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EXECUTIVE SUMMARY

1.1 INTRODUCTION

The ever-increasing demand for water - one of the scarcest natural resources in this country
- makes scientifically-based management essential in order to meet all user requirements.

South Africa is not richly endowed with natural water resources. Furthermore, this scarce
natural resource is not evenly distributed among the economic growth areas. This is
particularly true of agricultural areas. Because of the numerous sectors which make
demands on the water supply, it is essential to have systems that constantly monitor water
usage. This would make prior planning of future water consumption and allocation
possible.

Information on current land use patterns and trends underlies effective management of
natural water resources in drainage areas. Conventional methods of data collection used in
making an inventory of land use, such as land use surveys, field work and aerial surveys
are expensive, cumbersome and time-consuming. Therefore, one has to consider
alternative methods of data collection. Modern technology, such as remote sensing and
Geographic Information Systems, is in theory able to provide a cost-effective and regular
means of collecting information on land use. Research has shown that it is possible to map
irrigated areas fast and reasonably accurately with the aid of satellite data. However, the
capability of relatively high resolution satellite data to identify irrigated areas has not yet
been fully tested in intensively farmed areas, such as the Southwestern Cape. Therefore,
there is some doubt as to the degree of success which can be achieved in such complex land
use areas.

This study set out to evaluate the potential of SPOT and Landsat TM satellite data to
identify vegetation in quantifiable terms, so that the irrigation requirements of the
Wolseley-Worcester area of the Upper Breede River Catchment could be determined.

1. AIMS:

(a) To identify, classify and map land cover types with particular emphasis on irrigated
land in a section of the Breede River Valley by analysing multi-temporal SPOT and
Landsat TM digital imagery;

(b) To refine the results obtained by digital image processing techniques by combining
ancillary information such as soil types and slopes with a GIS using polygon
overlaying techniques;
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(c) To investigate the usefulness of land cover data gathered by the abovementioned
techniques for quantifying water abstraction by irrigation through field surveying
techniques.

2. RESEARCH METHODOLOGY

The diagram in Figure 1 summarizes the steps and procedures followed to achieve the aims
of the study.

3. STUDY AREA

The study area comprises the Breede River Valley in the South Western Cape of South
Africa from where the river emerges from the Mitchell's Pass in the vicinity of Wolseley to
just north of Worcester. The valley is intensively cultivated and vines, orchards, vegetables
and pastures under irrigation are the main crops. Dryland farming of wheat is also
significant. The rest of the area is utilized for pine plantations or still under natural veld,
mostly Cape Fynbos. Figure 2 shows the location of the study area superimposed on a
Landsat TM image.

3. DATA

In order to achieve the goals set for this research four different data sets were required:

(a) SPOT XS

Two quarter images were purchased from the Satellite Application Centre (SAC) at
Hartebeesthoek, namely a winter and a summer scene for the 1992/93 growing season.
Due to bad weather conditions at the time of the overpass no cloudless spring or autumn
scenes were available.

(b) LANDSAT TM

Four quarter images were purchased from SAC, one representing each of the 1992/93
seasons. The details of the imagery are presented in Table 1.
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AIM OF STUDY
Identification of irrigated areas in an intensively
cultivated agricultural area in the South Western
Cape by means of satellite remote sensing techniques

PRIMARY DATA
Multispectral
Satellite data
SPOT XS and Landsat TM

•
SECONDARY DATA
GIS-based ancillary data
Soil types
Relief
Agriculture subareas

Climatic data

1

GROUND TRUTH DATA
Current land use patterns
Irrigation extent and prac-
tices on selected farm
units

OPTIMIZATION OF IMAGE PROCESSING TECHNIQUES
Determination of multitemporal crop profiles
Optimal band selection
Pattern recognition procedures

DIGITAL CLASSIFICATION OF MULTITEMPORAL SATELLITE DATA
Application of pattern recognition techniques
Digital image classification
Integration with ancillary data

Evaluation of classification results
Conclusion

QUANTIFICATION OF DEMAND FOR IRRIGATION
Questionnaire survey
Estimation of demand for irrigation water
Irrigation systems
Seasonal patterns of irrigation
Development of calibration measures
Demand for irrigation water
Conclusion

SYNTHESIS
Evaluation of results
Implications and guidelines for further research

Figure 1: Schematic representation of the research methodology.
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Figure 2: Landsat TM image showing the location of the study area.



Table 1: Imagery purchased for the study.

Satellite:
Instrument

Acquisition date
Season

Identification
Scene:

Path
Row

CCTID

Tape format

SPOT
HRV1

92/08/13
Winter

119
417
4680
SISA BIL

6250

93/01/13
Summer

119
All
4674
SISA BEL

6250

92/04/12
Autumn

175
83
3575
ESABIL

6250

LANDSAT

92/08/18
Winter

175
83
4699
ESABIL

6250

TM

92/10/05
Spring

175
83
4698
ESABIL

6250

93/01/25
Summer

175
83
4970
ESABIL
6250

(c) ANCILLARY GIS DATA

A GIS database was created for the study area containing the data sets as described in Table
2.

The GIS database compiled for the refinement of the results of the image classification
consists mainly of two types:

(i) GIS data which served as ground truth

(a) Data representing the current generalized agricultural land use patterns for the
entire project study area.

(b) Data representing detailed agricultural land use patterns on 22 selected farms in
the project study area.

(ii) GIS-based ancillary data used as secondary data sources:
(a) Data which was representative of the soil types in the area and
(b) Contour data for the study area.

Ancillary data gathered to provide supporting information was used in the study
to supplement classifications of areas so that 'incorrect classification1 could be
corrected.

(d) GROUND TRUTH DATA

Table 3 presents a summary of the land cover classification scheme used for mapping land
cover from 1:10000 orthophotos and 1:30000 scale aerial photographs against which
satellite derived land cover maps of the entire study area could be evaluated. The land use
map created is presented in Figure 3.
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Table 2: Geographic themes included in GIS database.

Geographic
Theme

Elevation
Contours

Selected
Farms

1:50 000 scale
map grid

1:10 000 scale
map grid

Soil types

Mean Annual
Rainfall

(Weather stations)

Land-use

Drainage regions
South-Western

Cape

Rivers

Upper Breede
River drainage

region

Agricultural
Subregions

Towns

Name

contours

farms

topogrid

orthogrid

soils

rainfall

breemap

wkaapstr

rivers

catch

regions

towns

Data
Type

line

polygon

polygon

polygon

polygon

point

polygon

polygon

line

polygon

polygon

point

Unprocessed Data Source

1:50 000 topographic maps scanned and
vectorized by the Department of Water

Affairs and Forestry

Maps at various small scales from the
Department of Agriculture/Personal

Information : Individual Farmers

1:50 000 topographic maps from the Chief
Directorate: Surveys and Land Information

1:10 000 orthophotos from the Chief
Directorate: Surveys and Land Information

1:50 000 data from the Resources Develop-
ment Division: Elsenburg, Department of

Agriculture

Digital data from the Resources Develop-
ment Division: Elsenburg, Department of

Agriculture

1:50 000 aerial photography and 1:10 000
orthophotos from the Chief Directorate:

Surveys and Land Information with
Field verification 1:10 000 scale

Digital data (1:50 000 scale) from the
Department of Water Affairs and Forestry

Digitized from 1:50 000 topographic maps.
Chief Directorate: Surveys and Land

Information

Digital data 1:50 000 scale from the
Department of Water Affairs and Forestry

Digitized from 1:50 000 scale topographic
maps. Chief Directorate: Surveys and Land

Information

Digitized from 1:50 000 scale topographic
maps. Chief Directorate: Surveys and Land

Information
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Figure 3: Land use Upper Breede River Valley
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Table 3: Land use and land cover classification system used with satellite data: Upper

Breede River Valley

Level I

1. Urban or built up

2. Agriculture

3. Natural pasture

4. Forest

5. Water area

6. Bare ground

Level II

Residential
Farmstead

Vineyard

Orchards

Vegetables
Cereals:
wheat, rye, oats

Natural fynbos
Natural bush,
riparian growth

Plantation

River, channel, canal
Dam

Natural bareground,
sand

Fallowland

Item

Code
LU1

r
f

V

b
V

pc

V

bs

P

r
d

bg
fa

Level m

Young vines
Bush-trained vines

Trellissed vines
Young orchards

Item

Code
LU2

yv
btv
tv
yo

Source: Adapted from Lo, 1986

(e) QUESTIONNAIRE SURVEY DATA

A questionnaire survey of 21 farms in the study area provided detained land use data and
information on irrigation practices from which it was possible to compute the amount of
irrigation water applied per land cover type.

A schedule of activities and how these related to one another is presented in Table 4.
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Table 4: The temporal relationship between the capturing of satellite data, the
gathering of ground truth data and the irrigation period in the study area.

Duration of Study

Capturing of
satellite data:

SPOT XS
Landsat TM

Gathering of
ground truth data
Irrigation period in
the study area

1992

Summer
Dec Jan Fob

Autumn
Mar Apr May

not available

Winter
Jun Jul Aug

Spring
Sopt Oct Nov

not available

-

Doc

1993

Summer
Jan Fob

4. IMAGE PROCESSING

Two image processors were used to analyse the data, namely an older version of Easi Pace
on a 386 PC to process the SPOT XS data and the latest version of Erdas Imagine on a
SUN workstation to analyse the Landsat TM data. The data were subjected to the
following image processing techniques:

(i) Unsupervised classification;

(ii) Principle Component Analysis;

(iii) Normalized and Transformed Normalized Difference Vegetation Indices;

(iv) Supervised classification.

These procedures are discussed in the following sections as applied to the Spot and Landsat
TM images respectively.

4.1 SPOT XS

4.1.1 Unsupervised classification: Untransformed SPOT XS data

As a first step in the process of pattern recognition, an unsupervised classification was
carried out on the six spectral bands from the summer and winter SPOT XS images.

It is very important to note that the unsupervised classes obtained are spectral classes and do
not necessarily have information value with regard to land use or irrigated area . In order



to evaluate the information value, it was necessary to compare the spatial appearance of the
spectral classes with the spatial land use data which was obtained during the fieldwork
phase. This comparison revealed that only four of the sixteen classes represented
agricultural land use types. All of the other classes were mainly variations of the natural
environment (mountain areas and natural vegetation). It was felt that more than four
spectral classes were required in order to accurately map agricultural land use in the study
area. In order to separate the four agricultural classes into subgroups, a mask of the spatial
occurrence of the four agricultural classes was created and the masked area was subjected to
a second 16-class unsupervised classification. This resulted in 10 significant classes - the
frequency of six of the initial sixteen classes was too low to use as input during the process
of signature generation. The spatial distribution of the spectral classes is shown in Figure 4.

4.1.2 Unsupervised classification: SPOT XS Principal components data

Principal components analysis was used to reduce the volume of data (6-dimensional) to a
three-dimensional data matrix which could be shown as a false colour image. The same
unsupervised classification procedures were applied on the three principal components for
the area lying 500 meters below sea level. Although an attempt was made to identify
sixteen classes, only 14 classes could be created because of sample size limitations. The
spatial distribution of the 14 classes is shown in Figure 5.

4.1.3 Transformed Normalised Vegetation Index- SPOT XS data

Separate vegetation indices were calculated for the summer and winter SPOT XS-data,
respectively. Since the index values could vary between 0 and 255, a threshold value had
to be set for each of the seasonal indices which would divide the data into "irrigated" and
"non-irrigated" areas (This technique is known as "density slicing"). Experimentation with
various threshold values derived from the winter vegetation index showed that it had little
value as an technique which could be used to distinguish between irrigated and non-
irrigated areas. This is not surprising if one considers that orchards and vines have no
leaves in winter. The summer index, on the other hand, showed a clear relationship
between the spatial distribution of irrigated crops and high index values. Since, it was not
absolutely clear which index value should be used as a threshold value, the summer index
values were grouped into classes and these were crosstabulated with the farm survey data.
The result revealed that an irrigation map based on a threshold value of 185 succeeded best
in distinguishing between irrigated and non-irrigated land use types on the surveyed farms.

4.1.4 Supervised classification: Raw SPOT XS data

The success of a supervised classification is largely dependent on the spectral separability of
the target classes, as well as the extent to which the selected training areas are
representative of the target classes determined a priori.
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Figure 4: Unsupervised classification of untransformed SPOT XS data.
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SPOT XS: UNSUPERVISED CLASSIFICATION OF PCA DATA
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Figure 5: Unsupervised classification of Principal Component SPOT XS data.
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Since the chief purpose of this research was to identify irrigated areas and to quantify the
extent of the area under irrigation, the training areas had to be representative of the broad
spectrum of irrigated crops which are found in the study area.

As a first step in generating the training areas, the different land use types were transferred
from PC Arc/Info to the Gems Junior image processing system as separate vector files.
The various vector files were then separately transformed in the image processing system
into a grid format, so that they could be used as input to generate spectral signatures.

Six separate maximum likelihood classifications in all were conducted on the data. The
classifications varied from one another with regard to the number of spectral signatures
used and the rigour of the classification parameters (Gaussian threshold values) chosen.

A great deal of time was spent experimenting with strategies to identify vegetable plots.
The problem of vegetable classification was exacerbated by the fact that vegetables are
cultivated on relatively small units of land and are annual crops. A specific annual
vegetable crop might be cultivated for only a few consecutive months, after which the land
could lie fallow or the crop could be replaced by one of a wide variety (in terms of the type
of crop and spectral characteristics) of vegetables. Using multitemporal analyses in a
situation like this was extremely problematic. The project team frequently found that
whenever an attempt was made to accommodate the combinations found in the area, the
training areas were too small to generate valid and reliable training statistics.

As indicated earlier, the lack of GIS-querying facilities on the Gems Junior image
processing system was a limitation because the evaluation of the respective classification
attempts could not be done time-efficiently. On the basis of "subjective" visual decisions,
classification number five was considered to be the most satisfactory (Figure 6).

4.2 Landsat TM

As stated earlier the J^andsat TM dataset consisted of four images, representing land cover
conditions during each of the four seasons. Due to its coarser spatial resolution Band 6 was
excluded from all subsequent analyses. The four images were combined into a single file
consisting of 24 spectral bands. This multi-temporal dataset was used in all analyses
discussed in the sections that follow.

4.2.1 Unsupervised classification: Untransformed Landsat TM-data

The Erdas Imagine software besically provides one algorith for unsupervised classification,
namely the ISODATA algorithm. This algorithm requires very little input from the user
apart from specifying the maximum number of clusters needed, a convergence threshold to
stop clustering and a maximum number of iterations to perform. In this particular study it
was decided to request 30 clusters after an initial run using only 15 clusters had created a
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SPOT XS: SUPERVISED CLASSIFICATION
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Figure 6: Generalized land cover map from supervised classification of untransformed

SPOT XS data.
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small number of very large generalized land cover classes. By doubling the number of
clusters it was hoped that the classifier would be able to distinguish more subtle differences
within agricultural land cover types. That did not take place however and no significant
new cultivated classes emerged. Most new classes were subclasses of the mountainous
fynbos surrounding the valley. In an attempt to force the classifier to generate more
subclasses in the cultivated area of the valley a mask was created which included all land
cover classes of interest as produced by the initial 30 class unsupervised classification. The
classification was then repeated but only classifying pixels under the mask. The resultant
classification is presented in Figure 7.

4.2.2 Unsupervised classification: Landsat Principal Component Data

By using 24 spectral bands in the analyses a large amount of redundancy may be present in
the data as many spectral bands are strongly correlated. Most classification algorithms
utilize some measure of spectral distance between pixels and classes so that distance values
could be contaminated by these intercorrelations as most distances are computed using the
pythagoras algorithm which is based on the assumption that the axes are orthogonal. To
eliminate this potential problem a Principal Component Analysis was performed on the data
as this produces a new set of uncorrelated components. These components were then
subjected to an ISODATA unsupervised classification, again specifying a maximum number
of 30 clusters. Figure 8 shows the results of the PCA classification.

4.2.3 Unsupervised classification: Landsat Normalized Difference Vegetation Index

Another approach that was followed to extract usefull land cover data from the multi-
temporal Landsat TM dataset, was to compute Normalized Difference Vegetation Indices
for each of the seasons. These four variables were then subjected to an ISODATA
unsupervised classification with 30 clusters. The classified image is presented in Figure 9.

4.2.4 Supervised classification: Raw Landsat TM-data

Supervised classification is a much more labour intensive procedure and requires intensive
interaction with the image processing system. The classes needed were dictated by the
objectives of the study, which are to identify different agricultural crops with different
water requirements. From the farm survey it was evident that the major cover types of
interest were vines, orchards, vegetables, cereals and other cultivated crops.

In a supervised approach training areas are needed representing each of the required land
cover classes. To complicate matters vegetables are annual crops often cultivated on a
rotational basis with cereals or legumes. This means that a particular parcel of land may
have vegetables in one or more seasons and some other crop at others or even be left fallow
or barren. These patterns produce extremely complex spectral signatures. In this study 21
different combinations and permutations of annual crops were distinguished. To demarcate
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Figure 8: Unsupervised classification of Landsat TM Principal Component data.
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UNSUPERVISED CLASSIFICATION OF NDVI DATA
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Figure 9: Unsupervised classification of Landsat TM NDVI data.
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training areas and compute spectral signatures for each of these combinations was not
feasible. Firstly, land parcels are small and fragmented and secondly, ground truthing was
restricted to those farms included in the survey. This meant that in many cases there was
only one occurence of a particular land cover combination. The problem was resolved by
allocating each land cover combination to a single dominant type. In a few cases (4) where
no single crop type dominated it was arbitrarily assigned to the first cover type in the
combination, thus identifying vegetables, cereals or bare soil. Bare soil or unused land was
put into a catch all class called Other.

A total of 104 training areas were finally demarcated on the image after three iterations.
These represented vines, orchards, cereals, vegetables, fallow land, pine stands, bare soil,
veld, mountain fynbos, riverine bush, water and shadows. Erdas Imagine has a pixel
growing facility which allows the analyst to select a single representative starting pixel
within a potential training area. The system then searches radially for pixels with similar
spectral characteristics. This search can be constraint spectrally and spatially. No spatial
limits were imposed but a value not exceeding 30 spectral units deviation were allowed.
This spectral constraint produced acceptable training samples in most cases. A maximum-
likelihood decision rule was used to classify the image, the results are presented in Figure
10.

5. INTEGRATION OF GIS DATA

Ancillary GIS data were used in the following ways:

(a) To guide the selection of suitable training areas for supervised classification;

(b) To refine the classified images by logical replacement of incorrect classes based on an
assessment of:

(i) Elevations above 500 m contour

Land cover types were changed to unclassified thereby demarcating the
boundaries of the study area.

(ii) The irrigation potential of soils
Irrigated land cover types were changed to non-irrigated where soil potential for
irrigation was low.

(iii) Steepness of slopes for agriculture

Agricultural land cover types were changed to natural vegetation on slopes
exceeding 25%.

(c) To evaluate the accuracy of the classified digital imagery.
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Figure 10: Supervised classification of untransformed Landsat TM data.
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UNSUPERVISED CLASSIFICATION
OF UNTRANSFORMED LANDSAT TM DATA
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Figure 7: Unsupervised classification of untransformed Landsat TM data.
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6. DIGITAL CLASSIFICATION RESULTS

Generally speaking the unsupervised approaches tended to achieve higher levels of
accuracies than the supervised classifications, but could not distinguish as many different
land cover types. Based on overall accuracies the vegetation indices fared best on average.
However, when just considering vines the unsupervised classification in the case of SPOT
data and the PCA analysis for Landsat outperformed the other techniques.

To be more specific the results of each of the the applied analytical procedures are

evaluated by comparing the derived land cover maps to ground truth data at three levels of

detail:

(a) Farm survey data

The mean overall accuracy for SPOT data was 66,4% and for Landsat TM 70,5%. For
SPOT data the TNDVI approach fared best (83,4%), but for Landsat data it was the
unsupervised classification (73%). The mean accuracies for vines were 70,1% and 84,4%
for SPOT and Landsat respectively. In general terms better results were achieved with the
analyses of Landsat data.

(b) Land cover map of study area

Classification accuracies were much lower when compared to the land cover map. Overall
accuracies dropped to 45,6% and 49,9% for SPOT and Landsat respectively. These weaker
results are ascribed to deficiencies of the land cover map. The Landsat analyses again fared
better than those applied to the SPOT data.

(c) Irrigated vs Non-irrigated land classes

When land cover types were aggregated to two broad classes overall accuracies of 66,0%
and 69,7% were achieved for SPOT and Landsat respectively. Irrigated land cover types
were 74,3% and 79,2% correctly classified by the SPOT and Landsat analyses. These
results are summarized in Table 5.

It is extremely difficult to make direct comparisons between the results obtained using
SPOT XS and Landsat TM imagery. There are many reasons for this. Firstly, two
different teams of researchers were involved. This means that levels of expertise in image
processing are not comparable, nor the amount of time devoted to the research project due
to differences in individual workloads and programmes. Secondly, two different image
processing systems were used. SPOT XS data were analysed using an older PC based
version of the EASI PACE system, whereas Landsat TM data were processed by a SUN
workstation version of Erdas imagine. Although the Erdas software is state-of-the-art it
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to reduce operator flexibility. Thirdly and probably most importantly, SPOT XS imagery
consisted of only two time slices (summer and winter) due to bad weather conditions at the
time of image aquisition, whereas Landsat TM imagery covered four seasons. These
differences mitigates against any fair comparison.

With these caveats in mind it is not surprizing that the results obtained using Landsat TM
imagery outperformed those from the SPOT XS imagery.

Table 5: Comparison of accuracy levels obtained by analysing SPOT XS and Landsat
TM imagery.

Analytical
Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

Analytical
Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

Analytical
Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

SPOT XS

Overall %
59,6
65,4
83,4
57,0

66,4

SPOT XS

Overall %
52,9
42,0
-
41,8

45,6

SPOT XS

Overall %
67,4
66,3
76,6
54,0

66,0

Farm

Vines %
83,2
81,9
63,9
51,7

70,1

Land

Vines %
84,0
74,8
-
47,0

68,6

Survey Data
Landsat TM

Overall %
73,0
68,0
70,2
71,0

70,5

Cover Map
Landsat TM

Overall %
50,7
51,8
53,1
43,9

49,9

Irrigated/Non-Irrigated Classes

Irrigated
84,0
73,3
80,9
58,9

74,3

%

Landsat TM

Overall %
69,0
67,5
69,1.
73,1

69,7

Vines %
87,7
89,4
85,7
74,9

84,4

Vines %
71,6
83,7
79,4
62,3

74,3

Irrigated %
77,9
84,2
78,8
75,8

79,2
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Another aspect that needs to be considered in evaluating the results obtained using SPOT
XS and Landsat TM imagery pertains to the fact that analyses on the Landsat TM data sets
were capable of also distinguishing between more categories of land cover types than the
SPOT analyses. In most cases orchards and cereals could also be distinguished with some
degree of accuracy.

7. GAUGING DEMAND FOR IRRIGATION WATER

Based on a questionnaire survey of 21 farms in the area the mean volume of irrigation
water per hectare applied annually to each of the major land cover types were computed.
These conversion factors were applied to the area estimates obtained from the classified
image results. Large variations in the estimated demand for irrigation water resulted due to
widely different area estimates from each of the classification techniques employed. By
analysing the statistics in Table 6 it can be seen that there is a substantial variation between
different classification techniques and satellite systems in estimated irrigation demands.

Overall it would seem that the supervised approach produced the most consistent results and
is to be preferred.

8. CONCLUSIONS

The overwhelming impression gained during the course of this research was related to the
complex nature of the problem. It seems as though the level of complexity has been

...increased many times in attempting to achieve better results by enhancing spectral, spatial
and temporal resolutions. Although data volumes and costs increase proportionately by
adding a time dimension spectral signatures become disproportionately even more complex.
The analyst not only has a multispectral situation to contend with but also many
combinations and permutations of land cover changes on different land parcels as crops are
rotated. Planting of annual crops are not simultaneous by all farmers and neither is
harvesting or preparation of the land. For crops under irrigation a farmer has even greater
latitude. To select appropriate training samples under these conditions is virtually
impossible. The fact that only three spectral bands are visible at any one time means that
choosing training areas becomes very difficult. These confounding factors point at a need
for new approaches which will directly adress the multitemporal and multispectral nature of
current satellite imagery. Image processing systems will do well to incorporate more
flexible visualization techniques. Much has been written about spatial pattern recognition
but little has been adopted by image processing systems. The rate of software development
has been disappointingly slow.

Future research in this area should not just look at the use of existing standard image
processing techniques but attempt to incorporate or create new and innovative techniques
and approaches. The technology has matured to such an extent that it is in danger of
calcifying. A wider range of classification algorithms, neural net analysis and the latest in
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Table 6: Estimated demand for irrigation water per annum in the study area.

UNSUPER-
VISED

Vine
Orchard
Cereal

Total

PCA

Vine
Orchard
Cereal

Total

NDVI

Vine
Orchard
Cereal

Total

SUPER-
VISED

Vine
Orchard
Vegetable
Cereal

Total

SPOT

Hectare

12630

12630

Irrigated

12604

12604

Water usage
(m3 x 1000)

71302

71302

SPOT

Hectare

12234

12234

Irrigated

12209

12209

Water usage

(m3 x 1000)

69067

69067

SPOT

Hectare

23881

23881

Irrigated

23833

23833

Water usage
(m3 x 1000)

134825

134825

SPOT

Hectare

6328
2077
1062
5230

14697

Irrigated

6315
2077
1062
418

9872

Water usage
(m3 x 1000)

35724
14902
3597
4918

59142

Landsat TM

Hectare

11611
5794
4008

21413

Irrigated

11588
5794

321

17703

Water usage
(m3 x 1000)

65553
41573

3773

110900

Landsat TM

Hectare

22059
4018
3078

29155

Irrigated

22015
4018

246

26279

Water usage

(m3 x 1000)

124538
28835

2893

156267

Landsat TM

Hectare

18653
2442
4988

26083

Irrigated

18616
2442

399

21457

Water usage

(m3 x 1000)

105311
17523
4695

127531

Landsat TM

Hectare

7654
1999
1604
1440

12697

Irrigated

7639
1999
1604

115

11357

Water usage
(m3 x 1000)

43163
14344
5432
1353

64292
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computer visualization software should be added to current image processing systems. A
tighter integration between image processing and GIS capabilities are also absolutely
essential. The artifical boundaries between these two technologies should be eliminated as
soon as possible. Despite these shortcomings visual interpretation of imagery supported by
digital classification techniques and GIS analytical capabilities provide a very powerful tool
for land cover mapping and monitoring.

As far as the use of multitemporal imagery is concerned it appears that the gains are not
necessarily of such an order of magnitude that it will be financially feasible in all
applications. A careful consideration of the costs and benefits should be made before using
a multitemporal approach.

This research was very ambitious in its attempt at handling two different types of images,
two different image processing systems, creating a GI database and integrating the
ancilliary GIS data, doing a supplementary field survey and employing a multitemporal
approach. Although the results obtained were as good as could realistically be expected it
would make sense to back track on some of the analyses. Too little time was available to
carefully check the selected training samples for their discriminatory abilities. In hindsight
much more attention should have been given to an analysis of the multitemporal
characteristics of the training samples. This should be done specifically focussing on the
richness and diversity of the multitemporal and spectral Landsat TM data.

In conclusion it seems that digital image analysis enhanced with GIS data is a valid means
of obtaining land cover information of sufficient quality and accuracy for planning and
monitoring catchments and their agricultural water requirements. It remains the most
appropriate technology for cost effectively mapping land cover over large areas or obtaining
up to date information on land cover changes on a fairly regular basis.
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CHAPTER 1: THE UPPER BREEDE RIVER PROJECT : PROBLEM, STUDY

AREA AND RESEARCH METHODOLOGY

1.1 INTRODUCTION

The ever-increasing demand for water - one the scarcest natural resources in this country -

makes scientifically-based advance management essential in order to meet all user

requirements.

South Africa is not richly endowed with natural water resources (Department of Water

Affairs, 1985). Furthermore, this scarce natural resource is not evenly distributed among

the economic growth areas. This is particularly true of agricultural areas. Because of the

numerous sectors which make demands on the water supply, it is essential to have systems

that constantly monitor water usage. This would make prior planning of future water

consumption and allocation possible.

Information on current land use patterns and trends underlies effective management of

natural water resources in drainage areas. Conventional methods of data collection used in

making an inventory of land use, such as land use surveys, field work and aerial surveys

are expensive, cumbersome and time-consuming. Therefore, one has to consider

alternative methods of data collection (Lourens, Brown, Seed & Maaren, 1987). Modern

technology, such as remote sensing and Geographic Information Systems, is in theory able

to provide a cost-effective and regular means of collecting information on land use.

Research and a few experimental applications by Menenti & Niewenhuis, 1986;

Nieuwenhuis & Bouwmans, 1986; Heller & Johnson, 1979; Zuluaga, 1990; Senguin,

Lagonrade, Steinmetz & Vidal, 1990; Visser, 1990; Menenti, 1990; Minderhoud &

Nieuwkoop, 1990; Sattar, 1990; Lourens, 1990; Chambouleyron, 1990; Meyer, 1991;

Lourens, Brown, Seed & Maaren, 1987; Lourens & Seed, 1989; Ehrlich, Estes & Scepan,

1990 and Thelin, Johnson & Johnson, 1979 have shown that it is possible to map irrigated

areas fast and reasonably accurately with the aid of satellite data. The Department of Water

Affairs sums it up thus:

"Remote Sensing through the use of satellite imagery has already proved to be

highly successful for determining areas that are under irrigation and is now

considered to be the only technique by which a regular, country-wide survey of

such areas can be made economically and in good time" (Department of Water

Affairs, 1986).



However, the capability of relatively high resolution satellite data to identify irrigated areas

has not yet been fully tested in intensively farmed areas, such as the Southwestern Cape.

Therefore, there is some doubt as to the degree of success which can be achieved in such

complex land use areas.

This study set out to evaluate the potential of SPOT and Landsat TM satellite data to

identify vegetation in quantifiable terms, so that the irrigation requirements of the

Wolseley-Worcester area of the Upper Breede River Catchment could be determined.

1.2 STATEMENT OF THE PROBLEM

Studies on remote sensing in the Southwestern Cape undertaken by the Institute for

Geographic Analysis (IGA) and the Hydrological Research Institute had shown its

shortcomings in identifying certain classes of land use. This was especially true of irrigated

areas (Lourens et al, 1987; Lourens, 1990; Meyer, 1991; Vlok, 1989 and Zietsman,

1982). The relatively low resolution of Landsat MSS (80m) appeared to account for the

inability of Landsat MSS to distinguish vigorous natural vegetation and irrigated areas.

Particularly in intensively farmed areas, Landsat MSS is not capable of separating complex

land use classes. Studies by Meyer (1991) and Lourens (1990) suggest that high resolution

SPOT XS and Landsat TM data should be used for the study of intensively farmed areas.

There is also a need to do further research in the Southwestern Cape in order to test the

capability of high resolution satellites like Landsat TM and SPOT. Research done by

Lourens et al (1987), Lourens (1990), Heller & Johnson (1979), Kolm & Case (1984),

Moreton & Richards (1984) show the advantages that a multitemporal approach holds.

High spatial and spectral resolutions combined with seasonal image data should help to

ensure more accurate identification of irrigated areas in places that are intensively farmed.

Consultation with the Western Cape Regional Office of the Department of Water Affairs

revealed a high demand for accurate land use data in the Southwestern Cape, so that the

amount of water used in irrigation in the respective catchment areas could be quantified.

The Department contended that "updated land use records and other relevant information

needed for the management of catchment areas should be readily available in the form of

maps and -statistics for every catchment area" (Department of Water Affairs, 1986: 3.11).

Not only was there a dearth of accurate data, but there was no available means by which

information could be constantly available for monitoring purposes.



This study should provide a clearer answer as to whether SPOT and Landsat TM data could

be utilised to determine the water requirements of irrigation. It would also clearly adjudge

the additional advantages of a multitemporal approach in identifying more detailed land

cover patterns in the country. This would pave the way for large-scale inventories of land

use patterns and the monitoring of change over the course of time. This would eventually

make it possible to effect better planning and to make optimal use of scarce natural

resources like water and land.

1.3 THE UPPER BREEDE RIVER AS A STUDY AREA

1.3.1 Choice of the study area

The management and planning of South Africa's water resources is done on a regional basis

(Department of Water Affairs, 1986). The Republic is primarily divided into 22 catchment

areas, which are subdivided into secondary and tertiary catchment areas.

This study focuses on the Upper Breede River Valley - region H100, which forms part of

the greater Breede River Valley - region H (Figure 1.1 and 3.3). The study area extends

from the part where the Breede River appears in Michell's Pass (19° 16* East; 33°25'17"

South) to the Papkuils pump station (19°26* East; 33°39'30" South) - an intensively farmed

area of the Breede River.

This study area was chosen for the following reasons:

(i) The area is viewed by the Water Research Commission and the Department of Water

Affairs as a high priority research area, which forms part of a larger drainage

development plan (Department of Water Affairs, 1986).

(ii) Irrigated farming represents the major agricultural land use in the sub-drainage area,

(iii) The area is intensively farmed and has a large variety agricultural land use types

which are necessary for the feasibility of the study,

(iv) The area is approximately 100 kms from the University of Stellenbosch. This made

field work and surveys relatively easy and inexpensive.

1.3.2 A physiographic review of the study area

An overview of the physical geographic factors is important, because of the influence these

factors exercise on the agricultural activities in the study area. Environmental factors have

a direct bearing on the cultivation of crops and the concomitant agronomic methods which

determine land use patterns.
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1.3.2.1 Morphology of the terrain and drainage

The Upper Breede River drainage area covers a total area of approximately 294 800 ha and
is situated between 33°22' and 33°44' S latitude and 19°05' and 19°25' E longitude. The
valley is bordered by the Winterhoek mountains in the north, the Elandskloof-Drakenstein-
and Slanghoek mountain range in the west and the Witzenberg and Hex River mountains in
the north east and east. The Breede River, one of the most important rivers in the Western
Cape, which originates in the Agter-Witsenberg, is the principal river in the area. The
Breede River has the highest runoff volume of all the rivers in the area. The mean annual
runoff is set at 1880 x 106 m3 (Odendaal, 1978). With many of the mountain peaks higher
than 1500 m, but a main channel that is less than 250 m above sea level for 90 % of its
total length, large differences in relief and tributaries with steep gradients are the dominant
features of the Upper Breede River catchment basin.

Figure 1.2 shows the Upper Breede River catchment basin with the most important

tributaries which drain into this area. A typical dendrite pattern is to be seen, characteristic

of the pattern of drainage which is governed by geological structure.

1.3.2.2 Geology and soil

The soil in the Upper Breede River valley consists mainly of alluvial deposits which include
the products of the erosion of the surrounding geological formations (Swanevelder, 1965).
This soil displays a high degree of variation in colour, structure and composition, even
over short distances within the study area. A few comments on the dominant geological
formations from which the different types of soil have their origin would, therefore,
provide a logical point of departure for an explanation of the appearance and distribution of
different forms of soil within the area.

The oldest sedimentary rocks which are found in the area are the Malmesbury group of the
Nama Supergroup . In the study area, these rocks make up the foothills of the surrounding
Witzen-, Waterval-, Olifants- and Hexriver mountain ranges (Swanevelder, 1965). The
deposits from these rocks consist mainly of shale and metamorphic products, which have
been eroded into clay with a low level of permeability (Feyt, 1988). Rocks from the Cape

Supergroup (Table Mountain, Bokkeveld and Witteberg series) comprising sandstone shale
and quartzite, dominate the landscape of the Southwestern Cape.

The Upper Breede River valley was formed when the sandstone of the Table Mountain

group was eroded, revealing the material of the underlying Malmesbury group. Alongside
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the valley, high sandstone mountains remained, known as the Witzen-Mostertshoek

mountain range on the eastern side and the Waterval mountains on the western side of the

Upper Breede Valley. The land forms which developed from these rock types are mainly

sandy and are characterised by the appearance of round sandstone pebbles. The Bokkeveld

series follows conformably upon the Table Mountain series. The soils which formed from

the Bokkeveld series are characteristically olive brown in colour and are also more fertile

than those which came from the Table mountain series. The shale in particular has

weathered into clay and has high agricultural potential. Products of the erosion of the

Table mountain sandstone formation, Witteberg series and Klipheuwel formation

respectively form quartzite deposits, finely layered shale and duplex soils with low

agricultural potential (Schloms, 1994).

At present, tertiary alluvium covers the largest part of the Upper Breede River Valley. Fast

flowing mountain streams in the valley result in the continuous deposit of alluvial material.

These fundamental soils are the basis of cultivation of fruit and wine farming in the Upper

Breede River valley (Swanevelder, 1965 and Feyt, 1988).

1.3.2.3 Climate

1.3.2.3.1 Rainfall

The particular location of the Upper Breede River region, with high mountain ranges and

relative closeness of the oceans, means that it is subjected to a unique set of climatological

influences. The area that is influenced in summer by the outer tropical high pressure system

is characterised by warm, dry summer conditions. In the winter, when the low pressure

system of the circumpolar west wind circulation moves over the region, cyclonic rainfall

occurs (Odendaal, 1978). However the high mountain ranges which surround the region

cause heavy accompanying orographic rainfall to increase the total precipitation to more

than 3 000 mm a year in some places (Swanevelder, 1965). The drainage from these high

rainfall areas is mainly used for irrigation.

Viewed as a whole, the study area is a winter rainfall area that receives approximately 80%

of its rain in winter and 20% of its rain in summer. The rainfall pattern within the study

area follows the topography and varies from ±2 400 mm in the mountains at Slanghoek to

+400 mm in the vicinity of Worcester (Figure 1.3).

The rainfall decreases from very good (±3 000 mm per year) in the mountain regions to

moderate in the northern valley areas to very poor (±250 mm per year) south-eastwards in

the valley.
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The highest rainfall occurs from May to August. Mean monthly rainfall of up to 210 mm

occurs in the parts of the valley near the mountains (Figure 1.4).

RAINFALL
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Figure 1.4: Mean monthly rainfall in the Upper Breede River valley as recorded by four

weather stations in the area.

In the drier months (October to March), the region is characterised by a very low rainfall,
and high summer temperatures are experienced. This rainfall pattern makes the whole
region dependent on irrigation water to produce crops during the summer months.

1.3.2.3.2 Temperature

In the study area, summer temperatures are high and average daily temperatures of over

25°C are experienced. The cooler parts are limited to the escarpments on both sides of the

valley (Figure 1.5). Heat waves are often experienced and maximum temperatures of over

34 °C are recorded five or six times a month on average at the weather stations in the area

(Natural Resource Development Programme, Elsenburg, 1990).
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Figure 1.5 Average daily minimum and maximum temperatures in the Upper Breede

River Valley.

The mean daily temperatures in winter are moderate and vary between 7°C and 20°C.

Frost occurs in the Goudini area and minimum temperatures can drop to below freezing

point. Snow sometimes occurs on the mountain peaks, but is shortlived (Odendaal, 1978).

Cooler conditions with a lower daily evaporation rate are experienced in the Goudini area.

Thus the evaporation tempo differs from warmer parts, such as the Botha-Olifantsberg area.

Wind is generally experienced in the region, with strong to gale force south east (usually in

the spring and summer) and northwest (rain) winds in the winter as regular features in the

region.

1.3.2.4 Natural vegetation

The region is very intensively farmed and has relatively little natural veld. The vegetation

there consists of invaders such as Acacia saligna (Port Jackson) and Acacia mearnsii

(Wattle) trees. However, the mountainous areas have dense plant cover consisting of Cape

fynbos (Feyt, 1988).
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1.3.3 Cultivation of crops as the primary agricultural activity

The Upper Breede River region is very intensively farmed. The most important irrigated
crops in the region are perennial vine and fruit cultivation, which respectively extend over
6257 ha and 1841 ha. The cultivation of vegetables has increased significantly to cover
approximately 338 ha. Cereals also occur in the valley and cover a total area of 3381 ha.

Because of the soil and climatic differences in the region, there is a case for dividing the
region into three chief production regions: Wolsley, Goudini (Goudini-Slanghoek-
Rawsonville area) and Botha-Olifantberg (extending from Brandwacht mountains, Botha's
halt, Breede River to Worcester) which cover a total area of 63371 ha (see Figure 1.6).

Wine grapes, fruit and vegetables - mainly potatoes and onions - cover the largest area in
the Wolsley island region. Fruit orchards represent approximately 50% of the cultivated
areas. Fruit with a low to medium requirement for cold weather, like pears, apples, plums
and nectarines are successfully cultivated here. Vines and fruit are largely fully irrigated,
while the cultivation of vegetables requires supplementary irrigation. On the lower
foothills, cultivated pasture (oats, barley and lucerne) as well as cereal crops (wheat and
rye) are grown.

The dominant branches of farming in Goudinin are wine grapes, whereas the farmers at
Botha-Olfantsberg grow additional crops like vegetables, cereals, cultivated pasture, fruit
and also stone-fruit, on a large scale. North of Worcester (Brandwacht area) table grapes
are grown along the Hartbees River, whereas a few olive orchards are found in the foothills
of the mountains. All summer crops are irrigated in this area.

1.3.4 Aspects of irrigation

Irrigation farming is the single biggest consumer of water in South Africa (see Figure 1.7).
This sector accounts for 50,9% of the total water use in the Republic (Department of Water
Affairs, 1986).
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Figure 1.7: Water demand per consumer sector in the RSA: 1990.

At present, irrigation farming can be divided into three categories: state water schemes,
Irrigation Board schemes and private irrigation schemes. The precise area under irrigation
in South Africa is not known, but is estimated at approximately 1,2 million ha (Bloem,
Lagrange & Smit, 1992). State water schemes have accurate records on the present extent
of irrigation and the volume of water that is required. Irrigation boards have less accurate
records. However, almost without exception, the consumption on private farms is
estimated since there is seldom any accurate records.

As indicated in Table 1.1, there are eight irrigation boards at present in the Upper Breede

River region which serve the various irrigation districts.
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Table 1.1: Irrigation Districts in the Upper Brccdc River Valley.

Farming areas

Wolseley

Goudini

Botha-Olifantsberg

Total

Irrigation district/

Irrigation boards

Dwars River

Darling bridge

Wagenboom River

Waaihoek

Jan du Toit's

Olifantsberg

Brandwag

Grooteiland

Number

of members

35
12

10
10
13
18

21
23

142

Recorded

area (ha)

1876

288
216
144

175
286
322
432

3739

Source: Adapted from Elsenburg, 1990 & Department of Water Affairs, 1994

A total of 3739 ha are on the records of the irrigation boards and are provided with water

(Agricultural Development Programme Elsenburg, 1990). However, there is no data

available on the present extent of irrigation in the area. A ground survey conducted by the

Department of Agricultural Services in 1977 showed that there was 7237 ha of irrigated

land below the 300 m irrigation control line (Basson, Pretorius & Robbroeck, 1977). It can

therefore be assumed that there is an additional approximately 3 500 ha of irrigable land in

the Upper Breede area, which points to the demand for water for further irrigation

development.

The Goudini area has good supplies of irrigation water. Only the environs of the Hartebees

River, which is situated far from the Breede River, experience a shortage of adequate

irrigation water. The main sources of irrigation in this area are the Breede River and its

tributaries which supply 535 ha with irrigation water. There are few farm dams in the

Goudini area - apparently as a result of the absence of clay and suitable dam sites. The

Slanghoek, Smalblaar, Holsloot and Platdrif Rivers are important sources of irrigation

water. The private water from dams, boreholes and rivers is supplemented by water from

three irrigation boards. In the Botha-Olifant area, the Waboom and Bobbejaan Rivers make

an important contribution to irrigation requirements. Boreholes and farm dams are also

important sources of irrigation water. An area of 1040 ha is on the books of the three

irrigation boards (Table 1.1).
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The Upper Breede River area is largely dependent on sufficient water for ongoing
production. There is still a considerable supply of runoff water available in winter in the
Breede River for the erection of dams and has potential for further extension of irrigation in
the area (Hulpbronontwikkelingsprogram Elsenburg, 1990). However, continual extension
of crop cultivation and crop rotation in this area requires judicious advance planning so that
future irrigation requirements can be provided.

1.4 AIMS OF THE STUDY

The importance of irrigation in the Upper Breede River Valley, the lack of up-to-date
information on area statistics and the time and cost involved in gathering the required data
prompted the Department of Water Affairs and Forestry to investigate the feasibility of
using satellite remote sensing technology to solve the problem. This study was therefore
initiated to meet the following objectives:

(i) The identification, classification and mapping of agricultural land use types with the

aid of digital image processing of seasonal SPOT XS and Landsat TM data.

(ii) A refinement of classification results with the aid of ancilliary data such as slope and
soil type through the application of a Geographic Information System (GIS).

(iii) An evaluation of the feasibilty of the land use data generated as a means of
quantifying water requirements for irrigation purposes.

It was hoped that a multispectral and multitemporal approach would solve many of the
problems experienced in the past to discriminate between vines, orchards, vegetables and
other vigorously growing natural land cover types such as riverine bush and wetland reeds.
By comparing SPOT XS and Landsat TM imagery an indication could possibly be given as
to their relative merits for identifying irrigated land cover types in areas with high land
cover fragmentation such as the Southwestern Cape.

1.5 RESEARCH METHODOLOGY

The following steps and procedures (Figure 1.8) were used to achieve the aims of the
study:

(i) The creation of a 1:10 000 ground truth map of the land use in the study area.

The present land use pattterns were determined by 1:50 000 scale aerial

photographs (Assignment 911 of May 1987) which were enlarged to a 1:30 000
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scale, in order to identify the dominant crop types. The boundaries of the crop

types were then transferred to 1:10 000 orthophotos. All the information was

verified by means of intensive field trips, undertaken during November and

December 1992, in order to map the current land use patterns and to obtain

additional information which could affect the spectral reflection attributes of the

individual blocks of cultivation.

(ii) The capture of land use data with the aid of the ARC/INFO, Geographic

Information System (GIS). The ground truth map is also used to evaluate and

refine image classification results.

(iii) Collection of three types of ancilliary data, namely soil data, contour data and farm

information.

The necessity to have soil data for this project stems from the assumption that this

has an important influence on the reflective attributes of individual image elements,

and that it is possible that the appearance of certain crop types and associated

irrigability are related to certain soil characteristics.

Contour data was used as a criterium to determine the occurrence of certain crops

and to delineate slope zones where no irrigation takes place.

In order to quantify the extent of irrigation in the study area, a survey on farming

and irrigation practices with regard to the respective types of ground cover was

conducted on a number of farm units in the fanning subregions.

(iv) The digital capture of various types of ancilliary and supplementary data in a

Geographic Information System (GIS).

(v) The digital image processing of multispectral multitemporal SPOT XS and Landsat

TM satellite data.

(vi) The refinement of the satellite image classifications through integration of image

data with GIS-based ancilliary data.

(vii) Evaluation of the degree of success by comparing the respective image

classification results with a ground truth map.

(viii) Quantification of water requirements for irrigation purposes.

With a view to quantification of the extent of irrigation in the study area,

questionnaire data was used to calculate an irrigation conversion factor per crop
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Figure 1.8: Schematic representation of the research methodology.
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type for selected farm units. This conversion factor was applied to the land cover

area statistics derived from the satellite imagery to estimate the demand for

irrigation water.

(ix) The study concludes with a synthesis of the results and presents the implications

and guidelines for further research.

1.6 SUMMARY

This chapter provided an orientation regarding identification of irrigated crops in the study

area. The scientific basis was land upon which the study could proceed, that was followed

by defending the choice of the Upper-Breede River as study area. A physiographical

description of the study area was given to reflect the influence of environmental factors on

crop production, associated agricultural practices and resulting land use types and patterns.

Attention was also given to crop distribution patterns and related aspects of irrigation. The

chapter concluded with a summary and diagrammatic representation of the research design

followed during the study.

Chapter two will provide a review of perspectives from the literature to guide the rest of the

research project.
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CHAPTER 2: REMOTE SENSING OF IRRIGATED LAND : PERSPECTIVES

FROM THE LITERATURE

2.1 INTRODUCTION

The rising population growth rate, the current restructuring of land use, and a drive towards

economic prosperity make heavy demands on limited natural resources. Planning for the

optimal development and utilisation of natural resources requires an interdisciplinary

approach (Burger, 1992). Therefore planners of resources require readily accessible and

accurate methods of obtaining information on the spatial distribution of the features on the

earth's surface, as well as a means of processing and interpreting the information.

The identification, determination of the extent and inventory of the earth's natural resources

is a huge task of almost mammoth proportions. Nevertheless, the technology of remote

sensing makes it possible for man to obtain a regular, constantly updated data base of

information on the features of the earth's surface, at a spatial, spectral and temporal

resolution which is suitable for planning and monitoring purposes. With reference to Estes,

Jansen and Simonett (1980), Simonett (1983: 1) describes the impact of remote sensing

technology as:

"A reality whose time has come. It is a powerful tool that cannot be ignored

because of its information potential and the logic implicit in the reasoning

processes employed to analyse remote sensing data."

The use of computer information systems to combine remote sensing technology with

cartography provides resource planners with a extremely powerful means of obtaining,

processing and manipulating digital data (Ehlers, Edwards and B&iard, 1989; Ehlers,

Greenlee, Smith & Star, 1991; Foody, 1988; Davis & Simonett, 1991 and Star & Estes,

1990). Manore (1990) and Allan (1992) refer to the important role of remote sensing as a

primary source of data for Geographic Information Systems (GIS). In the words of

Simonett (1983: 1), the potential impact of remote sensing and GIS is that "this coupling

can change our perceptions, our methods of analysis, our models and our paradigms".

Developments in spatial and information technology are currently introducing a new

dimension in multispectral remote sensing technology. This is reflected in a wide range of

reference works and textbooks (Barrett & Curtis, 1982; Colwell, 1983; Campbell, 1987;

Elachi, 1987; Lillesand & Kiefer, 1979; Sabins, 1978; Mather, 1987; Lo, 1986;

Szekielda, 1988; Swain & Davis, 1978; Harris 1987 and Rees, 1990).
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Since the launching of high resolution, so-called "Second Generation Remote Sensing

Satellites", Landsat TM in 1984 and SPOT-1 (Systemc Probatoirc de ^Observation de la

Terre) in 1986, huge volumes of digital data on large areas of the earth's surface are

available daily, which can be utilised for land cover mapping and monitoring of resources.

2.2 REMOTE SENSING IN AGRICULTURE

2.2.1 Introduction

Up-to-date and accurate information on the ways in which the earth's surface is utilised, the

extent and condition of agricultural resources, as well as information on land use patterns

and changes are essential for effective management of agriculture. Although land use maps

have already been compiled for large sections of the world, there is an urgent need in

developing countries for data which can be used to monitor land use (Lo, 1986; Campbell,

1987; Karteris, 1990 and Toulios, Yassoglou & Moutsoulas, 1990).

There is a need for the timeous provision of the kind of agriculture-specific data that daily

marketing activities and management decisions are based on. State involvement in

agriculture in the form of bolstering of prices and granting of subsidies requires national

and international data on agricultural production. Vlok (1989) points out that early

forecasting of yield, information on plant disease and pests, quantification of the effect of

shortages and surpluses in ground moisture and the continuous updating of inventories are

but a few of the requirements of the present-day agricultural sector.

Community involvement in remote sensing as applied to agriculture is diverse and extends

across international boundaries. It draws in scientists, members of national and

international government agencies (e.g. the EEC, ESA, ASEAN), national (e.g. USAID,

ODA), international (FAO, Worldbank, EFAD), as well as advisory and numerous other

organisations which are involved in monitoring and managing natural resources and the

environment.

2.2.2 Biological diversity and complexity

Remote sensing as applied to agriculture is problematic because of the dynamic nature and

inherent complexity of biological materials (Ahrean, 1991; Fuller & Parsell, 1990 and

Meyer, 1991). Guyot (1990: 19) contends that "... the optical properties of vegetation

canopies are not static. They not only vary with time as a function of plant status, but also

as a function of external and internal factors".
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Bauer (1973) ascribes the complex reflectance of the layers of vegetation to the following

variables:

i) Amount of foliage and ground cover as a result of varying planting dates, soil
types, uneven growth patterns and the influence of plant disease;

ii) Variation in the growth stages of types of vegetation;
iii) Differences in agricultural activities such as use of fertiliser and harvesting

practices;
iv) Influence of plant stress and/or moisture tension;
v) Geometric siting of types of vegetation as a result of varying row widths and

orientation; and
vi) Environmental variables like atmospheric reflection, absorption and dispersal.

Mackay (1994) adds to these the complexity of biological material and kinds of land/soil
types and focuses attention on the influence of external factors such as the morphology and
the complexity of the terrain as well as the diversity of types of vegetation. According to
Campbell (1987) the optical features of the underlying soil types also play an important role
in agricultural applications: "In agricultural scenes, however, reflections from individual
plants, or individual rows of plants, are closely intermingled with the bare soil between
plants and between rows of plants, so that the reflectances are mixed even at the finest
resolutions". Hutchinson (1982) also warns that it is difficult to differentiate between
different types of vegetation when the total vegetation cover is less than 30%.

The reflectance of vegetation demands further attention, since the identification of specific
crop types depends on the unique reflection features of vegetation. According to Malan
(1991), the reflection spectrum of vigorous vegetation is dominated by the dispersal of
incoming light by the spongy cell structure of leaves (Figure 2.1), In the visible area of the
electromagnetic spectrum, reflection is low because of absorption by chlorophyll at
wavelengths of 450 nm and 650 nm, resulting in a reflection maximum in the green part of
the spectrum at about 540 nm. In the mid-infrared (MER) part of the spectrum there is
absorption by water at 1,4, 1,9 and 2,7 /zm. If the plant becomes less vigorous, less
chlorophyll is produced and the plant starts turning yellow. The water content of the plant
declines simultaneously, with a concomitant increase in the reflectance in the MIR.

Theoretically, every feature of the earth's surface has a unique spectral reaction with regard
to electromagnetic radiation. Factors such as absorption, radiance, dispersal and/or
reflection determine the nature and quality of a specific reaction (Wolfaard, 1983). This
interaction takes place in the atmosphere as well as the on the earth's surface. The sensor
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Figure 2.1: Typical spectral reflectance of a few vegetation types.

of the earth resource satellite will therefore measure the humidity or reflected

energyartificially. Theoretically, the unique spectral features of every vegetation type is

reflected by a characteristic spectral curve. This is generally referred to as the 'spectral

signature1 of a feature of the earth's surface. The principle of discrimination between

different ground cover types like snow, vegetation, water and soil, as described by Harris

(1987), Guyot (1990), Myers (1983) and Bauer (1976), constitutes the basic principle of

land use classification by means of remote sensing.

Scale and spatial resolution are of the greatest importance in any crop identification or

mapping with the aid satellite data (Mackay, 1994). According to Campbell (1987),

resolution can be described as the capacity of a satellite sensor to assemble specifically

detailed data. Spectral resolution refers to the breadth and number of intervals (spectral

bands) of wavelengths in the electromagnetic spectrum to which the satellite sensor is

sensitive (ERDAS, 1991). The range and number of spectral bands determine the

operational application field of a specific satellite sensor. The temporal resolution

indicates the frequency with which a particular sensor system can collect data during a

satellite orbit (Jensen, 1986). Spatial resolution can be described as the dimension of the

instantaneous-field-of-view (IFOV), of the sensor system which moves over the terrain and

collects spectral data (Curran, 1985). Thus, the spatial resolution determines the size of the

elements of the satellite image. According to Campbell (1987: 224) the radiometric

resolution indicates the capability of a sensor to distinguish between the different signal

strengths of the outgoing radiation from the earth's surface, i.e. the number of radiance

levels which are captured. For instance, 8 bits could include a range of values from 0-255

levels.

Davis (1991) refers to the specific requirements of agricultural applications for spatial and

temporal resolution of remote sensing systems, as opposed to other fields of application.
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Figure 2.2:
Source: Davis, 1991

The requirements of agricultural applications with respect to spatial and
temporal resolution of remote sensing systems compared with those of other
users of remotely sensed data.

According to Figure 2.2, the low temporal frequency of data (between 10 and 15 years)
from traditional cartographic systems is sufficient for topographic mapping, but not feasible
for environmentalists. At the same time, satellite systems like AVHRR, NOAA and
Meteosat supply data with a high temporal frequency, but the spatial resolution is not
adequate for agricultural applications. There are very specific temporal and spatial
resolution requirements for agricultural applications (Figure 2.2), which are determined
by the terrain, climatic influences and cultural agricultural activities in a particular area.
Allan (1990: 9) particularly emphasises the influence of agronomic practices and refers
specifically to the influence of individual parcel sizes on the satellite sensor. He specifies
that "... agricultural parcels must be at least four times the nominal area of the recording
pixel, to be sure that there is no effect from the mixed pixels at the parcel boundaries. It is
preferable to have parcels which are ten times the area of the recording pixel." Figure 2.2
refers to the specific temporal requirements for agricultural applications. Allan (1990: 10)
considers that "agricultural applications need adequate temporal resolution, in other words
the frequency of the temporal sample must be appropriate for the particular application".
Adequate temporal resolution is therefore a prerequisite for agricultural monitoring,
because of the varying growth stages of crop types over time (Myers, 1983).
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2.2.3 Agricultural satellite remote-sensing projects

Remote sensing data has an important role to play in a variety of agricultural projects,

which range from micro-level surveys to surveys of global proportions. The wealth of

literature, particularly in the last few years is evidence of this trend.

At international level, the first applications of satellite data with the aid of Landsat-MSS

data (resolution 80 m) was mainly directed at large-scale land use classification, crop

inventories, prediction of crop production and yield forecasting services. The LACIE-

project (Large Area Crop Inventory Experiment), which was jointly undertaken by NASA

(National Aeronautics and Space Agency), USDA (United Stated Department of

Agriculture) and NOAA (National Oceanic and Atmospheric Administration) between 1974

and 1977, was probably one of the most comprehensive agricultural applications (Myers,

1983). The main aim of the project was to capture, process and analyse multitemporal

spectral data on wheat harvest at a global scale. Promising results were obtained by the

study and forecasts for the USA differed by less than 10% from the real production

statistics. Forecasts for the Soviet Union differed from the offical statistics by less than

1%.

The Agreste Project was specifically focussed on smaller European farming units. This

project executed between 1973 and 1977 was a joint undertaking of the "Commission of the

European Communities" and other research bodies in France and Italy. The study used

remotely sensed data for different time slices during the growing season. In addition to the

satellite data, it also made use of multispectral scanners mounted on aircraft, spectrometers,

radiometers, conventional aerial photography and soil and ancillary laboratory data.

Smaller cultivated units and inadequate sensor resolution were the main reasons for the

incorrect surface estimates made. The problem was exacerbated whenever atmospheric

disturbances - for instance cloud cover - were also experienced. Barrett and Curtis (1982)

believe that relatively accurate surface estimates were obtained despite the problems that

were experienced. The results of the maximum likelihood classifications made during this

project revealed overestimations of 9% and 8% for rice and plantation land use classes,

respectively.

Lo (1986) discussed a project in Oregon, USA where an associated classification technique

was used in digital image processing of Landsat MSS data to distinguish vegetation from

other land use classes in an area of diverse topography. The measure of accuracy achieved

was 88,8%. Szekielda (1988) ascribes the high percentage of accuracy in digital image

classification to the uniform growth stages of foliage during the sensor survey.
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Vlok (1989) describes the "Inventory Technology Development Project" under the auspices

of the 'Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing1

(AGRISTARS) in which NASA, UDSA and NOAA, and others were involved. The

programmme, which lasted five years and cost 300 million Rand, concentrated on effective

methods of crop monitoring, utilisation of resources as well as international crop production

forecasting. Hilwig (1987) lists the main objectives of the project:

i) early warning crop condition assessment;

ii) foreign commodity production forecasting;

iii) yield model development;

iv) supporting research;

v) soil moisture;

vi) domestic crops and ground cover;

vii) renewable resources inventory; and

viii) conservation and pollution."

The findings of this project of global scope reflect the specific information requirements of

resource managers across international boundaries.

According to King & Meyer-Roux (1990), the only large-scale international crop

monitoring project at present is that of the US Department of Agriculture. Smaller

monitoring projects are constantly being launched in developing countries by the FAO or

the USA.

As described earlier, high resolution satellite data were mainly used qualitatively in

monitoring programmes in the past. These results were largely dependent on the skill of the

data analyst. The more quantitative aspects are only now strongly coming to the fore

through the comparison of vegetation indices, application of agricultural meteorological

models and development of extensive data bases for crop identification and monitoring

programmes (King et al, 1990). According to King et al agricultural crop identification

and monitoring programmes still represent a research phase and will need further imput to

become fully operational: "... when we go from surface inventories to production and

yield forecasts, we are still in a research stage (my emphasis) and we must pursue the

efforts initiated with the LACIE and AGRISTARS programmes."

On a local level, agricultural applications have been employed since 1982. The research

done by Sandham (1982) and Wolfaardt (1983) focused on the linking of Landsat data with

agricultural statistics in the Bronkhorstspruit and Vermaas development area. Van Dyck
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(1982) did land use mapping in the Western Transvaal by means of computer manipulation

of Landsat data. Sandham (1984) and Van Rcnsburg (1987) launched a Landsat geo-coding

project in the Bcthal district, in order to locate grain silos, as well as to create yield

forecasting models for the Eastern Transvaal Cooperative. The other remote sensing

application research projects, which have been carried in South Africa, are for instance the

Heilbron project of Malan and Turner (1982); land use mapping, Boyle (1981) and

Scogings and Piper (1984); mapping of forestry areas, (Snyman & Caithness, data

unavailable); water quality (Howman and Kempster, 1987); irrigation areas (Lourens,

Brown, Seed & Maaren, 1987; Meyer, 1991); oceanographic applications (Shannon &

Lutjeharms, 1983; Shannon & Shackleton, 1988); crop and vine identification (Vlok,

1989; Zietsman, 1982; Vlok & Zietsman, 1987); identification and mapping of asbestos

mine dumps (Prinsloo, 1992) and veld monitoring in the Ceres-Karoo (Mackay, 1994).

2.2.4 Crop identification

According to Myers (1983: 2153), the level of accuracy of experimental studies on crop

identification is generally related to developments in the technical field. The literature

suggests that crop identification with the aid of Landsat data can achieve as high a level of

accuracy as 90% where the cultivated fields are regular, extensive and homogeneous such

as irrigated rice fields in California, potatoes in New Brunswick, Canada; oil-seeds in

Western Canada; and fields being prepared for the sowing of winter corn in Kansas,

Oklahoma and Texas. The accuracy of the LACIE and AGRISTARS projects confirms this

trend.

There is also strong evidence that mapping should preferably be based on multiple

timeslices. The argument is that the uniqueness of the crop's so-called 'spectral signature'

is to be found in the pattern of temporal changes in the spectral response.

However, a problem of landscape complexity occurs in developing countries. Diverse

forms of cultivation and small irregular patterns of crop cultivation are often characterised

by spectral reflections which are not distinguishable by means of classification of single

timeslice Landsat data.

According to Myers (1983), studies done by Bauer et al (1978) point to the discrimination

between crops of different types by means of multitemporal data. Maize and grain sorghum

could be identified with a greater degree of accuracy by utilising multiseasonal data. Myers

(1983) cites instances where sets of multitemporal data were used to discriminate between

irrigated crop types and dryland crops. These examples underline the fact that plant cover is

a dynamic entity which is constantly being affected by cultural and environmental factors.
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It is, therefore, essential to quantify the sources of this influence on spectral reflection

measurements and to understand their influence (Szekielda, 1990 & Mather, 1990).

More specialised literature sources focus on numerous examples where the identification

and quantification of crops is based on digital imaging, high resolution Landsat TM and

SPOT data (Altamira, Baumgardner & Valenzuela, 1986; Badhwar, Gargantini &

Redondo, 1987; Conese & Maselli, 1991; Chou Chen, Batista & Tardin, 1986; Jewell,

1989; Redondo, Lac Prugent, Gargantini & Antes, 1984; Samson, 1993; Schmullius,

1988; Silleos, Misopolinos & Perakis, 1992; Toulios, Yassoglou & Mountsoulos, 1990

and Wheeler, Jarvis, Mitchell, King & White, 1988). The results of the above

experimental studies reveal different degrees of accuracy in the identification and

quantification of specific crop types.

Badhwar et al (1987) found that in a maximum likelihood classification of multitemporal

Landsat data summer crop types such as sunflowers, soya beans, maize and pastures in

Argentinia had been identified 80-100% correctly. An evaluation of multitemporal SPOT

data for crop identification shows that broader land use classes such as grain, pasture,

beetroot and vegetables can be classified with an 88% level of correctness.

A study by Toulios et al (1990) refers to the potential of false colour composites of SPOT

and Landsat TM, to make visual crop identification. Crop types like orchards, vineyards,

non-irrigated winter crops, irrigated crops and fallow land can be visually separated from

false colour images and can be further interpreted with the aid of ground control data for

the specific area.

There are numerous other sources in the literature which concern the physiological,

physical and spectral behaviour of vegetation (Guyot, 1990; Lo, 1986; Baret, 1988;

Szekielda, 1988). An experimental study by Wanjura & Hatfield (1988) utilised Landsat

TM data to investigate the optical features of four row orientated crop types, namely

cotton, soya beans, grain sorghum and sunflowers and found that plant height correlates

strongly with ground cover and Leaf Area Index (LAI). Regression analysis shows that the

angle of solar radiation, Leaf Area Index (LAI) and leaf density correlates best with the

optical properties of different crop type canopies.

Baumgardner et al (1986: 533) sum up identification of agricultural crop types by means of

remote sensing as follows:

"To discriminate crop species by means of remote sensing, several factors

related to the cultural practices for each crop must be considered, such as plant
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and row spacing, geometric arrangement of the plants, fertilization and

irrigation practices and growth cycles. Vie differences in reflectance which

allows us to discriminate between vegetative species, are due to the

characteristics of the leaves and canopies of different species. All these internal

and external factors influence the optical properties of the leaves and canopies.

The spectral patterns sensed by the scanners represent the integration of all of

them."

In South Africa similar trends in crop identification are evident. The identification of crop

types where the fields cover large areas and where there is homogeneous morphology

appears to be reasonably successful (Malan et al, 1983; Sandham et al, 1984; van

Rensburg, 1980 and Lourens, 1990). However, attempts to identify agricultural crops in

the Southwestern Cape with the aid of satellite data have been less successful. Research in

this regard, both in the Tulbagh (Lourens & Seed, 1989) and Robertson (Lourens, Brown,

Seed & Maaren, 1987) areas showed that not one of the classes - vineyards, orchards,

lucerne, pastures, vegetables, maize and wheat - exhibited unique spectral reflections.

Lourens and Seed (1989) also found that both orchards and vineyards exhibit strong

inherent spectral diversity. This finding confirms the conclusion drawn by Zietsman,

(1982) that incorrect vine classification can be ascribed to "variations in farming practices,

terrain and morphological conditions."

The problem of inadequate spatial resolution relating to the use of Landsat MSS-data in the

Southwestern Cape has also been emphasised by Zietsman (1982); Vlok (1988);

Lourens, Brown, Seed & Maaren (1987) and Lourens & Seed, (1989). Morain & Williams

(1975), Allan (1980) and Townshed & Justice (1980) are but a few of the authors who have

highlighted the inadequacies of remote sensing in areas where there are small areas under

cultivation and diverse vegetation. Jackson et al (1980: 1050) confirm that "Landsat's

present 79m instantaneous field of view (IFOV) is compatible with the requirement to map

areas of 5 hectares or larger ..." Lourens, Brown, Seed & Maaren (1987) found that in

their proposed study area, east of Robertson in the Breede River Valley, only 7% of the

selected 'training areas' were larger than the 5 hectare criterion. Vlok and Zietsman

(1987), however, point out that it was virtually impossible to find internally homogeneous

areas of 4,2 hectares, for the purposes of their study.

An additional aspect of remote sensing which has been elucidated by a number of authors is

the differences between the terms land use and land cover (Campbell, 1987; Lillesand &

Kiefer, 1979 and Gong & Howarth, 1988). The influence of this was shown by Lourens

(1990) in the Southwestern Cape where newly planted crops were often classified in terms
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important concept later in this chapter.

2.2.5 The identification of irrigated crops and quantification of irrigated area

2.2.5.1 Introduction

The identification of irrigated crops, delineation of the extent of irrigation and monitoring
of irrigation development is an integral part of water resources planning and management in
South Africa (Conley, 1988). There is a constant and urgent need for accurate, regular and
reliable information on current irrigation patterns and trends within geographic drainage
areas. Conventional methods of data collection such as panchromatic aerial photography
and fieldwork is expensive, cumbersome and inadequate for large-scale monitoring (Conley
et al, 1989). A number of authors like Maaren (1985), Lourens et al (1989), Lourens
(1990) and Meyer (1991), refer to the potential multispectral satellite data has to monitor
irrigated areas successfully on a regular basis.

According to Lourens (1990: 91), the advantages of multispectral satellite data for the

identification of of irrigated areas can be ascribed to:

i) The synoptic nature of the data. An image provides a more accurate representation of
reality than any map. Thus, it is possible to distinuish cultivated crop areas visually
from natural vegetation.

ii) The extent of the ground coverage. Landsat TM covers an area of approximately 34
000 km . The advantage is that the total catchment basin, agricultural district or
farm, can be viewed as a unit on photographic hard copy or on the screen of an image
processor.

iii) A repetative coverage. Periodic surveys and regular monitoring of an area can be
done continuously.

iv) The practicability and feasibility of the media. A single satellite image on Computer
Compatible Tape, (CCT) or CD, covers the same area as a few hundred aerial
photographs, stores them easily in digital format and has the potential to monitor any
change quantifiably.

v) The •integration with Geographic Information Systems (GIS). According to King
(1991: 70), the true merits of remote sensing are seen when large quantities of spatial
data are integrated with other geographic data. Geographic Information Systems
(GIS) are ideal, because they provide powerful methods of input, storage,
manipulation, analysis and output of spatial information.
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shaped patterns were characteristic of centre-pivot irrigation systems, while pastures

exhibited irregular shapes. Combinations of infrared colour photography and false colour

composites are viewed by Tinney et al (1979: 694) as a more effective method of

identifying irrigated areas:

"This combined satellite and aircraft approach takes advantage of both the

temporal frequency of Landsat Multispectral imagery and the higher spatial

resolution of aircraft photography to provide a product more usefull than is

available from either source individually".

The results of the study demonstrate that smaller irrigated areas can also be successfully

identified.

In Kansas, USA a single band (Landsat MSS band 2) was used by Williams et al (1979) to

identify and monitor irrigated areas. A multitemporal visual interpretation technique, based

on grey scale colour-shading was successfully used to map irrigated areas. It was also

possible to determine the areal extent of the predominant irrigated crops with a high level of

accuracy (ranging between 85 and 99%).

Zuluaga (1990) used multitemporal Landsat MSS data in six different areas in Mendoza,

Argentinia to distinguish the following land use classes, with the aid of a false colour

composite of bands 7, 5, 4: irrigated and non-irrigated areas, desert area and urban areas.

Drainage patterns of main drainage channels, which were related to the location of irrigated

areas, could also be visually identified from the false colour composites.

A few studies done by Heller et al (1979), Thiruvengadachari (1983), Wall et al (1984) and

Bauer et al (1984) and others demonstrate the success of a two-phase approach to

quantifying the extent of the irrigation: visual interpretation of satellite data followed by

regression estimation. The first phase mainly consists of visual determination of the extent

of irrigated areas per stratum, based on land use classes. The second phase involves the

assignment of test areas per stratum, followed by land use surveys per stratum to determine

the extent of the irrigated areas. The two phases are integrated by means of regression

methods in order to quantify statistically the extent of the irrigated areas. Studies by Wall

et al (1983) and Bauer et al (1984) in the state of California showed that the overall

estimation achieved a standard deviation of 1,74% at a 99% precision level. The total

irrigated surface differed by only 0,4% from the calculations based on a ground survey.

It appears from the literature quoted above that Landsat MSS data has been chiefly utilised

internationally for reconnaissance purposes in places where general information is required
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on the occurrence and distribution of irrigation patterns within drainage areas. General land

use pattern recognition, such as cultivated areas, natural vegetation, water surfaces and also

the extent of these can be successfully established. The low resolution of Landsat MSS (80

m) was inadequate for the accurate visual interpretation of irrigated areas in European

countries such as the Netherlands, which has characteristically complex land use classes.

According to Lourens (1990: 27) the work of Van den Brink et al confirms this trend:

"The use of satellite imagery for land-use studies in the Netherlands was limited due to the

poor resolution of MSS imagery".

The launching of Landsat 4 in 1982, followed by Landsat 5 in 1984 with an enhanced

spatial resolution, held great promise for the identification of more detailed land cover

classes. Landsat TM has a spatial resolution of 30 m and consists of seven spectral bands:

three in the visible part of the spectrum - blue (TM 1), green (TM 2) and red (TM 3); one

band in the near infrared (TM 4); two bands in the mid-infrared (MIR), (TM 5) and (TM

7) and TM 6 in the thermal infrared part of the spectrum.

Follow-up studies by Van den Brink (1986) show that false colour composites of Landsat

TM, in particular combinations of 4, 5, 3 and 4, 5, 6, successfully separate specific

agricultural land use patterns, such as forestry, cities and grassed areas. Trommervik

(1986) notes Landsat TM's capacity to differentiate between vegetation communities in

Norway, using visual interpretation of TM band combinations 4, 5, 6 and 3, 4, 5.

Nikolaos (1988) recommends a false colour combination compiled from TM data to

discriminate visually between non-irrigated crops, irrigated crops (maize, cotton,

vegetables), rice and fallow land. This method of pattern recognition has been successfully

and cost-effectively used to compile an agricultural land use map for the Axios Alluvial

Plains in Greece.

Trolier and Philipson (1986) found that enlargements of false colour composites (bands 3,

4, 5) enhance interpretation of the inventory of hydrologically important land use/land

cover classes. During this study the land cover and hydrological patterns were identified

successfully and cost-effectively.

Landsat TM false colour composites were also used by France & Hedges (1986) for the

visual interpretation of hydrologically important land use classes. Various image

processing techniques were applied to individual TM bands, as well as to combinations of

bands 1, 4, 5; 2, 4, 5 and 3, 4, 5 respectively. A variety of techniques such as linear

stretching, principal component analysis and a variety of filtering processes optimise the

spectral information of various applications. According to Milford, Mackay (1994: 13)
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notes in this regard that "the feature that one is interested in is not often directly sensed by

satellite, it usually has to be deduced".

According to Gastellu-Etchegorry (1990); Gastellu-Etchegorry (1989); Quarmby &

Townshed (1986); Chidley & Drayton (1986); De Gloria (1984) and Gong, Marceau &

Howarth (1992), high resolution SPOT data is extraordinarily well suited to visual

interpretation. SPOT has three spectral bands with 20 m resolution: bands 1, 2, 3 in the

green, red and infrared part of the spectrum respectively and a panchromatic band which

extends from 0,51 - 0,73 /xm with a resolution of 10 m. During an agricultural land use

study in Tanzania, Wheeler et al (1988) evaluated false colour composites of SPOT and TM

and found that SPOT false colour composites could be used to identify specific sub-class

attributes correctly. Gastellu-Etchgorry (1990) confirms this finding, saying, "Computer

screen displays of SPOT bands and colour composites provided straight recognition of all

landscapes of interest" and further "... various vegetative stages could be discriminated with

SPOT data within cultivated areas".

During visual photograph interpretation of SPOT panchromatic and multispectral images,

De Gloria (1984) found that it was possible to:

i) separate agricultural land use classes successfully,

ii) to identify crop parcels with as little as 20% land cover, and

iii) to determine the extent of crop parcels varying from 1-80 ha in size.

Inter- and intra-field boundaries were successfully identified with the aid of the 10 m

panchromatic band.

Chidley & Drayton (1986) refer to various techniques to enhance visually hydrologically

important spectral information. During this study photographic forms of principal

components were used for visual analysis and mapping of drainage systems, dams and main

channels.

Lourens (1990) sees visual analysis using SPOT false colour composites on a 1:50 000 scale

as an effective method of monitoring irrigated areas. A number of features like farm

boundaries and access routes which are related to locating and monitoring irrigated areas

can also visually recognised from SPOT data.

To sum up it seems that the success of visual pattern recognition depends on three important

components: the type of data and associated band parameters, as well as the specific

objectives of the project and the local knowledge of the interpreter.
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2.2.5.3 Digital image classification for identification and quantification of irrigated

areas

Digital image processing includes classification procedures whereby pixels are assigned to

different classes with the aid of special computer algorithms (Campbell, 1987). There are

three main approaches to digital image classification: supervised classification,

unsupervised classification, as well as a combination of the two methods (ERDAS,

1991: Campbell, 1987 and Lillesand & Kiefer, 1979).

Digital image classification offers many more advantages than visual interpretation

technology: "Digital image-analysis techniques are generally considered faster, provide

objective decisions and can readily employ multiband and/or multidate image data, thus

allowing crop identification in addition to irrigation identification." Digital image data can

also be directly integrated with geographic information systems (GIS). "Raster-based

satellite data are becoming an integral component of many GIS programmes" (Parent,

1992). An integrated data base of this kind also has the capacity for data manipulation,

statistical analysis and modelling and offers high quality output (Marble, 1990; Manore,

1990).

Authors like Meneti et al (1986), Gastellu-Etchegorry (1990), Mausel Kramber & Lee

(1990), Khorram, Brockhaus & Gerachi (1988), Schmullius (1988), Chavez & Bowell

(1984), Chen, Batista & Tardin (1986), Conese & Maselli (1991) refer to the application of

various image processing techniques to the identification and quantification of irrigated

areas. Maaren (1985), Lourens (1991) and Meyer (1991) view the following digital image

processing techniques as the most important methods of identifying and quantifying

irrigated areas:

i) Supervised image classification;

ii) Unsupervised image classification;

iii) The application of regression estimation;

iv) The application of principal component analysis;

v) The use of vegetation indices.

Next, a few perspectives from the literature are given to illustrate the application of each of

these image processing techniques.
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2.2.5.3.1 The application of supervised classification methods

In a supervised classification, land use ground control data are used to cluster image

elements. Training sites, consisting of a number of pixels extracted from the image, are

selected for each of the clusters which are related to a specific land use class. Next, the

statistics (mathematical mean, variance and co-variance) of the training sites are calculated.

The so-called 'spectral signature1 which represents the unique spectral features of each of

the land cover classes is extrapolated to the whole data set in order to effect a classification.

The application of supervised classification techniques to both Landsat and SPOT data for

the identification of irrigated areas is widely undertaken (Nikolaos 1988; Azzali, Menenti,

Mieuwissen & Visser, 1990; Visser, 1990; Lourens, 1990; Chavez, 1984; Tommervik,

1986; Schmullius, 1988; Lourens et al, 1989; Lourens et al, 1987; Meyer, 1991). The

same basic procedures are generally followed regardless of the type of data. Training sites

which are representative of the principal land cover type are delineated and statistically

analysed, since the success of a classification depends on the spectral separability of the

chosen classes. Lourens (1990) recommends statistical tests, like the transformed

divergence limit and Jefferys-Matusita distance for this purpose, which can determine the

measure of separabilty between classes. Other applications include the use of

parallelepiped, minimum distance from the mean, maximum log-probability and maximum

likelihood algorithms.

The selection of training sites, choice of classification techniques and evaluation of

classification results is an interactive process. Lillesand & Kiefer (1979: 471) describe it as

follows:

"In many ways the training effort is more an art than a science. It requires

close interaction between the image analyst and the image data. It also

necessitates a thorough knowledge of the geographical area to which the data

apply. Most importantly, it requires a knowledge of the spectral characteristics

of the features being analyzed''.

The success of supervised classification is directly related to the ability of the analyst to

select representative training sites (Malan, 1990). Campbell (1987: 315), drawing on the

work of Scholtz et al & Hixon et al, notes:

"... the selection of training data may be as important as, or even more

important than choice of classification algorithm in determining classification

accuracies of agricultural areas in the central United States \
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Gong & Howarth (1988) stress the necessity of distinguishing between land cover and land

use during the evaluation of a classification. Land use is viewed as a cultural concept: "To

classify land use requires a large amount of human knowledge with respect to texture,

shape, size, neighbourhood, proximity and association, as well as pattern", while Lillesand

& Kiefer (1979: 119) define land cover as "the type of feature present on the surface of the

earth". The following example illustrates the relationship between land use and land cover.

Table 2.1 shows typical results of a maximum likelihood classification applied to SPOT

data. Land cover classes (1-12) are separated by means of the classification and are

evaluated against four types of control data, codes A-D.

From this, it is evident that multiple diverse land cover classes combine to form single land

use classes. Figure 2.3 shows the possible relationships between land cover classes and

land use classes.

Table 2.1: The relationship between land cover and land use classes .

Code

1
2

3
4

5
6
7

8

9.
10
11

12

Land cover class

Residential roofs

Paved surfaces

Industrial/Commercial

Open area

Lawn and tree complexes

Cultivated grass types

Deciduous trees

Evergreen trees

Crops

New crops and pastures

Fallow land

Water surfaces

Code

A
B

C
D

Land use class

Residential

Industrial/Commercial

Agriculture

Unutilised land

Source: Gong, 1988
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Figure 2.3:

Source: Gong, 1988

The relationship between land cover classes and land use classes.

Lourens et al (1987: 15) see the poorer digital classification results obtained in the

Robertson area as evidence of the 'human analyst's1 superior ability to discriminate as

opposed to that of the remote sensor:

"The human observer places a certain area of land into a particular land-use class

dependent on the nature of the crop being grown there, irrespective of its stage of

growth. The satellite on the other hand records only spectral response from the

earth's surfaces."

Authors like Lourens et al (1989), Zietsman (1982), Vlok (1988), Lourens (1990)

emphasise the influence of diverse land cover classes in intensively cultivated agricultural

areas. Lourens (1990) found that in certain agricultural areas in the Southwestern Cape that

"the percentage vegetative cover had to exceed a certain threshold for a plant to be

identified as vegetation". In the case of newly planted fields, the background medium has

the greatest effect on reflectance. This often accounts for poorer classification results,

when land cover is compared with land use control data.

In the eighties, the availability of high resolution multitemporal, multispectral SPOT and

TM data, with its high volume of data, meant that cost-effectiveness (measured in terms of

computer time and the cost of digital data) frequently became an issue. Consequently, the

selection of optimum band combinations became a critical means of reducing the amount

of data and the high dimensionality of satellite data.

Studies done by Karteris (1990), Conese & Maselli (1993), Chaves et al (1989), Chou

Chen, Batista & Tardin (1986), Mausel, Kramber & Lee (1990), Khorram (1988), Lourens

(1991) and Dorfling (1994) focus on the selection of optimal band combinations to attain

even higher measures of accuracy in the classification, but with smaller quantities of data.
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The following six band selection techniques were identified for use with SPOT and Landsat

TMdata:

i) Sheffield algorithm (Sheffield, 1985);

ii) Jeffreys-Matusita distance (Chen et al, 1986 & Mausel et al, 1990);

iii) Divergence (Mausel et al, 1990);

iv) Transformed divergence (Mausel et al, 1990);

v) Bahattacharyya distance (Mausel et al, 1990);

vi) Mutual information analysis (Conese & Maselli, 1993);

vii) Optimum Index Factor (Lourens, 1990).

Lourens (1990) used the Optimum Index Factor (OIF) and the Jeffreys-Matusita mean to

determine the total variance in spectral reflectance for the respective irrigated classes within

training areas. Various TM band combinations, with the 2-4-5, 2-4-5-7 and 2-3-4-5-7

combinations being seen as the most important, were statistically analysed and subjected to

supervised parallelepiped classification in order to identify irrigated areas.

Lourens (1990: 70) viewed the four methods of supervised classification listed below as the

most effective techniques of identifying irrigated areas with the aid of Landsat TM:

i) Supervised parallelepiped classification conducted on the best four band combination

determined by means of the Optimum Index Factor,

ii) Supervised parallelepiped classification conducted on TM bands determined by means

of the Jeffries-Matusita mean distance,

iii) Supervised parallelepiped classification of a colour transformed TM image, compiled

from selective principal components analysis,

iv) Supervised parallelepiped classification making use of statistics obtained from

modified unsupervised clustering.

The application of these methods showed that 70% accuracy had been attained with the TM

data in the Mogol River Catchment Basin, Transvaal (Lourens, 1990). Certain crops which

exhibit a high land cover, such as groundnuts and tobacco (between harvesting cycles),

were classified 85-90% correctly. Overestimation and underestimation could chiefly be

ascribed to varying agronomic practices within the study area.

Lourens (1990: 78) recommends the use of the following three techniques in identifying

irrigated areas with the aid of SPOT data:

i) Supervised parallelepiped classification of the contrast enhanced image;
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ii) Density slicing by means of the second principal component;

iii) Supervised parallelepiped classification of "the colour transformed, combined

vegetation indices and Euclidean band image".

However, the results Lourens (1990) obtained using these techniques exhibited lower

classification accuracy than the TM classification. This trend was ascribed to image capture

late in the growth season, when the crops within the study area had already reached the

drying stage.

Results of an experimental study done by Dorfling (1994) on optimum band selection

strategies for multitemporal SPOT data, show that four of the six main band selection

strategies identified the 2-3-6 band combination as the optimum band combination, which

produced the best supervised classification results. The Sheffield algorithm is

recommended as the best band selection strategy, because it is simple to apply, requires

minimal computer processing time, and can be done on a personal computer.

Khorram et al (1988) considered 1-4-5-7, 3-4-5-7 and 2-3-4 TM band combinations as the

optimum band combinations for multitemporal analysis of agricultural land cover in the

Catania region of Italy, but they emphasised that "the waveband combination required to

classify TM data is dependent upon the cover types to be classified" (Khorram, 1988: 202).

Irrigated crop types (including cotton vegetables and maize) were 85% correctly classified

using a supervised classification (maximum likelihood algorithm) of TM bands 2-3-4.

Approximately 100 ground control areas were used during the study. A high measure of

accuracy (90%-95% correct) was attained in the classification of other land use classes,

such as wheat, fallow land and forestry areas (Nikolaos, 1988).

A study done by Trolier et al (1989) showed that mid-season vineyards in various New

York districts could be identified with an 80% degree of accuracy, by using band selection

(TM 2-3-4), followed by a supervised maximum likelihood classification.

Middelkoop and Janssen (1991) suggest a method of supervised classification which is

based on temporal relationships between land use classes. Prior knowledge of crop rotation

practices was gathered in the form of a matrix and empirically analysed to determine the

temporal relationships. Figure 2.4 shows the transitional likelihood schema for a three year

crop rotation cycle. The width of the arrows is a proportional representation of the

transitional probability.
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Figure 2.4: The transitional likelihood schema for a three year crop rotation cycle.

Multispectral TM data, information stored in a Geographic Information System (GIS) and

prior knowledge of crop rotation cycles are combined in a Bayes maximum likelihood

classification. According to the Bayes decision rule every pixel is assigned to the class with

the greatest likelihood value based on the Gaussian assumption (Prinsloo, 1991: 25). A

schematic representation of the specific supervised classification procedures is given in

Figure 2.5.

Results of the study done in the Netherlands displayed high percentages of classification

accuracy (80%). According to the authors, this method of classification enhances the

results by 4-20% as compared with classification results based purely on spectral

information.

1. Knowledf c and information
source i

Source: Middelkoop & Janssen, 1991

Figure 2.5: Schema of classification procedure.
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2.2.5.3.2 The application of unsupervised classification

During unsupervised classification, remotely sensed data is added to groups by a clustering

algorithm (Barrett et al, 1982). The spectral data is divided into a pre-determined number

of classes and then the computer allocates pixels in terms of the highest class membership

likelihood. (PCI, 1988). Thus the classification process is controlled by predetermined

statistical parameters. Lo (1986: 299) defines the unsupervised classification method as

"the definition, identification, labelling and mapping of uniform spectral classes".

Unsupervised classification techniques are widely applied in the identification of land use

types and irrigated areas (Azzali et al, 1990; Lourens et al, 1987; Lourens, 1990; Fukue

et al, 1988; Maaren, 1985; Meyer, 1991). Fukue et al (1988) did an evaluation of the

classification accuracy of various unsupervised classification methods utilised for TM

imagery by comparing with results obtained from a conventional supervised classification.

Six types of hierarchical clustering methods as well as minimum residual clustering were

applied to TM data in order to identify specific land use/land cover classes. This study

showed that clustering methods improved classification accuracies by approximately 6%

points in comparison with a conventional supervised maximum likelihood analysis. This

was particularly the case in intensively farmed agricultural areas in the area around Tokyo,

Japan. This method is recommended for use as an alternative where intensive land use/land

cover makes the selection of homogeneous "training sites" impossible.

Lourens (1990) applied hierarchical unsupervised classification methods successfully to TM

data of the Mogol area to obtain statistics for classes representing actively growing

vegetation. However, this method proved unsuccessful as a means of utilising SPOT data.

Therefore Lourens (1990) does not recommend unsupervised classification of SPOT data as

a means of identifying irrigated crop types.

Many authors consider it best to use a combination of unsupervised and supervised

classification methods to identify irrigated areas and to quantify their extent (Moreton &

Richards, 1984; Lourens et al, 1987; Azzali et al, 1990; Kolm & Case, 1984; Wall et

al, 1984). This approach involves carrying out unsupervised clustering on representative

heterogeneous subimages in order to determine spectrally separable features. Different

areas are selected so that all land use classes are represented in the subimage. This makes it

possible to determine important spectral class boundaries. The statistics of the different

spectral classes in each of the subimages are determined. Once the derived spectral

signatures have been linked with a land cover type, a minimum distance and maximum

likelihood supervised classification is done on the entire image. In cases where spectral
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discrimination between irrigated land use classes can not be determined, the classes are

regarded as a single land use class called "irrigated agriculture". (Lourens et al, 1987).

The principle of extracting subimages (consisting of 512 x 512 pixels) which represent the

major land use classes was applied throughout by Lourens (1990). "Techniques were tested

on the sub-images and those found to extract irrigated areas well, based on a visual,

qualitative assessment, were applied to the entire image" (Lourens 1990: 38).

Azzali (1990: 86) refers to the successful application of a two-phase approach to

classification which focuses on the discrimination of crop clusters that exhibit the same

growth patterns rather than the identification of individual crop types. An unsupervised

classification was done on Landsat TM data to distinguish homongeneous crop groups. The

statistical information on the dominant crop type in each of the homogeneous crop groups

was then used in a maximum likelihood algorithm. This approach has a number of

advantages for quantifying irrigated land by means of satellite data: "... this has implied for

a given environment that the water requirement for each class of homogeneous fields can be

accurately calculated by means of a crop coefficient which is actually 'canopy-dependent'

and not 'crop dependent'" (Azzali, 1990: 98).

2.2.5.3.3 The application of regression analysis

Many authors like Redondo et al (1984), Bauer et al (1982) en Wall et al (1982) have

combined supervised classification techniques with regression methods to estimate the

extent of irrigation.

The main features of the study are summed up as follows by Lourens (1990):

i) Stratification of the study areas by means of visual interpretation of false colour

composites;

ii) Random selection of strata areas to serve as training or control areas;

iii) Classification of the images and adaption of the classification result using a regression

estimate.

Maximum likelihood classifications largely utilising statistics for the training areas are

carried out. Then, the following equation is used throughout in the estimation of the

irrigated area:
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Y = N * [y + b (X - x)]

where Y = estimate of the whole population;

y = sample mean of field data;
X = population mean of satellite imagery per N 'sample units';
x = sample mean of satellite imagery;
N = number of sample units within the population;
b = slope of the regression curve (y = a + bx).

The results of the study quoted above showed that there are significant differences in the
estimation of areas when satellite data and survey data are used in independent calculations.
Consequently the authors recommend that they be combined to attain high levels of
accuracy.

2.2.5.3.4 The application of principal components analysis

Principal components analysis (PCA) is a data reduction technique, which reduces the
dimensionality of multitemporal multispectral satellite data to principal components, each of
which contains a part of the total variation of the set of data. The process of principal
components analysis is described in ERDAS (1991: 182) as:

"... a linear transformation performed on the data - meaning that the

coordinates of each pixel in spectral space (the original data file values) are

recomputed using a linear equation. The result of the transformation is that the

axes in n-dimensional spectral space are shifted and rotated to be relative to the

axes of the ellipse".

Figures 2.6 and 2.7 provide simple graphic illustrations of the technique. Figure 2.6 (a
two dimensional scatter diagram) shows the relationship between data values in both bands.
In an n-dimensional histogram the ellipse (2 dimensions), becomes ellipsoid (3 dimensions)
or hyperellipsoid (more than 3 dimensions), when the distribution profile of each of the
bands is normal or near normal.

In a principal component analysis a new axis is calculated for the spectral space during
orthogonal linear transformation, and new values are assigned to the points on the
scatterplot, accordingly. The main axis of the ellipse is known as the first principal
component (PCI), and exhibits the highest variance in the data (Figure 2.7). The second
principal component (PC2) is defined as the vector with the largest diameter, orthogonal
to the first principal component and describes the largest data variance which is not
captured by the first principal component (Taylor, 1977 cited in ERDAS, 1994). An n-
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dimensional data structure is therefore defined by N principal components, of which the

first three principal components comprise virtually 100% of the total variance in the data.
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Figure 2.6: Two Band Scatterplot. Figure 2.7: First and Second Principal Component.

The value of principal components analysis as a means of reducing large volumes of data

to increase computer capacity and reduce processing time, has frequently been highlighted

in the literature (Altamira, Baumgardner & Venezuela, 1986; Chavez et al, 1989;

Haralick & Fu, 1983; Kateris, 1990; Singh, 1989; Williamson, 1989; Lourens, 1990;

Meyer, 1991 en Dorfling, 1994). Principal components analysis has chiefly been the

means of enhancing the image, where detailed land use patterns and surface structure can

not readily be identified from the original data. Principal components analysis has also

been applied to multitemporal data to identify patterns which relate to seasonal variations in

land use (Singh, 1989).

Chavez et al (1989: 339), however, have identified a few drawbacks to the application of

'standard1 principal components analysis: "... two problems that can be encountered using

the PCA method are that information of interest might be mathematically mapped to one of

the unused components and that a colour composite can be difficult to interpret" and

suggest selective principal components analysis (SPCA) as a better alternative. During

SPCA only highly correlated pairs of band (> 0,90), which are representative of the visual

and infrared spectrums, are used as input. This results in a reduction of dimensionality,

while the loss of information is minimised. (Chavez et al, 1989). Clustering bands in this

way means that most of the variation during principal components analysis is encapsulated

in the first component, as a result of the high level of correlation between the pairs of bands

that are used as input.
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Lourens (1990) succesfully applied SPCA to TM data and obtained principal components
for each of the TM 1, 2, 3 and TM 5, 7 band clusters respectively. These principal
components were combined with a contrast enhanced four band TM image in order to
generate a new set of data. Colour tranformation, however, was first applied to the set of
data (to create a colour image). Next, parallelepiped classification was done. According to
Lourens (1990) this kind of supervised classification showed that irrigated areas could be
identified as 'bright red1 areas. Evaluation of the eigen-value matrix revealed that the first
three principal components constituted 97,5% of the variation in the 1, 4, 5 and 7 TM
bands. However, Lourens (1990) does not recommend the inclusion of the thermal band
(TM 6) in SPCA, because the resultant classification can not separate irrigated crops from
riparian vegetation.

Lourens (1990) found, as Tateishi en Mukouyama (1987) had done, that there is a high
correlation in SPOT data between the first principal component and the sum of the three
bands, as well as between the second principal component and the Normalised Vegetation
Index (NDVI = (SPOT 3 - SPOT 2)/(SPOT 3 + SPOT 2)). According to the authors
irrigated areas in the second principal component can be clearly defined within the
threshold value of 200-255.

Quarmby & Townshed (1986) draw attention to the high correlation between individual
spectral bands in SPOT data (cumulative percentages of 98,6%, 99,7% and 100% were
determined for the multispectral SPOT set of data). Each of the bands have a high
discrimination potential but it is said of band 2 in particular that "... the infrared band

provides unique information on the variability within vegetated areas".

2.2.5.3.5 The application of vegetation-indices

Campbell (1987: 384) defines vegetation indices as "quantitative measures, based upon
digital values, that attempt to measure biomass or vegetation vigor". According to Meyer
(1991), a vegetation index is a variable which is closely related to vegetation features. As
the vegetation cover increases from 0% tot 100%, reflection in the visible part of the
spectrum decreases, and the reflection of the near infrared (IR) waves will increase. This
infrared and red (IR/R) ratio is a measure which is related to the amount of photosynthesis
that is taking place in the vegetation.

The research shows that vegetation indices are mainly applied in two types of study.
Firstly, the type of study which "... attempts to 'validate' the usefulness of vegetation
indices (VI's), establishing that values of the VTs ... are closely related to biological
properties of plants such as fractional vegetative cover, canopy density biomass and leaf
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area index (LAI)" (Campbell, 1987 en Samson, 1993). Secondly, vegetation indices are

used as a means of mapping - more of a qualitative application: "Such applications use

VTs to assist in image classification, to separate vegetated from non-vegetated areas, to

distinguish between different types and densities of vegetation, and to monitor seasonal

variations in vegetative vigor, abundance and distribution".

According to Moreton et al (1984) and Maaren (1985), vegetation indices are an effective

means of identifying irrigated crops in a semi-arid area. An Infra-Red/Red Ratio has been

successfully applied by both research teams to separate vigorous vegetation regarded as

'irrigated' areas from non-irrigated areas. According to Turner (1984), the same ratio has

been used to distinguish winter grain crops in the Highveld from the surrounding area.

Meyer (1991) obtained a 60% measure of correctness utilising a Transformed Normalised

Difference Vegetation Index (TNDVI = ((NDVI + 0,5)) * 0,5) to identify irrigated

areas in the Wellington area. With the aid of ancillary data, this percentage was improved

to 71%.

Wall et al (1984) and Menenti et al (1986) have used multitemporal applications, during

which threshold values of the IR/R ratios per stratum for every growing season were

obtained, to identify irrigated areas, as well as specific crop types that are being irrigated.

The above-mentioned application is described as "The Greenness Vegetation Index" by

Menenti et al (1986).

Lourens (1990) also experimented with the IR/R-Ratio, the Normalised Vegetation Index

(NDVI) and the Transformed Normalised Vegetation Index (TNDVI) to distinguish

irrigated areas from the surrounding vegetation in the Mogol River Drainage Basin.

However, the attempt to determine irrigated areas by density slicing from the TM images

was unsuccessful. This tendency was mainly ascribed to external factors like a period of

high rainfall at the time of image capture. It was also not possible to determine unique

threshold values for irrigated crops from the SPOT data, with the aid of the IR/R

relationship. Lourens (1990: 45) found supervised parallelepiped classification of the

combined vegetation indices (as recommended by Wall et al, 1984) and an Euclidean Band

the most effective method of identifying irrigated areas with the aid of SPOT data.

2.2.5.3.6 The application of density slicing

According to Lourens (1990), density slicing on single bands is cited in the literature only

in a few cases. In this technique, class limits are determined within the 0-255 series of
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values by means of which certain features are separated on the image. Pixels representing

'irrigated crops' could be extracted from the image in this way.

2.3.4 Criteria for the evaluation of classification results

Determination of accuracy, an essential step after image classification, employs various

types of reference data:

"There are no set of formulae for what form of data have to be collected as

surface reference data, neither when or where it should be collected'' (Lillesand

& Kiefer, 1979). These requirements are determined on a project-by-project

basis in accordance with predetermined objectives. Surface reference

measurements can be either qualitive recording of surface characteristics at

selected field sites or quantitative radiometric measurements (Lourens, 1990).

Qualitative information recorded in agricultural surveys include: field size, row

direction, row spacing, crop height, crop colour, crop type, percentage land

cover, planting and harvesting dates, irrigation practices, soil type and slope"

(Williams & Poracsky, 1979; De Gloria, 1984; Lourens, 1990).

The above information is, however, difficult to obtain and often dated. Robinson (1989)

contends:

"Many of the problems encountered in both agricultural research and in rural

development planning in general within the developing world arise primarily

from a lack of accurate and up-to-date information. A common complaint has

been that existing sources of information are incomplete, poorly organized or

based on incompatible criteria".

Hardy (1980) refers to various statistically-based sampling strategies of capturing reference

data. Purposive sampling involves the selection of 'typical1 cases. This method has the

advantage of time and cost effectiveness, involves explicit siting and direct application of

research data. There are a few disadvantages of purposive sampling such as subjectivity,

doubts on representativeness and the absence of reliability estimates. Random sampling

involves the application of simple random, systematic, stratified or multifaceted hierarchical

sampling (Matthews, 1981).

Reference data is not absolute. Some of the factors to be taken into account include siting

errors, ambiguous classes, the effect of scale and mapping size, boundary errors, as well as

digital registration errors when digital reference data is registered to an image.
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According to Lourcns (1990), the most effective methods of determining acccuracy are the

determination of errors of omission and commission. The Overall Accuracy, Mean Class

Accuracy, Kappa Measure and the Jaccard Coefficient, are measures of association.

Lourens (1990) calculated the Jaccard coefficient for classifications that had been accepted

on visual assessment of the sub-images and applied to the entire TM and SPOT images.

The surface reference data were used to determine the Jaccard coefficient.

The Jaccard Coefficient (J) was calculated as follows:

J = Positive Matches

Positive Matches + Omission + Commission

where:

Positive Matches = Number of hectares mapped in field survey correctly

classified.

Omission = Number of hectares mapped in field survey not

classified.

Commission = Number of hectares incorrectly classified.

There is increasing recognition of the importance of ancillary data in enhancing the

accuracy of supervised classification results (Baumann & Greenberg, 1991; Steven, 1987

and Meyer, 1991). According to Meyer (1991: 11), the importance of ancillary data is that

of using known information on an area in order to enhance the accuracy of classified

results. This prior knowledge can be used to compile maps to be used as ancillary data.

Meyer (1991: 12) refers to the application of two types of ancillary data: data on the

spatial distribution of urban areas, as well as a map which shows the various soil potential

classes for agricultural production in the study area. This data is used to enhance the

classification accuracy, by correcting areas which have been incorrectly classified or

supplementing information. Results of this study show that ancillary data can enhance the

accuracy of the irrigated crop classes by 15%.

Baumann & Greenberg (1991) suggest three approaches to the joint use of ancillary data

and spectral data to enhance supervised classification results: pre-classification scene

stratification, classification modification and post-classification class sorting. This study by

Baumann & Greenberg (1991) focused particularly on the role ancillary topographic data,

such as height and slope, could play in enhancing classification results for the purpose of

compiling an inventory of land use in the Catskill Region, New York: "Ancillary

information such as topographic data is frequently incorporated into multi-spectral data sets
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as additional data channels and used in conjunction with spectral data". The authors refer

to the approach as "postclassification class sorting built on the logical use of ancillary data."

2.4 SUMMARY

Chapter two provided a literature review to guide the research process. As an introduction

satellite remote sensing and its applications to agriculture was presented briefly. Literature

which focusses on the influence of external environmental factors and required resolutions

in terms of temporal and spatial characteristics of satellite sensors for agricultural purposes

are highlighted. Relevant international and local crop identification projects are discussed

drawing specific attention to the effectiveness of SPOT XS and Landsat TM data for

identifying irrigated crops. National and international journals were consulted in order to

glean guidelines regarding choice of image processing techniques, selecting optimum

spectral band combinations and multi-temporal analytical procedures. The chapter

concludes with a review of studies employing ancilliary data in enhancing image

classification accuracies.

Chapter three describes the methods used in gathering, capturing, and manipulating data for

this research. It focusses on the data capturing processes, data types and functions of the

GIS database.
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CHAPTER 3: FEATURES OF THE DATABASE : TYPES, FUNCTIONS AND

PROCESSING

3.1 INTRODUCTION

The key ingredient in the wise management of natural resources is information on the

various components of the environment. "We know that the spatial databases we develop

today will become the decision tools for tomorrow" (Hartgraves, 1991). In simpler times,

one resource could be managed in isolation from the other and information needs were

concomitantly simpler and easier to separate. But as population grows and demand for a

diversity of resources increases, our understanding of the intricacies of our environment

evolves. In this complex environment, we must have the means to collect, store and utilise

the information that makes wise decisions possible. Our current information technology has

a critical deficiency - the inability to reference and manipulate spatial resource data . A

powerful tool is now available to cure that deficiency - Geographic Information Systems

(GIS). The strength of GIS lies in it its ability to integrate data from a variety of sources

and disciplines, such as remote sensing data, using a common geographical frame of

reference. Current GIS applications range from simple inventory and query of spatially

located objects, to map analysis based on geographic operations, to the support of complex

spatial decision making (Ehlers et al, 1991; King, 1991; Dangermond, 1991).

All data required for this research has a spatial component and can be manipulated within a

GIS. A systematic spatial database was therefore required to provide baseline data for this

study. A vector based Geographic Information System (Arc/Info PC and Workstation

version 6.1.2) was used to compile a digital catchment database for the entire study area

consisting of various data information overlays which were used in the study as ground

truth and ancillary data. This database was used to support various analyses and to evaluate

the results of the digital image classifications.

3.2 REVIEW OF EXISTING SATELLITE SYSTEMS

Since 1960 when the term 'remote sensing1 was used for the first time by Evelyn Pruitt,

satellite remote sensing has become an extremely powerful technique, particularly in the

earth sciences (Van Rensburg, 1976). The limitations of the visible part of the

electromagnetic spectrum were recognised at an early stage. However, technological

breakthroughs made during the Second World War made it possible to extract useful

information from other parts of the spectrum and to apply it (Lintz & Simonett, 1976). A

new era of remote sensing dawned on 1 April 1960, with the launching of the remote
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sensing satellite TIROS-1 (Wolfaardt, 1983). This development gave man a new
perspective of time and space in the study of features oh the surface of the earth:

"From 1960 onwards, satellites have greatly enhanced our real-time spatial

reach. Now one may see vast sections of the globe instantaneously, in real

time'1 (Calder, 1991).

The chronological development of the new era of satellite systems since 1960, is presented

diagrammatically in Figure 3.1.
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Figure 3.1: The chronological development of the 'new era1 satellite systems since

1960.

Since then, as a result of the contributions made by the USA and USSR there has been
steady development in spatial technology. Two types of satellite systems are delineated in
Figure 3.1 namely geostationary satellites and sun-synchronic satellites. Each type is also
briefly described.

Geostationary satellites are placed in a geostationary orbit above the equator and record a
continuous supply of spectral data from the same place. Weather satellites such as the
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European Meteosat, GOES-E, GOES-W (USA), GOMS (USSR) and GMS, alias

Himawari, (Japan) as well as communication satellites like INSAT (India) are placed in this

kind of orbit (Figure 3.1). The satellites are positioned at a height of ±36 000 km and

orbits the earth once every day maintaining its predetermined position relative to a fixed

point on the earth (Malan, 1991). Meteosat 4 (alias MOP 1), the latest in the series, was

launched into space early in 1989. Positioned just above 0° longitude and latitude, it

rotates at a rate of 100 revolutions per minute. Radiation is collected by the telescope of

the optomechanical sensor by scanning the hemisphere from south to north every 30

minutes. Since February 1977, data have been collected from Meteosat by the CSIR's

Satellite Application Centre (SAC) and passed on to the Weather Bureau.

Sun-synchronous satellites move along low orbital paths which vary in height from 750 to

850 km and provide detailed spectral data on features of the earth's surface. The three

most common sun-synchronous satellites are the 'National Oceanographic and Atmosphere

Administration' (NOAA) meteorological satellite, the American Landsat-series and the

French SPOT satellites. The launching and use of Earth observation satellites like Landsat-

and SPOT in the seventies and eighties brought a new dimension to remote sensing. Both

these satellites move along sun-synchronous orbits i.e. the orientation of the orbital path to

the sun is constant. Consequently, a satellite of this kind is always above a particular line

of latitude at the same solar time. At every rotation, it will cross the equator at another

longitude, as a result of the rotation of the earth (Malan, 1991).

3.3 PRIMARY DATA SOURCES: MULTISPECTRAL SATELLITE DATA

Since this study focuses on the use of data from Landsat TM and SPOT, more detailed

attention will be paid to the features of these systems. At present, they constitute the chief

source of digital data for studies of the earth's natural resources. Landsat and SPOT have

the following features in common:

(i) Both satellite systems have sun synchronous orbits which mean that capturing of data

on a certain place always occurs at the same local time,

(ii) Both satellite systems gather electromagnetic radiance in one or more spectral

channels. Accordingly, data is simultaneously registered in multiple spectral channels

which are known as multispectral images. Single band, monochrome images are

termed panchromatic images,

(iii) Both scanners can produce nadir views. Nadir is the area on the ground directly

beneath the scanners' detectors (ERDAS, 1991).
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Figure 3.2 shows a comparison of the electromagnetic spectrum recorded by Landsat TM,

Landsat MSS and SPOT. The data are described in detail in the following sections.

Landsat MSS
0,2,3,4)

Landsat TM
(4.5)

SPOT
XS

SPOT
Pan

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2.
3,
3,
4,

5,
6
7
8
9

10
11
12,
13

• • 1•••• • •• • •
• • 1• •

! ••• •
Band 6

• • i
• • i
• • I

Source: ERDAS, 1991
Figure 3.2: Multispectral Imagery Comparison.

3.3.1 Characteristics of Landsat TM

In 1972, the National Aeronautics and Space Administration (NASA) initiated the first
civilian program specializing in the acquisition of remotely sensed digital satellite data.
The first system was called ERTS (Earth Resources Technology Satellites), and later
renamed to Landsat. There have been several Landsat satellites lauched since 1972.
Landsat 1, 2 and 3 are no longer operating, but Landsat 4 and 5 are still in orbit gathering
data. Landsat 1, 2 and 3 gathered data with a Multispectral Scanner (MSS) and Landsat 4
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and 5 collect data employing both a MSS and Thematic Mapper (TM) (Figure 3.2). TM

data was used in this study and are thus discussed in more detail.

The thematic mapper (TM) is a multispectral scanning system much like the MSS, except

that the TM sensor records reflected/emitted electromagnetic energy from the visible,

reflective-infrared, mid-infrared and thermal-infrared regions of the spectrum. TM has

higher spatial, spectral, and radiometric resolutions that MSS.

TM has a swath width of approximately 185 km from a height of 705 km and a repeat
coverage cycle of 16 days - 233 orbits. The spatial resolution of TM is 28,5 x 28,5 m for
all bands except the thermal band (band 6), which has a spatial resolution of 120 x 120 m.
The larger pixel size of this band is necessary for recording an adequate signal strength.
However, the thermal band is resampled to 28,5 x 28,5 m to match the other bands. The
radiometric resolution is 8-bits, meaning that each pixel has a possible range of data values
from 0 to 255 (Campbell, 1987). It is useful for determining vegetation type and health,
soil moisture, snow and cloud differentiation, rock type discrimination, etc.

Detectors record electromagnetic radiation (EMR) in seven bands (see Figure 3.2):

(i) Bands 1 (Blue), 2 (Green) and 3 (Red) measure in the visible portion of the EM
spectrum. They are useful for identifying cultural features such as roads but also
show detail in waterbodies.

(ii) Bands 4 (Reflective-infrared), 5 (Mid-infrared) and 7 (Mid-infrared) can be used in

discriminating between land and water.

(iii) Band 6 is in the thermal-infrared portion of the spectrum and is used for thermal

mapping (Jensen, 1986; Lillesand and Kiefer, 1987).

Different combinations of the TM bands can be displayed to create different composite
effects. The following combinations are commonly used to display TM images:

(i) Bands 3 (red), 2 (green) and 1 (blue-green) can be combined to form a true colour
composite, approximately equivalent to a colour aerial photograph in "rendition of
colours. Experiments with other combinations have shown that bands 2, 3 and 5, 2,
7 and 4, and 4, 2 and 4 are also effective for visual interpretation (Campbell, 1987).

(ii) Bands 4, 3, 2 create a false colour composite. False colour composites look like

infrared photographs where objects have different colours or contrasts as they would
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naturally. In an infrared image, vegetation appears red, water appears navy or black,

bare soil blueish and so forth.

(iii) Bands 5, 4, 2 create a pscudo colour composite. In pseudo colour, features can
appear in almost any arbitrary colours. For example, roads could be red, vegetation
blue, and water yellow.

3.3.2 Characteristics of SPOT

The first "Systeme Pour l'observation de la Terre" (SPOT) satellite, developed by the
French Centre National d'Etudes Spatiales (CNES), was launched in early 1986. The
second SPOT satellite was launched in 1990 and the third was launched in 1993. The
sensors operate in two modes, multispectral and panchromatic. SPOT is commonly
referred to as a pushbroom scanner, meaning that all scanning parts are fixed and scanning
is accomplished by the forward motion of the scanner. SPOT pushes 3000/6000 sensors
along its orbit. This is different from Landsat which scans with 16 detectors perpendicular
to its orbit.

The SPOT satellite can observe the same area on the globe once every 26 days. The SPOT
scanner normally produces nadir views, but it does have off-nadir viewing capability. Off-
nadir refers to any point that is not directly beneath the detectors, but off at an angle.
Using this off-nadir capability, one area on the earth can be viewed as often as every 3 days
(Campbell, 1987).

This off-nadir viewing can be programmed from the ground control station and is quite

useful for collecting data in a region not directly in the path of the scanner or in the event

of a natural or man-made disaster, where timeliness of data acquisition is crucial. It is also

very useful in collecting stereo data from which elevation data can be extracted.

The width of the swath observed varies between 60 km for nadir viewing and 80 km for

off-nadir viewing at a height of 832 km (Jensen, 1986, after ERDAS, 1991).

SPOT actually has two pushbroom scanners on board and can operate in either a
panchromatic or a multispectral mode. SPOT Panchromatic (meaning sensitive to all
visible colors) has 10 x 10 m spatial resolution, contains one band with a spectral width of
between 0,51 to 0,73 ^m - which is similar to a black and white photograph. With its
radiometric resolution of 8 bits 256 gray levels can be recorded (Jensen, 1986, after
ERDAS, 1991).
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SPOT XS, or SPOT multispectral, has a 20 x 20 m spatial resolution, 8-bit radiometric

resolution, and records in three spectral bands (Jensen, 1986, after ERDAS, 1991). Table

3.2 lists their characteristics and utility.

Table 3.1: Spectral bands recorded by Landsat TM.

Band

TM1

TM2

TM3

TM4

TM5

TM6

TM7

Wavelength
/xm

0,45-0,52

0,52-0,60

0,63-0,69

0,76-0,90

1,55-1,74

10,40-12,50

2,08-2,35

General Applications

Visible blue:
Useful for discriminating between soil and vegetation,
identifying forest subtypes, mapping man-made phenomena
and differentiating in shallow water areas.

Visible green:
Good for mapping healthy vegetation and cultural features.

Visible red:
Very good for differentiating between plant species,
demarcating soil and rock type formations as well as cultural
features.

Reflective-infrared:

Used for measuring vegetative biomass, crop mapping and
emphasizing land and water contrasts.

Mid-infrared:
Can be used to discriminate between clouds, snow and ice, but
also very useful for measuring moisture stress in drought
studies or plant health analyses.

Thermal-infrared:
Good for studies of thermal pollution orgestermal activities,
but also used in crop stress analyses.

Mid-infrared:
Many geological applications, especially for differentiating

eological rock types and soil boundaries, but also useful to

determine soil and vegetation moisture content.

Adapted from ERDAS, 1991
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Table 3.2: Spectral bands recorded by SPOT XS.

Band

1

2

3

Wavelength
/zm

0,50-0,59

0,61-0,68

0,79-0,89

General Applications

Green:
May be used to map the reflectance of healthy vegetation.

Red:
Useful for mapping different plant species and demarcating
soil and geological boundaries.

Reflective infrared:
Very good for measuring the amount of vegetation biomass

present in a scene and thus useful for crop mapping.

Source: ERDAS, 1991

3.4 SATELLITE IMAGERY USED IN THE STUDY

For the purpose of multitemporal image processing, an attempt was made to capture
imagery on each of the seasons. However, the availability of seasonal imagery was
complicated by weather conditions. No cloud-free SPOT XS imagery was available for the
spring season. It later emerged that the SPOT XS autumn imagery was also not cloud-free
as had been initially indicated by the Satellite Application Centre. Another disappontment
lay in the fact that the last 200 lines of the SPOT XS summer image had not been
successfully captured by Hartebeeshoek as a result of technical problems. This meant that
the southernmost part of the study area was not included in the image. This smaller image
therefore determined the southern boundaries of the other five images. Figure 3.3 shows
the study area. There were no problems in the case of LANDSAT TM imagery and four
images, representing each of the seasons were obtained.

In total, two SPOT XS and four Landsat images were purchased which reflected the
temporal trends in the study period. Table 3.3 could be used for reference purposes and for
the identification of the imagery.
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Table 3.3: Imagery purchased for the study.

Satellite:

Instrument

Acquisition date

Season

Identification

Scene:

Path

Row

CCTID

Tape format

SPOT

HRV1

92/08/13

Winter

119
417
4680

SISA BIL

6250

93/01/13

Summer

119
417
4674

SISA BIL

6250

92/04/12

Autumn

175
83

3575

ESABIL

6250

LANDSAT

92/08/18

Winter

175
83
4699

ESABIL

6250

TM

92/10/05

Spring

175
83
4698

ESABIL

6250

93/01/25

Summer

175
83
4970

ESABIL

6250

The choice of image data and the capturing date were determined by seasonal growth trends

of the crops in the study area. An attempt was made throughout to obtain data

representative of the 'peak' season for the analysis of multitemporal imagery. The temporal

relationship between the capturing of satellite data, the gathering of ground truth data

(fieldwork period) and the irrigation period in the area is shown in Table 3.4. This

indicates a close correlation between the crop irrigation period in the study area and the

LANDSAT TM spring and summer images, as well as the SPOT summer image and the

field survey.

Table 3.4: The temporal relationship between the capturing of satellite data, the

gathering of ground truth data and the irrigation period in the study area.

Duration of Study

Capturing of
satellite data:

SPOT XS
Landsat TM

Gathering of
ground truth data
Irrigation period in
the study area

1992

Summer
Dec Jan Feb

Autumn
Mar Apr May

not available

SSSSS8S
SS::;:S:5!

Winter
Jun

- -

Jul Aug

ill
ill!

Spring
Sept Oct Nov

not available

Dec

1993

Summer
Jan Feb
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Figure 3.3: Landsat TM image showing the location of the study area.
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3.4.1 Preprocessing of data

Unprocessed satellite data is influenced by electronic, geometric, mechanical and
radiometric distortions resulting from sensor defects, the motion of the satellite and
variations in the topography (Malan, 1990).

In order to determine the 'true' value of the radiance or reflectance of an objects on the
surface of the earth or to construct a reliable image of this, these disorting effects have to
be reduced by means of data processing, where it is not possible for engineers to exclude
them through systems design. The methods which can be used depend on the way which
the analyst intends processing the imagery in order to extract the information.

All standard Landsat and SPOT images produced by the Satellite Application Centre
(SAC), which were used during the study, were systematically corrected, to correction level
5 in order to eliminate the negative effects of rotation of the earth, non-uniform shutter
speed, panoramic distortion, distortion of the curvature of the earth, varying row lengths
and aspect ratio on the radiometric and geometric accuracy of the data.

SPOT and LANDSAT TM correction level 5 image data used during the study was thus
radiometrically and geometrically corrected. Geometric corrections were applied in both
the along-scan and across-scan directions using spacecraft orbital and attitude information.
The scene was also corrected to a map projection, but the orientation was not changed. See
Table 3.5 for a complete picture of the preprocessing procedures which were carried out at
the Satellite Application Centre.

In the case of the LANDSAT TM data, the images were projected geometrically to the
Gauss Conform Projection on the 19° East longitude by applying a nearest neighbour
resampling technique, with the aid of the Erdas Imagine system. This had to be done so
that the vector overlays of the ancillary data taken from the Arc/Info GIS could be
registered on this.

3.5 CREATION OF A GIS-DATABASE

3.5.1 Data model of a GIS

Digital data relating to geographic reality has to be viewed on various levels for
manipulating it effectively using a computer. These levels vary from reality on the one
hand via abstract conceptualisation to computer orientated storage structures on the other
(Zietsman 1993).



Table 3.5: Summary of systematic corrections made by the data provider

Id Satellite
Instrument
Mode
CCTID
Tape Format

Identification Scene:
Path
Row
Shift
Acquisition Date
Season
Correction Level
Statical calibration
Haze Removal
Sun Angle Correction
Resampling Code
Map Projection
Orientation
Deconvolution
Pixel Size

Scene Centre Coordinates:
Latitude
Longitude
Line Number
Pixel Number

SPOT1
HRV1
X
4680
SISA BIL 6250

119
417
0
920813
Winter
5
N
N
N
D
MTZ2
H
N
20

-33.42
19.35
1499
1598

SPOT 2
HRV 1
X
4674
SISA BIL 6250

119
417
0
930113
Summer
5
N
N
N
D
MTZ2
H
N
20

-33.39
19.33
1500
1638

Landsat 5
TM

3575
ESA BIL 6250

175
83
0
920412

5
Y
N
N
C
MTZ2
H

30

-33.94
18.73
2903
430

Landsat 5
TM

4699
ESA BIL 6250

175
83
0
920818

5
Y
N
N
C
MTZ2
H

30

-33.94
18.76
2903
430

Landsat 5
TM

4698
ESA BIL 6250

175
83
0
931005

5
Y
N
N
C
MTZ2
H

30

-33.94
18.79
2900
435

Landsat 5
TM

4970
ESA BIL 6250

175
83
0
930125

5
Y
N
N
C
MTZ2
H

30

-33.94
18.74
2900
441

as
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Peuquet (1990) distinguishes four levels: reality, data model, data structure and file

structure (Figure 3.4).

end of file marker
end of chain marker

file structure

Polygons Chans

t

7

9

Nodes
Mamc •

rn7
6 >

— 8 | •

0
1
0

»
r
»

data structure

data model

real world

Source: Peuquet, 1990

Figure 3.4: Levels of data abstraction.

The data model on which a specific computer system is based is a conceptualisation of the
way in which entities are defined and incorporated in the database (Kriel, 1993). Thus a
data model is a conceptual framework which governs the ordering of entities and attributes
within a database. In addition to the rules which govern the entities and defines their
relationship with each other, the data model establishes the processes and analyses which
can be done.
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Arc/Info coverages and grids use a gcorelational data model. This is a hybrid data model

that combines spatial data and attribute data in coverages or grids. Descriptive data are

stored in Relational Database Management System tables (RDBMS), and are associated or

related to spatial features via the feature ID (see Figure 3.5). Other models used in

Arc/Info include tins, images and the relational model for tabular data.

2 Polygon number 2

8 Arc number 8

Polygon-arc topology

Polygon
1
2

r3

Arc list
1.7,3.2
2,5,10,4
6,9.11,10

Polygon attribute table

Polygon

1
2

— 3

Area Parcel Number

12,001 11-115-001
15.775 11-115-002
19,136 11-115-003

Zoning

R1
R1
R3

Source: ESRI, 1991

Figure 3.5 The Arc/Info georelational model.

A tin (triangulated irregular network) is a representation of a surface, derived from

irregularly spaced sample points and breakline features. The tin data set includes

topological relationships between points and their proximal triangles. Each sample point

has an x, y coordinate and a surface or z value. These points are connected by edges to

form a set of non-overlapping triangles that can be used to represent the surface (Figure

3.6). Tins are also called irregular triangular mesh or irregular triangular surface models.

An image is a graphic representation or description of an object that is typically produced

by an optical or electronic device. Common examples include remotely-sensed data such as

satellite data, scanned data and photographs. An image is stored as a raster data set of

binary or integer values representing the intensity of reflected light, heat, or another range

of values on the electromagnetic spectrum. Remotely-sensed images are digital

representations of the earth.

In a relational database, data are structured in the form of sets of records so that relations

between different entities and attributes can be used for data access and transformation

(Figure 3.7).
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Figure 3.6 The structure of a TIN.

Source: Aronoff, 1989
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INFO files or external
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Figure 3.7 A relational database structure.

Source: ESRI, 1991
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Three main concepts drive geographic database design in Arc/Info:

(i) Geographic objects which arc real-world phenomena you wish to represent, such as

soil types, agricultural regions, towns and rivers,

(ii) Logically organized groups of geographic objects called layers or themes, as defined

by the user,

(iii) Feature classes and attributes of geographic objects.

A GIS database stores spatial and non-spatial information for particular entities in its

database. In the case of Arc/Info these collections are called a coverage. The geographical

entities for which data can be entered are classified as points, lines and polygons. All three

entity types are represented in the present study. Rainfall stations and soil sampling points

from which data was obtained for the study provide examples of point features. Rivers,

contours and rainfall isolines are represented by lines, whereas soil types, slope, land use

types and agricultural regions are instances of polygon features.

As described earlier, a coverage is the primary means of storing and representing

geographic features in Arc/Info. A coverage consists of topologically linked geographic

features and their associated descriptive data stored as an automated map (Figure 3.8).

Coverages are georelational; thus, attribute tables are a major component in the GIS

database. Coverages and corresponding attribute tables also serve as important sources of

data from which most other geographic sets in the database are derived.

Soils coverage

Figure 3.8:

ID

1
2

3
4

5
6
7

Soils
Soil

A3
C6

B7
B13

Z22
A6
A1

attributes
Class

113
95

212
201

86
77
117

Suitability

HIGH
LOW

MODERATE
MODERATE

LOW
HIGH
LOW

Source: ESRI, 1991

The structure of the coverage data model.

The structure of the coverage data model implies that there are a number of important

aspects in automation and maintenance: defining a coordinate system, digitizing

coordinates, creating feature topology, building feature attribute tables, and associating

attributes with corresponding coverage features (ESRI, 1991). Coverages provide a basis

for representing themes or. logical collections of real-world geographic objects. Maps



6 6

represent themes containing objects such as weather stations, land use units and rivers, as

points, areas or lines. These and other themes are presented in this study using coverages

and corresponding coverage feature classes. As shown in the diagram below, coverage

database design defines both the spatial data components as well as the attribute

components.

Geographic data

Themes

Geographic objects
I

Object type
(point, line, area)

ARC/INFO database

• Coverages

Feature classes

• Attribute items

[ Coverage definitions

Coverage name
Feature classes
Coordinate system
Precision
Data source(s)
Input map scale
Resolution
Processing tolerances
Data quality

Table definitions

Table name
Item names
Item definitions
Code definitions
Drawing symbols
Text strings for map labels
Relate keys
Data source(s)
Data quality

Source: ESRI, 1991

Figure 3.9: Summary of components to be defined for a coverage database.

3.5.2 Collection, storage and registration of data

In this phase of the study, the data were collected and captured. These data formed the basis

on which the classification results of the image processing were refined with ancillary data

at a later stage and evaluated by means of ground truth data.

The GIS on which the database was created was Arc/Info Version 3.4 D. The system
operated on a 386 PC with 80 Mb hard disk and a VGA colour monitor. This system had
been effective for initial data capturing, but processing time was slow. The data was then
transferred to a 486 PC with 1 Gigabyte hard disk where further data processing and
overlay analysis were carried out. This system adequately handled the data volumes
involved in the project and imposed few restrictions. The final coverages were then
transferred to a Sun Workstation with 32 Mb of memory and 10 gigabytes of disk space,
using the UNIX operating system (SUNOS 4.1.2 and Openwindows 3.0). The TIN and
GRID modules of Arc/Info Ver. 6.1.2 enabled spatial data modelling and integration of
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geographic data with classified remotely sensed data. Final maps and image plots were

generated from this system.

The initial GIS analysis and design was a straightforward process of identifying what

geographic themes and attributes were required. Each theme and its attributes were kept as

an entirely separate layer in a geo-referenced GIS structure. This allowed for composite

layers to be constructed as required, while the base themes remained unchanged. When a

geographic theme was identified for inclusion in the GIS, it was captured and stored in the

GIS. The data themes used in this study and their source are listed in Table 3.6. The full

data dictionary for all geographic data is listed in Addendum A.

Where paper maps were available, information was manually digitized in the relevant

projection and the digitized data were then cleaned and edited. In cases where there was a

large amount of attribute information, for example soil types, the information was typed

into text files. The text files were then imported into INFO data files using TABLES to

produce lookup tables. Additional file attribute information, such as the data on irrigation

practices on the selected farm units, were joined through a relate-item to the coverage

attribute tables, in TABLES by means of the JOIN command.

The process of coverage design and automation that was followed throughout the GIS

database design process is summarized in Figure 3.10.
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Table 3.6: Geographic themes included in GIS database.

Geographic
Theme

Elevation
Contours

Selected
Farms

1:50 000 scale
map grid

1:10 000 scale
map grid

Soil types

Mean Annual
Rainfall

(Weather stations)

Land-use

Drainage regions
South-Western

Cape

Rivers

Upper Breede
River drainage

region

Agricultural
Subregions

Towns

Name

contours

farms

topogrid

orthogrid

soils

rainfall

breemap

wkaapstr

rivers

catch

regions

towns

Data
Type

line

polygon

polygon

polygon

polygon

point

polygon

polygon

line

polygon

polygon

point

Unprocessed Data Source

1:50 000 topographic maps scanned and
vectorized by the Department of Water

Affairs and Forestry

Maps at various small scales from the
Department of Agriculture/Personal

Information : Individual Farmers

1:50 000 topographic maps from the Chief
Directorate: Surveys and Land Information

1:10 000 orthophotos from the Chief
Directorate: Surveys and Land Information

1:50 000 data from the Resources Develop-
ment Division: Elsenburg, Department of

Agriculture

Digital data from the Resources Develop-
ment Division: Elsenburg, Department of

Agriculture

1:50 000 aerial photography and 1:10 000
orthophotos from the Chief Directorate:

Surveys and Land Information with
Field verification 1:10 000 scale

Digital data (1:50 000 scale) from the
Department of Water Affairs and Forestry

Digitized from 1:50 000 topographic maps.
Chief Directorate: Surveys and Land

Information

Digital data 1:50 000 scale from the
Department of Water Affairs and Forestry

Digitized from 1:50 000 scale topographic
maps. Chief Directorate: Surveys and Land

Information

Digitized from 1:50 000 scale topographic
mapsr Chief Directorate: Surveys and Land

Information
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Coverage automation steps

i 1. Design gcograpmc
! aatabasc !

j 2. Collect and compile j
I oata !

3. Create master tic file

4. Proparo map sheet

5. Create the coverage

6a. Digitize coverage \ | 6b. Convert data file
features to coverage

6c. Create coverage
using COGO

6d. Scan map to
coverage

7. Identify and correct L
automation errors

8. Build features
(create topology)

9. Build attribute tables ..

10. Associate attributes
with features

rIdentify and correct errors

Identify and correct errors

Identify and correct errors

11. Clip map border
(ootional)

• Identify and correct errors

12. Edgematch Identify and correct errors

i 13. Mapjoin or append
adjacent coverages

(optional)

Identify and correct errors

~ 14. Insert into map library
I (optional)

rIdentify and correct errors

Source: ESRI, 1991

Figure 3.10: Coverage automation steps as used in this study.

The first stage, database design consisted of three major steps: identifying the geographic
features, attributes and data layers required; defining the storage parameters of each
attribute and ensuring coordinate registration. A master ground control (tic) file was
created for the project region to provide base map registration for all layers in the GIS
database (Figure 3.10). Data automation followed with the digitizing and/or convention of
data from other systems (see Steps 6a-6d) to automate the necessary maps. Then the spatial
data were made usable by verifying and editing errors and the creation of topology (see
Steps 7 and 8). Before the analysis could be done it was necessary to enter all the attribute
data needed for the project, and associate the attributes with spatial features (see Steps 8-
10). The final stage of managing the database consisted of converting digitized coverages
into real-world coordinates, joining adjacent coverages and maintaining the database.
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3.6 THE PROJECT DATABASE

The GIS database used in performing overlay analysis and integration with image data are

schematically outlined in Figure 3.11. The database consists of different data layers or

themes, where each coverage represents thematic data for the Upper Breede River Valley.

LAND USE

FARMS SURVEYED

/ / / HAP SHEETS 1
/ / / ) i

POLY

POLY

LINE

RAINFALL GAUGES POINT

ROADS

CROP TYPES

LINE

POLY

Adapted from ESRI, 1991

Figure 3.11: Schematic representation of the project database.

The GIS database compiled for the refinement of the results of the image classification

consists mainly of two types:

(i) GIS data which served as ground truth

(a) Data representing the current generalized agricultural land use patterns for the

entire project study area.

(b) Data representing detailed agricultural land use patterns on 22 selected farms in

the project study area.
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(ii) GIS-based ancillary data used as secondary data sources:

(a) Data which was representative of the soil types in the area and

(b) Contour data for the study area.

Ancillary data gathered to provide supporting information was used in the study

to supplement classifications of areas so that 'incorrect classification' could be

corrected.

3.6.1 Ground truth data

In order to create a basis for the subsequent evaluation of satellite image classification,

ground truth data had to be gathered on current agricultural land use patterns.

3.6.1.1 Current agricultural land use patterns

Current land use patterns were established from 1:50 000 aerial photographs (Job 911,

May, 1987) which were enlarged to a 1:30 000 scale. A transparent film overlay was

affixed to the eleven photographs which covered the whole study area and the boundaries of

the respective crop types was indicated on these. The predominant land use categories were

vineyards, orchards, cultivated pastures (mainly lucerne, oats and grass), wheat, vegetables

and natural veld.

The land use boundaries were transferred to orthophotos on a 1:10 000 scale (Dated 1982).

Since there had been a five year elapse of time since the aerial survey was done, the land

use information had to be verified by means of field checks. During the visits, additional

information was gathered on the crops that might influence the spectral reflectance of

individual cultivated parcels. This included aspects such as the age of the vines, the

presence of trellises and any other factors which would make the parcel "different" from the

neighbouring parcels.

One crucial factor in determining the success of land use and land cover mapping lies in the

choice of an appropriate classification scheme. A good classification scheme should be

easy to use with no ambiguity in defining each land use and land cover category (Lo, 1986:

228). The design of the land use and land cover scheme could take either a functional

approach (activity orientated) or a morphological approach (which emphasizes land cover

with the use of terms such as arable land, grassland, woodland etc.). With reference to

Anderson (1971), Lo (1986) suggested that "... the activity-orientated or functional

approach would be more appropriate as a general-purpose classification scheme for use with

aerospace imagery."
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The 1976 USGS land use and land cover classification system, one of the most widely used
classification systems used with remotely sensed images, was adopted for this study. Table
3.7 indicates the land use and land cover classification system on which land use mapping
of the Upper Breede River was based.

Table 3.7: Land use and land cover classification system used with satellite data: Upper

Breede River Valley

Level I

1. Urban or built up

2. Agriculture

3. Natural pasture

4. Forest

5. Water area

6. Bare ground

Level II

Residential
Farmstead

Vineyard
Orchards
Vegetables
Cereals:
wheat, rye, oats

Natural fynbos
Natural bush,
riparian growth

Plantation

River, channel, canal
Dam

Natural bareground,

Fallowland

Item
Code
LUl

r
f

V
b
V
pc

V

bs

P

r
d

bg
fa

Level EQ

Young vines
Bush-trained vines
Trellissed vines
Young orchards

Item
Code
LU2

yv
btv
tv
yo

Source: Adapted from Lo, 1986

The above system as adopted for the Upper Breede River Valley has many useful features.
First, it is prepared specifically for use with remotely sensed imagery. Its categories are
appropriate for information interpreted from aerial images, and it has a hierarchical
structure that lends itself for use with images^f differing scales^ahd "resolutions. Level I
(Table 3.7), is tailored for use with broad-scale, coarse-resolution imagery (Landsat
imagery or high-altitude aerial photography). Levels n and HI are composed of more
detailed classes that could be interpreted from large-scale, fine resolution images (Table
3.7). These categories have been used as a framework for the more detailed level in
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classes. Level III categories were defined by the analyst to meet specific requirements

presented by the need to detail the complexity of agricultural land use within the area.

The land use information referred to above was digitized with the aid of the Arc/Info

geographic information system (Figure 3.12). Attribute information for Level II and III

land use classes were coupled to the polygon overlay as Land use I (LU1) and Land use III

(LU2), respectively (Addendum A).

3.6.1.2 Extent of irrigation and -practices on selected farming units

With a view to quantifying the extent of irrigation in the study area, the decision was made

to identify farms in the study area where the current irrigation practices and the extent of

irrigation could be used to:

(i) evaluate the results of the image processing; and

(ii) calculate irrigation conversion factors per crop type, to provide a basis for the

eventual quantification of the demand for irrigation water.

3.6.1.2.1 Selection of farming units

On the advice of an irrigation technician attached to the Worcester office of the Department

of Agriculture, the decision was made not to select farms by means of random selection

techniques. The reason for this decision was that it was important to select farmers with

managerial systems that could provide reliable information.

Based on his knowledge of the area, the technician divided the total study into five

subsections: Slanghoek, Breede River, Goudini, Worcester and Wolseley (Figure 1.6).

Although the delineation was not strictly scientific in the sense that it was not done

according to measured climatic parameters, differences in the respective subsections can be

ascribed to the adaptations made by the farmers in response to particular climatic

environments. Four to six farms, which had a good spatial distribution within each of the

farming subsections, were selected. A total of 21 farms, which could be regarded as

representative of the various farming and irrigation practices in the study area, were finally

identified.

In order to quantify the extent of irrigation, it was necessary to obtain the present

boundaries of each of the 21 farms. However, certain problems were experienced because

only the historical farm boundaries were available for many of the farms at the respective

agricultural information offices (Worcester and Ceres). Farmers had to be asked personally
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to delineate the farm boundaries on 1:10 000 scale orthophotos. These boundaries were then

digitized by means of Arc/Info (Figure 1.6).

The selection of farming units was, therefore, focused to a large extent on the likelihood

that the owner/manager would have the necessary irrigation statistics. These statistics were

obtained by means of personal interviews during a survey on the selected farms.

3.6.1.2.2 Questionnaire survey

A survey was conducted on the selected farming units in order to obtain the necessary
information on current irrigation trends and associated farming practices. The survey was
primarily aimed at establishing which crops were cultivated during the period for which
satellite data was available (February 1992 to January 1993), which farming units were
irrigated during this period and what the seasonal irrigation pattern looked like (Table 3.4).
With this information it was possible to determine the mean volume of irrigation water
utilized on a monthly, seasonal and annual basis per crop- type per surface area. An
example of a completed questionnaire is provided in Addendum B.

During the survey, the initial 1:10 000 scale land use information for each of the selected
farming units was refined. The data was digitized using Arc/Info in order to create a farm
data overlay (Figure 1.6). Attribute data (Questionnaire data in dBase format) was then
linked with each of the land parcels to create a complete database for GIS overlay
manipulation and analysis. See Addendum A for a complete picture of the items in the
farm database.

3.6.2 Secondary data sources: GIS based ancillary data

In this study, ancillary data made it possible to use prior knowledge on soil types and
contour data to improve the final image classification results. GIS-based polygon
overlaying and querying techniques make it theoretically possible to refine the classified
satellite imagery that had been obtained so that obvious errors could be eliminated.

For the purposes of this project, efforts were made to obtain two types of ancillary data,
namely soil data and contour data.
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3.6.2.1 Soil types

The requirement for data on soils rests on the assumption that as a background medium

soils have an important influence on the reflectance values of pixels and that certain crops

will tend to be cultivated on particular soil types.

Boundaries of soil types were digitized from 1:50 000 scale soil maps obtained from the

Worcester branch of the Department of Agriculture. The maps cover the same area as that

of the following 1:50 000 topographic map sheets: 3319 AC Tulbagh, 3319 AD Ceres,

3319 CA Bainskloof and 3319 CB Worcester. Figure 3.13 depicts the distribution of

different soil types in the Upper Breede River Valley.

Additional information pertaining to colour, depth and irrigation potential was also needed

in order to select polygons that showed unique soil properties. A pedologist from the

Department of Geography at Stellenbosch University prepared an irrigation potential map

for the study area. Attributes related to irrigation potential such as soil depth and colour

were linked to the polygon coverage (Addendum A). A lookup table was created for

categorizing the detailled information to a number of generalized classes (Table 3.8).

Table 3.8: Lookup table for categorizing soil polygons.

Colour

Light grey

Grey

Dark grey

Code

1

2

3

Depth

Shallow

Moderate

Deep

Code

1

2

3

Irrigation-

potential

Low

Medium

High

Code

1

2

3

Source: Schloms, 1994

Using the assigned codes the RESELECT command in Arc/Info was used to separately

extract soils of low, medium and high irrigation potential for integrating with the Gem

Junior image data. Theoretically intensively irrigated crops should not be found on soils

with a low irrigation potential. Figure 3.14 presents the irrigation potential of soils in the

Upper Breede River Valley. More attention is devoted in chapter 4 to the integration of

this data for refining image classification results.
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3.6.2.2 ReUef

Digital contour data is viewed as an important medium of ancillary data since the

appearance and distribution of the different irrigated crops are related to associated altitude

parameters such as gradient and aspect. Contour data for the study area was obtained from

the Chief Directorate: Surveys and Land Information for 1:50 000 topographic maps 3319

AC Tulbagh, AD Ceres, CA Bainskloof and CB Worcester.

The Department of Water Affairs and Forestry undertook to scan and vectorize the contour

data, so that it could be used for computing slopes. This data was also projected to the

Gauss Conform Projection with a central meridian of 19° East, by making use of the

Clarke 1880 spheroid.

Further surface modelling was done using the Arc/Info TIN (Triangulated Irregular

Network) module. TIN has suitable software for surface modelling, analysis and

representation. A TIN was created from the digital contour line overlay with the

CREATETIN command, after which it was transformed to a polygon overlay with the aid

of TINARC (Figure 3.15). Attribute values for percentage slope, aspect and area were

calculated during TINARC for each of the polygons. Consultation with the Division of Soil

Conservation at Elsenburg revealed that a 20-25 % slope is viewed as critical with regard to

the cultivation of crops in the area. The next step, therefore, was to create on five slope

classes for the study area. In order to create these classes, boundaries between adjacent

polygons falling within the same slope class were removed with the aid of DISSOLVE and

small polygons were eliminated by means of ELIMINATE. The final slope classes are

shown in Table 3.9.

Table 3.9: Slope classes calculated for the study area.

Item name:

Percentage-slope %

1-5
6-10

11-15

16-20

20-25

Slope classes

class 1

class 2

class 3

class 4

class 5
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Separate polygon overlays were generated for each the gradient classes with the aid of

RESELECT rastered so they could be integrated with the results of the image classification.

Figure 3.16 depicts the site of the five gradient classes in the study area.

3.7 SUMMARY

In this chapter attention was given to the properties of the database. As an introduction

satellite systems were reviewed after which Landsat TM and SPOT were specifically

discussed in greater detail. Following from that the creation of the GIS database was

described. The purpose of the GIS data is to support the digital image processing phase by

providing ancillary data for selecting training areas, evaluating the accuracy of digital land

cover classifications and refining the results.

The next chapter will focus on the digital image processing techniques and integration of

this ancillary GIS data.
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CHAPTER 4: DIGITAL CLASSIFICATION OF MULTTTEMPORAL

SATELLITE DATA

4.1 INTRODUCTION

As indicated in the previous chapters (particularly in sections 1.2 and 2.2.1) land use

mapping from satellite data have in many cases failed to come up to expectation. Lourens,

Brown, Seed & Maaren (1987) and Vlok (1989) have shown that the irrigated crops being

cultivated in the Western Cape can not be successfully identified and/or mapped with single

time-slice Landsat MSS data.

The use of the higher spatial resolution levels of SPOT XS or Landsat TM sensors and a

multitemporal approach to obtain better definition of the spectral signatures of crops are

two strategies which are often mooted as solutions to the problems experienced with

Landsat MSS. However, higher spatial resolution alone does not always fulfil its promise.

Studies on vineyards and orchards which have used the higher spatial resolutions of SPOT

XS and Landsat TM (Altamira et al, 1986; Badhwar et al, 1987; Conese et al, 1991;

Chou Chen et al, 1986; Jewell, 1989; Redondo et al, 1984; Samson, 1993; Schmullius,

1988; Silleos et al, 1992; Toulios et al, 1990 and Wheeler et al, 1988 and Shimoda et al,

1988) provide little evidence that higher spatial resolution will solve the problems of crop

mapping in the Western Cape. If pixels are too small the digital data would be very

complex, because individual pixels would for example register bare soil between single

plants, thus providing a very fine mosaic of differing pixels values. The literature often

argues the potential merits of multitemporal applications (Brockhaus et al, 1988; Lourens

et al, 1987; Lourens et al, 1989; Lourens et al, 1990; Maracci et al, 1990 and Silleos et

al, 1992) but, in practice, multitemporal applications are seldomly used. Heller et al

(1979), Poracsky et al (1979), Badhwar et al (1987), Azzali et al (1990), Zuluaga (1990),

Visser et al (1990), Chavez (1984) and Conese et al (1991) are the only studies found after

a comprehensive review of the literature where the application is similar to this research.

Financial considerations may account for the low application rate. Funding provided by the

Water Research Commission enabled the Institute for Geographic Analysis to test Misra and

Wheelers's (1987) premise that the uniqueness of a crop's spectral signature is a function of

the pattern of temporal response rather than merely spectral response at a single time. This

involved utilizing digital image processing techniques on the SPOT XS and Landsat TM

datasets, respectively.
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4.2 DIGITAL IMAGE PROCESSING TECHNIQUES

The techniques used in this chapter to differentiate between irrigated crops and non-

irrigated crops can be divided into three basic groups: pattern recognition, data

reduction, and data transformation.

4.2.1 Pattern recognition

The term "pattern" is normally used to refer to a phenomenon which is characterized by

spatial or geometric features. As applied to digital image processing, however, the concept

"pattern" is rather more complex. The landscape which is scanned by a satellite sensor,

represents a variety of natural patterns, for instance, mountains or plains and water masses,

as well as man-made features. The sensor system registers a measurement for each of the

spectral channels, to which it is sensitive, for every resolution unit within the natural

pattern. In mathematical terms, the measurements are viewed as points in an n-dimensional

space or an n-dimensional measurement vector. The total surface scanned is termed the

measurement space. The main spectral characteristics of the various types of pattern (for

example, vineyards, orchards, cereals) are individually extracted from the measurement

space (according to pattern type) and are transferred as main feature vectors to main feature

space. During the classification process which accompanies pattern recognition,

calculations are done on the main feature vectors, after which every measurement vector is

assigned to the class (main feature vector) that it fits best in terms of vector characteristics.

In pattern recognition terminology, a pattern therefore represents an abstract phenomenon,

i.e. a vector which is represented by a set of highly defined measurements (in this case, n

spectral radiance values).

4.2.1.1 Classification approaches

There are two general approaches in feature extraction: supervised classification, which is

mainly concerned with pattern differentiation, and unsupervised classification which is

based on pattern classification. Mausel (1985: 295) defines supervised classification as

follows:

"Implementation of a computer algorithm through which the n-dimensional

spectral response pattern of a pixel is assigned to a class based on a decision

rule where the classes of interest have been defined based on representative

training samples of known characteristics. In essence, remote sensing analysts

examine environmental areas and attempt to determine the spectral response

characteristics associated with specific features of interest (e.g., limestone,

marsh, silty water, pine forest, etc.). *
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In essence, the supervised approach determines classes a priori, so they must, therefore, be

known beforehand. In the next step, training areas are chosen which represent the required

classes. The main feature vectors have to be calculated and used as the basis for

determining class membership of the areas outside the training areas. If the classes which

are adopted as the point of departure are spectrally distinct, and the respective training

areas prove to be representative of the land cover types in the whole set of data, the

classification should be successful.

The unsupervised approach is defined as follows by Mausel (1985: 294-5):

"Implementation of a computer algorithm through which the n-dimensional

spectral response pattern is assigned to a class based on a decision rule that

analyzes the spectral characteristics inherent in the data rather than using the

spectral signatures of specified classes as determined through a training area

approach. In essence, this approach groups or clusters spectral values that are

close together without concern for the environmental objects that reflect the

spectral data."

The literature does not indicate clearly whether the supervised or the unsupervised approach

is better - it seems, however, that the supervised approach is employed more frequently.

The research done by Schmidt and Naugle (1985) and Kelton, Shain and Nix (1985) was

specifically designed to evaluate the comparative merits of supervised and unsupervised

classification. The first group of writers came out in favour of the supervised approach,

while the second group favoured the unsupervised approach. The project team decided,

therefore, to use both strategies in this study. It seemed that supervised classification would

offer a more effective means of identifying irrigated areas and of differentiating between

irrigated crops. More accurate classification results in the case of supervised classification

would have to be weighed against the advantage of relatively smaller demands on the time

of the image processing operator in the case of unsupervised classifications.

4.2.1.2 Data-reduction

Principal components analysis is widely applied in digital image processing as a data

reducing technique, whereby the dimensionality of the multispectral data is reduced. The

large volume of data poses a real problem in multitemporal applications - the transformation

of the n-dimensional spectral data matrix to two or three principal components is an

attractive means of overcoming the problem of data volume. Principal components analysis

is based on the principle that a large number of linear dependent variables (in this case the n

multispectral bands) have to be analysed simultaneously in order to reveal the underlying
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tendencies in the whole data set. The initial variables arc transformed, without loss of

information, to uncorrelated variables or components each of which "sums up" a unique

part of the whole variance. The first component accounts for the largest proportion of the

variance in the original set of data, while the last component (number of components =

number of variables) makes the smallest contribution. Normally, the first three components

together "sum up" more than 90% of the original variance, and these components are then

subjected to supervised and/or unsupervised pattern recognition strategies.

4.2.1.3 Data transformation

Calculating so-called vegetation indices is an example of data transformation. This was

initially done using data from the AVHRR sensor of the NOAA satellite series and provides

an illustration of how an empirical relationship between measured radiation intensity and

biological quantities (in this case, vegetation) can be determined. A number of variations

of the basic vegetation index are to be found in the literature but most are based on the ratio

which takes account of the radiation intensity in the red (R) and the near infra-red (I)

wavelength bands. The ratio (or index) obtained represents that part of the penetrating

solar energy which is absorbed by plant chlorophyll, and thus biological activity of plants.

The Normalised Difference Vegetation Index NDVI = (I-R)/(I+R) offers a high index

value in areas with vigorous vegetation and a low or negative value in areas with sparse or

no vegetation. The study made use of two vegetation indices. A Transformed Normalised

Difference Vegetation Index in the case of the SPOT data and a Normalized Difference

Vegetation Index for the Landsat TM data. The two equations used were:

TNDVI = (((SPOT XS 3 - SPOT XS 2)/(SPOT XS 3 + SPOT XS 2)) + 0,5) * 0,5

NDVI = (TM 4 - TM 3)/(TM 4 + TM 3)

4.3 APPLICATION OF PATTERN RECOGNITION PROCEDURES

In the subsections that follow the focus shifts to the application of image processing

techniques outlined in section 4.2. First, the SPOT XS-data are discussed, and then the

Landsat TM data. In both cases, the unsupervised procedures and the calculation of

vegetation indices are addressed after which the results of supervised procedures are

presented.

Before discussing the pattern recognition procedures, however, it is necessary to place the

image processing software in perspective. During the initial stages of the project, the

Institute for Geographic Analysis operated an old version of the Gems Junior (EASI PACE)

image processing system driven by a personal computer. It soon became evident that the

demands of the project were so great that the system would be stretched to capacity, and

that the relatively slow processing speed would be a limiting factor. Although the Institute
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was in the process of purchasing a work station based image-processing system (Erdas), the

project could not be delayed until finality on the purchase of the Erdas system could be

obtained. Consequently, the decision was made to use Gems Junior to process the smaller

database (SPOT XS). Later Erdas was purchased and the Landsat TM processing was done

using the more sophisticated Erdas software. Although the same basic techniques were

applied to the SPOT XS and the Landsat TM data, the Landsat TM analysis could be

refined making use of more sophisticated display and querying modules that were available,

as well as the extremely useful link between Erdas and Arc/Info. The digital image

processing techniques, applied to the SPOT XS-data are presented next.

4.3.1 SPOT XS

4.3.1.1 Unsupervised classification: Untransformed SPOT XS data

As a first step in the process of pattern recognition, an unsupervised classification was

carried out on the six spectral bands from the summer and winter SPOT XS images.

Unsupervised classification firstly involved application of a technique known as

histogramming. This is a non-parametric data reducing technique aimed at accelerating

computer processing and essentially creates a four-dimensional histogram or measurement

vector (based on radiation values of four spectral bands) for every image element. The

software limitation of four spectral bands made it necessary to decide which four of the six

bands available would be used. The research done by Dorfling (1994) in the northern

region of the study area revealed that the red and near infra-red spectral bands (Bands 2 and

3) of the two seasons would be the appropriate band combinations.

Next, the K-means classification technique was used to divide the four-dimensional

histogram data into histogram classes. Software constraints meant only sixteen classes

could be created. This constraint can be overcome if the database is divided into sub-scenes

with sixteen classes for each separate sub-scene. However, this kind of manipulation was

regarded as unnecessary. The initial class means can be specified by the image processing

operator or generated by the computer. The latter option was chosen. Computer

generation of class means is based on the principle that the range between the minimum and

maximum refection value is divided into n classes (n = the number of classes specified by

the image processing operator), thus creating classes having similar ranges. Every data

value is linked to the class in which the distance squared (in terms of histogram space)

between the data value and the class mean is the smallest. New class values are then

calculated. This process is continually repeated until the class means change less than a

predetermined threshold value or until the desired number of iterations (as specified by the

analyst) has been reached. Table 4.1 shows the class means after 33 iterations (threshold

value = 3) created for a 16-class classification. The last step in the classification process
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involves the generation of spectral signatures, or rather main feature vectors. During this
last step, the previously determined class means are linked to statistical parameters. The
parameters are an essential means of establishing the class to which an image element
should most probably be assigned. The following statistics were calculated for each of the
main feature vectors:

(i) the mean and the standard deviation;
(ii) the correlation matrix; and
(iii) the parallelipiped limits and Gaussian threshold values.

Table 4.1: Class means of unsupervised K-means classification (SPOT XS data).

Class

1
2

3
4
5
6
7

8
9
10
11

12

13
14

15
16

Pixel

Count

100
217

158

2609
122

2451
8404

733

6255
1051

8646
6759

10691
13369
17109
7487

SB2

33,7

69,8
41,3
40,6
40,4
38,2

55,9
49,4

49,6
44,7

53,5

52,5
60,6
80,1
72,1

105,4

Channel Means

SB3

25,8
34,8

36,9
68,8
55,3
88,7

128,3
52,1
80,2
65,2

101,5
64,6
12,1

103,5
84,3

113,8

WB2

19,4
38,6

20,3
18,2

13,5
17,8

25,6

17,9
20,7
14,9
22,6

20,0
22,5
26,7

25,6
32,1

WB3

13,1
19,5

21,3
25,7

13,1
33,3
39,4

21,3

29,9
15,6
36,5
24,2

28,5
41,1

33,4
43,4

SB = Summer Band

WB = Winter Band

After the spectral signatures (main feature vectors) had been generated, the classification of
the multitemporal data could begin. A Gaussian maximum likelihood classification was
applied for this purpose. This is a parametric technique which, by taking account of the
mean vectors and co-variance matrix, can determine the statistical likelihood that a pixel
belongs to a specific class. After consideration of the likely membership of each pixel to the
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individual classes, the pixel are assigned to the most appropriate class or classified as

"unknown" if the probability level is smaller than a predetermined threshold value. By

assigning a colour code to each of the class codes, the classification can finally be displayed

as a thematic map on the monitor.

It is very important to note that the unsupervised classes obtained are spectral classes and do

not necessarily have information value with regard to land use or irrigated area . In this

regard, Townshed (1980: 90) provides the following warning: "The resultant classes are

not guaranteed to be useful: some of the clusters may be meaningless because they contain

too wide a variety of ground conditions." In order to evaluate the information value, it was

necessary to compare the spatial appearance of the spectral classes with the spatial land use

data which was obtained during the fieldwork phase. This comparison revealed that only

four of the sixteen classes represented agricultural land use types. All of the other classes

were mainly variations of the natural environment (mountain areas and natural vegetation).

It was felt that more than four spectral classes were required in order to accurately map

agricultural land use in the study area. In order to separate the four agricultural classes into

subgroups, a mask of the spatial occurrence of the four agricultural classes was created and

the masked area was subjected to a second 16-class unsupervised classification. This

resulted in 10 significant classes - the frequency of six of the initial sixteen classes was too

low to use as input during the process of signature generation. The class means are shown

in Table 4.2, while the spatial distribution of the spectral classes is shown in Figure 4.1.

The 10-class evaluation is discussed later in Section 4.4 of this chapter.

4.3.1.2 Unsupervised classification: SPOT XS Principal components data

Principal components analysis was used to reduce the volume of data (6-dimensional) to a

three-dimensional data matrix which could be shown as a false colour image. The

computer output which was generated in this regard is shown in Addendum C. To sum up,

components 1, 2 and 3 respectively explain 65,5%, 27,0% and 3,6% of the variance in the

original 6 spectral channels - in total, therefore, 96,1%. The same unsupervised

classification procedures (4.3.1.1) were applied on the three principal components for the

area lying 500 meters below sea level. Although an attempt was made to identify sixteen

classes, only 14 classes could be created because of sample size limitations. The spatial

distribution of the 14 classes is shown in Figure 4.2. The interpretation of the findings will

also be reserved for Section 4.4.
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UNSUPERVISED CLASSIFICATION
OF UNTRANSFORMED SPOT XS DATA

Figure 4.1: Unsupervised classification of untransformed SPOT XS data.
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Figure 4:2: Unsupervised classification of Principal Component SPOTXS data.



92

Table 4.2: Class means of unsupervised K-means classification on SPOT XS data (area

lower than 500 metres above sea level).

Class

1
2

3
4

5
6
7

8

9
10

Pixel

Count

519
2320
3678
4542

7046
4217
5417

5303

3996
1187

Channel Means

SB2

44,7
52,9

48,0
64,1

56,1
79,6

78,5
90,7

102,3
120,8

SB3

98,2

92,5
108,8

101,6
127,4
93,4

114,5

97,3
112,4

121,6

WB2

19,0
21,3
22,0

24,8
25,4

26,3

26,8

28,9

28,8
37,0

WB3

29,5
34,2

37,4

37,8
39,0

38,3
41,4

40,7

45,4

" 42,1

SB = Summer Band

WB = Winter Band

4.3.1.3 Transformed Normalised Vegetation Index- SPOTXS data

Since the calculation and ultimate evaluation of vegetation indices are closely linked, the
discussion of these two aspects is reserved for Section 4.4.

4.3.1.4 Supervised classification: Raw SPOT XS data

In section 4.2.1.2 it was pointed out that the success of a supervised classification is largely
dependent on the spectral separability of the target classes, as well as the extent to which
the selected training areas are representative of the target classes determined a priori.

Since the chief purpose of this research was to identify irrigated areas and to quantify the
extent of the area under irrigation, the training areas had to be representative of the broad
spectrum of irrigated crops which are found in the study area. The farms selected after
consultation with an agricultural information official were regarded as representative for the
purposes of the study. These farms were divided into training farms and control farms.
The land use patterns of the former were to be used as training areas in the supervised
classification process, while the latter were to be used as a yardstick to evaluate the ultimate
classification.
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As a first step in generating the training areas, the different land use types were transferred

from PC Arc/Info to the Gems Junior image processing system as separate vector files.

Table 4.3 provides a summary of the land use information which was linked to the vectors.

As can be deduced from Table 4.3, an attempt was made to take account of both fanning

practice (for instance, trellising or not) and plant characteristics (for instance the age of

plants) in the selection of training areas. The various vector files were then separately

transformed in the image processing system into a grid format, so that they could be used as

input to generate spectral signatures. Two problems immediately presented themselves:

(i) The rasterised areas, especially in the case of vegetable types, appeared to be too

small to generate reliable and valid training statistics.

(ii) The training areas of individual land use types were not internally homogeneous. This

became apparent when the polygon borders of the training areas were superimposed

on the false colour image of the study area.

The two problems were addressed by also incorporating the control farms in the signature-

generating process. This step, of course, meant that the research team lost their

"independent" evaluation tool. However, not even the addition of the control farms

produced enough internally homogenous areas to be considered as potential training areas.

It was evident that external factors, other than the qualitative features which the survey had

established, greatly influenced the spectral characteristics of the crops cultivated on selected

farms. The implication of this was that differentiation between the training areas in terms

of the qualitative properties of the farm data (age of crops, trellising, irrigation practises)

was not possible. Eventually, greater use was made of more conventional strategies by

which training areas are identified in terms of visual homogeneity on false colour displays.

The farm survey data continued to be used as a basis, but where it was necessary, training

areas outside the boundaries of surveyed farms were included in the training statistics. With

the exception of 1987 aerial photographs, there was no supplementary qualitative data

available. To sum up, it may be said that the selection of the final training areas was done

purely in terms of land use and false colour appearance.

Six separate maximum likelihood classifications in all were conducted on the data. The

classifications varied from one another with regard to the number of spectral signatures

used and the rigour of the classification parameters (Gaussian threshold values) chosen.

Addendum D provides a summary of the broad structure of the respective classification
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attempts. Although the project team had a fair indication of the proportional area covered

by the various land use types, none of the classification attempts made use of Bayesian

weighting factors.

Table 4.3: Land use coverages derived from farm survey data base.
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The 48 spectral signatures which were used in the first supervised classification attempt

were able to allocate only 52,2% of the pixel to one of the 48 possible classes. Although

the unclassified pixel (47,8%), largely corresponded with the mountainous areas of the

study area, there were nevertheless large areas of potential irrigated areas which were also
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included in the null class. A visual analysis of the spatial distribution of the classification

unambiguously indicated that nearly half of the spectral signatures resulted in a salt and

pepper spatial distribution of classes or that it not only intercepted the target land use types,

but also apparently included "unrelated" land use types. This problem was addressed in the

subsequent classifications, by applying one or more of the following strategies:

(i) The elimination of the weakest training areas and their spectral signatures;

(ii) Editing to refine the existing training areas;

(iii) More rigorous specification of classification parameters in order to eliminate

overlapping between plantations, mountain fynbos, orchards and vineyards;

(iv) The generation of additional training areas for the irrigated areas which had been

assigned a null-code.

The 41 spectral signatures of the second classification attempt (Addendum D) resulted in a

sizeable improvement. The null-class frequency decreased to 8%. However, of much

greater significance was the fact that:

(i) Trellised vineyards could now be differentiated from orchards;

ii) Only a few tree lanes were misclassified as vines;

(iii) The initial problems surrounding the classification of plantations were overcome.

There were only a few subclasses of vineyard that overlapped with orchard classes.

However, the differentiation between cereal crops, vegetables and fallow land was not

appreciably improved.

The same refinement strategies, referred to earlier, were repeated on classification attempts

3 to 6. Mixed results were obtained. For instance, it became evident that more rigorous

classification parameters for vineyard and orchard subclasses, which had been previously

overestimated, meant that previously correctly classified orchard and vineyard pixels were

incorrectly classified as fynbos and cereal crops.

A great deal of time was spent experimenting with strategies to identify vegetable plots.

The problem of vegetable classification was exacerbated by the fact that vegetables are

cultivated on relatively small units of land and are annual crops. A specific annual

vegetable crop might be cultivated for only a few consecutive months, after which the land

could lie fallow or the crop could be replaced by one of a wide variety (in terms of the type

of crop and spectral characteristics) of vegetables. Table 4.4 serves to illustrate the

dilemma. This table provides a summary of the land use combinations identified on the

selected farms in question. The situation in the entire study area is probably even more
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complex. Using multitemporal analyses in a situation like this was extremely problematic.

The project team frequently found that whenever an attempt was made to accommodate the

combinations found in the area, the training areas were too small to generate valid and

reliable training statistics.

Since the multitemporal nature of the data appeared to be a disadvantage rather than an

advantage, as far as vegetable classification is concerned, it was decided that the

classification of annual crops would be based on single time slices. The (hopefully)

successful annual crop classification that ensued could then be integrated with the

multitemporal classification. The problem of small land parcels on which annual crops are

cultivated again appeared to be a major obstacle. For the August image hay, onions and

cabbage were the only annual crops exceeding the minimum sample size limitation. In the

case of the January image signatures could only be generated for onions, potatoes and water

melon. The results, of the separate parallelipiped classifications of the seasonal images

(August and January) however, showed that the spectral signatures were not unique with

regard to the crop types for which they were generated. Because of the gross

overestimation, integration of the single season and multitemporal classification was not

achieved.

Attention first had to be paid to two land use categories, ie. dams and the null-class, before

the supervised classification could be completed. The poor classification of dams and the

large number of null-class elements resulted not so much from an inability to define good

training areas, as the fact that these were not land uses that would depend on irrigation, and

therefore they did not justify the heavy demands made on the analyst's time. The project

team were aware of the problem right from the outset and had decided to address it after the

final classification.

The joint classification of dams and shadows was resolved by applying density slicing to

band 3 of the summer image. Density slicing of the reflection values between 20 and 50

was successful in isolating basically all the water surfaces. Since the threshold limits also

included shady parts, the latter had to be removed from the resultant "classification".

"Dam surfaces" situated 500 metres above sea level were easily eliminated by means of

simple bitmap manipulations, thus only true dams remained. The remaining bitmap

surface, i.e. the true water surfaces, were then mapped back into the classification with an

appropriate water code.
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Table 4.4: Crop combinations of annuals in the Brcedc River Valley (1992/93).

1.
2.

3.
4.

5.
6.
7.

8.

9.
10.

11.
12.

13.
14.

15.
16.
17.

18.

19.
20.
21.

Number

of units

2
1

1
1

5
7
1

1

1
2
1

1

1
1

6
2

3
1

5
1

1

Season

Summer

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Potatoes

Rye

Rye
Pasture

Fallow

Potatoes

Oats

Oats

Oats

Oats

Cabbage

Cabbage

Lupine

Autumn

Onions

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Fallow

Rye

Rye
Pasture

Oats

Oats

Oats

Oats

Oats

Oats

Cabbage

Cabbage

Lupine

Winter

Onions

Fallow

Pumpkin

Fallow

Potatoes

Onions

Watermelon

Pasture

Fallow

Fallow

Rye
Pasture

Fallow

Oats

Fallow

Onions

Oats

Oats

Rye
Peas

Fallow

Spring

Onions

Fallow

Pumpkin

Tomatoes

Potatoes

Onions

Watermelon

Pasture

Fallow

Fallow

Cabbage

Pasture

Fallow

Potatoes

Fallow

Onions

Fallow

Potatoes

Cabbage

Peas

Fallow

Since the null class was essentially a "class" associated with the fynbos of the mountainous

area of the study area, it was decided to use the six fynbos classes of the first unsupervised

classification as a refinement tool. Image arithmetic was employed in order to isolate those

pixels having a null code in the supervised classification and one of the six fynbos codes in

the unsupervised classification. The resulting bitmap was then mapped into the channel

containing the supervised classification with a code corresponding with the veld ("other")

category.

At this stage the attempt at supervised classification was regarded as completed (Figure

4.3). As indicated earlier, the lack of GIS-querying facilities on the Gems Junior image

processing system was a limitation because the evaluation of the respective classification

attempts could not be done time-efficiently. On the basis of "subjective" visual decisions,



9 8

SPOT XS: SUPERVISED CLASSIFICATION

SUPERVISED
LAND COVER

• Vines
LU Orchards
L J Vegetables

Cereals
Other

• Water

Figure 4.3: Generalized land cover map from supervised classification of untransformed

SPOT XS data.
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classification number five was considered to be the most satisfactory. The extent to which

this classification was successful in correctly classifying the farm data will be the focus of

the discussion in section 4.4.2.4.

4.3.2 Landsat TM

As stated earlier the Landsat TM dataset consisted of four images, representing land cover

conditions during each of the four seasons. Due to its coarser spatial resolution Band 6 was

excluded from all subsequent analyses. The four images were combined into a single file

consisting of 24 spectral bands. This multi-temporal dataset was used in all analyses

discussed in the sections that follow.

4.3.2.1 Unsupervised classification: Untransformed Landsat TM-data

The Erdas Imagine software besically provides one algorith for unsupervised classification,

namely the ISODATA algorithm. This algorithm is discussed by Tou and Gonzalez (1974)

and will not be presented here. It requires very little input from the user apart from

specifying the maximum number of clusters needed, a convergence threshold to stop

clustering and a maximum number of iterations to perform. In this particular study it was

decided to request 30 clusters after an initial run using only 15 clusters had created a small

number of very large generalized land cover classes. By doubling the number of clusters it

was hoped that the classifier would be able to distinguish more subtle differences within

agricultural land cover types. That did not take place however and no significant new

cultivated classes emerged. Most new classes were subclasses of the mountainous fynbos

surrounding the valley. In an attempt to force the classifier to generate more subclasses in

the cultivated area of the valley a mask was created which included all land cover classes of

interest as produced by the initial 30 class unsupervised classification. The classification

was then repeated but only classifying pixels under the mask. The resultant classification is

presented in Figure 4.4.

The final unsupervised classification was converted into an Arc/Info GRID format and

overlaid with the land use grid of the surveyed farms. On the basis of a combinatorial

analysis-unsupervised classes were assigned to one of the major land cover types

(Addendum E.I). This means that unsupervised classes were amalgamated into fewer land

cover types with informational content. The generalized map will be presented and

evaluated in a later section.
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UNSUPERVISED CLASSIFICATION
OF UNTRANSFORMED LANDSAT TM DATA
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Figure 4.4: Unsupervised classification of untransformed Landsat TM data.
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4.3.2.2 Unsupervised classification: Landsat Principal Component Data

By using 24 spectral bands in the analyses a large amount of redundancy may be present in

the data as many spectral bands are strongly correlated. Most classification algorithms

utilize some measure of spectral distance between pixels and classes so that distance values

could be contaminated by these intercorrelations as most distances are computed using the

pythagoras algorithm which is based on the assumption that the axes are orthogonal. To

eliminate this potential problem a Principal Component Analysis was performed on the data

as this produces a new set of uncorrelated components. These components were then

subjected to an ISODATA unsupervised classification, again specifying a maximum number

of 30 clusters. Figure 4.5 shows the results of the PCA classification. This image was

converted to Arc/Info GRID format and overlaid with the farm survey land use grid to

identify and label classes in a way similar to that described in section 4.3.2.1. Classes were

assigned to the land cover type with which they had the highest combinatorial frequency

(Addendum E.2). The generalized land cover map will be presented in the section on

evaluation of the results.

4.3.2.3 Unsupervised classification: Landsat Normalized Difference Vegetation Index

Another approach that was followed to extract usefull land cover data from the multi-

temporal Landsat TM dataset, was to compute Normalized Difference Vegetation Indices

for each of the seasons. These four variables were then subjected to an ISODATA

unsupervised classification with 30 clusters. The classified image (Figure 4.6) was

processed in the same way as described in the previous two sections in order to identify

land cover types and assign classes to the required generalized land cover categories

(Addendum E.3). Also this map will be evaluated in a later section.

4.3.2.4 Supervised classification: Raw Landsat TM-data

Supervised classification is a much more labour intensive procedure and requires intensive

interaction with the image processing system. The classes needed were dictated by the

objectives of the study, which are to identify different agricultural crops with different

water requirements. From the farm survey it was evident that the major cover types of

interestwere vines, orchards, vegetables, cereals and other cultivated crops.

In a supervised approach training areas are needed representing each of the required land

cover classes. To complicate matters vegetables are annual crops often cultivated on a

rotational basis with cereals or legumes. This means that a particular parcel of land may
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UNSUPERVISED CLASSIFICATION OF PCA DATA
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Figure 4.5: Unsupervised classification of Landsat TM Principal Component data.
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UNSUPERVISED CLASSIFICATION OF NDVI DATA
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Figure 4.6: Unsupervised classification of Landsat TM NDVI data.
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have vegetables in one or more seasons and some other crop at others or even be left fallow

or barren. These patterns produce extremely complex spectral signatures. In this study 21

different combinations and permutations of annual crops were distinguished (Table 4.4).

To demarcate training areas and compute spectral signatures for each of these combinations

was not feasible. Firstly, land parcels are small and fragmented and secondly, ground

truthing was restricted to those farms included in the survey. This meant that in many cases

there was only one occurence of a particular land cover combination. The problem was

resolved by allocating each land cover combination to a single dominant type. In a few

cases (4) where no single crop type dominated it was arbitrarily assigned to the first cover

type in the combination, thus identifying vegetables, cereals or bare soil. Bare soil or

unused land was put into a catch all class called Other.

A total of 104 training areas were finally demarcated on the image after three iterations.

See Addendum E.4 for a complete list of signatures and raw cover classes. These

represented vines, orchards, cereals, vegetables, fallow land, pine stands, bare soil, veld,

mountain fynbos, riverine bush, water and shadows. Erdas.Imagine has a pixel growing

facility which allows the analyst to select a single representative starting pixel within a

potential training area. The system then searches radially for pixels with similar spectral

characteristics. This search can be constraint spectrally and spatially. No spatial limits

were imposed but a value not exceeding 30 spectral units deviation were allowed. This

spectral constraint produced acceptable training samples in most cases. A maximum-

likelihood decision rule was used to classify the image, the results are presented in Figure

4.7. Although the statistics show that 25% of the image was not classified, those pixels are

mostly outside the actual image falling in the area between the image and the rectangular

limits of the scene. A generalized land cover image was produced for later evaluation.

4.4 EVALUATION OF CLASSIFICATION RESULTS AND INTEGRATION WITH

ANCILLARY DATA

4.4.1 Basis of Evaluation and Data Integration

The evaluation of both the SPOT XS and the Landsat TM classifications was done by

means of comparisons with the farm data which was collected during the farm survey. The

comparison involved extracting that part of the classification which corresponded spatially

with the farm data and comparing the class codes in the two data sets pixel by pixel. Thus

the degree of correspondence between the classification and the farm data could be

established, and possible reasons for erroneous classifications obtained. It must, however,

be noted that the two sets of data were governed by different classification principles. In

the case of the farm survey data, the categorisation was based on land use, while the
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SUPERVISED CLASSIFICATION

Figure 4.7:—Supervised classification of untransformed Landsat TM data.
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satellite images were classified according to the spectral characteristics of land cover types.

This difference between the two sets of data could have resulted in a lower level of success

than was true in reality. An illustration of this is that a newly planted vineyard with little

or no foliage could have been classified as "vineyard" in the farm survey data, while the

same "vineyard" would most likely have been classified as "bare ground" in terms of its

spectral characteristics.

Apart from its role as an evaluation tool, the farm survey data were used in both the SPOT

XS and Landsat TM unsupervised classification in order to invest the spectral classes

obtained with informational content. It was necessary to establish how and to what extent

the spectral classes corresponded spatially with the land cover types relevant to this study.

In other words, the spectral classes had to be labelled in terms of land cover features. This

was achieved by crosstabulating the labelled spectral classes with the farm survey data. The

dominant land use category associated with each of the spectral classes could be determined

objectively by noting the highest cell frequency in each row of the crosstabulation matrix.

With regard to the integration of the ancilliary data, soil potential, height above sea level

and slope were the secondary sources of data which could be used to refine the

classifications. The integration of the ancilliary data with the classification results was

based on a number of assumptions:

(i) No irrigation would take place more than 500 metres above sea level. This

assumption was based on a study of the land use patterns and contour lines, as

determined on 1:10000 orthophotos of the study area.

(ii) No vineyard or fruit cultivation would be found on slopes with a gradient of more

than 25 %. This information on agriculture practice was obtained during discussions

with the staff of the Soil Conservation Unit, Department of Agriculture, Elsenburg.

(iii) Because of the high capital outlay needed for the establishment of orchards and

vineyards, it would not be economically viable to establish such crops on low

potential agricultural land. It was therefore decided to view as incorrect any

classification of vineyard and orchard which corresponded with land of low

agricultural potential. Exceptions to this rule did occur in three areas where orchards

and vineyards was identified visually on the false colour images and their presence

could be confirmed by checking against aerial and/or orthophotos.

4.4.2 SPOT XS

Because the image-processing system used to process the SPOT XS data did not have GIS-

type analytical functions, firstly, only limited integration of the SPOT XS-satellite data was
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possible with the supplementary data and, secondly, it was an extremely lengthy process.

The greatest limitation was the fact that it was not time-efficient to use the farm survey data

to it's full extent to select, evaluate or refine spectral signatures.

4.4.2.1 Unsupervised classification: Untransformed SPOT XS data

Table 4.5 presents a crosstabulation which summarises the correspondence between the land

use classes of the farm survey data and the results of the unsupervised classification. An

analysis of the row frequencies provides an answer to the question: "What land use class

corresponds best spatially with the individual unsupervised classification codes?" Row 7

serves as an illustration. The land use class, vines, intercepted 11877 pixels (72,4%) out of

a total of 16402 pixels. One may conclude from this that class 7 should be labelled as

"vines".

Table 4.5: Crosstabulation of SPOT unsupervised classification and landuse codes from

farm survey data.
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Farm Land Use Survey

Class

1
2
3
4
5
6
7
8
9
10
11
0

Total*

Vines

1311
2494
65
390
2861
2696
11877
339
4849
354
682
291

28209

Orchards

480
1248
14
99

1840
815
4072
81

905
55
145
40

9794

Vegetables

225
414
2
2
25
54
212
46
335
184
242
137

1878

Cereals

201
578
3
20
26
110
107
342
666
490
674
244

3461

Other

77
3085

11
124
106
205
134
350
196
650
239
288

5465

Total*

2294
7819
95
635
4858
3880
16402
1158
6951
1733
1982
1000

48807

* Number of pixels

An analysis of all the row frequencies produced the interpretation set out in Table 4.6. It

may seem strange that this interpretation resulted in only two classes for the unsupervised

classification, ie."vines" and "other", with not one of the other land use classes featuring.
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In other words, orchards, vegetables and cereals were 0% correctly classified. This

peculiarity is the result of classifying land cover types according to the largest absolute

number of pixels and not the relative presence. Table 4.7, which gives an indication of the

accuracy of the classification provides more perspective.

Table 4.6: Labelling the unsupervised SPOT XS spectral classes.

Classification

Code

1

2

3
4

5

6
7
8

9
10
11

Label allocated on basis of association
with dominant land use type

Vines
Other

Vines

Vines

Vines

Vines
Vines
Other

Vines
Other
Vines

Number of

Pixels

1311
3085

65

390

2861

2696
11877

350

4849
650
682

Table 4.7: Accuracy assessment of SPOT unsupervised classification by comparing with
farm survey data.

8
CO

S
CO

SPOT unsupervised Classification

N = 47807

Vines

Orchards

Vegetables
Cereals
Other

Total

Vines

83,2!)

85,8
63,0
56,2
36,7

51,7

Orchards

0,0

0,0

0,0
0,0

0,0

0,0

Vegetables

0,0

0,0

0,0
0,0

0,0

0,0

Cereals

0,0

0,0
0,0
0,0

0,0

0,0

Other

11,4
14,2

37,0
43,8

78,9

8,5

Total2)

58,4

20,4

3,6

6,7
10,8

59,63)

1) Row % 2) Column % 3) Overall accuracy (%)

The important conclusions which may be drawn from Table 4.7 is that, for "vines" and
"other", accuracy levels greater than 80% were achieved by means of the unsupervised
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technique and the interpretation method applied. However, the overall classification was
only 59,6% correct. It was disappointing that irrigated crops like orchards and vegetables
did not emerge as dominant classification codes (Figure 4.8). However, it is important to
note that the primary goal was not to differentiate between individual crops, but to
differentiate between irrigated and non-irrigated crops.

An overall accuracy of 52,9% was obtained when the unsupervised classification was
compared with the generalized land cover map. Vines were 84% correctly classified. Most
other land cover types were incorrectly assigned to the vine class (Table 4.8). This
represents an overestimation of the vine land cover type (Figure 4.9).

Table 4.8: Accuracy assessment of SPOT unsupervised classification by comparing with

the land use map.

L
an

d 
us

e

Unsupervised Classification

N = 622253

Vines
Orchards
Vegetables
Cereals
Other

Total

Vines

84.01)
86,1
61,5
52,9
58,5

20,3

Orchards

0,0
0,0
0,0
0,0
0,0

0,0

Vegetables

0,0
0,0
0,0
0,0
0,0

0,0

Cereals

0,0
0,0
0,0
0,0
0,0

0,0

Other

16,0
13,9
38,5
47,1
41,5

1,8

Total2)

24,2
7,2
1,3

11,0
4,5

52,93)

1) Row % 2) Column % 3) Overall accuracy (%)

Table 4.9 and Figures 4.10 and 4.11 reflect the accuracy levels that can be achieved if
vines, orchards and vegetables are combined in a generalised land cover class entitled
"Irrigated crops". Viewed against the background of the relatively low expenditure of
time, required by unsupervised classification, the 83,6% accuracy level obtained for
irrigated crops seems very promising. In addition, the overall accuracy increases to 67,4%.

These results were obtained by incorporating the ancilliary data from the GIS data base.
This meant that any pixel situated more than 500 metres above sea level, or on a slope with
a gradient of more than 25%, or which was associated with low potential irrigated land, did
not meet the requirements for the cultivation of vineyards, orchards or vegetables. Pixels
which were classified as such could be recoded as non-irrigated crops. However, mention
has already been made in Section 4.4.1 that three low potential irrigated areas were
regarded as exceptional cases. These conditions did not occur on the surveyed farms so that
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Figure 4.8: Generalized land cover map from unsupervised classification of

untransformed SPOT XS data.
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Figure 4.9: Accuracy assessment of generalized land cover map from unsupervised

classification of untransformed SPOT XS data.
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Figure 4.10: Irrigated land cover map from unsupervised classification of untransformed
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Figure 4.11: Accuracy assessment of irrigated land cover map from unsupervised

classification of untransformed SPOT XS data.
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the ancilliary data had no refining effect on the comparisons with the farm data. However,

the effect of the ancilliary data is very clear in Figure 4.10 and Table 4.9. Both represent

the classification of the whole study area.

Classification accuracies of 67,4% were achieved in terms of irrigated land cover types.
Irrigated crops were 84% correctly classified whereas only 52,9% of the non-irrigated land
cover classes were correct. Table 4.10 shows that 200694 pixels, or 8027,8 ha have been
classified as irrigated areas.

Table 4.9: Accuracy assessment of SPOT unsupervised classification of irrigated land

compared with land use cover.

L
an

d 
us

e

Unsupervised Classification

N = 299189

Irrigated
Non-irrigated
Other

Total

Irrigated

83.61)
52,9
58,5

74,2

Other

16,5
47,1
41,5

25,8

Total2)

67,8-
22,8
9,4

67,43)

1) Row % 2) Column % 3) Overall accuracy (%)

Table 4.10: Area statistics of final SPOT unsupervised classification.

Class

Irrigated
Non-irrigated
Ancillary data*
Water
Non-classified

Total

Unsupervised classification

Number of Pixels

200694
840777
21767

8347
25411

1096996

Area (Ha)

8027,8
33631,1

870,7
333,9

1016,4

43879,9

Pixels changed from irrigated to non-irrigated by ancillary data
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4.4.2.2 Unsupcrviscd classification: SPOT XS principal components data

It was established in Section 4.2.2 that principal components analysis (PCA) is in reality a
data reduction technique. As a result of the application of PCA to the six SPOT XS spectral
bands, the first three components intercepted 65,5%, 27,0% and 3,6% respectively, that is
to say 96,1% in total, of the variance in the original set of data. The fourteen classes
which emerged from the unsupervised classification, as applied to the first three principal
components, were consequently interpreted in the same way as discussed in section 4.4.2.1
to produce Figure 4.12.

Crosstabulation of the 14 classes with the farm survey data revealed the same trend as that
of the unsupervised classification of untransformed data. Once more, it was only "vines"
and "other" which emerged as dominant land use classes which could be associated with the
classification codes. Since the vines and "other" land use classes together accounted for
nearly 75% of the area of the farms, the trend was not altogether unexpected. The
conclusions to be drawn from Table 4.11 are that over 80% of the "vines" and "other" were
correctly classified, a large proportion (80,6%) of orchards was confused with "vines" and
the majority of vegetables (64,4%) and cereals (78,0%) were classified as "other". The
overall accuracy was 65,4%.

Table 4.11: Accuracy assessment of SPOT PCA unsupervised classification by comparing
with farm survey data.

Fa
rm

 d
at

a

PCA Unsupervised Classification

N = 72889

Vines
Orchards
Vegetables
Cereals
Other

Total

Vines

81,9^
80,6
35,6
22,0
17,6

49,3

Orchards

0,0
0,0
0,0
0,0
0,0

0,0

Vegetables

0,0
0,0
0,0
0,0
0,0

0,0

Cereals

0,0
0,0
0,0
0,0
0,0

0,0

Other

18,1
19,4
64,4
78,0
82,4

50,7

Total2)

35,8
12,4
4,4
3,7

43,8

65,43)

1) Row % 2) Column % 3) Overall accuracy (%)

A comparison between the SPOT PCA unsupervised classification and the land use map
achieved an accuracy of 42%. Vines were 75% correctly classified, whereas vegetables
(45%) and cereals (73,5%) were classified as 'other' land cover types. The map (Figure
4.13) shows the extent of incorrect classifications.
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Figure 4.12: Generalized land cover map from unsupervised classification of SPOT XS

Principal Component data.
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Figure 4.13: Accuracy assessment of generalized land cover map from unsupervised

classification of SPOT XS Principal Component data.
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Table 4.12: Accuracy assessment of SPOT PCA unsupervised classification by comparing

with land use map.

C/5

c

2

N = 294543

Vines
Orchards

Vegetables

Cereals
Other

Total

Vines

74,81)
73,0

45,0
26,5
43,7

59,0

PCA Unsupervised Classification

Orchards

0,0
0,0

0,0
0,0
0,0

0,0

Vegetables

0,0
0,0

0,0
0,0

0,0

0,0

Cereals

0,0
0,0

0,0
0,0
0,0

0,0

Other

25,2

27,0

55,0
73,5
56,3

41,0

Total2)

49,0
14,4

2,5
24,6

9,5

42,03)

1) Row % 2) Column % 3) Overall accuracy (%)

When overall accuracies are assessed in terms of irrigated land cover types 66,3% of all
pixels were correctly assigned, which is only slightly lower than the 67,46% achieved by
the unsupervised classification on untransformed data as discussed previously (Table 4.13).

Table 4.13: Accuracy assessment of SPOT PCA unsupervised classification of irrigated
land cover types.

L
an

d 
us

e

Unsupervised Classification

N = 294543

Irrigated
Non-irrigated
Other

Total

Irrigated

73,3D
26,5
43,8

59,0

Non-irrigated

0,0
0,0
0,0

0,0

Other

26,8
73,5
56,3

41,0

Total2)

65,9
24,6
9,5

66,33)

1) Row_%... 2) Column % 3) Overall accuracy (%)

The spatial distribution of correctly and erroneously classified pixels is shown in Figure
4.14 and 4.15. The area statistics for the entire study area (after integration with the
ancilliary data) are shown in Table 4.14. The most significant conclusion to be drawn from
Table 4.14 is that 27798 pixels, or 11111,9 ha, could be identified as irrigated areas on the
basis of the classification.
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Figure 4.14: Irrigated land cover map from unsupervised classification of SPOT XS

Principal Component data.
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Figure 4.15: Accuracy assessment of irrigated land cover map from unsupervised

classification of SPOT XS Principal Component data.
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Table 4.14: Area statistics of final SPOT PCA unsupervised classification component

data.

Class

Irrigated

Non-irrigated

Ancillary data*

Water

Non-classified

Total

Unsupervised classification

Number of Pixels

277798

747509

27989

8347

35353

1096996

Area (Ha)

12111,9

29900,4

119,6

333,9

1414,1

43879,9

* Pixels changed from irrigated to non-irrigated by ancillary data

In the next section, the focus shifts to the results which were obtained by calculating

transformed normalised vegetation indices.

4.4.2.3 Transformed normalised vegetation index: SPOT XS data

Separate vegetation indices were calculated for the summer and winter SPOT XS-data,

respectively. Since the index values could vary between 0 and 255, a threshold value had

to be set for each of the seasonal indices which would divide the data into "irrigated" and

"non-irrigated" areas (This technique is known as "density slicing"). However, Figure

4.16 shows that there were no natural clusters in the set of data. Experimentation with

various threshold values derived from the winter vegetation index showed that it had little

value as an technique which could be used to distinguish between irrigated and non-

irrigated areas. This is not surprising if one considers that orchards and vines have no

leaves in winter. The summer index, on the other hand, showed a clear relationship

between the spatial distribution of irrigated crops and high index values. Since, it was not

absolutely clear which index value should be used as a threshold value, the summer index

values were grouped into classes and these were crosstabulated with the farm survey data.

The result"revealed that an irrigation map (Figure 4.17) basedon a threshold jvalue of 185

succeeded best in distinguishing between irrigated and non-irrigated land use types on the

surveyed farms. Table 4.15 shows that 83,5% of the vines on the surveyed farms were

correctly classified. A high accuracy level (77,8%) was also attained for the land cover

types labelled "other". A more negative observation are the large percentage (88,0%) of

orchards which were classified as vines. Furthermore, the majority of vegetables (59,2%)

and cereals (89,9%) corresponded best spectrally with the class labelled "other". In spite
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of obvious misclassifications an overall accuracy level of 63,9% was achieved.

Generalising the land use categories to "irrigated", "non-irrigated" and "other" improved

the overall accuracy to 76,6% (Table 4.16). Taking into account, the low manpower input

which was required to calculate the vegetation index, this was a very encouraging result.

0 128 160 192 224 256
Indai VSJUOT .betw««n 0 and 255

25

20-

15

10

11
65 97 129 161 103 225 257
Index vak>«« b«weon 0 and 259

Figure 4.16A: Frequency distribution of Figure 4.16B: Frequency distribution of

winter vegetation index. summer vegetation index.

Table 4.15: Accuracy assessment of SPOT summer vegetation index by comparing with

generalised farm survey data.

«

E

£

SPOT summer vegetation index (Threshold value = 185)

N = 72889

Vines

Orchards

Vegetables

Cereals

Other

Total

Vines

83,51)

88,0

40,8
10,2

22,2

52,6

Orchards

0,0

0,0

0,0

0,0

0,0

0,0

Vegetables

0,0

0,0

0,0
0,0

0,0

0,0

Cereals

0,0

0,0

0,0
0,0

0,0

0,0

Other

16,5

12,0
59,2

89,9

77,8

47,4

Total2)

35,8
12,4

4,4

3,7

43,8

63,93)

1) Row % 2) Column % 3) Overall accuracy (%)
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Table 4.16 Accuracy assessment of SPOT summer vegetation index by comparing with

farm survey data.
Fa

rm
 d

at
a

SPOT summer vegetation index (Threshold value = 185)

N = 72889

Irrigated

Non-irrigated

Other

Total

Irrigated

80,9!)

0,7

18,4

52,6

Non-irrigated

0,0

0,0

0,0

0,0

Other

19,1

89,9

77,8

47,4

Total2)

52,6

3,7

43,8

76,63)

1) Row % 2) Column % 3) Overall accuracy (%)

A further experiment with vegetation indices involved combining the indices of two

seasons. The rationale behind this was that if the winter index values (no foliage, low

-index value for vines and orchards) was subtracted from trie summer index value (high

index values for vines and orchards), the areas with relatively high index values would then

represent the areas where vines and fruit trees are cultivated. It was hoped that evergreen

growth such as plantations and riverine vegetation could hereby be separated from irrigated

crops. However, such an application would also mean that should a field be covered with

mature vegetables during both overpasses of the satellite, that area would not be shown as

an irrigated area. Since the cultivation of vegetables accounts for a relatively small

proportion of the study area, the possible loss of accuracy was overshadowed by the

potential advantage of accurately identifying the larger areas of vineyards and orchards.

Although the combined seasonal index produced better results than the winter index, it

could not match the accuracy levels of the summer index. The accuracy level of the

combined index was up to 7% points lower than that of the summer index.

The integration of the summer vegetation index with the ancilliary data resulted in the

classification of 359858 pixels, or rather 14394,3 ha as irrigated areas. These statistics are

summarised in Table 4.17, and the spatial accuracy of irrigated and non-irrigated areas are

depicted in Figure 4.18.
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Figure 4.17: Irrigated land cover map from SPOT XS TNDVI data.
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Figure 4.18: Accuracy assessment of irrigated land cover map from SPOT XS TNDVI
data.
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Table 4.17: Area statistics of final SPOT summer vegetation index.

Class

Irrigated

Non-irrigated

Ancillary data*

Non-classified

Total

Summer vegetation index

Number of Pixels

359858

478662

250129

8347

1096996

Area (Ha)

14394,3

19146,5

10005,2

333,9

43879,9

* Pixels changed from irrigated to non-irrigated by ancillary data

4.4.2.4 Supervised classification: Untransformed SPOTXS-data

The results obtained using a supervised approach analysing SPOT XS data did not live up to

expectations. This situation may be ascribed to the agricultural complexity of the study

area, which made selection of internally homogeneous training areas virtually impossible.

In comparison with the farm survey data an overall accuracy level of 57% was achieved

which is slightly lower than that obtained with the unsupervised approach. Vines were 52%

correctly classified, whilst orchards, vegetables, cereals and the 'other1 class were

respectively 35%, 11%, 44% and 72% correctly classified (Table 4.18). In spite of low

classification accuracies it was possible to distinguish classes such as orchards, vegetables

and cereals with a certain degree of certainty (Figure 4.19). This was not possible with the

other approaches.
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Table 4.18: Accuracy assessment of supervised SPOT classification by comparing with

the farm data.

Fa
rm

 d
at

a

Supervised Classification

N = 77402

Vines
Orchards
Vegetables
Cereals
Other

Total

Vines

51,71)

31,8

18,1

8,1

8,3

18,8

Orchards

8,9

34,6

1,1
3,6
4,3

4,4

Vegetables

3,3

2,6

10,8

12,7

1,8

0,3

Cereals

5,8

3,7

22,4

43,3

13,9

1,8

Other

30,3
27,4
47,5
32,3
71,7

31,7

Total2)

36,4

12,6

2,4

4,4

44,2

57,03)

1) Row % 2) Column % 3) Overall accuracy (%)

Accuracy levels declined when evaluated against the land cover map of the study area. An
overall accuracy of only 42% was recorded whilst individual categories corresponded very
weakly with those of the map (Figure 4.20). Vines were 47% correctly classified whereas
orchards, vegetables, cereals and other cover types had accuracies of 28%, 10,7%, 38,9%
and 53,4% respectively (Table 4.19). This statistical analysis probably reflects the lower
accuracies of the land use map.

Table 4.19: Accuracy assessment of SPOT supervised classification by comparing with
the land use map.

Fa
rm

 d
at

a

Supervised Classification

N = 308178

Vines
Orchards
Vegetables
Cereals
Other

Total

Vines

47,0l)
31,9
23,8
11,2
18,5

23,1

Orchards

7,6
27,8
3,1
2,9
6,4

4,0

Vegetables

4,4

2,5

10,7

7,8

5,6

0,3

Cereals

9,6
6,5

18,5
38,9
17,2

9,4

Other

31,2
31,4
43,9
39,2
53,4

4,9

Total

49,22)

14,5

2,7

24,4

9,2

41,83)

1) Row % 2) Column % 3) Overall accuracy (%)

By once again assessing accuracy in terms of irrigated and non-irrigated land cover types

the overall accuracy improves to 54%. The irrigated class is 59% correctly classified and
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Figure 4.19: Generalized land cover map from supervised classification of untransformed

SPOT XS data.
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Figure 4.20: Accuracy assessment of generalized land cover map from supervised

classification of untransformed SPOT XS data.
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the non-irrigated 39% (Table 4.20). The map shows a more conservative distribution of

irrigated land cover types than that of other analytical procedures employed (Figures 4.21

and 4.22). The computed area statistics are presented in Table 4.21.

Table 4.20: Accuracy assessment of the SPOT supervised classification for irrigated land

cover types.

u
S/5

s
C

2

Supervised Classification

N = 308178

Irrigated

Non-irrigated

Other

Total

Irrigated

58.91)

22,0

33,0

47,64

Non-irrigated

9,2

38,9

19,1

17,4

Other

31,8
39,2
59,7

36,0

Total2)

67,0

24,6

8,3

54,(P)

1) Row % 2) Column % 3) Overall accuracy (%)

Table 4.21: Area statistics of final SPOT supervised classification.

Class

Irrigated

Non-irrigated

Ancillary data*

Water

Non-classified

Total

Unsupervised classification

Number of Pixels

850044

212255

24355

8347

1995

1096996

Area (Ha)

34001,8

8490,2

974,2

333,9

79,8

43879,9

Pixels changed from irrigated to non-irrigated by ancillary data

4.4.3 Landsat TM

The procedure followed to evaluate the accuracy of the classified images entailled
crosstabulating the generalized land cover codes of the images with those of the land use
classes as obtained from a field survey of a selected number of farms in the study area. In
all cases the classified TM imagery was converted to Arc/Info GRID formats and then
compared with the gridded farm data and the landuse map of the study area using the
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Figure 4.21: Irrigated land cover map from supervised classification of untransformed

SPOT XS data.
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Figure 4.22: Accuracy assessment of irrigated land cover map from supervised

classification of untransformed SPOT XS data.
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CAND operator. The resulting INFO VAT-files were exported to Borland's Reflex

programme for crosstabulating and computing percentages.

4.4.3.1 Unsupervised classification: Raw Landsat TM-data

Table 4.22 shows that the unsupervised classification produced exceptionally good results

when checked against the surveyed farm data. An overall accuracy of 73 % was achieved.

Vines were 87,7% correctly classified and as this is the major agricultural activity in the

area it is of particular significance. Orchards were not well classified as only 59,7% were

correctly identified. Orchards are mainly confused with vines. The classifier did not

classify any land as vegetable crops. Cereals were also not well distinguished (only 54,6%

correct).

When evaluating the classification results by comparing with the land use map of the study

area somewhat similar trends are observed (Table 4.23). As can be expected the overall

accuracy is much lower (50,7%). Vines remain the class with the highest accuracy

(71,6%), followed by orchards (47,9%). The statistics show that the vine class included

high proportions of all other cover types, indicating substantial errors of commission.

Table 4.22: Accuracy assessment of Landsat unsupervised classification by comparing

with farm survey data.

s

Unsupervised Classification

N = 18398

Vines

Orchards

Vegetables

Cereals

Other

Total

Vines

87,71)

38,5
68,9
37,3

40,8

70,2

Orchards

9,6

59,7

2,6
7,4

15,6

20,2

Vegetables

0,0

0,0

0,0
0,0

0,0

0,0

Cereals

1,1

1,1
16,2

54,6

12,1

.6,3

Other

1,6
0,7

12,3

0,7

31,6

3,1

Total2)

62,1

21,6

4,0

7,7

4,5

73,03)

1) Row % 2) Column % 3) Overall accuracy (%)
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Table 4.23: Accuracy assessment of Landsat unsupervised classification by comparing

with the land use map.

u
to3

2

Unsupervised Classification

N = 145304

Vines

Orchards

Vegetables

Cereals

Other

Total

Vines

71,6D

37,8

53,6

41,7

41,5

55,5

Orchards

10,0

47,9

4,9
6,5

18,7

15,4

Vegetables

0,0
0,0
0,0
0,0
0,0

0,0

Cereals

5,2
4,2

20,0

29,8

13,3

12,3

Other

13,2

10,1

21,5

22,0

26,5

16,8

Total2)

47,1

13,8

2,6

23,3

13,2

50,7%3)

1) Row % 2) Column % 3) Overall accuracy (%)

A land cover map produced from the classification confirmed that vines are overestimated

(Figure 4.23). This is bourne out by the accompanying map (Figure 4.24), which shows

where the incorrect classifications had occured.

To take this evaluation a step further land cover classes were generalized into three classes,

i.e. irrigated, non-irrigated and water. This map was subjected to a logical cleanup process

whereby pixels classified as belonging to an irrigated land cover type (vines, orchards and

vegetables) were recoded to a non-irrigated class based on ancilliary GIS-data. The criteria

used were as discussed in the introductory section (4.4.1). Table 4.24 and Figures 4.25

and 4.26 presents the results of this process. From this analysis it was found that 77,9% of

all irrigated land cover types are correctly classified and the overall accuracy level is at

69,0%. The cleanup procedure improved the overall accuracy level by 2 percentage points.
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Figure 4.23: Generalized land cover map from supervised classification of untransformed

Landsat TM data.
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Figure 4.24: Accuracy assessment of generalized land cover map from unsupervised

classification of untransformed Landsat TM data.
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Figure 4.25: Irrigated land cover map from unsupervised classification of untransformed

Landsat TM data.
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Figure 4.26: Accuracy assessment of irrigated land cover map from unsupervised

classification of untransformed Landsat TM data.
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Table 4.24: Accuracy assessment of Landsat unsupervised classification for irrigated land

cover types.
L

an
d 

us
e

Unsupervised Classification

N = 149801

Irrigated

Non-irrigated

Other

Total

Irrigated

77,9!)

42,7

18,7

63,6

Non-irrigated

20,7

56,1

42,3

33,9

Other

1,4

1,2

39,0

2,4

Total2)

61,6

35,4

3,0

69,03)

1) Row % 2) Column % 3) Overall accuracy (%)

4.4.3.2 Unsupervised classification: Principal component analysis data

The unsupervised classification of the PCA data proved slightly less successful in overall

terms and has an accuracy level of 68% in comparison with the 73% of the unsupervised

classification of the untransformed data (Table 4.25). However, vines were more

accurately classified (89,4%) but at a cost to orchards and cereal land cover types. The

generalized land cover map produced from the PCA classification (Figure 4.27) shows that

the PCA approach overestimated vines enormously. This is confirmed by the marginal

percentages in Table 4.25 according to which the PCA classification designated 73,9% of

all pixels to the vine class, whereas vines only made up 57,8% of the farm survey pixels.

In comparison with the land cover map for the whole study area the classification has an

overall accuracy level of only 51,8%. Although vines were well classified and has an

accuracy of 83,7% all other land cover types were very badly identified (orchards 32,4%,

cereals 26,0% and vegetables 0,0%) (Table 4.26). The map (Figure 4.28) and marginal

percentages in Table 4.26 confirms the gross overestimation of vines by this particular

classifications. Vines are overestimated by 16 percentage points.

The evaluation of classification accuracy in terms of the irrigated land cover types has an

overall level of 67,5% which is slightly lower than that obtained by the unsupervised^

classification of thelintransformed TM data. As far as irrigated land cover is concerned the

accuracy level is higher (84,2%), but much lower for other categories (Table 4.27). This

emphasizes the tendency of the procedure to overestimate vines and is bourne out by an

inspection of the relevant maps (Figures 4.29 and 4.30).
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Figure 4.27: Generalized land cover map from unsupervised classification of Landsat

TM Principal Component data.
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Figure 4.28: Accuracy assessment of generalized land cover map from unsupervised

classification of Landsat TM Principal Component data.
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Figure 4.29: Irrigated land cover map from unsupervised classification of Landsat TM

Principal Component data.
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Figure 4.30: Accuracy assessment of irrigated land cover map from unsupervised

classification of Landsat TM Principal Component data.
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Table 4.25: Accuracy assessment of Landsat PCA unsupervised classification by

comparing with farm survey data.
at

a

IS

E

PCA Unsupervised classification

N = 21754

Vines

Orchards
Vegetables
Cereals
Other

Total

Vines

89,4D

55,0
71,7
61,7

35,5

73,9

Orchards

4,5

39,3
0,6

2,0
2,8

10,9

Vegetables

0,0

0,0
0,0
0,0
0,0

0,0

Cereals

1,1
1,0

18,5
27,8

3,2

3,9

Other

5,0
4,6
9,2
8,6

58,6

11,2

Total2)

57,8

20,0

3,9
7,3

10,9

68,03)

1) Row % 2) Column % 3) Overall accuracy (%)

Table 4.26: Accuracy assessment of Landsat PCA unsupervised classification by

comparing with the land use map.

in

•a

PCA Unsupervised classification

N = 145304

Vines

Orchards
Vegetables

Cereals
Other

Total

Vines

83,7D

59,5

67,6
59,1
66,7

72,0

Orchards

4,5
32,4

1,9
2,7

9,6

8,6

Vegetables

0,0
0,0

0,0
0,0

0,0

0,0

Cereals

5,1
3,0

20,6
26,0

9,5

10,7

Other

6,6

5,0

9,9

12,1

14,1

8,7

Total2)

47,1
13,8

2,6

23,3
13,2

51,83)

1) Row % 2) Column % 3) Overall accuracy (%)
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Table 4.27: Accuracy assessment of Landsat PCA unsupcrviscd classification for irrigated

land cover types.
L

an
d 

us
e

PCA Unsupervised Classification

N = 149811

Irrigated

Non-irrigated

Other

Total

Irrigated

84,20

53,0

30,0

71,5

Non-irrigated

14,4

45,8

31,0

26,0

Other

1,4

1,2

39,0

2,5

Total2)

61,6

35,4

3,0

67,53)

1) Row % 2) Column % 3) Overall accuracy (%)

4.4.3.3 Unsupervised classification: NDVI data

This classification on the NDVI values of four seasons performed slightly better than the

principal component analysis but did not reach the same overall level of accuracy achieved

by the unsupervised classification on untransformed Landsat TM data. Its overall accuracy

was 70,2%, that of vines 85,7%, orchards 41,7% vegetables a dismal 8,5%, cereals 54,8%

and other 76,2% (Table 4.28). In comparisong with the former approaches vines are less

accurately classified, but orchards slightly better than that of the PCA classification. By

interpreting the marginal percentages it becomes evident that vines are not overestimated to

the same degree as in the PCA classification. According to the farm data 57,8% of land

surveyed is under vines, but the figure obtained from the NDVI classification is 66,1%, a

difference of only 8,3% points. Recall that the comparative figure for the PCA

classification was 16,0% points. The map confirms this conclusion (Figure 4.31).
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Table 4.28: Accuracy assessment of Landsat NDVI unsupervised classification by

comparing with farm survey data.
da

t;

B
I—

N = 21758

Vines
Orchards

Vegetables
Cereals
Other

Total

Vines

85.71)

49,8
59,2

29,1
17,2

66,1

NDVI Unsupervised classification

Orchards

3,1
41,7

1,0
4,5
3,0

10,8

Vegetables

0,4

0,6

8,3
0,3
0,0

0,8

Cereals

1,4
1,2

12,5
54,8
3,6

5,6

Other

9,3
6,7

19,0

11,3
76,2

16,7

Total2)

57,8
20,0

4,8
6,4

11,0

70,23)

1) Row % 2) Column % 3) Overall accuracy (%)

An assessment of the NDVI classification by comparing it with the land use map of the

study area (Figure 4.32) shows that an overall accuracy level or 53,1% was achieved.

Vines were 79,3% correctly classified but other cover types fared badly (Table 4.29).

Table 4.29: Accuracy assessment of Landsat NDVI unsupervised classification by
comparing with the land use map.

Vi

•a

.3

NDVI Unsupervised classification

N = 143416

Vines
Orchards

Vegetables

Cereals
Other

Total

Vines

79,4l)

59,8
49,2

38,9
58,6

64,5

Orchards

2,8
28,8

2,5
2,6
6,0

6,8

Vegetables

0,0
0,0

0,0

0,0
0,0

0,0

Cereals

4,8

3,1
16,1

21,3
14,0

13,5

Other

13,0

7,5
22,8

1,3
20,3

15,1

Total2)

47,2

13,8

2,3
23,3
13,2

53,13)

1) Row % 2) Column % 3) Overall accuracy (%)

As far as irrigated land cover types are concerned (Table 4.30) the NDVI procedure

performed slightly better than the PCA approach and attained an overall accuracy of

69,1%. Although the overall level is higher, vines has a lower level of accuracy than that

of the PCA classification (78,8% versus 89,4%), however non-irregated cover types were
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Figure 4.31: Generalized land cover map from unsupervised classification of Landsat

TM NDVI data.
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Figure 4.32: Accuracy assessment of generalized land cover map from unsupervised

classification of Landsat TM NDVI data.
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more accurately distinguished. The NDVI is less prone to overestimate irrigated areas than

the PCA classification (Figures 4.33 & 4.34).

Table 4.30: Accuracy assessment of the Landsat NDVI unsupervised classification for

irrigated land cover types.

L
an

d 
us

e

NDVI Unsupervised Classification

N = 149801

Irrigated

Non-irrigated

Other

Total

Irrigated

78,8!)

43,5

21,3

64,6

Non-irrigated

19,8

55,5

50,8

33,4

Other

1,3

1,0

27,9

2,0

Total2)

61,5

35,4

3,1

69,I3)

1) Row % 2) Column % 3) Overall accuracy (%)

4.4.3.4 Supervised classification: Untransformed Landsat TM-data

Very high expectations were nurtured concerning the ability of a multi-temporal supervised

approach for classifying cultivated land cover types. Unfortunately the results did not fully

live up to these expectations. Some comments will be made in a later section about

possible reasons for this outcome. In comparison with the results of the unsupervised

approaches discussed previously this method achieved an overall accuracy of 71% which is

slightly lower than that which was achieved by the unsupervised classification of

untransformed data. Vines were 75% correctly classified, orchards 56,7%, vegetables

54,7%, cereals 57,9% and other 90,7% (Table 4.31). So despite a slightly lower overall

accuracy the supervised approach managed to also classify other land cover types with

much higher levels of accuracy than did the unsupervised approaches. With the exception

of the NDVI method it could also distinguish vegetables to some extent. Another

favourable aspect about the supervized classification is that it did not overestimate vines to

the detriment of other land cover types. It actually underestimated vines by 6,7% points

and orchards by 4,3% points. This tendency is also to be seen on the generalized land

cover map (Figure 4.35).
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Figure 4.33: Irrigated land cover map from unsupervised classification of Landsat TM

NDVI data.
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Figure 4.34: Accuracy assessment of irrigated land cover map from unsupervised

classification of Landsat TM NDVI data.
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Table 4.31: Accuracy assessment of Landsat supervised classification by comparing with

farm survey data.
at

a

£
tu

Supervised classification

N = 21758

Vines

Orchards

Vegetables

Cereals

Other

Total

Vines

74,9!)

28,9

23,6

10,6

2,6

51,1

Orchards

6,9
56,7

1,5
2,5
0,8

15,7

Vegetables

7,1
5,2

54,7

11,6

0,5

8,2

Cereals

1,9
2,5
4,5

57,9

5,3

5,9

Other

9,1
6,8

15,7

17,4

90,7

18,4

Total2)

57,8

20,0

3,9

7,3
11,0

71,03)

1) Row % 2) Column % 3) Overall accuracy (%)

When the results of the supervised classification are tested against the land cover map of the

area substantially lower accuracies are recorded as was the case with the other classification

procedures (Figure 4.36). However, the results appear to be much less positive. For

instance, an overall level of accuracy of only 44% is attained (Table 4.32). The accuracy

with which vines were classified is 62,3%, orchards 40,7%, vegetables 29,5%, cereals

12,8% and other 49,9%. Obviously these statistics are much lower than the actual case and

supports the view that the land use map is not an accurate measure of ground truth. It has a

certain level of generalization that masks internal heterogeneiety of land cover types and is

based on a land use classification which is quite different from a land cover classification.

The results may reflect inherent weaknesses of the land use map rather than of the land

cover classification. This view is supported by the consistently lower performance of all

classification methods when testing against the land use map rather than against farm survey

data.
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Figure 4.35: Generalized land cover map from supervised classification of untransformed

Landsat TM data.
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Figure 4.36: Accuracy assessment of generalized land cover map from supervised

classification of untransformed Landsat TM data.
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Table 4.32: Accuracy assessment of the Landsat supervised classification by comparing

with the land use map.

g

c

Supervised classification

N = 149704

Vines
Orchards

Vegetables
Cereals
Other

Total

Vines

62,3*)
35,5
24,2

13,5
32,1

41,0

Orchards

7,1
40,7

2,2

1,7
7,2

10,1

Vegetables

9,3
6,6

29,5

6,4

6,1

8,1

Cereals

2,6

1,8
11,6

12,8
4,6

5,2

Other

18,6
15,3
32,4

65,7

49,9

32,6

Total2)

45,7
13,4

2,5
22,6

12,8

43,93)

1) Row % 2) Column % 3) Overall accuracy (%)

The assessment of the supervised classification in terms of irrigated land cover types reveals
that the method achieved an overall accuracy level of 73 % which is much higher than that
of the other methods (Table 4.33). Irrigated cover types were 75,8% correctly classified
and non-irrigated types 71,3%. These accuracy levels are very good and compared
favourably with other methods. Although the irrigated cover types have a lower accuracy
level, the non-irrigated is substantially more accurately classified. For the purpose of
eventually computing irrigation requirement this distinction is important. The maps show
that irrigated land cover types have a much more spatially restricted extent than found on
the maps produced by the other unsupervised approaches (Figures 4.37 and 4.38).

Table 4.33: Accuracy assessment of the Landsat supervised classification for irrigated land

cover types.

L
an

d 
us

e

Supervised Classification

N = 149718

Irrigated
Non-irrigated
Other

Total

Irrigated

75,8D
"273

9,6

56,7

Non-irrigated

22,8

7i;3- -
51,1

40,8

Other

1,4
— 1 ; 2 -

39,3

2,4

Total2)

61,6

—35,4

3,0

73,13)

1) Row % 2) Column % 3) Overall accuracy (%)
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Figure 4.37: Irrigated land cover map from supervised classification of untransformed

Landsat TM data.

SUPERVISED
IRRIG. ASSESSMENT

CD Correct
EZ] Incorrect

Figure 4.38: Accuracy assessment of irrigated land cover map from supervised

classification of untransformed Landsat TM data.



143

4.5 SPOT XS versus Landsat TM

It is extremely difficult to make direct comparisons between the results obtained using
SPOT XS and Landsat TM imagery. There are many reasons for this. Firstly, two
different teams of researches were involved. This means that levels of expertise in image
processing are not comparable, nor the amount of time devoted to the research project due
to differences in individual workloads and programmes. Secondly, two different image
processing systems were used. SPOT XS data were analysed using an older PC based
version of the EASI PACE system, whereas Landsat TM data were processed by a SUN
workstation version of Erdas imagine. Although the Erdas software is state-of-the-art it
was used for the first time and not all the software functionality was known, which tended
to reduce operator flexibility. Thirdly and probably most importantly, SPOT XS imagery
consisted of only two time slices (summer and winter) due to bad weather conditions at the
time of image aquisition, whereas Landsat TM imagery covered four seasons. These
differences mitigates against any fair comparison.

With these caveats in mind it is not surprizing that the results obtained using Landsat TM
imagery outperformed those from the SPOT XS imagery (Table 4.34). On average overall
accuracies at the farm level of detail were 4,0% points higher (66,4% versus 70,5%). In
the case of vines as a single land cover type the average levels of accuracies obtained are
even more pronounced. Across all four analytical procedures SPOT achieved an average
accuracy of 70,1 % whereas the comparable figure for Landsat was 84,4% - a difference of
14,3% points. These trends are consistent across all three levels of generalization. At the
regional scale of comparison accuracies obtained by analysing Landsat TM imagery were
on average 4% higher. Differences are somewhat muted by the greater amount of
uncertainty inherent in the ground truth land cover map. When comparing irrigated and
non-irrigated land cover classes Landsat TM achieved overall average accuracies of 69,7%
and SPOT XS 66,0%, a difference of about 4% points. By considering only irrigated and
non-irrigated land classes the differences in performance levels are not worth mentioning.

Another aspect that needs to be considered in evaluating the results obtained using SPOT
XS and Landsat TM imagery pertains to the fact that analyses on the Landsat TM data sets

"were capable of also distinguishing between more categories of land coyer Jypes than the
SPOT analyses. In most cases orchards and cereals could also be distinguished with some
degree of accuracy.
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Table 4.34: Comparison of accuracy levels obtained by analysing SPOT XS and Landsat
TM imagery.

Analytical

Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

Analytical
Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

Analytical

Procedure

Unsupervised
P.C.A.
Vegetation Index
Supervised

Average

Farm Survey Data
SPOT XS

Overall %

59,6

65,4

83,4

57,0

66,4

Vines %
83,2
81,9
63,9
51,7

70,1

Landsat TM

Overall %

73,0
68,0
70,2
71,0

70,5

Vines %

87,7

89,4

85,7

74,9

84,4

Land Cover Map

SPOT XS

Overall %
52,9
42,0

41,8

45,6

Vines %
84,0
74,8

47,0

68,6

Landsat TM

Overall %
50,7
51,8
53,1
43,9

49,9

Vines %
71,6
83,7
79,4
62,3

74,3

Irrigated/Non-Irrigated Classes
SPOT XS

Overall %

67,4

66,3

76,6

54,0

66,0

Irrigated %

84,0

73,3

80,9

58,9

74,3

Landsat TM

Overall %
69,0
67,5
69,1
73,1

69,7

Irrigated %
77,9
84,2
78,8
75,8

79,2
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4.6 SUMMARY

This chapter forms the core of the research on identifying and mapping irrigated land cover

types in the Breede River Valley using digital image processing techniques and GIS

analyses. It presented a theoretical and applied perspective on the many difficult issues

involved and highlighted successes and failures. An objective assessment of the results

indicated that although a fair degree of accuracy is achievable there still remains a challenge

to improve the accuracy levels further. In conclusion the technology is available and the

goals are achievable given the time and resources to investigate alternative strategies and

procedures.

In the next chapter the results obtained will be put to practical use by estimating water

demand based on the land cover information derived from the analyses.
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CHAPTER 5: QUANTIFICATION OF DEMAND FOR IRRIGATION WATER

5.1 INTRODUCTION

The importance of intensive agriculture under irrigation was discussed in chapter one.

Viticulture, orchards, vegetables and pastures are heavily reliant upon additional water from

irrigation due to typical Mediterranean hot dry summer conditions in the valley. Most

irrigation water is supplied by the Breede River and its tributaries and the state built the

Brandvlei dam with a series of canals in order to provide much needed irrigation water to

the farming community. However, the demand for water is growing as farmers expand

their irrigated acreages and urban requirements increase over time. In order to plan ahead

and get a more accurate estimate of the demand for irrigation water, the Department of

Water Affairs and Forestry who are charged with the task of monitoring and managing

water resources need a way of keeping pace with these changes. The potential of using

remote sensing was specifically investigated with that objective in mind. The purpose of

this chapter is to describe the methods followed by which demand for irrigation water was

estimated.

5.2 QUESTIONNAIRE SURVEY

A questionnaire survey was undertaken covering 21 farms in the valley as described in

section 3.6.1.2.1. The purpose of the questionnaire was to obtain current information on

irrigation practices. The questionnaire was structured in such a way so as to determine the

actual amount of water applied per crop type per annum. Accurate data is crucial and

therefore farmers who kept fairly good records were purposefully selected as described

previously. In spite of this the data obtained still showed some serious flaws. One specific

question (no. 7) was misinterpreted by some respondents, who provided information on row

spacing of crops and not distances between irrigation lines. These figures were usable for

micro irrigation systems but obviously incorrect for sprinkler systems. Another question

relating to the length of time irrigated (no. 5) also appeared to ellicit incorrect responses.

An irrigated block often is serviced by more than one sub irrigation system, so that the

whole block is not irrigated simultaneously for the full length of time specified, but

sequentially irrigated one section after another. This means that the total duration of

irrigation should in some cases be reduced by the number of subsections involved. Apart

from these problems other obvious discrepancies in the rate of water delivery by different

nozzel sizes and irrigation systems also occurred. These errors were corrected as far as

possible and some general adjustments had to be made to compensate for those systematic

errors that were introduced by weaknesses in the questionnaire's design.
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5.3 ESTIMATION OF DEMAND FOR IRRIGATION WATER

The sections that follow give a detailled account of the procedures used in deriving
conversion factors for estimating water demand from land cover data acquired by satellite
remote sensing techniques.

As a necessary background the section is introduced by first describing the nature of
irrigation in the study area in terms of types of irrigation systems used and the seasonal
patterns followed, after which calibration methods are esplained.

5.3.1 Irrigation systems

Based on the farm survey data vines are mostly irrigated by sprinkler systems, as 47,8% of
all vineyards and 45,8% of the area under vines are irrigated in this way. Micro irrigation
is a close second in importance with 39,5% of the vineyards and 43% of the vine area
under this type of irrigation system. Drip irrigation is only used in 12,6% of all vineyards
comprizing 11,2% of the area under vines. Orchards on the other hand are mostly irrigated
by micro systems (62,5% of all orchards and 64,3% of the acreage). Sprinkle system are
still important and 35,2% of all orchards are irrigated by this type of system. This
represents 33,9% of the area under orchard. Land cover types such as vegetables and
cereals for pastures also utilize sprinkler systems. According to the survey 100% of. all
orchards and vegetables are under irrigation. The figures for vines are 99,8% and partures
(8%).

Additional information obtained from the farm survey related to the spacing of irrigation

lines and sprays as well as their rates of water delivery. These statistics were required in

order to compute irrigated water utilization per land cover type.

5.3.2 Seasonal patterns of irrigation

As the Breede River valley falls in the winter rainfall region it is characterized by warm dry
summer months. Irrigation commences in October and reaches its peak between the months
of December and.February. Of all the water applied to vines and orchards throughout the
year more than half (55,1%) are used during this period in more or less equal monthly
amounts. Irrigation of both vines and orchards follow a similar seasonal pattern.
Vegetables deviate somewhat in that 25 % of all irrigated water for vegetables are applied in
January and 22,1 % in February. So the irrigation season for vegetables is shorter and more
intense. Vines are the major users of irrigation water (67,9%), followed by orchards
(29,8%) and vegetables (2,1%).
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5.3.3 Development of calibration measures

In order to use remotely sensed land cover data for estimating the amount of water required

for irrigation purposes, conversion factors are needed. These conversion factors were

computed from the farm survey data. Firstly, the rate of water utilization per irrigated land

parcel was computed as m3 per hectare per hour based on the spacing of irrigation lines

(rw) and sprays or nozzles along each line (ss) and the rate of water delivery per spray per

hour (si), using the formula:

m3/ha/hr = (si * 10)/ (rw * ss)

Secondly, by multiplying this rate of water delivery with the number of hours irrigated per

month the monthly use of water per hectare was calculated per land parcel. These values

were then multiplied by the number of hectares under irrigation to arrive at a total amount

of irrigation water used per month. The annual total amount per type of irrigation system

and land cover type was subsequently computed. Based on that data an average rate of

irrigation water actually applied by the farmers during one growing season was computed

per land cover type. Table 5.1 shows the results obtained. According to the so-called

'Green Book1 extimated annual irrigation requirements for crops in the Wolseley area are as

follows: Vines 2430 m3/ha to 4490 m3/ha; Orchards 4920 m3/ha to 7460 m3/ha;

Vegetables (potatoes) 1890 m3/ha to 1015 m3/ha depending on the planting season; and

Pastures 12640 m3/ha to 1489 m3/ha (Green, 1985: 403-409). The rates obtained from the

survey appeared plausible and were subsequently applied to the land cover classifications

for estimating total irrigation demand in the study area.

Table 5.1: Rate of irrigation water used in cubic meters per hectare per year.

Cover

Vine

Orchard

Vegetable

Cereal

Hectare

1131

392

61

11

% Irrigated

99,8

100,0

100,0

8,0

Drip

3481,4

7374,6

Micro

5794,6

6998,0

Sprinkle

6057,1

7499,0

3387,1

11766,8

Mean m3/ha

5657,1

7174,9

3387,1

11766,8

5.3.4 Demand for irrigation water

In this section the demand for irrigation water is quantified by applying the conversion

factors to estimated land cover acreages as obtained by the different classification
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techniques. The area of each land cover type was first adjusted by the percentage which is

irrigated and this adjusted figure was then multiplied by the conversion factor to obtain

irrigation demands (Table 5.2). By analysing the statistics in Table 5.2 it can be seen that

there is a substantial variation between different classification techniques and satellite

systems in estimated irrigation demands. This variability is a direct result of differences in

the land cover acreages obtained.

Table 5.2: Estimated demand for irrigation water per annum in the study area.

UNSUPER-

VISED

Vine

Orchard

Cereal

Total

SPOT

Hectare

12630

12630

Irrigated

12604

12604

Water usage

(m3 x 1000)

71302

71302

LandsatTM

Hectare

11611

5794

4008

21413

Irrigated

11588

5794

321

17703

Water usage

(m3 x 1000)

65553

41573

3773

110900

PCA

Vine

Orchard

Cereal

Total

SPOT

Hectare

12234

12234

Irrigated

12209

12209

Water usage

(m3 x 1000)

69067

69067

Landsat TM

Hectare

22059

4018

3078

29155

Irrigated

22015

4018

246

26279

Water usage

(m3 x 1000)

124538

28835

2893

156267

NDVI

Vine

Orchard

Cereal

Total

SPOT

Hectare

23881

23881

Irrigated

23833

23833

Water usage

(m 3 x 1000)

134825

134825

Landsat TM

Hectare

18653

2442

4988

26083

Irrigated

18616

2442

399

21457

Water usage

-(nvLx_1000)

105311

17523

4695

127531
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SUPER-

VISED

Vine

Orchard

Vegetable

Cereal

Total

SPOT

Hectare

6328

2077

1062

5230

14697

Irrigated

6315

2077

1062

418

9872

Water usage

(m3 x 1000)

35724

14902

3597

4918

59142

Landsat TM

Hectare

7654

1999

1604

1440

12697

Irrigated

7639

1999

1604

115

11357

Water usage

(m3 x 1000)

43163

14344

5432

1353

64292

For example, water demand computed for classifications based on SPOT data vary from a

low of 59142475 m3 to a high of 134825660 m3 - this is a difference of 128%. The

Landsat TM classifications showed even greater variations, ranging from 64292635 m3 to

156267310 m3 - a difference of 143%. The supervised classifications produced the

smallest absolute difference between the satellite systems, i.e. 5150161 m 3 followed by the

vegetation index approach (7294290 m3). In relative terms the latter outperformed the

former with a difference of 5,7% points relative to 8,7% points. Overall it would seem

that the supervised approach produced more consistent result and is to be prefered.

5.4 SUMMARY

This short chapter reviewed the methodology of converting land cover data to estimated

demands for irrigation water. It evaluated the quality of data obtained from a questionnaire

survey on irrigation practices and water usage by farmers in the Upper Breede River valley

and applied these statistics to satellite derived land cover data to estimate demand for

irrigation water. From these analyses it became clear that land cover areas estimated by

various analytical procedures using SPOT XS and Landsat TM imagery can produce grossly

different results. This emphasizes the importance of obtaining reliable area estimates. It

appears as though a supervized classification approach provides a more consistent result and

should be selected in preference to other approaches even though it involves much more

time and work to apply.



1 5 1

CHAPTER 6: SYNTHESIS : SATELLITE MONITORING OF IRRIGATED LAND

6.1 INTRODUCTION

When the first earth resource satellite was launched in 1972 expectations were very high

that this new observation platform and ability to remotely sense phenomena on the earth

would be the answer to man's quest for a cost effective and efficient means of gathering

information about his living environment in a systematic, regular and accurate way.

Literally thousands of studies followed on virtually all aspects of the process as new hard-

and software systems were developed and new methods and techniques were tested and

tried.

It is probably not too unfair to say that from an initial euphoria interests in satellite remote

sensing has gradually declined as the limitations of the technology and the difficulty of the

tasks gradually dawned on potential users. The promise of a final breakthrough and an

intuitive belief in the eventual success of this operational field has kept many scientists and

engineers committed to the task of improving satellite sensors and digital processing

systems. It was hoped that higher spatial and spectral resolutions would lead to higher

levels of accuracy in land cover mapping. Although this was achieved to some extent it

still did not provide the levels of accuracy required in all cases especially where detailed

large scale mapping was concerned.

In an attempt to overcome these limitations another dimension was added to the equation

namely that of time. It made sense to argue that higher levels of accuracy and a finer

discrimination between land cover types would be achieved by analysing the multitemporal

as well as the multispectral characteristics of phenomena. To further enhance the final

product existing information on topography and soils could be employed by integrating data

held in a GIS with that obtainable from standard digital image analytical techniques. In

theory this sounds very attractive but what are the practical pitfalls and how achievable are

these goals? In general terms those are the questions that this research project attempted to

fmd answers to. The results of which are assessed in this chapter.

6.2 EVALUATION OF RESULTS

6.2.1 Stated objectives

To recap this study focussed on the ability to discriminate between land cover types that are

irrigated vis a vis those that are not under irrigation in an intensively cultivated area of the

Breede River valley between Wolseley and Worcester in the South Western Cape of South
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Africa. It is an area with a variety of land cover types ranging from natural rangeland

through dryland cereals to intensively nurtured orchards, vines and vegetables under

irrigation. The water resources of the valley are increasingly under pressure and forward

planning of their utilization and allocation to various user categories are becoming an issue.

The Department of Water Affairs and Forestry are facing similar situations in many other

parts of the country and are desperately seeking methods for obtaining accurate land cover

data on which to base their water management decisions.

Consequently the following three objectives were researched:

(i) To identify, classify and map agricultural land cover types by digital analysis of

multitemporal and multispectral SPOT XS and Landsat TM images.

(ii) To refine image classification results by incorporating ancilliary GIS data such as

altitude, slope and soil properties.

(iii) To evaluate the usefulness of the land cover information for quantifying water

requirements of irrigation.

6.2.2 Data sets: SPOT XS and Landsat TM

Implicit in the use of two different digital sources of data are a comparison of the results

obtained. Digital satellite data may be cheaper than other data sets such as those captured

by aerial photography or gathered through field surveying, but become very expensive

when a multitemporal approach is used. As a secondary objective this study used both

SPOT XS and Landsat TM data sets in order to investigate their relative merits for the

purpose in hand. The question of efficiency was also a stake especially as far as

LANDSAT TM imagery was concerned as there are seven spectral channels to choose from

and it may not be necessary to use all seven channels of data. Intercorrelations between

spectral bands means that there are high redundancy in these multitemporal and

multispectral data sets. If the most important spectral bands can be identified a potential

user could save a conserable amount of financial and other resources by not purchasing and

analysing all bands. Unfortunately this objective could not be fully pursued. Due to

unfavourable weather conditions only a summer and a winter image was available for the

SPOT XS data set. This meant that the Landsat TM data set with an image for each of the

seasons had a much finer temporal resolution than the SPOT data set and were not fully

comparable. Nevertheless an extensive literature survey on the subject and a short study

done by Dorfling (1994), revealed that certain band combinations do tend to provide

equally good results and can be considered in order to achieve greater efficiencies. Landsat
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TM bands 2-3-4 or 2-3-7 or 1-4-5-7 or 3-4-5-7 appear to capture most of the information

required for successful crop discrimination.

6.2.3 Image processing techniques applied

Improved spectral and temporal resolutions result in increased complexity. In order to

handle these complex data sets and extract useful information many analytical techniques

were applied and compared. These were unsupervised and supervised classification,

Principal Component Analysis and various vegetation indices. It was once again not

possible to apply all techniques equally to both SPOT XS and Landsat TM data sets. There

are basically two reasons for this, namely due to differences in the two data sets as alluded

to in a previous section (No spring and autumn SPOT images) and the fact that two

different image processing systems were used (Gems Junior for SPOT and Erdas Imagine

for Landsat TM). This situation developed as a result of untimely software acquisitions vis

a vis the planned phasing of the project.

In the case of SPOT imagery a histogram migrating means or K-means unsupervised

classification technique was employed, whereas the ISODATA algorithm was used on the

Landsat TM data. Although both these techniques require a user to specify the number of

classes and a threshold value, the version of the Easi Pace software which was used only

allows a maximum of 16 classes. In comparison Erdas does not have that restriction thus a

value of 30 was used. The end result is that although unsupervised classification techniques

were used on both SPOT and Landsat they differed which means that different results can

not be ascribed to differences in the satellite systems or the data sets.

The supervised classifications are also very difficult to compare because different training

areas were used and Erdas has a pixel growing algorithm which ensures higher internal

homogeneity within training samples. Not only did the locations of training samples differ

but also the number of training samples, their sizes and ultimately the number of signatures

generated. A previous study by Zietsman and Vlok (1993) showed that choice of training

samples are crucial in the eventual success of a supervised classification or not. Maximum

likelihood classifications were used without specifying a priori probabilities.

In order to reduce the dimensionality of the data Principal Component analyses were carried

out on the SPOT and Landsat data sets respectively. Six spectral bands in the SPOT data

were compressed to three after which an unsupervised K-means clustering was done. In

comparison the Landsat data set had 24 spectral bands, these were transformed to 6

components and then clustered using the ISODATA unsupervised classification technique.
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As there were only two seasons of SPOT imagery Transformed Normalized Difference

Vegetation Indices were computed for each. These indices were subtracted from one

another in an attempt to demarcated areas of greatest change in vegetative growth. The

results were not satisfactory therefore the summer TNDVI image was thresholded and

irrigated areas delimited. In the case of the Landsat TM data sets Normalized Difference

Vegetation Indices were computed for each of the four seasons. These NDVI images were

then subjected to an unsupervised classification. Thus different approaches limit any

comparisons between SPOT and Landsat results in terms of using vegetation indices for

demarcating irrigated land cover types.

6.2.4 Classification results

The results of each of the applied analytical procedures were evaluated by comparing the

derived land cover maps with ground control data at three levels of detail. At the most

detailed level comparisons were made with land cover as obtained from field surveys done

in conjunction with a questionnaire survey of 21 selected farms. At a more generalized

level land cover classifications were compared with a land cover map of the whole study

area as compiled from aerial photographs by interpretation and field checking. Finally, all

land cover classes were collapsed into two classes denoting irrigated and non-irrigated land

and again compared for the region as a whole.

As far as the analyses of the SPOT imagery were concerned the techniques were only able

to distinguish between vines and natural vegetation. With the exception of the supervised

classification other cultivated crops types such as orchards, cereals and vegetables could not

be distinguished. At the farm level overall accuracies ranged from a low of 42 % for the

unsupervised PCA to a high of 60 % for the unsupervised classification of untransformed

data. Although these figures appear rather low, vines were classified quite accurately

ranging from about 75% to 83% for the PCA and unsupervised classifications of

untransformed data respectively. When comparing land cover classifications to the land

cover map of the area, the results are somewhat lower but that was to be expected due to

possible generalizations and inaccuracies in the ground control data itself. Vines were still

quite accurately classified (60% to 83%) but the overall level of accuracy declined to

between 40% and 45%. Accuracies again improved by aggregating land cover types into

two broad groups (Irrigated and Non-irrigated). Overall accuracies of between 42% and

76% were recorded, whilst irrigated cover types showed accuracy levels of 58% to 87%.

Generally speaking the TNDVI approach fared best as far as overall accuracy was

concerned but the unsupervised classification managed to classify vines most accurately.

The supervised classification disappointed but was the only technique to distinguish between

the major crop types albeit not very well.
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Interestingly the different analytical procedures all fared more or less equally well when

applied to the Landsat TM imagery. Overall accuracies were much higher than those

obtained in the analyses of the SPOT data, reflecting the advantages of using more spectral

bands and more time slices. Overall accuracies ranged from 70% to 73% at the farm level

with the unsupervised classification of untransformed data performing best. However, vines

were most accurately classified using the PCA approach (89%). On the other hand the

supervised classification did not perform much weaker and has the added advantage of

distinguishing between more land cover types than the other techniques. When evaluating

the results against the land cover map of the region accuracy levels were also lower as in

the case of the SPOT analyses. In conclusion it is clear that Landsat TM imagery can be

used quite successfully to map irrigated and non-irrigated land cover types. Overall

accuracies of close to 70% were achieved and high values of up to 84% for irrigated cover

types were recorded.

6.2.5 Integration of GIS data

Ancilliary data can be used in various ways to improve digital land cover classifications of

remotely sensed images. There are basically two approaches, i.e. to include the data as

extra channels of information for classification purposes or to follow a post classification

refinement using the GIS data and analytical capabilities. This study followed the latter

approach. By clipping the study area out of the image based on a preselected altitude of

500 m all pixels above the 500 m contour were reclassified to null values, that is to say

designated as unclassified. Furthermore all pixels on slopes exceeding 25 degrees were

reclassified as natural vegetation as no agricultural cultivation occurs on such steep slopes.

In the case of the broad land cover categorization between irrigated and non-irrigated land

pixels classed as irrigated cover types were reclassed to non-irrigated types when found on

soils of low agricultural potential. It was not possible to assess the extent to which these

reclassification had improved or degenerated the results by comparing the data at the farm

level as none of these conditions had occurred on the selected farms in the survey. At a

broad regional level the improvements were noticeable and did change calculated areas

under irrigation substantially.

6.2.6 Gauging demand for irrigation water

A questionnaire survey of 21 farms were conducted to obtain information on irrigation

practices in the study area. Based on that survey the mean volume of irrigation water per

hectare applied annually to each of the major land cover types was established. Using these

mean values and information on the proportional area of each land cover type which is
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under irrigation total demand for irrigation water was estimated. This was done by

applying computed conversion factors to the land cover areas obtained from the different

classification techniques. Due to widely different area estimates demands for irrigation

water also varied substantially. SPOT XS and Landsat TM estimates differed greatly as did

different classification techniques. However, the supervised classifications produced the

most consistent results.

6.3 IMPLICATIONS AND GUIDELINES FOR FURTHER RESEARCH

The overwhelming impression gained during the course of this research was related to the

complex nature of the problem. It seems as though the level of complexity has been

increased many times in attempting to achieve better results by enhancing spectral, spatial

and temporal resolutions. Although data volumes and costs increase proportionately by

adding a time dimension spectral signatures become disproportionately even more complex.

The analyst not only has a multispectral situation to contend with but also many

combinations and permutations of land cover changes on different land parcels as crops are

rotated. Planting of annual crops are not simultaneous by all farmers and neither is

harvesting or preparation of the land. For crops under irrigation a farmer has even greater

latitude. To select appropriate training samples under these conditions is virtually

impossible. The fact that only three spectral bands are visible at any one time means that

choosing training areas becomes very difficult. These confounding factors point at a need

for new approaches which will directly adress the multitemporal and multispectral nature of

current satellite imagery. Image processing systems will do well to incorporate more

flexible visualization techniques. Much has been written about spatial pattern recognition

but little has been adopted by image processing systems. The rate of software development

has been disappointingly slow.

Future research in this area should not just look at the use of existing standard image

processing techniques but attempt to incorporate or create new and innovative techniques

and approaches. The technology has matured to such an extent that it is in danger of

calcifying. A wider range of classification algorithms, neural net analysis and the latest in

computer visualization software should be added to current image processing systems. A

tighter integration between image processing and GIS capabilities are also absolutely

essential. The artifical boundaries between these two technologies should be eliminated as

soon as possible. Despite these shortcomings visual interpretation of imagery supported by

digital classification techniques and GIS analytical capabilities provide a very powerful tool

for land cover mapping and monitoring.
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As far as the use of multitemporal imagery is concerned it appears that the gains are not

necessarily of such an order of magnitude that it will be financially feasible in all

applications. A careful consideration of the costs and benefits should be made before using

a multitemporal approach.

This research was very ambitious in its attempt at handling two different types of images,

two different image processing systems, creating a GI database and integrating the

ancilliary GIS data, doing a supplementary field survey and employing a multitemporal

approach. Although the results obtained were as good as could realistically be expected it

would make sense to back track on some of the analyses. Too little time was available to

carefully check the selected training samples for their discriminatory abilities. In hindsight

much more attention should have been given to an analysis of the multitemporal

characteristics of the training samples. This should be done specifically focussing on the

richness and diversity of the multitemporal and spectral Landsat TM data.

In conclusion it seems that digital image analysis enhanced with GIS data is a valid means

of obtaining land cover information of sufficient quality and accuracy for planning and

monitoring catchments and their agricultural water requirements. It remains the most

appropriate technology for cost effectively mapping land cover over large areas or obtaining

up to date information on land cover changes on a fairly regular basis.
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ADDENDUM A

This appendix contains the data dictionary for all geographic themes used in this research

project. Each theme is described and listed in alphabetic order. The datafiles that are listed

are subsets of either Arc Attribute Tables (AAT), Polygon Attribute Tables or Point

Attribute Tables (PAT).

Datafile name: CATCH.PAT

Type: polygon

Description: This coverage represents the Major Drainage Regions in the South Western

Cape. The data had been obtained from the Institute for Geographical

Analysis, University of Stellenbosch and reprojected to the Gauss Conform

Projection with a Central Meridian of 19° East.

Definition:
COL

1

5
9
13

17

27

69

ITEM NAME

AREA

PERIMETER

CATCH_

CATCHJD
NAME

SHADE

LUCODE

WIDTH

4

4

4

4

10

10

10

OUTPUT

12

12

5

5

10

10

N

TYPE

F

F

B
B

C

N

0

N.DEC

3

3
-
-

0

o •

Datafile name: CONTOURS. A AT

Type: line

Description: This coverage represents the elevation contours (below 500 m) in the study

area. The dataset was scanned and vectorized by the Department of Water

Affairs and Forestry. The data was then projected into the Gauss Conform

Projection with a Central Meridian of 19° East. The additional ITEM

ELEVATION contains data on the height (m) represented by each of the

Definition:

COL

1

12

23

34

linpc

ITEM NAME

FNODE_

TNODE

LPOLY

RPOLY

WIDTH

11

11

11

11

TYPE

N

N

N

N

N.DEC

0
0

0

0



Datafile name: FARMS.PAT

174

45
58

69
80

LENGTH

CONTOURS_

CONTOURSJD

ELEVATION

13
11

11
10

N
N

N
N

0
0

0
0

Type: polygon

Description: This coverage represents the landuse patterns and farm boundaries of the

selected farms in the study area. This data was digitized from 1:10 000

scale orthophoto's, mapjoined and is in the Gauss Conform Projection with

a Central Meridian of 19° East. Additional attribute file information from

the questionare survey were joined to this file with the common item

'BLOCKNR'.

Definition:
COL

1
14

27
38
49
54

57

59
60
62
64

66

68

70
71
72

73
75
77

79
81
82

83

ITEM NAME

AREA

PERIMETER

FARMS_

FARMSJD

PLNR

BLOKNR

TIPEG

APR_EENJ

AUG_EENJ

OKT_EENJ

JAN_EENJ

MEERJ

OPLEI

OUD

TIPE_DEK

APR_DEK

AUG_DEK

OKT_DEK

JAN_DEK

BESPROEI

STELSEL

FEB BS

WIDTH

13

13
11

11
5

3
1
1

2

2

2
2
2

1

1
1

2

2
2
2
1

1
2

TYPE

N

N
N
N

C

C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
N

N.DEC

6

6

0
0

0
0

0
0
0

0

0
0

0

0
0

0
0

0

0
0
0

0

0



1 7 5

85
87

89
91

93
95
97

99
101
103
105
107

115
120

125
127

MRT_BS
APR_BS
MEI_BS

JUN_BS
JUL_BS

AUG_BS
SEP_BS
OKT_BS
NOV_BS
DES_BS
JAN_BS
SL
RW

SS
KONTROLE

LUCODE

2
2
2

2

2
2
2
2
2
2
2

8

5
5
2

10

N
* N

N

N

. N
N
N
N
N
N
N
N

N
N
C

N

0
0
0

0

0
0
0
0
0
0
0
2

2
2

0

0

Dataffle name: LANDUSE.PAT

Type: polygon
Description: This coverage represents the current landuse pattern (February 1992 -

January 1993) in the study area. Information for this coverage was
obtained from 1:30 000 scale aerial photographs, 1:10 000 scale
orthophoto's, intensive fieldwork and verification. The data was then
digitized and mapjoined and is in the Gauss Conform Projection with a
Central Meridian of 19° East.

Definition:
COL
1

14
27

38
49

59
69

ITEM NAME

AREA
PERIMETER

BREEMAP_
BREEMAPJD

-LU1 _
LU2
LUCODE

WIDTH

13
13

11
11

JO
10
10

TYPE
N

N
N

N

C

C
N

N.DEC
6

6
0

0

0
0
0
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Datafile name: ORTHOGRID.PAT

Type: polygon

Description: This dataset contains lines demarcating the 1:10 000 scale orthophoto

sheets, used in this study. It also contains the labels for all the map sheets

used in this study. The coverage is in the Gauss Conform Projection with a

Central Meridian of 19° East.

Definition:
COL

1

5

9
13
17

ITEM NAME

AREA

PERIMETER

ORTHOGRID_

ORTHOGRIDJD

NAME

WIDTH

4

4

4

4

20

OUTPUT

12
12

5
5
20

TYPE

F

F

B

B

C

N.DEC

3

3
-
-

0

Datafile name: RAINFALL.PAT

Type: point

Description: This coverage contains presipitation data for the entire study area as

obtained from the Resource Management Section, at Elsenburg Agricultural

Development Institute. A TIN was built from these points and the isohyets

generated from the TIN. The coverage was projected to the Gauss

Conform Projection with a Central Meridian of 19° East.

Definition:
COL

1

5

9
13

17

21

25

29
33
37

41

45

49

53

ITEM NAME

AREA

PERIMETER

REENDATA_

REENDATA_ID

ALTITUDE

MAP

MEDAP

JANMED_MAXT

JANMED_MINT

JANMED_RAIN

FEBMED_MAXT

FEBMED_MINT

FEBMED_RAIN

MARMED MAXT

WIDTH

4

4

4

4

4

4

4

4

4

4

4

4

4

4

OUTPUT

12

12

5

5

5

8

8

8

8

8

8

8
8

8

TYPE

F

F

B

B

B

F

F

F

F

F

F

F

F

F

N.DEC

3

3

-

-

-

3
3

3
3

3

3
3
3

3
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57
61

65
69
73
77
81
85
89

93
97
101

105
109

113
117

121

125
129

133
137
141

145
149

153
157

161
165

169

MARMED_MINT
MARMED_RAIN

APRMED_MAXT
APRMED_MINT
APRMED_RAIN
MAYMED_MAXT
MAYMED_MINT
MAYMED_RAIN
JUNMED_MAXT

JUNMED_MINT
JUNMED_RAIN
JULMED_MAXT

JULMED_MINT

JULMED_RAIN
AUGMED_MAXT

AUGMED_MINT

AUGMED_RAIN

SEPMED_MAXT
SEPMED_MINT

SEPMED_RAIN
OCTMED_MAXT

OCTMED_MINT
OCTMED_RAIN
NOVMED_MAXT

NOVMED_MINT

NOVMED_RAIN
DECMED_MAXT
DECMED_MINT
DECMED RAIN

4
4
4

4
4
4
4
4
4

4
4
4
4

4
4
4
4
4
4

4

4
4
4
4

4
4

4
4

4

8
8

8

8

8
8
8
8
8

8
8
8

8
8

8
8

8
8

8
8

8

8
8

8
8

8
8
8
8

F
F
F

F

F
F

F
F
F
F
F
F
F

F
F
F
F

F

F
F

F
F
F
F

F

F
F
F
F

3
3

3

3

3
3
3
3
3

3
3
3

3

3
3

3
3

3
3

3
3

3
3
3

3
3
3
3

3

Dataffle name: REGIONH100.PAT

Type: polygon

Description: This coverage represents the Upper Breede River Catchment (HlOO). The
catchment boundary is represented by the extend of the line HlOO as
represented by this coverage. The data has been obtained from the
Department of Water Affairs, South Western Cape Region. It was then
reprojected to the Gauss Conform Projection with a Central Meridian of
19° East.
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Definition:
COL

1

5
9
13
17

ITEM NAME

AREA

PERIMETER

REGION_

REGIONJD

D REG

WIDTH

4

4
4
4

4

OUTPUT

12

12

5
5
4

TYPE

F

F
B
B

C

N.DEC

3

3
-

-

Datafile name: REGIONS.PAT

Type: polygon

Description: This coverage represents the main Agricultural Regions within the study

area. The dataset was drawn by hand from 1:250 000 topographic

mapsheet and then digitized. This data is in the Gauss Conform Projection

with a Central Meridian of 19° East.

Definition:
COL

1
14

27

38
49
69

79

ITEM NAME

AREA

PERIMETER

REGIONS_

REGIONSJD

REGIONNAME '

REGIONCODE

SYMBOL

WIDTH

13
13
11

11

20
10

5

TYPE

N
N

N

N

C
C

N

N.DEC

6
6

0

0
0
0

0

Datafile name: RTVERS.AAT

Type: line

Description: This coverage represents the Breede River and its major contributaries in

the research area. The dataset was digitized from 1:50 000 scale

topographic mapsheets published by the Chief Directorate of Surveys and

Mapping. They were mapjoined and projected to the Gauss Conform

Projection with a Central Meridian of 19° East.

N.DEC

Definition:
COL

1
5
9

13

ITEM NAME

FNODE_

TNODE_

LPOLY_

RPOLY

WIDTH

4
4
4

4

OUTPUT

5
5

5

5

TYPE

B
B

B

B
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17

21

25

29

LENGTH
RIVERS_
RTVERSJD
NAME

4

4

4

20

12
5

5

20

F
B

B

C

Datafile name: SLOPES.PAT

Type: polygon
Description: This coverage represents the slopes (below 500 m) for the study area as

calculated by the TIN. A polygon coverage was generated from the TIN
with TINARC containing values for percentage slope. The coverage was
projected to the Gauss Conform Projection with a Central Meridian of 19°
East.

Definition:
COL
1

9

17

21

25

29

33

41

ITEM NAME

AREA
PERIMETER

SLOPES
SLOPESJD
PERCENT_SLOPE

ASPECT
SAREA

SLOPE

WIDTH

8

8

4

4

4

4

8

6

OUTPUT
18

18

5
5
12

12

18

6

TYPE

F

F

B

B

F

F

F

N

N.DEC
5

5

-

-

3

3

5

0

Dataffle name: SOILS.PAT

Type: polygon
Description: This coverage represents the different soil types in the study area. The

dataset was digitized from 1:50 000 scale mapsheet-overlays obtained from
the Department of Agriculture, mapjoined and is in the Gauss Conform
Projection with a Central Meridian of 19° East. This dataset contains
additional information on soil-irrigation potential, soildepth and associated
soilcolour.

Definition:
COL
1

14

27

38

ITEM NAME
AREA
PERIMETER

SOILS_
SOILS ID

WIDTH

13

13

11

11

TYPE
N

N

N

N

N.DEC
6

6

0

0
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49
61
73

83
93

GRD1

GRD

KLEUR

DIEPTE

BESPROEI

12
12

10

10
10

C
C

N

N

N

0
0
0

0

0

Dataftle name: STUDYAREA.PAT

Type: polygon

Description: This coverage represents the extend of the study area. The outer boundary

of this coverage was defined by the extent of the drainage region, satellite

imagery and contour data. This dataset is in the Gauss Conform Projection

with a Central Meridian of 19° East.

Definition:
COL

1

5

9
13

17

ITEM NAME

AREA

PERIMETER

STUDYAREA_

STUDYAREAJD
GEBIED

WIDTH

4

4

4

4

4

OUTPUT

12

12

5
5
4

TYPE

F

F

B

B

I

N.DEC

3

3
-
-

Datafile name: TOPOGRID.PAT

Type: polygon

Description: This dataset contains lines demarcating the 1:50 000 scale topographic

mapsheets used in this study. It also contains the labels for the map sheets

used in this study. The coverage is in the Gauss Conform Projection with a

Central Meridian of 19° East.

Definition:
COL

1

5

9
13

17

ITEM NAME

AREA

PERIMETER

TOPOGRID_

TOPOGRID_ED

NAME

WIDTH

4

4

4

4

10

OUTPUT

12

12

5
5
10

TYPE

F

F

B

B

C

N.DEC

3

3
-
-

0
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Datafile name: TOWNS.PAT

Type: point
Description: This coverage represents the location of the major towns in the study area.

It was generated in ARC/INFO from geographic coordinates and projected
to the Gauss Conform Projection with a Central Meridian of 19° East.

Definition:

WIDTH
4
4

4
4
20

Datafile name: WCREGION.PAT

Type: polygon
Description: This coverage represents the major drainage regions in the South Western

Cape. The data had been obtained from the Institute for Geographical
Analysis, University of Stellenbosch and reprojected to the Gauss Conform
Projection with a Central Meridian of 19° East.

COL
1

5

9
13
17

ITEM NAME
AREA
PERIMETER

TOWNS_
TOWNSJD

NAMES

OUTPUT
12
12

5
5
20

TYPE
F
F

B
B

C

N.DEC
3
3
-
-

Definition:
COL
1
14

27

38
49

ITEM NAME
AREA
PERIMETER

WCREGION_

WCREGIONJD
D REG

WIDTH
13
13
11

11
4

TYPE

N
N

N

N

C

N.DEC

6
6
0

0
0

Datafile name: WEATHERST.PAT

Type: point

Description:-—This coverage represents the location ^f the three Weather Stations, La-
Plaisante, Botha's Halt and Worcester, in the study area. All climatic data
used in this study were derived from these stations. The coverage was
generated from geographical coordinates in ARC/INFO and then projected
to the Gauss Conform Projection.
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Definition:
COL
1

14

27

38
49

ITEM NAME
AREA

PERIMETER
WEATHERST_

WEATHERSTJD
STATION

WIDTH
13

13
11

11

15

TYPE
N

N

N

N
C

N.DEC
6

6

0

0
0
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ADDENDUM C

Principal Component

Input Channels: 6
Output Channels: 12

Eigen Channels: 1
Sampling Window: 0

Sample size:

Channel means:

66,94 66,96

Channel deviations:
12,82 18,73

Analysis :

7 8
13 14

2 3

SPOT XS

9 10 11

0 1920 1520
10837

92,99

21,16

35,52 25,61

5,44 6,02

Coveriance matrix for input channels:

164,27

231,98 350,77

113,93 143,00
45,25 59,43
49,27 66,76

50,36 74,40

447,86
48,23
50,34

116,51

29,62
30,79 36,29

22,37 20,59

Eigenvalues of covariance matrix:

.723E+03 .298E+03 ,399E+02

35,52

8,68

75,33

,350E+02

Eigenvectors of covariance matrix (arranged in rows):
,416

-,338
123

-079

,813
,180

591

563
127
911

509

120

,624

,742

,238
— - 0 3 3 •

-,046
-,017

,135

-,046
-,326
-552

,074

-,750

.621E+01

,146
-,061

-,289
665jUUJ

-,258
,619

,160E+01

,222

,114
-,850

449

,088
,080
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Scaling

Eigen
Channl

1
2
3
4
5
6

(whitening)
Output
Channl
12
13
14

values:

Min
-79,181
-92,101
-33,416

-33,599
-16,843
-6,755

Unsealed

Max

171,696
58,383
47,934

27,081
19,383
6,941

Range
251,877
151,485
82,350

61,679
37,226
14,695

Scale

Factor

1,016
1,690

3,109

4,150
6,877

17,421

Bias

Value

80,477
155,646
103,880

139,451
115,830
117,671



[SUPERVISED CLASSIFICATION

ICLASSinCATON I

187

CLASS

ORCHARD

TOTAL

VINES

TOTAL

TABLE ORATES

TOTAL

VEGETABLES

TOTAL

PASTURE

TOTAL

FYNBOS
BUSH
RIVERINE
PLANTATION
WATER

BARE SOIL
SAND

FALLOW LAND
PASTURE; ORASS

WATER
MOUNTAIN FYNBOS
PLANTATION
PLANTATION
PLANTATION

FALLOW LAND
PLANTATION

TOTAL OTHER

•* IMAOE CLASSIFIED
* IMAGE UNCLASSIFIED
NUMBEROF CLASSES

SIGNATURE

SEGMENT
3 2
3 3

3 4
3 5
3 6

3 7
3 1

3 9

ua
:<i

:c

;44
145
246
247

241
Z49

so
3 1
3 2

3 1

2 4

35

2 *

237

251

259

«o

261

aa
1O
264

»
2M
267
261

r?o

m
27!
r j
274

m

z»
zn
zn
279

CLASS
.CODB

1
:
j

4

!

7

10
11
12
13
14

1}
16
17
11
19
30
3

3

24

22
U

30

11

12

a

M

)1

40
41

42
4 ]

44

43
46
47

41

SO
M
92
S3
S4

S3
S6
17
U

THRESHOLD
VALUE

1
3
J
J
]

1

3

3
1
3
3
3
3
3
3
3
3
]

3
3
3

3

3
3

3

3

3

3

3

3

3
3
3
3
3
3
3
3

3

1
3
3
3
3

3
3
3
3

NUMBEROF
PIXELS

32m
O46
1694

33<
4334

3701

&JO79

647J
1*977

32213
6113
W i

11313
12OM
7 3 7

117O
407*

11947
S3175

7412
17»Z

ZKBU

4ZJ9

3319
914C

99040

HIM

42492

6111

20097

7643

lOUtl

191737

tags

na
21749
19164
79011
11414
34461
11347

13*0

37140

rsiu
136919
3345

MM

34213

14061

12416
71 it

I12S0

7<K36

1323240

139*160

•» IMAGE J

ait
U 9
106
OJ

0.1
0.13
0J»

IJ9

&22
163

1.1

<un
0.1

IU3
0.41

1 2
14

0.14
141
IX:

023
K

7.19

113

ai l
i n

3J9

14

1.46

121

169

026

3J4>

at

022
O23

on
161

171
063

1.11
04

141

7.47

7.72
1IJ4

1.11
I t *
1.17

041

043
124
171

3 J 5

1119
47J1

a

AREA
HA

121
34IJ4

57.76
350.72
113.44
173J6

U4L04

3ZU6

2 9
7MJ1

I2UJ2
M O 2
I1U6
740.6

U1J<

291M
47OJ2
10.04

477Jl
2127

296.41
-<OJA

W7JU2

IML54

13Z7*

365US

396U

461J2

169%61

244.44

10X41

303.72

4135J4

7670J1

251.72
294.41

U«L»

794J6
1160.72

7}9J6
137U2
461J1

417.4

(7134

9007.4
13476.76

1293J
96.16

136L32

SC72

•JS.U
3250

29O7.44

60929:6
55106.4
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ICLASSIFICATION ;

CLASS

ORCHARD

TOTAL

VINES

TOTAL

TABLE GRATES

TOTAL.

VEGETABLES

TOTAL

PASTURE

TOTAL

FYNBOS
BUSH
RIVERINE
PLANTATION
WATER

BARS SOIL
SAND
FALLOW LAND
PASTURE/GRASS

WATER
MOUNTAIN FYNBOS
PLANTATION
PLANTATION
PLANTATION
FALLOW LAND
PLANTATION

TOTAL OTHER

•* IMAGE CLASSIFIED

» IMAGB UNCLASSIFIED
NUMBER OF CLASSES

SIONATURH
SEOMP.VT

3 !
3 1
3 4

3 1
rti
3 '

1U

3 9
IM

241

vn
la

:<i

247
241
249

Hi

254

lit

HO

a2
2A)
IM

2A3

2«7

in
2M

zn

271
272

J71

275

27*
277
27«

ia
212
214

3 3
2M
2>9

CLASS
CODB

1
2
)
4

u
«

M

10
11
12
11
14

l<

11
It
2D

24

23

U

34

«
41

42
O

4S
4«

47

a

M
)l
)2

H

) }

M
)7

«
60
<2

a
M
SI

THRESHOLD
VALUH

)
)
)
)
:

:

)
i
)
>
)

)

i
i

i

i

>

i
j

3
)

)
)
i

>

)
)
)

)

)
}

}

2

2
2
2
2
2

SUMBFJIOf KlMAOB |AWA
PIXELS

till
UM

tw»
I4AIJ

1*71

«4|«

t)lt7

47IM

19247
244U
4A4M
4701
)7M

I4AU

1*0*4
<!U

I3OM

I407U

U »

))M

I 7U

27U2

14171

iino

>29O
7504

JK7I

2OU1

\un
urn
I21M

13775

110471

^7714
334SU

ison

iiosn

irot
mo

SW7M
21371
IMS
377

zia

13334U

1163210
31*400

112
aj

ao*
OJ

QJT7

HI)

141

1.4)

0J)
aj«

\y>

HZ)
113

U l

a j )

i i <
14)

4JJ

au

an

u

i n

149

1.44

022
!LU

1.1 J
171

1 U

144

147

S.H

7J
l l . a

U

1.07

a72
199
0147

3 J >
QJ7

111
<U
0L9

112

47J

60.07

lisa
41

HA

uvi:
H U 4
IIM

U4J2
"&04

174.74

127.41

IV! 3.44

40911
9M.M

U19J4
2UJ2
144.44

>«5.4

fc43J4

II2.U
37J.74

3&3IJ2

207^4

142^4

)Xli

iiaut

171.12

ll~%4

231.72
300.lt

1347.12
C3J2

753^1

1I4J4

D I J

7219.12

9101M
I1395J2

I4O3J

I1OJ

141.44
1117.44

1KU

I134J4

13134
;m.ot
I11U
i m

1J33A72

4U01.4

I1<7M
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|ClASSIFlCATION 3

ORCHARD

TOTAL

VINES

TOTAL

TABLE GRAPES

TOTAL

VEGETABLES

TOTAL

PASTURE

TOTAL

FYNBOS
BUSH

RJVERINB
PLANTATION
WATER

BARE SOIL
SAND
FALLOW LAND
PASTURE/GRASS

WATER
MOUNTAIN FYNBOS

PLANTATION
PLANTATION
PLANTATION
FALLOW LAND
PLANTATION

TOTAL OTHER

•* IMAGE CLASSIFIED
% IMAGE UNCLASSIFIED
NUMBER OP CLASSES

SIGNATURE
SEGMENT

3 2
3 3
3 4

3 5
3 7

3 7

3 9
240

:<t
: «
24]
244

245
24*
247
241

:w

231

3 2

233

254

251

239

260

ia
263
264

243
266
2S7

261
269

270

271

273

775

77«
277

2>2
214

215
216
219

CLASS rTHRESHOLD
CODE IVALUB

1
2

3
4

)

t

10
11

12

b
14
13
l<
17
11
19
20

22
3

24

23

n

a

34

40
4 |

42
43
44
<5
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ADDENDUM E.I: Assignment of unsupervised Landsat classes to general land cover
types

Rows:
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ADDENDUM E.2: Assignment of unsupervised Landsat PCA classes to general land
cover types
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ADDENDUM E.3: Assignment of unsupervised Landsat NDVI classes to generalized
land cover types
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ADDENDUM E.4: Raw land cover classes of supervised classification on Landsat TM

data

Signature
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Vines 8
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Vines 11
Vines 12
Vines 13
Vines 14
Vines 15
Pine 1
Pine 2
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Pine 4
Pine 5
Pine 6
Bare soil 1
Bare soil 2
Bare soil 3
Bare soil/Cereal 1
Bare soil/Cereal 2
Bare soil 6
Bare soil 7
Bare soil/Cereal 3
Bare soil/Cereal 3
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Falow 6
Veld 1
Veld 2
Veld 3

% of ima

25,62
0,39
0,20
0,02
0,25
0,50
0,08
0,01
0,05
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0,05
0,00
0,00
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0,50
0,02
0,28
0,01
0,26
0,10
0,06
0,44
0,48
0,15
0,78
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0,01
0,78
0,04
0,38
0,28
0,68
0,33
0,47
0,51
0,00
0,00
0,00
0,50
0,12
0,15
0,00
0,11
0,06
0,12
0,07
0,24
0,73
0,27
0,14
0,17
1,69
2,43



1 9 7
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55
56
57
58
59
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62
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64
65
66
67
68
69
70
71
72
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74
75
76
77
78
79
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81
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83
84
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86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

104356
129859
13007
53078
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71214
92216
61310
31448
50656

148681
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5341

62216
10656
3742
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26735
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Mountain veld 2
Veld 6
Veld 7
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Veld 11
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Veld 14
Veld 15
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Veld 16
Veld 17
Bare soil 9
Bare soil 10
Cereal 1
Bare soil 8
Cereal2
CereaD
Bare soil 11
Cereal4
Cereal5
Cereal6
Cereal7
Cereal8
Cereal9
Vegetables 1
Vegetables2
Vegetables3
Vegetables4
Vegetables5
Vegetables6
Vegetables7
Vegetables8
Vegetables9
Vegetables 10

4,79
5,96
0,60
2,44
0,03
3,27
4,23
2,82
1,44
2,33
6,83
0,91
0,25
2,86
0,49
0,17
0,01
0,05
1,58
2,92
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1,23
0,06
0,04
0,53
0,01
1,67
0,22
0,03
0,53
2,73
0,19
4,12
0,43
0,00
0,08
0,00
0,00
0,00
0,00
0,02
0,02
0,08
0,30
1,14
0,00
0,00
0,00
0,00
0,00
0,00
0,06
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UNSUPERVISED CLASSIFICATION
OF UNTRANSFORMED SPOT XS DATA
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Figure 4.1: Unsupemseddassificatiqnjrf untransformed SPOT XS data.
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Figure 4.10: Irrigated land cover map from unsupervised classification of untransformed

SPOT XS data.
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Figure 4.11: Accuracy assessment of irrigated land cover map from unsupervised

classification of untransformed SPOT XS data.
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Figure 4.8: Generalized land cover map from unsupervised classification of

untransformed SPOT XS data.

UNSUPERVISED
ASSESSMENT
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Figure 4.9: Accuracy assessment of generalized land cover map from unsupervised

classification of untransformed SPOT XS data.
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UNSUPERVISED CLASSIFICATION
OF UNTRANSFORMED LANDSAT TM DATA
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"Figure 4.4: Unsupervised classification of untransformedLandsat-TM-data.-
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SPOT XS: SUPERVISED CLASSIFICATION
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Figure 4.3: Generalized land cover map from supervised classification of untransformed

"SPOT XS data.
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Figure 2: Landsat TM image showing the location of the study area.
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Figure"3.3: LandsatTMlmage showing the location of the study area.
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SUPERVISED CLASSIFICATION

Figure 10: Supervised classification of untransformed Landsat TM data.



X V 1 1 1
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Figure 9: Unsupervised classification of Landsat TM NDVI data.



X l l

SPOT XS: UNSUPERVISED CLASSIFICATION OF PCA DATA

Figure 5: Unsupervised classification of Principal Component SPOT XS data.
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Figure 4:—Unsupervised classification of untransformed SPOT XS data.
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Figure 4.14: Irrigated land cover map from unsupervised classification of SPOT XS

Principal Component data.

PCA IRRIGATION
ASSESSMENT
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Incorrect

Figure 4.15: Accuracy assessment of irrigated land cover map from unsupervised

classification of SPOT XS Principal Component data.
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Figure 4.17: Irrigated land cover map from SPOT XS TNDVI data.
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Figure 4.18: Accuracy assessment of irrigated land cover map from SPOT XS TNDVI

data.
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Figure 4.19: Generalized land cover map from supervised classification of untransformed

SPOT XS data.
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Figure 4.20: Accuracy assessment of generalized land cover map from supervised

classification of untransformed SPOT XS data.
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Figure 4.21: Irrigated land cover map from supervised classification of untransformed

SPOT XS data.

SUPERVISED
IRRIG. ASSESSMENT
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Figure 4.22: Accuracy assessment of irrigated land cover map from supervised

classification of untransformed SPOT XS data.
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Figure 4.23: Generalized land cover map from supervised classification of untransformed

Landsat TM data.
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Figure 4.24: Accuracy assessment of generalized land cover map from unsupervised

classification of untransformed Landsat TM data.
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Figure 4.25: Irrigated land cover map from unsupervised classification of untransformed

Landsat TM data.

UNSUPERVISED
IRRIG. ASSESSMENT

[ZI Correct
Incorrect

Figure 4.26: Accuracy assessment of irrigated land cover map from unsupervised

classification of untransformed Landsat TM data.
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Figure 4.27: Generalized land cover map from unsupervised classification of Landsat

TM Principal Component data.
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Figure 4.28: Accuracy assessment of generalized land cover map from unsupervised

classification of Landsat TM Principal Component data.
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Figure 4.29: Irrigated land cover map from unsupervised classification of Landsat TM

Principal Component data.
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Figure 4.30: Accuracy assessment of irrigated land cover map from unsupervised

classification of Landsat TM Principal Component data.
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Figure 4.31: Generalized land cover map from unsupervised classification of Landsat

TM NDVI data.
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Figure 4.32: Accuracy assessment of generalized land cover map from unsupervised

classification of Landsat TM NDVI data.
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Figure 4.33: Irrigated land cover map from unsupervised classification of Landsat TM

NDVI data.
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Figure 4.34: Accuracy assessment of irrigated land cover map from unsupervised

classification of Landsat TM NDVI data.
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Figure 4.35: Generalized land cover map from supervised classification of untransformed

Landsat TM data.
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Figure 4.36: Accuracy assessment of generalized land cover map from supervised

classification of untransformed Landsat TM data.
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Figure 4.37: Irrigated land cover map from supervised classification of untransformed

Landsat TM data.
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Figure 4.38: Accuracy assessment of irrigated land cover map from supervised

classification of untransformed Landsat TM data.


