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EXECUTIVE SUMMARY 
 
BACKGROUND 
On 20 February 2020, just before the outbreak of the Covid-19 pandemic, the Department of Water and 
Sanitation hosted a workshop titled ‘Towards a detailed hydrological soil map for South Africa’ in Pretoria. The 
workshop identified an urgent need for a detailed hydrological soil map for South Africa, and that this map 
should be parameterised with hydrological soil property data, which will require pedotransfer functions for ease 
of predictions. This project was duly initiated to commence the fulfilment of the needs expressed at the 
workshop shortly afterwards. 
 
AIMS 
The following were the aims of the project: 

1. Develop the methodology by which a national hydrological soil map (HYDROSOIL) could be created 
with digital soil mapping methods. 

2. Compile a legacy soil point and hydrological properties database through data rescue of largely paper-
based data sources currently contained in academic theses, research reports and with corporate 
institutions. 

3. Create a HYDROSOIL map for each of the priority areas within six economically and/or ecologically 
important catchments of South Africa, using the database compiled in Aim 2. The catchments used in 
this project includes: The Sabie-Sand, The Olifants, the Jukskei, the uMngeni, the Tsitsa and the 
Goukou. 

4. Develop pedotransfer functions by which hydrological parameters could be calculated from readily 
measured soil properties, using the database compiled in Aim 2. 

5. Combine the hydrological soil maps created in Aim 3 with the pedotransfer functions developed in 
Aim 4 to create hydrological soil property maps for the study areas. 

6. Determine the value of the HYDROSOIL map by hydrological modelling of all six study areas with both 
the best existing soils data, as well as the HYDROSOIL map. 

7. At each catchment a unique aspect regarding the HYDROSOIL map was investigated. This includes: 
a. Calibration of the SWAT hydrological model through optimizing model parameters based on 

the expected hydrological response of the hydrological response unit (Sabie-Sand). 
b. Determining a method to incorporate the land type field maps into creating a digital soil map 

(Olifants). 
c. Determining the effect of pixel size on the SWAT hydrological model outcome (Jukskei). 
d. Quantifying the effect of land use change on the hydrological regime (uMngeni). 
e. Modelling sediment yield using SWAT (Tsitsa). 
f. Using the JAMS hydrological model (Goukou). 

 
METHODOLOGY 
Existing legacy soil data was collected and added to a soil point database. The ideal structure and quality 
control measures for such a soil database were determined through a Strengths, Weaknesses, Opportunities 
and Threats (SWOT) analysis of an existing national and international soil point database. Collected data 
included all available soil data, not only confined to the six catchments of concern. Thereafter the soil data was 
used to create hydrological soil maps for the different catchments using digital soil mapping approach powered 
by machine learning. The legacy data was found to be inadequate for this purpose and therefore a soil data 
collection effort was launched in five of the catchments. This entailed soil profile descriptions and classification 
at various locations within each catchment, as well as collection of disturbed and undisturbed soil samples for 
laboratory analysis. Using this data together with the legacy data collected, HYDROSOIL maps were created 
with digital soil mapping methods for all six catchments. The soil maps were evaluated with an independent 
soil profile dataset. The maps were then used as improved soil information in modelling the hydrological 
response of each catchment. Hydrological modelling was performed for each catchment, using the previously 
best available soil information and the newly created digital soil map. The value of the HYDROSOIL maps 
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were expressed as the improvement in the model accuracy. Additionally, using existing and newly collected 
data, pedotransfer functions were created using machine learning whereby hydrological soil properties could 
be predicted with readily available soil properties. Near infrared spectroscopy was also investigated to 
determine whether it could be used to predict soil hydrological properties. 
 
RESULTS AND DISCUSSION 
The HYDROSOIL maps of all six catchments were deemed to be adequately accurate. Using the improved 
soil information, five of the six catchments recorded an improvement in modelling accuracy, showing the value 
of the HYDROSOIL maps. At each catchment a unique aspect regarding the HYDROSOIL map was 
investigated. This includes: 

• Calibration of the SWAT hydrological model through optimizing model parameters based on the 
expected hydrological response of the hydrological response unit (Sabie-Sand). 

• Determining a method to incorporate the land type field maps into creating a digital soil map (Olifants). 
• Determining the effect of pixel size on the SWAT hydrological model outcome (Jukskei). 
• Quantifying the effect of land use change on the hydrological regime (uMngeni). 
• Modelling sediment yield using SWAT (Tsitsa). 
• Using the JAMS hydrological model (Goukou). 

The hydrological soil property predictions (both the pedotransfer functions and near infrared spectroscopy 
calibrations) did not yield acceptable results, most likely due to having too little data to adequately describe 
the soil variation within the six catchments used in the project. However, the following was determined during 
the study: 

1. Local data is required to accurately predict hydrological soil properties, as internationally developed 
models (pedotransfer functions or soil spectroscopic calibrations) will not be able to account for the 
local soil variability. 

2. Predictions created for smaller areas are generally more accurate than predictions for larger areas, 
most probably due to having less soil variability. 

3. A lot more data is required to make accurate predictions of hydrological soil properties. 
4. Sampling strategies to collect the required data should focus on smaller areas to produce useful 

prediction models, and over time sufficient data will be collected for predictions at a regional or national 
scale. 

CONCLUSIONS 
The project was created to learn lessons to apply on the future journey towards a hydrological soil map for 
South Africa. In terms of mapping and modelling, the project aims were met, indicating a need and use for a 
national HYDROSOIL map. A national HYDROSOIL map will be a valuable national asset that should be 
pursued. The methodology and capacity exist in South Africa to create the HYDROSOIL map. 
 
The following lessons were learnt from this project: 

1. A database structure and quality control measures were created whereby collected soil data of the 
future could be gathered and stored. 

2. A method was developed whereby highly clustered data could be used to create an accurate soil map, 
without losing less-represented soil types. 

3. How to digitise the approximately 200 000-300 000 soil observations recorded on paper copy maps 
stored at the Agricultural Research Council and use these in digital soil mapping to create the 
HYDROSOIL map. 

4. A strategic approach to obtaining hydrological soil property data was determined. 

It was currently not possible to create useful soil hydraulic property predictions from the HYDROSOIL map. 
This was due to a lack of data. The current costs associated with collecting hydrological soil data are the 
reason for the lack of sufficient data, and efforts should continue to explore ways to collect such data in a more 
timely and cost effective manner. This essentially provides the motivation to continue with this research.  
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RECOMMENDATIONS 
Based on the lessons learnt during this project, it is recommended that an adequately parameterised, 
accurate hydrological soil map (HYDROSOIL) for South Africa and its border catchments can, and 
should be created. The following steps should be taken to achieve this goal: 

1. Improve the soil database to become a cloud-based soil data repository with automatic quality control. 
2. Digitise the land type field observations to be used in digital soil mapping to create the national 

HYDROSOIL map, using the methods determined in this project. 
3. Apply the digital soil mapping methods used and newly learnt in this report to create the HYDROSOIL 

map. 
4. Characterise the hydrological properties of the soils of South Africa, using hydrological soil 

measurements, pedotransfer functions and near infrared spectroscopy. This should be done by 
collecting data from smaller areas and first make useful local predictions. When sufficient data has 
been collected for the entire country, national prediction models should be created. 

 
CAPACITY BUILDING 
This project contributed towards four PhD degrees, two MSc degrees and three Honours level BSc Degrees. 
Three peer reviewed journal articles have already been accepted for publication, and another four are in 
preparation for publication. 
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CHAPTER 1: BACKGROUND 
1.1 INTRODUCTION 

Understanding and simulating internal catchment hydrological processes are becoming increasingly important 
to quantify the impacts of climate and land-use change in areas with highly variable water regimes, like most 
of southern Africa. Soil is a first order control of hydrological processes, as it splits precipitation into overland 
flow and infiltration (Park et al., 2001, and further influences the flow paths (deep drainage, lateral flow, etc.) 
which the infiltrated water will take. Therefore, the spatial distribution of soil properties directly influences the 
hydrological functioning of a catchment. To this end, it has been shown that improved spatial soil information 
not only improves hydrological modelling results at the catchment outlet, but also reflects internal catchment 
processes more accurately (Bieger et al., 2017 Van Tol et al., 2020). Although it is agreed that soil information 
is a vital input for physically-based hydrological models (Worqlul et al., 2018), this information is seldom 
adequately available in similar spatial detail as remote-sensed land-use, topography and climate data. 
 
Currently the only spatial soil information covering the whole of South Africa is the land type database (Land 
Type Survey Staff, 1972-2006). The land type data is, however, not a soil map, but a compilation of 7 070 
polygons called land types, each which demarcates an area with a “homogeneous, unique combination of 
terrain type, soil pattern and macroclimatic zone”, covering the entire country at a scale of 1: 250 000 (Paterson 
et al., 2015). The soil pattern of a specific land type is given in a land type inventory as an estimated percentage 
of coverage of a soil form, on a particular Terrain Morphological Unit (TMU). As it is the only national soil data 
source, it has been converted to hydrological parameters (mostly for the ACRU model), however in a lumped 
format, with averaged values representing the entire land type (Schulze, 2007). Recently, the Water Research 
Commission (WRC) funded research to improve the spatial detail of hydrological parameters to TMU-scale for 
quinary catchments (WRC proposal 2019/2020-00205). Although this is certainly a step in the right direction, 
care must be taken when the land type data is re-used or re-interpreted for smaller areas (see Van Tol & Van 
Zijl, 2020. Some of the reasons that this might be error prone are: 
 

● Often, very dissimilar soil forms will occur in large proportions on the same TMU, rendering it virtually 
impossible to assign a hydrological response to a specific TMU, let alone the land type within which it 
occurs. 

● The scale of 1: 250 000 at which it is published makes it useful for hydrological interpretation and 
modelling at small scales of large areas, but limits the use for small areas, where the impact of drastic 
land-use change (e.g. open-cast mining) on hydrological process should be predicted. 

● The land type survey was done largely to determine the agricultural potential of South African soils, 
which meant a shallow observation depth either limited by root restricting layers or 1.2 m, whichever 
came first. However, the nature of the soil/bedrock interface plays an important role in generation of 
lateral flow or recharge of aquifers. The description of the soil/bedrock interface (and the depth at 
which it occurs) is largely unaccounted for in the land type information. 

● Although the land type survey is based on a large number of soil observations, these were made only 
next to accessible roads, and therefore the quality of land types in certain areas with poor road access 
are often questionable. This is particularly true of mountainous terrain, often of great hydrological 
importance. 

● As the land type survey was done over thirty years by a very large number of surveyors, the 
methodology followed differs between areas. Testament to this are the large land types of the Northern 
Cape and the Free State, in comparison to the small land types of KwaZulu-Natal. 

● Further complicating the standardisation matters are the fact that two different soil classification 
systems were used (MacVicar et al., 1977; Soil Classification Working Group, 1991) in the land type 
survey. Both systems are currently out of print, which creates a knowledge gap to the hydrologists of 
the future who would require soil information. The newest edition of the South African Soil 
Classification system (Soil Classification Working Group, 2018) has a strong emphasis on describing 
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natural soils, which necessitates a dedicated effort to reinterpret the existing land types for hydrological 
purposes. 

 
Another serious limitation in the regional soil information of South Africa is the unavailability of soil hydraulic 
parameters as inputs into the models. Estimated texture classes and depths of horizons (but only up to 1.2 m) 
are the only hydraulic parameters that accompany land type inventories. Significant efforts have been made 
to convert these, in association with soil forms and series, to model input parameters (mostly for the ACRU 
model). Currently the WRC is funding a novel project which aims to create soil input parameters for the SWAT 
model, but again this is at 1:250 000 scale (i.e. one set of lumped parameters for an entire land type). The cost 
associated with collecting and measuring hydraulic properties such as conductivity, water retention 
characteristics and porosity is mostly blamed for the absence of these properties. Researchers consequently 
rely on pedotransfer functions (PTFs) to predict hydraulic properties from available measured properties, such 
as texture. Most of these PTFs are only accurate for the area (soils) where they were developed. There is a 
great need to create and improve PTFs for South African soils. Hydraulic properties have, however, been 
measured in numerous research and consultancy projects. It is timeous that this data is mined from research 
reports, articles and theses to create and improve PTFs of South African soils. 
 
The importance and limitations of the available soil information for South Africa are highlighted in the foregoing 
rationale. If soil information is not readily and freely available at appropriate scale it will continue to be a 
knowledge gap that will restrict efficient water management in South Africa. 
 
To initiate the bridging of the knowledge gap left by the unavailability of hydrological soil information, the 
Department of Water and Sanitation hosted a workshop titled ‘Towards a detailed hydrological soil map for 
South Africa’ on the 20th of February 2020. The workshop was attended by 15 researchers representing 11 
different research and government institutions. At the workshop the attendees agreed that: 

1. The currently used best source of soil spatial data, the land type survey, is inadequate to address 
the hydrological challenges facing us today and in the future. 

2. There is a need to improve PTFs for South African soils. 
3. A detailed hydrological soil map of South Africa is urgently needed, using a digital soil mapping 

approach. 

Digital soil mapping (McBratney et al., 2003) is a collective word used to describe advanced soil survey 
techniques which embrace advances of technology such as satellite imagery, digital elevation models and 
machine learning to produce soil maps at a fraction of the price and time of conventional mapping methods 
(Van Zijl et al., 2013). In South Africa different approaches have been proposed for different methods, with the 
machine learning approach ideal for the mapping of large areas (> 100 km2) with a large amount of soil point 
data available (Van Zijl, 2019; Du Plessis et al., 2020). Digital soil mapping has the added advantage that it 
can be used to map soils accurately even in areas where access is limited (Van Zijl et al., 2012), which is a 
great advantage in mountainous regions. For hydrological purposes digitally produced maps have been used 
to great effect to provide improved soil information for hydrological modelling from small third order streams 
(Van Tol et al., 2015, Van Zijl et al., 2016) to fairly large (~ 650 km2) catchments (Van Tol et al., 2020). 
 
Internationally, digital soil mapping with legacy soil data have been used to create national soil maps for entire 
countries, including Australia, the United States of America and Denmark amongst others. Legacy data refers 
to soil data which has been previously collected. Such datasets have immense value to map soils today, but 
are generally unavailable hidden away in paper-based copies of theses, research reports or held by 
commercial companies. However, collecting such data into a readily available digital database will ensure its 
usefulness into the future, negating the need to collect such data again for mapping and other purposes. With 
this project a methodology will be developed by which a national hydrological soil map (HYDROSOIL) using 
digital soil mapping techniques and legacy soil data could be created. The methodology was developed and 
tested in priority areas of six ecologically and/or economically important catchments in South Africa. For each 
catchment the hydrology was modelled using the existing soil data (land types) and HYDROSOIL map to 
quantify the value of the soil map in each instance. 
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1.2 PROJECT AIMS 

The following were the aims of the project: 
 

1. Develop the methodology by which a national hydrological soil map (HYDROSOIL) could be created 
with digital soil mapping methods. 

2. Compile a legacy soil point and hydrological properties database through data rescue of largely 
paper-based data sources currently contained in academic theses, research reports and with 
corporate institutions. 

3. Create a HYDROSOIL map for each of the priority areas within six economically and/or ecologically 
important catchments of South Africa, using the database compiled in Aim 2. The catchments used in 
this project includes: The Sabie-Sand, The Olifants, the Jukskei, the uMngeni, the Tsitsa and the 
Goukou. 

4. Develop pedotransfer functions by which hydrological parameters could be calculated from readily 
measured soil properties, using the database compiled in Aim 2. 

5. Combine the hydrological soil maps created in Aim 3 with the pedotransfer functions developed in 
Aim 4 to create hydrological soil property maps for the study areas. 

6. Determine the value of the HYDROSOIL map by hydrological modelling of all six study areas with 
both the best existing soils data, as well as the HYDROSOIL map. 

7. Apply the HYDROSOIL map at specific sites for each of the catchments. This includes: 
- Calibration of a hydrological model through optimizing model parameters based on the expected 

hydrological response of the hydrological response unit (Sabie-Sand). 
- Determining a method to incorporate the land type field maps into creating a digital soil map 

(Olifants). 
- Determining the effect of pixel size on the model outcome (Jukskei). 
- quantifying the effect of land use change on the hydrological regime (uMngeni). 
- Modelling sediment yield (Tsitsa). 
- Using a different hydrological model (Goukou). 

1.3 SCOPE AND LIMITATIONS 

The scope of this project was to create six hydrological soil maps, one for each of the selected catchments, 
and for these maps to be used to improve the hydrological modelling for those catchments. Additionally, 
pedotransfer functions to predict hydrological soil properties were to be created. Both of these aims were to 
be met using largely existing or legacy soil data, for which a soil database was created. 
 
The lack of available data was a severe limitation to the project, which led to the collection of soil data for five 
of the six catchments. Although this mitigated the need for data for soil mapping, the collected data was still 
not sufficient to create useful pedotransfer functions. Additionally, the lack of a gauging weir for model 
validation limited the modelling results for the Tsitsa catchment, while the lack of spatial rainfall data limited 
the modelling outcomes for the Goukou catchment. 
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CHAPTER 2: A SOUTH AFRICAN SOIL POINT DATABASE 
Chapter 2 describes the process of determining and populating a soil point database, based on existing data. 
The crux of the work was to determine an optimal database format and put quality control measures in place 
when adding data to the database. It is envisaged that the database should become representative of the 
country’s soils as new data will be added in the future. This work was primarily done by Molebaleng Sehlapelo 
as part of her MSc dissertation and has been prepared as a journal article to be submitted to the South African 
Journal of Plant and Soil (SAJPS, 2023). 
 
2.1 THE STRUCTURAL DESIGN OF A ROBUST SOIL DATABASE FOR SOUTH AFRICA SOIL POINT 

OBSERVATIONS 

2.1.1 Abstract 

A lack of publicly available soil data has emerged as a factor that hinders sustainable food production, 
environmental protection, and policy formulations. To tackle the paucity of available soil data, an initiative must 
be taken to bring together all available soil data into a unified soil database. However, the development of a 
soil database requires a robust database structure design that ensures that data obtained from different 
sources is quality controlled, adequately stored and readily accessible. A Strengths, Weaknesses, 
Opportunities and Threats (SWOT) analysis was conducted on the international World Soil Information 
Services (WoSIS) and the Agricultural Research Council – Soil Climate and Water (ARC-SCW) soil databases 
to propose an ideal structure for a national soil point database. Additionally, quality control measures required 
when adding data to the database were proposed based on the criteria used and adopted from the World 
Inventory of Soil Emission Potentials (WISE) and the African Soil Profiles Database version 1.1. Incorporating 
the strengths and opportunities while negating the weaknesses and threats associated with the analysed soil 
databases resulted in the development of a comprehensible and user-friendly soil point database. The 
database consists of quality-controlled soil point data, retrieved from 25 distinct sources, resulting in a total of 
539 soil profiles and 1 518 soil horizons. The database serves as a platform for recording legacy soil data 
collected from diverse sources, documented in different formats, and created for various purposes. 

2.1.2 Introduction 

Soil is a non-renewable natural resource, difficult to rehabilitate and costly to restore or cultivate after erosion, 
physical deterioration, or chemical contamination (Pozza & Field, 2020). The deterioration and pollution of soil 
is often caused by pressure on land and results in a decrease in crop production capacity (Jie et al., 2002). 
Pressures on land may lead to soil degradation that may further result in soil loss or a decrease in soil functions 
(Oldeman, 1992). Therefore, it is important to protect and restore soil quality to maximise these soil functions 
(Lal, 2015). A general understanding of the composition, characteristics, dynamics, and functions of soil plays 
a role in the effective management and sustainability thereof (Schoover & Crim, 2015). The availability of 
accurate information regarding soil dynamics and characteristics obtained through analysis and description of 
soil in the field is the basic prerequisite for achieving effective management and sustainability of soils (Jahn et 
al., 2006). 
 
The availability of detailed soil information plays a role in the implementation of policy for soil protection (Breure 
et al., 2012). Due to the continuously increasing pressures on soils, such as soil erosion and compaction in 
South Africa, the Department of Agriculture, Land Reform and Rural Development (DALRRD) was assisted by 
the Agricultural Research Council (ARC) to draft a policy to promote the protection of soil and the proposed 
Preservation and Development of Agricultural Land Framework Act (Paterson et al., 2015). However, for this 
bill to pass into legislation, it was necessary to have detailed soil information covering the whole of South Africa 
(Paterson et al., 2015). This is because a soil database provides relevant information for national and regional 
planning, with a detailed risk assessment of the rate of soil degradation, land assessment and land-use 
planning mechanisms (Oldeman & Van Engelen, 1993). Thus, it is necessary to develop an authoritative 
national database of soil information for South Africa. 
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As the amount of data and data users continue to increase, a systematic approach for database development 
is required (Fernández & Rusinkiewicz, 1993). The development of a database is associated with a well laid-
out structure, an accurate description of its contents and specifications on the quality of the data to be recorded. 
There are several considerations when developing a database, such as addressing user requirements and 
eliminating obsolete data. Consequently, ensuring data quality and standardisation is crucial for effective data 
interpretation (Oldeman & Van Engelen, 1993). There are several stages involved in designing a soil database. 
The first stage is gathering data from various sources (Shangguan et al., 2014). The second stage involves 
data harmonisation using data processing procedures (Shangguan et al., 2014). Stage three encompasses 
data standardisation, which entails processing data from many sources to make it identical to allow data 
comparability during data analysis (Quevauviller, 1998). The resulting database should present data that are 
easily comprehensible, accessible, and feasible (Grealish et al., 2004). 
 
Understanding the different aspects involved in database design can be achieved by analysing different 
databases to compare the structure, information recorded, accessibility, data usage and standardisation of the 
data within them (Gupta, 2000). The legibility of the database can be assessed by examining the type of 
software used to store data, the format in which the data are stored and presented, and the ease of navigating 
through the database to find data (Shofiyati et al., 2011). The quality of the database depends on the accuracy 
of the attributes used to provide information, like geographical coordinates and units and methods of 
measurements (Hoffmann et al., 2020; Paterson et al. 2015). Data accessibility can be assessed by the ease 
of obtaining the database and retrieving the information recorded in the database (Pangos et al., 2011). Data 
usage can be evaluated by analysing how easy it is to understand the data so that it can be used in other 
software packages, to expand the database so that new data can be populated, and the ability to perform 
quality control measures on the recorded data (Shofiyati et al., 2011). Finally, data standardisation can be 
evaluated by examining the units and methods of measurement, and classification systems used, as well as 
the database's ability to integrate with other databases (Ribeiro et al., 2015). 
 
This comparison can be achieved through a SWOT analysis, which is a theory that refers to the Strengths, 
Weaknesses, Opportunities, and Threat factors (Nikolaou & Evangelinos, 2010). These factors are used to 
identify the internal and external factors that enhance or interfere with the performance of an initiated plan or 
project. Strengths and weaknesses are characterised as internal factors, while the opportunities and threats 
are characterised as external factors (Leigh, 2010). The analyses of these factors are based on the estimation 
of their contributions to reaching a certain goal and the approximation of their controllability (Benzaghta et al., 
2021). 
 
During compilation of a soil database, the data are mainly categorised into geographic and attribute data. 
Geographic data provide information about the location, extent and topology of each soil profile while the 
attribute data provide information about the soil physical and chemical properties of each soil profile (Bouma 
et al., 1999). Databases created from well-established, standard soil survey practices are characterised into 
two main groups of soil information – primary and secondary data (Bouma et al., 1999). Primary soil data are 
established through sampling and remote sensing (Mulder et al., 2011). while secondary data are established 
through continuous pedotransfer functions (Reddy & Das, 2023). Furthermore, these are sub-categorised into 
topographical data, soil fertility data and hydrological data (Bouma et al., 1999). Soil fertility data represent the 
ability of soil to sustain growth and improve production through continuous provision of nutrients (Hartermink, 
2007). Hydrological data represent the movement, retention, and loss of water in the soil used for 
understanding physical and chemical processes (Vereecken et al., 2015). Lastly, topographic data refers to 
digital information about the relief of a terrain (Carter, 1988). 
 
Challenges of soil data quality are not limited to the concept of uncertainty, but quality is considered a function 
of completeness and consistency (Hortensius & Welling, 2008). Several methods can be utilised to establish 
the accuracy, compatibility, and traceability of measured soil data. These include implementing and 
maintaining a quality management system in the laboratories and application of methods used for validation 
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and standardisation. Furthermore, the use of reference materials (that have been certified), participation and 
organising evaluations in inter-laboratory experiments are also essential (Theocharopous et al., 2004). 
Additionally, a variety of soil properties, including positional accuracy, attribute accuracy, logical consistency, 
completeness, and lineage properties may be used to assess data quality (Theocharopous et al., 2004). 
Utilising well-documented procedures and standards to compile and process large-scale soil data is essential. 
The successful compilation of a systematic soil database requires reliable sources of data and standardised 
methods of acquiring, processing, and storing this information (Batjes, 1995). Once this database has been 
obtained it would be valid for many years and represents a strategic, once-off investment (Bouma et al., 1999). 
 
There have been ongoing discussions about the lack of a freely available soil point database in South Africa. 
The need was first expressed in 2014 at the Soil Information workshop hosted in Stellenbosch. An initial 
overview of the available data was created (Paterson et al., 2015), and a project instigated to develop a Soil 
Information strategy for South Africa (Collett & Rozanov, 2018). This culminated in an additional workshop and 
discussion held in Pretoria in 2018 titled “Soil information for sustainable development, agricultural 
conservation and land use policies in South Africa”. In 2023, a soil policy formulation document was supported 
by the Soil Science Society of South Africa, which proposed the primary goal of creating a national soil 
database (Rozanov et al., 2023). Despite all this effort and the numerous expressions of the need for such a 
database, there is still no functional, freely available soil database to which soil data could be submitted, with 
the necessary quality control in place. 
 
The aims of this research were (1) to develop a robust structural design for a soil point database to record soil 
observation points collected in South Africa, and (2) to determine quality control measures that can be applied 
during the population of the soil data into the database. Data was gathered from various sources to populate 
the database, allowing the structure and quality control measures to be tested. 
 
2.1.3 Materials and methods 

To develop a soil database structure, an international and a national database were subjected to the SWOT 
analysis, by assessing the data legibility, quality, accessibility, usage, and standardisation. Additionally, quality 
control measures used and adopted by Batjes (2008) and Leenaars (2013) during the creation of the WISE 
and African Soil Profiles Database version 1.1. were applied during the population of soil points into the 
database, to ensure harmonisation and standardisation of the database and to improve the quality thereof. 
 
SWOT analysis 

To develop a robust soil database structure, SWOT analyses of leading national and international databases 
were evaluated to observe the legibility, quality, accessibility, usage, and standardisation for the different 
databases. The two databases that were selected include the World Soil Information Services (WoSIS, ISRIC, 
2023) and the Agricultural Research Council – Soil Climate and Water (ARC-SCW Soil Database. 2014) 
databases. These databases were chosen because each database was used to record data for different 
geographical spaces and purposes resulting in very distinct structures. Furthermore, the WoSIS and the 
ARC-SWC are the leading international and national custodians of soil databases (Ribeiro et al., 2015; 
Paterson et al., 2015). 
 
Data quality control 

Quantitative soil properties to be recorded in a comprehensible soil database must be quality controlled and 
this process was characterised in two stages (Figure 2.1). The first stage of quality control involved removal 
of all the values detected as outliers from the basic quality control criteria as adopted from the WISE 3 (Batjes, 
2008) and African Soil Profiles Database version 1.1 (Leenaars, 2013), which included identifying and 
excluding unknown geographical coordinates or soil point coordinates not falling within the borders of the study 
area of collected soil point observations (South Africa) (Leenaars, 2013). Furthermore, quality control involved 
the identification and removal of soil properties falling outside certain ranges of values (Table 2.1). 
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Figure 2.1: Stages involved in the quality control. 
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Table 2.1: Soil property values considered for basic quality control criteria adopted from Batjes (2008) and 
Leenaars (2013). 

Soil property Range of values References 
Sum of Sand, Silt, Clay Fractions 
(%) > 90% and < 110% Leenaars (2013) 

Sand fractions (%) > 0% and < 100% Leenaars (2013) 

Silt fractions (%) > 0% and < 100% Leenaars (2013) 

Clay fractions (%) > 0% and < 100% Leenaars (2013) 

Bulk Density (Pb) > 0,1g/cm3 and < 2,7 g/cm3 Leenaars (2013); Batjes (2008) 

Exchangeable Calcium (Ca) > 0 cmol/kg and < 200 cmol/kg Leenaars (2013) 

Exchangeable Magnesium (Mg) >0 cmol/kg and < 50 cmol/kg Leenaars (2013) 

Exchangeable Sodium (Na) > 0 cmol/kg and < 200cmol/kg Leenaars (2013) 

Exchangeable Potassium (K) > 0 cmol/kg and < 20 cmol/kg Leenaars (2013) 

Sum of Exchangeable Bases > 150 cmol/kg Leenaars (2013) 

P-status > 0 mg/kg and < 1 000 000 mg/kg Leenaars (2013) 

pH (H2O) > 2 and <12 Leenaars (2013); Batjes (2008) 

pH (KCl) > 2 and < 12 Leenaars (2013); Batjes (2008) 

Cation Exchange Capacity (CEC) > 1 cmolc/kg and < 150 cmolc/kg Leenaars (2013) 

Electrical Conductivity (EC) < 0 mS/m Leenaars (2013) 
 
The second stage of quality control (Figure 2.1) involved the detection of outliers with boxplots. If any outliers 
were detected, four mandatory steps were followed before the exclusion of the values, because outliers 
detected within a dataset may not be erroneous anomalies with the potential to affect the quality of the dataset 
(Filzmoser & Gregorich, 2010). The first step was reviewing values, which involved rechecking the data source 
to ensure that the values were copied correctly. In the second step, a value detected as an outlier would be 
analysed and compared to the surrounding values to investigate whether there were any similarities, 
differences or trends. For any value that was detected as an outlier and was different from the surrounding 
values, the third step involved further analysis, where the geology and terrain were investigated as these 
environmental factors have the potential to alter the chemistry (chemical properties) of soil (Djodjic et al., 2021). 
The fourth step involved comparison of values with those observed in the literature. 
 
Data population 

The minimum requirement for inclusion of soil data into the soil database to ensure data legibility was the name 
of the provider and at least one soil attribute. Coordinates were not included as a prerequisite because data 
collected without coordinates could still be valuable for research, for instance in creating pedotransfer 
functions. Furthermore, minimum data requirements for soil profiles included information that aids soil 
classification, such as soil colour, texture or structure. 
 
Soil data was collected from different sources and populated into the soil database. For data entry and 
collation, Microsoft Excel worksheets were utilised to ensure pragmatism and speed. Unique profile identities 
(IDs) were used when recording soil data to avoid duplication. These IDs referenced the original profile IDs 
used in different data sources. Datasets recorded in Portable Document Format (.pdf) documents were copied 
using the “copy” and “paste” functions, although this was time consuming and prone to human error. The soil 
database was composed from three academic transcripts, three research reports, two databases and 18 
reports (15 irrigation suitability reports and three hydropedological survey reports). These resulted in a total of 
567 soil profiles and 1 518 soil horizons. 
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Harmonisation and standardisation methods were carried out to incorporate all the soil data with different 
methods and expressed using a variety of units of measurements into the soil database (Table 2.2). Data 
harmonisation enables the integration of spatial and attribute data into a unified system, allowing for 
comparable representation of data from various sources (Sulaeman et al., 2013). Data standardisation involves 
assembling data into a common format to eliminate variation in classification, terminology, and measurements, 
for better data quality and interpretation (Hortensius & Nortcliff, 1991). Prior to population, each dataset was 
analysed to observe the units and methods of measurements. If the measuring units were different from the 
standard measurement units used in the soil database, a conversion process was carried out where possible 
to ensure standardisation (Table 2.2). 
 
Table 2.2: Methods of data standardisation caried out. 

Methods of standardisation 

Calculation of coordinates in ArcMap 10.7.1 from shapefiles 

Conversion of degrees, minutes, seconds to decimal degrees 

Conversion of exchangeable cation values from mg/kg to cmolc/kg 

Conversion of profile and horizon depth from cm to mm 
 
2.1.4 Results and discussion 

SWOT analysis of World Soil Information Services database 

SWOT analysis of the WoSIS database (Table 2.3) was used to propose an optimal structure for a soil 
database. 

• Strengths 
o Legibility: Data can be imported into SQL (Standard Query Language) and statistical 

software. All the soil information that makes up the WoSIS database is recorded in four 
different Tab Separated Value (.tsv) files. These files can be imported into SQL database or 
statistical software such as R where they may be joined using the profile_id. Importation of 
the dataset allows for handling and querying of the data as required by the user. Guidelines 
of this procedure are provided in the WoSIS Procedures Manual (Ribeiro et al., 2020). 

o Data quality: Availability of information on database. There are articles, reports and 
documentation about the database. The contents include definitions of soil properties and a 
set of attributes that can be used to express a description on a measurement. Downloads 
and links, contact details for enquiries and the source of the dataset can also be found on 
the International Soil Reference and Information Centre (ISRIC) World Soil Information page 
www.isric.org/data/data-download 

o Accessibility: Database available online. The WoSIS database is readily available online. 
The ISRIC World Soil Information page provides information on the standardised dataset as 
derived from WoSIS database, accessibility of the database and tutorials on how to use the 
R software to view and analyse the data. 

o Standardisation of data: Methods described in columns. The methods of measurement are 
readily described in the same table and column as the soil attribute, this results in a 
comprehensible and user-friendly database. There is also a specification of the soil 
classification used for each set of data. 

o Data usage: Availability of link table. Linking the different soil property tables allows easier 
navigation through the database, the user does not need to navigate back and forth through 
each file to use the data. Furthermore, the ease with which each .tsv file can be converted 
into an Excel spreadsheet improves the tabular presentation of soil attributes and the use of 
the database. 

• Weaknesses 

http://www.isric.org/data/data-download
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o Legibility: Large amount of data. There is a large volume of data recorded in many columns, 
which makes the data appear clustered resulting in poor data presentation and difficulty 
working through the database. 

o Standardisation of data: No specified units of measurements. The units of measurements 
are not readily described in the same table and column as the soil attributes, searching for 
this information in other tables and/or documents can be time-consuming for the user. 

o Data usage: Data saved in .tsv files. The users are limited due to the specialised data file 
formats used, which requires special skills such as R programming or conversion into Excel 
to access data. 

o Data spread over different files. The data is spread over four soil attribute files, which makes 
it difficult to simultaneously use data from the same observation. This is overcome by linking 
the data in an SQL with the same identifier. Ideally, the user would want to have all the data 
in one file as not everyone is familiar with using SQL. 

o Unfamiliar column headings. The headings are in codes and to overcome this, there is a 
separate file that provides the definitions. However, it is more effective to use a database 
that provides all the necessary information in a common file. 

• Opportunities 
o Data usage: Smaller geographical based databases. Developing smaller databases based 

on the different geographical areas will result in a more comprehensible database because 
several columns will be omitted resulting in a single file for each database. This will result in 
easier navigation and lead to the use of familiar languages, codes and classification used for 
that area, resulting in a wider usage of the database. 

• Threats 
o Data usage: First time users could be deterred. The use of SQL language, heading codes, 

.tsv file formats may be unfamiliar to first time users and the need to consult various 
documents for clarity may be time consuming and result in a limited number of users. 

o Lack of quality control. The accuracy of the database cannot be measured by first time users 
due to units of measurements being recorded in other files. 

Table 2.3: Summary of the SWOT analysis of the World Soil Information Services (WoSIS) database. 

SWOT analysis of the Agricultural Research Council – Soil Climate and Water database 

SWOT analysis of the ARC-SCW database (Table 2.4) was used to propose an optimal structure for the soil 
database. 

• Strengths 
o Legibility: Database stored in Microsoft Access. The ARC-SWC uses the database 

management system Access to store soil data. Access enables the user to perform queries 

Strengths (S) Weaknesses (W) 
.tsv files can easily be imported into an SQL 
database or statistical software such as R, after 
which they may be joined using the unique profile 
ID. 

Large amount of data, incomprehensible and 
difficult to navigate. 

Availability of information on the database. No specified units of measurements in tables. 

Database readily available online. .tsv files are unfamiliar to most potential users. 

Methods used are described in columns. Data spread over different files. 
Availability of link table to connect the profile to a 
given source. Unfamiliar column headings. 

Opportunities (O) Threats (T) 

Smaller geographical based datasets could improve 
usage considerably. 

First time users could be deterred by unfamiliar file 
types and headings, and various documents to be 
consulted. 

 Lack of quality control due to missing units of 
measurements. 
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to acquire specific information from the database and to analyse the relationship between 
the recorded soil parameters. The program provides different options such as viewing or 
printing existing data, new registration of soil profiles, lab data requests or updating of 
existing data. 

o Database available in Excel. The database can be opened and extracted into Excel, which is 
a program potential users of the database are familiar with. Excel presents the soil data in 
the database in a comprehensible manner, where a soil profile is recorded with 
accompanying horizons in sequential rows while the specific soil properties are recorded in 
designated columns. Furthermore, data in Excel can be analysed and manipulated as 
desired without changing the structure of the original database. 

o Data presented as .pdf printouts per soil profile. When data from Access is requested, the 
option to obtain soil data by printing .pdf documents is available, which could be useful in 
certain situations, such as teaching and soil profile discussion. The .pdf documents present 
data in a table format, this results in easily comprehensible soil information. This soil data 
was clearly recorded, with each soil attribute in designated columns and clearly described as 
headings and the attribute features described as subheadings in the table. 
Data usage: Data entries and queries in Access. Access enables the user to perform queries 
to acquire specific information from the database and to analyse the relationship between 
the recorded soil parameters. Furthermore, the data entry program is easy to use as it 
provides drop down menus to enter the relevant information required for each soil profile. 
This information is automatically recorded in the Access database. 

o Availability of a user manual. There is (Van Waveren & Bos, 1988) outlining the necessary 
steps for processes involved in data entries, queries and data acquisition. Additionally, the 
user manual provides information on the minimum data requirements for each soil profile. 

o Data quality: Units of measurements included. There is a unit of measurement for each soil 
attribute presented on the .pdf printouts, resulting in easy comprehensibility and the 
performance of quality control to check for accuracy of the data recorded. 

o Availability of data validation tests. The program provides various data validation tests that 
can be run on the recorded soil attributes to ensure data accuracy. 

o Standardisation of data: Necessary requirements for data entry provided. The user manual 
provides guidance on the necessary information required before data entry. These include a 
soil classification, horizon definition, geographic location, and map sheets. This information 
improves the process of data standardisation during data unification. 

• Weaknesses 
o Accessibility: Database not readily available. Contact via email had to be made to the 

provider to acquire soil data and information about the original structure of the database. 
This can sometimes be time-consuming because obtaining this information is dependent on 
the time it takes for the provider to reply to the request and other enquiries which may follow. 
For research purposes it can be motivated to obtain the data free of charge, however, for 
other purposes the data must be bought at a fee. 

o Data quality: Description documents separated from database. The description documents 
providing information about the soil attributes and the user manual providing information on 
how the recorded data can be used are provided. However, these are saved in separate 
documents, and the information in these documents is not available in the database. As a 
result, the user may have to open multiple documents and the database at the same time, 
which may cause confusion and may be time consuming. 

o No analytical methods. Although the main database gives descriptions of analytical 
methods, there is no description of these methods in the table. 

o Data usage: Specialised skills required. Although Access is an effective program to use for 
creating databases, not everyone is familiar with the functions involved in data queries. The 
effective use of these queries requires the user to partake in courses in Access for a clear 
understanding of the different functions. To illustrate this weakness, even the ARC-SCW has 
a limited number of employees with Access skills, which causes delays when requesting 
data when the skilled persons are not available. 
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o Standardisation of data: Analytical methods not readily recorded in the table. Methods used 
to measure the acquired soil properties and metadata such as analytical methods are not 
readily presented in the same table with the measured soil properties. This information is 
recorded in a separate document. 

• Opportunities 
o Accessibility: Data availability would increase usage. Availability of this database would 

increase the opportunity for farmers, corporations, and researchers to readily have soil data 
that can help them with information required for productivity and sustainability, resulting in 
the wider usage of the database. 

• Threats 
o Accessibility: Database not used due to being unavailable. The ARC-SCW is created for the 

provider’s use and is not readily available to the public. As this database is not freely 
available online, it must be requested from the ARC-SCW at a cost for most purposes, which 
drastically reduces the usage of the database. Non-usage of such a database could render it 
obsolete as potential users will find different ways of obtaining the data required for their 
needs. 

o Resignation of skilled Access users. There are a limited number of skilled Access persons 
employed by the ARC-SCW. Therefore, should these persons resign, the lack of Access 
skills at the institution will render the database totally useless. 

Table 2.4: Summary of the SWOT analysis of the Agricultural Research Council – Soil Climate and Water 
(ARC-SCW) database. 

Strengths (S) Weaknesses (W) 

Database stored in Access. Database not readily available. 

Database available in Excel. Description documents stored separate from 
database. 

.pdf printouts for specific soil profiles available. No analytical methods presented in the table. 

Availability of a user manual. Specialised skills required to extract and query 
data from Access. 

Units of measurements included.  

Availability of data validation tests.  

Necessary requirements for data entry provided.  

Opportunities (O) Threats (T) 

Data availability would increase usage. Database not used due to being unavailable. 

 Resignation of skilled Access user will result in the 
database being unavailable. 

 
Proposed structure of a robust soil point database 

The SWOT analysis revealed various factors influencing the effectiveness of the WoSIS and ARC-SCW 
databases, highlighting both strengths and weaknesses. The legibility of a database was characterised by 
strengths such as the simplicity of importing data into a common database and other software, along with the 
use of table formats for data presentation, enhancing comprehensibility. However, weaknesses were identified, 
particularly in cases where recording large volumes of data into a single database led to cluttered information, 
hampering overall legibility. Concerning data quality, strengths were the availability of documents providing 
crucial information about the database, including information on units and measurement methods for each soil 
attribute, as well as the analytical methods employed. Conversely, weaknesses in data quality were associated 
with a lack of descriptive documents. The analysis also explored aspects related to data usage, noting 
strengths in a database's ease of navigation, reading, editing, analysis, importation, querying, quality control 
and data comparison. However, weaknesses were the complexity of the software used for data storage and 
recording, as well as the language, codes, and classifications employed, which could impact a database's 
usability for different users. In terms of accessibility, a strength was the  ease of obtaining the database, while 
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a weakness was the lack thereof. Standardisation of the databases was promoted by the availability of units 
and measurement methods for each soil attribute, contributing to quality control. 

From the SWOT analysis of the two databases, the strengths were incorporated and weaknesses negated to 
achieve a comprehensible and user-friendly structural design for the proposed soils database (Figure 2.2). 
The database was developed in an Excel spreadsheet with table headings displaying soil information with 
accompanying soil attributes, units and methods of measurement. Excel makes reading and editing easy. Six 
main soil attributes were recorded under the different table headings (Figure 2.2). The first table records the 
profile ID for soil profiles (Figure 2.2a). The second table contains landform and topography information of the 
soil profiles (Figure 2.2b). Soil morphological and physical properties of the soil profiles are shown under the 
third table (Figure 2.2b). The fourth table records the chemical properties of the soil profiles (Figure 2.2c, Figure 
2.2d). The fifth table shows information on the hydrological properties and the sixth table was used to record 
geological properties (Figure 2.2e). 

The table format optimised data presentation and comprehensibility, thus ensuring the legibility of the 
database. The database consists of six worksheets, one of which is used to describe all the attributes, units 
and methods of measurements, symbols, and a reference list of the source data. Each recorded attribute is 
accompanied by a unit of measurement displayed in the same column, thus improving the data quality. Soil 
attributes were recorded according to the method used for analysis. Therefore, there are options for different 
methods of measurements for a single soil attribute in the tables. 

The database is made freely available upon request from the developer, to facilitate accessibility. Furthermore, 
the names of the soil attributes, units and methods of measurements used in the soil database are commonly 
used in soil sciences throughout South Africa. The soil database is used to record and store soil data for the 
geographical space of South Africa leading to the use of common languages, codes and classifications. Data 
recorded in the database can be easily imported and exported into other software using the “copy” and “paste” 
options, thereby promoting increased data usage. 

 



HYDROSOIL 

14 

 
Figure 2.2: The complete soil database structure. Soil profile data is recorded in a single worksheet, and six main soil attributes recorded under different table 
headings: (a) Profile ID, landform and topography, (b) soil morphological and physical descriptive properties, (c) chemical properties, (d) chemical properties 
(cont.), and (e) hydrological and geological properties. 

.
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Data quality control 

The soil point data collected included 567 soil profiles and 1 518 soil horizons from all nine provinces 
in South Africa (Figure 2.3) and characterised by a total of 58 soil forms. Between the different sources, 
data was collected for various geographical, topographical, morphological, physical, chemical, 
hydrological and geological soil properties. All the data populated in the soil database were subjected 
to quality control measures. Quantitative soil properties, including bulk density, soil texture, 
exchangeable cations, micronutrients, phosphorus status, phosphorus-sorption, pH, metal ions, 
electricity conductivity, organic carbon, water retention, relative soil saturation, hydraulic conductivity, 
and saturated hydraulic conductivity, were quality controlled. If a data entry was proven to have dubious 
values, and the rest of the soil attribute passes the quality control, only that soil attribute value is omitted. 
This is because the rest of the soil attribute values can be used for other analysis, including pedotransfer 
functions. 
 
From basic quality control analysis, a total of seven outliers were detected from the geographical 
coordinates data, where the soil points were not plotted within the borders of South Africa. This was 
quite visible from the map (Figure 2.3). Furthermore, a total of seven soil point values were flagged as 
the points expressed values of Cation Exchange Capacity (CEC) exceeding 120 cmol/kg. The sources 
were rechecked to verify if the coordinates and CEC values were recorded properly. As this was the 
case, these soil attribute values were omitted from the database. A total of 12 soil horizons each with 
seven texture fractions resulted in the sum percentage of particle size exceeding 110%. As a result, 84 
soil attribute values were identified as outliers and flagged to be investigated further in the second stage 
of quality control. 
 

 
Figure 2.3: Map created for basic quality control analysis. 

Boxplots were created for all quantitative soil properties during the second stage of quality control. No 
outliers were detected for bulk density (Figure 2.4a). However, a few values were detected as outliers 
for soil texture (Figure 2.4b, Figure 2.4c). A total of 45 texture fractions were detected as outliers based 
on the surrounding values, however, these values were not removed as the sum percentage of each 
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recorded soil horizon was well within the designated criteria for total sum percentage of texture fractions. 
The texture fractions of the 12 soil horizons flagged as outliers in the basic quality control stage were 
also detected as outliers in this stage of quality control. Therefore, these values were removed from the 
soil database. 
 

 
Figure 2.4: Boxplots for (a) bulk density, and (b, c) texture fractions percentages. 

Boxplots for soil chemical and hydrological properties were also created and analysed, and if a soil 
point contained a soil property detected as an outlier, further analysis was carried out by following the 
four mandatory steps for quality control (Figure 2.1). Values detected as outliers for chemical and 
hydrological properties were not removed from the database as differed only one unit (or less) from the 
surrounding values. Likewise, geology and terrain values identified as outliers were identical to other 
values that were not identified as outliers. However, it could be that samples taken close together have 
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different values due to differences in soil forming factors. Therefore, detected outliers were not 
considered as true outliers as there was not enough substantiation for this output. 
 
Post quality control, the total number of all the recorded soil profiles and soil horizons stayed the same. 
Only 98 soil attribute values were omitted from the soil database (Table 2.5). 
 
Table 2.5: Summary of the number of different soil attributes values recorded before and after 
quality control 

Soil attribute Before quality control After quality control Removed attributes 

Geographical coordinates 1166 1159 7 

Clay% 623 611 12 

coSand%, meSand%, fiSand% 206 194 12 

vfiSand%, coSilt% 160 148 12 

fiSilt% 162 150 12 
Cation Exchange Capacity 
(CEC) 421 414 7 

 
2.1.5 Conclusions 

The aim of this study was to determine the optimal structure of the proposed soil point database, by 
examining the structure of an international (WoSIS) and a national (ARC-SCW) soil database. This aim 
was achieved through SWOT analysis of the structures of these soil databases, to evaluate the 
strengths, weaknesses, opportunities and threats thereof. The results revealed that a good soil 
database is dependent on the ease of data importation and exportation, soil data presentation and 
comprehensibility. The data quality of a database depends on the provision of information about the 
database, including definitions of the terminology, units and methods of measurements used in the 
database. Data usage is determined by how easy it is to read, edit, analyse, query, import data, navigate 
and perform quality control on the data. It is also dependent on the ease of understanding the software 
used to store and record data and the language, codes, and classification used in the database. A 
database should be easy to access from the source. 
 
The proposed soil database drew from the findings of the SWOT analyses to optimise the legibility, data 
quality, data usage, accessibility, and standardisation of the database. It was developed as an Excel 
spreadsheet to promotes ease of usage, flexibility and interoperability. An attribute description created 
provides detailed information about the data recorded in the database, including definitions of 
terminology and symbols used, units and methods of measurements and the data source references.  
 
The database was populated with data from various sources, which underwent an established two-
stage quality control to assess outliers. The result is a soil profile database with a total of 567 soil profiles 
and 1 518 soil horizons which passed quality control. The intention is that the established quality control 
and standardisation measures will allow for data to be continuously added to this database such that it 
can become a freely available national asset. 
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CHAPTER 3: SABIE-SAND CATCHMENT 
Chapter 3 presents the digital soil mapping and hydrological modelling of the Sabie-Sand catchment. 
This work formed the bulk of Eddy Smit’s PhD thesis. The digital soil mapping entailed dealing with 
highly clustered data to produce an accurate soil map and has been published as a peer-reviewed 
paper in Geoderma (Section 3.1; Smit et al., 2023a). The digital soil mapping adds value to the 
hydrological modelling results to better mimic the hydrological processes at play within the catchment. 
These findings have been accepted as a peer-reviewed article in the journal Vadose Zone (Section 3.2; 
Smit et al., 2023b). The value of the HYDROSOIL map is further showcased by using the map to 
calibrate the hydrological model (Section 3.3). This paper has been submitted to the Hydrological 
Processes. 
 
3.1 DOWNSCALING LEGACY SOIL INFORMATION FOR HYDROLOGICAL SOIL MAPPING USING 

MULTINOMIAL LOGISTIC REGRESSION 

3.1.1 Abstract 

In South Africa, there is a growing demand for large-scale, detailed hydrological soil maps for modelling 
and management purposes. However, legacy soil information often impedes the accurate creation of 
such maps by not being representative of the environmental complexity of large-scale catchments and 
containing imbalanced soil class distributions. The result is often the loss of minority soil classes, such 
as wetland and riparian soils, which are often of great hydrological importance. In this study, we propose 
a new downscaling approach to handle soil data within a large, low resolution legacy soil dataset to 
create an accurate hydrological soil map of the macro-scale (5 790 km2) Sabie-Sand catchment using 
multinomial logistic regression (MNLR). The spatially localised legacy data was downscaled using 
k-means clustering and added to the broader legacy dataset. Five levels of legacy soil data were 
analysed in their representation of environmental covariates using QQ-plots and a Welsh’s t-test and 
their mapping accuracy using confusion matrix and Kappa coefficient statistics. However, MNLR also 
requires balanced soil classes. The best performing legacy soil dataset was also compared to using all 
available soil information after both datasets had their soil class distributions fully balanced using 
Synthetic Minority Oversampling Technique (SMOTE). The 500ha/observation-SMOTE dataset 
resulted in the most accurate hydrological soil map with a validation point accuracy of 73% and a Kappa 
coefficient of 0.60, substantially outperforming the other downscaled soil maps as well as the SMOTE 
balanced dataset using all available soil information. This was due to the decreased variation between 
observations and catchment means, where the 500ha/observation dataset yielded the least variation 
between soil observation and catchment datasets as well as reducing the class imbalance within the 
legacy soil data. Downscaling spatially localised legacy soil data for environmental representation is an 
effective tool to improve digital soil mapping accuracy using MNLR. 
 
3.1.2 Introduction 

Digital soil mapping involves mathematical models for predicting soil properties using environmental 
covariates as predictors. The modelling procedure can be implemented using the framework of digital 
soil mapping (McBratney et al., 2003) to relate the environmental covariates with the target soil variable 
or class. Advances in digital soil mapping coincided with the need for detailed and accurate spatial soil 
information, which has widely been realised to provide appropriate solutions for conserving and 
managing agricultural and environmental resources. Soil information can improve modelling, policy 
making and scenario analysis at different spatial extents from catena to catchment and from national to 
global scales (Häring et al., 2012; Arrouays et al., 2014; Lamichhane et al., 2021). 
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Digital soil mapping has therefore developed into a cost-effective tool for creating large-scale, detailed 
soil maps. This is due to the expansion of highly-detailed remotely sensed covariate data, the drastic 
increase in desktop computing power and its availability to users as well as the availability of large 
swaths of legacy soil data (Häring et al., 2012). In South Africa, digital soil mapping has also been used 
for a wide range of agricultural and environmental applications including precision agriculture, land 
degradation studies, land capability studies, determining irrigation potential, as well as in Environmental 
Impact Assessments (EIAs) and town planning projects (Van Zijl, 2019). 
 
Digital soil mapping has been increasingly used in the field of hydropedology, where hydrological soil 
maps created for modelling purposes have been shown to improve hydrological modelling accuracy 
(Van Tol et al., 2015; Van Tol et al., 2020; Harrison et al., 2022; Smit & Van Tol, 2022). The use of more 
detailed hydrological soil information within the ACRU (Agriculture Catchments Research Unit) model 
led to an increase in model efficiency of between 9% and 52% (Van Tol et al., 2015). Hydropedological 
soil information also improved modelling accuracy at three different catchment sizes compared to 
readily available soil information (Van Tol et al., 2020). The value of hydrological soil information may 
extend beyond the ability to accurately model long-term streamflow predictions. The argument is that 
hydrological soil information may serve as an effective ‘soft data’ tool, to better represent internal 
hydrological processes within a catchment (Smit & Van Tol, 2022). 
 
In this light, the Water Research Commission has seen the potential of large-scale hydrological soil 
maps for the purposes of hydrological modelling and water resource management. It has authorised a 
project which builds towards a hydrological soil map of the country. Van Tol and Van Zijl (2022) provide 
rough steps to create a national hydrological soil map for South Africa. However, the creation of such 
large-scale hydrological soil maps remains reliant on using and interpreting large amounts of legacy 
soil data, from various soil surveys, which often use different classification systems at different spatial 
resolutions. 
 
Digital soil mapping provides unique challenges in balancing legacy soil datasets because soils are 
never evenly distributed throughout a landscape, being a product of complex soil forming factors. 
Although machine learning models, such as Multinomial Logistic Regression (MNLR), are generally 
more accurate than simple models, the accuracy of these models are highly dependent upon the 
number of soil classes and the frequency of their distribution. The MNLR algorithm (Venables & Ripley, 
2002) has been widely used for digital soil mapping purposes, specifically for large-scale mapping 
endeavours (Campling et al., 2002; Bailey et al., 2003; Hengl et al., 2007; Kempen et al., 2009; Debella-
Gilo & Etzelmüller, 2009; Van Zijl, 2019). However, the performance of such algorithms is often poor 
when learning from imbalanced data, which is well documented in the field of categorical data modelling 
(López et al., 2013; Haixiang et al., 2017; Li et al., 2022). 
 
Legacy soil datasets are often not representative of the environmental complexity of large-scale 
catchments, due to a limited number of soil observations and imbalanced soil class distributions. Most 
legacy soil datasets contain spatially localised sampling locations which were purposely selected 
according to the aim and purpose of the soil survey (Ma et al., 2019). For example, most agricultural 
soil surveys would refrain from sampling within specific low potential or prohibited positions in the 
landscape. When creating hydrological soil maps from legacy soil data, the minority soil classes are 
often of great importance (e.g. under-sampled wetlands and riparian soils). Predictive models based on 
these spatially-imbalanced legacy soil datasets, would fail to map these ecologically important soils. 
 
When addressing the challenge of imbalanced datasets, three main approaches have been recognised. 
Firstly, there is the data-level approach where different resampling methods are used to create a 
balanced dataset. These methods include, under-sampling, where the majority soil class is reduced to 
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balance observations, over-sampling, which creates replications of the minority soil class, and synthetic 
data generation, where new artificial data of the minority observations are created to balance class 
distributions within datasets. The second approach is at the algorithm level, where algorithms are 
selected which are capable of handling imbalanced datasets, these include algorithms which 
incorporate cost sensitive learning and active learning (Chawla et al., 2002). The third approach is to 
apply a combination of both data-level and algorithm-level approaches to produce the most accurate 
results (He & Garcia, 2008; García & Herrera, 2009). 
 
Within this paper we will be focussing on the data-level approach to create a balanced soil dataset. 
Fairly limited data balancing research has been conducted specific to the field of soil science (Heung 
et al., 2016; Sharififar et al., 2019a; Taghizadeh-Mehrjardi et al., 2019). Recently, Sharififar et al. 
(2019b) analysed the use of random oversampling (ROS) and random undersampling (RUS) methods 
to balance soil datasets using various machine learning models, where majority soil observations were 
down-sampled and minority soil observations up-sampled, preserving proportionality, to deal with the 
issue of imbalanced soil data with 452 profiles in an area of about 12 000 ha. They concluded that 
balancing soil datasets using a combined approach of both RUS and ROS significantly improved MNLR 
accuracy and decreased mapping uncertainty. However, these simplistic random resampling 
techniques potentially increase the likelihood of overfitting by discarding potentially useful observations, 
especially when large differences occur between the number of majority and minority soil classes (Zhu 
et al., 2017). 
 
In an assessment of eight resampling strategies on five of the most-used machine learning algorithms 
on a national scale for Iran (1 648 195 km2) using 7 664 soil observations, the researchers concluded 
the that highest increase in prediction accuracy was achieved using the Synthetic Minority 
Oversampling Technique (SMOTE) (Taghizadeh-Mehrjardi et al., 2019). As the name suggests, 
SMOTE generates synthetic examples of the minority soil classes. SMOTE uses the existing minority 
samples and interpolates between samples and their covariate attributes to generate new samples of 
the specific class (Chawla et al., 2002). Oversampling approaches of the minority soil class 
outperformed under-sampling techniques (Taghizadeh-Mehrjardi et al., 2019). This is because useful 
information, which was obtained by costly, time consuming and labour-intensive soil sampling, in the 
majority soil classes are ignored, leading to the degradation of classifier performance. ROS was also 
shown to provide poor performance results when legacy datasets contained large differences between 
majority and minority soil classes (Peri et al., 2018). ROS creates exact copies of the minority soil 
classes, which leads to a small decision region for the minority soil classes compared to the majority 
soil class and therefore the likelihood of overfitting increases substantially (Chawla et al., 2002; 
Zarinabad et al., 2017). More research is needed on the effects of different balancing techniques on 
different classifiers within the field of digital soil mapping (Sharififar et al., 2019b). 
 
The main aim of this study was to create an accurate hydrological soil map of a macro-scale catchment 
in South Africa using MNLR and legacy soil information. This aim was achieved by providing an 
approach to handle large, spatially-localised legacy soil datasets for digital soil mapping purposes using 
MNLR. The first objective was to address the high spatial localisation and imbalances within the legacy 
soil data available. Localised data was first downscaled to improve the representativeness of 
environmental covariates in the broader legacy soil dataset prior to balancing soil classes. The second 
objective was to analyse the value of the downscaled legacy soil data. Mapping results were compared 
with and without balancing soil classes, as well as between the balanced legacy soil dataset and a 
dataset containing all available soil observations. 
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3.1.3 Materials and methods 

The Sabie-Sand catchment 

The 5 790 km2 Sabie-Sand catchment is in the Mpumalanga province of South Africa (Figure 3.1) and 
forms part of the larger transboundary Incomati river basin. The catchment stretches from the 
Drakensberg escarpment in the west at an altitude of 2 200 meters above sea level (m.a.s.l.) and 
gradually flattens towards the east with an altitude of 150 m.a.s.l. before the Sabie River flows into 
Mozambique. 
 
With a semi-arid warm and hot climate in the east of the catchment and a temperate warm climate in 
the west, a strong rainfall gradient exists, ranging from 1 600 mm in the west to 450 mm in the east. 
Rainfall occurs mainly in the austral summer (November through to March) and normally results from 
convective thunderstorms, although periodic high-intensity rainfall events do occur from cyclones that 
form over the Indian Ocean and track inland, where the orographic effect of the Drakensberg 
escarpment creates severe localised flooding (Kruger et al., 2002). 
 

 
Figure 3.1: The location of the Sabie-Sand catchment. 

The main bioregions of the catchment consist of savanna at lower altitudes and montane grasslands 
and montane forests in the mountainous regions, which have been heavily altered by commercial 
forestry plantations (Mucina & Rutherford, 2006). The area comprises various bedrock lithologies 
including, quartzites, granites, basalts, conglomerates, andesites, gneiss and shales (Council for 
Geoscience, 2007). 
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Soil data 

The legacy soil data of the Sabie-Sand catchment in total amounts to 12 875 soil observations from 
various soil surveys. Among these are 380 observations as part of the national soil survey by the ARC 
(Land Type Survey Staff, 1976-2006), 108 soil observations by an in-field hydropedological survey and 
118 observations from research and consultancy projects by various private and state-owned 
enterprises. However, the majority of soil observations within the catchment originate from a single 
forestry soil survey done by the South African Forestry Company Limited (SAFCOL) where 12 269 soil 
observations were made on 38 000 ha. The total soil observation density of the SAFCOL legacy data 
is 3.4 ha per soil observation compared to the 960 ha per soil observation for the remaining legacy soil 
information within the catchment. The spatial representation (Figure 3.2) of legacy soil observations 
within the catchment illustrates a clear bias in the mountainous (western) section of the catchment, 
visually illustrating the spatially localised nature of the SAFCOL soil dataset. 
 
Due to the large size of the catchment area and large number of soil observations, a wide variety of 
soils occur within the catchment, driven by the differences in soil forming factors (parent material, 
climate, topography, organisms and time) between the afromontane regions and the semi-arid lowveld 
regions of the catchment. This spatial imbalance also results in an imbalanced number of the different 
soil types and therefore mapping classes within the catchment. Using the hydropedological groupings 
of South African soils (Van Tol & Le Roux, 2019) the soils of the Sabie-Sand were divided into six 
hydrological soil types (Table 3.1). 
 

 
Figure 3.2: The spatial distribution of legacy soil datasets within the Sabie-Sand catchment. 
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Table 3.1: The defining characteristics of the hydrological mapping units of the Sabie-Sand 
catchment. 

Hydrological 
mapping unit Soil form 

WRB 
Reference 
Groups 

Number 
of obs. Defining hydrological characteristic 

Recharge 
deep 

Hutton, 
Longtom, 
Kranskop 

Acrisols, 
Nitisols, 
Fluvisols 

11582 

Deep soils without any morphological 
indication of saturation. Vertical flow through 
and out of the profile into the underlying 
bedrock is the dominant flow direction. 

Recharge 
shallow 

Glenrosa, 
Nomanci Leptosols 401 

Shallow soils without any morphological 
indication of saturation. Vertical flow through 
and out of the profile into the underlying 
fractured bedrock is the dominant flow 
direction. 

Responsive 
saturated 

Katspruit, 
Champagne Gleysols 68 

Soils with morphological evidence of long 
periods of saturation promoting the 
generation of overland flow due to saturation 
excess. 

Responsive 
shallow 

Mispah, 
Graskop Leptosols 649 

Shallow soils overlying relatively 
impermeable bedrock. Limited storage 
capacity results in the generation of 
overland flow after rainfall events. 

A/B interflow Estcourt, 
Sterkspruit Solonetz 85 

Duplex soils where the textural discontinuity 
facilitates build-up of water in the topsoil, 
with discharge in a predominantly lateral 
direction. 

Soil/bedrock 
interflow 

Fernwood, 
Cartref Arenosols 173 

Soils overlying relatively impermeable 
bedrock. Hydromorphic properties signify 
temporal build of water on the soil/bedrock 
interface and slow discharge in a 
predominantly lateral direction. 

WRB = World Reference Base for Soil Resources 
 
Recharge deep soils comprise approximately 90% of the total soil samples, recharge shallow soils 3%, 
responsive saturated soils comprise approximately 0.5%, responsive shallow soils 5%, A/B interflow 
soils comprise approximately 0.6% and soil/bedrock interflow soils 1%. 
 
The mountainous soils of the Sabie-Sand are characterised by well-weathered soils being either deep 
apedal soils (Acrisols and Nitisols) or shallow apedal soils (Leptosols) on midslope and hillcrest 
positions depending on the parent material. Alluvial (Fluvisols) and saturated high clay (Gleysols) soils 
are also prominent in footslope and valley-bottom terrain positions depending on upslope environmental 
covariates. 
 
The lowland soils are comparatively far shallower than the mountainous soils, gravellier, being less 
well-weathered and primarily controlled by differences in parent material. These soils show a more 
distinct toposequence with apedal soils (Acrisols and Nitisols) on hillcrest, albic soils (Arenosols) on 
midslope and footslope terrain positions. A small number of duplex soils (Solonetz) are also present on 
footslope and valley-bottom terrain positions. Apedal soils (Nitisols and Fluvisols) are also present on 
valley bottom terrain positions as floodplains form on the major river networks (IUSS Working Group 
WRB, 2015). 
 
The hydropedological grouping of different soil types into six conceptual classes decreases the number 
of soil mapping classes but also creates larger variation between the number of soil observations per 
mapping class and thus further adds to the imbalance within the legacy soil dataset. This is especially 
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true when most of the soil observations are spatially localised as in the Sabie-Sand catchment, where 
the majority soil class (recharge deep, 90%) massively overshadows the smallest minority soil class 
(responsive saturated, 0.5%). Creating a national hydrological soil map would be highly reliant on these 
spatially-localised legacy soil datasets, especially in mountainous regions where the majority of soil 
observations consist of commercial forestry surveys. These detailed surveys would add a substantial 
amount of soil observations to the available soil mapping resources in South Africa. Therefore, 
developing a protocol for handling these localised datasets to improve digital soil mapping accuracy is 
imperative moving forward. 
 
Multinomial logistic regression 

MNLR forms a part of the broader family of generalised linear models and is applied when the target 
variable contains more than two categorical variables. This helps predict the probability of the 
occurrence of each unique soil mapping unit. If a given variable Yi represents the observed soil mapping 
unit at a given observation location, with i=1,…, n and n is the number of soil mapping units within the 
study area (Kempen et al., 2009). In case n equals 2 and Y has outcomes Y1 and Y2. Both the counts 
of Y1 and Y2 therefore follow a binomial distribution. The probability of occurrence of Y1 is 1 and that of 
Y2 is 2. Logistic regression relates probability 1 to a set of predictors, in our case environmental 
covariates, using the logit link function: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋1) = 𝑙𝑙𝑙𝑙 𝜋𝜋1
𝜋𝜋2

= 𝑙𝑙𝑙𝑙 � 𝜋𝜋1
1−𝜋𝜋1

� = 𝑥𝑥′𝛽𝛽  (3.1) 

 
where 𝑥𝑥 is a vector of environmental covariates, and 𝛽𝛽 is a vector of model coefficients that are typically 
estimated by maximum likelihood. Therefore, Equation 3.1 can also be rewritten as: 
 
𝜋𝜋1

1−𝜋𝜋2
= 𝑒𝑒𝑥𝑥𝑒𝑒(𝑥𝑥′𝛽𝛽) = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑙𝑙)  (3.2) 

 
The quotient in Equation 3.2 is referred to as the odds. Equation 3.2 can then be reinterpreted as 
follows: 
 
𝜋𝜋1 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛)

1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛)
  (3.3) 

 
The binomial logistic regression model is then generalised to the multinomial case. Where, there are n 
soil mapping units and also n variables Y1,…, Yn with corresponding probabilities of occurrence 𝜋𝜋1,...𝜋𝜋𝑛𝑛. 
Analogous to binomial logistic regression the odds 𝜋𝜋1/𝜋𝜋𝑛𝑛,…, 𝜋𝜋𝑛𝑛−1/𝜋𝜋𝑛𝑛 are modelled by means of 
exp(𝑙𝑙1),…, exp(𝑙𝑙1−1). From ∑ ⬚𝑛𝑛

𝑖𝑖=1 𝜋𝜋1 it then follows that: 
 

𝜋𝜋𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑙𝑙𝑙𝑙)

𝑒𝑒𝑥𝑥𝑒𝑒(𝑙𝑙1)+𝑒𝑒𝑥𝑥𝑒𝑒(𝑙𝑙1)+...𝑒𝑒𝑥𝑥𝑒𝑒(𝑙𝑙𝑙𝑙)
  (3.4) 

 
where 𝑙𝑙𝑛𝑛= 0. This model ensures that all probabilities are in the interval [0,1] and that the probabilities 
sum to 1. 
 
Covariate data and statistical analysis 

A comprehensive environmental covariate dataset to describe the soil forming factors within the scorpan 
model (McBratney et al., 2003) was required for the MNLR algorithm to predictively map the different 
hydrological soil types of the Sabie-Sand catchment. These covariates were all resampled to a 
resolution of 30 m x 30 m, regardless of their original resolution. 
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Elevation was obtained from a 30 m x 30 m Shuttle Radar Topography Mission (SRTM) Digital Elevation 
Model (DEM; USGS, 2022). The covariates used to train the models included elevation, a 1: 250 000 
geology map (Council for Geoscience, 2007), a broad land type map (Land Type Survey Staff, 1972-
2006), planform curvature, profile curvature, vertical distance to channel network, topographical 
wetness index, climate covariates such as mean annual minimum temperature, mean annual maximum 
temperature, and mean annual precipitation (Schulze, 2007a). Slope, relative slope position, 
multiresolution valley-bottom flatness, multiresolution ridge-top flatness, LS-factor, longitudinal profile, 
flow accumulation index, cross-sectional curvature, convergence index and channel network distance 
were also incorporated. All topographic covariates were developed using the System for Automated 
Geoscientific Analysis (Conrad et al., 2015), from the DEM raster. 
 
Additional spectral covariates were also developed for the Sabie-Sand catchment from Sentinel 2A 
satellite imagery to further differentiate between different soil types. These spectral covariates included 
brightness index, colouration index, redness index, saturation index and Normalised Difference 
Vegetation Index (NDVI) values for both the wet and dry season (Table 3.2; Bannari et al., 1995; Ray 
et al., 2004; Flynn et al., 2019a). 
 
Table 3.2: Spectral bands, spectral covariates and their development (from Flynn et al., 2019a). 

Bands Band origin (μm) Symbol 

Blue 0.490 B 

Green 0.560 G 

Red 0.665 R 

Near infrared (NIR) 0.842 NIR 

Covariates Equation Property 

Brightness index (R2 + G2 + B2)/30.5 Reflectance 

Colouration index (R − G)/(R + G) Colour 

Redness index R2/(B ∗ G3 ) Hematite 

Saturation index (R − B)/(R + B) Spectral slope 

NDVI (NIR − R)/(NIR + R) Chlorophyll 
NDVI = Normalised Difference Vegetation Index 
 
Calibration and validation datasets 

The SAFCOL data was used to create five levels of legacy soil information of which three were created 
using a downscaling approach. The downscaled legacy soil datasets were created using the base R 
software (R Core Team, 2022) in conjunction with the prospectr package for k-means clustering, trained 
on a comprehensive environmental covariate dataset, and the nnet package (Venables & Ripley, 2002) 
for running the MNLR algorithm. 
 
The k-means clustering is a simple unsupervised non-linear clustering algorithm, where the algorithm 
seeks to partition the observations into a pre-specified number of k clusters (Hartigan & Wong, 1979). 
These clusters try to maximise the difference between clusters whilst also minimising the difference 
within clusters using the Euclidean distance between soil observation covariate data. K-means 
clustering is therefore an effective tool to downscale legacy soil data to a specific user-defined number 
of soil observations (number of clusters), while also retaining the most representative soil observations 
within the legacy soil dataset. When downscaling the legacy soil data, we therefore defined the number 
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of clusters (k) within R to be equal to the number of soil observations defined by the predetermined 
observation density (Stevens & Ramirez-Lopez, 2022). 
 
The least detailed level of soil observation was using only the legacy soil information (Legacy) which 
excluded all of the SAFCOL soil data. The most detailed level of soil information included using all 
12 875 available soil observations within the study area (All Observations), regardless of the balance 
or representativeness of soil observations. Observation density was then used to create the downscaled 
SAFCOL soil datasets at a further three levels. The third level of soil information included the legacy 
soil information as well as the SAFCOL data downscaled to the same observation density 
(960ha/observation). Therefore, our spatially localised dataset was downscaled to the same 
observation density as the soil observation density in the rest of the catchment. The fourth and fifth level 
of soil information downscaled the SAFCOL data to 500ha/observation and 100ha/observation in 
addition with the remaining legacy soil data. These observation densities were selected to establish if 
observation density affected the hydrological soil mapping accuracy and to potentially determine how 
many soil observations are required to create an accurate hydrological soil map of a macro-scale 
catchment. 
 
All five levels of soil information were split into a calibration dataset (75%) and validation dataset (25%). 
However, a completely independent validation dataset (152 soil observations) was initially created 
consisting only of legacy soil information which excluded the SAFCOL soil data, which was removed 
from the different calibration datasets prior to creation. This prevented the differences in the 
downscaling procedures from affecting the number of observations within the validation dataset or its 
internal hydrological soil class distribution. 
 
The MNLR algorithm in conjunction with the above-mentioned environmental covariates were then 
applied. The resulting hydrological soil maps were analysed using a confusion matrix as well as a Kappa 
coefficient statistic for both the calibration and validation datasets. How the different downscaled legacy 
soil datasets affected the representation of the larger covariate soil dataset was tested using a Welsh’s 
t-test analysing the mean annual precipitation, slope, topographic wetness index and NDVI (dry 
season), with a p-value of 0.05 being used as a threshold for significant difference between the 
datasets. These four select covariates each represent different soil forming factors, giving an indication 
of the representativeness of legacy soil datasets. The Welsh’s t-test compares the two means between 
datasets, the basic null hypothesis is that the means are equal. The QQ-plot was constructed by 
determining the (k/n + 1)-th quantiles of the large dataset, (where k = 1, ...n and n is the number of 
observations of the legacy soil dataset) and plotting those quantiles against the values of the 
observation’s covariates of the legacy soil datasets, sorted from small to large. The closer the values 
of the QQ-plots to the identity line (x=y), the more representative the legacy soil dataset is of 
environmental covariates. 
 
However, the MNLR algorithm requires a balanced soil mapping class dataset rather than one balanced 
by the respective environmental covariates. The most representative legacy soil dataset therefore still 
needed to be balanced by hydrological soil type and assessed. 
 
As under-sampling has shown to decrease classifier performance by losing potentially useful 
information of the majority soil class and because the majority soil class has already been downscaled, 
only an oversampling approach was used to balance soil classes and compare soil mapping accuracy. 
However, because ROS causes overfitting when dealing with large differences between majority and 
minority soil classes, which still exists after downscaling, this approach would be nonsensical 
(Taghizadeh-Mehrjardi et al., 2019). Based on the available literature, the SMOTE technique to 
generate synthetic data of the minority soil classes was selected to balance hydropedological soil 
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classes. This technique was applied for both the most representative and best performing legacy soil 
dataset and all available soil observations using the smotefamily package (He et al., 2008). This allows 
us to compare if the downscaling of spatially localised soil observations for covariate representatives 
adds value to the digital soil mapping process, or if all legacy soil observations should simply be 
balanced using SMOTE for the best results. 
 
The two SMOTE-balanced legacy soil datasets were then also applied within the MNLR algorithm to 
create a hydrological soil map of the Sabie-Sand catchment. The resulting hydrological soil maps were 
analysed using the same validation dataset and statistical measurements (confusion matrix and Kappa 
coefficient). 
 
3.1.4 Results and discussion 

Downscaling legacy soil data 

QQ-plots illustrate select environmental covariates of the different legacy soil datasets and the 
corresponding covariates of the entire catchment (Figure 3.3). The QQ-plot of the mean annual 
precipitation (MAP) covariate illustrates the observation bias of the All Observations and 
100ha/observation datasets for values ranging from 1 200-1 600 mm per annum, resulting from the 
localised SAFCOL data within the higher rainfall regions of the catchment. 
 
The 500ha/observation, 960ha/observation and Legacy datasets are all more representative, with the 
500ha/observation and 960ha/observation datasets yielding the most representative results for MAP 
values. The same trend can be observed when analysing the slope, where the 500ha/observation and 
960ha/observation datasets yielded the most accurate representation of slope values across the 
catchment. Due to the bias of the legacy datasets towards the mountainous regions of the catchment 
where large slope values are present, the All Observations and 100ha/observation datasets are biased 
to higher slope values, whereas the Legacy soil dataset and 960ha/observation are slightly biased to 
low slope values common in the east of the catchment. 
 
For topographical wetness index values, all datasets excluding the All Observations dataset yielded 
accurate representations of the specific environmental covariate for the landscape. The All 
Observations dataset remains biased to low topographic wetness index values, which is due to the fact 
that these observations were focussed on upslope terrain positions because proportionately limited 
SAFCOL observations were made in valley-bottom positions. 
 
The 500ha/observation yielded the most accurate representation of catchment covariate values within 
the NDVI QQ-plot, which once again followed the same trend where both the All Observations and 
100ha/observation datasets were biased to high NDVI values, indicative of the evergreen forestry 
activities in the mountainous areas in the catchment. The Legacy and 960ha/observation were slightly 
biased toward low NDVI values, indicative of the lack of vegetation in the savanna dry season. 
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Figure 3.3: The QQ-plots of the different legacy soil datasets and select environmental covariates. 
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Table 3.3 illustrates the results of a Welsh’s t-test between the MAP, slope, Topographic Wetness Index 
(TWI) and NDVI values (dry) of the different soil datasets and the corresponding catchment 
environmental covariate. 

Table 3.3: The Welsh’s t-test of select environmental covariates. 

Covariate Legacy dataset 
Welsh’s t-test 

p-value t-value Mean soil 
 

Mean covariate 
 

MAP 

Legacy <0.002 -4.09 758.52 

800.43 

All Observations <0.002 315.42 1233.34 

960ha/Observation 0.258 -1.11 788.36 

500ha/Observation 0.369 0.90 810.25 

100ha/Observation <0.002 14.82 951.59 

Slope 

Legacy <0.002 -8.06 4.15 

5.51 

All Observations <0.002 101.54 11.84 

960ha/Observation <0.002 -3.94 4.75 

500ha/Observation 0.034 -2.07 5.09 

100ha/Observation <0.002 8.34 7.35 

TWI 

Legacy 0.008 2.63 8.07 

7.82 

All Observations <0.002 -61.48 6.75 

960ha/Observation 0.094 1.68 7.98 

500ha/Observation 0.141 1.48 7.96 

100ha/Observation <0.002 -3.25 7.57 

NDVI (dry) 

Legacy <0.002 -5.05 0.24 

0.26 

All Observations <0.002 176.75 0.48 

960ha/Observation 0.003 -2.96 0.25 

500ha/Observation 0.300 -1.03 0.26 

100ha/Observation <0.002 12.25 0.33 
MAP = Mean Annual Precipitation; TWI = Topographic Wetness Index; NDVI = Normalised Difference Vegetation Index 
 
With all p-values below 0.05 the means of the Legacy, All Observations and the 100ha/observation soil 
datasets were significantly different from catchment environmental covariates. This is to be expected 
for catchments the size of the Sabie-Sand (5 790 km2) where large ranges of environmental covariates 
exist, and legacy soil datasets are relatively small in comparison. However, the means of the 
960ha/observation were not significantly different for mean annual precipitation and topographical 
wetness index (Table 3.3). The means of the 500ha/observation were not significantly different for all 
four catchment covariates. 
 
The t-value, which measures the size of the difference of the observation data relative to the variation 
in our catchment data, where t-values closest to 0 indicate the lowest variation between the catchment 
covariates and soil observations covariates, improves as the soil data is downscaled due to the 
improved representation of catchment environmental covariates. 
 
The QQ-plots and Welsh’s t-test results illustrate the improved catchment covariate representation 
which can be achieved using a downscaling approach on localised legacy soil information. The 
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500ha/observation and 960ha/observation datasets provided a substantially improved representation 
of catchment environmental covariates compared to the Legacy, All Observations, and 
100ha/observation datasets. In particular, the 500ha/observation dataset provided the most accurate 
representation of environmental covariates within the Sabie-Sand catchment. 
 
Digital soil mapping 

Table 3.4 illustrates the mapping accuracy of the five different legacy datasets in relation to their 
calibration and validation datasets. Focussing on the calibration datasets, the best performing was the 
Legacy soil dataset with a confusion matrix accuracy of 72% and Kappa coefficient of 0.52, whereas 
using All Observations resulted in the highest confusion matrix accuracy (88%) but the lowest Kappa 
coefficient (0.21). The three downscaled approaches provided modest calibration accuracy results with 
960ha/observation and 500ha/observation yielding confusion matrix values and Kappa coefficient 
(Table 3.4). However, the 100ha/observation dataset yielded the east accurate calibration dataset 
within the different downscaling approaches. Although calibration accuracy should not be considered 
when assessing mapping accuracy, insight can be gained on how the models learned from the 
calibration legacy soil data. 
 
Table 3.4: The statistical accuracy of the legacy datasets. 

Legacy dataset Dataset used Point accuracy (%) Kappa coefficient 

Legacy 
Calibration 72 0.52 

Validation 50 0.34 

All Observations 
Calibration 88 0.21 

Validation 46 0.28 

960ha/observation 
Calibration 50 0.48 

Validation 48 0.42 

500ha/observation 
Calibration 64 0.47 

Validation 62 0.46 

100ha/observation 
Calibration 63 0.27 

Validation 54 0.33 
 
When analysing the validation results of the five levels of soil information, the 500ha/observation dataset 
yielded the most accurate hydrological soil map with a confusion matrix value of 62% and Kappa 
coefficient value of 0.46, compared to the two control datasets (Legacy and All Observations; Table 
3.4). Both the 960ha/observation and 500ha/observation datasets represent a moderate strength of 
agreement with reality, outperforming both control datasets which represent a fair agreement with 
reality. The 100ha/observation only slightly outperformed the All Observations dataset also indicating a 
fair agreement with reality (Landis & Koch, 1977). 
 
The 500ha/observation legacy soil dataset yielded the most accurate mapping results (Table 3.4) as 
well as being the most representative legacy soil dataset for the selected environmental covariates. 
This dataset was therefore selected for further balancing and comparison using the SMOTE technique 
to balance soil mapping classes. 
 
The All Observations-SMOTE dataset yielded a validation point accuracy of 53% and a Kappa 
coefficient of 0.47 (Figure 3.4a), which is similar to results achieved by the 500ha/observation dataset 
prior to SMOTE balancing and represents a moderate strength of agreement with reality. Although the 
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All Observations-SMOTE hydrological soil map provided relatively accurate distributions of dominant 
hydrological soil types within the SAFCOL dataset such as recharge deep, recharge shallow, 
responsive shallow and responsive saturated, the ability to map the hydrological soils outside of these 
areas was poor. Especially the prediction of A/B interflow soils, where the MNLR algorithm vastly 
overestimated its presence within the catchment area to the detriment of recharge shallow and 
soil/bedrock interflow soils (Figure 3.4a) in the lowveld areas of the catchment. 
 
This overprediction is most likely due to the specific nature of A/B interflow soils relative to the other 
hydrological soil types, where a limited range of soil forming factors result in these very specific soils 
compared to a far wider range resulting in soil/bedrock interflow and recharge shallow soils. Therefore, 
when SMOTE generated a substantial amount of synthetic data from the existing A/B interflow data, 
the resulting data was comparative to random oversampling with a small region of specific examples 
being created, which led to overfitting. 
 
The 500ha/observation-SMOTE map (Figure 3.4b) yielded a validation point accuracy of 72% and a 
Kappa coefficient of 0.60, which was the most accurate hydrological soil map of the Sabie-Sand 
catchment and resulted in a substantial agreement with reality (Landis & Koch, 1977). 
 
These results are comparable with the bulk of the other hydrological soil maps created in South Africa, 
such as with a point accuracy of 69% and Kappa coefficient value of 0.59 (Van Zijl et al., 2019); point 
accuracy of 69% and Kappa coefficient value of 0.59 (Van Zijl et al., 2012); point accuracy of 88% and 
Kappa coefficient value of 0.82 (Van Zijl et al., 2020), and a point accuracy of 74% and Kappa coefficient 
of 0.68 (Smit & Van Tol, 2022). The results are also comparable to other digital soil mapping projects 
globally, such as a point accuracy of 69% (MacMillan et al., 2010) and 76% (Zhu et al., 2008). 
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Figure 3.4: The hydrological soil types of (a) All Observations-SMOTE and (b) 500 ha/observation-
SMOTE maps and their accompanying validation accuracy. 

 
The confusion matrix for the All Observations-SMOTE hydrological soil map (Table 3.5) indicated that 
not all the soil classes were sufficiently mapped, with user’s accuracy below 50% for recharge shallow, 
responsive shallow and soil/bedrock interflow classes. In general, the producer's mapping accuracy 
performed slightly better with only A/B interflow soils yielding an accuracy value below 50%. 
  



HYDROSOIL 

33 

Table 3.5: Confusion matrix of the All Observations-SMOTE hydrological soil map. 

Mapping unit 
User accuracy 

A/B 
interflow 

Recharge 
deep 

Recharge 
shallow 

Responsive 
saturated 

Responsive 
shallow 

Soil/bedrock 
interflow Correct % 

Pr
od

uc
er

's
 a

cc
ur

ac
y 

A/B interflow 23 14 6 1 4 10 23 40 

Recharge 
deep 2 50 4 1 1 3 50 82 

Recharge 
shallow 0 2 7 0 1 0 7 70 

Responsive 
saturated 0 1 2 5 0 0 5 62 

Responsive 
shallow 0 1 0 0 4 0 4 80 

Soil/bedrock 
interflow 0 5 0 0 0 5 5 50 

Correct 23 50 7 5 4 5 62  

% 92 69 37 71 40 28   

 
The confusion matrix for the 500ha/observations-SMOTE hydrological soil map (Table 3.6) indicated 
that all the soil classes were sufficiently mapped, with all the user’s and producer’s accuracies above 
50%. In general, mapping accuracy decreased with decreased validation observations as seen with the 
57% user’s accuracy of responsive saturated soils where only seven observations were present 
compared to the 84% user’s accuracy of recharge deep soils where 73 observations were present. 
 
Table 3.6: Confusion matrix of the 500ha/observations-SMOTE hydrological soil map. 

Mapping unit 
User accuracy 

A/B 
interflow 

Recharge 
deep 

Recharge 
shallow 

Responsive 
saturated 

Responsive 
shallow 

Soil/bedrock 
interflow Correct % 

Pr
od

uc
er

's
 a

cc
ur

ac
y  

A/B interflow 15 3 1 0 0 1 15 75 

Recharge 
deep 5 61 4 2 3 5 61 76 

Recharge 
shallow 3 2 14 1 1 2 14 61 

Responsive 
saturated 0 1 0 4 0 0 4 80 

Responsive 
shallow 2 1 0 0 6 0 6 67 

Soil/bedrock 
interflow 0 5 0 0 0 10 10 67 

Correct 25 73 19 7 10 18 72  

% 15 61 14 4 6 10   

 
The 500ha/observation-SMOTE hydrological soil map (Figure 3.4b) contains a distinct toposequence 
in the mountainous and lowland areas within the catchment. In the mountainous regions, responsive 
shallow soils dominate the steepest of slopes. Recharge shallow soils also occur on the hillcrest terrain 
positions on the highest peaks where overland flow and relatively quick recharge conditions are the 
dominant hydrological processes. This could  potentially be based on differences in parent material 
between soil classes. The less steep midslope and footslope terrain positions are dominated by 
recharge deep soils where vertical drainage of water through the soil profile is the dominant hydrological 
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response. This vertical drainage is most likely followed up by the lateral movement of water within the 
shallow groundwater aquifer. 
 
The deep soils resulted from the processes of illuviation and colluviation, where the clayey material has 
been predominantly removed from midslope positions, with colluvial deposits forming at footslope 
terrain positions. The valley-bottom terrain positions are primarily dominated by responsive saturated 
soils typical of riparian and wetland areas, where saturation excess leads to the overland flow of water 
on top of the soil surface. These soils most likely originate due to the process of eluviation which results 
in the addition of clays from upslope terrain positions to these soils, expressed as the gleyed subsoils 
clay rich of these terrain positions. 
 
The lowland hillcrest and midslope terrain positions are dominated by soil/bedrock interflow and 
recharge shallow soils where the lateral movement of water at the soil/bedrock interface (more prevalent 
in the east and southeast) and vertical drainage to the shallow aquifer (more prevalent in the northwest 
and west) are the dominant hydrological responses. A/B interflow soils occur on footslope positions 
where the dominant hydrological process is the lateral movement of water at the topsoil/subsoil interface 
where the textural discontinuity between soil horizons lead to the build-up and lateral movement of 
water through the soil profile. These soils were created by the eluviation of clays from the recharge 
shallow and soil/bedrock interflow upslope positions. Valley-bottom terrain positions are dominated by 
a mixture of recharge deep, due to sandy floodplains on the major river networks forming during periodic 
flooding caused by cyclone events, and responsive saturated soils on the valley bottom positions which 
are not exposed to the same periodic flooding. 
 
The value of downscaling and balancing legacy soil data 

In South Africa, a large volume of available legacy soil data exists, which remains largely untapped 
within commercial and semi-commercial sources that have not been freely available in the past 
(Paterson et al., 2015). However, these sources have become more frequently available in recent years 
by the improved cooperation between various public and private sector stakeholders as seen with the 
acquisition of the SAFCOL legacy soil dataset. The opportunity to add substantial amounts of additional 
spatially localised legacy soil data for use in digital soil mapping across South Africa should also 
coincide with research regarding how best to apply these datasets for digital soil mapping purposes. 
 
The 500ha/observation downscaled dataset statistically improved the existing legacy soil dataset and 
provided the best representation of environmental covariates within the catchment, resulting in 
improved mapping accuracy prior to further balancing. Therefore, the downscaling of spatially localised 
legacy soil information to improve environmental covariate representation is an effective tool to improve 
the representation of legacy soil datasets. However, these results only consider environmental 
covariate representation and not necessarily the representativeness of the minority soil classes, which 
was why SMOTE was still required to improve the representation of the minority soil classes. 
 
However, simply applying SMOTE balancing of mapping units using all available soil information still 
provided comparative results when evaluating point accuracy and Kappa coefficient values. When 
balancing soil classes using SMOTE was applied to our best representative legacy soil dataset, the 
resulting hydrological soil mapping accuracy was significantly improved compared to using only SMOTE 
balancing on all available soil information. These improved results using SMOTE are in accordance 
with results from others (Taghizadeh-Mehrjardi et al., 2019; Chawla et al., 2002; Tantithamthavorn et 
al., 2018). The value of downscaling spatially localised legacy soil information therefore must coincide 
with additional class balancing when using MNLR. These results also reaffirm the importance of 
balancing legacy soil information for mapping units across the entire catchment area because 
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imbalanced data affects the predictive ability of the MNLR algorithm. Our results confirm the ability of 
the SMOTE resampling technique to handle major class imbalances. 
 
However, simply finding and adding additional highly imbalanced legacy soil data and balancing the 
minority soil classes using SMOTE did not improve mapping accuracy using MNLR compared to the 
best performing environmental covariate balanced map. Therefore, there is a limit to the capability of 
SMOTE for resampling and care should be taken when applying synthetic data generation techniques 
to balance legacy soil data. Emphasis should remain on using a representative legacy soil dataset for 
digital soil mapping purposes. 
 
Sharififar et al. (2019b) did not encounter this problem because the researchers collected soil samples 
from a grid spacing of 500 m across their entire study area of 12 000 ha, meaning that environmental 
covariate representation of soil samples was guaranteed. However, as the size of the study area 
increases, grid sampling becomes too costly and time consuming, where legacy soil datasets are not 
necessarily representative of environmental covariates. Taghizadeh-Mehrjardi et al. (2019) used the 
national soil database of Iran consisting of 7 664 samples, which was created using stratified random 
sampling (~87%), grid sampling (~8%) and the conditioned latin hypercube sampling approach (~5%), 
with the assumption being that these samples are representative of the soils and environmental 
covariates of Iran. However, the readily available soil observations in the national soil database of South 
Africa (Land Type Survey Staff, 1976-2006) amounts to 2 500 modal profile observations, less than half 
of that of Iran. This study therefore provides a relevant protocol to use highly spatially localised legacy 
soil datasets to improve accuracy of digital soil mapping by downscaling and adding additional soil 
observations that improve overall representation and balance of environmental covariates data within 
the legacy soil dataset. 
 
Therefore, downscaling highly spatially localised legacy soil data using k-means clustering for improving 
environmental covariate representation is an effective method to improve accuracy of digital soil 
mapping . Our best performing hydrological soil map thus more accurately represents the dominant 
hydrological processes throughout the Sabie-Sand catchment, than the readily available soil 
information in South Africa. An improved representation of internal catchment processes could hold the 
key to improved climate- and land-use change scenario analyses, and improved water resource 
management practices at catchment scale due to the fact that the major hydrological processes are 
better understood both spatially and temporally. This approach could potentially aid in the mapping of 
the hydrological soils for macro-scale catchments, by optimally using large, spatially localised, 
imbalanced legacy soil datasets, such as soil surveys within the forestry, mining, and agricultural 
sectors. The approach may be particularly applicable in South Africa where large amounts of spatially 
localised legacy soil information exists within large scale mapping projects, such as creating a 
hydrological soil map of South Africa. 
 
Balancing spatially localised legacy soil datasets for use in large scale digital soil mapping extends 
beyond merely downscaling and upscaling soil observations of the majority and minority soil classes. 
The representativeness of soil observations within the catchment environmental covariates are 
measurable and are indicative of how accurate the resulting soil maps should be. Downscaling highly 
spatially localised legacy soil observations should strive to improve catchment representation and is 
also easily repeatable across soil datasets of various sizes and various resolutions. 
 
A problem in dealing with spatially localised legacy soil observations is that a comparatively small 
validation dataset is used to validate mapping results. In this study only 152 observations were used 
which creates further uncertainty regarding the accuracy of minority soil classes within the different 
hydrological soil maps, as limited observations are available to validate the minority soil classes 
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(Sharififar et al., 2019b). Future research should focus on different balancing approaches. At the data 
level, different upscaling and downscaling approaches across different catchment sizes with different 
imbalanced legacy soil datasets preferably with larger validation datasets should be applied. Research 
should also be conducted at the algorithm level, where algorithms specifically developed to handle class 
imbalanced datasets, such as boosting algorithms, should also be considered as viable alternatives to 
well-established digital soil mapping algorithms. Recently, using the algorithm-level approach to deal 
with imbalance soil data revealed that a one-class support vector machine combined with multi-class 
classification yielded the most accurate soil map and adequately represented the minority soil class 
(Sharififar & Sarmadian, 2022). Lastly, a combination of these approaches should also be researched 
once the best approaches of each level have been firmly established in the field of soil science. 
 
3.1.5 Conclusions 

An accurate hydrological soil map of the macro-scale Sabie-Sand catchment was created using 
machine learning-based digital soil mapping and legacy soil information. The downscaling of spatially 
localised legacy soil datasets to improve the representation of environmental covariates was applied 
using k-means clustering, where the 500ha/observation dataset resulted in the best improved 
representation of catchment environmental covariates. However, the improved catchment 
representation does not necessarily result in improved mapping accuracy, especially when dealing with 
imbalanced soil mapping classes. Further balancing the imbalanced soil classes of the 
500ha/observation dataset using SMOTE, significantly improved mapping accuracy compared to using 
SMOTE on all available soil information. 
 
Therefore, downscaling spatially localised legacy soil information is an effective tool to improve legacy 
soil data covariate balance and representation which leads to improved accuracy of digital soil mapping. 
This approach is of value where large spatially localised datasets exist. Our main recommendation 
would be to further test the use of downscaling spatially localised legacy soil information to improve 
digital soil mapping accuracy across different catchment sizes with different legacy soil datasets. 
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3.2 EXAMINING THE VALUE OF HYDROPEDOLOGICAL INFORMATION ON HYDROLOGICAL 
MODELLING AT DIFFERENT SCALES IN THE SABIE CATCHMENT, SOUTH AFRICA 

3.2.1 Abstract 

Detailed soil information is increasingly sought after for catchment-scale hydrological modelling to better 
understand the soil-water interactions at a landscape level. In South Africa, 8% of the surface area is 
responsible for 50% of the mean annual runoff. Thus, understanding the soil-water dynamics in these 
catchments is imperative to future water resource management. In this study, the value of 
hydropedological information is tested by comparing a detailed hydropedological map based on in-field 
soil information to the best readily available soil information at five different catchment sizes (48 km2, 
56 km2, 174 km2, 674 km2 and 2 421 km2) using the SWAT+ model in the Sabie catchment, South 
Africa. The aim was to determine the value of hydropedological information at different scales as well 
as illustrating the value of hydropedology as ‘soft data’ to improve hydrological process representation. 
Better hydropedological information significantly improved long-term streamflow simulations at all 
catchment sizes, except for the largest catchment (2 421 km2). It is assumed that the resulting improved 
streamflow simulations are a direct result of the improved hydrological process representation achieved 
by the hydropedological information. Here we argue that hydropedological information should form an 
important ‘soft data’ tool to better understand and simulate different hydrological processes. 
 
3.2.2 Introduction 

One of the modern challenges related to water resource management is understanding and 
representing soil-water interactions within a landscape-scale context (Kahmen et al., 2005; Smith, 2014; 
Zhang et al., 2015; Wei et al., 2016). With both soil and water being fundamental components of the 
hydrological processes within a catchment, understanding these processes is imperative to 
understanding how a catchment responds to different land-use management and climate change 
regimes (Bouma, 2016). Therefore, accurate soil information, especially soil hydraulic properties, are 
an important input parameter into physically-based hydrological models (Worqlul et al., 2018). The 
interdisciplinary field of hydropedology (Lin, 2003) includes the fields of hydrology, pedology and soil 
physics and enables the study of soil-water dynamics at various scales (Lin et al., 2005). Hydropedology 
has been particularly applicable in hydrological modelling as it provides a more detailed spatial 
understanding of soil-water interactions by improving the accuracy of internal catchment hydrological 
processes such as infiltration, runoff, lateral flow, percolation, return flow and evapotranspiration at 
different scales within greatly varying catchments (Bryant et al., 2006; Me et al., 2015). 
 
By combining modern techniques for digital soil mapping (McBratney et al., 2003) with hydropedological 
insight (Lin et al., 2006; Van Tol et al., 2021a), soil scientists can now produce detailed large-scale 
hydrological soil datasets for modelling purposes (Julich et al.,2012; Van Tol et al., 2015; Wahren et 
al., 2016; Van Zijl et al., 2020; Van Tol & Van Zijl, 2022). Several studies have indicated that improved 
soil information does indeed improve hydrological modelling efficiency (Romanowicz et al., 2005; Bossa 
et al., 2012; Diek et al., 2014; Smit & Van Tol, 2022). A notable instance is the utilisation of the Soil 
Land Inference Model (SoLIM) to produce a more detailed soil map in a catchment with limited data in 
north-central Portugal (Wahren et al., 2016). The refined soil map yielded a 7% enhancement in 
prediction accuracy compared to traditional soil data, and simultaneously, it contributed to a reduction 
in parameter uncertainty. 
 
Detailed hydropedological information has also been applied widely in South Africa. For example, 
hydrological soil information applied to three different catchment sizes (640 km2, 550 km2, 54 km2) in 
an urbanised catchment improved modelling accuracy at all three catchment sizes when compared to 
readily available soil information (Van Tol et al., 2021a). Although long-term streamflow simulations 
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were similar using hydropedological information compared to readily available soil information, 
hydropedological information substantially improved the simulation of soil hydrological processes (Smit 
& Van Tol, 2022). These results also indicate that accurate streamflow simulations do not necessarily 
mean accurate internal hydrological processes. Hydropedological insight and measured hydraulic 
properties substantially improved lateral flow simulations in a mountainous catchment of South Africa 
(Harrison et al., 2022). However, others maintain that the statistically small modelling improvements do 
not necessarily justify the cost and time to gather the improved soil information, or that improved soil 
information does not necessarily lead to more accurate hydrological modelling (Geza & McCray, 2008; 
Chen et al., 2016). 
 
The value of hydropedological information transcends its role in precisely modelling long-term 
streamflow predictions. There is an argument that hydropedological information can serve as a powerful 
‘soft data’ tool, particularly in basins lacking reliable streamflow data (Seibert & McDonnell, 2002). The 
term ‘soft data’ in hydrological modelling refers to information that may not be directly measured but 
can be linked to hydrological processes (Winsemius et al., 2009; Van Tol et al., 2021b). 
 
In this study, the primary objective was to evaluate the impact of hydropedological information on 
process-based hydrological modelling. This was achieved by statistically comparing long-term 
streamflow modelling accuracy using two levels of soil information, namely, hydropedological 
information and South Africa’s most readily available soil information. The focus was on the direct 
contribution of soil information on modelling efficiency and therefore we did not calibrate the model 
through extensive automated calibration techniques to favour one model, but rather kept all inputs 
constant except for the soil information between modelling simulations and essentially treating the 
catchment as ungauged. 
 
3.2.3 Materials and methods 

The Sabie catchment 

The 2 421 km2 Sabie catchment is located in the Mpumalanga province of South Africa (Figure 3.5) and 
forms part of the larger transboundary Incomati River basin. The catchment stretches from the 
Drakensberg escarpment in the west at an altitude of 2 218 m.a.s.l. and gradually flattens towards the 
east with an altitude of 250 m.a.s.l. as the Sabie River continues to flow eastward into Mozambique. 
The ambient geology is predominantly crystalline (igneous and metamorphic) and comprises various 
ranges of bedrock lithologies, primarily quartzites, granites, andesites and gneiss formations (Council 
for Geoscience, 2007). 
 
With a semi-arid warm and hot climate in the east of the catchment and a temperate warm climate in 
the west, a strong rainfall gradient exists ranging from 1 600 mm in the west to 550 mm in the east. 
Rainfall occurs mainly in the austral summer and normally results from convective thunderstorms, 
although periodic high-intensity rainfall events do occur from cyclones that form over the Indian Ocean 
and track inland, where the orographic effect of the Drakensberg escarpment creates severe localised 
flooding (Kruger et al., 2002). The main bioregions of the catchment consist of savanna at lower 
altitudes and montane grasslands and montane forests in the mountainous regions, which have been 
heavily altered by commercial forestry plantations (Mucina & Rutherford, 2006). 
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Figure 3.5: The Sabie catchment, including elevation, weirs and climate stations. 

Model, inputs and setup 

The SWAT (Soil and Water Assessment Tool) model is a process-based, semi-distributed catchment 
model which is widely used to simulate water quality and quantity predictions, and assess the impacts 
of physical changes such as land use and climate changes in catchments across the globe (Neitsch et 
al., 2011). SWAT+ is an enhanced iteration of the renowned SWAT model (Arnold et al., 1998; Bieger 
et al., 2017). The QSWAT+ (v. 2.3) plugin was used to set up the catchment. As an initial step, the 
model partitions the catchment into hydrological response units (HRUs), with each HRU representing a 
homogenous area in terms of soil, land use and slope. The model then calculates a range of water 
balance components for each individual HRU, including overland flow, infiltration, lateral flow, 
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percolation, return flow, evapotranspiration and discharge to the stream. The model was run from the 
start of January 2000 until the end of December 2019. The model warm-up period lasted for the first 
four years, followed by a 16-year validation period. 
 
Daily rainfall data was obtained from four climate stations, namely, Sabie, Dunnottar at MTO Forestry, 
Rietspruit near God’s Window and at Skukuza. Minimum and maximum temperatures were obtained 
from two climate stations, namely, Skukuza and Graskop. All data was received curtesy of the South 
African Weather Service. Daily solar radiation, relative humidity and wind speed were obtained from the 
Climate Forecast System Reanalysis which was done by the National Center for Environmental 
Prediction (Saha et al., 2015). 
 
The DEM was obtained from a 30 m x 30 m SRTM (USGS, 2022). The land-cover data (Figure 3.6) 
were acquired from the 2013/14 South African National Land Cover Map (GeoTerra Image, 2015). For 
the land cover input, predefined SWAT values associated with various land-use classes were utilised. 
Additionally, dams identified in the land cover were integrated into the model setup, designated as 
'reservoirs' and assigned default values. 
 

 
Figure 3.6: The land uses within the Sabie catchment as demarcated from the 2013/2014 National 
Land Cover Map. 

Both model runs were left uncalibrated to ensure that differences between model runs were only due 
to differences in soil input information, so that direct comparisons between soil datasets could be made. 
This was done since any form of manual calibration would benefit either one or the other in predicting 
streamflow accuracy because of differences in how each model simulated different hydrological 
processes. This in essence meant that the catchment was treated as ungauged for the duration of the 
study. 
 
Soil information 

Soil properties govern the movement of water and air through the soil profile and have a major impact 
on the cycling of water, sediment and nutrients within each HRU. SWAT+ requires both the spatial soil 
mapping unit as well as physical properties for each individual soil horizon with the unit, such as depth 
to bottom of soil layer, bulk density, available water capacity, saturated hydraulic conductivity, organic 
carbon content, clay, silt, sand, and rock fragment contents, as well as moist soil albedo and the soil 
erodibility factor. 
 
The Land Type database was developed between 1972 and 2002 and covers the entire country of 
South Africa at a 1:250 000 scale. A Land Type polygon is defined as “a homogeneous, unique 
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combination of terrain type, soil pattern and macroclimate zone.” The Land Type survey identified 7 070 
unique Land Type polygons based on some 400 000 soil observations (approximately 1 observation 
per 300 ha) (Paterson et al., 2015). The Land Type database has already been converted to a readily 
available spatial soil database specifically for use within the SWAT model (Le Roux et al., 2023). In the 
Sabie catchment, there are seven broad Land Type groups which could be divided into 42 different 
individual Land Types each with their own set of hydraulic properties (Figure 3.7; Table 3.7). 
 

 
Figure 3.7: The Land Types present within the Sabie catchment (Land Type Survey Staff, 1972-
2002). 
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Table 3.7: The main hydraulic properties of the Land Type mapping units (means are followed by 
minimum and maximum values in brackets). 

Broad 
Land 
Types 

Horizon Hydro-
group 

Depth Bd AWC Ksat OC Clay Silt Sand 

mm g/cm3 mm/mm mm/h % % % % 

Ae 
A 

A 
270 

(230,300) 
1.45 

(1.40,1.50) 
0.085 

(0.08,0.094) 
145 

(13,210) 0.7 8.3 13.3 78.3 

B 550 
(450-670) 

1.45 
(1.40,1.50) 

0.086 
(0.68,0.09) 

85 
(13,210) 0.1 9.3 13.3 77.3 

Ac 
A 

A 
270 

(230,300) 
1.45 

(1.40,1.50) 
0.087 

(0.085,0.089) 
146 

(13,210) 0.5 6.2 12.5 81.3 

B 500 
(400-700) 

1.45 
(1.40,1.50) 

0.097 
(0.74,0.11) 

135 
(13,210) 0.1 6.6 12.5 80.9 

Ab 
A 

A 
290 

(240,300) 
1.45 

(1.40,1.50) 
0.089 

(0.086,0.094) 
147 

(13,210) 0.8 9.2 13.3 77.5 

B 500 
(450-650) 

1.45 
(1.40,1.50) 

0.093 
(0.68,0.10) 

85 
(13,210) 0.1 9.4 13.3 77.3 

Fb 
A 

C 
270 

(270,270) 
1.50 

(1.40,1.60) 
0.074 

(0.068,0.080) 
9 

(4.3,13) 1.0 19.3 17.5 63.2 

B 550 
(450-670) 

1.45 
(1.40,1.50) 

0.056 
(0.48,0.09) 

9 
(4.3,13) 0.2 19.3 17.5 63.2 

Fa 
A 

C 
280 

(270,290) 
1.50 

(1.4,1.60) 
0.08 

(0.074,0.090) 
35 

(13,210) 0.9 15.3 16.3 68.5 

B 300 
(300,300) 

1.45 
(1.40,1.50) 

0.07 
(0.68,0.09) 

35 
(13,61) 0.1 15.3 16.3 68.5 

Hb 
A 

B 
250 

(210,300) 
1.45 

(1.40,1.50) 
0.076 

(0.068,0.090) 
145 

(13,210) 0.5 11.5 14.7 73.7 

B 300 (300-
300) 

1.45 
(1.40,1.50) 

0.076 
(0.68,0.094) 

50 
(13,210) 0.1 11.5 14.7 73.7 

Ib 
A 

D 
290 

(290,290) 
1.45 

(1.40,1.50) 
0.088 

(0.086,0.090) 
110 

(13,210) 0.4 11.0 15.0 74.0 

B 375 
(300-450) 

1.45 
(1.40,1.50) 

0.085 
(0.68,0.09) 

40 
(13,61) 0.1 11.0 15.0 74.0 

Bd = bulk density; AWC = Available Water Capacity; Ksat = saturated hydraulic conductivity; OC = organic carbon 
 
The second soil dataset was the hydropedological dataset (HYDROSOIL) developed using modern 
techniques for digital soil mapping, an in-field hydropedological soil survey and legacy soil information. 
Details on the digital soil mapping approach are described in Section 3.1 (Smit et al., 2023a) but briefly, 
we developed an extensive environmental covariate dataset which included, geology, terrain variables 
such as planform curvature, profile curvature, etc., climate variables such as mean annual minimum 
temperature, mean annual maximum temperature, etc., and lastly spectral covariates such as 
brightness index, colouration index, redness index, saturation index and NDVI values for both the wet 
and dry seasons. A massive number of legacy soil observations (n = 12 875) were obtained from various 
legacy soil datasets which were reclassified in accordance with the hydropedological groupings of South 
African soils (Table 3.8) (Van Tol & Le Roux, 2019). A further 108 soil observations were made by hand 
auger during an in-field hydropedological survey which underwent the same reclassification. 
 
Table 3.8: The characteristics of the hydrological mapping units of the Sabie catchment. 

Hydrological 
mapping unit Soil form 

WRB 
Reference 
Groups 

Defining hydrological characteristic 

Recharge deep 
Hutton, 
Longtom, 
Kranskop 

Acrisols, 
Nitisols, 
Fluvisols 

Deep soils without any morphological indication of 
saturation. Vertical flow through and out of the profile 
into the underlying bedrock is the dominant flow 
direction. 

Recharge 
shallow 

Glenrosa, 
Nomanci Leptosols 

Shallow soils without any morphological indication of 
saturation. Vertical flow through and out of the profile 
into the underlying fractured bedrock is the dominant 
flow direction. 
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Hydrological 
mapping unit Soil form 

WRB 
Reference 
Groups 

Defining hydrological characteristic 

Responsive 
saturated 

Katspruit, 
Champagne Gleysols 

Soils with morphological evidence of long periods of 
saturation promoting the generation of overland flow 
due to saturation excess. 

Responsive 
shallow 

Mispah, 
Graskop Leptosols 

Shallow soils overlying relatively impermeable bedrock. 
Limited storage capacity results in the generation of 
overland flow after rainfall events. 

A/B interflow Estcourt, 
Sterkspruit Solonetz 

Duplex soils where the textural discontinuity facilitates 
build-up of water in the topsoil, with discharge in a 
predominantly lateral direction. 

Soil/bedrock 
interflow 

Fernwood, 
Cartref Arenosols 

Soils overlying relatively impermeable bedrock. 
Hydromorphic properties signify temporal build of water 
on the soil/bedrock interface and slow discharge in a 
predominantly lateral direction. 

WRB = World Reference Base for Soil Resources 
 
The hydropedological database was divided into training (75%) and evaluation (25%) datasets. We 
used the well-known k-means clustering algorithm to overcome the imbalance training data. The final 
soil map was then created in the R environment by running the multinomial logistic regression algorithm 
on the training data and using the validation data to test the accuracy of the hydropedological map, 
which had an evaluation point accuracy of 62% and a Cohen’s Kappa statistic value of 0.46. These 
results indicated that the hydropedological map obtained moderate agreement with reality and was 
therefore deemed to be acceptable for use in the modelling exercise (Figure 3.8). 
 

 
Figure 3.8: The hydropedological map of the Sabie catchment. 

Undisturbed core samples were collected from 78 representative diagnostic horizons within the study 
area during the field survey. These core samples were used to determine bulk density, particle size 
distribution and the water retention characteristics. These results were combined with the already 
existing Land Type modal profile data, and then the required SWAT+ hydraulic parameters were 
obtained by averaging these properties for each hydropedological soil type (Table 3.9). 
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Table 3.9: The main hydraulic properties of the HYDROSOIL mapping units. 

Hydrological 
soil types Horizon Hydro-

group 

Depth Bd AWC Ksat OC Clay Silt Sand 

mm g/cm3 mm/m
m mm/h % % % % 

A/B interflow 
A 

C  
150 1.38 0.101 40.1 1.1 18 21 61 

B 1400 1.58 0.122 8.54 0.2 40 13 47 

Recharge 
deep 

A 
A 

200 1.41 0.107 11.58 5.2 31 27 42 
B 2400 1.46 0.119 7.8 1.5 34 29 37 
C 3000 1.51 0.119 5.7 0.2 33 32 35 

Recharge 
shallow A D 400 1.4 0.107 27.27 5.5 32 12 56 

Responsive 
saturated 

A 
C 

200 1.36 0.104 32.01 4 25 18 57 
B 1800 1.51 0.121 11.74 1.8 38 14 48 

Responsive 
shallow A D 300 1.34 0.104 40.5 5 25 15 60 

Soil/bedrock 
interflow 

A 
A 

200 1.4 0.100 40 1.5 17 20 62 

B 1600 1.38 0.113 78 0.4 19 5 76 
Bd = bulk density; AWC = Available Water Capacity; Ksat = saturated hydraulic conductivity; OC = Organic Carbon 
 
Two model runs were set up for the two levels of soil information. Only the soil information differed 
between setups as all other factors were constant for both simulation runs. However, the HYDROSOIL 
and Land Type soil datasets differed both spatially (Figure 3.7; Figure 3.8) and in their hydraulic 
properties (Table 3.7; Table 3.9). 
 
Researchers have shown the soil conservation service curve number II (CN2) as the most sensitive 
parameter in SWAT streamflow simulations (Eckhardt, 2005; Mengistu et al., 2019) as it reflects the 
characteristics of the catchment prior to a rainfall event and largely determines surface runoff. It is 
dependent on the initial CN value assigned to the HRU by the model. CN2 is the runoff curve number 
for Moisture Condition II, calculated by the soil conservation service (SCS) runoff equation and adjusted 
soil moisture before a precipitation event. The CN2 value is therefore also directly affected by the initial 
soil hydrologic group of each soil mapping unit and will differ between model runs. Surface runoff is 
calculated using the following equations: 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = (𝑃𝑃𝑖𝑖−𝐼𝐼𝑎𝑎)2

(𝑃𝑃𝑖𝑖−𝐼𝐼𝑎𝑎+𝑆𝑆)
                                                                                                                                                              (3.5) 

 
where 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the overland runoff or rainfall excess (mm H2O), 𝑃𝑃𝑖𝑖 is the precipitation depth for the day 
(mm H2O), 𝐼𝐼𝑎𝑎 is the initial abstraction lost from canopy interception, surface storage, and infiltration prior 
to runoff. The water retention parameter (𝑆𝑆) (mm H2O) is estimated by: 
 

𝑆𝑆 = 25.4 �1000
𝐶𝐶𝐶𝐶

− 10� (3.6) 

 
Where CN is the curve number at a daily time step which is a function of soil permeability, land use and 
antecedent soil moisture content. The values are based on the soil hydrologic group of the soil mapping 
unit, land use and initial hydrologic condition, with the soil hydrologic group and land use being the most 
important variables within the equation. In addition, the value of each HRU is updated according to the 
antecedent soil moisture content for each daily timestep (Neitsch et al., 2011; Zhang et al., 2019a). 
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SWAT divides soil into four distinct soil hydrologic groups based on the infiltration characteristics of the 
soil, namely, A, soils with a low runoff potential, containing high infiltration rates and being well drained 
with a high rate of water transmission. B, soils with moderate infiltration rates with moderate rates of 
water transmission and being moderately well drained. C, soils with low infiltration rates often containing 
a layer that impedes the downward movement of water with low rates of water transmission. D, soils 
with a high runoff potential, with very slow infiltration rates with very slow rates of water transmission 
(Neitsch et al., 2011). These hydrologic groups largely determine the surface runoff potential of different 
soils as they directly affect the SCS curve designation given by the model. As these hydrologic groups 
differ spatially between datasets, the curve numbers and associated runoff characteristics will differ 
greatly between model runs. 
 
Lateral flow is calculated by SWAT using a kinematic storage model, which simulates the movement of 
water in a two-dimensional cross section of a hillslope (Neitsch et al., 2011). Lateral flow therefore 
occurs when soil water exceeds field capacity with the underlying layer being impermeable or semi-
permeable. The kinematic approximation method assumes that the flowpaths are parallel to the bedrock 
and that the hydraulic gradient equals the slope of the hill (Equation 3.7). 
 

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 = 1000.𝐻𝐻0.𝛩𝛩𝑑𝑑.𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖
2

 (3.7) 

 
Where 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠  equals the drainable water volume within the saturated zone of the soil per unit area 
(mm), 𝐻𝐻0 equals the saturated thickness of the hillslope outlet as a fraction of the total thickness 
(mm/mm), 𝛩𝛩𝑑𝑑  equals the drainable porosity of the soil (mm/mm), and 𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖  equals the length of the 
hillslope (m) (Neitsch et al., 2011). The drainage porosity of the soil equals the total porosity of the soil 
minus the soil porosity when the soil horizon is at field capacity. The increased spatial resolution of the 
HYDROSOIL map should result in an increased number of HRUs which would result in a more complex 
model structure compared to the Land Type dataset. More HRUs and differences in porosity between 
soil datasets will affect how the model simulates lateral flow values. 
 
The differences in hydraulic properties between the two levels of soil information should also affect 
modelling accuracy. The increased soil depth, Available Water Capacity (AWC), clay content and 
decreased Ksat values of the HYDROSOIL map should result in more water being stored within the soil 
profile for longer periods, leading to more available water for root uptake, plant growth and 
evapotranspiration. More antecedent moisture within the soil should also lower CN2 values, which 
remains one of the most sensitive parameters within the SWAT model (Wahren et al., 2016, Mengistu 
et al., 2019). 
 
Validation data and statistical comparison 

Five weirs, which are managed by the Department of Water and Sanitation (DWS), were used to 
validate long-term streamflow simulations. These gauges, from smallest drainage area to largest were 
X3H003 which drains 48 km2, X3H002 which drains 56 km2, X3H001 which drains 174 km2, X3H024 
which drains 674 km2 and X3H021 which drains the entire study area at 2 421 km2. Daily streamflow 
was converted to monthly average values for comparison purposes. 
 
For statistical comparison, four widely used statistical indicators were employed, namely coefficient of 
determination (R2), percentage bias (PBIAS), Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 
Efficiency (KGE). Percentage bias (PBIAS) measures the average tendency of the simulated data to 
be larger or smaller than their observed counterparts. The optimal value of PBIAS is 0.0, with low 
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magnitude values indicating accurate model simulation. Positive values indicate model underestimation 
bias, while negative values indicate model overestimation (Moriasi et al., 2007). 
 
3.2.4 Results and discussion 

Streamflow simulations 

The two model set-ups for the two levels of soil information had an identical number of sub-basins (119) 
and landscape units (616), because the same DEM was used to delineate these. The number of HRUs 
differed significantly where the HYDROSOIL model contained 11 883 HRUs compared to the 3 332 
HRUs contained within the Land Type model. The large discrepancy between model HRUs is purely a 
result of the spatial differences between the soil input information. Even though the HYDROSOIL soil 
dataset contained less individual mapping units, the far greater level of detail (30 m x 30 m) of these 
mapping units still resulted in a significantly increased number of HRUs. 
 
A KGE value surpassing -0.41 indicates a model prediction that aligns better with the mean observed 
values (Knoben et al., 2019). Refined evaluation criteria for hydrologic and water-quality models deem 
streamflow simulations to be satisfactory when R2 > 0.6, NSE > 0.5, and PBIAS ≤ 15% (Moriasi et al., 
2015). 
 
Based on these criteria (Moriasi et al., 2015), the simulations of the HYDROSOIL model at gauging 
weirs at 48 km2, 174 km2 and 674 km2 all yielded satisfactory results (R2 > 0.6; Table 3.10). On the 
other hand, the Land Type model simulations provided satisfactory results at 174 km2 and 674 km2. All 
HYDROSOIL simulations achieved satisfactory KGE values above the -0.41 threshold (Knoben et al., 
2019). However, the Land Type model did not meet the minimum KGE threshold at 48 km2 and 56 km2 
(Table 3.10). 
 
Both models produced disappointing PBIAS values, where only the Land Type model achieved PBIAS 
values below the 15% threshold (Moriasi et al., 2015) at 674 km2 and 2 421 km2. However, the 
HYDROSOIL model provided more accurate PBIAS values at 48 km2, 56 km2 and 174 km2, although 
they did not meet the 15% criteria. Analysing NSE values, the HYDROSOIL model outperformed the 
Land Type model at each catchment scale, with only the HYDROSOIL model achieving an acceptable 
NSE value at 2 421 km2 (Table 3.10). 
 
Table 3.10: Statistical indicators of monthly streamflow simulations at five catchment levels. 

Catchment Soil data R2 PBIAS NSE KGE 

X3H003 (48 km2) 
Land Type 0.46 68.27 -0.76 -0.43 

HYDROSOIL 0.66 53.92 0.03 0.41 

X3H002 (56 km2) 
Land Type 0.42 37.34 -3.24 -0.55 

HYDROSOIL 0.57 43.67 -0.22 0.41 

X3H001 (174 km2) 
Land Type 0.68 41.04 0.3 0.48 

HYDROSOIL 0.67 37.27 0.48 0.58 

X3H024 (674 km2) 
Land Type 0.7 11.6 -0.41 0.09 

HYDROSOIL 0.71 20.85 0.54 0.67 

X3H021 (2421 km2) 
Land Type 0.44 13.29 0.28 0.63 

HYDROSOIL 0.54 33.5 0.49 0.42 
PBIAS = Percentage bias; NSE = Nash Sutcliffe Efficiency; KGE = Kling-Gupta Efficiency 
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Peak flows were overestimated by both models. However, the HYDROSOIL dataset yielded far lower 
peak flows than the Land Type dataset (Figure 3.9), which improved modelling accuracy at smaller 
scales (48 km2, 56 km2 and 174 km2), but resulted in the underestimation of peak flows at the largest 
catchment scale (2 421 km2). Baseflow simulations were also substantially underestimated by both 
models at all catchment levels but particularly at smaller catchment sizes (48 km2, 56 km2 and 174 km2) 
where considerable baseflow contributions exist (Figure 3.9). The positive PBIAS values across all 
model simulations also equates to the general underestimation of total streamflow values which can 
also be attributed to the underestimation of baseflow values across all catchment levels. SWAT+ allows 
users to adjust groundwater parameters to mitigate or correct baseflow values. 
 
Statistical comparison between the two models over the 16-year simulation period indicated a 
substantial difference between the two levels of soil information (Table 3.10). It could be inferred that 
the HYDROSOIL model outperformed the Land Type model, at four of the five catchment scales 
(48 km2, 56 km2, 174 km2, 674 km2) when comparing monthly observed streamflow values where the 
higher R2, NSE and KGE values indicated improved model performance. The improved modelling 
accuracy is presumed to be a direct result of the improved simulation of real-world hydrological 
processes by improving the accuracy of soil information in the model. However, it does seem as if the 
importance of soil information decreases as the catchment size increases, which could be a result of 
the increased variability of soil properties, such as texture, organic matter content, and hydraulic 
conductivity, which may vary widely across catchments. The ineffectiveness of improved soil 
information at our largest catchment scale (2 421 km2) is in accordance with both Chen et al. (2016), 
who found soil resolution was relatively insignificant when modelling streamflow and sediment yield in 
a 2 421 km2 catchment, and Ayana et al. (2019) who concluded that improved soil data resolution only 
marginally improved streamflow simulations with an improved NSE of only 1% in a 16 000 km2 
catchment in Ethiopia. These results suggest that improved soil information does not necessarily 
improve modelling accuracy in large-scale catchments. 
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Figure 3.9: Monthly simulated streamflow for the Land Type and HYDROSOIL (Hydrosol) model 
runs compared to observed streamflow at (a) X3H003, (b) X3H002, (c) X3H001, (d) X3H024, (e) 
X3H021, together with (f) the average monthly rainfall during the validation period. 
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Hydrological processes 

The differences in streamflow simulations and hydrological processes are a direct result of the 
differences between soil input datasets and how soil input data affects the simulation of these different 
hydrological processes. 
 
The major hydrological processes differed substantially between model simulations (Table 3.11) at each 
of the five catchments. The HYDROSOIL simulations resulted in far lower average annual overland flow 
values than its Land Type counterpart (Table 3.11). 
 
As surface runoff is directly impacted by the permeability of soils, land use and antecedent soil water 
conditions within each HRU (and land-use values remained constant between simulations), the 
difference in soil hydrological group and accompanying soil physical properties severely impact how 
surface runoff is simulated within the model (Neitsch et al., 2011; Zhang et al., 2019a). Recharge deep 
soils which are the dominant hydropedological soil within each of the five catchment scales contains 
the hydrologic soil group A designation, where low SCS curve numbers prohibit large overland flow 
values from being simulated, resulting in more infiltration within the soil profile. 
 
Table 3.11: Average annual hydrological processes at each catchment scale. 

Catchment Soil data 
Precipitation Overland 

flow 
Lateral 

flow Perco ET 

mm.year-1 

X3H003 (48 km2) 
HYDROSOIL 

1375 
105 5 165 1006 

Land Type 232 8 126 949 

X3H002 (56 km2) 
HYDROSOIL 

1374 
135 5 152 1034 

Land Type 323 24 63 964 

X3H001 (174 km2) 
HYDROSOIL 

1374 
173 10 150 960 

Land Type 346 76 97 936 

X3H024 (674 km2) 
HYDROSOIL 

1285 
136 7 138 958 

Land Type 296 37 74 932 

X3H021 (2421 km2) 
HYDROSOIL 

1109 
106 4 99 842 

Land Type 239 17 43 813 
Perco = Percolation; ET = Evapotranspiration 
 
The HYDROSOIL dataset resulted in consistently lower lateral flow simulation at all five catchment 
scales (Table 3.11). The same factors that affect the soil runoff process affects lateral flow, where lower 
AWCs and shallower soil profiles of the Land Type dataset allows for more lateral flow to occur, because 
less water is needed to reach field capacity. These results are also in accordance with the hydrological 
soil types within the catchments. Lateral flow or interflow soils (A/B and soil/bedrock) are the least 
prevalent hydrological soil types within the Sabie River system, where X3H021 contains the only 
substantial amount of interflow soils at 25.5%. 
 
Far higher percolation values were simulated by the HYDROSOIL model than the Land Type model at 
all five scales, decreasing as the catchment size increased from 165 mm per year at 48 km2 to 99 mm 
per year at 2 421 km2 (Table 3.11). This is presumably a result of differences in soil hydraulic properties 
but also in the decreased amount of precipitation within larger catchments. The SWAT model allows 
water to percolate if the soil water content exceeds field capacity for the specific soil layer and the 
underneath soil layer is still unsaturated and is therefore a function of the amount of soil water available 
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to percolate, the field capacity of soil layers as well as their saturated hydraulic conductivity. The 
variability of percolation is therefore largely affected by the spatial variability of various soil properties 
such as the depth of the soil profile, bulk density, saturated hydraulic conductivity and AWC of the soils, 
but also a product of SCS curve numbers where low curve numbers yield higher infiltration rates, 
allowing more water to enter the soil profile and potentially be available for percolation. 
 
The HYDROSOIL dataset also simulated higher evapotranspiration compared to the Land Type dataset 
at all five catchment scales (Table 3.11). These results are comparable to other studies in the region 
such as Van Eekelen et al. (2015) with values of 1 143 mm for plantations, 1 087 mm for forest and 
woodlands and 690 mm per year for savanna and shrublands. Riddell et al. (2020) also found riparian 
savanna vegetation would record evapotranspiration values between 765 and 806 mm for one 
hydrological year within the region. Therefore, both models simulated reasonably accurate 
evapotranspiration values with high values where plantations and forests are the dominant land use, 
such as 48 km2, 56 km2 and 174 km2, with decreasing values at the larger catchments which 
subsequently include more savanna and shrubland vegetation, such as 674 km2 and 2 241 km2. 
However, differences between evapotranspiration values are a direct result of differences in soil 
properties, where more water stored within the soil profile, due to deeper soils with large AWCs, results 
in more water being available for root uptake and evapotranspiration, as can be seen by the higher 
evapotranspiration values of the HYDROSOIL model compared to the Land Type model. 
 
Figure 3.10 and Figure 3.11 illustrate the average annual surface runoff, lateral flow and percolation 
differences between each soil mapping unit between the two model simulations as well as the 
percentage spatial coverage of each mapping unit within each catchment. On average the HYDROSOIL 
soils simulated far lower average annual lateral flow, lower percolation rates and higher surface runoff 
values than their Land Type counterparts, except for recharge deep soils. Recharge deep soils are the 
dominant hydrological soil types within the HYDROSOIL map and are prevalent at all five catchment 
scales, the average annual surface runoff and lateral flow values at each catchment outlet therefore 
remained lower than the simulated values of the Land Type model. 
 
Recharge deep soils contain the hydrologic soil group A designation, where low SCS curve numbers 
would prohibit large overland flow values to be simulated but rather result in higher infiltration rates. 
Recharge deep soils contained deeper soil profiles, with higher AWCs than the Land Type dataset, 
which means more water can infiltrate and be stored within the soil profile, without the profile reaching 
field capacity, affecting the simulation of different hydrological processes. These results are in 
accordance with other studies focusing on soil information in hydrological modelling (Wang & Melesse, 
2006; Bouslihim et al., 2019). 
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Figure 3.10: Average annual percolation, surface runoff and lateral flow values (mm) for the 
HYDROSOIL dataset as well as percentage of each mapping unit. 
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Figure 3.11: Average annual percolation, surface runoff and lateral flow values (mm) for the Land 
Type dataset as well as percentage of each mapping unit. 

Differences between individual mapping units simulate different hydrological processes under the same 
hydrological conditions based on soil hydraulic properties (Figure 3.10; Figure 3.11). These results 
suggest that even though soils are mapped according to their hydropedological characteristics, these 
characteristics are not necessarily reflected within the modelling outputs. For example, due to the 
shallow depth and comparable soil hydraulic properties, both recharge shallow and responsive shallow 
soils simulate similar hydrological processes at each catchment scale. The same could be said for the 
A/B and soil/bedrock interflow soils which struggle to simulate large volumes of lateral flow compared 
to the other mapping units within the same catchments. These results suggest that additional calibration 



HYDROSOIL 

53 

of model parameters would be required to reflect the hydrological responses of different soils more 
adequately for different catchments. These results agree with Harrison et al. (2022), who required the 
calibrated lateral lag-time coefficient parameter within the SWAT+ model to improve the simulation 
lateral flow for each hydrological soil type within a mountainous research catchment in South Africa. 
 
Differences in average annual lateral flow and percolation rates between mapping units under the same 
environmental conditions highlight the importance of soil hydraulic information. In particular these 
results suggest that Ksat and AWC values, which have been shown to be sensitive parameters within 
the model (Mengistu et al., 2019), severely affect how these two hydrological processes are simulated. 
Both are calculated when soil water exceeds the field capacity of the specific soil layer. However, higher 
Ksat and porosity values and steep slopes encourage water to drain laterally to the nearest stream 
channel, whereas lower Ksat and porosity values inhibit lateral flow to the channel and encourages the 
percolation of excess soil water to the underlying layer (Neitsch et al., 2011). The accurate 
representation of these hydraulic parameters will affect whether these processes are simulated 
accurately. 
 
Large percolation values also correlate extremely well with the most dominant hydrological soil type 
across the Sabie River catchment, recharge soils (deep and shallow), as well as the large baseflow 
contributions seen within the measured streamflow data. The defining characteristic of these soils is the 
absence of any morphological indication of saturation. Vertical flow through and out of the soil profile 
into the underlying bedrock is the dominant flow direction. These soils also show no indication of 
permanent or periodic saturation within the soil profile, no indications of major runoff events at the soil 
surface and no indication of the lateral movement of water at the soil/bedrock or A/B interface (Van Tol 
& Le Roux, 2019). Hydropedologically speaking, 42.3% of the entire Sabie catchment should primarily 
be contributing recharge (percolation) to the shallow aquifer, with this value increasing in the 
mountainous catchments all the way up to 72.3% of the soils in 48 km2. 
 
The spatial disparity of average annual percolation values is evident (Figure 3.12), where the 
HYDROSOIL model simulated far higher percolation values than the Land Type model and at a far 
greater resolution. 
 
The HYDROSOIL model primarily simulated high percolation values where recharge deep soils 
dominate in the mountainous sections of the catchment, where high precipitation and infiltration values 
also exist. Low percolation values were simulated on responsive shallow and recharge shallow soils as 
a result of their hydrologic soil group, position on the landscape and shallow soil profile. Percolation 
values in the east of the catchment show definite spatial variability along catenas with higher percolation 
rates associated with soil/bedrock interflow and recharge deep soils. The Land Type model did not 
show the same volume generation or spatial distribution of percolation across the catchment. Rather, 
percolation values were haphazardly spatially distributed as a function of the soil mapping units. These 
results are similar to Smit & Van Tol (2022), where large spatial and temporal differences were created 
between model simulations with differing soil input information. The average annual percolation values 
differed between the two levels of soil information within the Sabie catchment (Figure 3.13), where most 
of the catchment differed by average annual values greater than 50 mm, especially in the headwaters 
of the catchment (48 km2, 56 km2, 174 km2, 674 km2), becoming less pronounced in the drier eastern 
savanna segments of the catchment. Differences in soil input information also translates to differences 
in hydrological process simulations in hydrological models (Figure 3.13). 
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Figure 3.12: Average annual percolation values (mm) for the (a) HYDROSOIL and (b) Land Type 
dataset at the HRU level. 

Our assumption remains that detailed hydropedological information, based on modern techniques for 
digital soil mapping and in-field measured soil physical properties represent a more accurate 
representation of real-world percolation rates within the Sabie catchment. The ability of the Land Type 
model to therefore simulate any form of land-use change or climate change scenario should be called 
into question as it is clear the internal hydrological process simulation, determined by the soil input data, 
is left wanting (Van Tol et al., 2021a; Smit & Van Tol, 2022). The argument remains that 
hydropedological information may serve as an effective ‘soft data’ tool to better represent internal 
hydrological processes within a catchment, leading to improved catchment management practices 
(Seibert & McDonnell, 2002; Smit & Van Tol, 2022), however further calibration is required to achieve 
this goal. 
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Figure 3.13: Gridded (100 m x 100 m) average annual percolation difference (mm) between the two 
levels of soil information. 

The results of this study agree with other research which emphasises the importance of understanding 
the hydropedological information available within a catchment and its transferability for hydrological 
modelling purposes (Bouma et al., 2011; Sierra et al., 2018; Van Tol et al., 2020; Van Tol et al., 2021a). 
Soil information plays a crucial role in refining model predictions and should be used in supporting 
informed decision-making in hydrological modelling and water resource management (Bouslihim et al., 
2019). It would be worth exploring if a multigauge calibration using the range of in-field measured soil 
properties can continue to improve modelling accuracy, especially at large scales where improved soil 
information diminishes in value. In terms of water resource management implications, this study does 
suggest that if large-scale applications of water quantity simulations are the primary objective, then the 
impact of hydropedological information is negligible, especially when comparing the modelling accuracy 
between the two levels of soil information at 2 421 km2. However, detailed soil information improves the 
hydrological process representation and modelling accuracy at smaller scales. Modern water resource 
management plans are, however, concerned with impacts at the local sub-catchment level, where the 
improved detail and accuracy of hydropedological information is more applicable than coarse soil 
information. The value of hydropedological information should also be further investigated for use in 
ungauged basins as a means of improving modelling accuracy where long-term measurements are 
absent. 
 
3.2.5 Conclusions 

Detailed hydrological soil information, developed using digital soil mapping techniques, resulted in more 
accurate streamflow simulations at four of the five scales. The improved simulation accuracy at these 
scales was obtained without a calibration period, but rather by more accurately representing the internal 
hydrological processes of the catchment, based on hydropedological insight. This is especially 
promising for hydrological modelling in ungauged catchments, where hydropedology could form an 
important ‘soft data’ tool to aid modelling efforts where reliable streamflow measurements are absent. 
 
The value of improved soil information decreases as the catchment size increases when analysing 
mean monthly streamflow simulations, which agrees with similar research findings globally. Future 
research should focus on determining the ideal level of soil information for hydrological modelling for 
different sized micro-, meso- and macro-scale catchments and focus on calibrating hydrological 
modelling using a range of in-field measured soil input parameters. 
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3.3 MODAL CALIBRATION USING HYDROPEDOLOGICAL INSIGHTS TO IMPROVE INTERNAL 
HYDROLOGICAL PROCESSES WITHIN SWAT+ 

3.3.1 Abstract 

Soils affect hydrological processes by partitioning precipitation into different components of the water 
balance. Therefore, understanding soil-water dynamics at a catchment scale is imperative to future 
water resource management. This study investigates the value of hydropedological insights to calibrate 
a process-based model. Soil morphology was used as ‘soft data’ to assist in the calibration of the 
SWAT+ model at five different catchment sizes (48 km2, 56 km2, 174 km2, 674 km2 and 2 421 km2) in 
the Sabie River catchment, South Africa. The aim is to calibrate the SWAT+ model to accurately 
simulate long-term monthly streamflow predictions, as well as to reflect internal soil hydrological 
processes, using hydropedology as a calibration tool in a multigauge system. Results indicated that 
calibration improved streamflow predictions where R2 and Nash-Sutcliffe Efficiency (NSE) improved 
substantially, R2 improved by 2 to 8% and NSE from negative correlations to values exceeding 0.5 at 
four of the five catchment scales compared to the uncalibrated model. Results confirm that soil mapping 
units can be calibrated individually within SWAT+ to improve the representation of hydrological 
processes. Particularly, the spatial linkage between hydropedology and hydrological processes, which 
is captured within the soil map of the catchment, can be adequately reflected within the model structure 
after calibration. This research should lead to an improved understanding of hydropedology as ‘soft 
data’ to improve hydrological modelling accuracy. 
 
3.3.2 Introduction 

Soils play a pivotal role in shaping hydrological processes within a landscape as they actively partition 
precipitation into various components of the water balance. This functionality stems from the soil's 
capacity to absorb, store and transmit water across diverse spatial and temporal scales (Park et al., 
2001). These hydrological processes largely determine the volume, variability and residence times of 
water resources within a landscape, which in turn determines the agricultural potential, functionality of 
ecosystems and economic opportunities within different catchments (Wenninger et al., 2008). However, 
the logistical impracticality of measuring these hydrological processes at landscape scale means that 
these processes remain most practically quantified using hydrological models, which simplify and 
represent real-world hydrological systems (Gassman et al., 2007; Devia et al., 2015). 
 
Soil and water are inextricably linked (Bouma et al., 2011). Soils provide valuable ecosystem services, 
such as food production, carbon and nutrient cycling, flood mitigation, and water filtration and 
purification (Lal et al., 2021). These services are intimately linked to the spatio-temporal variation of 
hydrological flowpaths, such as surface runoff, infiltration, lateral flow, evaporation and percolation. 
Water, on the other hand, plays a fundamental role in soil formation and results in soil properties such 
as soil colour, the formation and distribution of mottles, as well as soil texture and structure (Lal et al., 
2021). These identifiable soil properties are a direct product of the dominant hydrological processes 
present during their formation and may be linked to different hydrological processes based on selected 
soil properties. The dynamic interplay between soil and water forms the cornerstone of the 
interdisciplinary field known as hydropedology (Lin, 2003). This field has proven instrumental in 
conceptualising diverse hydrological processes, particularly in regions lacking or having limited 
hydrometric measurements (Gassman et al., 2007; Devia et al., 2015). 
 
However, one of the primary issues with modern hydrological models is their reliance on a calibration 
period, where results are primarily focused on accurately simulating a specific point observation, such 
as streamflow gauges (Beven & Freer, 2001). Modern hydrological models contain a level of complexity 
within their structure, which allows a high level of parameterisation and adaptability. This phenomenon 
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frequently leads to a situation where various model configurations produce comparable outputs, a 
concept known as equifinality (Beven & Freer, 2001; Beven, 2006). While these models and their 
associated approaches may offer statistically accurate simulations concerning point observations, there 
is a lingering question about their ability to truly capture the pertinent internal hydrological processes or 
to accurately simulate scenarios related to land-use or climate change beyond the environmental 
conditions for which they were initially calibrated (Kirchner, 2006). 
 
While researchers concur on the importance of adequately incorporating internal catchment processes 
into the model structure and parameters, even at the cost of sacrificing some modelling accuracy 
(Arnold et al., 2015; Yen et al., 2014), the available approaches to enhance the representation of 
internal catchment processes remain somewhat constrained. To address this challenge and enhance 
the accuracy of internal hydrological processes, the incorporation of ‘soft data’ has been suggested. 
‘Soft data’ is defined as information that may not be measured directly but can be linked to hydrological 
processes or phenomena (Beven, 2006). 
 
Hydropedology combined with digital soil mapping has provided an intriguing source of ‘soft data’ for 
hydrological modelling. It allows the spatial capture of different soil hydrological processes observable 
at the pedon level and enables the accurate extrapolation of these processes to hillslope and catchment 
level (Lin, 2003). Therefore, enabling the capture and transfer of information related to different 
hydrological processes within different soil mapping units for hydrological modelling purposes. Several 
researchers have assessed hydropedological insights as input to process-based hydrological 
modelling, illustrating the improved accuracy that hydrological soil information achieves (Van Tol et al., 
2020; Smit & Van Tol, 2022; Smit et al., 2023a). For instance, hydropedological characteristics 
improved modelling accuracy by more accurately reflecting the lateral flow dynamics within different 
afromontane catchments in South Africa (Harrison et al., 2022). 
 
Although soils can be grouped according to different hydrological processes, the improved modelling 
performance achieved by hydrological soil information is primarily based on the improved 
representation of measured hydraulic properties and not the improved representation of hydrological 
processes (Smit et al.,2023a; Van Tol & Van Zijl, 2022). 
 
In this paper, we aim to reflect internal hydrological processes more accurately by applying a calibration 
approach focussing on hydropedological insights as ‘soft data’. The study area remained the same as 
Section 3.2. The aim was achieved by deriving the dominant hydrological responses of various soil 
types based on the soil morphology and then applying a calibration approach. Select parameters were 
calibrated to reflect an accurate prediction of long-term measured streamflow as well as dominant soil 
hydrological process of each hydrological soil type. This approach was evaluated by statistical 
comparison with measured stream flow and visual interpretation of water balance components. 
 
3.3.3 Materials and methods 

Hydropedological approach to calibration 

The SWAT+ model requires a calibration period which allows the most sensitive parameters to be 
adjusted to improve hydrological modelling accuracy. Practical calibration guidelines have been well 
established and can be found in the SWAT manual (Arnold et al., 2011) as well as in a multitude of 
research papers, where calibration is either automated or conducted manually by selecting the most 
sensitive parameters and adjusting them accordingly (Abbaspour et al., 2007; Arnold et al., 2011; 
Moriasi et al., 2007; Ahl et al., 2008; Tuppad et al., 2011; Mengistu et al., 2019). 
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Different parameters have different levels of sensitivity within the model, which allows modellers the 
opportunity to calibrate different hydrological processes such as surface runoff, lateral flow, return flow, 
and evapotranspiration rates (Mengistu et al., 2019). The most sensitive parameters for calibration 
within the Sabie catchment were determined using the Latin Hypercube Sampling approach with 2 000 
iterations within R-SWAT (Nguyen et al., 2022) with Kling-Gupta Efficiency as objective function. 
 
Researchers have shown the SCS curve number II (CN2) as the most sensitive parameter in SWAT 
streamflow simulations (Eckhardt, 2005; Shen et al., 2012; Mengistu et al., 2019) as it reflects the 
characteristics of the catchment prior to a rainfall event and largely determines surface runoff. It is 
dependent on the initial CN value assigned to the HRU by the model. Surface runoff is calculated using 
the Equations 3.5 and 3.6 (Section 3.2.3). 
 
Lateral flow is calculated by SWAT using a kinematic storage model, which simulates the movement of 
water in a two-dimensional cross-section of a hillslope (Neitsch et al., 2011). Lateral flow therefore 
occurs when soil water exceeds field capacity with the underlying layer being impermeable or semi-
permeable. The kinematic approximation method assumes that the flowpaths are parallel to the bedrock 
and that the hydraulic gradient equals the slope of the hill (Equation 3.8). 
 
𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 = 1000.𝐻𝐻0.𝛩𝛩𝑑𝑑.𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖

2
  (3.8) 

 
Where 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠  equals the drainable water volume within the saturated zone of the soil per unit area 
(mm), 𝐻𝐻0 equals the saturated thickness of the hillslope outlet as a fraction of the total thickness 
(mm/mm), 𝛩𝛩𝑑𝑑  equals the drainable porosity of the soil (mm/mm), and 𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖  equals the length of the 
hillslope (m) (Neitsch et al., 2011). The drainage porosity of the soil equals the total porosity of the soil 
minus the soil porosity when the soil horizon is at field capacity. 
 
𝑄𝑄𝑖𝑖𝑎𝑎𝑙𝑙 = 24.𝐻𝐻0.𝐾𝐾𝑠𝑠𝑎𝑎𝑙𝑙 . 𝑄𝑄𝑙𝑙𝑒𝑒 (3.9) 
 
Where 𝑄𝑄𝑖𝑖𝑎𝑎𝑙𝑙 is the water discharge from the hillslope outlet, 𝐻𝐻0 equals the saturated thickness of the 
hillslope outlet as a fraction of the total thickness (mm/mm), 𝐾𝐾𝑠𝑠𝑎𝑎𝑙𝑙 is the saturated hydraulic conductivity 
for the specific soil layer and 𝑄𝑄𝑙𝑙𝑒𝑒 is the slope value as the increase in elevation per distance unit for the 
specific hillslope. 
 
SWAT+ calculates percolation using a storage routing methodology, where water percolates if the soil 
water content exceeds the field capacity of the specific soil layer and the layer below is not yet saturated. 
The equation used to calculate the amount of percolation that occurs is: 

𝑤𝑤𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠. �1 − 𝑒𝑒𝑥𝑥𝑒𝑒 � −△𝑙𝑙
𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�� (3.10) 

 
Where 𝑤𝑤𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 is the amount of water percolating from the specific soil layer, 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 is the drainable soil 
water available, △ 𝑙𝑙 is the time step (hours) and 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 is the travel time for percolation (hours). The 
travel time for percolation is defined in the model using: 
 
𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑇𝑇−𝐹𝐹𝐶𝐶

𝐾𝐾𝑠𝑠𝑎𝑎𝑠𝑠
 (3.11) 

 
Where 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 is the travel time for percolation (hours), 𝑆𝑆𝑆𝑆𝑇𝑇 is the amount of water within the specific 
soil layer when completely saturated, 𝐹𝐹𝐹𝐹 is the soil water content at field capacity and 𝐾𝐾𝑠𝑠𝑎𝑎𝑙𝑙 is the 
saturated hydraulic conductivity for the specific soil layer. 
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Therefore, 𝐾𝐾𝑠𝑠𝑎𝑎𝑙𝑙 largely determines if lateral flow or percolation is simulated by the model, where the 
lower the 𝐾𝐾𝑠𝑠𝑎𝑎𝑙𝑙 value within the soil layer, the lower the lateral flow value and higher the percolation ratio 
simulated. 
 
Manipulating and calibrating major hydrological processes such as surface runoff, lateral flow and 
percolation remains imperative to accurately modelling water resources throughout a landscape 
(Brouziyne et al., 2017; Wagner et al., 2022). The uncalibrated SWAT+ model for the Sabie-Sand 
catchment (Smit et al., 2023a) illustrated that the hydrological soil types within the catchment did not 
necessarily accurately reflect the dominant hydrological process associated with each soil mapping 
unit, such as interflow soils not simulating sufficient lateral flow volumes and recharge shallow soils 
primarily contributing surface runoff volumes, with limited percolation contributions (Figure 3.10). 
 
SWAT+ incorporates parameters that allow the calibration of these processes, where PERCO and 
LATQ_CO parameters are linear coefficients that can be applied to the hillslope storage equation to 
limit lateral flow and percolation values (Wagner et al., 2022). Therefore, these parameters could 
potentially be manually calibrated to link soil morphology to dominant hydrological processes and 
accurately reflect these processes for each mapping unit as the current soil hydraulic properties fail to 
correctly simulate these processes. 
 
Practically, calibration was performed through the calibration of the most sensitive parameters identified 
by the sensitivity analyses and literature, performing several final manual iterations to fine-tune results. 
The calibration procedure needed to accomplish two goals. Firstly, the model needed to be calibrated 
to reflect accurate streamflow values by more accurately representing baseflow and peak flow volumes 
and secondly, each hydrological soil type needed to reflect their dominant hydrological response 
identified by their inherent hydrological soil mapping unit. Therefore, CN2, PERCO and LATQ_CO were 
calibrated for each mapping unit to ensure lateral flow dominates in interflow soils (A/B and 
soil/bedrock), percolation dominates in recharge soils (deep and shallow), and surface runoff dominates 
in responsive soils (saturated and shallow). Hydropedology is therefore applied as a source of ‘soft 
data’ informing the calibration procedure to better represent hydrological processes spatially. 
 
Validation 

Five weirs, which are managed by the DWS, were used to validate long-term streamflow simulations. 
These gauges, from smallest drainage area to largest were X3H003 which drains 48 km2, X3H002 
which drains 56 km2, X3H001 which drains 174 km2, X3H024 which drains 674 km2 and X3H021 which 
drains the entire study area at 2 421 km2. Monthly streamflow averages were used for statistical 
analysis. 
 
Four commonly employed statistical indicators – coefficient of determination (R2), percentage bias 
(PBIAS), Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) – were used for statistical 
comparison. Percentage bias (PBIAS) specifically evaluates the average tendency of simulated data to 
either exceed or fall short of their observed counterparts. 
 
3.3.4 Results and discussion 

Sensitivity analyses 

Table 3.12 illustrates the most commonly used parameters for calibration, their description and their 
relative sensitivity within the SWAT+ model for the Sabie River catchment. The t-stat and p-value are 
two statistical measurements which assess the sensitive rank of each parameter. The t-stat represents 
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a range of sensitivity, while the p-value identifies the significance of sensitivity. The higher absolute 
value of t-stat and lower p-value (< 0.05) indicates a sensitive parameter. 
 
Table 3.12: The most commonly used parameters for calibration, their description and their relative 
sensitivity within the SWAT+ model for the Sabie River catchment. 

Parameter Description t-stat p-value 

CN2 Initial SCS runoff curve number for moisture condition II -5.47 0.00 

ALPHA_BF Baseflow alpha factor (l/days) -5.16 0.00 

LATQ_CO Lateral flow coefficient -5.26 0.00 

CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 1.48 0.14 

SOL_AWC Available water capacity of the soil layer (mm H2O /mm soil) 1.46 0.15 

SOL_K Soil hydraulic conductivity of the soil layer (mm H2O /hour) -1.45 0.15 

SURLAG Surface runoff lag coefficient -1.03 0.30 

EPCO Plant uptake compensation factor 0.97 0.34 

PERCO Percolation coefficient 0.63 0.43 

RCHRG_DP Aquifer percolation coefficient for water to percolate from the 
shallow to the deep aquifer. -0.34 0.64 

ESCO Soil evaporation compensation factor -0.34 0.74 

REVAP Threshold depth of water in the shallow aquifer for ‘revap’ to 
occur (mm H2O) 0.65 0.83 

ESCO Soil evaporation compensation factor -0.34 0.84 

REVAP Threshold depth of water in the shallow aquifer for ‘revap’ to 
occur (mm H2O) 0.65 0.9 

 
Firstly, parameters SURLAG, ESCO, EPCO, ALPHA_BF and RCHRG_DP were calibrated to better 
reflect the peak flow and baseflow characteristics of each of the five catchments, specifically by lower 
evapotranspiration values, and increasing peak flow and baseflow values (Table 3.13). This study 
altered the CN2, PERCO and LATQ_CO parameters to calibrate each hydrological soil type (Table 
3.14). 
 
In general, CN values were increased for all soil mapping units to improve surface runoff dynamics in 
the catchments and improve peak flow estimations. The soil hydrologic group for recharge shallow soils 
were altered from group D, as suggested by Neitsch et al. (2011), for shallow soils, to group A which 
would drastically lower the associated soil curve numbers, facilitating increased infiltration rates and 
therefore decreasing surface runoff values. The PERCO parameter was also calibrated accordingly, 
where values were kept at default for recharge deep and recharge shallow soils but decreased for 
interflow soils (A/B and soil/bedrock), which would inhibit percolation and increase lateral flow for these 
soils. PERCO was also slightly decreased for responsive soils (saturated and shallow) to slightly inhibit 
percolation, resulting in higher soil water contents and potentially more surface runoff.  
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Table 3.13: Calibrated model parameters, the methods of change used and the final calibrated 
values. 

Parameter Catchment Method of 
change Min value Max value Fitted 

value 
CN2 All Relative -15 15 6 

SURLAG X3H021, X3H024 Replace 0 20 10 

ESCO All Replace 0 1 0.98 

EPCO All Replace 0 1 0.45 

ALPHA_BF 

X3H003 Replace 0.005 0.48 0.004 

X3H002 Replace 0.005 0.48 0.0015 

X3H001 Replace 0.005 0.48 0.005 

X3H024, X3H021 Replace 0.005 0.48 0.04 

RCHRG_DP 
X3H003, X3H002, X3H001 Replace 0.001 0.05 0.01 

X3H021, X3H024 Replace 0.001 0.05 0.03 

CH_K All Replace 0.5 150 34 

 
The LATQ_CO parameter was decreased for recharge (deep and shallow) to potentially limit lateral 
flow volumes, meaning more water is available to be stored within the soil profile, leading to more 
antecedent moisture content and potentially increased percolation values. LATQ_CO was not adjusted 
for interflow soils (A/B and soil/bedrock) or responsive saturated soils as these soils are major 
contributors to lateral flow. The adjustments of selected SWAT+ parameters should improve the 
representation of internal hydrological processes by linking them to soil morphology. 
 
Table 3.14: Manually calibrated parameters applied to improve the representation of soil 
hydrological processes. 

Hydrological soil 
type 

Default soil 
hydrologic 
group 

Calibrated soil 
hydrologic group Parameter Default 

value 
Calibrated 

value 

A/B interflow C C 
CN 70-85 76-89 
PERCO 1 0.5 
LATQ_CO 1 1 

Recharge deep A A 
CN 32-67 35-70 
PERCO 1 1 
LATQ_CO 1 0.8 

Recharge shallow D A 
CN 79-89 35-70 
PERCO 1 1 
LATQ_CO 1 0.8 

Responsive 
saturated C C 

CN 70-85 75-88 
PERCO 1 0.5 
LATQ_CO 1 1 

Responsive 
shallow D D 

CN 79-89 82-91 
PERCO 1 0.5 
LATQ_CO 1 1 

Soil/bedrock 
interflow A A 

CN 32-67 35-70 
PERCO 1 0.5 
LATQ_CO 1 1 
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Streamflow predictions 

The SWAT+ model had the exact same number of sub-basins (119) and landscape units (616) prior to 
calibration, during calibration as well as during validation as used in Section 3.2 (Smit et al., 2023a). A 
KGE value surpassing -0.41 indicates a model prediction that aligns better with the mean observed 
values (Knoben et al., 2019). Refined evaluation criteria for hydrologic and water-quality models deem 
streamflow simulations satisfactory when R2 > 0.6, NSE > 0.5, and PBIAS ≤ 15% (Moriasi et al., 2015). 
 
The simulations of the HYDROSOIL dataset during and after calibration and validation yielded 
satisfactory results at four of the five catchments, namely, 48 km2, 56 km2, 174 km2, and 674 km2 (Table 
3.15). These results are an improvement on the uncalibrated model which achieved satisfactory R2 at 
only three of the five catchments, namely, 48 km2, 174 km2, and 674 km2 (Smit et al., 2023a). 
 
Table 3.15: Statistical indicators of streamflow prediction accuracy during calibration and 
validation for all five catchment scales. 

Catchment Model period R2 PBIAS NSE KGE 

X3H003 (48 km2) 

Uncalibrated 0.66 53.92 0.03 0.41 

Calibration 0.70 -9.91 0.80 0.73 

Validation 0.79 2.32 0.68 0.86 

X3H002 (56 km2) 

Uncalibrated 0.57 43.67 -0.22 0.41 

Calibration 0.63 -4.52 0.84 0.74 

Validation 0.62 15.34 0.67 0.65 

X3H001 (174 km2) 

Uncalibrated 0.67 37.27 0.48 0.58 

Calibration 0.72 -25.45 0.36 0.53 

Validation 0.79 -20.00 0.61 0.60 

X3H024 (674 km2) 

Uncalibrated 0.71 20.85 0.54 0.67 

Calibration 0.79 -21.51 0.56 0.58 

Validation 0.83 -15.87 0.76 0.74 

X3H021 (2421 km2) 

Uncalibrated 0.54 33.5 0.49 0.42 

Calibration 0.42 -27.54 0.42 0.51 

Validation 0.48 -25.25 0.34 0.64 
PBIAS = Percentage bias; NSE = Nash Sutcliffe Efficiency; KGE = Kling-Gupta Efficiency 
 
Both during calibration and validation disappointing PBIAS values were achieved, where no catchment 
greater than 250 km2 achieved PBIAS values below the 15% threshold (Table 3.15; Moriasi et al. 2015). 
However, PBIAS values were decreased by between 6-8% during calibration and validation compared 
to the uncalibrated model (Smit et al., 2023a). In general, the negative PBIAS values during both the 
calibration and validation signifies a general overestimation of total streamflow within the Sabie River 
catchment, which may be attributed to the overestimation of peak flows within the catchments which 
could potentially be attributed to rainfall uncertainty within the Sabie River system. 
 
When analysing NSE values during the calibration and validation periods, only the calibration period at 
174 km2 and calibration and validation periods at 2 421 km2 fell below the accepted 0.5 threshold. The 
best NSE values were obtained during calibration of both 48 km2 and 56 km2. The best NSE values 
during the validation period were observed at 48 km2 and 674 km2. Both calibration and validation NSE 
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values significantly improved from the uncalibrated hydrological model at all five scales, especially at 
the 48 km2, 56 km2 and 174 km2 catchment sizes. 
 
All KGE values met the satisfactory threshold values of -0.41 (Knoben et al., 2019). The best calibration 
KGE values were obtained at 48 km2 and 56 km2, whereas the best validation KGE values were 
observed at 48 km2 and 674 km2. Both calibration and validation KGE values significantly improved 
from the uncalibrated hydrological model at all five scales, especially at 48 km3, 56 km2, 174 km2, which 
indicates the value of calibrated representative hydrological models at smaller scales, which is a notion 
supported by Smit et al. (2023a) and Van Tol et al. (2020). 
 
Peak flows simulations were improved by increasing the SURLAG parameter from 2 421 km2 and 
674 km2, which lags surface runoff at the two largest catchments to be more realistic of real-world 
conditions. This is due to the fact that as catchments increase in size, the surface runoff lag time 
becomes substantial. However, peak flows were slightly overestimated at the four smallest catchment 
sizes (48 km2, 56 km2, 174 km2, 674 km2), with the largest overestimation of peak flow values occurring 
at catchment 2 421 km2 (Figure 3.14). 
 
Peak flows were underestimated at 2 421 km2, which is the largest of the five catchment scales. What 
is readily observable is that baseflow simulations were greatly improved during calibration, where the 
uncalibrated model substantially underestimated baseflow contributions, particularly at smaller 
catchment sizes (48 km2, 56 km2 and 174 km2) where considerable baseflow contributions exist (Figure 
3.14). This is primarily a result of calibrating the selected groundwater parameters, such as ALPHA_BF, 
and RCHRG_DP, where both parameters were substantially decreased to improve the representation 
of baseflow values within the five catchments. Baseflow underestimation is still, however, prevalent at 
48 km2 and 56 km2, which suggests that additional contributions from the deep aquifer potentially 
augment baseflow volumes provided by the shallow aquifer and are in accordance with other studies in 
the region (Saravia Okello et al., 2018) as well as the broader region of South Africa (Van Tol et al., 
2020). 
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Figure 3.14: Monthly simulated streamflow for the HYDROSOIL model runs compared to 
observed streamflow at (a) X3H003, (b) X3H002, (c) X3H001, (d) X3H024, (e) X3H021 together 
with (f) the average monthly rainfall during the validation period. 

Hydrological processes 

The differences in streamflow simulations are a direct product of the calibration of selected parameters, 
which affected how the major hydrological processes were simulated. The major hydrological processes 
differed between the uncalibrated and calibrated model simulations (Table 3.16) at each of the five 
catchment scales. 
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In general, the calibrated model simulated far higher overland flow compared to the uncalibrated model 
(Table 3.16). The same was also true for average annual lateral flow values, where the calibrated model 
simulated substantially higher values at each of the five catchments (Table 3.16). However, calibrated 
average annual percolation values only slightly increased at 48 km2 and 174 km2. Whereas calibrated 
percolation rates slightly decreased at 56 km2, 674 km2 and 2 241 km2. The calibrated model also 
simulated less evapotranspiration compared to the uncalibrated model. 
 
Table 3.16: Average annual hydrological processes at each catchment scale. 

Catchment Model run 
Precipitation Surface 

runoff 
Lateral 

flow Percolation ET 

mm.year-1 

X3H003 (48 km2) 
Uncalibrated 

1375 
105 5 165 1006 

Calibrated 270 77 184 984 

X3H002 (56 km2) 
Uncalibrated 

1374 
135 5 152 1034 

Calibrated 214 93 145 955 

X3H001 (174 km2) 
Uncalibrated 

1374 
173 10 150 960 

Calibrated 230 130 167 944 

X3H024 (674 km2) 
Uncalibrated 

1285 
136 7 138 958 

Calibrated 209 121 133 932 

X3H021 (2421 km2) 
Uncalibrated 

1109 
106 4 99 842 

Calibrated 170 75 96 802 
ET = Evapotranspiration 
 
As surface runoff is directly impacted by the permeability of soils, associated land use and antecedent 
soil water conditions within each HRU (where land-use values remained constant between simulations), 
the difference in selected calibrated parameters, especially CN2 values, affected how surface runoff 
was simulated within the two models (Neitsch et al., 2011; Zhang et al., 2019a). On average, the CN2 
value of each hydrological soil group increased after calibration, which allowed more surface runoff to 
be simulated. 
 
However, ESCO also increased for the entire basin, less water was allowed to be removed by 
evaporation from lower levels in the soil, allowing more water to be available to either be stored within 
the soil, percolate, or flow laterally. EPCO was also decreased for the basin during calibration, which 
allowed less variation of the original depth distribution from which plants could meet their transpiration 
demands and therefore decreased evapotranspiration values for the entire basin, further increasing the 
amount of water available to either be stored within the soil profile, flow laterally out of the soil profile or 
percolate to the underlying soil or shallow aquifer (Neitsch et al., 2011). These changes within the model 
resulted in lower evapotranspiration rates after calibration which are still in accordance with other 
studies in the region where evapotranspiration rates of between 690 mm to 1 143 mm were recorded, 
depending on vegetation types, where savanna and shrubland vegetation types resulted in lower 
evapotranspiration rates than plantations and indigenous forests (Van Eekelen et al., 2015; Riddell et 
al., 2020). As 48.5% of the catchment consists of savanna and only 40% consists of plantations and 
forest (Mucina & Rutherford, 2006), these evapotranspiration values are reasonable. 
 
A substantial amount of additional water was therefore made available for different hydrological 
processes within the Sabie River system which were partitioned at their appropriate hydrological 
response at the soil level using the above-mentioned calibration approach (Table 3.17; Figure 3.15). 

https://acsess.onlinelibrary.wiley.com/doi/10.1002/vzj2.20280#vzj220280-bib-0032
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After calibration, recharge deep soils illustrated increases in both surface runoff and lateral flow, 
however, the dominant hydrological flow path remains recharge to the groundwater with recharge deep 
soils contributing 180 mm of recharge annually (Table 3.17). 

Table 3.17: Average annual surface runoff, lateral flow and percolation and change (mm) for each 
hydrological soil type between the calibrated and uncalibrated SWAT+ models (2 421 km2). 

Soil 
Coverage 

Model 
Surface 
runoff Lateral flow Percolation 

% mm.year-1 

A/B interflow 9.9 
Uncalibrated 185.9 0.4 23.7 

Calibrated 268.0 42.8 3.0 

Recharge 
deep 29.3 

Uncalibrated 27.8 4.0 229.8 

Calibrated 54.2 34.9 179.9 

Recharge 
shallow 13 

Uncalibrated 265.4 7.0 6.9 

Calibrated 51.6 39.3 315.1 

Responsive 
saturated 19.8 

Uncalibrated 170.0 5.6 28.3 

Calibrated 189.7 122.4 15.5 

Responsive 
shallow 12.5 

Uncalibrated 268.0 6.1 7.7 

Calibrated 304.8 60.1 6.9 

Soil/bedrock 
interflow 15.6 

Uncalibrated 161.0 2.4 127.1 

Calibrated 201.6 148.8 9.9 
 
Recharge shallow soils differed substantially after calibration where far less surface runoff was 
simulated, slightly higher average annual lateral flow values and substantially higher percolation values 
were also simulated, with an average annual increase of 308 mm of recharge being simulated (Figure 
3.15). These increases can be attributed by changing the soil hydrologic group from D to group A, 
therefore drastically lowering CN values, increasing infiltration and limiting lateral flow. The dominant 
hydrological response of recharge shallow soils now reflect their hydropedological characteristics. The 
vertical flow through and out of the profile into the underlying fractured bedrock is the dominant flow 
direction, without any morphological evidence of temporary or permanent periods of saturation (Van Tol 
et al., 2015). 
 

 
Figure 3.15: Average annual change in hydrological processes (mm) at the soil level from 
uncalibrated to calibrated model runs for the entire catchment. 
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The same can be said for both responsive saturated and responsive shallow soils where surface runoff 
values slightly increased after calibration (Table 3.17). These soils contributed limited lateral flow and 
percolation volumes, primarily only contributing surface runoff. Therefore, their hydropedology 
characteristics are accurately reflected within the model. 
 
Soil/bedrock interflow soils showed a marked increase in average annual lateral flow volumes after 
calibration with an increase of 132 mm (Table 3.17), improving the hydropedological representation of 
these soils. The increase in lateral flow is in large part due to the PERCO parameter being adjusted, 
limiting percolation, therefore, increasing lateral flow volumes, indicated by the 117 mm decrease in 
percolation annually. Surface runoff is still the dominant hydrological process with an average annual 
contribution of 172 mm, which is to be expected (Van Tol et al., 2015). 
 
A/B interflow also showed improved lateral flow simulations, with decreases in percolation volumes. 
Surface runoff remains the primary hydrological response with an average annual surface runoff 
contribution of 268 mm (Table 3.17). However, it remains uncertain if A/B interflow soils are adequately 
reflected within the model as the SWAT+ model does not output hydrological processes for each soil 
horizon but rather aggregates these processes, which is a current shortcoming of the SWAT+ model. 
 
The spatial distribution of hydrological processes also changed between uncalibrated and calibrated 
models (Figure 3.16). More surface runoff is simulated in the drier savanna sections of the catchment 
after calibration as a result of increases in curve numbers between model simulations. The calibrated 
recharge shallow soils also now illustrate significantly less surface runoff, especially at the most 
mountainous sections of the catchment. 
 
The additional water provided after calibration for different hydrological processes significantly impacted 
the spatial distribution of lateral flow within the catchment, where calibration allowed significant 
increases in lateral flow to be simulated. Low lateral flow values in the uncalibrated model could be 
attributed to the low saturated hydraulic conductivity values within the HYDROSOIL datasets which 
mostly inhibited lateral flow, allowing percolation to be the dominant hydrological process within the soil. 
Most lateral flow was simulated in the west of the catchment where steeper slopes and significantly 
more rainfall occurs (Figure 3.16). Percolation also changed spatially after calibration where the spatial 
distribution of percolation aligns with recharge deep and recharge shallow soils. 
 
Average annual soil water contents also showed a significant spatial change after calibration, where 
increases in average annual soil water for interflow soils (A/B and soil/bedrock) increases soil water 
content in the savanna regions of the catchment in the east (Figure 3.16). Decreases in soil water 
content for recharge (deep and shallow) and responsive shallow soils also affected in the spatial 
distribution of soil water in the mountainous regions in the west of the catchment, where recharge deep 
soils stored the most soil water due to the soils deep profile and relative position in the landscape. 
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Figure 3.16: Average annual hydrological processes (mm) at the HRU-level for the uncalibrated 
and calibrated hydrological models. 

These results are in accordance with other studies focusing on hydrological soil information in 
hydrological modelling (Van Tol et al., 2013; Sierra et al., 2018; Smit & Van Tol, 2022; Harrison et al., 
2022), They emphasise the potential of calibrating hydrological models using hydropedology as an 
information carrier to improve representation of hydrological process. This aligns with the study by Van 
Tol et al. (2021a) which illustrated the ability of an accurate hydrological soil map to act as data carrier 
for hydrological modelling purposes. Additionally, Bouma et al. (2022) cited the need to adopt soil 
classification as data source and information carrier to provide solutions to the Sustainable 
Development Goals inextricably linked to soil function (Lal et al., 2021; Bouma et al., 2021). 
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This research shows that accurate hydrological soil information, based on hydropedology, can carry 
information that may serve as an effective ‘soft data’ to better represent internal hydrological processes 
within a catchment, leading to improved representation of internal hydrological processes (Seibert & 
McDonnell, 2002; Van Tol et al., 2021a; Smit & Van Tol, 2022). Further calibration of SWAT+ 
parameters, in particular PERCO, LATQ_CO and CN2, allowed the linkage between hydropedology 
and different dominant hydrological processes, which is captured within the HYDROSOIL dataset, to 
be better represented within the SWAT+ model. 
 
These results also agree with other studies focusing on the importance of hydropedology within 
physically-based hydrological models (Bouma et al., 2011; Van Tol et al., 2021b). Representing the 
spatial distribution of dominant hydrological processes remains imperative to hydrological modelling for 
decision-making and policy purposes (Bossa et al., 2012; Wahren et al., 2016; Bouslihim et al., 2019). 
Modern water resource management plans are concerned with impacts at the local level, where the 
improved detail and accuracy of hydropedological information has been shown as more applicable than 
less detailed soil information (Harrison et al., 2022; Smit et al., 2023a). 
 
3.3.5 Conclusions 

Statistical analyses indicated substantial modelling improvement during both calibration and validation 
compared to the uncalibrated model. Further calibration of SWAT+ parameters, in particular PERCO, 
LATQ_CO and CN2, allowed the linkage between hydropedology and different dominant hydrological 
processes, which implies that hydropedology could be considered as a viable source of ‘soft data’ within 
the SWAT+ model. Accurate hydrological soil maps should form an integral part of modern process-
based hydrological modelling as they can act as important data sources and information carriers relating 
the variability of different hydrological processes across a landscape. 
 
This is particularly promising for hydrological modelling in ungauged basins as well as the 
regionalization of hydrological soil information, where hydropedology could form an important ‘soft data’ 
tool to aid different modelling approaches. Future research should focus on testing the calibration of 
hydrological soil types in different hydrological conditions, determining the applications of calibrated 
hydrological soil information for ungauged basins, as well as its impact on modelling land-use and 
climate change scenario analyses. 
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CHAPTER 4: OLIFANTS CATCHMENT 
Chapter 4 describes the digital soil mapping and hydrological modelling of the Olifants River catchment. 
It centres on how Land Type field data could be incorporated into digital soil mapping in South Africa 
(Section 4.1). This work forms part of the PhD thesis of Molebaleng Sehlapelo, and has been prepared 
as a peer-review paper to be submitted to the South African Journal of Plant and Soil (SAJPS,2023). 
describes how the soil map was then used to model the hydrology of the Olifants River catchment 
(Section 4.2). Eddy Smit prepared this part of the manuscript. 
 
4.1 INVESTIGATING THE ACCURACY OF DIGITISED LAND TYPE FIELD DATA IN DIGITAL SOIL 

MAPPING 

4.1.1 Abstract 

The acquisition of soil data in South Africa, as a developing country, has always been limited due to the 
lack of resources. However, these limitations were overthrown by the introduction of digital soil mapping 
with machine learning algorithms. Over the years, soil data collection has been recorded manually on 
topo-cadastral maps. This data was perceived to be geographically inaccurate due to the unavailability 
of Global Positioning Systems (GPS) at the time of data collection. However, the introduction of 
geo-referencing and digitising of scanned maps increased the availability of recorded soil data in digital 
format. The aim is to investigate whether using digitised soil point data in digital soil mapping affects 
the accuracy of soil maps. The Olifants catchment was chosen as the study area where soil point data 
and covariate data were collected to create hydropedological maps. The validation point accuracy and 
Kappa coefficient values were used to investigate the accuracy of the maps. The results indicated that 
adding Land Type field data to the collected soil point data decreased the accuracy of the maps. 
However, adding buffers to negate the assumed inaccurate geographical position of the Land Type field 
data increased the accuracy. Furthermore, the addition of a 100 m buffer resulted in the most accurate 
map yielding a validation point accuracy of 73.3% and Kappa value of 0.86. Therefore, Land Type field 
data can be used in digital soil mapping, however, it is necessary to negate the uncertainties associated 
with the geographical positions of the digitised Land Type field data. 
 
4.1.2 Introduction 

Soil is the most complex and diverse natural resource in the world. It is a vital ecosystem that is non-
renewable, which serves important environmental, economic and social functions (Blum et al., 2006. 
Soil has become a limited resource due to rapid human population growth and intensified agricultural 
practices aiming for higher crop yields. Consequently, soil faces significant pressure because of the 
diverse services it provides (Kopittke et al., 2019). Some of these services include food security, raw 
materials, infrastructure support, water resources, carbon storage and land degradation neutrality 
(Padarian et al., 2015). Comprehending the impacts of the pressures on soil is essential for sustainable 
soil management. However, the ability to monitor and manage soil relies heavily on the accessibility of 
precise spatial information about the soil (Zhang et al., 2017). Soil properties, agricultural performance 
and yield can exhibit significant variations over short distances due to the diverse nature of soils (Iqbal 
et al., 2005. Therefore, recording variation in soil properties on a larger scale is essential in 
understanding their impact on agricultural and environmental processes (Cook et al., 2008). 
 
Due to the variation of soil properties, the acquisition of data becomes cumbersome and necessitates 
significant financial and technical efforts. Moreover, the process of measuring, recording and mapping 
these variations is labour-intensive and time-consuming (Paterson et al., 2015). Many developing 
countries lack detailed information on their soil resources (Dewitte et al., 2013). The lack of data results 
in a significant gap in our understanding of soils physical and biological properties, making it the sole 
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missing layer of information on a global to local scale (Nachtergaele et al., 2010). There is an increasing 
recognition of the critical importance of soil knowledge and raising awareness of its global values to the 
public, policy makers and land managers (Hengl et al., 2017). 
 
There is a trend where fewer field-based soil data are being collected, and older soil data are favoured 
over new field soil data (Pangos, 2011). Therefore, data collected in the past must be preserved 
because they serves as a foundation for many of the research that is conducted today. Their scientific 
value in analysing historical changes in soils over time can be used now and in future (Taghizadeh-
Mehrjardi et al., 2019). Therefore, it is imperative that important soil data, which is now only available 
on papers and maps, be better saved and digitised before they are lost (Pangos, 2011). 
 
In South Africa, the lack of soil information was resolved through the introduction of soil surveys that 
were used to gather information on soil resources (Zeraatpisheh et al., 2020). The national Land Type 
Survey in South Africa started in the early 1970s based on field surveys which used 1:50 000 topo-
cadastral maps as base maps for collecting point information on soil properties at different locations 
(Paterson et al., 2015). The primary focus was to map and record the distribution of soils and their 
functions. The introduction of digital computing in the early 1990s allowed soil data to be transferred to 
a digital format. The 1:50 000 topo-cadastral soil maps could be digitised and edge mapped to represent 
the coverage of South Africa (Paterson et al., 2015). Although the method of soil surveys was effective 
for mapping small fields, it could not be used to create maps for larger areas (Van Zijl et al., 2014b). 
Due to the growing need for soil data and the unavailability of soil maps, modelling techniques were 
developed to spatially predict soil properties. Such includes the application of digital soil mapping with 
machine learning algorithms (Padarian et al., 2020). 
 
Soil data acquisition in South Africa improved due to the introduction of digital soil mapping, as the tool 
utilises representative and spatially distributed soil data (Van Zijl, 2019). Digital soil mapping exploits 
soil point data and environmental covariates that are put through machine learning methods to derive 
the relationship between the soil forming factors and soil properties (Minasny & McBratney, 2015). It 
depends on the accurate evaluation of the correlation between covariates and a set of observations, 
which is influenced by the selection of the covariates to be used to represent the relationship between 
soil and environment. In digital soil mapping, selecting the appropriate covariates (scorpan factors) is 
often the key to creating soil maps that can clearly indicate the soil knowledge (Peng et al., 2020). The 
scorpan factors are derived from remote sensing, proximal sensing or easily measured soil properties 
(Flynn et al., 2019a). These refer to numerical descriptions of the connections between soil and factors 
that are spatially referenced (McBratney et al., 2003). There are seven factors that make up the scorpan 
model which is written as: Sc= f (s.c.o.r.p.a.n) or Sa= f(s,c,o,p,a,n), where Sc is soil classes and is Sa is 
soil attributes (McBratney et al., 2003) . The acronym stands for each factor, s (soil), c (climate), 
o (organisms), r (topography), p (parent material), a (time) and n (spatial position) (Grunwald, 2009). 
 
This study investigated whether Land Type field data can be used to create accurate maps in digital 
soil mapping. Since the Land Type field data was collected without the use of GPS devices to verify the 
coordinates, it is assumed that the geographical position of the recorded soil points is inaccurate. 
Therefore, it is important to understand whether this inaccuracy affects the accuracy of the created 
maps in digital soil mapping. 
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4.1.3 Materials and methods 

The Olifants catchment 
 
The study area for mapping was the upper Olifants catchment, which falls within two provinces 
(Gauteng and Mpumalanga) of north-eastern South Africa (Figure 4.1). The upper Olifants catchment 
area is known for mining, agricultural and power generation activities, which are greatly dependent on 
a range of goods and services obtained from local aquatic ecosystems (Dabrowski & De Klerk, 2013). 
The catchment is characterised by ground and surface water pollution due to the anthropogenic 
stressors in the catchment, including extensive coal mining resulting in acidic water (Hobbs et al., 2008). 
 
The catchment receives rainfall during the summer months (October to April), with an annual rainfall 
ranging between 500 and 800 mm in most parts of the catchment. The rainfall is characterised by high 
variability of semi-arid climate and a temperature ranging between -4 and 45 ̊C (Olabanji et al., 2020). 
The geology of the catchment consists of all three major rock forms (igneous, metamorphic and 
sedimentary). The oldest rock formation is exposed in the eastern lowveld of the catchment, which is 
the Archean Granite and Gneiss Basalt Complex. Additionally, the rock formation consists of phyllites, 
banded ironstone, quartzites, conglomerate and limestone that have gone through metamorphism. 
There is also a group of igneous rocks embedded in the same rock formation, including amphibolites, 
greenstone lavas, and chlorite-schists (Thomas, 2015). The catchment is characterised by a variety of 
soil types, and the major soil types are moderately deep sandy to sandy-clay loams (Idowu et al. 2010). 
 
 

 
Figure 4.1: The Olifants catchment and soil point data used in the study. 

Soil point data 

Two different sets of soil data were collected for this study. Firstly, Land Type field data was collected 
from the ARC. The data was recorded on 1:50 000 topographic sheets with estimated geographical 
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positions, recorded as a dot and soil form on the map with a pencil or pen by the surveyor. The pen or 
pencil was assumed to have a thickness of 5 mm. Therefore, 5 mm on the topo-cadastral sheet is 50 m 
on the ground, meaning that the recorded point is already in a 50 m displacement. The maps were 
scanned, georeferenced and digitised in ArcMap 10.7.1 to obtain geographical coordinates of the 
recorded points. This resulted in a total of 193 digitised soil points. 
The second set of soil data was collected from legacy soil point data obtained by other institutions 
during fieldwork. Soil point data recently (2022) collected by North-West University students was also 
used for this study. This resulted in a total of 136 collected soil points with coordinates obtained from 
GPS devices used during fieldwork. These soil observations were classified to soil-form level according 
to the South African Soil Classification System (Soil Classification Working Group, 1991), and divided 
into conceptual hydropedological properties from the soil descriptions (Table 4.1; Van Tol & Le Roux, 
2019). 
 
Table 4.1: Soil forms in the Olifants catchment divided into hydropedological classes according to 
Van Tol and Le Roux (2019). 

Recharge Interflow Saturated 
responsive Stagnating 

Deep Shallow A/B horizon Soil/bedrock 

Bonheim Glenrosa Cartref Avalon Katspruit Dresden 

Carolina Mayo Constantia Bainsvlei Rensburg  

Clovelly Mispah Estcourt Fernwood Willowbrook  

Glen Rustenburg Kransfontein Glencoe   

Graffin  Kroonstad Pinedene   

Hutton  Longlands Sepane   

Nkonkoni   Tukulu   

Oakleaf   Westleigh   

Shortlands      

Swartlands      

Tongwane      

Valsrivier      
 
Covariate data 

One or more covariates were selected to represent the different scorpan factors – s (soil), c (climate), 
o (organisms), r (topography), p (parent material), a (time) and n (spatial position). Satellite images 
were collected from Sentinel Hub for the wet (16/04/2021) and dry (23/09/2021) seasons. Four sets of 
bands were obtained (blue-band 2, green-band 3, red-band 4, and NIR-band 8) from the satellite images 
to calculate the required indices (see Table 3.2) through mathematical manipulation carried out in 
SAGA-GIS 2.2.5. 
 
Furthermore, a DEM was obtained from SRTM with a 90 m resolution (USGS, 2015). Topographic 
covariates (Table 4.2) were derived from the DEM using the basic analysis tool in SAGA-GIS 2.2.5. 
Similarly, the Multiresolution Index of Valley Bottom Flatness (MRVBF) was derived from DEM using 
the Morphometry analysis tool. However, not all the covariates were used in creating the maps. Data 
on the geology, land types, temperature and rainfall of the study area was also obtained. This resulted 
in a total of 28 covariates, which were resampled to have the same grid extent resolution of 30 m. 
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Table 4.2: Topographic covariates derived from the Digital Elevation Model. 

Topographic covariates 

Analytical Hill shading 

Slope 

Aspect 

Plan Curvature 

Profile Curvature 

Convergence Index 

Closed Depression 

Total Catchment Area 

Topographic Wetness Index 

Slope Length and Steepness factor (LS-Factor) 

Channel Network Base Level 

Channel Network Distances 

Valley Depth 

Relative Slope Position 

MRVBF 

MRRTF 
MRVBF = Multiresolution Index of Valley Bottom Flatness; 
MRRTF = Multiresolution Ridge Top Flatness 
 
Map creation 

The HYDROSOIL maps were generated from various soil point datasets. Three different maps were 
created using three different sampling methods (Conditioned Latin Hypercube, K-means clustering and 
Stratified Random Sampling), with the multinomial regression algorithm in R studio using all the 
covariate layers generated. These sampling methods were used to divide the observation points into 
training (75%) and validation datasets (25%). Three types of soil point data were used to create the 
different maps (collected soil point data, Land Type field data and Land Type field data with different 
sized buffers). Different hydropedological properties were used as mapping units for the created maps. 
The most accurate map created using the three-sampling method was used as a baseline map. The 
baseline map was generated using the collected soil point data to compare or observe the changes in 
accuracy following the addition of Land Type field data. 
 
The accuracy of the maps was investigated using the Kappa coefficient and validation point accuracy 
to measure whether the map was an acceptable representation of reality. The validation dataset (25%) 
was used to calculate the Kappa coefficient and validation point accuracy values during validation 
testing. The validation points were added to the map units of the generated maps, and each validation 
point was examined to confirm alignment with the corresponding map unit. Total point accuracy refers 
to the total number of validation observations correctly predicted, and the Kappa coefficient is the 
reflection of reality by the map, with values close to 0 indicating a random designation of mapping units 
and values close to 1 indicating an accurate representation of reality (Van Zijl , 2019). 
 
The next map was created using both the collected soil point data and the Land Type field data, using 
the sampling method that resulted in the most accurate map in the previous step. This map was created 
for the purpose of investigating the impact that Land Type field data could have on the accuracy of the 
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baseline map. The accuracy of this map was investigated using the same validation dataset as used 
for the baseline map, the validation dataset was kept the same for statistical purposes. 
 
The last four maps were created using both the collected soil point data and Land Type field data. A 
50, 100, 200 and 500 m buffer was added to the Land Type field data using the Shapes Buffer tool in 
SAGA-GIS 2.2.5. The different sized buffers were added to Land Type field data for the purpose of 
negating the uncertainties associated with the geographical locations or the removal of the geographical 
displacement of the points recorded on the topo-cadastral maps. This was done to investigate which 
buffer is most effective for the Olifants catchment. 
 
4.1.4 Results and discussion 

The accuracy of the three maps generated through Conditioned Latin Hypercube (Figure 4.2a), 
K-means clustering (Figure 4.2b), and Stratified Random Sampling (Figure 4.2c) were assessed based 
on an accuracy matrix for the hydropedological classes used as mapping units (Table 4.3). 
 
The map created with the Conditioned Latin Hypercube sampling method and collected soil point data 
demonstrated the highest validation point accuracy of 50% and a Kappa coefficient of 0.47, surpassing 
the accuracy achieved by maps generated with alternative sampling methods  (Table 4.4). Therefore, 
the map was used as the baseline map to compare how the accuracy of the maps changed with the 
inclusion of land type field point data. The same sampling method was used to create all the maps due 
to the high accuracy. The map accuracy was assessed using the same validation dataset. 
 

 
Figure 4.2: Hydropedological maps created using different sampling methods including (a) 
Conditioned Latin Hypercube, (b) K-means Clustering and (c) Stratified Random Sampling. 
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Table 4.3: Accuracy matrix for hydropedological soil class map created with the Conditioned Latin 
Hypercube sampling method. 
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Deep 
recharge 15 5   2 2 2 26 15 57.7 

Shallow 
recharge 1       1 0 0.0 

Interflow A/B 9    1   18 8 44.4 

Interflow 
Soil/bedrock 2  8 3  1  9 3 33.3 

Stagnating 1  5 2 5   9 5 55.6 

Shallow 
responsive 2  1  1 3  6 3 50.0 

Saturated 
responsive       7 7 7 100.0 

Total 30 5 12 5 9 6 9 76   

Correct 15 0 8 3 5 3 7  41  

% 50.0 0.0 66.7 60.0 55.6 50.0 77.8   50.0 

 Kappa 0.47          

 
Table 4.4: Kappa coefficient and validation point accuracy (%) of maps created using different 
sampling methods. 

Sampling method Kappa coefficient Validation point accuracy (%) 

Conditioned Latin Hypercube 0.47 50 

K-means Clustering 0.36 33.3 

Stratified Random Sampling 0.29 39.4 
 
The next five maps were created using the Conditioned Latin Hypercube sampling method, collected 
soil point data and digitised Land Type field data. The first map with no buffers (Figure 4.3a) resulted in 
a Kappa coefficient of 0.45 and validation point accuracy of 63.6% (Table 4.5). These results indicate 
a slight decrease in Kappa value from the baseline map, although there is an increase in the validation 
point accuracy. 
 
Adding a 50 m buffer (Figure 4.3b) resulted in an increased Kappa coefficient of 0.76 and a validation 
point accuracy of 70%, when compared to the map created without any buffers. Increasing the buffer 
size from 50 m to 100 m (Figure 4.3c) again positively influenced the accuracy of the map, with a Kappa 
coefficient of 0.86 and validation point accuracy of 73.3%. A 200 m buffer (Figure 4.3d) yielded a Kappa 
coefficient of 0.59 and validation point accuracy of 66.7% – a reduction in both the Kappa coefficient 
and validation point accuracy when compared to the previous buffers. Nevertheless, these values 
remain higher than those obtained for the map created with digitised Land Type field data without any 
added buffers. The 500 m buffer (Figure 4.3e) yielded a Kappa coefficient of 0.70 and validation point 
accuracy of 80%. This is highest validation point accuracy compared to all the created maps. 
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Table 4.5: Kappa coefficient and validation point accuracy (%) of maps created using collected soil 
point data and Land Type field data with different sized buffers. 

Buffer Kappa coefficient Validation point accuracy (%) 

No buffer 0.45 63.3 

50 m 0.76 70.0 

100 m 0.86 73.3 

200 m 0.59 66.7 

500 m 0.70 80.0 
 
 

 
Figure 4.3: Hydropedological maps created using collected soil point data and Land Type field data 
with (a) no buffer, (b) 50 m buffer, (c) 100 m buffer, (d) 200 m buffer and (e) 500 m buffer. 

 
The findings suggest that incorporating various-sized buffers to the Land Type field data led to a notable 
increase in the Kappa coefficient, signifying enhanced map accuracy (Figure 4.4). Despite a dip in the 
Kappa coefficient with the addition of a 200 m buffer, the map's accuracy remained higher than that of 
the map created with land type field data without any buffer. Notably, the inclusion of a 100 m buffer 
with the land type field data resulted in the highest Kappa coefficient, signifying the most accurate map. 
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Figure 4.4: The accuracy of the created hydropedological maps with different buffer sizes as 
measured using the Kappa coefficient. 

 
4.1.5 Conclusions 

In the past, data collection predominantly relied on paper and maps before the introduction of electronic 
storage options. Unfortunately, some valuable soil data was either lost or consigned to archives, leading 
to a scarcity of available soil data or duplication thereof. This challenge is intensified by the labour-
intensive and time-consuming nature of collecting and analysing new soil data. The introduction of data 
digitisation and georeferencing enabled the transition from traditional topographic maps to digital 
records. However, the coordinates for these soil points were inaccurate as they were estimated in the 
absence of GPS devices. The question arose whether such soil data, marked by geographical 
uncertainties, could be effectively utilised in digital soil mapping. The findings revealed that adding the 
Land Type field data to collected soil point data slightly reduced the accuracy of the resulting map. 
However, introducing buffers to mitigate geographical uncertainties significantly improved map 
accuracy. Incorporating a 100 m buffer to the digitised Land Type field data yielded the highest accuracy 
for the Olifants catchment. In conclusion, digitised land type field data can indeed be used in digital soil 
mapping. However, to address uncertainties associated with geographical positions, it is essential to 
incorporate buffers. Further investigations are essential to determine the most effective buffer size for 
the specific study area. 
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4.2 COMPARING HYDROSOIL AND LAND TYPE SOIL INFORMATION IN THE UPPER OLIFANTS 
CATCHMENT USING SWAT+ 

4.2.1 Introduction 

As was done for the Sabie catchment (Section 3.2), this section again compares the created 
HYDROSOIL information to readily available Land Type data in the upper Olifants catchment using 
SWAT+. The aim was to compare long-term daily streamflow data between the two models in a highly 
anthropogenically altered, dolomite-dominated catchment at two catchment scales. 
 
4.2.2 Materials and methods 

The upper Olifants catchment 

The 330 km2 upper Olifants catchment is located in the Gauteng province of South Africa (Figure 4.5). 
The catchment elevation ranges from 1 683 m.a.s.l. and gradually flattens towards the north-east with 
an altitude of 1 450 m.a.s.l., as the Olifants River continues to flow toward Mozambique. Dolomite and 
quartzite are the primary geology present in the catchment area (Council for Geoscience, 2007). 
 

 
Figure 4.5: The upper Olifants River catchment, with weirs, streams, subbasins and climate station. 

Model, inputs and setup 

The same process as in the Sabie catchment (Section 3.2) was used. The QSWAT+ (v. 2.3) plugin was 
used to set up the catchment. The model warm-up period lasted for the first four years, followed by a 
five-year daily validation period. 
 
Daily rainfall, maximum and minimum temperature data was obtained from the Bronkhorstspruit (Bronk) 
climate station. All data was received courtesy of the South African Weather Service. Daily solar 
radiation, relative humidity and wind speed were obtained from the Climate Forecast System Reanalysis 
which was done by the National Center for Environmental Prediction (Saha et al., 2015). 
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The DEM was obtained from a 30 m x 30 m SRTM (USGS, 2022; Figure 4.6). The land cover data 
(Figure 4.7), was acquired from the 2013/14 South African National Land-Cover Map (GeoTerra Image, 
2015). For the land cover input, predefined SWAT values associated with various land-use classes 
were utilised. Additionally, dams identified in the land cover were integrated into the model setup, 
designated as 'reservoirs' and assigned default values. 
 

 
Figure 4.6: The elevation of the upper Olifants River catchment. 

 

 
Figure 4.7: The land uses within the upper Olifants catchment as demarcated from the 2013/2014 
South African National Land Cover Map. 
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Soil information 

Maps using the HYDROSOIL soil information and the Land Types were compared for the upper Olifants 
catchment (Figure 4.8). The Land Type database had already been converted to a readily available 
spatial soil database specifically for use within the SWAT model (Le Roux et al., 2023). In the upper 
Olifants catchment, there are five Land Type groups each with their own set of hydraulic properties 
(Table 4.6). 
 

 

 
Figure 4.8: a) The HYDROSOIL map and b) Land Types present within the Olifants catchment. 

  

a) 

b) 
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Table 4.6: The main hydraulic properties of the Land Type mapping units. 

Land 
Type Horizon Hydro-

group 
Depth Bd AWC Ksat OC Clay Silt Sand 

mm g/cm3 mm/mm mm/h % % % % 

Ba5 
A 

B 
300 1.5 0.084 13 1 18.6 17.5 63.9 

B 870 1.5 0.076 210 0 18.6 17.5 63.9 

Ba3 
A 

B 
300 1.5 0.089 4.3 1.25 20.8 17.5 61.7 

B 790 1.6 0.082 210 0.25 20.8 17.5 61.7 

Ba6 
A 

B 
300 1.5 0.084 4.3 1 19.1 17.5 63.4 

B 870 1.5 0.076 210 0 19.1 17.5 63.4 

Ba2 
A 

B 
300 1.5 0.086 4.3 1.0 21.2 17.5 61.3 

B 1000 1.5 0.074 210 0 21.2 17.5 61.3 

Bb3 
A 

B 
300 1.5 0.08 4.3 1 17.5 61.4 17.5 

B 990 1.5 0.067 210 0.1 21.1 17.5 61.4 
Bd = Bulk density; AWC = Available Water Capacity; Ksat = saturated hydraulic conductivity; OC = Organic Carbon. 
 
The second spatial soil dataset was the hydropedological dataset (HYDROSOIL), which was created 
in Section 4.1 using a 100 m buffer zone. A Kappa coefficient of 0.86 indicates a strong agreement 
between the soil map and actual observations (Section 4.1). The general morphological descriptions of 
the HYDROSOIL are given in Table 4.7. 
 
Table 4.7: The characteristics of the hydrological mapping units of the upper Olifants catchment. 

Hydrological 
mapping unit Soil form 

WRB 
Reference 
Groups 

Defining hydrological characteristic 

Recharge deep 
Hutton, 
Longtom, 
Kranskop 

Acrisols, 
Nitisols, 
Fluvisols 

Deep soils without any morphological indication of 
saturation. Vertical flow through and out of the 
profile into the underlying bedrock is the dominant 
flow direction. 

Responsive 
saturated 

Katspruit, 
Champagne Gleysols 

Soils with morphological evidence of long periods of 
saturation promoting the generation of overland flow 
due to saturation excess. 

Responsive 
shallow 

Mispah, 
Graskop Leptosols 

Shallow soils overlying relatively impermeable 
bedrock. Limited storage capacity results in the 
generation of overland flow after rainfall events. 

A/B interflow Estcourt, 
Sterkspruit Solonetz 

Duplex soils where the textural discontinuity 
facilitates build-up of water in the topsoil, with 
discharge in a predominantly lateral direction. 

Soil/bedrock 
interflow 

Fernwood, 
Cartref Arenosols 

Soils overlying relatively impermeable bedrock. 
Hydromorphic properties signify temporal build of 
water on the soil/bedrock interface and slow 
discharge in a predominantly lateral direction. 

WRB = World Reference Base for Soil Resources 
 
Undisturbed core samples were collected from 12 representative diagnostic horizons within the Olifants 
catchment during the field survey. These core samples were used to determine bulk density, particle 
size distribution and the water retention characteristics. The results were combined with the already 
existing Land Type modal profile data, and then the required SWAT+ hydraulic parameters were 
obtained by averaging these properties for each hydropedological soil type (Table 4.8). 
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Table 4.8: The main hydraulic properties of the HYDROSOIL mapping units. 

Hydrological 
soil types Horizon Hydro-

group 

Depth Bd AWC Ksat OC Clay Silt Sand 

mm g/cm3 mm/m
m mm/h % % % % 

Recharge 
(deep) 

A 
A 

250 1.38 0.078 26.6 1.4 10.7 4.2 85.0 

B 1800 1.42 0.095 4.827 0.8 23.4 14.4 62.2 

Responsive 
(shallow) A D 300 1.45 0.085 18.3 2.0 12.8 9.5 77.7 

Responsive 
(saturated) 

A 
B 

200 1.48 0.123 1.5 3.2 51.6 17.9 30.6 

B 1500 1.53 0.122 1.479 0.9 49.6 17.9 32.5 

Interflow (A/B) 
A 

D 
200 1.42 0.072 49.8 0.6 7.6 0.7 91.7 

B 1200 1.39 0.079 8.476 0.2 18.1 3.9 78.0 

Interflow 
(soil/bedrock) 

A 
C 

250 1.41 0.096 8.0 1.6 18.9 16.0 65.1 

B 1400 1.41 0.091 2.622 0.7 29.7 9.2 61.1 
Bd = bulk density; AWC = Available Water Capacity; Ksat = saturated hydraulic conductivity; OC = Organic Carbon. 
 
Two model runs were set up for the two levels of soil information. Only the soil information differed 
between setups as all other factors were constant for both simulation runs. However, the HYDROSOIL 
and Land Type soil datasets differed both spatially and in their hydraulic properties (Table 4.6, Table 
4.8). These differences would therefore affect the simulations due to how different hydrological 
processes are simulated by the model. As the hydrologic groups differ spatially between datasets, the 
curve numbers and associated runoff characteristics will differ greatly between model runs. 
 
The differences in hydraulic properties between the two levels of soil information should also affect 
modelling accuracy. The increased soil depth, AWCs and clay content and decreased Ksat values of 
the HYDROSOIL map should result in more water being stored within the soil profile for longer periods, 
leading to more available water for root uptake, plant growth and evapotranspiration. More antecedent 
moisture within the soil should also lower CN2 values, which remains one of the most sensitive 
parameters within the SWAT model (Wahren et al., 2016, Mengistu et al., 2019). 
 
Accounting for streamflow reduction 

The Botleng aquifer is a dolomite aquifer system present in the Olifants catchment (Pietersen et al., 
2012). This aquifer is used for large-scale agricultural irrigation and domestic use within the Delmas 
Local Municipality. It has been estimated that 10 Ml of potable water is abstracted from three major 
wellfields per day which falls just outside of the catchment (Pieterson et al., 2012). Preliminary modelling 
results suggested that substantially decreased streamflow is measured compared to that expected from 
the climate of the catchment. The dolomite aquifer drives streamflow within the catchment, where the 
majority of streamflow arises from springs within the dolomite areas, a substantial amount of streamflow 
reduction should be accounted for. To account for this within the SWAT+ model, the coefficient which 
determines the amount of groundwater lost from the system due to deep recharge and in this case, 
abstraction was increased to 0.8 for both models. Therefore, the fraction of root zone percolation that 
reaches the deep aquifer for both models was set to 0.8, mimicking the water lost from the system. 
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Validation data and statistical comparison 

Two weirs were used to validate long-term streamflow simulations which are managed by the DWS. 
These gauges were B2H008 (100 km2) and B2H007 (330 km2) where total daily streamflow was used 
for comparison purposes. 
 
For statistical comparison, four widely used statistical indicators were employed, namely coefficient of 
determination (R2), percentage bias (PBIAS), Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 
Efficiency (KGE). A KGE value surpassing -0.41 indicates a model prediction that aligns better with the 
mean observed values (Knoben et al., 2019). Streamflow simulations satisfactory when R2 > 0.6, NSE 
> 0.5, and PBIAS ≤ 15% (Moriasi et al., 2015). 
 
4.2.3 Results and discussion 

Streamflow simulations 

The model set-ups for the two levels of soil information had an identical number of subbasins (6) and 
landscape units (42), because the same DEM was used to delineate these. The number of HRUs 
differed significantly where the HYDROSOIL model contained 966 HRUs compared to the 386 HRUs 
contained within the Land Type model. The large discrepancy between model HRUs is purely a result 
of the spatial differences between the soil input information. 
 
The simulations of the HYDROSOIL and Land Type models yielded satisfactory results at both gauges 
based on R2 values (Table 4.9). All HYDROSOIL simulations achieved satisfactory KGE values 
(Knoben et al., 2019). However, the Land Type model did not meet the minimum KGE threshold at 
100 km2 with a value of -1.57 and yielded a weak KGE value of 0.22 at 330 km2. 
 
Both models produced disappointing PBIAS values at 100 km2, where neither model achieved PBIAS 
values below the 15% threshold (Moriasi et al., 2015). However, the HYDROSOIL model provided more 
accurate PBIAS values (27.17) compared to the Land Type model (-43.2). At 330 km2 the HYDROSOIL 
model yielded satisfactory PBIAS results (-0.45) compared to the unsatisfactory value (-50.29) for the 
Land Type model. Analysing NSE values, the HYDROSOIL model substantially outperformed the Land 
Type model at each catchment scale, with only the HYDROSOIL model achieving acceptable NSE 
values.  
 
Table 4.9: Statistical indicators of monthly streamflow simulations at two catchment levels. 

Catchment Soil data R2 PBIAS NSE KGE 

B2H008 (100 km2) 
Land Type 0.76 -43.2 -7.18 -1.57 

HYDROSOIL 0.78 27.17 0,69 0,69 

B2H007 (330 km2) 
Land Type 0.87 -50.29 -1.69 0.22 

HYDROSOIL 0.74 -0.45 0,74 0.74 
PBIAS = Percentage bias; NSE = Nash Sutcliffe Efficiency; KGE = Kling-Gupta Efficiency 
 
Peak flows were drastically overestimated by the Land Type model, whereas the HYDROSOIL dataset 
yielded far lower peak flows than the Land Type dataset (Figure 4.9), which improved modelling 
accuracy. Baseflow simulations were also substantially overestimated by the Land Type model at all 
catchment levels. The negative PBIAS values across all model simulations also equates to the general 
overestimation of total streamflow values by the Land Type model which can also be attributed to the 
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overestimation of baseflow values across all catchment levels. SWAT+ allows users to adjust 
groundwater parameters to mitigate or correct baseflow values. 
 
Statistical comparison between the two models over the five-year simulation period indicated a 
substantial difference between the two levels of soil information (Table 4.9). It could be inferred that the 
HYDROSOIL model outperformed the Land Type model, at both catchment scales (100 km2 and 
300 km2) when comparing daily observed streamflow values. The improved modelling accuracy is 
presumed to be a direct result of the improved simulation of real-world hydrological processes by 
improving the accuracy of soil information in the model. 
 

 
Figure 4.9: Daily simulated streamflow for the Land Type and HYDROSOIL (Hydrosol) model 
runs compared to observed streamflow at a) B2H008 and b) B2H007. 

 
Hydrological processes 

These differences in streamflow simulations and hydrological processes are a direct result of the 
differences between soil input datasets and how soil input data affects the simulation of these different 
hydrological processes. The major hydrological processes differed substantially between model 
simulations (Table 4.10) for the upper Olifants catchment (B2H007). 
 

 

 

a) 

b) 
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The upper Olifants catchment is significantly influenced by anthropogenic changes. This is very 
apparent when analysing the streamflow of each model as a fraction of precipitation where the 
HYDROSOIL streamflow equates to 20% of precipitation and Land Type streamflow equates to 16%. 
The low precipitation conversion rate can be explained by the substantial abstraction from agricultural 
and domestic practices. 
 
Baseflow as a fraction of total flow also differs between the models, where the HYDROSOIL baseflow 
equates to 86% of total flow whereas the Land Type baseflow equates to 60% of total flow. The upper 
Olifants sits at the edge of the Botleng dolomite aquifer which is used for large-scale agricultural 
irrigation and domestic use. The unconfined dolomite aquifer is also therefore responsible for a 
substantial portion of the total flow within the catchment as can be seen by the high baseflow rates for 
both models. Surface runoff as a fraction of total flow also differs between both models, where the 
HYDROSOIL surface runoff equates to 14% of precipitation compared to the 40% of the Land Type 
surface runoff. This difference can be explained by the differences between soil hydro-group and soil 
saturated hydraulic conductivity. 
 
Percolation and deep percolation for the HYDROSOIL model equates to 26% and 21% of precipitation, 
respectively. Percolation and deep percolation for the Land Type model equates to 19% and 15% of 
precipitation, respectively. These results can also be related to differences between soil information. 
Finally, evapotranspiration as a fraction of precipitation equals 72% for the HYDROSOIL model and 
76% for the Land Type model. 
 
Table 4.10: Average annual hydrological processes for the upper Olifants catchment. 

Hydrological processes HYDROSOIL Land Type 

Streamflow as a fraction of precipitation 0,2 0,16 

Baseflow as a fraction of total flow 0,86 0,6 

Surface Runoff as a fraction of total flow 0,14 0,4 

Percolation as a fraction of precipitation 0,26 0,19 

Deep recharge as a fraction of precipitation 0,21 0,15 

Evapotranspiration as a fraction of precipitation 0,72 0,76 
 
The most substantial difference between the two model simulations is the large discrepancy between 
surface runoff as a fraction of precipitation (Table 4.10). As all model inputs remained constant except 
for the soil information, it is the difference in soil information which results in these differences in surface 
runoff. 
 
The HYDROSOIL model simulates substantially less surface runoff than the Land Type model, where 
surface runoff is primarily concentrated in the urban and wetland areas of the catchment (Figure 4.10a). 
This is not the case for the Land Type model where the majority of surface runoff is simulated under 
pivot irrigation and within urban areas (Figure 4.10b). However, the rest of the catchment also simulates 
substantially more surface runoff compared to the HYDROSOIL model. The higher surface runoff value 
is also reflected in the substantially higher peak flows generated by the Land Type model (Figure 4.9). 
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Figure 4.10: Average surface runoff (mm) for a) the HYDROSOIL and b) the Land Type dataset. 

The most prevalent HYDROSOIL soil in the catchment, recharge (deep), is designated as a hydro-
group A soil, which lowers the CN number and therefore leads to more infiltration and less runoff. The 
soils of the Land Type model are all designated as hydro-group B soils, which should indicate moderate 
rates of infiltration. However, the majority of these soils also contain low saturated hydraulic conductivity 
values (less than 5 mm/h), especially compared to the HYDROSOIL dataset which were measured in 
the field (more than 15 mm/h). The lower the saturated hydraulic conductivity value of the soil the less 
permeable the soil and the less water is allowed to infiltrate, flow laterally or percolate within the soil. 
 
The results for the Olifants catchment agree with other research that emphasises the importance of 
understanding the hydropedological information available within a catchment and its transferability for 

a) 

b) b) 
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hydrological modelling purposes (Bouma et al., 2011; Sierra et al., 2018; Van Tol et al., 2021; Smit & 
Van Tol., 2022). 
 
4.2.4 Conclusions 

Detailed hydrological soil information for the upper Olifants catchment, developed using digital soil 
mapping techniques, resulted in more accurate streamflow simulations at both catchment scales in a 
highly anthropogenically-altered catchment. These results also illustrate the importance of soil 
information for simulating hydrological processes even in systems which are groundwater dominated. 
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CHAPTER 5: JUKSKEI RIVER CATCHMENT 
Chapter 5 revisits a modelling study conducted in the Jukskei catchment (Van Tol et al., 2020), which 
evaluated the impact of two different levels of soil information on streamflow predictions and water 
balance components. Building on this model, the chapter tests the hypothesis that there is a ceiling in 
the benefit that can be obtained from improving soil information. 
 
5.1 EXPLORING THE OPTIMAL LEVEL OF SPATIAL DETAIL IN SOIL INFORMATION FOR 

HYDROLOGICAL MODELLING 

5.1.1 Introduction 

The advances in digital soil mapping have paved the way for more detailed soil information. Several 
studies have found that using more detailed soil information improves accuracy in modelling results and 
reduces parameter uncertainty during calibration (Julich et al., 2012; Thompson et al., 2012; Van Tol et 
al., 2015; Van Zijl et al., 2016; Wahren et al., 2016; Van Zijl et al., 2020). With continuous advances in 
remote sensing and more detailed, readily-available ancillary data, one can expect that finer and finer 
scale digital soil maps will be created. The question then is, when is enough, enough? Can we achieve 
the same simulation accuracies and process representations without needing more detailed soil 
information? Some argue that small improvements in modelling accuracy do not justify the cost and 
time to gather more soil information (Geza & McCray, 2008). Although digital soil mapping techniques 
largely reduce the costs of data accumulation, it is a reasonable argument in relation to computing 
efficiency and realistic representation of processes. Ultimately, the modelling results should inform 
decision-making, and realistic-sized management units should drive the detail of modelling input data. 
 
A previous study for the Jukskei catchment compared models created using advanced digital soil 
mapping techniques with soil information derived from the Land Type database. In general, the digital 
soil mapping resulted in more accurate simulations of streamflow than the Land Type data when 
compared with measured values (Van Tol et al., 2020). The improved simulation accuracy was obtained 
without calibration of the model, which is promising for hydrological modelling in ungauged areas where 
long-term streamflow monitoring for calibration is absent. The ideal level of detail (or scale) of soil 
information compared to catchment size remained an important question. However, the SWAT model 
is sensitive to soil inputs, and the spatial representation of dominant hydrological processes is captured 
more accurately with more detailed soil information (Van Tol et al., 2020). Therefore, a reasonable effort 
should be made to improve soil information to realistically reflect hydrological processes to enhance 
land-use planning, especially in areas dedicated to urbanisation. 
 
This chapter tests the hypothesis that there is a ceiling in the benefit that can be obtained from improving 
soil information. It was tested in the Jukskei catchment using three levels of detail obtained from a digital 
soil mapping exercise. The digital soil mapping data was also compared against the new SWAT spatial 
layers and attribute data for South African soils (Le Roux et al., 2023). 
 
5.1.2 Materials and methods 

The Jukskei catchment 

The Jukskei catchment spans approximately 630 km2 and is situated between Johannesburg, the 
largest city in South Africa, and the capital city, Pretoria (Figure 5.1). Located in Gauteng province, this 
region accommodates a quarter of the country's population and significantly contributes to the majority 
of the gross domestic product. Given its economic importance, the area faces substantial development 
pressure driven by urbanisation. 
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Figure 5.1: The Jukskei catchment with sub-basins, weirs and climate stations (Van Tol et al., 
2020). 

The Jukskei River drains the catchment in a northerly direction. The geological composition of the study 
site consists of granite and gneiss from the Lanseria Gneiss of the Johannesburg Dome Granite 
(Dippenaar & van Rooy, 2014), featuring dominant Reference Groups soils such as Leptosols, 
Plinthosols, Cambisols, Stagnosols, and Fluvisols (IUSS, 2015. The vegetation type is Egoli Granite 
Grassland, forming part of the Mesic Highveld Grassland Bioregion (SANBI, 2012). Unfortunately, more 
than two-thirds of this vegetation unit has undergone transformation due to urbanisation. Positioned 
between 1 245 and 1 709 m.a.s.l. on the Highveld of South Africa, the catchment exhibits hilly terrain, 
with the majority of hillslopes having an average slope of less than 5%. The climate is characterised by 
convectional thunderstorms during summer months (October to April), with an average annual rainfall 
of approximately 700 mm. Summer days are hot, reaching an average maximum temperature of around 
25°C, while winter nights are cold, with an average minimum temperature of approximately 4°C. 
 
Mapping 

To create a soil map, firstly environmental covariates were collected for the entire Halfway House 
Granites area, as well as the Hospital Hill Subgroup and Swazian Erathem geological formations, to 
use as ancillary variables in the mapping process. These layers included wet and dry season Landsat 8 
images (USGS, 2018) taken on 10 April 2004 (wet season) and 31 July 2004 (dry season) respectively, 
and the 30 m SRTM DEM (USGS, 2018). Covariate layers were resampled to have the same grid extent 
at a resolution of 30 m. Secondary covariate layers were derived from the Landsat 8 and DEM layers 
in SAGA-GIS. Terrain derivative secondary covariate layers included: slope, profile curvature, planform 
curvature, aspect, topographic wetness index, flow accumulation, altitude above channel network, 
relative slope position and multi-resolution index of valley bottom flatness. From the wet and dry season 
satellite images the NDVI was derived. The geological map was rasterised and resampled to fit the grid 
extent of the other covariate layers. 
 
A soil observation database was created for the Jukskei catchment by combining various databases 
from different projects done within the greater Johannesburg area. Seventy observations were collected 
from Van Zijl and Bouwer (2012), 142 from Van Zijl et al. (2019), 61 from Van Zijl et al. (2020) and 113 
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from Bouwer et al. (2020). These observations were made by soil auger, profile pits and spot 
observations in areas where the soil was not deemed to be disturbed. Soils were described per horizon 
with soil texture, structure, colour, redox morphology, stone content and transitions being noted. 
Observations were classified to soil family level according to the South African Soil Classification 
System (Soil Classification Working Group, 1991). Samples for soil physical measurements were taken 
of selected soil horizons. Additionally, 48 virtual soil profiles were placed within wetlands as delineated 
on the wetland map of Johannesburg. Therefore, the final database consisted of 434 soil observation 
points (Figure 5.2). Hydropedological soil forms (Van Tol & Le Roux, 2019) were derived from the soil 
form classifications (Table 5.2). 
 

 
Figure 5.2: The soil observations of the three Halfway House Granites soil observation databases. 

The combined soil database was divided into a training and validation dataset, by stratified random 
sampling, using soil form as a stratifier, with 25% of the observations points of each hydropedological 
soil form being included in the validation dataset. The virtual soil profiles were all included into the 
training dataset. The training dataset consisted of 334 observations and the validation dataset 100 
observations. 
 
Using the training dataset, environmental covariates and the multinomial logistic regression method 
(Kempen et al., 2009), a hydropedological soil map was created at a 30 m resolution. To decrease the 
number of mapping units, the map was simplified by resampling it to a larger pixel size of 100 m and 
200 m. It is important to note that the application of a filter was first tried, but linear features, such as 
the saturated responsive soils found along streams were eliminated using a filter. All three maps (30 m, 
100 m, and 200 m) were validated with the validation dataset. A one-pixel buffer was observed (Van 
Zijl et al., 2012). 
 
Total validation point accuracy, user’s and producer’s accuracy, and the Kappa coefficient were 
determined for the validation dataset, to measure whether the map was an acceptable representation 
of reality. Total validation point accuracy is the total number of observations correctly mapped, 
expressed as a percentage of the total number of validation observations. The user’s accuracy reflects 
the accuracy of the map from the user’s perspective. It is the number of validation observations correctly 
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mapped within a specific map unit, expressed as a percentage of the total number of observations found 
on that specific map unit. The producer’s accuracy reflects the accuracy of a map from the producer’s 
perspective. It is the number of validation observations, within a specific class, correctly mapped, 
expressed as a percentage of the total number of observations within that specific class. The Kappa 
coefficient represents how well the map reflects reality, when compared to a random designation of 
mapping units. Kappa coefficient values range between 0 and 1, with values close to 0 indicating that 
the map is equal to a random designation and values close to 1 indicating that the map represents 
reality significantly better than a random designation would. 
 
The SWAT model, model inputs and setup 

The hydrological modelling utilised SWAT+ (version 2.2.3). SWAT+ represents an updated iteration of 
the widely recognised Soil and Water Assessment Tool (SWAT; Arnold et al., 1998; Bieger et al., 2017). 
SWAT is a semi-distributed catchment-scale model renowned for its process-based approach, 
extensively employed for simulating water quality and quantity to predict and assess the impacts of 
factors such as land use, climate change, soil erosion and pollution. 
 
The modelling period spanned from January 2000 to December 2013, with the initial three years 
designated as a warm-up period, followed by 11 years for validation. Notably, the study's objective, of 
evaluating the direct contribution of improved soil information to modelling efficiency, precluded the 
inclusion of a calibration period. 
 
Topography and land use 

Elevation data were acquired from a 30 m SRTM DEM (USGS) (Figure 5.3a). Current land use 
information was extracted from the 2013-2014 South African National Land Cover Map dataset 
(GeoTerra Image, 2015). To align with SWAT modelling requirements, the land-cover classifications 
were re-grouped into specific SWAT land uses, each characterised by pre-defined parameters (Figure 
5.3b). 
 
Climate information 

Daily rainfall, as well as minimum and maximum temperatures, were sourced from two climate stations: 
the Johannesburg Botanical Gardens and OR Tambo Airport. These climate stations are part of the 
South African Weather Service. Additionally, daily solar radiation, relative humidity and wind speed data 
were retrieved from the National Center for Environmental Prediction (Saha et al., 2015). This 
comprehensive set of meteorological information was employed to calculate daily potential 
evapotranspiration, utilising the Penman-Monteith approach. 
 
Soil information 

To implement SWAT, a comprehensive soil dataset is essential, serving as a spatial layer with detailed 
information on soil horizons. Key attributes, including depth, particle size distribution, saturated 
hydraulic conductivity, bulk density, carbon content, and available water capacity (AWC), are required 
for each layer. The AWC is synonymous with the more commonly known plant available water. 
 
This study incorporates four levels of soil information. The first utilises the spatial layer and associated 
soil attribute data derived from a project designed to provide SWAT-ready data for South Africa (Le 
Roux et al., 2023). Due to its origin in the Land Type database (Land Type Survey Staff, 1972-2002), 
this layer is referred to as Land Type throughout this document. The Land Type database, covering the 
entire country at a 1:250 000 scale, categorises Land Types based on relatively homogeneous soil-
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forming factors, such as climate, geology, and topography. There are only two Land Types in the 
Jukskei catchment (Bb1 and Bb2; Figure 5.4). 
 

 
Figure 5.3: a) Elevation of the Jukskei catchment with streams and weirs, b) dominant land-use in 
the Jukskei catchment as obtained from the South African National Land Cover 2013-14. 

 
Figure 5.4: The Land Type information for the Jukskei catchment (from Le Roux et al., 2023). 

In contrast to the Land Type database, digital soil maps exhibit a higher diversity of soils (six vs. two) 
and offer a more detailed spatial distribution of these soils. The HYDROSOIL dataset primarily features 
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the hydropedological classes interflow (soil/bedrock) and recharge (deep). To assess the impact of 
varying spatial detail, three HYDROSOIL maps, (Detail, Medium, Coarse) were utilised. Although these 
maps share the same map units (Table 5.1), they differ in spatial detail, resulting in varying numbers of 
HRUs. The Land Type dataset, with only two soil types, yielded 4 826 HRUs. In contrast, the Coarse, 
Medium, and Detail datasets generated 11 400, 13 844, and 33 196 HRUs, respectively.  
 
Validation data and statistical comparison 

Streamflow data were collected at three weirs managed by the DWS within the catchment (Figure 5.3). 
This study specifically focuses on the entire Jukskei catchment, covering 630 km2, drained by the 
A2H044 outlet. Daily streamflow measurements were transformed into monthly average values for the 
sake of comparison. 
 
For statistical assessments, three widely recognised indices were employed: the coefficient of 
determination (R2), the Root Mean Square Error (RMSE), the NSE, and the KGE. Beyond these 
statistical measures, a comparative analysis of water balance components across different model runs 
was conducted to evaluate the influence of soil information on the modelling outcomes. 
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Table 5.1: Selected hydraulic properties of the soil horizons in different soil information datasets 
(Land Type from Le Roux et al., 2023 and HYDROSOIL from Van Tol et al., 2020). 

 Soil Group  
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e Bb1 B 
A 300 1.4 0.09 13 1.0 15.0 15.0 70.0 

B 660 1.5 0.09 210 0.0 15.0 15.0 70.0 

Bb2 B 
A 300 1.4 0.09 13 1.0 15.0 15.0 70.0 

B 660 1.5 0.09 210 0.0 15.0 15.0 70.0 

H
YD

R
O

SO
IL

 

Recharge 
(deep) A 

A 300 1.4 0.09 218.5 1.2 21.6 11.1 67.6 

B 1200 1.3 0.09 172.0 0.8 29.7 13.2 57.2 

C 1500 1.4 0.08 56.9 0.4 27.1 15.7 57.6 
Recharge 
(shallow) A A 300 1.4 0.12 218.5 1.6 21.6 11.1 67.6 

Interflow (A/B) C 

A 300 1.4 0.06 112.5 1.8 21.6 11.1 67.6 

E 600 1.3 0.09 87.5 0.6 29.1 14.7 56.6 

B 1200 1.4 0.08 2.0 0.5 46.2 14.2 39.7 

Interflow 
(soil/bedrock) B 

A 300 1.4 0.13 218.5 1.8 21.6 11.1 67.6 

B 800 1.3 0.07 172.0 0.8 29.1 14.7 56.6 

C 1000 1.5 0.06 15.0 0.4 46.2 14.2 39.7 

R 1500 1.8 0.06 0.1 0.0 46.2 14.2 39.7 

Responsive 
(wet) D 

A 300 1.4 0.06 10.2 2.1 21.6 11.1 67.6 

G 1000 1.2 0.07 5.0 0.9 52.8 19.6 27.6 

G2 1300 1.6 0.06 0.1 0.4 52.8 19.6 27.6 

Responsive 
(shallow) C 

A 300 1.4 0.13 10.2 1.8 21.6 11.1 67.6 

R 500 1.8 0.07 1.0 0.0 46.2 14.2 39.7 
Db = bulk density; AWC = Available Water Capacity; Ks = saturated hydraulic conductivity; OC = Organic Carbon. 
 
 
5.1.3 Results and discussion 

Digital soil map results 

As could be expected, the 30 m pixel map achieved a higher accuracy than the resampled maps (Figure 
5.5). Its validation point accuracy was 65%, and it had a Kappa value of 0.53, while the 100 m and 200 
m pixel maps only achieved validation point accuracies of 52% (both) and kappa values of 0.34 and 
0.35 respectively. The 30 m pixel map is therefore deemed to have a moderate agreement with reality, 
while the other two only being deemed to have a fair agreement with reality. 
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Table 5.2: Hydropedological soil types used in the HYDROSOIL data, their dominant 
characteristics and reference groups. 

Hydropedological 
soil type1 Soil forms2 Reference 

Groups3 Defining characteristic 

Recharge (deep) 
Clovelly, Constantia, 
Griffen, Hutton, 
Shortlands 

Acrisols, 
Nitisols 

Soil profiles showing no signs of wetness in 
the profile. Fast vertical drainage through and 
out of the profile is dominant. 

Recharge 
(shallow) 

Mispah, Glenrosa, 
Mayo Leptosols 

Shallow soils with chromic colours in the 
topsoil. Underlying bedrock is permeable and 
drainage out of profile dominant. 

Interflow (A/B) 
Kroonstad, 
Longlands, 
Sterkspruit, Wasbank 

Stagnosols, 
Planosols, 
Plinthosols 

Hydromorphic properties between top and 
subsoil signify periodic saturation. Typically 
duplex soils with textural discontinuity between 
top and subsoil, resulting in a perched water 
table at A/B horizon interface and interflow. 

Interflow 
(soil/bedrock) 

Avalon, Bainsvlei, 
Bloemdal, Dresden, 
Fernwood, Glencoe, 
Pinedene, Tukulu, 
Westleigh 

Acrisols, 
Stagnosols, 
Arenosols, 
Plinthosols, 
Stagnosols 

Hydromorphic properties at the soil/bedrock 
interface indicate saturation due to relatively 
impermeable bedrock. Perched water table at 
bedrock interface will result in interflow at 
soil/bedrock interface. 

Responsive (wet) Katspruit, Rensburg Gleysols 

Gleyed subsoils indicate long periods of 
saturation, typical of wetland soils. Soils will 
respond quickly to rain event and promote 
overland flow due to saturation excess. 

Responsive 
(shallow) Mispah, Glenrosa Leptosols 

Shallow soils with bleached colours in the 
topsoil indicate that underlying bedrock is 
slowly permeable. Small storage capacity of 
the soil will quickly be exceeded following 
rainstorms and promote overland flow 
generation. 

1Van Tol & Le Roux, 2019; 2Soil Classification Working Group, 2018 3IUSS WRB, 2015. 

 
 

 

Figure 5.5: Digital Soil Mapping derived input data a) DSM_detail, b) DSM_Medium, resampled to 100 
m grid and c) DSM_coarse, resampled to a 200 m grid. 
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Modelling results 

The HYDROSOIL map yielded somewhat improved streamflow simulations compared to the Land Type 
dataset (Figure 5.66; Table 5.3). Despite this enhancement, the NSE values remain below the generally 
accepted threshold of 0.5 for both model runs (Moriasi et al., 2007). However, the KGE values surpass 
the 0.5 threshold, indicating an acceptable level of performance. It is noteworthy that both models 
exhibit a tendency to underestimate streamflow, as evidenced by positive PBIAS values. 
 
The underestimation is more pronounced in the case of the HYDROSOIL dataset, likely attributed to its 
tendency to underestimate both peak flows and baseflows. Both Land Type and HYDROSOIL model 
runs reveal a substantial underestimation of baseflow (Figure 5.66). Interestingly, a visual inspection 
suggests that the HYDROSOIL dataset outperforms the Land Type dataset in predicting baseflow, 
although improvements are still needed. 
 

 
Figure 5.6: Simulated streamflow for the Land Type (LT) and detailed HYDROSOIL (DSM) model 
runs compared to observed streamflow. 

The results demonstrate marked progress in comparison to earlier simulations (Van Tol et al. 2020). 
The earlier KGE values were 0 for the Land Type dataset and 0.28 for the HYDROSOIL map, indicating 
significant deficiencies (Van Tol et al., 2020). In contrast, these updated simulations exhibit noticeable 
improvements for both Land Type and HYDROSOIL scenarios (Table 5.3). It is crucial to note that these 
enhancements may stem from updates to the model, modifications to default parameters, and 
alterations to the overall model structure, rather than solely relying on changes in the soil dataset. 
 
Table 5.3: Statistical streamflow prediction accuracies when using HYDROSOIL as input 
compared to Land Type. 

Soil level R2 RMSE PBIAS NSE KGE 

HYDROSOIL 0.64 16.61 39.64 0.39 0.54 

Land Type 0.65 17.55 32.56 0.32 0.43 
RMSE = Root Mean Square Error; PBIAS = Percentage bias; NSE = Nash Sutcliffe Efficiency; KGE = Kling-Gupta 
Efficiency 
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While the simulations fall short of the ideal NSE threshold, the acceptable KGE values and notable 
improvements over previous studies underscore the positive impact of model updates and structural 
modifications. Further refinement, especially in addressing underestimation issues, remains a pertinent 
focus for future enhancements in streamflow simulations. 
 
Examining the impact of different levels of spatial detail on water balance components revealed 
interesting findings, particularly when comparing the Detail and Medium simulation outputs. Despite 
reducing the number of HRUs by over 20 000, the water balance components showed only minor 
changes, maintaining consistent representation of processes with similar volumes of water (Table 5.4; 
Figure 5.7). 
 
Table 5.4: Water balance component estimates (mm) when using various scale HYDROSOIL inputs 
and the Land Type dataset. Differences are expressed as % change from the Detail model run. 

 Detail Medium Coarse Land Type 

Component   % change  % change  % change 

Rainfall 664.2 664.2  664.0  663.9  

Streamflow 210.7 211.5 0.4 233.4 10.8 234.6 11.3 

Overland flow 60.1 59.9 -0.3 58.9 -2.1 56.7 -5.7 

Lateral flow 150.6 151.6 0.6 174.5 15.9 177.9 18.1 

Percolation 17.3 15.1 -12.7 16.5 -4.7 38.2 120.1 

ET 430.7 431.6 0.2 415.0 -3.6 392.3 -8.9 

Transpiration 125.4 127.3 1.5 96.7 -22.8 99.0 -21.0 

Evaporation 295.7 294.6 -0.4 311.3 5.3 284.3 -3.9 

ET0 1760.5 1760.5  1760.6  1760.6  

Profile water 106.0 105.2 -0.7 115.0 8.6 40.0 -62.3 

Topsoil water 17.5 18.0 2.8 16.8 -4.2 10.9 -38.0 
ET = Evapotranspiration 
 
 

 
Figure 5.7: Absolute change (mm) between various water balance components from different 
model runs. 
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In contrast, a more significant difference was observed between the Detail and Coarse assessments of 
the water balance (Table 5.4). Simulations using the Coarse dataset exhibited comparable trends to 
the Land Type dataset, demonstrating increased streamflow due to heightened lateral flows. 
Transpiration also decreased in a similar manner as in the Land Type inputs. Interestingly, evaporation 
and profile soil water content increased with the Coarse dataset, whereas they declined when using the 
Land Type dataset. The most substantial difference between the HYDROSOIL and Land Type datasets 
was observed in the average profile soil water. Shallower soils in the Land Type dataset led to increased 
lateral flow, higher percolation, reduced evapotranspiration and altered soil water storage dynamics. 
 
At least for this specific catchment, there exists a critical threshold where soil data becomes too coarse 
to provide meaningful insights (Figure 5.7; Table 5.4). It appears that, at a grid resolution exceeding 
100 m, the spatial processes lose accuracy. Potential explanations include the inadequate coverage of 
significant soil types or the diminishing spatial connectivity at this coarse resolution. These nuances 
should be the focus of subsequent investigations, guiding future advancements in understanding the 
intricate relationship between spatial detail and the accurate representation of water balance 
components. 
 
5.1.4 Conclusions 

This study revisited a hydrological modelling assessment conducted in the Jukskei catchment, Gauteng 
province, to scrutinise the impact of varying levels of spatial detail in soil information on streamflow 
predictions and water balance components. Building on the work of Van Tol et al. (2020), three levels 
of soil detail were obtained from a digital soil mapping exercise and compared against the Land Type 
dataset. The investigation sought to address the crucial question of whether finer-scale digital soil maps, 
driven by advancements in remote sensing and ancillary data availability, offer substantial benefits in 
terms of modelling accuracy compared to coarser representations. 
 
The results revealed that, despite reducing the number of HRUs by more than 20 000 units, the 
differences in water balance components between the Detail and Medium simulations were negligible. 
This suggests that, within certain limits, the spatial processes and volumes were adequately captured 
even with a reduction in spatial detail. However, significant disparities emerged when comparing the 
Detail and Coarse simulations. Notably, the Coarse dataset exhibited similarities to the Land Type 
dataset in terms of streamflow trends and transpiration declines, suggesting that there might be a 
threshold beyond which coarser spatial resolutions compromise the accuracy of hydrological 
simulations. 
 
The comparison of HYDROSOIL and Land Type datasets, along with the observed trends in water 
balance components, hints at a critical threshold of detail in soil information for robust hydrological 
modelling. Beyond a grid resolution of 100 m, spatial processes may not be accurately reflected, raising 
questions about the effectiveness of soil information at coarser resolutions. 
 
These results contribute to the ongoing discourse on balancing the benefits of detailed soil information 
against computational efficiency and realistic representation of hydrological processes. While the 
simulations show improvements over previous studies and highlight the sensitivity of the SWAT model 
to soil inputs, the study suggests that there might be diminishing returns in terms of modelling accuracy 
with excessively detailed soil data. This prompts further investigation into the specific conditions under 
which coarser resolutions become less effective, potentially due to the inadequate representation of soil 
types or diminishing spatial connectivity. 
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In conclusion, a nuanced approach is needed to determine the optimal level of spatial detail in soil 
information for hydrological modelling. Future research should delve into the intricate relationship 
between grid resolution, spatial processes and modelling accuracy to provide valuable insights for land-
use planning, especially in regions undergoing rapid urbanisation. 
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CHAPTER 6: UMNGENI, TSITSA AND GOUKOU CATCHMENTS 
Chapter 6 describes the general methodology for the digital soil mapping in the uMngeni, Tsitsa and 
Goukou catchments. They are grouped in this chapter to avoid repetition, as the methodology is so 
similar. 
 
The value of the HYDROSOIL in the uMngeni catchment (Section 6.2) is shown through simulating 
land-use change and its effect on the water balance when all the grasslands are converted into forests. 
Willie Cloete was responsible for creating the HYDROSOIL, while Johan van Tol did the hydrological 
modelling. 
 
The Tsitsa catchment, situated within the Eastern Cape province is severely eroded (Du Plessis et al., 
2020). The HYDROSOIL was used for hydrological as well as sediment modelling, to showcase its use. 
Willie Cloete was responsible for the mapping while Jay le Roux conducted the modelling. 
 
The creation of the HYDROSOIL and hydrological modelling of the Goukou River is showcased through 
the use of the JAMS model, to show that different hydrological models could also use the HYDROSOIL. 
The soil mapping was done by Molebaleng Sehlapelo, while Willem de Clerq and Andrew Watson did 
the modelling. 
 
6.1 METHODOLOGY 

6.1.1 Digital Soil Mapping methodology 

Sentinel 2A satellite images were retrieved from the Sentinel Hub at a resolution of 10 m for each 
catchment. The satellite images were collected for the dry season and wet season at 0% cloud 
coverage. The spectral bands (including red, green, blue and near-infrared) were used to calculate 
spectral indices: normalised difference vegetation index (NDVI), colouration Index (CI), redness Index 
(RI), saturation Index (SI) and brightness Index (BI) (see Table 3.2). The 30 m SRTM DEM (USGS) 
was used to derive various topographic variables, including slope, plan curvature, profile curvature, 
convergence index, closed depression, total catchment area, topographic wetness index, LS-factor, 
channel network base level, channel network distance, valley depth, relative slope position, Multi-
Resolution Index of Valley Bottom Flatness (MRVBF and Multi-Resolution Index of Ridge Top Flatness 
(MRRTF). Climatology data were obtained from the South African Atlas of Climatology and 
Agrohydrology (Schulze, 2007) including annual median rainfall, maximum temperature (January) and 
minimum temperature (June). Additionally, geological maps were also used as covariates (Council for 
Geoscience, 2007). Land type data (Land Type Survey Staff, 1972-2002) were also used as a covariate 
and retrieved from the land type database (Land Type Survey Staff, 1972-2002). 
 
Soil point data was collected, which included legacy soil data, recently sampled soil data and digitised 
soil data. The legacy soil data was collected from different institutions, scientists and entities, while 
recently sampled data was collected during 2022. Each soil observation had a hydropedological soil 
form assigned to it based on its classification (Van Tol & Le Roux, 2019). 
 
The soil observation data was split into training and validation datasets in the ratio of 75:25, using all 
three of the Stratified Random Sampling (SRS), K-means clustering (K-means) and Conditioned Latin 
Hypercube sampling algorithms. This allowed for the algorithms to be compared. 
 
Using the training datasets, a HYDROSOIL map was created for each training dataset with the 
multinomial logistic regression algorithm. The maps were tested using the independent validation 
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datasets. The validation point accuracy and the Kappa coefficient was calculated for each map. The 
Kappa coefficient indicates the maps’ representation of the reality, above a random representation, with 
values ≤ 0 indicating no agreement, 0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41-0.60 as 
moderate, 0.61-0.80 as substantial and 0.81-1.00 as almost perfect agreement. 
 
6.1.2 Hydrological modelling 

The next step is the application of the HYDROSOIL maps in hydrological modelling, which allows 
appraisal of their performance. More specifically, performance of the HYDROSOIL maps is determined 
by comparing the streamflow and sediment yield results from hydrological modelling with the 
HYDROSOIL maps, as well as a soil map (Le Roux et al., 2022) derived from the Land Type Database 
of South Africa (ARC, 2012). Comparing the streamflow results and accuracies of the two datasets 
(HYDROSOIL data versus Land Type data) allows appraisal of the performance of the HYDROSOIL 
data. 
 
Sections 6.2 and 6.3 make use of the Soil and Water Assessment Tool (SWAT) model, while 
Section 6.4 uses the Jena Adaptable Modelling System (JAMS) model. The SWAT model is described 
here. 
 
SWAT is a catchment-scale and continuous time model operating on a daily time-step to simulate water, 
sediment and chemical fluxes in large catchments with varying climatic conditions, soil properties, 
stream channel characteristics, land use and management practices (Srinivasan et al., 1998; Arnold et 
al., 2012). SWAT considers most hydrological and sedimentological aspects into one simulation 
package, including factors controlling runoff on hillslopes and streamflow in river channels, as well as 
sediment generation, channel transport and deposition into sinks (Gassman et al., 2007). 
 
The SWAT model has graphical user interface applications that streamline access to databases and 
facilitate the preparation of input datasets including topography, drainage network, land cover, soil, 
climate and land management. SWAT is routinely coupled within GIS platforms which offer 
unprecedented flexibility in the representation and organisation of spatial data (Chen & Mackay, 2004). 
Although SWAT and its baseline input datasets were developed for use in the United States of America, 
the model has gained international acceptance and has been applied to support various large 
catchment (10-10 000 km2) modelling studies across the world (e.g. Mishra et al., 2007; Wang et al., 
2009; Srinivasan et al., 2010; Gassman et al., 2014). 
 
SWAT+ represents a comprehensive revision of the well-established SWAT (Bieger et al., 2017; Arnold 
et al., 1998). Widely employed for water quality and quantity simulations, SWAT is instrumental in 
predicting and evaluating the impacts of land use changes, climate variations, soil erosion, and 
pollution. Neitsch et al. (2009) provide an in-depth description of the SWAT model, while Bieger et al. 
(2017) outlines the modifications and updates introduced in the SWAT+ version. 
 
Operating as a process-based semi-distributed catchment-scale model, SWAT+ begins by subdividing 
the catchment into Hydrological Response Units (HRUs), each representing a homogeneous area in 
terms of soils, land use, and slope. The model then computes water balance components, 
encompassing overland flow, infiltration, lateral flow, percolation, evapotranspiration, and discharge to 
the stream from each HRU. The hydrologic component is based on the water balance equation in the 
soil profile integrating several processes, including surface runoff volume using the infiltration method 
(Green & Ampt, 1911) or the curve number method (USDA, 1972). 
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6.2 DIGITAL SOIL MAPPING AND MODELLING OF THE UMNGENI CATCHMENT 

6.2.1 Introduction 

Advancements in computational capabilities have empowered spatially distributed hydrological models 
to handle landscape heterogeneity intricacies. Models like SWAT and SWAT+, seamlessly integrated 
with GIS interfaces such as ArcMap and QGIS, utilise topography, land use, and soil data layers to 
delineate HRUs (Arnold et al., 1998; Bieger et al., 2017). While remote sensing has improved 
topographical and land-use data globally, the availability of detailed soil information in many developing 
countries remains a challenge. Despite evidence suggesting that more realistic hydraulic properties 
enhance modelling accuracy and reduce parameter calibration uncertainty, comprehensive soil data is 
often lacking (Romanowicz et al., 2005; Bossa et al., 2012; Diek et al., 2014; Van Tol et al., 2015; 
Wahren et al., 2016; Gagkas et al., 2021; Van Tol et al., 2021). 
 
The scarcity of suitable soil information can be attributed to the fact that soil maps are not typically 
designed for hydrological modelling purposes (Zhu & Mackay, 2001). Additionally, the costs and time 
associated with quantifying spatial variations in crucial soil hydraulic properties further hinder data 
availability. In South Africa, the Land Type database, a 30-year initiative primarily for agricultural 
purposes, offers countrywide soil coverage, albeit at a limited scale of 1:250 000. Despite efforts to 
convert these Land Types into hydrological modelling inputs, using lumped average soil parameters 
(Pike & Schulze, 1995; Schulze et al., 2007; Le Roux et al., 2023), it has inherent limitations (Van Tol 
& Van Zijl, 2020). One of the objectives of this report is to evaluate whether these limitations have 
significant impacts on regional scale modelling. 
 
Recent developments in digital soil mapping have facilitated the generation of detailed soil information 
at an appropriate scale and format for hydrological modelling studies at relatively low costs (McBratney 
et al., 2003; Zhu & Mackay, 2001; Thompson et al., 2012; Van Tol et al., 2015; Van Zijl et al., 2016; 
Wahren et al., 2016; Van Zijl et al., 2020). Digital soil mapping allows for the remapping of legacy soil 
data, like the Land Type database, at finer scales with improved accuracy, addressing some of the 
limitations associated with existing datasets. Notably, advancements in machine learning, expert 
knowledge and the disaggregation of Land Types into detailed soil polygons have been instrumental in 
mapping soils for hydrological purposes in South Africa (Van Zijl, 2019; Van Zijl et al., 2016; Van Tol et 
al., 2020). 
 
This section revisits hydrological modelling with SWAT+ in the uMngeni catchment using distinct soil 
datasets (Van Tol & Van Zijl, 2022). The objectives are to create improved HYDROSOIL datasets using 
various methods to determine the most effective approach. Additionally, the impact of different soil input 
datasets will be assessed with a newer version of the SWAT model, incorporating two distinct soil 
datasets, namely, a HYDROSOIL map and Land Type soil inputs (Le Roux et al., 2023). Furthermore, 
the simulated impact of potential land-use changes on hydrological processes is evaluated when 
different soil inputs are employed. 
 
6.2.2 Materials and methods 

The uMngeni catchment 

The study focused on three quaternary catchments located in the KwaZulu-Natal midlands: U20A 
(upper uMngeni River), U20B (Lions River), and U20D (Karkloof River) (Figure 6.1). These catchment 
areas encompass 299 (U20A), 358 (U20B) and 339 km2 (U20D). The average annual precipitation 
ranges from 1 250 mm per annum in U20D to 850 mm per annum in the drier central areas of U20B, 
with most of the rainfall occurring between October and March (Schulze & Lynch, 2007). Summer and 
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winter mean daily air temperatures are approximately 19°C and 11°C, respectively (Schulze & Maharaj, 
2007). The natural vegetation includes Midlands Grassland, Drakensberg Foothill Moist Grassland, and 
Southern Mistbelt Forests (SANBI, 2018). The predominant current land uses are commercial forestry 
and crop production (Figure 6.2). 
 

 
Figure 6.1:The uMngeni catchment, represented by catchments U20A, U20B and U20D, together 
with the location of rainfall stations and weirs draining the catchments (Van Tol & Van Zijl, 2022). 

Digital soil mapping 

For a description of the digital soil mapping methodology, please see Section 6.1. 
 
Model, simulations and input data 

The simulations used the SWAT+ model (v 2.2.3) (Section 6.1.2; Arnold et al., 1998; Bieger et al., 
2017). 
 
Land-cover data were acquired from the 2013/14 South African National Land Cover map (GeoTerra 
Image, 2015; Figure 6.2). Pre-defined SWAT values for various land-use classes served as input data 
for land cover. Dams identified from the land cover were included in the model setup as 'reservoirs' with 
estimated parameters, limited to relatively large dams (> 1 ha), amounting to 3 (U20A), 2 (U20B), and 
3 (U20D). Smaller ponds and farm dams were assigned default SWAT+ parameters for a 'water' land 
use class in the model. 
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Figure 6.2: Land cover of the uMngeni catchment, simplified from the 2013/14 South African 
National Land Cover dataset (GeoTerra Image, 2015; adopted from Van Tol & Van Zijl, 2022). 

 
The soil inputs were the HYDROSOIL map with the best accuracy (see results, Section 6.1) and the 
Land Type data (Figure 6.3) converted to SWAT ready input data (Le Roux et al., 2023). There are 91 
Land Types in the three catchments each with their own input attributes (Table 6.1). The hydraulic input 
parameters were adopted from Van Tol & Van Zijl (2022) with alterations to accommodate two soil types 
namely responsive (shallow) and Stagnant which did not form part of the previous modelling exercise 
(Table 6.1). 
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Figure 6.3: Land types present in the uMngeni catchments (Land Type Survey Staff, 1972-2002). 

 
Table 6.1: Summary of hydraulic input parameters for the Land Type soil dataset (Le Roux et al., 
2023; Van Tol & Van Zijl, 2022) 

 
Master 
horizon 

Depth Bulk 
density AWC Clay Silt Sand OC Ks 

 mm g.cm-3 mm.mm-1 % mm.h-1 

U20D 
A 300 

(300, 300) 
1.52 

(1.49, 1.59) 
0.092 

(0.071, 0.105) 39.1 30.9 30.0 5.0 24.0 

B 580 
(400, 710) 

1.53 
(1.51, 1.57) 

0.091 
(0.059, 0.122) 48.4 29.3 22.0 1.5 6.0 

U20B 
A 300 

(290, 300) 
1.54 

(1.49, 1.60) 
0.092 

(0.084, 0.105) 39.1 30.9 30.0 5.0 24.0 

B 520 
(320, 790) 

1.55 
(1.52, 1.58) 

0.087 
(0.066, 0.122) 48.4 29.3 22.0 1.5 6.0 

U20A 
A 300 

(290, 300) 
1.55 

(1.49, 1.60) 
0.102 

(0.084, 0.105) 39.1 30.9 30.0 5.0 24.0 

B 530 
(430, 790) 

1.55 
(1.52, 1.58) 

0.114 
(0.066, 0.122) 48.4 29.3 22.0 1.5 6.0 

AWC = Available Water Capacity; OC = Organic Carbon; Ks = Saturated hydraulic conductivity 
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Table 6.2: Hydraulic input parameters for the HYDROSOIL and Land Type model runs. 

Hydro-pedological 
& SWAT soil 
group 

Master 
horizon 

Depth OC Clay Silt Sand Bulk 
density AWC Ks 

(mm) % g.cm-3 mm. 
mm-1 mm.h-1 

Recharge (deep) 
A 

A 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94 

B 1500 1.14 42.29 30.83 25.18 1.50 0.17 7.71 

C4 3000 0.24 35.30 34.98 28.68 1.50 0.18 3.75 

Recharge (shallow) 
A 

A 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94 

C 700 0.24 35.30 34.98 28.68 1.50 0.18 3.75 

Interflow (deep) 
B 

A 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94 

B 1500 1.14 42.29 30.83 25.18 1.50 0.17 7.71 

B24 2000 0.35 49.25 39.35 10.50 1.50 0.19 3.79 

Responsive (wet) 
C 

O 300 9.36 34.00 48.50 12.70 1.00 0.18 37.71 

G 2000 0.35 49.25 39.35 10.50 1.50 0.19 3.79 
Shallow 
(responsive) 
C 

A 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94 

C 500 0.24 35.30 34.98 28.68 1.50 0.18 3.75 

Stagnant 
A 

A 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94 

B 1000 1.14 42.29 30.83 25.18 1.50 0.17 7.71 

C 1500 0.24 35.30 34.98 28.68 1.50 0.18 3.75 
OC = Organic Carbon; AWC = Available Water Capacity; Ks = Saturated hydraulic conductivity 
 
Streamflow data were recorded at DWS weirs U2H013, U2H007, and U2H006 (Figure 6.1). Daily rainfall 
records were sourced from seven rainfall stations provided by the South African Weather Service and 
DWS (Figure 6.1). The average annual rainfall during the simulation period (2000-2013) at these 
stations was 675 mm. In instances of malfunctioning rainfall stations, the average daily rainfall recorded 
at the remaining stations was used to fill in the days without data. Daily minimum and maximum 
temperatures, along with relative humidity, were obtained from weather stations. Solar radiation and 
wind speed data were sourced from the National Center for Environmental Prediction (Saha et al., 
2010). Daily potential evapotranspiration was calculated using the Penman-Monteith approach 
(Monteith, 1965). 
 
The model ran individually on the three catchments from January 1998 to December 2013, incorporating 
two levels of soil input data. For each of the catchments a scenario of change was also included, where 
all grasslands are converted to forestry. That is, the ‘before’ scenario relied on land cover data of 2014 
(Figure 6.2) and the ‘after’ scenario used the same land cover but used pine forestry input parameters 
for grasslands. This resulted in 12 model runs. The initial two years served as a warm-up period, 
followed by 14 years of validation, as no model calibration period was included since the focus was not 
on optimisation. 
 
Statistical analysis 

The comparison between simulated monthly streamflow and measured flow at the three stream gauges 
(Figure 6.1) involved the use of five widely recognised indices: the coefficient of determination (R2), the 
Root Mean Square Error (RMSE), percentage bias (PBIAS), the Nash-Sutcliffe Efficiency (NSE), and 
the Kling-Gupta Efficiency (KGE). PBIAS serves to quantify the degree of overestimation or 
underestimation in the simulations relative to observed values (Gupta et al., 1999). NSE assesses the 
magnitude of variance between simulated and observed values (Nash & Sutcliffe, 1970). A value 
greater than 0.5 generally indicates satisfactory model performance when comparing monthly data 
(Moriasi et al., 2015). Higher KGE values (Gupta et al., 2009) signify better model performance, and 
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values smaller than -0.41 suggest that the means of the observations provide a better fit than the model 
(Knoben et al., 2019). 
 
6.2.3 Results and discussion 

HYDROSOIL maps 

The HYDROSOIL maps were generated using the multinomial logistic regression algorithm with the 
different sampling techniques – random sampling (Figure 6.4), K-means (Figure 6.5) and Conditioned 
Latin Hypercube (Figure 6.6). 
 

 
Figure 6.4: Hydrological soil map (HYDROSOIL) of the uMngeni catchment area created using 
the multinomial logistic regression algorithm with random sampling. 
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Figure 6.5: Hydrological soil map (HYDROSOIL) of the uMngeni catchment area created using 
the multinomial logistic regression algorithm with K-means clustering. 
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Figure 6.6: Hydrological soil map (HYDROSOIL) of the uMngeni catchment area created using 
the multinomial logistic regression algorithm with Conditioned Latin Hypercube sampling. 

The HYDROSOIL map generated by multinomial logistic regression with random sampling resulted in 
a Kappa coefficient that showed almost perfect agreement (0.92), while the total evaluation point 
accuracy was very high (95.8%; Table 6.3). Although the Kappa and total evaluation point accuracy is 
high, only four of the six hydropedological classes were represented for validation. 
 
Table 6.3: Confusion matrix of the HYDROSOIL map generated by multinomial logistic regression 
with stratified random sampling. 

 
Map units 

Total Correct % Deep 
recharge 

Shallow 
recharge 

Shallow 
responsive 

Saturated 
responsive 

O
bs

er
va

tio
ns

 

Deep recharge 15 1   16 15 93.8 

Shallow recharge  4   4 4 100.0 

Shallow responsive   1  1 1 100.0 
Saturated 
responsive    3 3 3 100.0 

Total 15 5 1 3 24   

Correct 15 4 1 3  23  

% 100.0 80.0 100.0 100.00   95.8 
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The HYDROSOIL map generated by multinomial logistic regression with K-means clustering resulted 
in a Kappa coefficient that showed substantial agreement (0.78), while the total evaluation point 
accuracy was also very high (87.5%; Table 6.4). 
 
Table 6.4: Confusion matrix of the HYDROSOIL map generated by multinomial logistic regression 
method with K-means clustering. 

 
Map units 

Total Correct % Deep 
recharge 

Shallow 
recharge 

Shallow 
responsive 

Saturated 
responsive 

O
bs

er
va

tio
ns

 Deep recharge 13 2  1 16 13 81.3 

Shallow recharge  4   4 4 100.0 
Shallow 
responsive   1  1 1 100.0 

Saturated 
responsive    3 3 3 100.0 

Total 13 6 1 4 24   

Correct 13 4 1 3  21  

% 100.0 66.7 100.0 75.0   87.5 

 
Table 6.5 shows the confusion matrix of The HYDROSOIL map generated by multinomial logistic 
regression with Conditioned Latin Hypercube sampling resulted in high Kappa and total evaluation point 
accuracy, although only five of the six hydropedological classes were represented for validation. The 
Kappa coefficient showed substantial agreement (0.75), while the total evaluation point accuracy was 
also very high (87.5%). 
 
Table 6.5: Confusion matrix of the map generated by multinomial logistic regression method with 
Conditioned Latin Hypercube sampling. 

 
Map units 

Total Correct % Deep 
recharge 

Shallow 
recharge 

Shallow 
responsive 

Saturated 
responsive 

Interflow 
(soil/bedrock) 

O
bs

er
va

tio
ns

 

Deep recharge 16 1    17 16 94.1 
Shallow 
recharge  1  1 1 3 1 33.3 

Shallow 
responsive   1   1 1 100.0 

Saturated 
responsive    3  3 3 100.0 

Interflow 
(soil/bedrock)      0 0  

Total 16 2 1 4 1 24   

Correct 16 1 1 3 0  21  

% 100.0 50.0 100.0 75.0 0.0   87.5 

 
From the total evaluation point accuracy and Kappa coefficient, all the HYDROSOIL maps created using 
the three different sampling techniques were judged to be acceptable for hydrological modelling. All 
HYDROSOIL maps showed significant higher accuracy compared to the previous map (73%; Van Tol 
& Van Zijl, 2022). However, the previous hydropedological soil map was focused on the disaggregation 
of Land Type data and only four hydrological classes were used (Van Tol & Van Zijl, 2022). Future 
focus should be on the validation of all hydropedological classes, which might decrease the accuracy 
of the maps for all three types of sampling. The HYDROSOIL map created using random sampling was 
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judged to be the most accurate, as this map showed the highest total evaluation point accuracy (95.8%) 
and Kappa coefficient (0.92; Table 6.3), and therefore was used for hydrological modelling. 
 
Modelling results for catchment U20A 

In the assessment of U20A, both HYDROSOIL and Land Type simulations exhibited suboptimal 
performance, as evidenced by low R2 and NSE values (Figure 6.7). Although HYDROSOIL simulations 
showed slight improvement compared to those with the Land Type dataset, they still fell short of being 
considered ‘satisfactory’, especially considering the 0.5 threshold for NSE (Moriasi et al., 2007). 
Analysing PBIAS, overestimations noted by Van Tol and Van Zijl (2022) in both HYDROSOIL and Land 
Type datasets were substantially mitigated with the new model setup, but performance remained inferior 
to previous simulations. Notably, the model exhibited significant underestimation of baseflow, a 
deficiency that could potentially be rectified through calibration. 
 
It is worth highlighting that, after relatively dry years, observed streamflow failed to respond to rainfall, 
whereas simulated streamflow notably increased. This phenomenon is likely attributable to the 
necessity of filling numerous small farm dams before generating streamflow. The underestimation of 
baseflow could be attributed to extremely low percolation volumes (Table 6.6; Figure 6.8), which are 
unrealistic for catchments dominated by freely-drained soils. Excessive lateral flows suggest a need for 
future work to emphasise percolation over lateral flows. 
 
Interestingly, there was minimal disparity between simulated water balance components using 
HYDROSOIL and Land Type datasets under natural land-use conditions (Figure 6.8a). Differences 
primarily arose in soil water content due to variations in assigned soil depths and storage parameters. 
However, under the change scenario (Figure 6.8b), substantial differences in streamflow and lateral 
flow generation emerged. This discrepancy underscores that internal catchment processes are 
simulated differently by distinct soil datasets, emphasising the critical importance of accurately 
representing these processes in scenarios of change (Yen et al., 2014; Arnold et al., 2015). 
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Figure 6.7: Streamflow simulations and accuracies for HYDROSOIL (DSM) and Land Type datasets in catchment U20A. 
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Table 6.6: Water balance components (mm) for ‘before’ and ‘after’ afforestation scenarios using 
two different soil inputs in U20A. 

 HYDROSOIL Land Type 

 Natural Forestry %Change Natural Forestry %Change 

Rainfall 729.3 729.3  729.4 729.3  

Overland flow 7.1 5.3 -26.2 6.2 4.7 -24.4 

Lateral flow 194.7 32.4 -83.4 194.8 65.2 -66.5 

Water yield 201.9 37.7 -81.3 201.0 69.9 -65.2 

Percolation 4.0 0.5 -86.1 0.8 0.3 -57.7 

ET 531.8 703.7 32.3 530.5 663.4 25.1 

Transpiration 291.4 544.0 86.7 258.1 504.7 95.5 

Evaporation 199.7 90.9 -54.5 232.7 91.2 -60.8 

Profile soil water 240.6 74.3 -69.1 49.8 26.8 -46.2 

Topsoil water 31.5 18.5 -41.3 14.3 8.6 -39.8 

ET0 1332.2 1332.2  1332.2 1332.2  

ET = Evapotranspiration 
 

 
Figure 6.8: Simulated water balance components for U20A using the HYDROSOIL (DSM) and 
Land Type (LT) soil inputs for a) before scenario and b) scenario where all grasslands were 
converted to forestry. 

 
Modelling results for catchment U20B 

In the assessment of U20B, the HYDROSOIL dataset demonstrated superior performance over the 
Land Type dataset when considering all statistical indices (Figure 6.9). The only exception was 
observed in PBIAS, where the Land Type dataset exhibited better performance. Despite the overall 
modest results, the improvement in soil information led to more accurate streamflow predictions, 
particularly noteworthy given that the model underwent no calibration. Similar to U20A, the notable 
underestimation of baseflow persists as a significant concern in the model configuration. 
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Figure 6.9: Streamflow simulations and accuracies for HYDROSOIL (DSM) and Land Type datasets in catchment U20B. 
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The deficient baseflow estimation could be linked to the low percolation values (Table 6.7; Figure 6.10. 
Allowing more water to recharge groundwater stores, which are gradually released into streams, has 
the potential to increase baseflow while reducing lateral flows. Intriguingly, discrepancies in water 
balance components between different soil input datasets are more pronounced in U20B than in U20A. 
Variations in soil water content remain a prominent distinction between simulations using different input 
datasets. The HYDROSOIL soil dataset leads to higher transpiration due to deeper soils capable of 
storing more water. Notably, under ‘forestry’ simulations, evapotranspiration accounts for over 90% of 
the water balance. 
 
Table 6.7: Water balance components (mm) for ‘before’ and ‘after’ afforestation scenarios using 
two different soil inputs in U20B. 

 HYDROSOIL Land Type 

 Natural Forestry %Change Natural Forestry %Change 

Rainfall 725.1 725.0  725.0 725.0  

Overland flow 11.7 9.9 -15.3 9.3 8.8 -5.8 

Lateral flow 145.7 40.3 -72.3 169.3 78.1 -53.9 

Water yield 157.3 50.2 -68.1 178.7 86.9 -51.4 

Percolation 3.2 1.0 -70.0 0.5 0.3 -36.3 

ET 573.5 686.1 19.6 549.3 642.6 17.0 

Transpiration 300.1 463.7 54.5 263.9 426.0 61.4 

Evaporation 234.6 165.4 -29.5 247.3 160.2 -35.2 

Profile soil water 203.4 104.8 -48.5 54.1 35.0 -35.3 

Topsoil water 29.1 19.7 -32.4 13.6 9.6 -29.7 

ET0 1349.9 1350.0  1350.0 1350.0  

ET = Evapotranspiration 
 
 

 
Figure 6.10: Simulated water balance components for U20B using the HYDROSOIL (DSM) and 
Land Type (LT) soil inputs for a) before scenario and b) scenario where all grasslands were 
converted to forestry. 

 
Modelling results for catchment U20D 

Catchment U20D exhibited the poorest simulations among the three catchments (Figure 6.11), with 
both HYDROSOIL and Land Type datasets yielding NSE and KGE values below 0.5. Surprisingly, the 
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Land Type dataset performed notably better than the HYDROSOIL dataset across all statistical indices. 
The primary reason for this suboptimal performance lies in the consistent underestimation of both 
baseflows and peak flows, evident in PBIAS values below -100. Remarkably, even with the existing 
land cover, evapotranspiration accounts for more than 85% of the water balance (Table 6.8), a 
remarkably high proportion for semi-arid to sub-humid regions. 
 
Two plausible explanations for this excessive evapotranspiration simulation exist. Firstly, the 
inadequacy of rainfall stations, positioned outside the catchment in an area with diverse topography, 
may not accurately represent local rainfall variations (Figure 6.1). U20D, with the most natural forests 
and plantations among the three catchments (Figure 6.2), experiences the lowest recorded rainfall, 
suggesting potential inaccuracies in rainfall inputs. Secondly, an overestimation of abstraction by 
forests and plantations, influenced by default parameters derived from the northern hemisphere, where 
temperature, not water, typically limits growth, may contribute to excessive evapotranspiration. 
Adjustments to plant parameters might be necessary to better accommodate semi-arid plants adapted 
to limited water availability. 
 
Comparing before-and-after scenarios in U20D with HYDROSOIL and Land Type datasets (Figure 
6.12), both exhibit similar magnitudes of change. Despite inadequate percolation and excessive lateral 
flows, the main cause of simulation errors is a notable water balance discrepancy between simulated 
and actual streamflow, attributable to underestimation of both peak and baseflows. 
 
The disappointment lies in the fact that detailed soil information did not lead to improved simulations. 
However, this underscores the importance of comprehending the catchment’s water balance. While 
enhanced soil information may not eliminate all modelling uncertainties, it contributes to better reflecting 
processes, instilling confidence in modelers to calibrate parameters with the assurance that the model 
configuration is accurate (Van Tol et al., 2021). 
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Figure 6.11: Streamflow simulations and accuracies for HYDROSOIL (DSM) and Land Type datasets in catchment U20D. 
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Table 6.8: Water balance components (mm) for ‘before’ and ‘after’ afforestation scenarios using two 
different soil inputs in U20D. 

 HYDROSOIL Land Type 
 Natural Forestry %Change Natural Forestry %Change 

Rainfall 657.9 657.9  657.9 657.8  

Overland flow 6.5 5.1 -22.1 4.0 3.8 -5.5 

Lateral flow 93.3 28.2 -69.8 107.8 41.6 -61.4 

Water yield 99.8 33.2 -66.7 111.8 45.3 -59.4 

Percolation 2.6 0.9 -66.7 0.4 0.2 -50.5 

ET 560.7 631.7 12.6 548.0 615.3 12.3 

Transpiration 366.7 475.1 29.5 349.1 463.5 32.7 

Evaporation 155.6 107.1 -31.1 161.1 103.0 -36.0 

Profile soil water 157.3 77.9 -50.5 50.4 30.4 -39.8 

Topsoil water 24.1 16.3 -32.6 12.3 8.7 -29.3 

ET0 1455.3 1455.4  1455.5 1455.5  

ET = Evapotranspiration 
 
 

 
Figure 6.12: Simulated water balance components for U20D using the HYDROSOIL (DSM) and Land 
Type (LT) soil inputs for a) before scenario and b) scenario where all grasslands were converted to 
forestry. 

 
6.2.4 Conclusions 

Digital soil mapping proved to be useful in mapping the uMngeni catchment. It was, however, evident that the 
type of sampling that is done to compile the datasets as well as the method used for the prediction, affects the 
accuracy of the maps. The stratified random sampling was the better sampling method compared to the 
K-means and the Conditioned Latin Hypercube sampling, resulting in an overall accuracy of 95.8% and Kappa 
coefficient of 0.92. Therefore, using stratified random sampling generated the most acceptable HYDROSOIL 
map to be used for hydrological modelling. However, future focus should be on the validation of all 
hydropedological classes, which might decrease the accuracy of the maps regarding all three types of 
sampling. 
 
In terms of the modelling, the HYDROSOIL dataset consistently outperformed the Land Type soil dataset in 
two of the three catchments. U20D presented a departure from this trend, likely due to inaccuracies in rainfall 
data. While U20A and U20B showed promising results, it is evident that calibration will be imperative to attain 
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satisfactory model performance. The persistent underestimation of baseflows suggests that more water needs 
to reach the groundwater aquifers and not contribute to evapotranspiration or lateral flows. Yielding realistic 
lateral flows and percolation from various hydropedological soil types is an important activity for studies. 
 
The results underscore that despite the varying success in improving streamflow comparisons, the detailed 
soil information does enhance the representation of internal catchment processes. This insight is crucial as it 
provides confidence to modellers that, even if streamflow outcomes are not dramatically improved, the model 
captures the underlying processes accurately. The amplification of simulation differences when considering 
scenarios of change emphasises the critical role of precise soil information in anticipating the impacts of land-
use modifications and environmental variations. In essence, while calibration remains a necessity for improved 
model accuracy, the results show that detailed soil information contributes to a more robust understanding of 
catchment dynamics, paving the way for more reliable hydrological simulations. 
 
6.3 APPLICATION OF HYDROSOIL INPUT DATA IN THE TSITSA CATCHMENT 

6.3.1 Introduction 

The combination of models and remote sensing techniques within a GIS framework is commonly utilised to 
assess hydrological processes such as streamflow, water erosion, sediment yield dynamics and nutrient 
inputs/outputs (e.g. Guzha et al., 2018). One of the biggest challenges in hydrological modelling in developing 
countries is to obtain appropriate input data, especially soil data. Soil data preparation and model set-up is a 
laborious task, especially due to the lack of appropriate and representative data (Glenday et al., 2021). The 
application of inappropriate soil data at a catchment scale could lead to errors and uncertainty in hydrological 
simulations. This challenge can be addressed by creating hydrological soil property maps by means of digital 
soil mapping techniques and the application of pedotransfer functions to generate the required hydraulic 
parameters. 
 
The aim of this study is to set-up and run the SWAT model in the Tsitsa catchment with the HYDROSOIL map 
and the Land Type database. SWAT has been applied in South Africa to support various large catchment 
modelling studies (Glenday et al., 2021). HYDROSOIL maps will not only assist users to set up and run the 
SWAT model in South Africa with appropriate soil data, but will also assist in the standardisation of hydrological 
modelling efforts in South Africa. 
 
6.3.2 Materials and methods 

The Tsitsa catchment 

The Tsitsa catchment is located in the Eastern Cape province of South Africa. The SWAT model was applied 
in quaternary catchment T35E, which is nested in the Tsitsa catchment with a drainage area of 49 007 ha 
(Figure 6.13). The Tsitsa River drains the Drakensberg escarpment (approximately 2 600 m a.s.l.) and flows 
east into the Mzimvubu River (at approximately 200 m a.s.l.) after a flow length of approximately 200 km. The 
climate is sub-humid with mean annual rainfall ranging from 625 mm in the lower plains to 1 327 mm in the 
mountains (ARC, 2012). The catchment falls mainly within the Grassland biome, with narrow bands of 
Bushveld along the river networks in the lower part of the catchment, as well as pockets of Afromontane Forest 
in fire protected ravines (Mucina & Rutherford, 2006). The main land use is extensive grazing with areas of 
pine and gum plantations, and maize cultivation in the upper catchment. 
 
The geology consists of a succession of sedimentary layers of the Triassic age, including Adelaide mudrock 
succeeded by mudstones of the Tarkastad, Molteno and Elliot Formations (Council for Geoscience, 2007). 
Mudstones are overlain by sandstone and siltstone of the Clarens Formation and capped by Drakensberg 
basaltic lava of the Jurassic age. Karoo dolerite sills and dykes are present in the sedimentary formations, 
leading to more resistant base level controls. 
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Although soils in the catchment vary significantly, those from the mudstone parent material in the central part 
of the catchment are associated with duplex soils that are highly erodible with widespread gully erosion. Duplex 
soils have a marked increase in clay content from the topsoil to subsoil and an abrupt transition with respect 
to texture, structure and consistency (ARC, 2012). Soil forms that often have duplex properties include 
Katspruit, Kroonstad, Sterkspruit, Estcourt, and to a lesser extent Valsrivier, Swartland and Bonheim. These 
soils limit intrinsic permeability since water does not move readily into the subsurface matrix, which often leads 
to increased subsurface flow (Van Tol et al., 2013) causing tunnel and subsequent gully erosion. In the Tsitsa 
catchment, duplex soils often have prismacutanic subsoils that can easily be identified by the large structured 
prisms that are exposed on gully sidewalls or where the topsoil is completely eroded. Importantly, the 
subsurface matrix of duplex soils is often dispersive as a result of high sodium absorption (Van Zijl et al., 2014). 
 

 
Figure 6.13: Location of the Tsitsa catchment T35E in the Eastern Cape province, South Africa. 
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Digital soil mapping 

For a description of the digital soil mapping methods, please see Section 6.1. 
 
Hydrological modelling 

ArcSWAT-2012 was used for simulations, which is a graphical user interface for SWAT and ArcGIS® software 
extension (Srinivasan et al., 1998). Topographic, land use, soil, climate and hydrological data were utilised to 
configure and parameterise the Tsitsa catchment T35E (Table 6.9). 
 

Table 6.9: Summary of topographic, land cover, soil, climate and hydrological input data used to 
parameterise the Tsitsa catchment T35E. 

 Input data 

DEM 
GSD (m) 

STRM DEM (USGS, 2015) 
30 

Land cover data 
GSD (m) 

SANLC (GeoTerra Image, 2015) 
30 

Soil data 
 
 
Usable scale 

Land Type database (ARC, 2012) 
South African Atlas of Climatology and 
Agrohydrology (Schulze, 2007) 
1:250 000 

HYDROSOIL 
 
 
1:100 000 

HRUs 610 616 

Slope class (%) 
Thresholds (%) 

0-5; 5-10; 10-20; 20-40; >40 
Land use 10; Soil 10; Slope 10 

Climate data 
Number of stations 
Timeframe 
Simulation period (years) 

ARC Agroclimatology database (2012) 
2 
2005-2012 
8 (including 3-year warm up) 

GSD =  ground sample distance 
 
First, using the 30 m SRTM DEM at 90 m resolution (USGS, 2015), topographic and drainage networks of the 
catchment were partitioned into sub-catchments that are comparative in size and representing all relevant river 
tributaries. A total of 47 sub-catchments were delineated in T35E (Figure 6.14). 
 

 
Figure 6.14: Tsitsa catchment T35E illustrating the 47 delineated sub-catchments and streams. 
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Land cover data were derived from the South African National Land Cover map (GeoTerra Image, 2015) 
creating 12 land cover classes for T35E (Figure 6.15). These land cover classes were linked to the land cover 
types in the SWAT database. Next, soil texture and hydraulic parameter values were assigned to the Land 
Types and the HYDROSOIL classes of T35E. 
 

 
Figure 6.15: Simplified land cover map of the Tsitsa catchment T35E showing the extent of five most 
prominent land cover classes. 

Pedotransfer functions (Van Tol et al., 2013; Van Zijl et al., 2016; Van Tol et al., 2020) were used to generate 
the required hydraulic parameters, including available water capacity and saturated hydraulic conductivity. Soil 
parameter values (Table 6.10) were assigned to the Land Types in catchment T35E (Figure 6.16). 
 
Table 6.10: Description and reasoning used to assign soil parameter values to each soil component of the 
Land Type data of the Tsitsa catchment T35E. 

Soil parameter Reasoning 

Number of layers in the soil Two soil layers/horizons were incorporated into each soil component of the 
Land Type database. 

Depth from soil surface to 
bottom of layer (mm) 

Depth descriptions/classes in the Land Type database and Schulze (2007) 
were used to assign depth to each Land Type. 

Maximum rooting depth of soil 
profile (mm) As above. 

Soil Hydrologic Group (A, B, C, 
D) in terms of runoff potential, 
Soil Group A = low, B = 
moderately low, C = moderately 
high, D = high. 

Soil hydrological groups were based on the broad soil patterns given in the 
Land Type database as follows: A for deep and freely drained apedal soils 
with humic topsoils as well as podzols; B for apedal soils with plinthic 
subsoils or deep alluvial soils; C for shallow soils or planosols comprising 
sandier topsoil abruptly overlying more clayey subsoil; D for rock outcrops. 

Available water capacity of the 
soil layer (mm H2O/mm soil) 

For each Land Type, Schulze (2007) calculated plant available water 
content as the difference between water content at field capacity and 
permanent wilting point. 

Saturated hydraulic conductivity 
(mm/hr) 

Values were derived from the Rosetta Model (Schaap et al., 2001) based 
on the soil texture classes for each Land Type. 

Bulk density (Mg/m3 or g/cm3) Bulk density (BD) was estimated using porosity (PO) data in Schulze 
(2007) for each Land Type: PO = 1-BD/2.65. 

Soil albedo (non-dimensional 
value between 0 and 1) 

Albedo values were assigned to broad soil patterns in the Land Type 
database ranging between 0.25 for light-coloured sands to 0.7 for dark 
clays. 

Clay content with diameter of 
< 0.002 mm (% soil weight) 

Clay content in the A-horizon was assigned using the average topsoil clay 
classes given to each Land Type. Clay content in the B-horizon was 
assigned to each Land Type by adjusting the clay values of the A-horizon 
to clay-factors (Le Roux et al., 2022). 
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Soil parameter Reasoning 

Silt content with diameter of 
0.05-0.002 mm (% soil weight) 

Due to the lack of data, silt content for A and B horizons were assigned 
values between 10-22.5%, increasing with increase in clay as follows (Le 
Roux et al., 2022): percentage of Land Type with <= 6% clay = 10% silt; 
6.1-15% clay = 15% silt; 15.1-25% clay = 17.5% silt; 25.1-35% clay = 20% 
silt; 35.1-55% clay = 22.5% silt. 

Sand content with diameter of 
> 2 mm (% soil weight) 

Sand content for A and B horizons were assigned as follows: Sand = 100% 
– (%clay + %silt). 

Rock fragment content (% soil 
weight) 

Rock content was based on the agricultural restriction/rock (MB) classes in 
the Land Type database as follows: MB0=0% (no rock); MB1=20%; 
MB2=50%; MB3=20%; MB4=100% (no soil). 

Organic carbon content (% soil 
weight) 

A soil organic carbon map of South Africa (Schulze & Schütte, 2020) were 
used to assign average carbon values for A and B horizons per Land Type. 

USLE K factor in SI units t/ha 
per unit ‘erosivity’ Erodibility units (Le Roux et al., 2008) were assigned to each Land Type. 

 

 
Figure 6.16: Land Type map of the Tsitsa catchment T35E. 

 
Next, textural and soil hydraulic parameter values were assigned to each HYDROSOIL component. Although 
similar reasoning was followed in the assignment of the required parameter values to both the Land Type and 
HYDROSOIL data models, the HYDROSOIL data model used additional soil analytical/sample data and 
hydrological pedotransfer functions based on the spatial distribution and hydropedological grouping of soils 
(Van Tol et al., 2013; Van Tol & Le Roux, 2019). Soil parameter values (Table 6.11) were assigned to the 
HYDROSOIL units of catchment T35E (Figure 6.17). 
 
Table 6.11: Description and reasoning used to assign soil parameter values to each HYDROSOIL 
component of Tsitsa catchment T35E. 

Soil parameter Reasoning 

Number of layers in the soil Two soil layers/horizons were incorporated into each soil component of the 
HYDROSOIL map. 

Depth from soil surface to 
bottom of layer (mm) 

The minimum, maximum and mean depth descriptions/classes in the Land 
Type database and Schulze (2007) were used to assign depth to each 
HYDROSOIL unit as follows: Shallow recharge = 290 mm; Deep recharge 
= 1 180 mm; A/B horizon interflow = 844 mm; Soil/ bedrock interflow = 930 
mm; Shallow responsive = 300 mm; Saturated responsive = 1 180 mm. 

Maximum rooting depth of soil 
profile (mm) As above. 
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Soil parameter Reasoning 
Soil Hydrologic Group (A, B, C, 
D) in terms of runoff potential, 
Soil Group A = low, B = 
moderately low, C = moderately 
high, D = high. 

Soil hydrological groups were based on Van Tol et al. (2013) as follows: 
Shallow recharge = B; Deep recharge = A; A/B horizon interflow = C; Soil/ 
bedrock interflow = C; Shallow responsive = D; Saturated responsive = D. 

Available water capacity of the 
soil layer  (mm H2O/mm soil) 

Schulze (2007) calculated plant available water content for each Land Type 
as the difference between water content at field capacity and permanent 
wilting point. 

Saturated hydraulic conductivity 
(mm/hr) 

Average values for each HYDROSOIL class were calculated using profile 
sample data. 

Bulk density (Mg/m3 or g/cm3) Average values for each HYDROSOIL class were calculated using profile 
sample data. 

Soil albedo (non-dimensional 
value between 0 and 1) 

Albedo values were assigned to broad soil patterns in the Land Type 
database ranging between 0.25 for light coloured sands to 0.7 for dark 
clays. 

Clay content with diameter of 
< 0.002 mm (% soil weight) 

Average clay values for each HYDROSOIL class were calculated using 
profile sample data. Clay content in the B-horizon was assigned to each 
Land Type by adjusting the clay values of the A-horizon to clay-factors (Le 
Roux et al., 2022). 

Silt content with diameter of 
0.05-0.002 mm (% soil weight) 

Average silt values for each HYDROSOIL class were calculated using 
profile sample data. 
Due to the lack of data, silt content for B horizons were assigned values 
between 10-22.5%, increasing with increase in clay as follows (Le Roux et 
al., 2022): percentage of HYDROSOIL unit with <= 6% clay = 10% silt; 6.1-
15% clay = 15% silt; 15.1-25% clay = 17.5% silt; 25.1-35% clay = 20% silt; 
35.1-55% clay = 22.5% silt. 

Sand content with diameter of 
> 2 mm (% soil weight) 

Sand content for A and B horizons were assigned as follows: Sand = 100% 
– (%clay + %silt). 

Rock fragment content (% soil 
weight) 

Rock content was based on the agricultural restriction/rock (MB) classes in 
the Land Type database (2012) as follows: MB0=0% (no rock); MB1=20%; 
MB2=50%; MB3=20%; MB4=100% (no soil). 

Organic carbon content (% soil 
weight) 

Average values for each HYDROSOIL class were calculated using profile 
sample data. 

USLE K factor in SI units t/ha 
per unit ‘erosivity’ Erodibility units (Le Roux et al., 2008) were assigned to each Land Type. 

 
 

 
Figure 6.17: HYDROSOIL map of the Tsitsa catchment T35E. 

 
The overlay of land cover and soil maps created 610 and 616 HRUs for the Land Type and HYDROSOIL 
maps, respectively. 
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SWAT also requires climate parameters including precipitation, temperature, solar radiation, relative humidity 
and wind speed. Daily precipitation and temperature data were acquired from two meteorological stations of 
the ARC Agroclimatology Database (2012) over a six-year period (Figure 6.18a). In addition, Weather 
Generator input files consist of weather statistics including precipitation, temperature, solar radiation, relative 
humidity and wind speed. Weather Generator files are needed by SWAT to generate representative daily 
climate data for simulated catchments in two instances: when the user specifies that simulated weather will be 
used or when measured data is missing. Weather Generator files were created by acquiring and interpreting 
climate data from the two weather stations. Using the SWAT Weather Database (Essenfelder, 2016), the 
Weather Generator files were prepared covering the period 2001-2020. 
 
Hydrological parameters included flow contributions from the Tsitsa River inlet (Figure 6.18b). No reservoirs 
were present. The Penman-Monteith equations were used to calculate potential (and actual) 
evapotranspiration for each catchment, considering soil moisture and crop development (Aouissi et al., 2016).  
 

 
Figure 6.18: Tsitsa catchment T35E illustrating the a) weather station, and b) hydrometric, as well as the 
main Tsitsa River inlet and outlet locations. 
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Management practices include tillage, nutrient applications, irrigation schedules and harvest. These practices 
affect the water balance and sediment/nutrient load generation through the impacts of the plant growth cycle 
on evapotranspiration. Due to the lack of data on management practices, however, parameter values were 
assigned to represent each management practice according to values provided in the SWAT database. 
 
Model simulations and validation 

Finally, model simulations were conducted over five years, preceded by a three-year warm-up period to get 
the hydrological cycle fully operational. Catchment T35E was therefore simulated twice using the same 
weather data, over the same timeframes. The reason for duplicating the application of SWAT is to compare 
the streamflow and sediment yield results of the HYDROSOIL versus the Land Type database, which allows 
appraisal of the performance of the HYDROSOIL data. Model performances of streamflow were determined 
by the Nash-Sutcliffe Efficiency (NSE), as well as the coefficient of determination (R2). A percent deviation 
method (Dv) (Martinec & Rango, 1989) was used as a measure of goodness-of-fit between simulated and 
measured streamflow data at the main catchment outlets. It is noteworthy here that the closest hydrometric 
station (weir) is more than 20 km downstream of the main catchment outlet. 
 
6.3.3 Results and discussion 

Digital soil mapping 

The HYDROSOIL maps were generated using the multinomial logistic regression algorithm with the different 
sampling techniques – random sampling (Figure 6.19), K-means (Figure 6.20) and Conditioned Latin 
Hypercube (Figure 6.21). 
 

 
Figure 6.19: Hydrological soil map (HYDROSOIL) of the Tsitsa catchment created using the multinomial 
logistic regression algorithm with random sampling. 
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Figure 6.20: Hydrological soil map (HYDROSOIL) of the Tsitsa catchment created using the multinomial 
logistic regression algorithm with K-means clustering. 

 

 
Figure 6.21 Hydrological soil map (HYDROSOIL) of the Tsitsa catchment created using the multinomial 
logistic regression algorithm with Conditioned Latin Hypercube sampling. 
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The HYDROSOIL map generated by multinomial logistic regression with random sampling resulted in a Kappa 
coefficient that showed substantial agreement (0.66), while the total evaluation point accuracy was also high 
(74.2%; Table 6.12). The HYDROSOIL map generated by multinomial logistic regression with K-means 
clustering resulted in a Kappa coefficient that showed moderate agreement (0.58), while total evaluation point 
accuracy was also moderate (68.5%; Table 6.13). 
 
Table 6.12: Confusion matrix of the HYDROSOIL map generated by multinomial logistic regression 
method with stratified random sampling. 

 

Map units    

D
ee

p 
re

ch
ar

ge
 

Sh
al

lo
w

 
re

ch
ar

ge
 

In
te

rf
lo

w
 A

/B
 

In
te

rf
lo

w
 

So
il/

be
dr

oc
k 

Sh
al

lo
w

 
re

sp
on

si
ve

 

Sa
tu

ra
te

d 
re

sp
on

si
ve

 

To
ta

l 

C
or

re
ct

 

%
 

O
bs

er
va

tio
ns

 

Deep 
recharge 22 4 3 2   31 22 71.0 

Shallow 
recharge 3 17 2 1   23 17 73.9 

Interflow A/B 2 1 15    18 15 83.3 

Interflow 
Soil/bedrock  3  3   6 3 50.0 

Shallow 
responsive 1 1   4  6 4 66.7 

Saturated 
responsive      5 5 5 100.0 

Total 28 26 20 6 4 5 89   

Correct 22 17 15 3 4 5  66  

% 78.6 65.4 75.0 50.0 100.0 100.0   74.2 

 
Table 6.13: Confusion matrix of the HYDROSOIL map generated by multinomial logistic regression 
method with K-means clustering. 
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The HYDROSOIL map generated by multinomial logistic regression with Conditioned Latin Hypercube 
sampling resulted in high the Kappa (0.64) and total evaluation point accuracy (72.8%; Table 6.14). 
 
Table 6.14: Confusion matrix of the HYDROSOIL map generated by multinomial logistic regression 
method with Conditioned Latin Hypercube sampling. 
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Saturated 
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Total 31 26 19 6 4 6 92   

Correct 22 18 15 3 4 5  67  

% 71.0 69.2 78.9 50.0 100.0 83.3   72.8 

 
From the total evaluation point accuracy and Kappa coefficient, the HYDROSOIL maps that were created 
using random sampling (Kappa = 0.66, point accuracy = 74.2%) and Conditioned Latin Hypercube sampling 
(Kappa = 0.64, point accuracy = 72.8%) were judged to be most acceptable for usage in hydrological modelling. 
However, the HYDROSOIL map that was created using K-means clustering was also judged to be acceptable 
even if with a Kappa coefficient of 0.58 and point accuracy of 68.5%. 
 
The three HYDROSOIL maps created were an improvement on the soil association with depth maps (Kappa 
< 0.50 and point accuracy < 68%) created by Du Plessis et al. (2020). The HYDROSOIL map that was created 
using random sampling was judged to be the most accurate map and therefore should be used for hydrological 
modelling. 
 
Streamflow simulation results 

Graphically, streamflow simulations with Land Type and HYDROSOIL data appear similar, with occasional 
steep peaks that can be associated with wetter months (Figure 6.22). For simulation with Land Type data, 
monthly streamflow at the main catchment outlet ranges between 0.1 m3/s in September 2010 to 39.5 m3/s in 
January 2011, with an average of 9.0 m3/s during the simulation period (2008-2012). For simulation with 
HYDROSOIL data, streamflow at the main catchment outlet ranges between 0.2 m3/s in August 2010 to 
42.3 m3/s in in January 2011 with an average of 11.3 m3/s. Streamflow simulated by the HYDROSOIL data 
model is 20% higher than the Land Type data model. 
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Figure 6.22: Comparison of observed monthly streamflow (in m3/s) with the (a) Land Type and (b) 
HYDROSOIL data models in the Tsitsa catchment T35E (2008-2012). 

 
The HYDROSOIL data model was slightly superior compared to the Land Type data model during validation, 
as shown by the higher NSE, R2 and Dv values (Table 6.15). The HYDROSOIL data model underpredicted 
streamflow by 131.4% as determined by Dv, the goodness-of-fit expressed by NSE was -3.62% and R2 was 
95%. The Land Type data model under-predicted streamflow by 191.54% as determined by Dv, the goodness-
of-fit expressed by NSE was -5.81% and R2 was 97%. It is noteworthy here that both models would probably 
be more accurate if the hydrometric station (weir) was not located more than 20 km downstream of the 
catchment outlet. Underpredictions would have been considerably less due to additional flow contributions 
from the Tsitsa River and its tributaries upstream of the weir. The main reason for the slightly superior 
performance of the HYDROSOIL data model is due to differences between soil datasets. 
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Table 6.15: Performance metrics (R2, NSE and Dv in %) obtained from monthly streamflow validation for 
National and HYDROSOIL data models for the Tsitsa catchment T35E. 

Data model Land Type HYDROSOIL 

R2 accuracy (%) 0.97 0.95 

NSE accuracy (%) -5.81 -3.62 

Dv underprediction (%) -191.54 -131.69 
NSE = Nash-Sutcliffe Efficiency; Dv = percent deviation 
 
Sediment yield results 

SWAT simulations with Land Type and HYDROSOIL data show similar trends in sediment load estimations, 
with occasional steep peaks that can be associated with wetter months (Figure 6.23). For simulation with Land 
type data, sediment load at the main catchment outlet ranges between 0.0 t in September 2010 to 4 746.0 t in 
January 2011 with an annual average load of 958.6 t/yr and a total load of 57 518.3 t during the simulation 
period (2008-2012). For simulation with HYDROSOIL data, sediment load at the main catchment outlet ranges 
between 3.8 t in August 2010 to 6 976.0 t in January 2010 with an average load of 1 889.6 t/yr and a total load 
of 113 374.3 t during the simulation period (2008-2012). The sediment load simulated by the HYDROSOIL 
data model is 50% higher than the Land Type data model. 
 

 
Figure 6.23: Comparison of total annual sediment load (in metric t) for SWAT simulations with the Land 
Type and HYDROSOIL data models in the Tsitsa catchment T35E (2008-2012). 

 
Both simulations show that the sediment load is mainly high during the summer rainfall season (extending from 
October to April) (Figure 6.24). Low rainfall months (extending from May to August) have low sediment loads 
due to low or no rainfall during winter in the catchment. 
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Figure 6.24: Comparison of monthly average sediment load (in metric t) for SWAT simulations with the 
Land Type and HYDROSOIL data models in the Tsitsa catchment T35E (2008-2012). 

 
Although the average sediment yield of the Land Type and HYDROSOIL data models are similar (5.7 and 
4.6 t/ha/yr respectively), the models identified different sediment source areas (Figure 6.25). The Land Type 
data model identifies the central and lower half of the catchment as important sediment source areas (5-20 
t/ha/yr), whereas the HYDROSOIL data model identifies high sediment yield values in the upper catchment 
areas. The largest difference occurs in sub-catchment 16, where the Land Type data model simulates very 
low sediment yield (0.3-0.5 t/ha/yr), whereas the HYDROSOIL model simulates very high sediment yield 
(20-25 t/ha/yr). The spatial differences in sediment yield between the data models are attributed to soil 
parameter variances since the topography, land cover and climate parameters in both data models are similar. 
 
6.3.4 Discussion of data model differences 

The spatial differences in sediment yield between the data models are attributed to soil distribution patterns 
and parameter variances, especially the soil hydrological parameters. Although similar reasoning was followed 
in the assignment of the required parameter values to both the Land Type and HYDROSOIL data models (see 
Table 6.10; Table 6.11), the HYDROSOIL data model used soil analytical/sample data and hydrological 
pedotransfer functions based on the spatial distribution and hydropedological grouping of soils (Van Tol et al., 
2013; Van Tol & Le Roux, 2019). The Land Type map illustrates the upper catchment areas consist of mainly 
freely drained apedal soils (hydrological group A and B) where infiltration rates are relatively high and runoff 
and subsequent erosion is low. In contrast, the HYDROSOIL map illustrates that large parts of the upper 
catchment consist of shallow responsive soils (hydrological group C and D) where infiltration rates are relatively 
low and runoff and subsequent erosion is high. In these areas, streamflow simulated by the HYDROSOIL data 
model is approximately > 20% higher than the Land Type data model. Higher streamflow accounts for relatively 
high sediment yield in these sub-catchments. As a result, the Land Type data model identifies the central and 
lower half of the catchment as important sediment source areas, whereas the HYDROSOIL data model 
identifies high sediment yield values in the upper catchment areas (Figure 6.25). 
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Figure 6.25: Spatial comparison of average annual sediment yield (in t/ha/yr) simulated by the SWAT 
model with the (a) Land Type and (b) HYDROSOIL data models in Tsitsa catchment T35E. 

 
Overall, the sediment load simulated by the HYDROSOIL data model is approximately 50% higher than the 
Land Type data model (113 374.3 t and 57 518.3 t respectively). However, results should not be interpreted 
as absolute values due to the absence of measured sediment data for validation. ArcSWAT utilises the 
Modified USLE equation (Williams & Brendt, 1977) that excludes gully erosion processes. The USLE is an 
empirical model that was developed from runoff plots (22 m long and 2 to 3 m wide) and rainfall simulation 
experiments (Wischmeier & Smith, 1978). Plots capture soil loss from rill-interrill erosion but not from gully 
erosion which occurs at larger scales (> 0.03 km2) (Kirkby et al., 2003). Therefore, the SWAT model 
underestimates sediment yield in sub-catchments where gullies are prominent. 
 
Nevertheless, in terms of streamflow, the HYDROSOIL data model was superior compared to the Land Type 
data model during validation, especially in terms of Dv values. The Land Type data model underpredicted 
streamflow by 191.54%, whereas the HYDROSOIL data model underpredicted streamflow by 131.4%. As 
mentioned above, underpredictions would have been less if the hydrometric station (weir) was not located 
more than 20 km downstream of the catchment outlet, due to additional flow contributions from the Tsitsa River 
and its tributaries upstream of the weir. Despite these limitations, the HYDROSOIL data model was superior 
compared to the Land Type data model during validation and appears to be more efficient than Land Type 
data in modelling high sediment yield values in the severely eroded catchment. 
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6.3.5 Conclusions 

Digital soil mapping proved to be useful in mapping the Tsitsa catchment. It was however evident that the type 
of sampling that is done to compile the datasets as well as the method used for the prediction, affects the 
accuracy of the maps. The random sampling was the better sampling method compared to the K-means and 
the Conditioned Latin Hypercube sampling, resulting in an overall accuracy of 74.2% and Kappa coefficient of 
0.66. Therefore, it was clear that using random sampling generated the most acceptable HYDROSOIL map to 
be used for hydrological modelling. 
 
In terms of streamflow, the HYDROSOIL data model was superior compared to the Land Type data model 
during validation, especially in terms of Dv values. The Land Type data model under-predicted streamflow by 
191.54%, whereas the HYDROSOIL data model under-predicted streamflow by 131.4%. Underpredictions 
would have been substantially less if the hydrometric station (weir) was not located more than 20 km 
downstream of the catchment outlet. Overall, streamflow simulated by the HYDROSOIL data model is 
approximately > 20% higher than the Land Type data model, whereas sediment load simulated by the 
HYDROSOIL data model is approximately 50% higher than the Land Type data model. The HYDROSOIL data 
model appears to be more efficient than Land type data in modelling high sediment yield values in the severely 
eroded catchment. HYDROSOIL is an important step forward in the application of hydrological models to assist 
agricultural water management. 
 
Further refinement will be possible given additional research. Firstly, it is recommended to expand the 
HYDROSOIL map in the Tsitsa catchment to ensure that flow monitoring points spatially overlay with 
catchment outlet points for calibration and validation of model simulations with measured data. Furthermore, 
stream channel processes and hydrological structures need to be characterised, allowing deposition of excess 
sediment depending on the carrying capacity and/or sediment storages where connectivity is reduced (Chen 
& Mackay, 2004). Ancillary information regarding management practices in the catchment should also be 
incorporated, including tillage operations, nutrient applications, irrigation scheduling and harvesting operations. 
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6.4 THE MAPPING AND HYDROLOGICAL MODELLING OF THE GOUKOU RIVER CATCHMENT 

6.4.1 Introduction 

This section focusses on the creation of the HYDROSOIL and hydrological modelling of the Goukou River 
catchment, in the southern Cape region. A recent ecological state report for the Goukou River catchment 
indicates that the river condition has rapidly deteriorated from the source to the sea (CSIR, 2011; Nzonda, 
2016). The Goukou catchment is also has reasonably pristine wetland areas (Nzonda, 2016; Royal 
HaskoningDHV, 2018). Therefore understanding the hydrological processes in this catchment is very important 
to enable adequate mapping of this river system to avoid further deterioration. The use of the HYDROSOIL for 
this catchment is showcased through the use of the JAMS model, to show that different hydrological models 
could also use the HYDROSOIL map. 
 
Two distinct model runs utilising the JAMS hydrological framework were compared. The first model run used 
published soils information based on the Land Type surveys. The second run introduced the HYDROSOIL into 
the model without redefining the HRUs. 
 
The primary objective was to conduct a statistical comparison of the outcomes from these two runs. This would 
shed light on the potential impact that incorporating new soils information may have on hydrological modelling 
and prediction. By systematically comparing the results, we seek to discern any significant differences and 
draw insights into how the updated soils information influences the overall hydrological behaviour predicted by 
the model. 
 
6.4.2 Materials and methods 

The Goukou catchment 

The Goukou catchment is situated in the southern Cape of South Africa. The river flows from the Langeberg 
Mountains in the north, southwards to Stilbaai at the coast. The river is only approximately 64 km long. The 
catchment comprises five quaternary catchments (Figure 6.26). The last 19 km of the river is an estuary of 
high ecological importance (CSIR, 2011). The catchment stretches from sea level, where it enters the sea at 
Stilbaai, to 1 458 m above sea level in the mountains north at Riversdale (Figure 6.27). The Goukou River 
reaches sea level about 18 km inland, where it meets the estuary. The land use includes mostly forestry, formal 
irrigated grazing, irrigated vineyards, wheat and other rain-fed crop production systems. 
 
The Goukou system is spread out over three distinct Land Types (Figure 6.28). The coastal belt system is an 
area of small mountains and recent deep sands which is a mixture of river deposits and aeolian sands. Further 
inland a system with deep carved valleys exists. In the upper reaches of the Goukou a mountain landscape 
exists, with distinct occurrences of large wetlands in an undulating landscape. The three Land Types also have 
large differences in soil occurrence, and large differences related to the runoff pathways, whether it be surface, 
subsurface or deep drainage transvers of water in the system (Table 6.16). Land Type Ib168 in the north, Dc32 
in the middle section and Fc17 in the south or coastal zone are the more prominent Land Types (Figure 6.28). 
 
Table 6.16: The dominant soil parameters per macro positions in the Goukou catchment (Land Type 
Survey Staff, 1972-2002). 

Land Type Soil depth Soil type Clay A % Clay deep 
% 

Depth 
restriction 

Texture 
class 

Ib168 0-300 Rock and 
Cartref 0-6 12 Rock me/coSa-

LmSa 
Dc32 450 Va 15-35 55 Vr, Ca Cl 

Fc17 1200 Mispah 0-10 6 ka meSa 
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Figure 6.26: The Goukou catchment (H90, solid white line) and its five quaternary catchments (broken 
white lines). 

 

 
Figure 6.27: The altitude of the Goukou catchment. 
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Figure 6.28: The Land Types of the Goukou catchment (Land Type Survey Staff, 1972-2022). 

 
HRU mapping with the SWAT divided the catchment into three sub-catchments (Figure 6.29). The delineation 
is based on second-order streams. The upper Goukou, including the mountain region, is therefore represented 
in sub-catchment 1, while most of the coastal system is represented in sub-catchments 2 and 3. It is important 
to see from this result, the fact that the Goukou catchment, HRU 1, makes a contribution directly to the estuary 
while HRU 3 has a multitude of small streams connecting to the estuary. For our purposes, the JAMS modelling 
focussed mainly on sub-catchment 1. 
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Figure 6.29: Hydrological response units as mapped with the SWAT in QGIS. 

Digital soil mapping 

For the digital soil mapping methodology, please see Section 6.1. 
 
Soil parameterisation 

Soil parameterisation for the Goukou JAMS hydrological model began by acquiring crucial data on the depth 
of various soil horizons and their corresponding texture composition, represented by the percentages of soil, 
silt and clay. This essential information is readily available within the Land Type soil dataset. It is also available 
in the ACRU support data for modelling in South Africa, and contributes to the Harmonised World Soil 
Database (HWSD). 
 
The texture data proves particularly valuable in characterising the soil water retention curves. To accomplish 
this, the input data in the form of soil texture percentages were fed into the Rosetta component within 
Hydrus 1D. Rosetta, operating within this software framework, facilitates the exploration of pedotransfer 
functions related to soils under three distinct hypothetical pressure scenarios: 0 mbar, 60 mbar and 
15 000 mbar. 
 
To categorise the soil texture, the classification system based on specific pore volumes was adhered to. This 
comprehensive approach enables a robust soil parameterisation file that captures the intricate dynamics of the 
soil-water relationship, laying the foundation for a more accurate and nuanced representation within the 
hydrological model. This contribution serves to enhance the understanding of the critical role played by soil 
characteristics in shaping hydrological processes. 
 
Terrain and morphon mapping 

Terrain and morphon mapping were done for the Goukou catchment by Stellenbosch University researchers 
to support the hydrological modelling and the fate of water in the system (Figure 6.30). These results were 
available for further modelling efforts. What is important to see is that the Goukou River system is carved into 
the landscape and that considerable landmasses occur above the river system. This makes coastal aquifer 
recharge along the coastal system from inland water sources quite difficult. 
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A morphon map of the same region was generated for this project (Figure 6.31). The map indicates slope 
classes (with soil info), which can be linked to overland flow, subsurface flow and zones where deep drainage 
occurs, as a basis for HRU development in hydrological modelling. The occurrence in soils also shows a 
marked difference between the soils towards the north (green) compared to the soils of the south (pink). The 
green soils are generally soils with lower infiltration capacities and therefore larger overland flow that generally 
causes floods to occur. The soils of the south (pink) on the other hand have higher infiltration capacity and 
more water is stored in this system. 
 

 
Figure 6.30: The exaggerated topography of the Riversdale region based on the 30 m digital elevation 
model. 

 
Figure 6.31: Soils and terrain map of the Hessequa region. Terrain classes are indicated, linked to the 
Land Types. This was used as the basis for soils mapping and vegetation distribution for the Land Type 
model (De Clercq et al. 2023). 
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Soil property designation 

The HYDROSOIL raster was overlaid on the HRU map and soils information was transferred to the HRU map 
to be used in the JAMS modelling. The soils information was subjected to Hydrus 1D, where the information 
was developed into a format acceptable for JAMS modelling. The relevant hydrological soils information was 
derived from the HSWD database and used in the first simulation (Table 6.17). Similar relevant hydrological 
soils information used in the HYDROSOIL simulation (Table 6.18). 
 
Table 6.17: Hydrological properties derived for the Land Type simulation. 

MU_global Depth 
(dm) 

Air cap 
(mm) 

Field cap SUM 
(mm) 

60364 10 5.87 28.02 

60644 100 63.35 268.88 

60672 100 177.4 170 

60688 100 66.73 264.63 

60696 100 221.24 113.84 

60702 100 104.46 230.56 

60710 10 5.87 28.02 

60726 100 104.46 230.56 

60754 30 19.14 81.6 

60756 100 66.73 264.63 

60766 100 65.24 269.33 

60780 100 221.24 113.84 

60786 100 221.24 113.84 
MU_global =  
 
Table 6.18: Hydrological properties derived for the HYDROSOIL simulation 

ID Depth 
(dm) 

Air Cap 
(mm) 

Field cap SUM 
(mm) 

A/B interflow 100 125.9 216.7 

Shallow responsive 100 82.3 243.7 

Deep recharge 100 211.1 121.9 
Saturated 
responsive 100 275.9 57.3 

Stagnating 100 181.2 148.7 
Soil/bedrock 
interflow 100 161.2 166.8 

 
The model employed 2 234 HRUs and used six soil IDs (Table 6.19). This table also outlines the specific 
definitions of each HRU concerning area, elevation, slope, aspect, position in the landscape, watershed, 
subbasin, land use and soil. 
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Table 6.19: A snipped HRU parameter file used in the JAMS model run 

 
 
 

Hydrological modelling 

The JAMS/J2000 model was applied for the Goukou catchment (Figure 6.32). It involved a calibration process 
against the Duiwenhoks system model. Due to limited monitoring of the Goukou, we opted to calibrate its flows 
against the neighbouring Duiwenhoks system. 
 
The decision to employ JAMS/J2000 for both catchment stems from ongoing research in the Western Cape 
on station density, hydrogeological property variability and transmission loss. In this application, a standard 
JAMS/J2000 model was employed, accounting for canal abstractions in the headwaters (DWS station 
H9H006) for Goukou and dam releases for Duiwenhoks (DWS station H8R001). A time series data substitution 
was used to mitigate the impact of anthropogenic activities (De Clercq et al., 2023; Watson et al., 2022). 
 
Given the limited gauged portion of the Goukou, parameter sets from Duiwenhoks were adapted for the 
Goukou model to establish upper and lower limits in simulated streamflow. However, the breakdown of the 
flow components (surface runoff, interflow and baseflow) for Goukou was deemed unrealistic, necessitating 
further exploration with an additional parameter set. This iterative approach underscores the commitment to 
refining the model and ensuring its applicability to the unique characteristics of each catchment. 
 

 
Figure 6.32: Layout of the modelling procedure, input data and parameters, calibration, and estimation of 
different flow components. 

 
6.4.3 Results and discussion 

HYDROSOIL 

While there are striking similarities between the three HYDROSOIL maps for the different sampling techniques 
(Figure 6.33; Figure 6.34; Figure 6.35), their accuracies did differ somewhat (Table 6.20; Table 6.21; Table 
6.22). The map created using the K-means clustering performed the best, with a validation point accuracy of 

# hru.par created Fri, 15 Oct 2021, 17:32:42 by GRASS-HRU
ID area elevation slope aspect x y watershed subbasin landuseID soilID hgeoID to_poly to_reach

0 0 0 0 0 0 0 0 0 0 0 0 0 0
999999 9999999 10000 90 360 9999999 9999999 999999 999999 9999 9999 9999 999999 999999

n/a m2 m deg deg m m n/a n/a n/a n/a n/a n/a n/a
1 575100 555 3.882 285 521111.7132 6244737.665 4 978 11 6 5 0 978
2 664200 567 5.225 267 521066.7132 6245187.665 4 978 8 6 5 1 0
3 980100 594 8.379 247 521516.7132 6245187.665 4 978 8 6 5 9 0
4 891000 645 15.593 255 523361.7132 6244647.665 4 978 8 6 5 3 0
5 1093500 849 23.52 220 513011.7132 6244287.665 4 974 5 3 5 7 0
6 623700 895 26.915 304 511931.7132 6244017.665 4 974 8 3 5 70 0
7 445500 855 24.156 301 512381.7132 6244197.665 4 974 5 3 5 6 0
8 494100 694 9.205 274 527411.7132 6244017.665 5 996 5 2 5 23 0
9 866700 556 2.2 207 522416.7132 6244287.665 4 978 8 6 5 0 978

10 1069200 633 4.341 209 525476.7132 6243927.665 4 978 8 5 5 21 0
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65.6% and a Kappa coefficient of 0.6, indicating a moderate agreement with reality. The other two maps were 
found not to be sufficiently accurate. Both these maps only achieved a slight representation of reality. 
Therefore, the K-means clustered map was used for the hydrological modelling. 
 

 
Figure 6.33: The HYDROSOIL map of the Goukou catchment created using the stratified random 
sampling method. 

Table 6.20: The confusion matrix for the HYDROSOIL map created using stratified random sampling 
method. 
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Figure 6.34: The HYDROSOIL of the Goukou catchment created using the K-means clustering method. 

 
Table 6.21: The confusion matrix for the HYDROSOIL created using K-means clustering. 
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HYDROSOIL 

145 

 
Figure 6.35: The HYDROSOIL of the Goukou catchment created using the Conditioned Latin Hypercube 
sampling method. 

Table 6.22: The confusion matrix for the HYDROSOIL created using the Conditioned Latin Hypercube 
sampling method. 
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JAMS hydrological modelling 

Figure 6.36 presents the modelled hydrographs for both the Duiwenhoks and Goukou basins using the Land 
Type soil data. Despite the effective calibration in JAMS modelling, there remains a lingering question about 
its reliability. A recent study conducted at Stellenbosch University has suggested that, for most small 
catchments, the modelling timestep cannot exceed 16 days (Du Plessis, 2023). Beyond this threshold, a 
noteworthy overestimation in flow prediction becomes apparent. This observation underscores the importance 
of critically assessing the modelling methodology and its temporal resolution, particularly in the context of small 
catchments. 
 
Comparing observed streamflow and simulated streamflow using both the Land Type data and the 
HYDROSOIL data, shows minimal distinction between the two simulated flows (Figure 6.37). The Land Type 
data exhibits an NSE of 0.31, like that of the HYDROSOIL data of 0.29. The Bias value for the Land Type data 
of -0.2 is also very similar to the HYDROSOIL value of -0.21. This indicates that the model in its current set-
up is insensitive to soil information and the impact of the soils are masked by the role of rainfall distribution. 
 
Unfortunately, the challenges associated with lumping variables together, especially rainfall distribution 
became evident in these simulations. The size of the catchment, and its placement in the headwaters of the 
catchment increases the model parameter uncertainty, which limited the accuracy of the model. The improved 
soil information could, however, benefit the modelling through using it for Penman modelling. Additionally a 
soil sensitivity analysis is required to determine the significance of the differences between the different soil 
maps. However, the sensitivity of the model to changing the rainfall distribution input should also be assessed 
as it seems that it masks any soil input changes. 



HYDROSOIL 

147 

 
Figure 6.36: An overview of the modelled results produced by JAMS for the Goukou system, indicating 
peak flows modelled on a daily timestep and compared to the Duiwenhoks basin model (De Clercq et al., 
2023). 
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Figure 6.37: An overview of the modelled results produced by JAMS for the Goukou system, indicating 
peak flows modelled on a monthly timestep, for both the Land Type (HSWD) and HYDROSOIL (DSM) 
maps. 

6.4.4 Conclusions 

Using digital soil mapping, an acceptable HYDROSOIL for the Goukou catchment could be developed, using 
K-means clustering to split the available soil data into a training and validation dataset. However, using this 
soil map to model the hydrological response using the JAMs model within the catchment made an insignificant 
difference to the modelling accuracy. It is therefore concluded that the rainfall distribution with the current 
model set-up within the Goukou catchment masks any modelling effects which the soils could have. A soil 
sensitivity analysis is required to determine the significance thereof. Conversely, a sensitivity analysis of the 
model outcomes to changing the rainfall input should be done as higher priority as it has a larger effect on the 
model output. 
 
Understanding the hydrological regime within the mountainous parts of the country remains an important 
challenge, as this is where most of the rain falls. Therefore more studies should be conducted in such terrains, 
despite the difficult circumstances and lack of data often encountered in these areas. This is true for the 
Goukou catchment, but also for most of catchments with mountainous parts, including the Drakensberg. 
  



HYDROSOIL 

149 

CHAPTER 7: HYDRAULIC PEDOTRANSFER FUNCTIONS 
In addition to mapping soil more accurately, to understand and model the hydrological response of an area, 
the soils need to be more accurately parameterised as well (Van Tol & Van Zijl, 2022). However, hydrological 
soil measurements are cumbersome and expensive. Therefore, pedotransfer functions (PTF’s) should be 
developed, whereby soil properties difficult and expensive to measure can be predicted using soil properties 
easy and inexpensive to measure. 
 
This chapter will describe two separate studies where the development of PTFs was attempted. The creation 
of PTF’s using legacy soil data was presented at the Kirkham Conference in 2022 held at Skukuza, South 
Africa by Anru Kock (Section 7.1). The development of PTF’s using collected data formed part of the 4th year 
project of Altus Jacobs, Elouise Verwey and Vian Cooke (Section 7.2). It was decided not to combine the 
legacy data with the newly acquired data, as the legacy data is mostly measured in the field, while the newly 
acquired data was measured from undisturbed samples in a laboratory. It seems these measurements are not 
comparable. 
 
7.1 CREATING PEDOTRANSFER FUNCTIONS TO DETERMINE IMPORTANT SOIL HYDRAULIC PROPERTIES 

7.1.1 Introduction 

Soil and water play an essential role on the surface and within the subsurface of the Earth. Surface soil 
regulates and controls the water balance via infiltration, evapotranspiration, surface runoff, groundwater 
recharge and therefore has a substantial effect on regional and global land surface water (Zhang & Schaap, 
2019). Soil and water parameters are also important for hydrological modelling of catchments (Abbaspour et 
al., 2019). Models require soil and water data for effective use and implementation. Soil datasets that contain 
the required soil property data for certain areas of interest are not always available to be included into the 
models. Measured soil properties vary from dataset to dataset and the amount of data as well as the type of 
data that is captured may differ due to the needs, aim and cost constraints of a respective study. Certain soil 
properties are almost always measured from soil samples for, example soil texture, pH, cation exchange 
capacity (CEC). Other soil hydraulic properties are more time consuming or more expensive to measure, for 
example, saturated hydraulic conductivity (Ks), soil water content at field capacity (θ_33) and soil water content 
at wilting point (θ_1500) are not readily included. 
 
PTFs aim to solve this problem by estimating soil properties, especially soil hydraulic properties, using readily 
available soil data. For decades PTFs have been created and used for many important soil hydraulic properties 
including, Ks, θ_33, θ_1500 and Available Water Capacity (AWC), which is the difference between θ_33 and 
θ_1500. The first equations to relate land characteristics and soil properties were in 1987 (Bouma & Van 
Lanen, 1987; Li et al., 2007). Modern PTFs have been widely created around the world and mainly use soil 
texture, bulk density (BD) and organic carbon (OC) as predictors for soil hydraulic properties (Li et al., 2007). 
 
A relatively small number of PTFs for some soil properties have been created and used for South African soils. 
These include: water conducting microporosity by (Van Tol et al., 2012) and liquid limit, plastic limit, linear 
shrinkage and plasticity index used in engineering and land evaluation (Van Tol et al., 2016a). This study will 
focus on creating PTFs for Ks, θ_33, θ_1500 and BD for South African soils. 
 
7.1.2 Materials and methods 

Legacy soil data used for pedotransfer functions 

A soil dataset with 221 soil samples measuring various soil properties (Table 7.1) was used to create the PTFs 
(Van Tol, 2022). It is important to note that not all soil samples contain the same amount of soil data for each 
soil property, some clusters of soil samples have no values for certain soil properties. This was addressed 
during the development of the respective PTFs. 
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Table 7.1: Summary of predictor variables from the soil dataset (Van Tol, 2022). 

Soil property n Unit Max. Min. Average Standard 
deviation 

Saturated hydraulic 
conductivity (Ks) 220 mm.h- 12000 0 473.45 1361.35 

K (3) 147 mm.h- 56 0.02 7.9 11.96 
Macropore conductivity 
(MPC) 144 mm.h- 1768.7 0.0153 155.4 283.9 

Bulk density (BD) 169 Mg.m-3 1.9852 0.4841 1.35 0.27 

Organic carbon (OC) 123 % 9.36 0.04 1.48 1.79 
Cation Exchange 
Capacity (CEC) 147 cmol 37.5 1.65 9.6 7.08 

Sand 221 % 93.302 5 54.06 20.60 

Silt 221 % 54.4 0.6 17.03 10.27 

Clay 221 % 68.7 3.7 28.12 14.42 
Drained upper limit 
(DUL) 74 mm.mm- 0.5199 0.0454 0.26 0.1 

Lower limit (LL) 63 mm.mm- 0.47 0.0089 0.15 0.10 
n = number of observations, Max = Maximum unit value, Min = Minimum unit value 
 
Development of pedotransfer functions 

To create the PTFs for the respective soil hydraulic properties, multiple regressions were used to train the 
models with soil properties as predictors (Table 7.2). All PTFs were created using the R programming language 
(R Core Team, 2022). The soil dataset (Van Tol, 2022) was first reduced to 149 soil observations after 
removing samples that contained Ks values that were error sum. The dataset was then randomly divided into 
two sets of data, one training set containing 75% of the soil observations and a second set that contain the 
other 25% of soil observations. This step was repeated multiple times for each soil hydraulic property to 
maintain the maximum number of samples with complete data. The training set of data was used to train the 
multiple linear regression models and the test set was used for an independent validation. For Ks five multiple 
regression models were created, three for BD, two for Drained Upper Limit (DUL) and three for Lower Limit 
(LL) using different combinations of available soil property data. One cubist model was created for Ks with all 
soil properties to evaluate the performance of machine learning algorithms compared to standard multiple 
linear regression models. 
 
Table 7.2: All pedotransfer functions (PTFs) developed with the soil properties as predictors. 

Soil property PTFs Method Predictors nt 

Ks-A MLR CEC, OC 112 

Ks-B MLR Sand, Silt, Clay 112 

Ks-C MLR Sand, Silt, Clay, CEC 112 

Ks-D MLR Sand, Silt, Clay, OC 112 

Ks-E MLR Sand, BD, OC 112 

Ks-N Cubist BD, OC, Sand, Silt, Clay 112 

BD-F MLR Sand, Silt, Clay 63 

BD-G MLR Sand, Silt, Clay, CEC 63 

BD-H MLR Sand, Silt, Clay, OC 63 

BD-P Cubist OC, CEC, Sand, Silt, Clay 63 

𝛉𝛉33-I MLR Ks, BD 51 

𝛉𝛉33-J MLR Ks, Sand, Silt, Clay, BD 51 
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Soil property PTFs Method Predictors nt 

𝛉𝛉33-Q Cubist Ks, BD, Sand, Silt, Clay 51 

𝛉𝛉1500-K MLR Ks, Sand, Silt, Clay, BD 36 

𝛉𝛉1500-L MLR BD, 36 

𝛉𝛉1500-M MLR Sand, Silt, Clay, BD, 36 

𝛉𝛉1500-R Cubist Ks, BD, Sand, Silt, Clay, 36 
nt = number of samples used for training; MLR = multiple linear regression; CEC = Cation Exchange Capacity; OC = Organic 
Carbon; BD = bulk density. 
 
Validation of pedotransfer functions 

Validation is necessary to determine the performance of the models. A validation set, or in this case the 25% 
test set, is used to accomplish this. Using each model trained (Table 7.2), the respective predictor values are 
used to make a prediction on the response variable of the specific PTF. The predicted values from the 
respective PTFs are then compared against the actual values in the soil dataset using statistical performance 
parameters. These parameters include Mean Error (ME), Root Mean Square Error (RMSE), coefficient of 
determination (R2), ratio of performance to deviation (RPD) and coefficient of variation (CV) (Wadoux et al., 
2021). All statistical calculations except for CV were calculated using the eval function in the soilspec package 
in R studio, CV was manually calculated using the R programming language. 
 
Comparing pedotransfer functions for saturated hydraulic conductivity  

From all five PTFs created for Ks, one was selected that produced the best results and that also used the 
same predictors as found in the literature (Weynants et al., 2009). The following equation was used: 
 
𝐾𝐾𝑄𝑄 (𝑐𝑐𝑐𝑐.𝑑𝑑−1) = 𝑒𝑒𝑥𝑥𝑒𝑒 (1.9582 + 0.0308 ∗ 𝑆𝑆𝑆𝑆𝑙𝑙𝑑𝑑(%) − 0.6142 ∗ 𝐵𝐵𝐵𝐵(𝑙𝑙. 𝑐𝑐𝑐𝑐−3) − 0.01566 ∗ 𝑂𝑂𝐹𝐹(𝑙𝑙.𝐾𝐾𝑙𝑙−1) (7.1) 
 
Units for each soil property differ from that of the units used in this study (Table 7.1). This was corrected by 
first converting the soil property values in this study to match that of the above equation and then converting 
the Ks results back to 𝑐𝑐𝑐𝑐. ℎ− to be able to compare the values from both PTFs. 
 
7.1.3 Results 

The statistical performance parameter values for each PTF is given in Table 7.3 and the best performing PTF 
is compared to that of Weynants et al. (2009) in Table 7.4. 
 
Table 7.3: Performance indicators for validation of the pedotransfer functions (PTFs). 

PTF ME RMSE R2 RPD CV nv 

Ks-A (CEC, OC) -2,54 161,16 0,59 1,58 105.77 37 

Ks-B (SSC) 1,12 221,22 0,15 1,1 143.57 37 

Ks-C (SSC, CEC) 3,41 191,27 0,36 1,27 122.32 37 

Ks-D (SSC, OC) 2,37 171,64 0,53 1,49 109.12 37 

Ks-E (Sand, BD, OC) 58,7 217,61 0,49 1,44 66.02 37 

Ks-N (Cubist) -1,78 152,1 0,6 1,6 100.6 37 

       

BD-F(SSC) 0,11 0,21 0,4 1,32 14.19 21 

BD-G (SSC, CEC) 0,11 0,21 0,43 1,36 14.2 21 

BD-H (SSC, OC) 0,04 0,11 0,87 2,88 7.81 21 
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PTF ME RMSE R2 RPD CV nv 

BD-P (Cubist) -0.01 0.08 0.92 3.7 5.88 21 

       

𝜃𝜃33-I (ALL) 0,02 0,07 0.04 1.05 28.92 17 

𝜃𝜃33-J (Ks, BD) 0,02 0,08 -0,32 0,9 32.43 17 

𝜃𝜃33-Q (Cubist) 0.01 0.06 0.25 1.19 25.67 17 

       

𝜃𝜃1500-K (ALL) 0 0.06 -0.39 0.89 28.92 12 

𝜃𝜃1500-L (BD, 𝜃𝜃33) 0 0.06 -0.29 0.92 44.88 12 

𝜃𝜃1500-M (SCC, BD, 𝜃𝜃33) 0 0,07 -0.6 0.82 52.95 12 

𝜃𝜃1500-R (Cubist) 0 0.06 -1.51 -0.66 45.44 12 
ME = Mean Error; RMSE = Root Mean Square Error; R2 = coefficient of determination; RPD = ratio of performance to deviation; 
CV = coefficient of variation; 𝒏𝒏𝒗𝒗 = number of samples used for validation. 
 

Table 7.4: Performance indicators for comparing pedotransfer functions (PTFs) to Weynants et al. 2009. 

PTF ME RMSE R2 RPD CV nv 

Ks-S (Sand, BD, OC) 58.68 217.62 0.49 1.44 66.02 17 

Ks-Wey (SSC) -170.67 384.74 -0.61 0.81 383.57 17 
ME = Mean Error; RMSE = Root Mean Square Error; R2 = coefficient of determination; RPD = ratio of performance to deviation; 
CV = coefficient of variation; 𝒏𝒏𝒗𝒗 = number of samples used for validation. 
 
Scatter plots were used to indicate the individual performance of each created PTF for the various hydraulic 
soil properties by plotting the observed values to the predicted values obtained from the PTFs (Figure 7.1; 
Figure 7.2; Figure 7.3; Figure 7.4). With the most accurate PTF, the data points should be centred around the 
1:1 line, indicated as a solid line. The best Ks PTF created in this study was compared with the PTF for Ks as 
created by Weynants et al. (2009) (Figure 7.5). 
 

 
Figure 7.1: Scatter plots for validating PTFs for Ks, with a 1:1 line. Plots A-E and N correspond to each 
PTF for Ks in Table 7.2. 
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Figure 7.2: Scatter plots for validating PTFs for bulk density, with a 1:1 line. Plots F-H and P 
corresponds to each PTF for BD in Table 7.2. 

 

 
Figure 7.3: Scatter plots for validating PTFs for θ_33, with a 1:1 line. Plots I and J corresponds to each 
PTF for θ_33 in Table 7.2. 
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Figure 7.4: Scatter plots for validating PTFs for θ_1500, with a 1:1 line. Plots I and J corresponds to each 
PTF for θ (1500 ) in Table 7.2. 

 

 
Figure 7.5: Scatter plots for comparing Ks-S and Ks-Wey PTFs, with a 1:1 line
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7.1.4 Discussion 

Saturated hydraulic conductivity 

Saturated hydraulic conductivity, which is one of the important soil properties, had variable results for PTF’s. 
Pedotransfer functions for Ks created using cubist and all available soil properties as predictors had the best 
overall performance (ME = -1,78, RMSE = 152,1, R2 = 0,6, RPD = 1,6 and CV = 100.6). The cubist PTF had 
the highest R2 and RPD with the lowest RMSE values compared to the others. The Ks-A PTF with multiple 
linear regression follows in performance (ME = -2.54, RMSE = 161.16, R2 = 0,59, RPD = 1,58 and 
CV = 105.77) with relatively low RMSE, high R2 and RPD. The Ks-E PTF created with Sand, BD and OC had 
slightly weaker statistical performance except for having the lowest CV of 66.02, which makes it a relatively 
good PTF compared to the others for Ks with higher CV values. Another Ks PTF (Ks-D) that used OC as a 
predictor also showed comparable performance with slightly weaker performance statistics (ME = 2.37, RMSE 
= 171.64, R2 = 0,53, RPD = 1,49 and CV = 109.12). PDFs using only sand, silt and clay or CEC had the worst 
performance (Table 7.3). These results are substantiated with the scatter plots (Figure 7.1). The cubist Ks-N 
PTF had most observations on the 1:1 line which indicated good performance for predicting lower Ks values. 
Other PTFs show the tendency to underpredict the Ks values with observations plotting above the 1:1 line. 
Predictions for Ks values greater than 200 𝑐𝑐𝑐𝑐 . ℎ−1 tend to be spread out from the 1:1 indicating weak model 
performance greater Ks values. 
 
Bulk Density 

Three PTFs for BD were created using standard multiple linear regression and one with cubist. Two of the BD 
PTFs had the best performance with BD-P created using cubist having the best performance (ME = -0.01, 
RMSE = 0.08, R2 = 0.92, RPD = 3.7 and CV = 5.88). This makes the PTF BD-P an excellent PTF for predicting 
BD. With multiple linear regression, PTF BD-H had the second-best performance with ME = 0.04, 
RMSE = 0.11, R2 = 0.87, RPD = 2.88 and a CV of 7.81 which also makes it a good BD PTF. Scatter plots for 
BD-P and BD-H show that observations are close to and on the 1:1 line (Figure 7.2). The performance from 
these two PTFs are more impressive seeing that only 63 soil samples were used to develop the PTFs. Scatter 
plots for BD-F and BD-G have observations further from the 1:1 line which is in line with the statistical lower 
R2 values for these PTFs. 
 
Drained upper limit Θ33 

PTF development for 𝜃𝜃33 had less soil samples to work with – only 51 samples available for model development 
and 17 for model validation. This resulted in less optimal conditions for calibration of the 𝜃𝜃33 PTFs. Low 
statistical performances were observed (Table 7.3) for all the 𝜃𝜃33 PTFs, with the 𝜃𝜃33-Q PTF having the best 
results. Scatter plots (Figure 7.3) support these findings. Some predictions for all three 𝜃𝜃33 PTFs are close to 
the 1:1 with low ME and RMSE values. None of these PTFs are useful and more calibration and samples are 
needed to develop better performing PTFs for 𝜃𝜃33. 
 
Lower limit Θ1500 

Just like the 𝜃𝜃33 PTFs, results for the 𝜃𝜃1500 PTFs show no potential with regard to statistical performance (Table 
7.3). Only 36 soil samples had available data to be used for model development and 12 samples were used 
to validate the models. The best performing model was 𝜃𝜃1500-L which used BD and 𝜃𝜃33 as predictors (ME = 0, 
RMSE = 0.06, R2 = -0.29, RPD = 0.92 and CV = 44.88). Scatter plots for 𝜃𝜃1500 (Figure 7.4) show almost no 
correlation between the predicted and observed values for all three PTFs. For 𝜃𝜃1500, multiple linear regression 
created the relatively best performing PTFs, whereas the cubist PTF 𝜃𝜃1500-R had lower than expected 
performance when compared to the performance of cubist PTFs for the other soil properties. 
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Comparing pedotransfer for saturated hydraulic conductivity 

The PTF for Ks-S from this study, which used sand, BD and OC (Equation 7.1) was compared against the 
performance of another PTF with the same predictors from Weynants et al. (2009), with the equation: 
 
𝐾𝐾𝑄𝑄 − 𝑆𝑆 = 965.44 + 2.367 ∗ 𝑆𝑆𝑆𝑆𝑙𝑙𝑑𝑑 − 612.45 ∗ 𝐵𝐵𝑄𝑄𝑙𝑙𝐵𝐵 𝑑𝑑𝑒𝑒𝑙𝑙𝑄𝑄𝑙𝑙𝑙𝑙𝑑𝑑 + 36 ∗ 𝑙𝑙𝑄𝑄𝑙𝑙𝑆𝑆𝑙𝑙𝑙𝑙𝑐𝑐 𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑙𝑙𝑙𝑙 (7.2) 
 
Both PTFs were used to make Ks predictions on 17 soil observations which contained enough soil data to 
make the comparison. Statistical performance parameters (Table 7.4) show that Ks-S had better predictions 
than the PTF Ks-Wey used from Weynants et al. (2009). Lower ME of 58.68, RMSE of 217.62 were observed 
compared to a ME of -170.67 and RMSE of 384.74 for Ks-Wey. Scatterplots (Figure 7.5) confirm that Ks-S is 
better developed to make predictions closer to the 1:1 especially for Ks > 500 𝑐𝑐𝑐𝑐. ℎ−. 
 
7.1.5 Conclusions and recommendations 

This study was able to successfully produce PTFs for all four soil hydraulic properties Ks, BD, 𝜃𝜃33 and 𝜃𝜃1500 
from legacy soil data. PTFs for Ks using multiple linear regression are suboptimal for practical use. The Ks 
PTF developed with cubist showed more potential as being useful as a PTF in predicting Ks from BD, OC, 
CEC, sand, silt and clay. This, however, is only true if enough soil data is available to develop the PTF. Bulk 
density PTFs were the best performing PTF from all the soil properties chosen in this study and produced 
PTF’s that are accurate and reliable enough to be practically used. PTFs for 𝜃𝜃33 and 𝜃𝜃1500 were not as 
successful as for Ks and BD are not usable for any predictions. 
 
To improve the accuracy of PTFs, a larger soil dataset with more complete soil observational and soil chemical 
data must be used to develop the PTFs, especially for Ks, 𝜃𝜃33 and  𝜃𝜃1500. More OC data will lead to better PTF 
development for Ks as seen from the performance of PTFs which used OC as predictors. 
 
7.2 CREATING AN HYDRAULIC PEDOTRANSFER FUNCTION FOR SOUTH AFRICAN SOILS 

7.2.1 Introduction 

Problem statement 

In modern agriculture, precision farming is gradually becoming the ‘normal’ way of farming. The challenge 
comes with the bottomless need for data to make the best decisions. To acquire data for certain soil 
characteristics, such as hydraulic conductivity, can be very time consuming and expensive. To bridge this 
problem, hydraulic PTFs are an alternative method to obtain such data, namely. 
 
Mathematical models called hydraulic PTFs link the properties of soil to hydraulic conductivity and soil water 
retention (Rawls et al., 1982). They are widely used in agriculture for estimating soil water availability and 
movement, which are critical for crop growth and yield (Wösten et al., 1999). PTFs have been developed using 
various techniques, including regression and machine learning methods, and have been applied in different 
agricultural systems and regions worldwide (Nemes & Schaap, 2006; Schaap et al., 2001). However, the 
accuracy and transferability of PTFs depend on the quality and quantity of input data, the model structure and 
complexity, and the validation and calibration procedures (Schaap et al., 2001; McBratney et al., 2002). 
 
Despite the significant progress in the development of PTFs globally, there is a lack of hydraulic PTFs 
specifically tailored for South African soils. The unique characteristics of South African soils, influenced by 
diverse climates, vegetation types and parent materials, necessitate the development of locally calibrated 
PTFs. These functions are crucial for predicting soil hydraulic properties, which are fundamental inputs for 
hydrological and land surface models. Recent studies have demonstrated the value of PTFs in predicting soil 
properties such as Atterberg limits, soil moisture content at field capacity and permanent wilting point (Van Tol 
et al., 2016a). However, these studies also highlight the challenges associated with developing accurate and 
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reliable PTFs, including the need for large and diverse soil datasets (Miti et al., 2023). Furthermore, a recent 
study on European soils has shown that incorporating prediction uncertainty into PTFs can significantly 
improve their accuracy (Szabó et al., 2021). However, such advancements have not yet been applied to South 
African soils, and the question is how an accurate and reliable PTF can be developed using locally available 
soil data. 
 
Hydraulic conductivity and data collection methods 

Hydraulic conductivity (K) is an important property that governs the water transmission capacity of soils, 
influencing critical processes such as water infiltration, drainage and plant water availability (Hillel, 2003; Rawls 
et al., 2003). It represents the ability of a porous material to transfer water and is governed by Darcy’s law, 
which states that the hydraulic gradient and hydraulic conductivity are directly proportional to the fluid flow 
through a medium (Batezini & Balbo, 2015). The amount of organic matter, soil structure and texture all have 
a significant impact on the K value, with two critical parameters used to describe the conductivity: Ksat 
(saturated hydraulic conductivity) and Kunsat (unsaturated hydraulic conductivity), corresponding to fully and 
partially saturated conditions, respectively (Hillel, 2003; Rawls et al., 1982; Schaap et al., 2001). 
 
Both laboratory and field-based techniques are utilised for measuring K, with Ksat ranging from 1×10-6 m/s (for 
clayey soils) to 1×10-3 m/s (for sandy soils) (Hillel, 2003; Rawls et al. 1982). An extensive database of 
European soils' hydraulic properties (Wösten et al., 1999), including hydraulic conductivity, provides valuable 
information that was collected from different sources and subjected to quality checks to ensure consistency 
and reliability. The data revealed significant variations in hydraulic conductivity across different European soils, 
with sandy soils exhibiting higher values compared to clayey soils. A comprehensive overview offers 
laboratory-based procedures for determining the hydraulic conductivity and diffusivity of soil (Klute & Dirksen, 
1986), which are essential parameters for understanding water flow in soils. Field-based techniques include 
the double ring, the single ring, the tension, and the disk infiltrometer. These methods are used to gauge the 
soils in-situ hydraulic conductivity. 
 
Two hydraulic conductivity measurement techniques are the constant head method and the falling head 
method. The constant head method measures the hydraulic conductivity of highly permeable soils, while falling 
head method measures hydraulic conductivity for low to moderately permeable soils and both are widely used 
in soil science research (Hillel, 2003). These two methods are used in the field along with the double and single 
ring. It describes how the water going into the soil is facilitated, by measuring the time for a drop in distance 
(falling head), or having the head be constant, and the volume of water changed measured at the water source 
(constant head). 
 
Lefranc's test, which involves measuring the amount of time it takes for a water column inside a tube to drop 
to a specific height, is the foundation for the falling head method, a dependable laboratory technique for 
determining the hydraulic conductivity of soils (Mualem,1976; Wösten et al., 1999; Pedescoll et al., 2011). The 
falling head method can distinguish between the hydraulic conductivities typically seen for non-clogged and 
clogged systems, which range between 200 and 300 m/day and less than 50 m/day, respectively, it has been 
used to assess on-site hydraulic conductivity in a variety of environmental facilities. The falling head method 
will be used in this study, as most of the soils tested are moderately permeable. 
 
Hydraulic pedotransfer functions 

PTFs are a useful and practical tool for estimating hydraulic conductivity (Nemes & Schaap, 2006). Using 
empirical or semi-empirical methods, these functions are created based on more easily quantifiable soil 
properties such as bulk density, texture and organic matter content (Schaap et al. 2001). PTFs are a valuable 
alternative to direct measurements of hydraulic properties because they can be time-consuming and expensive 
(Rawls et al., 2003). However, the accuracy of PTFs can be limited by specific soil types and conditions 
(Schaap et al., 1998). 
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For predicting soil water retention parameters and hydraulic conductivity, several PTFs have been created 
using various databases and variables (Schaap et al., 2001). A PTF for estimating the soil water retention 
parameters was developed using a database of 633 soils based on organic matter content and soil texture 
(Rawls & Brakensiek, 1985). This PTF was found to be accurate for a variety of textures and organic matter 
levels. Another PTF for estimating hydraulic conductivity and soil water retention using organic matter content, 
soil texture and bulk density was developed from a database of 542 soils (Saxton & Rawls, 2006). This PTF 
was also found to be accurate for many different types of soil. A PTF was developed specifically for European 
soils, focusing on water retention and unsaturated hydraulic conductivity, using a large dataset of 12 000 soils 
(Wösten et al., 1999). This PTF includes organic matter content, soil texture and bulk density and was found 
to be accurate for predicting the hydraulic properties of a wide range of European soils. 
 
It is critical to note that PTFs have limitations, and appropriate PTFs should be developed for specific soil types 
and regions (Schaap et al., 2001). PTFs should be used with caution due to their limitations (Vereecken et al., 
2010). A review of the development, validation and application of PTFs in soil hydrology noted that PTFs are 
an essential tool for estimating soil hydraulic properties in regions with scarce data (Tóth et al., 2015). They 
also emphasised the importance of validating PTFs with independent datasets to improve their accuracy and 
reliability (Hutson, 1983). 
 
There are several PTFs that have been developed for South African soils among which is the model developed 
by Van Tol et al. (2016), which calculates hydraulic conductivity and soil water retention curves using easily 
measurable soil characteristics like texture, bulk density and organic matter content. Another PTF to predict 
the hydraulic properties of soil in South Africa (Myeni et al., 2021) uses bulk density, soil texture and organic 
matter content as indicators. Both models were validated using soil data from South African regions. 
 
Machine learning 

Machine learning has emerged as a valuable tool in soil science, with applications ranging from soil 
classification and mapping to modelling. For predicting soil characteristics like organic carbon content, pH, 
Cation Exchange Capacity (CEC), and bulk density, algorithms like multiple linear regression, convolutional 
neural networks, random forests, artificial neural networks, support vector machines, decision trees, Cubist, 
memory-based learning, partial least square regression, principal component analysis and multivariate 
adaptive regression splines, have been used (Wang et al., 2023; Aydin et al., 2023; Bondi et al., 2018). PTFs 
can be developed using machine learning that are useful for estimating soil hydraulic properties (Szabo et al., 
2021). 
 
When trained on large datasets of direct measurements and inferred properties, empirical studies have shown 
that these methods are effective at predicting soil properties with high accuracy (Benke et al., 2020). A recent 
study conducted in Sri Lanka employed various machine learning algorithms to create PTFs for tropical 
Sri Lankan soils (Gunarathna et al., 2019). The findings showed that random forest was the most reliable 
algorithm for creating PTFs in this situation. A large number of additional machine learning algorithms used in 
soil science. 
 
Ensemble learning combines several base models to produce an optimal predictive model that has been 
employed to enhance the accuracy of PTFs for soil hydrology (Lamorski et al., 2008). Specifically, two 
ensemble methods, bagging and additive regression, were utilised in a study to enhance the accuracy of a 
single regression model. The results indicated that ensemble methods are widely used in improving the 
performance of data-driven regression models (Cisty et al., 2012). Partial least squares regression, Cubist and 
random forests were identified as model calibration methods that are accurate and reliable (Dangal et al., 
2019). This technique will also be used in this study. 
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Evaluation of pedotransfer functions 

Statistical measures like the Root Mean Square Error (RMSE), coefficient of determination (R2), and residual 
plots are frequently used to assess PTFs (Romano & Palladino, 2002; Myeni et al., 2021). These statistical 
measurements are used to evaluate the accuracy and dependability of the PTFs in predicting the hydraulic 
properties of the soil. 
 
In soil science, the RMSE statistic is frequently used to assess the precision of models that forecast soil 
characteristics like hydraulic conductivity and water retention. It is calculated as the square root of the mean 
of the squared differences between the predicted and observed values and measures the difference between 
the predicted and observed values (Chai & Draxler, 2014). RMSE has been used in several studies to assess 
how well PTFs predict soil hydraulic properties. (e.g. Wösten et al., 1999; Klopp et al., 2020). The smaller the 
RMSE value, the better the fit of the model to the data. 
 
The statistical measure known as the coefficient of determination (R2) illustrates how closely the regression 
line resembles the actual data points. It has a range of 0 to 1, with 0 denoting that the model does not fit the 
data at all and 1 denoting that it does so flawlessly (Nagelkerke, 1991). Higher R2 values indicate better model 
performance. 
 
Residual plots are graphical representations of the differences between the observed and predicted values 
that are used to assess the goodness-of-fit of a regression model. They can be used to spot patterns in the 
data that the model did not account for, such as non-linear relationships or outliers. (Kutner et al., 2005). The 
most common way to evaluate the regression model's goodness-of-fit is using residual plots to look for a 
random scatter of points around the zero line, indicating that the model has captured all the relevant information 
in the data, while deviations from this pattern may indicate that the model is inadequate (Montgomery et al., 
2012). 
 
In a study in the Yellow River Delta region of China, a dataset of 100 soil samples was collected from the 
coastal salt-affected mud farmland, where support vector machine (SVM), multiple linear regression (MLR), 
and artificial neural network (ANN) models were used to create PTFs for calculating saturated hydraulic 
conductivity (Ks) based on readily observable soil characteristics. The coefficient of determination (R2), RMSE, 
and mean absolute (MAE) error were used to assess the performance of these models. The results indicated 
that the SVM model outperformed the ANN and MLR models when it comes to predicting Ks, with an R2 value 
of 0.89, RMSE of 0.10, and MAE of 0.08, while the MLR model had an R2 value of 0.77, RMSE of 0.16, and 
MAE of 0.13, and the ANN model had an R2 value of 0.85, RMSE of 0.12, and MAE of 0.10 (Yao et al., 2015). 
 
Similarly, another study conducted in South Africa (Myeni et al., 2021) employed SVM, ANN, and MLR models 
to develop PTFs for estimating soil moisture content based on easily measurable soil physico-chemical 
properties at field capacity and permanent wilting point. The same statistical indices were used to assess these 
models' performance. The results of this study also showed that the SVM model outperformed the ANN and 
MLR models in terms of estimating soil moisture levels, with an R2 value of 0.91, RMSE of 0.03, and MAE of 
0.02, while the MLR model had an R2 value of 0.82, RMSE of 0.05, and MAE of 0.04, and the ANN model had 
an R2 value of 0.87, RMSE of 0.04, and MAE of 0.03 (Myeni et al., 2021). 
 
Research aim, objectives and hypothesis 

The aim of this study is to create suitable PTFs for five specific regions in South Africa as well as a general 
PTF which can be used to determine the saturated hydraulic conductivity (Ksat) from readily measured soil 
properties. 
 
To reach the aim, the following objectives must be met: 

1. Create a soil profile database with values for the readily available soil properties as well as Ksat, 
representative of South Africa. 
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2. Using the dataset created in (1), determine PTFs to predict the Ksat with the readily obtainable soil 
properties. 

3. Evaluate the effectiveness of the PTFs. 
4. Test the created PTF’s against a PTF obtained from the literature. 

The hypothesis tested through this project is that by using South African soil data, a local PTF could be created 
to predict Ksat from readily available soil data, which is adequately accurate and has practical implications for 
soil science and agriculture. Furthermore, the PTF’s created from local data will be better suited to predict Ksat 
in South African soils than PTF’s obtained from literature created with data from elsewhere. 
 
The development of an hydraulic PTF for South African soils is timely and relevant. It will fill a significant gap 
in the knowledge and provide a valuable tool for researchers and practitioners working in fields such as 
hydrology, agriculture and environmental management in South Africa. This study will involve collecting a large 
and diverse dataset of soil properties from across South Africa. Various statistical and machine learning 
techniques will be used to develop the PTF. The function will then be validated using independent data sets. 
The study will also explore the incorporation of prediction uncertainty into the PTF, following recent 
advancements in PTF development. 
 
7.2.2 Materials and methods 

A total of 214 samples of disturbed and undisturbed soil were taken from five catchments in South Africa (Table 
7.5; Figure 7.6). At each sampling location, the soil was described per soil horizon and classified according to 
the Soil Classification Working Group (SCWG, 2018). Samples were generally taken from the topsoil, although 
some subsoil samples were also taken. The disturbed samples were sent to EcoAnalytica and were analysed 
for: 

1. Seven-fraction texture with hydrometer method. 
2. Total carbon with dry combustion method. 
3. Organic carbon using the Walkley Black method. 

The undisturbed core samples were used to determine the soil water retention curve using the pressure plate 
method, scanned with SI-ware Near Infrared Spectrometer, dried for bulk density, and used to measure Ksat 
in a laboratory – using the falling head infiltration method. The laboratory work was done at the North West 
University. 
 
Table 7.5: The size and significance of each catchment where samples were collected. 

Site Unique significance Size (km2) 

Sabie Environmental significance, EFTEON site 5043 

Olifants Coal mining 4698 

uMngeni Sugar cane farming 466 

Tsitsa Soil erosion 494 

Goukou EFTEON site 1613 
EFTEON = Expanded Freshwater and Terrestrial Environmental Observation Network 
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Figure 7.6: Location of the study sites across South Africa. 

The sites (Figure 7.6) were selected to encompass a diverse range of climatic conditions, offering a 
comprehensive dataset. The Sabie-Sand study site, for instance, registered an average temperature of 20°C 
and received 540 mm of rainfall in 2022 (SAWS, 2023). At the Olifants study site, 760 mm of rainfall was 
recorded in 2022, accompanied by a daily average temperature of 16.3°C. Similarly, the Jukskei site 
experienced a daily temperature average of 15.9°C with 794 mm of precipitation. uMngeni reported an average 
temperature of 22°C and received 966 mm of precipitation. Umtata, in proximity to the Tsitsa site, typically 
receives 111.7 mm during the rainy season and maintains an annual average temperature of 17.11°. Lastly, 
the Goukou site near Riversdale received 407 mm of rainfall with an average temperature of 16.7°C (SAWS, 
2023). 
 
The falling head method was used in the laboratory to determine hydraulic conductivity (Figure 7.7). This 
involved the following steps: 
 

1. Samples were wetted in a tub until 100% saturation from the bottom of the sample to the top. 
2. The samples were carefully removed and placed in a pot containing coarse sand to introduce a 

suction gradient. Fine cloths were situated between the samples and the sand to keep the soil core 
intact. 

3. The single ring infiltrometers were then placed into the sample to a depth of three centimetres. 
4. Water then got added to a height of approximately nine centimetres and the infiltration time was 

taken to a certain hight, depending on the tempo of infiltration. 
5. This process was repeated until the infiltration time varied only within a five percent margin to ensure 

accuracy. 
6. The average of the last three measurements were then used to calculate the saturated hydraulic 

conductivity of each sample. 
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Figure 7.7: Measuring saturated hydraulic conductivity using the falling head method in the laboratory. 

 
The following formulas were used to calculate the saturated hydraulic conductivity: 
 
K = (L * A * ln(h1/h2)) / (t * (h1 - h2))  (7.3) 
 
Here, K represents hydraulic conductivity, L is the length of the specimen, A is the cross-sectional area of the 
standpipe, h1 is the initial head, h2 is the final head, and t is the time interval. 
 
In addition to saturated hydraulic conductivity, five other soil properties were calculated to be used as inputs 
for the PTFs: pH in a 1:2.5 solution; bulk density through drying and weighing a sample of known volume; 
seven-fraction texture with the hydrometer method; total carbon with total dry combustion method; and organic 
carbon with the Walkley-Black method. 
 
The data were portioned into training and validation datasets using the stratified random sampling method. 
This method is instrumental in evaluating the effectiveness of PTFs in predicting soil properties. It entails 
dividing the available dataset into several subgroups based on catchments (e.g. Sabie, Goukou, Olifants, etc.), 
and then randomly selecting a certain percentage of samples from each sub-group for testing, while the 
remainder are utilised for model development. This approach ensures that the testing dataset is representative 
of the overall dataset, allowing for evaluation of PTFs across a diverse range of soil types. 
 
One pedotransfer function from literature was used to test the effectiveness of locally calibrated models. The 
mathematical equation for the PTF (Saxton & Rawls, 2006) is as follows: 
 
Ksat = (7.755+0.0352*silt+0.93*topsoil-0.967*dbd^2 -0.000484*clay^2 -0.000322*silt^2 +0.001/silt-
0.0748/LECO-0.643*ln_(silt)-0.01398*dbd*clay-0.1673*dbd*LECO+0.02986* topsoil*clay-
0.03305*topsoil*silt) (7.4) 
 
Where silt is the percentage of silt, topsoil is either 1 for topsoil or 0 for subsoil, dbd for dry bulk density, clay 
for the percentage of clay and LECO for the percentage of organic carbon. 
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Model validation is a crucial step in both model calibration and validation. It serves to assess the models 
generated during calibration, and compare the predicted values of soil properties with the actual values 
obtained through laboratory measurements. Coefficient of determination (R2), RMSE, ratio of performance to 
deviation (RPD) and scatter plots were used. 
 
7.2.3 Results 

Soil property database 

The descriptive statistics show that the soil properties are very diverse and cover a range of values (Table 
7.6). 
 
Table 7.6: Basic descriptive statistics for the soil property database for all five catchments. The database is 
the combination of all five catchments data. 

Soil property Median Mean σ Min Max 

Ksat (mm/h-1) 31.0 33.5 194.9 0.2 833.4 

Dry bulk density (g/cm3) 1.2 1.1 0.3 0.3 1.8 

Total organic carbon (%) 1.8 1.7 3.1 0.3 28.4 

Very coarse sand (%) 5.4 4.4 8.7 0.0 37.1 

Coarse sand (%) 7.0 6.2 7.0 0.0 34.2 

Medium sand (%) 18.8 14.9 11.1 0.1 52.3 

Fine sand (%) 18.5 16.9 13.0 0.3 69.0 

Very fine sand (%) 6.8 6.7 9.2 0.7 98.1 

Silt (%) 14.4 10.5 13.2 0.2 58.0 

Clay (%) 14.7 12.3 11.5 0.3 56.3 
σ = standard deviation; Min = minimum; Max = maximum; Ksat = saturated hydraulic conductivity. 
 
Model creation 

In total six Cubist models were created to predict Ksat from the predictor soil properties, namely the dry bulk 
density, total organic carbon and the seven fractions of texture. Regional specific models were created for the 
Sabie, Olifants, uMngeni, Tsitsa and Goukou areas respectively. One national model was developed using the 
combined data from the five regions. These models were calibrated with a training dataset and evaluated with 
the validation dataset. The performance was determined with statistical analysis and scatter plots (Table 7.7; 
Figure 7.8). A PDF from literature was used to predict Ksat with the same validation data used for the national 
model (Figure 7.9). The same statistical analysis was done for this model. 
 

Table 7.7: Results for each pedotransfer function created. 

Model R2 RMSE RPD 

National 0.58 154.96 1.33 

National_Lit 0.07 401.96 0.51 

Sabie 0.79 58.42 1.23 

uMngeni 0.55 310.66 0.83 

Tsitsa 1 7.78 1.65 

Goukou 0.85 82.18 2.8 

Olifants 0.07 61.98 0.71 
R2 = coefficient of determination; RMSE = Root Mean Square Error; RPD = ratio of performance to deviation. 



HYDROSOIL 

164 

 
Figure 7.8: Scatter plots show the regression plots for the national and regional validation model for 
predicting saturated hydraulic conductivity. The red line represents 1:1. 
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Figure 7.9: Scatter plot showing the predicted Ksat using a pedotransfer function (Saxton & Rawls, 2006). 
The red line represents the 1:1 line. 

 
7.2.4 Discussion 

Evaluating the national model 

Results show that the Cubist model is not able to predict the saturated hydraulic conductivity to a satisfactory 
level (RMSE = 154.96, R² = 0.58, RPD = 1.33; Table 7.7). The RMSE is very high, as the average value for 
Ksat from the database was 127.40. With a RPD below two the model is considered to not be reliable at 
predicting Ksat (Dangal et al., 2019). Thus, the PTF for the national model did not meet requirements. Looking 
at the spread of the data the reason for the inaccuracy becomes apparent. Box and whiskers plots (Figure 
7.10) show that the soil properties cover a large range of  values, with several extreme outliers for nearly all 
the soil properties. While covering a large range of values for each soil property is a good thing, as it allows 
for a robust model to be created, it also means one needs more data to be able to create an accurate model. 
The number of samples used in this study was inadequate to allow for an accurate PTF to be created. 
 

 
Figure 7.10: Box and whisker plots showing the distribution of the various variables used in the study. 
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Evaluating the regional models 

When the accuracy and reliability of the regional models are evaluated the number of samples in each 
catchment needs to be considered, as many of the catchments had very few soil samples collected leading to 
inaccuracy when developing the model. 
 
When considering the RPD, the Goukou model performed the best and was the most reliable at predicting 
Ksat (Table 7.7). Goukou had a total of 23 samples. The Tsitsa model performed well, but the biggest problem 
with the Tsitsa model was the amount of soil samples collected. At only 11, the four validation samples were 
inadequate to be able to assess the accuracy of the model correctly. Sabie achieved a R² value of 0,79, RMSE 
of 58,42 and a RPD of 1,23. The Sabie catchment had a total sample count of 47, the most data points for a 
region in this study. The model for uMngeni had a R² value of 0,55, RMSE of 310,66 and a RPD of 0,83. The 
uMngeni catchment had 22 soil samples. The local model that performed the worst was (Table 7.7). The 
Olifants catchment had 28 samples. 
 
All the catchment models are inadequate for practical use, as the RMSE is too large to accurately predict Ksat, 
or too few samples were collected for an adequate evaluation of accuracy. However, despite the poor results, 
nearly all the catchments had a lower RMSE than the national PTF, except for the uMngeni catchment. This 
indicates that PTFs are probably better defined for local areas than for larger areas. 
 

Evaluating the model obtained from literature 

Saxton and Rawls (2006) developed a PTF for predicting Ksat using the same predictor variables used in this 
study. The model was notably less accurate than the nationally calibrated model. The model from Saxton and 
Rawls (2006) achieved a R² of 0,07, RMSE of 401,96 and a RPD of 0,51, compared to the national model with 
a R² of 0,58, RMSE of 154,96 and RPD of 1,33. This emphasises the need for the development of PTF’s with 
local data. 
 

7.2.5 Conclusions 

With the national model achieving an R² value of 0,58, RMSE of 154.96 and RPD of 1,33 the potential for a 
national model was evident. Although these results may not be sufficient for practical use, it does indicate that 
there is potential to develop a PTF for Ksat in South Africa. However more data is needed to represent the 
diversity of soils to create accurate and robust PTFs. 
 
The importance of locally calibrated models was shown when the PTF created was compared to one from 
literature (Saxton & Rawls, 2006). Applying the South African data to the existing PTF produced results much 
worse than the locally produced PTFs. Therefore the hypothesis that locally created will be more accurate and 
practical than PTFs developed elsewhere can be accepted. The importance of local data to create a PTF was 
further emphasised by the catchment specific PTFs created. Generally, the results were more accurate, 
indicating that within South Africa, regional-specific PTFs need to be created. 
 
Going forwards, the creation of hydrological PTFs shows potential, provided sufficient data can be collected 
to create robust models. The need for soil data and the difficulty obtaining it shows the need for a PTF. In this 
way Ksat values could be predicted from more easily obtainable soil properties. One way to collect the data 
needed is to use a region-by-region approach. This would concentrate data gathering into smaller areas, 
potentially allowing for sufficient data to be collected to represent the soil diversity in the specific area. This 
should lead to robust accurate PTFs. Over time, when sufficient data has been collected from smaller regional 
areas, then the development of a national PTF using machine learning could be plausible. 
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CHAPTER 8: NEAR INFRARED SPECTROSCOPY TO MEASURE SOIL 
PROPERTIES 

Chapter 8 describes how a Near Infrared Spectroscopy (NIRS) can be calibrated to measure soil moisture 
content and similar hydrological soil properties. NIRS can be a non-destructive, quick and safe way to 
measure soil properties, provided appropriate calibration algorithms exist. This chapter formed the bulk of 
Jacques Faul’s MSc dissertation. 
 
8.1 CREATING NEAR INFRARED SPECTROSCOPY CALIBRATION ALGORITHMS TO MEASURE 

SELECTED HYDROLOGICAL SOIL PROPERTIES 

8.1.1 Introduction 

It has been suggested that the potential cause of the next world war could be a struggle over freshwater 
resources (Singh et al., 2012; Tignino, 2010), given that it is arguably the most precious resource known to 
humankind. It has also been said that water is the cornerstone of all life (Skalko, 2013). The importance of 
water on our planet cannot be overstated, as it forms the foundation of the biochemical function in all living 
organisms (Chaplin, 2001). Simply put, without water, life on earth would simply cease to exist. 
 
Only about 2.5% of water on Earth is freshwater usable by humans, approximately 1.7% of global 
freshwater reserves are found below the surface as groundwater, while the rest is confined to glaciers and 
the atmosphere (Kikkas & Kulik, 2018). The availability of freshwater has declined over recent years due 
to the rapid growth of global population, the unrelenting progression of urbanisation, and the surge in 
demand for goods and services that often involve clean, freshwater to manufacture and deliver (Hanjra & 
Qureshi, 2010). The situation in South Africa is worse than the global average, as the country is seen as 
being water scarce (Viljoen & Van der Walt, 2018). South Africa is also faced with the growing issue of land 
availability accompanied by a growing population. In a country that is plagued by erosion and improper 
land-use practices, the availability of usable land for agriculture only decreases, making effective water 
management extremely crucial (Phinzi et al., 2020). 
 
Soil is a first-order control of the hydrological cycle (Yamanaka et al., 2007). Understanding its role in the 
hydrological cycle is thus of utmost importance when it comes to the management of water resources. A 
critical factor to consider then, is the dynamic, interactive relationship between water and soil, also known 
as hydropedology (Van Tol et al., 2013). Hydropedology is an important field of study, especially in countries 
where agriculture under irrigation plays a key role in the economy, like in South Africa (Rapanyane & 
Ngoepe, 2019). Understanding how water interacts with soil can aid in effectively managing irrigation 
schedules and prevent issues like waterlogging and soil erosion (Yerro & Ceccato, 2023). The quality and 
success of land management decisions also rely greatly on the accuracy of soil measurements upon which 
they are based (Packer et al., 2019). Because South Africa is a developing country with a struggling 
economy (Rapanyane & Ngoepe, 2019), the expense associated with measuring soil properties is an 
important issue that needs to be addressed, especially soil moisture (Paterson et al., 2015). Soil 
characteristics tend to vary on a fine scale (Paterson et al., 2015), making the measurements of soil 
characteristics even more difficult, demanding sufficient accuracy when they are being taken. 
 
In addition to South Africa’s land, soil and water issues, there is also the lack of existing soil databases to 
monitor the health and development of soils (Paterson et al., 2015). Understanding soil properties and 
identifying certain soil characteristics, especially in agriculture, can drastically increase productivity by 
helping people utilise the soil more effectively. Not only can it increase the productivity of agriculture and 
crop production but may increase the efficiency at which water is managed as well. Conducting soil 
measurements, especially water related soil measurements, can prove to be challenging due to the 
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expensive costs, inaccuracy in readings, as well as tedious processes they require (Afzali et al., 2021; 
Placidi et al., 2021). 
 
Water content in soils has traditionally been measured using various methods, like tensiometers, electrical 
conductivity using moisture probes, neutron moisture meters and gravimetric measurements. Methods like 
moisture probes and tensiometers are stationary, while methods like the neutron moisture meter and 
remote sensing are sometimes expensive. Gravimetric and volumetric soil moisture measurements are 
furthermore not always reliable in accuracy (Afzali et al., 2021; Placidi et al., 2021). This naturally, leaves 
room to find a better, more cost-effective solution. When observing newer technologies and methods, 
spectroscopy shows real promise. Near Infrared Spectroscopy (NIRS) stands out in spectroscopy since it 
provides portable and seamlessly accurate measurements without disturbing the soil in any way (Knox et 
al., 2015). NIRS can also provide real-time data to accommodate fluctuating moisture levels. This method 
is similar to remote sensing, other than that it is portable, less prone to noise, more economical and more 
rapid than remote sensing solutions (Knadel et al., 2017). 
 
For the scanner to identify what it scans, however, requires a calibration using an algorithm which acts as 
a lexicon by which the scanner identifies features in the spectra it retrieves. The issue, however, is that 
there are no freely and readily available NIRS algorithms for predicting soil water content in South Africa. 
Most of these algorithms either demand membership or payment to access, and algorithms from other 
countries are not suitable due to the diverse and unique spectral signatures of South African soils. 
 
The hypothesis tested in this study is that NIRS can accurately determine soil water content in a variety of 
South African soils if efficient calibration algorithms are available. 
 
The aim of the study is to create NIRS calibration models for soil water content and bulk density prediction 
for a wide variety of soils in South Africa. To test the hypothesis and meet the aim of the study, the following 
objectives must be met: 

1. To establish regional NIRS soil water content and bulk density calibration algorithms for soils 
from five catchments in South Africa. 

2. To determine at which scale NIRS calibration algorithms perform best by establishing water 
content and bulk density prediction calibration algorithms for each individual catchment. 

3. To compare created algorithms of drained upper limit, lower limit and bulk density against freely 
available international calibration algorithms for the same properties. 

8.1.2 Materials and methods 

Study sites 

Undisturbed soil samples were collected from five diverse catchments spread through South Africa (Figure 
8.1). These catchments include the Goukou catchment in the Western Cape, the uMngeni catchment in 
KwaZulu-Natal, the Tsitsa catchment in the Eastern Cape, the Sabie catchment in Mpumalanga and 
Limpopo, and the Olifants catchment in Gauteng and Mpumalanga. The samples used for this study was 
therefore collected from six different provinces and should include a very diverse set of soil properties. 
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Figure 8.1: The locations of the samples collected for this study. 

Methodology 

A total of 213 undisturbed soil core samples with known volume were collected from the surface layer of 
the soil (depth of 0-20 cm) at various locations within the five mentioned catchments. Sample locations for 
each catchment were determined using conditioned Latin hypercube sampling (Minasny & McBratney, 
2006), using covariates for each catchment, giving a number of sample points that are all representative of 
the spatial variability of the catchment. 
 
After the samples were collected, they were moved to a laboratory where they were wetted until saturated, 
weighed and scanned with the handheld Neospectra NIRS by placing the scanner on top of the sample 
and scanning for a total time of 14 seconds. The handheld Neospectra NIRS has a spectral resolution of 
16 nm and the spectral range was from 1 250-2 500 nm. 
 
The samples were then placed in a pressure pot that subjected them to different pressures to force the 
water from the core sample. The different pressures used were from 33 kPa (drained upper limit), 100 kPa, 
500 kPa and 1 500 kPa (lower limit). Once the soil water reached a constant level at each pressure, the 
sample was weighed and then scanned again with the Neospectra spectrometer. 
 
Each sample will thus have a spectral measurement at five different water levels, giving a total of 1 065 
individual scans. Afterwards the samples were oven dried and weighed again to determine the dry bulk 
density (pb). The bulk density can be calculated using: 
 
𝐵𝐵𝑄𝑄𝑙𝑙𝐵𝐵 𝑑𝑑𝑒𝑒𝑙𝑙𝑄𝑄𝑙𝑙𝑙𝑙𝑑𝑑(𝜌𝜌𝑐𝑐) =  𝑀𝑀𝑎𝑎𝑠𝑠𝑠𝑠 𝑜𝑜𝑠𝑠 𝑙𝑙ℎ𝑒𝑒 𝑑𝑑𝑠𝑠𝑑𝑑 𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒 (𝑔𝑔)

𝑉𝑉𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒 𝑜𝑜𝑠𝑠 𝑙𝑙ℎ𝑒𝑒 𝑑𝑑𝑠𝑠𝑑𝑑 𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒 (𝑒𝑒𝑠𝑠³)
  (8.1)] 
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The saturated and completely dry weights of the samples were used to calculate the gravimetric water 
content at each measurement from which the volumetric water content (θv) was calculated using the 
previous pb equation. 
 
𝑉𝑉𝑙𝑙𝑙𝑙𝑄𝑄𝑐𝑐𝑒𝑒𝑙𝑙𝑄𝑄𝑙𝑙𝑐𝑐 𝑤𝑤𝑆𝑆𝑙𝑙𝑒𝑒𝑄𝑄 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 (θv) = 𝑙𝑙𝑄𝑄𝑆𝑆𝑔𝑔𝑙𝑙𝑐𝑐𝑒𝑒𝑙𝑙𝑄𝑄𝑙𝑙𝑐𝑐 𝑐𝑐𝑙𝑙𝑙𝑙𝑄𝑄𝑙𝑙𝑄𝑄𝑄𝑄𝑒𝑒 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 ∗ 𝑐𝑐𝑄𝑄𝑙𝑙𝐵𝐵 𝑑𝑑𝑒𝑒𝑙𝑙𝑄𝑄𝑙𝑙𝑙𝑙𝑑𝑑  (8.2) 
 
For the calibration process, approximately 75% of the 1 065 spectra were used in the creation of the 
calibration model, where the remaining 25% were used as training data in the creation of the algorithm. 
The fuzzy K-means clustering sample selection algorithm was used to split the data into a training and 
validation set at a 75:25 ratio on the spectra. Pre-processing methods applied included Standard Normal 
Variate (SNV), multivariate scatter correction, Standardisation, Savitzky-Golay, and outlier removal (Table 
8.1). 
 
Table 8.1: Summary and comparison of the pre-processing methods used. 

Pre-processing Description 

No pre-processing Uses the spectra without any modifications. 

Savitzky-Golay Applies a smoothing filter to the spectra to reduce noise (Mouazen & Al-
Asadi, 2018). 

Savitzky-Golay + 
removal of outliers 

Applies a smoothing filter to the spectra and then removes any remaining 
multivariate outliers (Mouazen & Al-Asadi, 2018; Wadoux et al., 2021). 

Standard Normal 
Variate 

Standardises the spectra by mean centring and dividing by the standard 
deviation (Zhang et al., 2019b). 

Multiplicative Scatter 
Correction 

Mean centres the spectra and then scales it to have a uniform standard 
deviation (Zhang et al., 2019b). 

Standardisation Centres the spectra by subtracting the mean and then scales it to have a 
unit standard deviation (Wadoux et al., 2021). 

 
The calibration algorithms were created using the training dataset with different algorithms, including Partial 
Least Squares Regression (PLSR), Random Forest (RF) and Cubist, with the pre-processing methods for 
the water content prediction (Table 8.2). A total of 18 calibrations were created. 
 
Table 8.2: Combinations of models and pre-processing methods used for the volumetric water content 
prediction on the regional dataset. 

Model Pre-processing 

Partial Least Squares Regression 
Cubist 
Random Forest 

No pre-processing 

Savitzky-Golay 

Savitzky-Golay + Removed outliers 

Standard Normal Variate 

Multiplicative Scatter Correction 

Standardisation 
 
For the bulk density algorithms, the entire spectral dataset of 1 065 spectra were again split into a 75:25 
calibration and validation ratio using fuzzy K-means clustering. All three models (PLSR, Random Forest, 
and Cubist) were used firstly with no pre-processing, and then with Savitzky-Golay and standardisation or 
outlier removal, depending on which results were best. Giving a total of nine calibrations. 
 
For the catchment-specific calibrations, only the best performing model and pre-processing method were 
used. This was done for each catchment for volumetric water content and dry bulk density. Similar to the 
previous calibrations, fuzzy K-means cluster was used on the spectra to split the data into a 75:25 training 
and validation sets. A total of 213 samples scanned at five different water contents (Table 8.3).  
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Table 8.3: Number of samples for each catchment at five different water contents. 

Catchment Number of samples Number of spectra 
(samples * 5) 

Goukou 35 175 

Olifants 39 195 

Sabie 77 385 

Tsitsa 28 140 

uMngeni 34 170 
 
The entire dataset for each catchment was used and split into a 75:25 training and validation datasets using 
fuzzy K-means clustering. This resulted in five catchment specific calibrations for both volumetric water 
content and dry bulk density. 
 
To compare the created algorithms against freely available algorithms, Open Soil Spectral Library (OSSL) 
algorithms from the Soil Spectroscopy for Global Good project were used. For the comparison, algorithms 
were created for the drained upper limit, lower limit and bulk density using all of the data at the lower limit. 
The OSSL estimation service does not have a prediction option for volumetric water content, but only for 
drained upper limit, lower limit and bulk density. 
 
It is important to note that the OSSL models were created using samples that were dried and sieved. This 
study, however, did not scan the samples at completely dried moisture level, due to the fact that water 
content below the lower limit is not necessarily important for agricultural purposes. For the comparison, we 
used the driest moisture content available (which is the lower limit) data to compare with the OSSL models. 
It is, however, not a like-for-like comparison. 
 
The OSSL models were created using a combination of the Cubist machine learning algorithm and the 
standard normal variate pre-processing method. For this reason, Cubist was used to create models for the 
drained upper limit, lower limit and bulk density to ensure that the comparison is valid. The data was again 
split into a 75:25 training and validation dataset using fuzzy K-means clustering. Cubist with no pre-
processing was used since standard normal variate did not provide any noticeable improvement on 
calibration results with Cubist algorithms for predicting volumetric water content using all the data. The 
validation dataset of each created algorithm is exported as a .csv file, which is then uploaded to the OSSL 
estimation service for them to make predictions for the same parameters, which was then loaded into R to 
compare the calibrations. 
 
Validation was conducted on the independent validation dataset. The following statistical measurements 
were used to evaluate the usefulness of the derived calibration algorithms: R2, displaying the correlation 
between the predicted and measured values; the mean error (ME) indicating any bias, the RMSE which 
indicates the magnitude of error uncertainty; the concordance correlation coefficient (rhoC) which measures 
the agreement between the predicted and measured values; the ratio of performance to deviation (RPD), 
which is the ratio between the standard deviation of a variable and the standard error of that variable; ratio 
of performance to interquartile distance (RPIQ) which is the interquartile distance of the prediction errors. 
 
Additionally, the texture of the samples was determined using the hydrometer method for particle size 
analysis, and the total percentage carbon was determined using the dry combustion method (LECO). 
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8.1.3 1Results and discussion 

Soil water content database 

Some measured soil properties indicate that the samples are very diverse and represent a wide range of 
soils (Figure 8.2). For the lower limit (Figure 8.2a) and drained upper limit (Figure 8.2b), the data ranges 
from a very low 7 and 10%, to a very high 63 and 71%, respectively. Looking at the bulk density (Figure 
8.2c) the samples cover almost the entire range of bulk density classes (Hazelton & Murphy, 2007), from 
very low (< 1.0) to high (1.6-1.8), lacking only the very high class of bulk density which is higher than 1.9, 
which is considered to be soils that are very compacted (Hazelton & Murphy, 2007). The clay content of 
the samples (Figure 8.2d) covers the entire range of all texture grades from sand to heavy clays (Hazelton 
& Murphy, 2007). The range of organic carbon in the samples (Figure 8.2c) also cover the entire range of 
organic carbon levels from extremely low (< 0.4% carbon) to organic soil material (> 8.7%; Hazelton & 
Murphy, 2007) The box and whiskers plots indicate that the samples represent a very good range of diverse 
soil conditions. 
 
Most catchments represent a significant amount of variability in soil water content parameters (Figure 8.3; 
Figure 8.4), and bulk density (Figure 8.5) apart from the Tsitsa catchment. The uMngeni catchment has the 
most variability with both the drained upper limit and the lower limit ranging significantly, as well as the bulk 
density ranging from almost 0.3 to 1.3 g/cm3. The extremely low bulk density found within the uMngeni 
catchment can be attributed to abundant humic soils in the area. However, it may also be possible that the 
upper litter layer of organic matter was sampled. 
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a) b) 

c) d) 

e)  

Figure 8.2: Box and whiskers plots for selected soil properties: a) Drained Upper Limit (DUL), b ) 
Lower Limit, c) the dry bulk density (DBD) in g/cm3, d) the clay percentage of all samples, and e) the 
carbon percentage of all samples. 
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Figure 8.3: Box and whiskers plot of the volumetric water content (%) for each catchment at the 
drained upper limit. 

 

 
Figure 8.4: Box and whiskers plot of the volumetric water content (%) for each catchment at the lower 
limit. 
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Figure 8.5: Box and whiskers plot of the dry bulk density (g/cm3) for each catchment. 

 
Volumetric water content 

For the calibration results, most of the volumetric water content models calibrated well with rhoC values 
above 0.6, indicating that the models performed satisfactorily in terms of the calibration data (Table 8.4). 
This also means that the models are capturing both the systematic bias and random error in the predictions, 
resulting in a reliable and consistent relationship between the predicted and observed values. The RPIQ 
values of the PLSR calibrations did not perform as well, and are all below two, while the Cubist and RF 
RPIQ values are all above two which is satisfactory. The RMSE values of all the calibrations are below 
8.6%, which is moderately accurate, but leaves desire for improvement. 
 
For the validation, Cubist and RF performed well with Savitzky-Golay and had relatively similar results, with 
RF having a slightly lower RMSE of 6.96% in comparison to Cubist with an RMSE of 7.01% (Table 8.4). 
Moreover, RF had a slightly higher R2, rhoC, and RPD compared to Cubist, but with similar RPIQ values. 
RF did, however, have a higher bias of 0.75, while Cubist only has 0.38. While the performance of Cubist 
and RF are largely similar, RF shows signs of overfitting due to the calibration performing well, but the 
validation performing poorly, which may be due to the relatively small dataset size. RF typically performs 
better with larger datasets, due to its usage of decision trees that are prone to overfitting when there is not 
enough data to train the algorithm (Cosenza et al., 2020). The combination of Cubist and Savitzky-Golay 
shows promise, since Cubist performs better on smaller datasets (Katuwal et al., 2020), while Savitzky-
Golay’s derivative and smoothing capabilities work well with Cubist to ensure a robust calibration algorithm 
(Zimmermann & Kohler, 2013). Similarly, Clingensmith and Grunwald (2022) concluded that PLSR 
underperformed in predicting soil properties in vis-NIR when compared to RF and Cubist due to data 
complexity and non-linear relationships. 
 
The results are promising but can be improved. Liang et al. (2012) obtained substantially better results in 
predicting soil water content using NIRS, with an RMSE of 1.2% and an R2 of 0.99. The study, however, 
created calibration algorithms on a much smaller area with much less spatial variation, accompanied by a 
spectrometer with a higher spectral resolution of only 6.8 nm, which may significantly increase the accuracy 
of results. Bullock et al. (2004) produced similar results to this study in predicting the water content in five 
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soil horizons with an RMSE of 6.4% and a R2 of 0.95. They also utilised a spectrometer with a very high 
resolution of only 2 nm with a limited sample variation of five soil horizons. Considering information from 
these studies, the results are quite satisfactory, considering the spatial and property variation of the samples 
are very high, and the spectral resolution of the scanner used is only 16 nm. Calibrations on a smaller area 
with more samples should improve results. 
 
Dry bulk density 

The models for bulk density calibrated rather well, with rhoC values ranging from 0.66 to 0.95 highlighting 
that there is a relatively good agreement between predicted and actual values (Table 8.5). The RMSE 
values are all below 0.2 g/cm3 which is acceptable but requires further refinement for increased accuracy. 
Apart from the PLSR and Cubist models without pre-processing, the models all have RPIQ values above 
two, indicating good predictive accuracy and robustness. 
 
For the validation, the Cubist and RF models performed the best, yielding similar results with both 
algorithms having an RMSE of 0.16 g/cm3 (Table 8.5). The best Cubist model combination (Cubist and 
Savitzky-Golay with removed outliers) yielded an R2 value of 0.71, a rhoC of 0.82, an RPD of 1.86, and an 
RPIQ of 2.31 against the best RF model’s R2 of 0.7, rhoC 0.81, RPD of 1.84, and RPIQ 2.29. All three of 
the models had a bias value of 0.01. Cubist paired with Savitzky-Golay again performed well, in this case 
the removal of outliers further improved results. 
 
Katuwal et al. (2020) predicted soil bulk density using vis-NIRS using a spectrometer with a resolution of 
0.5 nm and provided promising results with an RMSE of 0.04 g/cm3 and an R2 of 0.94. The study used 
samples from different datasets, giving a total of 2 462 samples from across Denmark. Considering that the 
number of samples were much higher than this study (1 065 data points), and the spectral resolution was 
much higher, the results can be improved. Davari et al. (2021) achieved poorer results for bulk density 
calibration with an RMSE of 0.15 g/cm3 and an R2 of 0.26. The study utilised vis-NIRS on 220 soil samples 
within a 2 000 m2 area, and concluded that a larger number of samples could possibly improve calibration 
results. 
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Table 8.4: Results of the volumetric water content algorithms. 

Algorithm and pre-processing method 
Calibration Validation 

ME RMSE  R2 rhoC RPD RPIQ ME RMSE  R2 rhoC RPD RPIQ 

PLSR (without pre-processing) 0 8.54 0.49 0.66 1.4 1.7 0.7 8.12 0.38 0.65 1.27 1.65 

PLSR (Savitzky-Golay) 0 8.21 0.53 0.69 1.46 1.78 1.78 8.6 0.31 0.59 1.21 1.45 

PLSR (Savitzky-Golay + outliers) 0 8.22 0.52 0.68 1.44 1.74 0.68 8.94 0.34 0.6 1.23 1.46 

PLSR (Standard Normal Variate) 0 8.71 0.46 0.63 1.36 1.66 1.52 8.99 0.32 0.56 1.21 1.43 

PLSR (Multiplicative Scatter Correction) 0 8.66 0.45 0.62 1.35 1.66 1.03 9.13 0.37 0.56 1.26 1.41 

PLSR (Standardisation) 0 8.09 0.54 0.7 1.47 1.79 0.2 8.1 0.42 0.67 1.32 1.63 

Cubist (without pre-processing) 0.85 7.23 0.62 0.74 1.63 1.93 1.13 7.96 0.49 0.65 1.41 1.81 

Cubist (Savitzky-Golay) 0.96 6.70 0.68 0.77 1.76 2.18 0.38 7.01 0.6 0.72 1.57 1.81 

Cubist (Savitzky-Golay + outliers) 0.82 6.31 0.71 0.8 1.87 2.21 -0.51 7.7 0.53 0.65 1.46 1.78 

Cubist (Standard Normal Variate) 0.55 6.87 0.66 0.75 1.71 2.12 0.32 7.85 0.5 0.62 1.42 1.5 

Cubist (Multiplicative Scatter Correction) 0.57 6.71 0.68 0.77 1.77 2.17 0.25 7.77 0.48 0.61 1.39 1.63 

Cubist (Standardisation) 0.77 7.05 0.63 0.75 1.65 1.98 0.75 8.18 0.49 0.64 1.41 1.74 

RF (without pre-processing) 0.08 3.67 0.9 0.94 3.17 3.84 0.46 8.86 0.41 0.57 1.31 1.57 

RF (Savitzky-Golay 0.02 3.14 0.93 0.96 3.75 4.68 0.75 6.96 0.61 0.75 1.61 1.8 

RF (Savitzky-Golay + outliers) 0.01 3.11 0.93 0.96 3.75 4.42 0.5 7.07 0.63 0.75 1.64 2.04 

RF (Standard Normal Variate) 0.03 3.86 0.9 0.93 3.1 3.91 1.62 8.68 0.3 0.47 1.2 1.4 

RF (Multiplicative Scatter Correction) 0.03 3.82 0.89 0.93 3.06 3.83 1.38 9.08 0.35 0.48 1.24 1.33 

RF (Standardisation) 0.04 3.76 0.9 0.94 3.17 3.94 0.25 8.28 0.39 0.57 1.29 1.53 
PLSR = Partial Least Squares Regression; RF = Random Forest; ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = Lin’s concordance coefficient; RPD 
= Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
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Table 8.5: Results of the dry bulk density algorithms. 

Algorithm and pre-processing method 
Calibration Validation 

ME RMSE 
% R2 rhoC RPD RPIQ ME RMSE 

% R2 rhoC RPD RPIQ 

PLSR (without pre-processing) 0 0.2 0.54 0.71 1.48 1.97 -0.01 0.2 0.54 0.69 1.47 1.8 

PLSR (Savitzky-Golay) 0 0.19 0.6 0.75 1.57 2.09 0 0.21 0.44 0.66 1.34 1.69 

PLSR (Standardisation) 0 0.19 0.59 0.74 1.56 2.06 -0.01 0.19 0.58 0.74 1.54 2 

Cubist (without pre-processing) 0.02 0.17 0.7 0.66 0.76 1.71 0.01 0.19 0.64 0.59 0.7 1.57 

Cubist (Savitzky-Golay) 0.01 0.11 0.88 0.85 0.91 2.62 0.01 0.16 0.68 0.67 0.79 1.74 

Cubist (Savitzky-Golay + outliers) 0.01 0.11 0.88 0.85 0.91 2.6 0.01 0.16 0.72 0.71 0.82 1.86 

RF (without pre-processing) 0 0.1 0.94 0.89 0.93 3.01 0 0.23 0.39 0.37 0.5 1.27 

RF (Savitzky-Golay) 0 0.07 0.96 0.95 0.97 4.48 0.01 0.16 0.66 0.66 0.78 1.71 

RF (Savitzky-Golay + outliers) 0 0.07 0.96 0.95 0.97 4.4 0.01 0.16 0.71 0.7 0.81 1.84 
PLSR = Partial Least Squares Regression; RF = Random Forest; ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = Lin’s concordance coefficient; RPD 
= Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
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Catchment specific calibrations 

Site-specific calibration algorithms were created for each catchment to compare with the regional 
algorithms that used all the samples. Cubist paired with Savitzky-Golay was used, since it showed 
consistent and robust results previously. It is important to note that this section only focuses on the 
validation statistics for model evaluation. 
 
It is evident that the results are noticeably better for catchments than for the regional scale, apart from the 
uMngeni catchment (Table 8.6). The results are satisfactory. A rhoC value of 0.58 for the Tsitsa catchment 
indicates that there is a relatively fair agreement between the predicted values and the observed values but 
is, however, not as good as the rhoC values of the other catchments. Apart from the Tsitsa algorithm, all of 
the rhoC values are above 0.69, which indicates a good agreement between the predicted and measured 
values. Of all the catchments, the Tsitsa catchment had the lowest number of data points of 140, which 
might explain the poor R2 value of 0.32 and the lowest rhoC value of 0.58. The most robust catchment 
algorithms were the Sabie and the Olifants catchments. The Sabie achieved a rhoC value of 0.74 and a 
satisfactory RPIQ value of 2.06, while the Olifants achieved a high rhoC value of 0.81 and an RPIQ value 
of 1.94. This is because the Sabie catchment had the most data points of 385, and the Olifants the second 
most of 195. 
 
The variability of the soil properties within the different scale areas (Figure 8.6; Figure 8.7; Figure 8.8) helps 
to explain the findings, as the catchments with the least spatial variability performs better, which is the case 
for the Tsitsa, Sabie and Olifants catchments. Catchments with significant variability like the uMngeni 
performed poorly, as expected. Others have concluded that local calibrations prove superior to regional 
and international calibrations due to less spatial variation and samples being more concentrated to better 
capture the spatial variation that may be present (Canal Filho et al., 2023; Koirala et al., 2022). 
 
Table 8.6: Results of the catchment specific calibrations for drained upper limit using Cubist. 

Catchment ME RMSE (%) R2 rhoC RPD RPIQ 

Goukou 1.06 5.35 0.58 0.75 1.55 1.33 

Olifants 0.59 5.07 0.7 0.81 1.85 1.94 

Sabie 1.3 5.52 0.58 0.74 1.56 2.06 

Tsitsa 0.22 3.83 0.32 0.58 1.23 1.4 

uMngeni 0.6 8.63 0.54 0.69 1.49 1.86 
ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = Lin’s concordance coefficient; RPD 
= Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
 
For the catchment-specific dry bulk density calibrations, again using Cubist paired with Savitzky-Golay pre-
processing, the Sabie catchment yielded the best results (Table 8.7). The predictions for the Goukou, 
Olifants and uMngeni catchment are relatively poor, whereas the predictions for the Sabie and the Tsitsa 
are significantly better with RMSE values below 0.1 g/cm3 (Katuwal et al., 2020). The results of the 
catchment calibrations naturally leave the desire for improvement, which can be achieved by increasing the 
number of samples in the area to better represent the spatial variation and increase algorithm performance. 
Although these models might not be suitable for precision measurements, they would still be useful for 
agricultural water management, irrigation, as well as creating real-time moisture maps to monitor moisture 
changes in the soil. 
  



HYDROSOIL 

180 

Table 8.7: Results of the catchment specific calibrations for dry bulk density (g/cm3) using Cubist. 

Algorithm ME RMSE 
(g/cm3) R2 rhoC RPD RPIQ 

Goukou 0.04 0.14 0.64 0.76 1.68 1.72 

Olifants 0.02 0.14 0.64 0.74 1.69 1.78 

Sabie 0 0.08 0.92 0.96 3.52 3.75 

Tsitsa 0 0.1 0.46 0.62 1.39 1.2 

uMngeni 0.02 0.17 0.45 0.54 1.37 2.46 
ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = Lin’s concordance coefficient; RPD 
= Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
 
Comparing created algorithms against freely available algorithms 

It is evident that the algorithms created here are noticeably more accurate than the OSSL models for water 
content (Figure 8.6; Table 8.8). It is important to note that the OSSL models were calibrated with dry 
samples, while the created algorithms were created with the data for the lower limit, as this was the dryest 
soils we had. Thus, the calibrations from this project should be more accurate than that of the OSSL. The 
OSSL algorithm for the drained upper limit indicated poor results with an RMSE of 17.12%, a mean error 
of 12.38, and very low RPD and RPIQ of 0.59 and 0.51 respectively. The created algorithm for the drained 
upper limit performed better, with an RMSE of 8.89%, a mean error of 1.98, and an RPD and RPIQ of 1.13 
and 0.99 respectively. Although the created algorithms results are better, they are still too poor to be 
practically applied in the field, which may be due to the spatial variation of all the samples used in the 
calibration. 
 
A similar outcome was found with the lower limit calibrations (Figure 8.7; Table 8.9). The OSSL model for 
the lower limit performed very poorly and the created algorithm performed better (Table 8.9). Even though 
the results from the created algorithm are better, they still lack the accuracy and reliability that is desired. 
This is disappointing, as lower limit data was used to create the calibration algorithm. 
 
It was expected that the OSSL models would not accurately predict the South African soil values, as local 
soils were not included in their calibration algorithms. Soils were collected from across the globe and 
scanned under different measuring protocols, which may significantly hinder large-scale soil prediction 
models (Zhou et al., 2022). As for the created algorithms, the data points used still vary greatly due to large 
variation, where local calibrations would probably perform better. 
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Figure 8.6: Comparison of the created Cubist model of the drained upper limit water content (%) 
against the OSSL model 

Table 8.8: Validation results of the created Cubist model of the drained upper limit water content (%) 
against the OSSL model. 

Model ME RMSE R2 rhoC RPD RPIQ 

OSSL model -12.38 17.12% -1.95 -0.09 0.59 0.51 

Created model (without pre-processing) -1.98 8.89% 0.2 0.31 1.13 0.99 
OSSL = Open Soil Spectral Library; ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = 
Lin’s concordance coefficient; RPD = Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
 

 
Figure 8.7: Comparison of the created Cubist model of the lower limit water content (%) against the 
OSSL model. 
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Table 8.9: Validation results of the created Cubist model of the lower limit water content (%) against 
the OSSL model. 

Model ME RMSE R2 rhoC RPD RPIQ 

OSSL model -19.24 20.85% -5.72 0.01 039 0.5 

Created model (without pre-processing) -1.57 8.35% -0.08 0.5 0.97 1.24 
OSSL = Open Soil Spectral Library; ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = 
Lin’s concordance coefficient; RPD = Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
 
The created algorithms were more accurate in determining the dry bulk density of the soil (Figure 8.8; Table 
8.10), where the RMSE of the created model is noticeably better at 0.22 g/cm3 than the RMSE of the OSSL 
model at 0.38 g/cm3. These results are unfortunately poor in comparison to other studies (Katuwal et al., 
2020), which requires an RMSE of < 0.1 g/cm3 to be used effectively in the field. 
 

 
Figure 8.8: Comparison of the created Cubist model of the dry bulk density (g/cm3) against the OSSL 
model. 

 
Table 8.10: Validation results of the created Cubist model of the dry bulk density (g/cm3) against the 
OSSL model. 

Model ME RMSE 
(g/cm3) R2 rhoC RPD RPIQ 

OSSL model -0.26 0.38 -1.02 0.01 0.71 0.8 

Created model (Without pre-processing) -0.01 0.22 0.33 0.58 1.23 1.38 
OSSL = Open Soil Spectral Library; ME = Mean Error; RMSE = Root Mean Square Error; R2 = correlation coefficient; rhoC = 
Lin’s concordance coefficient; RPD = Ratio of Performance Deviation; RPIQ = Ratio of Performance to Interquartile Distance. 
 
Various studies (Chen et al., 2021; Koirala et al., 2022; Mouazen & Al-Asadi, 2018) also concluded that 
increasing the number of samples for calibration can improve results, and that the development of local 
calibrations can feed regional and national calibrations, and that regional calibrations can furthermore aid 
in ultimately improving international calibrations. But for the comparison of international models, they served 
the purpose of highlighting that local calibrations are required to create useful calibration algorithms, as 
shown for the Sabie River catchment. 
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8.1.4 Conclusions and recommendations 

The first objective, to create calibration algorithms for regional water content, was met by creating 18 
algorithms to predict volumetric water content. The most accurate algorithm was Random Forest with 
Savitzky-Golay pre-processing, probably because Random Forest performs very well with large datasets. 
 
The second objective, to determine at which scale NIRS calibration algorithms perform best, was achieved 
by creating calibration algorithms for each catchment using Cubist and Savitzky-Golay pre-processing. The 
results showed that the catchment calibrations performed significantly better than the regional algorithms. 
 
For the third objective, the process was repeated for bulk density, where nine algorithms to predict dry bulk 
density were created. The best performing algorithm was Cubist with Savitzky-Golay pre-processing. 
Catchment calibrations for dry bulk density were also created using Cubist and Savitzky-Golay pre-
processing. Again, the results were noticeably better than the regional calibration results, again supporting 
the theory that local calibrations are necessary for enhanced accuracy and reliability. 
 
The fourth and final objective was to compare created algorithms to freely available international algorithms. 
Although differences in sampling meant the comparison was not exactly equivalent, the results indicated 
that the created algorithms were significantly more accurate than the OSSL algorithms. This was expected 
since the OSSL algorithms utilise data from across the world that differs from South African soils, and that 
were collected using different methods. 
 
The hypothesis that NIRS can effectively predict soil water content in a variety of soils is thus accepted, 
with the condition that local calibrations are to be made for more accurate predictions. Because soil 
characteristics vary on such a fine scale, especially South African soils that are so diverse, local calibrations 
for NIRS are highly recommended. Although this might require more calibrations in the long term, the 
accuracy and reliability of algorithms will certainly gain from it, which will result in better water management 
decisions that will promote a more sustainable future where water scarcity is mitigated for future 
generations. It is also recommended to improve handheld NIRS devices to have a better spectral resolution, 
as this may show an improvement in results. Furthermore, it would be advisable to increase the number of 
samples in areas to better capture spatial variation when creating calibration algorithms, as this may also 
add significant value to calibrations. The creation of local calibrations may aid in the compilation of regional 
calibrations, where the continued compilation of data may add to accuracy and reliability of international 
algorithms which would be the ultimate goal. 
 
As for the application of these models, specifically those created to compare with the OSSL models, the 
models perform too poorly for high-accuracy measurements. The catchment models, however, are accurate 
enough to be practically implemented for the use of irrigation management in agriculture and should provide 
sufficient accuracy. 
 
NIRS certainly shows promise as a non-invasive, rapid and cost-effective method of soil moisture 
determination, but for its effective and accurate application, the collection of sufficient data on local scale 
is imperative. 
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 
9.1 CONCLUSIONS 

The HYDROSOIL, a detailed hydrological soil map created by digital soil mapping methods, does usually 
improve the hydrological modelling of a catchment. An increase in soil information led to an increase in model 
accuracy in five of the catchments. In addition to the improved spatial distributions of soil, the increase in model 
accuracy is also dependent on correctly parameterising the soil mapping units. The uses of the HYDROSOIL 
were showcased by: 

1. Using the HYDROSOIL map to calibrate a hydrological model by optimising model parameters 
based on the expected hydrological response in the Sabie catchment. 

2. Determining the effect of pixel size on the model outcome in the Jukskei catchment. 
3. Quantifying the effect of land-use change on the hydrological regime within the uMngeni catchment. 
4. Modelling sediment yield in the Tsitsa catchment. 
5. Using a different hydrological model in the Goukou catchment. 

The Goukou catchment was the only catchment where the improved soil information had no effect on the 
accuracy of the hydrological modelling. Here, it was shown that accurate rainfall data is the primary 
determinant of model outcome. Improving the soil data will be secondary to ensuring accurate rainfall data is 
used. 
 
Efforts to enable better parameterisation of soils included creating pedotransfer functions to predict 
hydrological soil properties using more easily measured soil properties, and creating calibration algorithms for 
Near Infrared Spectroscopy to measure hydrological soil properties. Neither of these efforts yielded acceptable 
results, probably due to too little data being collected to adequately represent the large variety of soils within 
the study sites. This strengthens the argument to further pursue efforts to easily determine the hydrological 
properties of soils, since the lack of data was caused by the difficulty and cost associated with collecting such 
data. Easier and cheaper methods are required to parameterise soils in the future. 
 
Both efforts led to the same conclusions, 1) that local data is required to accurately predict hydrological soil 
properties, as internationally developed models will not be able to account for the local soil variability; 2) that 
predictions created for smaller areas are generally more accurate than predictions for larger areas, most 
probably due to having less soil variability; 3) That a lot more data is required to make accurate predictions of 
hydrological soil properties and 4) Sampling strategies to collect the required data should focus on smaller 
areas to produce useful prediction models, and over time sufficient data will be collected for predictions at a 
regional or national scale. 
 
The title of this project is “Towards a hydrological soil map of South Africa (HYDROSOIL) – developing a 
methodology and showcasing its uses”. The ‘towards’ indicates that this project should not be the final 
product but that the work started here should be continued until an accurate hydrological soil map has been 
created for South Africa. However, this project was created to learn lessons to apply on the future journey 
towards a hydrological soil map for South Africa. The following lessons were learnt: 

1. A database structure and quality control measures were created whereby collected soil data of the 
future could be gathered and stored. 

2. A method was developed whereby highly clustered data could be used to create an accurate soil 
map, without losing less-represented soil types. 

3. How to digitise the approximately 200 000-300 000 soil observations recorded on paper copy maps 
stored at the Agricultural Research Council and use these in digital soil mapping to create the 
HYDROSOIL map. 

4. A strategic approach to obtaining hydrological soil property data was determined. 
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9.2 RECOMMENDATIONS 

Based on the lessons learnt during this project, it is recommended that an adequately parameterised, 
accurate hydrological soil map (HYDROSOIL) for South Africa and its border catchment can and 
should be created. The following steps should be taken to achieve this goal: 

1. Improve the soil database to become a cloud-based soil data repository with automatic quality 
control. 

2. Digitise the land type field observations to be used in digital soil mapping to create the national 
HYDROSOIL map, using the methods determined in this project. 

3. Apply the digital soil mapping methods used and newly learnt in this report to create the 
HYDROSOIL map. 

4. Characterise the hydrological properties of the soils of South Africa, using hydrological soil 
measurements, pedotransfer functions and near infrared spectroscopy. This should be done by 
collecting data from smaller areas and first make useful local predictions. When sufficient data has 
been collected for the entire country, national prediction models should be created. 



HYDROSOIL 

186 

REFERENCES 
 
Abbaspour, K.C., Vaghefi, S.A., Yang, H. & Srinivasan, R. (2019). Global soil, landuse, evapotranspiration, historical and 

future weather databases for SWAT Applications. Scientific Data, 6(1), 1-11. 

Abbaspour, K.C., Vejdani, M., Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. In Oxley, 
L. and Kulasiri, D. Eds., MODSIM 2007 International Congress on Modelling and Simulation, Modelling and 
Simulation Society of Australia and New Zealand, 1596-1602.1 

Afzali, H., Tasumi, M. & Nishiwaki, A. (2021). Use of hand-held NIR sensor to estimate water status of leaves and soils. 
Journal of Rainwater Catchment Systems, 26(2), 1-6. 

Ahl, R.S., Woods, S.W. & Zuuring, H.R. (2008). Hydrologic calibration and validation of SWAT in a snow-dominated rocky 
mountain watershed, Montana, USA. Journal of the American Water Resources Association, 44(6), 1411-1430. 

Aouissi, J., Benabdallah, S., Lili Chabaâne, Z. & Cudennec, C. (2016). Evaluation of potential evapotranspiration 
assessment methods for hydrological modelling with SWAT – Application in data-scarce rural Tunisia. Agricultural 
Water Management, 174, 39-51. doi:10.1016/j.agwat.2016.03.004 

ARC (2012). Land Types of South Africa: Maps (69 sheets) and Memoirs (39 books). Agricultural Research Council – Soil, 
Climate and Water, Pretoria. 

ARC (2012). Agroclimatology Database, unpublished, Agricultural Research Council – Soil, Climate and Water, 600 
Belvedere, Pretoria 0083, South Africa. 

ARC-SWC Soil Database (2014). Agricultural Research Council – Soil Water and Climate. Pretoria. 

Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B. & Neitsch, S.L. (2012). Soil and Water Assessment 
Tool “SWAT” Input/Output Documentation. Version 2012. Texas Water Resources Institute, TR-439, College 
Station, 650. https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf 

Arnold, J.G., Youssef, M.A., Yen, H., White, M.J., Sheshukov, A.Y., Sadeghi, A.M., Moriasi, D.N., Steiner, J.L., Amatya, 
D.M., Skaggs, R.W., Haney, E.B., Jong, J., Arabi, M. & Gowda, P.H. (2015). Hydrological processes and model 
representation: Impact of soft data on calibration. Transactions of the ASABE, 58, 1637-1660. 
doi:10.13031/trans.58.10726. 

Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., Neitsch, S.L. (2011). Soil and Water Assessment 
Tool Input/Output File Documentation-Version 2009. Texas Water Resources Institute Technical Report 365. 

Arnold, J.G., Srinivasan, R., Muttiah, R.S. & Williams, J.R. (1998). Large area hydrologic modelling and assessment, part 
I: Model development. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-
1688.1998.tb05961.x 

Arrouays, D., McKenzie, N., de Forges, A.R., Hempel, J. & McBratney, A.B. (2014). GlobalSoilMap: Basis of the Global 
Spatial Soil Information System (1st ed.). CRC Press, Balkema, Leiden. 

Ayana, E., Dile, Y., Narasimhan, B. & Srinivasan, R. (2019). Dividends in flow prediction improvement using high-resolution 
soil database. Journal of Hydrology: Regional Studies, 21(2019), 159-175. 

Aydın, Y., Işıkdağ, Ü., Bekdaş, G., Nigdeli, S.M. & Geem, Z.W. (2023). Use of machine learning techniques in soil 
classification. Sustainability, 15(3), 2374. doi:10.3390/su15032374. 

Bailey, N., Clements, T., Lee, J.T. & Thompson, S. (2003). Modelling soil series data to facilitate targeted habitat 
restoration: a polytomous logistic regression approach. Journal of Environmental Management, 67, 395-407. 

Bannari, A., Morin, D., Bonn, F. & Huete, A.R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13, 95-
120. doi:10.1080/02757259509532298. 

Batezini, R. & Balbo, J.T. (2015). Study on the hydraulic conductivity by constant and falling head methods for pervious 
concrete. Revista IBRACON de Estruturas e Materiais, 8(3), 248-259. 

Batjes, N.H. (1995). A homogenized soil data file for global environmental research: a subset of FAO, ISRIC, and NRCS 
profiles (Version 1.0). Working Paper and Preprint 95/10b, International Soil Reference and Information Centre. 

Batjes NH. (2008). ISRIC-WISE Harmonized Global Soil Profile Dataset (Ver. 3.1). Report 2002/02, ISRIC-World Soil 
Information, Wageningen. 

 



HYDROSOIL 

187 

Benke, K.K., Norng, S., Robinson, N.J., Chia, K., Rees, D.B. & Hopley, J. (2020). Development of pedotransfer functions 
by machine learning for prediction of soil electrical conductivity and organic carbon content. Geoderma, 366, 
114210. 

Benzaghta, M.A., Elwalda, A., Mousa, M.M., Erkan, I. & Rahman, M. (2021). SWOT analysis applications: An integrative 
literature review. Journal of Global Business Insights, 6(1), 55-73. doi:10.5038/2640-6489.6.1.1148. 

Beven, K. & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex 
environmental systems using the GLUE methodology. Journal of Hydrology, 249, 11-29. 

Beven, K.A. (2006). Manifesto for the equifinality thesis. Journal of Hydrology, 320, 18-36. 

Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M. & Srinivasan, R. (2017). Introduction to SWAT+, 
a completely restructured version of the Soil and Water Assessment Tool. Journal of the American Water Resources 
Association, 53(1), 115-130. 

Blum, W.E.H., Warkentin, B.P. & Frossard, E. (2006). Soil, human society and the environment. Geological Society 
Publications, 266, 1-8. https://doi.org/10.1144/GSL.SP.2006.266.01.01 

Bondi, G., Creamer, R., Ferrari, A., Fenton, O. & Wall, D. (2018). Using machine learning to predict soil bulk density on 
the basis of visual parameters: Tools for in-field and post-field evaluation. Geoderma, 318, 137-147. 
doi:10.1016/j.geoderma.2017.11.035. 

Bossa, A.Y., Diekkrüger, B., Igué, A.M. & Gaiser, T. (2012). Analyzing the effects of different soil databases on modelling 
of hydrological processes and sediment yield in Benin (West Africa). Geoderma, 173, 61-74. 
doi:10.1016/j.geoderma.2012.01.012. 

Bouma, J. (2016). Hydropedology and the societal challenge of realizing the 2015 United Nations Sustainable 
Development Goals. Vadose Zone Journal, 15. doi:10.2136/vzj2016.09.0080. 

Bouma, J., Bonfante, A., Basile, A., van Tol, J., Hack-ten Broeke, M.J.D., Mulder, M., Heinen, M., Rossiter, D.G., Poggio, 
L. & Hirmas, D.R. (2022). How can pedology and soil classification contribute towards sustainable development as 
a data source and information carrier? Geoderma, 424, 115988. doi:10.1016/j.geoderma.2022.115988. 

Bouma, J., Droogers, P., Sonneveld, M. P. W., Ritsema, C. J., Hunink, J. E., Immerzeel, W. W. & Kauffman, S. (2011). 
Hydropedological insights when considering catchment classification. Hydrology and Earth System Sciences, 15, 
1909-1919. doi:10.5194/hess-15-1909-2011. 

Bouma, J., Pinto-Correia, T. & Veerman, C. (2021). Assessing the role of soils when developing sustainable agricultural 
production systems focused on achieving the UN-SDGs and the EU Green Deal. Soil Systems, 5, 56. 
doi:10.3390/soilsystems5030056. 

Bouma, J., Stoorvogel, J., van Alphen, B.J. & Booltink, H.W.G. (1999). Pedology, precision agriculture and the changing 
paradigm of agricultural research. Soil Science Society of America Journal, 63, 1763-1768. 

Bouma, J. & van Lanen, H. A. J. (1987). Transfer functions and threshold values: from soil characteristics to land qualities. 
In K. J. Beek, P. A. Burrough & D. E. MacCormack (Eds.), Proceedings of the international workshop on Quantified 
land evaluation procedures : held in Washington, DC, 27 April-2 May 1986 (pp. 106-110) 

Bouslihim, Y., Rochdi, A., El Amrani Paaza, N. & Liuzzo, L. (2019). Understanding the effects of soil data quality on SWAT 
model performance and hydrological processes in Tamedroust Watershed (Morocco). Journal of African Earth 
Sciences, 160, Article 103616. doi:10.1016/j.jafrearsci.2019.103616. 

Bouwer, D., Van Zijl, G.M., Van Tol, J.J., Le Roux, P.A.L., Hydropedological Report of Constantia Kloof. Report created 
for the Johannesburg Roads Agency. 

Breure, A.M., De Deyn, G.B., Dominati, E., Englin, T., Hedlund K., Van Orshoven, J. & Posthuma, L. (2012). Ecosystem 
services:  a useful concept for soil policy making. Current Opinion in Environmental Sustainability, 4(5), 578-585.   

Bryant, R.B., Gburek, W.J., Veith, T.L. & Hively, W.D. (2006). Perspectives on the potential for hydropedology to improve 
watershed modelling of phosphorus loss. Geoderma, 131, 299-307. 

Bullock, P., Li, X. & Leonardi, L. (2004). Near-infrared spectroscopy for soil water determination in small soil volumes. 
Canadian Journal of Soil Science, 84(3), 333-338. 

Campling, P., Gobin, A. & Feyen, J. (2002). Logistic modelling to spatially predict the probability of soil drainage classes. 
Soil Science Society of America Journal, 66, 1390-1401. 



HYDROSOIL 

188 

Canal Filho, R., Molin, J.P., Wei, M.C. & Silva, E.R. (2023). Soil attributes mapping with online near-infrared spectroscopy 
requires spatio-temporal local calibrations. AgriEngineering, 5(3), 1163-1177. 

Carter, J.R. (1988). Digital representations of topographic surfaces. Photogrammetric Engineering and Remote Sensing, 
54(11), 1577-1580. 

Chai, T. & Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model 
Development Discussions, 7(1), 1525-1534. 

Chaplin, M. (2001). Water: its importance to life. Biochemistry and Molecular Biology Education, 29(2), 54-59. 

Chawla, N.V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P. (2002). SMOTE: Synthetic minority over-sampling technique. 
Journal of Artificial Intelligence Research, 16, 321-357. 

Chen, E. & Mackay, D.S. (2004). Effects of distribution-based parameter aggregation on a spatially distributed agricultural 
nonpoint source pollution model. Journal of Hydrology, 295, 211-224. 

Chen, L., Wang, G., Zhong, Y. & Shen, Z. (2016). Evaluating the impacts of soil data on hydrological and nonpoint source 
pollution prediction. Science of The Total Environment, 563-564, 19-28. doi:10.1016/j.scitotenv.2016.04.107. 

Chen, Y., Li, L., Whiting, M., Chen, F., Sun, Z., Song, K. & Wang, Q. (2021). Convolutional neural network model for soil 
moisture prediction and its transferability analysis based on laboratory vis-nir spectral data. International Journal of 
Applied Earth Observation and Geoinformation. 104:1-9. 

Cisty, M., Bezak, J. & Skalova, J. (2012). Pedotransfer Functions Development by means of the Ensemble Data-Driven 
Methodology. Proceedings of the Eighth International Conference on Engineering Computational Technology. 

Clingensmith, C. & Grunwald, S. (2022). Predicting soil properties and interpreting Vis-NIR models from across Continental 
United States. Sensors, 22(9), 3187. doi:10.3390/s22093187. 

Collet, A. & Rozanov, A. (2018). SA-EU Dialogue on Soil Information Report on the study tour to Europe (Italy; Germany; 
France). 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. & Böhner, J. (2015). 
System for automated geoscientific analysis (SAGA). In: Geoscientific Model Development. doi:10.5194/gmd-8-
1991-2015.  

Cook, S.E., Jarvis, A. & Gonzalez, J.P. (2008). A new global demand for digital soil information. In: Hartemink, A.E., 
McBratney, A., Mendonça-Santos, M.d. (eds) Digital soil mapping with limited data. Springer, Dordrecht. 
doi:10.1007/978-1-4020-8592-5_3. 

Cosenza, D., Korhonen, L., Maltamo, M., Packalen, P., Strunk, J., Næsset, E., Gobakken, T., Soares, P. & Tomé, M. 
(2020). Comparison of linear regression, K-nearest neighbour and random forest methods in airborne laser-
scanning-based prediction of growing stock. Forestry: An International Journal of Forest Research, 94(2), 311-323. 

Council for Geoscience. (2007). Geological Data 1:250 000. Pretoria, South Africa: Council for Geoscience. 

Dabrowski, JM. & De Klerk, LP. (2013). An assessment of the impact of different land use activities on water quality in the 
upper Olifants River catchment. Water SA, 39(2), 231-244. http://dx.doi.org/10.4314/wsa.v39i2.6Dangal, S., 
Sanderman, J., Wills, S. & Ramirez-Lopez, L. (2019). Accurate and precise prediction of soil properties from a large 
mid-infrared spectral library. Soil Systems, 3(1), 11. doi:10.3390/soilsystems3010011. 

Davari, M., Karimi, S., Bahrami, H., Taher Hossaini, S. & Fahmideh, S. (2021). Simultaneous prediction of several soil 
properties related to engineering uses based on laboratory vis-nir reflectance spectroscopy. CATENA, 197, 1-12. 

De Clercq, W.P., De Witt, M., Watson, A., Helness, H. & Daman, S. (2023). Evidence-based assessment of NWRM for 
sustainable water management “EviBAN”. WRC Report No. 3084/1/23. 

Debella-Gilo, M. & Etzelmüller, B. (2009). Spatial prediction of soil classes using digital terrain analysis and multinomial 
logistic regression modelling integrated in GIS: examples from Vestfold County, Norway. CATENA, 77, 8-18. 

Devia, G.K., Ganasri, B.P. & Dwarakish, G.S. (2015). A review on hydrological models. Aquatic Procedia, 4, 1001-1007. 

Dewitte, O., Jones, A., Spaargaren, O., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Gallali, T., Hallett, 
S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Thiombiano, L., Van Ranst, E., Yemefack, M. 
& Zougmore, R. (2013). Harmonisation of the soil map of Africa at the continental scale. Geoderma, 211-212, 138-
153. doi:10.1016/j.geoderma.2013.07.007. 

http://dx.doi.org/10.4314/wsa.v39i2.6


HYDROSOIL 

189 

Diek, S., Temme, A.J.A.M. & Teuling, A.J. (2014). The effect of spatial soil variation on the hydrology of a semi-arid Rocky 
Mountain catchment. Geoderma, 235, 113-126. doi:10.1016/j.geoderma.2014.06.028. 

Dippenaar, M.A. & Van Rooy, J.L. (2014). Review of engineering, hydrogeological and vadose zone hydrological aspects 
of the Lanseria Gneiss, Goudplaats-Hout River Gneiss and Nelspruit Suite Granite (South Africa). Journal of African 
Earth Sciences,91, 12-31. 

Djodjic, F., Bieroza M. & Bergstrӧm L. (2021). Land use, geology and soil properties control nutrient concentrations in 
headwater streams. Science of the Total Environment 772.145108. 

Du Plessis, C., van Zijl, G., van Tol, J. & Manyevere, A. (2020). Machine learning digital soil mapping to inform gully erosion 
mitigation measures in the Eastern Cape, South Africa. Geoderma, 368. doi:10.1016/j.geoderma.2020.114287. 

Eckhardt, K. (2005). How to construct recursive digital filters for base-flow separation. Hydrological Processes, 19(2), 507-
515. 

Essenfelder, A.H. (2016). SWAT Weather Database: A Quick Guide. Version: v.0.16.06. doi:10.13140/RG.2.1.4329.1927. 

Fernández, R.N. & Rusinkiewicz, M. (1993). A conceptual design of a soil database for a geographical information system. 
International Journal of Geographic Information Systems, 7(6), 525-539. 

Filzmoser,  P., Garrett RG. & Reimannn C. (2005). Multivariate outlier detection in exploration geochemistry. Computer & 
Geosciences, 31, 579-587. 

Flynn, T., de Clercq, W., Rozanov, A. & Clarke, C. (2019a). High-resolution digital soil mapping of multiple soil properties: 
an alternative to the traditional field survey? South African Journal of Plant and Soil, 36(4), 237-247. 

Flynn, T., Van Zijl, G.M., Van Tol, J.J., Botha, C., Rozanov, A., Warr, B. & Clarke, C. (2019b). Comparing algorithms to 
disaggregate complex soil polygons in contrasting environments. Geoderma, 352, 171-180. 
doi:10.1016/j.geoderma.2019.06.013. 

Gagkas, Z., Lilly, A. & Baggaley, N.J. (2021). Digital soil maps can perform as well as large-scale conventional soil maps 
for the prediction of catchment baseflows. Geoderma, 400, 115230. doi:10.1016/j.geoderma.2021.115230 . 

García, S. & Herrera, F. (2009). Evolutionary undersampling for classification with imbalanced datasets: proposals and 
taxonomy. Evolutionary Computation, 17, 275-306. doi:10.1162/evco.2009.17.3.275. 

Gassman, P.W., Reyes, M.R., Green, C.H. & Arnold, J.G. (2007). The Soil and Water Assessment Tool: historical 
development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250. 
doi:10.13031/2013.23637 

Gassman, P.W., Sadeghi, A.M. & Srinivasan, R. (2014). Applications of the SWAT model special section: overview and 
insights. Journal of Environmental Quality, 43, 1-8. doi:10.2134/jeq2013.11.0466 

GeoTerra Image (2015). 2013-2014 South African National Land Cover Dataset; Report Created for Department of 
Environmental Sciences; DEA/CARDNO SCPF002: Implementation of Land Use Maps for South Africa; 
Department of Environmental Affairs: Pretoria, South Africa. 

Geza, M. & McCray, J.E. (2008). Effects of soil data resolution on SWAT model stream flow and water quality predictions. 
Journal of Environmental Management, 88, 393-406. doi:10.1016/j.jenvman.2007.03.016 

Glenday, J., Gokool, S., Gwapedza, D., Holden, P., Rebelo, A., Tanner, J., Jumbi, F. & Metho, P. (2021). Critical catchment 
model inter-comparison and model use guidance development. WRC report K5/2927. Water Research 
Commission: Pretoria, South Africa 

Grealish, G., King, P., Omar, S. & Roy, W. (2004). Geographic information system and database for the soil survey for the 
State of Kuwait-design and outputs. Kuwait Journal of Science and Engineering, 31(1), 135-148 

Green, W.H. & Ampt, G.A. (1911). Studies on soil physics, I. Flow of air and water through soils. Journal of Agricultural 
Science, 4, 11-24. doi:10.1017/S0021859600001441 

Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma, 
152(3-4), 195-207. doi:10.1016/j.geoderma.2009.06.003 

Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K. & Kumari, M.K.N. (2019). Machine learning approaches to 
develop pedotransfer functions for tropical Sri Lankan soils. Water, 11(9), 1940. doi:10.3390/w11091940 



HYDROSOIL 

190 

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F. (2009). Decomposition of the mean squared error and NSE 
performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377, 80-91. 
doi:10.1016/j.jhydrol.2009.08.003. 

Gupta, R. (2000). SWOT analysis of geographic information: The case of India. Current Science, 79(4), 489-498. 
doi:10.1019/j.currentsci.2000.07.001 

Guzha, A.C., Rufino, M.C., Okoth, S., Jacobs, S. & Nóbrega, R.L.B. (2018). Impacts of land use and land cover change 
on surface runoff, discharge, and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 
49-67. 

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H. & Bing, G. (2017). Learning from class-imbalanced data: 
Review of methods and applications. Expert Systems with Applications, 73, 220-239. 

Hanjra, M. & Qureshi, M. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 
35(5), 365-377. 

Häring, T., Dietz, E., Osenstetter, S., Koschitzki, T. & Schröder, B. (2012). Spatial disaggregation of complex soil map 
units: A decision-tree based approach in Bavarian forest soils. Geoderma, 185-186, 37-47. 

Harrison, R.L., Van Tol, J.J. & Toucher, M.L. (2022). Using hydropedological characteristics to improve modelling accuracy 
in Afromontane catchments. Journal of Hydrology: Regional Studies, 39, 100986. doi:10.1016/j.ejrh.2021.100986 

Hartemink, A.E. (2007). Soil fertility decline: definitions and assessment. ISRIC-World Soil Information, 1618-1621. 

Hartigan, J.A. & Wong, M.A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, Royal Statistical 
Society, 100-108. 

Hazelton, P. & Murphy, B. (2007). Interpreting soil test results: What do all the numbers mean? Melbourne: CSIRO 
Publishing. 

He, H., Bai, Y., Garcia, E. & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 
Proceedings of IJCNN 2008 (IEEE World Congress on Computational Intelligence), IEEE International Joint 
Conference, 1322-1328. 

He, H. & Garcia, E. A. (2008). Learning from imbalanced data. IEEE Transactions on Knowledge & Data Engineering, 21, 
1263-1284. 

Hengl, T., De Jesus, J.M., Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagotic, A., Shangguan, W., Wright, M.N., 
Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., 
Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on 
machine learning. PloS ONE, 12(2), 1-40. 

Hengl, T., Toomanian, N., Reuter, H.I. & Malakouti, M.J. (2007). Methods to interpolate soil categorical variables from 
profile observations: Lessons from Iran. Geoderma, 140, 417-427. 

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E. & Schmidt, M. G. (2016). An overview and comparison of 
machine learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62-77. 

Hillel, D. (2003). Principles and processes of environmental soil physics: The state and the transport of matter and energy 
in the soil/plant atmosphere. Oxford: Academic. 

Hobbs, P., Oelofse, S.H.H. & Rascher, J. (2008). Management of environmental impacts from coal mining in the upper 
Olifants river catchment as a function of age and scale. International Journal of Water Resources Development, 24, 
417-431. https://doi.org/10.1080/07900620802127366 

Hoffmann, C., Schulz, S., Eberhardt, E., Grosse, M., Stein, S., Specka, X., Svoboda, N. & Heinrich, U. (2020). Data 
standards for soil-and agricultural research. Report number: BonaRes Series 2019/6.  doi:10.20387/BonaRes-
ARM4-66M2 

Hortensius D. &  Norcliff S. (1991). International standardization of soil quality measurement procedures for the purpose 
of soil protection. Soil Use and Management, 7(3), 163-166.  

Hortensius, D. & Welling, R. (2008). International standardization of soil quality measurements. Communications in Soil 
Sciences and Plant Analysis, 27(3-4), 387-402. doi:10.1080/00103629609369563 

Hutson, J.L. (1983). Estimation of hydrological properties of South African soils. University of KwaZulu-Natal. 
https://researchspace.ukzn.ac.za/xmlui/handle/10413/11019 

https://researchspace.ukzn.ac.za/xmlui/handle/10413/11019


HYDROSOIL 

191 

Idowu O.A. Lorentz S.A. Annandale J.G. Aken M. McCartney M.P. Thornton-Dibb SLC. Westhuizen A. (2010). Comparative 
assessment of widespread irrigation with low quality mine-water in undisturbed and rehabilitated mine-lands in the 
upper Olifants using the ACRU200 model. Water SA 36 (5): 543-552. https://hdl.handle.net/10520/EJC116745 

IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, Update 2015 International Soil 
Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 
106. FAO, Rome. 

Iqbal J., Thomasson JA., Jenkins JN., Owens PR. & Whisler, FD. (2005). Spatial variability analysis of soil physical 
properties of alluvial soils. Soil science society of American journal 69(4): 1338-1350. 
https://doi.org/10.2136/sssaj2004.0154 

Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for soil description. 4th edition. Rome, 
Italy: FAO. 

Jie, C., Jing-zang, C., Man-zhi, T. & Zi-tong, G. (2002). Soil degradation: A global problem endangering sustainable 
development. Journal of Geographical Sciences, 12, 243-252. 

Julich, S., Breuer, L. & Frede, H.-G. (2012). Integrating heterogeneous landscape characteristics into watershed-scale 
modelling. Advances in Geosciences, 31, 31-38. doi:10.5194/adgeo-31-31-2012 

Kahmen, A., Perner, J. & Buchmann, N. (2005). Diversity-dependent productivity in semi-natural grasslands following 
climate perturbations. Functional Ecology, 19, 594-601. 

Katuwal, S., Knadel, M., Norgaard, T., Moldrup, P., Greve, M. & de Jonge, L. (2020). Predicting the dry bulk density of 
soils across Denmark: Comparison of single-parameter, multi-parameter, and vis-NIR based models. Geoderma, 
361, 1-10. doi:10.1016/j.geoderma.2019.114078. 

Kempen, B., Brus, D.J., Heuvelink, G.B.M. & Stoorvogel, J.J. (2009). Updating the 1:50,000 Dutch soil map using legacy 
soil data: A multinomial logistic regression approach. Geoderma, 151, 311-326. 

Kikkas, K. & Kulik, S. (2018). Modelling the effect of human activity on freshwater extraction from the earth’s reserves. IOP 
Conference Series: Earth and Environmental Science, 180(2018), 12-17. 

Kirchner, J.W. (2006). Getting the right answer for the right reason: Linking measurements, analysis, and models to 
advance the science of hydrology. Water Resources Research, 42, W03S04. doi:10.1029/2005WR004362. 

Kirkby, M.J., Bull, L.J., Poesen, J., Nachtergaele, J. & Vandekerckhove, L. (2003). Observed and modelled distributions of 
channel and gully heads—with examples from SE Spain and Belgium. Catena, 50(2-4), 415-434. 

Klopp, H., Arriaga, F., Daigh, A. & Bleam, W. (2020). Analysis of pedotransfer functions to predict the effects of salinity 
and sodicity on saturated hydraulic conductivity of soils. Geoderma, 362, 114078. 
doi:10.1016/j.geoderma.2019.114078 . 

Klute, A. & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute, A. (Ed.), Methods of 
Soil Analysis. Part 1: Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph No. 9, ASA, Madison, 
687-734. doi:10.2136/sssabookser5.1.2ed.c28 

Knadel, M., Gislum, R., Hermansen, C., Peng, Y., Moldrup, P., de Jonge, L. & Greve, M. 2017. Comparing predictive ability 
of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination. 
Biosystems Engineering. 156:157-172. 

Knoben, W.J.M., Freer, J.E. & Woods, R.A. (2019). Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe 
and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23, 4323-4331. doi:10.5194/hess-23-
4323-2019 

Knox, N., Grunwald, S., McDowell, M., Bruland, G., Myers, D. & Harris, W. (2015). Modelling soil carbon fractions with 
visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma, 239-240, 229-239. 

Koirala, B., Zahiri, Z. & Scheunders, P. (2022). A robust supervised method for estimating soil moisture content from 
spectral reflectance. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13. 
doi:10.1109/TGRS.2021.3109277 

Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A. & Lombi, E. (2019). Soil and intensification of agriculture for 
global food security. Environmental International, 136, 1-8. doi:10.1016/j.envint.2019.105078 

Kruger, A.C., Makamo, L.B. & Shongwe, S. (2002). An analysis of Skukuza climate data. Koedoe, 45(1), 87-92. 
doi:10.4102/koedoe.v45i1.16 

https://hdl.handle.net/10520/EJC116745
https://doi.org/10.2136/sssaj2004.0154


HYDROSOIL 

192 

Kutner, M.H., Nachtsheim, C.J., Neter, J. & Li, W. (2005). Applied linear statistical models (5th ed.). New York: McGraw-
Hill/Irwin 

Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895. doi:10.3390/su7055875 

Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D.J., Glaser, B., et al. (2021). Soils and Sustainable Development Goals 
of the United Nations: An IUSS Perspective. Geoderma Regional, 25, e000398. 
doi:10.1016/j.geodrs.2021.e000398. 

Lamichhane, S., Kumar, L. & Adhikari, K. (2021). Updating the national soil map of Nepal through digital soil mapping. 
Geoderma, 394, 115041. 

Lamorski, K., Pachepsky, Y., Sławiński, C. & Walczak, R. (2008). Using support vector machines to develop pedotransfer 
functions for water retention of soils in Poland. Soil Science Society of America Journal, 72(5), 1243-1247. 
doi:10.2136/sssaj2007.0280n 

Land Type Survey Staff (1972-2002). Land Types of South Africa: Digital Map (1:250,000 Scale) and Soil Inventory 
Datasets. ARC-Institute for Soil, Climate and Water: Pretoria, South Africa. 

Landis, J.R. & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. 

Leigh D. (2010). SWOT Analysis. In: Handbook of Improving Performance in the Workplace, vol. 2, Selecting and 
implementing performance interventions. Pepperdine University. pp 115-140.  

Le Roux, J.J., Morgenthal, T.L., Malherbe, J., Sumner, P.D. & Pretorius, D.J. (2008). Water erosion prediction at a national 
scale for South Africa. Water SA, 34(3), 305-314. 

Le Roux, J.J., Mararakaney, N., Mudaly, L., Weepener, M. & van der Laan, M. (2023). Development of a South African 
national database to run the SWAT model in a GIS. WRC Report No. 3053/1/22. Water Research Commission, 
Pretoria. 

Le Roux, J.J., Mararakanye, N., Mudaly, L., Weepener, H.L. & van der Laan, M. (2022). Development of a South African 
national input database to run the SWAT model in a GIS. WRC report in press. Water Research Commission: 
Pretoria, South Africa. 

Leenars, J.G.B. (2013). African Soil Profiles Database Version 1.1. A compilation of georeferenced and standardised 
legacy soil profile data for Sub-Saharan Africa (with dataset). ISRIC Report 2013/03, 1-160. 

Li, Y., Adams, N. & Bellotti, T. (2022). A relabelling approach to handling the class imbalance problem for logistic 
regression. Journal of Computational and Graphical Statistics, 31(1), 241-253. 
doi:10.1080/10618600.2021.1978470 

Li, Y., Chen, D., White, R.E., Zhu, A. & Zhang, J. (2007). Estimating soil hydraulic properties of Fengqiu County soils in 
the North China Plain using pedo-transfer functions. Geoderma, 138(3-4), 261-271. 
doi:10.1016/j.geoderma.2007.04.003 

Liang, X., Li, X. & Lei, T. (2012) Paper delivered at the International conference on Systems and Informatics (ICSAI 2012), 
Yantai. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6223659 Date of access: 6 Oct. 2023. 

Lin, H., O’Geen, A. T., Zhang, R. & Horwath, W. R. (2005). Spatial variability of soil hydraulic properties in a paddy field. 
Geoderma, 124(3-4), 331-344. doi:10.1016/j.geoderma.2004.05.008 

Lin, H., Thompson, J. A. & Green, R. E. (2006). Spatial scaling of soil hydraulic properties using geostatistics and neural 
networks. Soil Science Society of America Journal, 70(5), 1705-1715. doi:10.2136/sssaj2005.0369 

Lin, H.S. (2003). Hydropedology: Bridging disciplines, scales, and data. Vadose Zone Journal, 2, 1-11. 
doi:10.2136/vzj2003.1000 

Lin, H.S., Kogelman, W., Walker, C. & Bruns, M.A. (2006). Soil moisture patterns in a forested catchment: A 
hydropedological perspective. Geoderma, 131, 345-368. doi:10.1016/j.geoderma.2005.03.013 

López, V., Fernandez, A., García, S., Palade, V. & Herrera, F. (2013). An insight into classification with imbalanced data: 
Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113-141. 

Ma, Y.X., Minasny, B., Malone, B.P. & McBratney, A.B. (2019). Pedology and digital soil mapping (DSM). European Journal 
of Soil Science, 70, 216-235. 



HYDROSOIL 

193 

MacMillan, R.A., Moon, D.E., Coupé, R.A. & Phillips, N. (2010). Predictive ecosystem mapping (PEM) for 8.2 million ha of 
forestland, British Columbia, Canada. In J.L. Boettinger, D.W. Howell, A.C. Moore, A.E. Hartemink & S. Kienast 
Brown (Eds.), Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Springer. 

MacVicar, C.N., de Villiers, J.M., Loxton, R.F., Verster, E., Lambrechts, J.J.N., Merryweather, F.R., Le Roux, J., van 
Rooyen, T.H., Harmse, H.J. von M. (1977). Soil classification: a binomial system for South Africa. Pretoria: 
Department of Agriculture Technical Services. 

Martinec, J. & Rango, A. (1989). Merits of statistical criteria for the performance of hydrological models. Water Resources 
Bulletin, 25, 421-432. 

McBratney, A.B., Minasny, B., Cattle, S.R. & Vervoort, W.R. (2002). From pedotransfer functions to soil inference systems. 
Geoderma, 109(1-2), 41-73. doi:10.1016/s0016-7061(02)00139-8. 

McBratney, A.B., Mendoça Santos, M.L. & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3-52. 
doi:10.1016/S0016-7061(03)00223-4 

Me, W., Abell, J.M. & Hamilton, D.P. (2015). Effects of hydrologic conditions on SWAT model performance and parameter 
sensitivity for a small, mixed land use catchment in New Zealand. Hydrology and Earth System Sciences, 19, 4127-
4147. doi:10.5194/hess-19-4127-2015 

Mengistu, A.G., van Rensburg, L.D. & Woyessa, Y.E. (2019). Techniques for calibration and validation of SWAT model in 
data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621. 

Minasny, B. & McBratney, A. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary 
information. Computers & Geosciences, 32(9), 1378-1388. 

Minasny, B. & McBratney, A.B. (2015). Digital soil mapping: A brief history and some lessons. Geoderma, 1-11. 
doi:10.1016/j.geoderma.2013.12.014 

Mishra, A., Froebrich, J. & Gassman, P.W. (2007). Evaluation of the SWAT model for assessing sediment control structures 
in a small watershed in India. Transactions of the ASABE, 50(2), 469-478. 

Miti, C., Mbanyele, V., Mtangadura, T., Magwero, N., Namaona, W., Njira, K., Sandram, I., Lubinga, P.N., Chisanga, C.B., 
Nalivata, P.C., Chimungu, J.G., Nezomba, H., Phiri, E. & Lark, R.M. (2023). The appraisal of pedotransfer functions 
with legacy data; an example from southern Africa. Geoderma, 439, 116661. doi:10.1016/j.geoderma.2023.116661 

Monteith, J.L. (1965). Evaporation and environment. In G.E. Fogg (Ed.), Symposium of the Society for Experimental 
Biology, The State and Movement of Water in Living Organisms (Vol. 19, pp. 205-234). Academic Press, Inc., New 
York. 

Montgomery, D.C., Peck, E.A. & Vining, G.G. (2012). Introduction to Linear Regression Analysis. John Wiley & Sons. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. & Veith, T.L. (2007). Model evaluation guidelines 
for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. 
doi:10.13031/2013.23153 

Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P. (2015). Hydrologic and water quality models: Performance measures 
and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. doi:10.13031/trans.58.10715. 

Mouazen, A. & Al-Asadi, R. (2018). Influence of soil moisture content on assessment of bulk density with combined 
frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil and 
Tillage Research, 176, 95-103. 

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources 
Research, 12(3), 513-522. doi:10.1029/WR012i003p00513. 

Mucina, L. & Rutherford, M.C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African 
National Biodiversity Institute, Pretoria. 

Mulder, V.L., De Bruin, S., Schaepman, M.E. & Mayr, T.R. (2011). The use of remote sensing in soil and terrain mapping 
– A review. Geoderma, 162(1-2), 1-9. doi:10.1016/j.geoderma.2010.12.018. 

Myeni, L., Mdlambuzi, T., Paterson, D.G., De Nysschen, G. & Moeletsi, M.E. (2021). Development and evaluation of 
pedotransfer functions to estimate soil moisture content at field capacity and permanent wilting point for South 
African Soils. Water, 13(19), p.2639. doi:10.3390/w13192639. 



HYDROSOIL 

194 

Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshorn, K., Van Engelen, V., Fische, G., Jones, A., 
Montanarella, L., Petri, M., Prieller, S., Shi, X., Teixeira, E. & Wiber, D. (2010). The harmonised world soil data. 
World Congress of Soil Science, Soil Solutions for a Changing World, 34-37. 

Nagelkerke, N.J.D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. 
doi:10.1093/biomet/78.3.691. 

Nash, J.E. & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models, Part I: A discussion of principles. 
Journal of Hydrology, 10, 282-290. doi:10.1016/0022-1694(70)90255-690255-6). 

Neitsch, S.L., Williams, J., Arnold, J. & Kiniry, J. (2009). Soil and Water Assessment Tool Theoretical Documentation 
Version 2009. Texas Water Resources Institute: College Station, TX, USA. 

Neitsch, S.L., Williams, J., Arnold, J. & Kiniry, J. (2011). Soil and Water Assessment Tool Theoretical Documentation 
Version 2009. Texas Water Resources Institute: College Station, TX, USA. 

Nemes, A. & Schaap, M.G. (2006). Pedotransfer functions: bridging the gap between available basic soil data and missing 
soil hydraulic characteristics. Journal of Hydrology, 329(1-2), 85-104. 

Nguyen, T.V., Dietrich, J., Dang, D.T., Tran, D.A., Doan, B.V., Sarrazin, F.J., Abbaspour, K. & Srinivasan, R. (2022). An 
interactive graphical interface tool for parameter calibration, sensitivity analysis, uncertainty analysis, and 
visualization for the Soil and Water Assessment Tool. Environmental Modelling & Software, 156, 105497. 
doi:10.1016/j.envsoft.2022.105497 

Nikolaou, I.E. & Evangelinos, K.I. (2010). A SWOT analysis of environmental management practices in Greek Mining and 
Mineral Industry. Resources Policy, 35, 226-234. 

Nzonda, G. (2016). Characterising historical land cover change, and understanding trends in the Goukou catchment, 
Western Cape, South Africa. (Thesis – MSc). University of KwaZulu-Natal. 

Olabanji M.F., Ndarana T., Davis N. & Archer E. (2020). Climate change impact on water availability in the olifants 
catchment (South Africa) with potential adaptation strategies. Physics and Chemistry of the Earth, Parts A/B/C, 120 
(5), 1-10. http://dx.doi.org/10.1016/j.pce.2020.102939 

Oldeman, L.R. (1992). Global Extent of Soil Degradation. In Bi-Annual Report 1991-1992/ISRIC, pp. 19-36. 

Packer, I., Chapman, G. & Lawrie, J. (2019). On‐ground extension of soil information to improve land management. Soil 
Use and Management. 35(1):75-84. 

Padarian, J., Minasny, B. & McBratney, A.B. (2015). Using Google’s cloud-based platform for digital soil mapping. 
Computer & Geosciences, 83, 80-88. doi: 10.1016/j.cageo.2015.06.023 

Padarian, J., Minasny, B. & McBratney, A.B. (2020). Machine learning and soil sciences: a review aided by machine 
learning tools. SOIL, 6, 35-52. doi: 10.5194/soil-6-35-2020 

Pangos, P., Jones, A., Basco, C. & Kumar, S. (2011). European digital archive on soil maps (EuDASM): preserving 
important soil data for public free access. International Journal of Digital Earth, 4(5), 434-443. 

Park, S.J., McSweeney, K. & Lowery, B. (2001). Identification of the spatial distribution of soils using a process-based 
terrain characterization. Geoderma, 103, 249-272. 

Paterson, G., Turner, D., Wiese, L., Van Zijl, G., Clarke, C. & Van Tol, J. (2015). Spatial soil information in South Africa: 
Situational analysis, limitations and challenges. South African Journal of Science, 111(56), 1-7. 
http://dx.doi.org/10.17159/sajs.2015/20140178 

Pedescoll, A., Samsó, R., Romero, E., Puigagut, J. & García, J. (2011). Reliability, repeatability and accuracy of the falling 
head method for hydraulic conductivity measurements under laboratory conditions. Ecological Engineering, 37(5), 
754-757. 

Peng, L., Cheng-zhi, Q., A-xing, Z., Zhi-wei, H., Nai-qing, F. & Yi-jie, W. (2020). A case-based method of selecting 
covariates for digital soil mapping. Journal of Integrative Agriculture, 19(8), 2127-2136. 

Phinzi, K., Ngetar, N. & Ebhuoma, O. (2020). Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern 
Cape, South Africa, using RUSLE and random forest algorithm. South African Geographical Journal. 103(2):139-
162 

Pietersen, K., Beekman, H.E. & Holland, M. (2012). South African groundwater governance case study. Report prepared 
for the World Bank in partnership with the South African Department of Water Affairs and the Water Research 
Commission. WRC report no. KV 273/11. Pretoria: Water Research Commission; 2011.  

http://dx.doi.org/10.1016/j.pce.2020.102939


HYDROSOIL 

195 

Pike, A. & Schulze, R. (1995). AUTOSOILS: A program to convert ISCW soils attributes to variables usable in hydrological 
models. Department of Agricultural Engineering, University of Natal, Pietermaritzburg, South Africa. 

Placidi, P., Morbidelli, R., Fortunati, D., Papini, N., Gobbi, F. & Scorzoni, A. (2021). Monitoring soil and ambient parameters 
in the IoT precision agriculture scenario: An original modelling approach dedicated to low-cost soil water content 
sensors. Sensors, 21, 1-28. 

Pozza, L.E. & Field, D.J. (2020). The science of soil security and food security. Soil Security, 1, 100002. 
doi:10.1016/j.soisec.2020.100002. 

Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. 
Trends in Analytical Chemistry, 17(5), 289-297. 

R Core Team (2022). R: A language and environment for statistical computing. https://www.R-project.org. 

Rapanyane, M. & Ngoepe, C. (2019). The impact of illicit financial flows on the South African political economy under 
Jacob Zuma, 2009-2018. Journal of Public Affairs, 20(2), 1-7. 

Rawls & Brakensiek (1985). A PTF for predicting soil water retention parameters from soil texture and organic matter 
content. doi:10.2136/sssaj1985.03615995004900050015x 

Rawls, W.J., Brakensiek, D.L. & Saxton, K.E. (1982). Estimation of soil water properties. Transactions of the ASAE, 25(5), 
1316-1320. 

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M. & Bloodworth, H. (2003). Effect of soil organic carbon on soil 
water retention. Geoderma, 116(1-2), 61-76. 

Ray, S.S., Singh, J.P., Das, G. & Panigrahy, S. (2004). Use of high-resolution remote sensing data for generating site-
specific soil management plans. In: The International Archives of the Photogrammetry, Remote Sensing, and 
Spatial Information Sciences. 

Reddy, N.N. & Das, B.S. (2023). Digital soil mapping of key secondary soil properties using pedotransfer functions and 
Indian legacy soil data. Geoderma, 429, 1-15. doi:10.1016/j.geoderma.2023.115682. 

Ribeiro, E., Batjes, N.H. & van Oostrum, A.J.M. (2020). World Soil Information Service (WoSIS) – Towards the 
standardization and harmonization of world soil profile data. Procedure manual 2020, Report 2020/01, ISRIC-World 
Soil Information. doi:10.17027/isric-wdc-2020-01. 

Ribeiro, E., Batjes, N.H., Leenaars, J.G.B., van Oostrum A.J.M. & Mendes de Jesus, J. (2015). Towards the standardization 
and harmonization of world soil data: Procedures manual ISRIC World Soil Information Services (WoSIS version 
2.0), Report 2015/03, ISRIC-World Soil Information. 

Riddell, E. S., Nel, J., Van Tol, J., Fundisi, D., Jumbi, F. & Van Niekerk, A. (2020). Groundwater-surface water interactions 
in an ephemeral savanna catchment, Kruger National Park. Koedoe, 62(2), a1583. doi:10.4102/koedoe.v62i2.1583 

Romano, N. & Palladino, M. (2002). Prediction of soil water retention using soil physical data and terrain attributes. Journal 
of Hydrology, 265(1-4), 56-75. doi:10.1016/s0022-1694(02)00094-x00094-x 

Romanowicz, A.A., Vanclooster, M., Rounsevelb, M., La Junesseb, I. (2005). Sensitivity of the SWAT model to the soil and 
land use data parametrization: A case study in the Thyle catchment, Belgium. Ecological Modelling, 187, 27-39. 
doi:10.1016/j.ecolmodel.2005.01.025 

Royal HaskoningDHV (2018). Goukou Estuarine Management Plan. Document title and version: Goukou River Estuarine 
Management Plan Western Cape Estuary Management Framework and Implementation Strategy. 

Rozanov, A., Collett, A., Mamphol, R. & Paterson, G. (2023). Soil Information and soil security in South Africa. Stellenbosch 
University. 

Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D. & Co-
authors (2015). The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 
91, 1015-1057. 

SANBI (2012). The Vegetation Map of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute. 
Online. http://bgis.sanbi.org/SpatialDataset/Detail/18 Version, 2012. 

SANBI (2018). The Vegetation Map of South Africa, Lesotho, and Swaziland. South African National Biodiversity Institute. 
Online. http://bgis.sanbi.org/Projects/Detail/186 Version 2018. 



HYDROSOIL 

196 

Saraiva Okello, A.M.L., Masih, I., Uhlenbrook, S., Jewitt, G.P.W. & Van der Zaag, P. (2018). Improved Process 
Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water, 10, 1549. 
doi:10.3390/w10111549. 

SAWS Home – WeatherSA Portal. (2024). Available from: http://www.weathersa.co.za/ 

Saxton, K.E. & Rawls, W.J. (2006). A PTF for estimating soil water retention and hydraulic conductivity using soil texture, 
bulk density, and organic matter content. Soil Science Society of America Journal, 70(5), 1569-1578. 
doi:10.2136/sssaj2005.0117. 

Schaap, M.G. & Leij, F.J. (1998). Database-related accuracy and uncertainty of pedotransfer functions. Soil Science, 
163(10), 765-779.doi: 10.1097/00010694-199810000-00001. 

Schaap, M.G., Leij, F.J. & van Genuchten, M.T. (2001). ROSETTA: A computer program for estimating soil hydraulic 
parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3‐4), 163-176. doi:10.1016/S0022‐
1694(01)00466‐800466-8 

Schoonover, J.E. & Crim, J.F. (2015). An introduction to soil concepts and the role of soils in watershed management. 
Journal of Contemporary Water Research & Education, 154(1), 21-47. doi:10.1111/j.1936-704X.2015.03186.x. 

Schulze, R.E. & Schütte, S. (2020). Mapping soil organic carbon at a terrain unit resolution across South Africa. Geoderma, 
373. doi:10.1016/j.geoderma.2020.114447. 

Schulze, R.E. (2007). South African Atlas of Climatology and Agrohydrology. WRC Report 1489/1/06, Water Research 
Commission: Pretoria, South Africa. 

Schulze, R.E. (2007). Soils: Agrohydrological information needs, information sources and decision support. In: South 
African Atlas of Climatology and Agrohydrology. WRC Report 1489/1/06, Section 41, Water Research Commission: 
Pretoria, South Africa. 

Schulze, R.E. & Lynch, S.D. (2007). Annual Precipitation. In: South African Atlas of Climatology and Agrohydrology. WRC 
Report 1489/1/06, Section 62, Water Research Commission: Pretoria, South Africa. 

Schulze, R.E. & Maharaj, M. (2007). Mean Annual Temperature. In: South African Atlas of Climatology and Agrohydrology. 
WRC Report 1489/1/06, Section 72, Water Research Commission: Pretoria, South Africa. 

Seibert, J. & McDonnell, J.J. (2002). On the dialog between experimentalist and modeler in catchment hydrology: Use of 
soft data for multicriteria model calibration. Water Resources Research, 38, 23.1-23.14. 
doi:10.1029/2001WR000978 

Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. (2014). A global soil data set for earth system modelling. Journal of 
Advances in Modelling Earth Systems, 6, 249-263. 

Sharififar, A. & Sarmadian, F. (2022). Coping with the imbalanced data problem in digital mapping of soil classes. European 
Journal of Soil Science, 74(3). 

Sharififar, A., Sarmadian, F., Malone, B.P. & Minasny, B. (2019a). Addressing the issue of digital mapping of soil classes 
with imbalanced class observations. Geoderma, 350, 84-92. 

Sharififar, A., Sarmadian, F. & Minasny, B. (2019b). Mapping imbalanced soil classes using Markov chain random fields 
models treated with data resampling techniques. Computers and Electronics in Agriculture, 159, 110-118. 

Shofiyati, R. Bachri, S. & Sarwani, M. (2011). Soil Database Management Software Development for Optimizing Land 
Resource Information Utilization to Support National Food Security. Journal of Geographic Information System, 3, 
211-216.  

Sierra, A. L. M., Roqueñí-Gutiérrez, N. & Loredo-Pérez, J. (2018). Methodology for the generation of hydropedological 
parameters associated with edaphic GIS coverage and databases for hydrological modelling. Proceedings, 2, 1411. 
doi:10.3390/proceedings2231411 

Singh, C., Shashtri, S., Rina, K. & Mukherjee, S. (2012). Chemometric analysis to infer hydro-geochemical processes in a 
semi-arid region of India. Arabian Journal of Geosciences, 6(8), 2915-2932. 

Skalko, J. (2013). If food and water are proportionate means, why not oxygen?. The National Catholic Bioethics Quarterly, 
13(3), 453-467. 

Smit, I.E. & Van Tol, J.J. (2022). Impacts of soil information on process-based hydrological modelling in the upper Goukou 
catchment, South Africa. Water, 14(3), 407. doi:10.3390/w14030407. 



HYDROSOIL 

197 

Smit, I.E., Van Zijl, G.M., Riddell, E.S. & Van Tol, J.J. (2023a). Examining the value of hydropedological information on 
hydrological modelling at different scales in the Sabie catchment, South Africa. Vadose Zone Journal, 00, 1-18. 
doi:10.1002/vzj2.20280. 

Smit, I.E., Van Zijl, G.M., Riddell, E.S. & Van Tol, J.J. (2023b). Downscaling legacy soil information for hydrological soil 
mapping using multinomial logistic regression. Geoderma, 436, 116568. doi:10.1016/j.geoderma.2023.116568. 

Smith, M. (2014). The impact of soil erosion on water quality in rivers: A review. Science of the Total Environment, 468-
469, 306-317. South African Journal of Plant and soil. Volume 40, Issue 4-5. (2023). Taylor & Francis Oline. England 
& Wales No 3099067. https://www.tandfonline.com/toc/tjps20/current 

Soil Classification Working Group. (1991). Soil classification: a taxonomic system for South Africa. Pretoria: Department 
of Agricultural Development.  

Soil Classification Working Group. (2018) Soil Classification: A natural and anthropogenic system for South Africa. ARC-
Institute for Soil, Climate and Water, Pretoria. 

Srinivasan, R., Ramanarayanan, T.S., Arnold, J.G. & Bednarz, S.T. (1998). Large area hydrologic modelling and 
assessment part II: Model application. Journal of the American Water Resources Association, 34(1), 91-101. 

Srinivasan, R., Zhang, X. & Arnold, J. (2010). SWAT ungauged: Hydrological budget and crop yield predictions in the upper 
Mississippi river basin. Transactions of the ASABE, 53(5), 1533-1546. 

Suleaman, Y., Minasny, B., McBratney, AB., Sarwani, M. & Sutandi, A. 2013. Harmonizing legacy soil data for digital soil 
mapping in Indonesia. Geoderma, 192, 77-85.  

Szabó, B., Weynants, M. & Weber, T.K.D. (2021). Updated European hydraulic pedotransfer functions with communicated 
uncertainties in the predicted variables (euptfv2). Geoscientific Model Development, 14(1), 151-175. 
doi:10.5194/gmd-14-151-2021. 

Taghizadeh-Mehrjardi, R., Schmidt, K., Eftekhari, K., Behrens, T., Jamshidi, M., Davatgar, N., Toomanian, N. & Scholten, 
T. (2019). Synthetic resampling strategies and machine learning for digital soil mapping in Iran. European Journal 
of Soil Science, 71(3), 352-368. doi:10.1111/ejss.12893. 

Tantithamthavorn, C., Hassan, A.E. & Matsumoto, K. (2018). The impact of class rebalancing techniques on the 
performance and interpretation of defect prediction models. IEEE Transactions on Software Engineering, 46(11). 

Theocharopoulos, S.P., Mitsios, I.K. & Arvanitoyannis, I. (2004). Traceability of environmental soil measurements. TrAC 
Trends in Analytical Chemistry, 23(3), 273-251. doi:10.1016/S0165-9936(04)00317-600317-6) 

Thomas, A. (2015). Modelling of spatially distributed surface runoff and infiltration in the Olifants river catchment/water 
management area using GIS. International Journal of Advanced Remote Sensing and GIS, 4(1), 828-862. 
http://dx.doi.org/10.23953/cloud.ijarsg.81 

Thompson, J.A., Roecker, S., Gunwald, S. & Owens, P.R. (2012). Digital soil mapping: Interactions with and applications 
for hydropedology. In: Hydropedology: Synergistic Integration of Soil Science and Hydrology. Elsevier: Amsterdam, 
Netherlands, 665-709. 

Tignino, M. (2010). Water, international peace, and security. International Review of the Red Cross. 92(879):647-674. 

Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. and Tóth, G. (2015), New generation of hydraulic pedotransfer 
functions for Europe. Eur J Soil Sci, 66: 226-238. https://doi.org/10.1111/ejss.12192 

Tuppad, P., Douglas-Mankin, K.R., Srinivasan, R. & Arnold, J.G. (2011). Soil and Water Assessment Tool (SWAT) 
hydrologic/water quality model: Extended capability and wider adoption. Transactions of the ASABE, 54, 1677-
1684. 

USDA SCS (1972). National Engineering Handbook, Section 4 Hydrology. USDA Agricultural Conservation Service: USA. 

USGS (2022). Landsat images. United States Geological Survey. http://landsat.usgs.gov 

USGS (2018). Landsat images. United States Geological Survey. http://landsat.usgs.gov 

USGS (2015). NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM Plus) Product Release. Land Process 
Distributed Active Archive Center, National Aeronautics and Space Administration. 
https://lpdaac.usgs.gov/about/news archive/nasa shuttle radar topography mission SRTM version 30 SRTM plus 
product release  

https://www.tandfonline.com/toc/tjps20/current
https://doi.org/10.1111/ejss.12192


HYDROSOIL 

198 

Van Eekelen, M.W., Bastiaanssen, W.G.M., Jarmain, C., Jackson, B., Ferreira, F., Van der Zaag, P., et al. (2015). A novel 
approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the 
Incomati basin. Agriculture, Ecosystems & Environment, 200, 126-142. doi:10.1016/j.agee.2014.10.023. 

Van Tol, J.J., Dzvene, A.R., Le Roux, P.A.L. & Schall, R. (2016a). Pedotransfer functions to predict Atterberg limits for 
South African soils using measured and morphological properties. Soil Use and Management, 32(4), 635-643. 
doi:10.1111/sum.12303. 

Van Tol, J., Le Roux, P., Lorentz, S. & Hensley, M. (2013). Hydropedological classification of South African hillslopes. 
Vadose Zone Journal, 12(4), 1-10. 

Van Tol, J., Van Zijl, G. & Julich, S. (2020). Importance of detailed soil information for hydrological modelling in an urbanized 
environment. Hydrology, 7, 34. doi: 10.3390/hydrology7020034. 

Van Tol, J.J., Bieger, K. & Arnold, J.G. (2021). A hydropedological approach to simulate streamflow and soil water contents 
with SWAT+. Hydrological Processes, 35(6), Article ID: e14242. doi:10.1002/hyp.14242. 

Van Tol, J.J., Le Roux, P.A.L. (2019). Hydropedological grouping of South African soil forms. South African Journal of 
Plant and Soil, 36, 233-235. doi:10.1080/02571862.2018.1537012. 

Van Tol, J.J., Le Roux, P.A.L. & Hensley, M. (2012). Pedotransfer functions to determine water conducting macroporosity 
in South African soils. Water Science and Technology, 65(3), 550-557. 

Van Tol, J.J. & Van Zijl, G.M. (2022). South Africa needs a hydrological soil map: a case study from the upper uMngeni 
catchment. Water SA, 48(4), 335-347. doi:10.17159/wsa/2022.v48.i4.3977. 

Van Tol, J.J. & Van Zijl, G.M. (2020) Regional soil information for hydrological modelling in South Africa. Water Wheel, 
March April 2020, 43-45. 

Van Tol, J.J., Van Zijl, G.M., Riddell, E.S. & Fundisi, D. (2015). Application of hydropedological insights in hydrological 
modelling of the Stevenson-Hamilton Research Supersite, Kruger National Park, South Africa. Water SA, 41(4), 
525-533. doi:10.4314/wsa.v41i4.12. 

Van Waveren, E,J. & Bos, A.B. 1988. ISRIC soil information system-user manual-technical manual. Wageningen: 
International Soil Reference and Information Centre. 

Van Zijl, G.M., Ellis, F. & Rozanov, A. (2014a). Understanding the combined effect of soil properties on gully erosion using 
quantile regression. South African Journal of Plant and Soil, 31(3), 163-172. doi:10.1080/02571862.2014.944228. 

Van Zijl, G.M., Le Roux, P.A.L. & Smith, H.J.C. (2012). Rapid soil mapping under restrictive conditions in Tete, 
Mozambique. In B. Minasny, B.P. Malone & A.B. McBratney (Eds.), Digital Soil Assessments and Beyond, CRC 
Press, Balkema, pp. 335-339. 

Van Zijl, G.M., Van Tol, J.J. & Riddell, E.S. (2016). Digital soil mapping for hydrological modelling. In: Zhang G.L., Brus D., 
Liu F., Song X.D. & Lagacherie P. (Eds.), Digital Soil Mapping Across Paradigms, Scales and Boundaries, Springer 
Environmental Science and Engineering. Springer, Singapore. 

Van Zijl, G.M. (2019). Digital soil mapping approaches to address real-world problems in southern Africa. Geoderma, 337, 
1301-1308. doi:10.1016/j.geoderma.2018.07.052 

Van Zijl, G.M., Bouwer, D., Van Tol, J.J. & Le Roux, P.A.L. (2014b). Functional digital soil mapping: A case study from 
Namarroi, Mozambique. Geoderma, 219-220, 155-161. doi:10.1016/j.geoderma.2013.12.014  

Van Zijl, G.M., Van Tol, J.J., Bouwer, D., Lorentz, S.A. & Le Roux, P.A.L. (2020). Combining historical remote sensing, 
digital soil mapping, and hydrological modelling to produce solutions for infrastructure damage in Cosmo City, South 
Africa. Remote Sensing, 12, 433. doi:10.3390/rs12030433. 

Van Zijl, G.M., Le Roux, P.A.L. Turner, D.P., (2013). Disaggregation of land types Ea34 and Ca11 by terrain analysis, 
expert knowledge and GIS methods. South African Journal of Plant and Soil, 30(3), 123-129. 
http://dx.doi.org/10.1080/02571862.2013.806679 

Van Zijl, G.M.; Van Tol, J.J.; Tinnefeld, M.; Le Roux, P.A.L. (2019). A hillslope based digital soil mapping approach, for 
hydropedological assessments. Geoderma 2019, doi:10.1016/j.geoderma.2019.113888. 

Van Zijl, G.M.; Bouwer, D. (2012) Soil Observation Dataset from the Halfway House Granites; University of the Free State 
dataset; University of the Free State, Bloemfontein, South Africa, 2012. 

Venables, B. & Ripley, B.D. (2002). Modern Applied Statistics with S. Fourth edition. Springer. 

http://dx.doi.org/10.1080/02571862.2013.806679


HYDROSOIL 

199 

Vereecken, A., Huisman, J.A., Hendricks Franssen, H.J., Brüggemann, N., Bogena, H.R., Kollet, S., Javaux, M., van der 
Kruk, J. & Vanderborght, J. (2015). Soil hydrology: Recent methodological advances, challenges, and perspectives. 
Water Resources Research, 51, 2616-2633. doi:10.1002/2014WR016852. 

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G. and van Genuchten, M.T. (2010), Using 
Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review. Vadose Zone 
Journal, 9: 795-820. doi:10.2136/vzj2010.0045 

Viljoen, G. & van der Walt, K. (2018). South Africa’s water crisis – an interdisciplinary approach. Tydskrif vir 
Geesteswetenskappe, 58(3), 483-500. 

Wadoux, A., Malone, B., Minasny, B., Fajardo, M. & McBratney, A. (2021). Soil Spectral Inference with R: Analysing Digital 
Soil Spectra Using the R Programming Environment. Springer International Publishing AG, Cham. doi:10.1007/978-
3-030-64896-1 

Wahren, F.T., Julich, S., Nunes, J.P., Gonzalez-Pelayo, O., Hawtree, D., Feger, K.H. & Keizer, J.J. (2016). Combining 
digital soil mapping and hydrological modelling data in a data scarce watershed in north-central Portugal. 
Geoderma, 264, 350-362. doi:10.1016/j.geoderma.2015.08.023. 

Wang, X., Yang, W. & Melesse, A.M. (2009). Using hydrologic equivalent wetland concept within SWAT to estimate 
streamflow in watersheds with numerous wetlands. Transactions of the ASABE, 51(1), 55-72. 
doi:10.13031/2013.24227. 

Wang, X., Yang, Y., Jianglong, L. & He, H. (2023). Past, present and future of the applications of machine learning in soil 
science and hydrology. Soil and Water Research, 18(2), 67-80. doi:10.17221/94/2022-SWR. 

Wang, X. & Melesse, A.M. (2006). Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation. 
Journal of the American Water Resources Association, 42, 1217-1236. 

Wei, X., Zhang, H., Wang, L., Zhang, X., Li, P., Shi, J. & Yan, C. (2016). Modelling the effects of soil and water conservation 
measures on water quality in the Loess Plateau of China. Water, 8(2), 54. 

Wenninger, J., Uhkenbrook, S., Lorentz, S.A. & Leibungut, C. (2008). Identification of runoff generation processes using 
combined hydrometric, tracer, and geophysical methods in a headwater catchment in South Africa. Hydrological 
Sciences Journal, 53, 65-80. 

Weynants, M., Vereecken, H. & Javaux, M. (2009). Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-
Form Hydraulic Model. Vadose Zone Journal, 8(1), 86-95. doi:10.2136/vzj2008.0062. 

Wischmeier WH, Smith DD. 1978. Predicting Rainfall Erosion Losses, a Guide to Conservation Planning. USDA Agriculture 
Handbook No. 537. USDA: Washington DC, USA. 

Worqlul, A. W., Ayana, E. K., Yen, H., Jeong, J., MacAlister, C., Taylor, R., Gerik, T. J. & Steenhuis, T. S. (2018). Evaluating 
hydrologic responses to soil characteristics using SWAT model in paired-watersheds in the Upper Blue Nile Basin. 
Catena, 163, 332-341. doi:10.1016/j.catena.2017.12.040. 

Winsemius, H.C., Schaefli, B., Montanari, A. & Savenije, H.H.G. (2009). On the calibration of hydrological models in 
ungauged basins: A framework for integrating hard and soft hydrological information. Water Resources Research, 
45, W12422. doi:10.1029/2009WR007706. 

Wischmeier, W.H. & Smith, D.D. (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA 
Agriculture Handbook No. 537. USDA: Washington DC, USA. 

WoSIS Soil Profile Database. 2023. ISRIC-World Soil Information. The Netherlands. https://www.isric.org/explore/wosis. 

Wösten, J.H.M., Lilly, A., Nemes, A. & Le Bas, C. (1999). Development and use of a database of hydraulic properties of 
European soils. Geoderma, 90(3-4), 169-185. doi: 0.1016/S0016-7061(98)00132-300132-3 

Yamanaka, T., Kaihotsu, I., Oyunbaatar, D. & Ganbold, T. (2007). Summertime soil hydrological cycle and surface energy 
balance on the Mongolian steppe. Journal of Arid Environments, 69(1), 65-79. 

Yao, R.J., Yang, J.S., Wu, D.H., Li, F.R., Gao, P. & Wang, X.P. (2015). Evaluation of pedotransfer functions for estimating 
saturated hydraulic conductivity in coastal salt-affected mud farmland. Journal of Soils and Sediments, 15(4), 902-
916. 

Yen, H., Bailey, R.T., Arabi, M., Ahmadi, M., White, M.J. & Arnold, J.G. (2014). The role of interior watershed processes in 
improving parameter estimation and performance of watershed models. Journal of Environmental Quality, 43, 1601-
1613. 

https://doi/


HYDROSOIL 

200 

Yerro, A. & Ceccato, F. (2023). Soil-water-structure interactions. Geotechnics. 3(2):301-305. 

Zarinabad, N., Wilson, M., Gill, S.K., Manias, K.A., Davies, N.P. & Peet, A.C. (2017). Multiclass imbalance learning: 
Improving classification of pediatric brain tumors from magnetic resonance spectroscopy. Magnetic Resonance in 
Medicine, 77, 2114-2124. 

Zeraatpisheh, M., Jafari, A., Bodaghabadi, M.B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., Kerry, R. & Xu, M. 
(2020). Conventional and digital soil mapping in Iran: Past present and future. Catena, 188: 1-15. 

Zhang, D., Lin, Q., Chen, X. & Chai, T. (2019a). Improved curve number estimation in SWAT by reflecting the effect of 
rainfall intensity on runoff generation. Water, 11(1), 163. doi:10.3390/w11010163. 

Zhang, F., Zhang, Y., Ruan, J. & Liu, H. (2019b). An overview of soil moisture measurement methods. Paper delivered at 
the 2nd International conference on intelligent systems research and mechatronics engineering (ISRME 2019), 
Taiyuan. https://webofproceedings.org/proceedings_series/ESR/ISRME%202019/ISRME19075.pdf 

Zhang, Y. & Schaap, M.G. (2019). Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. 
Journal of Hydrology, 575(June), 1011-1030. doi:10.1016/j.jhydrol.2019.05.058 

Zhang, G., Liu, F. & Song, X. (2017). Recent progress and future prospect of digital soil mapping: A review. Journal of 
Integrative Agriculture, 12(12), 2871-2885. 

Zhang, H., Wei, X., Shi, J., Cao, Y., Zhang, Y., Xue, W. & Yan, C. (2015). The effects of soil and water conservation 
measures on soil and water loss on the Loess Plateau in China. Catena, 128, 166-177. 

Zhou, Y., Chen, S., Hu, B., Ji, W., Li, S., Hong, Y., Xu, H., Wang, N., Xue, J., Zhang, X., Xiao, Y. & Shi, Z. (2022). Global 
soil salinity prediction by open soil vis-NIR spectral library. Remote Sensing, 14(21), 1-13. doi:10.3390/rs14215627. 

Zhu, A. X. & Mackay, D. S. (2001). Effects of spatial detail of soil information on watershed modelling. Journal of Hydrology, 
248, 54-77. 

Zhu, A.-X., Yang, L., Li, B., Qin, C., English, E., Burt, J. E. & Zhou, C. (2008). Purposive sampling for digital soil mapping 
for areas with limited data. In A.E. Hartemink, A.B. McBratney & M.D.L. Mendonça-Santos (Eds.), Digital Soil 
Mapping with Limited Data. Springer, Dordrecht. 

Zhu, B., Baesens, B. & Vanden Broucke, S.K.L.M. (2017). An empirical comparison of techniques for the class imbalance 
problem in churn prediction. Information Sciences, 408, 84-99. 

Zimmermann, B. & Kohler, A. (2013). Optimizing Savitzky-Golay parameters for improving spectral resolution and 
quantification in infrared spectroscopy. Applied Spectroscopy, 67(8), 892-902. 


	EXECUTIVE SUMMARY
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS AND ABBREVIATIONS
	CHAPTER 1: Background
	1.1 Introduction
	1.2 Project aims
	1.3 Scope and limitations

	CHAPTER 2: A South African soil point database
	2.1 The structural design of a robust soil database for South Africa soil point observations
	2.1.1 Abstract
	2.1.2 Introduction
	2.1.3 Materials and methods
	SWOT analysis
	Data quality control
	Data population

	2.1.4 Results and discussion
	SWOT analysis of World Soil Information Services database
	SWOT analysis of the Agricultural Research Council – Soil Climate and Water database
	Proposed structure of a robust soil point database
	Data quality control

	2.1.5 Conclusions


	CHAPTER 3:  Sabie-Sand catchment
	3.1 Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression
	3.1.1 Abstract
	3.1.2 Introduction
	3.1.3 Materials and methods
	The Sabie-Sand catchment
	Soil data
	Multinomial logistic regression
	Covariate data and statistical analysis
	Calibration and validation datasets

	3.1.4 Results and discussion
	Downscaling legacy soil data
	Digital soil mapping
	The value of downscaling and balancing legacy soil data

	3.1.5 Conclusions

	3.2  Examining the value of hydropedological information on hydrological modelling at different scales in the Sabie catchment, South Africa
	3.2.1 Abstract
	3.2.2 Introduction
	3.2.3 Materials and methods
	The Sabie catchment
	Model, inputs and setup
	Soil information
	Validation data and statistical comparison

	3.2.4 Results and discussion
	Streamflow simulations
	Hydrological processes

	3.2.5 Conclusions

	3.3 Modal calibration using hydropedological insights to improve internal hydrological processes within SWAT+
	3.3.1 Abstract
	3.3.2 Introduction
	3.3.3 Materials and methods
	Hydropedological approach to calibration
	Validation

	3.3.4 Results and discussion
	Sensitivity analyses
	Streamflow predictions
	Hydrological processes

	3.3.5 Conclusions


	CHAPTER 4: Olifants catchment
	4.1 Investigating the accuracy of digitised Land Type field data in digital soil mapping
	4.1.1 Abstract
	4.1.2 Introduction
	4.1.3 Materials and methods
	Soil point data
	Covariate data
	Map creation

	4.1.4 Results and discussion
	4.1.5 Conclusions

	4.2 Comparing HYDROSOIL and Land Type soil information in the upper Olifants catchment using SWAT+
	4.2.1 Introduction
	4.2.2 Materials and methods
	The upper Olifants catchment
	Model, inputs and setup
	Soil information
	Accounting for streamflow reduction
	Validation data and statistical comparison

	4.2.3 Results and discussion
	Streamflow simulations
	Hydrological processes

	4.2.4 Conclusions


	CHAPTER 5: Jukskei River catchment
	5.1 Exploring the optimal level of spatial detail in soil information for hydrological modelling
	5.1.1 Introduction
	5.1.2 Materials and methods
	The Jukskei catchment
	Mapping
	The SWAT model, model inputs and setup
	Topography and land use
	Climate information
	Soil information
	Validation data and statistical comparison

	5.1.3 Results and discussion
	Digital soil map results
	Figure 5.5: Digital Soil Mapping derived input data a) DSM_detail, b) DSM_Medium, resampled to 100 m grid and c) DSM_coarse, resampled to a 200 m grid.
	Modelling results

	5.1.4 Conclusions


	CHAPTER 6: uMngeni, Tsitsa and Goukou catchments
	6.1 Methodology
	6.1.1 Digital Soil Mapping methodology
	6.1.2 Hydrological modelling

	6.2 Digital soil mapping and modelling of the uMngeni catchment
	6.2.1 Introduction
	6.2.2 Materials and methods
	The uMngeni catchment
	Digital soil mapping
	Model, simulations and input data
	Statistical analysis

	6.2.3 Results and discussion
	HYDROSOIL maps
	Modelling results for catchment U20A
	Modelling results for catchment U20B
	Modelling results for catchment U20D

	6.2.4 Conclusions

	6.3 Application of HYDROSOIL input data in the Tsitsa catchment
	6.3.1 Introduction
	6.3.2 Materials and methods
	The Tsitsa catchment
	Digital soil mapping
	Hydrological modelling
	Model simulations and validation

	6.3.3 Results and discussion
	Digital soil mapping
	Streamflow simulation results
	Sediment yield results

	6.3.4 Discussion of data model differences
	6.3.5 Conclusions

	6.4 The mapping and hydrological modelling of the Goukou River catchment
	6.4.1 Introduction
	6.4.2 Materials and methods
	The Goukou catchment
	Digital soil mapping
	Soil parameterisation
	Terrain and morphon mapping
	Soil property designation
	Hydrological modelling

	6.4.3 Results and discussion
	HYDROSOIL
	JAMS hydrological modelling

	6.4.4 Conclusions


	CHAPTER 7: Hydraulic Pedotransfer Functions
	7.1 Creating pedotransfer functions to determine important soil hydraulic properties
	7.1.1 Introduction
	7.1.2 Materials and methods
	Legacy soil data used for pedotransfer functions
	Development of pedotransfer functions
	Validation of pedotransfer functions
	Comparing pedotransfer functions for saturated hydraulic conductivity

	7.1.3 Results
	7.1.4 Discussion
	Saturated hydraulic conductivity
	Bulk Density
	Drained upper limit Θ33
	Lower limit Θ1500
	Comparing pedotransfer for saturated hydraulic conductivity

	7.1.5 Conclusions and recommendations

	7.2 Creating an hydraulic pedotransfer function for South African soils
	7.2.1 Introduction
	Problem statement
	Hydraulic conductivity and data collection methods
	Hydraulic pedotransfer functions
	Machine learning
	Evaluation of pedotransfer functions
	Research aim, objectives and hypothesis

	7.2.2 Materials and methods
	7.2.3 Results
	Soil property database
	Model creation

	7.2.4 Discussion
	Evaluating the national model
	Evaluating the regional models
	Evaluating the model obtained from literature

	7.2.5 Conclusions


	CHAPTER 8: Near Infrared Spectroscopy to measure soil properties
	8.1 Creating Near Infrared Spectroscopy calibration algorithms to measure selected hydrological soil properties
	8.1.1 Introduction
	8.1.2 Materials and methods
	Study sites
	Methodology

	8.1.3 1Results and discussion
	Soil water content database
	Volumetric water content
	Dry bulk density
	Catchment specific calibrations
	Comparing created algorithms against freely available algorithms

	8.1.4 Conclusions and recommendations


	CHAPTER 9: Conclusions and recommendations
	9.1 Conclusions
	9.2 Recommendations
	REFERENCES



