447 -102 to 55    926 

12 55,556 -102 to 55    964 

Taro 

11 10,000 -113 to 55    692 

11 27,778 -112 to 55    711 

12 10,000 -101 to 54    754 

12 27,778 -101 to 54    781 

 

The crop coefficients calculated from AquaCrop output assume weed-free conditions throughout the 

crop cycle. Experience has shown that for smallholder farmers planting up to a hectare of taro, manual 

weeding is not a viable option due to the cost of required labour. Hence, crop ET during the growing 

season may be greater than that simulated by AquaCrop. However, the crop coefficients for the fallow 

period represent weedy conditions, not bare soil. 

 

7.3.2 Reduction in annual runoff 

For the above two worst case scenarios, it is important to assess whether MARREDN exceeds 10% 

relative to natural vegetation and if so, the crop may need to be considered by the Department of Water 

and Sanitation for declaration as a potential SFRA. As shown in Figure 7-2, runoff production from 

OFSP and taro is very similar to that from natural vegetation (i.e. -2 < MARREDN ≤ +2%) in 56.8% and 

68.1% of all HRZs, respectively. For the majority of these zones, the climate is too cold for crop 

production. Hence, the ACRU parameters were not altered and therefore reflect natural vegetation 

conditions. Thus, the relative reduction in runoff is zero. 
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Figure 7-2 Histograms of the percentage reduction in mean annual runoff (MAR) per HRZ that 

may result from a change in land use from natural vegetation to (a) OFSP and (b) 

taro cultivation 

  

However, MARREDN exceeds the 10% threshold suggested by Jewitt et al. (2009b) in some HRZs, which 

is of more concern. The largest reduction of 18% was simulated in zone no. 5,432 for OFSP planted in 

November at the higher density, due to a reduction in annual runoff of 55.88 mm relative to the baseline 

(310.83 to 254.95 mm). As shown in Table 7-6, MARREDN exceeding 10% occurred most often in (i) 30 

HRZs when OFSP was planted in November at a plant density of 55,556 plants ha-1, and (ii) 19 zones 

for taro planted in December at a plant density of 10,000 or 27,778 plants ha-1. Hence a December 

planting of OFSP and a November planting of taro may have less impact on downstream water users. 

 

Table 7-6 Relative reduction in mean annual runoff resulting from a proposed land use 

change from natural vegetation to OFSP production 

RTC 
Planting date 

(month) 
Plant density 
(plants ha-1) 

Maximum 
MARREDN (%) 

MARREDN > 10% 

(number of HRZs) 

OFSP 

11 31,447 18 28 

11 55,556 18 30 

12 31,447 14 14 

12 55,556 15 16 

Taro 

11 10,000 17 13 

11 27,778 17 13 

12 10,000 16 19 

12 27,778 16 19 

 

For these two worst case scenarios, maps were produced that show where these zones are located for 

OFSP (Figure 7-3) and taro (Figure 7-4). HRZs where MARREDN > 10% are mostly situated along the 

eastern seaboard in the Mpumalanga, KwaZulu-Natal and Eastern Cape provinces. Some of the 

highlighted zones are located within protected areas large scale crop production is prohibited. 

Furthermore, the relative reductions assume a 100% change in land cover from natural vegetation to 

crop cultivation in each HRZ, which is unrealistic. When assessing SFRA potential, this needs to be 

considered. Taro can take up to ~49 days to emerge. During this time, soil water evaporation is 

dominant (not transpiration), and thus crop ET is likely to be lower than for other conventional crops or 

natural vegetation types. A layer of mulch may help to reduce unproductive water losses, further 

decreasing crop ET. 
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Figure 7-3 Location of HRZs where the reduction in mean annual runoff exceeds 10% that may 

occur due to a land cover change from natural vegetation to OFSP cultivation 

 

 
Figure 7-4 Location of HRZs where the reduction in mean annual runoff exceeds 10% that may 

occur due to a land cover change from natural vegetation to taro cultivation 

 

Everson et al. (2021) also used ACRU to assess the SFRA potential of two bamboo species (B. balcooa 

and B. bema) using crop coefficients (KC) obtained from ET measurements in KwaZulu-Natal and 

Eastern Cape under rainfed conditions. KC values for B. balcooa in KwaZulu-Natal were higher than 

those for the Eastern Cape, re-iterating the site-specific nature of crop water use. Hence, modelling 
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was done by applying both sets of monthly KC values to all HRZs. Crop coefficients for KZN produced 

a greater impact on runoff generation than those for the Eastern Cape. This is expected since higher 

KC values result in greater evapotranspiration and hence reduced runoff, especially in the summer 

months. In total, crop coefficients for KwaZulu-Natal resulted in a reduction in MAR of 10% or more in 

32 zones, compared to only 18 for the Eastern Cape KC values. However, it is important to note that 

the runoff results simulated by ACRU for bamboo were based on KC values derived from experiments 

that were rainfed. Thus, the crop coefficients do not represent standard, non-stressed conditions, which 

are required to estimate maximum crop evapotranspiration and water use. 

 

The approach used by Everson et al. (2021) also assumed that KC values from the two experimental 

sites were applicable to all other HRZs deemed suitable for crop production. The authors concluded 

that this assumption represented a weakness in the methodology, which should be addressed in future 

studies. In response, Kunz et al. (2020) decided to model the water use of sorghum and soybean using 

AquaCrop, from which a unique set of monthly crop coefficients for unstressed (i.e. irrigated) growing 

conditions was obtained for each HRZ. Their results, which were also based on two planting dates and 

two plant densities, showed that with the exception of only a few altitude zones, the cultivation either 

crop is likely to significantly affect the quantity of water available to downstream users. For this project, 

the same methodology was used where standard KC values were derived from AquaCrop simulations. 

Similar results were also obtained in that OFSP and taro cultivation is highly unlikely to significant impact 

downstream water availability. 

 

7.3.3 Impact on low flows 

Scott and Smith (1997) highlighted the fact that stream flow reductions during the low flow period may 

be proportionately greater than for annual flows. Hence, a similar analysis was undertaken for mean 

monthly flows accumulated over the driest quartile (i.e. 3 months with the lowest runoff response) for 

OFSP and taro, which were then compared to baseline values. If the percentage difference (relative to 

the baseline) exceeds 25%, then the reduction is considered significant, as recommended by Jewitt et 

al. (2009b; cf. Figure 4.1). The potential reduction in low flows appears more sensitive to planting date 

compared to plant density. For both crops, a December planting is likely to result in a larger reduction 

in winter runoff compared to a November planting (Table 7-7).  

 

Table 7-7 Relative reduction during the low flow period (LFP) resulting from a proposed land 

use change from natural vegetation to OFSP production 

RTC 
Planting date 

(month) 
Plant density 
(plants ha-1) 

Maximum 
LFPREDN (%) 

LFPREDN > 25% 

(number of HRZs) 

OFSP 

11 31,447 83 55 

11 55,556 83 55 

12 31,447 89 68 

12 55,556 89 70 

Taro 

11 10,000 89 57 

11 27,778 89 58 

12 10,000 89 72 

12 27,778 90 73 

 

For the above two worst case scenarios, runoff production during the winter months from OFSP and 

taro is very similar to that from natural vegetation (i.e. -2 < MARREDN ≤ +2%) in 48.9% and 61.1% of all 

HRZs, respectively. For the majority of these zones (3,290 in total), the climate is too cold for crop 

production, and thus there is no reduction in runoff as ACRU parameters were not altered (Figure 7-5). 

Of more concern are reductions in low flows that exceed 25% for OFSP and taro, which may occur in 

70 to 73 zones, respectively. The largest reduction of 90% was simulated in zone number 2,249 for taro 

planted in December at the higher density, due to a reduction in low flow runoff of 0.43 mm relative to 
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the baseline (0.48 mm). The reduction in runoff during the low flow period only ranged from 0.01 to 3.20 

mm, which highlights the problem of small absolute values resulting in large changes when expressed 

in relative (i.e. %) terms. The largest reduction in low flow runoff of 3.89 mm occurred in zone number 

4,293. 
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Figure 7-5 Histogram of the percentage reduction in low flows per HRZ that may result from 

a change in land use from natural vegetation to (a) OFSP and (b) taro cultivation 

 

It is again important to consider where these changes may occur, as shown in Figure 7-7 and Figure 

7-7 for the above two worst case scenarios. Rainfed crop production is not viable in the drier western 

parts of the country and potential impacts on downstream water availability in neighbouring eSwatini 

are also of less concern. Hence, OFSP and taro production are unlikely to impact downstream water 

availability during the low flow period. Runoff in the winter months was mostly affected by the relatively 

high crop coefficients representing weedy conditions. Hence, to further reduce any potentially negative 

impact on downstream water availability, farmers are encouraged to keep their fields weed free during 

the fallow period. 
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Figure 7-6 Location of HRZs where the reduction in runoff during the low flow period exceeds 

25% that may occur due to a land cover change from natural vegetation to OFSP 

planted in December a the higher density 

 

 
Figure 7-7 Location of HRZs where the reduction in runoff during the low flow period exceeds 

25% that may occur due to a land cover change from natural vegetation to taro 

planted in December a the higher density 
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7.4 SUMMARY AND CONCLUSIONS 

Agricultural expansion, facilitated by increased production of indigenous root and tuber crops, will result 

in land use changes that may have a negative impact on available water resources, even if crops are 

rainfed. Hence, one of the main aims of this project was to model the hydrological impact of RTC 

production on downstream water availability. The ACRU hydrological model was selected since it has 

been used extensively in many other WRC-funded projects to assess the impact of land use change on 

hydrological response. ACRU was run at a national scale using climate and soil data currently available 

for each of the 5,838 HRZs. The purpose of these national model runs was to (i) quantify the stream 

flow reduction potential of RTC production on available water resources in South Africa, and (ii) assess 

the feasibility of declaring a specific RTC as a Stream Flow Reduction Activity (SFRA). 

 

ACRU is particularly sensitive to inputs of monthly crop coefficients, and thus representative values for 

each HRZ were simulated using AquaCrop for unstressed (i.e. irrigated) growing conditions. This 

approach was first adopted by Kunz et al. (2020) for assessing stream flow reduction potential of 

sorghum and soybean. It is considered more robust than assuming that crop coefficients obtained at 

one location (e.g. experimental site) over one or two seasons, are representative of all other regions 

where the crop can be grown. Crop coefficients for the fallow period were derived from water use 

measurements in season 2 using the eddy covariance method. During the fallow period, weed growth 

was not controlled, which typifies a smallholder farming environment. Other parameters required by the 

model to assess runoff production from OFSP and taro are described in this chapter (e.g. interception 

loss of the vegetation layer in ACRU). 

  

Runoff production is assessed relative to that generated from natural vegetation. ACRU parameters for 

natural vegetation were determined as part of a previous WRC-funded project (Toucher et al., 2020). 

The stream flow reduction potential is calculated as the percentage difference in mean annual runoff 

(MAR) generated from the cropped surface (MARCROP), relative to baseline conditions (MARBASE), i.e. 

natural vegetation. Crop “water use” is defined as the difference in mean annual runoff, i.e. MARDIFF = 

MARBASE – MARCROP. This difference is then expressed as a percentage relative to MARBASE. If it 

exceeds 10%, then the Department of Water and Sanitation may declare the crop as a SFRA. This 

approach assumes a 100% change in land cover from natural vegetation to crop cultivation, which is 

unlikely to be the case. 

 

Based on the modelled results of RTC water use, OFSP and taro are unlikely to significantly reduce 

runoff production when compared to natural vegetation, since (i) a significant reduction only may only 

occur in a relatively small number of HRZs (≤ 30 of 5,838), (ii) the results assume a 100% land use 

change, and (iii) the potential reduction can be offset by the water “gain” (when MARCROP > MARBASE) 

in other neighbouring catchments. Similarly, the impact on low flows (driest 3 months of the year) also 

showed that OFSP and taro are unlikely to significant impact downstream water availability during the 

drier rainfall season. Overall, rainfed production of these two RTCs does not appear to negatively impact 

downstream water availability to any great extent, and thus are therefore unlikely to be considered for 

declaration as a potential SFRA by the Department of Water and Sanitation. Hence, the government is 

unlikely to limit (i.e. restrict) the spatial extent of RTC cultivation in order to minimise possible negative 

impacts on local and regional water resources. 
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8 MAPPING OF LAND SUITABILITY 

8.1 INTRODUCTION 

In order to increase the production of OFSP and taro in South Africa, it is important to know where these 

crops can be successfully cultivated. Farmers typically obtain this knowledge from existing land 

suitability maps. Land evaluation measures the potential of land for alternative land uses, whereas land 

suitability is defined as the suitability of a particular area for a specified land use (Collins et al., 2001). 

Hence, land suitability classification is defined as a process of grouping specific regions according to 

their suitability (FAO, 1976). Most land suitability studies use the FAO (1976) approach, which classifies 

land according to order and class. The orders are defined as suitable (S) and not suitable (N) and the 

classes provide further detail regarding the level of suitability. For example, S1 is highly suitable, S2 is 

moderately suitable, S3 is marginally suitable. Similarly, N1 is currently not suitable and N2 is 

permanently not suitable. 

 

Land suitability mapping is an important component in agricultural development as it provides farmers 

with an idea of what crops can best be grown in a particular area. In other words, they provide farmers 

with additional crop choices to plant. Land suitability maps are needed to help identify areas best suited 

to sustainable RTC production, especially in the North West, Limpopo, KwaZulu-Natal and Eastern 

Cape provinces, where most of the rural poor reside. The maps will help promote the expansion of RTC 

production by smallholder (and emerging) farmers in traditional farming environments. The increased 

production of RTCs will reduce the level of poverty in rural areas by creating new jobs and allowing 

smallholder farmers to participate in food value chains. It is also envisaged that national and household 

food security will improve due to increased cultivation of nutrient-dense RTCs. The mainstreaming of 

RTC production will also facilitate agricultural diversification (Modi and Mabhaudhi, 2016). 

 

Phase 4 of this project involved the analysis and interpretation of crop model output to identify areas 

deemed suitable for the production of OFSP and taro (Aim 4). This chapter provides (i) an overview of 

different techniques used to create land suitability maps, (ii) a description of the approach taken in this 

project, and (ii) the results (i.e. maps) that were obtained for OFSP and taro. It represents a summary 

of the work undertaken by Lake (2022). 

 

8.2 REVIEW OF MAPPING TECHNIQUES 

Based on a review of relevant literature, different methods have been used to develop land suitability 

maps, which have been classified as either (i) traditional, or (ii) modern methods (Akpoti et al., 2019). 

The traditional (and simpler) methods are based on overlays of rainfall, temperature and soils criteria 

(e.g. Holl et al., 2007). The modern (more complex) methods are based on the analytical hierarchy 

process (e.g. Mugiyo et al., 2021b). Other methods used for suitability mapping involve machine 

learning techniques, such as those based on the MaxEnt model (e.g. Mugiyo et al., 2022). All these 

methods adopt different approaches for mapping land suitability and utilise different criteria (i.e. 

variables), thresholds (i.e. cut-offs) and weightings. However, a common aspect of all methods is they 

utilise climatic, edaphic, topographic and/or socio-economic data as input criteria. A more detailed 

discussion of each of these studies in presented in Section 19. 

 

Crop simulation models are regarded as one of the most reliable methods of determining land suitability 

in terms of specific crop requirements (Mugiyo et al., 2021a). They are mathematical models that 

describe crop growth as a function of climatic, edaphic and management conditions. Simple empirical 

models (e.g. EcoCrop) have also been used for suitability assessments for crops that lack sufficient 

data. As noted in Section 19.3, process-based crop models (e.g. AquaCrop and DSSAT), which can 

simulate important physiological processes, have been used to validate land suitability maps developed 
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using other methods. However, there is no evidence to date that simulated output from AquaCrop has 

specifically been used to map areas deemed suitable for production of underutilised crops. Hence, this 

unique approach was used to map suitable production areas for OFSP and taro. It is important to note 

that the approach is strongly dependent on how well the model has been calibrated and validated for 

each crop. 

 

8.3 METHODOLOGY 

From AquaCrop simulations undertaken for each of the 5,838 HRZs (cf. Chapter 6), a comprehensive 

dataset of seasonal yield, crop cycle and crop water productivity (CWP) was developed for OFSP and 

taro. Maps showing the spatial variability in these three model outputs highlight HRZs that exhibit the 

most potential for RTC production (cf. Section 6.3). A three-tier approach, similar to that undertaken by 

Holl et al. (2007; cf. Section 19.1.1), was used to identify zones best suited to the cultivation of each 

RTC as follows: 

• Tier 1 – identifying areas deemed unsuitable for crop growth, which required the (i) selection of 

specific criteria (e.g. CWP), and (ii) development of specific thresholds (e.g. CWP < 0.10 kg m-

3) to eliminate areas considered unsuitable for crop production. 

 

• Tier 2 – classifying the remaining suitable areas from marginal (S3: low productivity) to highly 

suitable (S1: high productivity), based on the productivity capacity of each altitude zone. Output 

from AquaCrop was again used to identify low to high production areas. 

 

• Tier 3 – eliminating areas where crop production is not possible based on existing land use 

data to create more realistic land suitability maps. For example, permanently (N2; e.g. urban 

areas) and currently (N1; e.g. forest plantations) were identified and eliminated as possible crop 

production areas (Lake, 2022). 

 

8.3.1 Elimination of unsuitable area 

8.3.1.1 Selection of elimination criteria 

A list of the main variables simulated by AquaCrop is provided in Table 8-1, which were considered for 

mapping land suitability for crop production. For example, the stress factors represent the percentage 

of the crop cycle when (i) cold temperature stress reduces transpiration (TmpStr), or when water stress 

(ii) reduces leaf expansion (ExpStr), or (iii) induces stomatal closure (StoStr). 

 

Table 8-1  Variables simulated by FAO’s AquaCrop model (Raes et al., 2018) 

AquaCrop 

variable 
Description 

E 

E/Ex 

Tr 

Tr/Tx 

Cycle 

TmpStr 

ExpStr 

StoStr 

B 

Brelative 

HI 

Y 

CWP 

Soil water evaporation (mm) 

Ratio of actual to maximum soil water evaporation (%) 

Total transpiration of crop and weeds (mm) 

Ratio of actual to maximum transpiration (%) 

Crop cycle (days) 

Temperature stress (%) 

Leaf expansion stress (%) 

Stomatal stress (%) 

Above-ground biomass accumulation (dry t ha-1) 

Ratio of actual to maximum biomass accumulation (%) 

Harvest index (%) 

Yield (dry t ha-1) 

Crop water productivity for yield part (dry kg m-3) 



Crop and nutritional water productivity of sweet potato and taro 

164 
 

 

 

AquaCrop is not run for altitude zones that are too cold for crop production. Hence, no output is 

produced for 3,307 zones and are flagged as -999 (i.e. no/missing data). Furthermore, altitude zones 

deemed too dry for rainfed production were eliminated using mean annual precipitation, with a threshold 

of below 400 mm (Brouwer and Heibloem, 1986). When the stress variables were tested, they 

eliminated altitude zones along the eastern seaboard that are deemed suitable for crop production. 

Hence, these variables were not used to exclude zones with high water and/or temperature stress. 

Tests were also conducted to determine if collinearity exists between AquaCrop output variables. For 

example, stomatal stress and leaf expansion stress are correlated (R2 of 0.973 in Figure 8-1), as both 

variables are indicative of water stress.  

 

 
Figure 8-1 Relationship between AquaCrop simulations of stomatal stress and leaf expansion 

stress for taro 

 

After a lengthy iterative process, only two variables (CWP and the number of simulated seasons) were 

selected. The latter variable represents the number of seasons that AquaCrop produced yield and 

ranges from 0 to 49. Altitude zones with 48 or 49 seasonal values are deemed more suited to crop 

growth than zones with less than 20 yield simulations, The use of a non-zero yield threshold to exclude 

HRZs considered unsuitable for crop production is problematic because this cut-off value is different for 

subsistence, smallholder and commercial farmers. Since yield is also strongly correlated to CWP (R2 of 

0.968 in Figure 8-2), the latter variable was used instead. The relationship also implies that the 

evapotranspiration of taro accumulated over the crop cycle is on average 5,170 m3 (or 517 mm). For 

each criterion, two statistics were considered, namely the seasonal mean and inter-seasonal variation. 

For example, a large variation in inter-seasonal CWP indicates that the climate is too variable and thus, 

is unsuitable for crop production.  

 

It is important to note that the relationship between CWP and yield varies with each crop. For example, 

a non-linear relationship exists for both rainfed and irrigated maize crops in Morocco as shown in Figure 

8-3. The red line is the 90th percentile of water productivity, which can be used to represent the upper 

limit of water productivity. 
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Figure 8-2 Relationship between yield and crop water productivity (CWP) for taro (1st 

November at 10,000 plants ha-1), based on AquaCrop simulations 

 

 
Figure 8-3 Relationship between water productivity and crop yield of maize produced from 

October 2010 to September 2011 in Morocco (Goudriaan and Bastiaanssen, 2013) 

 

8.3.1.2 Determination of criteria thresholds 

Where possible, thresholds (i.e. cut-off values) for each variable were obtained from the literature. If 

thresholds were not found, an iterative procedure was used to determine values that produced 

acceptable results. Threshold values determined for each RTC are given in Section 8.4.1. 

 

8.3.2 Classification of suitable areas 

As noted in Section 6.3.4.1, CWP is most useful for determining if crops are grown in optimum 

environments as opposed to those produced in sub-optimum areas. Hence, CWP (not yield) was used 

to classify the remaining HRZs into three suitability classes. For the remaining zones, the mean CWP 
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and standard deviation values were 0.38 and 0.20 kg m-3, respectively. Initially, the decision was made 

to classify zones with CWP values within one standard deviation of the mean as moderate (i.e. 0.18 < 

CWP ≤ 0.58 dry kg m-3). Thus, 68.3% of the remaining zones would be classified as moderate, assuming 

a normal distribution of CWP values (Figure 8-4). However, most (not approximately two-thirds as 

expected) of the zones were classified as moderate, and thus the decision was made to use half the 

standard deviation. 

 

 
Figure 8-4 Typical bell-shape curve showing a normal distribution of values within three 

standard deviations (±3) of the mean (0) (source: Google image) 

 

8.3.3 Consideration of current land use 

Khomo (2014) identified unsuitable crop production areas using land cover data from 2009 (cf. Figure 

20-1 in Section 20), which was applied to create a more representative (i.e. realistic) land suitability 

map for soybean. In this project, a similar approach was followed that utilised land cover data from 

2018. Land uses that are currently (N1) and permanently (N2) unsuitable for crop production were 

identified (cf. Figure 20-2 in Section 20). Final land suitability maps were then produced by eliminating 

these “no-go” areas from the suitable areas. 

 

8.3.4 Production in subsistence farming areas 

The 2018 national land cover map (1 km2 resolution) that identified subsistence farmlands was also 

obtained from SAEON’s data portal. If farmlands covered more than 30% of each 1 km2 grid cell (or 

pixel), it was assumed the entire pixel had the same land use. The raster layer was reclassified as 0 

(no subsistence farms) and 1 (subsistence farms), then used to determine the spatial extent of 

subsistence farming areas that are deemed suitable for OFSP and taro production. 

 

8.4 RESULTS AND DISCUSSION 

8.4.1 Elimination of unsuitable areas 

Table 8-2 and Table 8-3 provide a summary of the final criteria used for both OFSP and taro 

respectively, as well as the threshold values and the percentage of HRZs zones eliminated by applying 

each criterion individually. For both crops, cold temperatures eliminated the most HRZs. For example, 

2,501 of 5,838 (42.8%) zones were eliminated for OFSP planted in November, compared to 2,486 

(43.6%) for a December planting. Owing to taro’s longer growing season and higher growing-degree 

day requirements, more zones were identified as being too cold for viable production (3,284-3,307 or 

56.3-56.6%). As noted in Section 17.3.5, AquaCrop is no longer run for these zones since they are 

considered too cold for viable crop production. Such HRZs have a very long crop cycle (i.e. exceeding 

365 days), and thus are considered economically unviable. Simulated yields are typically zero or very 

https://catalogue.saeon.ac.za/


Crop and nutritional water productivity of sweet potato and taro 

167 
 

 

low (e.g. < 0.1 t ha-1), further highlighting the zone is too cold for crop production. This decision not to 

run the model for these zones prevents the seasonal yield average from being skewed by zero (or very 

small) values, since the yield is now set to -999 (not zero), which means unsuitable for crop production. 

Of the remaining 3,337 zones (5,838-2,501), 833 zones (or 25%) are considered too dry for rainfed 

crop production, and thus were also eliminated. 

 

Table 8-2 Criteria and thresholds used to eliminate HRZs deemed unsuitable for OFSP 

production 

Reasoning 
Criterion & 

threshold 

Number of HRZs eliminated 

01 Nov 

31,447 

01 Nov 

55,556 

01 Dec 

31,447 

01 Dec 

55,556 

Too cold Crop cycle > 365 days 2,501 2,501 2,486 2,486 

Too dry MAP < 400 mm 833 833 843 843 

Too risky Yield simulations < 20 458 458 480 480 

Too variable CWPCV > 100% 28 22 15 12 

Too inefficient CWPAVE < 0.60 kg m-3 28 17 09 08 

 

Table 8-3 Criteria and thresholds used to eliminate HRZs deemed unsuitable for taro 

production 

Reasoning 
Criterion & 

threshold 

Number of HRZs eliminated 

01 Nov 

10,000 

01 Nov 

27,000 

01 Dec 

10,000 

01 Dec 

27,000 

Too cold Crop cycle > 365 days 3,307 3,307 3,284 3,284 

Too dry MAP < 400 mm 601 601 618 618 

Too risky Yield simulations < 20 461 461 498 498 

Too variable CWPCV > 150% 326 318 279 230 

Too inefficient CWPAVE < 0.10 kg m-3 222 180 141 105 

 

If the model simulated less than 20 of the maximum 49 seasons, these zones were also considered 

unsuitable for RTC production and therefore eliminated. This means the model was not run for 30 or more 

seasons, which typically occurs when the crop cycle exceeds the 365 day threshold. For OFSP, a 

relatively small number of zones were also eliminated if (i) the variability in inter-seasonal CWP (CWPCV) 

exceeded 100%, and (ii) the seasonal average CWP (CWPAVE) was below 0.60 dry kg m-3. For taro, a 

CWPCV threshold of more than 150% was used to eliminate 230-326 zones (depending on the modelling 

scenario), followed by CWPAVE below 0.10 dry kg m-3, which eliminated between 105-222 zones. This 

threshold equates to an average yield of ~0.517 t ha-1 (cf. Figure 8-2 in Section 8.3.1.1). 

 

Of the total 5,838 HRZs, 3,694 and 4,266 zones did not satisfy the selected criteria for OFSP and taro 

respectively, and thus were eliminated. These zones appear white in Figure 8-5 (OFSP) and Figure 

8-6 (taro). Therefore, the remaining 2,144 and 1,572 HRZs are considered suitable for OFSP (coloured 

green in Figure 8-5) and taro (coloured green Figure 8-6) production, respectively. This represents 

36.7 and 26.9% of the remaining zones for OFSP and taro, respectively. The totally unsuitable zones 

(coloured red in the maps below) are deemed too cold for crop production (crop cycle > 365 days, as 

explained previously). 
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Figure 8-5 Suitable areas for rainfed production of OFSP planted in November at a density of 

31,447 plants ha-1 

 

 
Figure 8-6 Suitable areas for rainfed production of taro planted in November at a density of 

10,000 plants ha-1  

 

8.4.2 Classification of suitable areas 

Since yield and CWP are highly correlated (Section 8.3.1.1), CWP was chosen to classify the suitable 

growing areas from low to high productivity. The normalisation of yield with water use (i.e. CWP) allows 
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for a better comparison of crops (i.e. OFSP vs taro). This metric represents the crop’s efficiency in using 

water to produce yield, which is a better illustration of land suitability than compared to using only yield.  

HRZs with a CWP value within half a standard deviation of the mean were classified as moderately 

suitable for crop production. The ranges in CWP provided in Table 8-4 were used to classify zones as 

marginally, moderately and highly suited to RTC production. 

 

Table 8-4 Thresholds of crop water productivity used to classify HRZs as marginally, 

moderately and highly suited to RTC production 

Crop 

Crop water productivity (dry kg m-3) 

Marginal 

(S3) 

Moderate 

(S2) 

High 

(S1) 

OFSP ≤ 2.04 2.04-2.57 > 2.57 

Taro ≤ 0.56 0.56-0.91 > 0.91 

 

For a November planting at the lower density, 34.4% (OFSP) and 37.2% (taro) of the HRZs were 

classified as S3. Similarly, 42.7% (OFSP) and 39.7% (taro) of the HRZs were classified as S2. Hence, 

the remaining 22.9% (OFSP) and 23.2% (taro) were classified as highly suitable (S1), as shown in 

Figure 8-7 and Figure 8-8, respectively. 

 

 
Figure 8-7 Histogram showing suitability classes for OFSP planted in November at a density 

of 31,447 plants ha-1, based on AquaCrop simulations of crop water productivity 

 

 
Figure 8-8 Histogram showing suitability classes for taro planted in November at a density of 

10,000 plants ha-1, based on AquaCrop simulations of crop water productivity 

 

Figure 8-9 and Figure 8-10 highlight the spatial distribution of potential OFSP and taro production 

areas, respectively. The maps indicate that the coastal regions of KwaZulu-Natal and the Eastern Cape 

are deemed most suitable for RTC production. Large parts of the Limpopo and North West provinces 

are considered marginally suitable to RTC production. Owing to the high GGD requirements to reach 

physiological maturity (cf. discussed further in Section 8.4.4), the central and western regions of 
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Mpumalanga produced low and highly variable yields, which were therefore eliminated. It is also clear 

that OFSP has greater potential for cultivation when compared to taro. 

 

 
Figure 8-9 Land suitability classification for rainfed production of OFSP planted in November 

at a density of 31,447 plants ha-1  

 

 
Figure 8-10 Land suitability classification for rainfed production of taro planted in November 

at a density of 10,000 plants ha-1 
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8.4.3 Consideration of current land use 

The consideration of current land use resulted in a 19 and 22% reduction in areas deemed suitable for 

OFSP (Table 8-5) and taro (Table 8-6) production, respectively. In general, more marginal areas (S3) 

are lost to existing land use compared to highly suitable (S1) areas. This is especially true for the eastern 

parts of the Limpopo province. The results highlight the importance of accounting for current land use 

when assessing land suitability, as it avoids over-estimating land area deemed suitable for crop 

production, and thus helps to produce more realistic maps. The suitable areas identified in eSwatini will 

be over-estimated, since the 2018 national land cover dataset only covers South Africa. 

 

Table 8-5 Reduction in suitability areas for OFSP after consideration of land use 

Class 
Consideration 

of land use 

01 Nov 

31,447 

01 Nov 

55,556 

01 Dec 

31,447 

01 Dec 

55,556 

S3 

Before (km2) 212,235 214,093 217,707 218,151 

After (km2) 174,745 176,777 178,843 179,501 

Reduction (km2) 37,490 37,316 38,864 38,650 

Reduction (%) 9.8 9.7 10.1 10.1 

S2 

Before (km2) 126,958 124,837 119,290 119,994 

After (km2) 102,402 100,064 98,056 98,257 

Reduction (km2) 24,556 24,773 21,234 21,737 

Reduction (%) 6.4 6.5 5.5 5.7 

S1 

Before (km2) 44,258 44,609 48,071 47,011 

After (km2) 32,537 32,919 34,355 33,572 

Reduction (km2) 11,721 11,690 13,716 13,439 

Reduction (%) 3.1 3.0 3.6 3.5 

Total 

Before (km2) 383,451 383,539 385,068 385,156 

After (km2) 309,684 309,760 311,254 311,330 

Reduction (km2) 73,767 73,779 73,814 73,826 

Reduction (%) 19.2 19.2 19.2 19.2 

 

Table 8-6 Reduction in suitability areas for taro after consideration of land use 

Class 
Consideration 

of land use 

01 Nov 

10,000 

01 Nov 

10,000 

01 Dec 

27,000 

01 Dec 

27,000 

S3 

Before (km2) 159,064 157,267 166,960 167,810 

After (km2) 129,496 128,429 130,176 130,793 

Reduction (km2) 29,568 28,838 36,784 37,017 

Reduction (%) 10.3 10.1 12.9 12.9 

S2 

Before (km2) 88,402 90,870 73,000 70,928 

After (km2) 67,594 69,246 60,953 59,204 

Reduction (km2) 20,808 21,624 12,047 11,724 

Reduction (%) 7.3 7.5 4.1 4.1 

S1 

Before (km2) 38,613 38,805 43,275 44,497 

After (km2) 26,685 26,889 30,575 31,707 

Reduction (km2) 11,928 11,916 12,700 12,790 

Reduction (%) 4.2 4.2 4.4 4.5 

Total 

Before (km2) 286,079 286,942 283,235 283,235 

After (km2) 223,775 224,564 221,704 221,704 

Reduction (km2) 62,304 62,378 61,531 61,531 

Reduction (%) 21.8 21.8 21.4 21.4 
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8.4.4 Final land suitability maps 

Figure 8-11 to Figure 8-14 show the spatial distribution of suitability classes for rainfed production of 

OFSP and taro, combined with the land use data that identifies the N1 and N2 regions. For both crops, 

maps were produced for each of the four modelling scenarios, i.e. two planting dates (01 November & 

01 December) and two plant densities (representing smallholder vs commercial farming environments). 

Although the spatial extent of the four maps are very similar for each crop, they show that planting date 

had a larger influence on land suitability than plant density. Maps showing land suitability for OFSP 

production have been developed for the first time in this project, as well as the development of maps 

for specific planting dates and plant densities. 

 

For both RTCs, a December planting produces more highly suitable (S1) areas along the east coast of 

KwaZulu-Natal and the Eastern Cape provinces. However, some areas change from S2 to S3 suitability. 

The maps clearly identify the coastal region of the Eastern Cape as being highly suited to RTC 

production. Therefore, RTC cultivation should be encouraged in this region, which exhibits higher crop 

water productivity as simulated by AquaCrop. 

 

A comparison of Figure 8-13 and Figure 8-14 with the map produced by Mugiyo et al. (2021b) (cf. 

Figure 19-5 in Section 19.2.2.1) shows some agreement in land suitability for the central parts of the 

Limpopo, North West and KwaZulu-Natal provinces. However, large differences in land suitability are 

evident in the Mpumalanga, Free State and Western Cape provinces, including the interior of the 

Eastern Cape. As mentioned previously, extreme temperatures (> 55°C) were recorded in the 

greenhouse (season 3) between December 2022 and March 2023 when the extraction fans stopped 

working during frequent two-hourly load shedding and load reduction events. This resulted in the rapid 

accumulation of heat units, and thus high GGD requirements to reach physiological maturity. Hence, 

AquaCrop simulated low yield and CWP values in the cooler interior parts of the country due to 

insufficient heat units, thus resulting in their elimination as potential RTC production areas. Hence, the 

land suitability maps likely under-estimate the actual area that may support cultivation of both RTCs. 

Although taro production is possible during the summer months in the Western Cape, irrigation is 

necessary since it is a winter rainfall region. However, some HRZs in the western parts of the province 

may produce taro planted in December, as simulated by AquaCrop. 

 

The land suitability map developed by Mugiyo et al. (2021b) identified only a few highly suitable areas 

for taro production (in KwaZulu-Natal and the Eastern Cape). Most land suitability studies utilise long-

term monthly and annual means of climate variables (e.g. rainfall and temperature). This approach does 

not consider inter-seasonal climate variability and as such, the impact of climatic extremes (especially 

droughts) are not considered. However, AquaCrop runs at a daily time step, which considers the impact 

of dry spells on crop growth and final yield. Furthermore, the model is run for 49 consecutive seasons, 

from which valuable statistics related to inter-seasonal variation were calculated. For example, Section 

8.4.1 identified cold temperatures as having the largest impact on eliminating unsuitable areas. Many 

HRZs (2,501-3,284 of 5,838) were excluded because all 49 seasons had crop cycles exceeding 365 

days, whereas other zones only had a few seasons with long crop cycles. This highlights the importance 

of considering inter-seasonal climate variability in land suitability studies, not only long-term means of 

monthly/annual rainfall and temperature. 
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(a) 

 

 

 
(b) 

Figure 8-11 Final land suitability map for rainfed production of OFSP planted in (a) November 

and (b) December at a density of 31,447 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 8-12 Final land suitability map for rainfed production of OFSP planted in (a) November 

and (b) December at a density of 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 8-13 Final land suitability map for rainfed production of taro planted in (a) November 

and (b) December at a density of 10,000 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 8-14 Final land suitability map for rainfed production of taro planted in (a) November 

and (b) December at a density of 27,000 plants ha-1 
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8.4.5 Production in subsistence farming areas 

Expanding the production of underutilised indigenous crops has the potential to improve food security 

and reduce poverty. The suitable production areas shown in Figure 8-11 and Figure 8-12 for OFSP, 

including Figure 8-13 and Figure 8-14 for taro, were compared to subsistence farming areas identified 

from the NLC (2018) dataset. The results show that ~17,580 km2 (68%) and ~12,739 km2 (49%) of the 

total subsistence farmland of 25,690 km2 is suitable for OFSP and taro production, respectively. For 

OFSP, the majority of the areas are classified as moderately suitable, compared to marginally suitable 

for taro (Table 8-7).  

 

Table 8-7 Suitable OFSP and taro production areas located within existing subsistence 

farming areas 

Suitability 

class 

Suitable area km2 (%) 

OFSP 

(31,447 plants ha-1) 

Taro 

(10,000 plants ha-1) 

November December November December 

Marginal (S3) 5,891 (22.9) 6,287 (24.5) 6,588 (25.6) 6,742 (26.2) 

Moderate (S2) 9,125 (35.5) 8,231 (32.0) 4,022 (15.7) 3,119 (12.1) 

High (S1) 2,688 (10.5) 2,938 (11.4) 2,214 (  8.6) 2,793 (10.9) 

Unsuitable (N1) 7,986 (31.1) 8,234 (32.1) 12,866 (50.1) 13,036 (50.7) 

Total 25,690 (100) 25,690 (100) 25,690 (100) 25,690 (100) 

 

More subsistence farming areas are suited to a November planting for both RTCs ((Table 8-7). Hence, 

Figure 8-15 and Figure 8-16 show the location of suitable production areas within existing subsistence 

farming areas for OFSP and taro, respectively. It is therefore recommended that RTC production, in 

particular OFSP, is promoted mainly along the coastal (and adjacent inland) regions of the KwaZulu-

Natal and northern Eastern Cape provinces. This information may help policy makers to target specific 

areas where OFSP and taro can be produced under rainfed conditions by subsistence (and smallholder) 

farmers. 
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Figure 8-15 Suitable production areas located within existing subsistence farming areas for 

OFSP planted in November 

 

 

 
Figure 8-16 Suitable production areas located within existing subsistence farming areas for 

taro planted in November 

 

8.5 SUMMARY AND CONCLUSIONS 

The land suitability maps produced in this project identify areas that are deemed suitable for OFSP and 

taro production, and thus provide both smallholder and commercial farmers with alternative crop 
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choices. For both RTCs, simulated output from AquaCrop (four modelling scenarios) was used to 

identify potential cultivation areas using a three-tier approach. Firstly, certain variables were identified 

that showed potential to eliminate unsuitable crop production areas (e.g. number of seasonal 

simulations & crop water productivity). Other AquaCrop variables (e.g. yield & stomatal stress) were 

also considered but not used. The model is not run for seasons where the season length exceeds 365 

days, which indicates the climate is too cold for economically viable crop production. In many instances, 

all 49 seasons are too cold, and thus the HRZ is considered totally unsuitable for crop production. Mean 

annual rainfall was also used to eliminate zones deemed too dry for crop production, especially in the 

western parts of the country. 

 

Thereafter, thresholds were developed and applied, which resulted in the elimination of 3,694 and 4,266 

HRZs deemed unsuitable for OFSP and taro production, respectively. The remaining 2,144 (OFSP) and 

1,572 (taro) zones were then classified as low, moderate and high suitability (i.e. production potential) 

using crop water productivity. The final step involved the elimination of physically and currently 

unsuitable areas for crop production using existing land cover data. For example, urban and protected 

areas were classified as totally unsuitable, whereas commercial forestry plantations and sugarcane 

were considered currently unsuitable. This approach helped to obtain more realistic maps of areas that 

can be planted to each RTC as they eliminated 19% (OFSP) and 22% (taro) of suitable areas. Four 

land suitability maps were produced for each crop, which showed that planting date has more impact 

on land suitability than plant density. The maps also show that more areas of the country are suited to 

OFSP production than taro. Approximately 68% and 49% of existing subsistence farming areas are 

suited to OFSP and taro cultivation respectively, especially for a November planting. Hence, OFSP 

exhibits greater potential for uptake by more smallholder farmers and has a shorter growing season 

when compared to taro. 

 

However, the thermal time required to reach physiological maturity was strongly influenced by the 

extreme temperatures experienced in the greenhouse during season 3 (cf. Chapter 5) that resulted 

from frequent load shedding events experienced during the growing season. Hence, some HRZs, 

particularly in the cooler interior regions of the Mpumalanga, KwaZulu-Natal and Eastern Cape 

provinces, have been excluded as potentially suitable production areas. Thus, the land suitability maps 

likely under-estimate land suitability for both crops. 

 

The methodology used in this project to (i) identify land parcels (HRZs) deemed suitable for RTC 

cultivation, and (ii) classify production potential is unique, considering it has not been done before. The 

outcome of this novel approach is, however, dependent on the reliability of the simulated AquaCrop 

output, which is largely determined by the success of calibration and validation of crop parameters for 

both crops. Furthermore, maps showing land suitability for OFSP are also unique as none currently 

exist for southern Africa. Maps for specific planting dates and densities were also developed for the first 

time. 
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9 GENERAL CONCLUSIONS, RECOMMENDATIONS & 

FUTURE RESEARCH 

9.1 SUMMARY OF APPROACH 

9.1.1 Literature review 

A mixed-method review of available literature was undertaken, which combined both quantitative and 

qualitative research/outcomes. Where applicable, the emphasis was placed on literature from South 

Africa, with some comparisons to regional literature. The review focused on fiver RTCs, namely sweet 

potato, cassava, taro, tannia and yam. The search was web-based and designed to cover both 

academic and grey literature. The main advantage of this was that it included the research undertaken 

in WRC-funded projects. Thereafter, a systematic review was completed to quantify the amount of 

knowledge on a) crop water use, b) drought adaptation mechanisms, c) water productivity, and d) 

nutritional value. Four databases (Google Scholar, Scopus, ScienceDirect & Web of Science) were 

used to search for peer-reviewed literature from 2000-2020 (cf. Chapter 2). Of the five RTCs considered 

in the review, two have been prioritised for further research in South Africa. Hence, the review was 

extended from 2020 onwards, with the focus on OFSP and taro only (cf. Chapter 3). 

 

9.1.2 Experimental work 

9.1.2.1 Season 1: Field trials  

In the first season (2020/21), a taro trial was planted on 09 December with assistance provided by 

members from the nearby Swayimane community. Despite the trial area being fenced off, animal 

damage was first observed on 11th January 2021. In mid-February, the trial was discontinued due to (i) 

difficulty in obtaining additional material for further gap filling, and (ii) excessive weed growth caused by 

high rainfall and hot temperatures. 

 

9.1.2.2 Season 2: Field trials  

Installation of the EC and SR methods at Fountainhill was completed in August 2021 to measure 

evapotranspiration during the three months prior to planting. Similar ET measurements were 

undertaken over four months post-harvest from which monthly crop coefficients were estimated for the 

fallow period. The micrometeorological systems were finally removed in September 2022, after an entire 

year of ET data had been collected. 

 

Taro corms and OFSP vines were planted on 19 November and 14 December 2021, respectively. Both 

trials were planted at a target density of 20,000 plants ha-1 (1 m row spacing and 0.5 m plant spacing). 

Crop growth measurements were delayed until all weeds had been removed from both trial sites and 

faulty soil water probes had been replaced on 9th February. The OFSP and taro trials were harvested 

on 11 April (118 DAP) and on 24 June (217 DAP). A total of 15 plants were harvested from two 

representative rows, totalling 30 plants. Harvested material was separated into separate components 

(leaves, steams & roots/tubers). Each component was weighed to obtain the fresh mass. The samples 

were then dried to obtain the dry mass of each component. Harvested yields were then scaled up to a 

per hectare basis. 

 

Crop water productivity (CWP in kg m-3) was determined as the ratio of dry yield (kg ha-1) to crop water 

use (m3). CWP was estimated using crop ET measured using EC, since this method is considered the 

“gold” standard (i.e. more accurate than the SR method). CWP values were then multiplied by the 
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nutrient content in g kg-1) to obtain nutritional water productivity (NWP in g m-3). Nutrient content of 

roots/tubers and leaves was measured by the ICFR laboratory. 

 

9.1.2.3 Season 3: Greenhouse experiment 

A greenhouse experiment was conducted at UKZN in the third season. Two raised beds were planted 

to OFSP and taro that received deficit irrigation (30% of crop water requirement or CWP). Two adjacent 

beds were also planted and were fully irrigated (100% of CWP). The four beds were planted on the 27th 

of October 2022 at a plant density of 55,556 plants ha-1. The beds were fertilised at recommended rates 

based on the soil fertility analysis and were kept weed-free throughout the growing season. Appropriate 

pesticides were utilised to prevent outbreaks, especially red spider mites that affected taro plants. 

 

An automatic weather station was installed inside the greenhouse to measure net radiation air 

temperature, relative humidity and wind speed, from which daily reference evapotranspiration (ETO) 

was calculated. Probes were installed at two depths in each bed to continually monitor soil water 

content. Prior to planting, Soil texture was determined at two depths in each bed. Furthermore, 

undisturbed soil cores were taken to obtain laboratory measurements of soil water retention, which were 

then compared to estimates from the SPAW model. An irrigation system was also installed to facilitate 

each water treatment. CWR was calculated using the single crop coefficient approach. Irrigation 

volumes were recorded weekly. 

 

Over the growing season, the following variables were measured to assess crop development: plant 

height, leaf number, leaf area index, biomass accumulation and root/tuber formation. After the harvest 

of each crop, total biomass and root/tuber yield was determined from both fresh and dry material. Crop 

measurements were then used fine-tune existing AquaCrop parameters obtained from the literature. 

The adjusted parameters were then tested by comparing simulations against observations from the 

second season. 

 

9.1.3 Crop and hydrological modelling 

AquaCrop and ACRU were both run at a national scale using climate and soils data currently available 

for each of the 5,838 relatively homogeneous response zones (HRZs). These zones are also called 

altitude zones and were previously referred to as quinary sub-catchments. The models were run for all 

5,838 HRZs, regardless of whether each zone is deemed suitable for rainfed crop production. This 

approach was followed so that AquaCrop output could be used to identify areas best suited to the 

cultivation of OFSP and taro. 

 

The process of running both AquaCrop and ACRU for each HRZ has been fully automated to minimise 

computational expense. The automation procedure has continually been improved since 2014 to further 

improve model performance, and efforts are still ongoing. It facilitated the simulation for 49 consecutive 

seasons (1950/51 to 1998/99) using daily climate data as input, from which long-term means and other 

useful statistics (e.g. inter-seasonal variability) were generated. As noted previously, AquaCrop was 

partially calibrated for both RTCs using measurements from season 3. 

 

AquaCrop simulated crop water use and yield for both unstressed (i.e. irrigated) and rainfed conditions. 

The latter runs facilitated the mapping of simulated crop yield, crop cycle, CWP and NWP for OFSP 

and taro. Averaged crop ET simulated for unstressed conditions was then used to derive monthly crop 

coefficients as input for ACRU. One of the main outcomes of this project was to model the hydrological 

impact of RTC production on downstream water availability. ACRU has been used extensively in many 

other WRC-funded projects to assess the impact of land use change on hydrological response. For 

example, the model was run in 2022 to assess the stream flow reduction potential of 15 commercial 

forestry species/hybrids. ACRU is particularly sensitive to inputs of monthly crop coefficients, which 
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explains why representative values for each HRZ were simulated using AquaCrop for unstressed (i.e. 

irrigated) growing conditions. Other parameters required by the model to assess runoff production from 

OFSP and taro are provided in the report. 

 

Mean annual runoff produced from crop land (MARCROP) was assessed relative to the runoff generated 

from a baseline land cover (MARBASE), i.e. natural vegetation. ACRU parameters for natural vegetation 

were determined as part of a previous WRC-funded project. The stream flow reduction potential was 

calculated as the percentage difference in mean annual runoff (MARBASE – MARCROP) relative to 

baseline conditions. If this percentage exceeds 10%, then the Department of Water and Sanitation may 

declare the crop as a stream flow reduction activity. 

 

9.1.4 Land suitability mapping 

Simulated output from AquaCrop was used to identify potential cultivation areas for OFSP and taro 

using a three-tier approach. Firstly, certain output variables (e.g. CWP & crop cycle) were used to 

eliminate areas considered unsuitable for crop production. Secondly, the remaining areas were 

classified as low (S3), moderate (S2) and high (S1) production potential using CWP estimates. Thirdly, 

areas deemed (i) permanently (N2; e.g. urban & protected areas), and (ii) currently (N1; e.g. commercial 

forestry & sugarcane growing areas) were also eliminated. Consideration of existing land use helped to 

obtain a more realistic suitability map identifying areas that can be planted to each RTC. The approach, 

which uses model simulations to identify potential growing areas, is considered innovative as it was 

done for the first time in South Africa, especially for underutilised crops.  

 

9.2 SUMMARY OF MAIN FINDINGS 

9.2.1 Literature review 

Growing crops that are considered nutrient-dense and water use efficient can positively contribute 

towards alleviating malnutrition and reduce the impact of agricultural production on the county’s limited 

water resources. Root and tubers are considered versatile crops that have much potential in marginal 

communities as they can contribute to both food and nutrition security, as well as rural development. 

The literature review considered five RTCs, namely cassava, sweet potato, taro, tannia and yam. 

Although these crops belong to different botanical families, they share common traits. For example, 

they all store protein and carbohydrates (e.g. starch) in underground “reservoirs”, which are bulky and 

perishable. In addition, RTCs are vegetatively propagated. However, an understanding of the 

developmental physiology of these crops, an essential prerequisite for improving their performance (as 

well as for developing and improving crop models), is poorly documented. Information is also 

fragmented and indigenous knowledge has not been effectively captured. 

 

Within South Africa, the potential of underutilised indigenous crops remains largely untapped, which 

needs to be urgently addressed. A targeted research agenda was developed to help unlock the potential 

of 13 identified crops. Hence, these crops have been prioritised for further research in South Africa, two 

of which are RTCs. Within South Africa, OFSP and taro have potential to contribute towards addressing 

national priorities linked to addressing poverty, unemployment and inequality. However, this is strongly 

dependent on the creation of new value chains, particularly in marginal areas. To facilitate this goal, 

there is need for investment in research, development and innovation pertaining to RTCs. These 

investments should therefore target the development and promotion of new value chains that output 

sustainable products for the two prioritised RTCs. Human capacity development and knowledge 

management, including indigenous knowledge, should support such investments to ensure 

sustainability. Furthermore, the inclusion of RTCs into existing production systems also addresses 

various Sustainable Development Goals, such as zero poverty and hunger. 
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Unlike cereals and pulses, RTCs are relatively large plants that are not easily grown in greenhouse 

pots. It is therefore difficult to secure the controlled conditions necessary for reliable physiological 

studies. Furthermore, credible measurements of crop water using accepted micrometeorological 

techniques (e.g. eddy covariance) require sufficient fetch. Experience gained in this project highlighted 

certain challenges (e.g. cost and effort) in establishing large trials from propagated material.  

 

Crop models for RTCs have also not received the same attention in model development, improvement 

and testing when compared to models for grain crops. Crop physiological knowledge, detailed field 

experimental data and agronomic research are rare for RTCs, especially for sweet potato, taro, tannia 

and yam. The lack of modelling initiatives for these crops poses as a serious gap for their mainstreaming 

into existing production systems within South Africa. In order to address these shortcomings, this project 

successfully contributed to the existing knowledge base for OFSP and taro. The literature review 

identified existing knowledge gaps, which helped to focus the field work undertaken by this project, as 

described next. 

 

9.2.2 Experimental work 

To address existing knowledge gaps around crop water use, two micrometeorological techniques (eddy 

covariance & surface renewal) were used to measure evapotranspiration. Field trials were conducted 

at Fountainhill Eco-state in KwaZulu-Natal with sufficient fetch to facilitate these measurements. 

 

9.2.2.1 Season 2: Field trials  

Water productivity (crop and nutritional) calculations were based on EC measurements of crop water 

use since this method is considered the “gold” standard. However, due to the cost and complexity of 

implementing this technique, cheaper alternatives such as SR are gaining popularity. Although the SR 

method was calibrated against the EC method, it under-estimated crop water use (e.g. 354 vs 322 mm 

for OFSP and 358 vs 330 mm for taro). Hence, both crops used similar amounts of water under rainfed 

conditions, despite taro’s longer growing season compared to OFSP (217 vs 118 days). This was 

expected since taro’s water use is largely dominated by soil water evaporation for the first two months 

after planting. Taro’s CWP was lower than that for sweet potato (1.37 vs 3.42 kg m-3), due to the lower 

yield (4.91 vs 12.12 dry t ha-1), since water use was similar. The fresh to dry mass ratio obtained from 

the field work was 2.88 and 2.40 for OFSP and taro, respectively. These ratios are required for 

converting dry yields simulated by crop models to fresh yields. For most mineral elements, the nutrient 

content of OFSP leaves is higher than the content in storage roots. 

 

From the preliminary crop modelling results, OFSP yield was under-simulated, especially by the SWB 

model. Hence, simulated crop water productivity was much lower than observed. Although the SWB 

model accounts for interception loss, AquaCrop does not consider this process. Since the SWB model 

cannot be run at a national-scale, AquaCrop was selected to perform the national scale model runs. 

However, further work was required to improve the calibration of the model for both RTCs. 

 

9.2.2.2 Season 3: Greenhouse experiment 

Extreme temperatures exceeding 55°C were experienced in the greenhouse when extraction fans 

stopped working due to load shedding. Despite this major challenge, both crops survived, which is clear 

evidence of their heat tolerance. Results were similar to those obtained in season 2, in that OFSP’s leaf 

number is much higher, which translated to higher LAI and more biomass production. For both crops, 

stomatal conductance (and transpiration) is largely governed by the evaporation power of the 

atmosphere, and soil water availability. Taro has a longer growing season compared to OFSP, and thus 

a slower growth rate, which means less surface shading and higher soil water evaporation rates. 

Therefore, unproductive water losses are higher for taro than OFSP, which highlights the need to keep 
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taro plantings weed free for two months after planting. For OFSP, the initial gain in LAI for the 

unstressed treatment was lost midway through the growth cycle. This suggests that under water limiting 

conditions, sweet potato can still produce high leaf area, which is important for reducing soil water 

evaporation, and maintaining biomass production. For most mineral elements, the nutrient content of 

OFSP and taro leaves is higher than the content in storage roots/tubers. Furthermore, nutrients contents 

were higher when the crops were water stressed. 

 

Another important outcome from season 3 was to improve AquaCrop’s ability to adequately predict yield 

of OFSP and taro. Hence, measurements and observations from the unstressed treatment were used 

to fine-tune existing parameter values available for both RTCs. Thereafter, adjustments were made to 

stress related parameters to improve model performance using data from the stressed treatment. These 

modified parameters provided better estimates of biomass and yield for both crops under water -

stressed conditions, especially for OFSP. This achievement, which represents a valuable contribution 

by this project, was important for the modelling work described next. 

 

9.2.3 Crop modelling 

The AquaCrop model was run to estimate crop cycle, crop yield and water use, from which crop water 

productivity was calculated. For each crop, the model was run for two planting dates, each with two 

plant densities. Hence, for each variable, four maps were made that highlight the spatial variability 

across the rainfed crop production regions of South Africa. The maps show that yield and CWP for 

OFSP are higher than for taro. Planting date influenced crop yield more so than plant density. Although 

yields are higher when OFSP is planted in November than in December, yet CWP is lower. Yield and 

CWP are higher when taro is planted in (i) November in the Limpopo province, and (iii) December along 

the eastern seaboard. 

 

Inter-seasonal variation in taro yield is higher than for OFSP, particularly for a December planting. For 

OFSP, inter-seasonal yield variability is lower when planted in November. However, inter-seasonal 

variability in CWP is lower when both crops are planted in December. Inter-seasonal variability in CWP 

is higher for taro than for OFSP. When compared to taro, more areas are suited to OFSP production 

since colder areas are better suited to OFSP production. The risk of failure for taro is higher compared 

to OFSP, especially for a December planting. Planting at a higher density improves CWP due to 

increased yields. Taro is more water efficient at producing Fe than OFSP, whereas the opposite is true 

for K production. OFSP is efficient at producing β-c along the coastal region of the Eastern Cape. 

 

The maps help to identify areas in the country with high yield and productivity potential. Both RTCs 

should be grown along the coastal regions (and adjacent interior) of KwaZulu-Natal and the Eastern 

Cape. The maps will prove useful to both small- and large-scale farmers, as they provide information 

on crop choice and expected yields for specific planting dates and plant densities. It is envisaged that 

the knowledge gained in this project will help promote the production of OFSP and taro, particularly in 

rural communities, thus resulting in poverty alleviation as well as the expansion of agricultural 

production. 

 

9.2.4 Hydrological modelling 

The transparent approach adopted in this project to assess stream flow reduction potential for OFSP 

and taro was similar to that used for commercial forest plantations. The main difference was the 

development of monthly crop coefficients required as input for the ACRU model, which were derived 

from AquaCrop simulations of crop ET instead of using non-standard values obtained from field 

measurements under rainfed conditions. 

 

When this reduction is positive, more runoff is produced from natural vegetation than from the crop (i.e. 

MARBASE > MARCROP). This means the crop could use more water than natural vegetation (ETCROP > 
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ETBASE), which occurred in up to 1,058 and 781 HRZs for OFSP and taro, respectively. Hence, OFSP 

may have a greater impact on catchment water resources than taro. Although crop coefficients were 

higher for taro compared to OFSP, up to 19 (taro) and 30 (OFSP) HRZs exhibited reductions in MAR 

exceeding 10% ,relative to natural vegetation. The reduction in annual runoff is more sensitive to 

planting date, rather than plant density. A December planting of OFSP and a November planting of taro 

may have less impact on downstream water users. Based on the results, rainfed production of OFSP 

and taro does not appear to negatively impact downstream water availability to any great extent. 

Therefore, these crops are unlikely to be declared as a SFRA by the Department of Water and 

Sanitation. 

 

9.2.5 Land suitability mapping 

Most of the highly suitable (S1) areas for both RTCS are located along the coastal regions (and adjacent 

interior) of KwaZulu-Natal and the Eastern Cape. This is due to the higher rainfall and warmer 

temperatures experienced along the coastal areas, compared to inland regions. The majority of 

Limpopo is marginally suited (S3) to taro production, with more areas being moderately suited to OFSP 

production. More areas are suited to OFSP production compared to taro, due to its shorter season 

length, especially in the interior regions of KwaZulu-Natal and the Eastern Cape.  

 

The land suitability maps will provide farmers with additional crop choices to plant, thus facilitating 

agricultural diversification. The knowledge gained in this project should help to promote the expansion 

of RTC production, to be grown mostly by smallholder farmers in traditional farming environments. 

Agricultural expansion, facilitated by increased RTC production, will help to revive farming in rural 

communities, as well as encourage and motivate emerging farmers. Hence, production of RTCs should 

reduce the level of poverty in rural areas by creating new jobs and allowing smallholder farmers to 

participate in RTC food value chains. It is also envisaged that national and household food security will 

improve due to increased cultivation of nutrient-dense RTCs. 

 

9.3 LIMITATIONS AND ASSUMPTIONS 

The results presented in Chapters 6 and 7, including the land suitability maps in Chapter 8, are strongly 

dependent on the reliability of the AquaCrop and ACRU simulations. The model simulations are based 

on a number of assumptions, which may affect their accuracy as described next. 

 

9.3.1 Fallow period crop coefficients 

A single set of crop coefficients representing the fallow period was determined at Fountainhill in one 

season only. These values were then used to represent the fallow period in all other HRZs, which is not 

considered ideal. The monthly values were adjusted from FAO56 to A-pan equivalent crop coefficients, 

which produced a different set of values for each zone. However, the crop coefficients were not derived 

under standard conditions (i.e. unstressed) as described by Pereira et al. (2021a; 2021b), nor were they 

adjusted to represent a sub-humid climate with a minimum relative humidity of 45% and a wind speed 

at 2 m of 2 m s-1. In other words, when local climatic conditions deviate from these standard values, 

observed crop coefficients need to be adjusted to become standard values, which are then considered 

transferable to other locations. This adjustment was not made because the height of the weeds was not 

measured during the fallow period. 

 

9.3.2 Nutritional water productivity 

NWP is the product of CWP and nutrient content. Although unique CWP were simulated for each HRZ, 

the same β-carotene value measured in a single season at one location was used to present all HRZs. 

However, the range in nutrient contents reported in the literature for OFSP and taro highlights their site-
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specific nature. Nutritional value of RTCs is affected by, inter alia, the cultivar/landrace, climatic 

conditions and water availability, which highlights the need to study linkages between growing 

environments and nutrition. 

 

9.3.3 Initial soil water content  

For the national model runs, the initial soil water content was set to field capacity, which is AquaCrop’s 

default option, but may be unrealistic for rainfed conditions. This assumption was made because in 

AquaCrop version 4, germination was particularly sensitive to initial soil water content. When the latter 

was set to 50% of plant available water, it resulted in failed germination and crop failure (i.e. zero yield). 

However, this issue was addressed in version 6 by assuming that sufficient reserves are available in 

the seed for leaf expansion to occur at the maximum rate just after germination. 

 

9.3.4 Crop evapotranspiration 

The two field trials conducted in season 2 were affected by excessive weed growth, which was only 

cleared on 57 and 82 DAP for OFSP and taro, respectively. Hence, weed competition may have resulted 

in taro’s water use being over-estimated, especially before the crop emerged. Furthermore, crop yields 

were likely to be negatively impacted. 

 

Root and tubers are indeterminant crops, which continue to form new leaves after initiation of tuber 

formation. Hence, AquaCrop will struggle to accurately simulate crop evapotranspiration of 

indeterminate crops, since the model will reduce transpiration towards the end of the season. This is 

especially true for OFSP that exhibits the “stay-green” trait. Hence, the model is likely to under-estimate 

actual crop water use, resulting in (i) over-estimation of CWP, and (ii) under-estimation of derived crop 

coefficients. 

 

9.3.5 Increasing climate variability 

Since the climate database for each HRZ ends in 1999, it does not adequately reflect the climate 

variability from 2000 onwards, when anthropogenically induced changes in extreme climatological 

events have occurred. For example, 2023 was the hottest year on record, as was 2022 previously, 

which was farmer than 2021, and so on. Hence, inter-seasonal variability likely increased over the past 

two decades, and thus has been under-simulated by AquaCrop and ACRU in this project.  

 

9.3.6 Model calibration 

The thermal time required to reach physiological maturity was strongly influenced by the extreme 

temperatures experienced in the greenhouse during season 3. Hence, some HRZs particularly in the 

cooler interior regions of the Mpumalanga, KwaZulu-Natal and Eastern Cape provinces have been 

excluded as potentially suitable production areas. Thus, the land suitability maps likely under-estimate 

land suitability for both crops. 

 

Model accuracy is largely dependent on the outcome of the calibration of model parameters that was 

undertaken for both models and for both RTCs. For RTCs, fine-tuning of crop parameters is necessary 

to account for variability in cultivars and landraces. In principle, physically based models do not require 

extensive calibration, as their input parameters describe the physical characteristics of the 

field/catchment. However, all simulation models suffer from scale-related issues in that parameters 

derived at the point scale are considered representative of a larger area, which is discussed next. 
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9.3.7 Regional upscaling 

The modelling approach adopted in this project assumes that measurements and simulations made at 

a point scale are representative of a larger area that is considered relatively homogeneous. In other 

words, the simulations represent the entire HRZ, without consideration of, for example micro-climatic 

effects. For the land suitability mapping, the entire zone may be classified as unsuitable for crop 

production, whereas parts may be suitable. Similarly, a suitable zone may contain areas unsuitable to 

crop production due to water logging (e.g. riparian areas). 

 

9.4 REVISITING THE PROJECT AIMS 

The main objective of this project was to quantify the yield, water use and nutrient content of selected 

root and tuber crops (RTCs) currently being grown in South Africa, where little or conflicting information 

currently exists. Each specific aim was achieved as follows: 

 

1) Information on water use, yield and nutrient content was gleaned from the available literature from 

2000 to 2020. The literature review considered five RTCs, namely cassava, sweet potato, taro, 

tannia and yam (Chapter 2). Since two of these crops have been prioritised for further research in 

South Africa, a more detailed review was undertaken for sweet potato and taro (Chapter 3). 

 

2) Knowledge gaps were addressed through field work conducted over three seasons, where the 

water use, yield and nutrient content of OFSP and taro were measured (cf. Chapters 4 and 5). 

This was particularly important for taro, since a wide range of water use values were found in the 

literature. 

 

3) The water use and yield of OFSP was initially simulated using the AquaCrop and SWB crop 

models. Results highlighted AquaCrop’s ability to adequately estimate crop water productivity 

compared to the SWB model (Chapter 4). Experiments conducted in season 3 were specifically 

designed to collect data for partially calibrating AquaCrop for both OFSP and taro (Chapter 5). 

 

4) AquaCrop simulations were used to identify suitable crop production areas across different agro-

ecological zones (Chapter 8). This new approach was novel and can be adapted to develop land 

suitability maps for other underutilised crops assuming crop parameters exist. 

 

5) Both the experimental and modelling work (Chapters 4 to 6) improved existing knowledge of the 

CWP and NWP of OFSP and taro. Measurements of crop water use for taro were similar to OFSP, 

despite a difference in crop cycle of almost 100 days. AquaCrop was run at a national scale for all 

5,838 HRZs, from which maps of yield, CWP and crop cycle were produced. These maps highlight 

zones where both crops could achieve high yields, and thus exhibit high CWP and NWP. Multiple 

model runs were undertaken for both rainfed and irrigated conditions, each with two planting dates 

and two plant densities. 

 

6) To assess the hydrological impact of crop production on downstream water availability, a unique 

set of monthly crop coefficients was determined for each HRZ using AquaCrop simulations of crop 

ET for unstressed growing conditions. These KC values were required by the ACRU model, which 

was also run for all HRZs, to estimate the runoff generated from a land cover of OFSP and taro. 

Runoff values were then compared to those obtained from natural vegetation using a standardised 

and accepted methodology. 
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7) This final project report represents the final aim, i.e. a synthesis of all information generated by this 

project, which could be used to help promote the sustainable production of indigenous root and 

tuber food crops. 

 

Hence, all of the project’s aims were successfully met, except for one season of field work that produced 

no results. Unfortunately, the taro trial planted in the first season was abandoned after been severely 

affected by weed growth and animal damage. The sweet potato trial was not planted because the MSc 

student decided to deregister due to concerns related to the COVID-19 pandemic. Hence, it is important 

to note that challenges experienced in the first season were mostly related to the COVID-19 pandemic. 

Attempts to address these challenges were also hampered by the pandemic, which caused 

inefficiencies and restricted access to the work place. The second season of field work produced results, 

despite weed problems and the continued threat of animal damage at the Fountainhill Eco-estate. 

Similarly, the third season provided a valuable dataset for model calibration, despite the extreme 

temperatures experienced in the greenhouse during regular load shedding events.  

 

Despite the above-mentioned challenges related to field work, the following outcomes were achieved 

for the first time in this project: (i) the water use of OFSP and taro was measured accurately using two 

micrometeorological techniques; (ii) more representative climate and soil datasets were used as input 

for AquaCrop and ACRU; (iii) AquaCrop was run with a single-layer (not a two-layer) soil profile; (iv) 

improved parameter values for OFSP and taro were developed; (v) the automation procedure was 

revised to run AquaCrop and ACRU more efficiently at the national scale; (vi) OFSP was modelled and 

mapped at the national scale using AquaCrop; (vii) maps of NWP were developed for both RTCs; (viii) 

risk of crop failure was mapped for both crops; (ix) land suitability maps were produced from AquaCrop 

output using a novel approach; and (x) the hydrological impact of OFSP and taro production non 

downstream water availability was assessed. These outcomes further improved the validity of model 

simulations, and thus the taro simulations presented in this report supersede those developed by 

Mabhaudhi et al. (2016a) and Kunz and Mabhaudhi (2023), which tended to under-estimate taro’s yield. 

 

9.5 RECOMMENDATIONS AND FUTURE RESEARCH 

The various approaches developed and implemented in this study are by no means considered 

“exhaustive”. Although much effort was spent on producing simulated output that is considered reliable 

and error-free, the following suggestions would further improve the accuracy of results. These 

suggestions pertain to the four main research thrusts: (i) measuring crop water use and yield, (ii) crop 

modelling, (iii) hydrological modelling, and (iv) land suitability mapping. 

 

9.5.1 Measuring crop water use and yield 

The field work represented only one season (2021/22) at a single location (Fountainhill). This effort should 

be replicated for multiple seasons and across different agro-ecologies. Although the EC method is 

considered the “gold” standard for measuring crop water use, it requires specialised skills to implement 

correctly and is also expensive. A new surface renewal method (called SR2) is highly recommended 

for crop water use measurement since there is no need for calibration against the EC method. The 

classic SR method (called SR1) used in this project requires calibration to derive the alpha coefficient. 

The SR methods (SR1 and SR2) should replace the soil water balance technique commonly used to 

estimate crop water use. The latter method tends to over-estimate crop evapotranspiration, due mainly 

to assumptions that runoff, drainage and/or capillary rise are considered negligible. 

When the soil water balance method is used, runoff should be measured weekly using runoff plots, thus 

avoiding incorrect assumptions that it is negligible. Although drainage is difficult to measure, it should 

be estimated using appropriate techniques (e.g. Darcy-Buckingham equation or HYDRUS model). 
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Furthermore, the soil water balance approach does not consider the evaporation of intercepted water, 

which is accounted for by the EC and SR methods. 

Since AquaCrop is a canopy-level model, it is important that the model simulates this variable well. 

Canopy cover is typically derived from measurements of LAI (via the DIFN or Beer-Lambert equations). 

Another approach to be explored in the future involves the derivation of CC development from regular 

drone flights. The images can be analysed to determine canopy cover development and relative 

coverage of weeds, which are both parameters required by AquaCrop. 

 

The CWP and NWP of other root and tuber crops should be measured and compared to values for 

OFSP and taro. For example, the drought tolerance and nutritional value of yams needs further 

investigation, especially since yam is a good source of both protein and carbohydrates. 

 

9.5.2 Crop modelling 

9.5.2.1 Extended climate record 

Rainfall data is a major source of uncertainty in simulation modelling, particularly in arid and semi-arid 

regions. A statistical rule-of-thumb states that uncertainty decreases with an increase in the number of 

observations. In other words, longer climate records can result in more reliable modelling. Since the 

climate data for each HRZ ends in 1999, it does not reflect the anthropogenically induced changes in 

extreme climatological events that have occurred from 2000 onwards. Therefore, it is vitally important 

that the climate database for the HRZs is extended beyond 2000 by at least 20 years. However, this 

task is made difficult by the ongoing closure of climate stations by custodians. 

 

9.5.2.2 Model calibration and testing 

The lack of available crop parameters for sweet potato, taro, tannia and yam represents a serious 

knowledge gap that will prevent their mainstreaming into existing production systems. Although this 

project contributed towards improving parameter values for two RTCs, additional model calibration and 

testing is needed for all RTCs. Studies have shown that model accuracy depends more on input data 

quality, rather than on the model itself. Models need to be (i) calibrated across different agro-climatic 

zones; and (ii) thoroughly tested to evaluate their responses to increasing rainfall variability (water 

stress), rising CO2 levels, warming temperatures (heat stress) and combinations of these. Such 

extensive model improvement and testing requires high quality datasets obtained from well-designed 

and executed field experiments. Developing high quality datasets for model calibration and testing 

requires a coordinated international effort and long-term commitment to funding this work. 

 

9.5.2.3 Additional modelling scenarios 

Results from this project showed that planting date had a greater impact on simulated yield than plant 

density. Owing to time constraints, only two planting dates were considered (November and December). 

Using a variable planting date approach for each HRZ is not recommended. Instead, the model should 

be run for another two planting dates, namely October and January. This will provide a better 

understanding of crop response to planting date. In addition, modelling the impact of fertility and/or 

weed stress is recommended, as yield estimates may be more realistic for low input farming systems. 

 

9.5.2.4 Initial soil water content 

In the future, the new “hot start” option in AquaCrop should be investigated where the simulated soil 

water content at the end of a previous season can be taken as the initial conditions for the following 
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season. This option should replace the current approach where the soil water content is assumed to be 

at field capacity at the start of the season. In addition, national AquaCrop runs should be performed 

where the initial soil water content is set to 50% of plant available water (not field capacity) to assess 

the impact of this setting on crop yield. This will help determine AquaCrop’s sensitivity to initial soil 

moisture levels. 

 

9.5.2.5 Runoff curve number 

For this project, CNII was derived from KSAT for the topsoil as suggested in the AquaCrop user manual. 

However, published tables of CNs already exist for South Africa. In addition, another WRC-funded 

project is investigating different methods for estimating CNs, one of which involves the use of ACRU to 

simulate runoff for different vegetation types (including crops). These options should be investigated in 

the future to derive a representative CNII value for each HRZ for use in AquaCrop. 

 

9.5.2.6 Risk of crop failure 

For this project, RCF was defined as the number of zero yields divided by the number of simulated 

seasons. However, crop failure can also be defined as a 10% or more decline in yield compared to the 

mean yield, i.e. a -10% deviation from the mean. Instead of using means, other studies adopted 

deviations from a trendline of yield vs time. The use of these definitions of crop failure should therefore 

be investigated in future studies. 

 

9.5.2.7 Impact of vine harvesting 

Research aimed at enhancing the available knowledge on vine harvesting is needed to better 

understand its impact on sweet potato yield across different agro-ecologies. Furthermore, AquaCrop 

cannot account for vine harvesting, which results in a sudden decline in canopy cover and biomass 

accumulation. The model developers should be encouraged to modify AquaCrop to simulate the effects 

of reduced leaf area index and canopy cover on final biomass and yield at physiological maturity. 

 

9.5.2.8 Maximum season length 

Since crops like OFSP and taro are frost sensitive, the first frost date should be determined from daily 

minimum temperatures. If the physiological maturity date extends beyond the first frost date, the crop 

cycle should be shortened accordingly. This approach is better than limiting the maximum crop cycle to 

a set value (e.g. 365 days) and would provide more accurate yield estimates in each season. 

 

9.5.3 Land suitability mapping 

9.5.3.1 Elimination criteria 

Break-even yields: Enterprise budgets could be developed (on a per-hectare basis) for both smallholder 

and commercial farmers to determine the profitability of RTC production. This approach would provide 

the break-even yield for OFSP and taro, which could then be applied to eliminate zones where crop 

production is economically unviable. 

 

Criteria weighting: The elimination criteria were applied sequentially to remove unsuitable altitude 

zones, where the order in which they were applied was not important. Furthermore, this approach 

assumes each criterion is of similar importance, i.e. equal weighting. Alternatively, a multi-criteria 

decision approach could be adopted, where scores are assigned to each elimination criterion. For 

example, zones with a CWP of below 0.10 dry kg m-3 (for example) are assigned a score of 1, compared 

to four for areas above 0.40 dry kg m-3. The scores for each criterion are then weighted accordingly, 
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depending on its perceived importance to overall land suitability. The weighted sores for each criterion 

are then summed and finally, expressed as a percentage of the maximum score. The final score could 

then be used to eliminate unsuitable zones. A similar multi-criteria decision approach could also be 

used to rank the remaining zones from low to high productivity potential. One disadvantage of this 

approach is the issue of applying discrete thresholds to continuous datasets. For example, a final score 

of 60-80% is categorised as moderately suitable, whereas 81% is considered high suitable.  

 

9.5.4 Additional performance improvements 

9.5.4.1 Climate files 

At present, AquaCrop runs progressively slower for each consecutive season. The reason for this is the 

model sequentially reads the climate file from the beginning for each seasonal simulation. As a 

workaround, the climate files were “trimmed” to a width of 12 characters to facilitate the rapid extraction 

of a single season of data using a method known as “direct access” in Fortran. This method can extract 

any portion of data from the climate file in the amount of time. However, it would be more efficient to 

alter AquaCrop’s code to rather read in the entire climate file once, or to use the same direct access 

method. This would significantly improve AquaCrop’s performance.  

 

9.5.4.2 Failed national runs 

The ability to “hot start” a failed national run should be developed. Load shedding poses a serious 

problem since all modelled output is stored in RAM and is only moved to permanent disk storage once 

the entire run is completed, i.e. after the statistics have been generated, then extracted and all output 

is compressed. A utility needs to be developed to determine when a power failure has occurred, which 

then copies the model output from RAM to hard drive, before the PC is shut down by the UPS. Another 

utility is then required to determine which model runs still need to be completed and to spread the load 

across multiple CPU threads. 

 

9.5.4.3 WSL version 2 issues 

WSL version 2 seems to struggle with running parallel tasks when compared to version 1, which 

represents one major disadvantage of WSL 2. It is hoped that Microsoft will address and fix this issue 

in the near future. As an interim solution, WSL 1 was used in this project for the required AquaCrop 

runs. Alternatively, the automation code that runs AquaCrop for all HRZs and for each season should 

be ported from Unix to Python, which could significantly improve overall model performance.  

 

9.5.5 Development of seed systems 

RTCs can be vegetatively propagated, which is an advantage for small-scale, low-income farmers who 

cannot afford to buy seed. However, their genotype remains fixed, thus making them more vulnerable 

to the build-up of viruses and other pathogens. Although the availability of clean, certified and quality 

seed would help to eliminate these issues, there are no organised seed systems in South Africa for 

sweet potato or aroids such as taro. Consequently, value chains to remain rudimentary. Currently 

available biotechnology tools, together with conventional crop genetics and breeding activities, can be 

used to improve the performance of RTCs. Several institutions in Africa are currently working on 

genetically enhancing RTCs. Hence, continued investments in breeding research is key to develop 

sustainable value chains for RTCs. 

 

9.5.6 Development of agronomic guidelines 

Although RTCs have become adapted to marginal farming areas within South Africa, poor crop 

establishment, low yield, poor storage and susceptibility to pests and diseases remain issues that need 
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addressing. The lack of agronomic information may restrict the promotion of RTCs, particularly within 

commercial farming systems. Generating site-specific information regarding plant densities, planting 

dates, water requirements, weed control, pest and disease control and harvest techniques is essential 

for upscaling production of RTCs. This is especially important considering that the efficient use of limited 

resources such as water can be enhanced through best agronomic practices. Therefore, further 

research is required on the various agronomic aspects of RTCs within the context of South Africa. 

 

 

  



Crop and nutritional water productivity of sweet potato and taro 

193 
 

 

REFERENCES 

ACOCKS JPH (1988) Veld types of southern Africa. Botanical Survey of South Africa Memoirs 57, 

Botanical Research Institute, Pretoria, South Africa. 

 

ADHANOM GT, STIRZAKER RJ, LORENTZ SA, ANNANDALE JG, STEYN JM (2012) Comparison of 

methods for determining unsaturated hydraulic conductivity in the wet range to evaluate the sensitivity 

of wetting front detectors. Water SA 38 67-75. 

 

ADUGNA A, TIRFESSA A (2014) Response of stay-green quantitative trait locus (QTL) introgression 

sorghum lines to post-anthesis drought stress. African Journal of Biotechnology 13 4492-4500. 

 

AKPOTI K, KABO-BAH AT, ZWART SJ (2019) Agricultural land suitability analysis: State-of-the-art and 

outlooks for integration of climate change analysis. Agricultural Systems 173 172-208. 

 

AL-JAMAL M, BALL S, SAMMIS T (2001) Comparison of sprinkler, trickle and furrow irrigation 

efficiencies for onion production. Agricultural Water Management 46 253-266. 

 

ALLEMANN J, LAURIE SM, THIART S, VORSTER HJ (2004) Sustainable production of root and tuber 

crops (potato, sweet potato, indigenous potato, cassava) in southern Africa. South African Journal of 

Botany 70 60-66. 

 

ALLEN RG, PEREIRA LS, RAES D and SMITH M (1998) Crop evapotranspiration – guidelines for 

computing crop water requirements. Irrigation and Drainage Paper No. 56, Chapter 6, Food and 

Agricultural Organisation, Rome, Italy. https://www.fao.org/3/X0490E/x0490e00.htm 

 

ALMEKINDERS CJM, WALSH S, JACOBSON KS, ANDRADE-PIEDRA JL, MCEWAN MA, DE HAAN 

S, KUMAR L, STAVER C (2019) Why interventions in the seed systems of roots, tubers and bananas 

crops do not reach their full potential. Food Security 11 23-42. 

 

AMBE JT (1995) Effect of plant population density of sweet potato (Ipomoea batatas (L.) LAM) on weed 

incidence and severity in Cameroon. International Journal of Pest Management 41 (1) 27-30. 

 

ANGUS GR (1989) Sensitivity of ACRU model input. In: ACRU: Background: Concepts and theory, 

Schulze RE. WRC Report No. 154/1/89, Water Research Commission, Pretoria, South Africa. 

 

ANNANDALE JG, BENADÉ N, JOVANOVIC NZ, STEYN M, DU SAUTOY N (1999) Facilitating irrigation 

scheduling by means of the soil water balance model. WRC Report No. 753/1/99, Water Research 

Commission, Pretoria, RSA. 

 

ANNANDALE JG, JOVANOVIC NZ, STEYN JM, SOUNDY P, BACKEBERG GR (2002) Technology 

transfer of the Soil Water Balance (SWB) model for irrigation scheduling. Workshop organised by FAO-

ICID, 24th July 2002, Montreal, Canada. 23 pp. 

 

ANNANDALE J, STEYN J, BENADÉ N, JOVANOVIC N, SOUNDY P (2005) Technology transfer of the 

Soil Water Balance (SWB) model as a user friendly irrigation scheduling tool, WRC Report No. TT 

251/05, Water Research Commission, Pretoria, South Africa. 

 

BADR M, EL-TOHAMY W, ZAGHLOUL A (2012) Yield and water use efficiency of potato grown under 

different irrigation and nitrogen levels in an arid region. Agricultural Water Management 110 9-15. 

 

https://www.fao.org/3/X0490E/x0490e00.htm


Crop and nutritional water productivity of sweet potato and taro 

194 
 

 

BELEHU T (2003) Agronomical and physiological factors affecting growth, development and yield of 

sweet potato in Ethiopia. Unpublished PhD thesis, Plant production and Soil Science, School of Natural 

and Agricultural Sciences, University of Pretoria, Pretoria, South Africa. 

 

BELEHU T, HAMMES PS, ROBBERTSE PJ (2004) The origin and structure of adventitious roots in 

sweet potato (Ipomoea batatas). Australian Journal of Botany 52 (4) 551-558. 

 

BELETSE YG, LAURIE R, DU PLOOY CP, LAURIE SM, VAN DEN BERG A (2013) Simulating the yield 

response of orange fleshed sweet potato ’Isondlo’ to water stress using the FAO AquaCrop model. 

ISHS Acta Horticulturae 1007 935-941. 

 

BELETSE YG, LAURIE, R, DU PLOOY CP, VAN DEN BERG A, LAURIE S (2011) Calibration and 

validation of AquaCrop model for orange fleshed sweet potatoes. In: Capacity development for farm 

management strategies to improve crop water productivity using AquaCrop: lessons learned, 

Ardakanian R, Walter T. UNW-DPC Publication Series, Knowledge No. 7, Bonn, Germany. 

 

BERNARDES C, DA SILVA MARTINS CA, LOPES FS, DA ROCHA MJR, XAVIER, TMT (2011) Leaf 

area, leaf area index and light extinction coefficient for taro culture. Enciclopédia Biosfera, Centro 

Científico Conhecer – Goiânia 7 (12) 1-9. 

 

BHAGSARI AS, DOYLE AA (1990) Relationship of photosynthesis and harvest index to sweet potato 

yield. Journal American Society of Horticultural Science 115 288-293. 

 

BIEHLER E, MAYER F, HOFFMANN L, KRAUSE E, BOHN T (2010) Comparison of three 

spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. 

Journal of Food Science 75 55-61. 

 

BISWAS AK, SAHOO J, CHATLI MK (2011) A simple UV-Vis spectrophotometric method for 

determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat 

nuggets. LWT-Food Science and Technology 44 1809-1813. 

 

BOMBIK A, RYMUZA K, STOPA D (2013) Potato yield depending on ridge shape and harvest time Part 

II. The yield of tuber fractions. Acta Scientiarum Polonorum Agricultura 12 (4) 70-90. 

 

BORRELL AK, MULLET JE, GEORGE-JAEGGLI B, VAN OOSTEROM E J, HAMMER GL, KLEIN PE, 

JORDAN DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, 

leaf anatomy, root growth, and water uptake. Journal of Experimental Botany 65 6251-6263. 

 

BOUWKAMP JC, HASSAM MHM (1988) Source-sink relationship in sweet potato. Journal American 

Society of Horticultural Science 11 627-629. 

 

BRADSHAW J (2010) Root and tuber crops. Springer New York, New York, USA. 

 

BROUWER C, HEIBLOEM M (1986) Irrigation water management: Irrigation water needs – Training 

manual no. 3. Food and Agricultural Organisation, Rome, Italy. 

https://www.fao.org/3/s2022e/s2022e01.htm 

 

CAPARAS M, ZOBEL Z, CASTANHO ADA, SCHWALM CR (2021) Increasing risks of crop failure and 

water scarcity in global breadbaskets by 2030. Environmental Research Letters 16 (10) 104013. 

 

https://www.fao.org/3/s2022e/s2022e01.htm


Crop and nutritional water productivity of sweet potato and taro 

195 
 

 

CHANDRASEKARA A, KUMAR JT (2016) Roots and tuber crops as functional food: A review on 

phytochemical constituents and their potential health benefits. International Journal of Food Science 

3631647. 

 

CHIBARABADA TP, MODI AT, MABHAUDHI T (2017) Nutrient content and nutritional water 

productivity of selected grain legumes in response to production environment. International Journal of 

Environmental Research and Public Health 14 (11) 1300. 

 

CHIVENGE P, MABHAUDHI T, MODI ATA, MAFONGOYA P (2015) The potential role of neglected 

and underutilised crop species as future crops under water scarce conditions in sub-Saharan Africa. 

International Journal of Environmental Research and Public Health 12 (6) 5685-5711. 

 

CHOU JR (2013) A weighted linear combination ranking technique for multi-criteria decision analysis. 

South African Journal of Economic and Management Sciences 16 (5) 28-41. 

 

COLLINS MG, STEINER FR, RUSHMAN MJ (2001) Land-use suitability analysis in the United States: 

historical development and promising technological achievements. Environmental Management 28 (5) 

611-621. 

 

CORNIC G, MASSACCI A (1996) Leaf photosynthesis under drought stress. In: Photosynthesis and 

the Environment, 347-366, Springer, Dordrecht, Netherlands. 

 

CLULOW A, KAPTEIN N, EVERSON CS, GERMISHUIZEN I, KUNZ RP, GOKOOL S, TOUCHER ML 

(2023a) The expansion of knowledge on evapotranspiration and stream flow reduction of different 

clones/hybrids to improve the water use estimation of SFRA species (i.e. Pinus, Eucalyptus, and wattle 

species): improved water use estimation of SFRA species – Volume 1: Improved water use estimation 

of SFRA species. WRC Report No. TT 898/1/22, Water Research Commission, Pretoria, South Africa. 

167 pp. 

 

CLULOW AD, KUNZ RP, GOKOOL S, TOUCHER ML, SCHÜTTE S, SCHULZE RE, HORAN R, 

EVERSON CE, THORNTON-DIBB SLC, HORAN MJC, KAPEIN N, CLARK DJ, GERMISHUIZEN I 

(2023b) The expansion of knowledge on evapotranspiration and stream flow reduction of different 

clones/hybrids to improve the water use estimation of SFRA species (i.e. Pinus, Eucalyptus, and wattle 

species): improved water use estimation of SFRA species – Volume 2: SFRA assessment utility. WRC 

Report No. TT 898/2/22, Water Research Commission, Pretoria, South Africa. 212 pp. 

 

DABERKOW SG, KATHERINE HR (1998) Low input agriculture: trends, goals, and prospects for input 

use. American Journal of Agricultural economics 70 (5) 1159-1166. 

 

DAFF (DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES) (2010) Production 

guidelines: amadumbe. DAFF, Pretoria, South Africa. 

https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20A

madumbe%202010.pdf 

 

DAFF (DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES) (2011) Production 

guidelines: sweet potato. DAFF, Pretoria, South Africa. 

https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20S

weet%20potato.pdf 

 

DAFF (DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES) (2014) National Policy on 

Food and Nutrition Security, DAFF, Pretoria, South Africa. 

https://www.gov.za/documents/national-policy-food-and-nutrition-security-south-africa. 

https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20Amadumbe%202010.pdf
https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20Amadumbe%202010.pdf
https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20Sweet%20potato.pdf
https://www.dalrrd.gov.za/phocadownloadpap/Brochures_and_Production_Guidelines/Brochure%20Sweet%20potato.pdf
https://www.gov.za/documents/national-policy-food-and-nutrition-security-south-africa


Crop and nutritional water productivity of sweet potato and taro 

196 
 

 

 

DARYANTO S, WANG L, JACINTHE P-A (2016) Drought effects on root and tuber production: A meta-

analysis. Agricultural Water Management 176 122-131. 

 

DEBAEKE P, ABOUDRARE A (2004) Adaptation of crop management to water-limited environments. 

European Journal of Agronomy 21 (4) 433-446. 

 

DEO PC, TYAGI AP, TAYLOR M, BECKER DK, HARDING RM (2009) Improving taro (Colocasia 

esculenta var. esculenta) production using biotechnological approaches. South Pacific Journal of 

Natural Science 27 (1) 6-13. 

 

DEVNARAIN N, CRAMPTON BG, CHIKWAMBA R, BECKER JV, O’KENNEDY MM (2016) 

Physiological responses of selected African sorghum landraces to progressive water stress and re-

watering. South African Journal of Botany 103 61-69. 

 

DLADLA LNT (2017) Nutritional and water productivity of sweet potato. Unpublished MSc thesis, Crop 

Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa. 

 

DLADLA L, MODI A, MABHAUDHI T, CHIBARABADA T (2019) Yield, water use, and water use 

efficiency of sweet potato under different environments. In: XXX International Horticultural Congress 

IHC2018: International Symposium on Water and Nutrient Relations and Management of 1253. Acta 

Horticulturae 1253 287-294. 

 

DONG B, LIU H, WANG Y, QIAO Y, ZHANG M, YANG H, JIN L, LIU M (2018) Physio-ecological 

regulating mechanisms for highly efficient water use of crops. Chinese Journal of Eco-Agriculture 26 

1465-1475. 

 

DU PLESSIS J (2003) Maize production. Department of Agriculture, Forestry and Fisheries, Pretoria, 

South Africa. 

https://www.dalrrd.gov.za/index.php/publications/16-brochures-and-production-

guidelines?download=1638:maize-production&start=20 

 

DUA VK, GOVINDAKRISHNAN PM, SINGH BP (2014) Calibration of WOFOST model for potato in 

India. Potato Journal 41 (2) 105-112. 

 

DUQUE LO, VILLORDON A (2019) Root branching and nutrient efficiency: Status and way forward in 

root and tuber crops. Frontier in Plant Science 10 1-8. 

 

ESTES LD, BRADLEY BA, BEUKES H, HOLE DG, LAU M, OPPENHEIMER MG, SCHULZE R, 

TADROSS MA, TURNER WR (2013) Comparing mechanistic and empirical model projections of crop 

suitability and productivity: implications for ecological forecasting. Global Ecology and Biogeography 22 

1007-1018. 

 

EVERSON C, MENGISTU M (2011) The impact of madumbe (Colocasia esculenta) cultivation on the 

evaporation of a Cyperus latifolius marsh in KwaZulu-Natal. WRC Report No. KV 260/10, Water 

Research Commission, Pretoria, South Africa. 

 

EVERSON CS, GUMEDE MP, EVERSON TM, CLULOW AD, KUNZ RP (2021) Quantification of the 

evapotranspiration and stream flow reduction caused by bamboo species on water resources in South 

Africa. WRC Report No. TT/19, Water Research Commission, Pretoria, South Africa. 

 

https://www.dalrrd.gov.za/index.php/publications/16-brochures-and-production-guidelines?download=1638:maize-production&start=20
https://www.dalrrd.gov.za/index.php/publications/16-brochures-and-production-guidelines?download=1638:maize-production&start=20


Crop and nutritional water productivity of sweet potato and taro 

197 
 

 

EZUI KS, FRANKE AC, MANDO A, AHIABOR BDK, TETTEH FM, SOGBEDJI J, JANSSEN BH, 

GILLER KE (2016) Fertiliser requirements for balanced nutrition of cassava across eight locations in 

West Africa. Field Crops Research 185 69-78. 

 

FABER M, SCHWABE C AND DRIMIE S (2009) Dietary diversity in relation to other household food 

security indicators. International Journal of Food Safety, Nutrition, and Public Health 2(1) 1-15. 

 

FAO (FOOD AND AGRICULTURE ORGANISATION) (1976) A framework for land evaluation. Soils 

Bulletin No. 32, FAO, Rome, Italy. 

https://www.fao.org/3/x5310e/x5310e00.htm 

 

FAO (FOOD AND AGRICULTURAL ORGANISATION) (1990) Roots, tubers, plantains and bananas in 

human nutrition. Food and Nutrition Series No. 24, FAO, Rome, Italy. 

https://www.fao.org/3/t0207e/T0207E00.htm 

 

FAO (FOOD AND AGRICULTURE ORGANISATION) (2002) Deficit irrigation practices. FAO, Rome, 

Italy. 

https://www.fao.org/3/y3655e/y3655e.pdf 

 

FAO (FOOD AND AGRICULTURAL ORGANISATION) (2012a) ETo Calculator: Version 3.2. FAO, 

Rome, Italy.  

https://www.fao.org/land-water/databases-and-software/en/ 

 

FAO (FOOD AND AGRICULTURE ORGANISATION) (2012b) FAO/INFOODS Guidelines for 

converting units, denominators and expressions, version 1.0, FAO, Rome, Italy. 

http://www.fao.org/3/i3089e/i3089e.pdf 

 

FAO (FOOD AND AGRICULTURAL ORGANISATION) (2015) AquaCrop new features and updates ‒ 

Version 5.0. FAO, Rome, Italy. 

http://www.fao.org/3/a-bc087e.pdf 

 

FAO (FOOD AND AGRICULTURAL ORGANISATION) (2017) AquaCrop update and new features ‒ 

Version 6.0. FAO, Rome, Italy. 

http://www.fao.org/3/a-i7179e.pdf 

 

FAOSTAT (FOOD AND AGRICULTURE ORGANISATION STATISTICS) (2013) Food and agriculture 

statistics per country, FAO, Rome, Italy. http://faostat3.fao.org/ 

 

FAOSTAT (FOOD AND AGRICULTURE ORGANISATION STATISTICS) (2019) Production: crops, 

FAO, Rome, Italy. https://www.fao.org/faostat/en/#home 

 

FERREIRA-SILVA SL, SILVEIRA JAG, VOIGT EL, SOARES LSP, VIEGAS RA (2008) Changes in 

physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian 

Journal of Plant Physiology 20 (1) 51-59. 

 

GERRANO AS, MATHEW I, SHAYANOWAKO AIT, AMOO S, MELLEM JJ, JANSEN VAN RENSBURG 

W, BAIRUA MW, VENTER SL (2021) Variation in mineral element composition of landrace taro 

(Colocasia esculenta) corms grown under dryland farming system in South Africa. Heliyon 7 e06727. 

 

GOMES F, CARR MKV (2001) Effects of water availability and vine harvesting frequency on the 

productivity of sweet potato in Southern Mozambique. Experimental Agriculture 37 (4) 223-537. 

 

https://www.fao.org/3/x5310e/x5310e00.htm
https://www.fao.org/3/t0207e/T0207E00.htm
https://www.fao.org/3/y3655e/y3655e.pdf
https://www.fao.org/land-water/databases-and-software/en/
http://www.fao.org/3/i3089e/i3089e.pdf
http://www.fao.org/3/a-bc087e.pdf
http://www.fao.org/3/a-i7179e.pdf
http://faostat3.fao.org/
https://www.fao.org/faostat/en/#home


Crop and nutritional water productivity of sweet potato and taro 

198 
 

 

GOUDRIAAN R, BASTIAANSSEN WGM (2013) Land and water productivity in the Doukkala irrigation 

scheme, Morocco. Internal Report to FAO Land and Water Division, Wageningen, Netherlands. 89 pp. 

 

GOVENDER L, PILLAY K, SIWELA M, MODI AT, MABHAUDHI T (2019) Improving the Dietary Vitamin 

A Content of Rural Communities in South Africa by Replacing Non-Biofortified White Maize and Sweet 

Potato with Biofortified Maize and Sweet Potato in Traditional Dishes. Nutrients 11 (6) 1-18. 

 

HADEBE ST, MODI AT and MABHAUDHI T (2017) Calibration and testing of AquaCrop for selected 

sorghum genotypes. Water SA 43 (2) 209-221. 

 

HARTEMINK AE, JOHNSTON M, O’SULLIVAN JN, POLOMA S (2000) Nitrogen use efficiency of taro 

and sweet potato in the humid lowlands of Papua New Guinea. Agricultural, Ecosystem and 

Environment 79 (2-3) 271-280. 

 

HENG LK, HSIAO TC, EVETT S, HOWELL T, STEDUTO P (2009) Validating the FAO AquaCrop model 

for irrigated and water deficient field maize. Agronomy Journal 101 (3) 488-498.  

 

HOFFMAN AL, KEMANIAN AR, FOREST CE (2018) Analysis of climate signals in the crop yield record 

of sub-Saharan Africa. Global Change Biology 24 143-157. 

 

HOLL MA, GUSH MB, HALLOWES J, VERSFELD DB (2007) Jatropha curcas in South Africa: An 

Assessment of its Water Use and Bio-Physical Potential. WRC Report No. 1497/1/07, Water Research 

Commission, Pretoria, South Africa. 

 

HOWARD PJA (1965) The carbon-organic matter factor in various soil types. Oikos 15 (2) 229-236.  

HSIAO TC, HENG LK (2011) Using AquaCrop model. Paper presented at: Joint ICTP-IAEA Conference 

on Coping with Climate Change and Variability in Agriculture through Minimizing Soil Evaporation 

Wastage and Enhancing More Crops per Drop. 9-13 May 2011, Trieste, Italy. 

 

HSIAO TC, LEE H, STEDUTO P, BASILIO R-L, RAES D, FERERES E (2009) AquaCrop – The FAO 

crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy 

Journal 101 (3) 448-459. 

 

IBSA F, GIRMA B, KASSA G, GEBREMEDHIN W (2013) Micropropagation Protocol for Mass 

Production of Released Potato Varieties. In: Seed Potato Tuber Production and Dissemination: 

Experiences, challenges and prospects, WOLDEGIORGIS G, SCHULZ S, BERIHUN B, 101-108. 

Ethiopian Institute of Agricultural research Institute (ARARI), Bahir Dar, Ethiopia. 

 

IGWILO N (1984) Comparison between the yield and growth patterns of yams grown from minisetts 

and normal seed yams. Paper presented at the 20th Annual Conference of the Agricultural Society of 

Nigeria, 19-24 August 1984, University of Science and Technology, Port Harcourt, Rivers State, Nigeria. 

 

ISLAM S (2006) Sweetpotato (Ipomoea batatas L.) leaf: its potential effect on human health and 

nutrition. Journal of Food Science 71 (2) 13-121. 

 

JEWITT GPW, KUNZ RP, WEN HW, VAN ROOYEN AM (2009a) Scoping study on water use of 

crops/trees for biofuels in South Africa. WRC Report No. 1772/1/09, Water Research Commission, 

Pretoria, South Africa.  

 

JEWITT GPW, LORENTZ SA, GUSH MB, THORNTON-DIBB S, KONGO V, WILES L, BLIGHT J, 

STUART-HILL SI, VERSFELD D, TOMLINSON K (2009b) Methods and guidelines for the licensing of 



Crop and nutritional water productivity of sweet potato and taro 

199 
 

 

SFRAs with particular reference to low flows. WRC Report No. 1428/1/09, Water Research 

Commission, Pretoria, South Africa. 

 

JONES MR (2018) Fast DSSAT simulations with low-performance computers. South African Sugarcane 

Research Institute, Mt. Edgecombe, South Africa. 

 

JONES JW, TSUJI GY, HOOGENBOOM G, HUNT LA, THORNTON PK, WILKENS PW, IMAMURA 

DT, BOWEN WT, SINGH U (1998) Decision support system for agrotechnology transfer: DSSAT v3. 

In: Understanding options for agricultural production, TSUJI GY, HOOGENBOOM G, THORNTON PK, 

157-177. Springer, Dordrecht, Netherlands. 

JOUBERT FJ, ALLEMANN L (1998) Madumbe. KwaZulu-Natal Department of Agriculture, Cedara 

College of Agriculture, KwaZulu-Natal, South Africa. 

Horticultural Production Guidelines.JOVANOVIC NZ and ANNANDALE JG (1999) An FAO type crop 

factor modification to SWB for inclusion of crops with limited data: Examples for vegetable crops. Water 

SA 25 (2) 181-189. 

 

JOVANOVIC NZ and ANNANDALE JG (2000) Calibration and validation of the SWB model for 

sunflower (Helianthus annuus L.). South African Journal of Plant and Soil 17 (3) 117-123. 

 

JOVANOVIC NZ, ANNANDALE JG and MHLAULI NC (1999) Field water balance and SWB parameters 

determination of six winter vegetable species. Water SA 25 (2) 191-196. 

 

KABUO NO, DIALOKE SA, OMEIRE GC, BEDI EN, PETER-IKECHUKWU AI, IREKPITA TE (2015) 

Comparison of proximate composition of some cultivars of chickpea (Cicer arietinum L.) cultivated in 

Owerri, Imo State, Nigeria. Food Science and Quality Management 37 103-110. 

 

KAHINDA JM. LILLIE ESB, TAIGBENU AE, TAUTE M, BOROTO RJ (2008) Developing suitability maps 

for rainwater harvesting in South Africa. Physics and Chemistry of the Earth, Parts A/B/C 33 (8-13) 788-

799. 

 

KARUKU GN, GACHENE CKK, KARANJA N, CORNELIS W, VERPLANCKE H, KIRONCHI G (2012) 

Soil hydraulic properties of a nitisol in Kabete, Kenya. Tropical and Subtropical Agroecosystems 15 

595-609. 

 

KEATING BA, CARBERRY PS, HAMMER GL, PROBERT ME, ROBERTSON MJ, HOLZWORTH D, 

SMITH CJ (2003) An overview of APSIM, a model designed for farming systems simulation. European 

Journal of Agronomy 18 (3-4) 267-288. 

 

KENNEDY G, RANERI J, STOIAN D, ATTWOOD S, BURGOS G, CEBALLOS H, EKESA B, JOHNSON 

V, LOW JW, TALSMA EF (2019) Roots, tubers and bananas: Contributions to food security. In: 

Encyclopedia of Food Security and Sustainability, FERRANTI P, ANDERSON JR, BERRY EM, 231-

256. Elsevier. 

 

KENYON L, ANANDAJAYASEKERAM P, OCHIENG C (2006) A synthesis/lesson-learning study of the 

research carried out on root and tuber crops commissioned through the DFID RNRRS research 

programmes between 1995 and 2005. Study commissioned by the Crop Protection Programme (CPP) 

of the UK Department for International Development (DFID; R1182). 

https://www.researchgate.net/publication/216088436_A_synthesis_lesson-

learning_study_of_the_research_carried_out_on_root_and_tuber_crops_commissioned_through_the

_DFID_RNRRS_research_programmes_between_1995_and_2005 

https://www.researchgate.net/publication/216088436_A_synthesis_lesson-learning_study_of_the_research_carried_out_on_root_and_tuber_crops_commissioned_through_the_DFID_RNRRS_research_programmes_between_1995_and_2005
https://www.researchgate.net/publication/216088436_A_synthesis_lesson-learning_study_of_the_research_carried_out_on_root_and_tuber_crops_commissioned_through_the_DFID_RNRRS_research_programmes_between_1995_and_2005
https://www.researchgate.net/publication/216088436_A_synthesis_lesson-learning_study_of_the_research_carried_out_on_root_and_tuber_crops_commissioned_through_the_DFID_RNRRS_research_programmes_between_1995_and_2005


Crop and nutritional water productivity of sweet potato and taro 

200 
 

 

 

KHALID F, ULLAH S, REHMAN F, HADI R, KHAN N, IBRAHIM F, KHAN T, AZIZ F, FEROZ DA, 

NADEEM SG, HUSSAIN M (2021) Identification of suitable sites for Jatropha curcas L. bioenergy 

plantation using the AquaCrop model. Forests 12 (12) 1772. 

 

KHOMO T (2014) Spatial assessment of optimum and sub-optimum growing areas for selected biofuel 

feedstocks in South Africa. Unpublished MSc dissertation. School of Agricultural, Earth and 

Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, 

South Africa. 

 

KIHARA J, BOLO P, KINYUA M, RURINDA J, PIIKKI K (2020) Micronutrient deficiencies in African soils 

and the human nutritional nexus: opportunities with staple crops. Environmental Geochemistry and 

Health 42 3015-3033. 

 

KLEIN PE, JORDAN DR (2014) Drought adaptation of stay-green sorghum is associated with canopy 

development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany 65 6251-

6263. 

 

KLUTE A (1965) Laboratory measurement of hydraulic conductivity of saturated soil. In: Methods of soil 

analysis, Part 1 – Physical and mineralogical Properties, including statistics of measurement and 

sampling volume 9, Chapter 13, 210-221, American Society of Agronomy, Inc., USA. 

 

KOOMAN PL, HAVERKORT AJ (1995) Modelling development and growth of the potato crop influenced 

by temperature and daylength: LINTUL-POTATO. In: Potato ecology and modelling of crops under 

conditions limiting growth, 41-59. Springer, Dordrecht, Netherlands. 

 

KRAUSE P, BOYLE DP, BÄSE F (2005) Advances in geosciences comparison of different efficiency 

criteria for hydrological model assessment. Advances in Geosciences 5 89-97. 

 

KRUGER J, BREYNEART A, PIETERS L, HERMANS N (2018) Vegetable relishes, high in β-carotene, 

increase the iron, zinc and β-carotene nutritive values from cereal porridges. International Journal of 

Food Science and Nutrition 69 (3) 291-297. 

 

KUNZ RP (2004) Daily rainfall data extraction utility user manual version 1.4. Institute for Commercial 

Forestry Research (ICFR), Pietermaritzburg, South Africa. 

 

KUNZ R, MABHAUDHI T (2023) Climate change atlas for rainfed production of selected underutilised 

crops: Volume 2. WRC Report No. 2717/2/23, Water Research Commission, Pretoria, South Africa. 

 

KUNZ RP, MENGISTU MG, STEYN JM, DOIDGE IA, GUSH MB, DU TOIT ES, DAVIS NS, JEWITT 

GPW, EVERSON CS (2015a) Assessment of biofuel feedstock production in South Africa: Synthesis 

report on estimating water use efficiency of biofuel crops, Volume 1. WRC Report No. 1874/1/15, Water 

Research Commission, Pretoria, South Africa. 

 

KUNZ RP, MENGISTU MG, STEYN JM, DOIDGE IA, GUSH MB, DU TOIT ES, DAVIS NS, JEWITT 

GPW, EVERSON CS (2015b) Assessment of biofuel feedstock production in South Africa: Technical 

report on the field-based measurement, modelling and mapping of water use of biofuel crops, Volume 

2. WRC Report No. 1874/2/15, Water Research Commission, Pretoria, South Africa. 

 

KUNZ RP, DAVIS NS, THORNTON-DIBB SLC, STEYN JM, DU TOIT ES, JEWITT GPW (2015c) 

Assessment of biofuel feedstock production in South Africa: Atlas of water use and yield of biofuel crops 



Crop and nutritional water productivity of sweet potato and taro 

201 
 

 

in suitable growing areas, Volume 3. WRC Report No. TT 652/15, Water Research Commission, 

Pretoria, South Africa. 

 

KUNZ R, MASANGANISE J, REDDY K, MABHAUDHI T, LEMBEDE L, NAIKEN V, FERRER S (2020) 

Water use and yield of soybean and grain sorghum for biofuel production. WRC Report No. 2491/1/20, 

Water Research Commission, Pretoria, South Africa. 

 

LABADARIOS D, MOODIE I, VAN RENSBURG A (2005) Selected micronutrient status: vitamin A. 

NFCS-FB Report No. 2007. National Food Consumption Survey: Fortification, Stellenbosch, South 

Africa. 

 

LAHIFF E, COUSINS B (2005) Smallholder agriculture and land reform in South Africa. Institute of 

Development Studies (IDS) Bulletin 36 (2) 127-131. 

 

LAI-2200 (2010) Instruction manual. Publication No. 984-10633, LI-COR Biosciences, Lincoln, NE, USA. 

 

LAKE SV (2022) A novel approach for mapping areas suitable for rainfed production of taro. 

Unpublished Honours HYDR730 project report. Centre for Water Resources Research, School of 

Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South 

Africa. 

 

LAMARO GP, TSEHAYE Y, GIRMA A, RUBANGAKENE D (2023) The impact of future climate on 

orange-fleshed sweet potato production in arid areas of Northern Ethiopia. A case study in Afar region. 

Heliyon 9 (7) e17288. 

 

LAURIE SM (2010) Agronomic performance, consumer acceptability and nutrient content of new sweet 

potato varieties in South Africa. Unpublished PhD thesis, Plant sciences, School of Natural and 

Agricultural Sciences, University of the Free State, Bloemfontein, South Africa. 

 

LAURIE SM, FABER M, VAN JAARSVELD PJ, LAURIE RN, DU PLOOY CP, MODISANE PC (2012) 

β-carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as 

influenced by irrigation and fertilizer application treatments. Scientia Horticulturae 142 180-184. 

 

LAURIE R, LAURIE SM, DU PLOOY CP, FINNIE JF, VAN STADEN J (2015) Yield of drought-stressed 

sweet potato in relation to canopy cover, stem length and stomatal conductance. Journal of Agricultural 

Science 7 (1) 201-214. 

 

LEBOT V (2019) Tropical root and tuber crops: Cassava, sweet potato, yams and aroids. 2nd Edition, 

Crop Science in Horticulture, CAB International, Wallingford, UK. 800 pp. 

 

LEIGHTON CS (2008) Nutrient and sensory quality of orange-fleshed sweet potato. MSc dissertation, 

Consumer Science, School of Agricultural and Food Sciences, University of Pretoria, Pretoria, South 

Africa. 

 

LEMOALLE J (2008) Water productivity of aquatic systems. Final report for the project: Improved 

fisheries productivity and management in tropical reservoirs, CP-PN34. Colombo, Sri Lanka: Challenge 

Program on Water and Food and Penang, Malaysia: the WorldFish Center. 32 p. 

http://www.worldfishcenter.org/resource_centre/Wpfisheries_final_report.pdf 

 

LOW AB, REBELO AG (1996) Vegetation of South Africa, Lesotho and Swaziland. Department of 

Environmental Affairs and Tourism (DEAT), Pretoria, RSA. 

http://www.ngo.grida.no/soesa/nsoer/Data/vegrsa/vegstart.htm 

http://www.worldfishcenter.org/resource_centre/WPfisheries_final_report.pdf
http://www.ngo.grida.no/soesa/nsoer/Data/vegrsa/vegstart.htm


Crop and nutritional water productivity of sweet potato and taro 

202 
 

 

 

LOW JW, MWANGA RO, ANDRADE M, CAREY E, BALL AM (2017) Tackling vitamin A deficiency with 

biofortified sweetpotato in sub-Saharan Africa. Global Food Security 14 23-30. 

 

LUNDQVIST J, MALMQUIST L, DIAS P, BARRON J, WAKEYO M (2021) Water productivity, the yield 

gap, and nutrition: The case of Ethiopia. Food & Agriculture Organisation (FAO) Land and Water 

Discussion Paper No. 17. Food and Agriculture Organisation, Rome, Italy. 

 

LYNCH SD (2004) Development of a raster database of annual, monthly and daily rainfall for southern 

Africa. WRC Report No. 1156/1/04, Water Research Commission, Pretoria, South Africa. 

 

MABHAUDHI T (2012) Drought tolerance and water-use of selected South African landraces of taro 

(Colocasia esculenta L. Schott) and bambara groundnut (Vigna 202grohydrolog L. Verdc). Unpublished 

PhD thesis. Crop Science discipline, School of Agricultural, Earth and Environmental Sciences, 

University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

 

MABHAUDHI T, MODI AT (2015) Drought tolerance of selected South African taro (Colocasia 

Esculenta L. Schott) landraces. Experimental Agriculture 51 (3) 451-466. 

 

MABHAUDHI T, MODI AT, BELETSE YG (2013a) Growth response of selected taro [Colocasia 

esculenta (L.) Schott] landraces to water stress. Acta Horticulturae 979 327-334. 

 

MABHAUDHI T, MODI AT, BELETSE, YG (2013b) Response of taro (Colocasia esculenta L. Schott) 

landraces to varying water regimes under a rain shelter. Agricultural and Forest Meteorology 121 102-

112. 

 

MABHAUDHI T, MODI AT, BELETSE YG (2014a) Parameterization and testing of AquaCrop for a 

South African bambara groundnut landrace. Agronomy Journal 106 (1) 243-251. 

 

MABHAUDHI T, MODI A, BELETSE Y (2014b) Parameterisation and evaluation of the FAO-AquaCrop 

model for a South African taro (Colocasia esculenta L. Schott) landrace. Agricultural and Forest 

Meteorology 192-193 132-139. 

 

MABHAUDHI T, KUNZ RP, SCHULZE RE (2016a) Taro (Amadumbe) in South Africa and climate 

change. In: Handbook for farmers, officials and other stakeholders on adaptation to climate change in 

the agriculture sector within South Africa, Schulze RE. Section C: Crops in South Africa and climate 

change, Chapter C6. 

 

MABHAUDHI, T, KUNZ RP, SCHULZE RE (2016b) Bambara Groundnut in South Africa and climate 

change. In: Handbook for farmers, officials and other stakeholders on adaptation to climate change in 

the agriculture sector within South Africa, Schulze RE. Section C: Crops in South Africa and climate 

change, Chapter C7. 

 

MABHAUDHI T, CHIMONYO VGP, CHIBARABADA TP, MODI AT (2017a) Developing a roadmap for 

improving neglected and underutilized crops: a case study of South Africa. Frontiers of Plant Science 8 

2143. 

 

MABHAUDHI T, CHIMONYO VGP, MODI AT (2017b) Status of underutilised crops in South Africa: 

Opportunities for developing research capacity. Sustainability 9 1569. 

 

MABHAUDHI T, KUNZ RP, SCHULZE RE (2018) Farm sector case study: Taro (Amadumbe) and 

climate change. In: Climate change: A KwaZulu-Natal agricultural perspective, SCHULZE RE, Chapter 



Crop and nutritional water productivity of sweet potato and taro 

203 
 

 

13, 76-79. Developed for and published by the uMngeni Resilience Project. School of Agricultural, Earth 

and Environmental Sciences College of Agriculture, Engineering and Science, University of KwaZulu-

Natal, Pietermaritzburg, South Africa. 

 

MABHAUDHI T, CHIBARABADA T, MODI A (2019) Nutritional water productivity of selected sweet 

potato cultivars (Ipomoea batatas L.). Acta Horticulturae 1253 295-302. 

 

MABHAUDHI T, CHIMONYO VGP, KUNZ RP, MODI AT (2023) Developing a guideline for rainfed 

production of underutilised indigenous crops and estimating green water use of indigenous crops based 

on available models within selected bio-climatic regions of South Africa: Volume 1. WRC Report No. 

2717/1/23, Water Research Commission, Pretoria, South Africa.  

 

MAGWAZA LS, NAIDOO SIM, LAURIE SM, LAING MD, SHIMELIS H (2016) Development of NIRS 

models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT – 

Food Science and Technology 72 63-70. 

MANSON AD, ROBERTS VG (2001) Analytical methods used by the Soil Fertility and Analytical 

Services Section. KwaZulu-Natal Department of Agriculture and Environmental Affairs. KZN AGRI-

Report No. N/A/2001/04. 

 

MARSHALL JJ, HOLMES JW (1998) Soil physics second edition. Press Syndicate of the University of 

Cambridge, New York, USA. 

 

MASANGANISE J (2019) Evapotranspiration of soybean and grain sorghum in a semi-arid climate. PhD 

thesis, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering 

and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

 

MASANGANISE J, KUNZ R, CLULOW AD, MABHAUDHI T, SAVAGE MJ (2022) Evapotranspiration 

estimates of soybean using surface renewal: Comparison with crop coefficient approach. Physics and 

Chemistry of the Earth 128 103244. 

 

MASANGO S (2015) Water use efficiency of orange-fleshed sweetpotato (Ipomoea batatas L. Lam.). 

MSc dissertation, Plant production and Soil Science, School of Natural and Agricultural Sciences, 

University of Pretoria, Pretoria, South Africa. 

 

MBANGIWA NC (2018) Evapotranspiration over dryland maize and soybean using micrometeorological 

methods, modelling and remote sensing. PhD thesis, School of Agricultural, Earth and Environmental 

Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa. 

 

MCMASTER GS, WILHELM WW (1997) Growing degree-days: one equation, two interpretations. 

Agricultural and Forestry Meteorology 87 (4) 291-300. 

 

MIYASAKA SC, OGOSHI RM, TSUJI GY, KODANI LS (2003) Site and planting date effects on taro 

growth: Comparison with aroid model predictions. Agronomy Journal 95 (3) 545-557.  

 

MODI AT, MABHAUDHI T (2013) Water use and drought tolerance of selected traditional and 

indigenous crops. WRC Report No. 1771/1/13, Water Research Commission, Pretoria, South Africa.  

 

MODI AT, MABHAUDHI T (2016) Developing a research agenda for promoting underutilised, 

indigenous and traditional crops. WRC Report No. KV 362/16, Water Research Commission, Pretoria, 

South Africa. 



Crop and nutritional water productivity of sweet potato and taro 

204 
 

 

 

MODI AT, MABHAUDHI T (2020) Water use of crops and nutritional water productivity for food 

production, nutrition and health in rural communities in KwaZulu-Natal. WRC Report No. 2493/1/20, 

Water Research Commission, Pretoria, South Africa. 

 

MOKONOTO O (2018) Assessing climate change impacts on productivity of sugarbeet and sugarcane 

using AquaCrop. Unpublished MSc thesis, Hydrology and Crop Science, School of Agricultural, Earth 

and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, RSA. 

 

MOLLE F, BERKOFF J (2007) Irrigation water pricing: The gap between theory and practice. CAB 

International, Wallingford, UK. 261 pp. 

 

MORIASI DN, ARNOLD JG, LIEW MWV, BINGNER RL, HARMEL RD, VEITH TL (2007) Model 

evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions 

of the ASABE 50 885-900. 

 

MOTSA NM, MODI AT, MABHAUDHI T (2015a) Sweet potato (Ipomoea batatas L.) as a drought 

tolerant and food security crop. South African Journal of Science 111 (11-12) 1-8. 

 

MOTSA NM, MODI AT, MABHAUDHI T (2015b) Sweet potato response to low-input agriculture and 

varying environments of KwaZulu-Natal, South Africa: implications for food security strategies. Acta 

Agriculture Scandinavica, Section B – Soil and Plant Science 65 (4) 329-340. 

 

MTHEMBU T (2023) Assessing the water productivity of sweet potato (Ipomoea batatas (L.) Lam.). 

Unpublished MSc dissertation. Centre for Water Resources Research, School of Agricultural, Earth and 

Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 119 pp. 

 

MUFUNGIZI AA, MUSAKWA W, GUMBO T (2020) A land suitability analysis of the Vhembe district, 

South Africa, The case of maize and sorghum. The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences XLIII-B3-2020 1023-1020. 

 

MUGIYO H, CHIMONYO VGP, SIBANDA M, KUNZ R, MASEMOLA CR, MODI AT, MABHAUDHI T 

(2021a) Evaluation of land suitability methods with reference to neglected and underutilised crop 

species: A scoping review. Land 10 (2) 125. 

 

MUGIYO H, CHIMONYO VGP, SIBANDA M, KUNZ R, NHAMO L, MASEMOLA CR, DALIN C, Modi 

AT, Mabhaudhi T (2021b) Multi-criteria suitability analysis for neglected and underutilised crop species 

in South Africa. PloS ONE 16 (1) e0244734. 

 

MUGIYO H, CHIMONYO VGP, KUNZ R, SIBANDA M, HHAMO L, MASEMOLA R, MODI AT, 

MABHAUDHI T (2022) Mapping the spatial distribution of underutilised crop species under climate 

change using the MaxEnt model: A case of KwaZulu-Natal, South Africa. Climate Services 28 100330. 

 

MULOVHEDZI N (2017) Quantifying water use and nutritional water productivity of two sweet potato 

(Ipomoea batatas) cultivars grown in South Africa. MSc dissertation, Plant production and Soil Science, 

School of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa. 

 

MUSOKWA M, MAKHUBEDU T, MCCOSH J, SHEZI Z (2020) Water Use of agroforestry systems for 

food and forage production. WRC Report No. TT 827/20, Water Research Commission, Pretoria, South 

Africa. 

 



Crop and nutritional water productivity of sweet potato and taro 

205 
 

 

NAGLER PL, SCOTT RL, WESTENBURG C, CLEVERLY JR, GLENN EP, HUETE AR (2005) 

Evapotranspiration on western US Rivers estimated using the enhanced vegetation index from MODIS 

and data from eddy covariance and Bowen ration flux towers. Remote Sensing Environment 97 337-

351. 

 

NASH JE, SUTCLIFFE JV (1970) River flow forecasting through conceptual models Part I – A 

discussion of principles. Journal of Hydrology 10 (3) 282-290. 

 

NEDUNCHEZHIYAN M, BYJU G, JATA SK (2012) Sweet Potato Agronomy. In: Nedunchezhiyan M, 

Byju G (Eds) Sweet Potato. Fruit, Vegetable and Cereal Science and Biotechnology 6 (1) 1-10. 

 

NORDBO A, JÄRVI L, VESALA T (2012) Revised eddy covariance flux calculation methodologies – 

effect on urban energy balance. Tellus B: Chemical and Physical Meteorology 64 (1) 18184. 

 

NYATHI MK (2019) Assessment of nutritional water productivity and improvement strategies for 

traditional vegetables in South Africa. PhD thesis, Wageningen School of Social Sciences (WASS), 

Wageningen University, Wageningen, Netherlands. 

 

NYATHI MK, ANNANDALE JG, BELETSE YG, BEUKES DJ, DU PLOOY CP, PRETORIUS B, VAN 

HALSEMA GE (2016) Nutritional water productivity of traditional vegetable crops. WRC Research 

Report No. 2171/1/16, Water Research Commission, Pretoria, South Africa. 

 

NYATHI MK, DU PLOOY CP, VAN HALSEMA GE, STOMPH TJ, ANNANDALE JG, STRUIK PC 

(2019a) The dual-purpose use of orange-fleshed sweet potato (Ipomoea batatas var. Bophelo) for 

improved nutritional food security. Agricultural Water Management 217 23-37. 

 

NYATHI MK, MABHAUDHI T, VAN HALSEMA GE, ANNANDALE JG, STRUIK PC (2019b) 

Benchmarking nutritional water productivity of twenty vegetables – A review. Agricultural Water 

Management 221 248-259. 

 

OLANREWAJU OO, OLUFAYO AA, OGUNTUNDE PG AND ILEMOBADE AA (2009) Water use 

efficiency of Manihot Esculenta Crantz under drip irrigation system in South Western Nigeria European 

Journal of Agriculture 7 (24) 576-587. 

 

OMORUYI F, DILWORTH L, ASEMOTA H (2007) Anti‐nutritional factors, zinc, iron and calcium in some 

Caribbean tuber crops and the effect of boiling or roasting. Nutrition and Food Science 37 (1) 8-15. 

 

ÖNDER D, ÖNDER S, ÇALIŞKAN ME, ÇALIŞKAN S (2015) Influence of different irrigation methods 

and irrigation levels on water use efficiency, yield, and yield attributes of sweet potatoes. Fresenius 

Environmental Bulletin 24 (10a) 3398-3403. 

 

ORKWOR GC, ASIEDU R EKANAYAKE IJ (1998) Food yams: Advances in research. IITA and NRCRI, 

Nigeria. 249 pp. 

 

OTIENO D, KREYLING J, PURCELL A, HEROLD N, GRANT K, TENHUNEN J, BEIERKUHNLEIN C, 

JENTSCH A (2012) Drought responses of Arrhenatherum elatius grown in plant assemblages of varying 

species richness. Acta Oecologica 39 11-17. 

 

PADULOSI S, THOMPSON J, RUDEBJER P (2013) Fighting poverty, hunger and malnutrition with 

neglected and underutilized species: needs, challenges and the way forward: Neglected and 

Underutilized Species, BioDIversity International, Rome, Italy. 



Crop and nutritional water productivity of sweet potato and taro 

206 
 

 

https://cgspace.cgiar.org/bitstream/handle/10568/68927/Fighting%20poverty,%20hunger%20and%20

malnutrition%20with%20neglected%20and%20underutilized%20species%20(NUS)_1671.pdf 

 

PALAO LK, NAZIRI D, BALANZA JG, CAMPILAN DM (2019) Transformational adaptation of key root 

and tuber crops in Asia: Species distribution modelling for assessing crop suitability in response to 

climate change. Final report, FOODSTART+ project, Lima, Peru. International Potato Center. 34 pp. 

 

PANDEY R, MARANVILLE J, CHETIMA M (2000) Deficit irrigation and nitrogen effects on maize in a 

Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction. Agricultural Water 

Management 46 (1) 15-27. 

 

PATEL N, KUMAR P, SINGH N (2011) Performance evaluation of AquaCrop in simulating potato yield 

under varying water availability conditions. Indian Agricultural Research Institute, New Delhi, India. 

 

PEREIRA LS, ALLEN RG, SMITH M, RAES D (2015) Crop evapotranspiration estimation with FAO56: 

Past and future. Agricultural Water Management 147 4-20. 

 

PEREIRA LS, PAREDES P, HUNSAKER DJ, LÓPEZ-URREA R, MOHAMMADI SHAD Z (2021a) 

Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop 

water requirements method. Agricultural Water Management 243 106466. 

 

PEREIRA LS, PAREDES P, LÓPEZ-URREA R, HUNSAKER DJ, MOTA M, MOHAMMADI SHAD Z 

(2021b) Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water 

requirements approach. Agricultural Water Management 243 106196. 

 

PHILLIPS SJ, DUDIK M (2008) Modeling of species distributions with Maxent: new extensions and a 

comprehensive evaluation. Ecography 31 161-175.  

 

PHILLIPS SJ, ANDERSON RP, SCHAPIRE RE (2006) Maximum entropy 206grohydro of species 

geographic distributions. Ecological Modelling 190 (3-4) 231-259. 

 

PUSHPALATHA R, SUNITHA S, SANTHOSH MITHRA VS, GANGADHARAN B (2021) Modelling the 

yield, water requirement, and water productivity of major tropical tuber crops using FAO-AquaCrop – A 

study over the main growing areas of India. Journal of Tropical Agriculture 59 (2) 155-161. 

 

PIKE A, SCHULZE RE (1995) AUTOSOIL Version 3: A soils decision support system for South African 

soils. Department of Agricultural Engineering, University of Natal, Pietermaritzburg, South Africa. 

 

RAES D (2016a) Book I: Understanding AquaCrop. FAO, Rome, Italy. Updated in August 2023. 

https://www.fao.org/3/cc2380en/cc2380en.pdf 

  

RAES D (2016b) Book II: Running AquaCrop. FAO, Rome, Italy. Updated in August 2023. 

https://www.fao.org/3/i6052en/i6052en.pdf 

 

RAES D, STEDUTO P, HSIAO TC, FERERES E (2009) AquaCrop – the FAO crop model to simulate 

yield response to water: II. Main algorithms and software description. Agronomy Journal 101 (3) 438-

447. 

 

RAES D, STEDUTO P, HSIAO TC, FERERES E (2012) AquaCrop Version 4.0 reference manual. Food 

and Agricultural Organisation, Rome, Italy. 

https://www.fao.org/fileadmin/user_upload/faowater/docs/AquaCropV40OutlineAndSymbols.pdf 

 

https://cgspace.cgiar.org/bitstream/handle/10568/68927/Fighting%20poverty,%20hunger%20and%20malnutrition%20with%20neglected%20and%20underutilized%20species%20(NUS)_1671.pdf
https://cgspace.cgiar.org/bitstream/handle/10568/68927/Fighting%20poverty,%20hunger%20and%20malnutrition%20with%20neglected%20and%20underutilized%20species%20(NUS)_1671.pdf
https://www.fao.org/3/cc2380en/cc2380en.pdf
https://www.fao.org/3/i6052en/i6052en.pdf
https://www.fao.org/fileadmin/user_upload/faowater/docs/AquaCropV40OutlineAndSymbols.pdf


Crop and nutritional water productivity of sweet potato and taro 

207 
 

 

RAES D, STEDUTO P, HSIAO TC and FERERES E (2018) Reference manual AquaCrop (Version 6.0-

6.1). Food and Agriculture Organisation, Rome, Italy.  

http://www.fao.org/3/BR248E/br248e.pdf 

 

RANKINE DR, COHEN JE, TAYLOR MA, COY AD, SIMPSON LA, STEPHENSON T, LAWRENCE JL 

(2015) Parameterizing the FAO AquaCrop model for rainfed and irrigated field-grown sweet potato. 

Agronomy Journal 107 (1) 375-387. 

 

RAVI V, CHAKRABARTI SK, MAKESHKUMAR T, SARAVANAN R (2014) Molecular regulation of 

storage root formation and development in sweet potato. In: Horticultural Reviews, WARRINGTON IJ, 

157-207. John Wiley & Sons, Hoboken, New Jersey. 

 

RAY RC (2015) Post harvest handling, processing and value addition of elephant foot yam – An 

overview. International Journal of Innovative Horticulture 4 (1) 1-10. 

 

RAY RC, SIVAKUMAR PS (2009) Traditional and novel fermented foods and beverages from tropical 

root and tuber crops: review. International Journal Food Science and Technology 44 (6) 1073-1087. 

 

RAYMUNDO R, ASSENG S, CAMMARANO D, QUIROZ R (2014) Potato, sweet potato, and yam 

models for climate change: A review. Field Crops Research 166 173-185. 

 

REDDY KCT (2024) Evapotranspiration of rainfed taro and sweet potato in KwaZulu-Natal. Unpublished 

PhD thesis. Centre for Water Resources Research, School of Agricultural, Earth and Environmental 

Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa. 

In preparation. 

 

RENAULT D, WALLENDER WW (2000) Nutritional water productivity and diets. Agricultural Water 

Management 45 (3) 275-296. 

 

SAATY TL (2008) Decision making with the analytic hierarchy process. International Journal of Services 

Sciences 1 (1) 83-98. 

 

SADRAS VO, GRASSINI P, STEDUTO P (2012) Status of water use efficiency of main crops. SOLAW 

Background Thematic Report – TR07, FAO, Rome, Italy. 41 pp. 

http://www.fao.org/fileadmin/templates/solaw/files/thematic_reports/TR_07_web.pdf 

 

SANGINGA N, MBABU A (2015) Root and tuber crops (cassava, yam, potato and sweet potato). In: 

Feeding Africa, 21-23 October 2015, Dakar, Senegal. 29 pp. 

https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/DakAgri2015/Root_and_Tuber_Crop

s__Cassava__Yam__Potato_and_Sweet_Potato_.pdf 

 

SARAVANAN R, RAVI V (2012) Fruit, vegetable and cereal science and biotechnology crop physiology 

of sweet potato. Fruit, Vegetable and Cereal Science and Biotechnology 6 (1) 17-29. 

 

SAXTON KE, RAWLS WJ (2006) Soil water characteristic estimates by texture and organic matter for 

hydrologic solutions. Soil Science Society of America Journal 70 (5) 1569-1578. 

 

SAXTON KE, RAWLS WJ, ROMBERGER JS, PAPENDICK RI (1986) Estimating generalized soil-water 

characteristics from texture. Soil Science Society American Journal 50 1031-1036. 

 

SAXTON KE, WILLEY PH (2009) The SPAW model for agricultural field and pond hydrologic simulation. 

United Stated Department of Agriculture, Pullman, USA. 

http://www.fao.org/3/BR248E/br248e.pdf
http://www.fao.org/fileadmin/templates/solaw/files/thematic_reports/TR_07_web.pdf
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/DakAgri2015/Root_and_Tuber_Crops__Cassava__Yam__Potato_and_Sweet_Potato_.pdf
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/DakAgri2015/Root_and_Tuber_Crops__Cassava__Yam__Potato_and_Sweet_Potato_.pdf


Crop and nutritional water productivity of sweet potato and taro 

208 
 

 

https://irrigationtoolbox.com/NEH/UserGuides/SPAW%20User%20Guide.pdf 

 

SCHULZE RE (1995) Hydrology and 208grohydrology: A text to accompany the ACRU 3.00 

agrohydrological modelling system. WRC Report No. TT 69/9/95, Water Research Commission, 

Pretoria, South Africa. 

 

SCHULZE RE (2011) Methods 3: Modelling impacts of climate change on the hydrological system: 

Model requirements, selection of the ACRU model, its attributes and computations of major state 

variables and outputs. In: Methodological approaches to assessing eco-hydrological responses to 

climate change in South Africa, SCHULZE RE, HEWITSON BC, BARICHIEVY KR, TADROSS M,  

KUNZ RP, HORAN MJC and LUMSDEN TG, Chapter 8, 75-88. WRC Report 1562/1/10, Water 

Research Commission, Pretoria, South Africa. 

 

SCHULZE RE (Ed) (2023) A national assessment of potential climate change impacts on the 

hydrological yield of different hydro-climatic zones of South Africa: Report 3 – South African and 

international verification studies of the ACRU daily time-step model across a range of processes, 

applications and spatial scales. WRC Report No. 2833/3/22, Water Research Commission, Pretoria, 

South Africa. 

 

SCHULZE RE, HORAN MJC (2007) Soils: Hydrological attributes. In: South African Atlas of Climatology 

and Agrohydrology, SCHULZE RE, Section 4.2. WRC Report No. 1489/1/06, Water Research 

Commission, Pretoria, South Africa. 

 

SCHULZE R, HORAN M (2011) Methods 1: Delineation of South Africa, Lesotho and Swaziland into 

quinary catchments. In: Methodological approaches to assessing eco-hydrological responses to climate 

change in South Africa, SCHULZE R, HEWITSON B, BARICHIEVY K, TADROSS M, KUNZ R, HORAN 

M, LUMSDEN T. WRC Report No. 1562/1/10, Chapter 6, 55-62, Water Research Commission, Pretoria, 

South Africa. 

 

SCHULZE RE, MAHARAJ M (2004) Development of a database of gridded daily temperatures for 

southern Africa. WRC Report No. 156/2/04, Water Research Commission, Pretoria, South Africa. 

 

SCHULZE RE, HORAN MJC, KUNZ RP, LUMSDEN TG, KNOESEN DM (2011) Methods 2: 

Development of the southern African quinary catchments database. In: Methodological approaches to 

assessing eco-hydrological responses to climate change in South Africa, SCHULZE RE, HEWITSON 

BC, BARICHIEVY KR, TADROSS M, KUNZ RP, HORAN MJC, LUMSDEN TG, Chapter 7, 63-74. WRC 

Report No. 1562/1/10, Water Research Commission, Pretoria, South Africa. 

 

SCHÜTTE S, SCHULZE RE, CLARK DJ (Eds) (2023) A national assessment of potential climate 

change impacts on the hydrological yield of different hydro-climatic zones of South Africa: Report 1 – 

methodology and results. WRC Report No. 2833/1/22, Water Research Commission, Pretoria, South 

Africa. 

 

SCOTT DF, SMITH RE (1997) Preliminary empirical models to predict reductions in annual and low 

flows resulting from afforestation. Water SA 23 (2) 135-140. 

 

SCWG (SOIL CLASSIFICATION WORKING GROUP) (1991) Soil Classification – Taxonomic System 

for South Africa. Soil Classification Working Group. Department of Agricultural Development, Pretoria, 

South Africa. 

 

SHANGE LP (2004) Taro [Colocasia esculenta (L.) Schott] production by small-scale farmers in 

KwaZulu-Natal: farmer practices and performance of propagule types under wetland and dryland 

https://irrigationtoolbox.com/NEH/UserGuides/SPAW%20User%20Guide.pdf


Crop and nutritional water productivity of sweet potato and taro 

209 
 

 

conditions. MSc thesis, Crop Science, School of Agricultural, Earth and Environmental Sciences, 

University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

 

SHELEMBE SC (2020) Water use and nutritional water productivity of taro (Colocasia esculenta 

L.Schott) Landraces. Unpublished MSc dissertation, Crop Science, School of Agricultural, Earth and 

Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa. 

 

SHIH SF, SNYDER GH (1984) Evapotranspiration and water use efficiency of taro. American Society 

of Agricultural Engineers 27 (6) 1745-1748. 

 

SIBIYA SG (2015) Planting density effect on growth and yield of taro (Colocasia esculenta) landraces. 

MSc dissertation, Crop Science, School of Agricultural, Earth and Environmental Sciences, University 

of KwaZulu-Natal, Pietermaritzburg, South Africa. 

 

SINCLAIR TR, SELIGMAN NG (1996) Crop modelling: From infancy to maturity. Agronomy Journal 88 

694-704. 

 

SINGH U, MATTHEWS RB, GRIFFIN TS, RITCHIE JT, HUNT LA, GOENAGA R (1998) Modeling 

growth and development of root and tuber crops. In: Understanding options for agricultural production, 

TSUJI GY, HOOGENBOOM G, THORNTON P, Systems Approaches for Sustainable Agricultural 

Development, Volume 7. Springer, Dordrecht, Netherlands. 

 

Smith B (2006) The farming handbook. University of KwaZulu-Natal Press. Pietermaritzburg, South 

Africa. 

 

SMITHERS JC and SCHULZE RE (1995) ACRU agrohydrological modelling system: User manual 

Version 3.00. WRC Report TT 70/95, Water Research Commission, Pretoria, South Africa.  

 

SIRI (SOIL AND IRRIGATION RESEARCH INSTITUTE) (1987) Land type series. Memoirs on the 

Agricultural Natural Resources of South Africa. Soil and Irrigation Research Institute, Department of 

Agriculture and Water Supply, Pretoria, South Africa.  

 

STEDUTO P, HSIAO TC, RAES D, FERERES E (2009) AquaCrop – the FAO crop model to simulate 

yield response to water: I. Concepts and underlying principles. Agronomy Journal 101 (3) 426-437.  

 

STEDUTO P, HSIAO TC, FERERES E, RAES D (2012) Crop yield response to water. Irrigation and 

Drainage Paper No. 66, Food and Agriculture Organization, Rome, Italy. 

 

STEIN AJ (2010) Global impacts of human mineral malnutrition. Plant and Soil 335 133-154. 

 

SUNITHA S, RAVI V, GEORGE J, SUJA G (2013) Aroids and Water Relations: An Overview. Journal 

of Root Crops 39 (1) 1-10. 

 

TAGHIZADEH-MEHRJARDI R, NABIOLLAHI K, RASOLI L, KERRY R, SCHOLTEN T (2020) Land 

suitability assessment and agricultural production sustainability using machine learning models. 

Agronomy 10 (4) 573-593. 

 

TEGG RS, CORKREY R, HERDINA H, MCKAY AC, DE BOER RF, WIECHEL TJ (2015) Modeling 

pathogen DNA content and visual disease assessment in seed tubers to inform disease in potato 

progeny root, stolon, and tubers. Plant Disease 99 (1) 50-57. 

 



Crop and nutritional water productivity of sweet potato and taro 

210 
 

 

THOMAS-SHARMA S, ABDURAHMAN A, ALI S, ANDRADE-PIEDRA JL, BAO S, CHARKOWSKI AO, 

CROOK D, KADIAN M, KROMANN P, STRUIK PC, TORRANCE L, GARRETT KA, FORBES GA (2016) 

Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in 

developing countries. Plant Pathology 65 (1) 3-16. 

 

TOUCHER ML, RAMJEAWON M, MCNAMARA MA, ROUGET M, BULCOCK H, KUNZ RP, 

MOONSAMY J, MENGISTU M, NAIDOO T, VATHER T (2020) Resetting the baseline land cover 

against which stream flow reduction activities and the hydrological impacts of land use change are 

assessed. Draft report for WRC Project No. K5/2437, Water Research Commission, Pretoria, South 

Africa. 

 

TSEDALU M, TESFAYE B, GOA Y (2014) Effect of type of planting material and population density on 

corm yield and yield components of taro (Colocasia Esculenta L.). Journal of Biology, Agriculture and 

Healthcare 4 (17) 124-138. 

 

USDA (UNITED STATED DEPARTMENT OF AGRICULTURE) (1999) Soil quality test kit guide. USDA 

Soil Quality Institute, Washington, DC, USA. 

 

UUSIKU NP, OELOFSE A, DUODU KG, BESTER MJ, FABER M (2010) Nutritional value of leafy 

vegetables of sub-Saharan Africa and their potential contribution to human health: A review. Journal of 

Food Composition and Analysis 23 499-509. 

 

UYEDA J, RADOVICH T, SUGANO J, FARES A, PAULL R (2011) Effect of irrigation regime on yield 

and quality of three varieties of taro (Colocasia esculenta). Hanai’Ai/The Food Provider 1 (1) 1-8. 

 

VAN AVERBEKE W, KHOSA TB (2007) The contribution of smallholder agriculture to the nutrition of 

rural households in a semi-arid environment in South Africa. Water SA 33 (3) 413-418. 

 

VAN GENUCHTEN MT (1980) A closed‐form equation for predicting the hydraulic conductivity of 

unsaturated soils. Soil Science Society of America Journal 44 892-898. 

 

VAN JAARSVELD P, MARAIS DW, HARMSE E, NESTEL P, RODRIGUEZ-AMAYA D (2006) Retention 

of β-carotene in boiled, mashed orange-fleshed sweet potato. Journal of Food Composition and 

Analysis 19 321-329. 

 

VIDIGAL SM, DE CARVALHO LOPES IP, PUIATTI M, SEDIYAMA MAN, DE FREITAS RIBEIRO MR 

(2016) Yield performance of taro (Colocasia esculenta L.) cultivated with topdressing nitrogen rates at 

the Zona da Mata region of Minas Gerais. Soil Science and Plant Production 63 (6) 887-892. 

 

VON HOYNINGEN-HUENE J (1983) Die Interzeption des Niederschlages in landwirtschaftlichen 

Pflanzenbeständen. Deutscher Verband für Wasserwirtschaft und Kulturbau. Schriften 57 1-66. Verlag 

Paul Parey, Hamburg Germany. 

 

WAONGO M, LAUX P, KUNSTMANN H (2015) Adaptation to climate change: The impacts of optimized 

planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agricultural and 

Forest Meteorology 205 23-29.  

 

WARBURTON ML, SCHULZE RE and JEWITT GPW (2010) Confirmation of ACRU model results for 

applications in land use and climate change studies. Hydrology and Earth System Sciences 14 2399-

2414. 

 



Crop and nutritional water productivity of sweet potato and taro 

211 
 

 

WEERARATHNE LVY, MARAMBE B, CHAUHAN BS (2017) Intercropping as an effective component 

of integrated weed management in tropical root and tuber crops: A review. Crop Protection 95 89-100. 

 

WENHOLD FAM, FABER M, VAN AVERBEKE W, OELOFSE A, VAN JAARSVELD P, VAN 

RENSBURG WS, VAN HEERDEN I, SLABBERT R (2007) Linking smallholder agriculture and water to 

household food security and nutrition. Water SA 33 (3) 327-336. 

 

WEZEL A, SOBOKSA G, MCCLELLAND S, DELESPESSE F, BOISSAU A (2015) The blurred 

boundaries of ecological, sustainable, and agroecological intensification: a review. Agronomy for 

Sustainable Development 35 1283-1295. 

 

WILLMOTT CJ (1981) On the validation of models. Physical Geography 2 (2) 184-194. 

 

WILLMOTT CJ (1982) Some comments on the evaluation of model performance. Bulletin American 

Meteorological Society 63 1309-1313.  

 

WILLMOTT CJ (1984) On the evaluation of model performance in physical geography. In: Gaile GL, 

Willmott CJ, Reidel D (Eds), Spatial Statistics and Models, Boston, US. 443-460. 

 

WIMALASIRI EM, JAHANSHIRI E, PEREGO A, AZAM-ALI SN (2022) A novel crop shortlisting method 

for sustainable agricultural diversification across Italy. Agronomy 12 (7). 

 

WOODWARD D, HAWKINS R, JIANG R, HJELMFELT A, MULLEM J, QUAN Q (2003) Runoff curve 

number method: examination of the initial abstraction ratio. World Water and Environmental Resources 

Congress, 1-10. 

 

YENG S, AGYARKO K, DAPAAH H, ADOMAKO W, ASARE E (2012) Growth and yield of sweet potato 

(Ipomoea batatas L.) as influenced by integrated application of chicken manure and inorganic fertilizer. 

African Journal of Agricultural Research 7 5387-5395. 

 

ZHONG X, DUTTA U (2015) Engaging Nash-Sutcliffe efficiency and model efficiency factor indicators 

in selecting and validating effective light rail system operation and maintenance cost models. Journal 

of Traffic and Transportation Engineering 3 255-265. 

 

ZHOU Y, LAMBRIDES CJ, KEARNS R, YE C, FUKAI S (2012) Water use, water use efficiency and 

drought resistance among warm-season turfgrasses in shallow soil profiles. Functional Plant Biology 

39 (2) 116-125. 

 

  



Crop and nutritional water productivity of sweet potato and taro 

212 
 

 

10 APPENDIX_A 

10.1 DATA STORAGE 

The project has generated high-frequency temperature and wind speed data collected at Fountainhill 

Eco-estate over the period from August 2021 to August 2022. The data was analysed to estimate the 

evapotranspiration from a (i) 0.56 ha plot of taro, as well as fallow conditions (before and after 

harvesting), and (ii) 0.25 ha field of OFSP. In addition, the project generated ~2GB and ~80 GB of 

compressed model output pertaining to the AquaCrop and ACRU simulations, respectively. Data exists 

for eight national runs performed using AquaCrop and ACRU, i.e. two crops x two planting dates x two 

plant densities x two water treatments (rainfed & irrigated). The automation of the national model runs 

required the development of ~8,600 and ~10,000 lines of code (written in UNIX and Fortran) for 

AquaCrop and ACRU, respectively. In addition, ~1,400 lines of code were written to convert the climate 

input files from ACRU format to that required by AquaCrop. All raw, processed and modelled data is 

stored and archived on a fileserver located in the ICS Server Room on the University of KwaZulu-Natal’s 

main campus in Pietermaritzburg. 

Contact person: Richard Kunz (kunzr@ukzn.ac.za). 
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11 APPENDIX_B 

11.1 CAPACITY BUILDING 

Three levels of capacity building are important to the WRC, namely postgraduate, institutional and 

community-based capacity building. Thus, each level is discussed separately in this section.  

 

11.1.1 Postgraduate capacity building 

Budget was allocated to support two full-time students (one MSc and one PhD) and a part-time post-

doctorate student. In addition, Hydrology Honours students also contributed to the project on an annual 

basis. Details regarding the postgraduate students who benefitted from and contributed to this project 

are given in Table 11-1. As of December 2023, two Honours students and one MSc student have 

graduated. The part-time PhD student, who is currently in his 5th year, will strive to complete his degree 

in 2024 (expected graduation in April 2025). 

 

Table 11-1 Individual capacity building: Postgraduate students 

Name Gender Race Degree Discipline Notes 

Dr Vimbayi Chimonyo Female Black Post-doc Crop Science Registered in 2018 

Mr Thando Mthembu Male Black BSc (Hons) Hydrology 
Registered in 2020 

Degree awarded in 2021 

Mr Kyle Reddy Male Indian PhD Hydrology Registered in 2020 

Mr Thando Mthembu Male Black MSc Hydrology 
Registered in 2021 

Degree awarded in 2023 

Mr Simon Lake Male White BSc (Hons) Hydrology 
Registered in 2022 

Degree awarded in 2023 

 

11.1.1.1 Honours degree candidates 

Mr Mthembu: This student was responsible for developing an irrigation file in AquaCrop to alleviate crop 

water stress. He conducted simulations of water use and yield of taro under rainfed and irrigated 

conditions at Ukulinga (UKZN’s research farm) across 49 consecutive seasons. Results showed that 

Ukulinga is not ideally suited to rainfed taro production, considering the large difference in yield obtained 

under rainfed and irrigated conditions. 

Title: Assessing the water use and yield of taro and sweet potato 

Abstract: With the impacts of climate change and increased climate variability on agricultural 

productivity becoming more certain, the ability to produce sufficient crop yields whilst simultaneously 

conserving as much water resources as possible is thus, imperative. In water-stressed countries like 

South Africa, the reliable quantification of crop evapotranspiration and yield is important for improved 

water resources management across a wide range of farming environments. As a result, hydrology and 

crop science researchers are shifting their primary focus from well-studied legume and grain crops to 

neglected and underutilised crops, including root and tuber crops (RTCs). 

Taro (Colocasia esculenta L. Schott) and sweet potato (Ipomoea batatas L.) still remain underutilised 

RTCs in South Africa, despite their potential as being nutrient-dense, high yielding and water use 

efficient crops, as reported in local literature. It is therefore important to further investigate whether the 

water use of these two RTCs will hinder their production at the commercial scale. This study attempted 

to contribute towards the limited research pertaining to the water use and yield of taro and sweet potato. 

This desktop study used FAO’s AquaCrop model to simulate the water use and yield of taro under 
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rainfed and irrigated conditions at Ukulinga across 49 seasons. Crop parameters were only available 

for taro at the time of this study and hence, sweet potato was not modelled as was initially planned. 

 

There is a direct relationship between crop evapotranspiration rate (ET) and yield. Under dryland 

conditions, taro consumed on average 500 mm of water, which negatively impacted the average yield 

of 1.15 t ha-1. This highlighted the importance of determining the crop’s net supplemental irrigation 

requirement of 671 mm, which resulted in twice as much water being consumed, but a substantial 

increase in yield (23.78 t ha-1). Crop water productivity (CWP) improves by increasing yield and/or 

decreasing water use. From water stressed to irrigated conditions, taro’s CWP increased by 852% from 

0.23 to 2.19 kg m-3. The nutritional water productivity (NWP) was higher for all nutrients (Al, B, Cu, Mn, 

Na and Zn) assessed in this study under irrigated conditions, relative to rainfed agriculture. This study 

showed that without supplemental irrigation, Ukulinga and other similar agro-ecologies are not 

considered suitable for production of taro. Future research should aim at assessing the impact of 

planting date on the yield, ET, CWP and NWP of RTCs, in order further enhance the limited knowledge 

on underutilised RTCs in South Africa. 

 

Mr Lake: This student was responsible for developing a methodology that uses selected output from 

the AquaCrop model to identify areas deemed suitable for the rainfed production of taro. The work was 

then extended to include sweet potato and is presented in Chapter 7 of this report. 

Title: A novel approach for mapping areas suitable for rainfed production of taro 

Abstract: South Africa is a water scarce region, and thus there is a growing need to cultivate more water 

use efficient crops under rainfed conditions. Taro is a neglected and underutilised Crop (NUC) that is 

considered more drought resistant and water use efficient than conventional crops. This nutrient-dense 

NUC also has the potential to improve food security and alleviate poverty, particularly at the smallholder 

farming scale. This study aimed to develop a land suitability map for taro cultivation under rainfed 

conditions in South Africa and eSwatini (southern Africa). The map was developed using simulated 

output data from a crop yield model (AquaCrop) and is considered a novel approach. Taro was selected 

so that the land suitability map could be compared to other maps recently developed for this NUC. 

Using a geographic information system, certain output variables from AquaCrop (e.g. crop water 

productivity, crop cycle and inter-seasonal variability of yield) were analysed, as well as planting date, 

risk of crop failure and national land cover data, to develop the land suitability map. The results indicated 

that of southern Africa’s total land area, only 0.66% is highly suited to taro cultivation, compared to 

1.75% and 1.63% that is considered moderately and marginally suitable, respectively. In addition, 

1.66% of potentially suitable areas in South Africa cannot be used for taro production based on existing 

land cover and land use. Risk of crop failure had the greatest impact on land suitability. However, the 

selection of criteria thresholds used to eliminate unsuitable taro production areas was made difficult by 

the lack of research focus on NUCs. The land suitability can help guide policy makers to target specific 

regions in South Africa for promoting increased production of taro under rainfed conditions. 

 

11.1.1.2 Master’s degree candidates 

Mr Mthembu: This student was responsible for establishing and monitoring of the sweet potato trial at 

Fountainhill Eco-estate during the second season (2021/22). The results from his MSc dissertation are 

presented in Chapter 4 of this report. 

Title: Assessing the water productivity of sweet potato (Ipomoea batatas (L.) Lam.) 

Abstract: In water-stressed countries like South Africa, the reliable quantification of actual crop 

evapotranspiration (ETA) and yield across a wide range of environments is important for improved 

agricultural water management. In addition, researchers are shifting their primary focus from well-

studied major crops to neglected and underutilised crops. Orange flesh sweet potato (Ipomoea batatas 
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(L). Lam.) remains an underutilised root and tuber crop (RTC) in South Africa, despite its potential as 

being nutrient-dense, high yielding and water use efficient, as reported in local literature. When 

compared to conventional crops, knowledge is limited on the water use and yield of RTCs under rainfed 

and precision agricultural production in South Africa. It is therefore important to further investigate 

whether the water use of orange flesh sweet potato (OFSP) will hinder its production at the commercial 

scale. This study attempted to contribute towards the limited research on the crop water productivity 

(CWP) of OFSP. A rainfed field trial with optimum fertilisation was conducted at Fountainhill Eco-estate 

(KwaZulu-Natal, South Africa) to estimate seasonal ET, yield and CWP. The soil water balance method 

was used to determine ET accumulated over the growing season from 14 December 2021 to 11 April 

2022. Total ET for OFSP was estimated at 468.13 mm, which was used to calculate fresh and dry CWP 

values of 7.45 and 2.59 kg m-3, based on final fresh and dry tuber yields of 34.89 and 12.12 t ha-1, 

respectively. Harvested tuber and above-ground biomass samples were sent to a laboratory to analyse 

nutrient content (NC). The nutritional water productivity (NWP) was determined as the product of CWP 

and NC, highlighting the potential of OFSP to alleviate malnutrition, especially if grown in rural 

communities. Field observations were used to partially calibrate the Soil Water Balance (SWB) and 

AquaCrop models. These models were used to simulate ET, yield and biomass accumulation, from 

which CWP and NWP were calculated. Compared to observations, AquaCrop provided a better 

estimate of CWP (2.55 kg m-3) relative to the SWB model (1.16 kg m-3). However, AquaCrop simulated 

higher soil water content relative to measurements from volumetric soil water content sensors. This 

study showed that under suitable management practices, OFSP has the potential to be grown 

commercially, since the crop can produce high yields and nutrient contents under rainfed agricultural 

production. However, to improve production, future studies need to conduct research to improve tuber 

yield and biomass accumulation. Furthermore, the AquaCrop and SWB models should be calibrated 

and validated across different agro-ecological zones in South Africa. 

 

11.1.1.3 Doctoral candidate 

Mr Reddy: This student was responsible for establishing and monitoring of the taro trial at Fountainhill 

Eco-estate during the first (2020/21) and second (2021/22) seasons. The results from his PhD 

dissertation are presented in Chapter 4 of this report. In the third season (2022/23), the student 

established and monitored an experiment conducted in raised greenhouse beds at UKZN. Both sweet 

potato and taro were grown under two water treatments, namely water stressed and unstressed 

conditions. Results of this experiment are reported in Chapter 5. The student also developed improved 

crop parameter values for both crops, which were then used to simulate water use and yield across the 

country (cf. Chapter 6). 

Title: Quantifying water use and nutritional water productivity of taro and sweet potato 

Abstract: Root and tuber crops (RTCs) such as cassava, sweet potato, taro and yams are important 

food crops for direct human consumption in Africa. RTCs play an important role in world food security 

due to their high nutritional value when compared to other crops. However, with global freshwater 

resources declining, there is increased pressure on agriculture to produce more food using less water. 

Despite emerging interest in RTCs due to their high nutritional value and their resilience to climate 

extremes, a paucity of information describing their agronomic requirements, production guidelines, 

water use and yield has hindered their widespread adoption by farmers in South Africa. The aim of this 

study was to quantify the water use, yield and nutrient content of sweet potato and taro. From the 

results, crop and nutritional water productivity were estimated. Research trials were conducted at 

Fountainhill Estate (KwaZulu-Natal, South Africa), where two micrometeorological techniques (eddy 

covariance and surface renewal) were setup to measure crop water use. From measurements of crop 

development over the growing season, certain crop parameters were calibrated for use in FAO’s 

AquaCrop model. The model can be run for up to 5,838 homogeneous response zones in the country, 
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each driven with 50 years of daily climate data, to produce national-scale maps of crop yield, including 

crop and nutritional water productivity. The crop model can also be used to derive crop coefficients, 

which are required as input into the ACRU hydrological model to estimate the impact of RTC production 

on downstream water availability. Overall, reliable research focusing on the agronomy, water 

productivity and nutritional value of different RTCs will help to successfully promote their production by 

both emerging and commercial farmers, which would help particularly in rural areas in addressing food 

security, unemployment and inequality. 

 

11.1.1.4 Post-doctorate candidate 

Dr Chimonyo: This student was largely responsible for completing the first Deliverable report on 30th 

September 2020. The literature review was used to identify existing knowledge gaps, which guided the 

field-based research that focused on sweet potato and taro. 

Title: Deliverable 01: State of the art literature review on root and tuber crops 

Abstract: The project’s first aim was to review production systems, water use, yield, nutritional and 

health benefits of indigenous root and tuber crops currently in production. From April to September 

2020, a comprehensive literature review was conducted to meet this objective. The review cited over 

180 references and was completed on 30 September 2020. It explored the current status of root and 

tuber crops (RTCs) in sub-Saharan Africa (SSA) and South Africa (SA) by focusing on their value chain 

(i.e. from production to consumption). It also provided an overview of production, post-harvest handling 

and processing, and marketing of RTCs in South Africa. The concepts of biotechnology, crop genetics 

and breeding, agronomy and agro-processing were deliberated as drivers to promote sustainable value 

chains for RTCs. Challenges and opportunities for mainstreaming RTCs into existing cropping systems 

within SA were also discussed. Since RTCs are promoted as alternative crop choices for risk mitigation 

against drought, information on water use, water productivity and drought tolerance was gleaned from 

the available literature. The review also considered aspects of health, nutritional benefits, nutritional 

content and nutritional water productivity of these crops. The role of crop simulation modelling was 

evaluated as a potential tool for providing additional information for RTCs. Of the five underutilised 

RTCs considered in the review, two (sweet potato and taro) have been identified as priority crops in 

terms of their existing potential and body of knowledge, as well as the availability of crop parameters to 

facilitate crop modelling. 

 

11.1.2 Institutional capacity building 

Postgraduate students benefit from various courses offered by the University of KwaZulu-Natal, which 

are designed to help them complete their degrees. Training is provided free of charge on using the 

Microsoft Office (MS) suite of products (MS Word, MS Excel, MS PowerPoint, etc.), as well as 

bibliographic managers (e.g. Endnote, RefWorks). Training on how to efficiently utilise the library is also 

provided. All postgraduate students working on this project were encouraged to attend the training 

sessions. In addition, the following more specialised courses were attended by researchers and 

students working on this project. 

 

2020: In September 2020, Mr Reddy was selected to participate in the PhD Teacher Training 

Programme, which formed part of the UCDP PhD Capacity and Talent Development Project. The 

programme was designed to develop and capacitate individuals to enter academic careers. Mr Reddy 

participated in various online workshops to acquire teaching and learning skills, e.g. lecture delivery, 

classroom management and assessment. 

 

2021: As part of the PhD Teacher Training Programme, Mr Reddy attended additional online workshops 

to (i) learn how to critically assess course modules, and (ii) how to recommend changes to the hydrology 
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curriculum. Mr Reddy also attended a two-hour SPSS workshop on basic statistical procedures, which 

was organised by the CAES Teaching and Learning Office. 

 

2022: As part of the PhD Teacher Training Programme, Mr Reddy had to complete 100 hours of 

teaching before the end of his PhD. Mr Reddy has been exposed to the online teaching platform used 

by UKZN (i.e. Moodle). He has used Moodle to send three evaporation practicals, which he setup, to 

2nd Hydrology and 3rd year Agricultural Engineering students. The students upload their completed 

practical assignments to Moodle, thus allowing Mr Reddy to download and mark them. Mr Reddy also 

helped to setup and mark the practical exam. Mr Mthembu also assisted with the evaporation practicals, 

as well as other practicals involving 3rd year undergraduate students. 

 

Mr Kunz attended a workshop held on 23 September titled “Potential of African indigenous crops as 

future crops to combat climate change – celebrating African heritage”. The aim of the workshop was to 

promote sustainable production practices of indigenous crops and identify opportunities along the value 

chain for different role players, in order to create market demand. Various opportunities and challenges 

related to promoting the production of indigenous crops were highlighted. For example, seed availability 

and supply, market access (and penetration) and the need for production guidelines to be translated 

into African languages were some of identified barriers. Smallholder farmers will need to make use of 

herbicides and simple farm implements to reduce labour costs and improve profitability. “Bakkie” trading 

should be encouraged to target informal markets, as well as finding simple solutions to store and 

transport fresh produce (e.g. under refrigeration). 

 

2023: Both Mr Reddy and Mr Mthembu again assisted with the evaporation practicals for 2nd year 

hydrology and 3rd agricultural engineering students, as well as other practicals involving 3rd year 

undergraduate students. Both students also assisted with invigilation of 2nd and 3rd year hydrology tests 

and exams. 

 

11.1.3 Community-based capacity building 

The project wanted the nearby Swayimane community (near Wartburg, KwaZulu-Natal) to participate 

in the research trials conducted at Fountainhill from planting through to harvesting. In this way, they 

were exposed to best management practices for underutilised crops production through action research 

and learning. The youths would then be allowed to harvest and market the produce after the research 

data has been collected. Taro corms were purchased from smallholder farmers in Swayimane for both 

seasons (2020/21 & 2021/22). Trial establishment in 2020/21 and 2021/22 involved 10 and 20 

individuals from Swayimane, respectively. Community members were compensated for assisting with 

regular manual weeding of the trial sites.  

 

At harvest, once leaf and tuber samples were obtained for research purposes (yield and nutrient content 

determination), the intention was to donate the roots and tubers to the Swayimane community and 

Ukulinga staff who worked on the trials. This was meant to demonstrate and strengthen community 

beneficiation from participatory action research. However, roots and tubers at both sites (in particular 

site 2) was completely destroyed by animals within a two-week period post-harvest. 
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12 APPENDIX_C 

12.1 TECHNOLOGY TRANSFER 

Disseminating results from this project and engaging with stakeholders at conferences and workshops 

is important to increase awareness of this research project. Presentations that were made are listed 

below in chronological order. 

 

12.1.1 Presentations 

2021 

Kunz R (2021) Water use of indigenous root and tuber crops. WRC Dialogue on “A Decade of Research 

on Water Use of Underutilized Indigenous and Traditional Crops”, 10:30-1045, 24 February, online via 

Zoom. 

 

Kunz R (2021) Water use of indigenous root and tuber crops. World Food Day dialogue on “Our actions 

are our future – Better production, better nutrition, a better environment and a better life”, 12:00-12:30, 

15 October, online via Zoom.  

 

Reddy K (2021) Quantifying water use and nutritional water productivity of taro (Colocasia esculenta) 

and sweet potato (Ipomoea batatas). 5th Fountainhill Estate Research Symposium, 11:25-11:45, 21 

October, Fountainhill Estate, KwaZulu-Natal. 

 

2022 

Mthembu T (2022) Assessing the water productivity of sweet potato. South African Hydrological Society 

(SAHS) Symposium, 11:00-11:15, 11 October, 26° South Hotel, Muldersdrift, Gauteng. 

 

Reddy K (2022) Quantifying the water use and nutritional water productivity of sweet potato. South 

African Hydrological Society (SAHS) Symposium, 11:15-11:30, 11 October, 26° South Hotel, 

Muldersdrift, Gauteng. 

 

Mthembu T (2022) Assessing the water productivity of sweet potato. Postgraduate Research and 

Innovation Symposium (PRIS, UKZN), 11:40-12:00, 08 December, online via Zoom. Awarded a cash 

prize for the 2nd best oral presentation within the SAEES. 

 

Reddy K (2022) Quantifying the water use and nutritional water productivity of sweet potato. 

Postgraduate Research and Innovation Symposium (PRIS, UKZN), 14:00-14:20, 08 December, online 

via Zoom. Awarded a cash prize for the 3rd best oral presentation within the SAEES. 

 

2023 

Mthembu T (2022) Assessing the water productivity of orange-fleshed sweet potato to optimise water 

resources management. 7th Fountainhill Estate Research Symposium, 11:20-11:40, 19 October, 

Fountainhill Estate, KwaZulu-Natal. 

 

2024 

Kunz  R ( 2024) Developing a national database for underutilised crops. Crop modelling workshop titled 

“Using crop models in research and assessing climate change impacts at various scales” held in Ghana 

from 19-23 February, 11:30-12:30, 21 February, online lecture via MS Teams. 
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12.1.2 Popular articles 

The following published articles mentioned this project: 

 

Kunz R (2021) Water use of indigenous root and tuber crops. Annual Report to the CWRR Board 2020-

2021, Section 8.5, 43-44. Centre for Water Resources Research (CWRR), UKZN. 

 

Kunz R (2022) New CWRR Project: Water use of indigenous root and tuber crops. Centre for Water 

Resources Research (CWRR), Online Newsletter Issue 2, 31 July 2020. Available online. 

 

Cuénod C (2023) Passion for Research Stirred in Master’s Graduate. UKZNDabaOnline, Online 

Newsletter Volume 11 Issue 14, 04 May 2023. Available online. 

 

Cuénod C (2023) Summa Cum Laude Graduate Finds Forte in Hydrology Research. UKZNDabaOnline, 

Online Newsletter Volume 11 Issue 14, 04 May 2023. Available online. 

 

12.1.3 Papers 

The following papers are currently being prepared for publication: 

 

Reddy K, Clulow A, Kunz R, Mabhaudhi T (2024) The potential of surface renewal for determining 

sensible heat flux of taro and sweet potato. 

 

Reddy K, Clulow A, Kunz R, Mabhaudhi T (2024) Estimation of taro and sweet potato 

evapotranspiration using the surface renewal and eddy covariance. 

 

Reddy K, Kunz R, Mabhaudhi T (2025) Calibration and evaluation of AquaCrop for sweet potato and 

taro under water deficit conditions. 

 

  

https://cwrr.ukzn.ac.za/wp-content/uploads/2020/10/CWRR-Newsletter-Issue-2-2020.pdf
https://ndabaonline.ukzn.ac.za/UkzndabaStory/Vol11-Issue14-caes-grad/Passion%20for%20Research%20Stirred%20in%20Masters%20Graduate
https://ndabaonline.ukzn.ac.za/UkzndabaStory/Vol11-Issue14-caes-grad/Summa%20Cum%20Laude%20Graduate%20Finds%20Forte%20in%20Hydrology%20Research
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13 APPENDIX_D 

13.1  SUMMARY OF LITERATURE REVIEW FINDINGS 

Table 13-1 Growth criteria, expected yields, crop water requirements and crop water productivity of selected root and tuber crops 

Description 
Sweet 

potato 
Cassava Taro Tannia Yam 

Growing period (days) 90-150 300-600 180-240 180-240 180-240 

Photoperiod Day-neutral     

Temperature range 

(optimal temperature) 
15-35 (24) 25-29 21-27 23-29 25-30 

Relative drought tolerance Very high Moderate Low Very low High 

Frost tolerance Very low Very low Low Low Low 

Stage most susceptible 

to water stress 

Vegetative 

root formation 

Vegetative 

root formation 
Tuber bulking 

Vegetative 

tuber formation 

Vegetative 

tuber formation 

Water logging tolerance Low Low High Low Medium 

Expected yields (t ha-1) 4-10 11-21 4-24 30  

Crop water requirements (mm) 700-1,500 700-1,500 1,750-2,500 1,400-2,000 1,000-1,500 

KC (Ini; Dev; Mid; Late) 0.5; - ;1.15; 0.65 
0.3; 0.8-1.10; 

0.3-0.5; 1.0-1.5 
 1.05; - ; 1.15; 1.1  

Water productivity (kg m-3)  1.00 0.12-0.44  1.00 

Water use efficiency (kg mm-1) 65-95 19.2-23.6 0.53-0.71  23-55 

Sources: Bradshaw (2010); Kennedy et al. (2019); Lebot (2019); Pereira et al., (2015); Mabhaudhi et al. (2014b); Lemoalle, 2008; Shih and Snyder (1984) 
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Table 13-2 Proximate composition of five root and tuber crops 

Proximate 

analysis 

Sweet 

potato 
Cassava Taro Tannia Yam 

Moisture (%) 62.20-69.42 66.96 6.54-68.10  6.79-92.01 

Dry matter 

(% fresh weight) 
20-35 30-40 15-25 28.8-30 20-40 

Starch (g) 18-28 27-37 15-25 15-25 20-25 

Energy (kcal) 86 -170 130-160 276-352 270-373 118-358 

Total sugars 

 (% fresh weight) 
1.5-5.0 0.5-5.5   0.5-2.0 

Protein (%) 1.6-4.8 0.5-2.0 0.3-7.8 2.4-6.2 1.0-13.4 

Crude fibre (%) 3.00-3.68 1.11-1.80 0.60-3.01 1.48-5.74 2.31-7.48 

Crude fat (%) 0.10-0.42 0.30 0.11-0.77 0.47-1.26 0.2-1.30 

Carbohydrates (%) 20.10-90.17 30.63-38.10 13.00-86.11 62.91-81.39 27.90-84.07 

Ash (%) 2.04-2.11 1.05 0.60-7.78 2.23-5.50 1.76-6.36 

Nitrogen free 

extract (%) 
   82.82-86.44 71.64-79.79 

Sources: Bradshaw (2010); Chandrasekara and Kumar (2016); Kennedy et al. (2019); Ray (2015); 

Sanginga and Mbabu (2015) 

 

Table 13-3 Mineral composition for five root and tuber crops 

Minerals 

(mg kg-1) 
Sweet potato Cassava Taro Tannia Yam 

Zinc 0.01-8.42  1.65-2.63 1.64-2.06 0.03-6.66 

Iron 0.48-3.26 1.70 2.95-12.85 3.96-13.50 11.48-66.32 

Manganese 1.52-4.94  0.72-1.91 0.64-1.91 2.10-9.40 

Calcium 30-48 16-33 3-132 3-11 17-748 

Magnesium 25-111 8-21 25-415 25-84 21-656 

Potassium 337-1242 271 227-340  816-1,624 

Phosphorus 47-159 27-38 73-340  55-166 

Sodium 3-55 14 82-1,521  6-168 

Copper 0.72-7.52  1.04  2.46-14.56 

Sulphur 11.98-24.00     

Sources: Bradshaw (2010); Chandrasekara and Kumar (2016); Kennedy et al. (2019); Ray (2015); 

Sanginga and Mbabu (2015) 
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Table 13-4 Vitamin and bioactive composition in selected root and tuber crops 

Vitamins (per kg) 
Sweet 

 potato 
Cassava Taro Tannia Yam 

Vitamin A (IU) 14187 13   138 

Vitamin C (mg) 2.4 20.6 14.3  17.1 

Thiamine (mg) 0.08 0.09 0.03-0.18  0.11 

Riboflavin (mg) 0.06 0.05 0.02-0.04  0.03 

Niacin (mg) 0.56 0.85 0.91  0.55 

Vitamin B-6 (mg) 0.209 0.088   0.293 

Vitamin E (mg) 0.26 0.19   0.35 

Vitamin K (µg) 1.8 1.9   2.3 

Total ascorbic acid (mg) 2.40 20.60   17.10 

Folate (µg-DFE) 11 27 18  23 

Phenols (mg)  2.1-120 34.83  1.21-1.91 

Flavonoids (mg) 165  28.56 150-410 0.61-1.38 

Saponins (%)  1.74-4.73 0.67-1.42 0.62-0.72 1.03-2.71 

Sources: Bradshaw (2010); Chandrasekara and Kumar (2016); Kennedy et al. (2019); Ray (2015); 

Sanginga and Mbabu (2015) 

 

Table 13-5 Variation in mineral content of 14 taro accessions from mostly KwaZulu-Natal 

(Gerrano et al., 2021) 

Mineral 

element 

Mineral element content (g kg-1) 

Minimum Mean Maximum 

Mn 0.001 0.004 0.007 

Zn 0.002 0.007 0.022 

Fe 0.022 0.033 0.045 

Na 0.087 0.132 0.206 

Mg 0.199 0.246 0.320 

P 0.219 0.314 0.425 

Ca 0.285 0.359 0.463 

K 1.080 1.451 1.761 
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14 APPENDIX_E 

14.1 MEASURED NUTRIENT CONTENTS FROM SEASON 2 

Table 14-1 Nutrient content of OFSP storage roots grown at Fountainhill during the 2021/22 season (Mthembu, 2023) 

Rep 

Nutrient content (g kg-1) 

Al β-c B Ca Cu Fe K Mg Mn Mo* Na P Zn 
Total 

C 
Total 

N 
Total 

S 

1 n.d. 0.200 0.006 1.359 0.003 0.044 23.66 1.018 0.012 0.0001 0.063 3.443 0.015 433.9 13.8 0.95 

2 n.d. 0.200 0.005 1.391 0.003 0.045 23.90 1.021 0.012 0.0001 0.062 3.402 0.015 417.7 13.3 0.63 

3 n.d. 0.190 0.005 1.362 0.003 0.038 22.18 0.991 0.011 0.0003 0.064 3.283 0.013 422.2 13.5 0.91 

Ave n.d. 0.200 0.006 1.370 0.003 0.042 23.25 1.010 0.011 0.0002 0.063 3.376 0.014 424.6 13.5 0.80 

 

Table 14-2 Nutrient content of taro tubers grown at Fountainhill during the 2021/22 season (Reddy, 2024) 

Rep 

Nutrient content (g kg-1) 

Al β-c B Ca Cu Fe K Mg Mn Mo* Na P Zn 
Total 

C 
Total 

N 
Total 

S 

1 n.d. n.d. 0.005 1.237 0.007 0.253 18.86 1.280 0.104 0.0006 0.031 3.929 0.135 431.8 15.8 1.13 

2 n.d. n.d. 0.005 1.224 0.007 0.283 19.21 1.289 0.099 0.0008 0.028 3.966 0.139 432.5 15.7 1.14 

3 n.d. n.d. 0.005 1.258 0.007 0.316 19.28 1.275 0.100 0.0008 0.028 4.052 0.136 432.2 15.8 1.24 

Ave n.d. n.d. 0.005 1.240 0.007 0.284 19.12 1.281 0.101 0.0007 0.029 3.982 0.137 432.2 15.8 1.20 

Rep = replications; Ave = average; β-c = beta-carotene; n.d. = no data; *Level of quantification: 0.03 
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Table 14-3 Nutrient content of OFSP leaves grown at Fountainhill during the 2021/22 season (Mthembu, 2023) 

Rep 

Nutrient content (g kg-1) 

Al β-c B Ca Cu Fe K Mg Mn Mo* Na P Zn 
Total 

C 
Total 

N 
Total 

S 

1 n.d. n.d. 0.080 43.85 0.006 0.260 21.91 10.71 0.110 0.0006 0.070 3.740 0.010 409.5 34.0 3.10 

2 n.d. n.d. 0.070 47.19 0.004 0.260 22.98 12.31 0.180 0.0001 0.070 2.610 0.010 398.7 34.1 3.00 

3 n.d. n.d. 0.050 34.27 0.004 0.230 26.04 10.26 0.320 0.0001 0.070 3.170 0.030 408.0 43.0 3.00 

4 n.d. n.d. 0.070 40.39 0.004 0.200 20.86 10.83 0.140 0.0011 0.070 3.330 0.010 404.4 34.3 2.90 

5 n.d. n.d. 0.050 35.92 0.004 0.170 25.27 9.97 0.340 0.0004 0.070 2.800 0.020 411.8 42.0 3.50 

Ave n.d. n.d. 0.060 40.33 0.004 0.230 23.41 10.82 0.220 0.0005 0.070 3.130 0.020 406.5 37.5 3.10 

Rep = replications; Ave = average; β-c = beta-carotene; n.d. = no data; *Level of quantification: 0.03 

 

Table 14-4 Nutritional water productivity of OFSP (roots and leaves) and taro tubers (Reddy, 2024) 

Crop 

Nutritional water productivity (dry g m-3) 

Al β-c B Ca Cu Fe K Mg Mn Mo* Na P Zn 
Total 

C 
Total 

N 
Total 

S 

OFSP root n.d. 0.68 0.02 4.69 0.01 0.14 79.59 3.46 0.04 0.00 0.22 11.56 0.05 1,453.63 46.22 2.74 

OFSP leaf n.d. n.d. 0.21 138.07 0.00 0.79 80.14 37.04 0.75 0.00 0.24 10.72 0.07 1,391.67 128.38 10.61 

Taro tuber n.d. n.d. 0.01 1.70 0.01 0.39 26.23 1.76 0.14 0.00 0.04 5.46 0.19 593.10 21.68 1.65 

Taro leaf n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
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14.2 MEASURED NUTRIENT CONTENTS FROM SEASON 3 

Table 14-5 Nutrient content of OFSP storage roots grown in a greenhouse during the 2022/23 season 

Crop 
part 

% of 
CWR 

Nutrient content (g kg-1) 

Al β-c B Ca Cu Fe K Mg Mn Mo Na P Zn 
Total 

C 
Total 

N 
Total 

S 

root 
100 0.174 0.101 n.d. 1.20 0.003 0.179 11.10 0.600 0.006 n.d. 0.567 1.900 0.008 431.5 4.7 0.7 

30 0.248 0.206 n.d. 1.20 0.003 0.284 11.30 0.700 0.015 n.d. 0.526 1.800 0.006 451.4 5.1 0.7 

leaf 
100 1.284 n.d. n.d. 15.10 0.006 1.379 18.00 5.800 0.101 n.d. 0.350 2.100 0.041 466.7 31.2 3.7 

30 0.622 n.d. n.d. 16.40 0.010 0.680 32.70 7.100 0.130 n.d. 0.413 2.400 0.027 454.4 31.8 4.1 

 

Table 14-6 Nutrient content of taro tubers grown in a greenhouse during the 2022/23 season 

Crop 
part 

% of 
CWR 

Nutrient content (g kg-1) 

Al β-c B Ca Cu Fe K Mg Mn Mo Na P Zn 
Total 

C 
Total 

N 
Total 

S 

root 
100 0.329 n.d. n.d. 0.90 0.005 0.354 22.30 1.000 0.010 n.d. 0.294 3.100 0.029 441.4 10.5 0.9 

30 0.464 n.d. n.d. 0.90 0.004 0.503 21.00 1.100 0.015 n.d. 0.278 3.300 0.038 443.8 14.3 1.1 

leaf 
100 1.168 n.d. n.d. 37.00 0.005 1.323 17.60 2.500 0.090 n.d. 0.546 2.000 0.042 447.9 12.6 1.2 

30 1.721 n.d. n.d. 35.60 0.006 2.068 16.90 3.200 0.129 n.d. 0.689 2.100 0.052 447.8 18.9 1.5 

β-c = beta-carotene; n.d. = no data 

 

 

 



Crop and nutritional water productivity of sweet potato and taro 

226 
 

 

15 APPENDIX_F 

15.1 Dry biomass accumulation for OFSP 

 

 
Figure 15-1 Total dry biomass accumulation for OFSP (30% of CWR) 

 

 

 
Figure 15-2 Total dry biomass accumulation for OFSP (30% of CWR) 
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15.2 Dry biomass accumulation for taro 

 

 
Figure 15-3 Total dry biomass accumulation for taro (30% of CWR) 

 

 

 
Figure 15-4 Total dry biomass accumulation for taro (100% of CWR) 
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16 APPENDIX_G 

16.1 CALIBRATION & VALIDATION STATISTICS 

Table 16-1 AquaCrop calibration statistics for sweet potato and taro 

Crop  
Treat-

ment 

Cultivar/ 

Landrace 

Trial type 

& location 

CC 

(n) 

Canopy cover CC (%) Source 

RMSE NSE D-I R2  

Taro Irrigated 
Umbumbulu 

landrace 

Field trial 

Ukulinga 
8 2.38  0.92 0.79 

Mabhaudhi 

et al. (2014b) 

Sweet 

potato 
Irrigated 

Orange-flesh 

(Bophelo) 

Rain shelter 

Roodeplaat 
15 12.10   0.77 

Nyathi 

et al. (2016) 

Sweet 

potato 
Irrigated 

Orange-flesh 

(Isondlo) 

Rain shelter 

Roodeplaat 
4    0.92 

Beletse 

et al. (2013) 

Sweet 

potato 

2012 

irrigated 

rainfed 
Ganja 

Uplifta 

Yellow Belly 

Devon, 

Jamaica 

Devon, 

Jamaica 

 

3 

 

25.20 

9.42 

 

-0.59 

0.76 

  
Rankine 

et al. (2015) 

2013 

irrigated 

rainfed 

 

10.86 

4.48 

 

0.86 

0.97 

  
Rankine 

et al. (2015) 

 

Table 16-2 AquaCrop validation statistics for sweet potato and taro 

Crop  
Treat-

ment 

Cultivar/ 

Landrace 

Trial type 

& location 

CC 

(n) 

Canopy cover CC (%) Source 

RMSE NSE D-I R2  

Taro 
Irrigated Umbumbulu 

landrace 

Field trial 

Ukulinga 
8 

1.85  0.99 0.84 Mabhaudhi 

et al. (2014b) Rainfed 20.17  0.65 0.02 

Sweet 

potato 
Irrigated 

Orange-flesh 

(Bophelo) 

Rain shelter 

Roodeplaat 
15 4.98   0.99 

Nyathi 

et al. (2016) 

Sweet 

potato 
Irrigated 

Orange-flesh 

(Isondlo) 

Rain shelter 

Roodeplaat 
4     Beletse 

et al. (2013) 

Sweet 

potato 

2013 

irrigated 

rainfed 

Ganja 

Uplifta 

Yellow Belly 

Ebony Park, 

Jamaica 
5 

 

17.25 

16.06 

 

0.29 

0.67 

  
Rankine 

et al. (2015) 
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16.2 DEFAULT AQUACROP PARAMETERS 

Table 16-3 AquaCrop parameters for sweet potato derived by Nyathi et al. (2016) and Beletse 

et al. (2013) 

*No. Crop parameter 
Beletse 

et al. (2013) 
Nyathi 

et al. (2016) 

04 Crop type root/tuber (3) root/tuber (3) 

05 Crop is transplanted transplanted 

06 Base temperature for no crop development (°C) 8 10 

09 Cut-off temperature for no crop development (°C) 35 35 

 
11 
12 
14 
16 

Soil water depletion factors for: 
   Canopy expansion (upper threshold) 
   Canopy expansion (lower threshold) 
   Stomatal control 
   Canopy senescence 

 
 
 
 
 

 
0.20 
0.55 

 
0.65 

 
13 
15 
17 
39 

Shape factor for: 
   Water stress coefficient for canopy expansion 
   Water stress coefficient for stomatal control 
   Water stress coefficient for canopy senescence 
   Describing root zone expansion 

 
2.0 
2.0 
2.0 
15 

 
1.5 

0 
0 
0 

35 
36 
29 

Crop transpiration coefficient (KCB) 
Decline in KCB due to ageing (% day-1) 
Minimum GDs required for full crop transpiration 

1.50 
0.15 

8 
 

37 
38 

Minimum effective rooting depth (m) 
Maximum effective rooting depth (m) 

0.25 
1.00 

0.30 
2.00 

 
40 
41 

Maximum root water extraction in: 
   Top quarter of root zone 
   Bottom quarter of root zone 

 
 
 

 

 
46 
75 

Canopy growth coefficient: fraction per 
   calendar day 
   growing degree-day 

 
 

1.15500 

 
 

1.43600 
 

51 
76 

Canopy decline coefficient: fraction per 
   calendar day 
   growing degree-day 

 
 

0.14300 

 
 

0.35500 

43 Seedling leaf area (cm2)   

50 
 

Maximum canopy cover (CCX) 
Time to reach CCX (GDD) 

1.00 
 

0.98 
592 

 
69 
70 
71 
72 
73 

Growing degree-days from planting to: 
   Emergence/recovered transplant 
   Maximum rooting depth    
   Start of senescence 
   Maturity (length of crop cycle) 
   Start of yield formation/initiation 

 
 

677 
1,274 
1,967 

 

 
 

1,885 
1,708 
2,053 

 
 

74 
Length of the flowering stage: 
   Growing degree-days 

 
 

 

 
77 

Building up of Harvest Index 
   During yield formation (GDD) 

 
261 

 

61 Normalised water productivity WP* (g m-2) 20.0 16.0 

62 WP* during yield formation (as a percentage of WP*)   

64 Reference harvest index (percentage) 90 50 

 
65 
68 

Increase (percentage) of harvest index: 
   due to water stress before start of yield formation 
   allowable maximum 

 
0 
5 

 

*Denotes line number in AquaCrop parameter file (version 6; March 2017) 

red: denotes likely errors in parameter values 
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Table 16-4 AquaCrop parameters for sweet potato derived by Rankine et al. (2015) and 

comapred to defaulty paramter values for potato (Raes et al., 2018) 

*No. Crop parameter 
Sweet potato 

Rankine 
et al. (2015) 

Potato 
Raes 

et al. (2018) 

04 Crop type root/tuber (3) root/tuber (3) 

05 Crop is transplanted transplanted 

06 Base temperature for no crop development (°C) 15 02 

09 Cut-off temperature for no crop development (°C) 35 26 

 
11 
12 
14 
16 

Soil water depletion factors for: 
   Canopy expansion (upper threshold) 
   Canopy expansion (lower threshold) 
   Stomatal control 
   Canopy senescence 

 
0.26 
0.66 
0.65 
0.69 

 
0.20 
0.60 
0.60 
0.70 

 
13 
15 
17 
39 

Shape factor for: 
   Water stress coefficient for canopy expansion 
   Water stress coefficient for stomatal control 
   Water stress coefficient for canopy senescence 
   Describing root zone expansion 

 
 

3.3 
3.4 
2.7 
15 

 
 

3.0 
3.0 
3.0 
15 

35 
36 
29 

Crop transpiration coefficient (KCB) 
Decline in KCB due to ageing (% day-1) 
Minimum GDs required for full crop transpiration 

 
1.10 
0.15 
15.0 

 
1.10 
0.15 
7.0 

37 
38 

Minimum effective rooting depth (m) 
Maximum effective rooting depth (m) 

0.30 
1.60 

0.30 
1.50 

 
40 
41 

Maximum root water extraction in: 
   Top quarter of root zone 
   Bottom quarter of root zone 

 
0.015 
0.004 

 
0.048 
0.012 

 
46 
75 

Canopy growth coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.13420 
0.00966 

 
0.26994 
0.01615 

 
51 
76 

Canopy decline coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.09529 
0.00798 

 
0.02781 
0.00200 

43 Seedling leaf area (cm2) - 15.0 

50 
 

Maximum canopy cover (CCX) 
Time to reach CCX (GDD) 

0.94 
 

0.92 
 

 
69 
70 
71 
72 
73 

Growing degree-days from planting to: 
   Emergence/recovered transplant 
   Maximum rooting depth    
   Start of senescence 
   Maturity (length of crop cycle) 
   Start of yield formation/initiation 

 
77 

772 
1,091 
1,294 

415 

 
200 

1,079 
894 

1,276 
550 

 
74 

Length of the flowering stage: 
   Growing degree-days 

 
0 

 
0 

 
77 

Building up of Harvest Index 
   During yield formation (GDD) 

 
872 

 
700 

61 Normalised water productivity WP* (g m-2) 20.0 18.0 

62 WP* during yield formation (as a percentage of WP*) 92 100 

64 Reference harvest index (percentage) 55 75 

 
65 
68 

Increase (percentage) of harvest index: 
   due to water stress before start of yield formation 
   allowable maximum 

 
8 
9 

 
2 
5 

*Denotes line number in AquaCrop parameter file (version 6; March 2017) 

red: denotes likely errors in parameter values 
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Table 16-5 AquaCrop parameters for sweet potato derived by Pushpalatha et al. (2021) and 

Lamaro et al. (2023) 

*No. Crop parameter 
Pushpalatha 
et al. (2021) 

Lamaro 
et al. (2023) 

04 Crop type root/tuber (3)  

05 Crop is transplanted  

06 Base temperature for no crop development (°C) 08 08 

09 Cut-off temperature for no crop development (°C) 30 38 

 
11 
12 
14 
16 

Soil water depletion factors for: 
   Canopy expansion (upper threshold) 
   Canopy expansion (lower threshold) 
   Stomatal control 
   Canopy senescence 

 
0.25 
0.75 
0.75 
0.75 

 

 
13 
15 
17 
39 

Shape factor for: 
   Water stress coefficient for canopy expansion 
   Water stress coefficient for stomatal control 
   Water stress coefficient for canopy senescence 
   Describing root zone expansion 

 
2.0 
2.0 
2.0 
15 

 
2.0 
2.0 
2.0 

 
35 
36 
29 

Crop transpiration coefficient (KCB) 
Decline in KCB due to ageing (% day-1) 
Minimum GDs required for full crop transpiration 

1.15 
0.025 

08 

1.00 
0.15 

08 
37 
38 

Minimum effective rooting depth (m) 
Maximum effective rooting depth (m) 

0.25 
1.00 

0.25 
1.50 

 
40 
41 

Maximum root water extraction in: 
   Top quarter of root zone 
   Bottom quarter of root zone 

 
0.024 
0.006 

 

 
46 
75 

Canopy growth coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.4200 

- 

 
 

0.2223 
 

51 
76 

Canopy decline coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.1430 

- 

 
 

0.1410 

43 Seedling leaf area (cm2) 15.0  

50 
 

Maximum canopy cover (CCX) 
Time to reach CCX (GDD) 

0.95 
 

1.00 
 

 
69 
70 
71 
72 
73 

Calendar days/Growing degree-days from planting to: 
   Emergence/recovered transplant 
   Maximum rooting depth    
   Start of senescence 
   Maturity (length of crop cycle) 
   Start of yield formation/initiation 

CDs 
6 

40 
70 
90 
30 

GDDs 
- 

658 
- 

1,340 
1,930 

 
74 

Length of the flowering stage: 
   Calendar days/Growing degree-days 

CDs 
- 

GDDs 
- 

 
77 

Building up of Harvest Index 
   During yield formation (GDD) 

 
- 

 
997 

61 Normalised water productivity WP* (g m-2) 20.0 20.0 

62 WP* during yield formation (as a percentage of WP*) 100  

64 Reference harvest index (percentage) 85 90 

 
65 
68 

Increase (percentage) of harvest index: 
   due to water stress before start of yield formation 
   allowable maximum 

 
10 
30 

 
 

5 
*Denotes line number in AquaCrop parameter file (version 6; March 2017) 

red: denotes likely errors in parameter values 

 

  



Crop and nutritional water productivity of sweet potato and taro 

232 
 

 

Table 16-6 AquaCrop parameters for taro derived by Mabhaudhi (2012), then modified by 

Mabhaudhi et al. (2014b) and Mabhaudhi et al. (2016a) 

*No. Crop parameter 
Mabhaudhi 

(2012) 

Mabhaudhi 
et al. 

(2014b) 

Mabhaudhi 
et al. 

(2016a) 

04 Crop type 
root/tuber 

(3) 
root/tuber 

(3) 
root/tuber 

(3) 

05 Crop is sown sown sown 

08 Base temperature for no crop development (°C) 10 10 10 

09 Cut-off temperature for no crop development (°C) 30 35 35 

10 Crop cycle length (GDD)  2,406 2,580 

 
11 
12 
14 
16 

Soil water depletion factors for: 
   Canopy expansion (upper threshold) 
   Canopy expansion (lower threshold) 
   Stomatal control 
   Canopy senescence 

 
0.25 
0.55 
0.50 
0.85 

 
0.10 
0.45 
0.45 
0.45 

 
0.10 
0.45 
0.45 
0.45 

 
13 
15 
17 
39 

Shape factor for: 
   Water stress coefficient for canopy expansion 
   Water stress coefficient for stomatal control 
   Water stress coefficient for canopy senescence 
   Describing root zone expansion 

 
3 
3 
3 

15 

 
3 
3 
3 

1.5 

 
3 
3 
3 

15 
35 
36 
29 

Crop transpiration coefficient (KCB) 
Decline in KCB due to ageing (% day-1) 
Minimum GDs required for full crop transpiration 

1.05 
0.15 
11.1 

1.10 
 
 

1.15 
0.15 

- 
37 
38 

Minimum effective rooting depth (m) 
Maximum effective rooting depth (m) 

0.30 
1.00 

0.10 
0.80 

0.10 
0.30 

 
40 
41 

Maximum root water extraction in: 
   Top quarter of root zone 
   Bottom quarter of root zone 

 
0.024 
0.006 

 
 

0.080 
0.020 

 
46 
75 

Canopy growth coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.05554 

 

 
 

0.69800 

 
0.07730 

0.007330 
 

51 
76 

Canopy decline coefficient: fraction per 
   calendar day 
   growing degree-day 

 
0.13671 

 

 
 

0.57700 

 
0.03000 
0.00300 

43 Seedling leaf area (cm2) 5 25 25 

50 
Maximum canopy cover (CCX) 
Time to reach CCX (GDD) 

0.85 
 

0.85 
 

0.78 
- 

 
69 
70 
71 
72 
73 

Growing degree-days from planting to: 
   Emergence/recovered transplant 
   Maximum rooting depth    
   Start of senescence 
   Maturity (length of crop cycle) 
   Start of yield formation/initiation 

CDs 
49 
83 

210 
130 
126 

GDDs 
460 

1,557 
2,115 
2,406 
1,512 

GDDs 
420 

1,400 
1,990 
2,580 
1,370 

 
74 

Length of the flowering stage: 
   Growing degree-days 

 
0 

 
 

0 
 

77 
Building up of Harvest Index 
   During yield formation 

CDs 
4 

GDDs 
861 

GGDs 
1,100 

61 Normalised water productivity WP* (g m-2) 17.0 15.0 15.0 

62 WP* during yield formation (as a percentage of WP*) 100  100 

64 Reference Harvest Index (percentage) 50 80 83 

 
66 
68 

Increase (percentage) of harvest index: 
   due to water stress before start of yield formation 
   allowable maximum 

 
10 
15 

 
 

10 
15 

*Denotes line number in AquaCrop parameter file (version 6; March 2017) 

red: denotes likely errors in parameter values 
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16.3 MODEL INPUTS AND PARAMETERS: SEASON 2 

Table 16-7 Soil parameters for site 1 (taro) and site 2 (OFSP) at Fountainhill 

Soil parameters Units Site 1 Site 2 

Soil texture   
Sandy loam 

Sandy clay loam 
Loamy sand 

Soil profile depth m 0.6 0.6 

Curve number (based on KSAT of topsoil)   72 61 

Saturated hydraulic conductivity (KSAT) range mm d-1 6-84 137-764 

KSAT (depth weighted)  26.5 551.5 

KSAT of topsoil  mm d-1 84 541 

Saturation % volume 38.3 33.8 

Field capacity % volume 23.5 23.0 

Permanent wilting point % volume 10.3   7.0 

Available water capacity mm m-1 133 160 

Readily evaporable water mm 7 8 

 

Table 16-8 Conversion of phenological growth stages observed in calendar day (CD) format 

for OFSP and taro, then converted to growing degree-day (GDD) format 

Phenological period 
OFSP Taro 

CD GDD CD GDD 

From transplanting to recovered transplant   16    181   35    345 

From transplanting to maximum rooting depth   64    874 150 1,408 

From transplanting to start of senescence 114 1,524 157 1,661 

From transplanting to physiological maturity 117 1,549 222 1,967 

From transplanting to start of yield formation   80 1,096 136 1,617 

 

Table 16-9 List of important crop parameters used to run the AquaCrop model for sweet 

potato, with partially calibrated values highlighted in bold 

No. Crop parameter 
Beletse 

et al. (2013) 

Rankine 

et al. (2015) 

This 

project 

08 Base temperature (°C) 08 15 08 

09 Cut-off temperature (°C) 35 35 37 

35 Crop transpiration coefficient (KCB) 1.5 1.1 1.0 

37 Minimum rooting depth ZMIN (m) 0.25 0.30 0.25 

38 Maximum rooting depth ZMAX (m) 1.00 1.60 0.60 

75 Canopy growth coefficient (CGC in GD) 1.15500 0.00966  

76 Canopy decline coefficient (CDC in GD) 0.14300 0.00798  

50 Maximum canopy cover (CCX) 1.0 0.94 0.92 

69 Time to emergence/recovered transplant (GDD) - 77 181 

70 Time to maximum rooting depth (GDD) 677 772 874 

71 Time to start senescence (GDD) 1,274 1,091 1,524 

72 Time to maturity (GDD) 1,967 1,294 1,549 

77 Building up of HI during yield formation (GDD) 261 872 122 

61 Normalised water productivity (g m-2) 20 20  

64 Reference harvest index (%) 90 55 55 

 

65 

Increase (%) of HI due to: 

  Water stress before yield formation 

 

0 

 

8 

 

0 

68 Allowable maximum increase (%) of specified HI  5 9  

red: denotes likely errors in parameter values 
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Table 16-10 Orange flesh sweet potato crop parameters derived by Masango (2015) for SWB, 

together with partially calibrated values used in this project 

Crop parameter  
Masango 

(2015) 

This 

project 

Canopy radiation extinction coefficient (0-1) 0.85  

Corrected dry matter-water ratio (Pa)  6.5  

Radiation conversion efficiency (kg MJ-1)  0.00121  

Base temperature (°C) 8  

Temperature for optimum growth (°C) 28  

Cut-off temperature (°C) 38 37 

Degree-days to emergence (GDD)  25 181 

Degree-days to flowering day degrees (GDD) 650 650 

Degree-days to maturity (GDD) 1,950 1,549 

Day degrees for transition period (GDD) 480 480 

Degree-days to leaf senescence (GDD)  1,650 1,524 

Maximum crop height (m) 0.6 0.69 

Maximum root depth (m) 1.5 0.6 

Fraction of total dry matter translocated to roots (0-1) 0.45  

Canopy interception storage (mm) 1  

Leaf water potential at the maximum transpiration (kPa) -1,500  

Maximum transpiration (mm d-1) 8 7.1 

Specific leaf area (m2 kg-1) 9.8  

Leaf-stem partition parameter (m2 kg-1) 1  

Total dry matter at emergence (m2 kg-1) 0.03  

Root fraction (0-1) 0.15  

Root growth rate (m2 kg0.5) 3.5  

Stress index (0-1) 0.9  

Depletion allowed (%) 40  

 

16.4 MODEL INPUTS AND PARAMETERS: SEASON 3 

Table 16-11 Soil parameters for the raised beds in the greenhouse at UKZN 

Soil parameters Units Stressed Unstressed 

Soil texture   Clay Clay Loam 

Soil profile depth m 0.40 0.40 

Curve number (based on KSAT of profile)   72 72 

Saturated hydraulic conductivity (KSAT) mm d-1 65.0 76.7 

KSAT of topsoil  mm d-1 - - 

Saturation % volume 43.5 43.5 

Field capacity % volume 36.5 37.5 

Permanent wilting point % volume 29.0 29.5 

Available water capacity mm m-1 75 80 

Readily evaporable water mm 9 9 
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Table 16-12 Base (TBSE) and cuf-off (TUPP) temperatures when crop development ceases 

Crop TBSE (°C) TUPP (°C) Source 

Sweet 

potato 

08 35 Beletse et al. (2013) 

15 35 Rankine et al. (2015) 

10 35 Nyathi et al. (2016) 

08 30 Pushpalatha et al. (2021) 

08 38 Lamaro et al. (2023) 

Taro 10 35 Mabhaudhi et al. (2014b) 

 

Table 16-13 Updated standard crop parameters provided by Pereira et al. (2021b) 

Parameter 
Sweet 

potato 
Taro 

Maximum root depth (m) 1.00-1.20 0.30-0.40 

Maximum crop height (m) 0.50 1.20 

Maximum ground cover (%) 98  

KC (mid-season) 1.10 1.10 

KC (end-season) 0.60 1.05 

KCB (mid-season) 1.05 1.05 

KCB (end-season) 0.50 1.00 

 

Table 16-14 Phenological growth stages observed in calendar day (CD) format for OFSP and 

taro, which were then converted to growing degree-day (GDD) format 

Phenological period 
OFSP Taro 

CD GDD CD GDD 

From transplanting to recovered transplant     6      81   14    198 

From transplanting to maximum rooting depth   93 1,435   35    492 

From transplanting to start of senescence 150 2,377 170 2,677 

From transplanting to physiological maturity 160 2,533 180 2,824 

From transplanting to start of yield formation   68 1,001 130 2,038 

Canopy growth coefficient (CGC) 0.11139 0.007509 0.24736 0.017242 

Canopy decline coefficient (CDC) 0.03000 0.001923 0.03000 0.002041 
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Table 16-15 Comparison of sweet potato parameters derived by Rankine et al. (2015) with those 

obtained in this project 

*No. Parameter 
Rankine 

et al. (2015) 

This 

project 
Source 

08 Base temperature (°C) 15 10  

 

11 

14 

16 

Soil water depletion fraction for: 

 - canopy expansion 

 - stomatal control 

 - canopy senescence  

 

0.26 

0.65 

0.69 

 

0.25 

0.30 

0.80 

 

Calibrated 

 

13 

15 

17 

Shape factor for: 

 - canopy expansion 

 - stomatal control 

 - canopy senescence  

 

3.3 

3.4 

2.7 

 

6.0 

6.0 

3.0 

 

Calibrated 

35 Basal crop coefficient 1.10 1.05 
Pereira 

et al. (2021b) 

38 Maximum rooting depth (m) 1.60 1.20 
Pereira 

et al. (2021b) 

43 
Soil surface area covered by seedling at 

90% emergence 
15 50 Calibrated 

45 Number of plants per hectare 90,000 55,556 Measured 

50 Maximum canopy cover (CCX) 0.94 0.91 Measured 

46 Canopy growth coefficient (CGC in % day-1) 13.420 11.139 Calibrated 

51 Canopy decline coefficient (CDC in % day-1)   9.529 3.000 Calibrated 

 

 

52 

53 

54 

55 

56 

60 

Phenological period (days): from 

transplanting to 

 - recovered transplant 

 - maximum rooting depth 

 - start of senescence 

 - maturity (length of crop cycle) 

 - start of yield formation 

 - length of HI buildup period 

 

    

 6 

  56 

  80 

  96 

  31 

  65 

 

   

 6 

  93 

150 

160 

  68 

  92 

Observation 

& calibrated 

61 Normalised water productivity (WP* in g m-2) 20.0 20.0 Unchanged 

64 Reference harvest index (HIO)   55   78 Measured 

*Denotes line number in AquaCrop parameter file (version 6; March 2017) 
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Table 16-16 Comparison of taro parameters derived by Mabhaudhi et al. (2016a) with those 

obtained in this project 

*No. Parameter 
Mabhaudhi 

et al. (2016a) 

This 

project 
Source 

 

11 

14 

16 

Soil water depletion fraction for: 

 - canopy expansion 

 - stomatal control 

 - canopy senescence  

 

0.10 

0.45 

0.45 

 

0.25 

0.45 

0.80 

 

Calibrated 

 

13 

15 

17 

Shape factor for: 

 - canopy expansion 

 - stomatal control 

 - canopy senescence  

 

3.0 

3.0 

3.0 

 

0.0 

3.0 

3.0 

 

Calibrated 

35 Basal crop coefficient 1.15 1.05 
Pereira 

et al. (2021b) 

37 

38 

Minimum rooting depth (m) 

Maximum rooting depth (m) 

0.10 

0.30 

0.30 

0.40 

Pereira 

et al. (2021b) 

43 
Soil surface area covered by seedling at 

90% emergence 
25 5 Calibrated 

45 Number of plants per hectare 20,000 55,556 Measured 

50 Maximum canopy cover (CCX) 0.78 0.69 Measured 

46 Canopy growth coefficient (CGC in % day-1) 7.730 24.736 Calibrated 

51 Canopy decline coefficient (CDC in % day-1) 3.000   3.000 Calibrated 

 

52 

53 

54 

55 

56 

60 

Phenological period (days): from sowing to 

 - recovered transplant 

 - maximum rooting depth 

 - start of senescence 

 - maturity (length of crop cycle) 

 - start of yield formation 

 - length of HI buildup period 

 

  42 

140 

199 

258 

137 

110 

 

  14 

  35 

170 

180 

130 

  50 

Observation 

61 Normalised water productivity (WP* in g m-2) 15.0 15.0 Unchanged 

64 Reference harvest index (HIO)    83    81 Measured 

65 
 Possible increase in HI due to water stress 

before start of yield formation (%) 
10 0 Observation 

66 

Coefficient describing positive impact on HI 

due to restricted vegetative growth during 

yield formation 

10 0 Observation 

67 
Coefficient describing negative impact on HI 

of stomatal closure during yield formation 
8 10 Observation 

*Denotes line number in AquaCrop parameter file (version 6; March 2017) 
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17 APPENDIX_H 

17.1 MINIMISING COMPUTATIONAL EXPENSE IN 2015 

17.1.1 Background 

According to Jones (2018), model performance can be dramatically improved on most computers by: 

 

• running the model on a desktop PC as opposed to a laptop computer,  

• dividing the simulation run into smaller tasks, so that each smaller task is handled by a single 

core of the computer’s CPU, 

• instructing the model to read inputs from and write outputs to a small virtual disk drive defined 

in the computer’s random access memory (called a RAM drive), 

• post-processing model output whilst it is temporarily stored on the RAM drive, and 

• executing large runs in “batch” mode using scripts designed for Windows- or Linux-based PCs. 

 

Kunz et al. (2015b) used some of the suggestions listed above to improve the performance of complex 

model simulations. Since then, further improvements were made by Kunz et al. (2020) and (Kunz and 

Mabhaudhi (2023). A summary of the improvements is provided next. 

 

17.1.2 Desktop PC vs laptop  

It is well understood that laptops are typically slower than desktop PCs. This is mainly due to cooling 

issues that result from the need for laptops to be portable (i.e. as thin and light as possible). Hence, a 

laptop CPU typically has a reduced number of CPU cores compared to a desktop PC. For this reason, 

model runs should be done on desktop PCs, not laptops. For this project, a high-end computer was 

used, which compromised of 32 GB of RAM and a Core i9 CPU with 10 cores (20 threads) that handles 

AVX-512 instruction sets. This CPU can process twice the number of data elements than an Intel AVX2 

CPU and four times that of an SSE-based CPU. 

 

17.1.3 RAM drive size 

A freely available software tool was used to create a RAM drive that assigns a drive letter (e.g. R:\) to 

a certain portion of RAM that is allocated for exclusive use by the model runs. Using RAM as temporary 

“disk” storage is much faster than a hard drive, especially one using spinning disks/platters. The size of 

the required RAM drive was calculated as follows: For each HRZ, AquaCrop requires input files 

containing climate data, soil data and a project file that instructs the model when to start and end each 

seasonal simulation. AquaCrop outputs a file of seasonal data, from which statistics are generated. 

Hence, a national run involving all 5,838 HRZs requires a RAM drive of 8 GB for a 50-year simulation 

(Table 17-1). All input files were copied to the RAM drive to speed up the model runs and all output 

files were temporarily stored on the RAM drive.  

 

  



Crop and nutritional water productivity of sweet potato and taro 

239 
 

 

Table 17-1 File size of input and output files required to run AquaCrop with 50 years of 

historical climate data 

Input/ 

Output 
File type 

File size 

(KB) 

Input 

Climate 968 

Soils 1 

Project 57 

Output 
Seasonal output 236 

Statistics 132 

Sub-total (KB) 1,394 

Total (GB) 7.76 

 

17.1.4 Automation procedure 

In 2015, the computational automation of sequential AquaCrop runs across all 5,838 HRZs was 

developed in a Unix for WINdows emulator (called UWIN developed by AT&T) that run on Microsoft’s 

Windows 7 operating system. It was written in Unix so that one day the code could be ported to a PC 

cluster running a Linux operating system. 

 

The automaton was designed to run AquaCrop sequentially for all HRZs using a multiple profile (.prm) 

file, which instructed the model to simulate consecutive seasons, each with a common start date (i.e. 

1st of November), but varying end dates, where the physiological maturity date was calculated using 

thermal time. A utility called “genprm.exe” was developed in the Fortran programming language to 

automate this process. 

 

When AquaCrop was run at the national scale for all HRZs, the model sometime “crashed” (with a 

“division-by-zero” error) when simulating zones not suited to crop growth (i.e. too cold and/or too dry). 

The model required the user to click the “OK” to acknowledge this error, which unfortunately halted the 

model runs. This presented a significant challenge, which unless solved, prevented the automation of 

the model runs. Significant effort was spent on creating a solution where a specialised software utility 

was run in the background that constantly monitored for any errors to be generated by the model. When 

this was detected, the utility automatically acknowledged the error message, which caused AquaCrop 

to stop running, i.e. “crash”. The automation process was then designed to re-start the model run for 

the next HRZ. For more information, the reader is referred to Kunz et al. (2015b). 

 

The above-mentioned issue mainly occurred because AquaCrop was run for all 5,838 HRZs, regardless 

of whether or not the zone is suitable for rainfed crop production. This was done so that model output 

can be used to identify areas best suited to crop cultivation (cf. Chapter 8).  

 

17.1.5 Model run time 

Kunz et al. (2015a) reported that sequential runs of AquaCrop at the national scale took 62 and 90 

hours to complete for grain sorghum and soybean, respectively. Run time was not only dependent on 

crop cycle, but also planting date. For example, sugarcane planted on 1st April and 1st February took 

250 and 388 hours to complete, respectively. Such long runs are impossible without a UPS 

(uninterruptable power supply) and a diesel generator to cope with power failures, especially those 

related to regular load shedding events. 
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17.2 FURTHER IMPROVEMENTS MADE IN 2019 

17.2.1 Desktop PC 

Initial tests were conducted on a slower desktop PC (Core i7 CPU with 12 threads and 32 GB of RAM). 

This was the same PC used since 2015, which ensured more accurate benchmarking. However, tests 

were also conducted on a faster desktop PC (Core i9 CPU with 20 threads and 64 GB of RAM). Model 

runs were done with the same taro crop parameter file used by Kunz and Mabhaudhi (2023). 

 

17.2.2 Derivation of smaller tasks 

For parallel processing, I/O performance remains the main bottleneck compared to CPU speed. 

Temporary memory (RAM) usage for data storage (both reading and writing data) provides the smallest 

bottleneck when compared to sold state drives and especially spinning hard drives. In other words, a 

typical spinning hard drive cannot cope with the I/O required for parallel processing. 

 

For the slower PC with 12 threads, two threads were utilised by the Windows operating system, to 

prevent the PC from becoming too unresponsive to input (via the keyboard and mouse). The remaining 

10 threads were used to run 10 simultaneous AquaCrop runs (i.e. one model run per thread). Hence, 

instead of running one task involving 5,838 sequential model runs, 10 smaller tasks of 584 runs were 

started in parallel. This significantly reduced the overall model run time. However, performance is 

compromised by the need to write 10 output files simultaneously. Hence, this “bottleneck” strongly 

depends on the read/write speed of the RAM drive. Since the faster PC has 20 CPU threads, four were 

set aside for use by the operating system. The remaining 16 threads ran AquaCrop as 16 simultaneous 

simulations, where each task handled ~365 HRZs (i.e. 5,838/16).  

 

17.2.3 Load balancing 

An initial attempt was made to load balance the parallel runs by grouping HRZs in such a manner so 

that each task completed at the same time. However, this task proved difficult to perfect so no progress 

was made.  

 

17.2.4 Maximum crop cycle 

AquaCrop runs the slowest for long growing seasons that occur in cold regions where there is 

insufficient heat units (growing-degree days) for the crop to reach physiological maturity. The model 

typically simulates zero or very low seasonal yields and thus, the average yield is often 0 dry t ha-1. 

Kunz and Mabhaudhi (2023) recommended that the model should not be run if the crop cycle exceeds 

396 days. For HRZs with a crop cycle exceeding 396 days, the decision was made not to run the model 

and to flag the zone as unsuitable (i.e. too cold for production). This reduced the model run time to zero 

for such zones, resulting in reduced run times. The decision to not run the model for cold seasons has 

affected the calculation of average yields by eliminating zero (or close to zero) yields that skew the 

average towards zero and the calculation of high YCV values. 

 

17.2.5 Automation procedure 

AT&T stopped maintaining their UWIN emulator, and thus it was not compatible with Windows 10. 

However, Microsoft also developed a Unix emulator called Windows Subsystem for Linux (WSL). 

Version 1 (WSL 1) was first released in 2016, which underwent a significant change in 2019 when 

version 2 (WSL 2) became available. Since version 2 was relatively new in 2019, the decision was 

made to port the Unix (and Fortran) automation code to work on WSL 1. Much effort was spent on 

checking that the automation procedure worked correctly on WSL 1. 
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In 2019, the automation code was extensively modified to run AquaCrop concurrently (i.e. parallel 

processing) in WSL 1. Approximately 8,600 lines of code (in Unix and Fortran) was developed to 

automate the national model runs for AquaCrop. In addition, over 1,400 lines of code were written to 

convert the climate and soil input files into the format required by the model.  

 

17.2.6 Model run time 

The ability to run AquaCrop in parallel mode significantly reduced the time to complete national model 

runs. Kunz et al. (2020) reported that running AquaCrop simultaneously on a RAM drive reduced the 

national run time for grain sorghum to approximately 25 hours for on the slower PC, which was further 

reduced to 13 hours when run on the faster PC. This represented a significant reduction in 

computational expense compared to a sequential run that took 62 hours (cf. Section 17.1.5). 

 

17.3 ADDITIONAL IMPROVEMENTS IN 2023 

As part of another WRC-funded project, further improvements were made by Kunz and Mabhaudhi 

(2023). Inspired by the recognition for this effort, which is regarded as innovative, additional 

improvements were made in this project. Reducing model run time is deemed important, as it saves 

valuable time that allows for additional modelling scenarios to be considered. Hence, efforts are 

continuing to further minimise AquaCrop’s run time as part of a four-year WRC-funded project that 

started in April 2023. These improvements are described next in more detail. 

 

17.3.1 Climate file length 

Analysis of the model runs undertaken by Kunz and Mabhaudhi (2023) revealed that AquaCrop ran 

considerably slower using 139 years of projected climate data from 1961 to 2099. Further investigation 

revealed that model run time increased with each consecutive season, and thus ran fasted for the first 

season (1961/62) and slowest for the last season (2098/99). The reason was due to the model reading 

the climate file from the beginning (i.e. 1 January 1961) for each consecutive season, until the required 

planting date was found (i.e. sequential access). This was proven when climate data from 1 January 

2098 to 31 December 2099 was manually extracted from the climate file for the model to use, which 

resulted in a similar run time as the first season. 

 

Prior to version 7 of AquaCrop, the model developers (FAO) had not made the source code publicly 

available. Hence, the inefficient (i.e. sequential) reading of climate data could not be fixed in the model, 

which is the ideal scenario. A workaround involved the development of a utility called “getcli.exe” in the 

Fortran programming language to automate the extraction of climate data for each season from the 

139-year climate file. Considerable effort was spent on checking this utility as it needs to “trim” the 

rainfall (.PLU), temperature (.TNX) and reference evapotranspiration (.ETO) files correctly. 

 

To make this utility run as fast as possible, the original climate files were reduced to a width of 12 

characters. However, the time required to trim 17,514 (i.e. 5,838*3) climate files was considerable, 

taking approximately 19 minutes for historical climate files with 50 years of data, and 49 minutes for 

projected climate files with 140 years of data. The trimmed climate files were then compressed into one 

.RAR file, making it easier and quicker (< 1 minute) to copy to the RAM drive and to uncompress all the 

climate files. 

 

Since each line of the climate file was now the same length (12 characters), climate data was extracted 

using a method called direct access, which is substantially faster than sequential access. Hence, the 

time required to extract the first or last season of data from the climate file was identical. This provided 

a considerable performance boost to the automation process, and thus was well worth the effort to 

implement. 
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17.3.2 Seasonal simulations 

The automation procedure was then modified to run the model separately for each season, instead of 

grouping all seasons into one multiple AquaCrop project (.PRM) file. This was necessary to incorporate 

the “getcli.exe” utility, which was run before AquaCrop to extract the required rainfall, temperature and 

ETO data from the climate files for a particular season. As explained previously, this was necessary so 

that the model run time was the same for the first and last season. 

 

Tests were then carried out to determine the overall impact of this significant modification to the 

automation procedure. Although running the model one season at a time (in a loop) slowed down the 

automation, it was offset by the faster model run time. More importantly, comparison of yield simulations 

with older runs (i.e. before the change was implemented) highlighted some differences. As noted in 

Section 17.1.4, since AquaCrop was run for all HRZs, many of which are too cold and/or too dry for 

rainfed crop production, the model sometimes “crashes” with a “division-by-zero” error. Further 

investigation revealed that when this error occurred in a particular season, all subsequent seasons were 

not simulated. In other words, when AquaCrop was run in the past for multiple sequential seasons via 

a .PRM file, if an error occurred during the simulation of, for example, the first few seasons, the 

remaining seasons were not simulated. This would result in no seasonal yield average being calculated, 

since four or more yield values were required for the average to be calculated. Hence, the HRZ was 

flagged as totally unsuitable for crop production. However, since the model was now run separately for 

each season, if an error occurred in a particular season, the yield was set to zero, and the model was 

automatically run for the next season, until all seasons had been simulated (i.e. using a seasonal loop). 

This had a significant impact on the total number of zero yields, and the total number of seasons 

simulated, from which the risk of crop failure was calculated as the ratio, then expressed as a 

percentage. Results showed a reduction in this metric for certain HRZs where the model “crashed” early 

on a particular season. Overall, running the model separately for each season has resulted in more 

accurate simulations for multiple sequential seasonal runs. 

 

17.3.3 RAM drive size 

The “trimming” of the climate files to 12 characters (cf. Section 17.2.2) resulted in a reduction in amount 

of RAM required to temporarily store each climate file from 968 to 756 KB. Statistics were generated 

from each AquaCrop seasonal output file, which was then further processed to create “GIS-ready” files 

to simplify the mapping of certain variables, such as yield, crop water productivity and crop cycle. RAM 

drive space was also required to store the compressed versions of all output files, which made it faster 

to move them from the RAM drive to permanent disk storage. Hence, a national run involving all 5,838 

HRZs, each with 50 years of climate data, required a total of 7 GB (Table 17-2). 

 

Table 17-2 Size of input and output files when running AquaCrop with 50 years of climate data 

Input/ 

Output 
File type 

File size 

(KB) 

Input 

Climate 756 

Soils 1 

Project 24 

Output 

Seasonal output 228 

Additional output 12 

Statistics 132 

Sub-total per HRZ (KB) 1,153 

Total for 5,838 HRZs (KB) 6,721,214 

Processed statistics (KB) 23,504 

Compressed files (KB) 122,544 

Grand total (GB) 6.56 
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17.3.4 RAM drive type 

The specialised software used to create a RAM drive was updated to the latest version, which provided 

a new feature of emulating a “logical” and not a “physical” drive. Speed tests showed that logical 

emulation was faster than physical emulation as shown in Table 17-3. Hence, this software upgrade 

helped to speed up the model runs. 

 

Table 17-3 Increase in RAM drive read and write performance using logical (new) vs physical 

(old) disk emulation 

Speed 

(MB s-1) 

Older PC (12 threads) Newer PC (20 threads) 

Physical Logical 
Increase 

(%) 
Physical Logical 

Increase 

(%) 

Sequential read   3,881 4,488 15.6 5,370 5,389 0.4 

Sequential write   2,530 4,121 62.9 5,750 6,969 21.2 

Random read    202  569 181.7  446  882 97.8 

Random write   129  310 140.3  378  732 93.7 

 

17.3.5 Maximum crop cycle 

As noted in Section 17.2.4, the crop cycle was limited to 396 days to reduce model run times in higher 

altitude HRZs, where insufficient growing degree-days exist for the crop to reach physiological maturity 

within an economically viable time frame. This prevented the model from simulating unrealistically long 

crop cycles. This problem was first noticed when AquaCrop was first run for sugarcane, a crop that 

requires 3,150 GDDs to reach physiological maturity. In cold HRZs, the model ran for more than 720 days 

(2 years) in 1,071 HRZs, with the worst case scenario being 8,195 days, i.e. 22.4 years. Hence, the 

maximum crop cycle for sugarcane was limited to 720 days, which improved model performance.  

 

Owing to the cold climate, the AquaCrop model would often crash with a “division-by-zero” error or 

simulate zero (or close to zero) yields. The automaton code was therefore changed to prevent the model 

from running if the crop cycle exceeded 396 days. However, this decision impacted the calculation of the 

average seasonal yield. Prior to this change, AquaCrop simulated zero yield for 47 seasons in HRZ no. 

13 (for example) and yields of 0.097 and 2.274 dry t ha-1 for two seasons. From this, an average yield of 

0.048 dry t ha-1 was calculated across all 49 seasons. After the change, AquaCrop only ran for one season, 

since the crop cycle was less than 396 days and simulated a yield of zero dry t ha-1, from which no average 

was calculated (< 4 data points). This zone was then flagged as totally unsuitable for taro production, 

instead of having a low average yield of 0.048 dry t ha-1. 

 

The automation code was modified to determine the range in taro’s maximum crop cycle for each HRZ. 

An analysis of the results showed that this threshold could be reduced to 334 days. However, it is also 

important to understand the impact this change has on average yields calculated for each HRZ. A national 

run was undertaken for taro, where the maximum allowable crop cycle was reduced from 396 to 365 days. 

This increased the total number of seasons deemed too cold for taro production from 154,426 to 155,680, 

i.e. by 1,254 seasons. Since the model is no longer run for these seasons, it provided a small improvement 

in reducing overall model run time. However, this decision had a larger impact on average yield estimates. 

 

A comparison of the 396 vs 365 day national runs showed no change in average yields for 5,520 HRZs, 

i.e. zero difference. For 50 HRZs, the difference in average yields was 0.15 t ha-1. However, the largest 

difference of 1.12 dry t ha-1 occurred in HRZ no. 3,375 (Figure 17-1). In nine HRZs, the crop cycle 

exceeded 365 days across all seasons, and thus the model was not run for any season. These zones 

were then flagged as unsuitable for taro production. 
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Figure 17-1 Difference in average taro yield simulated by AquaCrop when the maximum 

allowable crop cycle was reduced from 396 to 365 days 

 

17.3.6 Sequential vs parallel runs 

A sequential run was undertaken for all 5,838 HRZs for taro with 50 years of climate data input, which 

took 26.2 hours to complete. The model ran for 7.8 hours, whereas the pre- and post-processing of 

data took 18.4 hours (Table 17-4). Hence, more time was spent of data processing than model 

simulations. AquaCrop run times ranged from 14 to 22 seconds per zone.  

 

The model run time was divided by 12 (number of CPU threads) and was used to group HRZs together 

so that each grouping would complete in a similar time. The number of zones varied from 259 to 876, 

with an average of 487. The model run time increased to 17.3 hours, with each zone taking 28-59 

seconds to complete. However, since the 12 tasks were started simultaneously, the overall run time 

was determined by the task that took the longest to complete, i.e. 6.8 hours. Hence, running 12 parallel 

tasks reduced the overall run time from 26.2 to 6.8 hours, even though AquaCrop ran slower due to the 

parallel execution (Table 17-4). 

 

Table 17-4 Sequential vs parallel run time tests with 50 years of input climate data 

Run type 
Model run 

time (h) 

Pre- and post- 

processing (h) 

Total 

(h) 

Overall 

(h) 

Sequential   7.8 18.4 26.2 26.2 

Parallel 17.3 48.4 65.6   6.8 

 

17.3.7 Derivation of smaller tasks 

As noted previously, AquaCrop ran slower in parallel mode than in sequential mode. Further tests were 

conducted to better understand the impact of simultaneous model runs on overall completion time. Only 

14 HRZs were used for testing, each with only 10 years of input data (1950-1960). Figure 17-2 shows 

that the total run time doubled from 20 to 40 seconds when 9 simultaneous model runs were executed. 

Similar run times were noted when 4 or less threads were used (i.e. one model run per thread). When 

all 12 threads were utilised, the run time increased to 48 seconds. Hence, Figure 17-2 explained why 
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the model run times ranged from 14-22 seconds for the sequential run and from 28-59 seconds for the 

parallel run of 12 tasks. 

 

 
Figure 17-2 Increase in AquaCrop run time to complete simulations for 14 HRZs, each with 10 

years of input climate data, using the slower PC with 12 threads 

 

The above graph shows there was no benefit in running more than one task per thread, i.e. more than 

12 parallel model runs. However, as the number of parallel tasks increased, the PC became 

progressively more unresponsive. Further tests were done to determine the maximum number of 

simultaneous runs that could be performed, before the PC became too unresponsive. Based on the 

results, the decision was made to reduce the number of threads used for simultaneous model runs from 

12 to 10. Hence, two threads were used by the PC’s operating system to improve response to keyboard 

and mouse input. 

 

17.3.8 Load balancing: slower PC 

Although the parallel tasks were expected to finish with similar times, this was not the case, since the 

fastest task finished in 4.3 hours. The range in completion times of 2.5 hours (6.8-4.3 hours) was much 

larger than expected. A deeper analysis highlighted a problem for HRZs where temperatures were too 

cold for taro production and the crop cycle exceeded 396 days. Since AquaCrop was no longer run for 

these cold regions (cf. Section 17.3.5), the model run time for all 49 seasons was zero. Since these 

altitude zones were often located next to each other in mountainous regions, they resulted in a large 

grouping of 876 zones, which took the longest time to complete (6.8 hours). 

 

Since the groupings of HRZs were based on model run time only, it excluded the pre- and post-

processing times. For example, pre-processing time was spent on (i) extracting 365 days of climate 

data for each season, and (ii) determining the crop physiological maturity date (i.e. end season date). 

Post-processing involved generating statistics of each AquaCrop output variable and extraction of 

specific values from the statistics files, e.g. mean, median and coefficient of variation. However, as 

shown in Table 17-4, far more time is spent on data processing compared to the model run time. 

Therefore, the automation code was modified to record the total run time for each HRZ, which included 

not only the model run time, but the time required for all data processing. Hence, the total run time 

provided a more accurate method to load balance the runs, with the intention to further reduce 

computational expense. 
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An initial run was undertaken to provide the total run time per HRZ, which was then used to determine 

10 groupings of HRZs, i.e. each group was handled by a separate CPU thread. The run times were 

used for the second national model run and produced excellent results, considering the last task 

completed in 6.99 hours, only 25 minutes after the first task (Table 17-5).  

 

It became apparent that small gains were achieved via this iterative process, where the total run times 

per HRZ from the 2nd run were used to updated the groupings. For the 3rd national run test, the groupings 

changed slightly and ranged from 403 to 761 zones, resulting in a 23 minute difference between the 

first and last tasks. The total run time per HRZ from the 3rd national run was analysed to provide new 

groupings that ranged from 411 to 762 zones. From Table 17-5, the number of zones in the smallest 

grouping had increased to 411 zones, whereas the largest grouping decreased and stabilised at ~760 

HRZs. Using these groupings, the 4th national model run produced a 15-minute difference between the 

fastest and slowest, but the overall time was not improved. Hence, there was no need to continue this 

iterative process to further refine the HRZ groupings.  

 

Table 17-5 HRZ groupings to reduce the time difference between the fastest and slowest tasks 

(10 in total) running simulatenously on the slower PC with 30 years of input climate 

data 

Task no. 
No. of HRZs in each task  

2nd 3rd 4th 

  1 397 403 411 

  2 481 476 478 

  3 534 527 524 

  4 543 548 548 

  5 558 565 568 

  6 602 607 601 

  7 621 627 626 

  8 630 629 627 

  9 694 695 693 

10 778 761 762 

Time diff. (min) 25 23 15 

Total run time (hrs) 6.99 6.79 6.95 

 

17.3.9 WSL 1 vs WSL 2 

As noted in Section17.2.4, the automation procedure is mostly written in Unix, which ran on WSL 

version 1. Microsoft re-designed WSL version 2 to run on a “lightweight” virtual machine that provided 

both advantages and disadvantages when compared to WSL 1. The decision was made to test the 

performance of WSL 2 vs WSL 1. This required the Windows operating system on both PCs to be 

upgraded (i.e. from a 2019 to a 2021 build), which was a time-consuming process. 

 

Much effort was then spent on testing the automation code on WSL 2, which required certain 

modifications due to differences in the behaviour of certain commands in WSL 2 vs WSL 1. For example, 

“wslpath” is an important utility that converts Windows path to Linux paths and vice versa. For WSL 2, 

this utility does not convert the path if the file name does not exist, whereas the WSL 1 version does. 

Hence, code changes were required to remove the filename from the path before “wslpath” is run. 

 

17.3.9.1 RAM utilisation 

Microsoft reported that WSL 2 used far less RAM than WSL 1. Tests showed that a national run with 

AquaCrop consumed ~5.2 GB of memory using WSL 1, compared to only 258 MB for WSL 2. The 

virtual machine was therefore limited to using only 1 GB of RAM. This difference in RAM usage was 
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substantial and highlighted the memory efficiency of WSL 2, thus allowing more RAM to be allocated 

to the RAM drive. This was particularly important for the slower PC with 12 threads, which only had 32 

GB of RAM. Hence, the upgrade to WSL 2 would be beneficial due to the improved memory usage.  

 

17.3.9.2 Parallel processing 

Although WSL 2 requires at least one CPU thread and a portion of RAM to be dedicated to the virtual 

machine, it can utilise more than 64 threads. Further testing showed that there were no performance 

gains whether one or all threads were allocated to the WSL virtual machine. Hence, no changes were 

made to the configuration of using only one CPU thread and only 1 GB of RAM. Since one thread was 

required by the WSL virtual machine and another for the Windows operating system, 10 threads were 

still used for running AquaCrop in parallel sessions. However, On the faster PC with 20 threads, utilising 

an equivalent 18 threads resulted in a very unresponsive PC. The number of parallel model runs needed 

to be reduced from 18 to 12 for the PC to become adequately responsive to keyboard and mouse input.  

 

17.3.9.3 Performance tests 

According to Microsoft’s website, I/O performance in WSL 2 is faster in comparison to WSL 1. However, 

this does not apply when accessing data “outside” of the virtual machine, e.g. data stored in a RAM 

drive. In WSL, the version can easily be set to either 1 or 2, thus facilitating simple switching between 

the two versions for testing purposes. 

 

Using the final load balancing obtained from the iterative runs (cf. Table 17-5 in Section 17.3.8), WSL 

was set to version 2 and AquaCrop was again run for taro using historical climate input on the slower 

PC with 12 threads (of which only 10 were utilised for model runs). From Table 17-6, the results showed 

that the national run was 2.2 hours faster for WSL compared to WSL 1. Furthermore, the fastest (275 

minutes) and slowest (281 minutes) tasks finished only 6 minutes apart. This outcome was not 

expected, since the full I/O performance benefit provided by WSL 2 cannot be realised as the model 

runs are not performed within the virtual machine. A similar test was conducted on the faster PC, were 

WSL 1 running 12 parallel tasks took 13 minutes longer than WSL 2. Hence, the effort required to 

upgrade the operating system, which facilitated the upgrade to WSL version 2, proved to be beneficial. 

 

Table 17-6 Performance of version 2 of WSL compared to version 1 for taro using historical 

climate data input 

Parallel tasks 
WSL 1 WSL 2 

Grouping Time (min) Grouping Time (min) 

  1 411 397 626 275 

  2 478 399 627 275 

  3 548 401 693 277 

  4 627 403 762 278 

  5 568 404 548 279 

  6 601 405 601 280 

  7 524 405 568 280 

  8 626 406 411 280 

  9 693 408 478 280 

10 762 412 524 281 

Time diff. (min)  15  6 

Total run time (hrs)  6.95  4.77 
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17.3.10 Load balancing: faster PC 

The above iterative tests were repeated on the faster PC with 20 threads, of which only 12 were used, 

as explained in Section 17.3.9.2. Instead of using 50 years of climate data input (1950-1999), tests 

were conducted using 30 years of projected climate data. The national runs undertaken by Kunz and 

Mabhaudhi (2023).showed that the slowest overall run time for taro was achieved for one particular 

GCM (Norwegian Earth System Model) and time period (2070-2099). It is important to remember that 

an initial run was required to obtain the total run times per zone, which were then analysed to develop 

the HRZ groupings used for the 2nd national run. The latter run times were then used to refine the 

groupings for the 3rd national run, and so on. The overall results shown in Table 17-7 again highlight 

the success of the load balancing exercise, where the fastest national run time was achieved in the 3rd 

national run (i.e. similar to Table 17-5).  

 

Table 17-7 HRZ groupings to reduce the time difference between the fastest and slowest tasks 

(12 in total) running simulatenously on the faster PC with 30 years of input climate 

data 

Zonal 

grouping 

Time (min) to run each zonal 

grouping 

2nd 3rd 4th 

  1 449 451 452 

  2 457 460 463 

  3 462 466 469 

  4 466 468 471 

  5 466 472 476 

  6 476 472 503 

  7 476 475 469 

  8 489 479 507 

  9 495 502 476 

10 514 506 522 

11 516 525 474 

12 572 562 556 

Time diff. (min) 7 3 2 

Total run time (hrs) 3.04 2.72 2.89 

 

For the above two tables, a comparison of the 3rd and 4th iterative runs showed that as the time 

difference between the fastest and slowest task was reduced, the total run time increased. This occurs 

because almost all of the tasks are running concurrently, which means they all run slower (cf. Figure 

17-2 in Section 17.2.2). Hence, there is no benefit in perfecting the load balancing to reduce the time 

difference to almost zero. 

 

The model was also re-run for another crop and from an analysis of the total run times, it became 

apparent that load balancing would need to be performed for each crop. Since this represents a time-

consuming process involving three iterative runs, the decision was made to stop all load balancing work 

and continue with what had been achieved for taro. In other words, the HRZ grouping obtained from 

the 3rd national runs for taro was used for all other crops. 

 

17.3.11 Automation procedure 

A national run on the faster PC was now reduced to under three hours, allowed more modelling 

scenarios to be considered. For example, Kunz and Mabhaudhi (2023) completed national runs for four 

crops using climate projections from 6 GCMs for three 30-year time periods (1961-1990; 2015-2044; 

2070-2099). These 72 (4 x 6 x 3) national runs took 157.1 hours of computational time to complete, 
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thus averaging 2.2 hours each run. Since it took 49 minutes to trim the climate files with 140 years of 

daily data for one GCM to 12 characters, the model runs were done for each GCM at a time, but for all 

three time periods. Hence, each GCM run took ~6.6 (3 x 2.2) hours on average, after which the next 

GCM run was manually started. This resulted in time being “wasted’” in-between GCM runs, especially 

when model runs finished in the early hours of the morning. Hence, the total time taken to complete the 

simulations was 190.4 hours. 

  

The automation code has since been modified (and thoroughly tested) to automatically run all the crops 

in succession. Hence, one a single GCM climate dataset has been trimmed and copied to the RAM 

drive, the model runs are then completed for all crops and all time periods, thus (i) reducing the “idle” 

time between each national run to zero, and (ii) making the most efficient use of the climate dataset. 

Owing to the amount of RAM required to store the climate files, they are deleted immediately after all 

the model runs have been completed. This frees up space in the RAM drive to store the post-processed 

data and to compress all output that has been generated, i.e. by AquaCrop and the statistics utility. 

 

Since the faster PC has 32 GB more RAM than the slower PC, other changes were made to further 

improve the performance of the model runs. For example, instead of calculating statistics and 

compressing model output immediately after AquaCrop has finished running in each thread, these two 

procedures are now run only once, after all parallel model runs have been completed, i.e. for all crops 

and all time periods. This important change could only be implemented due to the additional RAM, 

allowing for the RAM drive to be sized accordingly. The stats utility is written in Fortran and is multi-

threaded, and thus automatically splits the analysis equally over all available CPU threads. The 

statistics only take 67 seconds to generate data for all 5,838 HRZs. Certain statistics (e.g. mean, median 

and coefficient of variation) required for mapping purposes are then extracted from the statistical output 

files to create .CSV files. Thereafter, the WinRAR utility is used to compress all model output, which 

also utilises all CPU threads, taking 142 seconds to finish. 

 

On the slower PC with only 32 GB of RAM, the (i) generation of statistics, and (ii) extraction of certain 

statistical values, could only be after the model runs had been completed for each crop and time period 

(due to the limited size of the RAM drive) and AquaCrop’s output had been compressed and moved to 

permanent disk storage. The process involved (i) copying the compressed AquaCrop output files to the 

RAM drive, (ii) uncompressing them, (iii) then generating the statistics, and finally (iv) extracting various 

statistical values. Thereafter, the AquaCrop output files were deleted from the RAM drive to free up 

space for compressing the statistical and extracted statistical files. This highlights the need to have 

sufficient RAM so that the model runs can be efficient as possible, since it facilitates the generation of 

statistics and data extraction immediately after the model runs have been completed. 

 

The various utilities that were developed to run AquaCrop for multiple seasons and HRZs also require 

input parameters read in from a file. These input files are re-created each time the model runs, even 

though the HRZ and season year are the only variables that change. To further improve performance, 

file templates were created, thus preventing static information (e.g. storage paths) from being re-

created. Hence, the zone and season numbers are the only variables being changed in the template 

files before each model run. 

 

When AquaCrop generates an error (e.g. “division-by-zero” error) message, the user is required to click 

the “OK” button, thus acknowledging this error message. AquaCrop then “hangs” and needs to be 

manually terminated and re-started. Since 2015, various techniques were used to automatically close 

the error message window, then to stop and re-start the model runs (cf. Section 17.1.4). In 2019, 

separate tasks were started to monitor AquaCrop runs by each CPU thread (i.e. 10 or 12 tasks in total). 

In 2023, this was reduced to only one task that monitors all simultaneous model runs. Since this single 

task runs more efficiently than 12 separate tasks, model crashes are detected quicker, thus resulting in 

improved performance. 
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17.3.12 Model run time 

As highlighted in Table 17-7, a national run using 30 years of climate input data for one crop takes ~2.8 

hours to complete, which increases to ~3.4 hours with 50 years of climate input data. This represents 

a substantial improvement compared to the first runs in 2015 that took over 62 hours. The effort has 

allowed additional modelling scenarios to be considered, such as multiple GCMS, planting dates and/or 

plant densities. 
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18 APPENDIX_I 

18.1 INTER-SEASONAL VARIATION IN CWP: OFSP 

 
(a) 

 

 
(b) 

Figure 18-1 Inter-seasonal variation in CWP for OFSP planted in November at a density of (a) 

31,447 and (b) 55,556 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 18-2 Inter-seasonal variation in CWP for OFSP planted in December at a density of (a) 

31,447 and (b) 55,556 plants ha-1 
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18.2 INTER-SEASONAL VARIATION IN CWP: TARO 

 

 
(a) 

 

 

 
(b) 

Figure 18-3 Inter-seasonal variation in CWP for taro planted in November at a density of (a) 

10,000 and (b) 27,000 plants ha-1 
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(a) 

 

 

 
(b) 

Figure 18-4 Inter-seasonal variation in CWP for taro planted in December at a density of (a) 

10,000 and (b) 27,000 plants ha-1 
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19 APPENDIX_J 

Based on a review undertaken by Lake (2022), different methods have been used to develop land 

suitability maps, which have been classified as either (i) traditional, or (ii) modern methods (Akpoti et 

al., 2019). The traditional methods mainly involve the use of GIS and are typically qualitative, 

quantitative and parametric based. The modern techniques consider multi-criteria evaluation, remote 

sensing and machine learning approaches (Akpoti et al., 2019).  

 

19.1 TRADITIONAL METHODS 

The majority of land suitability mapping is undertaken using traditional methods that are based on 

overlays of certain optimum growth criteria. These criteria are typically based on (i) the crop, and (ii) the 

availability of spatial and temporal datasets. Traditional methods assess crop options using qualitative, 

quantitative and parametric methods based on biophysical characteristics (Mugiyo et al., 2021a). These 

methods are categorised by lack of categorical data as well as socio-economic data. A number of case 

studies are presented next in chronological order. These case studies provide a brief description of the 

methodology used to develop the land suitability maps. 

 

19.1.1 Case study 1: Holl et al. (2007) 

Holl et al. (2007) considered the production of Jatropha curcas in South Africa, assessing its water use 

and bio-physical potential. For the latter, a land suitability map was produced by applying thresholds 

(i.e. cut-off values) to five criteria, namely rainfall, temperature, soils, frost and slope. The following 

three-tiered approach was used: 

1) elimination of areas that are unsuitable for crop production, 

2) yield estimates were then calculated using a weighted modelling approach based on climate 

and other data, and 

3) a formal equation-driven analysis was used to produce estimates of potential yield. 

 

The method used by Holl et al. (2007) provided a more detailed description of areas suitable for 

production. The three-tiered approach allowed unsuitable areas to be removed first and thus, only 

remaining areas deemed suitable were further divided into land suitability classes. For step 2, the 

selected criteria (e.g. rainfall and temperature) were weighted according to their relative importance in 

determining crop yield. With the aid of GIS (Geographic Information System), the weightings were then 

used to calculate spatial estimates of initial yield. At the time of the study, there was no jatropha yield 

equation for South African growing conditions. As a result, sunflower yield and tree growth equations 

were combined and then adjusted according to the sensitivities and tolerances for jatropha (Holl et al., 

2007). The equation was then used to estimate jatropha yield. Yield categories were developed using 

statistical properties, assuming that yield follows a normal distribution. The final map identified areas 

suitable for jatropha production based on the estimated yields. 

 

19.1.2 Case study 2: Jewitt et al. (2009a) 

Jewitt et al. (2009a) developed land suitability maps identifying potential growing areas for selected 

biofuel crops such as cassava, canola, jatropha, sweet sorghum, sugarbeet, soybean (Figure 19-1) 

and sunflower. The study involved simple overlays of rainfall and temperature data using a GIS that 

highlighted optimum growing areas. Climatic thresholds for optimum growth were sourced from the 

available literature. These thresholds were then applied to spatial datasets of rainfall and temperature 

to identify areas deemed suitable and unsuitable for growth. 
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Figure 19-1 Land suitability map for soybean production (Jewitt et al., 2009a) 

 

19.1.3 Case study 3: Kunz et al. (2015b) 

Kunz et al. (2015b) also developed land suitability maps that identified areas suitable for biofuel crop 

cultivation. The study focused on sugarcane, sugarbeet, grain sorghum, soybean (Figure 19-2) and 

canola. The maps were created by applying five criteria, namely rainfall, temperature, relative humidity, 

soil depth and slope. The selection of these criteria was based on a study undertaken by Khomo (2014) 

for soybean. The criteria were then applied to distinguish between suitable (highly suitable (S1), 

marginally suitable (S2), moderately suitable (S3) and unsuitable (N1) growing areas. 

 

 
Figure 19-2 Land suitability map for soybean production (Kunz et al., 2015c) 

 

The study followed the first two phases from Holl et al. (2007) (cf. Section 19.1.1). Firstly, permanently 

unsuitable areas for production (N2) were eliminated such as urban and protected areas, as well as 

water bodies. Thereafter, criteria were then ranked according to their relative importance in determining 

crop growth. The latter weightings were based on expert opinions and thus, were subjective. Rainfall 

was considered most important for crop growth (weighted at 40%), followed by temperature and slope 
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(each 20%) and relative humidity and soil depth (each 10%). Kunz et al. (2015b) stated that the 

distribution of rainfall during the growing season and temperature stresses impact the crop’s growth. 

Since rainfall is not distributed evenly over the growing season, a monthly crop coefficient (KC) approach 

was used to determine the crop’s rainfall requirement in each month (or growth stage). Finally, currently 

unsuitable areas (N1) such as degraded lands and commercial forestry plantations were removed. 

 

19.1.4 Case study 4: Khalid et al. (2021) 

Khalid et al. (2021) identified and mapped suitable sites for bioenergy production using Jatropha curcas 

in the northern region of Pakistan. The study applied a fairly unique approach to mapping land suitability 

and adopted the following two methods as follows: 

1) The first applied selected thresholds to climate, elevation and slope data to determine three 

suitability classes (more, moderate and less suitable). This was similar to previous studies 

involving Jatropha curcas that predominantly used climate (rainfall and temperature), elevation 

and slope data (e.g. Holl et al., 2007; cf. Section 19.1.1). The study area was divided into 

smaller sub-regions using the Thiessen polygon method based on climate and soil data input. 

 

2) The second method used FAO’s AquaCrop model (Steduto et al., 2009) with inputs of, inter 

alia, crop density, canopy cover, harvest index and threshold temperature, to estimate the 

expected yield of jatropha. Owing to the lack of reliable information on jatropha yield, the study 

used simulated yield (Y in t ha-1) in order to fill this knowledge gap. The model was also used 

to estimate the water productivity (WP in t m-3) of jatropha. From the modelled output, the water 

footprint (WF in m3 t-1) was calculated as 1/WP. The study undertook a simple overlay of Y and 

WF within each of the suitability classes, which showed that, as expected, the most suitable 

areas were associated with high Y and low WF. 

 

19.2 MODERN TECHNIQUES 

Akpoti et al. (2019) described modern land suitability methods as those that consider more complex 

methods that require additional input datasets, compared to the simpler, traditional methods (cf. 

Section 19.1), as they. Mugiyo et al. (2021a) highlighted three main categories of modern methods, 

namely those that made use of: 

• computer assisted (e.g. GIS, remote sensing and cloud computing) technologies, 

• machine learning (e.g. species distribution models such as MaxEnt, fuzzy rule-based systems 

and artificial neural networks), and 

• multi-criteria decision analysis (MCDA), in particular the Analytical Hierarchy Process (AHP). 

  

Mugiyo et al. (2021a) also identified a fourth category involving the use of crop simulation models. An 

analysis of 101 papers related to land suitability assessment showed that the most common method 

involved machine learning (25.7%), followed by AHP (14.9%), fuzzy logic (12.9%) and crop simulation 

models (9.9%). Based on this, a number of case studies are presented next, which focus on the two 

most common methods used in land suitability studies.  

 

19.2.1 Machine learning 

The Maximum Entropy (MaxEnt) model is a general-purpose machine learning approach with an 

intuitive and exact mathematical formulation (Philips et al., 2006; Phillips and Dudik, 2008) that was 

designed to predict species distributions. However, it has also been used to identify suitable areas for 

crop cultivation (Mugiyo et al., 2022). A presence dataset is used to train MaxEnt, which represents a 

list of geographical coordinates (i.e. point locations) where the target species (or crop) has been 

successfully grown in the past. The presence points, together with selected predictor variables (e.g. 

rainfall and temperature), are used by MaxEnt to predict the suitability of other locations to species/crop 
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growth. Hence, MaxEnt can be used to create land suitability maps by predicting the probability of 

current crop growth at a specific location, which ranges from 0 (unsuitable for growth) to 1 (ideally suited 

for growth). Two case studies are presented next that used MaxEnt to develop land suitability maps for 

crops grown in South Africa. 

 

19.2.1.1 Case study 5: Estes et al. (2013) 

Estes et al. (2013) used the MaxEnt model to create a land suitability map for the cultivation of maize 

in South Africa. The study made use of both presence and absence data points. The absence points 

represented unsuitable maize growing areas. In total, 11,390 presence points and 11,390 absence 

points were used. Five criteria (minimum and maximum temperature, seasonal precipitation, soil depth 

and topsoil organic carbon) were used to predict maize suitability. MaxEnt was also trained with high-

productivity occurrence points, which improved the prediction considerably. Estes et al. (2013) also 

used the DSSAT crop model to produce a land suitability map using the climate and soil databases 

available for the quinary sub-catchments. The study showed that both MaxEnt and DSSAT were equally 

successful in predicting overall crop suitability when compared to a land suitability map produced from 

observed maize yield data. It is important to note that this study demonstrated the ability of crop yield 

models to predict land suitability. 

 

19.2.1.2 Case study 6: Taghizadeh-Mehrjardi et al. (2020) 

Other types of machine learning algorithms that are used for land suitability mapping include Random 

Forest (RF) and Support Vector Machine (SVM). Taghizadeh-Mehrjardi et al. (2020) used these two 

algorithms to develop land suitability maps for rainfed wheat and barley in western Iran. The RF and 

SVM algorithms were chosen because they work well when large amounts of training data are not 

available. A square root method was used to calculate land suitability, which considered 11 criteria, 

namely rainfall, temperature, slope, soil texture, soil depth, gravel, CaCO3, soil pH, organic carbon, 

electrical conductivity and exchangeable sodium percentage. The study also followed the land suitability 

classes developed by the FAO (1976), where N2, N1, S3, S2 and S1 were given ranges of 0-12.5,  

12.5-25, 25-50, 50-75 and 75-100, respectively. The map generated using the two machine learning 

algorithms was then compared to a traditional land suitability map. 

 

19.2.1.3 Case study 7: Mugiyo et al. (2022) 

Mugiyo et al. (2022) also used MaxEnt to identify suitable growing areas for selected indigenous crops 

(i.e. sorghum, cowpea, amaranth and taro). The study used 240 coordinates representing indigenous 

crop growing areas in KwaZulu-Natal, of which half were used for model training and the other half for 

model validation. The predictor variables were as follows: 

• four climatic (seasonal precipitation, maximum temperature, minimum temperature & length of 

growing period), 

• seven soil (available soil water capacity, soil pH, soil depth, soil texture & fraction of clay, silt 

and sand), 

• two topographic (elevation & slope), and 

• two socio-economic variables, namely 1distance along road network (ACCESS) and distance 

to metro cities (EUCDIST). 

 

The maps were then produced using the mean and 95th percentile of 1,000 model runs that were 

conducted for crop suitability. The suitability classes were defined as highly suitable (S1; suitability 

index > 0.80, moderately suitable (S2; 0.60-0.79), marginally suitable (S3; 0.20-0.59) and unsuitable 

(N1; < 0.19). The map produced for taro in KZN is shown in Figure 19-3. 
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Figure 19-3 Land suitability map for taro in KZN using MaxEnt (Mugiyo et al., 2022) 

 

MaxEnt also outputs the contribution of each predictor variable to the overall suitability index. These 

contributions are displayed as jack-knife plots (Figure 19-4). The plot showed the importance of 

precipitation in predicting taro suitability, followed by length of growing period and temperature. Soil 

depth, soil pH and slope provided the least contributions to overall suitability. Similarly, the two socio-

economic variables (EUCDIST and ACCESS) did not contribute much to predictability (Figure 19-4). 

 

 
Figure 19-4 Jack-knife plot evaluating the relative importance of environmental variables for 

predicting suitability for taro cultivation (Mugiyo et al., 2022) 

 

19.2.2 Analytical hierarchy process 

One of the most widely used and most reliable MCDA methods is AHP (Mugiyo et al., 2021a). The AHP 

method developed by Saaty (2008) has been used to deal with complex decision making (Mugiyo et 

al., 2021a). The method uses pairwise comparisons to capture both subjective and objective 

components of decision making and then synthesises the outcome into a single index (Saaty, 2008). 
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AHP uses a nine-point scale that weights each criterion according to its importance (Mugiyo et al., 

2021a). A score of 1 means that each of the two criteria have equal importance, whereas 9 means one 

of criterion is far more important than the other (Table 19-1). Two case studies are presented next that 

used AHP to develop land suitability maps. 

 

Table 19-1 The fundamentals for pairwise comparison (Saaty, 2008) 

Intensity of 

importance 
Definition Explanation 

1 Equal importance 
Two activities contribute equally to the 

objective 

3 
Moderate importance of one 

over another 

Experience and judgement slightly favour one 

activity over another 

5 
The strong or essential 

importance 

Experience and judgement strongly favour one 

activity over another 

7 
Very strong or demonstrated 

importance 

One activity is strongly favoured, and its 

dominance showed in practice 

9 Extreme importance 

The evidence favouring one activity over 

another is of the highest possible order of 

affirmation 

2, 4, 6 & 8  
Even numbers represent intermediate values 

between the two adjacent judgements 

 

19.2.2.1 Case study 8: Mufungizi et al. (2020) 

Mufungizi et al. (2020) also developed land suitability maps using AHP for maize and sorghum in the 

Vhembe district of South Africa. The study used (i) the AHP method to determine the criteria weightings 

as described by Saaty (2008), and (ii) the weighted linear combination method to synthesise the 

preference information (Chou, 2013). The maps were created by applying six criteria identified from a 

literature review, namely soil pH, soil structure, elevation, rainfall, maximum and minimum temperature. 

For both crops, soil pH and soil structure were found to be the most important criteria for growth, which 

differs to the weightings produced by MaxEnt for taro (cf. Figure 19-4). Some crops need more acidic 

soils, whereas others (e.g. maize) prefers a neutral soil for optimum growth. Hence, the soil pH criterion 

for sorghum was assigned a slightly higher weighting than compared to maize. Since maize requires 

between 450 to 600 mm of water per season (du Plessis, 2003), rainfall for maize was assigned a higher 

ranking (3rd) compared to sorghum, which is considered a drought resistant crop. Maximum temperature 

for maize is the least important variable (ranked 6th), compared to a ranking of 3 for sorghum. 

 

19.2.2.2 Case study 9: Mugiyo et al. (2021b) 

Mugiyo et al. (2021b) used AHP to create a land suitability map for four indigenous crops, namely 

sorghum, cowpea, taro and amaranth. The nine criteria used in the pairwise comparison were as 

follows: rainfall, temperature, reference evapotranspiration, length of growing period, elevation, slope, 

land use land cover, soil depth and distance from road. Mugiyo et al. (2021b) assigned the highest 

pairwise weighting to rainfall, whereas distance from the road had the lowest weighting. AHP then 

calculates the overall weighting for each criterion using Eigenvectors. For each pairwise comparison, a 

consistency ratio and random index were used to calculate a consistency index, which must be below 

0.1 in order to be accepted. After the weightings were determined, the weighted linear combination 

method was applied. The final suitability index was determined using Liebig’s law of the minimum. The 

study also followed the land suitability classes developed by the FAO (1976), where N2, N1, S3, S2 

and S1 were assigned a final suitability index 0-29, 30-44, 45-59, 60-80 and > 80, respectively. The 

map produced for taro is shown in Figure 19-5, which identifies very few areas deemed highly suitable 
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for taro cultivation (Mugiyo et al., 2021b). This is in contrast to the map produced by Mugiyo et al. (2022) 

using the MaxEnt model (cf. Figure 19-3). 

 

 
Figure 19-5 Land suitability map for taro based on AHP (Mugiyo et al., 2021b) 

 

19.3 DISCUSSION AND CONCLUSIONS 

Various methods exist to develop land suitability maps that range from (i) traditional methods involving 

simple overlays of spatial data (e.g. climate and soils), to the (ii) more complex modern methods 

involving remoted sensing, machine learning, AHP and computer simulation models. The advantages 

of using traditional methods for land suitability assessment is that they (i) are simple, (ii) less time 

consuming to apply, and (iii) can provide relatively accurate results. This accuracy is, however, 

dependent on the number of variables used, i.e. in general, the more variables, the greater the accuracy 

of the map. The disadvantages are that the (i) thresholds are not always known for a particular crop 

(especially for neglected and underutilised crops), (ii) the weightings of each variable are subjective, 

and (iii) some variables are not independent (i.e. collinear). The advantages of using the modern 

methods are that (i) they tend to provide more accurate results, and (ii) methods such as MaxEnt provide 

objective (rather than subjective) criteria weightings. However, such methods are more complex and 

time consuming to implement (Lake, 2022). 

 

Of the nine case studies presented, two traditional approaches utilised crop yield data. Firstly, Holl et 

al. (2007; cf. Section 19.1.1) developed a simple yield equation for jatropha and then applied it to 

identify areas deemed suitable for production. Secondly, Khalid et al. (2021; cf. Section 19.1.4) used 

AquaCrop yield estimates to verify land suitability classes derived using a traditional approach. Their 

results showed that, as expected, the most suitable areas were associated with high yield and low water 

footprint. For the modern methods, Estes et al. (2013; cf. Section 19.2.1.1) produced a land suitability 

map for maize using a large database of observed yield data, which was then compared to maps 

developed using (i) MaxEnt, and (ii) yield data simulated by the DSSAT model. The comparison showed 

that both approaches produced similar results to that obtained using observed yield data. Taghizadeh-

Mehrjardi et al. (2020; cf. Section 19.2.1.2) compared potential crop yield to actual yield to determine 

input efficiencies. Therefore, only four of the nine case studies utilised crop yield data to determine land 
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suitability for crop production, which is surprising considering the fact that suitability class and yield and 

closely related, i.e. high suitability equates to high yields. Of these, two case studies utilised output from 

crop simulation models (AquaCrop and DSSAT), which Mugiyo et al. (2021a) identified as the fourth 

category of modern methods (Lake, 2022). 
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20 APPENDIX_K 

20.1 NATIONAL LAND COVER OF 2009 

Khomo (2014) obtained spatial datasets of (i) protected areas (formal), and (ii) national land cover 

(2009) from SANBI’s Biodiversity-GIS data portal. These two spatial datasets were combined to identify 

the following land covers/uses deemed unsuitable areas for crop production: 

 

• protected areas (e.g. nature reserves, national parks, world heritage sites and protected natural 

forests), 

• urban (built-up) areas, rural clusters and smallholdings, 

• water bodies (lakes, dams and wetlands), 

• natural (indigenous forest, woodland, bushland, shrubland, herbland, Fynbos), 

• commercial forest plantations, and 

• bare rock/soil and degraded land. 

 

All areas that were classified as suitable for soybean cultivation that overlapped with the unsuitable 

areas (Figure 20-1) were excluded using GIS. 

 

 
Figure 20-1 Location of areas considered unsuitable for crop production in South Africa (after 

Khomo, 2014) 

 

20.2 NATIONAL LAND COVER OF 2018 

In this project, a similar approach to that adopted by Khomo (2014) was used. Land uses that are 

permanently unsuitable (N2) for crop production were identified, i.e. mining, water bodies, wetlands, 

protected and urban areas. Similarly, areas that are currently not suitable (N1) were also identified, 

such as indigenous forests, orchards, commercial forestry and sugarcane production areas. Well 

established industries are unlikely to switch to RTC production. The clearing of indigenous forests for 

Unsuitable areas for 
crop production 

http://bgis.sanbi.org/
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crop cultivation should be avoided to protect their high biodiversity potential. The 2018 national land 

cover map (1 km2 resolution) and the 2022 protected areas dataset were obtained from SAEON and 

DFFE, respectively. The latter dataset was imported into ArcGIS and converted from vector to raster 

format. If the land cover occupied more than 50% for each 1 km2 grid cell (or pixel), it was assumed the 

entire pixel had the same land use. The land use raster layers were then combined and reclassified as 

1 (N1) and 2 (N2), as shown in Figure 20-2. 

 

 
Figure 20-2 Unsuitable land uses for crop production based on the 2018 national land cover 

dataset (Lake, 2022) 

 

 

https://catalogue.saeon.ac.za/
https://egis.environment.gov.za/data_egis/data_download/current

