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EXECUTIVE SUMMARY

BACKGROUND

The two-year project reported on here formed a follow-up to a similar project done for
the Water Research Commission during 1991/2 and which provided a stimilus for very
advanced research on the mathematical prediction methods of water movement through
porous structures.

Any analysis of water research activities will invariably show that a major part of such
activities concerns flow through porous media. Standard filtration using sand beds and
technically more advanced practices utilising membrane systems are but two examples of
applied technology making use of flow through porous media. Naturally occurring phe-
nomena such as water seepage through sandstone and other rock formations are governed
by the same physical principles and the mathematical modelling is therefore similar. Run-
off from precipitation, irrigation and spraying of farmlands also cause water movement
through porous soils and the monitoring of concurrent pesticide concentration redistribu-
tions has become a problem of considerable importance.

Field research activities on these phenomena form an important aspect of many projects
launched by the Water Research Commission. Managerial action on findings require ex-
tensive qualification and quantification of results and the better the modelling framework
on which such elaboration takes place the better the chances are for any predictive judg-
ment to be optimal under practical circumstances.

More often than not so-called 'mathematical models' consist of curve-fitting by linear
regression techniques and the qualification of the result is measured against the tightness
of the fit for the particular set of data. The produced 'mathematical model" is then an
equation of some kind with some numerical coefficients of which the physical bearing is
mostly unknown. In this project the emphasis is focussed on the physical origin of the
type of curve against which the data is tested and the prime goal is therefore to use the
physics involved to prescribe the curve being used. In this manner the coefficients are
quite often reduced and, since the knowledge is available about the physical origin of
the particular curve, the remaining coefficients are bounded by physical constraints. The
experimental and/or numerical data are then only used to fine-trim these coefficients and
much less experimental work is normally needed. Since physical length parameters of the
particular case are explicitly used in the modelling, the problem of scaling is eliminated
and laboratory-scale results apply directly to field-scale phenomena.

In this report the term porous media is used generically for any porous structure found in
water research and results are understood to be applicable to flow through any practical



porous medium resembling one of the idealized structures of the theoretical analysis.
Of particular importance is the flow through synthetic membranes and systems thereof
where the membrane structure can be idealized as a composite material constructed of
layers of different basic structures. The results offered in this report may thus be used
straightforwardly in analyses of flow phenomena relating to seepage through membranes,

FULFILMENT OF CONTRACT OBJECTIVES

The prime objective of the project was to further improve the modelling framework for the
deterministic mathematical analysis of flow phenomena in porous media and to demon-
strate the enhancement of practical predictive capabilities in this field. The construction
of the theoretical basis should, however, be done in such a manner that generalization of
any aspect may be attempted logically. At initiation of the project the following specific
aspects were proposed for special attention:

1. Contaminant transport and dispersion
2. Electrokinetic effects of ions on motion
3. Macroscopic Boundary Effects
4. Influence of Anisotropy of the Porous Structure
o. Membrane Morphology and pore diameter distribution
6. Numerical simulation techniques
7. Unsaturated flow

As is discussed in the full report, extensive progress was obtained in the majority of these
aspects and, since all the activities involved research efforts with unkown outcome, this
is gratifying. Except for the analysis on electrokinetic phenomena, progress is reported
on all aspects considered. Viewed globally the project produced a sound theoretical basis
for the analytical and computational quantification of seepage phenomena for foams and
granular materials over the entire porosity and velocity spectra. This is of particular
importance to research on the enhancement of water purification methods and the stutly
of contaminant transport in groundwater systems.

Contract objectives were thus fulfilled and substantial advances were made in the predict-
ing capabilities of modelling results for a variety of problems in water related research.

CONTRIBUTIONS TO THE STATE OF ART

A unified theory is presented by which the same physical and mathematical principles
are used to obtain momentum and tracer transport equations for an almost unlimited
range of practically possible porosity and microstructural length scales. The analytical
predictive results are shown to be accurate over a porosity range varying from 5 9c. in case
of granular sandstones, to 98% for foams. Lengths scales of experimentally verified results



vary between a few micrometers for sandstones and several millimeters in case of packed
beds.

Careful analysis of computer simulation of average flow fields has provided insight into
the influence of external boundary conditions applied and several suggestive remarks put
forward to improve correlation of numerical results with experimental observation.

SIGNIFICANCE OF THIS REPORT

This report summarizes theoretical results which may be used during the predictive anal-
yses of a great variety of water research problems, including microriltration through syn-
thetic membranes, groundwater, macrofiltration in packed beds and foams. Although
aimed primarily at flow phenomena in synthetic membranes it is shown in this report
that all results are directly applicable to several other water related research problems.
In fact, since quantification of membrane morphology is so extremely difficult, the veri-
fication of the model results was done here through comparison to different porous flow
phenomena for which the physical parameters of the microstructure were experimentally
determinable.

MAJOR RESULTS

1. Novel sets of closure equations were derived for fluid flow and cross stream tracer
dispersion through foams and granular media. These equations are provided in a
form ready not only for further analysis, but also for almost direct implementation
in large scale computer simulations of involved flow phenomena.

2. The pinching effect in low porosity groundwater seepage, caused by blocking of a
percentage of the pores, was shown to be handled effectively by the model and
experimental observations can now be predicted remarkably well.

3. Some progress was made in the field of tracer dispersion and a predictive equation
for a transverse dispersion coefficient derived.

4. Anisotropicity in foam structures was shown to be handled effectively by a straight-
forward generalization of the model.

ACTIONS TO BE TAKEN

This research was done to provide a sound framework towards the prediction of flow and
transfer processes in porous media. As such the action needed is further publication of



results in technical journals to reach such a wide group of researchers as possible. Espe-
cially important is the fact that the results are interdisciplinary applicable and it is hoped
that in future this will lead to cross-fertilization between different research communities,
thereby cutting down on duplication of costly experimental work.

RECOMMENDATIONS

Further research in this field will aid significantly in broadening the interdisciplinary
knowledge base of water science. The theoretical expositions presented form a sound
foundation on which scientific analysis of secondary effects of water seepage may be based.
e.g. transport and dispersion of hazardous contaminants and multiphase phenomena.

Typical research fields in need of further development are the following:

Tracer dispersion.
The theory developed in the course of the project has been demonstrated to ac-
curately predict basic hydrodynamical phenomena as observed in nature and on
laboratory scale. The underlying knowledge of flow fields must therefore be a rea-
sonable approximation of real life situations and may therefore be used for analysis
of tracer transport which may accompany water seepage in aquifers, membrane
systems, filtration plants, etc.

Prediction of groundwater seepage.
A novel methodology to predict pinching effects in sandstone formations was devel-
oped and shown to be effective in modelling flow disparities in very low porosity
sandstones. This seemingly successful method should be investigated further with
regard to comparison with more experimental evidence and other microstructures.

Electrokinetic effects in porous media.
This is one aspect in which the project failed to show the anticipated progress and it
is believed that, snven the nroeress Hprnnnstrated on the other fundamental issues,
the way is now paved to put analysis on elecktrokinetica phenomena on the same
sound footing.

CONCLUSIONS

The extremely satisfactory prediction by the same basic theory of experimental results
for vastly different physical phenomena provides confidence in the method and proves the
success of the research effort over the last four years.
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1 NOMENCLATURE

Alphabetic Symbols
.4 integration function.
Ap streamwise cross-sectional single pore area,
a discretization coefficients,
at longitudinal dispersivity.
a? transverse dispersivity,
B integration function.
6 distance between parallel plates,
C integration function.
d interstitial form drag coefficient,
D solid particle diameter,
D_ dispersion tensor,
DQ bed diameter.
Di longitudinal dispersion coefficient, aiq,
DT transverse dispersion coefficient, ajq,
d microscopic characteristic length,
dg grain size.
dp pore width.
d3 cube side width.
E integral to be minimized.
E as subscript, eastern grid point neighbour,
e as subscript, eastern boundary of control volume,
F microscopic shear factor.
/ i , fa functions of porosity e,
g gravitational body force per unit mass,
H Euler function,
h width of parallel plates,
/ Euler function,
Loiri/ REV scale length,

.„:+• . _ n _ ^ n _ - _ - ^

K Darcy hydrodynamic permeability.
K integration function.
k constant term in discretization equation,
/ length of parallel plates / tube,
S discretized minimization integral,
n number of nodes in discretization grid,
P grid point of concern,
p intrinsic phase averaged fluid pressure,
pi interstitial fluid pressure,

p point wise pressure deviation, p — pj.



Q volume flow rate.
q phase average velocity,
q magnitude of q,
R tube radius.
HelD Reynolds number. p\q\Dj p.,
Reqd Reynolds number, p\q\d/ p.,
Reqs particle Reynolds number, pqdsj p,
Rep sphere Reynolds number. pqdvjp.,
r radial coordinate,
S surface area.
5" source term,
5 average of source term over control volume,
Sj3 fluid-solid interface in Rl'C,
t time,
Vf fluid filled volume within RL'C.
Vo total volume of RUC,
Vs solid volume within RUC.
v fluid velocity field within I'/.
vp mean velocity in streamwise pore section.
vt mean velocity in transverse pore section.
W as subscript, western grid point neighbour,
w q(r) r,
w as subscript, western boundary of control volume.
x x-coordinate,
y distance from container wall,
z flow direction coordinate,

Greek Letters
7 velocity ratio, vt/vp,
e porosity (void fraction), VJ/VQ ,
tb bed porosity,
ec cut-off porosity,
t effective porosity,

c( threshhold porosity,
A pressure gradient dp/dz,
fi fluid dynamic viscosity,
u normal surface vector on 5 / , pointing into Va,
p fluid mass density,
<f> generic variable.
H volume averaged tracer concentration,
u> tracer concentration,

(<j>) volumetric phase average of <f>, ^- N>dV ,



O deviation, o — p) ,.
\ tortuosity.

Subscripts
c critical point,
/ fluid phase.
fs tiuid-solid interface,

Special symbols
Vi| locally streamwise laplacian.
V2 locally transverse laplacian.
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2 INTRODUCTION

The research reported in this document emanated from a project funded during 1993
and 1994 by the Water Research Commission and is entitled MODELLING OF FLOW
THROUGH POROUS MEDIA. This two-year project formed a follow-up to a similar
project done for the Water Research Commission during 1991/2 and which provided a
stimilus for very advanced research on the mathematical prediction methods of water
movement through porous structures (Du Plessis, 1993a).

Any analysis of water research activities will invariably show that a major part of such
activities concerns flow through porous media. Standard filtration using sand beds and
technically more advanced practices utilising membrane systems are but two examples of
applied technology making use of flow through porous media. Naturally occurring phe-
nomena such as water seepage through sandstone and other rock formations are governed
by the same physical principles and the mathematical modelling is therefore similar. Run-
off from precipitation, irrigation and spraying of farmlands also cause water movement
through porous soils and the monitoring of concurrent pesticide concentration redistribu-
tions has become a problem of considerable importance.

Field research activities on these phenomena form an important aspect of many projects
launched by the Water Research Commission. Managerial action on findings require ex-
tensive qualification and quantification of results and the better the modelling framework
on which such elaboration takes place the better the chances are for any predictive judg-
ment to be optimal under practical circumstances.

More often than not so-called 'mathematical models' consist of curve-fitting by linear
regression techniques and the qualification of the result is measured against the tightness
of the fit for the particular set of data. The produced "mathematical model' is then an
equation of some kind with some numerical coefficients of which the physical bearing is
mostly unknown. In this project the emphasis is focussed on the physical origin of the
type of curve against which the data is tested and the prime goal is therefore to use the
physics involved to prescribe the curve being used. In this manner the coefficients are
quite often reduced and. since the knowledge is available about the physical origin of
the particular curve, the remaining coefficients are bounded by physical constraints. The
experimental and/or numerical data are then only used to fine-trim these coefficients and
much less experimental work is normally needed. Since physical length parameters of the
particular case are explicitly used in the modelling, the problem of scaling is eliminated
and laboratory-scale results apply directly to field-scale phenomena.

In this report the term porous media is used generically for any porous structure found in
water research and results are understood to be applicable to flow through any practical
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porous medium resembling one of the idealized structures of the theoretical analysis. Of
particular importance is the flow through synthetic membranes and systems thereof where
the membrane structure can be idealized as a composite material constructed of layers of
different basic structures. The results offered in this report may thus be used straightfor-
wardly in the analysis of flow phenomena relating to seepage through membranes.

OBJECTIVES

The prime goal of the project was to further improve the modelling framework for the
deterministic mathematical analysis of flow phenomena in porous media and to demon-
strate the enhancement of practical predictive capabilities in this field. At initiation of
the project the following specific aspects were proposed for special attention:

1. Contaminant transport and dispersion
2. Electrokinetic effects of ions on motion
3. Macroscopic Boundary Effects
4. Influence of Anisotropy of the Porous Structure
5. Membrane Morphology and pore diameter distribution
6. Numerical simulation techniques
7. Unsaturated flow

As will be discussed in this report, remarkable progress was obtained in the majority of
these aspects.
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3 BACKGROUND

3.1 Physical Problem Statement

The physical problem analyzed consists of the special case of two-phase now where one
phase forms a porous structure and the second phase is a fluid. The set of constraints
given below is used to keep the analysis simple and staightforward. The construction of
the theoretical basis is, however, done in such a manner that generalization of any aspect
may be attempted logically.

Solid phase properties
The porous medium under consideration is assumed to be stationary and its structure is
assumed to be morphologically isotropic unless explicitly stated otherwise. The porous
structure is assumed to be a composite construction of different kinds of porous domains
each of which can be described by one of the four basic geometric pore-structure models
proposed, namely foamlike, granular, tubular and prismatic.

Fluid Phase Properties
The traversing fluid is assumed to consist of a single phase Newtonian fluid of constant
density and viscosity as is appropriate for water. It is thus also implicitly assumed here
that we are dealing only with cases of fully saturated flow conditions.

Interstitial Flow Conditions
The microscopic interstitial flow conditions in the porous medium channels are considered
laminar and a no-slip boundary condition on velocity is assumed unless explicitly stated
otherwise.

Average Flow Conditions
The macroscopic average velocity gradients are assumed to be small as is normally the
situation in phenomena related to water seepage.

13



3.2 Mathematical Framework

Subject to the assumptions stated above the flow through the porous structure is governed
by the continuity equation.

expressing conservation of mass, and the Navier-Stokes equation.

p— + pV'W + Vp, - pg - /iV2v = 0, (2)

governing the transport of momentum.

Since it is practically impossible to explicitly describe the flow in each channel section
in the porous medium an averaging procedure is introduced whereby all parameters are
volumetrically averaged over some control volume Vo (Bachmat and Bear. 1986). Each
fluid-related quantity or term is volumetrically averaged over the fluid part Vt of VQ and
multiplied by the porosity to yield an average over the entire volume lo- the porosity
being defined by

* • (3)

The specific discharge q denotes the volume average of the fluid velocity within the pores
and it will be used here as dependent variable in the averaged equations. This vecto-
rial quantity also determines the local strtamwise direction. It follows directly from the
volumetric averaging of the actual interstitial velocity v. namely

vt v.
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Volumetric phase averaging (Bear and Bachmat, 1986) of the continuity equation (5)
yields the following generalized equation for fluid mass conservation during its traversing
of a porous medium:

Similarly the volumetrically averaged form of the Navier-Stokes equation (2) can be writ-
ten as (Du Plessis and Masliyah, 1988):

^ + P V- (qq/e) + eVp - epg
at

Vo JJJ ' ^ T/ " ' Pl/ + ^* v) • ( )

Due to the assumption that no large velocity gradients are present the volume integral
of the velocity dispersion should be very small and the sixth term involving the volume
integral may thus be discarded in comparison with the other terms present.

The evaluation of the surface integral in equation (6) is subject to a description of the real
velocity gradients at the pore surfaces. This in turn warrants a fairly accurate description
of the porous microstructure. The momentum transport in this form thus still remain
'open' in the sense that more information on the particular pore structure and flow con-
ditions are needed to evaluate the surface integral and thus obtain a closed solution of
practical use.

It was shown by Du Plessis and Masliyah, 1991, that pore-scale modelling of the structure
may conveniently lead to the following general momentum transport equation:

9 ~di + p V*(qqlt) + tVp ~epg~ ^2q + MF(e'd'Reqd)q = °*

This equation, together with the continuity equation (5) and suitable boundary conditions
for q, now presents the means to calculate the flow field analytically or numerically,
provided the factor F can be explicitly expressed in terms of known parameters. The
factor F{t,d,Rtqd) represents quantification of the microscopic frictional effects of the
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porous matrix on the permeate. It will therefore differ from structure to structure and.
through the Reynolds number, its magnitude also depends on the average fluid velocity.
The distance d denotes the length scale of the microstructure and may loosely be taken
as the average distance between neighbouring particles, void channels or foam strands.

The first term of (7) may be left out in cases of time-independent average motion. For most
practical water seepage phenomena like flow through membranes or subsurface ground-
water flow the average inertial effects are negligible so that the second term may aiso be
dropped. Inclusion of the gravity term in the pressure term, yielding a total pressure head
p then reduces equation (7) to

fVp — iiX"2q -r nFie.d. Reld)q = 0.

The second term, often called the "Brinkman term' in international literature, governs
the shear stress induced by the average velocity variable q and thus has limited influence
in practical problems of water seepage. It is. however, used in large scale numerical
simulations of flow to provide a link between the internal flow field in the computational
domain and r: boundary conditions imposed. One part of this project was to show the
possible errors created by incorrect use of these boundary conditions.

If we further restrict the analysis to a uniform seepage velocity

q = qt

equation (S) reduces to

(10)

The functional dependence of F on the parameters e, d and Reqd forms the cornerstone
of flow through porous media, since it is this factor F that determines the hydrody-
namic permeability of any medium. In fact, according to the definition of hydrodynamic
permeability, it follows that

A' = | . ( I D
t
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The major part of this project centred around the improvement of models to determine
F for various cases of practical interest to water research in South Africa.

In case of isotropic media the evaluation of the drag factor F may be done in accordance
with the original proposal by Du Plessis and Masliyah. 1988, namely to introduce a
Representative Unit Cell (RUC), allowing the quantitative and qualitative evaluation of
all the different contributions to the drag on the fluid explicitly in terms of the porosity e,
the scale length d of the microstructure, the type of microstructure through the tortuosity
\ and the seepage velocity q. The effective cross-sectional area of a single pore is given
bv the relation

12!

Consistent herewith the relation between the seepage velocity 9 and the mean pore velocity
vp is given for all subsequent models by

13)

This relation determines the pore velocity uniquely, from which intrapore fluid dynamical
phenomena may be deduced accurately. The tortuosity thus takes a prominent place in
the modelling and a search for a sound definition of this seemingly simple concept took a
major part of the project effort.
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4 RESEARCH RESULTS

4.1 Contaminant transport and dispersion

The transport of contaminants in porous media and the dispersion of concentration gra-
dients may to a large extent be classified as either diffusion dominated or convection
dominated. In the diffusive case the molecular motion contributes much more to the mix-
ing than the actual flow of the fluid. Conversely, convective dispersion (also referred to as
mechanical dispersion) is driven primarily by the the sweeping motion of fluid particles
which carry with them the contaminant or tracer. The mechanics of the latter of type
of dispersion depends to a large extent on the velocity field of the fluid phase present in
the void channels of the porous matrix and the present project is devoted to analyses and
prediction of such velocity fields for porous media of practical interest to water science
and technology.

4.1.1 Tortuosity

It is commonly found in international literature that dispersion effects are being quantified
in terms of dispersion coefficients. This practice has, however, not yet led to satisfactory
definitions of these coefficients. Dispersion coefficients determined on the laboratory scale
also do not seem to be adequate for use on the field scale and much effort is lost by having
to redetermine coefficients for each practical case. One aim of this research project was
therefore to investigate the possibility of describing dispersion in a novel manner, starting
from an idealized interstitial velocity field v. which in turn must be functionally dependend
on the average fluid discharge rate q through the porous medium of porosity e. This latter
link was proved to be that given in equation (13) where the tortuosity \ is a measure of
the tortuousness of the interstitial fluid streamlines. The porosity is usually determinable
hy PYnpriment and provides no serious problem. It is apparent that knowledge about the
tortuosity, and especially about its functional dependence on the porous microstructure.
is therefore crucial towards effectively modelling any velocity-dependent flow phenomena.
An extensive literature study revealed that, although a seemingly simple concept, there
is internationally still widespread confusion on correct definitions and interpretations of
tortuosity.

This matter was taken up with Professor Jacob Bear of the Technion in Israel and several
months of cooperation as well as some joint research at ETH in Switzerland resulted in
a manuscript on efforts to resolve this problem (Du Plessis and Bear. 1995). In short the
problem boils down to one school advocating that the tortuosity as such should include all

18



dynamical effects caused by the tortuous streamlines whereas the other school considers
the tortuosity as to present only some average ratio of the actual streamline lengths to the
average streamwise displacements. These two tortuosities may be referred to respectively
as the dynamic tortuosity and the geometric tortuosity and in the present work the term
tortuosity will refer to the latter type unless stated otherwise. This geometric tortuositv
is also sometimes referred to as the tortuosity factor.

When referral is made in literature to tortuosity special care must be taken to verify which
of the following tortuosities is intended:
Dynamic tortuosity
Geometrical tortuosity
Electric tortuosity
Acoustic tortuosity.

4.1.2 Tracer Dispersion

If no molecular diffusion is allowed in an incompressible fluid environment, the concen-
tration J of a tracer species is interstitially governed by

= 0.

Volumetric averaging of Equation (14) leads to:

V,

Another factor of importance is the ratio 7 of the fluid velocities vt and vp being respec-
tively the actual cross sectional mean velocities in transverse and streamwise pore sections
of the RUC:

1 = - - (16)
v

The factor 7 is assumed to be a known constant for each different pore structure (Died-
ericks, 1992).
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The last term on the LHS of equation (15) is known as the flux of mechanical dispersion
and provides information on the convective spread of tracer superposed on the average
ronvective motion. This term should therefore give rise to all mechanical dispersion
coefficients for the cases under observation. It consists of the volume average of the
product of deviations of the velocity and tracer concentration. In its present form this
last term is undetermined and for closure some information regarding the porous medium
is needed.

Tracer dispersion may be defined as the diffusive effect of non-linearities in the actual
intrapore velocity field on a non-linearity in the volumetrically averaged tracer concen-
tration H. The effect of tracer dispersion thus manifests itself in a change of average
concentration gradient.

A traditional simplification in the modelling of dispersion is the assumption that
the dispersive transport is locally governed by a diffusive or Fickian relationship which,
in turn, asserts that the flux of mechanical dispersion is proportional to the average
concentration gradient. The coefficient of proportionality has been studied extensively for
many years and is currently accepted (Tompson and Gray. 1986) as being a second order
tensor dependent on the average velocity, q, and characteristics of the porous medium. It
should therefore be possible to establish the following relationship:

(17)

with the assumption that

QQ

J2 = arql + [a i — aT)—. (18)

The transverse and longitudinal dispersivity coefficients, respectively aj and a/,, are
determined empirically and as a consequence suffer from experimental inconsistencies
(Moltyaner, 1989). It is therefore beneficial to quantify these coefficients directly from
pore-scale parameters. For the special case of uniform flow and where the selected refer-
ence frame, determined by q, coincides with the principle axes of D_, it follows that

= DLV?fl + DTV2J\. (19)

Due to the isotropy condition imposed the volume integral in Equation (17) may be
taken over the total volume Vo of the RUC. Thereupon the divergence operator may be
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taken inside the integral, since l̂ , is independent of spatial location I Bear and Bachmat.
1991, Hassanizadeh and Gray. 1979). The divergence theorem is used to transform the
volume integral to a surface integral over the six plane surfaces of the Rt'C. namely:

/ / / U ^ ) / / U V , 5 ,20)
\0 JJJ t € Ifl i i

Vj Sfs

Exchange of tracer material across each of these interfaces with hypothetically adja-
cent RUC's may now be determined. Since such exchanges are assumed to take place only
convectively. the domain of the surface integral is restricted to these fluid-fluid interfaces
of the RUC where the scalar product in the integrand yields non-zero values.

Such an analyses of transverse dispersion, due to convective mixing between adjacent
cells, yields (Diedericks, 1992) a dispersion coefficient Dj, in accordance with Equation
(19) proportional to the average velocity q. namely

Dr = *r*- = ( 2 i ) £ (2i
\2\dJ t

where ,4P denotes the cross-sectional area of a single pore. It follows that the factor aj is
of the order of the magnitude of a single pore as suggested by Bear and Bachmat. 1991.
It should be noted that Equation (21) is generally applicable to any isotropic porous
microstructure.

Experimental verification of this result proved very problematic, since, in all reports on
experimental work on transverse dispersion, only the measured dispersion coefficient is
given, but not the microstructural parameters. This total lack of fully documented exper-
imental data prompted the research into high porosity foams for which dispersion results
may be obtained abroad. Analytical studies were thus aimed at an investigation into the
physics of flow in isotropic and anisotropic foams. This study is now completed with
substantial comparisons with experiment pointing to the success of the modelling effort.
The next stage would be the utilization of this analytical results to predict dispersion
phenomena in foams for cases of known experimental dispersion measurements.
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4.2 Electrokinetic effects of ions on motion

Activities planned to model electrokinetic effects were scaled down to allow more time
for the tortuosity effort. This was done since the motion of ions is closely linked to the
interstitial velocity field and hence it was considered more appropriate to await more
rigorous results on tortuosity before spending to much effort prematurely on this aspect.

4.3 Influence of structure and pore diameter distribution

The theoretical modelling for discharge of Newtonian fluids through porous media of dif-
ferent structures was extended to include inertial effects caused by interstitial recirculation
in foams and prismatic structures. The results were tested against published results and
also against experiments conducted cooperatively in France.

The hydrodynamic permeabilities for the different structures are expressed in determin-
istic form as functions of length parameters and porosity. The resulting average perme-
ability for any given pore diameter distribution for any of the basic structures and for
any laminar velocity may therefore be calculated directly. The particular distribution
function has of course a physical origin and cannot be born out by mathematics alone. It
must be provided by analysis of the specific material under consideration.

4.3.1 Foam Structures

Consolidated porous media in spongelike form were modellled by an RUC containing three
mutually orthogonal duct sections of square cross-section. The relationship between the
rectaneular pore width d~ and the characteristic leneth d of the microstructure is siven
by:

•?•>

The tortuosity for such a pore representation is given by (Du Plessis, 1992a):

cos
(23)
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The shear stress factor F is given by (Du Plessis & Masliyah. 1988):

1 3 6 \ ( \ - l ) Re^ 2 .05.Y(\- 1) ,

d* 6 + <P e ( 3 - \ ) ' l ]

The critical Reynolds number which indicates the transition between Darcy and Forch-
heimer flow behaviour is given by

36(3 - X)
— • (2o,

In case of low Reynolds number flow the hydrodynamic permeability is given by

K = €<f f26)
36\ ( \ - 1) l ;

See Figure 1 for a comparison of these theoretical results with experimental measurements.
The success of the analytical results is evident. The present results were published (Du
Plessis, Montillet, et al, 1994) and also compared to a model by Comiti and Renaud, 1989,
an exercise proving that the present modelling is to be preferred. Although the model
by Comiti and Renaud also appears to be a pore-scale model it does make use of a curve
fit through experimental data so that the results should inevitably be good. The model
seems to break down, however, when the pore-scale geometry and physics are analyzed
carefully.

4.3.2 Granular Structures

The RUC introduced for granular structures consists of a cubic volume with a cubic
solid placed centrally within and with faces aligned, Du Plessis and Masliyah, 1991. The
tortuosity of the porous microstructure is then given by
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and the scale length of the granules by

d, = [I - t ) > < l . (28)

Evaluation of the non-linear dependence of F on the specific discharge q was done by the
modelling interstitial flow recirculation. According to this analvsis the factor F is given
by

dl l U t\ I 1 f] f j - ^

with a critical Reynolds number of

The hydrodynamic permeability is given in such a case by

A' = ^ - ^ f l - ( l - e ) ' ] • f l - ( l - £ ) J | . (31)
3 6 ( 1 - e ) * L J L

These equations predict the Ergun equation almost exactly in the range for which the
latter are reported to be applicable as is explicitly demonstrated in Figure 2. The Ergun
CO Hut 1071 W2.S e m C ™ *~3. V l~'~ir<^t " " • ^ ' i ^= tna a v o n a-o rpcii 11 f r n m a v a s t ran CT*" n f P V n p r -

imental results for packed beds, conducted over several decades. As the present result
for granular media match the Ergun equation in the applicable range it also correctly
predicts pressure gradients for packed beds, yielding it unnecessary to conduct new sets
of experiments. These results were published (Du Plessis, 1994).

In case of low porosity constraints the equations may be simplified extensively (Du Plessis
and Roos. 1993, 1994a). If equation (29) is subject to a condition of low porosity and D
is the grain particle diameter it simplifies to

q (32)
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A packed bed. consisting of almost spherical granules of diameter D. will have a porosity
near 0.38 yielding a friction effect of:

FD2 = — (1+3. GO + ^ r d - O ^ D (33)
c- t2

and this yields a hydrodynamic permeability of:

iso • ' ' '

4.4 Influence of porous structure anisotropy

Of considerable importance for the prediction of flow phenomena in synthetic membrane
systems is the effects of anisotropy of the porous matrix. A considerable effort was there-
fore devoted to this problem and specifically to the capability of the model to predict
experimental results. Towards this end, one of the group members, Mr Gerhardus Died-
oricks spent several weeks at an institution in France to get hands-on experience in an
active laboratory cooperating on this problem.

As it is almost impossible to conduct controlled experiments on a microscale. a set of
experiments was done on flow through a knitted wire plug of known physical dimensions
and structure. The model described above for an isotropic foam structure is straightfor-
wardly generalized to an anisotropic foam of material length scales d(ij, d^2)

 a n d d(3) and
uniform solid strands of cross-sectional area d].

The only remaing factor to be determined is the particular drag coefficient Cd correspond-
ing to the particular form of the strands of the wire plug used in the experiment. This was
determined to be Cd = 1,32, owing to the "wire" being formed by two round intertwined
wires, and yields the following expression for the pressure gradient corresponding to flow
in the 1-direction:

dP = 6fiXqds h{d(2) - ds) + (rf{1) - d3) i{d{3) - dB) + (d{l) - ds)

tW0 \ (d{3)-ds) {d{2)~d3)

(d{2) - ds)
2 + A[d{2) - ds)(d{3) - ds) + (d{3) - ds)

2
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| [d{2) - da)
3 + jd{3) - da)

3

2(rffTj - d3)(di2) - ds)(dl3) - d.

In Figure 3 this result is graphically compared to experimental results and to the predic-
tion should the structure be approximated by the isotropic model. Jt is evident that the
improvement obtained by introducing anisotropy is remarkable and that the extra effort
is worth while towards accuracy of predicting experimental results. It is interesting to
note that the model of C'omiti as mentioned above was unable to provide a prediction
for this experimental exercise, a fact which adds to the practical usefulness of the present
type of modelling.

The tortuosity problem was also attacked locally in an effort to provide a universal defi-
nition of a geometric tortuosity tensor which will be suitable for anisotropic media. This
work was very successful in that a sound theoretical basis for the pure geometric tortu-
osity was founded. Although not of direct practical interest, and thus beyond the direct
scope of the project, this result does serve as proof that the modelling concepts introduced
previously are indeed correct.

4.5 Numerical simulation techniques

The numerical simulation techniques used were improved as the project progressed. An
analysis was conducted to determine whether a novel numerical procedure, the so-called
non-staggered procedure of Rhie and Chow. 1986. will positively influence the numerical
simulation of flow in porous environments. This study entailed the writing of a second
two-dimensional code, incorporating a non-staggered grid system, and subsequently a

physical problems. The current notion is that the SIMPLEC method, already employed
for several years is still superior for flow simulation in porous environments (Patankar.
1980, and Van Doormaal and Raithby, 1984). The technical detail of this work falls
outside the realm of this report.

A three-dimensional code was written incorporating the same principles. Loss of key
personel towards the end of the project, however, caused a premature ending of this
activity and the code is currently not yet operational.
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4.6 Macroscopic Boundary Effects

A major practical implication of the project is the generation of transport equations fit
for use in computational simulation of porous flow phenomena of practical interest in
water research. The computational simulation of complex flow phenomena is. however,
dramatically influenced by the boundary conditions imposed on the mathematical prob-
lem. A problem arises because the transport equations which govern the flow well within
the boundaries of the domain does not hold at external boundaries or at interfaces where
abrupt changes in porosity or structure occur. This may cause solutions that appear
correct, but do not convey the actual conditions found in laboratory or field experiments.

As a case study to determine the magnitude of possible errors the flow through a granular
packed bed bounded by a solid wall was analysed.

Convective heat transfer and also many other transfer phenomena depend quantitatively
on the velocity gradient of the fluid normal to the surface across which the transfer
phenomenon takes place. It is therefore of cardinal importance to be able to predict
the velocity profile near to any internal or containing wall as accurately as possible. In
the case of a wall containing a packed bed. as is the case in many chemical reactors, this
problem is indeed awkward, since the evaluation of real intrapore velocities is a formidable
task. Even the use of the average fluid discharge through a cross-sectional element is not
at all straight-forward. The deviation from a uniform average velocity profile through a
packed bed may also markedly contribute to the dispersion of solute concentrations. This
in turn may adversely affect the determination of dispersion coefficients.

This report comparatively describes two solution methods used to quantify the near-wall
velocity distribution in packed beds namely a variational approach and a control-volume
discretization approach. The origin of channelling effects is an increase in porosity and if
the latter can be quantified, knowledge may be obtained about flow conditions near the
container wall.

4.6.1 Spatial variation in porosity

It has been observed experimentally (Roblee et a/., 1958, Benenati and Brosilow, 1962)
that the average velocity in a packed bed is not uniform as is often assumed, but reaches
a peak velocity at approximately one particle diameter from the container wall. This
is due to the variation in porosity due to the specific packing arrangement of granules
near the wall. For particles of highly irregular shape the porosity is unity at the wall
and stabilizes at the average porosity at about one particle radius from the wall (Roblee
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et al.. 1958). For regular shaped particles such as spheres, the variation in porosity
takes the form of a damped oscillatory wave, with oscillations damped out at 4.5 to 5
sphere diameters from the wall, with a minimum at about one sphere radius from the wall
(Benenati and Brosilow, 1962) as shown in Figure 4. The porosity in the interior of such
a randomly packed bed has been measured as about 0.38 whereas the average porosity
for large randomly packed beds of uniform spheres was found to be about 0.39 (Benenati
and Brosilow, 1962).

Vortmeyer and Schuster. 1983 and Cheng and Vortmeyer. 1983. have used a bed porosity
of 0.4 and approximated the spatial variation in porosity by

t(y) = eb | l + e x P | - 2 ^ ) | . (36)

In Figure 4 this approximation is shown for e*, = 0.38 . Unless stated otherwise, this will
be used throughout in the report in order to obtain results similar to those of Vortmeyer
and Schuster. 1983. It should be noted, however, that more realistic approximations to
the experimental observations may easily be incorporated into both the solution methods
described below.

Vortmeyer and Schuster. 1983. considered spherical particles with diameter D . and for
comparison of their analysis with the granular model described above, D can be related
to the linear dimension d of the cubic RUC through

d = D
L6 ( 1 - c)J

or to the cubic particle side width through

d. = ( f ) * D . (38)

Transformation of d and Reqd in Equations (28) and (29) to D and Reqo respectively,
yields the following:

55.42(1-c)* 1-24(1 - t)
+ —7 ReqD . (39)

[ l - ( l - e )
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In macroscopic continuum theory the porosity is normally defined as a volumetric average
taken over a three-dimensional representative elementary volume. For the present studv.
however, it is required to describe the variation in porosity with respect to the normal
distance from the wall. This is accomplished by taking the average porosity over infinitely
thin sheets parallel to the wall. If y represents the normal distance from the wall into the
bed. this porosity will therefore yield a function t{y) as is schematically shown in Figure
5. The momentum equation (8) thereupon simplifies to the following for uni-directional
flow between parallel plates in the ^-direction:

tJL _ „_£ + liqF = o .

For flow in a tube. Equation (8) simplifies to:

4
O

r or

It should be noted that the equations above are expressed in terms of D and not d .
since the latter scale length will vary with changes in t across the bed. The particle
dimension D . however, remains constant, the variation in porosity being caused by-
changes in packing density only.

Equations (40) and (41) may be rewritten in the following manner:

and

1^ + ~rTr (43)

where the functions fx and / 2 are given by:

fi 5 5 . 4 2 ( 1 - c ) *
( ]
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and

1 . 2 4 ( 1 - 6 '

4.6.2 The Ergun equation

The Ergun equation (Bird tt ai. 1960) gives, for one-dimensional average flow, an em-
pirical relationship between the pressure gradient and the average velocity in an infinite
porous medium. The two-dimensional effect, induced by the frictional effect of macro-
scopic boundaries on average flow, may be empirically supplemented by addition of the
so-called Brinkman-term (Brinkman. 1947). The modified Ergun equation for flow in
a packed bed between parallel plates is therefore given by the following elliptic partial
differential equation (Benenati and Brosilow, 1962):

subject to the following boundary conditions:

= 0 : «? = 0
(47

b is the distance between the plates, and the functions f\ and /2 are defined as follows:

The Ergun equation has evolved from numerous empirical correlations of experimental
data and is therefore applicable only to the limited range of experimental porosities. In
Figures 6 and 7, however, f\ and / 2 for the Ergun equation as given by Equations (48)
and (49) are drawn for the entire porosity range, as the present application makes use of
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porosities up to unity. The empirical constants 150 and 1.7.5 are frequently adjusted in
literature (e.g. Dybbs and Edwards. 1982) to obtain better correlation between equation
(46) and experimental results. To conform with the work of Yortmeyer and Schuster, the
present values will be retained.

For flow in a tubular packed bed, the modified Ergun equation is similarly given by:

r Or

and subject to the boundary conditions

r = R: 7 = 0
(51)

4.6.3 Solution Method I: Control-volume discretization method

In this method the computational domain is discretized by spanning the domain with a
finite number of grid points. The value of the dependent variable, in this case q. is then
only determined at each grid point by solving a set of discretization equations for the
control volume surrounding the grid point. These equations are obtained by integrating
the partial differential equation, in this case Equation (40) or (41) over every one of the
non-overlapping control volumes. The integrals are evaluated by means of piecewise linear
profiles expressing the variation of q between grid points (Patankar, 1980).

To illustrate this discretization method, consider the following one-dimensional form of
the partial differential equation (40) in rectangular Cartesian coordinates:

= 0 (52)

uy \ ay/

where

c c dp , _,
b = — fir q — t— (Do)
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and — is treated as a negative constant.
ax

If the value of q is to be determined at grid point P and if the neighbouring nodes
are denoted by IV for H'est and E for East, and the boundaries of the control volume
are denoted by w and e respectively, then integration of Equation (52) over this one-
dimensional control volume gives:

5 4 )

As stated above, it is now assumed that q changes linearly over the control volume under

consideration. Evaluating the derivatives — in Equation (54) from this piecewise-linear
dy

profile for q. the resulting equation will be:

= 0 oo

where 5 is the average value of 5 over the control volume. This central difference
spatial discretization equation may be written in the following form:

aP(lp =

vv nere

aE =

aw =

aP =

k = S Ay
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In the axisymmetrical case, the one-dimensional flow is described by the following partial
differential equation:

where S is given by Equation (53). Integration of Equation (57) over the control volume
vields:

Assuming a piece-wise linear profile for g, Equation (58) can be written as:

5
2 V' ^ ~ '(Sr)e (6r)w 2

Written in the form of Equation (56), the coefficients ap , ap, a,v and k are given by:

* = I

In the case of flow through a packed bed as described earlier, the fluid dynamic viscosity
\i is assumed constant, and therefore fie = fiw = ft . The solution for the single array
of qp-values according to the boundary conditions (47) and (51) respectively, is now a
straightforward matter as is noted in the section concerning the numerical results.
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4.6.4 Solution Method II: Variational method

As shown by Yortmeyer and Schuster. L983 the problem of solving an elliptic partial
differential equation subject to certain boundary conditions may be transformed into the
problem of minimizing an integral. This method will be illustrated here by deriving the
minimization problems for the Ergun equation given by Equations (46) and (50). The
derivation below closely follows the exposition by Yortmeyer and Schuster. 1983 and is
included for coherence and to clarify some typographical errors in the original work.

The integral

E = hi [ H(y,q.q')dy (60)
Jo

is sought and must be minimized with H satisfying the Euler equation

dH d (dH\
-z r -r - = o (61)
oq ay \ oq' J

under the constraint

fb

Q = h q dy = constant. (62)
Jo

, da
Here q = — , and Q is the prescribed constant volumetric flow rate. For parallel

rfii

plates, an explicit function H which fulfils the above requirements is derived as follows:

Determination of a function H for Cartesian coordinates.

Consider the elliptic partial differential equation (46):

fxq + h? - W" + ^ = 0 • (63)
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The integral

E = hi f H(y,q,q')dy (64)
Jo

fwith Q = h q dy is sought and must be minimized with H satisfying the Euler
Jo

equation

dH '< (dH- = 0 . (65)
dq dy \dq'

Equation (6o) may also be written as

- Hqlqq' - Hq.q.q" = 0 . (66)

Considering Equations (63) and (64) it can easily be seen through comparison of the
coefficients of equal derivatives that Hq>qi = fi and Hq>q = 0 .

Through integration it follows from Hq>q> = fi that

Hql = fiq' + A(y,q) (67)

and thus that

Hi'y = Ay(y,q)

and Hqlq = Aq{y,q) .

Since Hq>q = 0 , it follows that A = A(y) and thus that

M9'y = A'{y) .
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Integration of Equation (67) yields

71?')* + My)q' + B(y,q) . (68)

Differentiation of Equation (68) with respect to q yields

The Euler equation (66) can therefore be written as

Bq{y.q) - A'(y) - pq" = 0 . (69)

Considering Equations (63) and (69). it can be seen that:

B,(y.q) - A'(B) = hq + f2q
2 + -f . (70)

OX

Choosing A'(y) = 0 gives A(y) = C and

Bq(y,q) = hq + hq2 + ^ - (71)
Oxx

Integrating Equation (71) now yields

^q2 + ^q3 + % + K(y) . . (72)
2 3 ax

Any function H satisfying Equation (65) is sought, thus choosing the integration constant
C = 0 and the integration function K(y) = 0 keeps the function H simple, and thus
Equation (68) is given by:

H = | ( ^ + ̂  + ^ + g , . (73)
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Any multiple of this function will also satisfy the Euler equation (65) so that the following
equation satisfies all the requirements:

H = 2%
ax

The integral to be minimized is therefore:

E = hi
da

ay 75

Considering that -— and q dy are constant, spatial discretization of Equation (75
dx Jo

by central differencing yields the following minimization problem:
n

-V =
t = l

= min

with Ag, = <7,+1 - qt , At/, = yi+i - yt and

76)

.Ay, = constant .
1 = 1

In the case of tubular packed beds, the integral to be minimized is given by:

rR

E = 2x1 H{r,q,q') r dr
Jo

with

(77)

(78)

(79)

Q = 2:r / dr = constant . (80)
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The function / must satisfy the Euler equation

01 d (dl .
= 0 . (81Oq dr \dqf

A function / that satisfies Equation (81) is derived as follows:

Determination of a function / for cylindrical coordinates.

For flow in a tube the partial differential equation to be solved is given by

Zq' ~ hq - hq1 - f = 0 . (82)

The integral to be minimized is given by:

E = 2 x / / H(r.q.q')rdr (S3)
Jo

= 2W / I(r,qjq')dr (84)
Jo

fR

with Q = 2TT I qr dr .
Jo

A function / is sought that satisfies the Euler equation given by:

IqWq" + W + U'r - lq = 0 . (85)

The following substitution is implemented for simplification:

w(r) = q(r) r (86)

leaving the integral to be minimized as

E = 2W / I{r.w.w')dr (87)
Jo
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fR

with Q = 2TT / w dr .
Jo

The partial differential equation (82) is now given by

w r w2 dp
oz

and the Euler equation by:

+ L^U)' + /u-'r - /w = 0 . (89)

Comparison of the coefficients of the second derivative w" in Equations (88) and (89)

yields Iw>w> = — • Through integration it follows that
r

^w' + A(r,w) (90)

and thus

L'w = Aw(r,w) (91)

and Iw,r = -~w' + Ar(r.w) (92)

Integrating Equation (90) yields:

/ = £(u/ ) 2 + A(r,w)w' + B(r,w) . (93)

Differentiation of Equation (93) gives:

Iw = AJr,w)w' + Bw(r,w) . (94)
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Considering Equations (88) and (89), it now follows that

r- rJ r r2

v." h PTP *. =

oz

Substituting the derivatives of / by the expressions obtained above yields:

Ar(r.w) - Bw(r,w) = ^-w - ft- - f2^- - X . (96)

it W 11}

Taking .4r(r, w) = —w and Bw(r, w) — ft h J2~- + A , it follows that:
r3 r r2

A{r,w) = —rzw + C(w) (97)
'IT1

and S(r,u,') = £-w2 + ^-u.-3 + \w + K(r) (98)

Any function / satisfying the Euler equation (85) is sought, thus assuming for simplicity
that the integration functions C(w) = K(r) = 0 , gives the following expression for /:

Transforming back to q, yields:

T r1 i t _ , _ t \ , I J 1 _ i J ^ (ioo)

Any multiple of this function will also satisfy the Euler equation (85) so that the following
equation satisfies all the requirements:

/ = pq'iq + q'r) + qr Uq + 2-j2q
2 + 2^\ . (101)
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The minimization problem can thus be written as:

A = */ V^ uo,-A(7, -f ur, 1- o.r, Ar, /i<7, -r —fjU, (102)
fT{ [ Ar, V 3 /J

= min

with A<7, = <?,+i — </, . Ar, = rI + 1 — r, and constrained by the condition that

Q = 'iTT^q.ftSr = constant . (103)

Considering the partial differential equations obtained by volume averaging. Equations (40)
and (41), the minimization problems obtained through the variational method are iden-
tical to those derived above for the Ergun equations, except that \i should be replaced
by — and f\ and /2 are then given by Equations (44) and (45).

4.6.5 Numerical results

In this section the numerical solutions are given for

1. the Ergun equation, using the variational method,

2. the volume averaged equation, using the control-volume discretization method, and

3. the volume averaged equation, using the vanational method.

In all cases the flow of air at 25°C was considered, thus the following values were used for
the density and the dynamic viscosity:

p = 1.18 kgm"3 and y. = 0.000018 NsnT2

The number of nodes used for the uniform discretization grid was 120 in all cases consid-
ered. The porosity t in the expressions for } \ and /2 was substituted by the expression
in Equation (36).
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The control-volume discretization equations were solved numerically using a FORTRAX-
prograrn implementing the Thomas algorithm as described by Patankar ( 1980} and en-
hanced by Van Doormaal and Raithby (1984). Every iteration does a forward and a
backward sweep across the grid points. Since the present study involves fully developed
flow, only one row of nodes is needed to solve for the cross-stream velocity profile, thus
simplifying to a one-dimensional problem.

The minimization problems (76) and (102) were solved numerically using the IMSL
Math/Library function LCONF (IMSL.1991). This routine is based on M.J.D. Pow-
ell's FORTRAN package for linearly constrained optimization calculations TOLMLY The
length of the plates/tube was taken as 10m and DQ = 40mm.

In Figures 8 and 9 the flow profiles obtained by the control-volume discretization of the
volume averaged equations (40) and (41) respectively are given for tt, = 0.4, DB = 40mm.
D = 2. 4 and 6mm. and for Re^o = 5. It was found that results of methods 1 to 3 above
are very much the same and the slight differences cannot be distinguished on a graph.
These differences may also be attributed to round-off errors in the numerical procedures.

4.6.6 Experimental correlation

It is very difficult to accurately measure the average flow characteristics inside a packed
bed. Experimental data is, however, available for measurements taken a small distance
above the bed. Vortmeyer and Schuster, 1983. give a graphical representation of the flow
distribution measured 10mm above a fixed bed for air at 25°C with tt, = 0.4 . Rt.,Q = ~-5
and D = 2mm .

In order to compare the results of the volume averaging method with these experimental
values, the control-volume discretization method was extended to two dimensions to be
able to handle the flow redevelopment above the packed bed. In the ^-direction a part
of the calculation domain is regarded as porous with porosity as given by Equation (36).
Further down-stream the porosity is set to t = 1 . The velocity profile is then calculated
10mm into the free-flow regime. The result for a tubular packed bed. using a 51x120 finite
volume grid, is given in Figure 10. The measured profile 10mm above the bed as given
graphically by Vortmeyer and Schuster (1983) is also shown. These approximate values
have been obtained by direct measurements on Figure 12 in Vortmeyer and Schuster.
1983. It can be seen in Figure 10 that the present results based on the cubic RL'C model,
correspond reasonably with the experimental data.

Vortmeyer and Schuster. 1983. solved the Brinkman equation, extended to higher flow
rates by incorporating the Ergun pressure loss relation, by means of a variational method.
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Their approximation for the porosity distribution was used throughout this section. There
is. however, no guarantee that this approximation will yield the same total discharge as for
the original distribution as shown in Figure 4. Both methods of solution discussed above
are capable of predicting the flow for the experimental oscillatory porosity distribution,
provided a proper distribution function t(y) or enough data points can be prescribed
which match the experimental data.

Du Plessis and Masliyah, 1991. volume-averaged the mass and momentum equations, and
by modelling granular porous media through a specific geometrical structure within an
Rt'C. obtained differential equations describing the flow through any granular porous
medium. These equations may be solved numerically by means of a control-volume dis-
cretization method, or by variational method as used by Vortmeyer and Schuster. 1983.
to solve the extended Brinkman equation.

Both solution methods mentioned above, were used. The results are nearly identical, with
some differences that may be attributed to round-off errors. Furthermore, these solutions
compare favourably with those given by Vortmeyer and Schuster, 1983. It should be
noted that the control-volume discretization method is much simpler and quicker than
the variational method.

The model for granular porous media (Du Plessis and Masliyah, 1991) applied to packed
beds with porosity distribution function as given by Equation (36), yields results that
compare favourably with those given by the solution of the extended Brinkman equation
(Vortmeyer and Schuster, 1983). This is comforting since the latter equation is purely em-
pirical, while the granular model was derived from physical principles. Further attention
is, however, needed regarding the validity of the sheet-wise porosity distribution function.

It was clearly demonstrated that in case of a macroscopic solid boundary within a granular
medium, a simple boundary condition implying Darcy flow bounded by slip flow is more
accurate for mass flux prediction than the more popular no slip condition which causes
viscous losses via the Brinkman term. This work was accepted for publication and will
be published shortly (Du Plessis and Roos, 1994c).
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4.7 Unsaturated flow

The problem of unsaturated flow is of importance in most soil-related water research.
During a visit to the Oregon State University a research seminar was held during which
possible cooperation in this field was investigated. In accordance with one of the sugges-
tions arrived at during the seminar it is of paramount importance that the hydrodvnamic
permeability for fully saturated flow through sandstone was analysed satisfactorily to
serve as an asymptotic condition benchmark for unsaturated flow.

A key physical difference between fluid transport in membranes (and foams) and soils
is that the porosity in the latter case is extremely small. This fact was already used
to substantially simplify expressions for permeability of granular media for conditions of
low and very low porosity (Du Plessis and Roos. 1993. 1994a). The results were again
extermely encouraging and reported in the Journal of Geophysical Research (Du Plessis
and Roos, 1994b).

In literature concerning the permeability of sandstones, the grain size is used as charac-
teristic length. In most cases the grain size is described by the volume diameter, i.e. the
diameter of a sphere having the same volume as a particle. If dg denotes the grain size.
the relation between the solid width ds and dg is given by

(104)

In terms of the grain size equation (31) can thus be written as

63(1 - 0 3

4.7.1 Massilon sandstone

Massilon sandstone is a Mississippian subarkose with moderately well-sorted and sub-
rounded grains (Green and Wang, 1986. Koplik et al., 1984. give the bulk porosity of
Massilon sandstone as 0.22 and the average grain size as 400/im. The bulk permeability
was measured as 2.5 darcy, but calculated by means of an effective medium theory coupled
with a network of resistors as 27.4 darcy, which is ten times higher than the measured
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value. Schlueter et al., 1991. predicted a permeability of 3.1 darcy, also using an etfective
medium theory, but taking into account the effect of the cross-sectional shape, orienta-
tion, and constrictivity of the pores. Green and Wang. 1986. give the average grain size
as 200/im and the porosity range as 0.21 — 0.22. Although the lower limit for the grain
size is probably somewhat below d3 = 200/zm. this value is shown in Figure 11 together
with the limiting conditions {d3 = lOO^m. f = 0.21 and e — 0.22). the measured and
calculated permeability given by Koplik et al., 19S4, and the predicted value of Schlueter
et al., 1991. For a porosity of 0.22 and a grain size of 400^m, equation (105) gives a
permeability of 8.16 darcy.

4.7.2 Berea sandstone

Berea sandstone is a medium-grained, low-rank Mississipian graywacke with well-sorted
grains Green and Wang, 19S6. The grain size for low-rank graywacke lies between 62.5^m
and 250/im. This gives an average grain size of 156.25/zm, quite close to the average
grain size of 155/im as reported by Green and Wang, 1986. The porosity lies between
0.15 Seeburger and Nur. 19S4, and 0.23 Macdonald et al.. 1986. Taking the average of
this porosity range (e = 0.19) and the average grain size [d3 = 156.25/im). equation
(105) yields a permeability of 0.74 darcy. Schlueter et al.. 1991. report the experimentally
measured value as 0.46 darcy. In Figure 12 the permeability of Berea sandstone is shown as
a function of porosity. The solid lines correspond to the limiting conditions d3 = 62.5/im,
dg = 250/im. e = 0.15 and e = 0.23 respectively. Measured permeability values given
by Wyllie and Spangler, 1952. and Seeburger and Nur, 1984, as well as calculated values
by Seeburger and Nur, 1984, are also shown. Measured and calculated values given by
Schlueter et al., 1991, are shown in Figure 12 as straight lines, spanning a range of
porosities, since the grain size of the samples was not provided.

4.7.3 Fontainebleau sandstone

Fontainebleau sandstone is made exclusively of well-sorted quartz grains cemented by
silica Doyen. 1988. This makes it well-suited for comparison with the results of the
pore-scale model for granular porous media. Doyen gives the porosity of Fontainebleau
sandstone as between 0.05 and 0.22. The grain size is given as between 150 and 300/jm.

In Adler et al., 1990, the permeability is depicted as a function of porosity. The experi-
mental values given in Adler et al., 1990, are shown in Figure 13 together with two lines
corresponding to the limiting values for dg, i.e., 150 and 300/im, and predicted by equa-
tion (105). It is clear that the bounds imposed by equation (105) represent very realistic
bounds for experiments in the porosity range t > 0.08.
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For very small porosities there may be a greater occurrence of blocked throats in the case
of near-spherical particles. The pore-scale modelling considers a hypothetical packing of
identical cubes and ignores the appearance of blocked throats. This could be the reason
for the difference between the calculated permeability and Adler's experimental data in
the porosity range c < 0.08.

The rest of this section is devoted to the influence of blocked throats at very low porosities.
It should be stressed that what follows is not part of the basic model developed above, but
only serves to indicate what the effect of blocked throats would be on the basic results. It
is not at all based on physical properties per se, but purely on the available experimental
data. The result is interesting, though, and further investigation into the occurrence of
blocked throats could prove valuable.

Spearing and Matthews. 1991. have modelled the characteristic properties of sandstone by
means of a computer program. Their data is based on Clashac outcrop sandstone which is
a relatively clay-free, well characterised rock. According to their Table II. blocked throats
begin to occur at a porosity of approximately 0.14. Blocked throats will cause adjacent
pores to become passive zones through which fluid is not transported.

In an attempt to quantify the effect of these dead-end pores on the permeability, an
effective porosity, t ,. is introduced. The porosity at which blocked throats begin to
occur will be referred! to as the threshhold porosity e(. The porosity at which all pores are
blocked, the cut-off porosity, is denoted by e_. For porosities greater than the threshhold
porosity et. e ,. will numerically be the same as e. For porosities smaller than the cut-off
porosity ec, e will be zero. The objective here is to find a function describing e ,,
between ec and t(. For simplicity, this function of the real porosity t is assumed to take
the form of a second-order polynomial to give a gradual decrease below t, and a complete
blocking at e.. Assuming this polynomial to be of the form

= a U , f ( f ) | 2 + bt,M) + c , ( 1 0 6 )

and by applying the conditions

* / / < O = o

= ,

the coefficients a, b, and c are found to be
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b = 1 - 2 ^

c = e, .

In Figure 14 the effective porosity is shown as a function of the actual porosity, e was
taken as 0.14 and tr as 0.4. The corresponding permeability for Fontainebleau sandstone
is indicated in Figure 15 by two lines for dg = 150^m and dg = 300/*m respectively.

It can be seen from Figure 15 that the pore-scale model with the adjustment for blocked
throats at very low porosities predicts a very accurate envelope for the experimental
permeability values of Fontainebleau sandstone. If throat blocking is indeed the cause of
the discrepancy between the present theory and the experimental data of Adler et al..
1990. it would be worth the effort to direct more attention to the determination of the
threshhold and cut-off porosities.

The graphical results presented clearly show that almost all the experimental results are
captured by the envelopes predicted by equation (105). It was demonstrated that for very
low porosities, the influence of blocked throats becomes a major factor in the prediction
of the permeability.

The only limitation of the model seems to be the rectangular geometry which appears
somewhat different from actual soil and rock formations. The obvious remedy is the
introduction of a shape factor, as is done in most other models, but it is evident from the
present results that such a relaxation is not needed for sandstone predictions.
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5 RESEARCH OUTPUT

Although this project was primarily aimed at the development of mathematical methods
for flow phenomena in membrane systems, the generality of the approach allowed diver-
sification to a range of related fields with very promising results. The research output
was very satisfactory and a list of novel publications emanating there from is presented
below: (see references for details):

1. Du Plessis, 1993b
2. Du Plessis. 1994
3. Du Plessis and Diedericks. 1993
4. Du Plessis. Montillet,et al.. 1994
5. Du Plessis and Roos, 1993
6. Du Plessis and Roos, 1994a
7. Du Plessis and Roos, 1994b
8. Du Plessis and Roos. 1994c.

A further point of interest is the tremendous response, especially from the international
forum, sparked by the two publications in WATER SA (Du Plessis and Roos. 1993.
1994a). This confirms that the work done was of high technical quality and that Water
SA is being widely read by researchers abroad. In addition to these publications regarding
the work done for this project, the following relevant papers were read at conferences and
research seminars:

1. DU PLESSIS, J.P., Modelling of pressure drop measurements, Departement Genie
Chimique, Institut Universitaire de Technologie de Saint-Nazaire, Universite de
Xantes, Saint-Xazaire, France, June 14. 1993.

2. DU PLESSIS, J.P. k DIEDERICKS. G.P.J.. On tortuosity and areosity tensors in
porous media, 15th Annual Meeting of the Canadian Applied Mathematics Society,
Universite de Montreal, Montreal. Quebec. Canada, June 6-9, 1994.

3. DU PLESSIS, J.P., & ROOS. L.I., On boundary conditions in porous media. Eleventh
Canadian Symposium on Fluid Dynamics, Edmonton, Alberta, Canada, June 10-12,
1994.

4. DU PLESSIS, J.P., Velocity distributions in porous media Department of Mechan-
ical Engineering, Ecole Polytechnique, University of Montreal, Montreal, Quebec,
Canada, June 1994.

5. DU PLESSIS, J.P., Pore-Scale Modelling of Flow Phenomena in Porous Media,
Department of Bioresource Engineering, Oregon State University, Corvallis, Oregon.
USA, June 1994.
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6 PROJECT ASSESSMENT

6.1 Fulfilment of Contract Objectives

The prime objective of the project was to further improve the modelling framework for the
deterministic mathematical analysis of flow phenomena in porous media and to demon-
strate the enhancement of practical predictive capabilities in this field. The construction
of the theoretical basis should, however, be done in such a manner that generalization of
any aspect may be attempted logically. At initiation of the project the following specific
aspects were proposed for special attention:

1. Contaminant transport and dispersion
2. Electrokinetic effects of ions on motion
3. Macroscopic Boundary Effects
4. Influence of Anisotropy of the Porous Structure
5. Membrane Morphology and pore diameter distribution
6. Numerical simulation techniques
7. Unsaturated flow

As is discussed in the report, remarkable progress was obtained in the majority of these
aspects and. since all the activities involved research efforts with unkown outcome, this
is gratifying. Except for the analysis on electrokinetic phenomena, progress is reported
on all aspects considered. Viewed globally the project produced a sound theoretical basis
for the analytical and computational quantification of seepage phenomena for foams and
granular materials over the entire porosity and velocity spectra. This is of particular
importance to research on the enhancement of water purification methods and the study
of contaminant transport in groundwater systems.

Contract objectives were thus fulfilled and substantial advances were made in the predict-
ing capabilities of modelling results for a variety of problems in water related research.

6.2 Contributions to the State of Art

A unified theory is being presented by which the same physical and mathematical princi-
ples are used to obtain momentum and tracer transport equations for an unlimited range
of practically possible porosity and microstructure length scales. The analytical predic-
tive results were shown to be accurate over a porosity range varying from 5% in case
of sandstones to 98% for foams. Lengths scales of experimentally verified results varies
between a few micrometers for sandstones and several millimeters in case of packed beds.
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In addition a variety of basic porous structures can be handled, namely foams, granular
media and unidirectional fibre beds.

6.3 Significance of this Report

This report summarizes theoretical results which may be used during the predictive anal-
yses of a great variety of water research problems including microfiltration through syn-
thetic membranes, groundwater, macrofiltration in packed beds and foams.

Although aimed primarily at flow phenomena in synthetic membranes it is shown in this
report that all results are directly applicable to several other water related research prob-
lems. In fact, since quantification of membrane morphology is so extremely difficult, the
verification of the model results was done here through comparison to different porous flow
phenomena for which the physical parameters of the microstructure were experimentally
determinate.

6.4 Recommendations

This research was done to provide a sound framework towards the prediction of flow and
transfer processes in porous media. As such the action needed is further publication of
results in technical journals to reach such a wide group of researchers as possible. Espe-
cially important is the fact that the results are interdisciplinary applicable and it is hoped
that in future this will lead to cross-fertilization between different research communities,
thereby cutting down on duplication of costly experimental work.

Further research in this field will aid significantly in broadening the interdisciplinary
knowledge base of water science. Typical research fields in need ot further development
are the following:

Tracer dispersion.
The theory developed in the course of the project has been demonstrated to ac-
curately predict basic hydrodynamical phenomena as observed in nature and on
laboratory scale. The underlying knowledge of flow fields must therefore be a rea-
sonable approximation of real life situations and may therefore be used for analysis
of tracer transport which may accompany water seepage in aquifers, membrane
systems, filtration plants, etc.

50



Prediction of groundwater seepage.
A novel methodology to predict pinching effects in sandstone formations was devel-
oped and shown to be effective in modelling flow disparities in very low porosity
sandstones. This seemingly successful method should be investigated further with
regard to comparison with more experimental evidence and other microstructures.

Electrokinetic effects in porous media.
This is one aspect in which the project failed to show the anticipated progress and it
is believed that, given the progress demonstrated on the other fundamental issues.
the way is now paved to put analysis on elecktrokinetica phenomena on the same
sound footing.
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Figure 8: Flow profiles for granuler medium between parallel plates.
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Figure 10: Flow profile inside and 10mm above a tubular packed bed.
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Figure 15: Final results for Fontainebleau sandstone,
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