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EXECUTIVE SUMMARY 
 
BACKGROUND 
 
Water scarcity poses a significant and increasing challenge for nations and communities inhabiting arid and 
semi-arid regions. Research projections suggest that scarcity will reach critical levels by the year 2030, 
impacting most parts of the South African nation. South Africa is a physically water scarce country where the 
demand for water far surpasses its available. This challenge is further compounded by the recurrent droughts 
anticipated in the future of South Africa, as well as the compounding effects of population growth and climate 
change, which drive the exponential increase in both food demand and water use. Agricultural activities in 
South Africa use more than 75% of available freshwater resources compared to other water sectors. 
Addressing this problem requires the implementation of efficient water management practices, focussing on 
improving water use efficiency and productivity. Optimising agricultural water usage comes with the potential 
to unlock additional water resources, adding the potential to expand cultivated areas or reallocating water to 
other sectors that need water. To effectively monitor and evaluate water use efficiency, a robust monitoring 
system is required. Integrating ground-based and geospatial technologies provides an efficient means of 
assessing water consumption and utilisation in various landscapes. Although recent advancements in satellite 
technology have developed products that are capable of monitoring evapotranspiration (ET) and crop water 
use, their consistency and accuracy remain a subject of concern. The calibration and validation of these remote 
sensing products are heavily based on ground-based data, which are often lacking or difficult to obtain in arid 
environments. In response to these challenges, this project was initiated to validate remotely sensed ET, and 
reference evapotranspiration (ETo) models within arid environments.  
 
AIMS 

The main aim of this project was to develop a field-based validation approach using smart lysimeter technique 
to assess the accuracy and reliability of remotely sensed evapotranspiration (ET) and water-use products 
within arid environments. Furthermore, four specific objectives were derived to achieve the main aim of this 
project. The first objective was to determine ETa from the water balance components based on the 
measurements of the smart field weighing lysimeter. The second objective was to find suitable ETo models 
that can be used to determine ETa in the absence of smart field weighing lysimeter. The third objective was to 
evaluate the accuracy and consistency of global ETa products using smart field weighing lysimeter data directly 
and indirectly. The fourth objective was to use the smart field lysimeter data to evaluate remote sensing-based 
ETa calculated from raw Landsat 8 imageries combined with published ETa algorithms. 

 
RESEARCH APPROACH 

The study concentrated on both summer and winter crops, specifically barley, maize, and soybean. 
Evapotranspiration levels were closely monitored within a fully irrigated scheme across various seasons. This 
scheme, known as the Vaalharts Irrigation Scheme, represents the largest cropping initiative in the arid regions 
of South Africa. Three distinct methodologies and approaches were used at both the farm and scheme levels, 
utilizing different sensors and resolutions to assess actual evapotranspiration (ETa) and soil moisture balance. 
These methodologies included the Surface Energy Balance Algorithm for Land (SEBAL) method, vegetation 
indices such as Crop Water Stress Index (CWSI) and Normalized Difference Vegetation Index (NDVI), and 
Surface Energy Balance System (SEBS) model. Crop water consumption was analysed based on actual 
evapotranspiration, crop evapotranspiration, and various water stress indices (WSI). Meteorological data and 
soil moisture measurements for the calibration and validation of remote sensing-based ET products and water 
balance calculations were retrieved from the Agricultural Research Council-Natural Resources and 
Engineering (ARC-NRE) meteorological station network and smart lysimeter measurements conducted at the 
field level. 
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METHODOLOGY 

The most effective way to increase water use efficiency is to precisely measure plant water consumption by 
determining all the water balance components and quantifying water losses. Different water balance models 
can determine irrigation timing/amount and effective rainfall. In this project, two smart field weighing lysimeters 
were installed to measure ETa at field level across four seasons hosting both summer and winter crops. Each 
lysimeter was equipped with three soil moisture sensors, three temperature sensors, three potential water 
sensors, and three soil electrical conductivity sensors. The deep drainage component of the water balance 
from the bottom of the lysimeter was also measured using a drainage container placed on the load cell 
measuring the amount of water drained out of the lysimeter. The weight of the lysimeter, and drainage 
container automatically every minute while the sensors measured soil water variables at a 10-minute interval 
in a field data logger linked to the lysimeters. The daily changes in the lysimeters, weight and soil moisture 
were used to determine the consumed water after subtracting the total drainage water. From the weight 
changes ETa was determined for all crops. The ETa from the lysimeter was compared to the ETo calculated 
from 28 micrometeorological models using data acquired from automated weather stations. The best 
relationship was selected as the most suitable model for ETo in arid environments. Two remotely sensed data 
processing levels were utilized: 1) evapotranspiration products and 2) raw satellite images. The ETa products 
were directly compared to the lysimeter data at different time scales ranging between daily, monthly, and 
seasonally. Various methods were applied to determine ETa from remotely sensed data, including data at 
visible (VIS), infrared (IR), and thermal (TIR) spectral ranges. Three methods were examined under different 
seasons during the period of this project. The NDVI and Land Surface Temperature (LST) were extracted from 
Landsat 8. The NDVI was used to determine crop coefficients (Kc) values which were used to calculate ETa 
as a product of ETo multiplied by the Kc values throughput each cropping season. Using the CWSI, ETa was 
determined as a product of CWSI multiplied by the crop evapotranspiration (ETc). The CWSI used both surface 
temperature compared to air temperature and vegetation index to estimate the relative water status.  

RESULTS AND DISCUSSION 

This project focused on the measurement of ETa and the evaluation of ET models and satellite ET products 
using a smart field weighing lysimeter approach. ETa was determined for four cropping seasons where barley, 
maize and soybean crops were used in the lysimeter experiments. Findings demonstrated that ETa across all 
seasons had a similar trend. During the emergence and early development stages of each season, ETa was 
relatively low. This can be attributed to less transpiration processes occurring within the field when crop 
canopies are at low density stage with few leaves while irrigation water inputs were also low resulting in low 
evaporation rates. As the crops grew into the season, ETa fluxes showed a gradual increase reaching peak at 
mid-season. The increase in ETa at mid-season can be attributed to increased leaf area and increased water 
inputs where crops where in an active transpiration stage while soil water evaporation was also high. ETa 
gradually declined from peak values as the seasons shifted towards harvest period. The decrease in ETa can 
be attributed to crops reaching senescence while irrigation water inputs are reduced reducing soil water 
evaporation rates. On assessing the seasonal irrigation inputs versus the total seasonal ETa, it was observed 
that irrigation on the farm did not match the crop water requirements where more water was used than required. 
This finding makes an emphasis on the significance of ETa on irrigation water management. 
 
Upon a successful determination of ETa at various time stamps at a farm scale, a total of 28 
micrometeorological models for estimating ETo were evaluated using a weather station located near the 
lysimeter installation site. The objective here was to determine the most suitable ETo model that can be used 
to extrapolate ETa from point location to the scheme scale using weather stations located within the scheme. 
Findings demonstrated that the Penman-Monteith model was more suitable for the purpose while other models 
showed lower agreements. The uncertainties between models and lysimeter ETa can be attributed to the fact 
that some models were developed in areas suiting their climate conditions which may not always yield similar 
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results in environments where they are transferred to. This finding puts an emphasis on the fact that ET models 
developed in one area requires local calibrations to fit the local climatic conditions using in situ measurements. 
 
Having determined the Penman-Monteith model as the most suitable, ETa was determined at each weather 
stations in the irrigation scheme using the relationship built between ETa and ETo at field scale. The values of 
ETa were used to evaluate ETa estimated by remote sensing-based ET products which covered the NOAH, 
MOD16 and WaPOR. The evaluation which was done using the products pixel values on their original spatial 
resolutions was done using statistical metrics which showed varying accuracies. The disparities between ETa 
from the products and ETa on the ground can be attributed to several factors. This includes the coarse 
resolution of the products which contain multiple land cover types. The parametrization of the algorithms that 
runs the evaluated products can be attributed to adding more uncertainties of the products. The limitation of 
lysimeters in the area might have also affected the extrapolation of ETa from field to scheme scale due to 
variability in land cover changes.  
 
With challenges experienced on global ET products, the project further made use of raw Landsat images in 
generating ET outputs from various algorithms which were evaluated using smart field weighing lysimeter ETa 
data. The SEBS, SEBAL, CWSI-based ET and VI-based ET algorithms were used for this purpose. Varying 
accuracies were reported for each algorithm. The variabilities can be attributed to the parametrization of the 
algorithms used while the limitation of Landsat images across some seasons might have played a role in the 
data points used for the evaluation process.  
 
This study has highlighted the importance of ET in agricultural water management in South Africa with 
emphasis on the need for development of a network of systems that can be used in the provision of ground-
based ET data. The need for ground data is an undisputable gap towards development of models and 
validation of existing algorithms and products of ET in South Africa. This remains important as more products 
are developed and validated in countries like Europe and most countries in the United Kingdom which have 
enough sufficient networks of ground-based ET measurements. 
 
KEY MESSAGE  

The project highlights the impending challenges of water scarcity exacerbated by factors such as population 
growth, climate change, and inefficient water management practices, especially in the agricultural sector. To 
mitigate these challenges, the project emphasizes the need for efficient water management practices within 
agriculture, focusing on enhancing water use efficiency and productivity. The project suggests that optimizing 
agricultural water usage can unlock additional water resources, thereby expanding cultivated areas or 
reallocating water to other vital sectors. Furthermore, the project discusses the importance of accurate 
monitoring and evaluation of water use efficiency, advocating for the integration of ground-based and 
geospatial technologies to assess water consumption and utilization across various land uses. However, the 
project also acknowledges the challenges associated with the accuracy of remote sensing products and calls 
for validation efforts as demonstrated. Accurately estimating actual evapotranspiration is essential for water 
management at different scales. This project has validated actual evapotranspiration and crop water using 
smart lysimeter measurements. In the agricultural setting, ETa data can help farmers to understand the actual 
water needs of their crops. By matching irrigation schedules to crop water demand based on ETa, farmers can 
ensure efficient water use, avoiding both over- and under-irrigation. This optimization reduces water wastage 
and promotes sustainable water management practices. South Africa still portrays a huge gap in ETa 
measurements. This study demonstrated the capabilities of determining ET at field scale accurately which 
highlighted the need for more of these expensive devices. While the devices are cost restricting, having few 
lysimeters to develop robust models integrating ground data with satellite data will improve agricultural water 
management through enhanced monitoring and mapping technologies. 
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CONCLUSIONS 

In this project, the study made use of a smart field weighing lysimeter which is a far much advanced system 
compared to the systems used in the past decades. Although the lysimeters provided accurate ET outputs, 
these systems are owned by research institutes and their datasets are not readily available, making ET data 
a continuous data gap struggle in the South African water management practices. While ET remains a bigger 
challenge the study made a multi-phased analysis of ET measured from the lysimeter and estimated from 
various models and satellite products. The study accurately determined ETa based on the lysimeter 
measurement of the water balance components for barley, maize and soybean crops. The study evaluated the 
relationship between various ETo estimation models with the in-situ ETa measurements to determine a better 
model that can be used to extrapolate ETa from lysimeter point to other spatial locations using meteorological 
stations. This action suggests that ETa in arid environments can be estimated in the absence of smart field 
weighing lysimeters or any expensive measuring device if there is a meteorological station on site. The 
relationship between ETa and ETo was used to develop new local Kc values for the Vaalharts irrigation scheme 
for the three investigated crops which differed from those published by the Food and Agriculture Organization 
(FAO). This finding made emphasis on the need for local calibrations and development of local Kc values for 
each region for accurate water management and irrigation adjustments. With knowledge of ETa, farmers can 
fine-tune irrigation systems to deliver the right amount of water directly to the crop root zone. This precision 
irrigation reduces losses due to runoff, deep percolation, and evaporation from the soil surface, thereby 
maximizing water use efficiency. The Vaalharts is well known for its salinity problems. Over-irrigation can lead 
to waterlogging, soil salinization, and nutrient leaching, causing environmental degradation. By accurately 
estimating ETa, farmers can avoid excessive water application, thereby mitigating these negative impacts on 
soil and water quality. We acknowledge that, while lysimeters are important devices, they still have their own 
limitations such as the limitation in spatial extent capturing while they also require knowledge on conversion 
of weights into water amounts. These devices are expensive, and it might not be possible for farmers to afford 
for the purpose of irrigation water management and support, but they hold potential in large commercial farms 
using large volumes of water. These systems also hold promise to be used by the governmental organizations 
responsible for irrigation water management, distribution, and monitoring purposes. 
 
RECOMMENDATIONS 
 

● Based on the limitations in ET measuring stations, there in a need to focus on development of ET 
monitoring network systems across the country with data that is available to the public while the data 
has potential to help in the validation and calibration of indirect ET models. 

● Lysimeters are not cheap, but their accuracy in determining the water balance components make them 
top priority tools that can be used for crop water use in large commercial farms to aid in irrigation 
scheduling. As such future research should focus on the development of lysimeters for use at various 
scales for the purpose of evaluating and calibrating ET models, this can either be from greenhouses 
or farm scales. 

● To our knowledge the smart field weighing lysimeter used in this study is the first in Africa, however 
the lysimeter of its kind provides more information on the soil-plant-water conditions. More devices of 
this nature are recommended for future research purposes including those that can be used for 
horticultural purposes. 

● The study was done at a field scale within the Vaalharts irrigation scheme, as such findings obtained 
here might not actually apply to the entire country, as such evaluation of ET based on the results of 
this study may not always produce accurate results if used in a different area with different climatic, 
topographic and soil conditions. We recommend that future research should focus on implementing 
projects of this nature to solve the issue of environmental variabilities for accurate outputs. 

● The current study focused on three crops which were barley, maize, and soybean, we recommend the 
determination of ETa for many other crops which can help in the development of local crop coefficients 
that can be used for irrigation scheduling. 
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● During the project, we observed the limitations in the use of SFL-600 lysimeter for maize ETa 
determination where we could only determine ETa for early to development stages of the crop with 
errors being observed on the weighing balance measurement due to long maize roots reaching the 
lysimeter bottom. We recommend that, future research should focus on the use of larger lysimeters 
when dealing with crops that have long roots. 

● The study made use of micrometeorological models to aid in extrapolating ETa from a point level into 
the larger extent of the irrigation scheme using four weather stations. We recommend the continuous 
installation of meteorological stations in the study area to capture more variabilities in ET which can 
be used to develop more robust ET models that could aid in improving the water management 
practices in the scheme. 

● The study made use of ET products at varying scales, the coarse resolutions such as NOAH and 
MODIS products demonstrated poor results when compared with ETa from ground measurements. 
While on the other side, WaPOR product showed some promising results at 250 m2 resolution. The 
WaPOR product in some countries contains a 100 m2 and 30 m2 resolution ET products. We 
recommend the FAO to improve the resolution of WaPOR also covering South Africa and more African 
countries.   

● The project made use of Landsat 8 data for estimation of ET using SEBAL, SEBS, CWSI and 
vegetation index-based algorithms obtaining varying observations when compared to ground 
measurements. We recommend the integration of better resolution images such as sentinel datasets 
and the use of Unmanned aerial vehicles (UAV) for ET estimation. The use of UAV will add more value 
to solve the issues of spatial and temporal resolutions and weather challenges such as clouds which 
are common when using satellite images. 
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GLOSSARY OF TERMS 
 
Actual evapotranspiration (ETa) is the combined process by which water is transferred from the Earth’s 
surface to the atmosphere through evaporation from soil and plant surfaces, as well as transpiration from 
plants. It represents the total amount of water vapour that is physically removed from a specific area over a 
given time, typically expressed in units of depth (e.g. millimetres or inches). 
 
Aridity is defined as any physical limitation of water in an area usually emphasized as situations where ET 
exceeds the total amounts of precipitation. 
 
Crop Water Requirements is the understanding of water needs for different crops at various growth stages. 
This involves considering factors such as evapotranspiration rates, soil characteristics, crop type, and local 
climate conditions. 
 
Crop water stress index is an indicator used in agriculture to assess the water stress levels experienced by 
crops which is calculated based on the temperature differential between the crop canopy and the surrounding 
air, considering factors such as relative humidity, wind speed, and solar radiation. 
 
Evapotranspiration (ET) is defined as a combination term that defines the loss of water from vegetation 
leaves as transpiration and from soil medium as soil water evaporation. 
 
Heat (thermal) capacity is the amount of heat to be supplied to a given mass of a material to produce a unit 
change in its temperature. 
 
Irrigation Scheduling is the timing and determination of the amount of water application to match crop water 
demand.  
 
Irrigation water management defines the efficient and effective use of water for agricultural purposes through 
planning, implementation, and optimization of irrigation systems. It encompasses various practices aimed at 
ensuring that water resources are used sustainably to meet crop water requirements while minimizing waste 
and environmental impacts. 
 
MOD16 is a global evapotranspiration product that provides ET on an 8-day period at a resolution of 500 m. 
 
Reference evapotranspiration (ETo) is the rate at which water would evaporate from a hypothetical reference 
surface under standardized conditions. It represents the evaporative demand of the atmosphere when there 
are no limitations on water availability, such as soil moisture or vegetation cover. ETO is typically calculated 
based on meteorological parameters such as temperature, humidity, wind speed, and solar radiation. 
 
Remote sensing is the process of collecting and interpreting data about the Earth’s surface or atmosphere 
from a distance using sensors mounted on aircraft or satellite platforms. 
 
Smart field weighing lysimeter is a ground-based instrument that directly measures the water balance 
components necessary to determine the actual evapotranspiration. 
 
Thermal conductivity is the ability of material to transfer (conduct) heat. 
 
Thermal diffusivity is the rate of heat transfer of a material from the hot spot to the cold spot. 
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Thermal resistivity is a heat property and a measurement of a temperature difference by which an object or 
material resists a heat flow.   
  
WaPOR is a global evapotranspiration product that provides ET estimates on a decadal period at varying 
resolutions (250; 100 and 30 m). South Africa is covered by the 250 m resolution. 
 
Water balance (WB) refers to the quantitative analysis of the distribution and movement of water within a 
defined system, such as a watershed, basin, or hydrological cycle. It involves accounting for the inputs, 
outputs, and storage of water within the system over a specific period, typically daily or seasonally. 
 
Water scarcity is defined as a natural condition where the demand for water in a rea surpasses the actual 
availability of water to meet the demands. 
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CHAPTER 1: BACKGROUND 

1.1 INTRODUCTION 

Water scarcity continues to be a continuous global challenge threatening the livelihoods of humans and 
the sustainability of the natural environment as a system. Over the past decades, more efforts have 
been channelled towards the objective of ensuring sustainable and efficient access to clean and 
adequate water to support the steadily increasing global population (Roundy, 1985; Van Vliet et al., 
2021). Arid areas which are dominated by extremely high temperatures in summer and low 
temperatures during winter seasons, are the most threatened environments with very limited 
precipitation rates and high ET fluxes (Raziei et al., 2011). Consequently, agricultural activities in such 
areas are highly affected, resulting in low crop yields, low grazing and browsing productivity due to 
reduced biomass and plant density (Costa and Gianquinto, 2002; Lohman et al., 2020). In trying to 
achieve efficient water use, knowledge in the water-energy balance is critical in accounting for the water 
budget. With that being of interest ET has gained much attention in accounting for water losses from 
various environments ( Yang et al., 2000; Van Halsema and Vincent, 2012; Cheng et al., 2022; Groh et 
al., 2019). ET quantifications are crucial in understanding the role played by temperature and sunlight 
hours in water loss from soil through evaporation and from vegetation through transpiration post known 
precipitation or irrigation amount (Thomas, 2000; Wang et al., 2012). Understanding these roles aid in 
water management and efficient resource management and productivity. The measurement and 
quantification of ET is not an easy process due to the different parameters required to estimate ET 
components on the hydrological cycle (Rodell et al., 2004; Zhao et al., 2013). Various researchers have 
measured and estimated ET using different possible direct and indirect ways to quantify water losses, 
such as the water balance, energy balance, Bowen ratio, Lysimeters, Eddy covariance stations, weather 
stations; satellite-based remote sensing products and recent satellite products at different scales ( Yang 
et al., 2000; Buttar et al., 2018; Denager et al., 2020; Jiang et al., 2020; Niu et al., 2020). The eddy 
covariance and the lysimeters are the most common direct measurement methods and the lysimeters 
are known to have the highest accuracies in estimating the actual ET fluxes (Sobrino et al., 2021). Using 
direct ground-based methods such as meteorological data, lysimeters and eddy covariance can provide 
highly reliable estimations for evapotranspiration. However, they cannot be used to represent regional 
or global scales because they provide point information rather than spatially distributed information ( 
Kumar et al., 2021). Due to landscape diversity, hydrological and soil heterogeneity, these methods are 
unsuitable for representing larger areas away from their location ( Walker et al., 2019; Cuxart and 
Boone, 2020). The fact that they produce estimates with high precision and accuracy, they are crucial 
to calibrate and validate other indirect methods (Bardsley and Campbell, 2000; Jarchowet al., 2022). 
Remotely sensed satellite data of different resolutions have been applied to solve the issue of spatial 
evapotranspiration extent at no cost than it would cost to spatially distributed ground-based devices and 
stations (Elnmer et al., 2019; Chen and Liu, 2020; Ghaderi et al., 2020; Chen et al., 2021). Although 
remotely sensed ET data exists, there is a need to have an improved model that integrates ground-
based ET and satellite derived ET products at small time intervals because satellites sometimes have 
saturation problems when retrieving land surface energy components (Corbari et al., 2020). As the 
water scarcity issue becomes a daily concern, there is a need to establish baseline data and models to 
quantify ET, especially for arid regions more affected by water shortages (Anapalli et al., 2019). Various 
studies have addressed the quantification of ET using coarse resolution products to have a global 
coverage (Ma et al., 2005; Zhao et al., 2015; Sun et al., 2020). However, improved products over certain 
regions with better resolutions are required for local or regional water use planning and management 
due to data requirements. This includes the integration of satellite coarse and high-resolution data with 
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ground-based ET products. Developing better resolution ET products for arid regions, which are 
potential food production zones, will aid in water management strategies and policy developments. 
According to the study undertaken by various scientists under the auspices of the committee on 
irrigation requirements of the American Society of Civil Engineers (ASCE), focusing on 20 Methods 
which were validated using lysimeters, the standard penman monteith method was found to 
overestimate the ETo (Doorenbos and Pruitt, 1981). They suggested that local calibrations are required 
to yield sound results. They further pointed out that the use of the method has problems in arid areas 
where the aerodynamic term is low. They also pointed out that ET estimations using the Pan method 
have problems for open water bodies.  
 
The use of weighing lysimeters in South Africa was conducted by Hutson (1980) in Roodeplaat to 
investigate crop evapotranspiration. They used three lysimeters which had a square design to fit in row 
cropping. Their daily evapotranspiration ranged between 0 and 120 mm with high evapotranspiration 
being observed during rain and irrigation days. Their continuous investigation for two years led them to 
conclude that lysimeters are accurate and reliable devices for evapotranspiration estimation. They 
further suggested improvements in the lysimeter systems to increase understanding of the interaction 
between water, soil, crops and the atmosphere. 
 
Berliner and Oosterhuis (1987) used two field plots set under different conditions to install lysimeters to 
test the lysimeter’s representativeness in crop water stress determination; one lysimeter was well 
irrigated while the other was left in dry condition. They planted winter wheat in each lysimeter and 
monitored ET, soil water content and canopy temperature to determine water stress conditions. They 
monitored crop water stress by assessing the leaf water potential in each lysimeter. Changes in 
evapotranspiration were observed with changes in soil water content with higher evapotranspiration 
being observed in dryer conditions. They concluded that crop water stress could be determined well by 
using lysimeters in plots representing the field conditions. They mentioned that conclusions on the 
relationship between canopy conditions and soil conditions influence water stress could not be made. 
Gebler et al. (2015) investigated the use of lysimeters in actual evapotranspiration (ETa) and 
precipitation which they compared with Eddy Covariance and tipping bucket in Germany Rollesbroich. 
Six weighing lysimeters were used to estimate evapotranspiration. The Eddy Covariance and Penman-
Monteith methods were used to estimate the actual and the reference evapotranspiration. They reported 
that comparisons between eddy covariance and lysimeters are limited in the literature. They obtained 
their hourly evapotranspiration ranging between 0 and 0.5 mm for the lysimeters, eddy covariance and 
the Penman-Monteith method. They concluded that the evaluation of the two methods showed good 
agreement with a small difference. 
 
Ratshiedana (2022) investigated the utility of unmanned aerial vehicles and smart field weighing 
lysimeters in estimating the barley crop water use using surface energy balance algorithms for irrigation 
scheduling. His studies found that lysimeters offer more accurate crop water use and irrigation 
scheduling because of their temporal resolution, which is every minute, including at night. When the 
lysimeter weights dropped, the soil moisture content within the lysimeters and the entire field were also 
dropping. He also noticed that ETa increases from sunrise and reaches peak at mid-day and becomes 
very small after sunset. 
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Figure 1: South African arid region map. 

1.2 EVAPOTRANSPIRATION ESTIMATION USING REMOTE SENSING 

1.2.1 Background  

1.2.1.1 Surface Energy Balance Algorithm for Land (SEBAL) 

The Surface Energy Balance Algorithm for Land (SEBAL) predicts hydrological features such as ET 
and water deficit using energy balance principles; Professor Bastiaanssen developed the model in the 
late 1990s (Bastiaanssen et al., 1999). The model has been validated under a variety of conditions for 
various locations ( Bastiaanssen, 2000; Allen et al., 2003; Santos et al., 2010; Ruhoff et al., 2012; Singh 
et al., 2013; Sun et al., 2020). To estimate ET per pixel in each area, the SEBAL model employs a set 
of mathematical equations and meteorological data, including atmospheric corrections, surface albedo, 
net radiation, surface temperature, vegetation index, and heat flux. 

1.2.1.2 Atmosphere Land Exchange Inverse (ALEXI) 

The Atmosphere-Land Exchange Inverse (ALEXI) model links geostationary satellite time-differential 
LST observations to the time-integrated energy balance within the surface-atmospheric boundary layer 
system (Anderson et al., 2018). ALEXI relies on instantaneous air or surface temperature input data as 
little as possible, resulting in a relatively robust flux determination at the coarse geostationary pixel scale 
(Anderson et al., 2018). ALEXI flux fields can be spatially disaggregated for finer scale ET applications 
using higher resolution LST data from polar orbiting systems. 
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1.2.1.3 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 

The University of Idaho created the METRIC model, a well-known energy balance model used to 
calculate ET (Morse et al., 2004). The model uses an hourly ground reference evapotranspiration 
procedure for self-calibration (Gowda et al., 2008). The near-surface temperature gradient is used by 
the SEBAL model, on which the METRIC model is based. At the same time, it does not consider 
sensible heat flux to be zero, does not calculate aerodynamic surface temperature, and chooses the 
cold pixel in the agricultural setting rather than employing biophysical considerations. 
Evapotranspiration is calculated using a typical Penman-Monteith equation. 

1.2.1.4 Temperature-Vegetation Triangle Algorithm (TVTA) 

The triangular model is built around two components: the Normalized Vegetation Index (NDVI) and the 
radiant surface temperature (Tir), from which other parameters for calculating evapotranspiration 
fractions are derived (Carlson, 2007). The NDVI is divided into two parts: NDVIs, which represents the 
portion of an image covered by dense vegetation, and NDVIo, which represents bare soil surfaces. 
Surface radiant temperature is scaled from 0 to 1, with temperatures close to zero representing wet 
areas or densely vegetated areas and temperatures close to one representing dry surfaces covered 
only with bare soil ( Yang et al., 2008; Minacapilli et al., 2016; Fuzzo and Rocha, 2018). 

1.3 MOTIVATION 

The South African food production system has rapidly grown throughout the country to meet 
governmental food security goals and market demands. Farmers are often bound to supply more than 
the crop evapotranspiration (ETc) empirically under irrigated systems; these amounts are sometimes 
inappropriate. The sustained deficit irrigation (DI) methods can be proposed as a helpful practice to 
apply Irrigation amount at the cumulative-daily crop water needs. However, a rational way to keep the 
crop performance as close as possible to its maximum potential ensure the highest potential yield. The 
estimation of the ETc is usually either calculated from the reference evapotranspiration (ETo) retrieved 
from the climatic data and then multiplied by the crop coefficients (Kc) to get the ETc. Another method 
is a reduced percentage of ETc is applied throughout the irrigation season (Fernández et al., 2010).  
Irrigation scheduling is often based on soil water balance, in which ET is estimated using ETo and Kc 
values, according to the procedure proposed by FAO (Allen et al., 1998). There are some techniques 
to determine water consumption at the plant level, such as weighing lysimeter; the method is very 
accurate but high-cost, and a limited number of lysimeters can be installed. The new development in 
remote sensing data acquisition and analysis provides advanced techniques for monitoring ETa from 
the single plant level to the basins and national scales. Using these advanced technologies in 
determining ETa is of great importance for producers and decision-makers. The crop growth has been 
monitored effectively using optical sensors working at red and infrared spectral range from various 
sensing platforms ranging from satellite-based sensors to ground. On the other hand, the spectral range 
at the long-wave infrared, and thermal infrared avail new dimension in monitoring the water balance in 
agricultural and non-agricultural fields using the energy partitioning approaches. The basic concept of 
energy partitioning is to quantify the latent heat flux necessary for water evaporation from the soil 
surface and plant leaves, ET distribution. The ET is a significant component of the field water budget. 
It can calculate the crop water requirements, irrigation water depth/frequency, evaluate water stress 
level, and stem and quantify the total field water consumption. The distributed water consumption can 
be extrapolated to the field level using the crop type maps to quantify the water consumption of each 
crop type at a particular basin. The water consumption maps can be used effectively to evaluate the 
water allocation at the basin level per crop type and field. 
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Recently, various remotely sensed ETa products have been developed using satellite data with various 
resolutions. The development of these products can range from the simplified method used on the 
thermal infrared data to the much more complex model that integrates the vegetation indices and 
ground data with the remote sensing thermal images. In general, four major development schemes 
were adopted: 1) direct empirical method, 2) residual method of the energy balance, 3) deterministic 
method, and 4) vegetation indices method. These methods can use TIR data from satellites such as 
Landsat 8 (30 m), MODIS (1 km), and Visible Infrared Imaging Radiometer Suite (VIIRS). The critical 
question is to what extent we can trust these products? Previous research works have compared the 
remote sensing estimation of the ETa with relatively low-quality ground data or estimated ET using 
climatic data.  In this project, different ET products such as MODIS, NOAH, FAO-WaPOR and 
calculated products using Landsat 8 imageries will be calibrated and validated using smart lysimeter 
ETa measurements installed under an arid environment. 

1.4 RESEARCH APPROACH 

The research approach can be summarised in the following conceptual diagram (Figure 2). 
 

 
 

 
Figure 2: Conceptual framework for the research approach of ET-Sensing. 

 
The ground monitoring techniques can be used as a validation source of information while satellite-
based monitoring can be utilised as a continuous and low-cost source of information. The smart 
lysimeter can measure ET accurately at the local scale. These measurements can be used to develop 
a large-scale validation proxy using meteorological information. The combination of the lysimeter 
measurements and soil moisture dynamic at the local scale will be used to develop relationships that 
consider the scarcity of the data in the arid land environment.    

1.5 REMOTE SENSING APPLICATION 

Every object emits energy proportionally to the fourth power of its surface temperature (Stefan-
Boltzmann law). The amount of energy emitted depends on the wavelength, the wavelength where the 
emission is maximum is greater as the temperature decreases. For most of the land surface vegetation 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

 
6 
 

(between -20 and 50°C), this maximum corresponds to a wavelength near 10 μm. Thermal infrared 
remote sensing has been proven of great potential in many environmental studies. Thermal infrared 
has been utilised in urban microclimate (Santamouris et al., 2001; Ngie et al., 2014; Abutaleb et al., 
2015), water quality monitoring, vegetation stress  ( Stoll et al., 2008; Labbé et al., 2012; Sobrino et al., 
2021)  fire detections and sea surface temperature (Franc and Cracknell, 1994). 
 
Attempts to extract the land surface temperature (LST) from remote sensing data have been undertaken 
for several decades (Zhang et al., 2006). Remote sensing data supply a practicable approach for the 
investigation of LST on wide spatial and temporal scales. Satellite thermal infrared (TIR) sensors 
measure top of the atmosphere (TOA) radiances, from which brightness temperatures can be derived 
based on Plank’s law (Dash et al., 2002). The TOA radiance is the mixing result of three fractions of 
energy, earth’s surface emitted radiance, atmosphere upwelling radiance, and sky down welling 
radiance. Top of atmosphere and land surface brightness temperature differences generally range from 
1 Kelvin to 5 Kelvin in the 10-12 μm spectral regions, and such differences depend on the atmospheric 
conditions (Prata et al., 1995). Therefore, atmospheric effects, including absorption, upward emission, 
and downward irradiance reflected from the surface, must be corrected before land surface brightness 
temperature is obtained (Franc and Cracknell, 1994). These brightness temperature should be further 
corrected with ground emissivity values prior to the computation of LST to account for the roughness 
properties of the land surface, the amount and nature of vegetation cover, and the thermal properties 
and moisture content of the soil (Friedl, 2002).  
 
Methods to retrieve LST are depending on how the sensor’s thermal bands were designed. one can 
classify satellites according to the number of thermal bands to a) single thermal band such as Landsat 
satellites, b) two thermal bands such as NOAH, AVHRR, ASTR (Along-track scanning radiometer) and 
GOES (Geostationary operational environmental satellite) satellites, c) multiple thermal channels such 
as ASTER and MODIS satellites. The split-window algorithms have been widely used for estimating 
LST from two thermal bands in the 10.5-12.5 μm region with given surface emissivity. Many split-window 
formulas are published in the literature such as those implemented by ( Price, 1984; Sobrino et al., 
1994; Francois and Ottlé, 1996).  
 
For multiple thermal band satellites, other formulas were developed to retrieve more accurate LST and 
emissivity from the satellite image. Among these formulas are: the day/night algorithm which is used for 
MODIS (Wan et al., 2002), the reference channel method (Lyon et al., 1965; Kahle et al., 1980) Alpha-
derived emissivity (ADE) method (Kealy, 1990; Hook et al., 1992; Kealy and Hook, 1993) which is 
known as alpha-residual technique, Temperature-Independent Spectral Indices (TISIs) (Becker and Li, 
1990; Watson, 1992) Optimisation Algorithm and the ASTER Algorithm (Realmuto, 1990; Gillespie et 
al., 1998; Li et al., 1999; Liang et al., 2002).  
 
There are three basic modules in the ASTER algorithm 1) normalised emissivity method, 2) ratio module 
and 3) maximum-minimum difference module. The main difference between the three modules is the 
way to estimate the ground emissivity from the ASTER image. Numerical simulations show that ASTER 
algorithm can estimate LST to within error of 1.5 K and emissivity to within 0.015 (Gillespie et al., 1998). 
However, Dash et al. (2002) reported that algorithm requires an accurate atmospheric correction. 
Running ASTER algorithm on airborne multispectral thermal data applied this algorithm to TIMS 
(Thermal Infrared Multispectral Scanner) resulted in LST with typical errors of 3 K (Schmugge et al., 
1998). However, for satellites with a single thermal band, such as Landsat TM and ETM+, obtaining 
LST is more difficult. In addition to an accurate radiative transfer model and some knowledge of the 
atmospheric profile, emissivity information is also required (Qin et al., 2001).  
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The most common methods adapted for retrieving LST from the Landsat TM and ETM+ thermal data 
are: 1) the radiative transfer equation, 2) mono-window algorithm, and 3) Jiménez-Muñoz and 
Soprano’s algorithm (Sobrino et al., 2004). The first method requires in situ measurements of 
atmospheric data simultaneously with the satellite pass which in turn may be constrain for using that 
method. Meanwhile, the second and the third one could be used in the absence of these data. The 
second and the third methods use NDVI for calculating ground emissivity. 

1.6 APPLIED ESTIMATION METHODOLOGY 

Remotely sensed data was used to calculated ETa under different seasons and crop types. The satellite 
data will be used to classify crop plant cover. Normalised Difference Vegetation Index (NDVI) and Land 
Surface Temperature (LST) will be extracted from Sentinel-2, Landsat, NOAH/AVHRR and MODIS 
satellite data. Crop Water Stress Index (CWSI) uses both surface temperature compared to air 
temperature and vegetation index to estimate the relative water status. According to the Penman-
Montieth method, ETo will be estimated from meteorological data. The CWSI and ETc will be used to 
estimate ETa. Details of the methodology will be shown in the next steps. Jackson et al. (1981) showed 
that there is a unique mathematical relationship between CWSI and evapotranspiration from the 
vegetation surface as follows: 
 

ETa = (1-CWSI) * ETc 

 
Where ETa is actual evapotranspiration, ETc is potential crop evapotranspiration and CWSI is Crop 
Water Stress Index. CWSI approach was preceded and developed by Jackson et al. (1981). They 
proposed the empirical and theoretical methods to estimate CWSI as follows: 
 

CWSI = (dT - dTm)/(dTx dTm) 
 
Where: dT is the difference between measured surface and air temperature, dTm is the difference 
between minimum surface and air temperature and dTx is the difference between maximum surface 
and air temperature. Since all variables have the same units, CWSI is a dimensionless ratio. The lower 
limit of dT occurs under non-water-stressed conditions when ET is only limited by atmospheric demand. 
On the other hand, the upper limit of dT is reached under non-transpiring conditions when ET is stopped 
due to the lack of water. The values of CWSI are ranged between zero and one, where zero indicates 
no stress and the value of one indicates maximum stress. 

1.7 STUDY AREA DESCRIPTION 

The study area was the Vaalharts irrigation scheme which is located on the confluence of the Northern 
cape and Northwest provinces of South Africa. Within the Vaalharts scheme a selected experimental 
farm was located around the coordinates: 24.739827° East and -27.720237° South. The Vaalharts 
irrigation is the biggest irrigation scheme in South Africa receiving water from the Bloemhof dam which 
is supplemented by the Vaal and the Harts rivers reaching the scheme through gravity canals (Figure 
3). The scheme was developed to alleviate hunger and starvation in the area as well as for job creation 
for the surrounding communities back in 1938. The area is the biggest producer of pecans while a 
variety of crops are also grown. Water transfers remains the key source of irrigation water while 
challenges with salinity problems prevents the use of groundwater for irrigation purposes. The scheme 
is dominated by pivot irrigation systems while other forms of irrigation which includes drip irrigation, 
flood irrigation and sprinklers amongst others. The climate in Hartswater is characterised by long hot 
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summer days and freezing winter days, with most of the rain occurring during the summer seasons 
between 1 November and 28 February (Seshoka et al., 2004). Recordings of the average annual rainfall 
in the study area from 1975 to date have been 35 mm, while the minimum and maximum rainfall have 
been 13.5 mm and 77 mm, respectively. The mean maximum temperatures have been recorded at 
31.8°C and mean minimum temperatures at 7°C during the 1975 to 2019 period (Ratshiedana, 2022). 
Since 1975, there has been an increase in gradient for the mean annual maximum temperatures in 
summer and a decline in mean yearly minimum temperatures (Ratshiedana, 2022). The decrease in 
trends explains the shift in climate variability, which has a greater influence on water resources when 
temperatures become extremely high or too low with less precipitation. The study area is in an arid 
environment (Figure 4).                

 
Figure 3: Installation area of the smart lysimeter system. 
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Figure 4: Climate characteristics of the study site; (a) annual rainfall, (b)potential 
evapotranspiration, (c) mean temperature, (d) aridity conditions. 
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CHAPTER 2: SMART FIELD LYSIMETER FOR ACTUAL 
EVAPOTRANSPIRATION MEASUREMENT 

2.1 INTRODUCTION 

Water use monitoring is one of the major challenges faced globally affecting the availability, control, 
and distribution of natural water resources amongst various water reliant users. The lack of monitoring 
techniques hinders the determination of acceptable ways to reduce the overuse and misuse of the 
available limited water resources. Agriculture in most countries uses more water than other industries 
through irrigation practices which are not guided by the actual crop water demands. The combination 
of soil water evaporation and transpiration termed evapotranspiration (ET) which is the principal 
component of the water cycle plays a crucial role in scheduling and designing irrigation approaches 
(Van Vliet et al., 2021). Several researchers have made efforts to quantify ET in irrigated agricultural 
environments with the aim of reducing water use in the agricultural environments to improve water 
scarcity problems (Tanner, 1967; Hargreaves and Samani, 1982; Pereira et al., 2020). The water 
scarcity challenges are exacerbated by the rapid increase of populations which puts more pressure on 
water resources through increased water demand and food demands triggering the agricultural sector 
to use more water in the context of changing climate. In agricultural practices, the most important 
component of the water budget is crop evapotranspiration (ETc) or the actual crop evapotranspiration 
(ETa) which define the actual amount of water lost after precipitation or irrigation events (Allen, 1998). 
Crop evapotranspiration plays a crucial role in determining crop water requirements, crop coefficients 
and scheduling of irrigation events. After every irrigation or precipitation event in arid environments 
more water is lost due to evapotranspiration while a little amount goes for deep percolation (Wang et 
al., 2012). 
 
Lysimeters are mainly classified in two class types being: weighing lysimeters and non-weighing 
lysimeters (Shahrajabian and Soleymani, 2017). Weighing lysimeters are built with several sensors and 
weight load cells providing weight changes data records continuously (Sagar et al., 2022) on the other 
hand; non-weighing lysimeters do not contain any load cells or sensors but the water balance 
components are measuring using volumetrically approaches which can only be done on non-continuous 
intervals. Weighing lysimeters due to their capabilities of offering continuous weight changes depending 
on soil moisture changes can provide information on crop water use from an interval of minutes, hours, 
and daily recordings (Hoffman, 2014). Weighing lysimeters have record of use over many years to 
quantify crop water use or evapotranspiration fluxes and for computations of crop coefficients for 
different crops (Tolk and Evett, 2009; Ávila-Dávila et al., 2021). As a function of changes in weight, 
weighing lysimeters provide measurements which are direct and accurate for the water amount lost as 
evaporation and transpired by vegetated surfaces (Johnson et al., 2005).   
 
Smart Field Weighing Lysimeters (SFL-600, developed by METER Group) which are the focus devices 
in this study are point based measurement devices which provided advanced crop water use or 
evapotranspiration in a real-time and actionable time frame for human interference in water use 
applications which have high temporal measurement resolution of one minute significant for monitoring 
crop water use post each irrigation event (Doležal et al., 2018). Figure 5 depicts a general view of the 
field weighing lysimeter. The benefit of using these real-time water use monitoring and informing 
devices is that they reduce the likelihood of crop loss and poor yields. The availability of real-time 
lysimetric crop water use measurement at the field level enables prompt mediation throughout the 
growing season, resulting in better crop and water productivity output (Kim et al., 2011;  Pereira et al., 
2015). Smart Field Weighing Lysimeters are more intelligent lysimeters compared to others (Figure 5). 
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These systems are the only systems which consist of a bi-directional pump that maintains the true field 
conditions automatically representing the surrounding field environment within the lysimeter. Changes 
in storage or lysimeter weight were recorded every minute. For every 10 minutes soil moisture content 
in the lysimeters was measured and sent to the central lysimetric logger control system, at any case 
when the soil contained within the lysimeter was becoming more drier as compared to the surrounding 
field conditions, the water in the drainage container was automatically pumped back into the lysimeter 
system to maintain homogeneity between the field conditions and the lysimeter system. Contrary, when 
the soil contained within the lysimeter systems becomes very wet compared to the surrounding field 
conditions, the system pump drains the water out of the lysimeter until there was a balance in moisture 
between the field conditions and the lysimeter system, always maintaining the actual true field 
conditions. Compared to other methods which have known inaccuracies, the Smart Field Weighing 
Lysimeters are the only devices that can measure with high accuracy the field-level actual 
evapotranspiration fluxes (Allen et al., 1998). The Smart Field Weighing Lysimeter makes use of very 
sensitive load cells when weighing the amount of water that comes into the system as precipitation or 
irrigation as well as the amount of water that leaves the lysimetric system as soil water evaporation or 
plant transpiration. 
 
Weighing lysimeters have a long history of use in accurately quantifying and validating ET fluxes, as 
well as computing crop coefficients for different crops (Green, 1974; Ávila-Dávila et al., 2021; Sagar et 
al., 2022). These lysimeters offer direct and accurate measurements of water loss through evaporation 
and transpiration from vegetated surfaces (Wang et al., 2021). Over the years, lysimeters of various 
designs, sizes, shapes, and measurement systems have been constructed (Mukammal et al., 1971; 
Payero and Irmak, 2008). However, older non-weighing lysimeters suffered from issues such as manual 
sampling of drainage components, which introduced human errors in sampling, measurement, and data 
recording (Shahrajabian and Soleymani, 2017).  
 
While lysimeters have been used extensively for hydrological research and crop water use 
investigations in the past (Kovacs, 1976; Hutson, 1980), recent advancements in lysimeter technology 
have brought renewed attention to their utility worldwide. Studies in the United States (Hashem et al., 
2020), China (Liu et al., 2020), Iran (Valipour et al., 2020), Japan (Takahashi et al., 2022), Nigeria 
(Chiwetalu et al., 2022), and elsewhere have demonstrated their effectiveness. However, the use of 
lysimeters in South Africa remains relatively limited, making direct ET measurements one of the 
scarcest data gaps in hydrological research (Green, 1974; Ratshiedana, 2022). Despite this scarcity, 
such data is crucial for understanding water dynamics, irrigation scheduling, water allocation, and the 
development of water management monitoring algorithms applied to various ET-related platforms, 
ranging from meteorological stations to satellite geospatial approaches.  
 
Considering the critical importance of water management in agriculture, this study aimed at exploring 
the potential of accurate ETa measurement and monitoring by using the latest generation smart field 
weighing lysimeters (Fig. 5) for directly measuring the rate of barley, maize, and soybean crop water 
consumption in between irrigation events. Furthermore, the study targeted to showcase the principle of 
operation behind the smart field weighing lysimeter, detailing how its precision weighing system 
accurately quantifies crop water use and water loss from the crop-soil system. Additionally, the study 
will demonstrate the integration of cutting-edge sensors and data acquisition systems, which enable 
real-time measurements of the water balance components, further enhancing the device’s utility in 
understanding crop response to fluctuating water inputs and climate conditions. The findings of this 
study aim at facilitating accurate irrigation scheduling and improving water-use efficiency in agricultural 
practices, particularly in the Vaalharts irrigation scheme located in arid regions facing water scarcity 
and drastic climatic challenges. 
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Figure 5: A view of a Smart lysimeter system, a) Schematic view of weighing lysimeter, b) 
internal view and display of the lysimeter components. 

2.1.1 Lysimeter installation area 

The study area for this experimental research is the South African Barley Breeding Institute (SABBI) 
experimental farm number 5JII, situated in the Northern Cape province of South Africa, approximately 
around 24°44,21.47"E and 27°43,16.02"S (Figure 6). The farm covers a total area of 18 hectares and 
is located at an elevation of 1081 metres above sea level. The farm featured a uniformly even and level 
surface, exhibiting a remarkable absence of any variations in terrain. This consistent topography 
provided an ideal setting for modern farming machinery and lysimeter setting to be representative of 
the field. The experimental farm is part of the Vaalharts Irrigation Scheme, which is the largest irrigation 
scheme in South Africa. The climate in the study area is characterized by long hot summer days and 
freezing winter days, with the majority of rainfall occurring between 1st November and 28th February 
during the summer season (Seshoka et al., 2004). The average annual rainfall in the area from 1975 to 
the present has been recorded as 35 mm, with minimum and maximum rainfall of 13.5 mm and 77 mm, 
respectively (ARC, 2023). The mean maximum temperatures have been recorded at 31.8°C and mean 
minimum temperatures at 7°C during the 1975 to 2019 period (ARC, 2023). Sandy soils dominate the 
study area with high silica content. Hough and Rudolph (2003) described the soil as the Kalahari sands, 
the sandy soil in Hartswater is susceptible to salinization and waterlogging conditions, due to a poor 
drainage system (Maisela, 2007). As a result, a drainage network has been constructed in open canals, 
and subsurface drainage pipes have been installed to control water-logging conditions (Verwey and 
Vermeulen, 2011). According to Streutker (1977), the study area consists of two soils: Sunbury and 
Hutton. Irrigation on sandy soil replenishes soil water content to sustain the healthy growth of plants 
and crops. Consequently, the rate at which water infiltrates this type of soil determines the frequency 
of irrigation which can be high; clay soil is only found at one-meter depth to two metres, which is far 
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below the root zones of many crops (Verwey and Vermeulen, 2011). Various forms of irrigation exist 
within the Vaalharts irrigation scheme, including surface flow irrigation using water from the canals, 
primarily used for plant irrigation, pivot irrigation systems, drip irrigation, bubblers, and sprinklers. Pivot 
irrigation systems are dominant in the area (Annandale et al., 2011). 
 

 
 

Figure 6: Locality map of the study area, where (a) is the experimental farm, (b) is the Vaalharts 
irrigation scheme, (c) is the lysimeter area and (d) shows the location of the study area within 

South Africa and its provinces. 

2.1.2 Lysimeter components and installation 

The smart lysimeter is a system that directly measures the water balance components through a set of 
components that are interconnected to measure various components and store the measured data. 
This section provides an overview of the lysimeter components and the lysimeter installation process. 
 
Two smart-field weighing lysimeters (SFL-600) were installed within an 18-hectare experimental field, 
as illustrated in Figure 6. Each lysimeter featured a stainless-steel core cylinder with dimensions of 60 
cm in height and 30 cm in width. Within these lysimeters cylinders, a soil monolith was present hosting 
cultivated crops that replicated the environmental conditions of the surrounding field with the crop 
matching the one planted in the entire farm. Retrieving the soil monolith core from each lysimeter 
involved the utilization of three rope straps which were fixed to steel hook anchors embedded in the 
ground. These straps were used to secure a jack positioned on top of the cylinder which effectively 
drove the cylinder into the soil (Figure 7). The process continued until a sufficient volume of soil was 
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filled reaching the bottom level of the cylinders. At the base of the lysimeters cylinder the closing process 
was done using gypsum-filled ceramic caps, which contributed to effective sealing. These caps played 
a significant role in establishing a suitable boundary between the external field environment and the 
controlled internal environment within the lysimeters. Within the gypsum filled caps, two pumps were 
secured to maintain the balance in conditions of wetness between the lysimeter and the field condition. 
Preventive measures against potential leakage included the incorporation of a rubber seal between the 
cylinder walls and the contact point of the ceramic cap which were further reinforced by a metallic strap 
to ensure a secure connection. A weighing balance platform was positioned below these caps, secured 
using metal fasteners and tensioned nut and bolts (Figure 7). 
 
Each individual lysimeter was outfitted with a set of twelve sensors. These sensors were designed to 
monitor important parameters in soil which included temperature (°C), electrical conductivity (mS/cm), 
soil moisture (%) and water potential (kPa). Three sensors measuring the same parameter were 
installed at three different depths 5, 30 and 55 cm depth. To ensure stable and accurate measurements, 
the lysimeter system was housed within a protective barrel which was carefully levelled using a spirit 
level prior to its surrounding being filled with soil to create a level ground surface for the weighing 
balance. The installation process also incorporated a tripod which facilitated the lifting of the sensor-
equipped lysimeter. A controlled descent into the protective barrel was accomplished using a chain 
block. Prior to the descent of the lysimeter, wires were connected linking each lysimeter to drainage 
control pipes, tensiometric cables and other necessary components. 
 
To sustain uniform conditions both within and outside the lysimeters, a special tensiometer was installed 
alongside each lysimeter. Additionally, a drainage bottle equipped with a weighing platform was 
positioned within the field box located at one metre from each lysimeter. This arrangement enabled the 
monitoring of water drainage from the lysimeters (Figure 8). To centralize data collection and 
management the lysimeters were interconnected through power cables to a central data logger system. 
This included important components such as solar panels, batteries, and a SIM card for facilitating 
remote storage connection (Figure 8). The interconnected network of components ensured the efficient 
and accurate gathering of data for further analysis and interpretation. 
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Figure 7: Depicts different components of the lysimeter. The lysimeter core cylinder and housing barrel (a), lysimeter bottoms with gypsum (b), 
lysimeter and drainage balances (c), tensiometers (d), drainage bottle and pump (e), lysimeter cylinder with weighing balance (f), lysimeter cylinder 
with sensors installed, lysimeter battery recharging solar panel and data logger (h) while (i) shows inside the logger box. 
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Figure 8: Provides and overview of the lysimeter installation during different cropping seasons. The soil monolith extraction using the lysimeter 
cylinder, straps, and a jack (a-d), lysimeter cylinder bottom closure (e), final lysimeter field setting (f), barely in lysimeter during 2019 (g), maize in 
2020 (h), barley in 2020 (i) and soybean in 2021 (j).  
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2.2 LYSIMETER DATA MEASUREMENT AND ET DETERMINATION 

To measure ETa for different crops, two smart field lysimeters (SFL-600, METER Group©) were installed 
during the 2019, 2019-2020; 2020 and 2021 cropping seasons. The pictures depicting the barley 2020 
and soybean 2021 seasons are shown on figure 10. Each lysimeter consisted of a stainless-steel 
cylinder, 60 cm in height and 30 cm in diameter, which was specifically designed to replicate the field 
conditions of the soil and barley crop. The lysimeters were equipped with weighing balances to 
continuously measure changes in mass (Kg) throughout the cropping period. The primary component 
measured by the lysimeters was the change in storage (ΔS), representing the variation in soil moisture 
levels. The weight of the lysimeters was recorded at one-minute intervals throughout the season, 
providing high temporal resolution data for immediate decision making in real-time. In addition to mass 
measurements, each lysimeter was equipped with sensors to measure various soil parameters at 
different depth intervals (5, 30, and 55 cm). These parameters included volumetric soil water content 
(%), temperature (°C), electrical conductivity (mS/m), and water potential (Kpa). The sensors provided 
real-time data, collected at 10-minute intervals, ensuring that the information retrieved from the 
lysimeters could be used promptly for decision-making purposes. The measurement data collected by 
the lysimeters were transferred to a digital data logger (DT80M dataTraker©), which stored the data 
internally and transmitted it to a cloud-based storage system via a built-in modem equipped with a local 
network connection Sim card. The cloud storage capability allowed remote data acquisition, reducing 
the need for frequent field visits to access the data. To measure the drainage component of the water 
balance, a drainage vessel with a weighing balance was placed below the lysimeters to quantify the 
excess water from the lysimeter bottom. An intelligent automatic pump was incorporated within the 
drainage vessel to maintain consistent boundary conditions between the soil within the lysimeter and 
the field. This innovative feature ensured that the lysimeter accurately represented the field soil water 
conditions. When the lysimeters soil became drier than the field conditions, the pump automatically 
returned drainage water from the vessel back into the lysimeter, ensuring equilibrium. Similarly, when 
the lysimeters soil became too wet, the pump automatically pumped water out of the lysimeter cylinder 
and into the drainage vessel. The Smart Weighing Field Lysimeter functioned by measuring both the 
mass of the crop-planted lysimeter cylinder and the quantity of drainage water from the lysimeter. 

 

 

Figure 9: Smart field weighing lysimeter setting. 
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Figure 10: Lysimeter setting during winter barley season 2020 and Soybean in 2021. 
 
The lysimeter evapotranspiration was estimated using the formula: 
 

𝐸𝐸𝐸𝐸𝑎𝑎 =
(𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛) − (𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛+𝑏𝑏 + 𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛+𝑏𝑏)

�𝜋𝜋4� 0.32
 

 
ETa represents ETa on the nth day, LYWn represents the weight of the lysimeter in kg on the midnight 
of the nth day, SWWn represents the weight of the percolate water vessel storage also in kg on the 
midnight of the nth day. LYWn+b and SWWn+b represents the lysimeter weight and storage vessel weight 
on the nth day of the next day. The water density was assumed to be 1000 kg m-3, while 0.3 is the 
diameter of the inner core barrel of the lysimeter (Ratshiedana, 2022). To convert the mass of the 
lysimeter from kilograms to millimetres, the water density assumed to be 1000 kg m-3 which was 
converted to 0.001 m-3. The water density of 0.001 m-3 was divided by the surface area of the lysimeter 
being 0.0707 m-2, equal to 0.014 m equivalent to 14 mm. 
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CHAPTER 3: LYSIMETER DATA PROCESSING (MULTI-
TEMPORAL ANALYSIS)  

3.1 INTRODUCTION 

This section provides a detailed description of the lysimeter data analysis post field measurements. 
Measured raw data on lysimetric and drainage masses as well as measurements made from the 
lysimeter sensors are explained and portrayed through graphs throughout the section. A more detailed 
description of how mass measurements are converted into the actual amount of water lost in between 
irrigation and subsequent events is provided. The processes involved in the removal of noise between 
measurements is also narrated while the outputs from various sensors located within the lysimeter are 
presented. 

3.1.1 Lysimeter data selection and processing 

Data cleaning and removal of noise that occurs from external activities such as mechanical vibrations, 
farm attacking animals and strong winds amongst many other factors is crucial before using data for 
quantification of crop evapotranspiration, data cleaning reduces false quantifications which can lead to 
wrongful decision making. Data recorded by both lysimeters for different seasons were inspected for 
anomalous values such as negative values, error readings on the weighing balance and abnormal 
readings causing spikes which cannot be explained. ET data focus was on rainless days with zero 
irrigation, zero-dew or and frost days. The purpose of removing water input days was to allow monitoring 
water use after a known irrigation amount event, nevertheless; irrigation days yield negative ET due to 
weight differences between the less wet and irrigated soils. Following data cleaning, the data was 
imported into the origin lab software and plotted against time to enable smoothing of the data for ease 
interpretation using the Savitzky-Golay filter at 20 minutes window to remove anomalies (Figure 11), 
manual filtering was also done for the values which could not be smoothed by the automatic filter. The 
Savitzky-Golay filter was used because it has the capability to enhance the precision of the measured 
data without removing the important information from the measured weights. 
 
 
 

 
Figure 11: Noise associated with various lysimetric distortion vs noise-filtered data. 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

 
20 
 

3.1.2 Lysimeter mass balance 

Figure 12 illustrates the fluctuations in lysimeter mass (kg) recorded on the weighing balance from 
September to October 2019. The gradual decline in lysimeter weight corresponds to crop water usage, 
indicating water consumption by the crops. On the other hand, the sudden vertical increases in weight 
represent irrigation events and the associated water depth applied to the crops. Such weight increments 
indicate the addition of water content due to irrigation and not precipitation bearing in mind the 
experiment was based on irrigated winter barley when there is no precipitation in the area. Conversely, 
a decrease in lysimeter weight indicates water loss through evaporation and transpiration processes. 
This decrease signifies the reduction in water content within the lysimeter, caused by the natural water 
loss from the crops to the atmosphere during their growth and development. 

 
Figure 12: Lysimeter weight fluxes throughout the 2019 barley cropping season. 

3.2 DETERMINATION OF ACTUAL ET AT DIFFERENT TIME SCALES USING SMART 
FIELD WEIGHING LYSIMETERS 

 
To calculate the actual evapotranspiration fluxes, lysimetric data from smart field weighing lysimeters 
recorded from 2019 to the end of 2021 cropping seasons for different crops within the experimental 
farm were used.  
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Table 1: Cropping seasons and their associated crops during the experimental period. 

Season Year Crop 

Season 1 winter  2019 Barley 
season 2 summer 2019-2020 Maize 
season 3 winter  2020 Barley 
Season 4 summer 2020-2021 Soybean 

 
Pre-processing of the lysimeter data was done to fit the hourly, daily, and monthly ETa requirements. 
Evapotranspiration was determined using two smart field weighing lysimeters (SFL-600) based on the 
weight variations of the lysimeter weighing balance when irrigation was discontinued. 
Evapotranspiration was computed using the lysimeters, in-situ weight readings, indicated as (LYW), 
and the weight of the storage vessel, designated as (SWW). The two lysimeters were connected to a 
data logger which was programmed to record, store and transfer measurement data from the load cells 
every 10 seconds. The data was downloaded from the cloud storage and saved as .csv files for analysis. 
For quality and maintenance purposes, monthly visits to the location were the lysimeters were installed 
were undertaken to assess the field conditions, vegetation planted and the drainage containers for flood 
checks. The decrease in the lysimeter cylinder weight was caused by the evaporation of water from the 
crop and soil surfaces as well as transpiration of water through the tissues of the crop, the increase in 
weight was associated with irrigation, precipitation, and dew effects. The lysimeter weight changes 
measured in kilograms, were converted to the equivalent depth of water in millimetres, by dividing the 
changes in weight of the lysimeter between periods by the density of water in grams as well as the 
surface area of the lysimeters in square metres. The hourly ETa was calculated based on the weight 
changes between two consecutive hours, while daily ETa values were calculated by summing up all the 
daily ETa values obtained from 08:00 am and 17:00 pm on a 24-hour period in winter for barley crop 
and 5 am to 18:00 pm for summer crops (maize and soya beans), the purpose of selecting data between 
the hours was to eliminate the diurnal effects caused by dew or frost which possibly add weight on the 
lysimeter balance. The choice was influenced by the fact that evapotranspiration occurs between 
sunrise and sun set when there is sufficient energy to evaporate water from surfaces, transpiration also 
cease when the sunlight is reduced stopping the processes, the diurnal variations in this study were 
taken as dew or frost influenced. They smart field weighing lysimeters directly measures the water 
balance components being the amount of irrigation or incoming precipitation, frost and dew events as 
incoming water which causes changes in the lysimeter storage. Irrigation and precipitation were also 
measured directly using a Hobo-link weather station rain gauge situated 10 metres north the two 
lysimeters. At every 10 minutes interval drainage was measured by the lysimeters. Adding all the 
measured components, the only component not measured remains the actual crop evapotranspiration. 
The water balance equation is used to calculate evapotranspiration: 
 
                                                                                𝐸𝐸𝐸𝐸 = 𝑃𝑃 − 𝑅𝑅 − ∆𝑆𝑆  
 
ET is the water lost through evaporation (E) and plant transpiration (T) while P represents Precipitation 
and R denotes Rainfall while ∆S denotes change in storage. Precipitation in this situation was taken as 
irrigation input, another input was water pumped back into the systems by tensiometers when the 
conditions were to overlap. Change is storage was measured by the water accumulation in the drainage 
system changes. The actual evapotranspiration from lysimeters is calculated as Doležal et al. (2018). 
 

𝐸𝐸𝐸𝐸𝐸𝐸, 𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 1 + 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 + 1  
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Where ETa (mm) ETa,i is the actual crop evapotranspiration, LYWn=Lysimeter Weight at nth time, 
SWWn=Drainage Weight at nth time, LYWn+b=Lysimeter Weight at n+b time, SWWn+b=Drainage 
Weight at n+b time. 
                                              𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸 = 𝜋𝜋𝐿𝐿2 = 𝜋𝜋 × 0.152 = 0.0707𝐿𝐿2         
         
When the drainage is zero, evapotranspiration can be obtained directly by multiplying the change in 
storage with the density of water which can be calculated as: 
 
                1 𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐸𝐸𝑘𝑘𝐿𝐿 𝑤𝑤𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = 0.001𝐿𝐿3 = 0.001𝐿𝐿30.0707𝐿𝐿2 = 0.014𝐿𝐿 = 14𝐿𝐿𝐿𝐿   
 

1𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐸𝐸𝑘𝑘𝐿𝐿𝑤𝑤𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = 0.001𝐿𝐿3 = 0.001𝐿𝐿30.0707𝐿𝐿2 = 0.014𝐿𝐿 = 14𝐿𝐿𝐿𝐿  

3.3 EVALUATION OF LYSIMETRIC MEASUREMENTS 

To evaluate the effectiveness of the lysimeters in determining ETa, irrigation days excluded in the 
quantification of ETa as one of the water balance components was computed as measured by the 
lysimeters and compared to irrigation measurements measured directly by an automatic weather station 
(AWS) rain-gauge. Statistical analyses were done to assess the relationship between the two measured 
observations. 

3.4 RESULTS 

3.4.1 Actual evapotranspiration from smart lysimeters 

Figure 14 depicts the daily ETa measured by the smart field weighing lysimeters during the 2020 winter 
barley crop season. ETa is low at the beginning of the season when the crop is germinating and 
increases gradually in different phenological stages. Figure 13 presents a detailed representation of 
ETa fluxes quantified throughout the barley cropping season, starting from approximately the 7th of 
September, and extending towards the end of October 2019. The graph portrays the fluctuations in ETa 
fluxes over time, offering valuable insights about the dynamic nature of water consumption by the barley 
crop during this period. During the initial days of September, the hourly ET values were relatively lower 
around 0.55 mm/hour, indicating moderate water consumption by the crop. As the cropping season 
progressed towards late October, there was a noticeable upward trend in ETa fluxes with the average 
of 1 mm/hour. This observed increase in ET can be attributed to several factors that influenced the 
barley crop’s water demand and transpiration rates in two ways. Firstly, the growth of the barley crop 
had advanced during this period, leading to an increase in crop biomass. As the crop biomass 
increases, so does the overall water requirements of the barley plants as well as the weight of the 
lysimeters. The higher demand for water by the growing crop resulting in an increase on ETa fluxes. 
Secondly, irrigation practices during the cropping season contributed significantly towards the 
availability of water for the barley plants. As the season advanced, the frequency and volume of 
irrigation water provided to the crop increased as reflected on Figure 13 around 03/10/2019 and 
15/10/2019. This additional water supply was to ensure sustainable crop water needs, supporting robust 
growth and transpiration rates, thereby reflecting in the rising ET values around the same period of 
intensive irrigation with ETa reaching around 1.2 mm/hour. Furthermore, the influence of temperature 
on ETa cannot be overlooked, as September approaches the end, the temperatures appeared to rise 
within the lysimeter as depicted in Figure 13, creating a warmer and more favourable environment for 
plant transpiration. The increased temperature stimulated the barley crops to transpire more actively, 
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leading to higher ETa fluxes. The dynamic nature of the ETa fluxes depicted in Figure 13 demonstrates 
the importance of closely monitoring and understanding crop water requirements throughout the 
cropping season. Accurate estimation of ET fluxes enables farmers to optimize their irrigation 
schedules, ensuring that the crop’s water needs are met efficiently and without unnecessary water 
wastage. During the initial stages of growth, in the preliminary phase, rate exhibited relatively low rates 
as the barley crop developed. Throughout this stage, the barley plants laid the foundation for their 
growth, resulting in a measured ETa that aligned with their growth status. As the barley plants 
transitioned into the vegetative stage, a notable shift in ETa dynamics became apparent. The ETa 
values showed an increase, mirroring the increase in growth of the barley plants and the concurrent 
expansion of their leaf surface area. This growth-driven increase in ETa was closely linked to the 
transpiration rates as the plants capitalised on their enlarged leaf coverage for water exchange with the 
atmosphere. Upon entering the reproductive stage, characterized by heading and flowering, a 
transformation in ETa composition was evident. During this phase, transpiration emerged as a 
prevailing force in driving ETa, assuming a more pronounced role compared to the prior dominance of 
evaporation. Continuing along the seasonal timeline into the grain filling and maturation phase, ETa’s 
behaviour changed. The recorded ETa values exhibited a marginal decline, this reduction in ETa 
demonstrates the crop response as they prioritized grain development. Figure 13 shows ETa fluxes 
during the maize growing season, while figure 14 shows the 2020 barley cropping season. Figure 15 
portrays the hourly ETa fluxes extracted during the 2021 summer soyabean crop season, ETa varies 
in different days with ETa being more pronounced in hottest days. ETa variability at night-time appears 
to be low increasing slowly from sunrise and reaching maximum limit around mid-day time gradually 
decreasing until sunset. This is influenced by the solar radiation pushing more water from the soil 
medium and out of the crop leaves. 

 
Figure 13: Quantified hourly ETa during zero-irrigation days and irrigation amounts during the 

2019 barley season. 
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Figure 14: Actual evapotranspiration fluxes throughout the 2019-2020 maize season. 

 

 
Figure 15: Quantified hourly ETa during zero-irrigation days and irrigation amounts during the 

2020 barley season. 
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Figure 16: Quantified hourly ETa during zero-irrigation days and irrigation amounts during the 

2021 Soybean season. 

3.4.2 Irrigation and ETa assessment 

The illustration provided by Figure 17 depicts the relationship between irrigation events and ETa, which 
represents the crop’s water demands. The findings reveal that throughout the duration of the 
experiment, irrigation did not consistently meet the full water requirements of the crops. However, 
around the dates of September 27th and 28th, 2019, irrigation approached the ETa values, although it 
did not precisely match the required water amounts. This alignment is evident in the graph along the 
zero-line, where the disparity between irrigation and ETa is minimized. It is evident that approximately 
57% of the time, irrigation exceeded the crop’s water demands. Conversely, during 43% of the days, 
irrigation fell short of providing the necessary water to meet the actual water lost by the crops. When 
irrigation surpassed the crop water demand, the irrigation-ETa graph exhibited a positive shift above 
the zero-line. On the contrary, instances where ETa exceeded irrigation resulted in a negative shift, 
moving further away from the zero-line on the graph.  
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Figure 17: The relationship between irrigation events and ETa. 
 
Throughout the winter barley season of 2020, the variation between irrigation and ETa is visually 
depicted in Figure 18. It is evident from the data that the quantity of irrigation administered to the crops 
did not align closely with the genuine water demand of the crops. On certain days, the amount of 
irrigation exceeded the actual demands, while on other days, it fell short of meeting the required water 
loss. However, on the 14th of August 2020 and the 18th of October 2020, instances occurred where the 
irrigation closely matched the ETa values. This alignment is clearly demonstrated in both the irrigation-
ETa difference graph and the zero-line graph. Specifically, the graphs illustrate that during these dates, 
the disparity between irrigation and ETa was minimal, indicating a close match between the actual 
irrigation and the crop’s water requirements. 
 

 
 

Figure 18: The ETa vs irrigation during winter barley season of 2020. 
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During the soybean season in 2021, the contrast between irrigation and ETa is represented in Figure 
19. The findings reveal that on most days during the season, the irrigation levels were insufficient in 
meeting the actual water requirements of the soybean crops. Throughout most days, the rate of ETa 
consistently surpassed the levels of irrigation, providing a recurring pattern where the crop’s water 
needs were not adequately addressed through irrigation. However, there were three specific days within 
the season where the scenario deviated. On these days, the rate of irrigation managed to match the 
corresponding ETa values. 
 

  
 

Figure 19: The ETa vs irrigation during the soybean season in 2021. 

3.4.3 Lysimeter temperature variability 

Figure 20 presents the response of temperature sensors at various depths within the lysimeter cylinder, 
offering insights into the soil’s thermal dynamics. The temperature sensor, L1, situated close to the 
surface of the lysimeter column, displays higher temperature fluctuations compared to sensors located 
at deeper soil depths. The L1 sensor exhibits more sensitivity to diurnal and seasonal temperature 
changes, as well as variations in air temperature, radiation, and surface cooling and heating effects. 
Being near the surface, this sensor is directly influenced by these surface-related factors, resulting in 
more pronounced temperature fluxes. On the other hand, the middle (L2) and bottom (L3) temperature 
sensors respond at a slower rate to temperature fluctuations. These sensors experience reduced 
exposure to direct influences from surface temperature variations. Consequently, the lower temperature 
sensors reflect slower and smaller temperature fluctuations due to the less immediate impact of surface-
related factors. The same trend is observed throughout all the seasons as displayed on the figure 20. 
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Figure 20: Temperature fluxes within the lysimeter. 
 
Figure 21 illustrates the response of three water potential sensors located at different depths: L1, L2, 
and L3. The upper sensor, L1, situated closer to the soil surface, exhibits more frequent fluctuations in 
water potential, which can be attributed to variations in the moisture content status. This is because the 
L1 sensor is directly influenced by irrigation, evaporation, and transpiration processes. When irrigation 
water is applied to the lysimeter, the water potential near the soil surface changes rapidly, leading to 
more frequent fluctuations in this sensor’s readings. The middle sensor, L2, responds with a slight delay 
compared to L1. This delayed response is due to the slower movement of water from the upper layer 
(L1) to the middle layer (L2). The rate of water transfer through the lysimeter column is influenced by 
hydraulic conductivity fluctuations and the soil’s water holding capacity, resulting in a slightly delayed 
response in L2 compared to L1. The lower sensor, L3, depends on the movement of water from the 
upper two layers. The rate of water transfer to the lower layer is further slowed down due to hydraulic 
conductivity fluctuations and the soil’s water holding capacity. As a result, the response of the L3 sensor 
is significantly delayed compared to L1 and L2, reflecting the slower water movement to the deepest 
layer of the lysimeter. 
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Figure 21: Water potential fluxes within the lysimeter. 

 
Figure 22 depicts the variation in electrical conductivity (EC) as measured by three sensors located at 
different depths within the lysimeters. The response of the EC sensors, similar to the moisture sensors, 
varies depending on their depth within the lysimeter cylinder. The upper EC sensor, L1, situated near 
the lysimeter and land surface, exhibits a rapid response to changes in electrical conductivity. This is 
because when irrigation water is applied, there is an immediate increase in EC near the soil surface 
due to the dissolution of salts in the more saturated soil. The middle EC sensor, L2, shows a delayed 
response compared to L1. As irrigation water percolates down through the soil layers, it carries some 
of the dissolved salts with it. Therefore, the middle EC sensor also records an increase in EC but with 
a slower response time compared to L1. The bottom EC sensor, L3, located at the deeper soil layer, 
responds extremely slowly to variations in EC. This is because irrigation water reaching L3 has 
undergone soil filtering from the upper and middle soil layers, which could have diluted some of the 
dissolved salts. As a result, variations in EC at the lower depth are less pronounced. Similar 
observations on the sensors, responses around the 5th of September 2019 show that the bottom EC 
sensor displays an increase in EC, while the middle EC sensor also shows an increase above the near-
surface sensor.  
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Figure 22: Soil electrical conductivity fluxes within the lysimeter. 
 
Figure 23 shows the relationship between lysimeter weight changes and soil moisture content (SWC). 
Post precipitation or any irrigation event, soil moisture content is higher as it is with the lysimetric mass. 
With time SWC declines as we move away from the irrigation or precipitation event, the lysimeter mass 
also behaves in a similar pattern as portrayed by (a) and (b).  
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Figure 23: The influence of soil moisture (SWC) (b) in the variability of lysimetric mass 

changes (a). 

3.4.4 Lysimeter soil moisture dynamics 

Figure 24 presents the variability in soil moisture over time and at different depths, specifically at three 
sensor locations: L1, L2, and L3. L1 is the sensor closest to the surface, while L3 is positioned at the 
bottom of the lysimeter cylinder. The response of the sensors to irrigation is influenced by their depth. 
L1, being near the surface, shows a rapid increase in moisture content upon irrigation since it is the first 
to receive the irrigation water. The L2 sensor responds to irrigation at a slower rate because it takes 
considerable time for the irrigation water to infiltrate from L1 to L2. Consequently, the middle L2 sensor 
demonstrates a delayed response to irrigation. The L3 sensor, situated at the lower end of the lysimeter 
cylinder, exhibits the slowest response to irrigation events. The water applied as irrigation passes 
through L1 and L2 layers gradually percolating down to the lower L3 layer, causing a further delay in 
the response rate of the L3 sensor compared to L1 and L2. Figure 24 (a) also indicates an increase in 
soil moisture content response on the bottom sensor, L3, around the 5th of September 2019. 
Interestingly, the middle soil moisture sensor, L2, shows an increase above the near-surface sensor, 
L1. This observation can be attributed to the fact that the near-surface soil is more exposed to 
atmospheric conditions, including evaporation and transpiration by the cropped barley in the lysimeter. 
These processes lead to water being drawn out of the soil, resulting in lower moisture levels near the 
surface (Soulsby et al., 2021). In contrast, the deeper soil layers, such as the location of L3, experience 
less influence from these atmospheric conditions and may retain moisture for longer periods. Plant roots 
play a significant role in extracting water from the soil to support their growth and metabolic processes. 
Near-surface roots are more likely to consume moisture, contributing to lower moisture levels in the 
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topsoil. However, at deeper soil layers, the presence of roots might be less significant, allowing more 
moisture to accumulate. 

 

Figure 24: Cumulative soil moisture variability within the lysimeter at three different sensors 
and depths. 

 

3.4.5 Relationship between soil moisture and evapotranspiration 

Figure 25 shows a comparison of ETa with SWC% on selected days with no irrigation or rainfall. The 
figure shows the relationship in terms of ETa pattern against the L1, L2, and L3 moisture sensors. The 
L1 sensor displays a more pronounced reaction that closely matches the patterns seen in ETa. The 
figure indicates that the uppermost layer, as indicated by L1, plays a significant role in capturing 
immediate moisture changes that are relevant to ETa processes. The strong correlation between the 
readings of L1 and ETa indicates that the near-surface layer has a direct influence on factors that drive 
ETa. While L2 and L3 also offer insights into soil moisture dynamics, their responses might be 
influenced by deeper soil processes, such as water movement due to gravity or root activity. However, 
the behaviour of the L1 sensor, which closely reflects ETa, pattern highlights its importance as a key 
indicator of immediate soil moisture changes relevant to ETa. During season 4 indicated by figure 25 
(d), the L3 sensor also demonstrates a similar trend and response as ETa pattern. 
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Figure 25: Cumulative soil moisture variability within the lysimeter at three different sensors 
and depths. 

3.4.6 Validation results based on the 2019 season. 

Based on the 2019 data, the statistical analysis revealed a strong positive correlation between the two 
datasets, with a correlation coefficient calculated to r=0.84. The R2 value was calculated to 0.7, 
indicating a considerable amount of variance in the irrigation depths can be explained by the rain gauge 
measurements (Figure 26). The significance of the relationship was confirmed by a highly significant p-
value, which was found to be less than 0.005. This implies that the likelihood of obtaining such a strong 
correlation by chance alone is extremely low, thus lending more weight to the validity of the findings. In 
terms of the actual irrigation amounts, the cumulative total measured by the rain gauge amounted to 
188.4 mm, while the smart field weighing lysimeter recorded a slightly lower total of 184.2 mm. The 
difference between the two measurements was merely 4 mm over the entire evaluation period, 
indicating a high level of agreement between the two methods. Looking at individual measurements, 
the rain gauge recorded a minimum irrigation depth of 5.4 mm, whereas the lysimeter registered a 
slightly higher minimum value of 5.8 mm. Similarly, the maximum irrigation depth recorded by the rain 
gauge was 16 mm, while the lysimeter recorded a slightly higher value of 16.7 mm. Analysing the mean 
irrigation amounts, the rain gauge data showed an average of 11.08 mm, while the lysimeter data 
showed a slightly lower mean of 10.84 mm. These minor differences in minimum, maximum, and mean 
values suggest that the two methods of measuring irrigation depths yield similar results overall. 
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Figure 26: Relationship between measured irrigation depth from the ONSET rain gauge and 
depth measured by the smart weighing lysimeter in 2019; 2020 and 2021. 

3.5 DISCUSSIONS 

 
The behaviour of the lysimeters during the entire measuring and monitoring period on quantifying the 
soil water balance components was as expected. The nature and pattern at which the lysimeters weight 
changed was that, during irrigation events a sharp contact gain indicating a sudden change in weight 
became prominent, similar observations have been found in several study efforts (Mpelasoka et al., 
2001; Shekharet al., 2022). At the beginning of each day, the lysimeters had an initial weight record 
which represented the total mass of the lysimeter cylinder as a function of the soil monolith, cropped 
vegetation and soil water content available in the entire system. As the daytime progresses and 
temperatures increase, soil water evaporation and crop water transpiration rates also increased, these 
processes led to water vapor escaping directly into the atmosphere and resulted in a decrease in the 
lysimeters mass. Similar findings have also been reported on efforts made by Salman et al. (2023) in 
their study using four mini-lysimeters. The net lysimeters weight changes at the end of the day reflects 
the overall water gain or loss in the lysimeter systems, our results reflect the net water lost between 
irrigation events, this information is key because it monitors the crop water use post irrigation which 
then assist in determining the amount required in the next irrigation event. Generally, it is important to 
note that the weight of a lysimeter can fluctuate throughout the day due to various environmental 
conditions, Zsembeli et al. (2019) narrated the factors that influence the lysimeter weight. Findings on 
this study also confirmed the introduction of noise between measurements, to compensate for these 
effects on ET computations, the raw data was passed through a Savitzky-Golay filter process to smooth 
the data for accurate estimations, such processes have been undertaken in the studies of (Peters et 
al., 2014; Moorhead et al., 2019; Gebler et al., 2015). Generally, at sunset when solar radiation 
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decreases, evapotranspiration also decrease, with lower solar energy input, the rate at which water 
evaporates from the soil and transpires from plants decreases (Bakhshoodeh et al., 2022). As 
consequence, the weight of the lysimeter systems changed slowly during the evening and overnight 
hours where it becomes stable at times. Changes in the lysimeters weight were also observed at night-
time, however; these slight variations observed at night within the lysimeters system may not be directly 
related to the time of day but other effects such as dew or frost as narrated by Groh et al. (2019). Such 
scenarios have also been reported in various studies where small amounts of weight increases occur 
at night (Ding et al., 2010; Groh et al., 2019; Ratshiedana, 2022; Tolk and Evett, 2009). 
 
The inclusion of various sensors in the lysimeters also demonstrated enhanced intelligence of the SFL 
which yielded additional data on various soil-water parameters which included soil water content, soil 
electrical conductivity, temperature variability, and water potential within the lysimeters. The sensors 
exhibited a notable trend where the near surface sensors demonstrated higher sensitivity and 
responsiveness to surface environmental conditions throughout the season compared to the middle to 
deep-located sensors. These findings align very well with similar results reported by Baalousha et al. 
(2022). The electrical conductivity was found to be higher when soil moisture is high, according to 
Ratshiedana et al. (2023) EC becomes high when there is sufficient soil moisture to allow the movement 
of changes within the soil medium. EC readings can aid in salinity indication, which on our findings 
comparing the EC values with the South African published EC values on salinity, acidity and sodicity by 
Nell and Van Huyssteen (2018), no signs of salinity were found in the lysimeter EC measurements 
throughout the cropping season. High EC values were quickly registered by the top sensor located near 
the surface, similar findings have been reported by Moorhead et al. (2019). Soil moisture sensors were 
active throughout the cropping season measuring the amount of soil water content present at three 
depth levels of the lysimeter cylinder. The top sensor near the surface was the most responsive sensor 
detecting irrigation events immediately as irrigation starts while the middle and bottom sensors 
responded gradually with some delay time because of depth, crop water abstraction on the upper layer. 
Crop roots extract water from the soil to support their growth and metabolic processes, therefore, the 
near-surface roots are more likely to consume moisture, contributing to lower moisture levels in the 
topsoil. Contrary, at deeper soil layers, the presence of roots can be less significant, allowing more 
moisture to accumulate.  Baalousha et al. (2022) also mentioned that bottom sensors detect water with 
slow response because of sub-soil compaction leading to poor soil water draining performance whereas 
the top sensor occupies more loose soils because of soil tillage resulting in faster water draining. 
Moreover, the water potential sensors at the top of the lysimeters monitored changes in the soil’s water 
potential. Water potential reflects the soil’s ability to retain or release water and is influenced by irrigation 
practices. The water potential sensors also showed a similar behaviour to other sensors, where the 
response to irrigation was quicker. It is worth noting that water potential gradient between the lysimeter 
soil and its surroundings determines the direction and rate of water movement, the water potential of 
the lysimeter soil affects the infiltration of water into the lysimeter. If the lysimeter soil has a lower water 
potential than the incoming irrigation water, water will move into the lysimeter through infiltration, 
increasing its water content and weight. Higher water potential in the soil encourages the movement of 
water from the soil to the atmosphere through evaporation and transpiration. This contributes to water 
loss from the lysimeter, reducing its water content and weight. The water potential of the lysimeter soil 
also influences the potential for drainage. If the lysimeter soil has a higher water potential compared to 
the surrounding environment, water will drain from the lysimeter, reducing its water content and weight. 
The water potential of the lysimeter soil determines its water holding capacity, soil with a higher water 
potential has a greater capacity to retain water. Therefore, soils with lower water potentials may reach 
field capacity more quickly and experience greater runoff or drainage, leading to changes in the water 
balance. Generally, these sensors have a crucial role to play, for instance, by monitoring soil water 
content, farmers can determine when to irrigate, how much water to apply, and avoid overwatering or 
under-watering. EC sensors measure the ability of the soil to conduct electrical currents, which is related 
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to the soil’s salinity and nutrient content. High soil salinity can negatively impact crop growth and yield, 
as a result, through monitoring soil EC, farmers can identify areas of the field with excessive salt buildup 
and take corrective actions, such as adjusting irrigation practices or applying soil treatments. On the 
other side, temperature variability sensors monitor changes in soil temperature over time, temperature 
plays a critical role in various soil processes, including microbial activity, nutrient availability, and plant 
growth (Onwuka, 2018). Monitoring temperature variability can help farmers optimize planting and 
harvesting times, as well as adjusting irrigation schedules based on temperature trends, and mitigate 
consequences associated with extreme temperature fluctuations. Water potential sensors measure the 
energy required for water to move within the soil-plant system. This parameter provides insights into 
the availability of water to plant roots. By monitoring water potential, farmers can assess plant stress 
levels and water uptake efficiency which aids in optimizing irrigation schedules, ensuring that crops 
receive adequate water without wasting resources. The ETa values measured from the smart field 
weighing lysimeters were evaluated for accuracy by comparing the irrigation depth measurement from 
the Onset tipping bucket rain gauge with the irrigation depth measured by the smart field weighing 
lysimeters. A linear regression approach was applied on the measured irrigation depths from the two 
devices. The results demonstrated a strong positive r=0.84 value indicates that there is a notable linear 
relationship between the two datasets. In other words, as the irrigation depths measured by one method 
increase or decrease, there is a corresponding increase or decrease in the measurements from the 
other method. This correlation coefficient value suggests a relatively robust association between the 
two sets of data. The R2=0.7 value provides additional information about the strength of the correlation. 
It represents the proportion of variance in the irrigation depths that can be explained by the rain gauge 
measurements. With an R2 value of 0.7, it means that 70% of the variability in the irrigation depths can 
be accounted for by the rain gauge measurements. The value implies that the rain gauge data has a 
significant influence on the irrigation measurements obtained from the smart field weighing lysimeter. 
Moreover, the low p-value (p<0.005) obtained from the statistical analysis confirms the significance of 
the relationship between the two methods of measurement, as such the likelihood of obtaining such a 
strong correlation purely by chance is extremely low. Therefore, the results can be considered highly 
reliable and meaningful, supporting the practical application of both the rain gauge and lysimeter 
methods for irrigation monitoring and scheduling. 

3.6 CONCLUSIONS 

 
The findings from this study have confirmed that the implementation of smart field weighing lysimeters 
represents a highly effective tool for monitoring water usage, providing invaluable assistance in irrigation 
scheduling, and optimizing crop water productivity and efficiency. By offering critical insights into crop 
water requirements, water use efficiency, nutrient management, and soil moisture dynamics, these 
lysimeters play a vital role in water resource management. Throughout the course of this study, 
continuous and precise measurements of the water balance components have demonstrated the 
capabilities of smart field weighing lysimeters in improving agricultural irrigation practices, thereby 
contributing to the sustainable management of water resources. Moreover, the recorded data which 
was obtained remotely from the cloud storage system significantly reduced the need for on-site visits, 
which resemble the technological concept of the Internet of Things (IoT), thereby modernizing 
agricultural workload and operation costs. One crucial aspect to highlight in this study particularly from 
literature is the lack of ground actual evapotranspiration data in South Africa and the study area, 
necessitating further investigation into the water usage of other crop types within the Hartswater area. 
Smart field weighing lysimeters are becoming important tools in agricultural research and industry by 
providing ground-based evapotranspiration data at the field scale for validating ET models used at 
larger scales. They provide real-time opportunities to reduce water losses through ungoverned irrigation 
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plans. Their ability to create actionable strategies from the data collected has, up until now, been 
constrained in irrigated farming due to a lack of financial resources and expertise. To alleviate water 
scarcity, it is specifically advised that smart field weighing lysimeters be targeted to improve scientifically 
informed decision-making in agricultural water usage management. While the lysimeters employed in 
this study were not large, it has become evident that future research should explore the application of 
large lysimeters to assess the water use dynamics of the dominant pecan nut trees under irrigation in 
the area. This expansion into larger-scale experimentation would offer valuable insights into the 
irrigation needs and water requirements of major crops in the area. By using these advanced 
technologies, agricultural water use practices can be improved to ensure the sustainable utilization of 
water resources, aiding in better decision-making, water conservation, and cost reduction for farmers 
and the broader agricultural sector. 
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CHAPTER 4: EVALUATION OF REFERENCE 
EVAPOTRANSPIRATION METEOROLOGICAL MODELS  

4.1 INTRODUCTION 

Water use monitoring is one of the major challenges faced globally affecting the availability, control, 
and distribution of natural water resources amongst various water-reliant users. The lack of monitoring 
techniques hinders the determination of acceptable ways to reduce the overuse and misuse of the 
available limited water resources. Agriculture in most countries uses more water than other industries 
through irrigation practices which are not guided by the actual crop water demands. Water scarcity is 
one of the significant challenges facing countries and communities in arid and semi-arid zones 
(Donnenfeld et al., 2018). South Africa is a physically water-scarce country, a condition characterized 
by a significant disparity between the limited availability of freshwater resources and the growing 
demands for water across various sectors (Otieno and Ochieng, 2007). This pressing concern has been 
exacerbated by an interplay of factors such as climatic variations, population growth, industrial 
development, and agricultural demands (Palmer et al., 2004; Pretorius, 2018). Despite the existing 
conditions of water scarcity, a more alarming problem is that research has projected that by the year 
2025, a substantial majority of regions within South Africa will confront an even more severe and acute 
state of water scarcity (Otieno and Ochieng, 2007). Looking ahead to the near future, the prospects for 
water availability become increasingly concerning, the projected intensification of water scarcity comes 
with serious implications for the nation’s socioeconomic, and environmental balance and the 
sustenance of vital hydrological ecosystems. In South Africa, crop production consumes the highest 
percentage of the available water resources in the country, reaching over 75%, compared to water 
allocation to other sectors (Pahlow et al., 2015). Efficient agricultural water management through an 
increment in water use efficiency and water productivity represents major solutions to avail additional 
water that can be allocated to increase the cultivated area or be given to other water-using sectors 
(Keller and Keller, 1995).  
 
One of the most important components of the hydrological cycle is evapotranspiration (ET) which 
resembles a dual process of soil water and leaf-surface water loss accounting for the total water lost in 
a cropped environment (Zhang et al., 2023). This phenomenon can be categorized into three distinct 
groups: Potential evapotranspiration, Actual evapotranspiration, and Reference evapotranspiration. 
Potential evapotranspiration, as defined by (Irmak et al.,2003), refers to the evaporation of water from 
extended surfaces of a short green crop covering the ground, unable to resist water flow, and 
consistently supplied with water. This type of evapotranspiration is constrained and cannot surpass the 
evaporation from a free-water body, even under identical weather conditions. In contrast, actual 
evapotranspiration represents the amount of water utilized by an extensively vegetated surface with a 
crop in an active growth stage, featuring a canopy that covers the soil surface (Bhatt et al., 2019). Lastly, 
the term reference evapotranspiration was introduced to provide clarity to the potential 
evapotranspiration definition of a short green crop (Irmak et al.,2003). ETo is fundamental in the 
determination of crop evapotranspiration (ETc) which represents crop water demand in agricultural 
environments to aid in irrigation scheduling. However, the estimation of ETo is a complex process 
influenced by various climatic factors, making it crucial to employ robust models that capture the 
relationships between meteorological parameters. Moreover, for regions characterized by arid 
environments like South Africa where water scarcity is a prevalent concern, precise ETo estimation 
becomes even more imperative. 
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Interest in accurate quantification of ETo has increased with increased water demands and scarcity 
challenges particularly in irrigated arid and semi-arid agricultural regions for crop water use modelling 
(Jafari et al., 2021; Koffi and Komla, 2015; Moeletsi et al., 2013; Yassen et al., 2020). The Food and 
Agriculture Organization of the United Nations (FAO) Penman-Monteith algorithm has frequently been 
proposed for estimating ETo, but its accuracy and reliability are hampered by its demand for data 
requirements in areas with limited data availability such as areas with limited weather stations (Moeletsi 
et al.,2013). The FAO developed and introduced the standard ETo model Penman-Monteith (PM) which 
is a combination model to solve irrigation scheduling problems worldwide (Allen, 1998). Although a 
standard model exists, its limitations cannot be undermined, the PM model was developed based on a 
reference crop fully watered and continuously growing at a constant height (Allen, 1998). The 
assumption of crops being under ample supply of water is not true in arid environments with limited 
precipitations and water resources (Hua et al., 2020). The standard ETo method was developed and 
validated in humid conditions with stress free crops, its transferability to dry conditions requires local 
calibrations (Allen, 1998; Pereira et al., 2015). As a result, different empirical micrometeorological 
models have been developed over the years and are commonly used for estimating ETo to solve the 
problems of data limitations (Vaughan and Ayars, 2009). The commonly used models are classified into 
four categories as: radiation models, temperature models, aerodynamic-based models, and 
combination models for estimating the reference ETo incorporating the relationships between 
meteorological variables such as solar radiation, wind speed, air temperature, and humidity (Celestin 
et al., 2020). These models offer the advantage of considering multiple factors that contribute to the 
evapotranspiration process, providing a holistic understanding of water loss from agricultural land 
surfaces. Their accuracy, however, remains contingent upon the calibration and validation against 
localized environmental conditions. The arid regions of South Africa present a unique challenge in ETo 
estimation due to their distinctive climatic characteristics, marked by high temperatures, limited rainfall, 
and substantial water deficits. Traditional ETo estimation methods, often derived from meteorological 
data from distant weather stations, may not accurately capture the nuances of ET dynamics in such 
environments. Therefore, the development and validation of locally relevant ETo estimation models are 
essential for effective water management strategies tailored to the region’s specific needs.  
 
Different micrometeorological models were developed because of limited availability of data in the areas 
where they were developed and calibrated. On evaluation of different micrometeorological models, 
research has demonstrated that different models are usually accurate and applicable under climate 
conditions at which they were developed and calibrated at (Hargreaves and Samani, 1982; Makkink, 
1959). The limitations that arise on transferability of models from one region to another are based on 
the climatic conditions differences which vary spatially both in space and time (Myeni et al.,2021).  As 
a result, models which are adopted and applied outside their region of origin come with high chances 
of yielding poor performance. With examples: compared the performance of two temperature-based 
models namely the Hargreaves and Samani (1985) and the Thornthwaite (1948) to estimate decadal 
ET in Free State South Africa, their choice was because temperature is the common available variable 
which is measured in most weather stations of South Africa. They found that the un-calibrated models 
provided very poor results underestimating ET while the calibrated Hargreaves and Samani model 
yielded accurate accuracy ranges compared to the calibrated Thornwaite, the calibration here was 
based on the FAO’s Penman-Monteith model due to lack of measuring devices of ET. A study done by 
Lu et al. (2018) assessed and compared six potential evapotranspiration methods categorized as Three 
temperature-based models namely: Thornthwaite (1948), Hamon (1961), and the Hargreaves and 
Samani (1985) as well as three radiation-based being: Turc (1961), Makkink (1959), and Priestley and 
Taylor (1972) method at a regional scale in the Southeastern United States. They found big differences 
amongst different methods with Turc, Priestley-Taylor and Hamon methods performing better than other 
models.  
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ETo information is crucial for determination of crop evapotranspiration (ETc) in agriculture (Irmak et al., 
2009; Ko and Piccinni, 2009), this information is paramount for scheduling irrigation and managing 
water resources (Savva and Frenken, 2002). Inaccurate ETo estimations may also result in poor 
modelling of crop coefficients (Kc) and ETc which would probably result in misleading model outputs 
affecting the entire irrigation scheduling and water management strategies (Gu et al., 2021; Lea-Cox, 
2012; Lian et al., 2018). As a solution, internationally developed ETo models require local validation 
and calibration against the actual measurements under standard conditions of the environments at 
which they are being used at (Xing et al., 2008; Kumar et al., 2021). Therefore, the limitations of ground-
based measured actual evapotranspiration (ETa) hinder calibrations, development, and validation of 
ET models in many countries, particularly developing countries (Tang et al., 2012). As a result, many 
models are applied with no local validation or calibration because of validation data limitation (Landeras 
et al., 2008; Moeletsi et al., 2013). The biggest gap in ET models is their reliability outside areas which 
they originated from resulting in ET quantifications being questionable and unsuitable for use as inputs 
to other models.  Validation of ET models in South Africa has been done using data acquired using 
instruments with known inaccuracies (Dzikiti et al., 2014; Gokool et al., 2018; Gwate et al., 2018; 
Jovanovic et al., 2015; Majozi et al., 2017; Ramoelo et al., 2014). South Africa is a high climate variable 
country with most of its regions being semi-arid, arid and small areas which are temperate and hyper-
arid (Meadows and Hoffman, 2002). As a result of such conditions, accurate modelling of ETo in 
irrigated arid agricultural regions through validation, development and calibration of ET models is of 
utmost significance to enhance water resources monitoring and management. Recently, some 
researchers have attempted to validate and calibrate ET models based in South Africa integrating 
satellite and ground data (Dzikiti et al., 2014; Gokool et al., 2018; Gwate et al., 2018; Jovanovic et al., 
2015; Majozi et al., 2017; Ramoelo et al., 2014), however; limited work on validation of 
micrometeorological models have been done. In the studies that have been done, the limitations were 
the use few models which do not correspond to the areas which they were developed from, instruments 
with data limitations arising from measurement errors and data gaps due to climate variability. This 
leaves ET reliability in South Africa being the biggest data gap in the hydrological studies due to ground-
based measurement with high-accuracy instruments. A robust model for ET quantification is required 
to evaluate the water use efficiency. Water use monitoring by applying suitable local calibrated models 
is an efficient tool to assess water consumption and use efficiency in different land uses apart from 
agriculture. 
 
The present study aims to bridge the existing gap by evaluating the performance of micrometeorological 
models in estimating reference evapotranspiration in a South African arid environment using high 
precision smart field weighing lysimeter. This innovative approach provides real-time and localized data 
on water consumption by crops, enabling the development of site-specific crop coefficients that can 
enhance the precision of ETo calculations. By combining the advancements in micrometeorological 
modelling with the insights gained from smart field weighing lysimeter technology, this research seeks 
to contribute to the refinement of ETo estimation techniques in arid regions. The outcomes of this study 
have the potential to inform more efficient irrigation practices, improve water resource management, 
and ultimately promote sustainable agricultural productivity in the challenging climatic conditions of 
South African arid environments. 

4.2 METHODS AND MATERIALS 

4.2.1 Study area description. 

The study was carried out on an 18-ha experimental farm owned by the South African Barley Breeding 
Institute (SABBI) in Hartswater Town, an agricultural area in South Africa along the N18 road in the 
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Frances Baard District and the Phokwane local municipality in the Northern Cape province. The farm is 
located at the geographical coordinates Latitude: -27.72° S; Longitude: 24.74° E and -27.72° S; 24.74° 
E. The study area is in South Africa’s largest irrigation scheme, the Vaalharts Irrigation Scheme, which 
was established in the early 1930s to alleviate unemployment and poverty (Ojo and Ilunga, 2018). The 
study area is in the country’s arid region, receiving irrigation water predominantly from the Vaal River 
through the Bloemhof dam and via canals (Ellington et al., 2004). Most farms are irrigated with pivot 
irrigation systems, though flood irrigation, sprinklers, drip irrigation, and other methods continue to be 
employed (Pretorius, 2018). Annually, between November and March, the area receives approximately 
450 mm of rain on the Taung side and approximately 477 mm on the Jan Kempdorp side (Verwey and 
Vermeulen, 2011). Temperatures in the area have been recorded as high as 38.8°C and as low as 
-4.4°C (Ratshiedana et al., 2023; Verwey and Vermeulen, 2011). Le Roux et al. (2007) define the soils 
in the study area as sandy loam in texture. Salinity has been extensively researched in the area as a 
major issue with the area’s limited groundwater usage (Verwey and Vermeulen, 2011). The area is well-
known for its pecan production, but it also grows winter wheat, barley, maize, groundnuts, sorghum, 
cotton, lucerne, soybeans, tobacco, and other cash crops (Muller and van Niekerk, 2019). Cattle and 
poultry farming also exist in limited numbers (Maisela, 2007). The study area was chosen based on the 
availability of weather stations, a suitable arid environment with limited water, and a variety of crops to 
assess crop water usage. 
 

 
 

Figure 27: Locality map of the study area. 
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4.2.2 Ground-based data collection. 

4.2.2.1 Weather data 

To obtain a detailed understanding of the local climatic conditions and their impact on ET, an automatic 
weather station (AWS) was installed in the field. This AWS was a cutting-edge system provided by 
HOBOlink®, known for its precise measurements and data acquisition capabilities. The AWS was 
configured to record a range of climatic variables on both an hourly and daily basis. This included 
temperature, humidity, wind speed, solar radiation, ETo and irrigation depth (mm). The hourly and daily 
recording intervals were chosen to capture variations throughout the day and to assess overall daily 
trends in the climate. To enhance the depth of data collection and accuracy, the weather station was 
integrated with soil moisture and temperature sensors. These sensors were strategically placed in the 
soil and linked to data loggers, establishing a wireless connection with the AWS. This integration 
allowed for real-time monitoring of soil conditions, further aiding in the evaluation of ET by considering 
soil-water dynamics. Moreover, to quantify irrigation and precipitation accurately, the weather station 
was linked to a tipping bucket rain gauge. This facilitated precise measurements of irrigation and natural 
precipitation, which are important factors in understanding water availability and usage. Missing data 
were excluded from this study. 
 
 
 
 
 
 

 
 
Figure 28: The visual setting of an automatic weather station in relation to the weather station 

within the field. 

4.2.3 Actual Evapotranspiration Measurement 

Two smart field weighing lysimeters were installed within an experimental farm to measure the water 
balance components important for ET quantification. The installation of smart field weighing lysimeters 
within an experimental farm was crucial in accurately estimating ETa by measuring the important water 
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balance components. This process involved carefully placing specialized lysimeter cylinders, each 
equipped with a weighing balance mechanism, into protective barrels occupying excavated holes in the 
ground. These protective barrels were sealed with impermeable rubber membranes to isolate the soil 
column within the lysimeters. To capture detailed data on the soil-water relationship, sensors were 
placed at multiple depths within each lysimeter. These sensors were designed to measure various 
essential parameters, including temperature, moisture content, water potential, and soil electrical 
conductivity. This allowed for a detailed characterization of the soil-water conditions and how they 
changed over time. The sensors were connected to a data logger system, which recorded data at 
minute intervals. This frequent data collection ensured a high-resolution dataset, providing insights into 
the dynamic soil-water interactions. By monitoring and analysing this data, it was possible to quantify 
the actual crop water usage accurately for the different seasons. 

4.3 METHODOLOGIES 

This study has identified three types of models used for the estimation of reference evapotranspiration 
(ETo). The reference Evapotranspiration Calculation from Different Micrometeorological Models has 
been validated using relationships developed at the lysimeter level. The validated relationship between 
the ETo and ETa has then been used to extrapolate the measurements at the lysimeter level to larger 
scale.  
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Table 2: Radiation based models for reference evapotranspiration estimated estimation. 

Reference 
Evapotranspiration 

Model 

Equation Input Parameters References 

ETO_P-T 𝐸𝐸𝐸𝐸0 =
1
𝜆𝜆
�𝛼𝛼

𝛥𝛥
𝛥𝛥 + 𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺)� Elevation; Tmean; SR 
 

(Priestley and Taylor, 
1972) 

ET-Makkink 0,7 �
𝑅𝑅𝐿𝐿
𝜆𝜆
� �
∆
∆

+ ϒ� − 0,12 Elevation; Tmean; SR (Makkink, 1959) 

Turc 
 
 
 

0,0133 ∗ �
𝐸𝐸𝐿𝐿

𝐸𝐸𝐿𝐿 + 15
� ∗ (𝑅𝑅𝐿𝐿 + 50) 𝑖𝑖𝑜𝑜 𝑅𝑅𝑅𝑅 > 50% 

 

0,0133 ∗ �
𝐸𝐸𝐿𝐿

𝐸𝐸𝐿𝐿 + 15
� ∗ (𝑅𝑅𝐿𝐿 + 50) ∗ �1 + 50 −

𝑅𝑅𝑅𝑅
70

� (𝑖𝑖𝑜𝑜 𝑅𝑅𝑅𝑅 < 50%) 

  

Tmean; SR; RHmean 
 

(Turc, 1961) 
 

 
Irmak_Rn 

 
−0,611 + 0,149 ∗ 𝑅𝑅𝐿𝐿 + 0,079𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 

 
SR; Tmean 

 

 
(Irmak et al., 2003) 

Irmak_Rs (3,75 + 0,503𝑢𝑢2)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) SR; Tmean (Irmak et al., 2003) 
Jensen-Haisen 

 
𝑅𝑅𝐿𝐿 (0.025 ∗  𝐸𝐸 +  0.08) Tmean; SR (Jensen and Haise, 

1963) 

Tabari 1 
 

−0.642 + 0.174𝑅𝑅𝐿𝐿 + 0.0353𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 Tmean; SR (Tabari et al., 2013) 
 

Tabari 2 
 

−0.478 + 0.156𝑅𝑅𝐿𝐿 − 0.0112𝐸𝐸𝐿𝐿𝐸𝐸𝑇𝑇 + 0.0733𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿 SR; Tmax; Tmin. (Tabari et al., 2013) 

Caprio 
 

(0,01092708 ∗ 𝐸𝐸) + (0,0060706 ∗ 𝑅𝑅𝐿𝐿) Tmean; SR  (Caprio, 1974) 
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Table 3: Aerodynamic based models for reference evapotranspiration estimated estimation. 

Reference 
Evapotranspiration 

Model 

Equation Input Parameters References 

 
ET_Albrecht 

 
(0.1005 +  0.297 ∗  𝑢𝑢2) ∗  (𝐿𝐿𝐿𝐿 −  𝐿𝐿𝐸𝐸) 

Tmax; Tmin; THmax; MeanU2; 
RHmin  

(Albrecht, 1950) 

Trabert 0,408 ∗ �0,3075 ∗ √𝑈𝑈2𝑢𝑢� ∗ (𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) Tmax; Tmin; RHmax; MeanU2; 
RHmin 

(Trabert, 1896) 

Meyer (3,75 + 0,503𝑢𝑢2)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) Tmax; Tmin; RHmax; MeanU2; 
RHmin. 

(Meyer, 1926) 

wmo (1,298 + 0,934𝑢𝑢2 )(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) 
 

Tmax; Tmin; RHmax; MeanU2; 
RHmin. 

(WMO, 1996) 

ROhWER (3,3 + 0,891𝑢𝑢2)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) Tmax; Tmin; RHmax; MeanU2; 
RHmin 

(Rohwer, 1931) 

Brockamp-Wenner 
 

(0,543𝑢𝑢20,456)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) Tmax; Tmin; RHmax; MeanU2; 
RHmin 

(Brockamp and Wenner, 
1963) 

Penman 
 

0.35 ∗  (1 +  0, 24 ∗  𝑢𝑢2) ∗  (𝐿𝐿𝐿𝐿 −  𝐿𝐿𝐸𝐸) Tmax; Tmin; RHmax; MeanU2; 
RHmin 

(Penman, 1948) 

Mahringer 
 

(0,286𝑢𝑢20,5)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸)  Tmax; Tmin; RHmax; MeanU2; 
RHmin 

(Mahringer, 1970) 

Dalton (3,648 + 0,7223𝑢𝑢2)(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) 
 

Tmax; Tmin; RHmax; MeanU2; 
RHmin. 

(Dalton, 1802). 

 
 
Table 4: Combination models for reference evapotranspiration estimated estimation. 

Reference 
Evapotranspiration 

Model 

Equation Input Parameters References 

 
 

ETO_P-M FAO-56 
𝐸𝐸𝐸𝐸0 =

0.408∆(𝑅𝑅𝑎𝑎 − 𝐺𝐺) + 𝛾𝛾 � 900
𝐸𝐸 + 273� 𝑢𝑢2(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑎𝑎)

∆ + 𝛾𝛾(1 + 0.34𝑢𝑢2)  
Latitude; Tmean; Tmax; 

Elevation; Tmin; RHmean; 
RHmax; MeanU2; SR ; RHmin. 

 
(Allen, 1998) 
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Table 5: Temperature based models for reference evapotranspiration estimated estimation. 

Reference 
Evapotranspiration 

Model 

Equation Input Parameters References 

 
Ivanov 

 

 
 0,00006 ∗ (25 + 𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿)2 ∗ (100 − 𝑅𝑅𝑅𝑅) 

 
Mean Temperature; Mean 
Relative Humidity 

 
(Romanenko, 1961) 

Trajkovic 
 

[0,0023𝑅𝑅𝐸𝐸(𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 + 17,8)(𝐸𝐸𝐿𝐿𝐸𝐸𝑇𝑇 − 𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿)0,424]
𝜆𝜆

 
 

Latitude; Tmean; Tmax; Tmin  (Trajkovic, 2007) 

Schendel 
 16 ∗ �

𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿
𝑅𝑅𝑅𝑅

� 
 

Tmean; RH (Schendel, 1967) 

Ravazzani 
 

(0.817 +  0.00022 ∗ 𝑍𝑍)0.0023 𝑅𝑅𝐸𝐸(𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 +  17.8)(𝐸𝐸 − 𝐸𝐸 𝐿𝐿𝑖𝑖𝐿𝐿)0.5 Elevation; Tmean; Tmax; Tmin;  (Ravazzani et al., 2012) 

Hamon 
 𝑘𝑘(0.1651 ∗ 216,7)𝑁𝑁 ∗ �

𝐿𝐿𝐿𝐿
𝐸𝐸 + 272,3

� Tmean; Tmax; Sunshine Hours (Hamon, 1961) 

Papadakos 2,5(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸) Tmax; Tmin (Papadakis, 1965) 

Droogers and Allen 
 

0.003 ∗ (𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 + 20)(𝐸𝐸𝐿𝐿𝐸𝐸𝑇𝑇 − 𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿)0.4𝑅𝑅𝐸𝐸 Latitude; Tmean; Tmax; Tmin. (Droogers and Allen, 
2002) 

Calibrated 
Christiansen 

 
0.53 ∗ �

𝑅𝑅𝐿𝐿
𝜆𝜆
� RS (Abtew, 1996) 

Hargreaves and 
Allen 

 

(0.0135𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 + 0.2403) ∗
𝑅𝑅𝐿𝐿
𝜆𝜆

 Tmean; SR (Hargreaves and Allen, 
2003) 

 HS  [0,0023 ∗ 𝑅𝑅𝐸𝐸(𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿 + 17,8)(𝐸𝐸𝐿𝐿𝐸𝐸𝑇𝑇 − 𝐸𝐸𝐿𝐿𝑖𝑖𝐿𝐿)0,5]
𝜆𝜆

 
Latitude; Mean Temperature; 

Maximum Temperature; 
Minimum Temperature. 

(Hargreaves and 
Samani, 1985) 
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4.3.1 Radiation-Based Models 

 
The radiation-based evapotranspiration methods revolve around understanding how water stored in the soil 
and available in plant leaves escapes into the atmosphere. This process is primarily powered by the energy 
from sunlight, which causes the water to evaporate. These methods carefully consider three factors which are 
solar radiation (Rs), temperature (T), and humidity (Rh). The core idea behind these methods is that as solar 
radiation becomes more intense, it provides more energy that leads to increased evaporation of available 
water. This results in more water being lost from both the ground and plants. In these radiation-based methods, 
the key principle is that higher levels of solar radiation correspond to a greater potential for evapotranspiration. 
When temperature is incorporated into these methods, its role expands beyond just heating the air. It also 
warms up the surfaces of the ground and plants. Warmer surfaces prompt a higher rate of water turning into 
vapor and moving into the air (Caprio, 1974; Jensen and Haise, 1963). While solar radiation and temperature 
are critical factors, scientists have introduced an additional element into these methods which is relative 
humidity. Relative humidity indicates how much moisture is present in the air compared to the maximum 
amount it can hold at a specific temperature. This becomes particularly relevant in dry regions, where the air 
doesn’t hold much moisture. In such cases, more water vapor can be drawn from surfaces into the air, which 
further increases the potential for evapotranspiration (Turc, 1961). 

4.3.2 Temperature-Based Models 

Temperature-based methods revolve around temperature as a key driving factor for evapotranspiration. These 
methods focus on highlighting the crucial role that temperature plays in calculating potential evapotranspiration 
(PET), while also acknowledging the potential effects of other factors. In these methods, the primary emphasis 
is placed on temperature as the main factor that determines evapotranspiration. This perspective understands 
that the rate at which water vapor moves from the ground into the air is mostly controlled by changes in 
temperature. As temperatures increase, the energy available for water molecules to change from a liquid to a 
vapor state also increases, leading to a greater likelihood of evapotranspiration. The radiation-based methods 
include another factor which is relative humidity (RH). This provides evidence that the presence of moisture in 
the air can significantly impact how quickly evapotranspiration occurs. These methods consider how humidity 
levels can either help or hinder the movement of water molecules from the ground into the air. When humidity 
is high, evapotranspiration might be limited since the air is already saturated with moisture. On the other hand, 
when humidity is low, the process of evapotranspiration can be enhanced. While temperature remains a central 
focus, the influence of potential radiation (PR) is also considered in these methods. 

4.3.3 Aerodynamic-Based Models 

The evapotranspiration methods based on mass transfer are designed by considering wind speed (u), 
temperature, and relative humidity within a general framework. These methods share a foundational belief that 
the process of evapotranspiration is closely tied to how the air moves and interacts, while also factoring in the 
dryness of the atmosphere. This dryness is measured by the difference between the vapor pressure of the air 
when it’s completely saturated (es) and the actual vapor pressure (ea). In all these approaches, the effect of 
vapor pressure deficit is corrected by including a component related to the speed of the wind (u). This helps 
account for how the air is moving. The formulas used in these methods to estimate evapotranspiration through 
mass transfer consider a wide range of factors and aspects. Each formula takes into consideration the complex 
connections between how the air moves, the temperature, and the humidity. This way, they capture the 
intricate processes that control ET. These unique formulas provide a detailed insight into how these different 
factors come together and affect how quickly evapotranspiration happens. 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

______________________________________________________________________________________ 
48 

4.3.4 Combination Models 

The combination-based evapotranspiration models are structured with a broad perspective, considering 
various factors that influence the estimation of potential evapotranspiration. These models consider 
parameters like solar radiation (Rs), wind speed (u), air temperature (T), and relative humidity (RH), which 
together shape the evapotranspiration process. Within these methods, solar radiation plays a crucial role by 
providing energy to the earth’s surface. The energy affects temperature changes, which in turn impact the 
potential for water vapor to be released into the air through evapotranspiration. The relationship between solar 
radiation and temperature creates a dynamic balance where higher radiation levels generally lead to increased 
temperatures and evapotranspiration rates. Wind speed is another significant factor in these models, 
influencing the speed of air movement over surfaces. Higher wind speeds facilitate the transfer of moisture 
from land and plants to the atmosphere, thereby increasing potential evapotranspiration rates. The interaction 
between wind speed and other factors enhances the accuracy of estimations. Air temperature directly affects 
the energy available for evaporation and transpiration. Higher temperatures accelerate the transition of water 
molecules from liquid to vapor state. Incorporating air temperature into the model establishes a strong 
connection between thermal conditions and evapotranspiration potential. Relative humidity introduces the 
element of moisture content in the air, which significantly impacts evapotranspiration. These methods consider 
how varying levels of relative humidity affect vapor pressure gradients, influencing the rate of water vapor 
movement from surfaces to the atmosphere. By integrating these parameters comprehensively, the 
combination evapotranspiration model provides a more detailed and accurate understanding of the complex 
processes governing potential evapotranspiration. 

4.3.5 Calculation of the Actual Evapotranspiration 

The water balance equation is used to calculate evapotranspiration: 

                                           𝐸𝐸𝐸𝐸 = 𝑃𝑃 − 𝑅𝑅 − ∆𝑆𝑆                                                  

ET is the water lost through evaporation (E) and plant transpiration (T) while P represents Precipitation and R 
denotes Rainfall while ∆S denotes change in storage. Precipitation in this situation was taken as irrigation 
input, another input was water pumped back into the systems by tensiometers when the conditions were to 
overlap. Change is storage was measured by the water accumulation in the drainage system changes. The 
actual evapotranspiration from lysimeters is calculated as (Doležal et al., 2018). 

𝐸𝐸𝐸𝐸𝑎𝑎 = (𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛+𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛)−(𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛+1+𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛+1)
𝐿𝐿𝐿𝐿𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐿𝐿𝐿𝐿𝑎𝑎

             

             
Where ETa (mm) ETa is the actual crop evapotranspiration, LYWn=Lysimeter Weight at nth time, 
SWWn=Drainage Weight at nth time, LYWn+1=Lysimeter Weight at n+1 time, SWWn+1=Drainage Weight at 
n+1 time. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸 = 𝜋𝜋𝐿𝐿2 = 𝜋𝜋 × (0.15)2 = 0.0707𝐿𝐿2                  

When the drainage is zero, evapotranspiration can be obtained directly by multiplying the change in storage 
with the density of water which can be calculated as: 

1 𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐸𝐸𝑘𝑘𝐿𝐿 𝑤𝑤𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = 0.001𝐿𝐿3 = 0.001𝐿𝐿3

0.0707𝐿𝐿2 = 0.014 𝐿𝐿 = 14 𝐿𝐿𝐿𝐿     

4.3.6 Development of a relationship between ETa and ETo 

The ETa obtained from the smart field weighing lysimeter was directly compared to the ETo obtained from 
various micrometeorological models using simple linear regression model to establish a relationship for 
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computing ETc in areas with no lysimeters. The developed conversion equations were used for obtaining ETa 
in other areas within the scheme following the equation: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀 ∗ 𝐸𝐸𝐸𝐸𝑜𝑜 ± 𝐶𝐶 

4.3.7 Statistical Analysis 

Descriptive statistics including mean, median, standard deviation, and range for both ETa and ETo datasets 
were computed. Furthermore, the correlation coefficient between ETa and each ETo estimate to assess the 
strength and direction of the relationship were conducted. A linear regression model to quantify the relationship 
between ETa and each ETo estimate was also conducted. 

4.3.7.1 Bias and Error Analysis 

The models were evaluated for the bias and errors associated with each model by comparing model estimates 
with lysimeter measurements using metrics such as Mean error percentage (MAPE%), root mean square error 
(RMSE), explained variance (EV) and R2. 

 
Table 6: Statistical performance indictors used for validation of different ETo models. 

Performance evaluation 
measure 

Denotation Equation 

Root mean square error RMSE 

 

 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑  (𝐿𝐿𝐿𝐿 − 𝐿𝐿ʹ𝐿𝐿)2𝑁𝑁
𝐿𝐿=1 ∗

𝑁𝑁
 

Explained variance EV 

 

𝐸𝐸𝐸𝐸 =
𝛴𝛴(𝐿𝐿�𝑖𝑖 −  �̄�𝐿)2

𝛴𝛴(𝐿𝐿𝑖𝑖 −  �̄�𝐿)2
 

Mean error percentage MAPE 

 

𝑀𝑀𝐿𝐿𝑃𝑃𝐸𝐸 =  �
1
𝐿𝐿
� ×  𝛴𝛴 ��

(𝐿𝐿𝐴𝐴𝐿𝐿𝑢𝑢𝐸𝐸𝐴𝐴 −  𝐸𝐸𝐿𝐿𝐿𝐿𝑖𝑖𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸)
𝐿𝐿𝐴𝐴𝐿𝐿𝑢𝑢𝐸𝐸𝐴𝐴

�� ×  100 

Coefficient of determination R2 𝐿𝐿2 = 1 −
∑ (𝐿𝐿𝐿𝐿 − 𝐿𝐿ʹ𝐿𝐿)2𝑁𝑁
𝐿𝐿=1 ∗

∑ (𝐿𝐿𝐿𝐿 − 𝐿𝐿′′𝐿𝐿)
2𝑁𝑁

𝐿𝐿=1 ∗
 

 
Where: N denotes the total number of data observations, yi represents the actual observed value for the ith 
data point, ŷi represents the estimated value for the ith data point, Σ denotes the sum over all data points, |x| 
represents the absolute value of x, "Actual" being the actual value of the data point; and "Estimated" being the 
estimated value of the data point. Σ(ŷi - Ȳ)² is the sum of the squared differences between the estimated values 
generated by the model and the mean of the dependent variable; and Σ(yi - Ȳ)² is the is the sum of the squared 
differences between each data point and the mean of the dependent variable. The actual values in this study 
are the actual measured values by the smart field weighing lysimeter while the estimated values represent the 
values estimated from various micrometeorological models. 

4.3.7.2 Model evaluation and ranking. 

The assessment was conducted for the performance of each micrometeorological model based on its ability 
to accurately estimate ETa compared to lysimeter measurements. The models were ranked based on the 
statistical metrics, computational efficiency, and practical applicability. 
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4.4 RESULTS 

Different ETo models were assessed to determine the performance of each model considering the indicators 
highlighted in table 6.  

4.4.1 Calculated metrics at the field level during various seasons 

Tables (7-22) represent the performance rankings of various micrometeorological models for estimating ETo 
in different crop seasons. Each table presents the performance metrics of different models categorized by their 
underlying principles as radiation-based, aerodynamic-based, temperature-based, and combination models. 
The metrics include RMSE, Bias, EV, MAPE, MAE, R, and R2. Lower values of RMSE, Bias, and MAE indicate 
better model performance, while higher values of EV, R, and R2 indicate stronger correlations between 
observed and estimated ETo values. 
 
Table 7: Radiation-based models ranked according to metrics in the 2019 Barley Season. 

 
Model RMSE Bias EV MAPE MAE R R2 
ETOETO_P-T  2.4 2.1 58.82 29.5 2.11 0.86 0.74 
ET-Makkink 3.16 2.8 69.88 38.24 2.80 0.84 0.70 
Tabari 1 3.76 -1.76 0.07 38.29 2.98 0.03 0.001 
Turc 4.56 4.39 75.58 66.72 4.39 0.87 0.76 
Jensen-Haisen 5.06 4.28 72.566 63.19 4.28 0.85 0.73 
Caprio 6.45 6.34 73.34 95.28 6.34 0.86 0.73 

Tabari 2 5.06 3.97 55.19 51.41 3.97 -0.74 0.55 
Irmak_Rn 5.08 -3.23 47.79 75.58 4.79 -0.69 0.48 
Irmak_Rs 6.28 -4.42 39.59 95.41 6.06 -0.63 0.40 

 
Table 8: Aerodynamic-based models ranked according to metrics in 2019 Barley Season.  

Model RMSE Bias EV MAPE MAE R R2 
Penman-Monteith 2.026 -1.31 72 25.11 1.7 0.85 0.72 
Meyer 2.18 1.23 46.08 30.26 1.84 0.68 0.46 
WMO 2.86 -2.27 51.25 37.24 2.51 0.72 0.51 
ROhWER 2.92 0.6 0.53 34.71 2.38 0.07 0.01 
Dalton 3.39 0.68 2.55 38.58 2.68 -0.16 0.03 
Brockamp_Wenner 5.1 1.97 1.28 62.96 4.17 -0.11 0.01 
Mahringer 5.83 -5.71 75.00 86.66 5.71 0.86 0.75 
Albrecht 5.89 -0.23 10.279 58.1 4.28 -0.32 0.1 
Tabert 6.76 -6.52 73.571 95.15 6.52 0.86 0.74 

 
 
Table 9: Temperature based models ranked according to metrics in 2019 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 
Hargreaves and Allen 1.79 -0.26 57.17 20.50 1.44 0.76 0.57 
HS 2.02 -1.00 47.57 19.93 1.49 0.69 0.48 
Ivanov 2.23 -1.82 7.98 29.23 1.92 0.28 0.08 
Hamon 2.53 -2.16 77.85 33.29 2.19 0.88 0.78 
Schendel 2.62 0.79 68.33 26.94 1.94 0.83 0.68 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

______________________________________________________________________________________ 
51 

Calibrated Christiansen 3.57 3.25 0.65 57.55 3.25 0.01 0.00 
Papadakos 3.76 1.49 27.29 47.00 3.12 -0.52 0.27 
Trajkovic  5.91 2.76 38.04 76.89 5.21 -0.62 0.38 
Droogers and Allen 7.75 7.50 21.53 124.56 7.50 0.45 0.21 
Ravazzani 8.33 6.38 26.74 126.30 8.05 -0.52 0.27 

 
Table 10: Combination model metrics in 2019 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 

ET_PM 3.85 5.78 63.78 13.98 0.93 0.8 0.64 

 
Table 11: Radiation based ranked according to metrics in 2020 Maize Season. 

Model RMSE Bias EV MAPE MAE R R2 
ETo_P_T 4.39 0.20 19.75 -0.54 39.41 0.82 0.20 
ET_MK 5.76 0.32 31.56 -1.65 52.95 4.96 0.32 
Turc 7.92 0.33 32.65 -4.00 76.71 7.25 0.33 
Irmak_Rn 4.15 0.19 19.05 -0.37 32.70 1.94 0.19 
Irmak_Rs 5.35 0.33 33.02 -1.28 46.25 4.46 0.33 
Jensen_and_Haise 5.89 0.34 33.71 -1.77 60.76 -3.86 0.34 
Tabari_1 5.79 0.32 31.82 -1.67 52.47 4.98 0.32 
Tabari_2 5.89 0.32 32.43 -1.77 52.30 5.07 0.32 
Caprio 9.91 0.34 33.06 -6.83 99.93 9.26 0.34 

 
Table 12: Aerodynamic based models ranked according to metrics in 2020 Maize Season. 

Model RMSE Bias EV MAPE MAE R R2 
Meyer 3.95 1.79 19.33 35.31 3.17 0.44 0.19 
Dalton 3.92 1.44 19.26 36.40 3.20 0.43 0.19 
ROWER 4.02 1.62 17.74 36.40 3.25 0.42 0.18 
ET_Albrecht 5.12 0.49 11.62 48.81 4.19 0.35 0.12 
Brockamp Wenner 5.07 -1.14 16.03 50.97 4.11 0.39 0.16 
WMO 5.90 4.86 15.09 51.20 4.94 0.39 0.15 
Penman 5.81 4.87 19.83 50.36 4.94 0.45 0.20 
Mahringer 9.36 8.71 14.96 93.62 8.71 0.39 0.15 
Tabert 9.67 9.02 15.37 97.20 9.02 0.39 0.15 

 

Table 13: Temperature based models ranked according to metrics in 2020 Maize Season. 

Model RMSE Bias EV MAPE MAE R R2 
HS 4.29 2.94 27.06 29.75 3.27 0.52 0.27 
Hargreaves_and_Allen  5.72 4.72 18.63 50.55 4.87 0.43 0.19 
Ivanov 4.57 -3.44 28.06 57.86 3.94 0.53 0.28 
Schendel 4.64 3.42 21.72 33.99 3.64 0.47 0.22 
Ravazzani 7.76 -7.10 27.03 98.39 7.10 0.52 0.27 
Hamon 5.25 4.10 23.06 38.61 4.19 0.48 0.23 
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Model RMSE Bias EV MAPE MAE R R2 
Hansen 16.70 -16.31 4.05 224.07 16.31 -0.20 0.04 
Calibrated_Christiansen 3.47 -0.54 31.05 33.63 2.42 0.56 0.31 
Droogers_and_Allen 7.73 -7.11 27.72 99.70 7.11 0.53 0.28 
Trajkovic 3.97 -1.44 34.06 40.23 2.93 0.58 0.34 
Papadakis 5.99 5.08 19.73 52.26 5.12 0.45 0.20 

 
Table 14: Combination model metrics in 2020 Maize Season. 

Model RMSE Bias EV MAPE MAE R R2 
Penman-
Monteith 

2.85 3.41 44.34 60.66 1.89 0.66 0.44 

 
Table 15: Radiation based ranked according to metrics in 2020 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 
ETo_P_T 0.85 0.48 61.82 13.48 0.61 0.79 0.62 
ET_MK 1.15 0.91 61.03 20.73 0.93 0.78 0.61 
Tabari_1 0.94 0.61 20.07 15.81 0.71 0.76 0.57 
Tabari_2 1.51 1.34 61.04 30.84 1.34 0.78 0.61 
Turc 2.87 2.73 57.08 65.01 2.73 0.76 0.58 
Irmak_Rs 6.31 -6.17 62.73 154.72 6.17 0.80 0.63 
Irmak_Rn 5.85 -5.75 56.83 146.12 5.75 0.75 0.57 

 
Table 16: Aerodynamic based models ranked according to metrics in 2020 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 
Penman 1.31 0.73 19.63 20.84 0.93 0.31 0.20 
Meyer 2.18 -1.51 19.32 49.64 1.85 0.18 0.19 
Dalton 2.43 -1.71 18.77 54.67 2.03 0.13 0.19 
ROWER 2.36 -1.51 17.64 52.07 1.94 0.09 0.18 
Wmo 1.90 1.03 15.06 35.18 1.53 -0.04 0.15 
ET_Albrecht 3.89 -1.69 12.36 73.03 2.75 -0.13 0.12 
Brockamp_Wenner 4.28 -3.17 15.38 91.51 3.40 -0.03 0.16 
Mahringer 3.91 3.76 14.91 90.05 3.76 -0.05 0.15 
Tabert 4.12 3.98 14.62 95.64 3.98 -0.05 0.15 

 

Table 17: Temperature based models ranked according to metrics in 2020 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 
Ivanov 1.22 0.33 6.37 22.26 0.95 0.25 0.06 
Hargreaves_and_Allen 1.23 0.19 7.57 23.22 0.99 0.28 0.08 
HS 1.25 0.45 7.33 22.28 1.01 0.30 0.07 
Papadakis 1.39 0.89 10.17 22.31 1.01 0.31 0.10 
Hamon 1.44 1.00 9.88 23.72 1.10 0.32 0.10 
Trajkovic 4.75 -4.59 43.55 116.96 4.59 0.66 0.44 
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Model RMSE Bias EV MAPE MAE R R2 
Calibrated_Christiansen 4.85 -4.74 49.43 121.56 4.74 0.70 0.49 
Droogers_and_Allen 7.34 -7.17 44.02 181.02 7.17 0.66 0.44 
Ravazzani 7.71 -7.52 43.12 189.73 7.52 0.66 0.43 
Schendel 8.72 -7.63 19.43 50.63 7.87 0.42 0.19 

 
Table 18: Combination model metrics in 2020 Barley Season. 

Model RMSE Bias EV MAPE MAE R R2 

Penman-
Monteith 

4.09 3.90 62.73 8.90 0.70 0.79 0.63 

 
Table 19: Radiation based models ranked according to metrics in 2021 Soybean Season. 

Model RMSE Bias EV MAPE MAE R R2 
ET-MK 3.68 -1.55 16.02 34.82 2.47 0.40 0.16 
ETo_P-T 3.74 -1.72 19.05 31.91 2.40 0.43 0.19 
Tabari 1 3.70 -1.50 14.03 35.26 2.49 0.37 0.14 
Irmak_Rs 3.49 -1.08 18.89 38.21 2.47 0.43 0.19 
Turc 5.11 -3.78 17.97 57.37 3.78 0.42 0.18 

Jensen and Haise 7.45 6.31 7.18 162.48 6.62 -0.26 0.07 
Irmak_Rn 7.08 4.24 6.78 159.92 6.26 -0.26 0.07 
Tabari 2 8.76 2.00 4.79 198.03 7.73 -0.21 0.05 
Caprio 6.78 41.00 27.46 99.87 5.71 0.52 0.27 

 
Table 20: Aerodynamic-based models ranked according to metrics in 2021 Soybean Season. 

Model RMSE Bias EV MAPE MAE R R2 
Meyer 2.78 0.054 42.2 0.374 2.05 0.650 0.422 
Dalton 2.77 0.216 43.4 0.383 2.08 0.659 0.434 
ROWER 2.74 -0.03 44.3 0.344 1.96 0.665 0.443 
ET_Albrecht 3.35 -0.29 43.3 0.378 2.29 0.658 0.433 
wmo 3.86 -2.68 45.2 0.426 2.71 0.673 0.452 
Brockamp-Wenner 3.54 1.28 46.0 0.467 2.53 0.678 0.460 
Penman 3.69 -2.16 37.2 0.320 2.35 0.610 0.372 
Tabert 6.61 -5.56 45.8 0.970 5.56 0.677 0.458 
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Table 21: Temperature-based models ranked according to metrics in 2021 Soybean Season. 

Model RMSE Bias EV MAPE MAE R R2 
Calibrated_Christiansen 3.47 -0.54 31.05 33.63 2.42 0.557 0.31 
Hargreaves_and_Allen 3.97 -1.44 33.46 40.23 2.93 0.579 0.34 
HS 4.29 2.94 27.43 29.75 3.27 0.524 0.27 
Schendel 4.64 3.42 22.2 34.00 3.64 0.472 0.22 
Papadakis 5.99 5.08 20.2 52.26 5.12 0.449 0.20 
Hamon 5.25 4.10 23.31 38.61 4.19 0.483 0.23 
Ivanov 5.72 4.72 18.7 50.55 4.87 0.432 0.19 
Droogers_and_Allen 7.73 -7.11 28.1 99.70 7.11 0.530 0.28 
Ravazzani 7.76 -7.10 27.4 98.39 7.10 0.524 0.27 

 
Table 22: Combination model metrics in 2021 Soybean Season. 

Model RMSE Bias EV MAPE MAE R R2 
Penman-
Monteith 

5.78 9.22 6.41 29.91 2.23 0.004 0.06 

4.4.2 Overall model rankings based on compromise programming ranking. 

Tables (23-25) present the overall rankings of micrometeorological models based on compromise 
programming (CP) ranking methodology. The rankings are segmented into three categories: radiation-based 
models, aerodynamic-based models, and temperature-based models. 
 
Table 23: Radiation based models ranking based on CP. 
 
Model RMSE 

Rank 
Bias 
Rank 

EV 
Rank 

MAPE 
Rank 

MAE 
Rank 

R 
Rank 

R² 
Rank 

Weighted 
Sum 

Rank 

ETo_P-T 1 1 7 1 1 5 4 3.56 1 
ET-Makkink 3 3 6 2 3 4 6 3.78 2 
Tabari 1 5 6 1 3 5 1 1 3.72 3 
Turc 7 7 5 6 7 6 7 5.44 4 
Jensen-
Haisen 

8 8 4 5 6 3 5 4.97 5 

Caprio 9 9 3 7 8 7 5 6.11 6 
Tabari 2 8 5 8 4 4 2 3 4.52 7 
Irmak_Rn 6 2 9 8 2 8 8 4.88 8 
Irmak_Rs 4 4 10 9 9 9 9 6.91 9 
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Table 24: Aerodynamic-based models ranking based on CP. 

Model RMS
E 
Rank 

Bias 
Rank 

EV 
Rank 

MAPE 
Rank 

MAE 
Rank 

R 
Rank 

R² 
Rank 

Weighte
d Sum 

Rank 

Meyer 2 3 4 2 2 2 2 2.0 1 
WMO 3 2 3 3 3 3 3 15.88 2 
Penman 1 4 2 1 1 1 1 17.5 3 
Mahringer 7 8 1 7 7 5 5 31.38 4 
ROhWER 4 6 8 4 4 6 7 31.63 5 
Dalton 5 5 7 5 5 7 8 33.5 6 
Albrecht 8 7 5 8 8 4 6 36.0 7 
Brockamp_Wenner 6 1 6 6 6 8 9 40.5 8 
Tabert 9 9 9 9 9 9 9 55.63 9 

 
Table 25: Temperature based models ranking based on CP. 

Model RMSE 
Rank 

Bias 
Rank 

EV 
Rank 

MAPE 
Rank 

MAE 
Rank 

R 
Rank 

R² 
Rank 

Weight
ed Sum 

Rank 

Hargreaves and 
Allen  

1 3 1 1 1 1 1 8.25 1 

Ivanov 5 4 3 4 3 3 3 24.5 2 
HS 4 5 5 8 1 2 2 26.125 3 
Schendel 2 2 4 5 2 4 4 26.5 4 
Papadakis 3 4 6 6 3 3 3 27.5 5 
Trajkovic 8 8 1 1 8 1 1 28.375 6 
Droogers and 
Allen 

10 10 4 4 10 1 1 39.125 7 

Calibrated 
Christiansen 

9 9 2 2 9 8 8 47.25 8 

Ravazzani 11 11 3 3 11 1 1 40.75 9 
Hamon 7 7 7 7 7 8 8 50.0 10 

4.5 COMBINATION MODEL SELECTION ACROSS SEASONS 

Penman-Monteith was ranking based on its occurrence four times to select the best model performance 
season. The Penman-Monteith model, employed during the 3rd season, showed the following performance 
metrics: RMSE of 4.09; a Bias of 3.90 EV of 62.73; MAPE of 8.90; a MAE of 0.70; an R value of 0.79, and an 
R2 value of 0.63. 

4.5.1 Final ranking and selection of radiation-based models across seasons. 

Figure 27 illustrates the ranking of different micrometeorological models for estimating ETO. Lower rank values 
signify models with desirable performance, while higher ranks indicate poorer performance in ETO estimation. 
In essence, the figure provides a visual representation of how each model compares in terms of accuracy and 
reliability for estimating reference evapotranspiration. 
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Figure 29: Model rankings throughout the seasons. 
 

4.5.2 Final selection of the best models for estimating ETO in the arid environment. 

Among all the models described on tables showing various micrometeorological models, Penman-Monteith, 
Hargreaves and Allen, and Makkink models have shown high significant relationship between the ETo, and 
ETa measured at the local level (Figure 27). 

 

 

Figure 30: Selected models (Blue is the Penman-Monteith model, black is the Hargreaves and Allen 
model while orange is the Makkink model). 
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4.6 DISCUSSIONS 

Water scarcity is a pressing global issue, compounded by the agricultural sector’s excessive water usage, 
alongside factors like climate change and population growth. Effective management and allocation of available 
freshwater resources are crucial in addressing this challenge. Central to this effort is accurately determining 
water balance components, particularly ET, which represents a significant portion of water loss. However, 
precise estimation of ET throughout the season is challenging and often requires costly measuring devices. 
To mitigate the cost constraints associated with high-accuracy devices, this study utilized a smart field 
weighing lysimeter to measure ETa, which represent ETO multiplied by crop coefficients at different 
phenological stages. Correlations between ETa and ETO were established using lysimeter data alongside 
various micrometeorological models integrated with weather station observations. This correlation aimed to 
facilitate ETa determination in areas lacking expensive lysimetric devices, particularly in arid environments. 
The study evaluated 28 micrometeorological models using data from a high-resolution smart field weighing 
lysimeter across four seasons, encompassing various crop types such as barley, maize, and soybean. 
Assessing of ETOETO models come a long way from back when Makkink evaluated the Penman method using 
lysimeters (Makkink, 1957). Models were assessed based on statistical metrics including RMSE, MAE, Bias, 
R, R2, MAPE, and EV. Categorization of models into radiation-based, aerodynamic-based, temperature-based, 
and combination models aimed to identify reliable options for ETO and ETa estimation, especially where 
lysimeters are impractical due to cost limitations. A compromise programming ranking methodology was 
employed, ranking models with superior performance. The Priestly-Taylor and Makkink models led among 
radiation-based models, while the Meyer and Hargreaves and Allen models excelled in aerodynamic and 
temperature-based categories, respectively. Subsequently, the Penman-Monteith, Priestly-Taylor, and 
Hargreaves and Allen models emerged as the most robust choices for ETO and ETa estimation in arid 
environments, consistently providing satisfactory results among the models evaluated across seasons. The 
effectiveness of the PM method across diverse climatic settings has been highlighted in studies by  (Suleiman 
et al., 2007; Moeletsi et al., 2013). The effectiveness of Priestly-Taylor model has been found to be effective 
across various environments as well, such observations have been made in the study of (Muhammad et al., 
2019); (Pereira, 2004) and by (Gao et al., 2020). The results of this study indicate that certain models excel in 
specific environmental conditions where they were developed and calibrated at with 25 models having yielded 
poor results. For example, the Priestly-Taylor and Makkink models demonstrate superior performance among 
radiation-based models, while the Meyer and Hargreaves and Allen models outperform others in aerodynamic 
and temperature-based categories, respectively. This result allows water managers to select the most 
appropriate model depending on the prevailing climatic and environmental conditions of their region. Moreover, 
the identification of the Penman-Monteith, Priestly-Taylor, and Hargreaves and Allen models as the most 
robust choices for ETO and ETa estimation in arid environments is particularly significant. By relying on these 
models, water managers can make informed decisions regarding irrigation scheduling, water allocation, and 
drought management in arid regions. The study emphasizes the critical role of model selection in accurately 
estimating ETO and ETa, particularly in regions where conventional measuring devices are impractical. 
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CHAPTER 5: ASSESSMENT OF REMOTE SENSED 
EVAPOTRANSPIRATION PRODUCTS UNDER ARID 

ENVIRONMENT  

5.1 INTRODUCTION 

Water scarcity is a major limiting concern in providing adequate food to the world’s expanding population. 
Agriculture, on the other hand, uses more water than other water-using industries. Quantification of crop water 
use at field scale is important for a better understanding of water usage, water scheduling and application 
rates, in the process of trying to solve water problems at a basin or larger scale field-based point equipment 
are usually confined to local space (Evans and Sadler, 2008). The natural environment as a system is 
characterized with variations in soils, water availability and climate status which requires multi-temporal 
information covering a large spatial extent area to understand how areas differ in water use (Kingra et al., 
2016). As a result, greater emphasis is being placed on estimating crop water use or evapotranspiration (ET) 
at larger scales. The innovations in satellite technology have enabled the development of Global Earth 
Observation (GEO) ET products which permits the computation of local to regional crop water usage, soil water 
content status, and other important data for water resource management and planning. The lack of sufficient 
direct ground data measurements has always made estimating crop water use at larger scales difficult to 
accurately calibrate and validate (Condon et al., 2020). As a result, the gap to validate such products under 
different set of environments in Africa is a need. The validation and calibration of global ET products have 
been dominantly done in the countries located mostly on the northern hemisphere including areas in Asia, 
Australia, South America, and Europe (Ramoelo et al., 2014). Most products were developed in areas with 
conditions which fit their outputs, application of products developed using algorithms developed in different 
environmental setting is a problem when the models are transferred to a different environment. MOD16 ET 
product is generated based on the Penman-Monteith algorithm which is known to have its uncertainties in 
estimation of ET (Westerhoff, 2015). Apart from the algorithm itself, the misclassification of MODIS landcover 
add more on the errors of ET estimations (Ruhoff et al., 2012). Most evapotranspiration ground measurements 
are point-based and do not take spatial extent into account (Kite et al., 2001; Liou and Kar, 2014). Most ET 
data which is open access has been collected using flux towers located all over the world (Weerasinghe et al., 
2020). There are only a few ET ground measurement stations, and only six FLUXNET stations in Africa have 
accessible ET data (Weerasinghe et al., 2020). Due to the limited data availability of in situ measurements, a 
method of evaluating ET estimations using data other than point observations are required. Rapid innovations 
in satellite-based ET products have yielded promising data for filling these observational gaps (Khan et al., 
2018). ET cannot be directly measured from the earth’s orbit, but it can be estimated using energy balance 
algorithms from variables that can be recognized from space. Time interpolations are also necessary because 
of interference from passing frequency range and cloud cover effects. 
 

Several authors, including (Cleugh et al., 2007), used the Penman-Monteith model with data from MODIS in 
Australia to model and validate global ET products. (Mu et al., 2013) validated the MOD16 using the Ameriflux 
tower, whereas (Kim et al., 2012) validated the MOD16 ET products using the Asiaflux station. Several 
researchers in South Africa have attempted to validate the global ET products which includes the MOD16-ET, 
EUMETSAT, GLEAM, WaPOR (Jovanovic et al., 2015; Majozi et al., 2017; Ramoelo et al., 2014). The work of 
Jovanovic et al. (2015) on validating MOD16 using historical showed poor correlations of measured to 
predicted ET, they concluded that the inaccuracies might have been influenced by limited ground data used. 
Ramoelo et al. (2014) also undertook a study to validate MOD16 global ET product within the Savanna biome 
using flux tower stations located in the Kruger national park of South Africa, they found inaccuracies between 
the flux tower and MOD16 estimations concluding that the inaccuracies are due to scaling of flux tower ET to 
the size of MOD16 pixel, limitations arising from the parametrization of the MOD16 algorithm and errors in 
measurement of ET. (Majozi et al., 2017) also focused on validating GLEAM and the MOD16 global ET 
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products from two different ecosystems one in the Savanna and the other site located in the humid coastal 
area using flux tower in the savanna and scintillometer in the humid area, they found that no model performs 
well in both environments. 
 
Mu et al. (2005) developed the MOD16 ET algorithm which later on, Mu et al. (2011) improved it. The Penman-
Monteith equation serves as the foundation for MOD 16. MOD 16 has an approximate spatial resolution of  
1 km2 and temporal resolutions of 8-day, monthly, and annual intervals Ndara (2017). The MOD 16 ET 
algorithm calculates ET by combining 8-day remote sensing data land cover, Leaf Area Index (LAI), Fraction 
of Photosynthetically Active Radiation, and albedo) with daily in situ data (air temperature, air pressure, 
humidity, and solar radiation) (Mu et al., 2011). The EUMETSAT LSA SAF ET’s algorithm used to generate 
MET v2, DMET v2, LE, and H products uses LSA-SAF products to deliver maps over the entire MSG field of 
view (South America, Europe, Africa, and the Middle East) at the variable spatial resolution of Meteosat 
Second Generation satellites, 3.1 km at sub-satellite point. The WaPOR ET data for this work is the ETIa-WPR 
V2.0 products available on the WaPOR portal (“https://wapor.apps.fao.org/home/WAPOR 2/1,” 2023). The 
ETIa-WaPOR is based on a modified version of the ETLook model that employs Penman-Monteith to estimate 
ETa adapted to remote sensing input data. The Penman-Monteith method combines the energy balance 
equation and the aerodynamic equation. 

5.2 METHODOLOGY 

The validation and calibration of satellite-derived evapotranspiration (ETa) using lysimeters on a pixel basis 
were carried out, aiming to ensure precise and dependable outcomes. This process contributed to the 
establishment of a robust connection between measurements taken from satellites and observations obtained 
on the ground. The following steps were undertaken during this process:  

5.2.1 Lysimeter Installation and Data Collection 

Two lysimeters were set up at strategic locations within the satellite pixel or grid cell. Continuous monitoring 
and collection of high-quality ground-based ET data were conducted using lysimeters throughout the growing 
season. Two smart-field weighing lysimeters (SFL-600) were installed in an 18-ha field. Each lysimeter was a 
stainless-steel core cylinder of 60 cm in height and 30 cm in diameter. Each lysimeter contained a core of 
undisturbed soil monolith with planted crops resembling field conditions. To extract the soil monolith core, three 
rope straps were fastened on steel hook anchors secured on the ground anchoring and supporting a jack that 
was placed on top of the cylinder helping push the cylinder downwards. The jack was used to push the cylinder 
until the soil filled the cylinders to its bottom. The lysimeter soil bottom was cut with a flat metal plate to enable 
an easy closure of the cylinder bottom. For each lysimeters cylinder, a gypsum-filled ceramic cap was used to 
close the bottom of each cylinder, assisting in regulating the boundary condition between the surrounding field 
and the lysimeter. To prevent leaks, a sealing rubber was placed between the cylinder and the ceramic cap 
contact and tensioned with a metallic strap. The weighing balance platform was fastened to the ceramic cover 
below using metal fasteners. Each lysimeter featured six sensors to monitor temperature, electrical 
conductivity, soil moisture, and water potential. The lysimeter system was put in flat station drum protective 
cylinder which was levelled with a spirit leveller prior its outside space in the dug hole was filled with soil to 
prevent movement providing a flat ground surface for the weighing balance. A complete sensor-equipped 
lysimeter was raised using a tripod and then gradually lowered into the supporting cylinder with the aid of a 
chain block. The wires connecting the Lysimeters, drainage control pipes, and tensiometer cables were 
attached before it reached the bottom. A tensiometer was installed adjacent to each lysimeter to ensure 
consistent boundary conditions both inside and outside the lysimeter. A drainage bottle with a platform for 
weighing the amount of water drained from the lysimeter was set in the drainage box one metre from each 
lysimeter. Power cables were connected from the lysimeters to the central data logger system, which was 
equipped with a solar panel, batteries, and a SIM-card for the logger connection to remote data storage. 
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5.2.2 Lysimeters field data measurement operation 

Smart Field Weighing Lysimeters are more intelligent lysimeters compared to others. These systems are the 
only systems which consist of a bi-directional pump that maintains the true field conditions automatically 
representing the surrounding field environment within the lysimeter. Changes in storage or lysimeter weight 
were recorded every minute. For every 10 minutes soil moisture content in the lysimeters was measured and 
sent to the central lysimetric logger control system, at any case when the soil contained within the lysimeter is 
becoming more drier as compared to the surrounding field conditions, the water in the drainage container was 
automatically pumped back into the lysimeter system to maintain homogeneity between the field conditions 
and the lysimeter system. Contrary, when the soil contained within the lysimeter systems becomes very wet 
compared to the surrounding field conditions, the system pump drains the water out of the lysimeter until there 
is balance in moisture between the field conditions and the lysimeter system, always maintaining the actual 
true field conditions. Compared to other methods which have known inaccuracies, the Smart Field Weighing 
Lysimeters are the only devices that can measure with high accuracy the field-level actual evapotranspiration 
fluxes. The Smart Field Weighing Lysimeter makes use of very sensitive load cells when weighing the amount 
of water that comes into the system as precipitation or irrigation as well as the amount of water that leaves the 
lysimetric system as soil water evaporation or plant transpiration. 

5.2.3 Lysimeter data selection and processing 

Data cleaning and removal of noise that occurs from external activities such as mechanical vibrations, farm 
attacking animals and strong winds amongst many other factors is crucial before using data for quantification 
of crop evapotranspiration, data cleaning reduces false quantifications which can lead to wrongful decision 
making. Data recorded by both lysimeters for different seasons were inspected for anomalous values such as 
negative values, error readings on the weighing balance and abnormal readings causing spikes which cannot 
be explained. ET data focus was on rainless days with zero irrigation, zero-dew or and frost days.  

The purpose of removing water input days was to allow monitoring water use after a known irrigation amount 
event, nevertheless; irrigation days yield negative ET due to weight differences between the less wet and 
irrigated soils. Cloudy days were also removed from the data set by assessing radiation fluxes acquired from 
the farm weather station data adjacent to the two lysimeters. Following data cleaning, the data was imported 
into the origin lab software and plotted against time to enable smoothing of the data for ease interpretation 
using average-smoothing filter at 20 minutes window to remove anomalies, manual filtering was also done for 
the values which could not be smoothed by the automatic filter. 

Pre-processing of the lysimeter data was done to fit the hourly, daily, and monthly ETa requirements. 
Evapotranspiration was determined using two smart field weighing lysimeters (SFL-600) based on the weight 
variations of the lysimeter weighing balance when irrigation was discontinued. Evapotranspiration was 
computed using the lysimeters, in-situ weight readings, indicated as (LYW), and the weight of the storage 
vessel, designated as (SWW). The two lysimeters were connected to a data logger which was programmed to 
record, store and transfer measurement data from the load cells every 10 seconds. The data was downloaded 
from the cloud storage and saved as .csv files for analysis. For quality and maintenance purposes, monthly 
visits to the location where the lysimeters were installed were undertaken to assess the field conditions, 
vegetation planted and the drainage containers for flood checks.  

The decrease in the lysimeter cylinder weight was caused by the evaporation of water from the crop and soil 
surfaces as well as transpiration of water through the tissues of the crop, the increase in weight was associated 
with irrigation, precipitation, and dew effects. The lysimeter weight changes measured in kilograms, were 
converted to the equivalent depth of water in millimetres, by dividing the changes in weight of the lysimeter 
between periods by the density of water in grams as well as the surface area of the lysimeters in square 
metres. The hourly ETa was calculated based on the weight changes between two consecutive hours, while 
daily ETa values were calculated by summing up all the daily ETa values obtained from 08:00 am and 17:00 
pm on a 24-hour period in winter for barley crop and 5 am to 18:00 pm for summer crops (maize and soya 
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beans), the purpose of selecting data between the hours was to eliminate the diurnal fluxes caused by dew, 
frost and rime.  

The choice was influenced by the fact that evapotranspiration occurs between sunrise and sunset when there 
is sufficient energy to evaporate water from surfaces, transpiration also ceases when the sunlight is reduced 
stopping the processes, the diurnal variations in this study were taken as dew or frost influenced. The smart 
field weighing lysimeters directly measures the water balance components being the amount of irrigation or 
incoming precipitation, frost and dew events as incoming water which causes changes in the lysimeter storage. 
Irrigation and precipitation were also measured directly using a Hobo-link weather station rain gauge situated 
10 metres north of the two lysimeters. At every 10 minutes interval drainage was measured by the lysimeters. 
Adding all the measured components, the only component not measured remains the actual crop 
evapotranspiration. 

5.2.4 Calculation of actual ET at different time scales using smart field weighing lysimeters 

 
To calculate the actual evapotranspiration fluxes, lysimetric data from smart field weighing lysimeters recorded 
from 2019 to the end of 2021 cropping seasons for different crops within the experimental farm were used.  

                         𝐸𝐸𝐸𝐸𝑎𝑎 = (𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛+𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛)−(𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛+1+𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛+1)
𝐿𝐿𝐿𝐿𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐿𝐿𝐿𝐿𝑎𝑎

                         

Where ETa (mm) ETa is the actual crop evapotranspiration, LYWn=Lysimeter Weight at nth time, 
SWWn=Drainage Weight at nth time, LYWn+1=Lysimeter Weight at n+1 time, SWWn+1=Drainage Weight at 
n+1 time. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸 = 𝜋𝜋𝐿𝐿2 = 𝜋𝜋 × (0.15)2 = 0.0707𝐿𝐿2     
              

When the drainage is zero, evapotranspiration can be obtained directly by multiplying the change in storage 
with the density of water which can be calculated as: 
 

1 𝑘𝑘𝑘𝑘 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐸𝐸𝑘𝑘𝐿𝐿 𝑤𝑤𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 = 0.001𝐿𝐿3 =
0.001𝐿𝐿3

0.0707𝐿𝐿2 = 0.014 𝐿𝐿 = 14 𝐿𝐿𝐿𝐿 

5.2.5 Calculation of reference evapotranspiration at different weather stations  

The FAO-56 Penman-Monteith model was used to calculate the reference evapotranspiration for all the 
stations within the irrigation scheme. The reference ET Penman-Monteith model calculates ET using the 
equation:  

𝐸𝐸𝐸𝐸0 =
0.408∆(𝑅𝑅𝑎𝑎 − 𝐺𝐺) + 𝛾𝛾 � 900

𝐸𝐸 + 273� 𝑢𝑢2(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑎𝑎)

∆ + 𝛾𝛾(1 + 0.34𝑢𝑢2)  

Where the reference evapotranspiration is denoted by ETO in mm/day, ∆ notation represents the slope of 
saturated vapour pressure against temperature curve in Kpa/ ̊C, Rn denotes the total daily net radiation in 
MJm2 day-1, G represents the total net soil heat flux, ϒ denotes psychrometric constant in Kpa/ ̊C, T is the 
average daily temperature in ̊C, U2 represents the average daily wind speed in m s-1, es represent the average 
daily saturated vapour pressure in Kpa while ea represents average daily actual vapour pressure in Kpa. 

5.2.6 Relationship between ETa and ETO 

The relationship between ETa and ETo was developed with the aim of extrapolating ETa from a field scale to 
the scheme scale through empirical equation. 
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5.2.6.1 Satellite Data Acquisition 

Satellite-derived ETa data for the corresponding pixel or grid cell were retrieved through google earth engine 
(GEE) for different ET products. A time series was retrieved for every weather station point containing ET 
values for comparison and evaluation purposes. The MODIS-16, WaPOR and NOAH products were retrieved 
for this purpose. Attention was given to ensuring that the temporal resolution of the satellite data matched the 
intervals of ground-based observations. 

Table 26: Global ET products data acquisition. 

Product Spatial 
resolution 

Temporal 
resolution 

Source 

MOD16 
global ET 
product 

 500 m2 8-Day https://modis.gsfc.nasa.gov/data/dataprod/mod16.php  

NOAH 
product 

1 km2 Daily https://ntrs.nasa.gov 

FAO-
WAPOR 

250 m2 Decadal https://wapor.apps.fao.org/catalog/WaPOR_2/1/L1_AE
TI_A 

5.2.6.2 Spatial and Temporal Synchronization 

Measures were taken to ensure proper alignment between the locations of the weather stations and the ET 
products pixels within the Vaalharts irrigation scheme. Additionally, adjustments were made to synchronize 
the temporal resolution of each ET products with the weather station measurements depending on the 
temporal resolution of ET satellite products.  

5.2.6.3 Quality Control and Preprocessing 

Both weather station estimates, and satellite ET products data underwent rigorous quality control procedures 
which included filtering and avoiding days with cloud cover to identify and eliminate any outlying values.  

5.2.6.4 Comparison and Analysis 

Direct comparison was conducted between satellite-derived ET products pixel values and weather station-
based ET estimates for each corresponding station location and timeframe. Statistical metrics, such as 
correlation coefficients, coefficient of determination, bias, root mean square error, mean absolute error and 
mean absolute percentage error, were employed including assessing the significance between observations 
to quantify the level of agreement. 

5.2.6.5 Validation approach 

In this study two approaches have been adopted. First, a direct comparison between the ETa from the remote 
sensed products and ETa measurements from lysimeters. The second method is to use lysimeter data to 
correct and validate meteorological measurements and use the meteorological relationship for the validation.  
The acquired ETa-WaPOR was exposed to a thorough analysis with the in-situ ETa data obtained from the 
smart field weighing lysimeters over ten days, aligning with the temporal resolution of the WaPOR system 
product. For this adjustment, the ETa-WaPOR values corresponding to Level-1 (250 m) were utilized, given 
that this level provided coverage over the region of South Africa. The extraction of pixel values took place in 
the vicinity of the lysimeter area, a location chosen based on the basis that the pixel accurately represents the 
measurement footprint of the smart field weighing lysimeter area. Following data processing, statistical 
analysis was performed, and classical statistics parameters were used as the basis for validity checks. The 
process was done for all ET products retrieved including the NOAH and the MOD16 ET products.  

https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://ntrs.nasa.gov/
https://wapor.apps.fao.org/catalog/WaPOR_2/1/L1_AETI_A
https://wapor.apps.fao.org/catalog/WaPOR_2/1/L1_AETI_A
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5.3 RESULTS 

Remote sensing is a valuable tool for monitoring and studying various environmental parameters, including 
water resources in arid areas. Satellite remote sensing can provide a wide-scale view of water resources in 
arid areas, allowing for the identification and monitoring of key features of the hydrological cycle. Additionally, 
it can fill the gap of data scarcity in arid areas. This validation process is crucial for ensuring the accuracy and 
reliability of satellite-based evapotranspiration data in arid regions and data-scarce regions, as it allows for 
better-informed decision-making and resource management. Satellite remote sensing products have global 
coverage advantages (Figure 29) on one hand and the issue of resolution on the other hand (Table 26). Daily 
evapotranspiration can be retrieved using course satellite data with high temporal resolution such as MODIS 
and NOAH. However, the main limitation of such high temporal resolution products is the cloud cover on most 
of the areas. Most of the ET products are using temporal composite such as 8-days in MODIS and 10-days as 
found in WaPOR products. The 10-days ET product time series during the study period in shown on figure 30.  

 
Figure 31: Satellite-based evapotranspiration coverage using MODIS data. 

 

 
Figure 32: 10-Days WaPOR-FAO evapotranspiration products extracted at the lysimeter site in the 

period between September 2019 and August 2022. 
 
The relationship between ETo and ETa using WaPOR products follow the same trend that has been found 
between the ETo and ETa from the lysimeter data (Figure 33).  
 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

______________________________________________________________________________________ 
64 

 
Figure 33: Relationship between ETo and ETa using WaPOR products. 

 
The MODIS ETa data has been extracted using Google Earth Engine (GEE) platform (Figure 34). The GEE 
can allow us to extract data from different sites and different periods without the need to download the actual 
products.  
 

 
Figure 34: Extraction of MODIS ETa products using Google Earth Engine. 

 
The MOD16 ETa data can also be processed on an 8-day, monthly and annual ETa can be calculated make 
it an easy tool for water balance assessment (Figure 35).  
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Figure 35: Annual evapotranspiration data for Vaalharts irrigation scheme using MODIS ETa product. 
 
There is general trend between the ET products, however, there was high discrepancies on the magnitude of 
the ETa (Figure 36). This issue has specifically indicated the problem of resolution and data extraction. The 
lysimeter data cannot be directly extrapolated to the large scale without using proxy data that can help in 
regionalisation the accurate lysimeter data. The meteorological ET function was developed at the lysimeter 
scale and has been used to validate the satellite data.  
 
 

 
Figure 36: Different evapotranspiration products used in this study. 

 
Three ETo functions with different data requirements have been used to develop the relationship between ETo 
and ETa using the lysimeter data (Figure 37). 
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Figure 37: Relationship between ETo and ETa using meteorological functions and lysimeter data 

logger
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Table 27: Validation of NOAH pixels with ground data across four seasons 

Station Season N R2 R RMSE 
(mm/8d) 

MAE 
(mm/8d) 

Bias 
(mm/8d) 

MAPE 
% 

P-value 

 
Ganspan 

2019 Barley 91 0.41 -0.64 0.459 0.361 1.549506e-15 18.9122 6.938445e-12 
2020 Maize 183 0,41 -0.64 1.164008 1.082683 1.082683 119.4102 6.938445e-12 
2020 Barley 122 0,41 -0.64 0.79 0.72 -0.2113236 36.23468 6.938445e-12 
2021 Soybean 182 0.0117 -0.108 0.2314703 0.1611061 9.214021e-17 21.30587 0.1447246 

 
Tadcaster 

2019 Barley 91 0.4905758 -0.7004 0.4283556 0.3387537 -2.718845e-18 17.93062 1.09872e-14 
2020 Maize 183 0.04 0.20 0.31 0.14 2.039683 41.82 0.46144 
2020 Barley 121 0.43 -0.65 2.28 0.521 2.44 54.24 0.461 
2021 Soybean 181 0.003 -45 0.79 0.72 -0.2113236 36.23468 6.938445e-12 

 
SABBI 

2019 Barley 91 0.39 -0.63 0.54 0.38 -4.098515e-15 6.056501e-16 0.45201 
2020 Maize 183 0.0003 3.19 0.43 0.14 -3.08415e-15 6.056501e-16 0.43001 
2020 Barley 11 0.48 0.69 2.79 2.30 -9.689219e-16 28.03 0.0181 
2021 Soybean 16 0.005 1.164008 1.082683 1.082683 119.4102 6.938445e-12 1.164008 

Jan 
Kempdorp 

2019 Barley 4.6992 3.84 9.690008e-16 79.40 0.771 5.328203e-16 31.14 0.219 
2020 Maize 6.03 5.46192 3.941292e-15 42.44 0.022 -5.051515e-15 35.43 0.461 
2020 Barley 4.24 3.55 -4.737891e-16 37.17 0.61657 -5.181011e-16 13.70741 0.00140963 
Soybean 2021 6.19 5.09 1.665335e-15 40.92 0.0670 -7.648203e-16 40.3413 2.671839e-07 

Table 28: Validation of WaPOR pixels with ground data across four seasons 

Station Season N R2 R RMSE (mm/8d) MAE (mm/8d) Bias (mm/8d) MAPE 
% 

P-value 

 
Ganspan 

2019 Barley 10 0,54 0,74 0,75 0,67 -4,21915E-16 
 

21,02 0.015 

2020 Maize 17 0,39 0,63 1,04 0,90 4.702631e-16 24,56 0.0072 
2020 Barley 12 0,58 0,76 0,68 0,51 -1.849355e-17 17,81 0,0030 
2021 Soybean 18 0.48 0.69 0.802 0.63 -5.181011e-16 13.711 0.00140963 

 
Tadcaster 

2019 Barley 27 0.66 0,81 1,26 1,02 -7.648203e-16 40.34 2.671839e-07 
2020 Maize 18 0,29 0,54 1,84 1,57 1.851275e-16 66.45 0.021 
2020 Barley 12 0,46 0,68 1,30 1,05 3.700834e-16 28.93 0.01524 
2021 Soybean 18 0,63 0,79 0.97 0,78 -1.356578e-16 24.27 8.724665e-05 

 
SABBI 

2019 Barley 9 0,55 0,74 0,73 0,67 2.072428e-15 11.29 0.0223 
2020 Maize 18         

0.56 0.75 0.911 0.77 -5.18119136521913e-16 19.97 0.00032 

2020 Barley 12 0.54 0.732 1.0063 0.74 -1.14721238874312e-15 14.48 0.00673 
2021 Soybean 18 0.55 0.742 0.842 0.67 -1.24588984480281e-15 14.60 0.00041 

 
Jan 

Kempdorp 

2019 Barley 9 0.71 0.841 0.2468 -1.35696936904665e-16 0.2006  14.65 0.0044 
2020 Maize 18 0.34 0.586 1.03423 0.87215 3.70917609898096e-17 31.21 0.0104 
2020 Barley 12 0.01 0.109 0,55 0,50 -2.313145e-16 36.71 0.7340176 
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2021 Soybean 18 0,61 0.78 0.72 0,54 1.776357e-15 16.98 0.000138 
 

 
Table 29: Validation of MOD16 pixels with ground data across four seasons 

Station Season N R2 R RMSE (mm/8d) MAE 
(mm/8d) 

Bias 
(mm/8d) 

MAPE 
% 

P-value 

 
Ganspan 

2019 Barley 11 0.49 0.70 2.746898 2.29067 4.198701e-15 28.53456% 0.02 
2020 Maize 16 0.02 0.16 5.90 4.93 -1.110223e-16 52.46 0.56 
2020 Barley 15 0.09 0.30 2.40 1.81 -7.106006e-16 37.37 0.28 
2021 Soybean 22 0.02 0.14 4.48 3.87 -3.471931e-15 38.11 0.52 

 
Tadcaster 

2019 Barley 11 0.48 0.69 2.79 2.30 -9.689219e-16 28.03 0.02 
2020 Maize 16 0.005 0.07 5.96 5.03 -4.440892e-16 53.03 0.79 
2020 Barley 15 0.11 0.34 2.65 2.32 5.328203e-16 31.14 0.22 
2021 Soybean 16 0.04 0.20 5.51 4.66 -5.051515e-15 35.43 0.46 

 
SABBI 

2019 Barley 11 0.23 0.48 4.14 3.388 -4.845398e-16 56.76 0.13 
2020 Maize 23 0.16 0.41 7.41 6.32 -1.389966e-15 81.50 0.06 
2020 Barley 15 0.30 0.55 3.58 2.79 0,1 28.65 0.03 
2021 Soybean 22 0.46 0.68 5.45 4.26 6.056501e-16 37.81 0.00047 

 
Jan 

Kempdorp 

2019 Barley 11 0.01 0.10 4.70 3.84 9.690008e-16 79.40 0.77 
2020 Maize 16 0.31 0.56 6.03 5.46192 3.941292e-15 42.44 0.02 
2020 Barley 15 0.01 0.14 4.24 3.55 -4.737891e-16 37.17 0.62 
2021 Soybean 16 0.22 0.47 6.19 5.09 1.665335e-15 40.92 0.07 
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5.3.1 Evaluation of NOAH ET product against in situ ET data across various stations 

 
Figure 38: NOAH ET evaluation at Tadcaster station for all seasons 
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Figure 39: NOAH ET evaluation at SABBI station. 

 
Figure 40: NOAH evaluation at Ganspan station. 
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5.3.2 WaPOR evaluation across different stations and seasons 

 

 
 
Figure 41: WaPOR evaluation at Ganspan station 

 
 
Figure 42: WaPOR evaluation at Jan Kempdorp station 
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Figure 43: WaPOR evaluation at SABBI station. 

 
 
Figure 44: WaPOR evaluation at Tadcaster station. 
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5.3.3 Evaluation of MOD16 across various stations and seasons 

 
Figure 45: Evaluation of MOD16 at Ganspan station 

 
Figure 46: Scatter plot of MOD16 vs in situ data at Jan Kempdorp 
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Figure 47: Scatter plot of MOD16 vs measured ETa at SABBI 
 

 
 
Figure 48: Scatter plot of MOD16 vs measured ETa data at Tadcaster station. 



 Smart Field Lysimeter for ET-Sensing 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

______________________________________________________________________________________ 
75 

5.4 DISCUSSIONS 

This study aimed to evaluate the accuracy of three global Evapotranspiration (ET) products across different 
spatial resolutions: the NOAH Land Data Assimilation System (LDAS) at 1 km², MOD16 ET at 500 m², and 
WaPOR at 250 m². Evaluation involved comparing ET outputs from these products with in-situ data. The 
assessment was conducted in two stages. 
 
Firstly, at the field scale, ETa from smart field weighing lysimeters was compared with ETo determined using 
the Penman-Monteith model. This comparison helped develop a mathematical approach to extrapolate ETa in 
areas with weather stations but no lysimeters. Secondly, this relationship was used to convert ETo at four 
weather stations into ETa. The converted station ETa was then directly compared to ETa outputs from the 
global products at various time stamps. Evaluation metrics included R², R, RMSE, MAE, Bias, and MAPE, and 
significance tests were conducted using P-values. 
 
Findings revealed that ETa_WaPOR showed better performance compared to in situ data, while ETa_NOAH 
and MOD16 exhibited poor correlations. The discrepancies between MOD16 and NOAH products and in situ 
data could be attributed to their coarse resolutions, algorithm parametrization, and errors in land use 
classification. Furthermore, inconsistencies between products and in situ data may arise due to pixel 
information mixing, where different land cover types coexist within one pixel. Among the evaluated products, 
WaPOR showed promise for hydrological studies and irrigation scheduling. However, its 10-day outputs may 
not provide sufficient temporal resolution for immediate decision-making. Recommendations include improving 
WaPOR’s spatial resolutions for better quantification, particularly in regions like South Africa.  
 
Inaccuracies between the MOD16 pixels and in situ data were observed in this study. The disparities between 
the MOD16 pixels and the ground data can be attributed to several factors such as (i) the spatial and temporal 
resolution differences, the MOD16 ET product has a coarser spatial resolution (1 km pixel) compared to a 
point-based weather station or lysimeter, which can lead to differences in the representation of land cover 
types and surface heterogeneity. An observation in the study area was that within 1 km2 pixel more than one 
plots exists with different land cover types apart from agriculture, water dams in each plot exists, trees and 
different crops also exist. The MOD16 estimates land parameters as an amalgam of activities occurring within 
one pixel, that means that ET is based on different activities occurring within the MODIS pixel which has the 
potential to yield inaccurate estimates which result in contradictory results (Aguilar et al., 2018). Moreover, the 
MOD16 product is available at a specific temporal interval of 8-day composites, while weather station and 
lysimeter data may make measurements at higher temporal resolutions (minutes, hourly and daily), because 
of the differences in spatial and temporal resolution discrepancies between the two datasets, the uncertainties 
might arise (Ndara, 2017). Furthermore, vegetation cover dynamics could also be seen as another factor 
influencing disparities. The MOD 16 ET estimates are based on remote sensing data which may not fully 
capture the complex dynamics of vegetation, such as changes in leaf area index, crop phenology, and crop 
growth stages. Variations in vegetation characteristics between MODIS pixels and the actual field conditions 
can lead to non-correlation between MODIS and in situ measurements (Ramoelo et al., 2014). 
 
Calibration and validation of the ET product is another factor that could be the reason of disparities between 
estimated and in situ data. The accuracy of MODIS ET estimates depends on the calibration and validation of 
the algorithm using ground-based measurements, such as lysimetric data. However, the calibration and 
validation datasets may not fully represent the range of environmental conditions and land cover types present 
in the study area, leading to discrepancies between MODIS and weather station-based ET estimates. Another 
important factor not to overlook is measurement errors, both MODIS and ground data can be subjected to 
measurement errors, the errors include errors in satellite retrievals, sensor calibration, and data processing. 
Consequently, such errors can propagate through the ET estimation process and contribute to non-correlation 
between the two datasets. The differences in estimation methods can also add to inaccuracies between two 
datasets. MODIS ET estimates are based on remote sensing data and empirical algorithms, while weather 
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station ET estimates may be derived from empirical models or physical-based approaches. Variations in the 
underlying estimation methods can lead to discrepancies between MODIS and ground-based ET estimates. 
 
The land surface heterogeneity is another factor that contributes to inaccuracies. The study area exhibited 
heterogeneous land surface characteristics, such as variations in soil properties, land cover types, and 
irrigation practices. The MODIS pixels may represent an average value for these heterogeneous surfaces, 
leading to discrepancies between MODIS and weather station ET estimates at smaller spatial scales. The 
variations within a single pixel have been described by Mu et al. (2011) who mentioned that the MODIS land 
cover has some inaccuracies which contributes to inaccuracies of ET. Fang et al. (2013) demonstrated the 
impact of land cover misclassification on leaf area index (LAI) which is one variable used as an input in the 
MOD16’s Penman-Monteith algorithm. 
 
The NOAH ET products demonstrated poor results when compared to in-situ measurements. The disparity 
between the NOAH and ground-based ET can be attributed to the coarse resolution of NOAH pixel while it can 
also be attributed to the errors on ground measurements. According to Moorhead et al. (2015), the data that 
is used in development of the NOAH’s daily ETo layers are generated from measurements over land cover 
surfaces that are different from short or tall reference crops, in non-agricultural environments, which provides 
an unknown difference between estimated values and actual conditions. However, Moorhead et al. (2015) 
observed good correlations between ground measurements and NOAH pixels in a non-agricultural setting. 
The disparities in the current study can be attributed to the land cover which is an agricultural setting with 
mixed vegetation parcels occurring in one pixel. 
 
The WaPOR ET product runs on the ETLOOK algorithm developed by Bastiaanssen et al. (2012) with a land 
cover classification layer of 100 m resolution. Product covering South Africa covers a spatial extent of 250 m2. 
This resolution provides a better understanding of land cover variability compared to MOD16 and the NOAH 
product. This product offered a better agreement with the measured in-situ data because of less lumping of 
land cover types in one pixel except for fields which share boundaries within the same pixel while their 
management and irrigation practices are different. Similar observations were made by Geshnigani et al. (2018). 
The disparities between WaPOR and measured ETa can also be related to the parametrization of the ETlook 
algorithm that depends on the Penman-Monteith model which is known to have inaccuracies in land cover.  
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CHAPTER 6: ASSESSMENT OF SATELLITE-BASED 
EVAPOTRANSPIRATION ALGORITHMS UNDER 

AGRICULTURAL ARID ENVIRONMENT  

6.1 INTRODUCTION 

The increasing challenges surrounding water utilization, particularly within irrigated agricultural regions, are 
rooted in the limitations of accurate monitoring technologies to guide the existing managing water consumption 
strategies (Evans and Sadler, 2008; Schultz and De Wrachien, 2002). This issue is significantly exacerbated 
within arid environments, where limited precipitation inputs and high evaporation rates create an uncertain 
balance between water demands and supply (Lu et al., 2018). Consequently, enhancing the productivity of 
arable land and optimizing the utilization of available water resources poses an intense challenge within the 
context of the water scarcity era (Mancosu et al., 2015).  In such circumstances, the need for water often far 
exceed the available resources (Jalali, 2007). To cope with these challenges, areas faced with aridity often 
resort to water transfers from areas with ample water sources, such as dams and rivers (Oweis and Hachum, 
2003). However, their reliance on external water sources does not only impact production within these zones; 
it also triggers negative consequences for the very water sources from which they draw their sustenance water. 
This, in turn, disrupts the equilibrium of freshwater ecosystems, which serve as vital habitats for aquatic life 
forms including the riparian vegetation especially in rivers (Malmqvist and Rundle, 2002).  
 
Agriculture in South Africa contributes about 70% in fresh water consumption in competition with other water 
dependent sectors (Musvoto et al., 2015).  The key contributor to water losses in agricultural settings is the 
process of evapotranspiration (ET), which manifests as both evaporation from soil surfaces and transpiration 
from crop canopies, it is typically difficult to separate the two occurrences as they occur simultaneously (Allen, 
1998). ET is a vital component of the water balance resembling water output in a given system, as a result ET 
component plays an essential role in quantification of the exact amount of water lost post irrigation or 
precipitation event (Minhas et al., 2020). Therefore, acquiring accurate spatiotemporal trends of ETa within 
irrigated arid regions becomes crucial, the data serves as a base for various critical aspects of agricultural 
water and soil management. One of the primary implications of accurate ETa is its role in guiding agricultural 
irrigation practices, with accurate knowledge of how ETa fluctuates across different crop stages and seasons, 
farmers and irrigation technicians can make informed decisions about when to irrigate. This does not only 
conserve water resources by avoiding unnecessary irrigation but also helps prevent over-irrigation that can 
lead to soil salinity and waterlogging issues. However, quantifying ET is not a simple task to do, this rests on 
the fact that water balance components requires expensive and sophisticated devices to accurately measure 
such as using the weighing lysimeters which provides direct quantification of ETa fluxes (Kool et al., 2014; 
Moorhead et al., 2019).  
 
The increasing global scarcity and demand for water highlights the critical necessity for its efficient utilization, 
particularly within the agricultural sector, which stands out as the single largest consumer of this indispensable 
resource. Beyond the widening gap between crop demand and water supply, the situation is exacerbated by 
the gross mismanagement of water resources and a pervasive neglect of the environmental impact on water 
sources. Crop evapotranspiration serves as an important indicator of crop water demand, influenced by 
dynamic factors such as weather conditions and crop health. Presently, most water demand models lack 
spatial considerations, relying instead on point data derived from reference evapotranspiration and crop 
coefficient values found in the existing literature particularly those published by FAO. The crop coefficient (Kc) 
emerges as a crucial parameter in irrigation scheduling and water allocation. While crop coefficient values 
obtained from literature may offer practical guidance for scheduling irrigation, the inherent empirical nature of 
these values introduces some margin of error in estimating crop water requirements. Consequently, there 
arises an imperative need to rectify and adjust crop coefficient values in accordance with local conditions. This 
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recognition initiates a departure from a one-size-fits-all approach, emphasizing the importance of accounting 
for regional disparities and environmental variables that significantly impact the accurate determination of crop 
water needs. Implementing these localized corrections in crop coefficient values becomes essential for refining 
the precision of irrigation scheduling and, in turn, optimizing water allocation practices within the agricultural 
domain. 
 
While methods like the Bowen ratio, Eddy Covariance systems, lysimeters, Scintillometers, and Surface 
renewal systems provide direct means of measuring crop evapotranspiration (ETc), they are limited in their 
scope (Ramjeawon, 2016; Savage, 2010). These techniques capture data from specific localized areas, failing 
to account for spatial variability. Given the impracticality of deploying expensive devices like lysimeters and 
eddy covariance systems extensively, the adoption of the standard reference evapotranspiration (ETO) 
equation, like the Penman-Monteith (PM) equation, has become conventional (Zhang et al., 2023). This 
equation integrates data from meteorological stations and crop coefficients provided by the Food and 
Agriculture Organization (FAO-56) guidelines of the United Nations covering most crops which are common 
globally (Allen, 1998). However, this approach also have its own challenges which include; meteorological 
station scarcity, especially in developing nations with limited technologies, and the unavailability of certain 
parameters necessary for the equation’s completion compromise its accuracy (Hashmi and Garcia, 1998). For 
example, areas with high humidity always lack radiation component while arid regions always lack the humidity 
component to feed into the equation compromising the accuracy of ETo quantification.  
 
In response to these complexities, various reference evapotranspiration models have been developed and 
used in different environmental settings categorized into radiation, aerodynamic, temperature, and 
combination models (Gossard, 1998). These models aim to bridge data gaps and provide accurate estimations 
of ETo. Despite the existence of these models and their years of utilization, weather stations, confined to 
specific points, lack the spatial distribution needed for comprehensive large-scale ETo investigations highlight 
the need for site-specific models to ensure accurate ETo determination. Furthermore, data gaps arising from 
weather station maintenance and vandalism further constrain efforts to precisely quantify evapotranspiration 
patterns (Louw et al., 1998). With challenges associated with ground-based point measurement devices, 
remote sensing ET products were developed from satellite-based data.  
 
Remote sensing products were developed to solve the issue of spatial limitations with the idea of capturing the 
variabilities at global scales. Most global ET products were developed to run following the standard PM 
algorithm combining datasets from different sensors. Such products include the existence of the Water 
Productivity (WAPoR) ET product with the spatial resolution ranging from 30 m to 250 m with South Africa 
covered on the 250 m spatial resolution per pixel, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Evapotranspiration product (MOD-16) at 1 km and the Land Surface Analysis Satellite Application 
Facility (LSA SAF) Evapotranspiration product at 3 km spatial resolution. The challenges associated with these 
products remains their coarse resolutions which were considered ideally to capture the fluxes at global scales 
such that they become less effective zooming into an individual farm scale, there are no pixels defining 
variabilities in ET.  
 
Studies on the use of global ET products have been undertaken by several researchers in South Africa (Majozi 
et al., 2017; Ramoelo et al., 2014) For example, the MOD-16 product in South Africa lacks validity as it has 
demonstrated underestimations of ET in some environments while it has not been evaluated in most 
environments including agricultural environments (Gibson et al., 2011; Ndara, 2017). Another study in South 
Africa with efforts by (Ramoelo et al., 2014) also highlighted the inconsistency of MOD-16 accuracy due to 
limited data for validation available in the country as well as measurement errors produced by the Eddy 
Covariance systems and also raising concerns that the inaccuracies in their site of experiments might be 
related to the parametrization of the Penman-Monteith algorithm that runs the MOD-16 product. (Majozi et al., 
2017) also evaluated the GLEAM product using Scintillometer and Eddy covariance data in two ecosystems 
in South Africa achieving very low correlations and coefficients of determinations. The lack of inconsistencies 
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reported in South African studies necessitates the development and improvement of satellite-based ET 
products Gibson et al., 2011). 
 
As a result, models incorporating better resolution satellite products such as incorporating Landsat data and 
Sentinel data were developed. These models include the Surface Energy Balance Algorithm for Land (SEBAL), 
Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC), Atmosphere-Land 
Exchange Inverse (ET-ALEXI), Surface Energy Balance (SEBS) and the Three-Temperature Model (3T 
Model). The advancement of models like SEBAL developed by (Bastiaanssen et al., 1999) has enabled the 
estimation of evapotranspiration (ET) with varying accuracies in diverse environments. Studies in different 
regions have demonstrated the applicability and potential enhancements of these models. In Iran, 
(Rahimzadegan and Janani, 2019) evaluated SEBAL,s effectiveness in estimating pistachio crop 
evapotranspiration using Landsat 8 images, highlighting SEBAL,s potential for precise ET mapping. (Silva et 
al., 2018) employed SEBAL in Brazil, producing compatible ET estimates with literature values, demonstrating 
its utility in various landscapes. In Turkey, (Shamloo et al., 2021) validated SEBAL,s estimations for corn 
against multiple methods, showcasing its robustness. However, studies involving the utilization of remote 
sensing data for assessing water use in South Africa have been conducted employing the SEBAL model 
alongside data from Landsat at field scales (Klaasse et al., 2008; Klaasse and Jarmain, 2011; Singels et al., 
2018). Additionally, (Ndou et al., 2018) applied SEBAL to model groundwater levels in South Africa, revealing 
significant correlations between potential evapotranspiration and groundwater depth. These advantage of 
these field-scale investigations was the potential for on-site validation (Gibson et al., 2013). The SEBAL 
validation approach has been successfully employed in several of the previously researched studies with the 
use of water balance, eddy covariance and Scintillometer with no lysimeter validation related work that has 
been published. These studies collectively highlight the SEBAL’s versatile applicability and offer insights into 
refining its models for improved accuracy in different environments.  
 
The Surface Energy Balance System (SEBS) was developed in 2002 by (Su, 2002), to estimate 
evapotranspiration through satellite imagery. The model’s adeptness in estimating evapotranspiration and 
energy flux has been substantiated by (Jia et al., 2003) and (McCabe and Wood, 2006). While generally 
reliable, instances of excessive latent heat flux overestimation have been reported (McCabe and Wood, 2006), 
particularly in forested areas (Badola, 2009), and overestimations of daily ET at grassland sites (Rwasoka et 
al., 2011). Given the model’s original focus on agricultural environments, it is reasonable that certain 
parameterizations might not be fully optimal for non-agricultural land types (Gibson et al., 2013). In the South 
African context, Gibson et al. (2011) introduced the SEBS model, alongside MODIS satellite data, validated 
with eddy covariance data from a substantial apple orchard in the Western Cape. This validation process 
revealed an underestimation of sensible heat flux due to constraints imposed by wet conditions. On the same 
study, daily ET from the eddy covariance system ranged from 55 to 96% of SEBS estimates, signifying an 
overestimation. (Gokool et al., 2018) conducted a study to validate satellite-derived ET against data obtained 
from a surface renewal system and eddy covariance in a sugarcane farm in Mpumalanga province, South 
Africa. They also aimed to assess the feasibility of two infilling techniques to create a daily satellite-derived ET 
time series. They used MODIS imagery with SEBS for ET modelling and their results indicated that SEBS ET 
estimates were about 47% higher, yielding R2 and RMSE values of 0.33 and 2.19 mm∙d-1, respectively, 
compared to in-situ ET values. Inaccuracies were attributed to errors in ET measurements. In another study, 
(Govender, 2022) employed the SEBS model to evaluate the impact of land use changes and climate variability 
on ET fluxes using Landsat 8 data. Validation was conducted against Penman-Monteith derived ET values, 
demonstrating significant relationships. However, this study did not provide more information into water 
balance components due to a lack of validation devices on the study site. Given that SEBS was primarily 
designed for agricultural contexts, the absence of validation devices in South Africa underscores the need for 
accurate measurement tools for assessing water balance components. 

(Madugundu et al., 2017) utilized the METRIC algorithm on Landsat-8 images from June to October 2013 to 
map evapotranspiration (ET) for a 50-hectare irrigated alfalfa field in Saudi Arabia. They validated METRIC’s 
accuracy against data from an eddy covariance (EC) flux tower and found it provided accurate ET estimations 
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with RMSE values of 0.13 and 4.15 mm/d. The algorithm performed better in full canopy conditions. Although 
hourly ET was slightly overestimated by 6.6%, daily ET was underestimated by 4.2%. (Lian and Huang, 2015) 
estimated ET fluctuations across diverse land cover types in an oasis using 14 Landsat-8 images. They 
employed the METRIC model, applying an innovative approach by selecting hot extreme pixels separately for 
desert and oasis areas. Their findings revealed significant temporal-spatial ET variations, with highest values 
over water bodies, arable land, low-lying terrain, and forests. METRIC, when using appropriate extreme pixel 
selection, displayed reasonable accuracy for heterogeneous land use, achieving R2=0.9 and an RMSE of 1.1 
mm respectively. Although such findings are evident in other countries, limited studies utilizing the METRIC 
model in South Africa in literature were noted. 
 
Given the challenges posed by conventional methods for estimating and measuring ET in capturing the spatial 
variations of ET, satellite-based ET estimation emerges as the only viable approach for quantifying water loss 
in agricultural environments. However, widely available global ET products, due to their coarse spatial 
resolutions and algorithm parameterization issues, are inadequate for precise field-level ET estimations. While 
some countries have achieved satisfactory results using remotely sensed models that integrate higher-
resolution satellite imagery, the challenge in South Africa lies in obtaining accurate measured data to effectively 
assess the applicability of models for generating field-scale ET products.  
 
To overcome these limitations and enhance the understanding of spatial variability in evapotranspiration, this 
study aims to integrate high-temporal-resolution smart field weighing lysimeters which will play a crucial role 
in determining and refining ETa values using Landsat 8 data and established remote sensing models, with a 
focus on SEBAL, SEBS, ETa_VI, and ETa_CWSI ET approaches. Landsat 8 data offers finer spatial resolution, 
which is particularly beneficial when investigating field-scale dynamics of crop water usage in agricultural 
landscapes. By integrating Landsat 8 data with ETO values obtained from weather stations and ETa 
measurements derived from lysimeters, a more comprehensive understanding of ETa distribution can be 
achieved. 

6.2 METHODOLOGY 

6.2.1 Study area. 

The Vaalharts Irrigation Scheme is a large-scale irrigation project located in the Northern Cape province of 
South Africa. It is one of the country’s most significant and extensive irrigation systems. The scheme was 
established in the 1930s and has since played a crucial role in agricultural development within the arid region. 
The Vaalharts Scheme primarily utilizes water from the Vaal River, sourced from the Vaal Dam. This water is 
channelled through an intricate network of canals and pipelines to supply water to around 35,000 hectares of 
land, making it one of the largest irrigation projects in South Africa (Barnard, 2013). Pivot irrigation dominates 
the area (Ratshiedana et al., 2023) whereas other irrigation systems such as drip irrigation, flood irrigation and 
sprinklers amongst others exist (Figure 28). The use of groundwater in this area is not suitable due to high 
salinity levels (Pretorius, 2018). The main goal of the scheme is to enable the cultivation of various crops, 
including fruits, vegetables, and field crops, in an area that would otherwise be too arid for sustained 
agricultural activity (Pretorius, 2018). To ensure efficient water distribution, the scheme employs advanced 
water management practices, such as controlled canal systems and modern irrigation technologies. Farmers 
within the scheme receive allocated water quotas based on the size of their land holdings and the types of 
crops they cultivate. The success of the Vaalharts Irrigation Scheme has had a positive impact on the local 
economy by creating jobs, generating agricultural products, and contributing to food security. It has also paved 
the way for agricultural diversification and economic growth within the region. However, challenges related to 
water scarcity, maintenance, and equitable water distribution have also been part of the scheme’s history. 
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Figure 49: The map depicting the study area distinct regions, (a) delineates the Vaalharts Irrigation 
Scheme, (b) identifies the experimental farm, and (c) indicates the study area’s position in relation to 

various South African provinces. 

6.2.2 Data Acquisition 

Landsat 8 images were obtained from the United States Geological Survey (USGS) Earth Explorer portal 
(“https://earthexplorer.usgs.gov/,” 2022). A total of 24 cloud free days were obtained matching the days with 
zero irrigation and precipitation in the experimental farm to align with the direct ETa measurements. To acquire 
the images a selection criterion of zero % clouds and Level-1 Terrain Corrected (L1T) was inputted into the 
Earth Explorer interface, the system retrieved and displayed the available Landsat 8 images which matched 
the search parameters. The L1T products were downloaded being radiometrically calibrated and 
georeferenced to the study are. The L1T products included 11 bands which are given in table 1. However, the 
selection of days with zero cloud limited the number of images available for the study. For a detailed 
comparison with lysimeter ETa at the pixel scale, images that matched lysimeter data on days with zero 
irrigation and the satellite pass were directly assessed. On days when this matching was not possible, an 
imperial approach was employed, considering a broader perspective for evaluation using a relationship 
between crop evapotranspiration based on various weather stations within the study area. This approach 
aimed to align the satellite-derived ETa with ground-based measurements.  
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Table 30: Landsat 8 Satellite Data from Operational Land Imager (OLI) and Thermal Infrared Sensor 
(TIRS) 

Band Name Wavelength Significance in Mapping Scenarios 

Band 1 – coastal aerosol 0.43-0.45 nm Useful for studying coastal regions and aerosols. 

Band 2 – blue 0.45-0.51 nm Applied in bathymetric mapping, soil-vegetation 
differentiation, and distinguishing between 
deciduous and coniferous vegetation. 

Band 3 – green 0.53-0.59 nm Highlights peak vegetation, aiding in plant vigor 
assessment. 

Band 4 – red 0.64-0.67 nm Detects variations in vegetation slopes. 

Band 5 – Near Infrared (NIR) 0.85-0.88 nm Emphasizes biomass content and shoreline 
features. 

Band 6 – Short-wave Infrared 
(SWIR) 1 

1.57-1.65 nm Discriminates soil and vegetation moisture 
content and can penetrate thin clouds. 

Band 7 – Short-wave Infrared 
(SWIR) 2 

2.11-2.29 nm Enhanced detection of soil and vegetation 
moisture, and penetration of thin clouds. 

Band 8 – Panchromatic 0.50-0.68 nm Offers 15-meter resolution for sharper image 
definition. 

Band 9 – Cirrus 1.36-1.38 nm Improved identification of cirrus cloud 
interference. 

Band 10 – TIRS 1 10.60-11.19 µm Provides 100-meter resolution for thermal 
mapping and estimated soil moisture 
assessment. 

Band 11 – TIRS 2 11.50-12.51 µm Enhanced 100-meter resolution for thermal 
mapping and estimated soil moisture 
assessment. 

6.2.3 Data Pre-processing 

The pre-processing of Level-1 Terrain Corrected (L1TP) data was executed utilizing the Semi-Automatic 
Classification Plugin in QGIS. The obtained L1TP Landsat 8 images were directly imported into QGIS without 
any sub-setting. By performing radiometric calibration, the data was transformed from digital numbers (DN) to 
top-of-atmosphere (TOA) reflectance values. This conversion was achieved by utilizing the metadata linked to 
each image file. Since the L1TP data had already been georeferenced, geometric correction was unnecessary. 
Atmospheric correction was applied to mitigate the impact of atmospheric scattering and absorption. For the 
thermal bands, processing was carried out to derive temperature values in degrees Celsius (°C). Additionally, 
each image underwent pan sharpening to enhance the spatial resolution of the multispectral bands. 

6.2.4 Actual Evapotranspiration Based on Reference Evapotranspiration and vegetation index. 

The reference evapotranspiration in this study was calculated using the Penman-Monteith evapotranspiration 
model. Actual crop evapotranspiration was directly measured using a smart field weighing lysimeter at a field 
scale. Extending the ETa data to locations without lysimeters at weather stations involved the development of 
an empirical relationship between reference evapotranspiration and actual evapotranspiration. This developed 
relationship was then applied to the reference evapotranspiration values to estimate the actual crop 
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evapotranspiration in areas without lysimeters, enabling a broader understanding of water consumption 
patterns across different locations. 

The general equation for actual crop evapotranspiration is given by the equation: 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝑜𝑜 ∗ 𝐾𝐾𝐴𝐴 
 
The reference evapotranspiration (ETo) was acquired from meteorological stations, and the crop coefficient 
(Kc) was employed. ETo was determined for various stations within the study region using the conventional 
Penman-Monteith equation for computing reference evapotranspiration, as introduced by Allen (1998) as: 
 

𝐸𝐸𝐸𝐸0 =
0.408∆(𝑅𝑅𝑛𝑛−𝐺𝐺)+𝛾𝛾� 𝐶𝐶𝑛𝑛

𝑇𝑇+273�𝑈𝑈2(𝐿𝐿𝑠𝑠−𝐿𝐿𝑎𝑎)

�∆+𝛾𝛾(1+𝐶𝐶𝑑𝑑𝑈𝑈2)�
                          

Where ETo denotes the standardized reference evapotranspiration in millimetres per day (mm/d) or millimetres 
per hour (mm/h). The symbol ∆ represents the slope of saturation vapour pressure against air temperature in 
kilopascals per degree Celsius (kPa/℃). Rn corresponds to the total or net radiation on the studied crop 
surface, measured in mega joules per square metre per day (MJ/m²/d) over a 24-hour period, while G signifies 
the heat flux density at the soil surface during the same 24-hour interval. T stands for the average daily air 
temperature per hour in degrees Celsius (℃), and U2 represents the mean hourly wind speed measured at a 
height of 2 metres in metres per second (m/s). The variable es denotes the saturation vapour pressure in 
kilopascals (kPa), ea signifies the actual vapour pressure in kilopascals (kPa), and the difference es - ea 
indicates the saturation vapour pressure deficit, also measured in kilopascals (kPa). Additionally, γ represents 
the psychrometric constant in kilopascals per degree Celsius (kPa/℃), whereas Cn and Cd are constants that 
vary based on the reference surface being employed (Allen, 1998). 
 

 
Figure 50: Conceptual framework for the determination of crop evapotranspiration based on 

vegetation index. 
 
To determine the Kc values, NDVI and fractional vegetation cover were used applying the following equations: 

𝐾𝐾𝑐𝑐 = 𝐾𝐾𝑐𝑐𝑏𝑏 + 𝐾𝐾𝐿𝐿 
 
Kcb denotes the fundamental crop coefficient, while Ke stands for the soil evaporation coefficient.  

𝐾𝐾𝑐𝑐𝑏𝑏 = 1.07 × �1 − (
𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁
𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑠𝑠

)
0.84
0.54� 
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NDVIv and NDVIs represent the highest and lowest daily NDVI values, respectively. 
 

𝐾𝐾𝐿𝐿 = 𝛽𝛽 × (1 − 𝑜𝑜𝐸𝐸𝑐𝑐) 
 
Where β is a constant and Fvc is the fractional vegetation cover representing the ratio of vegetation to bare 
soils. The value of β was assumed to be 0.25 as adopted from the studies that were undertaken by (Abid et 
al., 2018) and (Ren et al., 2023) which both adopted a β value of 0.25, drawn from the report of (Allen, 
1998)based on irrigation supply which was approximately within 10 days.  

6.2.4.1 The SEBAL Model 

The retrieval of ET based on the SEBAL model was based on the energy balance given by the expression:  
𝐸𝐸𝐸𝐸 = 𝑅𝑅𝐿𝐿 − 𝐺𝐺 − 𝑅𝑅 

Where Rn is the net radiation, G is the soil heat flux and H is the sensible heat flux, ET is the evapotranspiration 
component equivalent to the latent heat flux (LE).  
 
The net radiation (Rn) was computed using the energy balance equation, considering albedo, incoming solar 
radiation, and outgoing thermal radiation. The net radiation was calculated based on the equation: 
 

𝑅𝑅𝐿𝐿 = (1−∝)𝑅𝑅𝑆𝑆 ↓ +𝜀𝜀 × 𝑅𝑅𝐿𝐿 ↓ −(1 − 𝜀𝜀)𝑅𝑅𝐿𝐿 ↑ 
 
 Where RS↓ represents the total solar radiation that reaches the earth’s surface from the sun. The parameter 
α represents the earth surface’s albedo, which is the percentage of incoming solar radiation that is reflected 
into space. The outgoing longwave radiation emitted by the Earth’s surface is denoted by RL↓. While Ɛ denotes 
the emissivity which describes how efficiently a surface emits thermal radiation, it is a dimensionless value 
between 0 and 1, with 0 being a perfect reflector and 1 representing a perfect emitter. The term Ɛ×RL↓ 
accounts for the emitted longwave radiation because of the temperature of the earth’s surface, whereas RL↑ 
denotes the longwave radiation emitted by the atmosphere and directed towards the earth’s surface and it is 
caused by the greenhouse effect, as well as the fact that the atmosphere emits radiation back to the surface. 
 
Surface albedo was calculated for both types of land surfaces using the reflectance values from the visible and 
near-infrared bands of the Landsat 8 imagery. Albedo represents the proportion of incoming solar radiation 
that’s reflected by the land surface. The albedo was calculated based on the equation:  
 

∝= �
(0.356 × 𝐵𝐵𝐴𝐴𝑢𝑢𝐿𝐿 𝐵𝐵𝐸𝐸𝐿𝐿𝐸𝐸) + (0.130 × 𝑅𝑅𝐿𝐿𝐸𝐸 𝐵𝐵𝐸𝐸𝐿𝐿𝐸𝐸) + (0.373 × 𝑁𝑁𝑁𝑁𝑅𝑅 𝐵𝐵𝐸𝐸𝐿𝐿𝐸𝐸 + (0.085 × 𝑆𝑆𝐿𝐿𝑁𝑁𝑅𝑅) + (0.072 × 𝑆𝑆𝐿𝐿𝑁𝑁𝑅𝑅)− 0.018)

1.016 � 

 
The longwave radiation was calculated based on the equation: 

𝑅𝑅𝐿𝐿 ↑= 𝜀𝜀 × 𝜎𝜎 × 𝐸𝐸𝑠𝑠4 
Where σ is the Stefan-Boltzmann constant which is a fundamental physical constant that relates the 
temperature of an object to the amount of thermal radiation it emits. It has a value of approximately 5.67×10−8 
5.67×10−8 W/ (m²·K⁴). The constant σ converts the temperature of the surface to the amount of emitted 
radiation. 
 
The outgoing longwave radiation was calculated based on the equation: 

𝑅𝑅𝐿𝐿 ↓= 𝜎𝜎 × 𝜀𝜀𝑎𝑎 × 𝐸𝐸𝑎𝑎4 
Where εa is the emissivity of the material and it is a dimensionless value between 0 and 1 that describes how 
efficiently an object emits thermal radiation compared to a perfect blackbody radiator and can be calculated 
using the equation: 
 

𝜀𝜀𝑎𝑎 = 9.2 × 10−6 × (𝐸𝐸𝑎𝑎 + 273)2 
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Where Ta is the ambient temperature in degrees Celsius. The value 273 was added to Ta to convert the 
temperature from degrees Celsius to Kelvin, as the Kelvin scale starts from absolute zero which is equal to  
-273.15°C. The value 9.2×10−6 is a constant coefficient that determines the relationship between the 
temperature and emissivity. 

𝜀𝜀 = 𝜀𝜀𝐿𝐿 × (1 − 𝑃𝑃𝑃𝑃) + 𝜀𝜀𝑃𝑃 + 𝑃𝑃𝑃𝑃 

Where (εs) represent a non-vegetated surface and (εv) represent a vegetated surface while the Pv represents 
the fraction of the surface covered by vegetation. The constants Es=B10=0.971   B11=0.977 Ev b10=987 
b11=989 were used for Landsat 8 data. 
 
The fractional vegetation cover was calculated based on the equation: 
 

𝑃𝑃𝑃𝑃 = �
𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁 − 𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝐿𝐿𝑖𝑖𝐿𝐿

𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝐿𝐿𝐸𝐸𝑇𝑇 − 𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝐿𝐿𝑖𝑖𝐿𝐿
�
0.5

 

Where NDVI is the Normalized Difference Vegetation Index calculated based on the near infrared band and 
the red band. NDVI_min is the minimum NDVI value which was observed in the study area which corresponds 
to areas with minimal or no vegetation, while NDVI_max represent the maximum NDVI value which was 
observed in the study area representing the highest NDVI value that corresponds to areas with dense and 
healthy vegetation. Where NDVImax =0.5 and NDVImin=0.15 according to Schulze, 1997 b 
 
The soil heat flux (G) was calculated based on the equation: 

𝐺𝐺 = �
𝐸𝐸𝐿𝐿 − 273.16

∝
� × (0.0038𝛼𝛼 + 0.0074𝛼𝛼2)�1 − 0.98 (𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁4)�𝑅𝑅𝐿𝐿 

Where Ts is the surface temperature in degrees Celsius. 
 

𝐿𝐿𝑆𝑆𝐸𝐸 = (𝐿𝐿𝑆𝑆𝐿𝐿10−𝐿𝐿𝑆𝑆𝐿𝐿11
2

) 
To calculate the sensible heat flux, the following equation was used: 
 

𝑅𝑅 =
𝑜𝑜 × 𝐴𝐴𝑜𝑜 × 𝐸𝐸𝐸𝐸

𝐿𝐿𝐸𝐸ℎ
 

Where p is the air density, which signifies the mass of air per unit volume. Cp is the specific heat capacity of 
air, indicating the amount of heat energy required to raise the temperature of a unit mass of air by one degree 
Celsius. T represent the temperature difference between the earth’s surface and the overlying air. The rah-
term is the aerodynamic resistance to heat transfer, which accounts for the resistance offered by the 
atmosphere to the exchange of heat between the surface and the air. 
 
The change in temperature was calculated based on the equation: 

𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐿𝐿 + 𝑏𝑏 

Where a is the coefficient that quantifies the relationship between the change in temperature and the surface 
temperature while b is the Constant term representing an additional temperature change that is not directly 
proportional to the surface temperature. 
 
The aerodynamic resistance to heat transfer (rah) parameter quantifies how much the atmosphere resists the 
exchange of heat between the earth’s surface and the air which was calculated using the equation: 

𝐿𝐿𝐸𝐸ℎ =𝐴𝐴𝐿𝐿 ln
𝑍𝑍2 − 𝑍𝑍1
𝑈𝑈 ∗

𝑘𝑘 
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Where Z2−Z1 is the difference in measurement heights being the vertical distance between two points in the 
atmosphere where temperature measurements were taken. U∗ being the friction velocity that characterizes 
the turbulence and momentum exchange near the earth’s surface and the parameter k is the Von Kármán 
constant. U∗ is calculated using the equation: 

𝑈𝑈 ∗=
𝐾𝐾𝑢𝑢𝑇𝑇
𝑁𝑁𝐿𝐿

�
𝑍𝑍𝑇𝑇
𝑍𝑍𝑜𝑜𝐿𝐿

� 

Where (Ku) is the friction velocity scale factor the wind speed at height x (Ux), and the natural logarithm of the 
ratio of the measurement height Zx to the roughness length for momentum (Zom). 
 
While net radiation flux (Rn), sensible heat flux (H), and Earth’s temperature flux (G) are instantaneous 
measurements during the satellite’s passage, the latent heat flux values are instantaneous as well. The 
instantaneous evapotranspiration rate now of satellite pass was calculated using the (Frahmand et al., 2020) 
formula: 

𝐸𝐸𝐸𝐸𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿 = 3600 ×
𝜆𝜆𝐸𝐸𝐸𝐸
𝜆𝜆

 

Where λET is the heat of vaporization, which is the amount of heat required to convert a unit mass of liquid 
into vapour at a constant temperature. While λ is the latent heat flux, which is the rate of heat transfer 
associated with the phase change which in this case refers to the transition of water from liquid to vapour.  
 
The value of λ was computed using the formula presented in the work by (Ndou et al., 2018) given as: 
 

𝜆𝜆 =  [2.501 −  0.00236(𝐸𝐸𝑆𝑆 −  273)] × 106 

The daily ET values were determined through the utilization of the reference evapotranspiration fraction (ETrF) 
and reference plant evapotranspiration (ETr) where ETrF signifies the proportion of calculated ETinst for each 
pixel in relation to the reference ET derived from meteorological data, as outlined in the research efforts by 
(Allen et al., 2011). 
 

𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸 =
𝐸𝐸𝐸𝐸𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿
𝐸𝐸𝐸𝐸𝐿𝐿

 

 
The calculation for daily evapotranspiration values was performed as follows:  
 

𝐸𝐸𝐸𝐸24 =  𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸 ×  (𝐸𝐸𝐸𝐸𝐿𝐿 − 24). 
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6.2.4.2 Crop water stress-based ETa. 

 

 
Figure 51: Conceptual framework for the determination of crop evapotranspiration based on CWSI. 

 
(Jackson et al., 1981) established a mathematical relationship between the crop water stress index (CWSI) 
and the water consumption of plants. Their findings indicated that when CWSI equalled one, no water was 
being used, and if CWSI reached zero, ETa matched ETc, signifying an absence of water shortage. This 
highlighted the utility of both CWSI and ETc as effective tools for quantifying agricultural water consumption. 
To compute ETa, they devised the equation: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸0 ∗ (1 − 𝐶𝐶𝐿𝐿𝑆𝑆𝑁𝑁) 
 

In this study, Landsat 8 thermal data was employed to formulate the crop water stress index, utilizing the 
equation developed by (Jackson et al., 1981): 

𝐶𝐶𝐿𝐿𝑆𝑆𝑁𝑁 =
∆𝐸𝐸 − ∆𝐸𝐸𝐿𝐿
∆𝐸𝐸𝑇𝑇 − ∆𝐸𝐸𝐿𝐿

 

Where ΔT represents the difference in air temperature as determined by LST, ΔTm indicates the least change 
in LST_air, and ΔTx denotes the greatest divergence between LST and air temperature. 

6.2.4.3 SEBS model approach 

(Su, 2002)introduced the Surface Energy Balance System (SEBS) as a methodology for estimating heat flow 
fluxes and evaporative fractions. This model shares similarities with the SEBAL model, with a distinction being 
the incorporation of soil heat flux in the SEBS model. The inclusion of soil heat flux in SEBS enhances its 
capability to provide a more comprehensive assessment of the surface energy balance. The soil heat flux was 
calculated as: 

𝐺𝐺0 = 𝑅𝑅𝑛𝑛[𝐸𝐸𝑐𝑐 + (1 − 𝐸𝐸𝑣𝑣𝑐𝑐)(𝐸𝐸𝑠𝑠 − 𝐸𝐸𝑐𝑐)] 
 

Where, Go is the soil heat flux, Rn represents the net radiation, Tc stands for the psychrometric constant for 
the canopy air layer, Ts represents the psychrometric constant for the soil and Fvc is the fractional vegetation 
cover. 
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6.3 RESULTS 

Landsat 8 images between 2019 and 2021 study experimental period are detailed in table 2 below. The 
criterion for image selection was based on cloud free scenes, however on 16th February 2020, an image with 
4.23% was selected because it was cloud free within the area of interest which is the irrigation scheme. Details 
of the crop within the experimental farm are also given in the last column of the table. 
 
Table 31: Details on satellite images used in this study. 

 
Table 32: Showing the daily ETa (mm) from the lysimeter and estimated from four remote sensing 

models. 

Date ETa_Lysimeter ETa_SEBAL ETa_SEBS ETa_VI ETa_CWSI 
09-Sep-19 6,27 7 7,16 4,86 6,99 
15-Jan-20 5,23 7,44 11,94 10,03 9,66 
31-Jan-20 1,29 3,83 3,65 10,78 5,83 
16-Feb-20 8,18 10,45 12,2 10,38 9,04 
10-Aug-20 5,74 7,15 12,8 4,12 4,22 
11-Sep-20 3,35 4,15 11,07 7,7 2,49 
27-Sep-20 4,17 4,88 9,4 6,84 6,4 
13-Oct-20 5,19 8,05 9,83 6,44 1,92 
17-Jan-21 5,38 5,81 6,71 8,22 6,91 
18-Feb-21 2,32 4,77 6,74 12,55 4,46 
22-Mar-21 2,87 5,76 4,5 10,06 6,58 

 

6.3.1 Statistical analysis between ETa from lysimeter and the estimated ETa from four models 

Table 4 below shows the statistical metrics between the lysimeter and ETa remote sensing models. On 
assessing the RMSE, SEBAL achieves the lowest RMSE (1.97), indicating the smallest average magnitude of 
error between predicted and observed values. This suggests that SEBAL is the most accurate model in terms 
of precision. The ETa_CSWI also performs well with a reasonably low RMSE (2.71), displaying its 
effectiveness in estimating ETa. However, the SEBS model falls in the middle range, having a moderate RMSE 
(4.77). Findings portray that it is less precise than SEBAL and ETa_CWSI but outperforms ETa_VI based on 
that the ETa_VI shows the highest RMSE (5.35), suggesting a larger average discrepancy between predicted 
and observed values. 
 

Path/Row Date Acquired Satellite pass time Cloud cover Crop type 

172/79 2019/09/09 08:15:19 0.01 Winter Barley 
172/79 2020/01/15 08:15:15 0.22 Maize 
172/79 2020/01/31 08:15:10 0.00 Maize 
172/79 2020/02/16 08:15:06 4.23 Winter Barley 
172/79 2020/08/10 08:15:03 0.01 Winter Barley 
172/79 2020/09/11 08:15:18 0.00 Winter Barley 
172/79 2020/09/27 08:15:23 0.00 Winter Barley 
172/79 2020/10/13 08:15:25 0.05 Winter Barley 
172/79 2021/01/17 08:15:14 0.00 Soybean 
172/79 2021/02/18 08:15:08 0.01 Soybean 
172/79 2021/03/22 08:14:53 0.15 Soybean 
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Assessing the Mean Absolute Error (MAE), the SEBAL model excels with the lowest MAE (1.75), indicating 
accurate predictions and minimal bias. While ETa_CWSI also performs well with a relatively low MAE (2.35), 
demonstrating its competence in providing accurate ETa estimates. The SEBS model again on MAE falls in 
the middle range with a moderate MAE (4.18), suggesting slightly less accuracy compared to SEBAL and 
ETa_CWSI. The ETa_VI Exhibits the highest MAE (4.37), indicating a larger average absolute error in 
predictions. When using the Percentage Bias, the SEBAL Shows a negative PBIAS (-38.61), suggesting an 
underestimation of lysimeter values on average. Despite this bias, the model still demonstrates good precision. 
The ETa_CWSI also exhibits a negative PBIAS (-29.03), indicating a slight underestimation. However, it is 
less biased than SEBAL. The SEBS model shows a significantly negative PBIAS (-92.04), indicating a 
considerable underestimation of lysimeter values. This suggests a systematic bias in SEBS predictions. The 
ETa_VI presents a negative PBIAS (-83.99), indicating a substantial underestimation similar to SEBS. 
On assessing the Coefficient of Determination (R), the SEBAL achieves the highest R value (0.88), indicating 
a strong positive linear relationship between predicted and observed values. This suggests SEBAL’s 
effectiveness in capturing the variability in lysimeter values. The ETa_CWSI also demonstrates a relatively 
high R value (0.38), indicating a positive but weaker linear relationship compared to SEBAL. The SEBS model 
exhibits a moderate R value (0.65), suggesting a reasonable but not as strong correlation as SEBAL. The 
ETa_VI presents a negative R value (-0.43), indicating a poor fit and an inverse relationship with lysimeter 
values. 
 
Lastly, on assessing the Mean Absolute Percentage Error (MAPE), the SEBAL Shows the lowest MAPE 
(55.77%), indicating a lower percentage error on average. This further emphasizes SEBAL’s accuracy. The 
ETa_CWSI presents a moderate MAPE (79.75%), indicating a higher percentage error compared to SEBAL 
but still within an acceptable range. The SEBS model exhibits a higher MAPE (110.44%), indicating a larger 
average percentage error. The ETa_VI demonstrates the highest MAPE (169.75%), indicating a higher relative 
error compared to other models. 
 
Table 33: Comparison of estimated and lysimeter ET values using statistical indicators. 

Method SEBAL SEBS ETa_VI ETa_CWSI 
RMSE 1.97 4.77 5.347736  2.711841  
MAE 1.75 4.18 4.368182  2.346364  

PBIAS -38.61 -92.04 -83.9968 -29.02581 
R2 0,78 0,43 0,19 0,14 

MAPE 55.77 110.44 169.7515  79.74747  
R 0.88 0.65 -0.4335184  0.3804239  

 
Figures (31 and 32) displays the spatial distribution of Evapotranspiration (ETa), which has been derived using 
the SEBAL model. This model stands out as the most robust among the various models evaluated, with the 
assessment conducted against the ground-truth lysimeter ETa data. 
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Figure 52: Shows the spatial distribution of ETa values estimated by SEBAL algorithm compared to 
the lysimeter method. 
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Figure 53: Shows the spatial distribution of ETa values estimated by SEBAL algorithm compared to 

the lysimeter method. 

6.4 DISCUSSIONS 

This study was undertaken over the course of four successive cropping seasons with a comprehensive 
evaluation of the capacity of satellite-derived ET using SEBAL, SEBS, vegetation index (VI) and crop water 
stress index (CWSI) based models and lysimetric approach in monitoring evapotranspiration (ET) across 
barley, maize, and soybean fields from 2019 to 2021. The primary objective of this study was to bridge the 
existing research gap concerning the accurate estimation of crop coefficient (Kc) and crop evapotranspiration 
(ETc) at a farm-scale utilizing remotely sensed data. To achieve this, the study employed Landsat 8 satellite 
sensors to generate detailed time-series maps of ET based on SEBAL, SEBS, VI and CWSI throughout the 
entirety of the cropping seasons. The choice of Landsat 8, with its advanced capabilities, allowed for a more 
nuanced understanding of the spatial and temporal dynamics of vegetation and water stress in the selected 
crops. The basal crop coefficient (Kcb) was meticulously modelled by analysing the NDVI time-series data. 
Concurrently, the daily FAO56 reference evapotranspiration (ETo) was derived from a nearby weather station, 
serving as a crucial benchmark for assessing the accuracy of the remotely sensed data. To validate and 
augment the study’s findings, a smart field weighing lysimeter was installed to directly measure crop 
evapotranspiration during corresponding seasonal periods. These lysimeter provided ground-truth data, 
contributing to the reliability and robustness of the study’s conclusions.  
 
The SEBAL Model demonstrated to be the most effective model in estimating ETa. Similar findings have been 
reported by (Zoratipour et al., 2023) when comparing SEBAL, SEBS and lysimeter values. However, the 
SEBAL’s superior performance can be attributed to its comprehensive physical basis, higher spatial and 
temporal resolution and a balanced incorporation of various factors influencing energy balance. While 
ETa_CWSI may provide a reasonable alternative, especially in cases where SEBAL is not practical, SEBS 
and ETa_VI exhibit limitations that affect their accuracy and correlation with lysimeter values.  
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Achieving the objectives of this study encountered limitations, particularly in terms of aligning image availability 
with the days of zero-irrigation when lysimeter ETa was calculated. This constraint resulted in a reduced 
number of available images throughout the study period. 
 
The statistical metrics portrayed the performance metrics of four methods for estimating ETa. The SEBAL 
model exhibited the lowest errors with a RMSE of 1.97 and MAE of 1.75, along with a strong positive correlation 
(R = 0.88) and a relatively good fit (R2 = 0.78). SEBS demonstrated higher errors compared to SEBAL, with a 
RMSE of 4.77 and a larger MAE of 4.18, indicating substantial underestimation (PBIAS = -92.04) and a 
moderate positive correlation (R = 0.65). ETa_VI exhibited the highest errors among all methods with a RMSE 
of 5.35 and a high MAPE of 169.75, indicating significant underestimation (PBIAS = -83.9968) and a weak 
negative correlation (R = -0.433). ETa_CWSI falls in between, with moderate errors and correlations. Overall, 
SEBAL appears to be the most suitable method for estimating ETa in the given context, showing the lowest 
errors and the strongest correlation with observed values, while ETa_VI exhibits the poorest performance. 
 
Some inconsistencies were observed across the evaluated ET algorithms although the same images were 
used. One of the primary challenges with CWSI-based ET compared to lysimeter measurements is the indirect 
nature of CWSI. While CWSI provides valuable information about crop water stress levels, it relies on 
assumptions and models to estimate actual ET rates based on canopy temperature differences. These 
estimates may not always perfectly align with the actual water use measured by lysimeters. CWSI 
measurements may not capture the spatial and temporal variability of water stress within a field accurately. 
Variations in crop type, soil properties, irrigation practices, and microclimatic conditions can all influence the 
effectiveness of CWSI for estimating ET. Factors such as cloud cover, humidity, wind speed, and sensor 
viewing angle can introduce noise and errors into CWSI measurements, making it challenging to isolate the 
effects of water stress accurately. 
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CHAPTER 7: CONCLUSIONS & RECOMMENDATIONS 

7.1 CONCLUSIONS 

Limited and scarcity of water resources in South Africa is the main challenge for applying improving policies 
and strategies in the agricultural sector. The eradication efforts by the government of the extreme poverty, 
improvement of livelihood and environmental sustainability cannot be achieved without a robust plan for 
available natural resources management and, specifically, the water resources. Therefore, horizontal, and 
vertical expansion policies in food production were considered major tasks to achieve the millennium strategic 
goals. The recent drought spells in the Western Cape areas and other parts of South Africa have increased 
public awareness of the water shortage and suggest severe water cuts in agricultural sectors. Developing new 
water-saving strategies and tools for estimating water use efficiency (WUE) at different scales and 
environments can improve farmers, abilities to adapt to the increasing water shortage and climate change. At 
the same time, increasing WUE has undoubtedly positive effects on the sustainable use of water resources in 
agriculture. South Africa is a semi-arid country with various characteristics that make water availability quite 
variable in time and space. As water scarcity represents a major limitation for food production and rangeland 
productivity, developing technologies that can categorise resource use efficiency is highly recommended. The 
field smart lysimeter combined with the satellite measurements, can provide essential information about the 
plant water use and water productivity at the field level. The utilisation of satellite-based technology can provide 
and efficient tools to help farmer to monitor their crop water use at the farm level. This study was aimed to 
apply smart field lysimeters to generate accurate evapotranspiration data that can be used to calibrate and 
validate evapotranspiration measurement derived from the remote sensing data. The study has involved three 
levels, namely: 1. Application of the smart weighing lysimeter to measure the water use of winter and summer 
crops under arid conditions, 2. To validate some of the widely used evapotranspiration products derived from 
remotely sensed data, and 3. To assess different algorithm used to estimate the evapotranspiration from 
Landsat satellite imagery.  
 
The findings from this study have confirmed that the implementation of smart field weighing lysimeters 
represents a highly effective tool for monitoring water usage, providing invaluable assistance in irrigation 
scheduling, and optimizing crop water productivity and efficiency. By offering critical insights into crop water 
requirements, water use efficiency, nutrient management, and soil moisture dynamics, these lysimeters play 
a vital role in water resource management. Throughout the course of this study, continuous and precise 
measurements of the water balance components have demonstrated the capabilities of smart field weighing 
lysimeters in improving agricultural irrigation practices, thereby contributing to the sustainable management of 
water resources. Moreover, the recorded data which was obtained remotely from the cloud storage system 
significantly reduced the need for on-site visits, which resemble the technological concept of the Internet of 
Things (IoT), thereby modernizing agricultural workload and operation costs. One crucial aspect to highlight in 
this study particularly from literature is the lack of ground actual evapotranspiration data in South Africa and 
the study area, necessitating further investigation into the water usage of other crop types within the Hartswater 
area. Smart field weighing lysimeters are becoming important tools in agricultural research and industry by 
providing ground-based evapotranspiration data at the field scale for validating ET models used at larger 
scales. They provide real-time opportunities to reduce water losses through ungoverned irrigation plans. Their 
ability to create actionable strategies from the data collected has, up until now, been constrained in irrigated 
farming due to a lack of financial resources and expertise. To alleviate water scarcity, it is specifically advised 
that smart field weighing lysimeters be targeted to improve scientifically informed decision-making in 
agricultural water usage management. While the lysimeters employed in this study were not large, it has 
become evident that future research should explore the application of large lysimeters to assess the water use 
dynamics of the dominant pecan nut trees under irrigation in the area. This expansion into larger-scale 
experimentation would offer valuable insights into the irrigation needs and water requirements of major crops 
in the area. By using these advanced technologies, agricultural water use practices can be improved to ensure 
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the sustainable utilization of water resources, aiding in better decision-making, water conservation, and cost 
reduction for farmers and the broader agricultural sector.  
 
The study has proved that the direct comparison of the ETa from the lysimeter and the satellite and the remote 
sensing products will be unrealistic due to the differences in the spatial measurement domains. In order to 
extrapolate the lysimeter local measurements to the field and catchment scale, there was a need to develop 
and upscaling method. The method has been suggested in this study is to use various meteorological models 
to develop a relationship between the ETa and ETo at different sites. The study has evaluated a total of 28 
ETo micrometeorological models’ performance using a smart field weighing lysimeter. All models were 
evaluated using statistical metrics which demonstrated how good or bad each model is when compared to 
lysimeter ET data. The idea behind these processes was to find a more appropriate model that can be used 
in arid environments of South Africa which match the exact characteristics of the study area. The Penman-
Monteith, Priestly-Taylor, and the Hargreaves and Allen models were identified as the robust models suitable 
for estimating ET in arid environments. These findings are important for water managers in irrigation 
scheduling, water allocation, and drought management, emphasizing the significance of model selection in 
accurately estimating ET, especially where conventional measuring devices are impractical or not 
economically feasible. 
 
The conclusions drawn from the performance metrics of various methods for estimating ETa highlights the 
critical role of accurate estimation techniques as demonstrated by the SEBAL method, in guiding efficient water 
management, irrigation practices, and enhancing water use efficiency in agriculture. By prioritizing the 
selection of reliable methods like SEBAL, water managers can optimize irrigation scheduling, minimize water 
wastage, and improve crop water use efficiency contributing to water conservation efforts and sustainable 
agricultural development. These findings show the importance of informed decision-making in water 
management, emphasizing the need for precise ETa estimation to address global water scarcity challenges 
and promote resource-efficient agricultural practices through accurate remote sensing models. 

7.2 RECOMMENDATIONS 

Accurate measurements of ETa remain the biggest data gap in the South African water management practices. 
This is dues to the limitations associated with lack of ground-based measuring devices. In the entire Africa 
only six Fluxnet stations exist with only one located in South Africa (https://fluxnet.org/sites/site-summary/). 
Majority of these stations are in Europe and United Kingdom countries where most validations and calibrations 
of ET models and products have been done. This limitation in South Africa makes it difficult to carry out the 
validation of models and products that were developed to provide global solutions before adopting them into 
the water management practices. Based in the above-mentioned challenges and findings of this project, we 
recommend to the WRC that: 

• Based on the limitations in ET measuring stations, there in a need to focus on development of ET 
monitoring network systems across the country with data that is available to the public while the data 
has potential to help in the validation and calibration of indirect ET models. 

• Lysimeters are not cheap, but their accuracy in determining the water balance components make them 
top priority tools that can be used for crop water use in large commercial farms to aid in irrigation 
scheduling. As such future research should focus on the development of lysimeters for use at various 
scales for the purpose of evaluating and calibrating ET models, this can either be from greenhouses 
or farm scales. 

• To our knowledge the smart field weighing lysimeter used in this study is the first in Africa, however 
the lysimeter of its kind provides more information on the soil-plant-water conditions. More devices of 
this nature are recommended for future research purposes including those that can be used for 
horticultural purposes. 
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• The study was done at a field scale within the Vaalharts irrigation scheme, as such findings obtained 
here might not actually apply to the entire country, as such evaluation of ET based on the results of 
this study may not always produce accurate results if used in a different area with different climatic, 
topographic and soil conditions. We recommend that future research should focus on implementing 
projects of this nature to solve the issue of environmental variabilities for accurate outputs. 

• The current study focused on three crops which were barley, maize, and soybean, we recommend the 
determination of ETa for many other crops which can help in the development of local crop coefficients 
that can be used for irrigation scheduling. 

• During the project, we observed the limitations in the use of SFL-600 lysimeter for maize ETa 
determination where we could only determine ETa for early to development stages of the crop with 
errors being observed on the weighing balance measurement due to long maize roots reaching the 
lysimeter bottom. We recommend that, future research should focus on the use of larger lysimeters 
when dealing with crops that have long roots. 

• The study made use of micrometeorological models to aid in extrapolating ETa from a point level into 
the larger extent of the irrigation scheme using four weather stations. We recommend the continuous 
installation of meteorological stations in the study area to capture more variabilities in ET which can 
be used to develop more robust ET models that could aid in improving the water management 
practices in the scheme. 

• The study made use of ET products at varying scales, the coarse resolutions such as NOAH and 
MODIS products demonstrated poor results when compared with ETa from ground measurements. 
While on the other side, WaPOR product showed some promising results at 250 m2 resolution. The 
WaPOR product in some countries contains a 100 m2 and 30 m2 resolution ET products. We 
recommend the FAO to improve the resolution of WaPOR also covering South Africa and more African 
countries. 

• The project made use of Landsat 8 data for estimation of ET using SEBAL, SEBS, CWSI and 
vegetation index-based algorithms obtaining varying observations when compared to ground 
measurements. We recommend the integration of better resolution images such as sentinel datasets 
and the use of Unmanned aerial vehicles (UAV) for ET estimation. The use of UAV will add more value 
to solve the issues of spatial and temporal resolutions and weather challenges such as clouds which 
are common when using satellite images. 

• Future research should apply irrigation scheduling based on ETa observations and assess crop yields 
thereafter. 
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