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EXECUTIVE SUMMARY

BACKGROUND

I'he two-year project reported on here formed a follow-up to a similar project done for
the Water Research Commission during 1991/2 and which provided a stimilus for very
advanced research on the mathematical prediction methods of water movement through
porous structures,

Any analysis of water research activities will invariably show that a major part of such
activities concerns flow through porous media. Standard filtration using sand beds and
technically more advanced practices utilising membrane systems are but two examples of
applied technology making use of flow through porous media. Naturally occurring phe-
nomena such as water seepage through sandstone and other rock formations are governed
by the same physical principles and the mathematical modelling is therefore similar. Run-
off from precipitation. irrigation and sprayving of farmlands also cause water movement
through porous soils and the monitoring of concurrent pesticide concentration redistribu-
tions has become a problem of considerable importance.

Field research activities on these phenomena form an important aspect of many projects
launched by the Water Research Commission. Managerial action on findings require ex-
tensive qualification and quantification of results and the better the modelling framework
on which such elaboration takes place the better the chances are for any predictive judg-
ment to be optimal under practical circumstances,

More often than not so-called ‘mathematical models’ consist of curve-fitting by linear
regression techniques and the qualification of the result is measured against the tightness
of the fit for the particular set of data. The produced ‘mathematical model’ is then an
equation of some kind with some numerical coefficients of which the physical bearing is
mostly unknown. In this project the emphasis is focussed on the physical origin of the
type of curve against which the data is tested and the prime goal is therefore to use the
physics involved to prescribe the curve being used. In this manner the coefficients are
quite often reduced and, since the knowledge is available about the physical origin of
the particular curve, the remaining coefficients are bounded by physical constraints. The
experimental and/or numerical data are then only used to fine-trim these coefficients and
much less experimental work is normally needed. Since physical length parameters of the
particular case are explicitly used in the modelling, the problem of scaling is eliminated
and laboratory-scale results apply directly to field-scale phenomena.

In this report the term porous media is used generically for any porous structure found in
water research and results are understood to be applicable to flow through any practical
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porous medium resembling one of the idealized structures of the theoretical analysis.
Of particular importance is the flow through synthetic membranes and systems thereof
where the membrane structure can be idealized as a composite material constructed of
lavers of different basic structures. The results offered in this report may thus be used
straightforwardly in analyses of flow phenomena relating to seepage through membranes

FULFILMENT OF CONTRACT OBJECTIVES

The prime objective of the project was to further improve the modelling framework for the
deterministic mathematical analysis of flow phenomena in porous media and to demon-
strate the enhancement of practical predictive capabilities in this field. The construction
of the theoretical basis should. however, be done in such a manner that generalization of
any aspect may be attempted logically. At initiation of the project the following specific
aspects were proposed for special attention:

. Contaminant transport and dispersion

2. Electrokinetic effects of ions on motion

3. Macroscopic Boundary Effects

1. Influence of Anisotropy of the Porous Structure

5. Membrane Morphology and pore diameter distribution

. Numerical simulation techniques

7. Unsaturated flow

As is discussed in the full report. extensive progress was obtained in the majority of these
aspects and, since all the activities involved research efforts with unkown outcome, this
15 gratifving. Except for the analysis on electrokinetic phenomena. progress is reported
on all aspects considered. Viewed globally the project produced a sound theoretical basis
for the analytical and computational quantification of seepage phenomena for foams and
granular materials over the entire porosity and velocity spectra. This is of particular
importance to research on the enhancement of water purification methods and the study
of contaminant transport in groundwater systems.

Contract objectives were thus fulfilled and substantial advances were made in the predict-
ing capabilities of modelling results for a variety of problems in water related research.

CONTRIBUTIONS TO THE STATE OF ART

A unified theory is presented by which the same physical and mathematical principles
are used to obtain momentum and tracer transport equations for an almost unlimited
range of practically possible porosity and microstructural length scales. The analytical
predictive results are shown to be accurate over a porosity range varyving from 3%, in case
of granular sandstones, to 98% for foams. Lengths scales of experimentally verified results




vary between a few micrometers for sandstones and several millimeters in case of packed
heds.

Careful analysis of computer simulation of average flow fields has provided insight into
the influence of external boundary conditions applied and several suggestive remarks put
forward to improve correlation of numerical results with experimental observation.

SIGNIFICANCE OF THIS REPORT

This report summarizes theoretical results which may be used during the predictive anal-
vses of a great variety of water research problems, including microfiltration through svn-
thetic membranes, groundwater, macrofiltration in packed beds and foams. Although
aimed primarily at flow phenomena in synthetic membranes it is shown in this report
that all results are directly applicable to several other water related research problems.
In fact, since quantification of membrane morphology is so extremely difficult, the veri-
fication of the model results was done here through comparison to different porous flow
phenomena for which the physical parameters of the microstructure were experimentally
determinable.

MAJOR RESULTS

1. Novel sets of closure equations were derived for fluid flow and cross stream tracer
dispersion through foams and granular media. These equations are provided in a
form ready not only for further analysis, but also for almost direct implementation
in large scale computer simulations of involved flow phenomena.

2. The pinching effect in low porosity groundwater seepage, caused by blocking of a
percentage of the pores, was shown to be handled effectively by the model and
experimental observations can now be predicted remarkably well.

3. Some progress was made in the field of tracer dispersion and a predictive equation
for a transverse dispersion coefficient derived.

4. Anisotropicity in foam structures was shown to be handled effectively by a straight-
forward generalization of the model.

ACTIONS TO BE TAKEN

This research was done to provide a sound framework towards the prediction of flow and
transfer processes in porous media. As such the action needed is further publication of




results in technical journals to reach such a wide group of researchers as possible. Espe-

ally important is the fact that the results are interdisciplinary applicable and it is hoped
that in future this will lead to cross-fertilization between different research communities,
thereby cutting down on duplication of costly experimental work.

RECOMMENDATIONS

Further research in this field will aid significantly in broadening the interdisciplinary
knowledge base of water science. The theoretical expositions presented form a sound
foundation on which scientific analysis of secondary effects of water seepage may be based,
e.g. transport and dispersion of hazardous contaminants and multiphase phenomena.

[vpical research fields in need of further development are the following:

1. Tracer dispersion.
The thcory developed in the course of the project has been demonstrated to ac-
curately predict basic hydrodynamical phenomena as observed in nature and on
laboratory scale. The underlving knowledge of flow fields must therefore he a rea-
sonable approximation of real life situations and may therefore be used for analysis
of tracer transport which may accompany water seepage in aquifers, membrane
svstems, filtration plants, etc.

2. Prediction of groundwater seepage.
A novel methodology to predict pinching effects in sandstone formations was devel-
oped and shown to be effective in modelling flow disparities in very low porosity
sandstones. This seemingly successful method should be investigated further with
regard to comparison with more experimental evidence and other microstructures.

3. Electrokinetic effects in porous media.
This is one aspect in which the project failed to show the anticipated progress and it
is believed that. given the progress demonstrated on the other fundamental iscues,
the way is now paved to put analysis on elecktrokinetica phenomena on the same
sound footing.

CONCLUSIONS

The extremely satisfactory prediction by the same basic theory of experimental results
for vastly different physical phenomena provides confidence in the method and proves the
success of the research effort over the last four years.
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1 NOMENCLATURE
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| etera M CLi0

x 'r NS s S-S L dl 5 g por \ A
i discretization coethcients
a NIt ue 2l dispersivit

T transverse dispersivity

{3 integration fuaction
j et ance hetu a narallel nlate

’ ddistance elLweell Datlalicl Dlalos

integration unciion,

nterstitial form drag coefthcient,
[ «ohid partie le diamerer
D d spersion tensor,
["f, bed diameter,
Dy longitudinal dispersion coefficient, ayq.
Dy transverse dispersion coefficient, arg
d microscopic characteristic length,
grain size
d, ube side width,
E ntegral to be min
E as subscript, eastern grid point neighbour,
¢ as subscript, eastern boundary of control volume,
IS microscopic shear factor.
[1. [a functions of [)n;!('léi‘.:. &
] gravitational body force per unit mass.
H F.uler function,
width of parallel plates,
/ Euler function,
- REV scale length,
3 init vectlor in x-direction,
A Darcy hydrodynamic permeability,
) ntegration function

N constant term 1n discretization equation,
{ ength of parallel plates / tube,

\ discretized munimization integral,

’ number of nodes in discretization grid,
P grid point of concern,

p intrinsic phase averaged fluid pressure,

interstitial fluid pressure,

p pointwise pressure deviation, p = ps,
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Q volume How rate.
q phase average velocity,
q magnitude of q.
| R tube radius,
i Re p Revnolds number. plg| D/ u.
Re 4 Revnolds number, pigld/ u.
Re,, particle Reynolds number. pgd, / u.
Re, sphere Revnolds number. pgd, /4,
r radial coordinate,
A surface area,
S source term.,
S average of source term over control volume,
St fluid-solid interface in RUC,
[ time,
Vy fluid filled volume within RUC,
V., total volume of RUC,
V. solid volume within RUC,
v fluid velocity field within V5,
s mean velocity in streamwise pore section,
t mean velocity in transverse pore section,
W as subscript, western grid point neighbour,
w ur)r.
e as subscript, western boundary of control volume,
r r-coordinate,
v distance from container wall,
C flow direction coordinate,
Greek Letters
Y velocity ratio, v/ vy,
¢ porosity (void fraction), V;/V; ,
€, bed porosity,
¢ cut-off porosity,
€ss effective porosity,
e, threshhold porosity,
A pressure gradient dp/dz,
T fluid dynamic viscosity.,
v normal surface vector on Sy, pointing into V,,
o fluid mass density,
o generic variable,
N volume averaged tracer concentration,
W tracer concentration,
©) volumetric phase average of o, -k / / / edV |

Vi







2 INTRODUCTION

The research reported in this document emanated from a project funded during 1993
and 1994 by the Water Research Commission and is entitled MODELLING OF FLOW
THROUGH POROUS MEDIA. This two-vear project formed a follow-up to a similar
project done for the Water Research Commission during 1991/2 and which provided a
stimilus for very advanced research on the mathematical prediction methods of water
movement through porous structures (Du Plessis, 1993a).

Any analysis of water research activities will invariably show that a major part of such
activities concerns flow through porous media. Standard filtration using sand beds and
technically more advanced practices utilising membrane systems are but two examples of
applied technology making use of flow through porous media. Naturally occurring phe-
nomena such as water seepage through sandstone and other rock formations are governed
by the same physical principles and the mathematical modelling is therefore similar. Run-
off from precipitation, irrigation and spraying of farmlands also cause water movement
through porous soils and the monitoring of concurrent pesticide concentration redistribu-
tions has become a problem of considerable importance.

Field research activities on these phenomena form an important aspect of many projects
launched by the Water Research Commission. Managerial action on findings require ex-
tensive qualification and quantification of results and the better the modelling framework
on which such elaboration takes place the better the chances are for any predictive judg-
ment to be optimal under practical circumstances.

More often than not so-called ‘mathematical models’ consist of curve-fitting by linear
regression techniques and the qualification of the result is measured against the tightness
of the fit for the particular set of data. The produced ‘mathematical model’ is then an
equation of some kind with some numerical coefficients of which the physical bearing is
mostly unknown. In this project the emphasis is focussed on the physical origin of the
type of curve against which the data is tested and the prime goal is therefore to use the
physics involved to prescribe the curve being used. In this manner the coefficients are
quite often reduced and. since the knowledge is available about the physical origin of
the particular curve, the remaining coefficients are bounded by physical constraints. The
experimental and /or numerical data are then only used to fine-trim these coefficients and
much less experimental work is normally needed. Since physical length parameters of the
particular case are explicitly used in the modelling, the problem of scaling is eliminated
and laboratory-scale results apply directly to field-scale phenomena.

In this report the term porous media is used generically for any porous structure found in
water research and results are understood to be applicable to flow through any practical







3 BACKGROUND

3.1 Physical Problem Statement

’rh(‘ ph‘.sic‘n] p.’ohlt‘l!l -'Hl-':l_\l!"i consists Of 1ho‘ ip«ria. case uf Iwo pl|ﬂ$f‘ ﬂu\\ -\hf‘l’o' one
phase forms a porous structure and the second phase is a fluid. The set of constraints
given below is used to keep the analysis simple and staightforward. The construction of
the theoretical basis is. however, done in such a manner that generalization of any aspect

may be attempted logically.

Solid phase properties

The porous medium under consideration is assumed to be stationary and its structure is
assumed to be morphologically isotropic unless explicitly stated otherwise. The porous
structure is assumed to be a composite construction of different kinds of porous domains
each of which can be described by one of the four basic geometric pore-structure models
proposed, namely foamlike, granular, tubular and prismatic.

Fluid Phase Properties

The traversing fluid is assumed to consist of a single phase Newtonian fluid of constant
density and viscosity as is appropriate for water. [t is thus also implicitly assumed here
that we are dealing only with cases of fully saturated flow conditions

erstiti w
The microscopic interstitial flow conditions in the porous medium channels are considered
laminar and a no-slip boundary condition on velocity is assumed unless explicitly stated

otherwise,

Average Flow Conditions
The macroscopic average velocity gradients are assumed to be small as is normally the
situation in phenomena related to water seepage.
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3.

Mathematical Framework
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\Volumetric phase averaging (Bear and Bachmat. 1986) of the continuity equation (3)
vields the following generalized equation for fluid mass conservation during its traversing
of a porous medium:

V.g=0. (5)

Similarly the volumetrically averaged form of the Navier-Stokes equation (2) can be writ-
ten as (Du Plessis and Maslivah, 1988):

p'?.—? +pV(qq/ec)+Vp—cpg—uVlq

o
+ % {[jv-;éﬁ)dv-‘—% //(-iw+,w-vv)43=o. 6)

bf.

Due to the assumption that no large velocity gradients are present the volume integral
of the velocity dispersion should be very small and the sixth term involving the volume
integral may thus be discarded in comparison with the other terms present.

The evaluation of the surface integral in equation (6) is subject to a description of the real
velocity gradients at the pore surfaces. This in turn warrants a fairly accurate description
of the porous microstructure. The momentum transport in this form thus still remain
‘open’ in the sense that more information on the particular pore structure and flow con-
ditions are needed to evaluate the surface integral and thus obtain a closed solution of
practical use.

[t was shown by Du Plessis and Maslivah, 1991. that pore-scale modelling of the structure
may conveniently lead to the following general momentum transport equation:

pg—‘: +pV-(qq/€) + €Vp — epg — uV'q + pF(e.d. Reyy)q = 0. (7)

This equation, together with the continuity equation (3) and suitable boundary conditions
for q, now presents the means to calculate the flow field analytically or numerically,
provided the factor F can be explicitly expressed in terms of known parameters. The
factor F(e,d, Re,y) represents quantification of the microscopic frictional effects of the
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q 1P
il theretore differ from structure to structure and.

L
DOrous Matrix on the permeate I‘
through the Revnolds number., its magnitude also depends on the average fMuld velocity

[he distance d denotes the length scale of the microstructure and may loosely be taken

as the average listance between neighbouring particles, void « hannels or foam strands
he first termof 1 7) mav be left out 1in cases of time .!.-'.v';n'nclt‘!xr average motion For most

practical water seepage phenomena like flow through membranes or subsurface ground-
water flow the average inertial effects are negligible so that the second term may also be
dropped. Inclusion of the gravity term in the pressure term, vielding a total pressure head

p then reduces equation (7) to
rv,"—“'\—"q-_,i‘ fF. ,“{o‘:q:n -

[he second term. often called the *Brinkman term’ in international literature, governs
the shear stress induced by the average velocity vanable ¢ and thus has limited influence
in prm!:uxl ;vrui;.'m\ uf water seepage, I'. 1s. however, used in Arge s« ale numerical
simulations of flow to provide a link between the internal low field in the computational
woject was to show the

fomain and woundarv conditions imposed. One part of this
. f
s

. r
possible errors created by incorrect use of these boundary conditions.

If we further restrict the analysis to a uniform seepage velocity

equation (3) reduces to

—e— = uF(e.d. Rey)q 10)

[he functional dependence of F on the parameters ¢, d and Re 4 forms the cornerstone
of flow through porous media. since it is this factor F that deterrmines the hyvdrody-
namic permeability of any medium. In fact. according to the definition of hydrodynamic
permeability, it follows that




The major part of this project centred around the improvement of models to determine
F for various cases of practical interest to water research in South Africa.

In rase of isotropic media the evaluation of the drag factor F may be done in accordance
with the original proposal by Du Plessis and Maslivah, 1988, namelv to introduce a
Representative Unit Cell (RUC), allowing the quantitative and qualitative evaluation of
all the different contributions to the drag on the fluid explicitly in terms of the porosity ¢,
the scale length d of the microstructure, the type of microstructure through the tortuosity
\ and the seepage velocity ¢. The effective cross-sectional area of a single pore is given

by the relation

Consistent herewith the relation between the seepage velocity g and the mean pore velocity

v, is given for all subsequent models by

X B (13

This relation determines the pore velocity uniquely, from which intrapore fluid dvnamical
phenomena may be deduced accurately. The tortuosity thus takes a prominent place in
the modelling and a search for a sound definition of this seemingly simple concept took a
major part of the project effort.




4 RESEARCH RESULTS

4.1 Contaminant transport and dispersion

['he transport of contaminants in porous media and the dispersion of concentration gra-
dients may to a large extent be classified as either diffusion dominated or convection
dominated. In the diffusive case the molecular motion contributes much more to the mix
ing than the actual flow of the fluid. Conversely. convective dispersion (also referred to as
mechanical dispersion) is driven primarily by the the sweeping motion of Huid particles
which carry with them the contaminant or tracer. [The mechanics of the latter of tvpe
of dispersion depends to a large extent on the velocity field of the uid phase present in
the void channels of the porous matrix and the present project is devoted 1o analyvses and
prediction of such velocity fields for porous media of practical interest 1o water science

and technology.

4.1.1 Tortuosity

[t is commonly found in international literature that dispersion effects are being quantified
in terms of dispersion coefficients. This practice has, however, not vet led to satisfactory
definitions of these coefficients. Dispersion coefficients determined on the laboratory scale
also do not seem to be adequate for use on the field scale and much effort is lost by having
to redetermine coefficients for each practical case. One aim of this research project was
therefore to investigate the possibility of describing dispersion in a novel manner, starting
from an idealized interstitial velocity field v. which in turn must be functionally dependend
on the average fluid discharge rate ¢ through the porous medium of porosity ¢. This latter
link was proved to be that given in equation (13) where the tortuosity Y is a measure of
the tortuousness of the interstitial fluid streamlines. The porosity is usually determinable
hv experiment and provides no serious problem. [t is apparent that knowledge about the
tortuosity, and especially about its functional dependence on the porous microstructure,
is therefore crucial towards effectively modelling any velocity-dependent flow phenomena.
An extensive literature study revealed that. although a seemingly simple concept. there
is internationally still widespread confusion on correct definitions and interpretations of
tortuosity.

This matter was taken up with Professor Jacob Bear of the Technion in Israel and several
months of cooperation as well as some joint research at ETH in Switzerland resulted in
a manuscript on efforts to resolve this problem (Du Plessis and Bear. 1995). In short the
problem boils down to one school advocating that the tortuosity as such should include all
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dvnamical effects caused by the tortuous streamlines whereas the other school considers
the tortuosity as to present only some average ratio of the actual streamline lengths to the
average streamwise displacements. These two tortuosities may be referred to respectively
as the dynamc tortuosity and the geometric tortuosity and in the present work the term
tortuosity will refer to the latter tvpe unless stated otherwise. This geometric tortuosity
is also sometimes referred to as the tortuosity factor.

When referral is made in literature to tortuosity special care must be taken to verify which
of the following tortuosities is intended:

Dynamic tortuosity

Geometrical tortuosity

Electric tortuosity

Acoustic tortuosity.

4.1.2 Tracer Dispersion

If no molecular diffusion is allowed in an incompressible fluid environment, the concen-
tration « of a tracer species is interstitially governed by

o , _ .
E + Vilww) = 0. (14)

Volumetric averaging of Equation (14) leads to:

on 1 1 1 " —

o -v. - . -——)v=2)dV = 0. 5

5t T e (Nq) + W {/ (w ()(v ()dt 0 (15)
!

Another factor of importance is the ratio ¥ of the fluid velocities v, and v, being respec-
tively the actual cross sectional mean velocities in transverse and streamwise pore sections
of the RUC:

v = ﬂ. (16)

The factor v is assumed to be a known constant for each different pore structure (Died-
ericks, 1992).
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[he last term on the LHS of equation (15) i1s known as the fux of mechanical dispersion
and provides information on the convective spread of tracer superposed on the average
convective motion. This term should therefore give rise to all mechanical dispersion
coelficients for the cases under observation. It consists of the volume average of the
product of deviations of the velocity and tracer concentration. In its present form this

last term is undetermined and for closure some information regarding the porous medium

18 '.n'wa!c'lj_

[racer dispersion may be defined as the diffusive effect of non-linearities in the actual
intrapore velocity field on a non-linearity in the volumetrically averaged tracer concen-
tration . The etfect of tracer dispersion thus manifests itself in a change of average

concentration gradient

\ traditional simplification in the modelling of dispersion is the assumption that
the dispersive transport is locally governed by a diffusive or Fickian relationship which,
n turn, asserts that the flux of mechanical dispersion is proportional to the average
concentration gradient. The coefficient of proportionality has been studied extensively for
many vears and is currently accepted ( Tompson and Gray, 1986) as being a second order
tensor dependent on the average velocity, ¢, and characteristics of the porous medium. It
should therefore be possible to establish the following relationship

v - —iiv-%)dv = V.D.vQ. (17

with the assumption that
g — ,qul - :QL - ur]ﬁ, lli’
= q

The transverse and longitudinal dispersivity coefficients, respectively ar and ag. are
determined empirically and as a consequence suffer from experimental inconsistencies
(Moltvaner, 1989). It is therefore beneficial to quantify these coefficients directly from
pore-scale parameters. For the special case of uniform flow and where the selected refer-
ence frame, determined by g, coincides with the principle axes of D, it follows that

V.-D.V0 = D,V + DyVIQ. 19)

Due to the isotropy condition imposed the volume integral in Equation (17) may be
taken over the total volume V, of the RUC. Thereupon the divergence operator may be

20




taken inside the integral. since |, is independent of spatial location (Bear and Bachmat,
1991, Hassanizadeh and Gray, 1979). The divergence theorem is used to transform the
volume integral to a surface integral over the six plane surfaces of the RUC, namely:

)
V—l- f//(..--s—'uv—!ovi\' = L //t.-—gnv—gu-udﬁ. 120)
lo 1) ¢ ¢ by ; € ¢
‘y Sts

Exchange of tracer material across each of these interfaces with hypothetically adja-
cent RUC's may now be determined. Since such exchanges are assumed to take place only
convectively, the domain of the surface integral is restricted to these fluid-fluid interfaces
of the RUC where the scalar product in the integrand yields non-zero values,

Such an analyses of transverse dispersion. due to convective mixing between adjacent
cells. vields (Diedericks, 1992) a dispersion coefficient Dy, in accordance with Equation
(19) proportional to the average velocity ¢, namely

where A, denotes the cross-sectional area of a single pore. It follows that the factor ar is
of the order of the magnitude of a single pore as suggested by Bear and Bachmat, 1991.
It should be noted that Equation (21) is generally applicable to any isotropic porous
microstructure,

Experimental verification of this result proved very problematic, since, in all reports on
experimental work on transverse dispersion, only the measured dispersion coefficient is
given, but not the microstructural parameters. This total lack of fully documented exper-
imental data prompted the research into high porosity foams for which dispersion results
may be obtained abroad. Analytical studies were thus aimed at an investigation into the
physics of flow in isotropic and anisotropic foams. This study is now completed with
substantial comparisons with experiment pointing to the success of the modelling effort.
The next stage would be the utilization of this analytical results to predict dispersion
phenomena in foams for cases of known experimental dispersion measurements.




4.2 Electrokinetic effects of ions on motion

1 " ) |
\_. tivities planned 1o mode! eleciroxinet i« "f!t‘q I were scaled down "o aow mwore time
for the tortuosity "1{').’( rf.l\ was done since the motion of 1ons 15 closelv linked 1o the

interstitial velocity held and hence it was considered more appropriate to await more

r12orous results on tortuosity before \;n--,-ﬁ:,';g 1O much v'?{u.’t prematurelyv on this aspect

4.3 Influence of structure and pore diameter distribution

The theoretical modelling for discharge of Newtonian Huids through porous media of dif
ferent structures was extended to include inertial effects caused by interstitial recirculation

foams and prismatic structures. The results were tested against published results and

also against experiments conducted cooperatively in France,

[he hvdrodvnamic permeabilities for the different structures are expressed in determun
istic form as functions of length parameters and porosity. The resulting average perme
wbility for any given pore diameter distribution for any of the basic structures and for
any laminar velocity may therefore be calculated directly. The particular distribution
function has of course a physical origin and cannot be born out by mathematics alone. [t

must be provided by analysis of the specific material under consideration

4.3.1 Foam Structures

("onsolidated porous media in spongelike form were modellled by an RUC containing three
Hl'.l';.‘t”}' nrthngnna] duct sections of square cross-section. The relatmnship between the
rectangular pore width d. and the characteristic length d of the microstructure is given
by

['he tortuosity for such a pore representation is given by (Du Plessis. 1992a):

1 3 V9-8c [4r 1 _, [8e —36e+27]
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The shear stress factor F is given by (Du Plessis & Maslivah. 195858

F:L.)o,\:\_lb L Re,4 ‘.’.034\0\-[‘,' (24)
a? ¢ d? OEERY)

The critical Revnolds number which indicates the transition between Darcy and Forch-
heimer flow behaviour is given by

36(3 — \) .
(Reys): = T (23)
In case of low Reynolds number flow the hydrodynamic permeability is given by
ed?
R = ——— (26
J6x(x - 1) )

See Figure 1 for a comparison of these theoretical results with experimental measurements.
The success of the analytical results is evident. The present results were published (Du
Plessis. Montillet, et al. 1994) and also compared to a model by Comiti and Renaud, 1989,
an exercise proving that the present modelling is to be preferred. Although the model
by Comiti and Renaud also appears to be a pore-scale model it does make use of a curve
fit through experimental data so that the results should inevitably be good. The model
seems to break down, however, when the pore-scale geometry and physics are analyzed
carefully.

4.3.2 Granular Structures

The RUC introduced for granular structures consists of a cubic volume with a cubic
solid placed centrally within and with faces aligned. Du Plessis and Maslivah, 1991. The
tortuosity of the porous microstructure is then given by

- £ (27)

1 =(1-—-¢)s
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[hese equations predict the Ergun equation almost exactly in the range for which the
latter are reported to be applicable as is explicitly demonstrated in Figure 2. The Ergun
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nental results for packed beds, conducted over several decades. As the present result

for granular media match the Ergun equation in the applicable range it also correctly

predicts pressure gradients for packed beds, vielding it unnecessary to conduct new sets
of experiments. These results were published (Du Plessis, 1994

In case of low porosity constraints the equations may be simplified extensively ( Du Plessis
and Roos, 1993, 1994a). If equation (29) is subject to a condition of low porosity and D

1s the grain particle diameter it simplifies to




A packed bed, consisting of almost spherical granules of diameter D, will have a porosity
near 0.38 vielding a friction effect of:

g 162 1.9
FD* = —(1+3.6¢) + —(1 = ¢)Reep (33)
[ 4

and this yields a hydrodynamic permeability of:

2
R = t]ﬁ)‘ (34)

4.4 Influence of porous structure anisotropy

Of considerable importance for the prediction of flow phenomena in synthetic membrane
systems is the effects of anisotropy of the porous matrix. A considerable effort was there-
fore devoted to this problem and specifically to the capability of the model to predict
experimental results. Towards this end, one of the group members, Mr Gerhardus Died-
ericks spent several weeks at an institution in France to get hands-on experience in an
active laboratory cooperating on this problem.

As it is almost impossible to conduct controlled experiments on a microscale, a set of
experiments was done on flow through a knitted wire plug of known physical dimensions
and structure. The model described above for an isotropic foam structure is straightfor-
wardly generalized to an anisotropic foam of material length scales d;y), d;3) and d3, and
uniform solid strands of cross-sectional area d?.

The only remaing factor to be determined is the particular drag coefficient ¢4 correspond-
ing to the particular form of the strands of the wire plug used in the experiment. This was
determined to be ¢ = 1,32, owing to the “wire” being formed by two round intertwined
wires, and yields the following expression for the pressure gradient corresponding to flow
in the l-direction:

_dp - burqd, (‘“dm - d,) + (dj) - d,) + ildgy) = d,) + (d(y, — d,)
dr, 2V, (diz) — d,) (d(z) — d,)

+ (dizy — d,)? + 4(d(3) — d,)dy) — d,) + (dy) — d,)?
(dlll _— d-)‘







4.6 Macroscopic Boundary Effects

\ major practical implication of the project is the generation of transport equations fit
for use in computational simulation of porous flow phenomena of practical interest in
water research. The computational simulation of complex flow phenomena is, however,
dramatically influenced by the boundary conditions imposed on the mathematical prob-
lem. A problem arises because the transport equations which govern the low well within
the boundaries of the domain does not hold at external boundaries or at interfaces where
abrupt changes in porosity or structure occur. This may cause solutions that appear
correct, but do not convey the actual conditions found in laboratory or field experiments,

As a case study to determine the magnitude of possible errors the flow through a granular
packed bed bounded by a solid wall was analvsed.

Convective heat transfer and also many other transfer phenomena depend quantitatively
on the velocity gradient of the fluid normal to the surface across which the transfer
phenomenon takes place. It is therefore of cardinal importance to be able to predict
the velocity profile near to any internal or containing wall as accurately as possible. In
the case of a wall containing a packed bed, as is the case in many chemical reactors, this
problem is indeed awkward. since the evaluation of real intrapore velocities is a formidable
task. Even the use of the average fluid discharge through a cross-sectional element is not
at all straight-forward. The deviation from a uniform average velocity profile through a
packed bed may also markedly contribute to the dispersion of solute concentrations. This
in turn may adversely affect the determination of dispersion coefficients.

This report comparatively describes two solution methods used to quantify the near-wall
velocity distribution in packed beds namely a variational approach and a control-volume
discretization approach. The origin of channelling effects is an increase in porosity and if
the latter can be quantified, knowledge may be obtained about flow conditions near the
container wall.

4.6.1 Spatial variation in porosity

It has been observed experimentally (Roblee et al., 1958, Benenati and Brosilow, 1962)
that the average velocity in a packed bed is not uniform as is often assumed, but reaches
a peak velocity at approximately one particle diameter from the container wall. This
is due to the variation in porosity due to the specific packing arrangement of granules
near the wall. For particles of highly irregular shape the porosity is unity at the wall
and stabilizes at the average porosity at about one particle radius from the wall (Roblee
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foal., 1958 For regular shaped particles such as spheres. the variation in porosity
takes the form of a damped oscillatory wave, with oscillations damped out at .35 to 5
sphere diameters fron wal th a minimum at about one sphere radius from the wall
Benenati and Brosilow, 1962) as shown in Figure 4. The porosity in the interior of such
v randomly packed bed has beer .".le‘it\ll.""i as abo it 1,38 whereas the average porosity
for large randomly packed beds of uniform spheres was found to be about 0.39 [ Benenat

and Brosilow, 1962

1983 and Cheng and Vortmever. 1958, have used a bed porosity

Vortmever and Schuster

).4 and approxXximated the spatial variation in porosity by
’
ely) = ¢, - XD ‘_"—f 14]

In Figure 4 this approximation is shown for ¢, = 0.38 . Unless stated otherwise, this will
be used throughout in the report in order to obtain results similar to those of Vortmever

and Schuster, 1983, It should be noted, however, that more realistic approximations to
rhe exXperimer tal observations may ".’bll". be 1'u‘~|(pnr4h-r| nto 'fn.". The \-):'."llf? "-.-I':..‘-:‘

| "

described below

Vortmever and Schuster, 1983, considered spherical particles with diameter D . and for
comparison of their analysis with the granular model described above, D can be related

to the linear dimension d of the cubic RUC through

-~
|
-~
—

it to the cubic particle side width through

T\ )
«.l. — I D ) Do)
\ 6/

[ransformationof d and Re in Equations (23) and (29)to D and Re,p respectively

vields the following:

-- )] _"" t g
iy | b =T Rep 19
1 =(1=6)% |1 =(1-=¢) [1=(1-¢?




[n macroscopic continuum theory the porosity is normally defined as a volumetric average
taken over a three-dimensional representative elementary volume. For the present study,
however, it is required to describe the variation in porosity with respect to the normal
distance from the wall. This is accomplished by taking the average porosity over infinitely
thin sheets parallel to the wall. If y represents the normal distance from the wall into the
bed, this porosity will therefore yield a function e(y) as is schematically shown in Figure
5. The momentum equation (¥) thereupon simplifies to the following for uni-directional
flow between parallel plates in the r-direction:

dp >q !
'd—: — “4)? - ;JQF = 0 . 140

For flow in a tube, Equation (8) simplifies to:

dp Pq 1dq :
((7;-“((?‘:$ + ugF = 0 . (41)

It should be noted that the equations above are expressed in terms of D and not d,
since the latter scale length will vary with changes in ¢ across the bed. The particle
dimension D | however, remains constant, the variation in porosity being caused by
changes in packing density only.

Equations (40) and (41) may be rewritten in the following manner:

dp d'q :

iz = - he o+ ugs (42)
and

dp R d%q | dg

d}_--fw-fzq +M(dr,+;; (43)

where the functions f;, and f; are given by:

== A |
fi = o 33.42(1 —¢) (44)

D? [1-{1-¢)*] 1=(1-¢}
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1.6.2 The Ergun equation

The Ergun equation (Bird et al, 1960) gives, for one-dimensional average flow, an em

pirical relationship between the pressure gradient and the average velocity in an infinite
porous medium. The rwo-dimensional effect, induced by the frictional effect of macro-
scopic boundaries on average flow. may be empirically supplemented by addition of the
so-called Brinkman-term (Brinkman. 1947). The modified Ergun equation for flow in
a packed bed between parallel plates is theretore given by the following elliptic partial

differential equation [ Benenati and Brosilow, 1962):

dp : q :
—— -_:"_’] - -“-:q -+ " :.h
v"r ,"!‘.‘
u;"nJc-( t to the T-l'J:'LO\\'.nl_ !m'll“f&.’_\' conditions:
y = 0 l} = 0
B Y
, ’
y = -T 75 = ()

b is the distance between the plates, and the functions f, and f; are defined as follows:

f 150 (1-¢) s
—3 y P | ]

I W E KL

fr = L7509 (19)

D

The Ergun equation has evolved from numerous empirical correlations of experimental
data and is therefore applicable only to the limited range of experimental porosities. In
Figures 6 and 7, however, f, and f; for the Ergun equation as given by Equations (43)
and (49) are drawn for the entire porosity range, as the present application makes use of
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porosities up to unity. The empirical constants 150 and 1.75 are frequently adjusted in
literature (e.g. Dybbs and Edwards, 1952) to obtain better correlation between equation
(46) and experimental results. To conform with the work of Vortmeyer and Schuster, the
present values will be retained

For flow in a tubular packed bed, the modified Ergun equation is similarly given by:

Jdp . (r)‘q | dq
— - - sQ* < — - — .I)
s he = fig" + p ot ror (50)
and subject to the boundary conditions
r=R: ¢g=0
(51)

4.6.3 Solution Method I: Control-volume discretization method

In this method the computational domain is discretized by spanning the domain with a
finite number of grid points. The value of the dependent variable, in this case ¢. is then
only determined at each grid point by solving a set of discretization equations for the
control volume surrounding the grid point. These equations are obtained by integrating
the partial differential equation, in this case Equation (40) or (41) over every one of the
non-overlapping control volumes. The integrals are evaluated by means of piecewise linear
profiles expressing the variation of ¢ between grid points (Patankar, 1980).

To illustrate this discretization method, consider the following one-dimensional form of
the partial differential equation (40) in rectangular Cartesian coordinates:

d dq o =9
i (g) +5 =0 o
where
5 - F _(ﬂg ‘7})
P “ q d:
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In the axisymmetrical case, the one-dimensional flow is described by

differential equation:

r dr dr
where S is given by Equation (33). Integration of Equation (57) over the control volume
(5%)

vields:
\ d )
) ) (#"‘{‘l) + / Sdr = 0

jpar=s=

dr

( dg

Assuming a piece-wise linear profile for ¢, Equation (58) can be written as:
(39)

-] R

= Qy J

T (-"'E - 4qp) Bl :"P
(ér),

(or),
pr @g. @y, and k are given by:

Written in the form of Equation (56), the coefficients a

Hela
(44 —
E (by).
Bl
e = - .
" (0y)w
= a, + a, and

In the case of flow through a packed bed as described earlier, the fluid dynamic viscosity
4 is assumed constant, and therefore u, = u, = u . The solution for the single array
of g,-values according to the boundary conditions (47) and (51) respectively, is now a

straightforward matter as is noted in the section concerning the numerical results.
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The integral

‘LA = ,‘.{/-‘ ,I !".l‘,la" d"‘a ‘h{’

with Q = A /Iq dy is sought and must be minimized with / satisfving the Euler

equation

JdH d ('rlll‘ >
— = 0 . (D)

g dy \ dq’ )

Equation (63) may also be written as
Hy,=Hy, = Hyog' = Hypg" = 0. (66)
Considering Equations (63) and (64) it can easily be seen through comparison of the

coefficients of equal derivatives that H,, = u and H,, = 0.
Through integration it follows from H,, = u that
Hy = uq' + Aly.q) (67)
and thus that
Hyy = Ayly.q)
and Hyy, = Ayly.q) .

Since H,, =0, it follows that A = A(y) and thus that

Hy, = A'ly) .
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Considering Equations (63) and (69). it can be seen that
Jp
O.ly.q) - A'ly) = Ji1q - f2q° <+ . |
\x
Choosing A'ly) =0 gives Aly) =C and
dp _
B,iy.q) = fiqg + f:¢°* + = A
2 Dz
tegrating Equation (71) now yields
o 5a f Ao
')’ .qg) = gT - -0 * { ¢ Ay) 4
1 { i { J ‘&
2 } r
Anv function H satisfving Equation (63) is sought, thus choosing the integration constant
the integration function A y)] =\u L.t'r‘;‘n the function H sinr pie, and thus




Any multiple of this function will also satisiy the Euler equation (635) so that the following
equation satisfies all the requirements:

’ ) / \ 3
an {f da\
) 3 -, 13 iq -
i{ = .’—'1 > '1‘) * "_'.' + U l | | +)
dr } \ dy )

The integral to be minimized is therefore

A li) E > 3 . .1' '.‘
& = & / "’T’.‘n’ +he' + —‘J.w" ol (-’ dy 73)
v a4 dy J

) . tl'p 4
Considering that —
dr

and / q dy are constant, spatial discretization of Equation (75)
by central differencing vields the following minimization problem:

9 \ Y
N = hY [-\u.q. (q..f: + :qf.f:) . ﬂ"\w ]

i6)
prt 3 Ay
= min
with Mg, = o1 = ¢ « AU = Yis1 — ¥ and
n

Q = hzl;._\y. = constant (77)

In the case of tubular packed beds, the integral to be minimized is given by:
R
E = '.!:l/ H(r,q.¢') rdr (78)

R
= 2.'1/ lir.q.q') dr (79)

with

'R
Q = ';'.'r/ grdr = constant . (80)
.







| differential equation (32) is
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Comparison of the coefficients of the second derivative w” in Equations (88)

M

vields [ .. = = . Through integration it follows that
-
Iy = =w' + Alr,w)
.
and thus
/-.. = .'Ln" w)
"
and loe = =—uw' + A.(r.u

Integrating Equation (90) vields:

I = ’,"u"l' + Alr,ww' + B(r,w)

or
Differentiation of Equation (93) gives:

Iy = Aylr.uw)w’ + B, (r,w)
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he minimization problem can thus be written as:

- (Ag, )? : <
\ = ol V‘ “‘f.:A'{'l - ur, - ‘} r.A"l I _"'j'l T _‘ "."/;‘ J :“-’
=\ ' 4
= mn
with d¢i = qis1 = ¢ . Ari=r,,, —r, and constrained by the condition that
Q = _’:Z-(,r,_)r = constant 103)
=i

Considering the partial differential equations obtained by volume averaging. Equations (40)
and (41). the minimization problems obtained through the variational method are iden-
tical to those derived above for the Ergun equations, except that u should be replaced

by £ and f, and f; are then given by Equations (44) and (45).
€

4.6.5 Numerical results

[n this section the numerical solutions are given for

I. the Ergun equation, using the variational method.
2. the volume averaged equation, using the control-volume discretization method, and

3. the volume averaged equation, using the variational method.

In all cases the flow of air at 25°C was considered, thus the following values were used for
the density and the dynamic viscosity:

p = L.18 kgm™ and u = 0000018 Nsm™?

['he number of nodes used for the uniform discretization grid was 120 in all cases consid-
ered. The porosity ¢ in the expressions for f, and f; was substituted by the expression
in Equation (36).
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[ he control-volume discretization equations were solved numerically using a FORTRAN-
program implementing the Thomas algorithm as described by Patankar (1980) and en-
hanced by Van Doormaal and Raithby (1934). Every iteration does a forward and a
backward sweep across the grid points. Since the present study involves fully developed
ﬂu'.\‘. n!ll} one row uf nudes s llﬂ"iﬁi to solve fl)f I!N‘ Cross-stream ‘.’c"l)l‘i?) ;lf“f",l(‘. thus

simplifving to a one-dimensional problem.

The minimization problems (76) and (102) were solved numerically using the INMSL
Math/Library function LCONF (IMSL.1991). This routine is based on M.J.D. Pow-
ell's FORTRAN package for linearly constrained optimization calculations TOLMIN. The
length of the plates/tube was taken as [0m and Dg = 40mm.

In Figures 5 and 9 the flow profiles obtained by the control-volume discretization of the
volume averaged equations (40) and (41) respectively are given for ¢y, = 0.4, D = {0mm.
D =2, 4 and 6mm. and for Re,p = 5. It was found that results of methods 1 to 3 above
are very much the same and the slight differences cannot be distinguished on a graph
These differences may also be attributed to round-off errors in the numerical procedures.

4.6.6 Experimental correlation

[t is very difficult to accurately measure the average flow characteristics inside a packed
bed. Experimental data is. however, available for measurements taken a small distance
above the bed. Vortmeyer and Schuster, 1983, give a graphical representation of the flow

distribution measured 10mm above a fixed bed for air at 25°C with ¢, =04, Re p =73
and D = 2mm.

In order to compare the results of the volume averaging method with these experimental
values, the control-volume discretization method was extended to two dimensions to be
able to handle the flow redevelopment above the packed bed. In the z-direction a part
of the calculation domain 1s regarded as porous with porosity as given by Equation (36).
Further down-stream the porosity is set to ¢ = | . The velocity profile is then calculated
10mm into the free-flow regime. The result for a tubular packed bed, using a 51x120 finite
volume grid, is given in Figure 10. The measured profile |0mm above the bed as given
graphically by Vortmeyer and Schuster (1983) is also shown. These approximate values
have been obtained by direct measurements on Figure 12 in Vortmeyer and Schuster.
1983. It can be seen in Figure 10 that the present results based on the cubic RUC model,
correspond reasonably with the experimental data.

Vortmever and Schuster, 1983, solved the Brinkman equation, extended to higher flow
rates by incorporating the Ergun pressure loss relation, by means of a variational method.
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Their approximation for the porosity distribution was used throughout this section. There
is, however, no guarantee that this approximation will yield the same total discharge as for
the original distribution as shown in Figure 4. Both methods of solution discussed above
are capable of predicting the flow for the experimental oscillatory porosity distribution,
provided a proper distribution function ¢(y) or enough data points can be prescribed
which match the experimental data.

Du Plessis and Maslivah, 1991, volume-averaged the mass and momentum equations, and
by modelling granular porous media through a specific geometrical structure within an
RUC. obtained differential equations describing the flow through any granular porous
medium. These equations may be solved numerically by means of a control-volume dis-
cretization method. or by variational method as used by Vortmever and Schuster, 1953,
to solve the extended Brinkman equation.

Both solution methods mentioned above, were used. The results are nearly identical, with
some differences that may be attributed to round-off errors. Furthermore, these solutions
compare favourably with those given by Vortmeyer and Schuster, 1983, [t should be
noted that the control-volume discretization method is much simpler and quicker than
the variational method.

The model for granular porous media (Du Plessis and Maslivah, 1991) applied to packed
beds with porosity distribution function as given by Equation (36), vields results that
compare favourably with those given by the solution of the extended Brinkman equation
( Vortmeyer and Schuster, 1983). This is comforting since the latter equation is purely em-
pirical, while the granular model was derived from physical principles. Further attention
is, however, needed regarding the validity of the sheet-wise porosity distribution function.

It was clearly demonstrated that in case of a macroscopic solid boundary within a granular
medium, a simple boundary condition implying Darcy flow bounded by slip flow is more
accurate for mass flux prediction than the more popular no slip condition which causes
viscous losses via the Brinkman term. This work was accepted for publication and will
be published shortly (Du Plessis and Roos, 1994¢c).
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4.7 Unsaturated flow

[he problem of unsaturated fHow is of importance in most soil-related water research
During a visit to the Oregon State University a research seminar was held during which
possible cooperation in this field was investigated. In accordance with one of the sugges-
tions arrived at during the seminar it is of paramount importance that the hydrodynamie
permeability for fully saturated flow through sandstone was analvsed satisfactorily to
serve as an asymptotic condition benchmark for unsaturated tiow

A kev physical difference between Huid transport in membranes (and foams) and soils
is that the porosity in the latter case is extremely small. This fact was already used
to substantially simplify expressions for permeability of granular media for conditions of
low and very low porosity (Du Plessis and Roos, 1993, 1994a). The results were again
extermely encouraging and reported in the Journal of Geophvsical Research (Du Plessis
and Roos, 1994b).

In literature concerning the permeability of sandstones. the grain size is used as charac-
teristic length. In most cases the grain size is described by the volume diameter. i.e. the
diameter of a sphere having the same volume as a particle. If d, denotes the grain size.
the relation between the solid width d, and d, is given by

) d,, . (104)
[n terms of the grain size equation (31) can thus be written as

ot 2
€ !I—dl—n’ | =1 —¢)? _

n = s . RUSY

63(1 —¢)°

-

4.7.1 Massilon sandstone

Massilon sandstone is a Mississippian subarkose with moderately well-sorted and sub-
rounded grains (Green and Wang, 1986. Koplik et al., 1984, give the bulk porosity of
Massilon sandstone as 0.22 and the average grain size as 400um. The bulk permeability
was measured as 2.3 darcy, but calculated by means of an effective medium theory coupled
with a network of resistors as 27.4 darcy, which is ten times higher than the measured
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value. Schlueter et al.. 1991, predicted a permeability of 3.1 darcy, also using an effective
medium theory, but 1aking into account the effect of the cross-sectional shape, orienta-
tion, and constrictivity of the pores. Green and Wang. 1936, give the average grain size

as 200um and the porosity range as 0.2]1 - 0.22. Although the lower limit for the grain
size is probably somewhat below d, = 200um. this value is shown in Figure 11 together
with the limiting conditions (d, = $00um. ¢ = 0.2]1 and ¢ = 0.22). the measured and

calculated permeability given by Koplik et al., 1954, and the predicted value of Schlueter
et al.. 1991. For a porosity of 0.22 and a grain size of 100um, equation (105) gives a
permeability of 3.16 darcy.

4.7.2 Berea sandstone

Berea sandstone is a medium-grained, low-rank Mississipian graywacke with well-sorted
grains Green and Wang, 1986. The grain size for low-rank graywacke lies between 62.5um
and 250um. This gives an average grain size of 156.25um. quite close to the average
grain size of 155um as reported by Green and Wang, 1986. The porosity lies between
0.15 Seeburger and Nur, 1984, and 0.23 Macdonald et al.. 1986. Taking the average of
this porosity range (¢ = 0.19) and the average grain size (d, = 156.25um). equation
(105) vields a permeability of 0.74 darcy. Schlueter et al., 1991, report the experimentally
measured value as 0.46 darcy. In Figure 12 the permeability of Berea sandstone is shown as
a function of porosity. The solid lines correspond to the limiting conditions d; = 62.5um,
dy, = 250um, ¢ = 0.15 and ¢ = 0.23 respectively. Measured permeability values given
by Wyllie and Spangler, 1952, and Seeburger and Nur, 1984, as well as calculated values
by Seeburger and Nur, 1984, are also shown. Measured and calculated values given by
Schlueter et al., 1991, are shown in Figure 12 as straight lines, spanning a range of
porosities, since the grain size of the samples was not provided.

4.7.3 Fontainebleau sandstone

Fontainebleau sandstone is made exclusively of well-sorted quartz grains cemented by
silica Doyen, 1988. This makes it well-suited for comparison with the results of the
pore-scale model for granular porous media. Doyen gives the porosity of Fontainebleau
sandstone as between 0.05 and 0.22. The grain size is given as between 150 and 300um.

In Adler et al., 1990, the permeability is depicted as a function of porosity. The experi-
mental values given in Adler et al., 1990, are shown in Figure 13 together with two lines
corresponding to the limiting values for d,, i.e., 150 and 300um, and predicted by equa-
tion (105). It is clear that the bounds imposed by equation (103) represent very realistic
bounds for experiments in the porosity range ¢ > 0.08.
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For very small porosities there may be a greater occurrence of blocked throats in the case
of near-spherical particles. The pore-scale modelling considers a hypothetical packing of
identical cubes and ignores the appearance of blocked throats. This could be the reason
for the difference between the calculated permeability and Adler’s experimental data in
the porosity range ¢ < .03,

[he rest of this section is devoted to the influence of blocked throats at very low porosities
[t should be stressed that what follows is not part of the basic model developed above, but
only serves to indicate what the effect of blocked throats would be on the basic results, It
is not at all based on physical properties per se, but purely on the available experimental
data. The result is interesting, though. and further investigation into the occurrence of
blocked throats could prove valuable

Spearing and Matthews, 1991, have modelled the characteristic properties of sandstone by
means of a computer program. Their data is based on Clashac outcrop sandstone which is
a relatively clay-free, well characterised rock. According to their Table II. blocked throats
begin to occur at a porosity of approximately 0.14. Blocked throats will cause adjacent
pores to become passive zones through which fluid is not transported.

In an attempt to quantify the effect of these dead-end pores on the permeability. an
effective porosity, ¢_,, is introduced. The porosity at which blocked throats begin to
occur will be referred to as the threshhold porosity ¢,. The porosity at which all pores are
blocked, the cut-off porosity, is denoted by ¢.. For porosities greater than the threshhold
porosity ¢,. ¢ ,, will numerically be the same as ¢. For porosities smaller than the cut-off
porosity ¢, ¢, will be zero. The objective here is to find a function describing ¢_,,
between ¢ .m«{ ¢,. For simplicity, this function of the real porosity ¢ is assumed to take
the form of a second-order polynomial to give a gradual decrease below ¢, and a complete

blocking at ¢.. Assuming this polynomial to be of the form

r ' u‘
e =ae,(e)) + be

aol€) + ¢, (106)

and by applyving the conditions
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In Figure 14 the effective porosity is shown as a function of the actual porosity. ¢ was
taken as 0.14 and ¢_ as 0.4. The corresponding permeability for Fontainebleau sandstone
is indicated in Figure 15 by two lines for d, = 150um and d, = 300um respectively.

[t can be seen from Figure 15 that the pore-scale model with the adjustment for blocked
throats at very low porosities predicts a very accurate envelope for the experimental
permeability values of Fontainebleau sandstone. If throat blocking is indeed the cause of
the discrepancy between the present theory and the experimental data of Adler et al.,
1990, it would be worth the effort to direct more attention to the determination of the
threshhold and cut-off porosities.

The graphical results presented clearly show that almost all the experimental results are
captured by the envelopes predicted by equation (103). It was demonstrated that for very
low porosities, the influence of blocked throats becomes a major factor in the prediction
of the permeability.

The only limitation of the model seems to be the rectangular geometry which appears
somewhat different from actual soil and rock formations. The obvious remedy is the
introduction of a shape factor, as is done in most other models, but it is evident from the
present results that such a relaxation is not needed for sandstone predictions.




5 RESEARCH OUTPUT

\lthongh this project was primarily aimed at the development of mathematical methods
for How phenomena in membrane systems, the generality of the approach allowed diver-
sification to a range of related fields with very promising results. The research output
was very satisfactory and a list of novel publications emanating there from is presented

below: (see references for details):

1. Du Plessis, 1993b

2. Du Plessis. 1994

3. Du Plessis and Diedericks, 1993
i. Du Plessis. Montillet, et al.. 1994
5. Du Plessis and Roos, 1993

6. Du Plessis and Roos, 1991a
T. Du Plessis and Roos, 1994b
8. Du Plessis and Roos. 199%4c

\ further point of interest is the tremendous response, especially from the international
forum. sparked by the two publications in WATER SA (Du Plessis and Roos, 1993,
1994a). This confirms that the work done was of high technical quality and that Water
SA is being widely read by researchers abroad. In addition to these publications regarding
the work done for this project. the following relevant papers were read at conferences and
research seminars:

I. DU PLESSIS, J.P.. Modelling of pressure drop measurements. Département Génie
Chimique, Institut Universitaire de Technologie de Saint-Nazaire, Université de
Nantes, Saint-Nazaire, France, June 14, 1993,

2. DU PLESSIS. J.P. & DIEDERICKS, G.P.J., On tortuosity and areosity tensors in
porous media, | 5th Annual Meeting of the Canadian Applied Mathematics Society.
Université de Montréal, Montréal, Quebec, Canada, June 6-9, 1994,

3. DUPLESSIS, J.P., & ROOS. L.L. On boundary conditions in porous media, Eleventh
Canadian Symposium on Fluid Dynamics, Edmonton, Alberta, Canada. June 10-12,
1994.

{. DU PLESSIS, J.P., Velocity distributions in porous media Department of Mechan-
ical Engineering, Ecole Polytechnique, University of Montreal, Montreal, Quebec,
Canada, June 1994.

(1 ]

DU PLESSIS, J.P., Pore-Scale Modelling of Flow Phenomena tn Porous Media.
Department of Bioresource Engineering, Oregon State University, Corvallis, Oregon,

USA. June 1994.




6 PROJECT ASSESSMENT

6.1 Fulfilment of Contract Objectives

The prime objective of the project was to further improve the modelling framework for the
deterministic mathematical analysis of flow phenomena in porous media and to demon-
strate the enhancement of practical predictive capabilities in this field. The construction
of the theoretical basis should. however, be done in such a manner that generalization of
any aspect may be attempted logically. At initiation of the project the following specific
aspects were proposed for special attention:

l. Contaminant transport and dispersion

2. Electrokinetic effects of ions on motion

3. Macroscopic Boundary Effects

i. Influence of Anisotropy of the Porous Structure

5. Membrane Morphology and pore diameter distribution

6. Numerical simulation techniques

7. Unsaturated flow

As is discussed in the report, remarkable progress was obtained in the majority of these
aspects and, since all the activities involved research efforts with unkown outcome, this
is gratifving. Except for the analysis on electrokinetic phenomena. progress is reported
on all aspects considered. Viewed globally the project produced a sound theoretical basis
for the analytical and computational quantification of seepage phenomena for foams and
granular materials over the entire porosity and velocity spectra. This is of particular
importance to research on the enhancement of water purification methods and the study
of contaminant transport in groundwater systems.

Contract objectives were thus fulfilled and substantial advances were made in the predict-
ing capabilities of modelling results for a variety of problems in water related research.

6.2 Contributions to the State of Art

A unified theory is being presented by which the same physical and mathematical princi-
ples are used to obtain momentum and tracer transport equations for an unlimited range
of practically possible porosity and microstructure length scales. The analvtical predic-
tive results were shown to be accurate over a porosity range varying from 5% in case
of sandstones to 98% for foams. Lengths scales of experimentally verified results varies
between a few micrometers for sandstones and several millimeters in case of packed beds.
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[n addition a variety of basic porous structures can be handled, namely foams, granular

. BB
nedia and unidirectional hbre beds

6.3 Significance of this Report

['his report summarizes theoretical results which may be used during the predictive anal-
vses of a great variety of water research problems including microfiltration through svn
thetic membranes, groundwater, macrofiltration in packed beds and foams

\lthough aimed primarily at flow phenomena in synthetic membranes it is shown in this
report that all results are directly applicable to several other water related research prob-
lems. In fact. since quantification of membrane morphology is so extremely difficult, the
verification of the model results was done here through comparison to different porous flow
phenomena for which the physical parameters of the microstructure were experimentally
determinable.

6.4 Recommendations

[his research was done to provide a sound framework towards the prediction of low and
transfer processes in porous media. As such the action needed 1s further publication of
results in technical journals to reach such a wide group of researchers as possible. Espe-
cially important is the fact that the results are interdisciplinary applicable and it is hoped
that in future this will lead to cross-fertilization between different research communities,
therebv cutting down on duplication of costly experimental work

Further research in this field will aid significantly in broadening the interdisciplinary
knowledge base of water science. [ypical research felds in need of further development

are the following:

l. Tracer dispersion.

[he theory developed in the course of the project has been demonstrated to ac-
curately predict basic hydrodynamical phenomena as observed in nature and on
laboratory scale. The underlying knowledge of flow fields must therefore be a rea-
sonable approximation of real life situations and may therefore be used for analysis
of tracer transport which may accompany water seepage in aquifers, membrane
systems, filtration plants, etc.
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Figure 2: Comparison of results against Ergun equation for granular media.
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