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EXECUTIVE SUMMARY 
 

BACKGROUND AND RATIONALE 

Indigenous forests (known in other parts of the world as ‘natural forests’) are a multilayered vegetation 

structure comprised of largely evergreen or semideciduous trees (often endemic or sub-endemic) with 

a crown cover of over 75%. Bushes and shrub plant species may also be present, but graminoid species 

are rare (Von Maltitz et al., 2003). Although indigenous forests cover less than 0.4% of South Africa's 

total land area, they are home to more than 1 700 indigenous tree and shrub species belonging to about 

370 genera and 97 families (Dye et al., 2008b). Forestry activities in indigenous forests involve 

protecting, developing and managing this critical natural and cultural resource. However, the indigenous 

forests in South Africa are highly fragmented and diverse, which complicates their effective 

management. 

South Africa is classified as a water-scarce country, with an estimated average annual rainfall ranging 

between 451 and 495 mm, depending on the source quoted. An estimated 21% of SA is considered 

arid, receiving less than 200 mm/yr of rainfall, with 44% regarded as semi-arid, receiving between 200 

and 500 mm/yr (Annandale et al., 2011). The recent droughts experienced in Southern Africa drew 

renewed attention to the water scarcity in the region and have intensified the competition for water 

resources among land uses. The chief competitors are urban settlements, agriculture and forestry. 

In a recently completed Water Research Commission (WRC) report, titled THE APPLICATION OF 

NATIONAL SCALE REMOTELY SENSED EVAPOTRANSPIRATION (ET) ESTIMATES TO 

QUANTIFY WATER USE AND DIFFERENCES BETWEEN PLANTATIONS IN COMMERCIAL 

FORESTRY REGIONS OF SOUTH AFRICA (Van Niekerk et al., 2023) (WRC Report No. 29661/23), 

the value of Earth observation (EO) methods for estimating water use by plantation forests at regional 

(national) scales was demonstrated. EO methods were also used to quantify the water use of different 

commercial forest genera (e.g. Eucalyptus, Pinus and Acacia). Other factors impacting water use, such 

as plantation age, species (clone/hybrid), climate and terrain, were also investigated. One of the 

recommendations of that project was to carry out a similar study on indigenous forests as this will assist 

in better understanding the impact of afforestation and deforestation on stream-flow reduction. It will 

also assist in understanding how environmental and topographic factors influence water use of trees at 

regional scales.  

METHODOLOGY 

This project aimed to quantify and characterise the water use (evapotranspiration) of indigenous forests 

throughout South Africa. The first step towards achieving this aim was to produce a geographical 

database of indigenous forests in South Africa. The knowledge review revealed that the most  

up-to-date and accurate indigenous forest map was the recently produced IF2021 (Mucina et al., 2022), 
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consisting of 21 forest types (in South Africa). Despite its overall quality, upon close examination, the 

IF2021 exhibited spatial accuracy inconsistencies stemming from digitisation at different spatial scales. 

The project team consequently set out to improve the IF2021 for this project by using a fully automated 

knowledge-based image classification (KBIC) procedure developed to differentiate indigenous forests 

from other land covers. The KBIC makes use of a range of EO data, including multispectral satellite 

imagery (Sentinel-2), very high spatial resolution (50 cm) and low spectral (RGB) aerial imagery, as 

well as a 2 m resolution digital surface model (DSM). The KBIC procedure was applied to areas with 

known indigenous forests to produce a highly accurate indigenous forest cover map, internally referred 

to as IF2022, which was further refined through manual correction into the IF2023. The IF2023 was 

subsequently disaggregated into forest types using the IF2021 forest type classification as basis. A 

proximity-based geospatial methodology was developed for this purpose. The resulting map is called 

IF2024. The final step in the indigenous forest mapping procedure was to manually check and edit the 

IF2024, facilitated by an online geographic information system (GIS) web application developed in-

house for this purpose.  

The second project objective was to determine indigenous forests' consumptive water use (actual ET) 

using existing remote sensing (RS) data. The WaPOR product (FAO 2024) was deemed the most 

suitable for this purpose and monthly WaPOR ET values from 2009 to 2023 were extracted for each 

forest type in the IF2024. The extracted WaPOR data were compared to historical field-based 

measurements for verification purposes (Objective 3). Unfortunately, such data were scant, and only a 

handful of historical measurements could be directly related to the extracted WaPOR ET data. 

Nevertheless, the information helped us understand the uncertainties in the WaPOR ET data.  

The final objective of this project was to describe, analyse and interpret location-specific differences in 

water use between indigenous forest types at specific locations in South Africa. A total of 24 readily 

available climate, terrain and soil characteristics were collated at national scale and compared to the 

ET values for all forest types. Univariate statistical analyses (correlation analyses and regression 

modelling) were conducted to find relationships between each environmental variable and the ET values 

extracted per forest patch. In addition, multivariate machine learning modelling was used to determine 

which environmental factors are the most important drivers of forest water use. The results of these 

analyses were interpreted within the ecological and biophysical context of the various forest types.     

MAIN FINDINGS 

One of the main findings of this project is that there is a dire need for an up-to-date and accurate 

indigenous forest map of South Africa. The absence of such a map makes studies about water use 

impossible. More importantly, without such a map, there is no way to assess whether our forests are 

being managed sustainably and determine the rate at which forests are lost. Based on international 

trends and the growing pressures relating to reporting greenhouse gas emissions from different land 

uses, an accurate and up-to-date indigenous forest map will be critical to quantify the carbon stocks 

and fluxes of forests and their relationship to biodiversity. This project updated and refined the latest 

indigenous forest map (Mucina et al., 2022), the IF2021. The refined map, called IF2024, is an 
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invaluable resource, not only for this project, but for future research. 

Using the IF2024 and long-term WaPOR ET data, we found that the median ET of all indigenous forests 

is 989 mm/yr, with medians per forest type ranging from 296 mm/yr (Arid Zone Riparian Woodland, 

ARF1) to 1 338 mm/yr (Subtropical Indian Ocean Mangrove, AMAN1). Comparing WaPOR ET 

estimates to previous field-based ET estimates showed varying results. For instance, the annual ET for 

Cape Afrotemperate Forest was estimated as 933 mm/yr and 1 175 mm/yr in previous studies, while 

the median WaPOR ET for this forest type is 1 224 mm/yr. In contrast, the ET for Subtropical Scarp 

Forest was estimated by Dye et al. (2008c) to be 668 mm/yr, while the WaPOR ET median for this 

forest type is 1 054 mm/yr. The ET of Arid Zone Riparian Woodland was estimated by Dye et al. (2008c) 

to be 1 094 mm/yr, while the median ET of this forest type is 296 mm/yr according to the WaPOR data. 

These large deviations are concerning and cannot be explained. Therefore, the absolute ET estimates 

produced in this research project should be interpreted by taking these uncertainties into account.  

Given that the focus of this project was on studying regional water use variations and relating these 

variations to a selection of environmental factors, the WaPOR ET data was used as it provides a long-

term ET dataset that has been proven useful in past studies. More importantly, it provides ET data at 

regional scales. Univariate statistical analyses and multivariate machine learning were used to better 

understand the regional variations in indigenous forests' water use and relate these variations to 

environmental conditions. None of the univariate statistical methods produced strong models, which 

suggests that water use of indigenous forests is complex and not determined by a single factor 

considered, or that other important controlling variable(s) were not included in this analysis. The fact 

that we relied on readily available long-term mean environmental conditions in this analysis, likely 

contributed to the weak models.  

Multivariate (random forest regression) machine learning (using the WaPOR ET as the target variable 

and 24 climatic, terrain and soil-related variables as predictors) produced a very strong model (R2 = 

0.98). The random forest algorithm identified long-term mean annual rainfall as the most important 

driver of water use. This finding was not surprising, given the importance of soil water availability in 

driving ET. Summer solar radiation was identified as the second most important driver of forest ET. 

Where sufficient soil moisture is available and if plant physiological thresholds are not exceeded, 

increased solar radiation will increase transpiration and evaporation since more energy is available to 

drive these processes. The other climate-related variables that were identified as being important 

drivers of forest water use included heat units (3rd), solar radiation during winter (4th) and vapour 

pressure deficit (7th).  

Various terrain-related variables were also compared to the WaPOR ET values extracted per forest 

type. Terrain morphology was identified as the most important terrain-related variable (ranked 8th 

overall), positive topographic openness (9th), elevation (10th) and negative topographic openness (11th). 

However, finding consistent relationships between terrain-based variables and water use was difficult. 

The relationships depend on the forest type, likely because forest types are composed of many different 

species.  



   

 

iv 
 

The analysis also showed soil depth and soil clay content as variables impacting forest water use, with 

soil clay content being the fifth most important variable, and soil depth the seventh. As with terrain-

related variables, it was challenging to find consistent patterns in the relationship between soil 

characteristics and forest water use, likely related to the resolution and accuracy of the soil maps. In 

some cases, such as Southern Mistbelt Forest and Northern Mistbelt Forest, water use of forests was 

consistently lower in shallow soils compared to deeper soils, highlighting the importance of soil water 

over the soil profile. 

This study illustrated the value of using EO data in studying how water use varies among forest types, 

within the same forest type, regions, and over time. It further showed the benefits of coupling this with 

machine learning, and that the complex interrelationships between EO-based forest ET and GIS-based 

environmental conditions can be modelled to a high accuracy (235 mm/yr). To our knowledge, this 

finding is novel and a contribution to new knowledge.  

RECOMMENDATIONS 

Despite the increasing availability of ET data products internationally, high spatial resolution and 

accurate datasets remain lacking for areas with complex vegetation and contrasting climatic conditions. 

Based on the comparison of the WaPOR data to published ET data of indigenous forests, it is 

recommended that the WaPOR-based ET estimates be interpreted and used with caution, as in most 

cases, WaPOR tended to overestimate ET, likely due to the relative course resolution of the product 

(250 m) compared to the high spatial variation of the target classes (forest patches). We also encourage 

closer collaboration between SA researchers and the providers of international ET data products, and 

feedback to data providers, so that these valuable and costly data sources can be improved. The 

available field-based measurements against which it could be compared (for verification purposes) are 

scant and insufficient to properly assess its accuracy. More field-based measurements of ET, within 

indigenous forests, are needed. Ideally, several forest types should be targeted (the results of this 

project can be used to assist with selection). The expansion of the EFTEON data network could in future 

prove very valuable.  

Despite the uncertainties in the WaPOR ET data, the range of analyses carried out in this project 

highlighted the intricate relationships between environmental conditions and water use of forests. 

Future studies should consider analysing individual forest types separately as this might reduce the 

large variations in ET observed. Ideally, such an undertaking should include field-based ET 

measurements.  

The long-term climate data used in this study (Schulze, 2007) were last updated in 2007. It is critical 

that fundamental climate spatial data such as long-term monthly rainfall, temperature, solar radiation, 

vapour deficit and relative humidity be updated. The potential of atmospheric reanalysis data (e.g. ERA5 

from ECMWF) should be investigated and if deemed suitable, data should be extracted for use in future 

studies, or integrated with other climatic data sets. The lack of accessible weather station data is holding 

South African research back. Urgent interventions are needed to ensure that data and research findings 
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are open access.  

We strongly recommend that South Africa develop capacity in digital soil mapping, complemented by 

country-wide soil sampling. Many hydrological and carbon balance models need high-resolution soil 

type and property maps. Soil properties (like soil water holding capacity) are highly variable across the 

landscape and expensive to quantify, but collaboration with private laboratory services should be 

explored. Such maps will be invaluable for water use studies (but were not available for this study), and 

can also inform decisions on crop plantings and water use efficiencies in agriculture.   

The indigenous forest map refined in this study is an invaluable resource for protecting and managing 

our indigenous forests. It is recommended that verification and editing processes continue beyond the 

end of this project. Ideally, indigenous forest mapping should be operationalised and updated on a 

frequent (e.g. annual or bi-annual) basis.  

Information on the water use of different indigenous forest types generated as part of this project, 

complement ET information generated in past studies which should prove very valuable for water 

resource planning in South Africa. We encourage the use of the ET data generated here (for indigenous 

forest types), not as much to contrast it against other vegetation types or commercial forestry 

plantations, but to encourage the allocation of water in catchment management plans to support the 

ecological functioning of this important land use type.  

Apart from contributing to new knowledge, this project significantly contributed to developing human 

capacity. Four post-graduate students directly benefitted from this project. In addition, several 

undergraduate students, as well as two interns from the Gert Sibande District Municipality in 

Mpumalanga, assisted with the forest mapping component of the project. These students were exposed 

to advanced remote sensing and geospatial techniques, including object-based image analysis and 

machine learning. 
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1 INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Indigenous forests (known in other parts of the world as ‘natural forests’) are a multilayered vegetation 

structure comprised of largely evergreen or semideciduous trees (often endemic or sub-endemic) with 

a crown cover of over 75%. Bushes and shrubs plant species may also be present, but graminoid 

species are rare (Von Maltitz et al., 2003). Although indigenous forests cover less than 0.4% of South 

Africa's total land area, they are home to more than 1 700 indigenous tree and shrub species belonging 

to about 370 genera and 97 families (Dye et al., 2008b). Forestry activities in indigenous forests involve 

protecting, developing and managing this critical natural and cultural resource. However, the indigenous 

forests in South Africa are highly fragmented and diverse, which complicates their effective 

management. 

South Africa is classified as a water-scarce country, with an estimated average annual rainfall ranging 

between 451 and 495 mm, depending on the source quoted. An estimated 21% of SA is considered 

arid, receiving less than 200 mm/yr of rainfall, with 44% regarded as semi-arid, receiving between 200 

and 500 mm/yr (Annandale et al., 2011). The recent droughts experienced in Southern Africa drew 

renewed attention to the water scarcity in the region and have intensified the competition for water 

resources among land uses. The chief competitors are urban settlements, agriculture and forestry. 

In a recently completed Water Research Commission (WRC) report, titled THE APPLICATION OF 

NATIONAL SCALE REMOTELY SENSED EVAPOTRANSPIRATION (ET) ESTIMATES TO 

QUANTIFY WATER USE AND DIFFERENCES BETWEEN PLANTATIONS IN COMMERCIAL 

FORESTRY REGIONS OF SOUTH AFRICA (Van Niekerk et al., 2023), the value of Earth observation 

(EO) methods for estimating water use by plantation forests at regional (national) scales was 

demonstrated. EO methods were also used to quantify the water use of different commercial forest 

genera (e.g. Eucalyptus, Pinus and Acacia). Other factors impacting water use, such as plantation age, 

species (clone/hybrid), climate and terrain, were also investigated. One of the recommendations of that 

project was to carry out a similar study on indigenous forests as this will assist in better understanding 

the impact of afforestation and deforestation on stream-flow reduction. It will also assist in 

understanding how environmental and topographic factors influence water use of trees at regional 

scales.  

1.2 Aims……… 

This project (C2020/2021-00510) aims to quantify and characterise the water use (evapotranspiration) 

of indigenous forests throughout South Africa. The specific objectives are to: 

1. Produce a geographical database of indigenous forests in South Africa; 

2. Determine consumptive water use (actual ET) of indigenous forests using existing remote 

sensing (RS) data; 
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3. Validate (ground truth) RS-based consumptive water use of indigenous forests using historical 

field-based measurements; and 

4. Describe, analyse and interpret location-specific differences in water use between indigenous 

forest types at specific locations in South Africa. 

1.3 Research and development activities and report structure 

The project was carried out in two phases, namely: 

5. Indigenous forest mapping; and 

6. Quantify and analyse consumptive water use (actual ET) of indigenous forests. 

Figure 1-1 depicts the project phases and the corresponding activities. The steps within each Phase 

are numbered from 1-3. These steps are used in subsequent sections (e.g. the first activity in Phase 1 

is Draft indigenous forest mapping, which is labelled as Phase 1.1). 

 
Figure 1-1 Activities (steps) of Phases 1 and 2 
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2 KNOWLEDGE REVIEW 

2.1 Land and water use by indigenous forests in South Africa 

2.1.1 Indigenous forest land cover 

The South African government, forestry management authorities, and scientists in general have done 

much to manage and conserve South Africa's indigenous forests. Indigenous forests (known in other 

parts of the world as ‘natural’) are a multilayered vegetation structure comprised of largely evergreen 

or semideciduous trees (often endemic or sub-endemic) with a crown cover of over 75%. Bush and 

shrub plant species may also be present, but graminoid species are rare (Von Maltitz et al., 2003). 

Indigenous forests are the crown jewel of South Africa's biodiversity-rich natural environment and 

deserve our full attention in terms of conservation and sustainable use. Recognising this, the 

Department of Water Affairs and Forestry (DWAF), now called the Department of Forestry, Fisheries 

and the Environment (DFFE), contracted a country-wide classification of indigenous forests, which was 

finalised and published in 2003 (Von Maltitz et al., 2003). 

The most recent inventory of indigenous forests is the 2018 account of the classification of selected 

subtropical forests of South Africa (Von Maltitz et al., 2003). 

According to the 2006 Vegetation Map of South Africa (Mucina & Rutherford, 2006), the indigenous 

forests of South Africa cover 4 981 km2 or just over 0.4% of the area of the country. Twelve zonal, 

intrazonal and azonal forest types are mapped and classified, as shown in Figure 2-1, with 26 forest 

sub-types classified in total. National Biodiversity Assessment (SANBI 2018) relies heavily on two major 

sources of information on the variability and extent of the indigenous forests, namely the CSIR report 

to DWAF (Von Maltitz et al., 2003) and its improved and simplified version published by Mucina and 

Rutherford (2006) as a chapter of the book (and associated map) entitled ‘Vegetation of South Africa, 

Lesotho and Swaziland’. These two reports were followed by a detailed account of some selected 

subtropical forest types (Mucina, 2018), which was a result of a project contracted by DWAF and 

submitted in 2007 (Mucina et al., 2007). 
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Figure 2-1 Indigenous forest types as per the 2018 Vegetation Map South Africa (borders exaggerated 
for visual clarity) 

A recently completed study of forest biomes (Mucina et al., 2022) revealed gaps in the mapping of the 

extant indigenous forests. Previous forest surveys have largely neglected one important segment of the 

forest cover – the riparian woodlands and thickets accompanying intermittent or permanent rivers and 

streams. Von Maltitz et al. (2003) and subsequently Mucina and Rutherford (2006) recognised one such 

type – Lowveld Riparian Forests – but the authors of both reports acknowledged that there are many 

more. Mucina et al. (2022) devoted much attention to riparian woodlands (mapped many patches 

riparian forests and thickets), but more work is still needed to map the true extent of these 

forest/woodland structures in South Africa. Improved knowledge of the locations and extents of these 

forest/woodlands would be not only critical for water use estimations (i.e. this project) but also for 

sustainable water use, given that they are most vulnerable to alien plant infestations. 

Although much attention has been paid to indigenous forests, there are other forests (or forest-like 

vegetation structures) that have received less attention. These ‘spontaneous non-indigenous’ forests 

consist wholly or partly of alien invasive trees (and shrubs). In some cases, they are remnants of 

indigenous forests that have, as a result of alien plant invasions, changed in terms of floristic 

composition, structure, and functioning. Mapping such forests is vital for understanding the hydrological 

dynamics of landscapes since their function (in terms of water retention and utilisation) are likely similar 

to those of indigenous and plantation forests. 

While the VegMap2006 (and its later versions published in 2012 and 2018) is a useful product, it is now 
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over six years old. It is also not without criticism, with Mucina et al. (2022) noting that the mapping 

precision is “in need of a major improvement” and that many forest and thicket patches visible on 

remotely sensed imagery were not captured. Additionally, many riparian indigenous forests have been 

invaded by woody alien vegetation, forming novel forest ecosystems. Mucina et al. (2022) also argued 

that there are gaps in the established national forest classification system used in South Africa, 

especially at the Forest type level. 

To address some of these limitations, and in accordance with the aim of this project, an update of the 

indigenous forest map was undertaken by Mucina et al. (2022), including a reassessment and revision 

of the classification of forest types in Southern Africa, the improvement of the spatial accuracy of the 

boundaries of indigenous forests and the expansion of the map to include Mozambique and Zimbabwe. 

For reference, this product is referred to as IF2021 hereafter. 

2.1.2 Water use of indigenous forests 

Research on the water consumption (evapotranspiration or ET) of indigenous forests in South Africa is 

limited (spatial and temporal extent), but notable works are listed in Table 2-1. The studies undertaken 

by Everson et al. (2019), Everson et al. (2011), Pearton (2017), Gush and Dye (2009) and Clulow et al. 

(2013) involved mainly sap flow measurements to understand transpiration only. Only the two studies 

by Dye et al. (2008b) and Gush et al. (2015) have quantified both the transpiration and ET, and then 

only in selected indigenous forests in the Eastern Cape, KwaZulu-Natal, Mpumalanga and Limpopo 

Provinces.  

Long-term ET and other data sets have been collected for many years using an open-path eddy 

covariance system over an indigenous forest at Skukuza in the Kruger National Park as part of the 

SAFARI 2000 campaign (Scholes et al., 2001). The goal of the experiment was to investigate the 

interactions between land surface and atmosphere in southern Africa by connecting ground data on 

carbon dioxide, water, and energy fluxes with RS data generated by EO satellites (Scholes et al., 2001; 

Shugart et al., 2004). The dominant vegetation type in the study area is the broadleaf Combretum 

savanna on high ground and fine-leaved Acacia savanna in the valleys. High temporal resolution data 

of evapotranspiration and other energy balance components (i.e. net radiation, soil heat flux, profile soil 

moisture, leaf area index, etc.) were collected for more than 10 years. 

In recent years, the Expanded Freshwater Terrestrial Environmental Observation Network1 (EFTEON) 

has instrumented several sites representing a range of vegetation types, to monitor carbon dioxide and 

water vapour fluxes (i.e. evapotranspiration). These include a new savanna site (Spioenkop with 

thickening savanna dominated with V. Karoo), a new fynbos site (Jonkershoek) and a grassy savanna 

site (Maputaland) with forest patches and Lala palm (Fieg, 2024). This network will also upgrade the 

existing flux towers in the Kruger National Park.  

 
1 https://www.saeon.ac.za/weather-stations/ 
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Table 2-1 Examples of research on water use by indigenous forests in South Africa, including studies 
involving measurement and modelling. 

Study Title 
Scholes et al. (2001)  Long-term water and carbon flux measurements at Skukuza, Kruger National Park 

Jarmain et al. (2004) 
Improving the basis for predicting total evaporation from natural veld types in South 

Africa: A focus on Moist Upland Grassland, Valley Thicket and Coastal 
Bushveld/Grassland. 

Dye et al. (2008b) Water use in relation to biomass of indigenous tree species in woodland, forest and 
/or plantation conditions 

Dye et al. (2008a) The potential of woodlands and reed beds for control of acid mine drainage in the 
Witwatersrand Gold Fields 

Gush and Dye (2009) Water use efficiency within a selection of indigenous and exotic tree species in South 
Africa as determined using sap flow and biomass measurements 

Everson et al. (2011) Water use of grasslands, agroforestry systems and indigenous forests 

Clulow et al. (2013) Water use dynamics of a peat swamp forest and a dune forest in Maputaland, South 
Africa 

Gush et al. (2015) Water Use and Socio-Economic Benefit of the Biomass of Indigenous Trees 

Pearton (2017) An assessment of the water use of indigenous and introduced tree spp. and varying 
land uses around Vasi Pan, Maputaland, KwaZulu-Natal 

Dye et al. (2018) Evapotranspiration from mine-affected riparian sites along the Vaal River in central 
South Africa 

Everson et al. (2019) Quantifying the water use of dominant land uses in the Maputaland coastal plain 

Scott-Shaw et al. (2017) Water use dynamics of an alien-invaded riparian forest within the summer rainfall 
zone of South Africa 

There is a need to extrapolate results from these studies to other indigenous forest types to gain a 

national perspective of the hydrological impacts of indigenous forests and for comparisons with the 

hydrological impacts (e.g. stream-flow reduction) of commercial forests and other land uses. There is 

also a need to understand how indigenous forests’ water use is influenced by environmental conditions 

(climate and soils) and their species composition. For example, Gush and Dye (2009) have shown that 

during winter, the difference in water use between indigenous and plantation forests is marginal, 

although plantation forests use considerably more water during summer, mainly attributed to 

considerably higher growth rates and hence larger transpiring leaf areas. 

Although this foundational research outlined above is critical for understanding the water use of 

indigenous tree species, the (sap flow, eddy covariance and scintillometry) methods on which they rely 

are very expensive to carry out and are thus limited to specific forests/species and often over relatively 

short periods of time. It is therefore difficult to translate the findings of these studies to other 

forests/species and/or other regions. 

2.2 Forest water use estimation methods 

Several methods are available to estimate forestry water use (ET or transpiration). Some of the methods 

capture the process of transpiration only, while others capture transpiration and evaporation (from the 

soil surface and water intercepted by the canopy), which are all included in the ET term. The methods 

estimate water use at individual plant/tree, stand or larger (catchment) levels and involve measurements 

and/or modelling. The following subsections provide a brief overview of these methods.  

2.2.1 Field-based methods 

Field-based (point-based) methods for measuring or estimating ET have been reviewed in previous 
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work (Verstraeten et al., 2008; Savage et al., 2010; Amani & Shafizadeh-Moghadam, 2023). These 

methods include point, plant, field and landscape scales and are mostly based on the mass water 

balance, energy balance or a combination thereof. Examples include lysimetry, pan methods (e.g. class 

A pan), atmometers (e.g. ETgage), the eddy covariance method, and a range of aerodynamic methods 

that estimate sensible heat from which evaporation is estimated as a residual, using the shortened 

energy balance equation (Jarmain et al., 2009a). The latter method includes the one-sensor eddy 

covariance, Bowen ratio, surface renewal, scintillometry and other methods. Some methods are used 

to estimate transpiration directly, e.g. the sap flow and heat pulse velocity methods (Jarmain et al., 

2009c). Many of these methods have been used to estimate ET in SA as part of WRC-funded projects. 

See for example Bristow and De Jager (1981); Green and Clothier (1988); Dye et al. (1997); Savage et 

al. (1997); Savage et al. (2004); Jarmain et al. (2009a) and Jarmain et al. (2014). The above-mentioned 

methods are point-, field- or stand-based. As such, their ET estimates have a limited spatial “footprint”. 

When applying the water balance method to a larger area, i.e. a catchment area, it can provide an 

estimate of ET from a larger spatial “footprint”. Table 2-1 lists some of the South African studies that 

used these methods, often in combination with modelling, to study forestry water use.  

2.2.2 Earth observation methods 

The increased availability of spatially referenced GIS and EO data (Laipelt et al., 2021) enables crop 

water use or ET estimation at pixel level and at high resolutions (e.g. 20 to 1 000 m). Such data can be 

aggregated and employed at different spatial scales and used over large areas. Because satellite data 

are frequently collected, estimates can be made regularly, and temporal trends studied. Such spatial 

and temporal coverage can contribute greatly towards improved water management from national 

and/or regional levels down to individual land uses.  

Estimates of ET, including water consumption by vegetation, relate to the vaporisation of water from 

the land surface into the lower part of the atmospheric boundary layer. ET consists of evaporation of 

water from the soil, evaporation of intercepted water and transpiration losses by plants. The sum of all 

these losses is often referred to as consumptive water use. The water volumes lost through the 

processes encompassed in ET form part of the hydrological cycle where no water is truly lost but merely 

changes in form.   

Advances in the interpretation of EO information enable the spatial estimation of ET plant water use, 

biomass and yield production and associated water use efficiency (WUE) for each pixel of a satellite 

image, without having to rely on generalised plant coefficients. Different methods have been developed 

to provide information at a range of temporal and spatial scales and for various applications. Several 

review papers describe methods used to spatially estimate ET, including Choudhury (1997), Courault 

et al. (2005), Kustas and Norman (1996), Verstraeten et al. (2005), Verstraeten et al. (2008) and Gibson 

et al. (2013), Zhang et al. (2016), and Amani and Shafizadeh-Moghadam (2023). Numerous models 

have been developed for agricultural (field scale) and forestry applications. They are typically based on 

the surface energy balance, Peman-Monteith or Priestly-Taylor formulations, Vegetation index with 

Land surface temperature or Statistical and empirical approaches (Amani & Shafizadeh-Moghadam, 
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2023). Examples include the Surface Energy Balance Algorithm for Land (SEBAL); Surface Energy 

Balance System (SEBS); Mapping Evapotranspiration with high Resolution and Internalised Calibration 

(METRICtm); Vegetation Index/Temperature Trapezoid (VITT); Two-Source Energy Balance (TSEB); 

the Atmosphere-Land EXchange Inverse (ALEXI/disALEXI); Normalised Difference Vegetation Index 

Diurnal Surface Temperature Variation (NDVI-DSTV) triangle model, ETLook and several others. These 

methods either estimate ET as the residual of a shortened energy balance equation using land surface 

temperature (LST) estimates or use a WUE relationship to determine ET. Some of the models are used 

operationally for field-scale agricultural water management2, but most are used primarily in research 

applications. A selection of the models (SEBAL, SEBS, VITT and METRICtm) was reviewed by Jarmain 

et al. (2009b). The review included an assessment of each model’s accuracy in estimating ET and their 

potential for operational applications in SA. It was found that some of the components of the energy 

balance (such as net radiation) were accurately simulated, but that the other energy balance 

components and ET were generally more complex. SEBAL and METRIC estimates of ET were 

generally lower than measured ET, while SEBS commonly overestimated ET. The VITT model yielded 

the least accurate evaporation estimates. Laipelt et al. (2021) demonstrated the use of the SEBAL 

algorithm and the Google Earth Engine platform to monitor ET over a long period of time. Their reported 

accuracy (RMSE) for the ET estimations was 0.67 mm/day.  

Other EO-based models have been developed and provide ET estimates at lower spatial resolutions 

(often ~1 to 3 km) but higher temporal resolutions (30 min to daily). A number of these models use 

Meteosat Second Generation satellite data and provide ET data at 30-minute intervals at a resolution 

of 1-3 km3. ET data from HYLARSMET4
 and MODIS5 are estimated daily for the entire globe at a 1 km 

resolution. The global water cycle monitor5 from Princeton University also estimates ET at a daily time 

step6, while the ALEXI model7 can be used to estimate energy fluxes and other parameters daily, e.g. 

at a 10 km spatial resolution. Other available data products include ECOSTRESS PT-JPL, GLEAM, 

and SSEBop, but not all these data products are available for SA.  

New approaches and models are continually being developed and tested, and existing methodologies 

are being improved. Amani and Shafizadeh-Moghadam (2023) provide a good, updated overview of 

available EO and other approaches and associated models. For instance, the ETLook model (Pelgrum 

et al., 2011) is used in the FAO-based Water Productivity through Open access of Remotely sensed 

derived data (WaPOR)8 initiative, which provides free access to satellite-based data on agricultural 

productivity in Africa and the Near East for the period 2009-2021. This project will make use of the 

ETLook data (as provided through WaPOR) as is and no ET modelling will be carried out as part of this 

study. The following section provides more information about the ETLook model as well as the WaPOR 

 
2 For instance, www.mijnakker.nl; fruitlook.co.za; www.idwr.idaho.gov/GeographicInfo/METRIC/et.htm   
3 http://landsaf.meteo.pt/ and http://www.ears.nl/   
4 http://sahg.ukzn.ac.za/soil_moisture/et/   
5 http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=16   
6 http://hydrology.princeton.edu/~justin/research/project_global_monitor/   
7 http://alfi.soils.wisc.edu/cgi-bin/anderson/alexi_server.pl?region=SMEX02MOD   
8 http://www.fao.org/in-action/remote-sensing-for-water-productivity/database/database-dissemination-wapor/en/ 
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data. 

2.3 The ETLook model and WaPOR data 

Surface energy balance models such as the SEBAL (Bastiaanssen et al., 1998; Bastiaanssen et al., 

2005) and ETLook models (Pelgrum et al., 2011; Bastiaanssen et al., 2012) eliminate the need for 

generalised crop information (e.g. coefficients) in describing ET.  

SEBAL is intended for catchment-level crop growth monitoring studies and not for application over 

extensive areas with widely varying climatic conditions (e.g. SA). The ETLook model addresses this 

limitation of SEBAL (Pelgrum et al., 2011; Bastiaanssen et al., 2012). With ETLook, the daily energy 

balances and biomass production of extensive areas can be estimated, making it ideally suited for the 

present study. ETLook was released in 2009 and is used extensively in the Nile Basin, China, India, 

Pakistan, Australia, Syria, Morocco, Iran, Ukraine, Poland, Canada and the Netherlands by eLEAF. The 

results from a validation study carried out in the Indus Basin were presented at a conference of the 

International Association of Hydrological Sciences (IAHS), showing a good correlation between 

ETLook, actual ET and other actual ET measurements in the basin (Pelgrum et al., 2011). ETLook has 

also, since 2016, replaced the SEBAL model in the FruitLook initiative (Goudriaan, 2014). 

ETLook (Pelgrum et al., 2011) is a two-layer energy balance model that calculates evaporation (E) from 

soil and water surfaces and transpiration (T) from canopies using transport resistances in conjunction 

with the Penman-Monteith (PM) equation (Figure 2-2). The PM equation used to estimate ET is solved 

separately here for vegetation and (bare) soil processes, and hence, T and E are split. 

A basic structure of the ETLook model is illustrated in Figure 2-3. Separate and physically defined 

aerodynamic and evaporation resistances for bare soil and canopies are incorporated. The soil 

resistance (rsoil) is a function of the soil water content in the topsoil and is therefore characterised by a 

strong reflectance of microwave signals. Topsoil water content values can be obtained at daily intervals 

from radar-based satellite EOs. The canopy resistance (rcanopy) is a function of the leaf area index (LAI; 

[m2 leaf / m2 soil]) and four dimensionless stress factors. These stress factors indicate the influence of 

radiation, temperature, vapour pressure (meteorological conditions) and soil water content in the 

subsoil. The aerodynamic canopy (ra,canopy) and aerodynamic soil resistance (ra,soil) are functions of wind 

speed and surface roughness. An iteration procedure is carried out to correct for unstable conditions. 

The Monin-Obukhov Similarity Theory (Monin & Obukhov, 1954) is used to parameterise the effects of 

shear stress and buoyancy. In ETLook, both the actual (Tact) and potential (Tpot) transpiration fluxes are 

calculated. The difference (Tpot - Tact) expresses vegetation water stress induced by the limited 

availability of soil water content in the root zone (Pelgrum et al., 2011). ETLook requires precipitation 

interception as input, which is calculated from spatial (interpolated) precipitation and NDVI data. 
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Figure 2-2 ETLook model equations (Van Niekerk et al., 2018). 

 

 
Figure 2-3 Schematic representation of the ETLook model for energy balance computations of bare 
soil and vegetation (Van Niekerk et al., 2018). 
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The biophysical datasets required in the ETLook PM equation include surface albedo, surface 

emissivity, surface roughness, surface LAI and surface canopy resistance. The meteorological datasets 

used as input include air temperature [Ta], relative humidity [RH], wind [uobs] and transmissivity [τ]. Due 

to atmospheric interferences (reflection, absorption, scattering), not all solar radiation at the top of the 

atmosphere is transmitted through the atmosphere towards the land surface; only a fraction will reach 

the evaporating surface of the land under clear conditions. Typically, 75% of all radiation reaches the 

land surface, and it will reduce to 25% when heavy clouds prevail. The exact position of the sun, in 

combination with transmissivity values, determines the net solar radiation that reaches the crops or 

surface where ET takes place. The biophysical parameters required in ETLook are retrieved from 

satellite measurements, while the meteorological data (with the exclusion of transmissivity, which was 

obtained from MSG) was retrieved from meteorological stations. Van Niekerk et al. (2018) provide 

detailed information about datasets used for the implementation of ETLook. 

As noted in Section 2.2.2, the ETLook model was used to develop the FAO-led WaPOR initiative to 

support land and water productivity monitoring using ET and biomass production data. Its data portal9 

(FAO 2024) has three levels of EO-based data products. Level 1 (v2) provides 250 m resolution data 

for Africa and the Middle East 10. Level 2 provides 100 m data for a number of selected countries, 

including Morocco, Tunisia, Kenya and Mozambique, as well as the Jordan/Litani River basin, the Nile 

Basin, the Awash Basin and the Niger inner Delta. Level 3 provides 20 m resolution data for eight 

selected irrigation schemes in Ethiopia, Jordan and Tunisia.  

The Level 1 (v2) product was employed in this study.  As it also uses the ETLook model, the WaPOR 

product is very similar to the actual ET product described and successfully used by Van Niekerk et al. 

(2018) to quantify the water use of irrigated agricultural crops. In that study, water use was also 

differentiated for different crop types and in different regions throughout South Africa. The results were 

verified and validated through an extensive stakeholder engagement exercise and by comparing the 

water use estimates with those quantified in previous studies. The Level 1 (v2) WaPOR product was 

also used by Van Niekerk et al. (2023) to characterise the variations in water use among commercial 

plantation genera at a national scale. The results showed that the water use estimations of the genera 

closely matched those of previous field-based studies and compared favourably to several other ET 

products.  

2.4 Technologies and techniques used in estimating land and water use by 
indigenous forests 

It is clear from the previous sections that water use estimations require reliable, accurate and up-to-

date data. These data are often needed for large areas, which necessitates the use of geospatial 

technologies such as GIS and EO. This section provides an overview of the geospatial techniques and 

technologies that are relevant to this project. The review starts with GIS and spatial modelling, as these 

are the fundamental technologies that will be used to map and quantify water use by indigenous forests. 

 
9 https://data.apps.fao.org/wapor/?lang=en 
10 WaPOR Level 1 v3 at 100 m resolution was released between 23 October and 29 November 2023. 
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This is followed by an introductory overview of concepts such as multispectral, thermal and microwave 

EO. The section concludes with a short overview of image classification and object-based image 

analysis techniques. 

2.4.1 GIS and its use for spatial modelling 

GIS is used to manage and analyse spatially referenced or geographical data and provides a unique 

platform capable of integrating large volumes of spatial data for analysis (Heywood et al., 2006). The 

use of GIS offers a quick and easy way to monitor and manage resources, which is not possible with 

traditional methods.  

Over the last two decades, GIS has emerged as a mature technology with a particular value in 

answering questions about spatial location, patterns, trends, conditions and their implications. Using 

GIS, datasets of different formats at varying scales can be incorporated into a single database, which 

can be stored as vector and/or raster data. Spatial modelling involves using such data to construct 

models to predict spatial outcomes that simulate the dynamics of natural processes (O’Sullivan & 

Unwin, 2010). Spatial modelling in GIS embraces techniques and models that apply quantitative 

structures to systems in which the variables of interest vary across space. Spatio-temporal models 

simulate change over time using equations that represent real-world processes while taking spatial 

patterns and spatial interaction in the system into account (Karssenberg et al., 2008). Such spatial and 

temporal process models can be used for decision-making regarding spatial phenomena (also known 

as spatial decision support systems) but are also used to evaluate our understanding of complex spatial 

systems (Heywood et al., 2006). Models can be used to establish (a priori) theory or explore (a 

posteriori) theory (Hardisty et al., 1993). When modelling in GIS, the questions of validation and the 

roles of scale and accuracy need to be carefully considered (Goodchild, 2005). 

There are numerous examples of where GIS has been used in forest management. Recent examples 

include Akumu et al. (2019), who developed a GIS-based modelling procedure to predict and map 

relative soil moisture classes in a forested landscape. They used a rule-based GIS model to develop a 

technique to predict soil moisture classes (dry, fresh, moist and wet) based on soil textural classes 

derived from quaternary geology maps and water-receiving areas derived from topographic attributes 

generated from a digital elevation model. Choudhary et al. (2018) used land cover/land use, vegetation, 

soil, geology and geomorphology spatial data to assess and classify land vulnerability from a 

multidisciplinary approach based on EO and GIS techniques. San Juan and Domingo-Santos (2018) 

assessed the use of GIS and LiDAR for the inventory, monitoring, analysis and modelling of natural 

forest resources, and provided an overview of their use in sustainable forest management. In a 

comprehensive literature study, Beckline et al. (2017) examined and demonstrated both the need for 

and the shift towards GIS and RS in tropical forest management. Sonti (2015) explored the potential 

application of GIS technology in forest management in general and a range of forest applications in 

Kenya, Cameroon and the Congo in particular, concluding that forest management can strongly benefit 

from the use of GIS. Dincă et al. (2014) used a GIS model to develop an improved forest soil map and 
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database for Romania, and Zambelli et al. (2012) developed a GIS decision support system for regional 

forest management to evaluate biomass availability for energy production in northern Italy. 

From the preceding discussion it should be clear that GIS and spatial modelling has become invaluable 

for managing forests and for improving our understanding of where forests are located, how they 

function and how they are changing. 

2.4.2 Earth observation 

2.4.2.1 Multispectral remote sensing 

A wide variety of multispectral EO imagery is freely or commercially available. The choice of the 

appropriate sensor for a given application depends on the following image factors:  

• spatial resolution (also known as the pixel size), which is a measure of the level of detail that can 

be recognised using the imagery;  

• spectral resolution, which refers to the number of spectral bands available;  

• temporal resolution (also known as revisit cycle), which denotes the time interval between image 

acquisitions for the same area;  

• swath width (also called image extent or scene footprint), which describes the area covered by one 

scene; and  

• cost per image. 

A number of multispectral satellite platforms are being considered for use in this research (a list of 

multispectral satellites is provided in Deliverable 1). The low spatial resolutions of the freely available 

MODIS (250-1 000 m) and AVHRR (1 km) satellite imagery are unsuitable for detailed mapping 

exercises (e.g. mapping the boundaries of indigenous forest patches). The sub-metre resolutions of 

very high resolution (VHR) sensors such as IKONOS, Quickbird, Worldview and GeoEye (in the 

panchromatic bands) are more suitable for analysing the structural properties of indigenous forest 

canopy. Examples of such images can be seen on online applications (apps) such as Google Earth, 

Bing Maps, HERE and ArcGIS Online. VHR imagery provided through such apps can be used for visual 

interpretations and manual digitising of forest patches. However, such manual (qualitative) approaches 

for identifying and delineating the millions of forest patches in South Africa would be extremely tedious 

and costly, if not impossible. Automated (quantitative) approaches such as image classification (see 

Section 2.5.2) for an overview) are more viable, but such methods require access to the raw imagery 

as the near-infrared bands (which are not provided by apps) would be needed (Cho et al., 2015). 

However, acquiring the thousands of images required for national coverage would be prohibitively 

expensive.  

The imagery provided by high-resolution (HR) multispectral sensors, such as those mounted on the 

Landsat, SPOT and Sentinel-2 satellites, are more suitable when sub-metre detail is not required. As 

well as being freely available, these sensors have large swaths, resulting in larger image extents 
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(compared to VHR imagery) and fewer images, which are consequently required to cover a large area. 

The highest resolution images within this subgroup of sensors are those provided by the SPOT family 

of satellites, which have been recording HR satellite imagery for almost 30 years. The South African 

National Space Agency (SANSA) and Airbus Defence, the owner of the SPOT satellite series, have in 

place a licence agreement allowing the use of SPOT imagery for government and research purposes. 

Although the 1.5 m spatial resolution of SPOT 6 & 7 would be relatively suitable for forest mapping, the 

following factors impede their value:  

• The spectral resolution is limited to three bands in the visible spectrum (RGB) and only one band 

in the infrared (IR) range of the EMS (VNIR), thereby limiting its use for forest mapping;  

• The agreement between SANSA and Airbus Defence stipulates that a limited number of scenes 

may be made available for research (or governmental) purposes, resulting in patchy spatial 

coverage of South Africa;  

• Suitable image scenes must be manually identified through the SANSA-EO online catalogue11. The 

image is then extracted by SANSA and placed on an FTP server (which is often not instantaneous). 

The primary consequence of these factors is that SPOT imagery cannot easily be incorporated into 

an automated EO processing workflow, which significantly decreases the cost-effectiveness of their 

use. 

The Sentinel-2 programme, developed by the European Space Agency, forms part of the European 

Union’s comprehensive Copernicus EO programme aimed at performing terrestrial observations in 

support of services such as forest and agricultural monitoring, land cover change detection and natural 

disaster management. The platform comprises two identical HR multispectral satellites: Sentinel-2A 

(launched on 23 June 2015) and Sentinel-2B (launched on 7 March 2017). The spatial and spectral 

characteristics of the Sentinel-2 sensors are provided in Table 2-2. 

Table 2-2 Sentinel-2 sensor characteristics 

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) 
Band 1 – Coastal aerosol 0.443 60 

Band 2 – Blue 0.490 10 

Band 3 – Green 0.560 10 

Band 4 – Red 0.665 10 

Band 5 – Vegetation Red Edge 0.705 20 

Band 6 – Vegetation Red Edge 0.740 20 

Band 7 – Vegetation Red Edge 0.783 20 

Band 8 – NIR 0.842 10 

Band 8A – Vegetation Red Edge 0.865 20 

Band 9 – Water vapour 0.945 60 

Band 10 – SWIR – Cirrus 1.375 60 

Band 11 – SWIR 1.610 20 

Band 12 – SWIR 2.190 20 

 

 
11 http://catalogue.sansa.org.za/ 

http://catalogue.sansa.org.za/
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The Landsat sensor is the most commonly used HR data, with Landsat satellites continuously capturing 

images of the earth’s surface since 1972. The Landsat Data Continuity Mission, run by the North 

American Space Agency and the United States Geological Survey, comprises ~40 years of imagery, all 

of which is freely available. To date, eight (8) Landsat missions (Landsat 1-8) have been launched, with 

the latest being Landsat-8 (launched in 2013). Landsat08 carries two instruments, the operational land 

imager (OLI) and thermal infrared (TIR) sensor (see next section for more about thermal RS). The OLI 

sensor detects seven multispectral bands at 30 m resolution and a panchromatic band at 15 m 

resolution. Landsat 5 TM was decommissioned in 2013, and the scan-line corrector of Landsat 7 ETM+ 

has been inoperative since 2003, resulting in gaps in the imagery between 2003 and 2013. However, 

the continuity and high spectral resolution among Landsat TM, ETM+ and OLI are highly beneficial for 

multitemporal analysis, which will be employed in this research. 

2.4.2.2 Thermal remote sensing 

Thermal RS deals with the acquisition, processing and interpretation of data acquired primarily in the 

thermal infrared (TIR) region of the EM spectrum (3 to 35 μm). In thermal RS, the radiation from the 

surface of the earth is 'emitted', as opposed to multispectral RS, where the radiation is 'reflected'. A 

commonly studied aspect in the domain of thermal RS is LST. LST provides information on the temporal 

and spatial variations of the surface equilibrium state  (Li et al., 2013b) and is an important observation, 

particularly in the estimation of land surface atmospheric fluxes. However, the strong heterogeneity of 

land surface characteristics such as vegetation, topography and soil lead to a rapidly changing LST in 

both space and time, resulting in RS satellite data offering the only possibility for measuring LST over 

the entire globe with sufficiently high temporal resolution (Kalma et al., 2008; Li et al., 2013b). For 

example, when using an energy balance approach to estimate evapotranspiration (Section 2.2.2), LST 

is used in the estimation of net radiation and to estimate the sensible heat flux. Although there were 

early doubts as to whether satellite-based radiometric temperature could be used in the estimation of 

evapotranspiration (Kalma et al., 2008), it has since been established that to estimate 

evapotranspiration with a better than 10% accuracy, LST must be retrieved at an accuracy of 1 K or 

better  (Li et al., 2013b). This reinforces the need to obtain accurate LST for critical observations in 

hydrology (e.g. ET). 

2.4.2.3 Microwave remote sensing (RADAR) 

Microwave RS functions by detecting energy backscattered from the earth’s surface in the microwave 

region of the electromagnetic spectrum. This region ranges in frequency from 0.3 to 300 GHz, which 

corresponds to wavelengths of 3 mm to 30 cm. The long wavelengths of microwave radiation mean that 

it experiences very little atmospheric attenuation, making it possible for imaging radars to capture image 

scenes even in cloudy conditions. This makes radar imagery particularly powerful for obtaining 

unbroken time series of data, especially in tropical or cloudy regions. Most imaging radars are active 

sensors (in that they provide their own source of microwave illumination), which means that they can 

capture imagery both day and night, thereby doubling the imaging capacity per orbit.  
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Synthetic aperture radar (SAR) is a type of microwave sensor that provides a dramatically improved 

spatial resolution over conventional real aperture radar systems. A list of popular SAR systems is 

provided in Appendix B. While archived scenes for decommissioned sensors such as ERS-1, ERS-2, 

ENVISAT, ALOS-1 and RADARSAT-1 are available, several radar satellites are currently in operation. 

Some of these satellites offer HR, fully polarimetric (HH, HV, VH and VV) capabilities. Examples include 

RADARSAT-2, TerraSAR-X and COSMO-Skymed. The most reliable and commonly used SAR sensors 

currently active are RADARSAT-2, TerraSAR/TanDEM-X, ALOS PALSAR-2, Cosmo-SkyMed and 

Sentinel-1A. These sensors provide a mixture of spatial resolutions (1-100 m), wavelengths (X, C and 

L bands) and revisit periods (11-24 days). Despite not having full polarimetric capabilities, Sentinel-1 

has gained much popularity for a range of applications, including forestry (e.g. Mngadi et al., 2019; 

Dostálová et al., 2021), mainly because it is freely available from ESA. 

2.5 Combining GIS and Earth observation for forest water use estimations 

GIS, spatial modelling and EO can be combined to estimate the water used by indigenous forests. The 

most effective approach involves three main steps: 

1. Use RS and GIS to map forests; 

7. Use RS and spatial modelling to estimate actual ET;  

8. Use GIS to extract ET values for each individual forest patch. 

 

These steps are repeated for each time step (e.g. month) to generate temporal and seasonal profiles 

of water use over a period (e.g. decade). The forest patches and extracted ET values can also be 

grouped (categorised) into forest types, climatic regions, slope classes, etc. to gain an understanding 

of how such environmental factors affect water use.  

The following subsections provide a brief overview of some of the principal techniques that will be 

employed in this project. The overview starts with image classification, which can be used to 

differentiate among land covers (e.g. forests from urban areas), for delineating individual forest patches, 

and for grouping patches into classes (e.g. forest types). This is followed by an introduction to object-

based image analysis (OBIA), which has been shown to improve image classification results. In 

addition, Mucina et al. (2018) demonstrated the value of OBIA for forest type classification, using a 

combination of terrain analysis and machine learning techniques. 

2.5.1 Image transformations 

In RS, image transformations refer to a broad range of techniques used to modify and analyse data 

captured from aerial or satellite sensors. These transformations are applied to raw or pre-processed 

image data to enhance features, highlight specific information, or prepare the data for further analysis.  

Section 2.4.2.1 explained the value of multispectral imagery for various applications. Although individual 

spectral bands are often used in image classification and modelling tasks, different spectral bands are 

often combined to observe subtle characteristics of features on the earth's surface. For instance, 
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vegetation indices (VIs) are popular for studies related to vegetation mapping. VIs are linear 

combinations or ratios using two or more spectral bands (Huete et al., 2002). VIs aim to maximise the 

vegetation signal while minimising background signals (Jackson & Huete, 1991).There are many 

different VIs, each intended for different applications.  

The normalised difference vegetation index (NDVI) is the most popular as it can be used to quantify the 

health and density of vegetation (Xu et al., 2022) and is calculated by: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 −  𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 +  𝜌𝜌𝜌𝜌

 

 
Equation 2-1 

where 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is the near-infrared image band; and   

 𝜌𝜌𝜌𝜌 is the red image band. 

It is also useful to only consider the brightness of a target feature. For instance, woody and grassy 

vegetation may have similar NDVI values but are different in terms of their brightness (total reflectance 

in the visible region of the electromagnetic spectrum (EMS)). Woody vegetation, especially trees with a 

sizeable proportion of shadows between leaves, have lower brightness characteristics than grasses 

(almost no shadows). Consequently, brightness is often a popular image transformation can be 

calculated as follows: 
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Equation 2-2 

where 𝜌𝜌𝜌𝜌 is the red image band; 

 𝜌𝜌𝜌𝜌 is the green image band; and 

 𝜌𝜌𝜌𝜌 Is the blue image band. 

If more than one source of multispectral imagery is available, then it is often useful to calculate it for 

each source. For instance, in Section 3.3.3 brightness was calculated from aerial imagery (the resulting 

index was called NGIB) and from Sentinel-2 imagery (the resulting index was called S2B) in the mapping 

of indigenous forests (and three other land covers).  

Another popular index used in vegetation mapping is the normalised difference water index (NDWI), 

which exploits the (relatively) higher reflectance of water in the green region of the visible spectrum and 

the low reflectance of water in the shortwave IR (SWIR) region. The NDWI is calculated: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

 

Equation 2-3 

where 𝜌𝜌𝜌𝜌 is the green image band; and 

 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is the shortwave infrared image band. 

The normalised difference moisture index (NDMI) is used to determine vegetation water content. It is 

calculated (Equation 2-4) by combining the SWIR band (low spectral reflectance of moisture) with the 

near IR (NIR) band (high reflectance of vegetation). The NDMI is also sensitive to the mesophyll 

structure of leaves (Morell-Monzó et al., 2020). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 

 

Equation 2-4 

where 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is the near-infrared image band; and 

 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 is the shortwave infrared image band. 

Given that Sentinel-2 imagery has two SWIR bands, it is common practice to swap out the NIR band 

with the other SWIR band (which we call NDMI2 in Section 3.3.3). There are countless other indices 

that can be generated from the combinations of bands, especially if more than two bands are combined.  

2.5.2 Image classification approaches 

Digital image classification methodologies (image classifiers) involve a set of computer procedures that 

assign image pixels or objects to classes representing information categories relevant to the user based 

on a diverse selection of inherent image features (Campbell, 2007). The development of image 

classifiers has been subject to ongoing research since the introduction of RS. A wide variety of classifier 

types and forms exists, each with its own strengths and weaknesses relative to applications to which 

they may be applied (Lawrence & Wright, 2001; Mather, 2004). When deciding on a classification 

method for an application, a user must weigh the importance of several factors. The efficacy of 

classification methods is usually assessed based on the accuracies of the final classification products 

using statistical metrics. However, the demand for human expertise, the time and expense of preparing 

and running the classifier, and the degree of automation required are aspects which must also be 

considered (Pal & Mather, 2003). It should also be noted that the accuracies of different classification 

methodologies are often specific to the application to which they are put (Lui et al., 2002). It is, therefore, 

important that the user understands the types of classifiers available to judge which is better suited to 

the application at hand.  

Conventional methods of image classification consist of unsupervised and supervised procedures, 

which rely strongly on a variety of statistical algorithms employed in spectral feature space. Although 

widely used in operational applications, these more traditional classifiers are not without their limitations. 
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The progression of digital image analysis techniques combined with the advancement of computer 

hardware and software has led to the development and increased implementation of more advanced 

classifiers, which utilise a greater degree of data mining for image pattern recognition (Tseng et al., 

2008). This is done by incorporating techniques such as machine learning, logical structures and expert 

knowledge into the classification procedures (Brown de Colstoun et al., 2003; Mather, 2004). The 

following sections focus on the common methods used for discriminating land cover in remotely sensed 

imagery. 

2.5.2.1 Unsupervised classification 

Unsupervised classification is the clustering of image pixels into groups based on spectral information. 

This classification technique entails two distinct steps, namely the automatic classification of pixels into 

a user-specified number of image classes according to their spectral properties and the manual 

assigning of the classes into information classes (Campbell, 2007). Although the automated nature of 

the spectral delineation renders this classification method less user-intensive, it cannot be completely 

considered truly unsupervised in nature. According to Mather (2004:203), it is an “exploratory” technique 

where repeated unsupervised area delineations with different parameters allow a user to ascertain 

which real-world classes are spectrally distinct and which are spectrally similar. This understanding of 

image features can inform the construction of the set of real-world classes to be used in the 

classification, rendering unsupervised classification extremely useful where a priori information 

regarding the study area or the classification structure is unavailable or not predetermined. Conversely, 

where a real-world class structure is already established, it is rare that it will correspond with the 

automatically delineated spectral classes, resulting in the lowering of the accuracy of the outcome 

(Campbell, 2007). This is especially true for HR imagery, where features of interest commonly comprise 

multiple spectral classes shared by more than one information class. This is the primary disadvantage 

of unsupervised classification, and for this reason, its use is often limited in operational applications. An 

additional disadvantage is that spectral classes may change over time, which reduces their value for 

automated classification methods (Olaode et al., 2014). 

2.5.2.2 Supervised classification 

Supervised classification is defined by the application of a priori information of real-world classes to 

determine the identity of unknown image elements. Data for the real-world classes are acquired from 

an external source and serve as input to the classifier in the form of designated and labelled regions 

called “training areas” or “training data”. Training data contains statistical information regarding the 

spectral properties of each class, which is used by a classification algorithm to identify the class of 

unknown pixels (Mather, 2004; Campbell, 2007). Classification algorithms are widely varied but are all 

designed to compare the features of each of the classes with those of an unknown pixel in geometric 

space and assign a class based on the results of that comparison. Traditionally, the most widely used 

algorithm is the maximum likelihood classification (MaxL) algorithm due to its ready accessibility, 

robustness, strong theoretical foundation, and high accuracy for a wide range of RS applications 

(Bolstad & Lillisand, 1991; Albert, 2002; Brown de Colstoun et al., 2003; Pal & Mather, 2003; Tseng et 
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al., 2008). Because of these traits, several studies have used MaxL as the benchmark to compare more 

recently developed classification methods (Hepner et al., 1990; Gumbricht et al., 1996; Lui et al., 2002; 

Neusch T & Grussenmeyer, 2003; Pal & Mather, 2003; Hagner & Reese, 2007; Nangendo et al., 2007). 

Recent improvements in image resolution (spatial and spectral), increases in data availability, and the 

integration of contextual and ancillary data have prompted the use of more powerful classifiers which 

incorporate elements of machine learning (Tseng et al., 2008). While more traditional classifiers (such 

as MaxL) estimate parameters to a data distribution, ML classifiers are non-parametric and therefore 

do not make assumptions about the distribution of data (Jain et al., 2000; Hubert-Moy et al., 2001). This 

is especially advantageous when working with geospatial data, which, in most cases, is not normally 

distributed. Additionally, ML techniques can easily be automated, allow for combinations of categorical 

and continuous input variables, and can capture hierarchical and non-linear relationships (Hladik & 

Alber, 2014). 

Several ML algorithms are available in RS, namely k-nearest neighbour (kNN) (Franco-Lopez et al., 

2001; Ying & Bo, 2009; Falkowski et al., 2010), support vector machine (SVM) (Lizarazo, 2008; Li et 

al., 2010; Petropoulos et al., 2012), decision tree (DT) (Punia et al., 2011; Gómez et al., 2012; Hladik 

& Alber, 2014) and random forest (RF) (Gislason et al., 2006; Chang et al., 2008; Rodriguez-Galiano 

et al., 2012).  

kNN is a non-parametric, distance-based classifier that labels each unknown instance based on its k 

neighbouring known instances. A class is assigned to the unknown instance, which is best represented 

by the training samples among the k neighbours (Cover & Hart, 1967; Gibson & Power, 2000). The kNN 

algorithm is effective in classifying data that are not normally distributed but has the disadvantage of 

assigning equal weight to all variables even though certain variables may have higher priority. This can 

result in incorrect class assignments and diffuse clusters (Cunningham & Delany, 2007). To avoid this, 

only odd k-values (e.g. 1, 3 and 5) should be used, as suggested by Campbell (2007). However, the 

higher the k-value, the more training data are required (Xie et al., 2019).  

The efficiency of SVM classifiers for RS applications has been demonstrated by Lizarazo (2008) and 

Petropoulos et al. (2012). Myburgh and Van Niekerk (2013) showed that SVM produces more accurate 

results than kNN and MaxL for land cover mapping using SPOT-5 imagery. SVM determines the optimal 

separating hyperplane between classes (Novack et al., 2011) by focussing on the training samples 

close to the edge (support vector) of the class descriptors (Tzotsos & Argialas, 2008). In cases where 

the relationship between classes and features is non-linear, the radial basis function kernel is often 

applied. See Vapnik (1995) and Huang et al. (2002) for a detailed mathematical formulation of SVM. 

A DT identifies relationships between a continuous response variable, known as the dependent 

variable, and multiple continuous variables, known as the independent variables. DTs hierarchically 

split a dataset into increasingly homogeneous subsets known as nodes (Lawrence & Wright, 2001; 

Gómez et al., 2012). By recursively splitting the feature datasets, a leaf node is reached, with the class 

associated with the node assigned to the observation (Pal & Mather, 2003). According to Novack et al. 
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(2011), each node is limited to a split in feature space orthogonal to the axis of the selected feature. 

Each branch of the DT consists of divisions (or rules) of the most probable class. Applying these rules 

will assign the class to an unknown instance (Lawrence & Wright, 2001). The main disadvantage of DT 

is that a large training dataset is needed, and it is prone to overfitting (Baatuuwie & Van Leeuwen, 

2011). 

There has been a notable increase in the use of the RF classifier for RS applications (Gislason et al., 

2006; Lawrence, 2006; Duro et al., 2012; Immitzer et al., 2012), and it has been shown to be effective 

for many classification tasks (Lawrence & Wright, 2001; Rodriguez-Galiano et al., 2012). RF, an 

enhancement of DTs (Immitzer et al., 2012), generates each DT by using a random vector sampled 

independently from the input vector. A vote is cast by each of the generated DTs (Breiman, 2001; Pal, 

2005; Bosch et al., 2007). Each classifier contributes a single vote to the assignment of the most popular 

class of the input variable (Breiman, 2001; Rodriguez-Galiano et al., 2012). RF makes use of bagging 

(Breiman, 1996), a method which generates a training set for feature selection. This allows RF 

classifiers to have a low (even lower than DT classifiers) sensitivity to training set size (Rodriguez-

Galiano et al., 2012). Two parameters are required to be set, namely the number of trees and the 

number of active (predictive) variables. Rodriguez-Galiano et al. (2012) showed that stability in accuracy 

is achieved at 100 trees and that a small number of split variables are optimal for reducing generalisation 

errors and correlations between trees. A more detailed discussion of the RF classifier can be found in 

Breiman (1996), Breiman (2001), Pal (2005) and Rodriguez-Galiano et al. (2012). 

Artificial neural networks (ANNs) were one of the first classifiers to draw on the field of ML in RS (Hepner 

et al., 1990) but were not widely employed due to their non-intuitive usability and black-box nature. 

However, neural networks (NN) have recently benefitted from developments in deep learning (DL) 

technology, and RS is seeing the increased application of NNs, including convolutional NNs, multi-layer 

perceptron NNs, autoencoders and deep belief networks (Heydari & Mountrakis, 2019). ANNs are more 

complex than traditional statistical classifiers as they can model non-linear relationships. They contain 

three elements: an input layer, hidden layers and an output layer. The input layer contains the source 

data (imagery), hidden layers represent weights of association between classes and pixel values, and 

there can be many hidden layers. The output layer represents the classes for the desired output, which 

is defined by the training data during model building. The input data are passed through the network, 

and weights are adjusted until the expected classification (defined by the training data) is achieved. 

Once the NN is established, the input data can be replaced with other data. The disadvantages of ANNs 

are that they are complex and prone to overfitting (Han et al., 2018). DL occurs when a multilayered 

NN is formed, creating a deeper network than conventional NNs (Devi Mahalakshmi and Geethanjali, 

2019). A convolutional NN (CNN) contains convolutional layers, max-pooling layers and fully connected 

layers. Filters are applied to the convolutional layers, the dimensionality of the data is reduced in the 

max-pooling layers, and the fully connected layers ensure that all of the input data in one layer are 

connected to all of the units of the next layer (Devi Mahalakshmi and Geethanjali, 2019). NNs are 

advantageous as they can accept various numerical data, even if the data does not have a statistical 

distribution, allowing them to process ancillary data to remotely sensed data (Mather, 2004). A major 
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disadvantage of NNs is that a large amount of training data and computing power are required (Han et 

al., 2018). 

2.5.2.3 Knowledge-based approaches 

Knowledge-based image classification (KBIC), also known as expert system or rule-based 

classification, applies a set of rules defined by an expert to classify remotely sensed images (Peled & 

Gilichinsky, 2010). KBIC consists of a knowledge base containing a set of rules (e.g. if-then statements), 

an inference engine that stores information about how to apply the rules and a database that contains 

the transformed or raw input datasets. The rules defined in KBIC are based on the expert knowledge 

of the user, ancillary data and spectral information, mimicking how humans differentiate between 

classes on the earth’s surface (Cohen & Shoshany, 2002). An example of a rule would be to assign all 

pixels with NDVI values greater than 0.3 to a Vegetation class, as it is well-known that growing 

vegetation has relatively high NDVI values. An example based on literature would be to assign all pixels 

with NDWI values of greater than zero to a Water class (Bangira et al., 2019) 

Apart from not requiring training data, KBIC is advantageous in that the rules are transparent (open for 

scrutiny) and can be easily updated/modified and applied to other areas and/or data (Peled & 

Gilichinsky, 2010). Existing datasets, such as the South Africa National Land Cover (SANLC) products, 

can also easily be incorporated into the set of rules (ruleset). The challenge, however, is to find rules 

that generalise well (i.e. will work in areas with very different conditions). 

2.5.3 Object-based image analysis 

The development of classification methodologies has been enhanced by the advent of OBIA. Traditional 

methods of image analysis consider each pixel as an individual unit, with little cognisance of its 

topological relations to its neighbours or the class structure it represents (Lira & Maletti, 2002; Van 

Coillie et al., 2007). This individuality of pixels renders them susceptible to data noise, atmospheric 

effects and surface variation (Wicks et al., 2002) and limits the usability of spectral, textural and 

relational information (Rego & Koch, 2003; Lennartz & Congalton, 2004; Oruc et al., 2004). Considering 

these factors, Blaschke et al. (2000) argue that no form of per-pixel classification can really yield reliable, 

robust, and accurate results. The increased availability of fine spatial resolution satellite imagery has 

exposed further limitations of per-pixel techniques, as for many applications, the pixels of these images 

are significantly smaller than the real-life objects of interest. In such cases, pixels often demonstrate 

spatial autocorrelation – the concept that features nearby are more similar than features further away – 

and will, therefore, belong to the same classes as their neighbours (Blaschke et al., 2000; Lang, 2008). 

In contrast, OBIA operates on predefined areas of the image, derived either from an external source or, 

more commonly, from region-partitioning processes based on spectral variance known as segmentation 

(Blaschke et al., 2000). According to (Benz et al., 2004; Bock et al., 2005; Hay et al., 2005; Shiba & 

Itaya, 2006), OBIA uniquely offers meaningful statistical calculation of spectral and textural qualities, 

availability of feature qualities such as shape and object topology, intuitive spatial relations between 

real-world objects and image objects, and easier integration between GIS and RS environments and 
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flexibility among different software platforms. 

2.5.4 Cloud-computing for remote sensing 

Hansen and Loveland (2012) speculated that the future of large scale operational mapping lay with 

automated processing chains for multi-image classification, facilitated by the image standardisation of 

long-term satellite programmes such as Landsat (and more recently, Sentinel) that make the imagery 

freely available to the public. This concept has been advanced by the recent development of open 

access data catalogues and cloud-based computing services for geospatial analysis, such as Google 

Earth Engine and Amazon Web Server (Koskinen et al., 2019; Mauya et al., 2019). These services, 

which are freely available for research purposes, provide access to decades of remotely sensed data, 

which can be queried, manipulated, analysed and visualised using a wide variety of RS toolboxes. In 

addition to bypassing the need for data acquisition and on-site storage and processing, the architecture 

of these services allows for automated processing on a large scale in a scripting environment. In 

addition, Initiatives such as Digital Earth Africa12 will facilitate continental-scale EO data analyses 

through online interfaces. Specifically, its vision is to "provide a routine, reliable and operational service, 

using Earth observations to deliver decision-ready products enabling policymakers, scientists, the 

private sector and civil society to address social, environmental and economic changes on the continent 

and develop an ecosystem for innovation across sectors." 

2.5.5 Image classification for forests 

The incorporation of satellite imagery in forest mapping has improved the cost efficiency, development 

speed, timeliness, accuracy and level of detail (McRoberts & Tomppo, 2007). Consequently, there is a 

large body of research in this field. McRoberts et al. (2002) classified four states in America into forest 

and non-forest areas using stratified national land cover data for training, while Hagner and Reese 

(2007) and (Tomppo et al., 2008) classified forest types in Sweden and Finland. A land cover 

classification was conducted on a global level using MERIS fine resolution (300 m) data (Arino et al., 

2007). Defries et al. (2000), Hansen et al. (2003) and Hansen et al. (2005) estimated the global 

percentage of tree cover using different machine learning algorithms and MODIS imagery. Several 

studies have successfully discriminated between plantation and natural vegetation (Luck, 2018) 

conifers, deciduous and mixed forests (Nangendo et al., 2007), and other land cover (Baatuuwie & Van 

Leeuwen, 2011) types using medium resolution (15-30 m) multispectral imagery. The use of VHR 

multispectral imagery in classifications has been shown to be useful in differentiating between forest 

species (Ke et al., 2010; Pu et al., 2011; Immitzer et al., 2012; Atzberger, 2013; Cho et al., 2015; 

Franklin et al., 2017; Franklin & Ahmed, 2018; Wagner et al., 2019; Xie et al., 2019).  

VHR hyperspectral data have been used to successfully classify exotic forests (Peerbhay et al., 2013), 

coniferous forest species (Buddenbaum et al., 2005), eucalyptus and pine plantations (Van Aardt & 

 
12 https://www.digitalearthafrica.org/african-regional-data-cube 
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Norris‐Rogers, 2008), swamp tree species (Adam et al., 2012), and forest plantation species (Voss & 

Sugumaran, 2008; Fagan et al., 2015). 

SAR-derived metrics have been used in conjunction with multispectral-derived metrics in classification 

algorithms to map forest plantations. SAR-derived metrics are often used to differentiate between forest 

and non-forest areas (Dong et al., 2012; Dong et al., 2013; Chen et al., 2016). Airborne LiDAR has 

been used in classification algorithms to map tree species (Heinzel & Koch, 2011; Li et al., 2013a; 

Martinuzzi et al., 2013; Budei et al., 2018) and deciduous and coniferous trees (Yao et al., 2012). 

As part of a previous WRC project (Van Niekerk et al., 2023), multispectral imagery (Sentinel-2) was 

used to discriminate among plantation forest genera (Higgs & van Niekerk, 2022; 2024). 
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3 METHODS AND MATERIALS 

3.1 Indigenous forest classification scheme 

The development of IF2021 included reassessing forest type classification at multiple levels. 

Established reviews of forest classification do not fully address the position of the Southern African 

forest biome in a global context (Mucina et al., 2022). Following the principles of zonality/azonality 

Mucina et al. (2022) used the Schimper-Walterian conceptual framework of biome classification 

(Schimper 1898), dividing the zonal and azonal forest biomes into separate hierarchical structures. 

Zonal biomes were assigned to a four-tier hierarchical structure as follows: 

1. Zonobiomes (ZBs), with temperature regimes as the 1st-tier ecological driver; 

2. Global biomes (GBs), with precipitation as the 2nd-tier ecological driver; 

3. Continental biomes (CBs), with the variations within the energy-water interactions (both a 

function of 1st and 2nd-tier drivers), as the drivers for ecological separation at this level; and 

4. Regional biomes (RBs), with the regional variations of the climate, geology and soil as the 3rd-

tier ecological drivers. 

The first three biome-classifications align with the established zonal biome classification methodology 

employed previously in South Africa. RBs, however, are a new concept, designed to replace the 

bioregion classifications employed at this level in the VegMap. RBs can be further broken down into 

vegetation units, which in this context are analogous to forest types (i.e. the typology of forest 

vegetation). A revision of the forest types for South Africa was recently completed (Mucina et al., 2022). 

Azonal units were assigned to a two-tier hierarchical structure: 

1. Azonal ecosystem groups (AGs), classified as in Macintyre and Mucina (2021); and 

2. Azonal regional biomes (aRBs), equivalent to zonal RBs. 

More details on the comparison of the National Forest Classification developed by Von Maltitz et al. 

(2003), the classifications used in VegMap2006 (and its later incarnations) and in IF2021 can be found 

in Mucina et al. (2022). 

3.2 Overview of forest types 

Table 3-1 shows a breakdown of the azonal and zonal forest types that occur within South Africa (forest 

types outside of South Africa were excluded) and include structurally and species-diverse forest types.  
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Table 3-1 Forest types and their respective zonal biomes 

Zonobiome/azonal Forest type name Code 

Azonal Coastal Group 
Cape Milkwood Woodland ACF1 

Subtropical Dune Woodland ACF2 

Azonal Mangrove Group 
Subtropical Indian Ocean Mangrove AMAN1 

Tropical Indian Ocean Mangrove AMAN2 

Azonal Riparian Group 

Arid Zone Riparian Woodland ARF1 
Cape Alluvial Woodland ARF2 

Highland Alluvial Woodland ARF3 
Subtropical Riparian Woodland ARF4 

Azonal Swamp Group East African Swamp Forest ASF1 

Warm Temperate Zone 

Cape Talus Forest ATF1 
Bushveld Talus Forest ATF3 

Drakensberg Afrotemperate Forest ATF4 
Northern Highveld Afrotemperate Forest ATF5 

Cape Afrotemperate Forest AF1 
Southern Mistbelt Forest AF2 
Northern Mistbelt Forest AF3 

Tropical Diurnal Zone 
African Subtropical Coastal Forest STFa2 

Subtropical Scarp Forest STFa4 
Albany Coastal Forest STFa5 

Tropical Seasonal Zone 
Southern African Dry Forest TDFa2 
Southern African Dry Thicket TDFa3 

The location and distribution of each forest type as per the IF2021 is shown in Figure 3-2. Detailed 

descriptions for each forest type are given below (Mucina et al., 2022). 

3.2.1 Cape Milkwood Woodland (ACF1) 

Cape Milkwood Woodland (Figure 3-1) is found primarily in the Overberg and Hessequa regions 

(Western Cape) as far east as the Gouritz River along the South Coast, and occasionally occurring 

further west in False Bay and on the Cape Peninsula. It is highly fragmented, degraded and in the past 

cleared for agricultural purposes. The low forests are dominated by milkwood Sideroxylon inerme, with 

sparse (if any) undergrowth when tree canopy is closed. 
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 Figure 3-1 ACF1 Cape Milkwood Woodland at De Hoop (left) and ACF2 Subtropical Dune Woodland at 

Mtunzini (right) (Credit: L. Mucina) 

3.2.2 Subtropical Dune Woodland (ACF2) 

Subtropical Dune Woodland (Figure 3-1) is found along the coast stretching from the Albany region of 

the Eastern Cape as far north as Xai Xai in Mozambique. It typically occurs in the form of prolonged, 

interrupted patches. Vegetation is usually thicket‐like, with only a single shrub layer, but more typical 

forest develops in dune depressions or behind the foredune, comprising a coenocline of communities 

spanning low scrub, thicket to low‐grown forest. The main trees and shrubs include Allophylus 

natalensis, Brachylaena discolor, Casearia gladiiformis, Coptosperma littorale, Cussonia arenicola, 

Diospyros rotundifolia, D. inhacaensis, Dovyalis longispina, Drypetes natalensis, Euclea natalensis 

subsp. obovata, E. racemosa subsp. sinuata, Eugenia capensis subsp. capensis, Grewia occidentalis 

var. litoralis, Guilandina bonduc, Gymnosporia arenicola, Maerua nervosa, Mimusops caffra, Osyris 

compressa, Psydrax obovata subsp. obovata, Searsia natalensis, Sideroxylon inerme, Tarenna junodii, 

Thespesia acutiloba, Tricalysia delagoensis, Vepris lanceolata and Zanthoxylum delagoense.  
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Figure 3-2 Distribution and location per forest type in South Africa 
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3.2.3 Subtropical Indian Ocean Mangrove (AMAN1) 

Subtropical Indian Ocean Mangroves (Figure 3-3) occur in South African estuaries south of (but 

excluding) Kosi Bay (KwaZulu‐Natal). It is species‐poor and often monotypic, with the vegetation 

consisting of low forest and thicket dominated by Avicennia marina and, to a lesser extent, Bruguiera 

gymnorhiza and Rhizophora mucronate. 

 
Figure 3-3 AMAN1 Subtropical Indian Ocean Mangrove, KZN La Mercy (Credit: L Mucina) 

3.2.4 Tropical Indian Ocean Mangrove (AMAN2) 

Tropical Indian Ocean Mangroves (Figure 3-4) occur in all South African estuaries north of and including 

Kosi Bay (KwaZulu-Natal). The vegetation consists of tall thickets and occasional low-grown forests 

dominated by Avicennia marina and accompanied by Bruguiera gymnorhiza, Ceriops tagal, Heritiera 

littoralis, Lumnitzera racemosa, Rhizophora mucronata, Sonneratia alba and Xylocarpus granatum. 
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Figure 3-4 AMAN2 Tropical Indian Ocean Mangrove, Kosi Bay (Credit: T. Riddin) 

3.2.5 Arid Zone Riparian Woodland (ARF1) 

Arid Zone Riparian Woodlands typically fringe or form patches in the riverbed of rarely running rivers 

crossing arid zonal ecosystems in Namibia, Botswana and South Africa. In South Africa, this is limited 

to the lower reaches of the Gariep River west of the Augrabies Waterfalls. The vegetation consists of 

low, fringing (‘gallery’ or ‘oasis’) forests or open woodlands and associated thickets and scrub. The 

common tree dominants of the forests and tall woodlands include Faidherbia albida, Searsia lancea, S, 

pendulina, Vachellia erioloba, while the thickets found around the edges of the forests or replacing those 

in places are composed of Euclea pseudebenus, Salvadora persica, Syzygium guineense, S. 

kuneenense, and Tamarix usneoides. Low‐grown scrub with halophytic Caroxylon spp. and Suaeda 

plumosa forms mosaics with the thickets. 

3.2.6 Cape Alluvial Woodland (ARF2) 

Cape Alluvial Woodlands are found in running rivers and streams of the lowland Western Cape. The 

vegetation consists of mid‐tall fringing forests with fynbos-like sedge‐rich (Cyperaceae, Restionaceae) 

and shrubby (Ericaceae, Fabaceae) undergrowth. Riparian thickets (with no tree overstorey) are often 

found fringing these riparian forests and replacing them in disturbed situations. The riparian forests and 

thickets in the lowlands (especially on nutrient-richer soils) have been impacted by invasive Australian, 

European and American trees (Acacia, Quercus and Populus) and numerous species of herbaceous 

alien flora. This regional biome is home to several iconic endemic species, such as Brabejum 

stellatifolium, Cunonia capensis, Metrosideros angustifolia and Virgilia divaricate. 

3.2.7 Highland Alluvial Woodland (ARF3) 

Highland Alluvial Woodlands are found in riparian areas of varying breadth embedded within Highveld 
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and Sub‐Escarpment Grassland regional biomes, including major rivers such as Vaal (and its 

tributaries) and Gariep (above the Gariep Dam). Some patches occur also (albeit rarely) on banks of 

dams of various sizes in the region of occurrence. The vegetation consists mainly of woodlands with 

poorly closed canopy, although true forests (albeit low‐grown) also occur. The prominent native trees 

include Vachellia karroo, Searsia gerradii; Diospyros lycioides. Large expanses of this riparian 

woodland have been invaded by alien species such as Acacia mearnsii, Salix babylonica and clonal 

Populus alba and hybrid P. X canadensis. The shrubby undergrowth is species-rich, and the 

herbaceous layer is often dominated by grasses and also supports many invasive alien species. 

3.2.8 Subtropical Riparian Woodland (ARF4) 

Subtropical Riparian Woodlands are found on running rivers of the southern and eastern Kalahari and 

all rivers crossing the Mesic Savanna (South Africa, Eswatini, Mozambique, Zimbabwe and to a lesser 

extent also Namibia and Botswana). The vegetation consists of discontinuous ribbons of fringing forest 

along rivers in flow most of the year; with a usually evergreen canopy (although Faidherbia albida is 

deciduous in summer). Common tree dominants include Diospyros mespiliformis, Faidherbia albida, 

Ficus sycomorus, Hyphaene coriacea, Kigelia africana, Phoenix reclinata, Schotia brachypetala, 

Syzygium cordatum, Vachellia robusta var. clavigera, V. xanthophloea and Xanthocercis zambesiaca; 

fringing riparian thickets contain prominent Capparis tomentosa, Dalbergia armata, Entada rheedii, 

Combretum microphyllum, Croton megalobotrys, Grewia caffra, Maclura africana and Senegalia 

schweinfurthii. 

3.2.9 East African Swamp Forest (ASF1) 

East African Swamp Forests (Figure 3-5) are found primarily on the coastal plains south of the Zambezi 

Delta and Maputaland in Mozambique. Rare patches are found in South Africa on the coast of KwaZulu‐

Natal and reach as far south as Eastern Cape. The vegetation consists of tall and mid‐grown dense 

forests rich in lianas and understory ferns. The forest communities are usually monodominant (e.g. 

Barringtonia racemosa, Caesaria gladiiformis, Ficus trichopoda, Raphia australis), with other frequent 

trees including Ficus lutea, Macaranga capensis, Rauvolfia cafra, Scheflerea umbellifera, Shirakopsis 

elliptica, and Syzygium cordatum. 



   

 

32 
 

   
Figure 3-5 ASF1 East African Swamp Forest at Mkuzi (left), ATF1 Cape Talus Forest Langeberg at 
Tradouw Pass (middle), ATF3 Bushveld Talus Forest at Strydom Pass (right) (Credit: L. Mucina) 
 

3.2.10 Cape Talus Forest (ATF1) 

Cape Talus Forests (Figure 3-5) are found in isolated patches mainly in the Western and Eastern Cape, 

extending along the north‐south mountain chain from Bokkeveld (Hantam), through the Cederberg, and 

extending eastwards along the Cape Fold Mountains of Riversonderend, Langeberg, Outeniqua and 

Tsitsikamma, Baviaanskloof and Groot Winterhoekberge. This forest type is also found in Swartberg, 

Rooiberg and Kammanassie Mountains. The vegetation consists of medium‐tall and especially low 

(scrub) forest with dominants including Apodytes dimidiata, Cassine schinoides, Cunonia capensis, Ilex 

mitis, Heeria argentea, Kiggelaria africana, Podocarpus elongatus (in the Bokkeveld area), Rapanea 

melanophloeos; Brabejum stellatifolium, Platylophus trifoliatus, Virgilia spp. The riparian thickets are 

tall-grown and typically composed of Brachylaena neriifolia, Cliffortia spp., Metrosideros angustifolia, 

Phylica spp. while the fynbos thickets are composed of Cassine peragua, C. schinoides, Diospyros 

glabra, Heeria argentea, Hyphaene globosa, Maurocenia frangula, Maytenus acuminata, M. oleoides 

and Olea europaea subsp. africana.  

3.2.11 Bushveld Talus Forest (ATF3) 

Bushland Talus Forests (Figure 3-5) are found in isolated occurrences on the Pilanesberg and 

Waterberg in Limpopo in the north, West Magaliesberg in the northwest and Gauteng in the south. The 

vegetation consists of generally low and rarely also medium-tall forest dominated by Buxus macowanii 

(rarely), Celtis africana, Diospyros lycioides, D. whyteana, Erythrina lysistemon, Kirkia wilmsii, Myrsine 

africana, Olea europaea subsp. africana, Osyris lanceolata, Pittosporum viridiflorum, Podocarpus 

latifolius, Searsia lancea, S. leptodictya, Tricalysia lanceolata and Widdringtonia nodiflora. 

3.2.12 Drakensberg Afrotemperate Forest (ATF4) 

Drakenstein Afrotemperate Forests (Figure 3-6) are found in patches, mainly along the lower reaches 
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of the northeastern side of Drakensberg Escarpment between KwaZulu‐Natal and Lesotho (and 

marginally northwards to the vicinity of Van Reenen’s Pass), extending southwards along the Great 

Escarpment to the northeast Eastern Cape. The vegetation consists of low to medium-height forest, 

with dominants including Halleria lucida, Ilex mitis, Kiggelaria africana, Maytenus acuminata, M. undata, 

Olinia emarginata, Podocarpus latifolius, Rapanea melanophloeos, Scolopia mundii, Pittosporum 

viridiflorum and Pterocelastrus rostratus. 

 
Figure 3-6 ATF4 Drakensberg Afrotemperate Forest, Golden Gate Highlands NP (Credit: L. Mucina) 

3.2.13 Northern Highveld Afrotemperate Forest (ATF5) 

Northern Highveld Afrotemperate Forests are found occurring in patches along the eastern side of the 

low escarpment separating KwaZulu‐Natal and the Free State, extending to the Highveld around 

Vryheid and Wakkerstroom in south Mpumalanga and also occurring further north, mainly on the 

western (rain shadow) flank of the Great Escarpment in north Mpumalanga (e.g. in the Lydenburg area). 

The vegetation consists of medium‐high, multilayered forest with well‐developed understory and herb 

layer, with dominant species including Afrocarpus falcatus, Allophylus africanus, Celtis africana, 

Diospyros whyteana, Dombeya burgessiae, Greyia sutherlandii, Myrsine africana, Podocarpus 

latifolius, Senegalia caffra and Xymalos monospora. 

3.2.14 Cape Afrotemperate Forest (AF1) 

Cape Afrotemperate Forests (Figure 3-7) present the largest continuous (albeit fragmented through 

historical logging) forest complex in South Africa. Known as the Knysna‐Tsitsikamma forest complex, it 

occupies the coastal platform between approximately George and Humansdorp, with outlier forest 
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patches on low‐elevation slopes of the Outeniqua and Langeberg ranges. The most western outlying 

patch is found on the eastern slopes of Table Mountain (Cape Town). The vegetation consists of tall, 

multi‐layered forests dominated by Apodytes dimidiata, Cassine peragua, Curtisia dentata, Diospyros 

whyteana, Nuxia floribunda, Ocotea bullata, Olea capensis subsp. macrocarpa, Podocarpus latifolius, 

Pterocelastrus tricuspidatus, Rapanea melanophloeos; shrub layer hosts Alsophila capensis (tree fern), 

Burchellia bubalina, Trichocladus crinitus and Sparmannia africana on forest edges. Lianas (Capparis, 

Rhoicissus, Scutia, Secamone) are common, and the herbaceous layer is rich in ferns. Oplismenus 

hirtellus and some Carex species (formerly Schoenoxiphium) are the most important understory 

graminoids.  

 
Figure 3-7 AF1 Cape Afrotemperate Forest, Knysna (Credit: L. Mucina) 

3.2.15 Southern Mistbelt Forest (AF2) 

Southern Mistbelt Forests (Figure 3-8) are found within a fragmented distribution at middle elevations 

of the Kwa‐Zulu Natal Midlands near Ulundi in the north and Kokstad vicinity in the south, into the 

Eastern Cape through areas of Mount Ayliff and Engcobo to the south Amathole and Winterberg 

Mountains between Stutterheim and Fort Beaufort, and with outliers as far as Somerset East and the 

Zuurberg. The vegetation consists of mainly tall forest dominated by Afrocarpus falcatus, Calodendrum 

capense, Celtis africana, Kiggelaria africana, Podocarpus latifolius, Rapanea melanophloeos, Xymalos 

monospora and Zanthoxylum davyi; Podocarpus henkelii is an important element in the KwaZulu‐Natal 

Midlands. 
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Figure 3-8 AF2 Southern Mistbelt Forest at Zuurberg (left) and AF3 Northern Mistbelt Forest at Graskop 
(right) (Credit: L. Mucina) 

3.2.16 Northern Mistbelt Forest (AF3) 

Northern Mistbelt Forests (Figure 3-8) are found from the Mpumalanga Escarpment (Barberton, Long 

Tom Pass, Blyde and Mariepskop areas), northwards along the northeastern Escarpment as far as 

Soutpansberg. The vegetation consists of tall, moist, evergreen forest rich in epiphytes and comprised 

of Xymalos monospora, Brachylaena transvaalensis, Bersama tysoniana, Cassipourea malosana, 

Chionanthus foveolatus subsp. major, Cryptocarya transvaalensis, Curtisia dentata, Olea capensis 

subsp. macrocarpa, Oxyanthus speciosus subsp. gerrardii, Maytenus acuminata var. acuminata, 

Podocarpus latifolius, Psydrax obovata subsp. elliptica, Rapanea melanophloeos, Rothmannia 

capensis, Schefflera umbellifera, Scolopia mundii, Searsia chirindensis, Syzygium gerrardii and 

Zanthoxylum davyi.  

3.2.17 African Subtropical Coastal Forest (STFa2) 

African Subtropical Coastal Forests (Figure 3-9) are concentrated in the coastal (Indian Ocean) belt 

from south KwaZulu‐Natal, stretching north to and into Mozambique. The most iconic forest complexes 

include Hawaan, Hlongweni (Tugela Mouth) and Dukuduku Forest (all in South Africa), Maputaland 

forests and Bilene forest complex (Mozambique). The vegetation consists of medium‐tall semi‐

deciduous or occasionally evergreen forest, with some of the dominant or characteristic canopy species 

including Afzelia quanzensis, Albizia adianthifolia, Brachylaena discolor, Celtis africana, Chaetachme 

aristata, Dialium schlechteri, Diospyros inhacaensis, D. natalensis, Ficus natalensis, Filicium decipiens, 

Hymenocardia ulmoides, Lannea antiscorbutica, Manilkara discolor, Mimusops caffra, Morus 

mesozygia, Pteleopsis myrtifolia, Sclerocroton integerrimus, Sideroxylon inerme, Strychnos gerrardii 

and Vepris lanceolata.  
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  Figure 3-9 STFa2 African Subtropical Coastal Forest at Margate (left), STFa4 Subtropical Scarp Forest 

at Oribi Gorge (middle), STFa5 Albany Coastal Forest at Alexandria Forest (right) (Credit: L. Mucina) 

3.2.18 Subtropical Scarp Forest (STFa4) 

Subtropical Scarp Forest (Figure 3-9) occur in a narrow, fragmented belt from Albany region south of 

Grahamstown, along the Indian Ocean seaboards of Transkei and KwaZulu‐Natal and then turning 

inland in two nearly parallel belts – one from north KwaZulu‐Natal towards the bases of Mpumalanga 

Escarpment, and the other along the Lebombo range from Maputaland to Eswatini and Mozambique 

border areas. A special type of scarp forest occurs on the south flanks of Blouberg and Soutpansberg. 

The vegetation consists of usually mid‐tall, evergreen or semideciduous forests, with some of the 

dominant or characteristic canopy taxa including Chaetachme aristata, Chionanthus foveolatus subsp. 

foveolatus, Combretum kraussii, C. woodii, Croton sylvaticus, Englerophytum magalismontanum, 

Ekebergia capensis, Ficus sur, Harpephyllum caffrum, Homalium dentatum, Macaranga capensis, 

Manilkara concolor, M. discolor, Margaritaria discoidea, Mimusops zeyheri, Philenoptera sutherlandii, 

Protorhus longifolia, Rawsonia lucida, Strychnos decussata, S. mitis, Vitellariopsis marginata and 

Trichilia dregeana. 

3.2.19 Albany Coastal Forest (STFa5) 

Albany Coastal Forests (Figure 3-9) are limited to the broad coastal platform of the Albany region 

(Eastern Cape), with the Alexandria Forest complex the iconic flagship forest of this type. These are 

remnants of obviously extensive westernmost subtropical coastal forests from the past, which are 

heavily fragmented today. The vegetation consists of mid‐tall semi‐deciduous forest dominated by 

Apodytes dimidiata, Celtis africana, Erythrina caffra, Maytenus undata, Mimusops obovate and 

Sideroxylon inerme. The shrub layer is species-rich and contains species such as Cordia cafra, Euclea 

natalensis, Gymnosporia buxifolia, Strychnos decussata and Teclea natalensis, while the herb layer is 

usually dense and dominated by Acalypha glabrata, Hypoestes aristata and grass Panicum deustum. 

 



   

 

37 
 

3.2.20 Southern African Dry Forest (TDFa2) 

Southern African Dry Forests (Figure 3-10) occur in diverse forms across large areas in southern Africa, 

though in South Africa specifically, they are found in highly localised mid‐ to small‐size (and rarely large‐

scale) patches from north Limpopo and along the western piedmonts of Lebombo Mts of South Africa. 

The vegetation consists of short to tall deciduous forest, often with a dense, almost impenetrable shrub 

layer and occasionally with a near-evergreen canopy, particularly when dominated by Androstachys 

johnstonii. The canopy can be either open or closed and dominated by Afzelia quanzensis, Albizia 

forbesii, Androstachys johnsonii, Balanites maughamii, Brachystegia torrei, Cleistanthus schlechteri, 

Craibia zimmermannii, Dialium schlechteri, Drypetes mossambicensis, Fernandoa magnifica, 

Guibourtia conjugata, Erythrophleum lasianthum, Hymenocardia ulmoides, Lannea antiscorbutica, 

Lecaniodiscus fraxinifolius, Margaritaria discoidea, Millettia stuhlmannii, Newtonia hildebrandtii, 

Pteleopsis myrtifolia, Pterocarpus lucens, Suregada zanzibariensis, Tapura fischeri, Xeroderris 

stuhlmannii, Xylia torreana, Zanthoxylum delagoense and Z. holtzianum.  

 
 

Figure 3-10 TDFa2 Southern African Dry Forest at Tembe (left) and TDFa3 Southern African Dry Thicket 
at Tembe (right) (Credit: L. Mucina) 

3.2.21 Southern African Dry Thicket (TDFa3) 

Southern African Dry Thickets (Figure 3-10) are found in South Africa in small patches in Ndumo 

(KwaZulu-Natal), stretching northwards as far as Greater Limpopo Transfrontier Park. The vegetation 

consists of very dense thicket of 3 ‒ 8 m with occasional scattered taller trees or pockets of taller trees 

with canopies of up to 15 m. The dense shrub layer results in a poorly developed ground layer, with the 

dominating large shrubs including Baphia massaiensis and Boscia foetida subsp. filipes, Canthium 

armatum, Cassipourea mossambicensis, Cleistanthus schlechteri, Combretum celastroides, 

Coptosperma littorale, C. madandensis, Croton pseudopulchellus, Dialium schlechteri, Diospyros 

natalensis, Empogona junodii, Grewia microthyrsa, Guibourtia conjugata, Hyperacanthus microphyllus, 
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Lagynias lasiantha, Leptactina delagoensis, Markhamia zanguebarica, Ochna barbosae, 

Oxytenanthera abyssinica, Psydrax locuples, P. fragrantissima, Pteleopsis myrtifolia, Rytigynia 

celastroides, Sclerochiton apiculatus, Strychnos decussata, Tricalysia delagoensis, Uvaria lucida, Vitex 

ferruginea, V. patula and Warneckea parvifolia. Emergents may include Adansonia digitata, Afzelia 

quanzensis, Balanites maughamii, Bombax rhodognaphalon and Cordyla Africana. 

3.3 Indigenous forest type mapping 

The IF2021 is currently the most comprehensive map of indigenous forests of Southern Africa. Although 

the accuracy and level of detail of the forest patches in IF2021 are a great improvement on the 

VegMap2018, the manual digitising was employed often at a different scale in different areas, resulting 

in inconsistencies the spatial accuracy. For example, in some areas, polygons are generalised, small 

patches are still excluded, or some non-forest patches (or severely degraded forests) could be removed 

(Figure 3-11 and Figure 3-12).  

 
Figure 3-11  Generalised and missing indigenous forest polygons near Hogsback, Eastern Cape 
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Figure 3-12  Non-forest patches that could be removed in Ngoya Forest, KwaZulu-Natal 

 

Given the inconsistencies and inaccuracies of the IF2021, Phase 1 of this research involved the 

mapping of indigenous forests for more accurate water use quantification and analysis per forest type. 

Figure 3-13 shows the workflow diagram and associated product naming convention used by the 

research team for Phase 1. 

Phase 1.1 involved the draft indigenous forest mapping. As seen during the work done with Mucina et 

al. (2022), mapping indigenous forests for Southern Africa at a very large (detailed) scale is a task that 

will take many years to achieve if done manually. The mapping in this project was therefore undertaken 

using RS to derive draft indigenous forest maps in areas of South Africa (IF2022). Phase 1.2 involved 

the refinement of the draft indigenous forest mapping through manual correction in order to increase 

the accuracy (IF2023). Phase 1.3 involved the incorporation of the IF2021 forest types into the IF2023 

indigenous forest maps to develop maps of indigenous forest types (IF2024). Validation of the mapping 

and classification was undertaken with expert knowledge through an online GIS application. The 

following sections describe these phases in more detail. 
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Figure 3-13 Workflow and product development of indigenous forest type mapping 

3.3.1 Draft indigenous forest mapping  

Given that per-pixel classification can result in undesired effects when applied to very high-resolution 

imagery, an OBIA approach using KBIC was taken in this study (Section 2.5.2.3 and 2.5.3). The project 

team has undertaken research in KBIC dating back to the early 2000s (Kidane 2005; Stephenson & 

Van Niekerk, 2009) and, between 2012 and 2014, applied KBIC to map land cover in the Eastern Cape 

(32 classes) with an average overall accuracy of over 90% (Van Niekerk et al., 2014). The following 

section outlines the OBIA and KBIC processes used to undertake the draft indigenous forest mapping 

(Phase 1.1; more details can be found in Deliverable 3). 

Four basic land cover types were targeted: Plantation, Natural woody vegetation, Water and Other, by 

applying OBIA KBIC to aerial photographs, satellite imagery and ancillary data. Figure 3-14 shows an 

aerial photograph composite of the northern parts of Richards Bay, which includes plantations in the 

northwest and in the east, woody vegetation along the coast and riparian areas, and water in the ocean 

and estuary. Other land cover types include built-up residential and semi-residential areas, as well as 

bare ground and cultivation.  
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Figure 3-14 Aerial photograph of an area north of Richards Bay 

Figure 3-15 shows a natural colour Sentinel-2 (S2) composite image of the same area. Notice that due 

to its lower resolution, the image contains much less detail than the aerial photograph, but the 

radiometric quality of the image is higher (for instance, compare the reflection in the ocean). 

 
Figure 3-15 Sentinel-2 natural colour composite image (RGB) of an area north of Richards Bay 

The first class targeted was Water. Water class “seed” pixels were created using the satellite images 

using NDWI, which were then grown into Water objects using a region merging procedure assessed 

against the spectral returns of the aerial photographs. This approach worked very well for inland water 

bodies but not for the ocean, as wave action caused too much variation in the aerial photograph 

reflectance. To overcome this, a further NDWI rule was applied to the S2 imagery. The result of these 

rules is shown in Figure 3-16. 

 
Figure 3-16  Classified Water (blue) overlain onto an aerial photograph of an area north of Richards Bay 

The next class targeted was a generic Woody vegetation class comprised of both plantations and 

indigenous forest. Three sequential MRS segmentations were derived. The first segmentation was run 

on aerial photographs, and VHR digital surface model (DSM) derivatives were incorporated to 

accentuate surface features within objects. Subsequent segmentations incorporated aerial photograph 

bands and indices derived from satellite imagery to determine minimum mapping units for Woody 

vegetation. These were then classified by applying threshold rules for NDVI, NGIB, S2B, NDMI2 

(Section 2.5.1) and NFB (national field boundaries). This successfully delineated large tree stands, 

Planted forests 

Natural woody vegetation 

Planted forests Water 

Water 
Other Other 

Other 

Natural woody vegetation 
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though some small stands were missed. Additional rules were then applied to capture these missed 

segments, resulting in a more comprehensive identification of tree stands (Figure 3-17). 

 
Figure 3-17  Woody vegetation (orange and pink) overlain onto a hillshade of the Digital Elevation Model 
of South Africa (DEMSA) 

The objects belonging to the Woody vegetation class were then reclassified into Plantation forests using 

proximity to the SANLC and IF2021 and ancillary DEM derivatives. All remaining Woody vegetation 

objects were assigned to the Natural woody vegetation class, and all remaining unclassified objects 

were classified as Other. The result of this classification is shown in Figure 3-18, with Plantations in 

purple, Natural woody vegetation in red, Other in yellow and Water in blue. 

 
Figure 3-18  Planted forests (purple), Natural woody vegetation (red), Other (yellow) and Water (blue) 
classified using KBIC (overlain onto a hillshade of the DEMSA) 

Given the large extent to which IFs are found in South Africa, the KBIC methodology was implemented 

per quarter degree tile, of which 1919 cover South Africa (Figure 3-19). Using the IF2021 as a basis, 

the area covered by indigenous forests was calculated within each tile. In total, 618 tiles containing 

indigenous forests were identified. The tiles with the largest proportion (>1000 ha) of indigenous forests 

were prioritised for mapping (141 tiles in total). 
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Figure 3-19 Relative area (ha) of indigenous forests within each quarter degree tile 
 

At the time of writing this report, the KBIC was successfully applied to 91 tiles (Figure 3-20), constituting 

over 62% of the indigenous forest in South Africa.  
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Figure 3-20 Indigenous forest classification progress to date 

The overall accuracy of the IF2022 was estimated to be around 90%. Although this accuracy is high by 

most RS standards, it was deemed insufficient for indigenous forests water use analysis and further 

refinements were undertaken. 

3.3.2 Indigenous forest map refinement 

The refinement of the IF2022 was undertaken through manual corrections, as advised by expert 

knowledge. Typically, manual editing (e.g. digitising the boundaries of individual forest patches) is 

extremely time-consuming, but the process was streamlined by using OBIA. Image objects representing 

homogenous land cover units were created by applying MRS to the classified forest boundaries, NDVI, 

enhanced vegetation index (EVI), texture, and elevation. These objects were then used as minimum 

mapping units (MMUs) for the manual corrections. Using image objects instead of pixels as MMUs 

allows operators to select and assign multiple objects to a specific class (i.e. Indigenous forest vs. 

Other) without any need for any digitising.  

With the assistance of Prof Mucina, the following guidelines were set for the manual class assignments: 

1. Large (> 5 ha) objects with a majority proportion (>50%) of indigenous forests, but also other 

land cover classes such as non-woody vegetation (e.g. grass), water, bare ground, buildings, 

etc. must be manually split along the edge of the indigenous forest (Figure 3-21);   
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2. Compared to naturally occurring trees, plantations generally have a much smoother 

appearance in very high-resolution imagery as they are of the same age and planted in a more 

or less regular grid. Objects containing planted trees should be removed from the Indigenous 

forest class (Figure 3-22); 

3. For an object to be assigned to the Indigenous forest class, it must have a natural (i.e. perceived 

not to be planted) tree canopy cover of greater than 75% (Figure 3-23); 

4. Objects within urban areas containing tree cover of greater than 75% must be assigned to Other 

(Figure 3-24), unless they form part of a patch of trees that is larger than 50 x 50 m (quarter of 

a hectare).  

5. Objects containing buildings and residential gardens must be assigned to Other (Figure 3-24); 

6. Objects that contain a mixture of planted and natural trees, or where it is difficult to decern 

whether the trees within an object were planted or are of natural origin, must be mapped as 

Indigenous forest. I.e. err on the side of caution.  

 
Figure 3-21 Examples (yellow lines) of where object boundaries do not match the Indigenous forest 
(green) patch boundary and where subdivision (splitting) of objects is required 

 



   

 

46 
 

 
Figure 3-22  Example of where Indigenous forests (green) are distinctly less smooth (in terms of texture) 
compared to planted forests (red) and other land covers (yellow) 

 

 

 
Figure 3-23  Example of where Indigenous forest object with less than 75% tree coverage must be 
manually reclassified to Other 

Objects with tree canopy < 75% 
(that must be assigned to Other) 

Objects that 
need manual 
correction 
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Figure 3-24  Examples of Indigenous forest objects in urban areas that must be manually assigned to 
Plantation or Other based on their contiguous size or content (e.g. buildings), respectively 

Despite the very high classification accuracies (>90%) achieved using the KBIC approach, each tile still 

required a significant amount of manual correction and verification (quality control). To date, the 

mapping has entailed over 1200 hours of processing and over 1000 person-hours of post-processing 

time, most of which was spent on manual corrections and quality control. The project team severely 

underestimated the time required for this process but feels that the value that this has added to the 

project is worth the effort. An example of the refinement is shown for the Ngoya Forest, KwaZulu-Natal 

in Figure 3-25. 

Must be 
reassigned 
to Other 

Correctly classified 
as Indigenous forest 

Must be 
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Figure 3-25 Comparison of IF2021 and IF2023 

Increasing the accuracy of the national indigenous forest map was a necessary step to increase the 

fidelity and reduce the uncertainty of the water use extractions. At the time of this report, 56% of the 

indigenous forest has been edited and 47% quality controlled, providing a sufficiently large proportion 

(10% per class) of “pure” ET pixels (Section 2.3) per forest type for extracting water use (ET) and 

environmental variables (e.g. terrain and climate). 

3.3.3 Indigenous forest type classification 

Phase 1.3 involved the classification of the Indigenous Forest objects in the IF2023 product into 

individual forest types using proximity analysis to the forest types in the IF2021. The following methods 

were considered: 

1. Where Indigenous Forest objects intersected an IF2021 forest type. 

2. Where Indigenous Forest objects were compared to only the closest IF2021 forest type. 

3. Where Indigenous Forest objects were compared to a ratio between the first and second closest 

IF2021 forest types. 

The first method was found to spatially limit the classification of the forest types, while the second 

method resulted in the “straight line” anomalies in areas of previously unclassified indigenous forest, as 

shown in a previous report (Deliverable 4). The third method provided a balance between the first two 

methods. The distances from the aggregated objects to the closest and second closest forest type 

polygons in the IF2021 dataset were calculated for each IF object and calculated as a ratio. Indigenous 

forest objects in closer proximity to the IF2021 (ratio <=1) were labelled as Forest type, while objects 
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further away (ratio > 0.1) were labelled as Uncertain for further validation. Figure 3-26 and Figure 3-27 

show examples of these classifications, referred to as the IF2024, compared against the IF2021.  

 
Figure 3-26 Indigenous Forest and Uncertain IF2024 classes (solid fill) compared to the IF2021 near 

Hluhluwe, KwaZulu-Natal 
 

 
Figure 3-27 Indigenous Forest and Uncertain IF2024 classes (solid fill) compared to the IF2021 near St 

Lucia, KwaZulu-Natal 
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3.3.4 Validation of forest type classification  

As demonstrated in the previous section, automated forest type labelling using proximity analysis is not 

foolproof, especially in complex regions where multiple forest types occur or which are located very far 

away from existing labelled forest types (IF2021). Prof Ladislav Mucina was tasked to check all labelled 

forest type polygons, with a particular focus on the polygons for which the forest type classification was 

Uncertain.  

In order to facilitate this, ArcGIS Online (www.arcgis.com) was used to develop a web application (IF 

WebApp) through which the indigenous forest mapping results can be easily scrutinised. The web app 

shows the IF2021 Indigenous Forest polygons with red outlines and predefined colours to show the 

different forest types of the manually corrected and classified IF2024 (Figure 3-28). The polygons are 

overlain onto recent very high-resolution satellite imagery to assist with the validation13. Users of the 

web app can navigate (zoom and pan) through the map and toggle layers on and off. Users can also 

easily modify a polygon’s classification, subdivide polygons using the cut tool and add new polygons 

using the digitising tool. 

 
Figure 3-28 Web application showing IF2021 (red) and IF024 forest type polygons (predefined colours) 

In Figure 3-29 a polygon that was incorrectly assigned to the African Subtropical Coastal Forest is 

reclassified to the Southern African Dry Forest class. The Edit tool also allows the user to cut, merge 

and reshape features.  

 
13 Using recent satellite imagery also served to correct errors that may have occurred due to deforestation since 2016-2017 
when the aerial photography used in the KBIC was acquired.  

http://www.arcgis.com/
https://cga-sun.maps.arcgis.com/apps/webappviewer/index.html?id=d682edd15cbe4ec0a3f5281429b6ebfd
https://cga-sun.maps.arcgis.com/apps/webappviewer/index.html?id=d682edd15cbe4ec0a3f5281429b6ebfd
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Figure 3-29 Functionality on the web application allowing for polygons to be reclassified 

In Figure 3-30, the Select tool is used to select a polygon to check the attributes for that polygon. For 

instance, the editor might be interested in the ratio attribute which indicates how far the closest and 

second closest IF2021 polygon is to the selected polygon.  

 
Figure 3-30 Functionality on the web application allowing users to select polygons and view their 

attributes 

Figure 3-31 demonstrates how the Swipe tool can be used to study the underlying satellite imagery to 

validate the Indigenous Forest class.  
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Figure 3-31 Functionality on the web application allowing users to swipe the classified feature classes to 

see the aerial image below 

Due to the time required for validation (some validations will require field visits – not within the scope of 

this project), the forest type validation process will likely continue beyond the end of this project. 

However, this did not impact the water use quantification to any great degree, as sufficient coverage of 

each of the forest types was ensured to allow for meaningful statistical analysis (Section 3.4.2).  

3.4 Indigenous forests water use analyses 

Phase 2 of this research involved the quantification and analysis of water use of indigenous forest types 

and explaining evapotranspiration variations within different environments. This was undertaken by 

extracting actual ET per forest type for 24 different terrain, soil and climate variables (Phase 2.1), 

comparing water use quantifications within the context of field measurements (Phase 2.2) and analysing 

the differences in water use per forest type (Phase 2.3). The following sections provide more detail on 

the environmental variable assessment and preparation, as well as the water use calculation 

methodology. 

3.4.1 Environmental variable selection and preparation 

The 24 readily available climatic, terrain and soil variables assessed in this research are shown in Table 

3-2. All terrain indices other than morphology were sourced from the Stellenbosch University Digital 

Elevation Model (SUDEM) developed by Van Niekerk (2016). The long-term climate variables, as well 

as the terrain morphological units, were sourced from the South African Atlas of Agrohydrology and 

Climatology (Schulze, 2007). Soil data was sourced from the Land types of South Africa: Digital map 

(1:250 000 scale) and soil inventory dataset, developed by the Agricultural Research Council: Institute 

for Soil, Climate and Water (Agricultural Research Council, 2010). 
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Table 3-2 A list of variables considered in the analysis and a reference to the variable source 

Type Variable Description Source 

Terrain 

Elevation (m) Height above mean sea level (m) Van Niekerk (2016) 
Slope gradient 

(degrees) Elevation divided by pixel size, expressed in degrees Van Niekerk (2016) 

Slope aspect Mean downslope cardinal direction (deg) Van Niekerk (2016) 

Terrain morphology Terrain classification based on slope form, relief, drainage density, 
stream frequency and percent area with slopes < 3 degrees Schulze (2007) 

Topographic Wetness 
Index 

Areas prone to water accumulation or drainage based on slope 
and upstream contributing area Van Niekerk (2016) 

Flow accumulation Cumulative sum of flow entering each cell in a drainage network Van Niekerk (2016) 
Topographic negative 

openness Measure of topographic concave features in the landscape Van Niekerk (2016) 

Topographic positive 
openness Measure of topographic convex features in the landscape Van Niekerk (2016) 

Topographic Position 
Index 

The difference between the elevation at a central point and the 
mean elevation within a predetermined neighbourhood Van Niekerk (2016) 

Soil 
Soil depth Soil depth (mm) ARC-ISCW (2010) 
Soil clay Percent of clay content in soil (%) ARC-ISCW (2010) 

Climate 

Mean annual rainfall Long-term mean of cumulative annual rainfall (mm) Schulze (2007) 
Mean annual 
temperature  Long-term mean of mean annual temperature (deg C) Schulze (2007) 

Mean temperature in 
February Long-term mean of mean temperature in February (deg C) Schulze (2007) 

Mean temperature in 
July Long-term mean of mean temperature in July (deg C) Schulze (2007) 

Climate zones Climate classification system based on long-term median monthly 
rainfall and temperatures, developed by Köppen (1931) Schulze (2007) 

Rainfall seasonality Predominant rainfall season, based on long-term rainfall peak 
concentrations. Schulze (2007) 

Annual solar radiation  Long-term annual mean of mean daily solar radiation (ave daily 
MJ/m2/day) Schulze (2007) 

Solar radiation for 
February 

Long-term monthly mean of daily solar radiation in February 
(MJ/m2/day) Schulze (2007) 

Solar radiation for July Long-term monthly mean of daily solar radiation in February 
(MJ/m2/day) Schulze (2007) 

Annual relative 
humidity 

Ratio of water vapour present in the air and maximum at a specific 
temperature, as a percentage. Long-term annual mean. Schulze (2007) 

Vapour Pressure 
Deficit February 

Difference between the actual water vapour pressure and vapour 
pressure saturation point at a specific temperature. 
Long-term mean for the month of February (kPa) 

Schulze (2007) 

Vapour Pressure 
Deficit July 

Difference between the actual water vapour pressure and vapour 
pressure saturation point at a specific temperature. 

Long-term mean for the month of July (kPa) 
Schulze (2007) 

Heat units Long-term mean of accumulated days per year within specified 
maximum and minimum temperature thresholds (degree days) Schulze (2007) 

Although this set of variables is comprehensive, in many cases they represent long-term mean values 

and at coarse resolution and may thus not necessarily represent the full set of factors (e.g. canopy 

structure, species diversity, seasonality, age) regulating or impacting ET. 

The water use per forest type analysis required nominal categories rather than quantitative variables. 

Continuous environmental variables were reclassified into categories (e.g. low, medium, high) using 

quantile analysis, which divides a dataset into segments of equal probability or frequency. Quantiles 

were determined according to the range of a given variable on a national scale (e.g. 0-3478 m for 

elevation). Variables with existing nominal classes were retained as is, with the exception of terrain 

morphology, which was simplified as per Table 3-3. 
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Table 3-3 Reclassified terrain morphology units 

Original units Reclassified units 
Dune hills with parallel crests and lowlands 

Extremely irregular plains 
Moderately undulating plains 

Plains 
Slightly undulating plains 

Plains and pans 
Slightly irregular plains 

Slightly irregular plains and pans 
Slightly irregular undulating plains (some hills) 

Slightly undulating plains and pans 

Plains/flat 

Highly dissected hills 
Hills 

Hills and lowlands 
Strongly undulating irregular land 

Undulating hills 
Undulating hills and lowlands 

irregular undulating lowlands and hills 
Lowlands and hills 

Lowlands and parallel hills 
Parallel hills 

Parallel hills and lowlands 

Hilly/undulated 

High mountains 
Highly dissected low undulating mountains 

Low mountains 
Table-lands 

Lowlands with mountains 
Mountains and lowlands 

Undulating mountains and lowlands 

Mountainous 

The reclassification of the terrain, soil and climate environmental variables applied to the water use 

calculations is shown in Table 3-4. 
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Table 3-4 Reclassification of terrain variables 

Type Variable Classification 

Terrain 

Elevation (m) 
Low: (0-881) 

Medium: (881-1224) 
High: (1224-3478) 

Slope gradient (degrees) 
Level/gently inclined (0-5.7) 

Moderately inclined/steep (5.7-29.3) 
Very steep (29.3-88.2) 

Slope aspect North; North-East; East; South-East; South; South-
West; West; North-West 

Terrain morphology 
Plains/flat 

Hilly/undulated 
Mountainous 

Topographic Wetness Index 
Low: (1.37-7.17) 

Medium: (7.17-8.50) 
High: (8.50-39.0) 

Flow accumulation 
Low: (0-1) 

Medium: (1-1224) 
High: (1224-103964) 

Topographic negative openness 
Low: (0.00-1.22) 

Medium: (1.22-1.48) 
High: (1.48-1.72) 

Topographic positive openness 
Low: (0.00-1.28) 

Medium: (1.28-1.50) 
High: (1.50-1.75) 

Topographic Position Index 
Low: (-1997 – -5.37) 

Medium: (-5.37 – -1.87) 
High: (-1.87 – 1510) 

Soil 

Soil depth (mm) 
Low: (0-331) 

Medium: (331-584) 
High: (584-1320) 

Soil clay (%) 
Low: (0.0-10.2) 

Medium: (10.2-17.7) 
High: (17.7-61.7) 

Climate 

Mean annual rainfall (mm) 

Low (< 600) 
Medium (600-800) 
High (800-1 000) 

Very high (> 1 000) 

Mean annual temperature (deg C) 
Low: (6.0-16.6) 

Medium: (16.6-18.6) 
High: (18.6-25.0) 

Mean temperature in Feb (deg C) 
Low: (9.9-21.6) 

Medium: (21.6-23.8) 
High: (23.8-29.1) 

Mean temperature in Jul (deg C) 
Low: (1.70-9.8) 

Medium: (9.8-11.9) 
High: (11.9-18.8) 

Climate zones (Köppen) 

Arid, hot and dry (BWh) 
Arid, cool and dry (BWk) 

Semi-arid, hot and dry (BSh) 
Semi-arid, cool and dry (BSk) 

Summers long, dry and cool (Csb) 
Summers long, dry and hot (Csa) 

Wet all seasons, summers long and hot (Cfa) 
Wet all seasons, summers long and cool (Cfb) 

Winter long, dry and hot (Cwa) 
Winter long, dry and cool (Cwb) 

Tropical wet, dry and winter season (Aw) 

Rainfall seasonality 

All year 
Winter  

Early summer 
Mid-summer 
Late summer 

Very late summer 
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Table continued from previous page 

 

Mean annual solar radiation (ave daily MJ/m2/day) 
Low: (101-221) 

Medium: (221-235) 
High: (235-264) 

Solar radiation for Feb (ave daily MJ/m2/day) 
Low: (7.4-22.1) 

Medium: (22.1-23.8) 
High: (23.8-28.1) 

Solar radiation for Jul (ave daily MJ/m2/day) 
Low: (6.4-12.1) 

Medium: (12.1-13.7) 
High: (13.7-16.4) 

Mean annual relative humidity (%) 
Low: (42.5-55.2) 

Medium: (55.2-63.5) 
High: (63.5-93.2) 

Mean Vapour Pressure Deficit Feb (kPa) 
Low: (-0.57 – 0.83) 

Medium: (0.83-1.30) 
High: (1.30-2.60) 

Mean Vapour Pressure Deficit Jul (kPa) 
Low: (-0.15 – 0.47) 

Medium: (0.47-0.63) 
High: (0.63-1.20) 

Total Heat units (degree days) 
Low: (128-2483) 

Medium: (2483-3156) 
High: (3156-5174) 

 

3.4.2 Water use data extraction 

The Level 1 (v2) monthly ET WaPOR rasters from January 2009 to June 2023 served as the primary 

data for water use calculations undertaken in this study (see Section 2.3). To extract the data, the 

centroids of each 250 m ET WaPOR pixel were converted to a point grid. This was intersected with 

each forest type polygon to clip the points to areas of indigenous forest and acquire the forest types for 

each point. A “sample by point” algorithm was then implemented on the 174 monthly rasters to acquire 

the ET time series values for each forest type point. Van Niekerk et al. (2023) found that the mixed pixel 

effects resulting from this method are minimised to the point of being negligible to the overall results, 

and the assumption was made that it will be the case for this study. 

3.5 Multivariate machine learning analyses 

Machine learning (Section 2.5.2) is frequently used in RS applications to map land cover. Supervised 

classification (Section 2.5.2.2) is an empirical approach for mapping large areas using remotely sensed 

data as input. However, machine learning is also useful to gain a deeper understanding of the complex 

relationships among many variables, as is the case in this project. In this study, we used RF 

classification and regression to gain a better understanding of how environmental conditions 

(represented by the environmental variables collected in Section 3.4.1) affect: 

1. The water use of indigenous forests; and 

2. The occurrence (location) of forest types. 

In the first set of experiments, RF regression was used to “model” forest water use. The purpose of this 

analysis was not to predict water use, but rather to identify how strongly the environmental variables 

contribute to (or explain) the water use of forests.  
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Although the water use of indigenous forests was the focus of the project, the production of a highly 

detailed and accurate indigenous forest map (Section 3.3) and the development of a set of analysis-

ready environmental datasets (Section 3.4.1) opens many other avenues for research. For instance, 

the data can be analysed to gain a deeper understanding of the environmental profiles and drivers of 

different forest types. Annual mean ET was set as the target variable, while all the environmental 

variables were set as predictor variables. The resulting model’s accuracy was assessed using R-

squared (R2) and root mean square error (RMSE) values. R2 is a measure for the percentage of variance 

of the dependent variable that the independent variables are able to explain (a higher value indicates a 

better fit). RMSE is a metric that provides the average difference between predicted and actual values 

(the lower the value, the more accurate the predictions). A secondary output of RF regression is a list 

of variables that contributed most to the model. This ranking is calculated by measuring the decrease 

in model performance when a specific environmental variable is randomly removed (see Section 2.5.2.2 

for an explanation of how the RF model uses out-of-bag sets of data in the process of model building 

and testing). The ranking of variables, also called the variable importance list (VIL), is very useful 

because it identifies the “drivers” of the target variable (annual mean ET in our case). It can also be 

used to eliminate variables for further consideration. However, the VIL does not take collinearity among 

variables into account. For instance, two variables that are highly correlated (contain the same 

information) may both be ranked highly. Consequently, it is advisable to consider the collinearity of 

variables in the interpretation of the table. A correlation matrix is usually employed for this purpose, 

whereby all except one of the highly correlated variables can effectively be ignored. The regression 

modelling results, VIL and correlation matrix are discussed in Section 4.2.2. 

Although compositional and ecological analyses of indigenous forests were not within the scope of this 

project, the potential of the rich set of data that was collated and generated in this project is ideal for 

such research. To demonstrate, RF classification was applied to model the distribution of forest types, 

with the locations of forest types set as the target variable and the full list of environmental variables 

(Section 3.4.1) used as predictor variables. In other words, a machine learning model was built to predict 

where different indigenous forest types will occur, using only environmental characteristics (as 

represented by the selected variables) as input. It is important to note that the model only considers 

areas where indigenous forests are located, i.e. it does not differentiate indigenous forests from other 

land cover/uses. The accuracy was quantified using 10-fold cross-validation. This divides the training 

set into ten subsets, of which nine are used to train the model, and the remaining are used for testing. 

This process is iterated until all ten subsets have been used for testing. The mean of the ten accuracies 

is then used for the overall model performance. The model used 76 682 samples, of which roughly 

7 670 were used for testing, and roughly 69 010 were used for training during each of the ten iterations. 

The results of the classification are reported in Section 4.1.2.  
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4 RESULTS AND DISCUSSIONS 

4.1 Forest types 

4.1.1 Extent (coverage) per forest type 

Table 4-1 summarises the areas mapped, refined and classified for each forest type in the IF2024 

compared to the total area found in the IF2021.  

Table 4-1 Forest type area classified in IF2024 and total area of IF2021 

Forest type Code IF2024 area (km2) IF2021 area (km2) 
Cape Milkwood Woodland ACF1 40.9 24.7 

Subtropical Dune Woodland ACF2 181.6 273.9 
Subtropical Indian Ocean Mangrove AMAN1 39.8 25.8 

Tropical Indian Ocean Mangrove AMAN2 2.00 0.7 
Arid Zone Riparian Woodland ARF1 31.8 171.6 

Cape Alluvial Woodland ARF2 24.0 70.3 
Highland Alluvial Woodland ARF3 10.1 29.6 

Subtropical Riparian Woodland ARF4 56.9 199.3 
East African Swamp Forest ASF1 115.2 80.7 

Cape Talus Forest ATF1 132.1 228.5 
Bushveld Talus Forest ATF3 16.2 48.7 

Drakensberg Afrotemperate Forest ATF4 49.1 71.4 
Northern Highveld Afrotemperate Forest ATF5 36.6 220.8 

Cape Afrotemperate Forest AF1 216.8 550.3 
Southern Mistbelt Forest AF2 1098.9 1011.7 
Northern Mistbelt Forest AF3 85.1 422.4 

African Subtropical Coastal Forest STFa2 447.0 282.5 
Subtropical Scarp Forest STFa4 1496.3 1027.3 

Albany Coastal Forest STFa5 133.9 117.4 
Southern African Dry Forest TDFa2 623.1 535.5 
Southern African Dry Thicket TDFa3 51.4 280.2 

Total  4888.6 5673.2 

Southern Mistbelt Forest (AF2) and Subtropical Scarp Forest (STFa4) cover the largest areas, 

comprising 53.2% of the forest types mapped. Tropical Indian Ocean Mangrove (AMAN2) covered the 

smallest area: 2 km2 (0.07% of total forest cover). In certain cases, such as Cape Afrotemperate Forest 

and Northern Mistbelt Forest, the IF2024 mapped area is smaller than in IF2021, reflecting the non-

exhaustive nature of the mapping project. Conversely, the African Subtropical Forest and Subtropical 

Scarp Forest (which were mapped almost to completion) show a larger area mapped in the IF2024 

compared to the IF2021. This is either due to the IF2024 mapping overestimating indigenous forest 

coverage, i.e. “erring on the side of caution”, or due to misclassifications or missed indigenous forest in 

the IF2021.  

4.1.2 Modelling forest types using machine learning 

The RF classification, modelling the environmental drivers of forest type (Section 3.5) produced an 

overall classification accuracy of 85.3%. This is remarkably high considering that there are 21 forest 

types. The environmental VIL is shown in Table 4-2.  However, the VIL does not take collinearity among 

variables into account. For instance, two variables that are highly correlated (contain the same 

information) may both be ranked highly on the list. Consequently, it is advisable to consider the 
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collinearity of variables in the interpretation of the table. A correlation matrix (Figure 4-1) was produced 

for this purpose. 

Table 4-2 Environmental variable importance for classifying forest types 

Rank Environmental variable Feature importance (%) 
1 Mean temperature in Jul (deg C) 9.3 
2 Heat units (degree days) 9.2 
3 Terrain morphology 9.0 
4 Mean annual temperature (deg C) 8.4 
5 Soil clay (%) 7.1 
6 Mean temperature in Feb (deg C) 7.0 
7 Vapour Pressure Deficit Jul  (kPa) 6.8 
8 Annual relative humidity (%) 5.8 
9 Solar radiation for Jul (ave daily MJ/m2/day) 5.3 

10 Annual solar radiation (ave daily MJ/m2/day) 5.1 
11 Vapour Pressure Deficit Feb (kPa) 4.5 
12 Soil depth (mm) 3.8 
13 Solar radiation for Feb (ave daily MJ/m2/day) 3.5 
14 Mean annual rainfall (mm) 3.0 
15 Rainfall seasonality 2.8 
16 Elevation 2.6 
17 Climate zones (Köppen) 2.6 
18 Topographic positive openness 1.5 
19 Topographic negative openness 1.2 
20 Slope gradient 0.9 
21 Topographic Wetness Index 0.3 
22 Topographic Position Index 0.3 
23 Slope aspect 0.2 
24 Flow accumulation 0.2 

Based on the variables included in the modelling, the strongest environmental driver is mean 

temperature in July (9.3%), closely followed by heat units (9.2%), terrain morphology (9.0%), and mean 

annual temperature (8.4%), apart from terrain morphology the strongest drivers underline the 

importance of temperature-related factors in the occurrence of forest types. However, all three of these 

temperature-related variables are highly correlated (R2>=0.95), which means that excluding two of 

these variables from the classification will likely produce similar results (a separate experiment that 

excludes heat units and annual temperature was carried out to test this hypothesis and the resulting 

model’s accuracy was 85.4%). Vapour pressure deficit in July (6.8%) is also an important driver of forest 

types, but this variable is also strongly related (R2>=0.84) with the above-mentioned variables. Although 

winter (July) solar radiation is ranked ninth, it is poorly correlated with other (non-solar radiation-based) 

variables, which suggests that solar radiation is also a noteworthy driver of forest types. The fact that 

annual and summer (February) solar radiation is also ranked within the top 13 most important variables 

supports this observation.  

Terrain morphology (9.0%) was the third most important variable in the modelling of forest types, 

demonstrating the close relationship between terrain and forest types (Mucina, 2018). Surprisingly, 

elevation, slope gradient and slope aspect were not as important as morphology. This is likely because 

morphology is a combination of these terrain variables.  

Both soil-related variables, namely soil clay percentage (7.1%) and soil depth (3.8%), are listed in the 
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top 12 variables, suggesting that soil-related factors play an important role in the location of different 

forest types. 

Although variables such as mean annual rainfall (3%), rainfall seasonality (2.8%) and climate zones 

(2.6%) are ranked low, they are not strongly correlated to each other and any other important variables. 

As such, they are likely contributing factors to differentiate among forest types. 

 
Figure 4-1 Correlation among environmental variables 

4.2 Forest water use 

4.2.1 Water use per forest type 

Table 4-3 shows that the highest mean annual ET was estimated for Subtropical Indian Ocean 

Mangrove (AMAN1) (1 312±304 mm/yr), followed by Cape Afrotemperate Forest (AF1, 1 211±144 

mm/yr). The lowest mean annual ET estimate was for Arid Zone Riparian Woodland (ARF1) (402±346 

mm/yr). The ranges (minimum to maximum) in annual ET per forest type for all forest types are 

substantial. Minimum annual ET values below 100 mm/yr were estimated for Arid Zone Riparian 

Woodland and Cape Milkwood Woodland. Very high maximum annual ET values (>1 300 mm/yr) were 

estimated for all forest types, with maximum ET estimates for six forest types exceeding 2 000 mm/yr. 

These very high maximum annual ET estimates are ‘hidden’ in the mean and median values, and are 

deemed inaccurate (overestimation). These values are likely caused by WaPOR modelling inaccuracies 

and not physically possible and should be treated with caution. Although a previous study (Van Niekerk 

et al., 2018) showed ET based on EO data from waterbodies in the range of 2 000 mm/yr, these values 

are most likely an overestimation of ET (evaporation from water bodies is not restricted by physiological 
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controls like transpiration from vegetative bodies). We suggest that, when interpreting Table 4-3, the 

median value be used instead of the mean as the former is less sensitive to outliers. It is likely that the 

median values may present an overestimation of annual ET in some cases. 

Table 4-3 Evapotranspiration statistics per forest type for the period January 2009 to June 2023, as 
estimated using 250 m resolution WaPOR data 

Forest Type Code # of 250x250  
samples 

Annual ET (mm) 
Mean Median Min Max Std Dev 

Cape Milkwood Woodland ACF1 629 541 518 61 1611 184 
Subtropical Dune Woodland ACF2 2208 1071 1120 122 2257 314 

Subtropical Indian Ocean 
Mangrove AMAN1 599 1312 1338 224 2198 304 

Tropical Indian Ocean 
Mangrove AMAN2 32 1054 1131 309 1934 347 

Arid Zone Riparian 
Woodland ARF1 508 402 296 29 2106 346 

Cape Alluvial Woodland ARF2 384 1016 998 368 1717 251 
Highland Alluvial Woodland ARF3 161 501 476 149 1555 199 

Subtropical Riparian 
Woodland ARF4 815 1044 1055 178 1727 280 

East African Swamp Forest ASF1 1777 1181 1213 199 2163 279 
Cape Talus Forest ATF1 2114 1083 1106 360 1828 222 

Bushveld Talus Forest ATF3 259 927 918 539 1399 137 
Drakensberg Afrotemperate 

Forest ATF4 785 754 749 308 1365 157 

Northern Highveld 
Afrotemperate Forest ATF5 586 783 763 334 1373 181 

Cape Afrotemperate Forest AF1 3454 1211 1224 428 1713 144 
Southern Mistbelt Forest AF2 17583 1174 1190 248 2004 293 
Northern Mistbelt Forest AF3 1361 1171 1199 275 1768 256 

African Subtropical Coastal 
Forest STFa2 7100 1145 1194 194 2204 283 

Subtropical Scarp Forest STFa4 23860 1033 1054 129 1913 237 
Albany Coastal Forest STFa5 2141 1025 1027 120 1742 175 

Southern African Dry Forest TDFa2 9671 1039 1049 239 1689 195 
Southern African Dry Thicket TDFa3 667 1142 1153 443 1775 188 

Total / Average  76694  989    

Table 4-3 also shows the number of samples (250x250 pixels) that were used to calculate the mean, 

median and standard deviation of ET per forest type. Except for Tropical Indian Ocean Mangrove 

(AMAN2), which in South Africa has a limited coverage (very small area in Kosi Bay), all other forest 

types were represented by a minimum of 150 samples. The limited number of samples in certain 

instances also contributes to uncertainties in the ET (specifically mean and median) that represent the 

water use of entire forest type classes. Figure 4-3 shows histograms (data distribution) of the annual 

ET for each forest type, highlighting the skewed water use distribution for some forest types.  
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Figure 4-2 Histograms showing the frequency distribution of ET for a subset of forest types (subset A), 
with the frequency (Y-axis) showing the percentage of pixels per range of annual ET (X-axis) 
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Figure 4-3 Histograms showing the frequency distribution of ET for a subset of forest types (subset B), 
with the frequency (Y-axis) showing the percentage of pixels per range of annual ET (X-axis)

Figure 4-4 and Figure 4-5 show the monthly ET from 2009 to 2023 as well as the average ET trend (3rd 

order polynomial function) for zonal and azonal forest types, respectively. Monthly ET estimates ranged 

between minimum values of <25 and maxima’s of >160 mm for zonal forest types and between <10 

and 150 mm/month for azonal forest types. The ET trend lines over the 12-year period were within a 

small range for all the zonal forest types. The small variation in the monthly ET over time, even during 

the drought period of 2015-2018, is in stark contrast to the findings by Van Niekerk et al. (2023), which 

showed that the water use of commercial forest genera (Pinus, Eucalyptus and Acacia) was noticeably 

reduced during the 2015-2018 drought. The Van Niekerk et al. (2023) water use estimations 

represented homogeneous, even-aged single-genus plantations, which contrast greatly with the 

indigenous forests considered in this study; these forests are heterogeneous in structure, age and 

species. It is likely that indigenous forests have adapted to local conditions and are, as such, likely less 

sensitive to extreme conditions such as droughts.  

Figure 4-4 and Figure 4-5 indicate that the difference in monthly ET among the azonal forest types is 

substantially larger than that of zonal forest types, but there are small interannual differences. This likely 

reflects the species and age diversity of indigenous forests, but our limited understanding of ET 

dynamics of these vegetation types(s) makes interpreting the results difficult. Individual water use 

profiles (graphs) per forest type are included in Appendix IV.  
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Figure 4-4  Monthly mean ET per forest type for zonal forest types for the period 2009 to 2023. 

 

Figure 4-5  Monthly mean ET per forest type for azonal forest types for the period 2009 to 2023 

 

4.2.2 Drivers of forest water use 

RF regression modelling was used to identify the main environmental drivers of water use based on the 

climatic, terrain and soil variables (Table 3-2) that were considered. Mean annual ET was set as the 

target variable, while the long-term mean climatic and environmental variables considered were used 

as predictor variables. The resulting model is very strong (R2 = 0.98) and predicted forest water use to 

an accuracy (RMSE) of 235 mm/yr. This strong model was unexpected and demonstrates the strong 
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relationship between water use and environmental conditions when all indigenous forest types are 

considered. For this modelling, indigenous forests were considered as one class, so the model does 

not distinguish between forest types.  

Based on the VIL (Table 4-4), the strongest driver of indigenous forest water use is long-term mean 

annual rainfall, followed closely by summer solar radiation (February) and heat units. None of these 

variables are strongly collinear (R2<0.4) (Figure 4-1), which indicates that each of these variables is 

individually important. The fourth most important variable in the model is winter solar radiation (July), 

which is only moderately (R2=0.42) correlated to summer (February) solar radiation, indicating that 

winter solar radiation is an important factor in water use. Soil depth and clay content are both listed 

within the top ten variables, confirming that soil conditions are important drivers of forest water use. The 

most important terrain-based variable is terrain morphology, followed closely by topographic positive 

openness (TPO), elevation and topographic negative openness (TNO).  

Table 4-4 Most important variables for mean annual ET identified by random forest regression modelling 

Rank Variable Importance 
1 Mean Annual Rainfall 12.68 
2 Solar Radiation February 12.62 
3 Heat Units 11.16 
4 Solar Radiation July 10.83 
5 Soil Clay 5.13 
6 Vapour Pressure Deficit July 4.44 
7 Soil Depth 4.22 
8 Terrain Morphology 4.11 
9 Topographic Openness (+) 3.75 

10 Elevation 3.68 
11 Topographic Openness (-) 3.42 
12 Annual Solar Radiation 3.37 
13 Mean Annual Relative Humidity 3.30 
14 Slope gradient 2.48 
15 Vapour Pressure Deficit February 2.38 
16 Temperature Mean July 2.35 
17 Topographic Position Index 2.29 
18 Topographic Wetness Index 1.80 
19 Aspect 1.54 
20 Rainfall Seasonality 1.32 
21 Temperature Mean February 1.30 
22 Flow Accumulation 1.01 
23 Climate Zone 0.43 
24 Mean Annual Temperature 0.39 

The RF regression modelling was used to inform which variables should be studied in greater depth. In 

the following subsections, the impact of the most important climatic, terrain and soil variables on 

indigenous forest water use is scrutinised. Data on the other variables are included in Appendix IV. 

4.2.3 Water use of indigenous forests and climate 

The impact of climatic conditions, such as temperature and rainfall, on the water use of plants is well-

known (Campbell & Norman, 2000) and there are many climatic characteristics that can potentially 

affect forest water use. In this study, a total of 13 such variables were considered and analysed. For 
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the sake of brevity, the results of only the five most important climate variables (as determined by the 

machine learning analysis, Section 4.2.2) are included in this section. The data relating to the other 

eight variables can be found in Appendix IV. 

4.2.3.1 Mean annual rainfall 

Mean long-term annual rainfall was identified as the most important driver of forest water use (Table 

4-4). Fitting a regression model (2nd order polynomial) to long-term mean rainfall and mean annual ET 

data (Figure 4-6), shows a weak relationship (R2=0.05). This suggests a complex link between ET and 

rainfall, but the fact that long-term mean rainfall data were used rather than rainfall from the 

corresponding study period may also have contributed to this weak model. We acknowledge that it is 

difficult to analyse these complex relationships using univariate statistical techniques such as 

correlation and regression. The RF machine learning algorithm was, however, able to exploit this 

complex relationship.  

 
Figure 4-6 Scatterplot showing the relationship between the mean annual rainfall (Schulze, 2007) and 

mean annual ET of indigenous forests 

Table 4-5 lists each forest type's long-term mean and standard deviation of annual rainfall. Northern 

Mistbelt Forest (AF3) is found in a high rainfall region with a mean annual rainfall of 1 183±228 mm/yr, 

while Arid Zone Riparian Woodland (ARF1) is in a low rainfall region (223±71 mm/yr). The direct impact 

of rainfall and subsequently water availability on ET is shown in Table 4-3.  

Table 4-6 shows the percentage of each forest type within the mean annual rainfall classes used in the 

analysis (Table 3-2), while Figure 4-7 shows the geographical distribution of these classes. For 

example, indigenous forests of type Cape Milkwood Woodland, Arid Zone Riparian Woodland, Cape 

Alluvial Woodland and Highland Alluvial Woodland are found in low (< 600 mm/yr) rainfall regions, as 

opposed to Subtropical Indian Ocean Mangrove and Tropical Indian Ocean Mangrove which mostly 

occur in high (800-1 000 mm/yr) rainfall regions. Substantial areas (50-75%) of Northern Mistbelt Forest, 

East African Swamp Forest and Subtropical Scarp Forest occur in very high rainfall regions (>1 000 

mm/yr).  

Precipitation 
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Table 4-5 Long-term rainfall per forest type 

Forest Type Code 
Annual Rain (mm) 

Mean Standard Deviation 
Arid Zone Riparian Woodland ARF1 223 71 

Cape Alluvial Woodland ARF2 403 38 
Cape Milkwood Woodland ACF1 417 35 
Highland Alluvial Woodland ARF3 451 72 

Southern African Dry Thicket TDFa3 566 43 
Bushveld Talus Forest ATF3 588 9 

Cape Talus Forest ATF1 619 229 
Southern African Dry Forest TDFa2 714 88 

Albany Coastal Forest STFa5 723 58 
Subtropical Riparian Woodland ARF4 758 151 

Tropical Indian Ocean Mangrove AMAN2 871 13 
African Subtropical Coastal Forest STFa2 890 127 

Cape Afrotemperate Forest AF1 920 123 
Southern Mistbelt Forest AF2 937 237 

Northern Highveld Afrotemperate Forest ATF5 952 98 
Subtropical Scarp Forest STFa4 1007 212 

Drakensberg Afrotemperate Forest ATF4 1009 241 
East African Swamp Forest ASF1 1037 157 
Subtropical Dune Woodland ACF2 1044 171 

Subtropical Indian Ocean Mangrove AMAN1 1134 69 
Northern Mistbelt Forest AF3 1183 228 

 

Table 4-6 Percentage of indigenous forest type area that occur within each of the assigned rainfall 
classes (low, medium, high and very high). See Table 3-4 (Section 3.4.1) for a description of 
these classes. 

Forest Type Code Low Medium High V. High 

Cape Milkwood Woodland ACF1 100 0 0 0 

Subtropical Dune Woodland ACF2 0 4 46 49 

Subtropical Indian Ocean Mangrove AMAN1 0 0 1 99 

Tropical Indian Ocean Mangrove AMAN2 0 0 100 0 

Arid Zone Riparian Woodland ARF1 100 0 0 0 

Cape Alluvial Woodland ARF2 100 0 0 0 

Highland Alluvial Woodland ARF3 98 0 2 0 

Subtropical Riparian Woodland ARF4 21 48 23 7 

East African Swamp Forest ASF1 0 2 42 55 

Cape Talus Forest ATF1 62 19 12 7 

Bushveld Talus Forest ATF3 89 11 0 0 

Drakensberg Afrotemperate Forest ATF4 0 30 24 46 

Northern Highveld Afrotemperate Forest ATF5 1 3 67 29 

Cape Afrotemperate Forest AF1 0 16 60 24 

Southern Mistbelt Forest AF2 5 28 29 38 

Northern Mistbelt Forest AF3 0 2 23 75 

African Subtropical Coastal Forest STFa2 0 25 58 17 

Subtropical Scarp Forest STFa4 6 7 36 52 

Albany Coastal Forest STFa5 0 89 10 0 

Southern African Dry Forest TDFa2 12 72 16 0 

Southern African Dry Thicket TDFa3 86 14 0 0 
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Figure 4-7 Long-term mean annual rainfall classes for South Africa 

 
Figure 4-8 to Figure 4-28 show more details of the seasonal water use per forest type per rainfall region. 

For instance, the monthly ET of Subtropical Dune Woodland (ACF2) from 2009 to 2023 is shown in 

Figure 4-9. This forest type occurs in the medium, high, and very high rainfall regions, and there is a 

substantial difference in the water use of forests in the medium rainfall region from that in the high and 

very high rainfall regions. Similarly, the variation in water use of Subtropical Riparian Woodland (ARF4) 

forests occurring in the very high rainfall region is substantially higher than those occurring in the other 

regions (Figure 4-18).   

Source: Schulze (2007) 
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Figure 4-8 Evapotranspiration per rainfall class for ACF1 Cape Milkwood Woodland 

 
Figure 4-9 Evapotranspiration per rainfall class for ACF2 Subtropical Dune Woodland 

 
Figure 4-10 Evapotranspiration per rainfall class for AF1 Cape Afrotemperate Forest 
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Figure 4-11 Evapotranspiration per rainfall class for AF2 Southern Mistbelt Forest 

 
Figure 4-12 Evapotranspiration per rainfall class for AF3 Northern Mistbelt Forest 

 
Figure 4-13 Evapotranspiration per rainfall class for AMAN1 Subtropical Indian Ocean Mangrove 
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Figure 4-14 Evapotranspiration per rainfall class for AMAN2 Tropical Indian Ocean Mangrove 

 

 
 
Figure 4-15 Evapotranspiration per rainfall class for ARF1 Arid Zone Riparian Woodland 

 
Figure 4-16 Evapotranspiration per rainfall class for ARF2 Cape Alluvial Woodland 
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Figure 4-17 Evapotranspiration per rainfall class for ARF3 Highland Alluvial Woodland 

 
Figure 4-18 Evapotranspiration per rainfall class for ARF4 Subtropical Riparian Woodland 

 
Figure 4-19 Evapotranspiration per rainfall class for ASF1 East African Swamp Forest 
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Figure 4-20 Evapotranspiration per rainfall class for ATF1 Cape Talus Forest 

 
Figure 4-21 Evapotranspiration per rainfall class for ATF3 Bushveld Talus Forest 

 

Figure 4-22 Evapotranspiration per rainfall class for ATF4 Drakensberg Afrotemperate Forest 
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Figure 4-23 Evapotranspiration per rainfall class for ATF5 Northern Highveld Afrotemperate Forest 

 
Figure 4-24 Evapotranspiration per rainfall class for STFa2 African Subtropical Coastal Forest 

 
Figure 4-25 Evapotranspiration per rainfall class for STFa4 Subtropical Scarp Forest 
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Figure 4-26 Evapotranspiration per rainfall class for STFa5 Albany Coastal Forest 

 
Figure 4-27 Evapotranspiration per rainfall class for TDFa2 Albany Coastal Forest 

 
Figure 4-28 Evapotranspiration per rainfall class for TDFa3 Southern African Dry Thicket 
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It is noticeable that not all forest types were affected by the 2015-2018 drought, which is clearly 

noticeable in Figure 4-29 to Figure 4-31. In some cases, such as ATF5 Northern Highveld 

Afrotemperate Forest (Figure 4-23), there is a drop in the polynomial trend in the 2019-2020 period. 

However, many of the other forest types show no noticeable drop in ET during this period (e. ATF1, 

Figure 4-20). As can be expected, the water use profile of subtropical Indian Ocean Mangrove (AMAN1, 

Figure 4-13), was relatively constant from 2010 to 2020. 

 
Figure 4-29 Monthly and annual precipitation from 2009 to 2023 at St Lucia (Source: CHIRPS) 
 

 
Figure 4-30 Monthly and annual precipitation from 2009 to 2023 at Sabie (Source: CHIRPS) 
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Figure 4-31 Monthly and annual precipitation from 2009 to 2023 at Knysna (Source: CHIRPS) 

A recent increase in ET is noticeable for some classes (ACF2, ARF4, ATF5, TDFa2, TDFa3). This is 

likely attributed to higher rainfall received over the last three years but can also be caused by processes 

such as bush encroachment and alien plant invasions. More work is needed to investigate the impact 

of invasive species on the water use of indigenous forests.  

The strong relationship found between ET and rainfall is not surprising, as water is recognised as an 

important driver of plant physiological processes. During photosynthesis, plants open their stomata 

(pores on leaves) to take in carbon dioxide and release oxygen. However, this stomatal opening also 

leads to transpiration, the evaporation of water from the leaves. Sufficient soil moisture from rainfall 

allows plants to maintain this delicate balance, enabling both adequate gas exchange for 

photosynthesis and efficient water use (Blanco et al., 2022). Trees primarily absorb water through their 

roots, and sufficient soil moisture is essential for this uptake. During dry periods, plants can become 

stressed and suffer stunted growth or even death if water is not readily available. During droughts, trees 

respond by closing their stomata, which reduces the loss of water vapour through transpiration, which 

has a direct impact on water use (Farquhar & Sharkey, 1982). Different species of trees have adapted 

to dry climates through evolution, such as having water-saving features like thick waxy leaves to 

minimise evaporation and deep root systems to tap into deep groundwater reserves (Kramer & 

Kozlowski, 1979). Trees with smaller leaves lose less water through transpiration compared to those 

with large, broad leaves. Mangrove trees live in saltwater environments and have adapted to excrete 

excess salt through their leaves. They also have specialised root structures that help them filter and 

absorb water from the brackish water (Krishnamurthy, 2008). A strong relationship between the water 

use of different forest types (composed of different tree and plant species) and rainfall is consequently 

expected. 

4.2.3.2 Solar radiation 

Solar radiation during summer (February) was identified as the second most important driver of forest 

water use, while solar radiation during winter (July) was ranked fourth (Section 4.2.2). The fact that 

annual solar radiation is also featured in the VIL (12th position) emphasises the importance of solar 
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radiation on forest water use. Figure 4-32 shows that the solar radiation varies considerably from 

summer to winter. During summer the solar radiation is relatively low in the areas where indigenous 

forests typically occur, while the solar radiation in the northeastern parts of South Africa receive 

relatively high solar radiation during winter.  

  
Figure 4-32 Long-term solar radiation classes for February (left) and July (right) 

Table 4-7 shows that Highland Alluvial Woodland (ARF3) receives the most solar radiation during 

summer (24.15 MJ/m2/day), while Subtropical Scarp Forest (STFa4) receives the least (17.03 

MJ/m2/day). During winter, Bushveld Talus Forest (ATF3) receives the most sunlight (14.21 MJ/m2/day), 

while Cape Afrotemperate Forest (AF1) receives the least solar radiation (8.01 MJ/m2/day). The low 

solar radiation of Cape Afrotemperate Forest is likely a combination of cloud cover and shadow caused 

by terrain. As noted in Section 3.2.14, Cape Afrotemperate Forests are mostly located in the Knysna‐

Tsitsikamma forest complex and occupy the coastal platform between approximately George and 

Humansdorp, with outlier forest patches on low‐elevation slopes of Outeniqua and Langeberg ranges. 

These mountain ranges are often covered by clouds due to orographic effects whereby moisture-laden 

air masses from the ocean are blown by winds towards the mountains. The air is then deflected upward, 

causing it to cool and form clouds. And on clear days during winter, the mountains cast shadows due 

to the low solar zenith angle. Consequently, these environmental conditions impact the occurrence and 

water use of these forests.  

Source: Schulze (2007) 
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Table 4-7 Mean and standard deviation of solar radiation during summer (Feb) and winter (July) per 

forest type 

Forest Type Code 

Solar radiation (average daily MJ/m2/day) 
Feb July 

Mean Standard 
Deviation Mean Standard 

Deviation 
Cape Milkwood Woodland ACF1 20.83 0.80 9.16 0.15 

Subtropical Dune Woodland ACF2 17.74 1.10 11.60 0.94 
Subtropical Indian Ocean Mangrove AMAN1 17.47 1.10 11.37 0.56 

Tropical Indian Ocean Mangrove AMAN2 18.34 0.23 12.38 0.21 
Arid Zone Riparian Woodland ARF1 23.74 0.31 11.40 0.96 

Cape Alluvial Woodland ARF2 22.62 0.48 9.27 0.13 
Highland Alluvial Woodland ARF3 24.15 0.59 12.11 0.28 

Subtropical Riparian Woodland ARF4 20.17 1.39 13.32 0.78 
East African Swamp Forest ASF1 18.36 1.22 11.88 0.64 

Cape Talus Forest ATF1 21.16 1.26 9.12 0.55 
Bushveld Talus Forest ATF3 21.93 0.22 14.21 0.14 

Drakensberg Afrotemperate Forest ATF4 22.54 1.47 13.46 0.63 
Northern Highveld Afrotemperate Forest ATF5 21.48 0.20 13.94 0.13 

Cape Afrotemperate Forest AF1 18.37 1.77 8.01 0.25 
Southern Mistbelt Forest AF2 19.70 1.01 11.15 0.98 
Northern Mistbelt Forest AF3 21.07 0.26 13.99 0.14 

African Subtropical Coastal Forest STFa2 18.41 1.29 12.26 0.61 
Subtropical Scarp Forest STFa4 17.03 2.19 10.96 1.08 

Albany Coastal Forest STFa5 18.91 1.25 9.77 0.52 
Southern African Dry Forest TDFa2 19.92 0.44 13.45 0.50 
Southern African Dry Thicket TDFa3 20.33 0.52 14.19 0.47 

 

The diverse nature of solar radiation can also be seen in Table 4-8 and Table 4-9, which show the 

relative proportions of forest types that occur in low, medium and high solar radiation areas in summer 

and winter, respectively. During summer, the majority (67%) of forest types receive low solar radiation, 

while during winter, only a third (33%) fall in this category, which demonstrates the influence of cloud 

cover along the coastal areas from George to Mozambique during summer months.  

Table 4-8 Solar radiation (February) % class cover per forest type 

Forest Type Code Low Medium High 

Cape Milkwood Woodland ACF1 96 4 0 
Subtropical Dune Woodland ACF2 100 0 0 

Subtropical Indian Ocean Mangrove AMAN1 100 0 0 
Tropical Indian Ocean Mangrove AMAN2 100 0 0 

Arid Zone Riparian Woodland ARF1 0 78 22 
Cape Alluvial Woodland ARF2 5 95 0 

Highland Alluvial Woodland ARF3 2 17 81 
Subtropical Riparian Woodland ARF4 93 7 0 

East African Swamp Forest ASF1 100 0 0 
Cape Talus Forest ATF1 71 29 0 

Bushveld Talus Forest ATF3 37 63 0 
Drakensberg Afrotemperate Forest ATF4 50 24 26 

Northern Highveld Afrotemperate Forest ATF5 100 0 0 
Cape Afrotemperate Forest AF1 100 0 0 

Southern Mistbelt Forest AF2 99 1 0 
Northern Mistbelt Forest AF3 100 0 0 
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Forest Type Code Low Medium High 

African Subtropical Coastal Forest STFa2 100 0 0 
Subtropical Scarp Forest STFa4 100 0 0 

Albany Coastal Forest STFa5 100 0 0 
Southern African Dry Forest TDFa2 100 0 0 
Southern African Dry Thicket TDFa3 100 0 0 

 
 
Table 4-9 Solar radiation (July) % class cover per forest type 

Forest Type Code Low Medium High 

Cape Milkwood Woodland ACF1 100 0 0 
Subtropical Dune Woodland ACF2 64 36 0 

Subtropical Indian Ocean Mangrove AMAN1 91 9 0 
Tropical Indian Ocean Mangrove AMAN2 0 100 0 

Arid Zone Riparian Woodland ARF1 74 22 4 
Cape Alluvial Woodland ARF2 100 0 0 

Highland Alluvial Woodland ARF3 30 70 0 
Subtropical Riparian Woodland ARF4 10 62 28 

East African Swamp Forest ASF1 41 59 0 
Cape Talus Forest ATF1 100 0 0 

Bushveld Talus Forest ATF3 0 0 100 
Drakensberg Afrotemperate Forest ATF4 0 67 33 

Northern Highveld Afrotemperate Forest ATF5 0 11 89 
Cape Afrotemperate Forest AF1 100 0 0 

Southern Mistbelt Forest AF2 76 24 0 
Northern Mistbelt Forest AF3 0 13 87 

African Subtropical Coastal Forest STFa2 27 73 0 
Subtropical Scarp Forest STFa4 83 16 1 

Albany Coastal Forest STFa5 100 0 0 
Southern African Dry Forest TDFa2 0 58 42 
Southern African Dry Thicket TDFa3 0 10 90 

 
On its own, the relationship between solar radiation and forest water use is not strong (R2=0.02). 
 

   
Figure 4-33 Linear regression between forest water use and long-term solar radiation during summer 
(left), winter (middle) and all year (right) 

The relationship is also inconsistent. For instance, Figure 4-34 shows the relationship between winter 

(July) solar radiation and the water use of Arid Zone Riparian Woodland (ARF1). Within this forest type, 

patches with low solar radiation used less water than those with medium solar radiation. This is to be 

expected, given that trees use sunlight as the primary energy source for photosynthesis. Higher solar 

radiation intensity increases the rate of photosynthesis, meaning more carbohydrates are produced. As 
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a result, the tree experiences increased metabolic activity, which demands more water for 

transportation and cellular processes. This leads to increased water uptake through the 

roots and transpiration (water loss through stomata on leaves). Solar radiation also raises transpiration 

rates as higher temperatures and sunlight increase the energy available for water evaporation, leading 

to greater water loss through transpiration (Dagon & Schrag, 2016). A similar relationship exists in 

Figure 4-34, where the relationship between water use of Subtropical Riparian Woodland (ARF4) and 

solar radiation in line with what one would expect (i.e. high water use with high solar radiation), but the 

high variation among forest types and solar radiation classes makes the drawing of conclusions difficult.  

 

 
Figure 4-34  Evapotranspiration per solar radiation class during winter for ARF1 

 

 

Figure 4-35 Evapotranspiration per solar radiation class during winter for ARF4 

 

4.2.3.3 Heat units (degree days) 

Long-term mean annual heat units, or growing degree days (GDD), was identified as the third most 
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important driver of forest water use (Figure 4-36). GDD is an indicator of ideal conditions for plant 

growth. As temperatures rise within the optimal range for a specific plant, the metabolic processes of 

photosynthesis and transpiration accelerate. This means plants demand more water for various 

functions, potentially increasing overall water use (Smith et al., 2001). Schulze (2007) expresses heat 

units in degree days, “where these are an accumulation of mean temperatures above a certain lower 

threshold value (below which active development is considered not to take place), and below an upper 

limit (above which growth is considered to remain static or even decline), over a period of time. For 

example, if the threshold temperature is 10°C and the mean temperature of a given day is 22°C, then 

12 degree days, or heat units, are accumulated for that day to a previous total.”  

 
Figure 4-36 Annual heat units (degree days) classes for South Africa 

Table 4-10 details the mean annual heat units for each forest type. The number of heat units are the 

highest (4 645) for Southern African Dry Thicket (TDFa3), while Northern Highveld Afrotemperate 

Forest (ATF5) recorded the lowest (1 890 degree days) heat units. Table 4-11 shows that the forest 

types are well distributed among the heat unit classes, with the high heat unit class being dominated by 

subtropical and dry forests.  

 

Source: Schulze (2007) 
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Table 4-10 Mean and standard deviation of annual heat units (degree days) per forest type 

Forest Type Code 
Annual heat units (degree days) 

Mean Standard Deviation 
Northern Highveld Afrotemperate Forest ATF5 1890 255 

Drakensberg Afrotemperate Forest ATF4 1966 352 
Southern Mistbelt Forest AF2 1998 370 

Cape Afrotemperate Forest AF1 2330 136 
Cape Talus Forest ATF1 2352 428 

Highland Alluvial Woodland ARF3 2395 91 
Cape Alluvial Woodland ARF2 2545 136 

Cape Milkwood Woodland ACF1 2597 106 
Northern Mistbelt Forest AF3 2726 476 

Arid Zone Riparian Woodland ARF1 2924 220 
Albany Coastal Forest STFa5 3041 40 
Bushveld Talus Forest ATF3 3074 66 

Subtropical Scarp Forest STFa4 3407 302 
Subtropical Dune Woodland ACF2 4213 326 

Subtropical Riparian Woodland ARF4 4239 587 
Subtropical Indian Ocean Mangrove AMAN1 4245 178 
African Subtropical Coastal Forest STFa2 4280 276 

East African Swamp Forest ASF1 4322 172 
Southern African Dry Forest TDFa2 4514 57 

Tropical Indian Ocean Mangrove AMAN2 4538 24 
Southern African Dry Thicket TDFa3 4645 50 

 

Table 4-11 Annual heat units (degree days) % class cover 

Forest Type Code Low Medium High 

Cape Milkwood Woodland ACF1 16 84 0 
Subtropical Dune Woodland ACF2 0 4 96 

Subtropical Indian Ocean Mangrove AMAN1 0 0 100 
Tropical Indian Ocean Mangrove AMAN2 0 0 100 

Arid Zone Riparian Woodland ARF1 0 92 8 
Cape Alluvial Woodland ARF2 23 77 0 

Highland Alluvial Woodland ARF3 91 9 0 
Subtropical Riparian Woodland ARF4 0 10 90 

East African Swamp Forest ASF1 0 0 100 
Cape Talus Forest ATF1 56 44 0 

Bushveld Talus Forest ATF3 0 91 9 
Drakensberg Afrotemperate Forest ATF4 91 9 0 

Northern Highveld Afrotemperate Forest ATF5 97 3 0 
Cape Afrotemperate Forest AF1 93 7 0 

Southern Mistbelt Forest AF2 89 11 0 
Northern Mistbelt Forest AF3 37 47 16 

African Subtropical Coastal Forest STFa2 0 1 99 
Subtropical Scarp Forest STFa4 0 22 77 

Albany Coastal Forest STFa5 0 100 0 
Southern African Dry Forest TDFa2 0 0 100 
Southern African Dry Thicket TDFa3 0 0 100 

Figure 4-37 shows that there is no statistical relationship between the water use of forests and heat 

units. However, the figure includes all of the forest types in combination and does not consider the 

relationship per forest type.  
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Figure 4-37 Linear regression between forest water use and heat units (degree days). 

Figure 4-38 compares the water use of Northern Mistbelt Forest (AF3) to the heat unit classes. There 

seems to be an increasing water use as heat units increase for this forest type. A similar pattern is 

observed for Arid Zone Riparian Woodland (ARF1), while for Cape Alluvial Woodland (ARF2) the 

pattern is absent.  

 

 
Figure 4-38 Evapotranspiration per heat unit class for AF3 
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Figure 4-39 Evapotranspiration per heat unit class for ARF1 

 

 
Figure 4-40 Evapotranspiration per heat unit class for ARF2 

 

4.2.3.4 Vapour pressure deficit 

The winter (July) vapour pressure deficit (VPD) was identified as the 6th most important driver for forest 

water use, while summer VPD was rated as the 15th most important driver. Figure 4-41 shows the 

summer (February) and winter (July) long-term average VPD. The VPD is strongly related to rainfall 

seasonality, with the summer rainfall regions having a low VPD during the summer months, while winter 

rainfall regions (e.g. Western Cape) have a low VPD during winter. This is supported by Table 4-12, 

which shows that shows that only two (10%) forest types are categorised as having a high VPD during 

summer (Feb). In contrast, six (29%) types fall in this class during winter (Jul) (Table 4-13). 
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Figure 4-41 Average vapour pressure deficit classes for February (left) and July (right) 

 
Table 4-12  Vapour pressure deficit % class cover (Feb) 

Forest Type Code Low Medium High 

Cape Milkwood Woodland ACF1 84 16 0 

Subtropical Dune Woodland ACF2 89 11 0 

Subtropical Indian Ocean Mangrove AMAN1 56 44 0 

Tropical Indian Ocean Mangrove AMAN2 25 75 0 

Arid Zone Riparian Woodland ARF1 0 9 91 

Cape Alluvial Woodland ARF2 0 79 21 

Highland Alluvial Woodland ARF3 2 98 0 

Subtropical Riparian Woodland ARF4 10 42 48 

East African Swamp Forest ASF1 25 75 0 

Cape Talus Forest ATF1 38 61 1 

Bushveld Talus Forest ATF3 0 100 0 

Drakensberg Afrotemperate Forest ATF4 91 9 0 

Northern Highveld Afrotemperate Forest ATF5 100 0 0 

Cape Afrotemperate Forest AF1 100 0 0 

Southern Mistbelt Forest AF2 99 1 0 

Northern Mistbelt Forest AF3 86 14 0 

African Subtropical Coastal Forest STFa2 18 82 0 

Subtropical Scarp Forest STFa4 83 17 0 

Albany Coastal Forest STFa5 91 9 0 

Southern African Dry Forest TDFa2 0 67 33 

Southern African Dry Thicket TDFa3 0 0 100 

 
 
 
 

 

Source: Schulze (2007) 
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Table 4-13  Vapour pressure deficit % class cover (July) 

Forest Type Code Low Medium High 

Cape Milkwood Woodland ACF1 66 34 0 

Subtropical Dune Woodland ACF2 5 61 34 

Subtropical Indian Ocean Mangrove AMAN1 0 45 55 

Tropical Indian Ocean Mangrove AMAN2 0 0 100 

Arid Zone Riparian Woodland ARF1 0 67 33 

Cape Alluvial Woodland ARF2 0 100 0 

Highland Alluvial Woodland ARF3 89 11 0 

Subtropical Riparian Woodland ARF4 0 15 85 

East African Swamp Forest ASF1 0 9 91 

Cape Talus Forest ATF1 43 19 38 

Bushveld Talus Forest ATF3 0 98 2 

Drakensberg Afrotemperate Forest ATF4 61 32 7 

Northern Highveld Afrotemperate Forest ATF5 91 9 0 

Cape Afrotemperate Forest AF1 94 6 0 

Southern Mistbelt Forest AF2 58 38 3 

Northern Mistbelt Forest AF3 43 40 16 

African Subtropical Coastal Forest STFa2 0 8 92 

Subtropical Scarp Forest STFa4 1 15 84 

Albany Coastal Forest STFa5 4 66 30 

Southern African Dry Forest TDFa2 0 0 100 

Southern African Dry Thicket TDFa3 0 0 100 

 

Table 4-14 lists the mean and standard deviation VPD during summer (February) and winter (July) for 

each of the forest types. The lowest VPD during summer (0.27 kPa) and winter (0.35 kPa) was recorded 

for Northern Highveld Afrotemperate Forest (ATF5). Southern African Dry Thicket (TDFa3) and 

Southern African Dry Forest (TDFa2) had the highest VPD during winter, respectively. Southern African 

Dry Thicket (TDFa3) occurs in small patches from Ndumo (KwaZulu-Natal) and northwards to the 

Greater Limpopo Transfrontier Park. Similarly, Southern African Dry Forest (TDFa2) are found mainly 

in small patches in north Limpopo and along the western piedmonts of the Lebombo mountains. As can 

be seen in Figure 4-41, these areas have consistently low to medium VPD and have adapted to dry 

conditions.  
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Table 4-14 Mean and standard deviation of vapour pressure deficit per forest type during summer 
(February) and winter (July) 

Forest Type Code 

Vapour Pressure Deficit (kPa) 
Feb July 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Cape Milkwood Woodland ACF1 0.70 0.13 0.42 0.09 
Subtropical Dune Woodland ACF2 0.71 0.12 0.60 0.08 

Subtropical Indian Ocean Mangrove AMAN1 0.77 0.13 0.64 0.06 
Tropical Indian Ocean Mangrove AMAN2 0.86 0.04 0.71 0.03 

Arid Zone Riparian Woodland ARF1 1.39 0.07 0.66 0.08 
Cape Alluvial Woodland ARF2 1.17 0.11 0.58 0.03 

Highland Alluvial Woodland ARF3 1.04 0.11 0.45 0.02 
Subtropical Riparian Woodland ARF4 1.22 0.28 0.95 0.19 

East African Swamp Forest ASF1 0.95 0.17 0.77 0.11 
Cape Talus Forest ATF1 0.79 0.25 0.52 0.15 

Bushveld Talus Forest ATF3 0.95 0.04 0.58 0.02 
Drakensberg Afrotemperate Forest ATF4 0.49 0.22 0.45 0.11 

Northern Highveld Afrotemperate Forest ATF5 0.27 0.09 0.35 0.08 
Cape Afrotemperate Forest AF1 0.47 0.15 0.40 0.04 

Southern Mistbelt Forest AF2 0.39 0.15 0.46 0.09 
Northern Mistbelt Forest AF3 0.56 0.22 0.51 0.13 

African Subtropical Coastal Forest STFa2 0.96 0.21 0.83 0.11 
Subtropical Scarp Forest STFa4 0.58 0.20 0.71 0.09 

Albany Coastal Forest STFa5 0.66 0.12 0.59 0.07 
Southern African Dry Forest TDFa2 1.27 0.06 1.01 0.02 
Southern African Dry Thicket TDFa3 1.40 0.07 0.98 0.04 

 

Figure 4-42 shows that there is very little relationship between the water use of forests and VPD during 

summer and winter, when all forest types are considered in combination. In addition, Figure 4-1 shows 

that VPD in February is strongly related mean annual (R2=0.9), February (R2=0.89), annual relative 

humidity (R2=-0.86) and July (R2=0.84) temperature and heat units (R2=0.9). Similar relationships are 

present for winter (July) VPD. This highlights the collinearity of VPD with several other climate-related 

variables.  

 

  
Figure 4-42 Linear regression between forest water use and long-term vapour pressure deficit during 
summer (left) and winter (right) 
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At the individual forest type levels, the relationship between VPD and water use is complex. For 

instance, Figure 4-43 shows that the water use of AF2 is relatively high when VPD is low.  

 
Figure 4-43 Evapotranspiration per vapour pressure deficit class during summer for AF2 

VPD is an important concept in understanding the relationship between humidity and evaporation, 

particularly in the context of plants and their water use. It measures the difference between the actual 

amount of water vapour present in the air and the maximum amount of water vapour the air can hold at 

a given temperature (Grossiord et al., 2020). VPD is closely related to temperature because warmer air 

can hold more water vapour, while high vapour pressure can increase the transpiration of plants, 

especially if soil moisture is limited. High VPD indicates a drier environment with a larger gap between 

the actual and potential water vapour content. This drier air has a greater capacity to absorb moisture, 

including water vapour released by plants through transpiration. Consequently, high VPD conditions 

can lead to increased water loss from plants, potentially causing stress or hindering growth if they 

cannot access sufficient water to compensate. However, based on our results, this relationship is 

inconsistent among the forest types. For instance, Figure 4-44 shows that the water use of AF3 is 

relatively high for patches falling in the medium VPD class (compared to the low class). Similar 

observations can be made for other forest types (see Appendix IV). This suggests that the relationship 

between VPD and water use is complex and depends on a range of other environmental factors.  
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Figure 4-44 Evapotranspiration per vapour pressure deficit class during summer for AF3 

4.2.3.5 Relative humidity 

Although mean annual relative humidity (RH) ranked relatively low (13th) on the VIL of the water use 
machine learning model (Section 4.2.2), it was the fifth most important climatic variable. Figure 
4-45 shows a map of the long-term annual RH, while Table 4-15 shows the percentage of each 
forest type that occurs within each humidity class (low, medium and high). Most of the forest 
types occur in the high RH class, while only two forest types, namely Arid Zone Riparian 
Woodland (ARF1) and Southern African Dry Thicket (TDFa3) are located in areas with low RH. 
ARF1 is also recorded as having the lowest mean annual RH (52%) of all classes ( 

Table 4-16). This can be expected given that these woodlands mainly occur along near-perennial rivers 

of the southern and eastern Kalahari and the Mesic Savanna. These forests survive in these dry (~223 

mm rainfall per year) conditions thanks to water that is transported from higher rainfall areas through 

hydrological processes.  
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Figure 4-45 Annual relative humidity classes for South Africa 

Subtropical Dune Woodland (ACF2) has the highest long-term annual RH (76%). These forests occur 

along the coast stretching from the Albany region of the Eastern Cape to Mozambique. The high RH is 

attributed to maritime affects, particularly the warm waters of the Mozambique current, which constantly 

releases water vapour into the atmosphere through evaporation. Cape Afrotemperate Forest (ACF1), 

Subtropical Indian Ocean Mangrove (AMAN1), Tropical Indian Ocean Mangrove (AMAN2) and Albany 

Coastal Forest (STFa5), Cape Milkwood Woodland (AF1) (although, perhaps to a lesser degree) are 

similarly affected as they are all found along the warm Indian Ocean and explain their high (>70%) RF 

values.  

As with VPD, the relationship between RH and the water use of forests are generally weak (Figure 

4-46). A water use graphs per RH class is provided in Appendix IV. As an example, Figure 4-47 shows 

the water use of East African Swamp Forest (ASF1) from 2009 to 2023. The impact of the drought 

during 2015-2016 is clearly visible. It seems that the forest patches with medium RH were more affected 

than those with high RH. But on average, the annual water use of this forest type is not much affected 

by RH, likely because these forests occur in areas with high soil moisture content.  

 

Source: Schulze (2007) 
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Table 4-15 Mean annual relativity % class cover 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 0   0 100 

Subtropical Dune Woodland ACF2 0 0 100 
Subtropical Indian Ocean Mangrove AMAN1 0 0 100 

Tropical Indian Ocean Mangrove AMAN2 0 0 100 
Arid Zone Riparian Woodland ARF1 100 0 0 

Cape Alluvial Woodland ARF2 6 94 0 
Highland Alluvial Woodland ARF3 0 98 2 

Subtropical Riparian Woodland ARF4 0 88 12 
East African Swamp Forest ASF1 0 13 87 

Cape Talus Forest ATF1 0 32 68 
Bushveld Talus Forest ATF3 1 99 0 

Drakensberg Afrotemperate Forest ATF4 0 11 89 
Northern Highveld Afrotemperate Forest ATF5 0 0 100 

Cape Afrotemperate Forest AF1 0 0 100 
Southern Mistbelt Forest AF2 0 1 99 
Northern Mistbelt Forest AF3 0 4 96 

African Subtropical Coastal Forest STFa2 0 11 89 
Subtropical Scarp Forest STFa4 0 1 99 

Albany Coastal Forest STFa5 0 0 100 
Southern African Dry Forest TDFa2 1 98 1 
Southern African Dry Thicket TDFa3 90 10 0 

 

Table 4-16 Mean and standard deviation of annual relative humidity per fores type 

Forest Type Code 
Annual relative humidity (%) 

Mean Standard Deviation 
Arid Zone Riparian Woodland ARF1 52.04 1.84 
Southern African Dry Thicket TDFa3 54.91 0.9 

Cape Alluvial Woodland ARF2 58.22 1.54 
Bushveld Talus Forest ATF3 58.51 0.93 

Highland Alluvial Woodland ARF3 59.66 1.95 
Subtropical Riparian Woodland ARF4 60.31 4.82 

Southern African Dry Forest TDFa2 60.57 1.48 
Cape Talus Forest ATF1 66.98 5.07 

Drakensberg Afrotemperate Forest ATF4 67.83 3.25 
African Subtropical Coastal Forest STFa2 68.42 4.07 

Northern Mistbelt Forest AF3 69.32 2.55 
East African Swamp Forest ASF1 70.25 4.04 

Northern Highveld Afrotemperate Forest ATF5 71.26 0.99 
Southern Mistbelt Forest AF2 71.37 2.43 
Subtropical Scarp Forest STFa4 71.62 3.67 

Cape Milkwood Woodland ACF1 71.86 2.65 
Albany Coastal Forest STFa5 72.56 2.2 

Tropical Indian Ocean Mangrove AMAN2 73.92 0.65 
Subtropical Indian Ocean Mangrove AMAN1 74.85 1.79 

Cape Afrotemperate Forest AF1 75.28 2.07 
Subtropical Dune Woodland ACF2 75.82 1.51 
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Figure 4-46 Linear regression between forest water use and long-term annual relative humidity 

 
Figure 4-47 Evapotranspiration per annual relative humidity class for ASF1 

There's a complex and dynamic relationship between plant water use and RH. When RH is high, the 

air is already close to saturation with water vapour. This creates a smaller gradient between the water 

vapour inside the leaf and the air outside, hindering the driving force for transpiration (water loss through 

leaves). Plants sense high RH through specialised sensors and may partially or completely close their 

stomata to prevent excessive water loss. This reduces transpiration but also limits CO2 uptake for 

photosynthesis. Under high RH, plants can achieve the same level of photosynthesis with less water 

loss due to reduced transpiration. This improves their WUE. Conversely, when RH is low, there's a large 

gradient for water vapour, leading to increased transpiration as the plant attempts to balance internal 

and external water vapour concentrations. This can lead to water loss exceeding absorption, especially 

if soil moisture is limited (Farquhar & Sharkey, 1982). 

This section explored the relationship between climate and the water use of forests. In particular, mean 

annual rainfall, solar radiation, heat units, vapour pressure deficit, and RH were investigated because 

these were the most important variables identified during the machine learning process. However, there 

are countless other climate-related variables that can be analysed. For the sake of brevity, two 
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additional climate-related variables, namely Köppen climate zones and rainfall seasonally, were 

analysed but excluded from the discussion. The results of the analyses can be found in Appendix IV. 

The next section considers the impact of terrain on the water use of forests.  

4.2.4 Water use compared to terrain characteristics 

Terrain plays an important role in the ecology of forests (Mucina, 2018) and there is a large number of 

terrain characteristics that can potentially affect forest water use. A total of nine terrain-related 

environmental variables were analysed and compared to forest water use. This section concentrates 

on the five most important terrain-related variables, as identified by the machine learning modelling 

(Section 4.2.2). These are terrain morphology, topographic openness, elevation, slope gradient and 

topographic position index. The data relating to the other four variables can be found in Appendix IV. 

4.2.4.1 Terrain morphology 

Terrain morphology was identified by the RF regression analysis (Section 4.2.2) as being the eighth 

most important environmental factor and the most important terrain-based factor related to water use 

of indigenous forests. The 27 morphology units covering South Africa, taken from Schulze (2007), were 

simplified by grouping similar morphology regions, as overviewed in Section 3.4.1. The resulting 

classification is shown in Figure 4-48. 

 
Figure 4-48 Simplified terrain morphology classes 

Source: Schulze (20007) 
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Table 4-17 compares water use of forest types to the simplified terrain morphology types that intersect 

forests. Ten (48%) of the forest types prefer (>50% cover) plains and flat terrain, while six (29%) forest 

types (Cape Talus Forest and Northern Highveld Afrotemperate Forest) only occur in mountainous 

landscapes. Cape Milkwood Woodland are found on Plains/flat and Hilly/undulated terrain.  

Table 4-17 Terrain morphology type count per forest type (>50% in bold and shaded) 

Forest Type Code Plains/flat Hilly/undulated Mountainous 
Cape Milkwood Woodland ACF1 49 51 0 

Subtropical Dune Woodland ACF2 93 5 2 
Subtropical Indian Ocean Mangrove AMAN1 95 1 4 

Tropical Indian Ocean Mangrove AMAN2 100 0 0 
Arid Zone Riparian Woodland ARF1 70 30 0 

Cape Alluvial Woodland ARF2 0 78 22 
Highland Alluvial Woodland ARF3 0 100 0 

Subtropical Riparian Woodland ARF4 71 6 23 
East African Swamp Forest ASF1 98 2 0 

Cape Talus Forest ATF1 0 0 100 
Bushveld Talus Forest ATF3 25 75 0 

Drakensberg Afrotemperate Forest ATF4 0 3 97 
Northern Highveld Afrotemperate Forest ATF5 0 0 100 

Cape Afrotemperate Forest AF1 73 12 15 
Southern Mistbelt Forest AF2 0 32 68 
Northern Mistbelt Forest AF3 16 0 84 

African Subtropical Coastal Forest STFa2 88 0 12 
Subtropical Scarp Forest STFa4 3 30 68 

Albany Coastal Forest STFa5 14 86 0 
Southern African Dry Forest TDFa2 99 1 0 
Southern African Dry Thicket TDFa3 100 0 0 

Figure 4-49 and Figure 4-50 demonstrate the complex relationship between terrain morphology and 

water use for Arid Zone Riparian Woodland (ARF1) and Cape Alluvial Woodland (ARF2), respectively. 

For ARF1, forests occurring on plain/flat landscapes used less water than those on hilly/undulated 

terrain. This difference is, however, not observed for ARF2. Such variations make the identification of 

patterns difficult.   

 

Figure 4-49  Evapotranspiration per terrain morphology class for ARF1 
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Figure 4-50 Evapotranspiration per terrain morphology class for ARF2 
 

4.2.4.2 Topographic openness 

TPO was identified as the second most important terrain-based forest water use driver. Similarly, 

topographic negative openness was identified as the fourth most important terrain-based forest water 

use driver. Their overall impact was ranked 9th and 11th respectively.  

According to Li and McCarty (2019), topographic openness influences soil water content as it describes 

the distinction between relief and surrounding topographic features, with convex landforms exhibiting 

high positive topographic openness values, whereas concave landforms typically have high negative 

topographic openness values. The low positive openness areas are more likely to be depressional with 

high soil water contents, while the opposite is true for high positive openness (Figure 4-51). 

Topographical negative openness (TNO), which is essentially the inverse of TPO, is also featured 

among the ten most important variables driving water use (Section 4.2.2). Despite the near-inverse 

relationship between TNO and TPO, a correlation analysis (Figure 4-1) of these two variables showed 

that they are only moderately related (R2=0.54), which suggests that both factors contributed to the 

variation of water use among forest types.  
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Figure 4-51 Positive (left) and negative (right) topographic openness along two profiles (Li & McCarty, 

2019) 
 

Maps of TPO and TNO of a section of the Nyonga forest are shown in Figure 4-52. At a glance one can 

see that these digital elevation model (DEM) derivatives emphasise crests (TPO) and valleys (TNO), 

which have been shown to influence the location of forest types in South Africa (Mucina, 2018). 

 

 
Figure 4-52 Area of Nyonga forest, with aerial view (a), Topographic positive openness (b), and  
Topographic negative openness (c) 
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Table 4-18 shows that the Southern African Dry Forest (TDFa2) has the highest TPO and TNO, which 

means that these forests occur in open areas surrounded by very few hills and mountains. This 

corresponds well with the known location of these forests on the coastal plains from St Lucia Lake and 

northward to the Mozambiquan border. In contrast, Northern Mistbelt Forest (AF3) have very low 

(<=1.35) TPO and TNO values, which corresponds well with the location of these forest types on the 

Lebombo Mountains piedmonts, which are depressional and concave.  

Table 4-18 Mean and standard deviation of topographic openness (positive and negative) for each forest 
type 

Forest Type Code 

Topographic Openness 
Negative Positive 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Cape Milkwood Woodland ACF1 1.51 0.04 1.50 0.06 
Subtropical Dune Woodland ACF2 1.48 0.06 1.50 0.05 

Subtropical Indian Ocean Mangrove AMAN1 1.55 0.02 1.55 0.03 
Tropical Indian Ocean Mangrove AMAN2 1.50 0.06 1.51 0.04 

Arid Zone Riparian Woodland ARF1 1.54 0.02 1.54 0.02 
Cape Alluvial Woodland ARF2 1.49 0.08 1.46 0.08 

Highland Alluvial Woodland ARF3 1.52 0.04 1.51 0.04 
Subtropical Riparian Woodland ARF4 1.53 0.06 1.51 0.07 

East African Swamp Forest ASF1 1.55 0.02 1.54 0.02 
Cape Talus Forest ATF1 1.39 0.09 1.36 0.08 

Bushveld Talus Forest ATF3 1.44 0.05 1.44 0.05 
Drakensberg Afrotemperate Forest ATF4 1.40 0.09 1.32* 0.10 

Northern Highveld Afrotemperate Forest ATF5 1.40 0.08 1.37 0.07 
Cape Afrotemperate Forest AF1 1.44 0.07 1.44 0.08 

Southern Mistbelt Forest AF2 1.43 0.07 1.42 0.06 
Northern Mistbelt Forest AF3 1.35* 0.10 1.33 0.09 

African Subtropical Coastal Forest STFa2 1.53 0.04 1.53 0.04 
Subtropical Scarp Forest STFa4 1.43 0.08 1.41 0.08 

Albany Coastal Forest STFa5 1.44 0.07 1.45 0.07 
Southern African Dry Forest TDFa2 1.56** 0.01 1.56** 0.01 
Southern African Dry Thicket TDFa3 1.54 0.01 1.56 0.01 

Table 4-19 and  

Table 4-20 show that most of the forest types are classified as having high TNO and TPO values, 

indicating that they favour open landscapes.  
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Table 4-19 TNO % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 0 21 79 

Subtropical Dune Woodland ACF2 0 38 62 
Subtropical Indian Ocean Mangrove AMAN1 0 2 98 

Tropical Indian Ocean Mangrove AMAN2 0 31 69 
Arid Zone Riparian Woodland ARF1 0 3 97 

Cape Alluvial Woodland ARF2 1 32 67 
Highland Alluvial Woodland ARF3 0 14 86 

Subtropical Riparian Woodland ARF4 0 12 88 
East African Swamp Forest ASF1 0 1 99 

Cape Talus Forest ATF1 4 79 17 
Bushveld Talus Forest ATF3 0 77 23 

Drakensberg Afrotemperate Forest ATF4 4 78 18 
Northern Highveld Afrotemperate Forest ATF5 1 81 18 

Cape Afrotemperate Forest AF1 1 73 27 
Southern Mistbelt Forest AF2 1 73 26 
Northern Mistbelt Forest AF3 11 81 8 

African Subtropical Coastal Forest STFa2 0 8 92 
Subtropical Scarp Forest STFa4 1 67 31 

Albany Coastal Forest STFa5 0 67 33 
Southern African Dry Forest TDFa2 0 0 100 
Southern African Dry Thicket TDFa3 0 0 100 

 

Table 4-20 TPO % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 1 36 63 

Subtropical Dune Woodland ACF2 0 43 57 
Subtropical Indian Ocean Mangrove AMAN1 0 6 94 

Tropical Indian Ocean Mangrove AMAN2 0 25 75 
Arid Zone Riparian Woodland ARF1 0 4 96 

Cape Alluvial Woodland ARF2 4 48 48 
Highland Alluvial Woodland ARF3 0 33 67 

Subtropical Riparian Woodland ARF4 1 31 67 
East African Swamp Forest ASF1 0 7 93 

Cape Talus Forest ATF1 14 83 3 
Bushveld Talus Forest ATF3 0 92 8 

Drakensberg Afrotemperate Forest ATF4 35 63 2 
Northern Highveld Afrotemperate Forest ATF5 10 88 2 

Cape Afrotemperate Forest AF1 5 73 22 
Southern Mistbelt Forest AF2 3 89 8 
Northern Mistbelt Forest AF3 29 69 1 

African Subtropical Coastal Forest STFa2 0 13 87 
Subtropical Scarp Forest STFa4 7 82 12 

Albany Coastal Forest STFa5 1 75 23 
Southern African Dry Forest TDFa2 0 0 100 
Southern African Dry Thicket TDFa3 0 0 100 

Figure 4-53 shows the statistical relationship between topographical openness and water use of all 

forest types. In both cases, the relationship is weak (R2=0). However, in Figure 4-54 one can see that 

for Northern Mistbelt Forest (AF3), areas with low TNO tend to use less water, whereas patches with 

high TNO water use is generally higher. This pattern also holds for some other forest types (see 

Appendix IV).  
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Figure 4-53 Linear regression between forest water use and positive (left) and negative (right) 
topographic openness, abbreviated as TPO and TNO respectively 
 

 
Figure 4-54 Evapotranspiration per topographic negative openness class for AF3 

4.2.4.3 Elevation 

Elevation (Figure 4-55) was identified as the third most important terrain-based driver for estimating 

forest type water use. Overall, it is ranked 10th, indicating that, likewise to topographic openness, it is 

not a major driver for determining forest type water use. Generally, temperatures decrease with 

increasing elevation, through a process called adiabatic cooling. This leads to lower evaporation 

rates, potentially increasing soil moisture content compared to lower elevations. However, colder 

temperatures in very high-lying areas can also limit plant growth and metabolic activity, reducing their 

overall water demand. Precipitation patterns can also greatly vary with elevation. Some regions 

experience heavier rainfall at higher altitudes due to atmospheric conditions, while others receive less 

due to rain shadow effects. This directly affects water availability for plants. Wind speed and direction 

can be stronger at higher elevations, causing increased evapotranspiration from plants and potentially 

drying out the soil. As noted in a previous section, likely the biggest way that elevation impact water 

use of forests is cloud cover (see explanation in Section 4.2.3.2).  
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Figure 4-55 Elevation classes of South Africa 

Table 4-21 shows the elevation ranges of each forest type. As can be expected, the mangrove and 

swamp forests are located at low elevations (<110 m on average). The forest types with the highest 

(>1 000 m on average) elevations are Highland Alluvial Woodland (ARF3) and Northern Mistbelt Forest 

(AF3). The Northern Mistbelt Forests are located in highly-lying areas from the Mpumalanga 

Escarpment (Barberton, Long Tom Pass, Blyde and Mariepskop areas), northwards along the 

northeastern Escarpment as far as Soutpansberg, while Highland Alluvial Woodlands are found in the  

Highveld along major rivers such as Vaal and upper Gariep. These two forest types are also the only 

types that were classified as being located in areas with high altitudes (Table 4-22). All the other forest 

types occur in low altitude areas.  

Source: Van Niekerk (2015) 
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Table 4-21 Mean and standard deviation of elevation per forest type 

Forest Type Code 
Elevation (m) 

Mean Standard Deviation 
Subtropical Indian Ocean Mangrove AMAN1 30.62 33.53 

Tropical Indian Ocean Mangrove AMAN2 53.55 32.38 
Northern Highveld Afrotemperate Forest ATF5 95.90 250.25 

East African Swamp Forest ASF1 109.36 294.3 
Cape Milkwood Woodland ACF1 111.60 58.31 

Southern African Dry Forest TDFa2 116.55 239.47 
Subtropical Riparian Woodland ARF4 171.3 257.48 

Cape Alluvial Woodland ARF2 211.52 89.65 
Albany Coastal Forest STFa5 215.83 64.67 

Subtropical Dune Woodland ACF2 227.73 466.47 
Arid Zone Riparian Woodland ARF1 235.19 96.61 

African Subtropical Coastal Forest STFa2 261.97 423.29 
Cape Afrotemperate Forest AF1 334.56 149.81 
Subtropical Scarp Forest STFa4 355.49 378.94 
Bushveld Talus Forest ATF3 367.26 220.68 

Cape Talus Forest ATF1 383.08 191.66 
Southern African Dry Thicket TDFa3 443.90 119.46 

Drakensberg Afrotemperate Forest ATF4 487.07 393.59 
Southern Mistbelt Forest AF2 849.66 359.85 
Northern Mistbelt Forest AF3 1281.97 231.07 

Highland Alluvial Woodland ARF3 1376.20 193.02 

 

Table 4-22 Elevation % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 100 0 0 

Subtropical Dune Woodland ACF2 89 2 9 
Subtropical Indian Ocean Mangrove AMAN1 100 0 0 

Tropical Indian Ocean Mangrove AMAN2 100 0 0 
Arid Zone Riparian Woodland ARF1 100 0 0 

Cape Alluvial Woodland ARF2 100 0 0 
Highland Alluvial Woodland ARF3 2 0 98 

Subtropical Riparian Woodland ARF4 98 1 2 
East African Swamp Forest ASF1 96 1 3 

Cape Talus Forest ATF1 98 2 0 
Bushveld Talus Forest ATF3 100 0 0 

Drakensberg Afrotemperate Forest ATF4 90 0 10 
Northern Highveld Afrotemperate Forest ATF5 97 0 3 

Cape Afrotemperate Forest AF1 99 1 0 
Southern Mistbelt Forest AF2 54 32 14 
Northern Mistbelt Forest AF3 4 38 58 

African Subtropical Coastal Forest STFa2 88 7 5 
Subtropical Scarp Forest STFa4 87 7 6 

Albany Coastal Forest STFa5 100 0 0 
Southern African Dry Forest TDFa2 97 2 2 
Southern African Dry Thicket TDFa3 100 0 0 

Figure 4-56 shows a scatter plot of the water use of all forests and elevation above mean sea level. 

Although there seems to be slight positive relationship between water use and elevation, the model is 

weak (R2=0.0). 
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Figure 4-56 Linear regression between forest water use and elevation 

The water use graphs for each forest type from 2009 to 2023 can be found in Appendix IV. For example, 

in the case of AF3 (Figure 4-57), water use is generally low at low altitudes and high at higher altitudes. 

But this tendency is not present for many of the other forest types that occur on multiple elevation 

classes (e.g. ACF2, AF2, ASF1, ATF1).  

 
Figure 4-57 Evapotranspiration per elevation class for AF3 
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4.2.4.4 Slope gradient 

Slope gradient was identified as being the 14th most important variable in the RF regression modelling 

of forest water use, and was the fourth most important terrain-based factor. Figure 4-58 is a slope 

gradient map, classified into level/gently inclined (0-5.7 degrees), moderately inclined/steep (5.7-29.25 

degrees) and very steep (>29.25 degrees) slopes. The map effectively highlights the mountainous 

areas in South Africa. According to the correlation analysis (Figure 4-1) slope gradient had a negative 

relationship (R2=-0.55) with soil depth. In other words, soil depth decreases as the slope gradient 

increases. There was also a negative relationship (R2=-0.48) between heat units and slope gradient. 

 
Figure 4-58 Slope gradient classes of South Africa 

According to Table 4-23, the mean slope gradient of forest types ranges from less than one degree 

(Southern African Dry Thicket, 0.9°) to more than 20 degrees (Northern Mistbelt Forest, 22°). However, 

the standard deviation of the latter type is more than 10°, which suggests that Northern Mistbelt Forest 

(AF3) occurs in extremely rugged terrain.  

Source: Van Niekerk (2015) 
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Table 4-23 Mean and standard deviation of slope gradient per forest type 

Forest Type Code 
Slope gradient (deg) 

Mean Standard Deviation 
Southern African Dry Thicket TDFa3 0.9 0.4 
Southern African Dry Forest TDFa2 1.3 1.1 

Arid Zone Riparian Woodland ARF1 1.6 1.6 
Subtropical Indian Ocean Mangrove AMAN1 1.8 2.9 

East African Swamp Forest ASF1 2.4 2.2 
African Subtropical Coastal Forest STFa2 3.7 3.8 

Subtropical Riparian Woodland ARF4 3.9 5.7 
Highland Alluvial Woodland ARF3 4.8 5.1 
Cape Milkwood Woodland ACF1 6.3 4.8 

Tropical Indian Ocean Mangrove AMAN2 6.6 6.1 
Subtropical Dune Woodland ACF2 7.7 6.5 

Cape Alluvial Woodland ARF2 7.9 8.4 
Bushveld Talus Forest ATF3 10.9 7 
Albany Coastal Forest STFa5 12.2 6.4 

Cape Afrotemperate Forest AF1 12.6 7.5 
Southern Mistbelt Forest AF2 14.5 7.8 
Subtropical Scarp Forest STFa4 14.6 8.5 

Cape Talus Forest ATF1 17.9 8.5 
Northern Highveld Afrotemperate Forest ATF5 19 8.5 

Drakensberg Afrotemperate Forest ATF4 19.3 11.2 
Northern Mistbelt Forest AF3 22 10.9 

 

Table 4-24 shows that a very small proportion of forests occur on very steep slopes. Most (57%) forest 

types are found on moderately inclined or steep slopes, while several (38%) also occur in level and 

gently included landscapes. The relationship between slope gradient and forest water use is 

multifaceted. Steeper slopes generally have faster water runoff, leaving less time for infiltration and 

reducing water accessibility for plants. This can lead to drier conditions compared to gentle 

slopes, where water has more time to soak into the soil. Depending on the aspect (the direction the 

slope faces), steeper slopes may receive more or less direct sunlight. North-facing slopes tend to be 

drier due to higher solar radiation and evaporation, while south-facing slopes might retain moisture 

better. Trees on steeper slopes often develop deeper and more extensive root systems to reach deeper 

water sources and anchor themselves against erosive forces (Temgoua et al., 2016). In drier 

conditions, plants on steeper slopes often adopt water-saving mechanisms like smaller leaves, thicker 

cuticles to minimise evaporation, and stomatal control to regulate water loss. Different plant species are 

adapted to thrive on specific slope gradients based on their water requirements and tolerance to 

dryness. Some specialised plants excel in colonising steep, rocky slopes, while others prefer gentler 

slopes with better water availability (Asselin et al., 2006). 
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Table 4-24  Mean slope % class cover per forest type. 

Forest Type Code Moderately Inclined/Steep Level/Gently Inclined Very Steep 
Cape Milkwood Woodland ACF1 58.2 41.7 0.2 

Subtropical Dune Woodland ACF2 50.8 48.9 0.3 
Subtropical Indian Ocean Mangrove AMAN1 95.8 4.2 0.0 

Tropical Indian Ocean Mangrove AMAN2 56.3 43.8 0.0 
Arid Zone Riparian Woodland ARF1 97.2 2.8 0.0 

Cape Alluvial Woodland ARF2 57.3 40.4 2.3 
Highland Alluvial Woodland ARF3 77.6 22.4 0.0 

Subtropical Riparian Woodland ARF4 80.9 18.5 0.6 
East African Swamp Forest ASF1 93.0 7.0 0.0 

Cape Talus Forest ATF1 7.6 82.9 9.5 
Bushveld Talus Forest ATF3 27.4 71.0 1.5 

Drakensberg Afrotemperate Forest ATF4 13.4 66.2 20.4 
Northern Highveld Afrotemperate Forest ATF5 6.0 82.1 11.9 

Cape Afrotemperate Forest AF1 16.0 80.3 3.8 
Southern Mistbelt Forest AF2 12.0 83.7 4.3 
Northern Mistbelt Forest AF3 3.4 74.4 22.3 

African Subtropical Coastal Forest STFa2 80.7 19.2 0.0 
Subtropical Scarp Forest STFa4 16.1 78.2 5.7 

Albany Coastal Forest STFa5 17.6 82.3 0.1 
Southern African Dry Forest TDFa2 99.0 1.0 0.0 
Southern African Dry Thicket TDFa3 100.0 0.0 0.0 

The water use profiles for each forest type vs. slope gradient class are provided in Appendix IV. These 

graphs demonstrate the complexity of this relationship. For instance, Figure 4-59 to Figure 4-61 

compare the impact of slope gradient on three forest types, namely Cape Afrotemperate Forest (AF1), 

Southern Mistbelt Forest (AF2) and Northern Mistbelt Forest (AF3). In the first two cases (AF1 and 

AF2), slope gradient seems to have no impact, but for AF3  there seems to be a pattern of high water 

use as slope gradient decrease, likely because soils in flatter areas will likely retain more moisture for 

uptake by the tree roots.  

 
Figure 4-59 Evapotranspiration per slope gradient class for AF1 
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Figure 4-60 Evapotranspiration per slope gradient class for AF2 
 

 
Figure 4-61 Evapotranspiration per slope gradient class for AF3 

4.2.4.5 Topographic position index 

Topographic position index (TPI) was identified as a less important driver in determining mean annual 

ET for forest types, ranking as the 6th most important terrain-based variable. Overall, however, it was 

ranked 17th. TPI is calculated as follows: 

TPI =  Elevation_central −  Average(Elevation_surrounding) 
 Equation 4-1 

where Elevation_central is the elevation value in the centre of a region; 
and   

 Average(Elevation_surrounding) is the average elevation if a region, excluding the 
central value. 

Figure 4-62 shows the TPI for the Ngoya forest area. High TPI values represent crests, ridges and 

outcrops, while low TPI values represent valley bottoms. At a glance it would seem that TPI is similar 

to TPO and TNO, but the correlation between TPI and these two variables is not high (R2=0.37 and 

R2=-0.27 respectively), suggesting that TPI can be regarded as an important factor in the water use of 

forests.  
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Figure 4-62 Ngoya forest area, with aerial image view (a) and topographic position index (b) 

Table 4-25 shows that Drakensberg Afrotemperate Forest (ATF4) had the lowest TPI values, which 

suggests that these forest types typically occur in narrow valley bottoms. However, the standard 

deviation of TPI for this class is very high (2.93), which means that the mean is not a good 

representation of the variance. In fact, most of the standard deviations in Table 4-25 are high compared 

to the mean values. Tropical Indian Ocean Mangrove (AMAN2) has by far the highest TPI values, 

suggesting that they occur on crests and high-lying areas. This is, however, not a true reflection of the 

ecology of these forests as they typically occur in very flat, inundated areas along the coast (which 

should have values close to zero). The high values reported here were caused by a few outlier patches 

of mangrove forest occurring on steeper slopes.  
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Table 4-25 Mean and standard deviation of topographic position index per forest type 

Forest Type Code 
Topographic position index 

Mean Standard Deviation 
Drakensberg Afrotemperate Forest ATF4 -1.31 2.93 

Northern Highveld Afrotemperate Forest ATF5 -0.92 2.54 
Cape Talus Forest ATF1 -0.58 2.76 

Northern Mistbelt Forest AF3 -0.57 3.21 
Cape Alluvial Woodland ARF2 -0.45 1.78 
Bushveld Talus Forest ATF3 -0.36 1.62 

Subtropical Scarp Forest STFa4 -0.34 2.27 
Cape Milkwood Woodland ACF1 -0.23 1.48 
Cape Afrotemperate Forest AF1 -0.19 1.90 

Southern Mistbelt Forest AF2 -0.12 1.84 
Subtropical Riparian Woodland ARF4 -0.12 1.11 

East African Swamp Forest ASF1 -0.07 0.55 
Highland Alluvial Woodland ARF3 -0.05 0.93 

Arid Zone Riparian Woodland ARF1 -0.01 0.35 
Southern African Dry Thicket TDFa3 0.00 0.17 

African Subtropical Coastal Forest STFa2 0.01 0.79 
Southern African Dry Forest TDFa2 0.03 0.28 

Subtropical Indian Ocean Mangrove AMAN1 0.04 0.47 
Albany Coastal Forest STFa5 0.04 1.84 

Subtropical Dune Woodland ACF2 0.08 1.36 
Tropical Indian Ocean Mangrove AMAN2 0.54 1.56 

Table 4-26 shows that all of the forest types fall predominately in the high TPI category. This suggests 

that TPI is not such a good discriminator of forest types and explains why its importance in the RF 

model was lower than many of the other terrain variables.  

Table 4-26 Topographic position index % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 1 8 91 

Subtropical Dune Woodland ACF2 0 4 96 
Subtropical Indian Ocean Mangrove AMAN1 0 1 99 

Tropical Indian Ocean Mangrove AMAN2 0 6 94 
Arid Zone Riparian Woodland ARF1 0 0 100 

Cape Alluvial Woodland ARF2 3 7 90 
Highland Alluvial Woodland ARF3 0 4 96 

Subtropical Riparian Woodland ARF4 0 4 96 
East African Swamp Forest ASF1 0 1 99 

Cape Talus Forest ATF1 4 21 75 
Bushveld Talus Forest ATF3 0 12 88 

Drakensberg Afrotemperate Forest ATF4 7 25 67 
Northern Highveld Afrotemperate Forest ATF5 6 18 76 

Cape Afrotemperate Forest AF1 2 12 86 
Southern Mistbelt Forest AF2 1 9 90 
Northern Mistbelt Forest AF3 6 20 74 

African Subtropical Coastal Forest STFa2 0 2 98 
Subtropical Scarp Forest STFa4 2 16 82 

Albany Coastal Forest STFa5 1 9 90 
Southern African Dry Forest TDFa2 0 0 100 
Southern African Dry Thicket TDFa3 0 0 100 

Graphs showing the relationship between forest water use and TPI is provided in Appendix IV. For 

instance, Figure 4-63 and Figure 4-64 show the profiles for African Subtropical Coastal Forest (STFa2) 

and Subtropical Scarp Forest (STFa4). In the case of African Subtropical Coastal Forest, there is a 
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noticeable difference in water use among low, medium and high TPI classes. However, for Subtropical 

Scarp Forest, there seems to be no difference among these classes.  

 
Figure 4-63 Evapotranspiration per TPI class for STFa2 

 
Figure 4-64 Evapotranspiration per TPI class for STFa4 

Based on the machine learning analysis, there is a relationship between the water use of forests and 

terrain characteristics. However, based on the preceding sections, this relationship is highly complex, 

and it is very difficult to pinpoint exactly how terrain impacts water use. It is clear that terrain on its own 

does not drive water use but plays a role among other variables such as climate and soil. The next 

section delves deeper into the relationship between soil characteristics and the water use of forests.  

4.2.5 Water use compared to soil characteristics 

Different tree species are adapted to thrive in specific soil types based on their water requirements and 

tolerance to drought or waterlogging. Some specialise in colonising sandy soils with rapid 

drainage, while others excel in clay soils with high water retention capacity. The impact of soil 

characteristics, in particular soil depth and soil clay content, on the distribution of indigenous forest 
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types in South Africa is explored in the following two subsections.  

4.2.5.1 Soil depth 

Soil depth was ranked seventh in the VIL for determining mean annual ET for forests and was the most 

important soil-related variable. Figure 4-65 shows the soil depth distribution in South Africa, while Table 

4-27 lists the mean and standard deviation of soil depth per forest type. Highland Alluvial Woodland 

(ARF3) has the lowest mean soil depth (399 mm). These forests occur on the banks of major rivers 

such as the Vaal and Gariep. The relatively shallow soils in these areas are likely attributed to erosional 

forces caused by seasonal flooding. Subtropical Dune Woodland (ACF2) has the deepest soils 

(1 290 mm). As the name suggests, these forests are established on dunes along the eastern coast. 

These dunes are characterised by deep, sandy soils.  

 
Figure 4-65 Soil depth classes of South Africa 

 

Source: ARC-ISCW (2010) 
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Table 4-27 Mean and standard deviation of soil classes per forest type 

Forest Type Code 
Soil depth (mm) 

Mean Standard Deviation 
Highland Alluvial Woodland ARF3 399.08 214.68 
Cape Afrotemperate Forest AF1 401.98 133.02 

Bushveld Talus Forest ATF3 432.99 60.41 
Cape Talus Forest ATF1 448.15 181.51 

Cape Alluvial Woodland ARF2 453.92 185.30 
Northern Mistbelt Forest AF3 496.80 270.52 
Subtropical Scarp Forest STFa4 502.16 170.99 

Drakensberg Afrotemperate Forest ATF4 559.34 122.36 
Southern Mistbelt Forest AF2 566.50 149.71 

Northern Highveld Afrotemperate Forest ATF5 581.69 94.64 
Arid Zone Riparian Woodland ARF1 634.22 302.79 

Subtropical Riparian Woodland ARF4 727.62 315.82 
Cape Milkwood Woodland ACF1 729.78 264.93 

Albany Coastal Forest STFa5 938.09 99.31 
African Subtropical Coastal Forest STFa2 1054.51 415.30 
Tropical Indian Ocean Mangrove AMAN2 1069.22 513.68 

Southern African Dry Thicket TDFa3 1096.34 267.10 
Subtropical Indian Ocean Mangrove AMAN1 1174.75 307.60 

East African Swamp Forest ASF1 1228.18 220.21 
Southern African Dry Forest TDFa2 1260.50 160.25 
Subtropical Dune Woodland ACF2 1289.72 114.06 

Table 4-28 shows that most (57%) of the forest types occur in soils that were classified as being deep 

(high), with Highland Alluvial Woodland being the only forest type occurring on shallow soils.  

Table 4-28 Soil depth % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 0 30 70 

Subtropical Dune Woodland ACF2 0 1 99 
Subtropical Indian Ocean Mangrove AMAN1 4 2 94 

Tropical Indian Ocean Mangrove AMAN2 19 0 81 
Arid Zone Riparian Woodland ARF1 30 0 70 

Cape Alluvial Woodland ARF2 44 34 21 
Highland Alluvial Woodland ARF3 50 6 45 

Subtropical Riparian Woodland ARF4 12 26 61 
East African Swamp Forest ASF1 1 5 94 

Cape Talus Forest ATF1 28 40 32 
Bushveld Talus Forest ATF3 0 98 2 

Drakensberg Afrotemperate Forest ATF4 5 48 47 
Northern Highveld Afrotemperate Forest ATF5 1 21 79 

Cape Afrotemperate Forest AF1 0 96 4 
Southern Mistbelt Forest AF2 3 54 44 
Northern Mistbelt Forest AF3 34 32 34 

African Subtropical Coastal Forest STFa2 7 17 76 
Subtropical Scarp Forest STFa4 12 68 20 

Albany Coastal Forest STFa5 0 1 99 
Southern African Dry Forest TDFa2 0 2 98 
Southern African Dry Thicket TDFa3 0 13 87 

 

Figure 4-66 shows the statistical relationship between forest water use (all types) and soil depth is weak 

(R2=0.0).  
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Figure 4-66 Linear regression between forest water use and soil depth 

A range of graphs were created to better understand the relationship between soil depth and the water 

use of each individual forest type. These graphs are available in Appendix IV. As an example, Figure 

4-67 shows that water use in Southern Mistbelt Forest (AF2) is lower where soils are shallow (low). This 

relationship holds for Northern Mistbelt Forest (AF3) (Figure 4-68), but there are among these forest 

types that occur in areas with soils classified as medium.  

 
Figure 4-67  Evapotranspiration per soil depth class for AF2 
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Figure 4-68 Evapotranspiration per soil depth class for AF3 

Soils act as water storage mechanisms for plant life. Generally, deeper soils allow for a higher soil 

moisture content as they are less susceptible to evapotranspiration. Furthermore, deeper soils allow for 

plants and trees to tap into groundwater reserves via their root systems (Brevik et al., 2017). Shallow 

soils offer limited water reserves, forcing plants to rely on frequent water uptake or adaptations to 

access deeper sources. Deeper soils have larger reservoirs, potentially requiring less frequent water 

use by plants. Shallow soils with less pore space tend to have faster drainage, reducing water retention 

and potentially leading to higher plant water use due to increased demand (Nimmo et al., 2009). Deeper 

soils often allow for better infiltration and storage of water, potentially providing more readily available 

reserves for trees. 

4.2.5.2 Soil clay percentage 

Soil clay percentage was identified to be a significant driver in determining mean annual ET for forest 

types, ranking 5th in the VIL. Figure 4-69 shows a clay content map of South Africa. In general, soils are 

noticeably clayey in the eastern and northern parts of the country, while the Western Cape and Northern 

Cape have less clay content.  
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Figure 4-69 Soil clay % classes of South Africa 

Table 4-29 shows that the soils of Tropical Indian Ocean Mangroves (AMAN2) have the lowest mean 

clay content (2.4%), while Northern Highveld Afrotemperate Forest (ATF5) have the highest (35%).  

Source: ARC-ISCW (2010) 
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Table 4-29 Mean and standard deviation of soil clay % per forest type 

Forest Type Code 
Soil Clay (%) 

Mean Standard Deviation 
Tropical Indian Ocean Mangrove AMAN2 2.4 1.2 

Cape Milkwood Woodland ACF1 3.6 0.9 
Subtropical Dune Woodland ACF2 3.9 4.2 
Southern African Dry Forest TDFa2 5 6.2 

Albany Coastal Forest STFa5 7 2.4 
Cape Alluvial Woodland ARF2 7.7 2.5 

Cape Afrotemperate Forest AF1 7.8 2.4 
African Subtropical Coastal Forest STFa2 8.9 10.1 

East African Swamp Forest ASF1 10.9 11.9 
Arid Zone Riparian Woodland ARF1 11.1 3.4 

Cape Talus Forest ATF1 12 6.2 
Southern African Dry Thicket TDFa3 13.9 9.7 
Highland Alluvial Woodland ARF3 15.7 4.5 

Drakensberg Afrotemperate Forest ATF4 23.5 3.7 
Subtropical Scarp Forest STFa4 24.6 8 

Subtropical Riparian Woodland ARF4 27 11.4 
Bushveld Talus Forest ATF3 27.6 4.9 

Subtropical Indian Ocean Mangrove AMAN1 29.5 12.6 
Southern Mistbelt Forest AF2 30 5.6 
Northern Mistbelt Forest AF3 33.3 8.3 

Northern Highveld Afrotemperate Forest ATF5 35.2 3.9 

According to Table 4-30, most (57%) of the forest types occur on soils that were classified as having 

low clay content. Only Highland Alluvial Woodland is dominated by soils with a medium clay content, 

while Drakensberg Afrotemperate Forest (ATF4) only occurs on soils with high clay content.  

Table 4-30 Soil clay % class cover per forest type 

Forest Type Code Low Medium High 
Cape Milkwood Woodland ACF1 100 0 0 

Subtropical Dune Woodland ACF2 97 0 2 
Subtropical Indian Ocean Mangrove AMAN1 16 1 83 

Tropical Indian Ocean Mangrove AMAN2 100 0 0 
Arid Zone Riparian Woodland ARF1 60 27 13 

Cape Alluvial Woodland ARF2 96 2 2 
Highland Alluvial Woodland ARF3 0 61 39 

Subtropical Riparian Woodland ARF4 7 4 89 
East African Swamp Forest ASF1 75 3 23 

Cape Talus Forest ATF1 57 8 35 
Bushveld Talus Forest ATF3 0 1 99 

Drakensberg Afrotemperate Forest ATF4 0 0 100 
Northern Highveld Afrotemperate Forest ATF5 0 1 99 

Cape Afrotemperate Forest AF1 82 18 0 
Southern Mistbelt Forest AF2 0 3 97 
Northern Mistbelt Forest AF3 0 3 97 

African Subtropical Coastal Forest STFa2 75 5 19 
Subtropical Scarp Forest STFa4 1 21 78 

Albany Coastal Forest STFa5 97 2 1 
Southern African Dry Forest TDFa2 95 2 3 
Southern African Dry Thicket TDFa3 81 0 19 
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Figure 4-70 Linear regression between forest water use and soil clay 

The 2009-2023 water use graphs in Appendix IV compare the impact of soil clay content on water use. 

Using Southern Mistbelt Forest (AF2) as an example (compared to soil depth graphs in the previous 

section), it seems that forests on soils classified as having a high clay content used more water than 

those classified as having a medium clay content.  

 
Figure 4-71 Evapotranspiration per soil clay % class for AF2 

The forests with high clay content were also unaffected by the 2015-2017 drought. This can be expected 

as clayey soils have a higher capacity to retain soil moisture. The clay content of soils has a significant 

effect on the soil’s water-holding capacity. Clay soils have smaller particles with larger total surface area 

than sandy soils, enabling them to hold more water compared to sandy soils (Nimmo et al., 2009). This 

means there is potentially more water available for plants in clay soils. However, clay soils also tend to 

have smaller pore spaces and lower saturated hydraulic conductivity. This can lead to slower 

drainage and waterlogging after heavy rainfall, making the water less readily available for plant uptake. 

Reduced drainage in clay soils can negatively impact plant growth by limiting oxygen availability to 

roots. Poor aeration can hinder root development and function, ultimately affecting plant water uptake 
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efficiency. Trees in clay soils may develop shallower and denser root systems to maximise access to 

readily available water near the surface. This strategy balances the risk of waterlogging with efficient 

water capture. In well-drained clay soils with abundant water, plants may not face significant water 

stress. However, in poorly drained clay soils, some trees may adopt water-saving mechanisms like 

smaller leaves, thicker cuticles, and stomatal control to minimise water loss through transpiration (Hillel, 

2003). Different plant species are adapted to thrive in specific clay content ranges based on their water 

requirements and tolerance to waterlogging. Some specialise in dry, sandy soils, while others excel in 

clay soils with abundant but potentially less accessible water. 

4.2.6 Indigenous forest water use validation 

Field-based measurements to validate the remotely sensed ET were not within the scope of this project. 

Instead, the project team had to rely on comparing the estimated WaPOR ET values to existing data 

and knowledge. The following subsections overview the extracted WaPOR ET values for indigenous 

forests and compare them to previous studies on the water use of indigenous forests, plantations and 

agriculture. A comparison of extracted WaPOR ET and reference ET is also included.  

4.2.6.1 Comparison to literature and reference evapotranspiration 

Few studies have focussed on quantifying the water use of indigenous forests of South Africa, and 

hence, limited transpiration (T) and ET data are available. Table 4-31 lists some of the relevant studies 

found in the literature and summarises the results. The studies represent a combination of field 

measurements and modelling. Some T data were collected for individual trees within indigenous forest 

patches and reported as L/tree/period. Often, this data were not upscaled to an entire forest stand, 

making comparison with the WaPOR ET data (used in this study) difficult. Another factor limiting direct 

comparisons between the WaPOR ET data and previous estimates is that the latter are often expressed 

in mm/period. Also, matching the forest types used in this study to the past forest type classifications 

and study locations from previous studies proved to be difficult.  

Despite these challenges, some comparisons were possible. For instance, annual ET data are available 

for Cape Afrotemperate Forest (AF1) and Subtropical Scarp Forest (STFa4). Although the forest type 

classifications differ, we could also find relevant estimations for Arid Zone Riparian Woodland (ARF1) 

and Southern African Dry Thicket (TDFa3).  

The ET of Cape Afrotemperate Forest was estimated in two past studies to be 933 and 1 175 mm/yr 

(Table 4-31). In our study, the WaPOR-based annual ET for Cape Afrotemperate Forest ranged from 

428 to 1 713 mm/yr, with a median of 1 224 mm/yr (Table 4-3). The WaPOR ET estimate is 

consequently higher than what was estimated in previous studies.  

This study's WaPOR ET for Subtropical Scarp Forest ranged between 129 and 1 913 mm/yr with a 

median annual ET of 1 054 mm/yr (Table 4-3). These estimates are substantially higher than the 668 

mm/yr estimated by Dye et al. (2008c) (Table 4-31). In terms of Arid Zone Riparian Woodland, Dye et 

al. (2008a) estimated the ET of this forest type to be 1 094 mm/yr (Table 4-31), whereas the WaPOR 



 

119 
 

ET ranged from 29 to 2 106 mm/yr, with a substantially lower median of (296 mm/yr). As the name 

suggests, this forest type is typically found in riparian zones in an arid region and hence coarse 

resolution spatial data may present a mixed pixel effect and ET estimate. ET estimates from past studies 

on Southern African Dry Thicket (621 and 469 mm/yr, Table 4-31) were within the range of the WaPOR 

estimated ET (443 to 1 775 mm/yr) but were substantially lower than the median WaPOR ET value 

(1 153 mm/yr) (Table 4-3). 

Direct comparisons of past studies with the long-term WaPOR data present challenges, but the large 

ranges in annual ET estimates are particularly concerning, as are the ET ranges across regions of 

different rainfall (summer vs all-year rainfall). The very high ET ranges suggest uncertainties in the 

WaPOR ET estimates used in this study.  

According to Stanhill (2019), ET higher than 1400 mm/yr is rare and mainly occurs in equatorial regions. 

Specific conditions and combinations thereof (plant, climatic and environment) are required for very 

high ET to occur, including solar radiation, available water, vapour pressure deficit, plant leaf area, plant 

physiological control and advective conditions. The ETLook model used in the WaPOR ET estimates 

has been shown to produce very high ET (~2000 mm/yr) values for water bodies (Van Niekerk et al., 

2018). Consequently, it is likely that the water bodies surrounding forest patches may have influenced 

(increased) the extracted ET values in this project. For instance, Figure 4-72 shows a forested area 

where the extracted ET values exceed 1600 mm/yr. In most cases, the pixels contain a mixture of 

forests and water bodies, which could explain why ET is so high for these pixels. Although Van Niekerk 

et al. (2018) showed that, on average, such overestimations are balanced out by underestimations in 

pixels mixed with other land covers (e.g. bare ground), the location, sparse distribution and often small 

sizes of the forest patches evaluated in this study may have resulted in biases (under- or 

overestimations) within specific forest types.  

 
Figure 4-72 Examples of forested pixels with evapotranspiration values exceeding 1600 mm/yr 

Figure 4-73 compares the international standard reference ET (ETo) with WaPOR ETa extracted at two 
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locations (pixels): one pixel that is fully covered by indigenous forest (green line) and a pixel that is only 

partly covered by indigenous forest (red line). The ETo was calculated for the 2020-2023 period from a 

nearby weather station. The monthly ETa data from the two pixels differed greatly, with the ET Actual 

(Forest) pixel estimates much higher than the ET Actual (Mixed pixel) values. There seems to be a 

reasonable temporal agreement between the ETa and ETo values. The ETa often exceeds the ETo 

estimates, which is likely since ETo represent ET from a well-watered grass surface with no water or 

nutrient limitations and a specific leaf area, contrasted to species rich indigenous forests often occurring 

in riparian zones. 

 
Figure 4-73 WaPOR actual evapotranspiration (ET Actual) extracted at two locations (Mixed and Forest) 
compared to reference evapotranspiration (ETo) obtained from a nearby a weather station 

It is not possible to draw definite conclusions on the accuracy of the WaPOR ET estimates because 

there are a range of potential factors that can contribute to the uncertainties. Previous field studies were 

location-specific, and (until this study) no attempts have been made to study regional variations of ET 

within the context of indigenous forests. Nevertheless, it would be worthwhile to share the data from 

this study with the providers of the WaPOR data.  

It is important that the uncertainties of the WaPOR data be taken into consideration when the water use 

estimations reported in this study are used. In the context of this study – in which the focus was not to 

definitively quantify the water use of indigenous forests but rather to enhance our understanding of how 

water use among different forest types vary and how such differences are influenced by environmental 

factors – these uncertainties will likely have minimal impact. Consequently, although it seems that the 

WaPOR product overestimates the ET of forests, the relative differences in ET among forest types are 

likely sufficient for the purposes of this project. 
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Table 4-31 List of South African studies estimating transpiration (T) and evapotranspiration (ET) from forest types. ET/T estimates are shown where available in mm, 
alternatively in L. 

Reference   Title   Forest type listed in 
Reference  Current forest type   Coordinates  T/ET  Method  

Clulow et al. 
(2013)  

Water use dynamics 
of a peat swamp 
forest and a dune 

forest in Maputaland, 
South Africa   

Peat swamp forest  ASF1 East African Swamp Forest  
  
 

28° 10.1760’ S 
32° 30.0700’ E 

Peat swamp forest:  
Overstorey: 15800 L/20 months  
Mid-storey: 3500 L/20 months 

Sapflow of 
individual trees  

Dune forest ACF2 Subtropical Dune Woodland 28° 12.0170’ S 
32° 31.6330’ E 

Dune forest:   
Overstorey tree: 10400 L 

Mid-canopy:   
6400 L 

Understory tree water: 1100 L 

 

Dye et al. (2008b)  Water use in relation 
to biomass of 

indigenous tree 
species in woodland, 

forest and /or 
plantation conditions   

Coastal   
Platform Forest 

AF1 Cape Afrotemperate Forest 
  

33° 56.5’ S 
22° 33’ E 

Coastal platform forest: 933 mm/yr Scintillometry, 
HPV, modelling 

Karkloof Mistbelt forest (3 
trees)  

(Celtis Africana, 
Podocarpus falcatus, 

Ptaeroxylon obliquum)  

AF2 Southern Mistbelt Forest  29° 18.230’ S 
30° 13.699’ E  

  Celtis: 8.396 m3  
Podocarpus: 6.571 m3  
Ptaeroxylon: 4.407 m3    

Heat pulse 
velocity 

Weenen: Valley thicket  
Euphorbia, Acacia, 
Cussonia and Olea 

No forest found 28° 50.842’ S 
30° 01.549’ E 

Olea europaea  
subsp. Africana: 5.223 m3  

Berchemia zeyheri:: 6.103 m3 

Dye et al. (2008a)  
   

The potential of 
woodlands and reed 
beds for control of 

acid mine drainage in 
the Witwatersrand 

Gold Fields   

Rhus lancea woodland  ARF1 Arid Zone Riparian Woodland  (Trees 
within 1.5 km of) 

26° 55.828’ S 
26° 46.810’ E  

Transpiration: Mean: 1094 mm/yr (976 to 
1211 mm/yr)  

Sapflow from 3 
individual trees 
(scaled to leaf 

area)  

Dye et al. (2008c)  Modelling vegetation 
water use for general 
application in different 

categories of 
vegetation  

Sandveld Savanna  Kruger National park savanna  24° 39’ S 
28° 42’ E 

ET 469 mm/yr  
  

Modelling, 
supported by 
measurement 
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Table continued from previous page 

Reference   Title   Forest type listed in 
Reference  Current forest type   Coordinates  T/ET  Method  

Dye et al. (2008c)  Modelling vegetation 
water use for general 
application in different 

categories of 
vegetation  

Valley thicket  STFa4 Subtropical Scarp Forest  (closest 
forest ) 

 ET 668 mm/yr  

Groenkop moist high 
forest/ southern Cape 
evergreen indigenous 

forests 

AF1 Cape Afrotemperate Forest 29° 19’ S 
30° 49’ E  

(same as below) 

ET: 1175 mm/yr  

Jarmain et al. 
(2004)  

Improving the basis 
for predicting total 
evaporation from 

natural veld types in 
South Africa: A focus 

on Moist Upland 
Grassland, Valley 

Thicket and Coastal 
Bushveld/Grassland.   

Valley Thicket STFa4 Subtropical Scarp Forest  (closest 
forest)   

29° 19’ S   
30° 49’ E 

Winter: <1 mm/d  
Summer: >6 mm/d  

Bowen ratio, 
modelling ET  

Coastal 
bushveld/grassland 

Unknown -28.063981° 
32.309516° 

Winter: <2 mm/d  
Summer: 5-8 mm/d 

 

Pearton (2017) An assessment of the 
water use of 

indigenous and 
introduced tree spp. 

and varying land uses 
around Vasi Pan, 

Maputaland, 
KwaZulu-Natal   

  Vasi pan indigenous 
forest 

Unknown   Unknown   4.7 to 10 L/d   Heat pulse, eddy 
covariance 

Scott-Shaw et al. 
(2017)  

   

Water use dynamics 
of an alien-invaded 
riparian forest within 
the summer rainfall 
zone of South Africa   

Eastern Mistbelt forest 
zone  

AF2 Southern Mistbelt Forest (close to) 29° 28.03000’ S 
29° 52.04800’ E  

Individual trees:  
283 (G. buxifolia) to 4307 L/yr (C. africana)  

Sapflow  
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4.2.6.2 Comparison to agriculture 

In a previous WRC study, Van Niekerk et al. (2018) estimated the mean annual ET for various 

agricultural crops in South Africa, both dryland and irrigated. The ET estimates were based on EO data 

for one year, and summary statistics are shown in Table 4‑16. Median ET estimates ranged between 

500 and 911 mm/yr, considering all data. Irrigated crop ET ranged between 911 (irrigated citrus) and 

553 mm/yr (other irrigated fruit). These median ET estimates are generally substantially lower than the 

indigenous forest median ET estimates from this study, ranging from 296 (Arid Zone Riparian 

Woodland) and 1 338 mm/yr (Subtropical Indian Ocean Mangrove) (Table 4-3). The exceptions were 

Arid Zone Riparian Woodland, Highland Alluvial Woodland and Cape Milkwood Woodland, with median 

annual ET estimates of < 520 mm/yr. 

Table 4-32 Estimated water use (ET) statistics for selected crop types (Van Niekerk et al., 2018) 

Crop type Rainfall 
season Group # samples / 

pixels 
Max ET 
(mm/yr) 

Median ET 
(mm/yr) 

Mean ET 
(mm/yr) 

Standard  
deviation 

(mm/yr) 

Area 
considered 

(ha) 

Maize Summer 
All 72 969 1 385 615 618 113 1 771 083 

Irrigated 3 689 1 385 737 764 187 76 246 
Rainfed 69 280 1 378 611 610 102 1 694 837 

Wheat Summer 
All 1 558 1 088 600 591 109 40 907 

Irrigated 217 1 088 658 655 136 4 038 
Rainfed 1 341 1 069 597 581 100 36 870 

Other small 
grains Summer 

All 3 335 1 290 590 590 93 50 934 
Irrigated 184 1 129 660 663 189 4 050 
Rainfed 3 151 1 290 589 586 82 46 884 

Vegetables Summer 
All 30 085 1 380 637 646 100 545 822 

Irrigated 1 445 1 380 771 789 180 18 843 
Rainfed 28 640 1 354 634 639 89 526 979 

Grapes –
Table Winter 

All 5 726 1 368 782 788 261 12 381 
Irrigated 5 638 1 368 786 791 260 12 192 

Grapes – 
Wine Winter 

All 41 315 1 399 571 595 190 106 022 
Irrigated 39 937 1 399 574 598 190 103 010 
Rainfed 1 378 1 126 500 528 172 3 012 

Grapes – 
Other Summer Irrigated 145 1 315 793 754 254 403 

Fruit – Citrus 
Winter Irrigated 5 708 1 400 678 696 221 11 731 

Summer Irrigated 164 1 396 911 925 206 403 
Fruit – Stone Winter Irrigated 11 145 1 399 632 655 256 21 918 
Fruit – Pome Winter Irrigated 15 702 1 398 833 828 237 31 322 
Fruit – Other Winter Irrigated 1 425 1 331 553 572 210 3 002 

Oil seeds Summer 
All 11 656 1 386 508 510 102 290 047 

Irrigated 589 1 386 619 628 173 8 257 
Rainfed 11 067 941 504 504 93 281 790 

Lucerne Summer Irrigated 1 001 1 396 825 831 251 17 875 

Other 
pastures & 
forages 

Summer 
All 199 861 1 397 539 537 123 2 157 027 

Irrigated 7 213 1 394 612 630 175 42 749 
Rainfed 192 648 1 397 536 534 119 2 114 279 

Sugarcane Summer 
All 208 095 1 400 756 744 155 279 414 

Irrigated 13 031 1 400 906 914 196 55 929 
Rainfed 195 064 1 399 750 732 145 223 485 
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4.2.6.3 Comparison to commercial forestry 

In a WRC study by Van Niekerk et al. (2023), long-term WaPOR ET estimates were extracted for three 

major commercial forestry genera of South Africa, namely Acacia, Eucalyptus and Pinus. The ET 

statistics are shown in Table 4-33. Long-term median ET for the three genera did not vary greatly, with 

the highest estimate for Eucalyptus (1 123 mm/yr), followed by Acacia (1 096 mm/yr) and Pinus trees 

(1 035 mm/yr). These median ET estimates are within the range of most indigenous forest type ET 

estimates, except for some woodlands (Arid Zone Riparian Woodland, Highland Alluvial Woodland, 

Cape Milkwood Woodland) and the Afrotemperate forests (Drakensberg Afrotemperate Forest and 

Northern Highveld Afrotemperate Forest) which had substantially lower median ET estimates. As 

mentioned before, care should be taken in comparing the ET estimates from this indigenous forest 

study with any past data set since the ET ranges appear unusually large and may suggest an 

overestimation of water use of indigenous forests. 

Table 4-33 Summary statistics of evapotranspiration (ET) for selected Acacia, Eucalyptus and Pinus 
compartments from 1 Jan 2009 to 31 Dec 2020 (Van Niekerk et al., 2023) 

 ACACIA EUCALYPTUS PINUS 
 MONTH  Median Mean SD Median Mean SD Median Mean SD 

Jan 122 123 25 120 119 28  115 116 30  
Feb 109 111 23 109 110 26  104 104 26  
Mar 105 107 21 106 108 27  99 100 26  
Apr 81 82 17 82 85 24  77 78 22  
May 74 74 17 76 78 24  68 69 21  
Jun 58 59 16 61 65 24  53 54 20  
Jul 57 59 18 63 66 26  52 54 22  
Aug 74 74 20 81 82 27  68 69 25  
Sep 87 88 23 93 95 32  82 84 30  
Oct 93 93 25 97 99 31  91 92 30  
Nov 103 103 25 104 105 31  101 101 30  
Dec 115 115 24 115 115  29 111 111 31  

Annual 1096 1091 196 1123 1131 256 1038 1035 260 
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5 SYNTHESIS 

5.1 Revisiting the project aim and objectives 

The aim of the project was to quantify and characterise the water use (evapotranspiration) of indigenous 

forests throughout South Africa. Objective 1 was to produce a geographical database of indigenous 

forests in South Africa. The knowledge review revealed that the most up-to-date and accurate 

indigenous forest map is the recently produced IF2021 (Mucina et al., 2022). Section 3.1 explains that 

the IF2021 is based on previous maps (e.g. VegMap 2006), expert knowledge and manual digitisation 

and includes 21 forest types in South Africa.  

Despite its overall quality, upon close examination, the IF2021 exhibited spatial accuracy 

inconsistencies stemming from digitisation at different spatial scales. The project team consequently 

set out to improve the IF2021 for the purpose of this project by making use of a fully automated KBIC 

procedure developed to differentiate indigenous forests from other land covers. The KBIC makes use 

of a range of EO data, including multispectral satellite imagery (Sentinel-2), very high spatial resolution 

(50 cm) and low spectral (RGB) aerial imagery, as well as a 2 m resolution DSM. The KBIC procedure 

was applied to areas with known indigenous forests to produce a highly accurate indigenous forest 

cover map, internally referred to as IF2022, which was further refined through manual correction into 

the IF2023. The IF2023 was subsequently disaggregated into forest types using the forest type 

classification IF2021 as basis. A proximity-based geospatial methodology was developed for this 

purpose. The resulting map is called IF2024. The final step in the indigenous forest mapping procedure 

was to manually check and edit the IF2024, which was facilitated by an in-house web application 

designed for this purpose.  

Objective 2 of the project was to determine the consumptive water use (actual ET) of indigenous forests 

using existing RS data. The knowledge review revealed that the WaPOR product (FAO 2024) is the 

most suitable for this purpose, and monthly WaPOR ET values from 2009 to 2023 were extracted for 

the IF2024.  

Objective 3 was to validate (ground truth) the RS-based consumptive water use of indigenous forests 

using historical field-based measurements. The extracted ET values were consequently compared to 

published measurements of ET. Unfortunately, such data was scant, and only a handful of historical 

measurements could be directly related to the extracted WaPOR ET data. Nevertheless, the information 

helped to get a sense of the uncertainties in the WaPOR ET data (see discussion in the next section).  

The final objective of this project was to describe, analyse and interpret location-specific differences in 

water use between indigenous forest types at specific locations in South Africa. A total of 24 climate, 

terrain and soil characteristics were collated at a national scale and compared to the ET values for all 

forest types. Univariate statistical analyses (correlation analyses and regression modelling) were 

carried out to find relationships between each environmental variable and the ET values extracted per 

forest patch. In addition, multivariate machine learning modelling was used to determine which 



 

126 
 

environmental factors are the most important drivers of forest water use. The results of these analyses 

were interpreted within the ecological and biophysical context of the various forest types.     

5.2 Main findings 

One of the main findings of this project is that there is a dire need for an up-to-date and accurate 

indigenous forest map of South Africa. The absence of such a map makes studies about water use 

impossible. More importantly, without such a map, there is no way to assess whether our forests are 

being managed sustainably and determine the rate at which forests are lost. Based on international 

trends and the growing pressures relating to the reporting of greenhouse gas emissions from different 

land uses, an accurate and up-to-date indigenous forest map will be critical to quantify the carbon stocks 

and fluxes of forests and their relationship to biodiversity. This project updated and refined the latest 

indigenous forest map (Mucina et al., 2022), referred to as the IF2021. The refined map, called IF2024, 

is an invaluable resource, not only for this project but for future research. 

The IF2024 was used to extract water use profiles – using WaPOR ET data – for each forest type. It 

was found that the ET of forests is, on average, 989 mm/yr (all forest types) and ranged (on average) 

from 296 mm/yr in the case of Arid Zone Riparian Woodland (ARF1) to 1 338 mm/yr in the case of 

Subtropical Indian Ocean Mangrove (AMAN1). The WaPOR ET estimations were compared to previous 

field-based ET estimates and were found to compare well for some forest types while deviating 

considerably in others. For instance, the annual ET for Cape Afrotemperate Forest was estimated as 

933 mm/yr and 1 175 mm/yr in previous studies (Table 4-31), while the median WaPOR ET for this 

forest type is 1 224 mm/yr. In contrast, the ET for Subtropical Scarp Forest was estimated by Dye et al. 

(2008b) to be 668 mm/yr, while the WaPOR ET median for this forest type is 1 054 mm/yr. The ET of 

Arid Zone Riparian Woodland was estimated by (Dye et al., 2008c) to be 1 094 mm/yr, while the median 

ET of this forest type is 296 mm/yr according to the WaPOR data. These large deviations are concerning 

and requires closer inspection.  

Given that the focus of this project was on studying regional water use variations and relating these 

variations to a selection of environmental factors, and since no other long-term ET dataset was 

available, the WaPOR ET data was used. Univariate statistical analyses and multivariate machine 

learning were used to better understand the regional variations in the water use of indigenous forests 

and to relate these variations to environmental conditions. None of the univariate statistical methods 

produce strong models, which suggests that water use of indigenous forests is complex and not 

determined by a single factor considered or that other important controlling variable(s) were not included 

in this analysis.  

In contrast, multivariate (random forest regression) machine learning (using the WaPOR ET as the 

target variable and 24 climatic, terrain and soil-related variables as predictors) produced a very strong 

model (R2 = 0.98). The random forest algorithm identified long-term mean annual rainfall as the most 

important driver of water use. This finding was not surprising, given the known relationship between soil 

moisture and ET. Solar radiation in summer was identified as the second most important driver of forest 
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ET. Where sufficient soil moisture is available and if plant physiological thresholds are not exceeded, 

increased solar radiation will result in increased transpiration and evaporation since more energy is 

available to drive these processes. The other climate-related variables that were identified as being 

important drivers of forest water use included heat units (3rd), solar radiation during winter (4th) and 

vapour pressure deficit (7th). These relationships are investigated in Section 4.2.3. 

A range of terrain-related variables were also compared to the WaPOR ET values extracted per forest 

type. Terrain morphology was identified as the most important terrain-related variable (ranked 8th 

overall), positive topographic openness (9th), elevation (10th) and negative topographic openness (11th). 

The impact that these and other terrain-based variables have on the water use of forests are reported 

and discussed in Section 4.2.4. In general, it was difficult to find consistent relationships between 

terrain-based variables and water use. It seems that the relationships depend on the forest type, likely 

because forest types are composed of many different species. As such, it is conceivable that habitat 

variations, including terrain, affect where individual species grow and that this causes intra-class 

variations. 

Two variables, namely soil depth and soil clay content, were considered drivers of forest water use. The 

importance of soil characteristics on forest water use was confirmed by machine learning modelling, 

which indicated that soil clay content was the fifth most important variable, and soil depth was the 

seventh most important variable for explaining the regional variance in forest water use. As with terrain-

related variables, it was difficult to find consistent patterns in the relationship between soil 

characteristics and forest water use. However, in some cases, such as Southern Mistbelt Forest (AF2) 

and Northern Mistbelt Forest (AF3), water use was consistently lower in shallow soils compared to 

deeper soils. 

The main finding of this research is that EO is an invaluable technology for studying how water use vary 

among forest types and within the same forest type from the one region to another. Coupled with 

machine learning, the complex interrelationships between of EO-based forest ET and GIS-based 

environmental conditions were modelled to a very high accuracy (235 mm/yr). To our knowledge, this 

finding is novel and a contribution to new knowledge.  

The next section delves into some of the challenges experienced during this study, as well as limitations 

that need to be considered.  

5.3 Study limitations and proposals for future research 

Analysing indigenous forest water use turned out to be a much larger undertaking than expected and 

much more difficult compared to previous studies in which EO methods and data were used to quantify 

the water use of irrigated crops (Van Niekerk et al., 2018) and commercial plantations (Van Niekerk et 

al., 2023). The first challenge is that indigenous forests are poorly mapped. Despite our efforts to 

improve the existing indigenous forest maps, the boundaries of indigenous forests are not as well 

defined as those of commercial plantations and agricultural fields. In addition, indigenous forests range 
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from dense Afrotemperate Forest to sparse Southern African Dry Thickets. And neighbouring 

indigenous forest types tend to merge into one another – identifying the boundaries between such 

forests is near-impossible. The diverse species composition and tree age of indigenous forests make 

their discrimination (using EO methods) very difficult. In this project, we relied on Prof Mucina’s 

extensive expert knowledge of South Africa’s indigenous forests to discriminate among types, but 

human error and subjectiveness are inevitable. More work is needed to improve the indigenous forest 

map of South Africa refined in this study (IF2024). This study showed that KBIC can be used to 

accurately delineate and differentiate indigenous forest patches from other land covers. However, this 

process is only about 80% accurate and additional (manual) corrections are needed to improve the 

map. As part of this project, manual refinements were carried out for large forest patches (for the 

purpose of extracting ET), while small patches were left as is. It is recommended that the map 

refinements continue until all forest patches are accurately mapped.  

Another challenge was that very little is known about the water use of indigenous forests. In the absence 

of sufficient and relatable field data, it is difficult to assess the accuracy of the WaPOR data. The few 

studies that have been carried out represent one or two locations within a particular forest patch. It is 

questionable whether such data are representative of all forest patches within the same forest type. We 

recommend that more field-based water use studies be carried out, specifically within indigenous 

forests, to better assess remotely sensed ET products. We also propose formal engagement with the 

developers of ET data products such as WaPOR or MOD16. These products should be evaluated 

against newly established fluxed towers in indigenous forests. EFTEON14 may be able to assist with 

this endeavour.  

A range of variables (climatic, terrain and soil) readily available in GIS format were used as input to 

machine learning to investigate which of these variables drive ET variance. However, no climatic data 

for the period corresponding to the extracted ET data (2009-2023) were available, and hence the 

machine learning was incomplete. As noted in a previous project (Van Niekerk et al., 2023) the lack of 

climatic data remains a major constraint for water use studies. In this project, we had to rely on long-

term climate data (Schulze, 2007), which does not consider the climatic variations that occurred during 

the period studied in this project. The establishment and maintenance of a weather station network 

should be a national priority. The data produced from such stations must be cleaned and verified to 

ensure its quality and completeness. Ideally, interpolated climate surfaces, such as those produced by 

(Schulze, 2007) should be made available on a regular basis and for different time periods (e.g. long-

term, decadal, annual and monthly). The data ought to be made freely available for research purposes. 

In this regard, initiatives such as Climate Smart Agriculture (CSA)15 and TerraClim16 should be 

supported.  

This study only considered two soil-related variables, namely soil depth and clay content. Both these 

variables were identified as key drivers of forest water use. However, South Africa’s soil data sets are 

 
14 https://efteon.saeon.ac.za/ 
15 https://climatesmartagri.co.za/ 
16 https://www.terraclim.co.za/ 
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outdated and too generalised for water use analyses. More work is needed to develop soil databases 

and to produce high-resolution digital soil maps. It is recommended that the WRC consider initiating (in 

collaboration with state organs such as the Department of Agriculture, Land Reform and Rural 

Development) digital soil mapping projects, particularly relating to the water-holding capacity of soils, 

as such data is critical for the efficient use of water.  

In this project, no EO data were considered as drivers of ET. Future studies should consider the large 

sets of EO data available through platforms such as Google Earth Engine (GEE) and the Copernicus 

Data Ecosystem. However, researchers should be cautious about comparing remotely sensed datasets 

such as NDVI to ET data, as such variables are often used as input to ET modelling.  

A generic plant database of South Africa is urgently needed. Ideally such a database should capture 

seasonal variations (e.g. to distinguish between deciduous and evergreen systems or a combination 

thereof) and assess species richness/diversity as such traits will impact water use of indigenous forests. 

RS can also play a role in establishing such a database. For instance, LiDAR data can be used to 

investigate the structure of forests which will impact surface roughness that will, in turn, affect ET.  

An analysis of how environmental factors influence where particular forests occur was outside the scope 

of the project. However, using the 24 environmental variables collated in this project, a preliminary 

machine learning (RF) classification of forest types was carried out (Section 4.1.2). The overall accuracy 

of the resulting model was more than 85%, which demonstrates the intricate relationship between 

indigenous forest types and climate, terrain and soil. More work is needed to analyse these 

relationships. Ideally, the environmental variables should be expanded to include EO data. Based on 

the high accuracies obtained in the preliminary analysis, it is conceivable that machine learning 

technologies can greatly assist in forest type differentiations and potentially produce more objective 

maps.  

5.4 Recommendations 

A range of recommendations and proposals for future research were made in the preceding section. To 

summarise, we recommend that: 

1. The WaPOR-based estimations of indigenous forest water use be interpreted and used with 

caution as the available field-based measurements against which it could be compared (for 

verification purposes) are scant and not sufficient to properly assess its accuracy.  

2. More field-based measurements of ET within indigenous forests are needed. Ideally, several 

forest types should be targeted (the results of this project can be used to assist with selection).  

3. The range of analyses carried out in this project highlighted the intricate relationships between 

environmental conditions and water use of forests. However, much more work can be done. 

Future studies should consider analysing individual forest types separately as this might reduce 

the large variations in ET observed. Ideally, such an undertaking should include field-based ET 

measurements.  
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4. The long-term climate data used in this study (Schulze, 2007) were last updated in 2007. It is 

critical that fundamental climate surfaces such as long-term monthly rainfall, temperature, solar 

radiation, vapour deficit and RH be updated. The capacity to produce climate surfaces is 

available (e.g. TerraClim), but there is a critical shortage of weather station data. The data that 

are available are either too costly to obtain (e.g. from providers such as the South African 

Weather Services and the Agricultural Research Council), too incomplete, or both. The number 

of active weather stations has also been dropping since the early 2000s. Although private-public 

partnerships such as CSA (funded by the Technology Innovation Agency) are a step in the right 

direction, much more work is needed to ensure that the weather station network is expanded 

and maintained.  

5. We strongly recommend that South Africa develop capacity in digital soil mapping. In particular, 

high-resolution maps of soil water-holding capacity are needed. Such maps will be invaluable 

for water use studies. In addition, such data are needed to inform decisions about crop plantings 

and to increase water use efficiencies in agriculture.   

6. The indigenous forest map refined in this study is an invaluable resource for ensuring that our 

indigenous forests are protected and managed. It is recommended that verification and editing 

processes continue beyond the end of this project. Ideally, indigenous forest mapping should be 

operationalized and updated on an annual or bi-annual basis.  
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APPENDIX I: CAPACITY BUILDING 
 

Although the product budget makes provision for only two MSc students, four students are or have been 

directly contributing to or have been benefitting from this project, namely Messrs Hanu Mostert, 

Mhlangabezi Mdwayi, Ayaaz Mullajie and Zandre Nieuwoudt.  

Mr Hanu Mostert registered for MSc Geoinformatics at Stellenbosch University at the beginning of 

2021 in a part-time capacity (he is working full-time at GeoSmart Space). Mr Mostert is being supervised 

by Dr Eric Mashimbye and Mr Kyle Loggenberg (with Prof Van Niekerk as adviser). The focus of his 

work is on the linkages between terrain and indigenous forests. Specifically, he is using object-based 

image analysis (OBIA) and machine learning to develop a methodology for mapping detailed landforms 

(e.g. crests, hillslopes, foot slopes, pediments, valley bottom, flood plains) maps for selected forested 

areas throughout South Africa. The aim is to compare the location and types of indigenous forests to 

these landforms to better understand the forests' topographic and environmental profiles. Two articles 

are targeted. The first article will focus on developing an automated workflow for classifying landforms. 

This will ultimately be achieved by using object-based image analysis combined with machine learning 

methods. The first step is to investigate the effect of DEM source and resolution on landform 

classification in the Western Cape. Several digital elevation models (DEMs) were evaluated, namely 

ASTER DEM, ALOS DEM, SRTM DEM, and SUDEM were evaluated. The impact of resolution was 

also assessed by resampling the DEMs to 30 m and 90 m. The landform classification method was 

automated according to the widely known Hammond classification methodology. A second set of 

experiments were carried out that used the Dikau et al. classification methodology. Validation points 

were created and it is currently in the process of being assessed by a geomorphologist, Dr. Grenfell, 

for validation. The timeline is to submit the first article for publication by the end of 2023 and the second 

article by the end of March 2024. The final write-up will happen thereafter and hand-in of the thesis is 

planned for July 2024. 

Mr Mhlangabezi Mdwayi registered as a BSc Hons Geoinformatics student at Stellenbosch University 

in 2021. The spectral properties of indigenous and plantation forests are often very similar, which makes 

their differentiation difficult (Stephenson and Van Niekerk 2009). However, indigenous forests are 

invariably much older than plantation forests. If the latter's age can be estimated using historical satellite 

imagery (e.g. MODIS or Landsat), this (age) information could be used to improve plantation and 

indigenous forest maps. For his research project, supervised by Prof Van Niekerk, he investigated how 

multitemporal Landsat imagery can be used to estimate the age of forests. Given that the ages of 

indigenous forests are unknown (well outside the timeframe for when imagery was available), the focus 

was to estimate the ages of plantation forests. Any forests with ages of less than 40 years can 

consequently be discarded as indigenous forests. The results are very promising, with an average error 

of less than one year. The intention was that Mr Mdwayi would continue with an MSc in 2022 (as part 

of this project), but unfortunately, Mr Mdwayi was not accepted (did not qualify) for MSc studies.  
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Mr Ayaaz Mullajie joined the project team in February 2022. His full-time MSc Geoinformatics study 

aimed to compare the effectiveness of convolutional neural networks (CNN) trained on medium 

resolution hyperspectral (HS), high-resolution MS and very high-resolution RGB imagery for mapping 

indigenous forest cover. Until September 2022, he was being supervised by Dr Munch and Prof Van 

Niekerk, but despite significant progress made, he decided to drop out from the programme citing 

personal reasons. This was a great loss for the project from a financial and progress point of view.  

Mr Zandre Nieuwoudt joined the project team in February 2023. His MSc in Geoinformatics is being 

supervised by Prof Van Niekerk. Mr Nieuwoudt aims to continue with Mr Mullajie’s research on the use 

of CNNs and the fusion of very high spatial resolution (50 cm) and low spectral resolution (RGB) aerial 

photography, high spatial resolution (10 m) and medium spectral resolution (multispectral), and low 

spatial resolution (30 m) and very high spectral resolution (hyperspectral) data for forest mapping. His 

project also forms part of the BiosCape campaign (https://www.bioscape.io/science) in collaboration 

with NASA. To date, Mr Nieuwoudt has been focussing on updating Mr Mullajie’s proposal and literature 

review, but data collection and preparation will soon commence.  

In addition to the students working on the project, a number of interns were appointed to assist with the 

indigenous forest digitising and quality control. Mr Given Nqoto, a GIS Mentor at Gert Sibande District 

Municipality in Mpumalanga requested that two GIS trainees, Ms Nozipho Xaba and Mr Tshegofatso 
Moche intern at the CGA as part of a programme called Infrastructure Skills Development Grant (ISDG), 

funded by the National Treasury department. The main aim of this programme is to develop capacity 

within municipalities by creating a long-term and sustainable pool of young professionals with built 

environment-related technical skills (engineering, town planning, architecture, quantity surveying, 

geographic information system (GIS) and project/operations management skills) and improve 

infrastructure management. Ms Xaba and Mr Moche were heavily involved with the indigenous forest 

digitising in 2022 and completed their internships in late November 2022. 

In addition to the interns from outside Stellenbosch University, GIS assistance was provided in late 

2022 and early 2023 from the following Stellenbosch University (SU) students: Mr Emile Burger, Mr 
Andre Williams, Mr Niekus Fourie, Mr Charles Mudima, Ms Nokwazi Ngubo, Mr Daniel Timpson, 
Mr Rutger van Huyssteen, Mr Zander Lourens, Mr Farhaan Essop Ahmed and Mr Johan O 
Kennedy. The majority of these students were in the second or third year of their geoinformatics 

degrees in late 2022 and the internships afforded them a level of real-world project exposure and 

practical experience in the advanced geographical information technology (GIT) software used for the 

digitising (eCognition) going into their final year, honours or masters studies.  

 

 

 

 

https://www.bioscape.io/science
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APPENDIX II: PUBLICATIONS 
 

 

 

No publications have emanated from this project at the time of writing this report.  
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APPENDIX III: ACCESS TO DATA GENERATED THROUGH THIS 
PROJECT 

 

The remotely sensed WaPOR data used this his study can be freely downloaded from 

https://wapor.apps.fao.org/. The IF2021 indigenous forest map is available at https://bit.ly/forests2021. 

The refined indigenous forest map (IF2024) is still being edited, but will releases through a dedicated 

web app (link pending).  

All of the data used in this project will be archived and stored for at least five years.  

https://wapor.apps.fao.org/
https://bit.ly/forests2021
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APPENDIX IV: SUPPLEMENTARY MATERIAL 

The supplementary material for this report can be obtained from: https://bit.ly/indigenous_supp 

https://bit.ly/indigenous_supp
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