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EXECUTIVE SUMMARY

THE PROBLEM

The hydraulic engineer who is presented with the problem of designing a tunnel to be

excavated by tunnel boring machine (TBM) has (among others) the following question to

answer:

• given the route or alignment of the tunnel and the quantity of water it is to transport

• given a geological prediction of the rock-types likely to be encountered in the tunnel,

• what is the hydraulic resistance of the tunnel walls likely to be in situations where

head loss is important?

To answer this question, the answer to a new question must be found:

• how rough is the surface inside the tunnel likely to be, and how is this physical

roughness related to hydraulic resistance?

Hard rock is no longer beyond the capacity of the TBM. However, at the outset of this

study, there were relatively few kilometres of tunnel excavated by TBM (when compared to

the more traditional method of drill-and-blast) on which to base an answer to this question.

There are nowadays a number of hard rock TBM excavated tunnels. There nevertheless

continues to be a paucity of information on the resistance coefficients to be used for unlined

bored tunnels. The information that is available has been almost exclusively derived from

hydraulic tests.
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T H E PURPOSE OF THIS REPORT

The purpose of this report is to form the link between measurements of physical roughness

obtained from bored tunnels on the one hand with hydraulic resistance on the others. To

this end, it was necessary to make a start in the systematic collection of data useful for

predicting the hydraulic resistance of bored tunnels. The following actions were taken and

are reported on here:

• an extensive literature search was undertaken to find out what had already been done in

directly relating physical roughness to hydraulic resistance

• a methodology using a laser scanner was developed to collect accurate roughness data at

0,5mm (scanning) intervals over a lm base length and store them directly in a file in a

notebook computer while in a tunnel

• such roughness samples and accompanying photographs were collected at 100m

(spacing/sampling) intervals in 15,1 kilometres of freshly bored tunnels in Lesotho and

KwaZulu-Natal during 1994

• several statistical parameters for quantifying physical roughness of the tunnel wall from

the measured data were defined and studied using time series analysis and spectral

analysis

• theoretical fluid dynamics investigations were made into the nature of flow in large water

conduits and an improved velocity distribution for turbulent flow in conduits was

developed

• by comparing predictions of resistance with those obtainable in the literature, a selection

was made between the various roughness statistics as to which was best for predicting

hydraulic resistance

• recommended values of hydraulic resistance are offered for a range of surfaces.
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The Report is divided into three main sections (beside this executive summary):

• the body containing the main points

• the appendices, containing the detailed argument, supporting the body

• the available pictorial and electronic data of the tunnels appearing in photographs and

stored on diskettes at the end of the report.

THE FINDINGS

In most tunnels, the diameters and velocities are such that the flow is in the hydraulically

"rough" zone. In rough flow, it cam be shown that the diameter is measured from a

"boundary" which is at the median height of the surface. In addition, argument is presented

to show that resistance in "rough" turbulent flow does not explicitly depend on the spacing

of the roughness elements as when flow is "transitional"; it is sufficient to define the

appropriate Nikuradse k value for the surface.

It turns out that a good method of estimating hydraulic resistance is to equate the equivalent

Nikuradse sand grain diameter, k, to the mean range, hx, corresponding to the mean

wavelength, X, of the surface as defined by the sample spectrum. When estimate of k is

substituted into the Colebrook-White equation for the Darcy-Weisbach friction factor, / , it

gives a more robust estimate of the hydraulic resistance than does its close competitor based

on the standard deviation of the surface roughness, hg = 2,83o\

In tunnels excavated by TBMs through hard rock it was found, from the tunnels sampled,

that the Manning's n value within the range of the reported values found in the literature.

In particular, the mean n values for cast in situ concrete, sandstone, granite and shotcrete

surfaces turn out to be :



Surface

concrete lining

sandstone

granite

shotcrete

Mean

n=0.0119

n=0.0154

n=0.0157

n=0,016l

Standard Deviation

0.0009

0.0010

0.0008

0.0011

These findings should be of interest to the community of engineers involved with the

hydraulics of tunnels excavated by TBMs.

Geoffrey GS Pegram

Mark S Pennington

DURBAN 30th October 1995
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CHAPTER 1

INTRODUCTION

The purpose of this study was to collect physical roughness data from unlined, bored tunnels

and from these estimate the expected hydraulic roughnesses of the tunnels sampled with a

view to assist hydraulic engineers with good estimates of hydraulic resistance for given

surface types in the design process. This involved the development of apparatus for data

collection, and establishing the link between the physical roughness and hydraulic resistance

of the surfaces encountered.

Tunnel excavation using Tunnel Boring Machines (TBM's), has been shown to be faster and

more efficient then by traditional drill-and-blast methods. Bored tunnels have the added

advantage of, in many cases, not requiring lining of any sort. Because the technology is

relatively new in its application to hard rock, there are few data relating the physical

roughness of the bored tunnels to their hydraulic resistance. The aim of this study was to find

out what the expected roughness of bored tunnels is likely to be and also to provide a method

for calculating hydraulic resistance of such surfaces by comparing them with physical

roughness measurements made on other similar surfaces.

A universally accepted measure of roughness is Nikuradse's k, the dimension of equivalent

sand grain diameter. It is not clear to many engineers what the relationship is between

surface characteristics and k. This study attempts to provide that link.

It is also not clear how to define the diameter of a tunnel (conduit) with a rough wall. Is the

measurement taken to peaks of the roughness, the troughs of the roughness, or somewhere

in between? Although this is a point of academic interest, it does affect the choice of origin

of the velocity distribution. It turns out that the diameter is that of a smooth cylinder of

equal volume.

It is found that Nikuradse's k is equal to the mean range heights at the mean wavelength of

the roughness and that the diameter should be measured from the mid range of the roughness,
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which is the effective "wall" of the pipe from the point of view of the velocity distribution

in rough turbulent flow.

This study was timed for a period in which there has been a large amount of tunnelling

activity in Southern Africa. Because of this, many tunnels were potentially available for

roughness measurement "in the dry" before commissioning. In most of these tunnels

provision was made for head loss measurements to be made once the tunnels are

commissioned, and from these some sort of correlation between the physical and hydraulic

roughnesses was hoped to be obtained. Only one of the tunnels examined so far has been

commissioned, and these data are used herein.

This report is divided into three main parts : the executive summary, the body of the report

(in which the main findings appear) which comprises four short chapters, and the

Appendices, where the theoretical and more detailed aspects of the study appear. There are

five appendices. The two core ones are Appendix B, describing physical roughness

measurement and interpretation, and Appendix C describing the hydraulic resistance of closed

conduits flowing full at equilibrium and at high Reynolds numbers.

The first aspect of the study was a literature survey in which an attempt was made at locating

all of the relevant information regarding head losses incurred in fluids flowing in closed

conduits. The survey was focused mainly on head losses in bored tunnels and in concrete

pipes.

A full description of the roughness data collection, description and analysis then follows in

Chapters 2 and 3. The apparatus used for data collection is described, together with a

description of its operation. Methods of analysis and physical roughness representation are

then presented.

Using these methods of roughness description in conjunction with fluid dynamics theory,

links between physical and hydraulic roughness are made, and are tested on physical

roughness data from surfaces of known hydraulic roughness. This material appears in

Chapter 4. From this a technique is developed for calculating hydraulic roughness, and this
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is applied to the tunnel roughness data, for which estimates of hydraulic roughness are then

made.

All of the data collected and used in this study have been made available for future research

and analysis and accompany the report in the form of ASCII files on diskettes with relevant

programs. The data sets are also presented photographically.
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CHAPTER 2

PHYSICAL ROUGHNESS MEASUREMENT

The type of roughness under review in this study is that created by a TBM on a rock surface.

TBMs produce physical roughness which is not greatly affected by rock type or machine

characteristics (such as diameter).

The roughness pattern produced is comprised of features on both micro and macro scales.

The most common macro features are steps due either to steering changes made during

boring, or to the slight increase in diameter which occurs when worn gauge cutters are

replaced. Diameter changes also occur at changes between shotcreted and non-shotcreted

sections.

Aside from this, the micro roughness of bored tunnels appears visually to be unaffected by

rock type. Waviness or periodicity is usually evident on TBM-bored surfaces, and the

"ridges" formed, created by the rotating gauge cutters, usually have wavelengths between 5

and 50 mm and amplitudes less than 10 mm. Superimposed on this ridging is the grain

roughness of the rock itself. This varies from coarse to fine, has relatively small amplitude

and is essentially random.

The main objective of this study was to investigate the roughness of TBM-bored tunnel walls,

and to establish corresponding hydraulic resistance. In the past a number of similar attempts

have been made. A commonly used technique of collecting roughness data was by taking

plaster casts of typical sections which were then further analysed in a laboratory. Burchell

(1983) measured physical roughness of bored tunnels by means of a comb-like profiler which

comprised movable steel pins mounted in a wooden spine, through which the pins were free

to slide. When pressed firmly against a tunnel wall the pins move to assume the profile of

the wall, which were then traced onto paper and later digitised.

2.1 Physical roughness data collection apparatus

In a contract between the Department of Civil Engineering, University of Natal, Durban and
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the Water Research Commission (WRC), an apparatus was developed that uses a laser

distance measuring device to read physical roughness, which is then converted to digital form

and stored in a computer. The laser distance-measuring unit is mounted on a one metre rail

inside a protective casing, and is driven along this rail by a stepper motor (taken from a

printer, incidentally), controlled from a portable (lap-top) computer. In either 1/2 or 1/4 mm

steps along its track, readings of distance to the tunnel wall are taken (the interval is chosen

by the operator). Knowing both distance to the wall and position along the track, points may

be plotted consecutively to give the profile of the tunnel wall from the information stored in

a (portable) computer.

Each digitized data set taken in this way was complemented by a photograph of the wall at

that particular chainage. Side lighting was used for the photography to highlight the relief of

the wall.

The laser scanner, within its protective casing, was made to stand on a detachable leg and

lean against the tunnel wall. It was later decided that just a single run of the scanner at each

setup was not sufficient for a full three-dimensional roughness representation, and so the leg

was modified to enable three parallel runs to be made, five millimetres apart, at each setup.

The apparatus is shown in Plate 1 (a). In Plate l(b) the scanner is shown with the protective

casing removed. Clearly visible are the rail, the belt to move the laser, and the laser unit

itself on the right hand side. Plate l(c) shows the one author, Pennington, operating the

equipment in the Emolweni Tunnel. The photographs were taken by Pegram.

In all but one case the scanning apparatus was taken into each tunnel by rail, on a flatcar

connected to a locomotive. It was initially thought that if the flatcar were towed to the

upstream end of the tunnel, then the locomotive could exit the tunnel, leaving the scanner

operators to push their way out. This proved to be slower and, obviously, much more

tiresome than having the locomotive remain with the equipment and tow the flatcar between

setups. In the one tunnel where access was by foot only, a small trolley was used to carry

the batteries, while all the other equipment was carried either by hand or in backpacks.
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Plate 1 (a) apparatus (b) internal detail (c) operation
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Actual measurement presented some difficulties which needed to be overcome by experience.

Because the laser scanner depends on a reflection from the wall for its calculation of

distance, any areas of dark or non-reflective rock posed a potential problem. This was

countered by spraypainting these areas with matt white paint before scanning. A painting

guide was specially made to ensure that the paint was applied over the correct area, which

minimised wastage.

Problems were experienced when scanning very wet rock. The reflected beam would scatter

somewhat off the film of moisture, causing inaccuracy in measurement. This was overcome

by drying the wall with paper towel immediately before scanning.

At each setup the profile of the wall was plotted on the computer. This was done to check

the data set obtained. Any dark or wet spots showed up as spikes in the plot, and the problem

could be rectified before rescanning that section, to ensure that good data sets were always

obtained. A feel for which rock would require painting was soon gained, and time could be

saved if in these cases the rock were painted before being scanned. It was found that stippled

shotcrete would almost always require painting, while granite required very little painting.

Sandstone often needed to be painted, and all wet areas in all rock types needed drying.

The typical routine at each setup started with a decision of whether or not the wall needed

painting or drying. The necessary surface preparation was carried out and the scanner was

set up and started. Immediately after a scan was complete, the data were plotted on the

computer screen to check for spikes or irregularities that did not match what was visible on

the tunnel wall. If spikes were present, the problem was identified and corrected, before that

section was rescanned. Once a good data set was taken the scanner was removed from the

wall and the side lighting was switched on for the photograph. All the equipment was then

loaded onto the flatcar and covered with plastic sheet to guard against water dripping from

the tunnel crown before moving on to the next chainage point 100m away. This took

typically about eight minutes when a single scan was made at each point, and when three

parallel scans were made the time went up to about fifteen minutes. In this way about five

kilometres could be covered in a day for single-run sampling, this distance being almost

halved for triple-run sampling.
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2.2 Accuracy of the apparatus

Before the apparatus was used for any data collection it was necessary to carefully test it for

accuracy and to calibrate it if required. However, an opportunity to sample the Emolweni

Tunnel, part of the Inanda-Wiggins Aqueduct, presented itself before this was possible and

so roughness data from this tunnel were taken, trusting the accuracy of the equipment.

Fortunately, the scanner when tested was found to read within the expected bounds of

accuracy, and so the Emolweni Tunnel data were acceptable.

When testing the scanner, surfaces of known roughness, one smooth and the other rough

were scanned. The smooth surface used was a strip of perspex, painted with a matt white

paint to ensure good reflectivity. This was used to test for scatter of readings over a smooth

surface. For the rough surface, a threaded bar was tested. This had a known thread height

and pitch which could be compared to what the scanner read.

Scanning of both of these surfaces was carried out at varying distances between scanner and

target to establish whether this affected the readings in any way.

This testing served to confirm that the scanner does, in fact, read distance to an accuracy of

within the 0.1mm expected. The details of the testing, together with results, may be found

in Appendix A.

2.3 Roughness Data Samples from Tunnels

In this study, physical roughness data were collected from four different bored tunnels. Two

of these form part of the Lesotho Highlands Water Project, namely, the Ngoajane North and

Ngoajane South Drives. The remaining two, the Emolweni and Clermont Tunnels, are part

of the Inanda-Wiggins Aqueduct in Kwazulu-Natal, South Africa. Details regarding the

sampling from these tunnels are summarised in Table 2.1 below. All of the data collected in

this study are presented on computer diskettes which may be found in the sleeve at the back

of this document. See Appendix E for details.
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Table 2.1 Summary of tunnel roughness samples

Tunnel Name

Emolweni
Clermont
Ngoajane South
Ngoajane North

Predominant
Rock Type

granite
sandstone
sandstone
sandstone

diameter
(m)

3.5
3.5
5.0
5.0

length
(km)

5.5
5.5
5.2
5.2

no. of
samples

50
66
37
108

In all of the tunnels, shotcreted sections were encountered and, in addition, in the Emolweni

Tunnel a short length of concrete lining was sampled. The data collected may be grouped in

terms of rock or surface type, as done in Table 2.2 below.

Table 2.2 Numbers of Samples

surface type

granite
sandstone
shotcrete
concrete lining

no. samples

27
181
48
5

Within these groupings, the surfaces themselves appear to vary quite considerably. Typical

plots obtained from the scanner of representative samples of these surface types are shown

in figure 2.1 below.

An important characteristic of the shotcrete is that it is very seldom applied in a layer of

uniform thickness. This is evident in figure 2.1. These plots have all been detrended using

a linear least squares best fit line. The differences in nature of the roughnesses of the various

surface types are evident here, so too are the similarities between the finishes obtained by

the TBM in different rock types.

2.4 Qualitative and quantitative roughness description

Wall roughness may be described either qualitatively or quantitatively. The qualitative

description is useful for communication purposes whereas quantitative description is required

for analysis.
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Figure 2.1
Typical wall roughness plots - all measurements in millimetres.
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Qualitative Roughness Descriptors

A set of roughness descriptors has been developed in order to describe the visual appearance

of various roughness patterns. These are tabulated in Table 2.3 below, and typical

photographs relating to these descriptors appear in Plate 2.

Table 2.3 Roughness Descriptors

Descriptor

Wavy

Stippled

Rutted

Uneven

Irregular

Stepped

Coarse

Fine

Chipped

Definition

Obvious repetitive grooved pattern with "wavelength" typically

5-50mm.

Very rough surface with no directional trends in roughness

character (unlike wavy).

Ruts or grooves typically 3-10mm deep over surface in one or

more directions.

Term to describe non-uniform shotcrete layer thickness, causing

slight radius changes.

Surface has at least one outstanding feature not described by

other descriptors.

Steps in wall profile due to steering adjustments made during

TBM operation.

Surface has coarse grain texture with minimum bump dimension

greater than 3mm.

Converse of coarse. Maximum bump dimension 3mm or less.

Non-directional, angular surface without sharp crests.

These descriptors may be used alone, or in conjunction with one or more other one. For

example, a surface may be described as "coarse-wavy" or "coarse-rutted-stepped".
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Plate 2 Roughness Types

(from top left, clockwise) wavy, stippled, chipped, rutted



Quantitative Roughness Description .

Variance : The variance of a set of surface roughness data is proportional to the square of

the bump heights and its square root, the standard deviation, thus gives an indication of

average amplitude. In Appendix Bl details of the calculation of variance and its relation to

mean roughness height are given.

Power Spectra : In the original proposal to the Water Research Commission concerning this

project, Pegram (1993) suggested that the roughness data could be described using time series

analysis, in particular, by means of a power spectrum. The reasoning behind this was that

the shape of the roughness, ie the way in which the variance is distributed in space, was

thought to affect the hydraulic resistance. The power spectrum of a set of physical roughness

data shows how the variance of the data is distributed with frequency. From this, dominant

frequencies (and hence wavelengths or spacings) occurring in the data may be found.

A brief overview of the time series analysis techniques used in this study is given in

Appendix B2. A full treatment of this topic is given, for example, by Jenkins & Watts

(1968). Schumway (1988) presented various time series analysis programs, one of which

calculated power spectra of input data sets. This was modified for use in this study. A listing

of one of the modified versions of the program used is given in Appendix B3.

Mean Range : The power spectrum of the roughness data does provide an effective

description of the physical roughness. However, further information is required so that this

description may be applied to the correlation of physical roughness and hydraulic resistance.

The physical roughness needs to be described in terms of as few representative parameters

as is meaningful to enable this correlation to be made.

From the spectrum the dominant frequencies of bumps making up the overall roughness may

be found. The heights of the roughness elements associated with each of these frequencies

needs description. These heights may successively be calculated from the actual roughness

data, x(t), over intervals of length equal to X, the wavelength corresponding to the particular

frequency (tf>) being considered (where X =
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The mean range (between maximum and minimum values) within successive intervals of X

is calculated, and the mean range of the sample determined.

That is, for x(t), 0 < t < T (T=no. points in series)

range r, = maxlx^x^j - min[xi,xi+x} for l<i<=T-X

Thus the mean range corresponding to frequency 4> (or wavelength X), hx, is given by

T-X

K = — E r. (2.1)
x T-X U

In this way the physical roughness data may be represented by a set of dominant or

significant wavelengths and their associated mean ranges.

An example of the relationship between h and X is given in figure 2.2 below.

RELATIONSHIP BETWEEN h and WAVELENGTH

0 SO 100 150 200 250 300 350 400 450 500
wavelength (mm)

Figure 2.2 Relationship between h and X for roughness data from chainage 4000,

Ngoajane South Drive

Equivalent Sinusoid : Another way of quantitatively describing physical roughness is by

finding a sinusoid of "equivalent" characteristics to those displayed by the actual data.

The total area under the spectrum is equal to the variance of the roughness data. This may
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either be computed from the spectrum or directly from the data, x(t). Using this, the

amplitude of a sinusoid with the same variance may be found.

var[a.sin (2TTX/X)] = a2 = a2/2

where a = amplitude of sinusoid

That is

a = v/2a (2.2)

or

ho = 2a = 2.83a (2.3)

which is independent of X because

A

var[ sin (2nxfk) ] = -j sin (2nx/X)2 dx = -

Thus the variance is independent of the wavelength of sinusoids with the same amplitude, and

this measure does not help in deriving an equivalent shape.

By analogy, the height ha of the sinusoid as given by equation (2.3) will be used to define

the effective height of a random surface with variance a2.

To find the wavelength of the "equivalent" sinusoid, the centroidal frequency of the power

spectrum is calculated. To find this, the centroid (the horizontal co-ordinate of the centroid)

is inverted to give the wavelength representative of the entire roughness pattern.

As shown in Appendix B, section B2, the centroidal frequency of the sample spectrum

is given by
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where A<j> = 1/2N

This gives the centroidal frequency in cycles per point. From this the centroidal wavelength,

Xc, may be found by

This wavelength is used to compute the effective range in equation (2.1) in the case where

the range is used as a roughness measurement to be related to Nikuradse's k. In that context,

the mean range will be called hx, dropping the subscript C, but, as is evident from figure 2.2

it is a function of X in general.

A plot of the physical roughness data from chainage 4000 of Ngoajane South Drive, with its

equivalent sinusoid superimposed, is shown in figure 2.3 below. Judged visually the

equivalent sinusoid appears to be a reasonable approximation of the roughness.

50.00-

40.00-

30.00-

20.00-

10.00-

o-oo

•10.00-

•10.00-

•30.00-

•40.00-

•50.00
soo 4oo 800 800 looa 1200 1400 IKB isoo ZOK

1/Smm tttpt

Figure 2.3 Physical roughness and equivalent sinusoid of chainage 4000, Ngoajane South

Drive data

Summary : It has been shown how physical roughness data may be represented by the

following :
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• standard deviation

• power spectrum

• mean range

• equivalent sinusoid

The standard deviation gives a measure of the average deviation from the mean of the

roughness data. This is a very broad means of quantifying the roughness as all effects are

averaged over the sample. It is susceptible to outliers because it is the root mean square of

the data.

The power spectrum displays how the variance is distributed with frequency. On its own, the

power spectrum is not very useful for roughness description as too many parameters are

required for its description. However, from the power spectrum, the dominant frequencies

(those associated with the greatest variance) may be found and, using this, the average

spacing (or wavelength) between roughness elements may be calculated.

The mean range technique yields the average heights of roughness elements spaced in these

intervals.

The equivalent sinusoid is generated from the centroidal wavelength and a measure of

roughness height obtained from the standard deviation, and thus incorporates both spacing

and roughness height in the roughness description.

What remains to be done is to relate physical roughness (as outlined in this chapter) to

hydraulic roughness. This is done in the following chapter.
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CHAPTER 3

HYDRAULIC RESISTANCE OF UNLINED BORED TUNNELS

In terms of friction factor, f, the Colebrook-White equation (equation C3) is generally

regarded as the relationship which best fits experimental data, re-stated here for convenience.

(3.1)
if """3.71 d Retf

where f = Friction factor in the Darcy Weisbach equation:

Hf=4flv2/2gd

k = Nikuradse's equivalent sand grain diameter

d = diameter of conduit

Re = Reynolds number = pdu//i

For fully-developed, rough turbulent flow (ie high Re), equation (3.1) reduces to

(3.2)

The problem regarding the use of equations (3.1) and (3.2) is in the determination of k, the

equivalent sand grain diameter. It should be emphasized here that k is a linear dimension

representative of the entire roughness, and is an hydraulic resistance parameter (as are f and

n), as opposed to some physical roughness measurement which can be read directly off the

conduit wall.

It is generally regarded that k is some function of the height, spacing, density and nature

(shape) of the physical roughness under consideration. A number of attempts have been made

to link k to one or more of these, and, in so doing, establish the required link between

hydraulic resistance and physical roughness.

In section 3.1 a brief summary of some of the literature which attempts to link physical

roughness descriptors (h, o, etc) to hydraulic resistance descriptors (k, f, n), is given. A
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recommendation is given as to estimating k from h.

In section 3.2 some of the estimates of roughness of bored tunnels are presented. These came

to hand either from the literature reviewed or via unpublished reports.

In section 3.3 the recommendations made in 3.1 are used to estimate Manning's n values in

the tunnels sampled.

3.1 Correlation of physical roughness with hydraulic resistance

3.1.1 Heerman (1968) presented a complete method for calculating friction factor, f, from

the standard deviation of physical roughness data. He defined a roughness parameter x which

is related to the one-dimensional standard deviation, a, by

X * 12.9 a166 (3-3)

where a = standard deviation in feet.

This roughness parameter, x, is incorporated in an expression for the mean velocity, u,

derived from the universal log law for the velocity distribution in rough turbulent flow :

-£• = 6.06 Iog10(") (3.4)
» X

where m = hydraulic radius in feet

u. = shear velocity = i

By comparison with the universal log law, u/u. = (27r)*ln(y/y0) (equation CIO), it can be seen

that x is related to y0, the distance from the boundary that the log law expression for this

velocity distribution tends to zero.

Substitution of equations (3.3) into (3.4) for conduits flowing full yields
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JL = 1 , 6.06 lo g l 0 (_A-)
u, \ f 51.6c1-66

where d and <r are measured in feet.

Adapting the above equation for use with metric units, and rearranging, gives

-1 = 4.285 log,0(-£~) " 8-798 (3.5)
{f a166

Heerman suggested that equation (3.5) may be used in estimating f directly from the standard

deviation of a physical roughness data set.

In order to justify the a-x relationship of equation (3.1), Heerman presents the results of

testing done over a number of different surfaces which were sinusoidal in section and of

varying amplitude and wavelength, moulded into pipes carrying air. However, the range of

Re over which these tests were performed was limited. The maximum value for Re used in

any test was slightly more than 3X104, which arouses the suspicion that the flow may still

have been in the transition zone between laminar and fully turbulent, rough flow.

Nevertheless, this data source was one of the few where hydraulic resistance was linked

experimentally with wall roughness shape and was thus invaluable in selecting an appropriate

k-h relation.

An important conclusion made by Heerman is that the standard deviation of a rough surface

is, on its own, sufficient for complete description of the roughness of the surface and that

a separate spacing parameter need not be included. He also concludes that the a-x

relationship of equation (3.1) also holds for surfaces of random roughness.

For example, the data set obtained at chainage 4000 in Ngoajane South Drive is

considered. The one-dimensional standard deviation was a= 1.557mm. Equation (3,5)

above yields a value of the friction factor of f=0.0056 for this. This corresponds to

a Manning's n value of n =0.0175 which will be shown to be too high.
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3.1.2 Morris (1955 & 1959) presented a rational method of calculating friction factor, f,

using physical roughness dimensions for each of the five flow types he identified.

The methods presented by Morris were found to be inapplicable to this study (see Appendix

D) and therefore further detail is not gone into here. However, certain concepts suggested

by Morris are worth a mention. If a surface has such variable roughness that flow of more

than one type is produced, then Morris suggests that friction factors for each type may be

added together to give the apparent friction factor for the surface as a whole. This only

applies under certain conditions, when the wake effects of the different roughnesses do not

interfere with each other. For example, this approach is suitable in calculating the effect of

isolated roughness elements such as rock bolts in a bored tunnel.

3.1.3 LeCocq and Marin (c.1976) investigated the relationship between physical roughness

and hydraulic resistance in the unlined Echaillon Tunnel (France). They identified the

roughness height, h, and concentration, y, as the two parameters which most affect the

hydraulic resistance of tunnel walls. The concentration is defined by

where N = number of roughness elements on the plan area

A' of the surface

Ap = projected area of average roughness normal to

the flow.

The roughness height, h, is related to equivalent sand grain diameter, k, through the

concentration, y, as shown in figure 3.1 below, whose derivation is obscure.

The analysis of 21 roughness data sets gave the value of y to be slightly higher than y=0.05.
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Figure 3.1 Effect of concentration (LeCocq & Marin c. 1976)

From figure 3.1, this value of 7=0.05 implies that

That is, equivalent sand grain diameter is taken to be equal to physical roughness height. It

is, however, in calculating this height, h, where difficulties arise.

LeCocq and Marin estimated h from plaster casts taken from typical sections of the wall

surface within the Echaillon Tunnel. It is not clear exactly how these estimates were made,

but from them, estimates of Manning's n were made. These estimates varied from n=0.0147

to n =0.0154, and an average value of n=0.0150 was found to be representative. Further

discussion of this result will be deferred until the end of section 3.3.

3.1.4 This study : In Appendix C it is shown how the universal log law is invalid near the

centre of a closed conduit flowing full. There equation (C12) is derived, taking the linear

variation of shear stress over a section into account, which is valid throughout the main body
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of the flow. Integration of this, using the model of cylindrical eddies at the bed (as proposed

by Rooseboom, personal communication, 19951), in which k=2h (see Appendix C), yields

an equation for friction factor for fully developed, rough turbulent flow. This equation (C30)

is repeated here for ease of reference.

• i = 4.08 Iog10(|) * 1-82 (3.6)

This is of the same general form as the Colebrook-White equation (3.2), which may be

rewritten as

- i = 4 log ] 0A + 2.28 (3.7)
v/

These two equations (3.6 and 3.7) differ only in the constant terms used. These constants

may be adjusted so that the equations fit the experimental data found in the literature.

Equation (3.7) was developed to fit experimental data and therefore does so. However,

equation (3.6) was derived from an analytical analysis of fully-developed turbulent pipe flow

over rough boundaries. It is based on relatively few assumptions and empirical relationships

and the fact that this yielded an equation of the correct form to fit experimental data is very

encouraging. A shift is, however, still required to ensure that the derived equation actually

fits the data. The necessity of this shift could indicate that the boundary model proposed (of

cylindrical eddies formed behind roughness elements) is not entirely correct but is a

reasonable approximation.

If it is accepted that equation (3.7) does accurately fit experimental data, then the question

arises as to what value of k should be used to yield the correct f-value. Two suggestions have

been made, (one by LeCocq and Marin (1976+) summarised in section 3.1.3 and the other

in the theoretical development in Appendix C of this study) namely, k=h and k=2h; where

h has yet to be properly defined.

Professor A Rooseboom, one of the members of the steering committee, privately drew attention
to Water Research Commission report WRC 236/1/93, and indicated that the nature of energy transfer at the
wall of a conduit was outlined there.
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By small modification of the constants in equation (3.7), using either k=h or k=2h will yield

results consistent with those found by experimentation.

This then raises the question of how h should be measured. In Chapter 2 two methods of

finding h for a rough surface were suggested. These were (a) from the mean range using hx

as defined in equation (2.1) and (b) from the standard deviation using h, as defined in

equation (2.3). As an example, both of these methods were applied to the physical roughness

data set taken at chainage 4000 of Ngoajane South Drive (Lesotho) with the following results:

using mean range hx = 5.53mm.

using standard deviation hff = 4.40mm

To decide which value of k (Heerman's, hx, 2hx, hff or 2hJ should be used in equation (3.7),

other experimental data must be used. Such data had to include physical roughness data and

the corresponding hydraulic resistance. This was obtained from two different sources,

namely, roughness data from spun concrete pipes and sinusoidal roughness artificially created

and tested by Heerman. The details of these are given in Appendix D. Also in Appendix D,

the method of calculation of f from <r is tested against the experimental data. Here the

conclusions from that investigation are used.

In short, two basic methods for the calculation of f from physical boundary roughness

measurements have been suggested. The first was that of Heerman, using the standard

deviation. The second was by means of the Coleb rook-White equation. Using the latter, there

were four proposals as to how k and h are related. It was found that by manipulating the

constant term in the Coleb rook-White equation, any relationship between k and h could be

supported. However, keeping equation (3.7) as is, it was found that using k=ha or hx gives

better agreement with the experimental data than k=2h0 or 2hx.

As far as the value of h to be used goes, there is very little difference between hx calculated

from the mean range and ho from the standard deviation. However, the mean range is

preferred to the standard deviation. This is because the standard deviation is particularly
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susceptible to the influence of outliers or trends in the data. The mean range estimation is

a far more robust estimator in this respect.

It is important that the interval chosen <ie X) is representative of the roughness. The

suggested value to be used is that taken by finding the centroid of the sample spectrum of the

roughness data. The effect of X on the resultant mean range height, hx, was shown in figure

2.2 from which it is clear that h is not independent of wavelength.

Summary

The recommended procedure for the estimation of f from a set of physical roughness data

is as follows :

• Calculate the sample spectrum of the roughness data set. Find the centroid of this to

yield the mean wavelength Xc representative of the roughness (use the BASIC

program called SPEC.BAS on disk 1 at the back of this document).

• Calculate the mean range height hx by averaging the differences between maxima and

minima within intervals of the representative wavelength (use a spreadsheet).

• Use the Colebrook-White equation with k=hx to estimate friction factor.

As an alternative to using the mean range height in the Colebrook-White equation, the height

calculated from the standard deviation may be used so k=h=2.83a, although care should be

exercised when dealing with data which have outliers or trends.

3.2 Values of Manning's n from literature and unpublished reports

Manning's n is frequently used as an hydraulic resistance parameter in tunnels because it is

practically independent of diameter and effectively depends only on the surface roughness.

A variety of surface finishes is obtainable for TBM-bored tunnels. In poor quality rock,

tunnels are generally lined with either precast concrete segments (segmentally-lined tunnels)
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or with placed in-situ concrete. In very good quality rock, lining may not be necessary at all,

except for the occasional zone which may require shotcreting. All of these surface finishes

have different hydraulic roughness characteristics. This study is confined entirely to unlined

TBM-bored tunnels, but includes shotcreted sections.

Much of the literature pertaining to roughness of unlined rock tunnels deals with tunnels

constructed using drill-and-blast methods. The roughnesses of such tunnels are very much

larger than those for TBM-bored tunnels, and shall not be considered further here.

Total head loss was made up of contributions by the inlet, unlined sections, shotcreted

sections, concrete-lined sections, steel linings, bends and transitions, and the estimates of n-

values relating to each of these were made ensuring that the total head loss would sum to that

actually measured. These estimates over the sections sampled in this study are presented in

Table 3.1.

Table 3.1 Preliminary Estimates of n for Inanda-Wiggins Aqueduct (Metcalf, 1995)2

Surface type

shotcrete (assumed)

concrete lining (assumed)

unlined (derived)

Clermont

0.016

0.012

0.0141

Emolweni

0.016

0.012

0.0141

In a paper by Stutsman (1988) concerning the Kerckhoff, 2 Hydroelectric Project in

California, the estimated Manning's n value for unlined bored rock was n=0.015, equivalent

to that of very rough concrete. This value was arrived at through consultation with companies

and individuals who had been involved in similar tunnelling contracts. During the boring of

the tunnel, Stutsman refers to three different types of TBM cutters which were used, namely

button head cutters, standard "60-90" cutters and constant section cutters. Of these, the

constant section and the 60-90 cutters yielded relatively smooth surfaces, while the button

Metcalf (personal communication 1995) presented preliminary total bead loss measurements made
together with estimates of roughness coefficients over various sections in the Inanda-Wiggins aqueduct
(incorporating the Clermont and Emolweni Tunnels).
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head cutters created a very much rougher surface. Plaster casts of each of these two

roughness types were taken. By measuring the "deviation between the highs and lows" of

each surface and, knowing velocity, diameter and viscosity, estimates for Darcy-Weisbach

f were made (using the Moody diagram). These values for f were then converted to

Manning's n values. It is not clear from the paper how the deviations between highs and lows

were measured, nor how these were converted to equivalent k values for use in the Moody

diagram. It would appear that Stutsman equated the deviation with equivalent grain diameter,

k.

Stutsman's estimated n-values for the two roughness types varied between n=0.0153 and

n =0.0172 for the smoother and rougher surfaces respectively, an appreciable difference.

Since approximately 30 per cent of the tunnel had been bored using the button head cutters,

the expected value for n as reported by Stutsman was calculated by proportion to be

n=0.0159 for the tunnel as a whole.

Head loss measurement equipment was installed in the tunnel and so friction factor estimates

could be confirmed by measurement after commissioning. The representative Manning's n

measured in this way was reported by Stutsman to be n =0.01542 for the tunnel. This

compares favourably with the value predicted before commissioning.

A report by the Highlands Delivery Tunnel Consultants, HDTC (1988), included a thorough

review of available literature on friction losses in tunnels. The report typically presents three

values for Manning's n for each surface, n,^, n ^ and nmax) the subscripts of which are self-

explanatory. In Table 3.2 below the values for Manning's n recommended from the findings

of that report are given for both shotcreted and bored rock surfaces.

Table 3.2 Recommended n-values (HDTC, 1988)

Manning's n

nmin

n typ

"max

Shotcrete

0.014

0.016

0.017

Bored Rock

0.015

0.016

*

Indeterminate - depends on too many ageing factors.
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The report also draws attention to the effect ageing can have on hydraulic performance.

Certain tunnels are prone to algae build up, while others may experience corrosion, both of

which may affect hydraulic roughness.

LeCocq and Marin (c.1976) measured physical roughness of bored tunnel walls in the

Echaillon Tunnel (France) by means of a mechanical instrument which plotted, on paper, the

wall profile as it ran along the wall in the direction of flow. Each run was one metre in

length, and the precision of the instrument was of the order of 0.1 mm. A total of 21 samples

were taken, approximately fifty meters apart, seventeen of which were of gneiss and the

remaining four of sandstone. Three plaster casts were also taken.

This led to a value of n=0.016 for the predicted head loss coefficient. Using this, the total

head loss in the Echaillon Tunnel was predicted to be 6.30 metres, but 11.94 metres was

actually measured.

This would immediately suggest that the calculated value of n=0.016 is incorrect, and that

the method should be reviewed. However, within the Echaillon Tunnel there were twenty

changes in section between surfaced and non-surfaced zones. At each of these there is a

change in diameter which contributes to the head loss. LeCocq and Marin propose that the

difference between predicted and measured head loss in the tunnel is due to the extra head

lost at these diameter changes, and that n=0.016 is, in fact, representative of the micro

surface roughness of the tunnel wall itself.

The above findings and recommendations for the hydraulic resistance of bored rock are

summarised in point form below.

Stutsman : initial (use n for rough concrete) n=0.0150

estimate from roughness measurement n =0.0159

calculated from measured head loss n=0.0154
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HDTC : nmin=0.015

ntyp=0.016

LeCocq & Mann : estimate from roughness measurement n =0.016

3.3 Values of n for tunnels sampled

For every set of physical roughness data obtained from the tunnels, the values for Manning's

n were calculated using each of the methods described in Appendix D. These methods are

A Heerman's method (see section 3.1.1)

B The Colebrook-White equation, using k=ho

C The Colebrook-White equation, using k=2ho

D The Colebrook-White equation, using k=h x

E The Colebrook-White equation, using k=2hx

where ha = standard deviation height

hx = mean range height

The results from this are summarised in Figure 3.2.

In this figure the maximum and minimum values for each method are shown by the ends of

the lines corresponding to each method. The upper and lower tick marks on each of these

represent one standard deviation either side of the mean value calculated, while the horizontal

marker on each line represents the median value, which, due to skewness does not coincide

with the mean.
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Figure 3.2 Values for n estimated by various methods
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From this figure (figure 3.2) and from the least squares fit to Heerman's data summarised

in Table D4 of Appendix D, it may be seen that methods B and D yield the best results. The

following emerge as the suggested values for n for the various surfaces as estimated by

methods B and D :

Table 3.3 Estimates of n-values for tunnels

method

B

D

concrete

(placed)

0.0124+0.0008

0.0119+0.0009

sandstone

(bored)

0.0155±0.0010

0.0154+0.0010

granite

(bored)

0.0157+0.0007

0.0157+0.0008

shotcrete

(placed)

0.0169+0.0012

0.0161+0.0011

Comparing these figures with those presented in section 3.2 two points are apparent.

The first point is that the estimates of the mean of the resistance of the various rock types

are quite close to each other, as shown below:

this study n = 0.0156

Stutsman n = 0.0154

HDTC n = 0.016

LeCocq and Marin n = 0.016

This suggests that the method of estimating Manning's n in tunnels recommended in this

study seems to accord with the wisdom of other professionals, which is comforting. The

figures calculated using method D are preferred because they were nearly as good (sum of

squares within 0.5%, see Table D4) as B at fitting Heerman's data and make use of the mean

range, a more robust roughness height estimate than the standard deviation. This is because

ho the standard deviation is computed as the square root of the sum of the squares of the

variation of the surface around a mean line which is more sensitive to occasional outliers than

the mean range hx.

The second point that arises from these figures is that the variation in measuring the

roughness in each of figures 3.2 is smaller for method D (h j than method B (ho).
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

There are four main conclusions that come from this study: that the method of roughness

measurement in the field was successful, that the description of physical roughness is

appropriate as hx, that a direct link has been made between hx and the Nikuradse k and that
*

an improved velocity distribution has been derived.

Roughness measurement

The apparatus developed for the collection of physical roughness data in this study was

shown to provide measurements of acceptable accuracy. The apparatus was also used

successfully inside tunnels, provided that the correct surface preparation was carried out prior

to use. This involved either drying or painting, or both, to ensure adequate reflectivity of the

rock surface for the functioning of the laser unit.

Describing physical roughness

A number of different techniques for describing surface roughness were presented. These

were all used in establishing links between physical and hydraulic roughness.

Contrary to the suggestion made by Morris (1955), the spacing of boundary roughness

elements is not always of primary importance. In fact, at high Reynolds numbers, the

resistance to flow offered by the boundary becomes completely independent of this roughness

spacing.

The two statistics used in the roughness height estimation, namely the mean range and the

standard deviation, yielded comparable results. It was found that for the surfaces tested,

neither technique afforded any greater accuracy. However, because the variance is a

quadratic function it is more susceptible to outliers in the data than the linear mean range.
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For this reason, the mean range estimate of h is preferred to that of the variance, in spite of

it being computationally more expensive.

Unking h and k

In Chapter 3 it was also shown that methods B (k=hff=2.83(j) and D (k=hj yielded

comparable results of reasonably good accuracy. However, methods C and E, using double

the k-values of B and D respectively, were found to overestimate expected values by up to

28 per cent in concrete pipes, and were found to yield consistently higher values for n or f

when used on the sinusoidal and bored tunnel roughness data. This would tend to indicate

that the assumption that k=2h is not correct, and that using k=hx in the Colebrook-White

equation is the best estimator for hydraulic resistance.

The results obtained using methods B and D on the tunnel roughness data of unsurfaced

sections agree with those obtained by estimate from total head loss measurement in the

Inanda-Wiggins Aqueduct. However, similar agreement is not obtained for the data from

shotcreted sections. From the evidence presented in this document it may be concluded that

shotcrete is, in fact, rougher than bored rock.

Hydraulics of conduits

It has been shown that the "universal" log law is only applicable near the boundary in

turbulent pipe flow (see Appendix C). This is because it is based on the assumption that the

shear stress is constant over the entire section. When the linear variation of shear stress over

a pipe is taken into account, the full or true velocity distribution may be derived, yielding

equation (C18) given by

— = -[2z + l n | £ l | + ln(—-) - 0.614] + 5.3 (C18)
« , K Z + l V

where

and «=velocity, w.=shear velocity, i?=pipe radius, _y=distance from pipe wall, k is the von

Karman constant =0.4.
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z = \ R

This equation was shown to accurately fit experimental data over the main body of the flow.

On the other hand, the so-called "universal" log law (to which equation C18 reduces in the

vicinity of the wall) fails near the centre of the pipe. For comparison, equation (CIO) is

repeated here:

u = fin u (CIO)

Combining the true velocity distribution with power balance relationships, the equations for

flow over smooth and rough boundaries were derived. These theoretically-derived equations

closely matched the phenomenologically-derived relations which have been confirmed

experimentally. This indicated that the boundary geometry used in the derivation of the

theoretical equations was a good model of reality.

4.2 Recommended values for Manning's n

Estimating the hydraulic roughness of bored tunnels, using method D (substituting k=hx in

the Colebrook-White equation) the following values for Manning's n for the various surface

types encountered are suggested :

Surface

concrete lining

sandstone

granite

shotcrete

Mean

n=0.0119

n=0.0154

n=0.0157

n=0,0161

Standard Deviation

0.0009

0.0010

0.0008

0.0011

It must be emphasized here that these values pertain specifically to the roughness of the

surfaces, and do not include additional roughness affects due to steps in the wall profile,

holes, bends and transitions.

4.3



4.3 Future Research

Suggestions for future research include :

• Extension of the velocity distribution to the viscous sub-layer, to give an equation

applicable over the entire cross-section.

• Investigate the effect that rock characteristics such as boreability and uncon fined

compressive strength have on the hydraulic resistance of tunnels.

• Quantify the effects of section changes (shotcrete/unlined) on hydraulic resistance.

• Tunnel inverts - what effect is there due to the non-circular shape of the invert?

• Continuing collection of tunnel roughness and hydraulic resistance data, and

refinement of the k—hx relationship.
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APPENDIX A

TESTING OF APPARATUS

Before the apparatus was first used for any data collection it was desirable to carefully test

it for accuracy and calibrate it if necessary.

As mentioned in Chapter 3, testing of the scanner comprised scanning two different surface

types, one smooth and the other rough.

Al : Testing of Scanner over Smooth Surface

A strip of perspex was selected as the smooth surface for this testing. This was painted by

spraycan with matt white paint to ensure good reflectivity of the laser for distance

measurement. The distance between scanner and perspex was varied for various runs of the

scanner. Four sets of data were taken for each new distance. The complete set of results is

presented in Table Al below. The average distance calculated for each data set is taken to

be the distance, d, separating the scanner and the perspex. The variability of the surface is

represented by a, the standard deviation of each data set.

Each time the distance, d, was changed, it was possible that the section of perspex being

scanned was also changed. This explains the slight variation in a for each new position.

However, for each position the values of a are all close together, indicating that the exact

same strip of perspex was scanned with little error between readings.

The mean value of a obtained from all of the testing summarised above was a=0.135mm.

For perfectly smooth perspex and completely accurate measurement this value should be

zero. Thus the value of <r=0.135mm represents the sum of the scanner error and the

deviation of the painted perspex from perfectly smooth. If the physical deviation from

perfectly smooth of the painted perspex is 35 microns or greater, which would appear to be

reasonable, then the accuracy of the scanner may be taken to be 0.1mm over smooth

surfaces.
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Table Al Perspex Test Results

d (mm)

29.16

28.66

28.54

28.46

37.58

37.44

37.32

37.25

41.46

41.41

41.38

41.35

53.60

53.59

54.66

53.81

67.46

67.40

68.01

67.55

a (mm)

0.131

0.131

0.132

0.131

0.137

0.136

0.137

0.134

0.126

0.124

0.129

0.130

0.141

0.138

0.148

0.144

0.134

0.139

0.138

0.134
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A2 : Scanner testing on threaded bar

In early test runs of the scanner it was found that irregularities occurred at abrupt changes

of depth of the target. This can be attributed to diffraction of the laser beam at such

discontinuities. For this reason, the threaded bar chosen to check the accuracy of the scanner

had a triangular (as opposed to square) thread of height 2.60mm. This was found by

averaging the heights measured by Vernier calliper along the bar. The bar had the following

dimensions:

outside diameter (o.d.) — 38.1mm

root diameter (r.d.) = 32.9 mm

threads per inch (tpi) = 6

The actual thread height, h, is given by

h = ' = 2.6mm
2

The bar and scanner were set up together on a milling machine so that the distance between

the two could be adjusted by set amounts while remaining parallel. This, of course, assumes

that they were parallel at the start which is unlikely to be the case, but is unimportant here

since the data are detrended before being further analysed.

Two different techniques in the analysis of the data taken from the threaded bar were

adopted. As a first attempt, the standard deviations of the data sets were calculated. Standard

deviation is a measure of variation from the mean value and is therefore linked to the thread

height. The second technique applied to the analysis of the threaded bar roughness data was

one in which the mean absolute distance between maximum and minimum over an interval

of physical roughness data is found. This "mean range" should correspond exactly to the

thread height. Both of these estimates are discussed and presented in Chapter 3.

Matt white paint was applied to ensure adequate reflectivity of the laser beam from the bar,
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thereby enabling the most accurate readings capable of the apparatus to be taken.

A total of 20 test runs of the scanner over the threaded bar were made, at distances varying

from 10 to 70 mm between scanner and bar. The complete set of results obtained is given

in Table A2 below. As in section Al, the d given is the mean value of all roughness

measurements over the bar, and is indicative of the distance between bar and scanner.

Table A2 Threaded bar test results

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

d

(mm)

10.42

13.53

17.63

21.73

25.70

34.03

42.35

50.47

58.65

69.77

20.68

35.15

41.25

47.14

51.73

56.26

59.92

67.41

72.16

72.19

K
(mm)

2.60

2.52

2.56

2.53

2.58

2.63

2.56

2.53

2.49

2.55

2.55

2.57

2.54

2.58

2.58

2.51

2.62

2.56

2.52

2.48

hr

(mm)

2.59

2.58

2.64

2.66

2.68

2.71

2.62

2.60

2.59

2.59

2.64

2.70

2.59

2.63

2.67

2.59

2.68

2.66

2.64

2.60
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Using the variance method of finding thread height, the average value obtained was

1^=2.55mm, which is very close to that obtained using the mean range where hx=2.63mm.

Both of these are well within 0.1mm accuracy of the actual height of h=2.60mm. Also

evident from the data sets is that the distance between scanner and bar, d, does not noticeably

affect the values obtained for thread height.

To conclude, these tests performed on the threaded bar were successful in that they

confirmed that the scanner does read distances accurate to, at least, 0.1mm. This

complements the testing done on smooth perspex, which showed that the variation in

measuring a smooth surface is of the order of 0.1mm. The scanner may now be used with

confidence in measuring roughness in tunnels.
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APPENDIX B

QUANTIFYING PHYSICAL ROUGHNESS

In this Appendix the methods of physical roughness description are clarified and elaborated

upon. A brief overview of the time series analysis used in this study is given, together with

a listing of a program to calculate the sample spectra and hence mean wavelength of input

physical roughness data. This program may also be found on one of the diskettes at the back

of this document.

Bl Variance

The first very basic means of quantitatively describing surface roughness is by the variance

of the roughness data. The variance is proportional to the square of the bump heights and

therefore its square root, the standard deviation gives an indication of average amplitude. It

is important that the data be detrended before the variance is calculated, otherwise an inflated

value will result. This is done linearly using least squares. An exaggerated value for the

variance also occurs when the data are taken from an uneven surface.

Variance may be one or two dimensional. Heerman (1968) described roughness in terms of

a two-dimensional mean and variance. Consider a cubic roughness element placed on a

square surface as shown in figure Bl below. The cube has side length = e, and the square

surface side length = a.

Figure Bl Cubic roughness element on square surface
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The mean height of the irregularities from the surface is given by

A J
A a2 a2

The variance of the surface is given by

var(z) = a2 = - f (z - if dA= - f z2 dA - ?
AA AA

which immediately gives

a2 a4

This method for finding the variance in two dimensions may be extended to any shape of

roughness element placed on any shape of surface. If the variation of the surface is a

function of one dimension as tends to be the case in a tunnel bored by a machine, then the

above derivation of the variance in two dimensions naturally specializes to its more familiar

one-dimensional form.

Variance may also be considered in either a local or global (total) sense. Heerman (1968)

found that local variance had a higher correlation with the resistance parameter he used than

the total variance. He estimated local variance by evaluating

or
2 - ( 1 - p V

where a* = local variance

a2 = total variance

p = lag 1 autocorrelation coefficient of z in the

longitudinal direction (sampling at discrete

intervals).

Evidently, this definition depends on the sampling interval and so is not universal.
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In this document the one-dimensional variance taken from the physical roughness data is

used. Because the sampling interval of the tunnel roughness is small compared to the mean

wavelength of the data, the values for variance are close to the variance of the continuous

surface - what Heerman would call the global variance.

B2 The Spectrum

A brief overview of the time series analysis techniques used in this study is now given. For

greater detail and explanation, see, for example, Jenkins & Watts (1968).

Jenkins & Watts (1968) define a time series as a random or non-deterministic function x (ie

behaviour cannot be predicted exactly) of an independent variable, t, which, in most

contexts, represents time. Different sections of a time series do not necessarily resemble each

other in appearance, but when their average statistical properties are compared, they are

similar. Because of this it is necessary to describe time series in terms of random variables

and their associated probability distributions. The behaviour of a time series may be

described by a set of random variables {X(t)} where t can have any value from -<» to + » .

A stochastic process may be defined as the ordered set of random variables {X(t)} and its

associated probability distribution. Therefore an observed series x(t) may be regarded as

doubly infinite, in that an infinite set of values is possible at each of an infinite number of

time points.

There are two broad categories of time series, namely stationary and non-stationary series.

Statistical properties of a stationary series are constant with time, as opposed to the changing

properties of a non-stationary time series. Physical roughness data from bored tunnels

constitute a non-stationary time series, with the independent variable, t, representing distance

in the direction of measurement from some arbitrary datum. The non-stationarity of the

physical roughness data under consideration is mainly on a macro scale, whereas on a micro

scale (which is specifically being considered here) the data are usually approximately

stationary.

Suppose a deterministic time series x(t) is described by the cosine function
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x(t) = a cos(27t<t>0f + i|0

where a = amplitude

4>0
 = frequency

t = time

\p = phase shift (constant)

Then, for frequency 4>Oi the variance is given by

In general, if xt consists of a mixture of several cosine waves with frequencies fa and

amplitudes a^ then the variance is given by

o2 =
Y2 '

It can be shown that if x, is a stationary time series, the variance of the corresponding

stochastic process can be decomposed into contributions at a continuous range of frequencies

according to

a2 = f r(4>)

where T(4>) = power spectrum

Thus r(0)S<£ is an approximate measure of average power or variance over a frequency

bandwidth of 50.

If the probability distribution fx(x) of a series of measurements x(t) is normal, then its mean

and variance are sufficient to characterise it completely. The mean, p , and variance, o2, are

given by
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= E{X\ = / xfx(x) dx

and

o2 =£[(X-n)2] = / (X-M)2 fjx) dx

If x(t) constitutes a time series, then neighbouring values within x(t) are only independent if

the series is purely random, which is generally not the case. Therefore the mean and variance

alone are usually insufficient to describe the behaviour of the series. In the case of a

stationary series, specifying the autocovanance function as well as the mean and variance will

be sufficient to describe the behaviour completely. Autocovanance is outlined below.

Consider a time series observed at two points in time, t and s ( t<s) . Two corresponding

random variables xt and x, give the values of the time series at these points, as shown in

figure B2 below.

t s time

Figure B2 Time series observed at two points
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The autocovariance function is defined as the second moment product

C(s,t) = £[(x,-u^,-u t)]

where, because of stationarity, fi,=nK.

The autocovariance measures the dependence between two points in the same series observed

at different times. Very smooth series exhibit autocovariance functions that stay large even

for t and s far apart, whereas "choppy" series have autocovariance functions nearly zero for

s>t .

Note that for s=t

C(ttt) =

For white noise wt

That is, there is a complete lack of autocovariance in "Gaussian" white noise.

The autocovariance function 7(u) is given by

This may be estimated by

j N-m

If the Fourier transform of the autocovariance function of a series is taken, the power

spectrum T(4>) of that series results.

Let Xm be defined as the complex amplitude at the harmonic frequency <£m=m/T. Then X,,,
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measures the amplitudes of the sine and cosine terms at frequency 4>m in x(t), and may be

calculated from

T
2

m = — f x(t) e-
J2"mttT dt

which, for the discrete case, may be shown to be

*m " " E X

The Fourier line spectrum is obtained by plotting | Xm | 2 versus m.

It may be shown that, for an infinite series of length T,

r
2

. 1= lim 1 [ x\t)

which may be written

a2 = lim £ (r|Xj)
T

where

= lim T\X}
2

in i

The sample spectrum C^C^) is given by
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I
2=~\f

_T
~ 1

for the continuous case, or by

CJto • 4; IE V

(-1/25 < 0 < 1/25)

for the discrete case.

The highest frequency that can be detected from data spaced 5 apart, 1/25, is known as the

Nyquist frequency.

To summarise, a power spectrum (or sample spectrum) of a time series gives the distribution

of variance within the series with frequency, and may therefore be regarded as one way in

which physical roughness can be described.

In the bored tunnels sampled, the number of data points obtained by the scanner for each run

was usually close to 2000, corresponding to one distance measurement every half millimetre

over a one metre length. Given this amount of data, the use of a computer in calculating the

spectrum is mandatory.

Schumway (1988) presented a number of time series analysis programs, one of which was

a program to calculate and plot power spectra. This program, called "SPECTRA" by

Schumway, was used as a base from which to work in the development of a program suited

to the specific needs of this study. A program listing of one of the modified versions is given

below. This program accepts roughness data from an ASCII file, calculates the sample

spectrum and outputs it back to a text file, which may be imported into a spreadsheet for

manipulation and analysis. An example of a physical roughness plot (of data as supplied by

the scanner) and its corresponding power spectrum is shown in figure B3 below. What is

immediately obvious from the spectrum is that the variance is all concentrated near the low
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frequency end of the scale, and power tapers off quickly as frequency approaches the Nyquist

frequency (at <f>=0.5 cycles per point). Note that the frequency axis in figure B3(b) has been

truncated at 0.1 because the spectrum is very close to zero, beyond this point. This is a

characteristic common to all roughness data measured in this study and it indicates a

dependent, autoregressive structure as would be expected of data of this sort.

PHYSICAL ROUGHNESS
Chainage 4000 Ngoajane South

200 400 600 800 1000 1200
1/2mm steps

1400 1600 1800 2000

Figure B3(a) Physical roughness

TRUNCATED POWER SPECTRUM
Chainage 4000 Ngoajane South

300

\A / T V
0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070

<p, frequency (cycles per point)

0.080 0.090 0.100

Figure B3(b) Corresponding power spectrum
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No smoothing of the spectrum has been done as this was found to be unnecessary. However,

because of this, very high peaks in the spectrum sometimes occur. In these cases it is often

best to plot the "log spectrum", where the logarithm of the power is plotted against

frequency. One big advantage of doing this is that confidence intervals remain constant on

a logarithmic scale. This is explained below.

The significance of those peaks in the spectrum representing dominant frequencies needs to

be investigated. On the log spectrum,, the 95 per cent confidence intervals for white noise

may be plotted. It is known that the theoretical spectrum for a white noise series is

represented by a horizontal line of power equal to one, on a natural scale. On the log

spectrum this corresponds to the zero of the vertical axis.

From Jenkins and Watts (1968)

where Cxx(40 is the sample spectrum

is the theoretical spectrum,

that is, twice the sample spectral estimator divided by the theoretical spectral estimator is

distributed as Chi-squared with two degrees of freedom. Also

vCyY(4>) -,

where v = degrees of freedom

From equation (Bl)

where
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1L
2

The interval between

is a lOO(l-a) per cent confidence interval for

This interval may be plotted by horizontal lines on the log spectrum, and any point falling

outside of this region is 95 per cent likely not white noise. Thus those peaks with power

greater than the upper confidence limit may be regarded as significantly different from white

noise. This is shown in figure B4 below.

TRUNCATED LOG SPECTRUM
Chairrage 4000 Ngoajane South

1E+03

1E-05
0.00 0.01 0.02 0.03 0,04 0.05 0.06 0.07

Frequency (cycles per point)
o.os 0.09 0.10

Figure B4 Log spectrum with confidence interval

In this way the dominant wavelengths of the series (highest peaks) are tested for significance.

The plots in figures B3 and B4 all relate to the same physical roughness data set. In fig B3(a)

(the physical roughness plot) some periodicity of wavelength « 50mm is evident. This

emerges as the peak in figures B3(b) and (c), as well as in figure B4. From figure B4 it can
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be seen that this wavelength is, in fact, significantly different from white noise and therefore

is a definite feature of this particular roughness data set.

A test was done on the program used to calculate spectra to see whether accurate results are

obtained. This was done by generating a set of second-order autoregressive (AR-2) data, and

calculating the spectrum of this data set using the program. This sample spectrum is then

compared to the theoretical spectrum, from which accuracy may be ascertained.

The AR-2 model used was

xt = xt.x - O.89xt_2

where w, = Gaussian white noise

This model has a pseudo-periodicity of about 5.5 (see Box & Jenkins, 1970).

The testing showed that the program yields accurate results in that the sample and theoretical

spectra matched up very well.

Thus physical roughness data from tunnel walls may be well represented by power spectra

of each setup. The spread of variance (which is proportional to amplitude) with frequency

is given, and the significance of dominant wavelengths may be found.

The mean wavelength is easily computed from the spectrum by numerical integration in the

following way.

If the spectrum were sampled continuously, then its integral would be equal to the sample

variance :

*.{

where Cxx(<£) is the sample spectrum
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The mean wavelength is then defined by Xc = l/</>c, where

2
2

is the centroidal frequency.

Using the trapezoidal rule, quadrature of this integral yields

i=i 2 2

or, with small error,

*c - E i-

where A0 = 1/2N

This can be conveniently computed from the spectrum using a spreadsheet.

63 Program Listing

The program "SPECTRA" by Schumway (1988) was used as a basis for the program used

in the data analysis of this study. In its original form, SPECTRA required that the data to

be analysed is stored in a Random Access Memory (RAM) file, for which another program,

called DATAIN, was given. Since many of the inputs which SPECTRA would normally have

required were common to every data set to be analysed, the program was modified so that

the user would not be prompted for these inputs for every run. SPECTRA also listed and

plotted the calculated spectrum and log spectrum for each data set analysed. These

subroutines consumed time and were unnecessary for the specific purposes of the analysis

being performed, and were therefore removed. A further modification made was to write the

power spectrum from each data set to an ASCII file, so that it could be further manipulated

in a spreadsheet.
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A listing of one of the many modified versions of the original program SPECTRA used in

the data analysis of this study is given below. The centroidal wavelength is calculated and

appears in the output by the program SPEC.BAS on disk 1 at the back of this document.

90 REM **PROGRAM "SPEC" TO FIND f FROM SCANNER DATA**
91 REM **PROGRAM ACCEPTS ASCII DATA, DETRENDS IT**
92 REM **FINDS VARIANCE, CALCULATES SPECTRUM**
93 REM **AND HENCE FINDS f**
94 REM
95 REM *** INPUT DATA ***
96 CLS
97 PRINT "Tunnel name ?":INPUT TNM$
98 PRINT "Tunnel diameter (metres) ?":INPUT DIA
99 DIA=1000*DIA
100 PRINT "Data file path ?••: INPUT A$
101 REM PRINT "Start ?":INPUT ST:PRINT "End ?":INPUT ND
102 B1$=II.PRN":EM$="PP"
103 REM FOR MSP=ST TO ND
104 PRINT "Setup number ?":INPUT C$:SF$=A$+C$+B1$
109 NR=1
110 T1=1:T2=199O:T=T2-T1+1
120 DIM X1$(NR),Y(T,NR),YY(T)
13 0 J=l
150 PRINT "Chainage ?":INPUT CNG$:F$=EM$+CNG$
160 OPEN SF$ FOR INPUT AS #2
170 REM ***OPEN DATA FILE***
180 OPEN "r",l,F$,4*NR
190 FIELD 1,4 AS Xl$(l)
200 REM ***INPUT SERIES***
210 IF Tl=l THEN 230
220 FOR 11=1 TO Tl-1: INPUT #2,Z:NEXT II
230 1=0
240 FOR II=T1 TO T2 : 1=1+1:INPUT #2 , Y(I, J) :NEXT II-
250 DT=1
260 FOR 1=1 TO T:YY(I)=Y(I,J) :NEXT I:GOSUB 500
270 FOR 1=1 TO T:Y(I,J)=YY(I):NEXT I
280 REM ***WRITE DATA TO FILE***
290 FOR 1=1 TO T
300 LSET X1$(J)=MKS$(Y(I,J)) : PUT 1,1
310 NEXT I
320 CLOSE 2:CLOSE 1
380 REM ***MEAN AND VARIANCE***
390 K=0
400 FOR 1 = 1 TO T:K=K+YY(I) :NEXT I
410 MN=K/T:PRINT "Mean = ";MN
420 M=0
430 FOR 1=1 TO T:M=M+((YY(I)-MN)A2):NEXT I
440 VAR=M/T: PRINT "Variance = ";VAR
490 ERASE Xl$,Y,YY:GOTO 1001
500 REM ***DETREND***
505 REM * DETRENDED DATA STORED IN ARRAY YY *
510 K1=0:K2=0:K3=0:K4=0
520 FOR 1=1 TO T:K1=K1+I:NEXT I
530 FOR 1=1 TO T:K2=K2+(1*1) :NEXT I
540 FOR 1=1 TO T:K3=K3+YY(I):NEXT I
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550 FOR 1=1 TO T:K4=K4+(I*(YY(I))):NEXT I
560 A1=(K4-K1*K3/T)/(K2-K1*K1/T) . .."
570 AO=(K4-K2*A1)/Kl
580 FOR 1=1 TO T
590 YY(I)=YY(I)-AO-(A1*I)
600 NEXT I
610 RETURN:END
1001 LPRINT " "
1002 NR=1
1003 LPRINT TNM$:LPRINT SF$:LPRINT "Diameter = ";DIA;"mm"
1004 GOSUB 1980
1012 TP=2O48
1015 DIM X(T\NR) ,X0$(NR) ,PL{TP) ,XX(TP) ,D(2*TP) ,B$(NR)
1016 FOR J=l TO NR:B$(J)=F$:NEXT J
1017 PI=3.141592654#
1020 GOSUB 1960:GOSUB 1970
1029 FOR J S = 1 TO NR
1030 FOR 1=1 TO T:XX(I)=X(I,JS):NEXT I:DT=1
1033 NEXT JS
1048 REM *** Compute and plot spectra ***
1052 NS=512:NS=2*NS
1056 FOR JS=1 TO NR
1059 FOR 1=1 TO 2*TP: D(I)=0:NEXT I
1061 FOR 1=1 TO T:D(2*I-1)=X(I,JS):NEXT I
1066 REM*** Compute DFT ***
1068 SI=-l:T2=TP:GOSUB 1800
1071 REM **'* Calculate periodogram ***
1072 TA$="n":SC=l
1074 FOR 1=1 TO TP
1075 XC=D(2*I-1):XS=-D(2*I)
1077 PL(I-1)=(XC*XC+XS*XS)/(T*SC)
1080 NEXT I
1082 REM *** Smooth and subsample periodogram ***
1084 GOSUB 1870
1085 GOSUB 3000
1109 NEXT JS
1800 REM*** Calculate Discrete Fourier Transform ***
1802 REM*** Input Series as D(2*J-1),D(2*J),J=l,2,...,T2 ***
1804 REM*** Paired real and imaginary parts ***
1805 REM*** T2 is a power of 2 ***
1806 REM*** Output is in array D(J) ***
1808 REM*** SI=1 for direct transform, SI=-1 for inverse transform ***
1810 REM*** Transform is not scaled by dividing out sqr(T2) ***
1812 NN=2*T2:J=1:PI=3.141592654/
1814 FOR 1=1 TO NN STEP 2
1816 IF I>=J THEN GOTO 1824
1818 TR=D(J):TI=D(J+1)
1820 D(J)=D(I):D(J+1)=D(I+1)
1822 D(I)=TR:D<I+1)=TI
18 24 M=NN/2
1826 IF J<=M THEN GOTO 1832
1828 J=J-M:M=M/2
1830 I F M>=M/2 THEN GOTO 1826
18 32 J=J+M
18 34 NEXT I
18 36 MX=2
1838 I F MX>=NN THEN GOTO 1866
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1840 IS=2*MX:TH=SI*2*PI/MX:SH=SIN(TH/2)
1842 VR=-2*SH*SH:VI=SIN(TH):WR=l:WI=0
1844 FOR M=l TO MX STEP 2
1846 FOR I=M TO NN STEP IS
1848 J=I+MX
1850 TR=WR*D(J) -WI*D(J+1) :TI=WR*D(J+1)+WI*D(J)
1852 D(J)=D(I)-TR:D(J+1)=D(I+1)-TI
1854 D(I)=D(I)+TR:D(I+1)=D(I+1)+TI
1856 NEXT I
1858 TR=WR
1860 WR=WR*VR-WI*VI+WR:WI=WI*VR+TR*VI+WI
1862 NEXT M
1864 MX=IS: GOTO 1838
1866 RETURN
18 68 END
1870 REM *** Smooth{L point) and sample(NS values) a TP point array PL ***
1872 REM *** Returns as NS values in XX ***
1874 JJ=0:A=TP/NS
1876 FOR K=0 TO TP/2 STEP A:SU=0
1878 FOR LL=-(L-l)/2 TO (L-l)/2
1880 LA=K+LL:IF LA<0 THEN LET LA=TP+LA
1882 SU=SU+PL(LA)
1884 NEXT LL
1886 XX(JJ+1)=SU/L
1888 J J=JJ+1
1890 NEXT K
1900 REM * * * FIND CENTROIDAL FREQUENCY * * *
1905 SUM=0
1910 FOR 1=1 TO 513
1912 Y = ( ( I - l ) / 1 0 2 4 ) * ( X X ( I ) ) / 1 0 2 4
1915 SUM=SUM+Y
1920 NEXT I
1925 CRD=SUM/VAR
1930 PRINT "Centroidal frequency is ";CRD;" cycles per point"
1931 LPRINT "Centroidal frequency is ";CRD;" cycles per point"
1935 WL=1/ (2*CRD)
1939 PRINT "Centroidal wavelength = ";WL;" mm"
1940 LPRINT "Centroidal wavelength = ";WL;" mm"
1941 REM *** FIND MAX POWER ***
1942 MX=0
1943 FOR 1=1 TO 513
1944 IF XX(I)>MX THEN GOTO 1946
1945 GOTO 1947
1946 MX=XX(I):MF=I
1947 NEXT I
1948 PRINT "Max Power = ";MX;" corresp to wavelength = M;512/(MF-1);"mm"
1949 LPRINT "Max Power = ";MX;" corresp to wavelength = °;512/(MF-1) ; t(mm"
1950 RETURN: END
1960 REM*** Open a data file ***
1962 OPEN "r'M,F$,4*NR
1964 FIELD 1,4 AS X0$(l)
1965 IF NR=1 THEN GOTO 1968
1966 FOR KL=2 TO NR:FIELD 1,4*(KL-1) AS DU$,4 AS X0$(KL):NEXT KL
1968 RETURN:END
1970 REM*** Read data from a file ***
1974 1=0
1975 FOR II=T1 TO T2:GET 1,11

B16



1976 1=1+1
1977 FOR J=l TO NR:X(I,J)=CVS(XO$(J)):NEXT J
1978 NEXT I I
1979 RETURN:END
1980 REM*** Input first point, last point and number of series ***
1982 Tl=l
1983 T2=1989:T=T2-T1+1
1985 LPRINT "Chainage = ••; CNG$: LPRINT DATE$: LPRINT "Start= ";Tl;"End= ";T2;"Nu
er= ";T
1986 L=l:LPRINT "Smoothing const L = H;L:LPRINT "Variance = M;VAR
1987 RETURN
1988 END
3000 REM *** WRITE TO ASCII ***
3005 PN$="P.PRN"
3 006 NME$=F$+PN$
3 010 OPEN NME$ FOR OUTPUT AS #5
3020 FOR K=0 TO 1988:WRITE #5,XX(K+1):NEXT K
3 03 0 CLOSE #5
3040 LPRINT "Power spectrum of ";F$;" data stored in ";NME$
4000 REM *** CALCULATE f ***
4 010 KS=4*SQR(2*VAR)
4020 FI=1.772 4539#*LOG(60*DIA/KS)-5.436
4025 LPRINT "Equivalent grain size Ks = ";KS;"mm"
4030 PRINT "Friction factor f = ";l/(FI*FI)
4035 LPRINT "Friction factor f = " ;1/(FI*FI)
4040 PRINT:PRINT "Continue ?":INPUT QN$
4050 IF QN$="y" THEN GOTO 4 060
4055 IF QN$="YM THEN GOTO 4 060
4 057 END
4 060 CLOSE #1:CLOSE #2
4070 ERASE X0$,X,XX,PL,D,B$:CLS:GOTO 104
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; APPENDIX C

LINKING PHYSICAL ROUGHNESS TO HYDRAULIC RESISTANCE

In Cl a brief overview of some of the fundamentals regarding flow of fluid in closed

conduits and the associated friction losses is given. This is followed, in C2, by a look at the

essentials of fluid dynamics. These two sections are then brought together in C3 where the

particular case of turbulent flow in closed conduits is examined.

C l Friction Losses in Closed Conduit Flow

Flow of fluid in pipes may be regarded as either laminar or turbulent. Laminar flow occurs

when the paths of individual fluid particles do not cross one another and flow apparently

takes place in layers or laminae. Viscous forces dominate over inertia forces. In turbulent

flow, individual fluid particles follow random, erratic paths, with only their average velocity

in the direction of flow.

The state of flow of fluid in pipes is governed by the Reynolds Number, Re, which is defined

as the ratio of inertia to net viscous force in the fluid.

where p = fluid density

d = diameter of pipe

Q = mean velocity

H = dynamic viscosity

v = kinematic viscosity

Flow is regarded as laminar for Re < 2000. For Re higher than 5000 the flow is either

transitional or turbulent, depending on the characteristics of the conduit.
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The well-known Darcy-Weisbach1 formula for flow in pipes, developed around the middle

of the nineteenth century, relates head lost due to friction, Hf, to mean flow velocity and

physical features of the pipe itself:

h, = ^ (CD
f 2gd

where / = dimensionless coefficient known as the friction factor

/ = length over which Hf occurs

g = acceleration due to gravity

The assumption that f is constant, as implied by equation (Cl), is only applicable to fully-

developed flow.

When the flow is not fully-developed, f is variable and for laminar flow it can be shown that

/ = 21 (C2)
Re

That is, friction factor f is dependent only on the Reynolds number, and is independent of

the pipe roughness. Determination of f for Re > 2000 is more complicated. For sufficiently

low Re, all pipes will exhibit laminar flow.

For turbulent flow of a pipe flowing full when Re > 5000, there is a zone near the wall called

the viscous sub-layer. In this zone, secondary random fluctuations of velocity of fluid

particles, typical of turbulent flow, die out due to their proximity to the boundary, giving rise

to laminar flow. The thickness of this layer, 8, decreases with increasing Re. Flow behaviour

is defined as smooth as long as the viscous sub-layer thickness is greater than the height of

the roughness elements on the boundary. As Re increases, 5 decreases and as soon as the

bumps begin to protrude through the sub-layer, the flow behaviour deviates from that of

'According to Ven te Chow (Chow, 1959), this formula was formulated by Weisbach alone, and only
because of his work on pipe flow is Darcy's name associated with it.
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smooth pipes. The way in which it deviates is governed by the geometric characteristics of

the conduit.

Nikuradse (1933) investigated this phenomenon in tests performed on artificially-roughened

pipes. These were roughened with sand grains. Sand was sieved to obtain grains of a uniform

size. Each pipe was filled with a glue which was then allowed to drain out, leaving a thin

coating on the inside of the pipe. The pipe was then filled with uniformly sized sand, which

was thereafter allowed to flow out, leaving those grains in contact with the glue adhered to

the pipe wall.

Various pipe and grain size combinations were tested over a range of Re. These tests

indicated that friction factor f was, for constant Re, governed by the ratio of sand grain size,

k, to pipe diameter. This dimensionless ratio is known as the relative roughness.

These results are shown in figure Cl .

0.0025
2000 10* 10s

Reynolds Number
106

Figure Cl Resistance Coefficients for artificially roughened pipes (Rouse 1950)
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As can be seen, f becomes independent of Re once flow is completely turbulent (that is, at

high enough Re).

The smooth law relationship, first derived by Von Karman in 1930 and later put into a more

convenient form by Prandtl, is given by

~ = 4 1 o g 1 0 ( / ^ - 1-6
V7

For rough flow at high Re, f is independent of Re and is given by

_L = 41og,0(f) • 3.48

where R = pipe radius

Colebrook (1939), aided by CM.White, mathematically described the transition region

between smooth and fully rough laws by the equation

where d = pipe diameter

This equation, known as the Colebrook-White Equation, gives a smooth transition from

smooth law to rough law while including both as special cases and was derived from

experiments conducted on commercial pipes. In figure C2 below the deviation from

Nikuradse's results is clearly shown. The dip-and-rise displayed by Nikuradse's results is

typical of surfaces of regular roughness, while the behaviour of surfaces of random

roughness closely follows that represented by equation C3. In general, commercial pipes fall

into this random roughness category. Note, however, that for high enough u. (hence Re) both

curves converge, indicating that regular spacing is only a factor at low Reynolds numbers.
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Figure C2 Transition Law (Colebrook 1939)

If Nikuradse's results are plotted in terms of the parameters f'w - 21og(r/k) and k/<5, the curve

in figure (C3) is obtained. The fact that all of these data follow the same curve is evidence

that the magnitude of 6 relative to the bump heights actually does dictate whether flow is in

the smooth or rough regime, as mentioned previously.

As can be seen, the Colebrook-White equation (equation C3) is not explicit in f, making

solution for f an iterative process. Many formulae have been proposed for expressing f

directly for the entire range of k/d and Re. Possibly the best yet2 is that produced by

Haaland (1983) :

if 3.7 Id

2Massey (1989) makes this recommendation.
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Figure C3 Variation in roughness effect with relative thickness of laminar sub-layer

(Colebrook 1939)

Another way of simplifying the design procedure is to express equation C3 in chart form.

Moody (1944) did this successfully and the chart he prepared, shown in figure C4 below, is

still widely used in practice. Given both k/d and Re, the friction factor f may be read off

directly. Figure C4 is known as the Moody Diagram.

Another roughness coefficient often encountered when dealing with head losses in conduits

is "Manning's n", in spite of it originally having been developed for open channel flow. Use

of Manning's n may be preferred to Darcy-Weisbach fin that n (like k) is independent of the

diameter of the conduit. Specifying f alone for a pipe is not sufficient to describe the actual

roughness. For the same boundary roughness in pipes of different diameter, different values

of f result. The formula derived by Manning (1889) is given, in Metric units, by

where u =

n =

m =

So=

. 1
U = — J

n
velocity

Manning'

hydraulic

bed slope

2 1

«v

s n

radius
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Figure C4 Moody Diagram (Massey 1989)

The Darcy-Weisbach friction factor, f, and Manning's n are related by

1
- « 6

n - m N
L (C4)

or, for conduits flowing full

JL

Manning's n value is a purely empirical number (which is not dimensioniess), as is the value

used for k in finding f, and no greater accuracy is afforded by either one.

C7



Equation (C3) has been shown to yield accurate results, provided that the correct value for

k is used. It is in estimating the "roughness" k where discrepancies arise since k is the

equivalent grain diameter, that is, the grain diameter which, if uniformly coating the inside

of a smooth pipe, would, for the same Re, cause the same head loss as the pipe itself. This

value of k is related in some way to the physical roughness of the pipe concerned. The use

of k as a linear dimension representative of the roughness often leads to the assumption that

k is equivalent to roughness height, h. This would appear incorrect as roughness height alone

is not sufficient to completely describe the roughness.

Various authors have attempted to define roughness parameters k, f and n in terms of

physical roughness dimensions. Others have made efforts to simplify the estimation of

roughness parameters to be used for surfaces of particular characteristics.

C2 Fundamental Fluid Dynamics Relationships

The intention of this section is to be expository, not tutorial, so derivations of commonly

used equations are omitted. If these are required, they may be found in fluid dynamics texts

such as Batchelor (1967) or Hughes & Brighton (1967).

A start is made by stating the basic equations of continuity and momentum in differential

form.

Continuity:

i f + i.(p«) + i-(pv) + i-(pw) - o (C5)
dt dx dy dz

where u, v, w are velocities in x, y, z directions

or, in tensor notation
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dt dx.

For the case of incompressible fluid, density p is constant, and the continuity equation

simplifies to

dx dy dz

Momentum:

The momentum integral equation

' • ' I
where Fs

B

V

cv
cs

(MIE)

B.dv

=

=

is :

= —iVpdv + iVpV.dA

total surface force vector

body force vector

velocity vector

control volume

control surface

By considering the forces on a block of fluid of dimensions Ax,Ay,Az in Cartesian co-

ordinates, and by taking the limit as Ax,Ay,Az tend to zero and substituting into the MIE the

following is obtained:

Considering the x-direction :

* 3 ^ A ^ ^ ^ B (C6)
x

p( 3 v M)
dt dx dy dz dx dy dz

where atl is stress on face i in j direction

The above equations are theoretical, and cannot easily be used directly for real problems. In
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the sub-section C3 following, these are extended to the practical situation of pipe flow, which

is directly relevant to the purpose of this study.

C3 Turbulent Flow in Closed Conduits Flowing Full

In turbulent flow in pipes of constant cross-section, only the average motion is parallel to the

axis of the conduit with individual fluid particles moving in erratic paths. Turbulent flow is

characterised by the fact that, superimposed on the principal or average motion of the fluid,

are random secondary movements. The velocity of a fluid particle in turbulent flow is made

up of two components, a mean or time average component and a fluctuating component.

That is

u = u + u

where u

u

u'

velocity of fluid particle

mean (time average) velocity

fluctuating velocity component

At a particular point in the flow, velocity of the fluid varies randomly with time, as shown

in figure C5 below.

'8

Figure C5 Velocity fluctuation
time
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The time averaged velocity of the flow, a is defined as

r

T
u = - { udt

T J

where T is large.

Continuity Equation for turbulent flow

Taking the time average of equation C5,

dt etc, '

which implies

—— + —(p-Wi) + —(p"-0 = 0
dt dx{ dx

which, for incompressible flow, reduces to

—i =0

ax,

since p is constant.

Momentum Equation for Turbulent Flow

After substitution of

Uj = Ui + U'

P = P + P'

and taking the time average of both sides, equation C6 becomes

dut -dut $, a dH{
p ( — + Uj—) = —— + —({Jt— - pi

dt dxj dxj dxj dxj
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Where pUj'uj' are the Reynolds' stresses.

The equations represented by (C7) are known as the Navier Stokes Equations, and they give

the complete solution to any flow, including turbulent flow. However, they are often

computationally intractable and, for this reason, certain phenomenological theories have been

developed to enable their use in practical situations.

Phenomenological Theories to describe turbulent flow

The last expression in brackets in equation (C7) is known as the shear stress tensor, T;J, and

may be written in two dimensions as

du

which shows that total shear stress is made up of laminar and turbulent components.

This is simplified by the concept of eddy viscosity, e, defined implicitly in the relation

Eddy viscosity and Reynolds' stresses are thus related by the equation

Note that eddy viscosity is not constant, but varies according to flow conditions.

An important phenomenological theory is Prandtl's hypothesis of the mixing length. The

mixing length / is defined as the average distance, perpendicular to the main flow direction,

in which a small particle of fluid, moving toward slower moving layers, loses its extra

momentum and takes on the velocity of its new surrounds. Mixing length is defined in the

relation

C12



(C8)

If the assumption is made that mixing length / varies linearly with distance from the

boundary, y, ie

where K = constant

The constant K is known as the universal turbulence constant.

Using this relation, equation (C8) may be written as

au |2

LeGrange and Rooseboom (1993) showed by deterministic arguments using cylindrical eddies

at the bed that K=(2T)"'A=0.3989. This matches the value of K=0.40 generally accepted and

confirmed experimentally.

Substituting for K

x = -f^i^p (C9)
2n dy

Using equation (C9) the shear stress at any level y from the boundary may be found,

provided that the velocity gradient at this level is known.

The universal log law of the velocity distribution

From equation (C9), assuming that u varies in the y direction only, the partial becomes a full

derivative, and
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Using the boundary condition r=r0 at y=y0, this differential equation may be integrated to

get

u =

Introducing the shear velocity, u.= (TQ/P)V>, the equation for the velocity distribution becomes

u = fin w, ln(^-) (CIO)

which is known as the Universal Log Law. Through experimentation, the value for y0 has

been found to be given by

In y0 = Hf) ~ 2.2

However, in spite of its name, equation (CIO) does not apply over the entire body of the

flow. This is because of the inclusion of u. in the expression. Since u. is proportional to the

shear stress at the bed, T0) the expression only holds where T**T0. That is, the universal log

law is only applicable near the boundary. This is easily shown if equation (CIO) is

differentiated, and the resulting expression for du/dy is substituted into equation <C9). The

result obtained is that T=T0.

The correct velocity distribution

The correct velocity distribution may be derived by considering the variation of shear stress

across the section of a pipe. Consider flow of a fluid in a circular pipe of radius R, as shown

in figure C6 below.
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Flow

Weight pgAix

Figure C6 Fluid element in pipe flow (Massey 1989)

For fully-developed flow, a fluid element of length Sx within the pipe experiences no net

force. That is

pA - (p+bp)A - p#4.6x.cos8 + T0P.8X = 0

where A = cross-sectional area

P = perimeter

r0 = mean boundary shear stress

which may be simplified to

x^.bx = A(bp + pg.

For uniform boundary roughness in a circular section, r0 is constant around perimeter, P. In

the limit as 5x-»0, the above equation simplifies to

where p* = piezometric pressure = p+pgz

For a circular section flowing full, this may be written as

0 ~ 2 dx

and this holds for cylindrical fluid elements of any radius r<R. Using the pipe boundary as
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the origin for y, ie r=R-y,

T - 2 dx

where r = shear stress at R-y from boundary

Combining the relations for T and r0 yields

This applies over the whole cross section, as opposed to only near the boundary and in

addition applies in laminar or turbulent flow.

Combining equation (C9) with the linear shear stress variation above, yields

dy y2 p R

Making the substitution

then rearranging and integrating equation (Cll) with respect to y, using the boundary

condition at y=R, 11=^=11^,

u = K.y^(2z + ln| — | ) + «ft (C12)
z+l

Equation (C12) is the full velocity distribution for turbulent flow in a circular pipe and it

holds throughout the flow, except for a very thin region near the wall (called the viscous sub-

layer), which is defined and discussed later.
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When z-»l (ie y-»0), equation (C12) simplifies to equation (CIO). This is shown in figure Cl

below, where velocity u is plotted against y for equations (CIO) and (C12), where

uR = 1.48m/s, u.=0.0452m/s.
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Figure C7 Time averaged velocity distributions across a pipe

Differentiating equation (C12) with respect to y yields

dy

and from this it may be seen that

for y=R du/dy = 0

for y=0 du/dy = u.(2x)*/y

If the log law equation (CIO) is also differentiated with respect to y, the result is

dy

By comparison with the derivative of equation (C12) it can be seen, once again, that the log

law only holds near the boundary.

On these grounds it is concluded that equation (C12), the true velocity distribution in a pipe,
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is more accurate than equation (C9), the universal log law. However, the term uR (the

velocity at the centre of the pipe) in equation (C12) needs further description.

Rearranging equation (C12), using (2ir)l/4 = l/K, yields

= 2v/l-T| + In -̂  ! + CKU

where 17 = y/R

C = KUR/U.

As JJ-»O,

+ C

where

lim

That is

b ( i ) +2 - ln(4) + C

From this

— = ln(^) + 0.614 + C (C13)
ut R

In order to evaluate C, experimental data is used in the log law equation, which is valid near

the wall. The required form of the log law must first be derived.

Recall the concept of eddy viscosity in the relation
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, .du
T = p(v + e)—-

dy

(ie by equation C9, e = ^y2 du/dy)

Close to the boundary, v>e (ie the kinematic dominates over the eddy viscosity), which

implies that

du du
x = p V — = \L —

dy dy

Integration of this, using the boundary condition : at y=0, u=0 and T=T0, yields

JL (C14)
IT v

O'Connor (1995) suggests that further from the wall (where e>v)f

€ (C15)
V V

Using this relation, by integration of equation (C9) O'Connor gives

(C16)
Ut K V

where Bo = constant

This is another form of the log law, equation (CIO). (Incidentally this derivation makes the

error of including u. into (C15), which again implies that T=T 0 which is not the case away

from the wall)..

O'Connor shows that the constant BQ in equation (C16) has value B0=5.3±0.35, which falls

within the range for Bo found experimentally by Hinze (1975) of 5.O<Bo<5.5.

From (C16), using BO=5.3,

f
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— = ln(—) + ln( ) + 5.3K (C17)
tt, R V

Since both the log law and the true velocity distribution (equations C10 and C12 respectively)

hold near the boundary, equations (C17) and (C13) must be equivalent. This yields

C = ln(— ) + 5.3K - 0.614
v

Using K=0 .40 ,

uR
uR = 2.5uJ In(-^-) + 1.506]

which may be used in the true velocity distribution, equation (C12), to give

— = -[2z + l n | ^ | + l n ( — ) - 0.614] + 5.3 (C18)
Ut K Z + l V

This important equation will now be used to describe the friction factor in smooth pipes, and

in a modified form to describe the velocity variation in the body of fully-developed rough

turbulent flow.

Turbulent flow in smooth pipes

For smooth turbulent flow, there exists a thin region adjacent to the boundary called the

laminar or viscous sub-layer. In this zone flow is always laminar, and du/dy is constant. A

constant velocity gradient, du/dy, implies that shear stress, r, is constant and equal therefore

to T0. That is, although the shear stress does vary linearly over the entire section, it becomes

nearly constant in the very thin region immediately adjacent to the boundary.

This approximation is reasonable when it is realised that 5, the thickness of the viscous sub-

layer is less than 1 per cent of the radius of the conduit for low Re (30000) and less than 0.1

per cent for moderate Re (100000).
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In figure C8 below, the deviation of the log law (equation CIO) from the linear velocity

distribution in the laminar sub-layer is shown. The thickness of the laminar sub-layer is

denoted by 5.

Figure C8 Velocity distribution in laminar sub-layer

Note that at y=5, u=u$. The false origin of the log law is at y=ys where y,-=s 5/100, so that

ys<R/104 in typical flow. This is the distance from the smooth boundary where, according

to equation (CIO), the velocity u=0, so can be thought to be the wall of the conduit from

the turbulent velocity distribution's point of view.

LeGrange and Rooseboom (1993) indicated that power balance in an open channel may be

written as :

That is

Input stream power = Applied stream power

jp.g.S.u.dy = JT—dy
y, y,

du
—i
dy

where D depth of flow

Adapting this to pipe flow, the left hand side of the above equation becomes
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power p = f p.g.hfu.dy = p.g.hfQ

Power per unit length is therefore given by

y,
dy

(C19)

Now, from equation (Cll)

A
(C20)

From C9

and substituting for du/dy from C20,

(C21)

so that (C19) becomes

£ - jf

or
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3 * j

where <t>CR> y j = ( — ) 2 f - — — dy
R J y

y, '

By definition of friction factor, f

Combining the above two relations with equation (C19) yields

i

=

and this yields

- -
/ y ff f(R-y) . _ 1 troo\
~—-— I ———— ay = 1 \\-,zi)

— y

Integrating and simplifying gives

Jf r 5 3 '* 2 1 1

For ys<3R (which is generally the case as seen above), the above equation (C23) may be

approximated by the very much simpler form

5 3 2

which reduces to

,2d, 46
] (C24)

1 5
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Within the viscous sub-layer, only laminar flow occurs and so the relation r=^t(du/dy) holds.

This may be integrated using the boundary conditions u=0 and T=T0 at y=0. Combining this

with the log law and equation (C14) gives

-I = ft in(A) = __i
». y* v

Now, the thickness of the laminar sub-layer is given by (Rouse 1950)

6M, U. _- s
a r- • (±) = 12 ± 4

By experiment it has been found that (Rouse 1950)

- = 105
y,

which implies that

hu
- = 11.63

which is within the expected range.

If it is assumed that this is an accurate relationship, then

- J- = U-63v
y* ~ 105 105M,

and this when substituted into equation (C18) yields the following

1 2J.105.M, 46

{f H-63v 15

which simplifies to
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— = 4.08 logl0(ReJj) - 0.921 (C25)

For comparison, Massey gives the following equation for turbulent flow in smooth pipes :

— = 41og10(/te\#) - 0.4 (C26)

if

The difference between the constants in the above equation and equation (C25) is directly due

to the sub-layer thickness estimate.

For bxxJv = 8, constant = -2.84

5nJp = 16, constant = +1.61

6\xJp = 12.563, constant = -0.4 (as in equation C26)

Since the values of 8uJu and 6/ys are obtained experimentally, and not known to a high

degree of accuracy, the constants in equations (C25) and (C26) are both acceptable.

Note that the only assumptions made here {other than Newtonian mechanics applied to fluid

flow) are the experimentally-derived relationships :

• the value of the mixing length constant, K, in the Prandtl mixing length

law

• 6 = 105ys from experimental data.

These two assumptions are equivalent to fitting the constant in equations (C25) and (C26) to

data derived from experiments on pipes flowing smoothly.

Thus, using basic fluid dynamic equations together with power balance in pipe flow over a

smooth surface, the generally-accepted smooth law equation has been derived. Exactly the

same principles will therefore be applied in deriving an equation for rough flow.
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Turbulent flow in rough pipes

The geometry as used for smooth pipes needs to be modified for the derivation of rough flow

equations. In a personal communication, Rooseboom (1995) suggested that energy lost in

flow over rough surfaces is due to eddies formed at the boundary. He proposed a model (see

LeGrange & Rooseboom 1993) of a cylindrical eddy formed behind a roughness element on

the boundary, as shown in figure C9 below.

Figure C9 Eddy formed behind roughness element

In this model, the shear stress is assumed constant over the eddy as was done for the laminar

sub-layer when dealing with a smooth boundary. This is predicted in the assumption that the

eddy is not only rotating as a forced vortex (fixed cylinder) but rolling along the solid surface

so that there is a linear variation of velocity vertically over its diameter. The diameter of the

cylindrical eddy is equal to the height of the roughness element producing it, and the origin

for y is at the centre of the eddy, 0.

Input stream power may then be written

f p.g.SQ.u dy

Using the same arguments and derivations as for the smooth boundary because the geometries
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of the velocity distributions in figures C8 and C9 are the same, leads immediately to an

equation like (C24),

4 ^ [ ( ^ ) - ^ ] (C27)
is y* 15 .

the only difference being that y, is replaced by y0.

Again, from the point of view of the velocity distribution, the wall of the pipe is at y0, but

the origin of the flow is at y=0, midway between troughs and crests of the bumps.

Now, using the linear velocity distribution over the eddy (implied by the constant shear stress

assumption), at y=Ro, u=2u0, where u0 is the velocity at the centre of the eddy. The

corresponding velocity at y=Ro found using the log law (which has been shown to be valid

near the boundary) is

k<—) <C 2 8)

Not only must velocities from both the logarithmic and linear velocity distributions match at

y=Ro, but so too must the velocity gradients. Using the linear velocity distribution,

du _ u
dy y

Using the logarithmic variation

"o

Substituting from equation C28 for UQ yields

y ''

and at the point where y = Ro,
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^ = exp(2) = 7.39

To illustrate the application of this, consider an otherwise smooth surface uniformly covered

with single-sized sand grains of diameter k. By definition, k is as quoted by Nikuradse

(1933). The effective boundary of the flow occurs at k/2 from the smooth surface. The radius

of the eddy resulting from one such sand grain is given by R<> = k/4, as shown in figure CIO

below.

Figure CIO Grain diameter vs eddy size

Now, RQ = 7.39 y0, and k =

Therefore

30
(C29)

which is a result quoted by many authors, corroborating the assumption made in the

derivation of equation (C28).

This result may be used in equation (C27) to give
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- 1 = 4.08.1og10(|) + 1.82
if k

(C30)

This compares favourably with the fully-developed turbulent flow equation for rough pipes

found in Massey (equation 8.51) which is given by

^ = 4 log10A 2.28 (C31)

Once again, the constants in the two equations differ. However, they do not differ by very

much and the resulting f-values given are very similar as shown in Table Cl below.

Table Cl Comparison of equations (C30) and (C31)

k/d

0.0001

0.0004

0.001

0.004

0.01

0.04

f (C30)

0.0030

0.0041

0.0051

0.0074

0.0100

0.0177

f (C31)

0.0030

0.0040

0.0049

0.0071

0.0095

0.0161

The corroboration between these two equations demonstrates that the thinking behind the

derivation of equation (C30) is a reasonable model of the reality which is phenomenologically

described by equation (C31). This point is crucial, because the assumptions underlying the

fluid interaction and the geometry of the boundary helps to give precision to the meaning of

k and y0. In particular, it is now clear that the "edge" of the pipe in rough turbulent flow is

midway between troughs and crests of the roughness.

As further evidence of the correctness of the assumptions made here, using equation (C12),

the velocity defect may be written
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uB-u

z+1

which is now compared to some experimental results.

Together with the log law, this is plotted against data obtained by Laufer (1954) in figure

C l l below. As can be seen, the equation derived in this study (equation (C12)) fits these data

very well.

(uR-u)/u.

14

12

10
8

6

2
0

— — log law (CIO)

+ + + data

equation (CIS)

0.01 0.02 0.05 0.1 0.2 0.5 I

y/R

Figure C l l Verification of the velocity defect law for turbulent flow in a tube (Monin and

Yaglom, 1971).

Turbulent Flow in a Wide Rectangular Channel

Although not of major significance in this study, the equation relating u and u. for a wide

rectangular channel may be derived using equation (C9).

The variation of shear stress with depth in such a channel is given by

where D depth of flow
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Substituting this into equation (C9) and performing the same operations as before yields

u = u,,/2n (2z + ln | -^- | ) + uD

where uD = velocity at y=D

When combined with power balance in an open channel, the resulting equation in terms of

friction factor, f, is

2^KDyJM
ff 1 3 ^ 2 1 1
SJ D2 (p-yJ)2+D2

which is comparable to equation (C23) and, for y o ^ D , simplifies to

±
if
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APPENDIX D

SELECTION OF METHODS RELATING PHYSICAL ROUGHNESS TO

HYDRAULIC RESISTANCE

In this appendix various methods of obtaining hydraulic resistance from physical roughness

are examined. Firstly, it is shown how the methods proposed by Morris (1955 and 1959)

were to be used, and then how these were found to be inappropriate. Thereafter the details

of the data from concrete pipes and sinusoidal roughnesses, used for testing the remaining

methods, are presented. Lastly, the actual test results of these methods when applied to the

data under consideration are given, and from these the most accurate method(s) are selected.

Dl Methods suggested by Morris (1954 and 1959)

Morris (1954 & 1959) presented a rational method of calculating friction factor, f, using

physical roughness dimensions for each of the five flow types he identified. The equations

for each case will first be elaborated upon, and then it will be shown how these might be

applied to the tunnels sampled in this study. His five sets are :

• For "smooth turbulent" flow, the friction factor may be obtained from the smooth law

equation (from equation (C26))

• i = 4 log10 Re{f - 0.4
V7

• For "normal turbulent" flow

j -4

where r = radius of pipe

X = longitudinal spacing of roughness elements.

"Semi-smooth turbulent" flow (or isolated roughness flow) occurs when an otherwise
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smooth surface is interspersed with isolated roughness elements. The overall friction factor

is obtained by summing the f's due to the different textures. That is

where f.

n

s

P

CD

Uh u P

smooth conduit friction factor

number of individual elements in periphery

clear peripheral spacing between elements

wetted perimeter

coefficient of drag of elements

velocity at roughness crests

Nikuradse (1933) showed that

^ ) 2 = 16.8

Morris suggested that if this is assumed to be valid here then, as an approximation, the above

relation can be used to give

16.8 Cn nf
-(I-—)]

k/h P
(Dl)

Equation (Dl) was tested by Morris using experimental test results and was shown to

produce acceptable agreement with measured friction factors.

• When dealing with "hyper-turbulent" (or wake interference) flow, there is no part of the

wall over which a laminar boundary layer exists. Because the wakes from successive

elements interfere with each other, individual effects are not linearly additive. Morris gives

the following equation for this type of flow :

~ = 4 U>glo(-f) + 3,5 , shape) (D2)

The function $ has been shown to decrease with increasing Re and may be regarded as a

transition function, the magnitude of which decreases as the width of the zone of intense
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turbulence near the wall decreases. The exact form of this transition function is dependent

on the shapes of the roughness elements and must be determined experimentally. For high

Re this equation approaches that for his "normal" turbulent flow, where f is primarily

dependent on the roughness spacing and is described by the first two terms on the right-hand-

side of equation (D2).

• For "quasi-smooth" or skimming flow, Morris proposed that the total energy consumed

is a sum of that required to maintain the flow in a smooth pipe, and of that required to

maintain the stable vortices situated between the closely-spaced roughness elements.

He suggests that an approximate friction factor equation for this is given by

Js V(min V, h])

where cw = constant such that cwuw=velocity at vortex perimeter

If a surface has such variable roughness that flow of more than one type is produced, then

Morris states that friction factors for each type may be added together to give the apparent

friction factor for the surface as a whole.

For closely-spaced roughness elements, wake interference or hyper-turbulent flow is usually

produced. Where there are, for example, two different sizes of roughness elements present,

the overall effect is one of the combined effects of each of the two roughness sizes. If the

roughness elements are predominantly of one size, with occasional larger elements, then the

wake-interference phenomena will be controlled by the smaller elements, with the larger

elements contributing to the overall roughness as isolated elements.

The experiments performed by Colebrook and White (1937) illustrated this. At low Re the

thickness of the viscous sub-layer,6, is large and the isolated roughness effect of the larger

elements controlled the flow. As Re increases and 5 decreases, so the smaller grains become

more effective, producing wake-interference flow.
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Morris states that wake-interference flow is not usually encountered in practice and that most

commercial pipes would be more likely to exhibit skimming or isolated roughness flow.

In the early parts of this study, and drawing from Morris's arguments an initial attempt was

made to link physical and hydraulic roughness at high Reynolds numbers. Isolated roughness

flow was assumed, and data from the tunnels sampled in this study were considered, so that

effects of roughness could be linearly added. Equation (Dl) may be written as

/ = fs[\ + G. | ] (D4)

where

G = 16.8 CD(1 - ^ ) (D5)

is essentially constant for a given conduit.

By definition, the area under a power spectrum is equal to the variance of the input data. So,

for frequency 4>{, the portion of the total variance associated with the corresponding

wavelength, Xj, is equal to Cxx(4>).d<t>.

Now, from equation (2.1), a=v/2ff, and the bump height hj, which is twice the amplitude,

associated with this elemental sinusoid is given by

h: =

Data from the scanner takes the form of distances measured from a base-line at 0.5 mm

intervals. Therefore, since frequency is the inverse of wavelength,

Substitution of this into equation (D4) gives :
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This gives the contribution to the overall friction factor for the specific roughness of

wavelength \ . In order to calculate this for the entire surface, the effects of all relevant

wavelengths need to be summed. This leads to the formula

1

r V ^ 3 * ? 2]
i - l

Once the power spectrum has been calculated, and the relevant information obtained from

it, the only unknowns in this equation are G and A<f>. The constant G is related to the

coefficient of drag of the roughness elements (ie shape), as well as the proportion of area

obstructing the flow. Morris (1959) gives values for CD for various shapes of roughness

elements. For completely random roughness, the value of (1-ns/P) must be equal to 0.5

(statistically). The problem arises in the selection of the value of A<f>.

The concrete pipe data were used to calibrate this formula. Since f for these pipes is known,

the value for the constant G may be found.

Equation (D6) requires calibration before it can be used directly in the calculation of friction

factor as there is more than one unknown in the equation.

The smooth flow friction factor, f,, may be found using equation (C26). The constant G -

16.8 CD0-ns/P).

Let

* .a (D7)

Then equation (D6) may be re-stated as
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i - l

The summation in this equation may be performed from the power spectrum calculated for

each data set, and for known values of f and fs, the equation may be solved for G'. This

value of G' may then be used in the formula for data taken from a surface of unknown f. In

this way the concrete pipe data (both f and f, known) are used to evaluate the constant G\

and, in so doing, calibrate equation (D6).

For each of the pipes sampled a value of G' was calculated, the mean of which was

G'=0.174. As an initial test, the value of G'=0.17 was used in the formula applied to

selected roughness data taken from sandstone, granite/gneiss and shotcrete surfaces.

From this initial test, it was found that resulting values for friction factor f were generally

unacceptably high. Representative values from selected data sets for the different surface

types are given below :

f=0.01005 (n=0.0144 to n=0.0235)

f=0.0086 (n=0.0182 to n=0.0205)

f=0.0139 (n=0.0219 ton =0.0257)

Therefore, before proceeding further the method was checked and it was found that

assumptions on which the various equations were based were not entirely applicable, because

of the following argument.

The isolated roughness equation (equation Dl) was made by Morris to depend on the

relation, derived by Nikuradse, (u^/u)2 = 16.8f.. This leads to equation (D4).

For any particular surface, Gh/X is constant, being purely defined by roughness geometry.

Therefore, by equation (D4), the ratio f/f, must be constant. The Moody diagram indicates

that for fully turbulent, rough flow, f becomes constant while f, continues to decrease with

increasing Re. Therefore f/f, cannot remain constant over the whole range of Re applicable
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in rough turbulent flow. This indicates that the method developed by Morris leading to

equation (D8) above is not valid. Since flow in water tunnels is likely to occur for Reynolds

number of the order of 5x10*, this method, which employs simple linear superposition of

roughness effects, is discarded from further analysis.

D2 Concrete pipe and artificial sinusoidal roughnesses

Concrete Pipes

The scanner was used in the collection of roughness data from a number of spun concrete

pipes ranging in diameter from 900mm to 1500mm. Assuming k=0,3mm (lower end of

range suggested in Figure (C4) due to Massey, 1989) a value calculated using equation (C4)

for Manning's n in such pipes yields n =0.0110. It is felt that this figure would apply only

to those pipes manufactured under strict quality control, and that slightly higher values for

n may be more representative of most pipes actually used in practice.

From the physical roughness data obtained by the scanner from the pipes sampled, values for

Manning's n were estimated, using the various methods presented in Chapter 3. These results

are presented in Table Dl below.

Table Dl Mean values for Manning's n in concrete pipes estimated by various methods

method

A : Heerman, equation (3.5)

B : Colebrook-White, k=hn=2.83ff

C : Colebrook-White, k=2ho=5.66o-

D : Colebrook-White, k=hx

E : Colebrook-White, k=2hx

Expected value from eg. C4

Manning's n

0.0100

0.0117

0.0126

0.0113

0.0122

0.0110
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From Table Dl the following can be noted :

• Method A yields the most accurate results when compared to the expected

value for n (exactly equal).

• Methods C and E (using k=2h) are the least accurate.

• Methods B and D are reasonably accurate and give very similar results on the

expected "high" side of n=0.010.

Sinusoidal roughnesses

Not only did Heerman (1968) present a method for calculating f from physical roughness,

but he also presented the experimental data on which this was based. A number of roughness

types were tested, ranging from random soil roughness to artificial roughness comprising

roughness elements of known size and shape stuck to a smooth boundary. In attempting to

find a link, if any, between resistance to flow and longitudinal spacing of roughness,

Heerman tested circular conduits with sinusoidal boundary roughness, using air as the fluid.

The dimensions (namely amplitude and wavelength) of the sinusoids tested were given, and

since these dimensions are sufficient to uniquely describe each sinusoid, roughness data of

the same form could be analysed to test the methods presented in Chapter 4.

Heerman used nine different boundary sinusoids, consisting of three different wavelengths

and three different amplitudes obtained by casting plaster in 150mm diameter pipe (the

internal diameters varied with the roughness used). The standard deviations of the surfaces

were measured by two methods. The first was from the average peak to valley amplitude (a 1)

and the second from equally-spaced measurements on the roughness profile (o2).

The dimensions of the nine different sinusoidal roughnesses are given in Table D2 below.

The diameters of the pipes vary with the various roughness configurations. These diameters

were measured by dividing the volume enclosed by a length of a pipe section by the length,
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which is nearly equivalent to the suggestion made in Appendix C, which is that the effective

wall should be at the mid range of the roughness elements.

Table D2 Sinusoidal Roughnesses (Heerman 1968)

pipe no.

1

2

3

4

5

6

7

8

9

dia

(m)

0.1035

0.1025

0.1171

0.1161

0.1135

0.1148

0.1173

0.1159

0.1068

wavelength

(mm)

150

76

150

76

150
76

38

38

38

amplitude

(mm)

8.75

8.50

3.54

3.26

1.22

1.55

0.88

2.65

9.02

ffl

(mm)

6.19

6.01

2.50

2.31

0.86

1.10

0.63

1.88

6.38

<x2

(mm)

6.97

7.07

2.61

2.47

0.91

1.15

0.79

1.93

7.39

For each roughness, Heerman made head loss measurements at various values of Re. From

each of these the shear velocity u. was calculated, and this was used to calculate friction

factor, f. Knowing the physical dimensions of boundary roughness and the corresponding f-

value for each pipe, the methods of Chapter 4 could be tested for accuracy.

The results obtained by Heerman are presented graphically in Figure Dl below. Evident in

this figure is that pipes of different roughness were not all tested over the same range of Re.

There was some concern as to whether or not complete rough turbulence had been attained

in each case, as the values for f for certain pipes appeared not to become constant with Re,

and most formulae used for determination of f assume rough turbulence. Therefore, for the

comparison of measured and calculated f-values, the friction factors for the highest Reynolds

numbers in each pipe were used. Figure D2 shows these comparisons.
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From figure D2, and by reference to the Moody diagram, it can be seen that pipes 1, 2 and

9 are unrealistically rough. This is also evident when considering the pipe geometry

presented in Table D2. If the approximation is made that k=h (which has been shown to be

reasonable), then k/d ratios for pipes 1, 2 and 9 are 0.17, 0.16 and 0.17 respectively, all of

which are off the scale of the Moody diagram.

As shown in figure D2, all formulae proposed, including that by Heerman himself, give

values of f very different to those measured in these three pipes. In the remaining pipes, the

measured and calculated friction factors do seem to correspond fairly well.

It is true that the methods presented all assume fully-developed rough turbulent flow over

surfaces of random roughness. Here, sinusoidal roughness is being considered which will

(according to figure C2 and its associated argument) exhibit slightly different behaviour over

the transition range of Re. The measured f-values used in this comparison are those taken

at the highest values of Re. For pipes 3 to 8, these are as presented in Table D3, together

with the corresponding approximate k/d values (calculated making the assumption that k=h).

Table D3 Reynolds number and k/d ratio

pipe number

3

4

5

6

7

8

Re

6.05x10*

5.29X104

11.43X104

12.45X104

11.99x10*

4.62X104

k/d

0.06

0.06

0.02

0.027

0.015

0.046

From the Moody diagram it can be seen that these combinations of Re and k/d all ensure that

the respective f-values are for fully rough turbulent flow. Consequently, the characteristic

"dip and rise" of the f-Re curve for pipes of regular (as opposed to random) roughness

should not have any influence on the comparisons being made.
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In order to select the formula (or method) yielding the most accurate values for f (compared

to those measured), the sums of the squares of the deviations from the measured f-values for

each method were calculated. The results for pipes 1, 2 and 9 were omitted. Table D4 below

shows the values of the sums of squares for each method.

Table D4 Sums of Squares of differences between measured and predicted friction

factors using Heerman's data

A

B

C

D

E

Method

: Heerman

: k=hff

: k=2hff

: k = h x

: k=2hx

sum of

squares

0.000637

0.000461

0.000663

0.000463

0.000612

From the above table, methods B and D are seen to be the most accurate. This indicates that

the assumption that k=h is better than that of k=2h with the Colebrook-White equation. Also

shown here is the lack of dependence on the method used for evaluating h (ie mean range

and variance yield similar results for f). It is strange that method A (Heerman) does not yield

results of a satisfactory degree of accuracy over surfaces created by him for his study, but

is not surprising in the light of the careful fluid dynamic arguments presented in Appendix

C.

Summary

From the testing of methods over the two different surface types given above, the most

accurate method for the calculation of f from physical boundary roughness measurements is

method B closely followed (within 0.5% of the sum of squares of difference) by method D.

The method of choice is method D because it is more robust statistically than method B. This
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method (D) involves the use of the roughness height, hx, calculated by the mean range

technique. This value for hx is then used in the Colebrook-White equation with k=h x to yield

the estimate for friction factor.

It has also been shown that using the standard deviation instead of the mean range in the

estimate of h yields results of a comparable degree of accuracy.
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APPENDIX E

GUIDELINES FOR THE COLLECTION OF PHYSICAL

ROUGHNESS DATA AND USE OF DATA ALREADY COLLECTED

The purpose of this chapter is provide all the necessary and useful information which would

be required to either operate the scanner in collecting further physical roughness data, or to

make full use of that data already collected and used in this study.

There are certain basic pieces of apparatus without which data collection is not possible.

Other items which have been found useful are also mentioned here which, although not

essential, have been found to improve efficiency.

El Basic Apparatus

* To start with, obviously the laser scanner itself is the single most important piece of

apparatus. There is an on/off switch next to the fuse on the left hand side (as the scanner

faces the wall) of the box mounted on top of the protective casing. On the right hand side

is the power input. This power is delivered by the 12 Volt scanner batteries (of which there

are four, two of which are connected in parallel for use at any one time - the other two are

for backup). At the back of the box is the computer cable jack plug, as well as the wire to

the laser unit itself, which sits within the casing.

* The scanner is supported by the T-bar leg, which has a height adjustor which is needed

for triple-run scanning. All three of these are separate items.

* The computer and light used for photography are both powered by the 12 Volt

accumulator. The computer has a rechargeable battery which supplies its power while the

light is connected to the accumulator.

* The computer and scanner are connected via a cable which runs from the serial port of

the computer to the jack plug at the back of the box on the scanner casing.
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* The software that drives the apparatus is called "SCANNER.EXE" and is stored on the

hard drive of the computer. It may also be found on the disk in the sleeve at the back of this

document. A brief description of how this friendly program is used is given later. Because

each data set is plotted on the screen, it was found convenient to run a batch file which

would enter a spreadsheet for this plotting each time the program SCANNER was exited.

* Spraypaint and paper towel were used extensively in surface preparation. All wet areas

were mopped dry, and over those zones where reflectivity was considered a potential

problem, spraypaint was applied. A feel for those areas requiring painting is soon gained,

and this speeds up the process.

* For the purpose of photographing the wall, it is considered essential that side-lighting be

used. In this way the relief of the wall is highlighted. The light should be set up two to three

metres upstream or downstream of the relevant wall section. Use of a low-light film, such

as 400 ASA, is strongly recommended.

E2 Peripherals

* The painting guide is a strip of timber mounted on a cross-piece which may be inserted

into the T-bar leg in the same way as the scanner. When this is done, the top of the

horizontal timber lies slightly below the line along which the scanner will read when placed

in the same position. Spraypaint is then applied along the top of this in a 50-70mm wide

band. This ensures that the paint is applied in the correct place for the scanner to read over,

and minimises wastage.

* The paint is also used to indicate chainage in the photographs where necessary (ie where

there are no existing chainage plates).

* To minimise damage to delicate equipment, foam rubber was placed on the flatcar on top

of which the apparatus was placed. This was particularly important for the trips into and out

of the tunnel, which were done at higher speed than the short distances between set ups.
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* A large plastic sheet was used to cover the equipment when not in use. This was done to

prevent water dripping from the tunnel crown from damaging the apparatus.

* Since tunnels are notoriously wet and muddy, gumboots are considered essential footwear.

* A torch also proved useful, as did cap-lamps for hard hats, in the darkness of the tunnels.

* A battery charger was made for charging the scanner batteries. Use of this ensured that

these batteries were always fully-charged, and could serve as a backup for the accumulator

if needed. The charger was not needed inside tunnels.

E3 Operation

The finer details of the operation of the apparatus are given here, extending the overview

given in Chapter 2.

Once all the equipment has been connected correctly, the scanner and computer are switched

on. The program SCANNER is then run which immediately offers the user three options.

Options 1 and 3 are self-explanatory, and option 2 should never need to be used, but was

developed for the designer to check on the operation of the apparatus. The program then

prompts the user for certain information pertaining to the section to be scanned. The date and

time are inserted automatically from the system date and time of the computer. The data file

path is specified for the place in which the roughness data is to be stored. The default of this

is to store the data in the same place as that from which the program SCANNER was run.

Under tunnel name, the operator may specify the prefix of the file save name. The.default

of this is to assign the prefix "DATA" to all files. The extension is the suffix for the file save

name, and this is a number which is automatically incremented as data sets are obtained (ie

from 001 for the first to, say, 010 for the tenth data set of that tunnel). For example, the

sixth set of data will be named DATA.006. Chainage, rock type, rock condition and

description are all to be entered by the user. Two step sizes are available, namely 0.5 and

0.25 mm. These are specified in hundredths of a millimetre, ie either 50 or 25 hundredths.

The program will then prompt the user for verification of the input details of the scan about
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to be performed. If the answer "y" for yes is given, the scanner is started. First the laser unit

is moved to the end of the track, from which it will begin to scan. It then moves along,

taking distance readings in the interval specified, The data read from the wall is passed

immediately to the computer, and can be viewed on the screen as it passes into memory.

£4 Making use of Collected Data

All of the tunnel roughness data collected in this study have been stored in archive form on

the stiffie diskettes in the sleeve at the back of this document. The file compressor, PKZIP,

was used to compress the files, and is included on the diskettes, together with the program

PKUNZIP, which uncompresses the files for use. Each complete set of compressed data files

from a tunnel is stored under a relevant name. These names are as follows :

EMOL.ZIP - data from Emolweni Tunnel

CLER.ZIP - data from Clermont Tunnel

NGJS.ZIP - data from Ngoajane South Drive

NGJN.ZIP - data from Ngoajane North Drive

To uncompress any of these, run PKUNZIP. For example, to unzip the Emolweni Tunnel

data, type "pkunzip emol". The program PKUNZIP together with the zipped file must be

installed in the directory in which the unzipped data is required. Help in using PKZIP and

PKUNZIP is obtained by typing "PKZIP", with no extension.

Data sets taken from individual setups are numbered sequentially, in the order in which they

were taken, and are written in ASCII format, which may easily be imported into other

packages for analysis.

Each file contains a descriptive header, as well as the physical roughness data. Figure El

below shows the first few lines of the file called C:\QPRO\DATA.015. Below the header,

the left-most number is the step number at which the corresponding distance reading was

taken. The distance between steps is specified by the user as stepsize (in hundredths of a

millimetre). Thus in figure El the interval is 0.5mm.
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Operator Name

Date :

Time :

Data File Path

Tunnel Name

Extension :

Chainage

Rock type

Rock condition

Description :

: Pennington

06/03/1994

11:29

: C:\QPRO\

: DATA

015

0000003900

: granite

: dry, dusted

fissured

Stepsize l/100mm: 50

Distance = voltage/4.096*40.0

0000 Voltage=

0001 Voltage=

0002 Voltage=

0003 Voltage=

0004 Voltage=

0005 Voltage=

0.000 Distance=

3.955 Distance=

3.943 Distance=

3.945 Distance=

3.951 Distance=

4.008 Distance=

0

38

38

38

38

39

00

.62

.50

.52

.58

.14

Figure El SCANNER data sample
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APPENDIX F

PHOTOGRAPHS OF TUNNEL WALLS USING SIDE LIGHTING



Plate Fl Emolweni Tunnel

Chainages 400 to 1100

Fl



Plate F2 Emolweni Tunnel

Chainages 1200 to 1900

F2



Plate F3 Emolweni Tunnel

Chainages 2000 to 2700

F3
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Plate F4 Emolweni Tunnel

Chainages 2800 to 3500

F4



; > . ( • .•• . t'^tf f .1 .1-1 . "'I . V ' . ' V

Plate F5 Emolweni Tunnel

Chainages 3600 to 4300
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Plate F6 Emolweni Tunnel

Chainages 4400 to 4800
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Plate F7 Ngoajane South Drive

Chainages 200 to 900
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Plate F8 Ngoajane South Drive

Chainages 1000 to 1700

F8
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Plate F9 Ngoajane South Drive

Chainages 1800 to 2500

F9
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Plate F10 Ngoajane South Drive

Chainages 2600 to 3500

F10



Plate Fl 1 Ngoajane South Drive

Chainages 3600 to 4000

Fll
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Plate F12 Clermont Tunnel

Chainages 2500 to 3867

F12



Plate FJ 3 Clermont Tunnel

Chainages 3867 to 4800

F13



Plate Fl 4 Clermont Tunnel

Chainages 4900 to 5300

F14
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