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EXECUTIVE SUMMARY

The main objective of this project was to develop and evaluate techniques to estimate short
duration (< 24 h) design storms for South Africa. These were to be based on digitised
rainfall data, whereas previous studies conducted on a national scale in South Africa had
been based on data that were manually extracted from autographic charts. With the longer
rainfall records currently available, compared to the previous studies conducted in late
1970s and the early 1980s, it was expected that by utilising the longer, digitised rainfall data
in conjunction with regional approaches, which had not previously been applied in South
Africa, and new techniques such as L-moments, that more reliable short duration design
rainfall values could be estimated.

In Part A of the document the international and South African literature pertaining to the
estimation of short duration design storms is reviewed (Chapter 2) and the use of stochastic
models to generate synthetic rainfall series is assessed (Chapter 3). The results from
applications of the techniques and the development of new methods are presented in Part
B which consists of Chapters 4 10 8. In Chapter 4 the establishment of a short duration
rainfall database for South Africa is described and the effect of the errors and unrehability
of the data on the estimation of design storms are assessed. The application of an index-
storm based regional frequency analysis algorithm in South Africa is described in Chapter
5. The scaling of L-moments in order to extrapolate design storms for a particular duration
to another duration is discussed in Chapter 6 and results are presented for selected locations
in South Africa. Similarly, in Chapter 7, results are presented from the estimation of design
storms at selected locations in South Africa using synthetic rainfall series generated by
stochastic rainfall models. The various techniques developed and results obtained are
discussed in Chapter 8 and the most appropriate techniques for estimating short duration
design storms in South Africa are recommended.

SHORT DURATION RAINFALL DATABASE

The short duration rainfall database currently consists of data from 412 stations. This



database was constantly updated throughout the study as new data became available. The
largest contribution to the database (81% of all stations) was from the South African
Weather Bureau (SAWB). Processing errors were found in the data from all the
organisations which contributed data to the project. However, numerous errors in the
digitisation of the autographically recorded rainfall, in addition to missing events in the
SAWB data, resulted in a large portion of the database to be viewed as being of low
reliability. This is particularly pertinent in the estimation of design events which have a low
probability of being exceeded (e.g. 1 in 100 year return period event), as thé autographic
raingauges tend to malfunction more frequently during intense events. The distribution of
record lengths and the spatial distribution of stations with record lengths of digitised data
210 years are shown in Figures 1 and 2 respectively.
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Figure 1 Distribution of record lengths in the short duration rainfall database for

South Africa

An analysis of the temporal occurrence, magnitude and frequency of the errors indicated
that the majority of the errors identified in the SAWB data were negative and zero time
steps (infinite intensities). Techniques were developed to identify the errors and to automate
adjustments to the data points to enable smooth screening and processing of the data. The
effect of making the adjustment on estimated design storms was shown not to be significant,
but the exclusion of any event that had an error contained within it did result in a significant

difference, thus indicating that the events should be retained and errors corrected.
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Figure 2 Location of stations with record lengths > 10 years in the short duration
rainfall database for South Africa (DAEUN= Dept. of Agricultural
Engineering, University of Natal; CTCE=Cape Town City Engineers
Department; CSIR=Council for Scientific and Industrial Research; -
SASEX=South African Sugar Association; UZ=University of Zululand})

A comparison at selected sites of manually extracted and digitised Annual Maximum Series
(AMS) and the differences between rainfall totals recorded in the daily and digitised
databases led to the conclusion that the digitised SAWB data were generally of low
reliability and contained numerous periods of missing data. These periods were noted to
extend over the whole range of events and were not confined to smaller events. Nearly 3%
of the recorded raindays from the 330 SAWB stations have differences between the
standard raingauge and digitised daily rainfall totals of greater than 20 mm. This, in
conjunction with other analyses, led to the disappointing conclusion that the digitised
SAWB data were generally not adequate for estimating design storms for durations <24 h.
Consequently, this resulted in the development of three approaches which utilised regional
similarities and scaling properties of the extreme events, as well as stochastic simulation of
rainfall series in order to estimate design storms from an inadequate database.
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SHORT DURATION DESIGN RAINFALL ESTIMATION

The three approaches developed to estimate short duration design rainfall values were all
based on the assumption that daily rainfall data, recorded manually at fixed 24 h intervals,
is more reliable than short duration rainfall data, which is automatically recorded. Anadded
advantage of using the daily rainfall database to estimate short duration design storms is the
relatively dense network in South Africa of daily rainfall stations, which also generally have
much longer records than the stations making up the short duration rainfall database.

Approach 1: Regionalised Index Storm

The first approach, results of which are outlined in Chapter 5, used an index-storm based
regional L-moment algorithm developed by Hosking and Wallis (1993; 1997) to estimate
design storms for various durations. The use of a regional approach has many claimed
benefits, including robustness and improving the reliability of at-site design values.” The
underlying assumption when using an index-storm type approach is that homogeneous
regions can be identified where the distribution of extreme events is the same, except for a
local scaling factor. Thus, 15 relatively homogeneous regions were identified in South
Africa (Figure 3) and an analysis of 1 0 probability distributions showed the General Extreme
Value (GEV) to be the most appropriate common distribution to be used in all 15 regions.

Quantile growth curves were developed for each of the 15 homogeneous regions for 16
durations ranging from 15 min to 24 h. The index used to scale the relationships was the
mean of the AMS (L_17) for each duration. Thus, information from the entire region can be
used to estimate design storms at a particular site by utilising the regional growth curve and
the at-site L_/ value. This approach lends itselfto design stormestimation at ungauged sites
if the index used to scale the relationship can be estimated at the site of interest. As an
example, regression analyses were performed between the 24 h L_1 values and rainfall
related site characteristics which are readily available as 1'x]1' images for South Africa
(Schulze, 1997). The results of the regression analyses in 13 of the 15 clusters enabled the
24 h L_1 values to be estimated with reasonable confidence. It is recommended that only



L_1 values determined from gauged data be used in Clusters 10 and 11, where the
regression analyses were not successful.
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Figure 3 Distribution of 15 relatively homogeneous rainfall clusters in South Africa

The accuracy of the regional design storm estimates were assessed for one site in Cluster
3 which had not been used in the regional analysis. As shown in Figure 4 it was found that
at Ntabamhlope raingauge N23 the regional and at-site estimated design storms
corresponded very well for all durations and return periods. This “hidden station™ approach
to testing the method was not used in the other clusters owing to the limited number of
available stations, but this analvsis is a qualified validation of the methodology. The
accuracies of the quantile Regional Growth Curves (RGC) were successfully established
using a Monte Carlo type simulation of a hypothetical region which has the same number
of stations and record lengths as the cluster under evaluation. In this manner 90 %
confidence intervals were established for both the regional growth curves and the estimated
at-site design storms.
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Figure 4 Comparison of design storms estmmated using at-site data and regional
analysis: Ntabamhlope raingauge N23

Approach 2: Scaling of L-moments

The second approach to estimating design storms with an inadequate database was to
investigate the scaling relationships between the moments of the AMS and rainfall event
duration and detailed results using this approach are reported in Chapter 6. It was noted at
selected sites from different climatic regions in South Africa that the log-transformed
relationship between L-moments and duration was more linear over a wider range of
durations than when conventional moments were used. Thus, the use of L-moments was

adopted for this application in the study.

Multiple linear regression relationships were developed for each cluster to estimate the
regression slope of the log-transformed L_/ and L_2:duration relationships as a function
of site characteristics. The slopes at site / estimated as a function of the site characteristics
were termed the Regional Slopes RS, and RS, for the L_/ and L_2 relationships
respectively. Acceptable relationships were obtained for i3 of the 15 clusters.

Six hypotheses were proposed to estimate short duration design rainfalls utilising daily
rainfall data and the scaling characteristics of the L-moments of the AMS. These hypotheses



were evaluated at selected sites in each of the relatively homogeneous clusters, The
hypotheses are summarised in Table 1.

Table 1 Summary of hypotheses to estimate short duration design rainfalls using
daily rainfall data and regional rainfall characteristics
(L_x;p = x-thL-moment at site i for D hour event duration
_x*,, = regional average x-th L-moment for D hour event duration
RS,, = regionalised slope of log-transformed x-th L-moment:duration
relationship, estimated from site characteristics)

| Hypothesis Method for Estimation of first and second L-Moments for durations < 24 h
O Observed (historical) data
1 Muitiple scaling from 24 h and 48 h values
2 RS, = firegion, site characteristics) and observed L_x,, ,,
3 L_x%p, re-scaled with observed L_7,, 5,
4 L_x"p, re-scated with L_1,, p, estimated using L_1,,,,, = f (region, site characteristics)

and RS, ,, = f{region, site characteristics)

5 L_x*p, re-scaled with £_1,; 1, estimated using L_/,, ,.,, computed from daily rainfall data
and RS, = flregion, site characteristics)

6 L_x*;, re-scaled with L_!, ;, estimated using L_1,; ,,, computed from daily rainfall
data and adjusted using regionalised 24 h : [ day ratios, and RS, ;, = f{region, site
characteristics)

Hypotheses 4 - 6 utilise different techniques to estimate the L_I, ’D; values for durations
<24 h in order to re-scale the L_x*;, at sites where only daily rainfall data are available. In
addition, Hypothesis 4 can be applied to a site that has no gauged data. In order to fit
distributions with more than two parameters, Hypotheses 4 to 6 assume that third and
higher order L-moments can be estimated using the regional, average, record length

weighted L-moment ratios at all sites.

Hypothesis 1, in which L-moment for durations < 24 h are scaled fromthe 24 hand 48 h
values, is intuitively the most attractive as it is the simplest of the hypotheses evaluated.
Although this hypothesis was found to be adequate at a nurnber of sites in different climatic
regions (e.g. Cathedral Peak, Newlands, Mokobulaan), breaks in linear scaling for durations
<24 hand > 24 h at a number of stations (e.g. Ntabamhlope, Cedara, Mount Edgecombe)
resulted in the rejection of the hypothesis for general use in South Africa.



Hypothesis 4, in which the scaled regional average L-moments are re-scaled for site § using
L_1,,, values estimated using regional regression relationship of site characteristics to
estimate L_1,, ,,, and RS,, ,, is the only method evaluated that can be applied at an ungauged
site within a cluster. Generally, at sites where the data were deemed to be reliable, the
method performed well. However, at most SAWB stations where the method was
evaluated, the hypothesis did not perform well, as the L-moments computed from the | day
data were larger than the L-moments computed from the digitised data. This anomaly is
attributed to periods of missing digitised data for those stations. The errors in the digitised
data from numerous SAWB stations also resulted in Hypotheses 2, 3 and 4 generally not
performing well at these sites when compared te the L-moments and design storms
estimated from the 1 day rainfall data.

Allthe hypotheses evaluated assume that the L-moment:duration relationship is linear when
plotted as log-transformed values. This power law relation appears to hold true for most
clusters over the range from 4 to 24 h. However, a change in the linear relationship at
durations ranging from 1 to 4 h was noted at most summer rainfall sites (¢.g. Ntabamhlope,
Cedara, Kokstad, Mokobulaan and Drieplotte), where thunderstorms are the predominant
rainfall generating mechanism. In the winter ramnfall region (e.g. Jonkershoek, Cape Town
and Vredendal), where frontal rainfall systems predominate, the deviation in linear scaling
ata pérticular duration is not as marked. Although deficiencies in the temporal resolution
of the rainfall measurement and digitisation processes cannot entirely be discounted as the
cause of the change in linear scaling, it is postulated that the phenomenon is mainly the
result of the predominant rainfall generating system. The durations at which the breaks
occur at a particular site are hypothesised to be related to the typical duration of
thunderstorm activity. Thus it is recommended that Hypotheses 4 to 6 should not be used
to estimate design rainfall values for durations < 2 h, particularly in clusters where
thunderstorms are the predominant rainfall generating mechanism.

Hypothesis 6 requires that the 24 h L _/ value computed from the daily rainfall data be
converted into a continuous 24 h value, as estimated from digitised data. Although different

conversion factors for each cluster were used in this study, it is recommended from the



results of this study that a generalised value of 1.20 could be used to convert 1 dayto 24 h
L_1I values in South Africa.

The average mean absolute relative errors (4V-MARE) between design rainfall estimated
using the above 6 hypotheses and observed data were computed as:

N .
100 Nap{ IS, 0 = O .
| AV - MARE = —— 2 MARE; | where | MARE, =100, 5 ____l ub U"ﬂl
2 Ner Ox

k:l

and AV-MARE = average MARE, (%), computed from N, durations,

MARE, = mean absolute relative error of j-th hour design rainfall (%),

Sib =  k-th return period, j-th hour annual maximum design rainfall
computed using hypothesis, |

Oty = k-th return period, j-th hour design rainfall computed from
observed data, and

Neo = number of return periods (2, 5, 10, 20, 50 and 100).

An example of the AV-MARE values for durations of 2 h to 24 h at selected non-SAWB
(CP6, N23 and C182) and SAWB (0239482, 0180722, 0444540) stations in Cluster 3 is
shown in Figure 5. Hypotheses 4 and 6 performed consistently well at the noﬁ-SAWB
stations, but resulted in some of the largest errors at the SAWB stations. As shown in
Figure 6 the 24 h L_] values extracted from the digitised data correctly exceed the values
extracted from the daily data at non-SAWB stations, and the adjusted daily value, as used
in Hypothesis 6, is similar to the value extracted from the digitised data. However, at all the
SAWB stations the L ] values extracted from the digitised data are less than those
extracted from the daily rainfall data, indicating inconsistencies in the two sets of data. The
limitations of the regional regression relationships which estimate the 24 h L_/ value as a
function of site characteristics, as used by Hypothesis 4, are evident in Figure 6. The
estimated 24 h L_/ values tend to mimic the observed 24 h L_1 values extracted from the
digitised data, which were used in the development of the regression equations and which
have been shown to be unreliable at some SAWB stations.
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Figure 5 Comparison of mean absolute relative errors of design storms, averaged for
durations of 2 - 24 h and for return periods of 2 - 100 years, estimated at
selected sites in Cluster 3 for the six hypotheses summarised in Table 1
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sites in Cluster 3 {Adj. Daily =24 h L _/ value computed from daily rainfall
data; Regression =24 h L_7 value computed from regional regression and
site characteristics)



It is postulated that the method outlined in Hypothesis 6, which performed well in all
clusters and attempts to compensate for errors and periods of missing digitised rainfall data,
will vield the most accurate estimates for design storms of the hypotheses evaluated and
should be adopted in the estimation of design storms.

Although Hypothesis 6 requires daily rainfall data and cannot be applied at sites which have
no rainfall data, which is not the case with Hypothesis 4, the dense network of daily rainfall
stations with relatively long records used in conjunction with Hypothesis 6, enables the
estimation of short duration design storms at a large number of locations in South Africa.
The estimation of regional regression relationships to estimate the 1 day L 7 value,
computed from the daily rainfall data, as a function of site characteristics would enable
Hypothesis 6 to be applied at any location in South Africa. It is probable that design storms
estimated directly from the SAWB digitised data would, on average over durations ranging
from 2 h - 24 h at most stations considered, have underestimated short duration design
storms by up to 65 %.

Approach 3: Stochastic Rainfall Modelling

In the third approach to short duration design rainfall estimation, detailed results of which
are reported in Chapter 7, two variations of Bartlett-Lewis rectangular pulse type of intra-
daily stochastic models were used to generate synthetic series of rainfall. The estimation of
the parameters of the models proved to be an exacting task, with similar performance
possible with very different sets of parameters. The constrained parameter search technique
developed in this study ensured that the mean storm characteristics computed from the
derived parameters were reasonable and aided in the determination of parameters.

The parameters estimated by function minimisation were found to be relatively sensitive to
the initial estimates of parameters at the start of the minimisation procedure and the
parameter search technique adopted assisted in overcoming this sensitivity. It became clear
that the unconstrained minimisation procedures frequently referred to in the literature are

reliant on the careful selection of tnitial conditions.



The explicit presentation of the relationships between the model parameters and the
methods used to estimaie the parameter correlation matrix are not evident in the literature
reviewed. The correlation matrix assisted in the determination of model parameters by
identifying parameters that were highly correlated and which could thus be assigned a fixed

value,

A comparison between the performances of the Modified Bartlett-Lewis Rectangular Pulse
Model (MBLRPM) and Bartlett-Lewis Rectangular Pulse Gamma Model (BLRPGM) was
performed at selected sites in South Africa. The performance of the models and the ease
of parameter determination were found to be sensitive to the composition of the moments
used to determine the parameters of the model. It was noted that despite the BLRPGM
requiring the estimation of an additional model parameter compared to the MBLRPM, the
performance of the BLRPGM was generally less sensitive than the MBLRPM to the

moments used to estimate the model parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown
to simulate synthetic rainfall series which fitted the statistics of the historical data better than-
those computed from the series generated by the MBLRPM. Similarly, the design rainfall
events estimated using the BLRPGM were better than those estimated using the MBLRPM.
Generally the BLRPGM performed better when short duration digitised data were available
to estimate the model parameters than when only daily rainfall data were available. It was
shown that the variances for durations < 24 h could be estimated directly from the 1 and 2
day values and were reasonably accurate at most locations tested for durations as short was
1 h. The use of only the daily rainfall, with the inclusion of variances for durations <24 h.
estimated from the daily data, generally resulted in adequate estimation of design rainfalls.

For the observed data and for each of 100 synthetic series generated by the BLRPGM,
design rainfall depths were estimated using the General Extreme Value (GEV) distribution,
fitted to the Annual Maximum Series (AMS) by L-moments. Design values for 2 to100
year return periods were computed for rainfall durations ranging from 0.25 hto 24 h. For

each duration and return period, a frequency analysis was performed on the 100 values



computed from the synthetic rainfall series generated by the model. Histograms depicting
the observed design rainfall computed from the historical data and High-Low bars depicting
the inter-quartile range (25-th to 75-th non-exceedance percentiles) of the 100 synthetic
data sets is one method of visually evaluating the adequacy of the model. For example, the
performance of the BLRPGM at Ntabamblope raingauge N23, with parameters derived only
from the daily data, is shown in Figure 7 for the best (February) and worst (December) rainy
season months simulated and for anmal periods. Further improvements in the estimation
of design rainfalls are possible by adopting a parameter optimisation procedure, which
includes event duration and number of events, in addition to other moments, directly in the

determination of model parameters.

Design storms were well estimated from the synthetic series generated from the BLRPGM
at a range of sites in different climatic regions in the country. However, it is recommended
that design storms for durations shorter than 1 h should not be estimated from the synthetic
series generated by the BLRPGM, even when short duration rainfall data are available to
estimate model parameters. In cases where only daily rainfall data are available to estimate
the parameters of the model, it is recommended that design storms should not be estimated
for durations shorter than 2 h and should be used with caution for durations from 2 to 6 h,
It was evident from the results obtained that any anomalies in the historical data, as was
often the case with the SAWB data, are highlighted by comparisons to the synthetic rainfall
series. Thus it was shown in some cases that design storms estimated using the BLRPGM
were more reliable than the design storms estimated using historical short duration data

Design storms are only estimated well using the BLRPGM when the historical AMS contain
no high outliers and hence the BLRPGM does not appear to work well at locations where
a mixture of meteorological conditions cause extreme events, Thus the model performance
does not appear to be adequate in areas where the variation in range of values in the AMS

for a particular month is smaller for longer duration events than for shorter duration events.
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The temporal distribution of storms generated by the BLRPGM was found to closely match
the observed data at three seiected test sites in different climatic regions in South A.fn'ca
(Ntabamhlope, Jonkershoek and Mokobulaan). However, the frequency of storms with
particular profiles was not as well simulated as the temporal distribution. It is thus
recommended that the use of the BLRPGM to estimate design rainfall values in South
Africa, particularly for durations of 1 to 24 h, is a feasible option which can also be adopted
at sites where-only daily rainfall data are available.

A comparison of the Mean Absolute Relative Error (MARE) between design rainfalls
estimaied from the historical data and between values estimated using both Hypothesis 6
and from the synthetic rainfall series generated by the BLRPGM, with optimised parameters
determined using only daily rainfall data, are shown in Figure 8 for selected stations. In the
calculation of the MAREs, the 2, 10, 20 and 50 year return period values for durations of
2,4, 6, 12 and 24 h durations were considered. It is evident from Figure 8 that design
rainfall values computed using either Hypothesis 6 or from the synthetic rainfall series
generated by the BLRPGM. with parameters estimated from daily rainfall data and
optimised, are similar. Hence it is concluded that both methods are acceptable for estimating

design storms in South Africa for durations > 1 h.
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Figure 8 Mean absolute relative errors of design
rainfalls for durations of 2 - 24 h and return
periods of 2 - 50 years estimated at selected
stations using Hypothesis 6 and the BLRPGM
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The effect of record lengths on the estimation of design rainfall values was investigated at
two sites in South Africa (Ntabamhlope and Jonkershoek). In both cases, the design rainfall
values estimated from the synthetic rainfall series generated by the BLRPGM, with
parameters determined using a short period ofrecord, better approximated the “true” design
values, computed directly from the full period of observed record, than when the design
values were computed directly from the short period of observed record. Thus it is highly
recommended that, particularly when only short periods of record are available and no other
techniques of estimating short duration design rainfall values are available, design rainfall
values should preferably be computed using the synthetic rainfall series generated by the
BLRPGM, with parameters estimated using the short period of data, rather than estimating
the design values directly from the short period of observed data.

RECOMMENDATIONS FOR APPLICATION OF RESEARCH FINDINGS

All three approaches; which were evaluated to estimate short duration design storms with
an inadequate database performed well within the limitations of the data. However, the
combined method of regional average L-moments and RS, scaled using an adjusted L_/
value computed from the daily rainfall data (Hypothesis 6), is recommended for general use
in South Africa and for durations =1 h, as it combines the strengths of the regional
approach, which may compensate to some extent for stations with poor data, and explicitly
attempts to compensate for the inadequate digitised data by using the _/ value computed
from the daily data. It is also recommended that the BLRPGM be used at selected sites in
addition to the method detailed in Hypothesis 6, in order to ensure reasonable design

estimates are obtained.

Hypothesis 6 can only be applied at sites which have daily rainfall data. It is recommended
that regional relationships be developed to estimate the at-site 1 day L_/ value, computed
from the daily rainfall data. as a function of site characteristics. This relationship in
conjunction with the regionalised 24 h : 1 day L_1 ratios and RS, would enable reliable

estimation of design storms for durations < 24 h at any site in South Africa.



RECOMMENDATIONS FOR FUTURE RESEARCH

Design rainfalls estimated using the recommended approaches generally did not compare
well to design values for durations shorter than 1 h. This suggests either that the digitised
data are more unreliable for shorter durations or that the techniques developed do not
capture the characteristics of the extreme events for shorter scales. It is therefore
recommended that the techniques should be evaluated on more reliable, high resolution data
such &s that recorded by data loggers, which may have to be obtained from sites not in
South Africa.

An option not pursued in this study, but which warrants further investigation, is the use of
stochastic daily rainfall models, as have been developed for South Africa by Zucchini et al.
(1992), to simulate daily rainfall series. The stochastically generated daily rainfall model
would thus enable Hypothesis 6 to be applied at any ungauged location in South Africa.
Similarly, the stochastically generated daily rainfall series could be used to estimate the
parameters of the BLRPGM.

It has been shown that the short duration data from the SAWB are generally of low
reliability and hence there may be some doubt as to the validity of the homogeneity tests
which may have been based on unreliable data. It is intended that a future project refine and
extend the relatively homogeneous clusters identified in this study by performing a cluster
analysis, similar to the regionalisation performed in this study, but based on the site
characteristics of the locations of the daily rainfall gauges and the subsequent testing of the
clusters identified for homogeneity using the daily rainfall data.

The variances for short duration events, used for determining parameters of the BLRPMs
from the daily rainfall data, were estimated in this study using a linear relationship between
the log of variance and log of duration. This generally resulted in poor estimates of variance
for durations <1h. It is recommended that future research should consider adopting a
curvilinear function, which may improve the estimates of variance for short durations and
result in better model parameters and improved model performance,
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CHAPTER1
INTRODUCTION

Engineers and hydrologists invoived in the design of hydraulic structures (e.g. culverts,
bridges, dam spillways and reticulation for drainage systems) need to assess the frequency
and magnitude of extreme rainfall events in order to generate design flood hydrographs.
Many thousands of engineering and conservation design decisions involving millions of
Rands of construction and which require accurate short duration (< 24 h) design rainfail
intensity information are made annually in South Africa. Depth-Duration-Frequency (DDF)
relationships, which utilise recorded events in order to predict future exceedance
probabilities and thus quantify risk and maximise design efficiencies are a key concept in the
design of hydraulic structures (Schulze, 1984).

Estimates of design rainfall for durations shorter than one day were last comprehensively
produced for South Africa in the early 1980s (Midgley and Pitman, 1978; Van Heerden,
1978; Adamson, 1981) and for selected stations in KwaZulu-Natal in the mid 1980s
(Schulze, 1984). The objective of this project was to develop and apply new techniques,
including regional approaches which have not been applied previously, for improving the
estimates of short duration design rainfall values for South Africa. With longer available
records from recording raingauges and an increased spatial density of short duraiion rainfall
data, more reliable estimates of design storms may now be made than are currently used in

practice.

Techniques used in single site frequency analysis are widely documented (e.g. Stedinger er
al., 1993). One of the requirements of frequency analyses is a collection of long periods
of records. The short duration rainfall data availabie in South Africa have generally been
recorded autographically and digitised into a computer compatible format. The record
lengfhs of the available data are relatively short, with only 49 out of a total of 412 recording
rainfall stations in South Africa having record lengths of 30 years or longer, and only 4
stations with record lengths of 50 years and longer. Thus the network ofthese stations with
record lengths longer than 30 years is very sparse.



A regional approach to rainfall frequency analysis attempts to supplement the limited
information available from the relatively short periods of record with regional information
from surrounding stations. This approach is not new in frequency analysis, with many
different techniques available. However, until recently, there has been very little consensus
regarding the best technique to use. The development of a regional index-flood type
approach to frequency analysis based on L-moments (Hosking and Wallis, 1993; Hosking
and Wallis, 1997) has many reported benefits and has the potential of unifying current
practices of regional design rainfall analysis.

The main objective of the project was to estimate short duration design rainfalls for South
Africa. These were to be based on current digitised rainfall records, which were
approximately 20 years longer than the manually extracted values used in previous studies‘
conducted in the 1980s, and to utilise regional techniques to supplement the sparse
distribution of recording raingauges and hence produce more reliable short duration design
rainfall values than are currently available for South Africa.

A short duration rainfall database was established after a survey of the available data in
South Africa. Some of the data were only available in chart form and have been
subsequently digitised as part of this project. The organisation contributing the majority of
the data to the database is the South African Weather Bureau (SAWB). Unfortunately the
guidelines for routine digitisation spelt out by Dent and Schulze (1987) were not followed
by the SAWB and numerous errors and inconsistencies inthe SAWB data are evident. After
much interaction with the SAWB it was decided that even the task of re-digitising only the
charts which probably contained extreme events would be too costly and labour intensive
to undertake. Thus this project deviated substantially from its original intentions and a large
amount of energy went into identifying, quantifying and repairing the processing errors in
the database and in developing techniques for estimating design storms from a largely
inadequate database. Therefore approaches were developed to estimate short duration
design rainfall values notwithstanding the limited reliability of the majority of the digitised
rainfall data.




Three approaches to estimating design storms from the unreliable short duration rainfall
database were evaluated. The first approach used a regional frequency analysis, the second
investigated scaling relationships of the moments of the extreme events and the third
approach used a stochastic intra-daily model to generate synthétic rainfali series. A common
theme in all three approaches is the development of techniques to estimate short duration
design storms from the daily rainfall database, which contains rainfall data recorded
manually at daily intervals, and is deemed to be more reliable than the short duration rainfall
data,

The severity of the errors and the amount of missing short duration data varies from station
to station. Hence the use of a regional approach will supplement information at sites which
may have unreliable information with better information from within the region, assuming
that not too many sites in the region have unreliable data. As part of the regional approach,
homogeneous rainfall regions in South Africa were identified and a regionalised, index
storm based frequency analysis using L-moments was adopted. Regionalisation was
performed using site ci-naracteristics and tested independently using at-site data. For each of
the homogeneous regions and for various durations, growth curves, which relate the ratio
between design rainfall depths and an index storm to return period, have been developed.
Regression equations, based only on site characteristics, have been dertved to estimate the
24 h index storm for each region. Thus it is possible to estimate the 24 h index storm at a
site which has no recorded rainfall data, and in conjunction with the regionalised growth
curve, design storms may be estimated at any ungauged site in South Africa.

A second approach developed to overcome the limitations of the short duration rainfall
database was to use the scaling properties of the moments of the extreme events in
conjunction with the moments derived from the daily rainfall database to estimate short
duration design storms at a particular location. In this respect, the use of L-moments instead
of conventional moments were found to scale more linearly over a wider range of durations.
Regionalised regressions to estimate the slope of the L-moment:duration relationships have
been developed. Thus the L-moments for durations less than 24 h can be estimated using



the L-moments computed from the daily data and regionalised regressions, thereby enabling
short duration design storms to be estimated at any location in South Africa.

A third approach to estimating design storms from the generally unreliable database was to
generate synthetic rainfall series using stochastic models and to estimate design storms from
the synthetic series. Techniques have been developed to estimate the parameters for the
models using moments and other information derived only from the daily rainfall data, thus
utiising the relatively dense network of daily rainfall siatioas available in South Africa.
Hence, at any site where a reasonable record of rainfall recorded at daily intervals is
available, the parameters of the stochastic model can be derived and hence design storms
for durations less than 24 h can be estimated from the synthetic rainfall series. The effect of
short rainfall record lengths was investigated and the use of a stochastic rainfall model t.o
overcome the limited available data is illustrated.

This document is divided into two parts. In Part A, the literature are reviewed and the
theoretical framework is presented for the techniques used. The results from applications
of the techniques and the development of new methods are presented in Part B. Part A
consists of Chapters 2 and 3. The international and South African literature pertaining to
the estimation of design storms is reviewed in Chapter 2. Similarly, in Chapter 3 the use of
stochastic models to generate synthetic rainfall series is reviewed. Part B consists of
Chapters 4 to 8. In Chapter 4 the establishment of a short duration rainfall database is
described and the effect of the errors and unreliability of the data on the estimation of design
storms is assessed. The application of the index-storm based regional frequency analysis
algorithm in South Affica is described in Chapter 5. The scaling of L-moments in order to
extrapolate design storms for a particular duration to another duration is discussed in
Chapter 6 and results are presented for selected locations in South Africa. Similarly in
Chapter 7, results are presented from the estimation of design storms at selected locations
in South Africa using synthetic rainfall series generated by stochastic rainfall models. The
various techniques developed and results obtained are discussed in Chapter 8 and the most
appropriate techniques for estimating short duration design storms in South Africa are

recommended.



PART A
LITERATURE REVIEW

In Part A the international and South African literature relevant to this study are reviewed.
‘Techniques for the estimation of design storms are reviewed in Chapter 2 and the use of
stochastic rainfall models to generate time series of rainfall, from which design storms can
be estimated, are reviewed in Chapter 3.
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CHAPTER 2

DESIGN STORM ESTIMATION

Estimates of high intensity rainfall are not only important for flood estimation and
engineering design, but are also important in the estimation of soil loss and vegetation
damage resulting from high intensity storms. It is thus desirable to express, in probabilistic
terms and for different durations, the likelthood of different amounts of rain (Tomlinson,
1980). The results of under- or over-design of even small hydraulic structures such as farm
dams or culverts results in considerable national waste of resources (Reich, 1961; Reich,
1963). Thus rainfall Depth-Duration-Frequency (DDF) relationships are a key concept in
the design of hydraulic structures where a return period is selected according to the cost and
significance of the structure. In order to minimise risk and maximise efficiency in design,
statistical and probabilistic methods are thus applied to past events in order to predict the
exceedance probability of future events (Schulze, 1984).

Adamson (1981) summarised the state of extreme value analysis as applied in hydrology asl
“copious, confusing and conflicting™ and adds that many advances in extreme value analysis
rarely find routine application, This results in the practising engineer relying on “weli tried
but often crude methodologies™ (Adamson, 1981). Although much has been published on
DDF studies since 1981 there still appears to be little consensus in the literature on
preferred approaches to design storm estimation. However, the relatively recent
developments in regional approaches to the estimation of DDF relationships at a point hold
much promise for more general acceptance. Thus the objective of this chapter is to review
and summarise some established and current, as well as new, procedures to estimate design
storms. Both single at-site approaches (Section 2.1) and joint at-site and regional -
approaches {Section 2.2) to design storm estimation are reviewed. This is followed by a
review in Section 2.3 of DDF studies in South Africa. Finally, a review of the use of scaling
relationships is presented in Section 2.4 which includes results from both South Africanand
international studies. '



2.1 SINGLE SITE APPROACH

The objective of frequency analysis is to utilise a recorded sample of the hydrological
variable in order to estimate future probabilities of occurrence (Cannarozzo et al., 1993).
Design rainfall values may be estimated by extracting either the Annual Maximum Series
(AMS) or Partial Duration Series (PDS) from the rainfall data and then analysing the
extracted series analytically or graphically (Hershfield, 1984). Both methods require the
selection of a suitable probability distribution to be fitted to the extracted series. The
analytical method requires a curve-fitting procedure and the graphical method requires the
selection of an appropriate plotting position formula which assigns a probability of
exceedance (P, ) to each value in the extracted series. By definition the refationship between
the return period (T ) and P, is:

The estimation of design storms over a catchment commoniy involves all or some of the
following steps (Tomlinson, 1980; Canterford ef al., 1987a; Alexander, 1990; Griffiths and
Pearson, 1993):

. DDF relationships are developed at each site by fitting probability distributions to
the primary data series.
. Procedures are developed to determine short duration intensities from the daily

raingauge network and thus to supplement the recording raingauge network.

. Relationships are developed to extrapolate from and interpolate between defined
durations.

. Methods are deduced for interpolating between stations.

. Point to area relationships are derived to predict areal distribution of extreme
rainfall,

. Procedures are developed to specify the temporal sequences of the design
hyetograph.



. Guidelines are recommended to try and account for future climate change.

In order to develop the DDF relationships at each site, the following principal steps are
commonly used (Cunnane, 1989; Nathan and Weinmann, 1991):

. A data set to be analysed is selected. This may either be the AMS or PDS.

. An appropriate probability distribution is selected.

- A parameter and quantile estimation method is selected.

v A scheme is chosen for joint use of at-site and, where available, regional data.

The above methods invelve choices which are both descriptive, with the shape of the
distribution resembling the observed sample’s distribution, and predictive where quantile
estimates are robust with small bias and standard error (Cunnane, 1989). Bias is defined
as the difference in the estimated quantile and the population value. The above four steps
are expanded on in the following sections.

2.1.1 Data Series

2.1.1.1 Annual maximum vs partial duration series

In order to perform an extreme value analysis, Sevruk and Geiger (1981) list necessary
assumptions about the data as follows:

. the data are correct or, where necessary, have been corrected,

. the data series is consistent, homogeneous, stationary and independent,
. the length of record is sufficient to represent the population,

. the AMS or PDS series follow a particular distribution, and

. the estimates of the parameters of the distribution are unbiased.




According to Cunnane (1989) either one of the AMS or PDS may be used to derive the
magnitude-return period relationship. The design values estimated using the two series
converge beyond the 10 year return period (Reich, 1963), although Schulze (1998) has
found that the convergence between the two series can occur at return periods as low as 5
years. The theoretical relationship between the return period from the AMS (7,,,5) and PDS
(Teps) i

1
T .=
A J—exp(-1/T,)

Various opinions regarding the use of the AMS and PDS have been expressed in the
literature, An advantage of using the AMS as compared to the PDS is that AMS are
statistically independent if care is taken in the selection of events occurring over the end of
the year, whereas statistical independence is not as easily achieved using the PDS (Cunnane,
1989). However, Adamson (1981) expressed the view that the popular use of the AMS
rather than the PDS was due to the ease of use of the AMS and not on the theoretical
efficiency in characterising extreme value time series. The use of the AMS may, in the case
of short records, result in a considerable loss of information for the estimation of rainfall
probabilities.

Stedinger ef al. (1993) report that the use of PDS avercomes the objection that large events
may be excluded when they are not the largest event in a year and design estimates based
on the PDS should, if the arrival rate of events is large enough, yield more accurate
estimates of quantiles than estimates based on the AMS. A disadvantage of the PDS is that
the events s¢lected have to be independent and the PDS analysis is more complicated than
analysis using the AMS (Stedinger e¢ Ial., 1993).



2.1.1.2 Record length

Limited length of available records makes it impossible to conclusively select a distribution
that could consistently provide adequate rainfall frequency estimates for return periods
much greater than the period of record (Richards and Wescott, 1987) and a small sample
may define a distribution which is markedly different to the parent population (Schulze,
1980; Oyebande, 1982). The lengths of record used in some rainfall frequency studies
reported in the literature are listed in Table 1. As evident in Table 1, the minimum record
length of 10 years suggested by Viessman et al. (1989) has generally been adhered to in
most studies.

Schulze (1984) questioned the significance of the period of available record on the extreme
events recorded and hence the design values. This issue was addressed by Hogg (1991;
1992) who used a moving window ranging from 10 to 40 years to estimate the 100 year
return period event and compared the results to the 100 year retum period event computed
from the entire data set. In addition. Hogg (1991) used an expanding window which used
a window from the starting point to the year in question. The expanding window estimate
of the 100 year event showed some trends at particular stations in Canada, but Hogg
(1991) concludes that these trends reflect natural climate variations and sampling variability,
as the trends were not spatially (i.e. between stations) consistent. Using the moving window
approach Hogg (1991) demonstrated that 20 years of data are not stable enough to
estimate the 10 year return period event, while Hogg (1992) concluded that even a 40 year
period of record is insufficient to estimate the 100 year return period event. Thus, Hogg
(1992) postulates that the assumptions of stationarity and homogeneity of the AMS of
rainfall are seldom valid and suggests that a regional approach may improve the frequency
analysis of extreme rainfall events.
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Table 1 Record lengths used in some rainfall frequency studies

Reference Location Record Length
(years)

Van Wyk and Midgley (1966) South Africa 5-26
Canterford and Pierrehumbert (1977) Australia > 12
Midgley and Pitman (1978) South Africa 5-38
Oyebande (1982) Migeria 5-30
Sendil and Sahil (1987) Saudia Arabia 10 - 20
Schaefer (1990) USA mean =32
Kothyari and Garde (1992) India Lo - 53
Cannarozzo et al. (1995) Sicily 10 - 45 (mean=23)

2.1.1.3 Errors and missing data

Raingauge malfunctioning and rainfall processing errors are inherent in rainfall data. The’
volume of raw data often precludes the manual editing of the data and missing data may be
in-filled using relationships previously established at the site (Aron er al., 1987), or rules
may be established to exclude the data from the analysis should defined thresholds of
allowable missing data be exceeded (Canterford and Pierrehumbert, 1977).

Weddepohi (1988) discusses problems associated with short duré.tion rainfall data and their
availability in South Africa. Some of the common errors in digitised data include inherent
raingauge malfunctions, raingauge operator errors, errors in transposition of data from
charts into computer compatible format and unrealistically lumped station data whena
station is relocated within a period of record. Other problems associated with the data are
the spatial density and distribution of raingauges, the fact that the standard rain day ends
at 08:00 whereas the digitised data are continuous, the length of available records and the

presence of outliers.
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Errors are apparent when different rainfall depths are recorded at the same site using
different types of raingauges. Differences are common between rainfall recorded at daily
intervals and rainfall recorded continuously and aggregated to the same period as the daily
rainfall. Thus the New Zealand Meteorological Service and the National Water and Soil
Conservation Organisation have similar data editing procedures which contain internal
consistency checks and inter-site comparisons and recording raingauges are scaled to bring
them into agreement with total rainfall recorded by the check gauges (Tomiinson, 1980).

Guttman (1993), in a probabilistic analysis of monthly totals of rainfall in the USA using L-
moments, recognised and accepted that there were still possible errors in the data, but did
not attempt to correct or in-fill the missing data. This decision was based on Hosking's
(1990) assertion that asymptotic biases of L-moments ratios are negligible for sample sizes
greater that 20.

2.1.1.4 Outliers

1t is generally accepted that outliers in rainfall data are the result of:

. the occurrence of a meteorological phenomenon different to those which caused
all the other events, or

. a rare occurrence of a meteorological phenomenon similar to which has occurred
previously, or

* incorrect observations or keying in of data (Tomtinson, 1980).

The phenomenon that data may not arise from the same population (distribution) has led to
the use of the two-component extreme value distribution by, inter alia, Rossiet al. (1984),
Versace and Rossi (1985), Arnell and Beran (1987), Pegram and Adamson (1988) and

Cannarozzo et al. (1995).
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Outliers are commonly identified by the degree of deviation from their plotted positions on
the frequency curve, by their ratio to the mean, by comparison to other records in the
region of study or if the equivalent return period assigned to an event is much longer than
the length of the series (Wang, 1987). Statistical tests, such as those used by Pilgrim and
Doran (1987), can be developed to identify high and low outliers. These generally relate
deviations about the mean in log-space to identify an outlier. Tomlinson (1980) suggested
three approaches to dealing with outliers:

. Exclude the event and recalculate the parameters of the probability distribution.

. If the event is found to be drawn from a non-homogeneous population, then
exclude the event.

. Inciude the event and select a more appropriate distribution, fitting technique or
plotting formula.

Cunnane (1989) expressed the opinion that outliers should be retained if an efficient
parameter estimation method is used, as the effect of the outliers would then not be
significant, In Australia, guidelines for the treatment of outliers is subjective and the
probable cause of the event, the prior belief and statistical evidence are taken into account.
The omission or deletion of a data point is taken as an extreme step (Pilgrim and Doran,
1987). According to Stedinger er al. (1993) the thresholds used to define high (X,) and low

outliers (X;) in log space are

Xy1=X+K,S .3
where

X = mean of the log-transformed data,

§ = standard deviation of log-transformed data,

n = sample size, and

K, = 3.345‘}103(11) - 0.4046log(n) — 09043 . .4
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2.1.1.5 Conversion of fixed time interval value to true maxima

When converting values calculated at specific times of the day to independent durations of
the same length, conversion factors have to be used (Alexander, 1990). The conversion
factors are dependent on the duration in question and various values have been proposed.
For example, the factors recommended to convert the 1 day (fixed time) to 24 h continuous
maxima are 1.13 in the USA (Hershfield, 1962), 1.06 in'the UK (NERC, 1975), 1.13
(Alexander, 1978) and 1.11 (Adamson, 1981) in South Africa. Schulze (1984), using a
digitised database, showed that in South Africa the conversion factor varies regionally and,
at some locations, with return period with variations of up to 20% evident. More recently,
Dwyer and Reed (1995) show that, based on theoretical considerations, the correction
factor should be 1.33, but recommend a value of 1.16, which is based on rainfall data from
the United Kingdom and Australia,

2.1.2  Selection of a Probability Distribution

The question of which probability distribution to adopt and methods of selecting the most
appropriate distribution has received considerable attention in the literature, particularly for
flood frequency estimation and to a lesser extent for rainfall frequency estimation. The
choice is particularly important when estimating extreme events with return periods greater
than the length of record (Canterford and Pierrehumbert, 1977; Chow et al., 1990; Karim
and Chowdhury, 1995). Cunnane (1989) reports that the choice is often based on factors
such as the probability distribution being widely accepted, simple, easy to apply, consistent,
theoretically well founded and documented, but concedes that theoretical arguments alone
cannot identify the best distribution. Schulze (1984) postulates that the choice of
distribution may be less important than other factors such as whether manually extracted or
digitised data are used, the stationarity of the data and the method of fitting the distribution
to the data. Cunnane (1989) expresses the opinion that the consequence of using the wrong
form of the distribution is over and under design of hydraulic structures.
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Since the exact probability distribution of the population is not known, it is required to
select a reasonable and simple distribution to describe the phenomenon of interest
(Stedinger ef al., 1993). The choice of distribution should take into account both descriptive
abilities, to ensure that the shape of the distribution resembles the observed sample’s
distribution, and predictive abilities, which implies that the quantile estimates of possible
candidate distributions are robust with small bias and standard errors (Cunnane, 1989,
Cannarozzo et al., 1995). This view was also expressed by Pegram and Adamson (1988),
who advocate using a “theoretically and intuitively correct model” rather than a best-fit
model, which may be a hazardous strategy for extrapolation. Chow and Watt (1990)
express the opinion that no deductive reasoning or goodness-of-fit tests can arrive
conclusively at a single correct/appropriate distribution, In addition, much uncertainty is
inherent in the estimation of parameters and hence quantile estimates. Therefore Chow and
Watt (1990) believe that it is necessary to use an expert system which mimics heuristics
used by experts. In the light of the instability of design rainfall events, Hogg (1991)

questions the selection of the “best” probability distribution to use.

The probability distributions investigated and used in selected rainfall frequency studies both
in South Aftica and internationally are listed in Table 2. From Table 2 and as reported by
Stedinger et al. (1993) the EV1, LP3 and GEV probability distributions are commonly used
for short-duration rainfall probability analysis. In South Africathe EV1 distribution has been
extensively used in rainfall DDF studies, even though Adamson (1978) notes that the fixed
skew of 1.13 inherent in the EVI distribution is “a considerable limiting assumption”.
Although limited use of the GEV distribution in rainfall frequency analysis is reported in
Table 2, the GEV distribution is extensively used in flood frequency analyses (Cunnane,
1989) and the use of the EVI., EV2 and EV3 distributions and the integrated GEV
distribution is growing in the application of frequency analysis (Raynal-Villasenor and
Acosta, 1995). According to Wallis and Wood (1985) the GEV distribution cutperformed
the LP3 in a regional analysis even when the samples used were generated by an LP3
distribution. The selection of an appropriate frequency distribution for South Africa is
described in Chapter 5, Section 3.5.
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Table 2 Summary of probability distributions used in selected rainfall frequency studies
(See Table 3 for explanation of abbreviations)

Reference Location Probability Distribution
Investigated Recommended/Used
South Africa

Reich (1963) SA EV1
Van Wyk and Midgley (1966) SA EV1
Bergman and Smith (1973) Western Cape EVi
Midgley and Pitman (1978) SA LEVI
Adamson (1978) SA EV1
Schulze (1980) SA EV1
Adamson (1981) SA LN3
Schulze (1984) KwaZulu-Natal EV1,LN2, LP3
Pegram and Adamson (1988) KwaZuly-Natal TCEV
Weddepohl (1988) SA LN2
Smithers (1996) SA LN2, LN3, LP3, GEV

PE3, LP3,EVI,

LEV1, GEV, GPA,

GLO, WAK

International

NERC (1975) UK GEV
Canterford and Pierrehumbert Australia LN2, EV1, GEV, mixed distribution
{1977} ‘ double LN2 | mixed

distribution
Tomiinson (1980) New Zealand EV1
Hershfield (1982) USA EVI
Oyebande (1982) Nigeria EV!
Pescod and Canterford (£985) Australia LN2
Aron eral. (1987) USA LP3
Richards and Westcott (1987) USA PE3, LP3, GAM, EVi

EVi
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Reference Location Probability Distribution
Investigated Recommended/Used
Canterford et al. (1987a} Australia LP3
Canterford et al. (1987h) Australia LP3/LN2
| James et &/, (1987) india EVI
Sendil and Salih (1987) Saudia Arabia EVI1
Ferreri and Ferro (1990) Sicily EV1
Schaefer (1990) USA GEV
Shuy (1990) Singapore EV1
Buishand (1991) GEV
Griffiths and Pearson (1993) New Zealand EV1 (local)
KAP (regional)
Naghavi er al. (1993) UsA LP3
Gutiman (1992) Usa LP3, GEV, LN3 LP3
Cannarozzo et al. (1995) Sicily TCEV

Table 3 Abbreviations used for probability distributions

Abbreviation Probability Distribution Abbreviation Probability Distribution
EVi Extreme Value Type 1 (Gumbel) LN3 3 parameter Log-Normal

GAM Gamma LP3 Log-Pearson Type 111

GEV General Extreme Value PE3 Pearson Type 111

GPA Generalised Pareto LEVi Log-EV1

GLO Generalised Logistic TCEV Two Component Extreme Value
KAP Kappa WAK Wakeby

LN2 2 parameter Log-Normal
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2.1.3 Parameter Estimation

The fitting of a distribution to a data set provides a compact and smoothed representation
of the frequency distribution revealed by the limited available data and enables the
systematic extrapolation to frequencies beyond the range of the data set (Stedinger et al.,
1993).

2.1.3.1 Fitting procedures

Some approaches available for estimating the parameters of a selected distribution are listed,
with some comments, in Table 4. The use of L-moments to fit distributions has received
extensive coverage inthe recent literature (e.g. Wallis, 1989; Hosking, 1990; Pearsonet al.,
1991; Gingras and Adamowski, 1992; Guttman, 1992; Pilon and Adamowski, 1992;
Guttman, 1993; Guttman er gl., 1993; Lin and Vogel, 1993; Vogel and Fennessy, 1993;
Vogel et al., 1993a; Vogel er al., 1993b; Wallis, 1993; Gingras and Adamowski, 1994;
Zrinji and Burn, 1994; Hosking, 1995; Hosking and Wallis, 1995; Karim and Chowdhury, -
1995; Hosking and Wallis, 1997). In addition, L-moments are reported to have advantages

when compared to other techniques and hence are reviewed in the following section.

2.1.3.2 L-moments

While being similar to ordinary product moments, the purpose of L-moments and
Probability Weighted Moments (PWMs} is to summarise theoretical probability distributions
and observed samples (Vogel ef al., 1993a). Hence L-moments can be used for parameter
estimation, interval estimation and hypothesis testing.

L-moments have several important advantages over ordinary product moments (Vogel et

al., 1993b). In order to estimate the sample variance and sample skew, ordimary product
moments require the squaring and cubing of the observations respectively. Sample
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estimators of L-moments are linear combinations of the ranked observations and do not
require squaring and cubing of the observations. Thus L-moments are subject to less bias
than ordinary product moments (Wallis, 1989; Pearson et al., 1991; Vogel et ai., 1993a;
Karim and Chowdhury, 1995).

Table 4 Summary of methods used for parameter estimation (Cunnane, 1989%; Lin and
Vogel, 1993; Stedinger et al., 1993)

Method Comment
Moments (MOM) . easy to apply and simple to use
. not suitable for distributions with more than 3
parameters
Maximumn Likelihood Procedure . good statistical properties in large samples
(MLP) . often cannot be reduced to simple formulae, so are
estimated using numerical methods
. solution not always possible
L-Moments (LM) / . easy to apply
Probability Weighted Moments . almost as efficient as MLP, particularly in small
(PWM) samples
‘ . easily used in regional analysis
. LM more reasonable and reliable than MOM
Bayesian Inference (Bl) . combines prior information and regional

hydrological information with the likelihood
function
. atlows explicit modelling of uncertainty in

parameters

Non-Parametric . an advantage is that they do not assume a
particular family of distributions

. more robust, but less efficient than paramerric
methods

. have not seen much use in practice and are rarely
used officially
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L-moments, as defined by Hosking (1990), are linear combinations of PWMs, Greenwood
et al. (1979) summarise the theory of PWMs. Unbiased sample estimates for the first four
PWMs can be computed from Equation 5 (Stedinger et al., 1993; Vogel and Fennessy,

1993).

1 n
bo = ;Zx_,f ...Sa
I=l
1E [ (n-))
b = " ;=1["("' D x, ...5b
L& (n-j)n-j-1)
by = n;[ n(n-1}n-2) *i 36
18 (n- jfn-j-1)n-j-2)
b, =— .
3 njz=l|: n(n-1)(n-2Xn-3) % 3d
where
b, = r-thorder PWM sample estimate,
n = number of observations in the sample, and
x, = ranked observations, with x, being the largest observation

and x, the smallest observation.

The first four L-moments for a sample can be computed from the first four PWMs using

A, = b, = L - location (mean) ...6a
Ay = 2b, - b, = L - scale ..6b
A, = 6b, - 6b + 5, .00
A, = 20b, - 30b, + 125, ~ &, | ...6d
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r-th L-moment

-~
]

Hosking (1990) defines the L-moment ratios as:

r = i—’ = L- CV (coefficient of L - variation) ..7a
1

Ty = A = L — skewness ...7b
2

Ta = %—‘— = L - kurtosis e 7C

2

Hosking (1990) shows that A,, 1, and T, can be thought of as measures of a sample’s scale,
skewness and kurtosis respectively.

In order to select an appropriate distribution and parameter estimation procedure, tests are

required to evaluate the distribution and parameter estimation method.

2.1.3.3 Goodness-of-fit tests

Probability plots are useful to reveal the character of the data set and to determine if a fitted
distribution appears consistent with the data. Analytical Goodness-Of-Fit (GOF) criteria
provide insights as to whether the lack of fit is due to sample variability, or whether the
model and data are significantly different (Stedinger ef al., 1993). Generally GOF tests will
identify more than one distribution which is statistically acceptable and are more valuable
in identifying which distributions appear to be inconsistent with the data (Cunnane, 1989;
Stedinger et al., 1993).
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Cunnane (1989) categorises GOF tests into tests for descriptive ability and predictive ability,
both of which should complement each other. When testing for descriptive ability the best
fitting distribution is sought from known distributions based on one or more of the

following:

»

Graphical/Visual inspection.
Although graphical methods have traditionally been used and are a useful check of
reasonable fit, there is a distinct possibility of error when choosing a distribution
using an inspection of a probability plot.
GOF tests such as Chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistical
tests. .
These test the null hypothesis that the sample could have been drawn from the
parent population and generally have little statistical power and cannot discriminate
between acceptable distributions.
Tests based on skewness and moment-ratio diagrams.
It is difficuk to attribute the scatter of points in moment-ratio diagrams to sampling
error or to genuine differences between parent populations, particularly when only
short records are available.
Numerical indices of agreement calculated from probability plots.
These tests do not account for the greater natural sampling variation of the largest
elements in a sample and usually select the 3-parameter distributions.
Regional pooling of data, and applying the above GOF tests to the pooled data.
Behaviour analysis by simulation study or theoretical analysis to determine if the
sample could have been drawn from a candidate distribution.

Tests for predictive ability involve testing how well candidate distributions can estimate
quantiles when the population distribution is not identical to that of the candidate
distribution and may utilise:

split sample tests, and/or
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»  tests for robustness by testing whether a distribution and method of parameter
estimation are insensitive to departure from assumptions made.

One relatively recent innovation for visual interpretation of GOF is the L-moment diagram.
L-moment diagrams have been used extensively in recent studies to select approprate
probability distributions (e.g. Hosking and Wallis, 1987; Vogel et al., 1993a; Vogel et al.,
1993b). L-moment diagrams are similar to conventional product moment diagrams and
compare sample estimates of 1,, T, and t, with a range of different theoretical distributions.
An advantage of L-moment diagrams is that a range of distributions can be plotted on the
same diagram and it is thus useful for evaluating which distribution provides a satisfactory
approximation to the distribution of a particular hydrological variable. Vogel and Fennessey
(1993} advocate the replacement of product moment diagrams by L-moment diagrams
because, unlike product moment diagrams, L-moment ratios are nearly unbiased for all
underlying distributions. '

The theoretical relationships between T, and t, for the probability distributions shown in
Figure 1 are summarised by Hosking (1991a) and Stedinger et al. (1993). The two
parameter distributions in an L-moment diagram are represented by a single point, and the

3 parameter distributions by a continuous curve.

Regional rainfall frequency estimation methods have been favoured over conventional at-site
methods in recent years (Nandakumar, 1995) and are hence reviewed in the following
section. Four generic approaches to frequency analysis are listed by Cunnane (1989) and
Nathan and Weinmann (1991) as:

« At site analysis
Hydrometric data at the sit¢ are used to estimate the quantiles.

* At site/regional analysis
Quantile estimates are based on both the data of the site under consideration and
the data from other sites in the region.
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. Regional analysis only
Quantiles are derived from data from other sites in the region.

«  Transposition of information from other sites.

L-KURTOSIS

0.4 0.2 0 0.2 0.4 0.8 0.8
L-SKEWNESS

Figure 1 L-moment diagram (after Stedinger et al., 1993)

2.2 - JOINT AT-SITE AND REGIONAL APPROACHES

Given that the data at a site of interest will seldom be s_ufﬁcient or available for frequency
analysis, it {s necessary to use data from similar and nearby locations (Stedinger e al.,
1993). This approach is known as regional frequency analysis and wtilises data from several
sites to estimate the frequency distribution of observed data at each site (Hosking and
Wallis, 1987; Hosking and Wallis, 1997). Thus the concept of regional analysis is to
supplement the time limited sampling record by the incorporation of spatial randomness
using data from different sites in a region (Schaefer, 1990; Nandakumar, 1995).

Regional frequency analysis assumes that the standardised variate has the same distribution
at every site in the selected region and that data from a region can thus be combined to
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produce a single regional flood or rainfall frequency curve that is applicable anywhere in the
region with appropriate site-specific scaling (Cunnane, 1989; Gabriele and Amell, 1991;
Hosking and Wallis, 1997). This approach can also be used to estimate events if no
information exists (ungauged) at a site (Pilon and Adamowski, 1992).

2.2.1 Advantages

In nearly all practical situations a regional method will be more efficient than the application
of an at-site analysis (Potter, 1987). This view is also shared by both Lettenmaier (1985;
cited by Cunnane, 1989) who expressed the opinion that “regionalisation is the most viable
way of improving flood quantile estimation” and by Hosking and Wallis (1997) who, after
a review of recent literature, advocate the use of regional frequency analysis based on the
belief that a “well conducted regional frequency analysis will yield quantile estimates
accurate enough to be useful in many realistic applications”. When regions are “slightly”
heterogenous (i.e.1<H<2, as defined in Section 2.2.3.2), regional analysis yields more
accurate design estimates than at-site analysis (Lettenmaier and Potter, 1985; Lettenmaier
er al., 1987; Hosking and Wallis, 1988). Even in heterogenous regions, regional frequency
analysis may still be advantageous for estimation of extreme quantiles (Cunnane, 1989;
Hosking and Wallis, 1997).

The extrapolation to return periods beyond the record length introduces much uncertainty
which can be reduced by regionalisation procedures which relate the observed flood or
rainfall at a particular site to a regional response (Ferrari ef al., 1993). Nathan and
Weinmann (1991) illustrate the etfect of record length on quantile estimates and show that
the at-site/regional estimates are far more robust in relation to length of record than those
based only on at-site data. particularly when only short record lengths are available.

The advantages of regionalisation are thus evident from previous studies. The next section

briefly reviews some methods of regionalisation.
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2.2.2 Methods

Frequency analyses estimate how ofien a specified event is likely to occur and is applicable
to many environmenta! variables such as rainfall and runoff (Hosking and Wallis, 1997).
Hence the metheds described could be applied to both rainfall, flood and low flow
frequency analyses (Stedinger er al., 1993). General approaches to regional frequency
analysis are categorised by Nathan and Weinmann (1991) as:

. station year methods,
. record extension,
. region averaging methods, and

. Bayesian methods.

Regional averaging of at-site statistics ofthe data is the best known alternative to the station
year method (Buishand, 1991). Hosking and Wallis (1997) summarise approaches to
regionalisation using regional averaging as listed in Table 5. At-site estimation, where all
the parameters of the distribution are estimated from at-site estimates, is included for
reference in Table 5.

The regional shape approach estimates the mean and dispersion from at-site statistics and
the shape parameters are estimated from the mean of the at-site shape measure for the sites
in the region. The method is intermediate between the regional shape estimation procedures
and the index value procedures. Some justification for this approach is that the accuracy of
the higher order moments may be better estimated using a regionalised approach. The
regional shape estimation method may be preferred to the index value method if there are:

*  doubts about the homogeneity of extreme rainfall events in the region,

*  the main interest is in the estimation of quantiles in the extreme upper tail. or

. if the at-site records are fairly long, but the regional estimate of L-skewness is still
more accurate than the at-site estimate (Hosking and Wallis, 1997).
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Table 5 Estimates of distribution parameters used by different variants of regional
frequency analysis (after Hosking and Wallis, 1997)

Variant Mean Dispersion Shape

At-site at-site at-site at-site

Regional shape at-site - at-site regional average

estimation

Index value at-site regional average regional average

Hierarchical regions | at-site regional average for regional average for full
subregion region

Fractional at-site weighted average of regional estimates

membership .

Region of influence at-site weighted average of regional estimates, for stations in a site's
region of influence

Mapping | at-site estimated function of site characteristics

For index-value procedures the mean is estimated from at-site estimates, while the

dispersion and shape statistics are both estimated by regional averaging,

The hierarchical regional approach is an index value procedure in which relatively large
regions are used to define the shape parameter. These regions are then subdivided into
smaller regions over which the dispersion is assumed to be constant. A disadvantage of this
method is that estimated parameters and quantiles may change abruptly between adjacent
regions (Hosking and Wallis, 1 997). This approach has been used, inter alia, by Gabriele
and Arnell (1991) and Cannarozzo et al. (1995).

Fractional membership entails a site having fractional membership in several regions, and
not only in a single region. The use of fractional membership does not allow any relaxation
of the criteria for homogeneous regions, but does enable a smooth transition between

regions.
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Using the region of influence approach, parameters and quantiles at the site of interest are
based on a regional frequency analysis in which a region is chosen to consist of sites that are
expected to have a similar distribution to the site of interest. The sites are considered to be
the “region of influence”. Smooth transitions between regions are possible. This approach
has been used, inter alia, by Bumn (1990a), Burn (1990b) and Zrinji and Burn (1994). A
disadvantage of the method is that appropriate site characteristics have to be chosen and
weights have to be assigned to the characteristics (Hosking and Wallis, 1997).

Mapping involves constructing a map that can be used to estimate the parameters at a
particular site and is applicable when the parameters of a regional frequency analysis vary
smoothly and hence can be mapped (Hosking and Wallis, 1997). For example, Schaefer
(1990) mapped the CV and skewness of a fitted GEV distribution as a function of at-site
Mean Annual Precipitation (MAP). A similar approach has also been used by McKerchar
and Pearson (1990) and McConachy (1995).

Hosking and Wallis (1997) recommend that the following concepts and principles should
be incorporated in a regional frequency analysis:

e  Frequency analysis should be robust.
Modelling of environmental variables is extremely complex and hence exact
representations of the physical processes are not feasible. Therefore the procedure
should be such that even when the model’s assumptions deviate from the true
physical process, the quantile estimates yielded by the modei would not be
seriously degraded.

»  Simulation should be used to assess a frequency distribution.
Monte Carlo simulation is recommended to evaluate the properties of a frequency
analysis procedure or to compare two or more procedures. Synthetic series can be
generated to simulate real world data, and the adequacy ofthe proposed modelling
procedure can be assessed for such series, since the true quantiles of the frequency
distribution are known.
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*  Regionalisation is valuable.
Based on the assumption that the sites form a homogeneous region. more
information is available from a regional analysis than from an at-site only analysis,
and hence quantile estimates are, potentially, more accurate.

+  Regions need not be geographical.
Station proximity is not necessarily an indicator of the similarity of the frequency
distributions. It is proposed that groupings are formed based on variables or site
characteristics which are thought to influence the frequency distribution, such as
latitude, longitude, altitude or MAP.

+  Frequency distributions need not be “textbook” type distributions.
Environmental variables are generally “heavy tailed” (i.e. quantiles increase rapidly
with return period) and usually have a relative short length of record. Hence it is
often not possible to unequivocally identify a particular distribution. Therefore,
distributions other than “standard” distributions should be considered.

+  L-moments provide useful summary statistics.
Fitting a distribution to the data involves assuming a particular distribution and
estimating a finite number of parameters. Sample moment statistics such as
skewness and kurtosis are often used to judge the goodness-of-fit between a
sample and a postulated distribution. However, it has been shown that these
statistics are algebraically bounded with bounds dependent on sample size. In
addition, it has been found that the sample skewness and kurtosis, particularly in
small samples, sekdom approximate population statistics well. Therefore L-
moments are recommended, as they are able to characterise a wider range of
distributions and, when estimated from a sample, are more robust to the presence
of outliers in the data. When compared to conventional moments, 1. -moments are

less subject to bias in estimation.
A regional index value based procedure which incorporates the above guidelines has been

developed and has been shown in recent studies to yield suitably robust and accurate
quantile estimates (Guttman, 1993; Hosking and Wallis, 1993; Hosking and Wallis, 1997).
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2.2.3 An Index Value Procedure Based on L-moments

Hosking and Wallis (1993) presented a procedure to estimate the parameters of the regional
frequency distribution by combining the at-site L-moments to give regional values.
Assuming the region to be homogeneous, the regional average L-moment ratios are
computed from observations scaled by an index value. The regional average L-moment
ratios are computed by weighting according to an individual site’s record length. These
regionai average L-moment ratios arc equated to the population L-momcent ratios and used
to fit the distribution. This distribution, after appropriate re-scaling by the at-site index
value, is used at each site to estimate quantiles. This procedure has been termed the regtonal
L-moment algorithm (Hosking and Wallis, 1997). The strength of regional frequency
analysis using the regional L-moment algorithm is that it is useful even when not all of its
assumptions are satisfied (Hosking and Wallis, 1997).

An index value approach assumes that the region is homogeneous, i.e. the frequency
distributions of values of all the sites in the region are identical, apart from a site-specific
scaling factor. If data are available from N sites in a region and the record length at site i
is n, , and if Q(F) is the quantile of non-exceedance probability F at site 7, then

Q(F)=p,q(F). i=1..N .8
where

4 = index value. and

qF) = regional quantile of non-exeedance probability F.

The index value () may be taken as the mean of the at-site frequency distribution or any
other location parameter (Hosking and Wallis, 1997). The regional quantiles (g(F)) define
a dimensionless regional frequency distribution cornmon to all sites, known as a regional
growth curve, i.e. the common distribution of @ /i, where 0, is the j-th observation at
site i. The mean (J) is commonly used as the index value, although other location

parameters could be used.
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The dimensionless values (¢ , = @,/ #;, /=1,...n,, i = 1,....N) may be rescaled to estimate
g(F). If the form of ¢(F) is known, then it is necessary to estimate the p parameters,
6,... 6,

In the regional L-moment algorithm (Hosking and Wallis, 1993; Hosking and Wallis, 1997)

the p parameters are estimated separately at each site, and if the site / estimate of &, is

denoted é,f” , then the at-site estimators are combined to give regional estimates as

N N N N
G5=3 né9 /3 n . .9

f=l =]

This is a record length weighted average, with the estimate at site i given weight
proportional to n. The quantile estimates at site i are then obtained by combining the
estimates of y; and g(F) as

QE(F)=.‘;:"?(F) . .10

The results of statistical analyses are inherently uncertain and require an assessment of the
magnitude of the uncertainty. Hosking and Wallis (1997) point out that the accuracy of the
assessment is a function of the assumptions made and recommend that the method used to
assess the uncertainties should be robust enough to be useful even when the assumptions
are not all satisfied. For example, the region may be slightly heterogenous, the incorrect
distribution may have been chosen, or statistical dependence of the data may exist. Hosking
and Wallis (1997) recommend that Monte Carlo simulations be used to estimate the

accuracy of the estimated quantiles.
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Monte Carlo simulation techniques were used by Hosking and Wallis (1997) to investigate
the performance of the regional L-moment algorithm under 2 wide range of conditions and

concluded:

Regionalisation is valuable.
Regional estimation is more accurate than at-site estimation, even if the
region is slightly heterogenous, or if the incorrect distribution is selected, or
if inter-site dependence is evident. This is pariicularly so in the estimation
of quantiles far into the tail of the frequency distribution.
There is little gain in using regions containing more than 20 stations.
This is a result of the errors in quantiles and errors in growth curves
decreasing slowly as a function of the number of sites in a region.
Regional estimates are less valuable relative to at-site estimates as record lengths
increase. -
Regions should thus contain fewer sites when the at-sites record lengths are
long.
The use of 2-parameter distributions are not recommended in regional frequency
analyses.
Mis-specification of the correct frequency distribution 'is only important for
quantiles far into the tail of the distribution {(#>0.99).
Certain robust distributions such as the Kappa and Wakeby distributions yield
reasonably accurate estimates over a wide range of at-site frequency distributions.
Heterogeneity introduces bias into estimates which are not typical of the region,
and can be the major source of error in estimated quantiles and growth curves.
Small amounts of inter-site dependence should not be a concern in regional
estimation,
Inter-site dependence has little effect on bias, but does increase the
variability of estimates,
The advantage of regional estimates over at-site estimates is greatest at extreme
quantiles (F>0.999), where mis-specification of the frequency distribution is more
important than heterogeneity. ‘
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In order to implement the index value procedure as outlined above, which has been termed
the Regional L-Moment Algorithm (RLMA), Hosking and Wallis (1993; 1997) proposed
the following stages in a regional frequency analysis and developed statistics, based on L-
moments, that provide objective support in this process.

2.2.3.1 Screening of data

Initial screening of the data should aim at verifying that the data collected at a site are a true
representation of the quantity being measured and that all the data are drawn from the same
frequency distribution, Two kinds of important and plausible errors occur in environmental
data:

. data values may be incorrect (incorrect recording/transcription), and/or
. circumstances under which data were collected may have changed over time (e.g.

moving of measuring device).

Gross error checks for outlying values and repeated values should be performed (Hosking
and Wallis, 1997). In addition, checks in levels and trends are useful and comparisons
between sites should be performed to check for any irregularities. The above errors are
reflected in the L-moments of the sample and the use of a convenient amalgamation of the
L-moment ratios into a single measure of discordancy (D) is recommended. Hence sites
whose L-moments are markedly different from those of the other sites in the data set can
be identified as being discordant. The D statistic is based on the “cloud of points” when
plotted in three-dimensional space (L-CV, L-skewness, L-kurtosis). A site is flagged as
being discordant if it is far from the centre of the cloud containing the other points.

Assuming that a region comprises of & sites with u, = [¢?, £,%, £,”]" the vector of le
4 24 i 3 samp.

L-moments for the i-th site in the region i.e. L-CV, L-skewness and L-kurtosis respectively,

which are analogous to the population t, t,, and 7, in Equation 7, and T denotes the
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transposition of a matrix. Hosking and Wallis (1997) define the discordancy index for site /

where
sl
u: ?Z ui - mld ...12
h’ — —
A= (u,-u)u-u) .13
i=1

The critical value of D is determined as a function of the number of sites in the region and
is 3 for N 215. It is envisaged that the D statistic could initially be used to identify gross
errors within a large group of sites within a defined geographical area. When tentative
homogeneous regions have been identified, the discordancy measure can then be calculated
for each site in a proposed homogeneous region. The use of the discordancy measure in this
study is explained in Section 5.1.

2.2.3.2 Identification of homogeneous regions

The identification of homogeneous regions is usually the most difficult of all the stages in
a regional frequency analysis and requires the most subjective judgment (Hosking and
Wallis, 1997). This step aims to form groups of sites that approximate the homogeneity
condition, i.e. the site's frequency distributions are identical apart from a site-specific scale
factor.

Data available for the formation of regions are site statistics (quantiles calculated from
measurements) and site characteristics (e.g. latitude, longitude, elevation, MAP and other
physical properties). Hosking and Wallis (1997) recommend that the site characteristics,
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and not the site statistics, be used for regionalisation. The at-site statistics should be used
for independent testing of proposed homogeneous regions. Some statistics {(e.g. MAP,
rainfall seasonality) which are estimated from measurements may be included in the site
characteristics, provided that the statistics are not too highly correlated with the variable of
interest. This approach would enable the estimation of quantiles at ungauged sites.

In a homogeneous region all sites will have the same population of L-moments. Owing to
sampling variability, the sample L-moments will be different. Hence it is necessary to
evaluate whether the between-site variation in sample L-moments is what the variation

would be expected to be in a homogeneous region.

Hosking and Wallis (1993) developed a heterogeneity test statistic (H) which compares the
between-site variability (dispersion) of L-moments with what would be expected for a
homogeneous region. Dispersion is measured as the distance on & plot of L-skewness vs L-
CV from z site’s plotted point to the group’s average point, weighted according to record
length of individual sites.

Assume that a proposed region consists of N sites with the i-th site having a record length
of i, and sampie L-moment ratios of ¢, ,/%, £,”. The regional average L-CV, L-skewness
and L-kurtosis, denoted by £~. +,%, ¢ * respectively, are weighted proportionally to the sites
n,. For example

N N

* = ng /Z n, .14
=1

i =1

The weighted standard deviation of the at-site sample L-CVs are calculated as

VzJi(nf-lR}zfin, | .15
=1 =] ’
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The 4-parameters Kappa distribution, which includes as special cases the generalised
logistic, generalised extreme value and generalised Pareto distributions, is fitted to the
regional average L-moment ratios (1, /%, 1;%, £,%) and a large number (¥,,,, generally > 500)
realisations of a homogeneous region with N sites are simulated using this Kappa
distribution as its frequency distribution. This approach is less restrictive than other
commonly applied homogeneity tests (Hosking and Wallis, 1997). For each simulated
region, Vis calculated and thus the mean (u,) and standard deviation (g,) of the N,,,, values
of v may ve estimated. The H test statistic is computed as

=) .16
Oy

If this test statistic has a large positive value, then the hypothesis of homogeneity is not true.
If H<1, the region is considered “acceptably homogeneous™; if 1 <H<2, the region is claimed
“possibly heterogeneous” and for H >2 the region is “definitely heterogeneous” (Hosking
and Wallis, 1997). Despite these guidelines, Hosking and Wallis (1997) recommend that the
H test statistic not be used as a significance test, as the criteria are somewhat arbitrary.

Hosking and Wallis (1997) review methods of forming groups of similar sites to be used in

a regional frequency analysis and categorise procedures used in previous studies as:

. geographical convenience,

. subjective partitioning,

. objective partitioning,

. cluster analysis, and

. other multivariate methods of analysis.

Hosking and Wallis (1997) regard cluster analysis as “the most practical method of forming
regions from large data sets”. The reciprocal of the Euclidian distance in a space of site-
characteristics is used to measure similarity, The site characteristics should be re-scaled
such that all the characteristics have similar variability, i.e. the ranges or standard deviations
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are similar for all sites in the data set. If equal weighting for each site characteristic is not
required, then subjective weighting may be introduced. As mentioned above, the use of the
site characteristics in the cluster analysis enables the independent testing of clusters for
homogeneity using site statistics. Subjective adjustments of the cluster analysis may reduce
the heterogeneity and improve the physical coherence of regions. For a homogeneous
region, simulation experiments by Hosking and Wallis (1997) indicated that little additional
accuracy is gained by having more than 20 sites per cluster . The use of cluster analysis to
identify homogeneous rainfall regions in South Africa, in conjunction wnth the H test
statistic, is detailed in Section 5.2.

2.2.3.3 Choice of regional frequency distribution

After initial regionalisation has been performed, regions may still be slightly heterogeneous
(ie. 1<H<2) and the aim when selecting a suitable distribution is not to identify the “true”
distribution, but to select a distribution which provides accurate estimates of quantiles at all
sites in the region and which will give accurate estimates of quantiles of the distribution
from which future events will arise. It is not necessary to seek the distribution that fits the
observed data best, but to select a robust distribution which fits the data adequately. Using
this approach to selection of a distribution will ensure that, even if the selected distribution
is not the true distribution, or if future events come from a slightly different distribution,
reasonably accurate quantiles will still be estimated (Hosking and Wallis, 1997).

Inregions with slight heterogeneity, even though no distribution will adequately fit the data
at all sites, a single distribution may still lead to more accurate estimates of the quantiles.
In such cases, robust distributions such as the Kappa and Wakeby distribution should be
used (Hosking and Wallis, 1997).

The choice of distribution may be affected by the intended application and the properties

of the distribution such as the upper bound, upper tail, shape, lower bound and whether zero
values are handled by the distribution. '
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Hosking and Wallis (1997) argue against using distributions that have an upper or lower
bound which may impose a physical limit or may compromise the accuracy of estimates for
large return periods. When an unbounded distribution is used, it is assumed that the upper
bound of the distribution cannot be estimated with sufficient accuracy and that over the
range of return periods of interest an unbounded distribution would better approximate the
true distribution. Hosking and Wallis (1997) recommend using a set of candidate
distributions that covers a range of different tail weights, as usually insufficient data are
available to estimate the shape of the tall of the disirivuiion with any accuracy. Most
probability distributions are single peaked, but where observations have qualitatively
different causes, such as when the exireme events arise from different meteorological
conditions, a mixture of two distributions could be used. This approach was used by Pegram
and Adamson (1988) in a risk analysis of extreme storms and floods in KwaZulu-Natal,
South Africa. If estimates of quantiles in the lower tail are of interest, a distribution that
allows for a non-zero proportion of zero values should be considered (Hosking and Wallis,
1997).

Hosking and Wallis (1997) advocate using distributions with three or more parameters in
a regional frequency analysis, as sufficient data are usually available to accurately estimate
the parameters of the distribution. Two parameter distributions are not robust enough for
application in regional frequency analyses and may give rise to large biases in the tails of the
distribution if the selected candidate distribution is not the correct one.

Givena homogeneous region, a GOF test statistic (Z) was developed by Hosking and Wallis
{1993) to test whether a region’s average L-moments are consistent with those of the fitted
distribution. In a homogeneous region, the scatter of the sample’s L-moments represent no
more than sampling variability and therefore the L-moments are well summarised by the
regional average values. The GOF test statistic is derived by the difference between the L-
kurtosis of the fitted distribution and observed data, scaled by the standard deviation of the
L-kurtosis of the fitted distribution, which is estimated by simulation. The selection of an
appropriate probability distribution for rainfall in South Africa is detailed in Section 3.3.
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Assume that a proposed region consists of V sites with the i-th site having a record length
of n, and sample L-moment ratios of #¥, 1,”, £,. The regional average L-CV, L-skewness
and L-kurtosis, denoted by (%, t.X, 1.} respectively, are weighted proportionally to the sites
record length (n,). A Kappa distribution is fitted to the regional average L-moment ratios
1, &, 0%, ¢,* and N, realisations of a region with N sites are simulated, each with this Kappa
distribution as its frequency -distribution. For the m-th simulated region with regional
average L-skewness #,” and L-kurtosis 1,", the bias (8,) of 1.} is calculated as

N
I ST
By = o Z (2," - 1, .17
1

sim m=

and the standard deviation of 7.} as

sim ~ m=1

. |
1 nm
a4z \{N X {Z (0" - 1,702 ~ N B2 | . .18

For each candidate distribution, the goodness-of-fit measure is calculated as

ZDIST _ (2" -1," + By) .19
T4
where _
T = L-kurtosis of a candidate 3-parameters distribution (DIST) fitted to

the regional average L-moments 1, &, #,*.

The fit of 2 candidate distribution is deemed to be adequate if Z] < 1.64.

39



2.2.3.4 Estimation of regional frequency distribution

Assuming that N sites form a homogeneous cluster, with site i having a record length n,,
sample mean /,” (analogous to the population A, in Equation 6), and sample L-moment
ratios 7, ¢, ¢/ ..., analogous to the population T, T; and t, in Equation 7, then the
regional average L-moment ratios &%, +,%, +.%, ...., which are weighted proportionally to the

sites’ record length, are computed as:

N

F=y e/ i , .20
i=f

N

N
R = Z n,rﬂ"/z n.r=34,.. 21
i=!

il

The regional average mean is set to 1 (/;® = 1) and the selected distribution is fitted by
equating the theoretical L-moment ratios to /,%, /% 1%, ¢,* calculated in Equations 20 and
21. As shown in Equation 22. the quantile, with non-exceedance probability 7, may be
estimated by combining the quantile function of the fitted distribution (4 ) with the at-gite

mean.
O.(F) = I"g(F) 22

Slightly more accurate quantile estimates are obtained in most cases if, as above, L-moment
ratios and not L-moments are averaged (Hosking and Wallis, 1997).

This index value based region frequency analysis approach using L-moments has been
termed the Regional L-Moment Algorithm (RLMA) by Hoksing and Wallis (1997). As
discussed above, the RLMA has many reported advantages, including robustness, and is
relatively simple to apply. Routines obtained from Hosking (1996) were utilised for the
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calculation of the D and H test statistics and for the implementation of the RLMA in South
Africa, as described in Chapter 5. A procedure for the assessment of the accuracy of the
quantiles estimated using the RLMA is described in the following section.

2.2.3.5 Assessment of accuracy of estimated quantiles

The inherent uncertainty in statistical analysis requires that an assessment of the uncertainty
should be made. Traditionally, this has be done by constructing confidence intervals for
estimated parameters and quantiles, assuming that the statistical models assumptions are
satisfied. Such confidence intervals are of limited use as rarely are all the assumptions
regarding the data valid and uncertainty concerning the “correct” model selection is
generally present (Hosking and Wallis, 1997). In particular for the RLMA, the possible of
heterogeneity in the region, mis-specification of the frequency distribution and statistical
dependence between the data should all be taken in account, in a way consistent with the

data, in order to obtain realistic assessments of the accuracy of the quantiles.

Hosking and Wallis (1997) propose that Monte Carlo simulation is a reasonable approach
to estimate the accuracy of the quantiles. The simulated regions should have the same
number of sites, record lengths at each site and regional average L-moments as the actual
data, and should include appropriate combinations and levels of heterogeneity, inter-site
dependence and mis-specification of model. Inter-site dependence is accounted for by
assuming that if each site's frequency distribution were transformed into the Normal
distribution, then the joint distribution of all N site would be multivariate Normal. The
algorithm for the proposed Monte Carlo simulation procedure is:

() For each of the specified A sites, with individual record lengths n,, calculate the at-
site L-moments from the observed data.
(ii) Estimate the parameters of the at-site frequency distribution given the at-site L-

moment ratios. The at-site frequency distribution should be chosen using
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(iid)
(iv)

V)

(vi)

where

goodness-of-fit measures or if several or no distributions are suitable, then the
flexible Wakeby or Kappa distributions may be used.

Generate the matrix R of inter-site correlations.

For M repetitions of the simulation procedure a random sample of length », is

generated from the selected frequency distribution for each site in the region. For

sites that have inter-site dependence:

Generate a realisation of a random vector y,, for each time point
k=1,.... max(n,), withelementsy, ., i=l.... N, that have a multivariate Normal
distribution with mean vector zero and covariance matrix R.

Calculate data values O, = O(®( 7.,)), where O, is the quantile function for
site i and @ is the cumulative distribution function of the standard Normal
distribution i.e. eachy, , is transformed to the required marginal distribution.

Apply the RLMA to the sample of regional data,

Calculate the at-site and regional average L-moment ratios.
Fit the chosen distribution.
Calculate estimates of the regional growth curve and at-site quantiles.

Calculate the measures of accuracy for example as:

R(F)=|— Z

2

1 M) 9" (F)-0,(F) 53

M n=\ Q:(F)

R(F) = RMSE,

Q.7 (F) = quantile estimate at i-th site of m-th vepetition for non-
exceedance proabability F,

O4F = quantile at /-th site for non-exceedance proabability F
estimated using regional growth curve, and

M = number of repetitions of simulation procedure.
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An estimate of the accuracy of the quantiles over all the sites in the region may be defined
as the regional average relative RMSE, R*(F):

1 N
RRFY==—Y R(F 24
(F) NZI J(F)

In the following section a review of DDF studies in South Africa is presented. None of the
studies reviewed has adopted a regional approach to design storm estimation in South
Africa.

2.3 REVIEW OF DESIGN STORM ESTIMATION STUDIES IN SOUTH
AFRICA

Vorster (1945) applied regionalised relationships adopted from the USA and identified six
rainfall regions in South Africa which were similar to the regions which had been identified
in the USA. The relationships were modified to fit local conditions based on 24 h rainfall
totals and similarities in vegetation cover. Owing to a paucity of recording raingauges at the
time of the study, he combined data from different sites within a region to produce 5, 10,
30, 60, 120, 240, 480, 960 and 1440 min rainfall intensity maps in SA for return periods of
5, 10, 20, 40 and 80 years. Weddepohl (1988) points out that the regions in SA and USA
displayed dissimilarities and the practice of combining records into a single record (station
year approach) is now considered a poor procedure. Woolley (1947) stated that Vorster’s
regions were too broad and investigated the use of MAP as a predictor variable for design
storms. Bergman and Smith (1973) found that Vorster’s (1945) work generally
overestimated the magnitude of extreme events.

The SAWB (1956) used the EV1 distribution to produce 1 day design rainfalls for return

periods of 5, 10, 15, 20, 30, 40, 60, 80 and 100 years for 253 stations in South Africa.
Maps of 1 day : MAP ratios for 5, 10, 20, 30, 60 and 100 year return periods were also
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presented. Weddepohl (1988) refers to possibie errors in the data and the short record used
in this study.

Reich (1961) used autographic data from 12 stations in South Africa and the EVI
distribution to estimate the 2, 5, 10, 25, 50 and 100 year return period rainfall intensities for
durations of 30 min, 1 and 24 h. Reich (1963) determined and mapped the 2 year retumn
period, 1 hdesign storm (P, ;) using data from 12 autographic and 210 daily raingauges in
South Africa and modified US A depth-frequency relationships, after showing that the USA
relationships underestimated intermediate frequencies. Hershfield’s (1962) relationships
were modified to enable the T year return period, D h design storm ( P;p) to be predicted
from 7, D, average number of days per year on which thunder was heard and average 24 h

annual maximum precipitation.

The depth-duration relationships from the USA were extended by Reich (1963) to include
the estimation for 15 min intervals in South Africa. Maps of the ratio Py, ,,/ P;,, were
derived in order to predict the 100 year return period event. Thus from F,, and P, ,,, and
the depth-duration relationship, the 2 year return period design storm for any intermediate
duration can be derived. Then using the depth-frequency relationship, P,q, is obtained
from the P,q, p / P, ratio. The 2 and 100 year return period intensities are then used with
the depth-frequency relationship to obtain the Py, value.

The Californian plotting position (i.e. T=N/m) has been used to compute the probabilities
of extreme rainfalls, as used, for example, by Vorster (1945). Bergman and Smith (1973)
recognised the limitations of using this approach as the relative frequencies were based on
short record lengths and cannot be extrapolated. Based on a review of previous work,
Bergman and Smith (1973) adopted the EV1 distribution for use in the Western Cape. Data
from 14 autographic stations in the Western Cape were used with record lengths ranging
from 6 to 30 years. With outliers excluded, the extreme magnitudes obtained were
approximately half of the values estimated by Reich (1963). When the outliers were
included, the design rainfalls were similar to, but generally less than those obtained by
Vorster (1945). Bergman (1974) generalised the design rainfall vatues for the winter rainfall



region and introduced a “K-factor”, related to MAP and number of raindays, which is used
to estimate P, ;.

The SAWB (1974) published data from 64 autographic raingauges and used the EVI

distribution to estimate the 15, 30, 45 and 1440 min duration events for return periods of
25, 50 and 100 years. Sinske (1982) points out the difficulty of transferring these data to
a desired location and of interpolating between durations and return periods, but recognises
the pioneering work done. Adamson(1978) used the database from the SAWB and the EV1

distribution to estimate design storm depths for return periods ranging from 5 to 500 years
and considered durations of 15, 30, 45 and 60 min as well as 1 day rainfalls.

Alexander (1978) presented Reich’s (1963) graphical relationships in equation form as:

Pp p = (035x In(T) + 0.76) x (054 D% . 0.50) x (183 M %67 RO W25
where

Prp = T year return period, D hour design storm (mm),

D = duration (min), with maximum allowable value = 120 min,

M = mean of the 24 h annual maximum daily rainfall in the

range 50-115 mm, and
R = average number of days per year on which thunder is heard.

Alexander (1978) used the P, , value as an predictor variable and developed the following
relationship:

PS,! = 1-55M0'63R0 Ry 26

Equation 26 is very similar to the equation proposed by Hershfield (1962) and in the light
_of Reich’s work, Alexander (1978) proposed the following equation:

Pr 1, =113 x(027In(T) + 056) x (054 D% —050)x (1S5S MG R02y 27
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Midgley and Pitman (1978) derived a generalised Depth-Duration-Frequency (DDF)
relationships using MAP and locality (i.e. inland vs coastal) as input variables. Adamson
(1981) postulates that storms of less than 2 h duration are likely to be independent of MAP.
The co-axial diagram of Midgley and Pitman (1978), which uses MAP as a predictor for
durations of 15, 30, 45, 60 and 1440 min, accounts to some extent for this by introducing
a locality factor which demarcates rainfall regimes. Simske (1982) refers to the practical
difficulties of reading offthe diagram and on deciding whether an inland or coastal estimate
is applicable to the site of interest. Schulze (1984) highlights some anomalies in the
database used by Midgley and Pitman (1978), is critical of the use of LEV1 distribution and
points out the physically impossible rainfall values that are estimated by the distribution and
which are contained in the report by Midgley and Pitman (1978).

Op Ten Noort (1983) re-analysed the data used by Midgley and Pitman (1978) and by a
least squares regression analysis derived the following two equations.

. 7.5+ 0034 MAP)T®?
Inland region ; [ = (75+003 Miag)T .28
(024 + D)~
(34 +0023M4P)TO3
Coastal region - [ = 075 .29
(020+ D)™

where

I = point rainfall intensity (mm.h"),

MAP = mean annual precipitation (tm),

D = storm duration (h), and

T = recurrence interval (years).

Van Heerden (1978) produced standard intensity curves for eight intensity classes for
durations up t0 2 h and return periods up to 100 years. The classes were based on the
60 min intensity values and hence do not form geographic regions. Hence Sinske (1982)
points out the practical difficulty of knowing which of the eight classes are applicable to the
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site of interest. Adamson (1981) is critical of the subjective nature of the grouping scheme
and the lack of any meaningful reference to meteorological or physical parameters.

Henderson-Sellers (1980) used the data from Midgely and Pitman (1978) to compute the

parameters in Equation 30.

a

= .30
(D+b)"

where D is the duration (h) and J is the intensity (mm.h'"). The optimum solution was found
by holding the value of 5=1/3. Values of g varied widely and n was found to have distinct
regional differences. The four regions subsequently delineated were found to coincide
closely with previous climatological classifications of precipitation regimes. Henderson-
Sellers (1980) concluded that the value of » could be assumed to be constant within regions
and not to vary with return period. Thus the T year return period rainfall for a duration D
(P;p) can be derived as function of daily rainfall P; ,,.

D[24+b7"
Prpo=— .31
r.b 24[D+b} Pr.a

Hendersen-Sellers (1980) only considered return periods of 2, 5 and 10 years in the
derivation of regional values of » in Equation 31, and hence Equation 31 should not be
considered forreturn periods> 10 years. Although Henderson-Sellers (1980) considers that
the use of Equation 31 would extend the hydrological database by the use of P; ;, values,

no adjustment was made to reflect the difference between Pr ;and Py,
Schulze (1980) used the EV1 distribution to estimate the 1, 2 and 7 day duration rainfalls

for the 2, 10, 25 and 50 year return periods. Data from 396 raingauges were used in the
analysis and record lengths ranged from 30 to100 years. '
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Adamson (1981) estimated the 1, 2, 3 and 7 day extreme rainfalls for return periods of 2,
5, 10, 20, 50, 100 and 200 years and used approximately 8000 stations in his analysis. A
censored log-N model of PDS was used in the analysis. Adamson (1981) expressed doubts
as to the availability and accuracy of estimating both A and R in Equation 27 and hence
replaced these values with the mean annual value of lightning flash density (L, in
flashes ki L.armum’) and P, ,;, respectively, as shown in Equation 32.

P = 113x(0271n(T) + 0.56) x (054D%% — 050) x (4.53+ 055P, , + 1893L) .32

Schulze (1984) lists the most widely (as of 1983) used direct methods of estimating short
duration DDF relationships in SA as:

. the Midgley and Pitman (1978) co-axial diagram,

o the modification of Reich’s (1961) equations by both Alexander (1978) and
Adamson (1981),

. the tabulated design vahes by the SAWB (1974), and

. the generalised ratios of short duration to 24 h rainfall for summer and winter

rainfall/coastal regions as published by Adamson (1981).

Schulze (1984) used a digitised rainfall database to calculate :24 h ratios and showed
marked divergence between these ratios and values corhputed from Midgley and Pitman
(1978), Adamson (1981) and from the SCS type I and II distributions. Schulze’s (1984)
study also showed that intensities calculated from the digitised database are generally higher
than when the intensities were manually extracted from autographic rainfall charts.

Weddepohl et al. (1987) and Weddepohi (1988) expanded on concepts used previously by
Schulze (1984) and developed four synthetic extreme storm temporal distributions from
design relationships in South Africa. Hence daily design rainfall values can be disaggregated
to obtain the temporal distribution of the design storms for four different regions in South
Affnica.
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More recently, Smithers (1996) used L-moments to fit various distributions to data from
38 sites in South Africa, each of which had more than 30 years of record. Using both
parametric and non-parametric GOF tests, Smithers (1996) recommended that the GEV
distribution is the most appropriate distribution to use in South Africa for 24 h duration

events, but concedes that this recommendation may change at a local scale.

Sinske (1982) illustrates the discrepancies between the different methods, and highlights the
lack of methods to estimate design rainfall beyond the 100 year return peribds. Adamson
(1981) concludes from a review of previous short duration rainfall studies that
regionalisation has met with little success in South Africa.

The search for generalised DDF relationships in South Africa has concentrated on linear
associations between selected recurrence interval, short duration rainfall depth and other
readily available predictor values (Adamson, 1981). Selected studies, both in South Africa
and internationally, which have used this approach are reviewed in the next section. In |
addition, summaries of depth-duration and depth-frequency ratios, which are extracted
directly or derived from the literature reviewed, are presented.

24 SCALING OF FREQUENCY RELATIONSHIPS

A number of studies have mapped predictor values such as design storms for a particular
duration or return period and used regionalised ratios to estimate design storms for other
durations or return periods. Some studies have assumed that these ratios are independent
of return period and others have assumed that the ratios are independent of duration.

2.4.1 Depth-Duration Relationships

Many studies, both in South Africa (e.g. Bergman, 1974; Alexander, 1978) and
internationally (e.g. Chen, 1983; Ferreri and Ferro, 1990; Blodgett and Nasseri, 1995), have
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investigated the estimation of design storms for a required duration from an index storm.
A ratio, commonly termed a depth-duration ratio, is used to convert the index storm to the
design storm for the required duration. The advantage of developing D:24 h ratios and thus
utilising the relatively large daily rainfall database in order to estimate shorter duration
events at sites where no short duration data are available, is expanded on by Schulze (1984).

Bergman (1974) computed depth-duration ratios for durations of 15, 30, 120 and 1440 min
in relation to the 60 min duration and for return periods of 5, 10, 20, 40, 50 and 100 years
for the Winter Rainfall Region (WRR) in South Africa. No differences in the ratios were
noted for given durations or different return periods and hence average ratios, which are
independent of return period, were computed. Bergman (1974) presented a comparison of
P 1p: P, ratios (Table 6) with the results published by Bell (1969). Included in Table 6 are
results derived from Henderson-Sellers (1980), using Equation 31 for inland (n=0.92) and
the WRR (n=0.86) in South Africa, as well as results derived from Adamson (1981) for the
WRR and inland reéions in South Africa. Some similarities are evident for different regions
in Table 6, particularly for shorter durations. However, differences in the depth-duration
relationships are noted within SA for longer durations.

Froehlich (1995) and Froehlich and Tufail (1993) report on four general forms of intensity-
duration relationships, listed in Table 7, which have been used in the USA. Chen (1983)
derived a generalised rainfall intensity-duration-frequency relationship for use in the USA
and utilised the Py, ,, Py ;;, Pioo, and P,y 5, as index values. The depth-duration ratio
(P ;/ Py ;,) was assumed to be independent of return period and varied spatially in the
USA with the values varying from 0.1 - 0.6. From the literature reviewed by Hargreaves
(1988), there is considerable agreement that depth-duration rainfall amounts vary with a 1/4
power function of duration (D%%),
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Table 6 Examples of P ;5 / Pr; ratios

Duration Bergman (1974) Bell (1969) Derived from Derived from Derived from Midgley and Pitman
(h) Henderson- Adamson (1981) (1978)
Sellers (1980)
Winter Rainfall USA | Australia | USSR | WRR, | Inland, | WRR, | Inland, | Cape Town, | Durban, | Johannesburg,
Region, SA SA SA SA SA SA SA SA
0.083 0.29 03061 032 023 0.24
0250 0.67 | 0.57 0.57] 055} 051 0.53 0.56 0.53 0.53 0.45 0.49
0.500 0.82 { 0.79 078§ 679 075 0.77 6.78 0.77 0.77 0.72 0.76
2.000 126 | 1.25 124 | 130 124 1.20 1.29 1.20
24,000 .60 1.97 1.66 244 1.67 1.97 1.97 1.7




Table 7 Generalised forms of rainfall intensity equations (after Froehlich, 1995)

Equation Type Equation Form Equation Parameters
[ I=a,/(D+b;) a;.b,
H I=a, /(D7) ay ¢,
i I=a,/(D+b; ¥ a, b, ¢,
v I=a,/(DFI+b,) a, by ¢,

In order to estimate design storms for durations and return periods other than those
available from isopluvial maps published for regions in the USA, Froehlich (1995) and
Froehlich and Tufail (1995) used Equation 34 to express

Prp= Pm*‘fu(Pm.;‘ 1) R 7!

where

Hh = D h rainfall duration factor that applies to all return periods.

Equation 34, which does not assume that the depth-duration ratio is constant for different

return periods, may be expressed as a ratic of Pr,, as shown in Equation 35 such that

P P
I.D _ 1+fo[ ;24 N l) ' 33
71 T.I

Ferreri and Ferro (1990) computed depth-duration ratios for data from Sicily and Sardinia
and compared the ratios to those computed from Bell’s (1969) depth-duration equation.
The ratios were very similar for durations from 30 - 55 min, but Bells ratios were slightly
smaller for durations less than 30 min. Ferreri and Ferro (1990) conclude that the small
differences in the ratios confirms the independence of short duration depth-duration ratios
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from geographic factors and confirms the applicability of Bell’s relationship for these
durations,

These findings by Ferreri and Ferro (1990) contradict those of Canterford ez al. (1987b)
‘who found in Australia that the use of constant ratios to interpolate to durations of less than
| h from thel h intensity varied significantly and could be explained on a geographical,
meteorological and return period basis.

The depth-duration ratio has also been assumed to be independent of return period in some
studies {e.g. Adamson, 1981; Chen, 1983). However, as shown in Table 8 using data from
Midgley and Pitman (1978) and illustrated for stations in KwaZulu-Natal by Schulze (1984),
the depth-duration ratios do appear to be dependent on return period. In the example
shown in Table 8 for Johannesburg there are distinct trends of the P; , / P;, ratio varying

as a function of return period for all durations shown.

Table 8 P,/ P;, ratios for Johannesburg (derived from Midgley and Pitman, 1978)

Duration Return Period Mean
{min) (years)
10 20 50 100
15 0.55 0.52 0.50 0.48 0.45 0.43 0.49
30 0.80 0.78 0.77 0.76 0.74 0.73 0.76
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1440 1.84 1.77 1.72 1.68 1.63 1.59 1.7}
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2.4.2 Depth-Frequency Relationships

Bergman (1974) used the 10 year return period value as the denominator in the computation
of depth-frequency ratios for the WRR in South Africa. No significant differences in the
ratios were found for different durations and averaged values were compared to those
presented by Bell (1969), as listed in Table 9. Also included in Table 9 are depth-duration
ratios derived from results published by Midgley and Pitman (1978). Again the depth-
frequency ratios appear 10 vary regionally in SA, particularly for longer durations.

Table 9 Comparison of P;p/ Py, ratios

Return Period | Bergman (1974) Bell (1969) Derived from Midgley and Pitman
(1978)
(years) WRR USA | Australia | Cape Town | Johannesburg | Durban
2 0.66 | 0.63 0.65 0.63 057 054
5 0.86 | 0.85 0.85 0.83 080 | 0.78
20 1.13 1.20 1.24 1.27
25 117 1.13
50 130 | 1.31 1.33 1.51 1.64 1.73
100 1.44 | 146 1.50 1.80 201 | 218

Hargreaves(1988) concurs with Bell (1969) that depth-duration and depth-frequency ratios
are approximately constant for diverse countries and regions. However, as shown in Table
9 and illustrated by Schulze (1984) using digitised data from 9 stations in KwaZulu-Natal,
the depth-frequency ratios do appear to vary considerably from location to location,
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243 Depth-Duration-Frequency Relationships

“Strict sense simple scaling” describes the assumption that storm rainfall is characterised by
the property of scale invariance (Gupta and Waymire, 1990). This implies that the
probability distributions of rainfall depth is the same at different time scales. According to
Burlando and Rosso (1996) this can be written as

d

Z(D=1"Z.(t) .36

where =  denotes equality in the probability distribution and

Zt) = measured rainfall depth in time span of length 7,
A = scale factor and
n = scaling exponent.

If the assumption that the equality of distributions of maxima for a certain period (e.g.
annual), observed at different time scales, also holds true, then both the quantiles and raw
moments of any order are also scale invariant as shown in Equations 37 and 38 (Burlando

and Rosso, 1996).

d
EAT= A" E(T) .37
where
& = g-th quantile of H,,
H = max [ZA1,).2{t,+ D],
t = point on time axis (e.g. beginning of rainy season), and
T = length of period (e.g. 1 year for AMS).
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a
ElH; 1= 4" E[H,] .38

where
' = order of the moment, and
n = scaling exponent of mean.

The assumptions of scale invariance are based on trends noted in observed data. For
example, as shown in Figure 2, data from raingauge CP6 at Cathedral Peak in KwaZulu-
Natal, South Africa, are used to illustrate the scaling concepts.

10 100 1000 10000
Duration (minutes)

Figure 2 Scaling of raw moments with duration for raingauge CP6 at Cathedral Peak,
KwaZulu-Natal, South Africa

The slope of the straight line fitted for duration > 1 h and <24 h to the double logarithmic
plot of raw moments against duration, as shown in Figure 2, is the scaling exponent &;, for
each /-th order moment. Simple scaling is said to hold true if @, = n./, where n is the scaling
exponent of the mean. Multiple scaling is defined as «; * n./ (Burlando and Rosso, 1996).
Simple scaling is illustrated in Figure 3 using data from raingauge CP6 at Cathedral Peak,
KwaZulu-Natal, South Africa.
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Burlando and Rosso (1996) explored the scaling properties of the rainfall depth-duration-
frequency relationship in order to interpolate design storms for durations other than those
commonly published. Menabde er al. (1998) tested the scaling concepts on rainfall data
from two stations, one in New Zealand and the other in South Africa, and concluded that
simple scaling was applicable at both sites and postulated that the scaling exponent was
related to local climate. Burlando and Rosso (1996) investigated the scaling of rainfall depth
while Menabde e al. (1998) used rainfall intensity in their investigations. Menabde er al.
{1998) found that the extreme rainfall intensity relationships scaled for durations ranging
from 0.5 - 48 h, while Burlando and Rosso {1996) showed that the range could be from as
little as 2 min and up to 48 h or longer. '
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Figure 3 Simple scaling in the growth of slopes with respect to order of the moments
for raingauge CP6 at Cathedral Peak, KwaZulu-Natal, South Africa
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2.5 CHAPTER CONCLUSIONS

In this chapter both at-site and regional techniques of design rainfall estimation have been
reviewed. Substantial benefits of using a regional approach have been reported in the
literature, assuming that relatively homogeneous regions can be identified. In particular, the
relatively recently developed RLMA appears to be a robust procedure and has been applied
successfully in a number of studies. These techniques have been applied to short duration
rainfah gata from South African and the results are presented in Chapter 5.

The fimited number and relatively short record lengths of reliable, observed short duration
rainfall data available in South Africa are highlighted in Chapter 4. A much denser network
of standard daily raingauges, which are manually recorded at 24 h intervals ending at 08:00
every day, and which have reiatively longer record lengths than the recording raingauges,
are available in South Africa. A number of studies reported in the literature have
demonstrated the successful use of stochastic rainfall models to estimate design rainfall
values. Hence the literature on modelling rainfall using stochastic Bartlet-Lewis type
models are reviewed next in Chapter 3. The potential thus exists to use the stochastic
rainfall models, with parameters determined from daily rainfall data, to estimate short
duration design rainfall values and thus increase the spatial density at which short duration
design rainfall estimates can be made in South Africa.
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CHAPTER 3

MODELLING POINT RAINFALL AS A CLUSTER PROCESS

In the light of the relatively few recording rainfall stations in South Africa which have
reliable short duration rainfall data, as illustrated in Chapter 4, three approaches for
estimating design rainfall values have been explored. The first is a regional approach, with
techniques discussed in Chapter 2 and results presented in Chapter 5, where the information
at sites not having reliable data is supplemented or replaced by information from the region.
In order to estimate short duration design storms at locations which do not have reliable
short duration rainfall data, the second approach, with results presented in Chapter 6,
attempts to utilise the scaling properties of the moments of the extreme digitised rainfall
events as described in Chapter 2, in conjunction with moments derived from the daily rainfall
data. The third approach, which is discussed in this chapter with results presented in Chapter
7, investigates stochastic, cluster-based rainfall models for use in the estimation of design
rainfall values.

The use of stochastic processes, which consist of point events occurring in time and which
have characteristics derived from sampling probability density functions, is increasing in
hydrology (Entekhabi et al., 1989). The modelling of rainfall using stochastic techniques has
a wide range of potential hydrological applications ranging from hydrological design to the
disaggregation of large time interval data into shorter durations (Onof and Wheater, 1993;
Onof and Wheater, 1994a). One such application could be the disaggregation of daily
rainfall into shorter time intervals for use in time dependent infikration modelling (Bo et al.,
1994). Another potential application could be in flood frequency analysis where the use of
a long synthetic rainfall series, generated using appropriate mathematical techniques, can
provide insight and further aid in the extrapolation of the data when estimating design
storms from a limited time series of historical observations (Cowpertwait ef al., 1996b;
Verhoest et al., 1997).
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Rainfall models range from complex dynamic meteorological models to empirical statistical
models with stochastic models, which have a modest number of parameters, representing
intermediate complexity (Chandler et al., 1995). While Foufoula-Georgiou and Krajewski
(1995) report on a recent shift from stochastic point process models to models based the
concepts of scale invariance, the use of point process models and, in particular, the use
continuous time cluster based point process models are widely reported in the recemt
literature (e.g.Onof and Wheater, 1993; Bo et al., 1994; Velghe et al., 1994; Cowpertwait
2 =L, 1996; Khaliq and Cvnrane, 1996; Verhoest et al., 1997).

In cluster-based rainfall models, events are modelled as clusters of rain cells and each cell
is a pulse with a random duration and random intensity, which is constant for the duration
of the pulse. Poisson processes are used to model the distribution in time of both the siorm
origins and the clusters of cells. Cluster-based models thus combine the rainfall occurrence,
or frequency, and depth process (Khaliq and Cunnane, 1996). One of the main advantages
of rectangular pulse, cluster-based rainfall models is that the parameters are independent of
the time scale used {(Verhoest ef al., 1997).

It has been shown in the recent literature that cluster modeis have built into their structure
the capability of representing rain cells and preserving the rainfall statistics over a range of
the time scales (Rodriguez-Iturbe et al., 1987a; Rodriguez-lturbe ef al., 1987b;
Cowpertwait, 1991). Rodriguez-Iturbe ez al.(1987b) postulated that the range of temporal
scales over which cluster based rainfall models could achieve aggregation and
disaggregation was likely to be of the order of 1 to 48 h. Bo et al. (1994) showed that
cluster based models are capable of preserving hourly statistics when only 24 and 48 h
moments, computed from historical data, are used in parameter determination. The potential
of using cluster-based models in the estimation of design rainfall events has been
demonstrated inter alia by Onof and Wheater (1993; 1994b), Khaliq and Cunnane (1996),
Cowpertwait et al.(1996a) and Verhoest er al. (1997).

The Bartlett-Lewis Rectangular Pulse Model (BLRPM) and the Neyman-Scott Rectangular
Pulse Model (NSRPM) are examples of cluster-based models which have been shown to be
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able to model rainfall characteristics over a range of time scales ranging from 1 to 24 h
(Rodriguez-Iturbe ef al., 1987a; Rodriguez-Iturbe er al., 1987b; Entekhabi et al., 1989;
Onof and Wheater, 1993; Bo et al., 1994; Velghe et al., 1994; Cowpertwait et al., 1996a;
Khaliq and Cunnane, 1996; Verhoest et al., 1997).

3.1 BARTLETT-LEWIS AND NEYMAN-SCOTT RECTANGULAR PULSE
MODELS

In cluster-based models events are represented as clusters of rain cells, with each cell a pulse
of random duration and intensity which is constant throughout the duration. The Poisson
distribution, which has a random number of cells or cluster size, is used to model the storm
origins. A cell arrival distribution is assigned to each storm. The Bartlett-Lewis model
assumes that the number of cells are geometrically distributed, whereas the Neyman-Scott
model allows any convenient form of distribution to be assumed, in addition to the
geometric distribution. The depth and duration of each cell are modelled by an exponential
distributions (Onof and Wheater, 1993; Khaliq and Cunnane, 1996). Thus the rainfall
occurrence process and rainfall depth are described independently and are then
superimposed to form the rainfall model, as shown schematically in Figure 4.

In the NSRPM the cell arrival times are independent, identically distributed exponential
random variables which are measured from the storm origin and have no cell at the storm
origin. The BLRPM has a cell located at the storm origin with the interval between
successive cells independent and exponentially identically distributed. Overlap betweenand
within storms can occur (Entekhabi et al., 1989; Khaliq and Cunnane, 1996).

Using the NSRPM and BLRPM as described above, Rodriguez-Iturbe et al. (1987b) found
that the models were able to preserve the rainfall depth statistics and extreme values of
rainfall at Denver, USA, but did not reproduce the proportion of periods with no rainfall
(dry level states) satisfactorily. The BLRPM was modified by Rodriguez-Iturbe ¢/ /. (1988)

to allow random variation from storm to storm of the exponential parameter of the
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distribution of cell duration. This Modified version of the original BLRPM, or MBLRPM,
enabled the model to reproduce the proportion of dry states for various time intervals. The
NSRPM was similarty modified by Entekhabi et al. (1989) to created the Modified NSRPM
(MNSRPM).

Entekhabi er al. (1989) expressed the opinion that the differences between the BLRPM and
NSRPM are subtle and it is unlikely that empirical analysis will be able to distinguish
between them. An advantage of these two cluster-based models is the efficiency of their
pararneter estimation procedures (Entekhabi ez al., 1989).

Rodriguez-Iturbe et al. (1987b) found that the BLRPM gave slightly more satisfactory
results than the NSRPM. Khaliq and Cunnane (1996) found good agreement between
observed and extreme events simulated by the MBLRPM. Hence further discussion is
focussed on the BLRPM and adaptions thereof.

BARLETT LEWIS RECTANGULAR PULSE RAINFALL MODEL

Sterm orfiging arrive according 10 a Folason Pracass
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Figure 4 Schematic diagram of Bartlett-Lewis rectangular pulse model (after
Cowpertwait ¢ al., 1996a)
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3.2 MODIFIED BARTLETT-LEWIS RECTANGULAR PULSE MODEL

3.2.1 Procedure

The algorithm for the MBLRPM (Rodriguez-Iturbe er al., 1988), which is an extension to
the BLRPM (Rodriguez-Iturbe ef al., 19873), is described by Entekhabi (1989), Onof and
Wheater (1993), Bo er al. (1994), Onof and Wheater (1996) and Khaliq and Cunnane
(1996) as:

. a Poisson process (parameter A) used to model arrival rate of storm origins, and

. storm origins are followed by a Poisson process of rain cell origins with rate
parameter .

’ The process of new rain cell origins terminates after a time that is exponentially

distributed with parameter ¥, i.¢ the storms have an exponentially distributed
duration with parameter .

. The duration of the rectangular puise of each rain cell is exponentially distributed
with parameter 7, and for distinct storms are assumed to be independent variables
from a gamma distribution with index @ and scale parameter v, i.e E(n) = &/vand

var(n)=a/ v,

« . Eachrain cell intensity is a random constant, exponentially distributed with mean g,,
and

. the number of rain cells per storm C has a geometric distribution with 2 mean of
He=1+¥/¢, -39

where xand ¢ are dimensionless parameters and

k= [f'n .40
P= yn. 41
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By keeping x and ¢ constant, the mean and variance of different storms change randomly
from storm to storm. Hence the mean inter-arrival interval time of cells (8 ') and mean
storm duration (¥ "'} also change randomly.

3.2.2 Characteristic Variables

The six parameters of the MBLRPM (4 x ¢, v, & 4.) are estimated by equating ine analyiical
expressions of certain statistical features of the rainfall process with their numerical
historical counterparts (Entekhabi ez al., 1989). Hence at least six equations are needed.

The equations used in the derivation of the model parameters are the mean, variance,
autocorrelation and dry probability. These equations, as given in Equations 42 - 47, are
reproduced from Khaliq and Cunnane (1996). For the MBLRPM the mean depth of rainfall
in the i-th interval of length # hours is computed as shown in Equation 42 and the variance
is computed using Equation 43.

E[x”] - -’”’—"“s-(ni) 42
a-1 é

Var[}:”] = 2A1[(a - 3 - vl (v h)J-a]

.43
-242#(a - I> - v* %+ (v gh)* 0]

For a lag k > 1 the covariance is
co 1.5 *] = aflv+ (k+ DR’ - 200+ kBY™ 4 [v+ (& - DAF "
- A2{[v+ (k+ 1)¢h]3-‘Jr - 2(v + kdh)}a 44

v+ G- g7



where

- Apcv” g 2 K
(@-Da-2)a-3)} "~  ¢*-1
and

Aycxyzzv"
A2=——; .
¢ (4" - Da-Da-2)(a-3)

The probability that a period, of length A4, is dry is shown in Equation 45 as

P{¥} = 0)= exp| - ih- dup + 4G, (0,0) e » .45
where y;, is the expected duration of a single cell storm and can be approximated by
Uur = ¢{av— ) [1+¢(x +9) -::-¢(x+¢)(x+4¢)
| ...46
2 2
+:5-¢(x + ¢)(4a +27xp+ 720 )]
and the function
* ¥ ) 2 2 1 2
GP(O,O)xé(a_l)(l—n -¢+Er¢+¢i +§x ) .. 47

Further characteristics describing the inter-event properties, the number and average event
duration for the MBLRPM were developed by Onof and Wheater (1993) and expressed in
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an easier computational form by Onof and Wheater(1994). The mean inter-event (dry)
number of periods is

" P(Y*=0) "
my =
7 Pyt =0)- P(Y? = 0)
and the average number of hourly events per month is
PY' =0)x 24 x NM
m, = 7 ...49
My
where
m, = average number of hourly events in month, and
NM = number of days per month.

3.3 BARTLETT-LEWIS RECTANGULAR PULSE GAMMA MODEL

In order to improve the overestimation of daily autocorrelations and extreme events noted
by Onof and Wheater (1993), Onof and Wheater (1994b) replaced the exponential
distribution. of cell rainfall intensity in the MBLRPM by a two parameter gamma
distribution which would give greater flexibility in the simulation of extreme events. This
modified version of the BLRPM is termed the Bartlett-Lewis Rectangular Pulse Gamma
model (BLRPGM).

3.3.1 Procedure
The algorithm for the BLRPGM, a seven parameter model, is the same as that described

previously for the MBLRPM, with the exception that the expressions for some of the
characteristics are changed to reflect the gamma distributed cell rainfall intensity.
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3.3.2 Characteristic Variables

The index and scale parameters for the gamma distributed rainfall intensity are g and
respectively and the mean is calculated as shown in Equation 50. For completeness,
equations for the entire set of characteristic variables for the BLRPGM are presented.

The mean amournt of rain in the /-th interval of length » hours is

E[}}"]= Ahpspcv 51
a-1

and the variance is

- 2l oo

5 a2
_2A2[¢(a - e v i v+ gh) "']
and for lag k > 1 the covariance is
cov{}'}h,}l’.ﬁk] = Al{[v+ (k+ l)h]:"_‘r - 2v+ kh)3_“
v+ (k- 1)h]3'“}- A2{[v+ (e + Vg .53

-2(v+ fc&h)ya + [v+ (k- 1)¢h]3*a}

where
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P
8 (a - 1)(a-2)a-3)

xpo’ }

[p(p+l)+ F-1

and

Apoxp Fv®
(9% - 1Xa - 1)@ - 2X(a - 3)

A2 =

The time distribution properties of rainfall events for the BLRPGM are not affected by the
change in rainfall cell depth distribution and hence remain the same as for the MBLRPM.

3.4 PARAMETER ESTIMATION

The estimation of the six parameters for the MBLRPM is difficult, and becomes more acute
for the BLRPGM, which has seven parameters (Verhoest et al., 1997). Different procedures
have been used to estimate the model parameters.

3.4.1 Methodology

The use of a formal statistical technique to determine parameters for rectangular pulse
stochastic rainfali models, such as the maximum likelihood procedure, is not practical and
probably would not be the best procedure to use (Rodrigucz-lturbe es a/., 1988).
Rodriguez-Iturbe et al. (1988) suggested equating characteristic features computed from
the historical data with corresponding model values, preferably computed theoretically, but
failing that, by simulation. The method of moments approach, which has been frequently
adopted when fitting time series models to historical data (Rodriguez-Iturbe ef al., 1987b:
"Entekhabi et af., 1989; Cowpertwait, 1991; Onof and Wheater, 1993; Bo et al., 1994; Onof
and Wheater, 1994a; Cowpertwait er al., 1996a; Verhoest er al., 1997), solves a set of
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simultaneous equations which relate model parameters to sampled moments (Cowpertwatt
et al., 1996b).

The resulting set of non-linear equations can be solved simultaneously to derive parameters
for the model. Different approaches can be used to solve the set of non-linear equations.
Where possible, unique roots of the equations may be obtained (Rodriguez-Iturbe ef al.,
1988; Khaliq and Cunnane, 1996). In cases where a unique solution of the non-linear
equations is not possible, a scheme to minimise a defined objective function may be used.
The generic format of a commonly used least squares objective function that has been used
inter alia by Bo et al. (1994), Entekhabi et al. (1989), Cowpertwait (1991), Velghe et al.
(1994) and Verhoest et al. (1997) to estimate the parameters for the models is

2
2= nin gw,[ﬂ <¥>-J s
i=] F
where
FXy = model expression for statistic i computed using parameter vector X,
F, = statistic / estimated from historical data at various levels of
aggregation, _
N = number of statistics used in parameter determination, and

=
"

weight assigned to statistic i.

Velghe er al. (1994) and Verhoest er al. (1997) used W=1 for all statistics while
Cowpertwait (1991) and Cowpertwait et al. (1996a) placed emphasis on almost exact
modelling of the mean and thus set W=100 for the mean and used W;=1 for all other

nmoiments.

In deriving model parameters, seasonality was taken into account by deriving parameters

for each month, thus assuming data stationarity for each calendar month (Cowpertwait,
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1991; Bo et al.,, 1994). In computing the moments of the historical data, Cowpertwait
(1991) and Cowpertwait er al. (1996a) pooled all available data for each calendar month.

Velghe et al. (1994) and Verhoest et al. (1997) used Powell’s quadratically convergent
algorithm to minimise the objective function (Z) while Onof and Wheater (1993) used a
modified version of the Powell hybrid method.

Tue BLRPGM is a seven parameter model (4 x ¢, v, 2 2, 6) and Onof and Wheater (1994b)
recommend fixing the & parameter of the model owing to the difficulty in estimating the
seven parameters. Despite conceding that estimating the parameters for the BLRPGM was
difficult, Verhoest er al. (1997) did not fix any parameters and still managed to obtain a
retatively good fit to the moments computed from the historical observations.

Using a different approach, Chandler (1995) developed a spectral method for estimating the
parameters of point process models, which include the cluster Bartlett-Lewis cluster type
models. The effect of initial conditions and the presence of many local optima necessitate
that the optimisation procedure shouid be started from several different starting points. A
general problem when estimating parameters of point type rainfall models is the lack of
identifiability of model parameters (Chandier et af., 1995). The disadvantages of estimating
the model parameters using the method of moments is the arbitrary selection of the
properties to be used and the use of only summary statistics of the data, whereas the spectral
method makes more objective use of all the data and not only the summary statistics
(Chandler et al., 1995).

34.2 Moments Used

The set of characteristic variables, or moments, chosen to determine model parameters
should have relatively small sampiing errors and not be highly mutually correlated. Most
features should be sensitive to the effects of time scale on a single cell and at least one
feature should correspond to the timescale between storms (Rodriguez-Iturbe er al., 1988).
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The sets of variables should thus include features of both the depth process and the
proportion of dry periods (Onof and Wheater, 1993). The better the estimates of analytical
moments used in the parameter estimation, the better the analytical statistics at other levels
of aggregation (Velghe et al.,, 1994). The moments used in selected applications of
rectangular pulse rainfall models are summarised in Table 10.

Cowpentwait et al. (1996a), using the NSRPM, felt that instead of fitting five moments
exactly, it was better to fit more moments approximately. Khalig and Cunnane (1996) found
that the MBLRP best resembled the historical observations when more statistics than
necessary (i.e. an over-determined system) were used to determine model parameters and
hence suggest using 16 statistics to determine the 6 model parameters. As evident in Table
10, most applications have used short duration (hourly) resolution data in the derivation of
model parameters and hence the aggregation properties of the models have been validated.
Only Bo er al. (1994) and Cowpertwait et al. (1996a) have tested the disaggregation
properties of the models by using longer duration data only (> 24-h) in the derivation of
parameters. This aspect was highlighted by Entekhabi et a/. (1989), who identified the need
for further research into the robustness of parameter estimation using only large aggregation
periods (12 to 24-h).

In order to utilise daily rainfall data, which is much more widely available than shorter
durationdata, Cowpertwait et al. (1996a) determined parameters for the NSRPM using only
daily rainfall data. The poor performance of the NSRPM when fitted using daily moments
resulted in Cowpertwait er al. (1996b) concluding that the higher aggregation levels are
unlikely to contain enough information from which the properties of the cells can be
determined. Thus Cowpertwait e al. (1996a) developed regionalised empirical relationships
between hourly variance and daily variance, thus enabling the estimation of hourly variance
when only daily data were available.
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Table 10 Moments used in parameter determination in selected studies
Reference Model Data Fitting Aggregation Level
of Moments
(MoM=Method of
moments
Location Input MLS= Mean | Variance Auto- Auto- Dry Other
resolution Minimisation of covariance | correfation | Probability
least squares) (Lag-1) (Lag-1)
(h) (h)
Rodriguez-lturbe er al. NSRPM/ Deaver, USA | Hourly MoM | 1,6 1,6
{1987b) BLRPM Unconstrained
MLS
1 1,12 1,12
1 1,24 1,24
6 6,12 6, 12
Rodriguez-Iturbe et ai. MBLRPM { Denver, USA | Hourly Roots 1 1,24 | 1,24
(1988) Boston, USA
| | 1,24 I,24
Entekhabi ef al. {1989) MNSRPM ] Denver, USA ] Hourly MoM | 1,12 1,6, 12
MLS
t 1,24 1,6,12
1 1 1,6,12,
24
Onof and Wheater (1993) | MBLRPM | Birmingham, | Hourly MoM 1 1 1,6 1,24 m',
UK ' 2-stage m,
optimisation 1 1,6 | 1,24
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Reference Maodel Data Fitting Aggregation Level
of Moments
{MoM=Method of
moments
Location Input MLS= Mean ] Variance Auto- Auto- Dry Other
resolution Minimisation of covariance | correlation | Probability
least squares) (Lag-1) (Lag-1)
th} (h)
Onof and Wheater BLRPM Birmingham, | Hourly MoM ] 1,6 1,6 m,
(1994a) UK 2-stage "',
optimisation 1 1 1,6,12
Onof and Wheater BLRPGM | Birmingham, | Hourly MoM 1 1.6 | 1,24 m,
(1994b) UK 2-stage m',
optimisation
Bo et al. (1994) MBLRPM | Paducah, Hourly MoM Not reported
Usa MLS
Arno, ltaly
Velghe e al. (1994) MBLRPM | Denver, USA | Hourly MoM I i 1,24 1, 24
MLS
1 1,24 1 1,24
(1] 6,24 6,24 6
1 1,14 1,24 12
i 1,24 1,12,24
Chandler (1995) Various South-West 15 min Speciral analysis | n/a
England
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Reference Model Data Fitting Aggregation Level
of Moments
{MoM=Method of
moments
Location Input MLS= Mean | Variance Auto- Auto- Dry Other
resolution Minimisation of covariance | correlation | Probability
least squares) (Lag-1) (Lag-1)
(h) (h)
Cowpertwait ef al. NSRPM Manston, UK | Hourly Mol { 1,24 1,6,24 24
(1996a) MLS
1 1,24 24 dry:dry
wetiwet
Khalig and Cunnane MBLRPM | Valentia & Hourly MoM H 1,6 | 1,24
(1996) Shannon Roots/MLS
Airport, 1 1,24 1 1,24
lreland 1 1 1,6 1,24
1 | 1,24 1,24
1,6, 1,6,12,24 1,6,12,24 1,6,12,24
12,24
Verhoest et al, (1997) MBLRPM | Uccle, 10 min MoM 1/6 1/6 16, 24 1/6,24
Belgium MLS
Verhoest ef al. (1997) BLRPGM Uccle, 10 min MoM /6 1/6,24 176,24 1/6,24
Belgium MLS




The use of minimisation schemes and the different possible combinations of moments which
may be used to determine model parameters results in non-unique parameter sets which
usually all result in adequate model performance. Hence it is important to identify which
model parameters are most sensitive to the scheme and moments used in parameter

determination.

3.4.3 Sensitivity

The magnitude of variations between the parameter sets derived using moments from
different levels of aggregation were similar to the variations abtained when changing the
initial “guess” vector in the nonlinear minimisation (Rodriguez-Iturbe er al., 1987b). Also
using the BLRPM, Onof and Wheater (1994a) found “considerable differences™ in the

parameter sets determined using two different sets of moments.

Rodriguez-Iturbe (1988) reports that when two different sets of moments were used to
derive MBLRPM parameters. the two sets of parameters were different, particularly the &
and vparameters. This was confirmed by Onof and Wheater (1993), who showed that with
the exceptionof u, and 4, the parameters of the MBLRPM determined by two different sets
of moments were very different. particularly the 2 and v parameters, but that both sets of
parameters could yield characteristics on the rainfall process to within 5% of historical
values. In contrast to these findings. Velghe et al. (1994) used five different sets of moment
equations and noted that there were “no striking changes in the parameter values from set
to set”, but perusal of their tabulated parameters indicate that large differences do occur, in
particular the v parameter.

Khaliq and Cunnane (1996) performed a sensitivity/stability analysis of parameters for the
MBLRPM. As shown in Table 10. five different sets of statistics were used to estimate five
sets of model parameters. The magnitude of the model parameters determined using the five
different sets of statistics varied considerably. Khaliq and Cunnane (1996) concluded that
u, and A were the most stable and  and vthe least stable parameters. This led Khaliq and
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Cunnane (1996) to use 16 moments to derive the 6 model parameters and to suggest that
different starting values of @#and vshould be used during optimisation.

Cowpertwait ef al. (1996a) also noted that the parameter estimates for the NRPRM are
dependent on the choice of moments used in the fitting procedure and concluded that the
choice of moments “needs to be made with some discretion”.

3.4.4 Optimisation
In order to improve the distribution and duration of events simulated by the BLRPM and
MBLRPM and to enhance the identification of appropriate model parameters, Onof and

Wheater (1993; 1994a) used a two-stage optimisation procedure with the objective function

as shown in Equation 535.

Lo )? 1) 2
d(f)=J(1-ﬂf'—)] +[1-ﬂ"—fﬂ] .55
0g 2,

where

=
-~
H

deviation at /-th iteration,

m'{i)= modelled mean hourly inter-event time at i-th iteration,
mean inter-event time of historical hourly data,

m' ()= modelled mean number of hourly events at i-th iteration, and

o', = mean number of hourly events in historical data.

By determining the remaining parameters for a fixed value of a poorly defined parameter,
and then varying the value of the poorly selected parameter, an optimum value of the poorly
defined parameter may be determined. For the BLRPM Onofand Wheater (1994a) obtained
solutions for different valuesof 8 Onofand Wheater (1993) used the MBLRPM and found
that when the autocovariances were used in determining the parameters and either a or v

were kept constant, no optimum solution was found. When autocorrelations instead of
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autocovariances were used, the convergence of the solution was difficult when 2 was fixed,
but optimum solutions were obtained when v was kept constant. The optimal values of v
obtained by an analytical solution or by simulation were very similar, but an optimum
solution was not obtained for all months (Onof and Wheater, 1993). The optimised
parameter set improved the simulation of inter-event and duration characteristics, but the
optimised parameters showed no improvement in the simulation of extreme events.

A similar two stage optimisation procedure was used by Onof and Wheater (1994b) to
optimise the parameters for the BLRPGM. The parameter & (the scale parameter for the
Gamma distribution) was incremented until an optimum (&) solution was determined. A
very good reproduction of extremes was obtained when the & was optimised (5,) such that
the mean of the 1 h and daily AMS of the simulated series best approximated the historical
values. Although &, was determined by simulation, as no analytical expressions are possible,
the optimised values &, and &, were very similar for most months. This led Onof and
Wheater (1994b) to conclude that the optimised &, data set would provide a good
simulation of the extreme values at the hourly and daily levels.

Onof and Wheater (1994a) noted that although there were some discrepancies between
anaiytical and simulated values of the characteristic variables, the use of analytical values in
the optimisation procedure was acceptable.

3.4.5 Daily Parameters

Onofand Wheater (1993) investigated whether a smoother representation of the parameters
over the year was possible and if the coefficients of this representation could be used for
regionalisation of parameters. The use of a polynomial produced very satisfactory results
and could thus be used to yield more realistic results for periods which are not calendar

months.
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3.5 GOODNESS-OF-FIT CRITERIA

Various tests have been used to assess model performance. Generally both analytical and
simulated values of certain characteristics ofthe rainfall process are compared with historical
values (Onof and Wheater, 1993; Onof and Wheater, 1994a). Bo er al. (1994) used the
mean sum of squares of the difference between the model estimated and observed mean,
variance, autocorrelation and dry probability statistics for various levels of accumulation as

shown in Equation 5.

| 2
F(j)= TZ [Fir(,-,,, - His, ) 1
L =1
where

F(j) = measure of goodness of fit for j-th statistic, e.g. mean (j=1), variance
" (j=2), autocorrelation (j=3), dry probability (/=4),
Fit,, = value of model computed j-th statistic at aggregation level (duration) i,
His,, = value ofj-th statistic computed from historical data at aggregation level '
i, and
N, = number of different aggregation levels used.

Verhoest et al. (1997) used the goodness-of-fit statistic (5) defined by Velghe ef al.(1994)

as shown in Equation 57.

37

where

m= number of moments or statistics considered.
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Cowpertwait ef al. (1991) generated a 20 year series of hourly rainfall and used t-tests to
compare simulated and historical moments. Cowpertwait er al. (1996a) validated the
NSRPM by:

. visual comparison of historical data and simulated time series,
. the crossing properties of the time series; and
. the hourly and daily extremes.

Although not explicitly detailed in the literature, the “model computed statistic” can be
either an analytic or simulated value. The theoretical expressions for the moment, if
available, can be computed for a given set of parameters and compared to the equivalent
moment computed from the historical data. The alternative, and the only option if the
theoretical expression for the statistics are not available, is to compute the statistics from
a synthetic time series generated by the model. Both of these options were used by Khaliq
and Cunnane (1996). Analytical moments were identified, at different levels of aggregation,
which differed from the historical moments by more than + 2SE, where SE is the estimated
standard error. In addition, properties computed from a 200 year record simulated by the
model, with a particular parameter set, were compared to those computed from the
historical data. However, no estimate was made of the variation in the synthetic series as a
result of the stochastic rainfall generation process, i.e. the sampling variation of historical

data was not compared to the variation due to the stochastic process.

Features not used in the determination of parameters can be used to determine the
goodness-of-fit (Rodriguez-Iturbe et al., 1988). Other characteristics used by Khaliq and
Cunnane (1996) to assess the performance of the model include probabilities of observing
small rainfall amounts, distributions of rainfall depth and intensity for given durations, event
profiles and distributions of monthly number of rainfall events, dry durations and wet
durations. Rainfall events were defined as a sequence of wet hours, preceded and followed
by at least one dry hour.
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3.6 REGIONALISATION OF PARAMETERS

Cowpertwait ef al. (1996a) derived linear regressions between h-hourly (h<24) and daily
variance for 27 stations in the UK. Of the 27 stations which had hourly rainfall data, 66%
had record lengths of between 5-10 years and the remainder had record lengths less than 30
years (Cowpertwait ef al., 1996b). Using both daily moments and variances for durations
< 24 h, derived from the regressions, when fitting the NSRPM resulted in a reasonable
simulstion of hourly data (Cowpertwait er al, 1996a). It was mm&ded that the
regionalised model could estimate rainfall properties that were within the sampling error
expected in a 20 year historical record of daily rainfall data.

Cowpertwait et al. (1996b) developed regressions at 112 sites in the UK between NSRPM
parameters and both location dependent variables that influence rainfall and harmonic
variables. At sites where no short duration data were available, four of the NSRFPM
parameters were estimated using these regressions and the fifth parameter was estimated
using the mean of a nearby daily rainfall station and the four derived parameters. In order
to simulate durations as short as 5 minutes, a stochastic disaggregation model was
developed which used hourly time series as input.

3.7 MODEL VALIDATION

Model performance can be assessed by checking the model’s ability to reproduce rainfall
properties not used in the fitting procedure, but which are considered important (Rodriguez-
Iturbe et al., 1988; Cowpertwait et al., 1996a).

3.7.1 Neyman-Scott Rectangular Pulse Model

Cowpertwait ef al. (1996a) compared the means and standard deviations of the proportions
of time that the historical and simulated rainfall exceeded various depths. The NSRPM was
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found not to simulate the mean proportion of events less than 1 mm well. Using an
exponential distribution for cell intensity, Cowpertwait ez al. (1996a) found that the NSRPM
under-simulated historical extreme events for return periods greater than 5 years. The use
of a Weibull distribution to mode] cell intensity did not necessarily improve the simulation
of extreme events. Cowpertwait ef al. (1996a) conclude that the inconsistent simulation of
extreme events by the NSRPM “may be due to an over-simplification in the parameterisation
of the model™ and that consequently a “good fit to the extreme values is unlikely to be
achieved consistently using the present form of the model”.

3.7.2  Original and Modified Bartlett-Lewis Rectangular Pulse Models

Rodriguez-Iturbe et al. (1987b) applied the BLRPM to a 27 year record of hourly rainfall
data for one month from Denver, USA, and found that the model was abie to preserve the
rainfall depth statistics and extreme values of rainfall, but did not reproduce the proportion
of dry level states satisfactorily. The MBLRPM, which allowed random variation from storm
to storm of the exponential parameter of the distribution of cell duration, enabled the model
to reproduce the proportion of dry states for various time intervals (Rodriguez-Tturbe et al.,
1988).

Rodriguez-fturbe er al. (1988) found that the MBLRPM underestimated the hourly and 24-
hourly extremes for return periods greater than the record length. By plotting the cumulative
distribution of the modelled and historical extreme values for both the 1 and 24 h
aggregation levels, it was apparent that the MBLRPM underestimated the extreme values
for return periods greater than approximately 10 years.

Onof and Wheater (1993) used the MBLRPM to improve the simulation of rainfall in the
UK. Generally the second-order properties of the data were well reproduced by the model.
In addition, dry periods for all time scales (hourly to daily) and daily rainfall depths were
also well reproduced by the model. The MBLRPM improved the autocorrelations for
lags > 12 h, inter-event intervals (dry periods), the duration and number of events when
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compared to the BLRPM, but autocorrelations were still not adequately simulated by the
MBLRPM. In addition, the design rainfall for return periods longer than the length of the
data set were not reproduced well.

Bo er al. (1994) showed that both the aggregation and disaggregation of rainfall using the
MBLRPM were satisfactory and that, using readily available daily rainfall data to determine
model parameters, statistics for finer time scales of up to 1 h could be reproduced using the
MBLRPM.

Khaliq and Cunnane (1996) used the MBLRPM to successfully model point rainfall with
parameters derived from a 45 year record from Valentia, Ireland and from a 38 year record
from Shannon Airport, Ireland. Two hundred years of synthetic data were simulate&.
Generally the autocorrelations for lags ranging from 1 to 24 in the hourly data and for lags
from 1 to 10 in the 24 h data were adequately simulated. Probabilities of no rain for
accumulation periods great than 24 h were generaily over-simulated by the model Khaliq
and Cunnane (1996) found that, whilst the simulation of extreme events by the MBLRPM
was dependent on the moment set used in the derivation of the model parameters, the model
generally under-simulated hourly extreme events for return periods greater then 5 years.
However, the model generally reproduced the 24 h extreme values well for most months.

Velghe et al. (1994) compared the performance of the NSRPM, MNSRPM, BLRPM and
MBLRPM for the Denver, USA data used by Rodriguez-Iturbe ef al. (1987b). The
analytical (theoretical) and simulated statistics were compared to the statistics computed
from the historical data. The NSRPM model was found to perform better than the BLRPM.
This was partially attributed by Velghe et al, (1994) to the better fit of the analytical values
(lower Z) for the NSRPM. Similar to the finding by Rodriguez-Iturbe et al. (1988), Velghe
et al. (1994) found that the modified versions of the NSRPM and BLRPM gave better
estimates of dry (zero depth) probabilities at higher levels of aggregation and better
estimates of extreme values, but that the correlation structure of the original models fitted
the historical values better. The MBLRPM was found by Velghe et al. (1994) to differ more
from the historical statistics than the NSRPM, and the MBLRPM was also more sensitive
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to the sets of moment equations used in parameter estimation. When zero depth probabilities
were used at more than one level of aggregation in the moment equations used to determine
parameters, it was found the zero depth probabilities were well preserved at all levels of
aggregation, but due to the limited number of moments used in the estimation, the second
order moments were not fitted well. When only one or no zero depth probabilities were used
in the moment equations, the zero depth probabilities were overestimated and the second
order moments were better represented at all levels of aggregation. Velghe er al. (1994)
found that the simulation of extreme values by the MBLRPM was not sensitive to different
moment equations, but concluded that the major drawback of applying the MBLRPM was
the sensitivity of the performance to the selected moment equations used in the
determination of the model parameters. For all models, hourly design rainfall depths were
generally underestimated for longer return periods but, for corresponding return periods,

were better simulated for longer durations.

3.7.3 Bartlett-Lewis Rectangular Pulse Gamma Model

Onofand Wheater (1994b) used a 38.5 year record of hourly rainfall from Birmingham, UK
and found that after optimising the & parameter, the BLRPGM simulated the extreme
events well at both the hourly and daily time scales. The difficulty in estimating the seven
parameters for the model, and the success of the BLRPGM, led Onof and Wheater (1994b)
to conclude that future research effort should concentrate on widespread applications of
the models and regionalisation of the parameters of the model, and not on deveioping

models with more parameters.

Verhoest et al.(1997) compared the BLRPM, MBLRPM and BLRPGM using a 27 year
period of record of 10 min rainfall data from Uccle, Belgium. Based on first and second
order moments computed from 100 years of generated synthetic rainfall series, it was
shown that all three models performed adequately and that the MBLRPM best simulated the
second order moments of the historical data. It was found that none of the three models
were able to satisfactorily model the extreme value behaviour of the data, particularly for
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short duration (10 to 200 min} events where the extreme events were under-simulated.
However, Verhoest ef al.(1997) used a 24 h period of no rain to extract storms and showed
a good agreement between the mass curves generated by the MBLRPM and the observed
rainfall mass curves. The mean length of the synthetic storm was generally found to be
shorter than for the historical series. This led to the conclusion that the cluster-based models
produce individual rain cells more clustered than the historical series.

3.8 CHAPTER CONCLUSIONS

It is apparent from the literature that cluster based rectangular point rainfall models that use
a Poisson process to simulate storm and cell arrival times can adequately reproduce most
of the properties of historical rainfail data. Varied performances of the simulation of
extreme events, which is of most interest to this study, have been reported in the literature.
Cowpertwait et al. (1996a) report that perforrnance of the NSRPM was inconsistent. For
the Bartlett-Lewis based models, the simulated design rainfall values were generally poor
for shorter durations (x <3-h) and for return periods longer than the historical record, but
encouraging for longer durations and return periods up to the record length (Rodriguez-
Iturbe et al., 1988; Onof and Wheater, 1993; Velghe ef al., 1994; Khaliq and Cunnane,
1996; Verhoest et al., 1997). However, Onof and Wheater (1994b) obtained satisfactory
results using the BLRPGM, after optimising the 6 parameter, for both hourly and daily
durations and return periods up to 200 years. Hence the results, presented in Chapter 7, of
using stochastic cluster-based rainfall models in South Africa to estimate design rainfalls,
are focussed exclusively on the MBLRPM and BLRPGM.

Most of the studies reported in the literature used data from only one station and. in some
cases, used only data from individual months, e.g. Rodriguez-Tturbe et al. (1988). It is
assumed that the limited amount of data used are from selected, well maintained stations
with good, well checked records, Hence, some of the conclusions pertaining to the
performance of the models are only applicable to the site and data used, and may not be



generally applicable to different locations and with the use of “operational” data, which may
not be as error free as those stations used in the studies reported in the literature.

The inherent stochastic variability of the cluster-based rainfall models has not been
demonstrated explicitly in the literature reviewed. Most studies have generated a long
sequence of synthetic rainfall (e.g. 200 years) and have estimated design rainfall values from
this series. In the application of the stochastic rainfall models to data from South Africa,
presented in Chapter 7, the stochastic variability of design rainfall values computed from the
synthetic rainfall series is shown explicitly,

This chapter concludes Part A, in which the theoretical framework is set for the remainder
of the thesis, with results presented in Chapters 4 - 7. Chapter 4 following in Part B, details
the compilation of a short duration rainfall database for South Africa and highlights errors
and inconsistencies in the data. The database is used both to estimate short duration design
rainfalls using the techniques presented in Chapter 2, with results presented in Chapters 5
and 6, and to estimate the parameters of the cluster-based models discussed in this chapter.
The results of estimating design rainfalls from the synthetic rainfall series generated by the
stochastic cluster-based rainfall models are presented in Chapter 7.

85



PART B
APPLICATION AND DEVELOPMENT OF TECHNIQUES

in Part B, the results of the study are presented in Chapters 4, 5, 6, and 7. In Chapter 4,
the compilation of a short duration rainfall database is described and techniques are
developed and assessed for identifying and removing errors such as zero and negative time
steps from the data, The consistency of the digitised data are evaluated by comparing daily
rainfall totals computed from the digitised and standard daily rainfall databases. A case study
on the effect of missing data on the estimation of design rainfall depths is also presented.

In Chapter 5 relatively homogeneous regions of design rainfall frequency distribution in
South Africa are identified and the results of a regional index storm based approach to
design rainfall estimation is presented. Regional regression equations are developed to
estimate the index storm for 24 h duration events as a ﬁnction of site characteristics, thus
enabling the index storm based approach to be applied at any ungauged site in South Africa.
In order to estimate short duration design storms from daily rainfall data, hypotheses were
proposed which combine the properties of homogeneous regions, where the distribution of
the scaled Annual Maximum Series (AMS) is assumed to be the same at each site in the
region, with the scaling characteristics of the AMS. The hypotheses and results of applying
the hypotheses at selected regions and sites in South Africa are presented in Chapter 6.

In Chapter 7 the results from generating stochastic rainfall time series with Bartlett-Lewis
Rectangular Pulse rainfall models and estimating design storms from the synthetic rainfall
series are presented. Both parameter optimisation techniques and a procedure for
determining the model parameters using only daily rainfall data are developed and evaluated.
In addition, the stochastic variability is used to estimate confidence limits for the design
storms and the temporal distribution of synthetic storms estimated at selected sites are
presented. Two interesting case studies are also presented which evaluate two approaches
that can be adopted to estimate short duration design storms at sites which only have a short
period of observed data available.
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CHAPTER 4

ESTABLISHMENT OF A SHORT DURATION RAINFALL
DATABASE FOR SOUTH AFRICA

In order to establish a short duration (< 24 h) rainfall database for South Aftica it was necessary
to assess the availability of automatically recorded rainfall data. Questionnaires were distributed
to numerous organisations, which included Government Departments, Universities and local
authorities, requesting information on rainfall data collected by the organisations. The
organisations which responded positively with relevant information were requested to provide
the data which were included in the database. In an cases the rainfall data were still in
chart form and had to be manually digitised for entry imto a computer. More than 100 station
years of autograplﬁc rainfall data were digitised during the course of the project. The
organisations which contributed relevant and useable data to the database, and the number of
stations which were made available, are listed in Table 2. In total data from 412 stations were
obtained. The distribution of record lengths of the 412 stations in the database is shown in

Figure 5 and the locations of stations with record lengths 210 years is shown in Figure 6.

Table 2 Organisations which contributed short duration rainfall data
Organisation Number of stations
Department of Agricultural Engineering, University of Natal (DAEUN) 24
Coungcil for Scientific and Industrial Research (CSIR) 4
Rhodes University (RU) _ 28
South African Sugar Association Experiment Station (SASEX) , 4
University of the Witwatersrand { Wits) 3
South African Weather Burcau (SAWB) 334
Cape Town City Engineer’s Department (CTCE) 2
University of Zululand (UZ) _ 13
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Figure 5 Distribution of record lengths in the short duration rainfall database for
South Africa

As shown in Table 11 the majority of stations in the database were contributed by the
SAWB. Errors, such as negative and zero time steps, were found in the data from most of
the organisations which contributed processed rainfall data to the database. A zero time step
occurs when consecutive data points are assigned the same time of day while having an
increase in rainfall and thus create an infinite intensity. With the exception of the SAWB
data. these errors were relatively few, with usually only one or two errors in the entire data
set for a particular station. However, numerous errors were encountered in the data
obtained from the SAWB. Hence the cause of these errors had to be established and
procedures developed in order to correct the errors and allow the continuous processing of
data, The term “correction of errors™ used in this chapter refers to the adjustment of data
points in order to eliminate the errors and allow continuous processing of the data and does

not refer to the correction of' data in the sense of infilling missing data points.

An analysis of the probable causes and suggested procedures to correct errors in the SAWB
digitised rainfall database are investigated in the following section, This is followed by some
consistency checks on the digitised data, which include sections on comparing the digitised
_and manually extracted extreme events, the frequency and magnitude of differences between
digitised and standard, non-recording raingauge daily rainfall totals and an analysis of the
impact of incomplete data on the estimation of design rainfall.
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Location of stations with record lengths > 10 years in the short duration rainfall database for South Aftica
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4.1 ERRORS IN SAWB DATA AND DATA ADJUSTMENT PROCEDURES

The most common errors found in the database consist of rainfall events with negative or
zero time steps. As indicated in Figure 7 the majority of errors found in the database are a

result of negative time steps.

4.1.1 Sources of Errors

As shown in Figure 7(a), the most frequently occurring negative time step errors are those
associated with a decrease in the digitised depth of rainfall (labelled negative & less),
followed by those associated with raingauge siphons (negative siphon), equal rainfali depth
(negative & equal) and increasing digitised rainfall depth (negative and increase). It is
concluded from the intra-daily temporal distribution of the occurrences of the negative time
step errors associated with decreasing digitised rainfall depths, as shown in Figure 7(b), that
the majority of these errors are a result of not synchronising the time at the end of one daily
chart with the beginning time of the following chart. The possible causes of the negative‘
time step errors which occur at chart changes may be incorrect digitising, autographic
raingauge clock errors and possible incorrect setting or failing to record the time at which
the chart was placed on and removed from the gauge. An analysis of the magnitude of the
time differences of negative time step errors is given in Figure 7(c), with the majority of
negative time step errors being less than 30 minutes. Examination of the intra-daily temporal
distribution of the occurrences of zero time step errors showed that these errors occurred
randomly throughout the day and were thus probably a result of incorrect chart digitisation.
From Figure 7(d), it is seen that the magnitude of the differences in the rainfall amounts
associated with the majority of the zero time step errors is less than 2 mm. The large
number of errors contained in the database makes the task of manually correcting the
database extremely time consuming, which prompted the development of automatic

correcting procedures.
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Figure 7 Relative frequency of occurrence of 25922 errors idemtified in the digitised

rainfall database from 29 SAWB stations for the period 1960°to 1990

(a) Occurrences of negative and zere time steps

(b) Temporal distribution of negative time steps associated with a decrease
in digitised rainfall

(c) Magnitude of negative time steps (minutes)

(d) Difference in rainfall depths (mm) of data points associated with zero
time steps

4.1.2 Data Correction and Adjustment Procedures

4.1.2.1 Principles applied

The principles used to correct the data were guided by the amalysis of errors, such as
contained in Figure 7. Each "type" of error was identified, and appropriate remedial
actions were performed. The principles applied in these actions are illustrated for a negative
time step error associated with an increase in digitised rainfall, as shown schematically by

the solid line in Figure §.
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It is assumed that points 1 and 4 are correct and either points 2 or 3 or both are incorrect.
One alternative to correcting this error is to delete either points P2 or P3 such that the
minimum rainfall intensity is introduced (either 113, the intensity between P1 and P3, or [24,
the intensity between P2 and P4). In this case P3 will be deleted and the intensity 124,
shown by the dotted line, is introduced into the data. This approach has been termed the
Lowest Intensity Adjustment (LIA). An alternative to this technique is to delete either P2
or P3 such that the maximum rainfall intensity is introduced'in the database. This approach
has been termed Maximum Intensity Adjustment (MIA). A third alternative is to replace P2
and P3 with a single point containing averaged time and rainfall values, and has been termed
Average Intensity Adjustment (AJA).
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Figure 8 Schematic diagram depicting a negative time step error, with increase in

digitised rainfall (P'1, P2, P'3, P4 are consecutive digitised points in the data)

Three sets of Annual Maximum Series {AMS) were extracted from the database corrected
by either the LIA, AIA or MIA procedures. In addition, two AMS were extracted that
excluded corrected data points. The first excluded all erroneous data points from the
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database prior to the extraction of the AMS and was termed EXPOINT. The data were
scanned sequentially and any data point causing an error (e.g. P3 in Figure 8) was discarded,
and the AMS was extracted from the remaining data points. The second method excluded
from the AMS any event that had any errors contained in the data within the duration of the
event and was termed EXEVNT. In order to select which of the LIA, MIA, AIA,
EXPOINT or EXEVNT were appropriate procedures, statistical tests are utilised in Section
4.1.5 which test if the 5 different methods of ensuring continuous processing of the data
result in significantly different AMS.

4.1.2.2 Chart changes

In some cases the time-off recorded on a chart is often later than the time-on for the
following chart. For example, at SAWB Station 0059572 the chart starting on 01/03/42 has
a recorded time-off on 02/03/42 at 09:00, while the chart starting on 02/03/42 has a
recorded time-on of 08:50. In addition, the last digitised point on a chart is often later than
the recorded time-off . For example, at Station 0059572 on 19/12/40 the recorded time-off
is 08:30, but the last digitised point on the chart is 08:32.

In addition on some charts, generally for more recent years, the system of recording the
correct time-on and time-off, which can then be used to correct the chart time-on and time-
off if the clock lost or gained time, seems to have been abandoned. For example, random
checks in years 1975, 1980, 1985 and 1990 for Station 0059572 reveal that the time-on and
time-off was consistently 8:00 on every day, thus indicating that this is probably not the
correct time noted by the observer. As a result the time-on and time-off values cannot be

used to correct any time errors on the chart.

For the above reasons it was considered that the recorded time-on and off of charts were
too unreliable to use in adjusting negative time steps arising as a result of time clocks
running too fast. It was thus assumed that the time when the chart was put on is correct and
hence the difference between the first digitised point and the last point digitised on the
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previous chart is used to establish the magnitude of the ¢lock time error. This assumes that
the clockwork mechanism is not running fast or slow.

4.1.2.3 Automated correction

Owing to the vast number of errors found in the SAWB digitised database and thus the need
to automate the correction process, the five correction methods (MIA, AIA, LIA,
EXPOINT, EXEVNT) were used to create five different sets of AMS.

The data points were scanned sequentially and the action undertaken and software routine
invoked whenever an error was detected is shown in Table 12. As detailed in the following
section, the automated correction procedures were only undertaken after some manual
editing had been performed.

As indicated in Table 12, whenever an adjustment was made, the affected data points were
assigned a code. These indicate time adjustments (1), siphon adjustments (s) and corrections
(c) to data points where the cause of the error is unknown. A clear distinction is drawn
between adjustments, where the probable cause of the error is known, and errors, where the

cause of the error is unknown.

4.1.2.4 Manual eorrection

Despite the extensive automatic correction procedures, it was found that using only
autornatic procedures to correct large negative steps (> 30 minutes) resulted in unrealistic -
corrections. These large negative time steps were largely a result of what appeared to be
either spurious points or the re-digitisation of portions of the same chart. These errors were
thus investigated individually and corrected manually.
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Table 12

Automatic adjustment procedures

Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Equal time T ez ] | Digitising error Either P2 or P3 EXPOINT ¢ Delete P3 DISCAD
g A/g* incorrect
’ M
Equal time and | _ () Check siphon top All c Delete P3 DISCAD
decrease in k o1 and bottom value
rainfall trace 4 i | have been placed
§|p" P4 .
. ) , in incorrect
Tt deses) column
; ——— g Al c Delete P4 DISCAD
P4
i P ]
Siphon All None
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Case Trace Error/ Suspecied Assumption(s) Method Flag Action Reutine
Cause invoked
Equal time and - Point}isa All € Move point 3 such that T,=T,+1 MINADD
decrease in 1 7 missing code
rainfall trace i oy
(continued) _ |
THAE pwiewiian)
LT T TR [ Peint2isa All c Move point 2 such that T,=T,-1 MINSUB
3 missing code
! Pt - I
T Tt i) '
Equal times [~ "= [ Digitising error Duplication of All < Delete P, EQUAL
and equal i P2 Point 2= Point3 | same point
values g o i
Equal time and Digitising error All c Delete P3 DISCAD

increase in
rainfall trace
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Equal time and TR Digitising error All ¢ | Delete P4 DISCAD
increase in t P4
rainfall trace § oz
{continued) P _
I (warint
| T pat” Digitising error at | P2 is not part of All ¢ | Delete P2 DISCAD
1 | | siphon siphon
.
[+ PA !
TRt TR Digitising error of All ¢ | Move point 3 such that T3 = T3+1 | MINADD
i 2 consecutive
i siphons during
o e2lba intense event
TINE (rriruie ) "[‘2=T3
I Digitising error at Al ¢ { Delete P2 DISCAD
change of chart
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Equal time and “__'1;3_‘” P Digitising error Either P2 or P3 MIA c If 113 > 124, delete P2 FOUR
increase in i is an error
; i t24
rainfall trace i 4
(continued) P1_ L
If 124 > 113, delete P3
AlA ¢ Average P2 and P3 FOUR
Either P2 or P3 LIA c 1F 113 > 124, delete P3 FOUR
is an error
[£124 > 113, delete P2
EXPOINT c Delete P3 FOUR
T e B Digitising error Either P2 or P3 MIA ¢ [ Delete P3 DISCAD
5 P1 is either a is incorrect
missing code or
3 w2 | | P2is the first AlA ¢ | Average P2 and P3 RAINAV
TE it point in file
LIA c Delete P2 DISCAD
I Digitising error Either P2 or P3 MIA c Delete P2 DISCAD
; /r P3 is either the is incorrect
last point in the
H o P | | fleor Pisa AlA ¢ | Average P2 and P3 RAINAV
TadE fre) missing code
L1A C Delete P3 DISCAD




Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Equal time and i T P2 is a missing All ¢ Move M2 such that T2=T3-1 MINSUB
increase in code
rainfall trace ; o
{continued) P
TR wmuima )
T T Rl | B3 is 2 missing All c Move P3 such that T3=T2+) MINADD
g i | code )
i
p2 i
o 7|
Tidf (ot
Unknown Manual
Negative time Manual correction Correction
step if negative step >
30 minutes
Digitis;ing error Any point EXPOINT ¢ | Delete P3 DISCAD

creating an error
is deleted
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Case

Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Negative lime S Framany Parallax error due | All points on MIA, LIA, s Calculate angle of distortion for SIPHON
step with ] 5;/ to chart placement | chart are AlA each negative siplion on chart, and
decrease in i‘ P4 on drum, distorted | affected by the use maximum angle to correct all
trace N sl frame ot incorrect | distortion points on chart
T digitising of &
siphon
) Clock running too | Time is correct MIA, L1A, t Maove P2 such that T2=T3 TIMADJ
: o - 17 fast - henee al start of chart. AlA Adjust all points on chart which
i ’ [ Pa acgative time siep | The error in ended on P2 (i.e. 1 day)
B a1 change of chart | clock time is proportionately backwards
fL assumed to be
constant over the
day (i.e. linear)
T T T Negative step P4 is the 1st MIA, AIA, ¢ Delete P3 DISCAD
g o P2 prior te change of | point of the next LA
! 3 chart chart
S — P‘ ————
TIE (b
Negative step Siphon starts at | MIA, AlA, c Delete P3 DISCAD
within a siphon P2 and ends at LIA

P4
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Negative time [ ez g, Digitising error Either P2 or P3 MIA c [f F13 > 124, delete P2 FOUR-
step with i f is incorrect DISCAD
113 P3a
;’;ﬁim od) i AIA ¢ | Average P2 and P3 (rain and time) | FOUR-
TPRAVG
LiA c 10113 > 124, delete P3 FOUR-
DISCAD
IFI13 > 124, delete P2
~ ey _a | | P2isthe first P2or P3is MIA ¢ Move P3 such that T3=T2+| TIMEPI
5 1 / 4; point in the file or | incorrect
"",-' P ‘ - - -
§«7 e I c od:: a missing AlA ¢ | Average times of P2 and P3 TIMAV
T
LIA ¢ Move P2 such that T2=T3-1 TIMEM1
w2 a1 | P2 isamissing Code inserted MIA, ALA, c Move P2 such that T2=T3-1] MINSLUB
i . P4 | code incorrectly LIA
i 5 ‘
T e T | P3 is a missing Code inserted MIA, AlA, c Move P3 such that T3=T2+1 MINADD
5 . M P4 | code incorrectly LIA
1 i
X M3 i
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Negative time TR - P3 is the last point | P2 or P3 MIA c Move P2 such that T2=T3-1 TIMEM]I
step with g ) /‘/’ ¥4 | in the data or P4 incorrectly
d in 1 2 + .. digiti
\race 3 eI is & missing code Igitised AlA c Average times of T2 and T3 TIMEAV
{continued) e
LIA c Move P3 such that T3=T2+1 TIMEPI
Negative time Clock running too | Time is correct MIA, AIA, 1 Maove P2 such that T2=T3 TIMAD!
step and (race 5 fast - hence at start of chart LiA Adjust ail points on chart which
is level P4 1 negative time step | The error in ended on P2 (i.e. | day)
i PM at change of chart | clock time is proportionately backwards
TIE e constant over the
day (i.e. linear)
——— e Negative time step MIA, AlA, ¢ | Delete P3 DISCAD
i and P4 is the start LIA
i of the next chart
Negative time step MIA, AlA, c Delete P4 DISCAD
after siphon LIA




£0l1

Case Trace Error/ Suspected | Assumption(s) Method | Flag Action Routine
Cause Invoked
Negative time _ Digitising ervor Either P2 or P3 MIA ¢ If 113 > 124, delete P2 - FOUR-
stepand trace | | P 2 is incorrect DISCAD
is Jevel ; IF113 < [24, delete P3
; P
{(continued) pro o AlA C Average P2 and P3 (rain and time)} | FOUR-
TPRAVG
LIA c If113 > )24, delete P3 FOUR-
DISCAD
IFL13 > 124, delete P2
Nepative time Change of chagt P4 is the tirst MIA, AlA, c Delete P2 DISCAD
step and I Py P point of the next LIA
increase in i chart
irace e P4
P3 Siphon P4 is at the MIA, ALA, c Delete P2 DISCAD
i >P2 bottom of a LAl
; siphon
4"
Siphon before MIA, AlA, ¢ Delete P3 DISCAD
negative time step LiA
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause invoked
Negative time T | P2is the first MIA ¢ | Delete P3 DISCAD
step and i <;""" poiat in the fle or
; T P1i - .
::l:;eease " | !1_ cod: & missing AlA c Average P2 and P3 (rain and time) | TPRAVG
{contintued) THE buteet
LIA ¢ Delete P2 DISCAD
oo a | P s the last point MIA c | Delete P2 DISCAD
g '.’i>"’ "“‘I in the file or P4 is
HIE || B mssing code AlA ¢ | Average P2 and P3 (rain and time) | TPRAVG
ll‘ll( [ '
LIA ¢ Delete P3 DISCAD
T T P2 is a code MIA, AIA, c Move P2 such that T2=T3-1 MINSUM
IS P4 LIA
3 M2
F1
T ey
P3 is a code MIA, AlA, c Move P3 such tyat T3=T2+1 MINADD

LIA
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Case Trace Error/ Suspected Assumption(s) Method Flag Action Routine
Cause Invoked
Negative time Digitising error Either P2 or P3 MIA c I 113 > 124, delete P2 FOUR-
step and is incorrect DISCAD
increase in If 113 < 124, delete P3 :
frace . .
. Ala c Average P2 and P3 (rain and time) | FOUR-
(continued) TPRAVG
LlA c If 113 < 124, delete P2 FOUR-
: DISCAD

If 113 > 124, delete P3




4.1.3 Flagging of Annual Maximum Events

Two methods of flagging the events contained in the AMS extracted from the five databases
were used. The first, termed “Flag_All", flags the AM event with the appropriate flag (¢,s
or t as defined in Section 4.1.2.3) if any data points within the duration of the AM event are
flagged. This is probably too extreme, as the deletion of a single or a number of data points
within the duration of an extreme event, with the remainder of the points assumed to be
correct and with the siphon type of raingauge accumulating rainfal] totals, has no effect on
the correct duration of the evemt or on the total rainfall depth.

A second method was thus adopted, termed “Flag_End”, which only flags the AM event
if the data points spanning the start or end of the extracted annual maximum event are
flagged as being corrected.

The distribution of data points marked as corrected is investigated in the following section.
This is in order to ascertain whether, for example, the errors in the data occur
predominantly in the larger or smaller events, or if the errors occur randomly through the

range of event magnitudes.

Annual maximum events for the each duration considered are extracted from the digitised
rainfall data using a moving window which has a duration equal to the duration of the event
under evaluation. Each point in the break-point digitised data is considered as the potential
starting point of an annual maximum event. The rainfall value at the end point of the event
is interpolated linearly from the digitised data points which span the end points of the event.

4.1.4 Frequency Distribution of Corrected Annual Maximum Events

Inorder to ascertain the effect of the various procedures for correcting the data. an analysis
was undertaken to determine whether the corrected points were creating artificially high
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rainfall intensities. This was performed for events marked using the “Flag_All" and
“Flag_End” methods of flagging events which had corrected data points.

4.1.4.1 “Flag_AIl” method

For both methods of flagging events which had corrected points, an analysis was initially
performed at a single station (SAWB 0059572} and then gencralised to 29 SAWB stations
that had concurrent data from 1962 - 1991.

4.1.4.1.1 Station SAWB 0059572 (East London)

In order to assess the significance of the comrection procedures, diagrams showing the
frequencies for 10 equally spaced class intervals were constructed for both the entire AMS
and for the events which contained a corrected point within the duration of the event. As
expected, and illustrated in Figure 9, the number of events in the upper taill of the
distribution which have corrected data points contained within the event, increases as the
event duration increases. However, relatively few events flagged as corrected are found in
the upper tail of the distribution for durations less than 30 minutes. This indicates that
artificially high short duration rainfall intensities are generally not created as a result of the

¢orrection procedures.

The relative frequency distribution, computed by dividing the number of events which have
corrected data points within the event, by the total number of events for each intensity class
interval of events, are summarised for all durations and class intervals in Figure 10. As
expected, the number of events which have flagged data points contained within the event
increases with increasing duration. With some exceptions which are discussed below,
relatively few events in the upper tail (intensity class > 7) ofthe distribution have flagged
data points.
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Figure 9 Frequency distribution of AMS and events in AMS which are flagged as
corrected using the “Flag_All” method at Station 0059572 (East London)
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Station: 0059572
“Flag-All" Method

Flagged Events (%)
[£))
L=

Duration (minutes)

Intensity Class

Figure 10 Summary of the relative frequency distribution of events in the AMS flagged
using the “Flag_All” method at Station 0059572 (East London)

An apparent anomaly in Figure 10 is the high percentage of corrected points in frequency
classes 8, 9 and 10 for durations 30, 45 and 60 minutes. This resulted from the error
depicted in Table 13. This shows that an increase in rainfall from P2 to P3 occurs without
an increase in time and is corrected, using the MIA method, by deleting P3 and flagging P4

as a corrected point.

Table 13 Zero time step error: SAWB Station 0059572 (East London)

Point Date Time Rainfall Depth
(mm*10)

Pl 210779 | 08:29 32

P2 21/07/79 | 08:35 435

P3 210779 | 08:35 56

P4 21/07/79 | 08:37 72
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As indicated in the digitised data, the Annual Maximum (AM) event for the 30 min duration
started at 08:11 and hence within the 30 min period from 08:11 to 08:41, the corrected
(deleted) point was encountered and thus the AM event is marked as a cormrected event.
The deletion of the point (in this case) has no effect on the intensity of the 30 min duration
event. Similarly the AM 45 and 60 min duration events both started at 07:58 and the
deleted point had no effect on the AM event, although both were marked as corrected
events because the corrected point was contained within their durations.

4.14.1.2  Twenty-nine SAWB stations

The same analysis as described above was performed on all the SAWB stations that had

concurrent data from 1962 - 1991 (29 stations) and the results are summarised in Figure 11,

Concurrent SAWB Station : 1962 - 1991
"Flag_All" Method

Flagged Events (%)

Intensity Class

Figure 11 Summary of relative frequency distribution of events in the AMS flagged
using the “Flag_All'* method at 29 SAWB stations

‘As shown in Figure 11, when using the “Flag_All” method, relatively few evetits in the
upper tail of the distribution of AMS have flagged points within the events when the MIA
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correction method is used. Thus, even whenthe “Flag_All” method is used, the effect of the
automated corrections on the upper tail of the distribution of the AMS is minimal.

4.1.4.2 “Flag_End” method

As discussed previously, the “Flag_ ALl method may flag events which have corrected data
points contained within the event, but which have no effect on the rainfall intensity.
Therefore the “Flag_End” method, where an event is flagged only if the corrected points
span the start and end of the event, was used in an analysis of the distribution of corrected
points at Station 0059572 and at the 29 SAWB stations that had concurrent data for the
period 1962-1991.

4.1.4.2.1 Station 0059572 (East London)

The frequency distributions for Station 0059572 of both the AMS and the events in AMS
flagged using the “Flag_End” method, are contained in Figure 12. The relative frequencies
of the events flagged using the “Flag_End” method, expressed as a percentage of total
events in each class and for each duration, are summarised in Figure 13 and indicate that
the effect of the automated correction procedure on the distribution of the AMS at Station
0059572 is negligible.

4.14.2.2 Twenty-nine SAWB stations
A relative frequency analysis of the events flagged using the “Flag_End” method was

performed for all 29 SAWB stations which contained concurrent data from 1962 - 1991 and

the results are summarised in Figure 14.
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Figure 12 Frequency distribution of AMS and events in AMS flagged as corrected
using the “Flag_End” method at Station 0059572 (East London)

As shown previously, the “Flag_ All” method flagged events which had flagged data points
within the AM event, even though they had no effect on the intensity of the event. Hence
the “Flag_AII” method was deemed to be inappropriate. As shown in Figure 14, the effect
of the automated correction procedure on the distribution of the AMS is relatively small,
with the relative frequency less than 5% for most classes and durations.
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Station: 0059572
"Flag_End" Method

Flagged Events (%)

Intensity Class

Figure 13 Summary of relative frequency distribution of events in the AMS flagged
using the “Flag_End” method at Station 0059572 {East London)

Concurrent SAWB Station : 1962 - 1991
"Flag_End" Method

-
o
(=]

Flagged Events (%)
o
o

Intensity Class

Figure 14 Summary of relative frequency distribution of events in the AMS flagged
using the “Flag_End™ method at 29 SAWB stations

Having shown that the effect of the correction procedures on the distribution of AMS is not

significant, the differences in the various correction procedures were investigated.
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4.1.5 Differences in Corrected Databases

Both parametric and non-parametric statistical tests were employed to distinguish
differences between the databases corrected using the three different strategies and the
database that excluded error points and error events. These were applied to data from
Station 0059572 and then to data from the 29 SAWB stations that had concurrent data from
1962 - 1991.

4.1.5.1 Station 0059572 (East London)

The null hypothesis of no significant differences between the means of data groups
corrected using the above procedures, was tested by performing an Analysis of Variance
(ANOVA) and computing the F-test statistic. Implicit in the ANOVA test are the
assumptions of normality of the data and constant variance between groups (Hirsch et al.,
1993). A chi-squared test, as described by Kite (1988), which utilises 10 equally spaced
probability class intervals was performed on each group of data, either rejecting or ‘
accepting the null hypothesis that the data are normally distributed. The homogeneity of
variances was tested by Bartlett’s method, as described by Steeland Torrie (1980). Results
of the normality and homogeneity of variances are contained in Tables 14 and 135. Included
in Tables 14 and 15 are the results of the statistical tests performed on 30 years of
consecutive data from 1962 - 1991 and on 40 years of data (ie. all available data from
Station 0059572) within the period 1940 - 1992,

As shown in Table 14, with a few exceptions, the AMS are normally distributed for most
durations and comrection procedure, irrespective of the length of record considered.
Similarly, as shown in Table 15 and with the exception of the comparison between the MIA
and EXPOINT procedures, the variances of the AMS, after correction by each of the 5
correction procedures, are relatively homogeneous. Thus with the exceptions noted, the
assumptions on which the ANOVA are based are generally true and the power of the
analysis is not significantly diminished.
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Table 14 Acceptance (v) and rejection (X) at the 95% confidence level of the null
hypothesis of normally distributed AMS after various data correction
procedures; Station 0059572 (East London)

DATABASE EVENT DURATION (minutes}

5 1 1 3 6 |9 |1 23 laje |72 | 1

0 s 0 5 0 0 2 4 6 8 0 2 -] 2 4

qQ 0 0 0 0 0 0 Q 4

1] 0

MIA oyeas v | v | x| || [cfrleleririr|vv]vr]

MLA 40 years A I O I O IV BT I AN AN B AN B aN BVAN IV 'S S A KA K

AlA 30 years AN A AR LS T TS TA A Ears

ALA dvears | v e || vt el lvlv)r]ls]v]y

LIA 30 years Sl X AR AR AN A S AraArararsa A ran

L1A 40 years P AN Arararsararararararsray

EXPOINT 30 years A A ANA AT EATArarara s rass

EXPOINT 40 years A A A A A A A B I A A A R A TA B

EXEVNT 30 years F I A R B e BN BV BTN BV B A BV A A KA B
(“fag_all")

EXEVNT 40 years A I I A A B A B A A A A A A I O R
("flag_all*™y

EXEVNT Wyaars |« |V | | i |y {vir |y v | Y]]~
(“flag_end™)

EXEVNT 40 yesrs 'S AN AR RS EAEArarsararar
(“flag_end™}

An ANOVA was performed for each of the 16 durations at East London between the 3
groups of AMS, which were extracted from 3 databases, each of which had been corrected
using either the LIA, AIA or MIA correcting procedure. As indicated in Table 16, the null
hypothesis of no significant differences of locations between the 3 data groups, was
accepted at the 95% confidence level on all counts for the AMS. Thus the effect at East
London of the MIA, LIA or AIA data correcting procedures, which are conceptually very
different, on the AMS was negligible.

Results from similar ANOVA tests to those described above and performed on the AMS
extracted from the MIA and EXPOINT databases as well as between the MIA and
EXEVNT (“Flag_All” and “Flag_End” methods) databases are also contained in Table 16.
Both of these tests indicated that there were significant differences, for most durations,
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between the AMS extracted after the MIA, EXPOINT and EXEVNT data correcting
procedures had been implemented. These results indicate that at East London either the
MIA, LIA or AIA procedures are appropriate, but that the EXPOINT and EXEVNT
procedures are not appropriate as they result in significantly different AMS compared to
when the MIA procedure was used.

Table 15 Acceptance (v) and rejection (X) at the 95% confidence of the null
hypothesis of homogeneity of variance of the AMS after various data
correction procedures: Station 0059572 (East London)

DATABASE EVENT DURATION (minutes)

st p3telsjo|rE2]3)ale6ir]|9o)il

a5 o 1spojol2pi4lepajoyz2liel]lz]a4

o {0 O JOfJaG (040014

o]0
MIA

AlA Wyars | w7 v 7zl vt e ]v)r]s] v
LA
MLA

AlA Wyars | Fiv]vivlsctsl7<l7]v]|fs]lslvivsly
LIA

MIA 0yaars VXX | X3V | ||| YY)
EXPOINT

Mia Wyears |/ | x| x| X x| x|Ix|x]x||r]v]s]|rir]|~
EXPOINT

MlA Nyears |V | X | X} A Y7}y 7] 7] XX

EXEVNT .

(“lag_ali™

MiA Wyans |/ | X| X |7 )]} 7 Y]] x]|X
EXEVNT
(“tag_all")

MlA yas | X1 X ||| Y
EXEVNT
(“flag_end™}

M1A years vl lvlvlrlelrlelelelelrslvl s}l s
EXEVNT
(“flag_end™)
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Table 16 Acceptance (v') or rejection (X) at the 95% confidence of the null
hypothesis of no significant differences between data groups after correction
by various procedures: Station 0059572 (East London)

DATABASE EVENT DURATION (minutes)
5 1 H 3 4 6 9 H 2 3 4 6 7 9 1 1
(] 3 0 s ¢ 1] 2 4 6 H Q 2 6 2 4
¢lo]JojJajo|ojojo|4
t] 0
MIA
AlA 30 years A A AR ANArA A rArarararars s
LIA
MEA
AlA 40 years RN AN AN NA A A TAraraArararars
LIA
MlA 30 years XXX X|X]|X|X|Fpvrv¥riv]r|~ivr]y
EXPOINT
MLA 40 years XX XXX X{X[X]X]X]=®x]x]|x]|xXx]x]X
| EXPOINT :
MiA 30 years XXX XXX X]X{X]|X]|X]|x]XIx]X]|X
EXEVNT
(“flag_all™)
MIA A0years | XM | X | X | X | XX ]I X X X X|X]X]|X]X]Xx]|X
EXEVYNT
{“fag_all™)
MILA oyears | X | X I XX} x| X | X X]|X]X]s|w|x]jeFre] s
EXEVNT
(“fag_end™)
MIA dpvars | X[ XXX XXX XX X{X]X]|X]*X]|x]X
EXEVNT
(“Bag_end")

As shown in Table 16, the MIA, ATA and LIA AMS are not significantly different at the
95% confidence level. However, significant differences at the 95% confidence level between
the MIA and both the EXEVNT (“Flag_All"and “Flag_End” method) and EXPOINT AMS
are evident for most durations. Similar results were presented by Smithers (1993), who had
however exciuded both the adjusted and corrected events, and not just the corrected events,
as is the case for the results in Table 16.
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According to Hirsch er al. (1993) and as shown in Tables 14 and 15, the violation of the
assumptions of normality or of constant variance, results in loss of power of the ANOVA
test. The results from applying the non-parametric Kruskal-Wallis test to the AMS are
contained in Table 17. While some differences are noted between the Kruskal-Wallis test
and the ANOVA, the trends are similar, thus giving greater confidence to the results of the
statistical tests.

Table 17 Acceptance (v) or rejection (X) at the 95% confidence of the null
hypothesis ofidentical distributions between data groups after correction by
various procedures (Kruskal-Wallis test): Station 0059572 (East London)

DATABASE EVENT DURATION (minutes)
stifr]s3stalelolrb2zliaflale]lr]loft]
cfsl1o]ls1o0{ot214)s6]810]2]6]|]214
ojJojlololoe]Jo]ojol]a
oo
MIA
AlA Wyears | | |vbtr |l | v el ]|r| sl rr]
LiA
MLA
AlIA d0years [ || vr{r[vr]eslvrivrivlir|vrsivliels|v
L1A
M1A Wyeaars | X | x| xixIx]|x|v |7 |77 7] ]|V
EXPOINT
M1A w0years | X | x| xix|x{x]x]|x]x|x|x|x]x]|x}v]|v
EXPOINT
Mla 0years PX X XIx]IxIx]Ix]x|x¥IxixIx]x]x]x]x
EXEVNT
(“fag_all")
MIA dyears | X | XY x| x| x| x| x|{x|x{x|x]x]x]x]x]|x
EXEVNT
(“flag_all™)
MIA oyeas I X xxIxIxIxx|xixlIx{vrlvrxisrlr]|v
EXEVNT
(“flag_end™)
MlA qoyears | X x| x| x{xIx|x)Ix[|x]|x|*x]|x|x}x]|X]}|x
EXEVNT
(“flag_end™)
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With some exceptions, the length of record generally has no effect on the significance of the
results. No significant differences were found between AMS extracted from databases
corrected using the MIA, AIA or LIA methods. However, the AMS extracted from a
database corrected using the EXPOINT method, as well when events were excluded
(EXEVNT) which have corrected data points, either within the event or at the extremities

of the event, were significantly different to other correction procedures.

A similar analysis to the above was performed at 29 SAWB stations which have concurrent
data for the period 1962 - 1991 and the results are reported in the following section.
4.1.5.2 Twenty-nine SAWB stations

The results of normality tests for all 29 SAWB stations that have concurrent data from 1962
- 1991 are contained in Table 18.

Table 18 Number of stations where the null hypothesis of norma]l); distributed data
was rejected at the 95% confidence level, expressed as a percentage of total
number of stations tested (29)

DATABASE EVENT DURATION {minutcs}

5 1 1 3 4 6 9 1 2 3 4 ] 7 9 I l

0 5 0 5 0 0 2 4 6 8 0 2 6 2 4

0 0 0 0 0 0 a 1] 4

0 0

MLA AMS (41 |24 |24 17 14 117021 Ji7 a0 jto121 Q101017 814 |21
ALA AMS |38 |28 | \7T J0 |14 Q14 P17 B 17 |10 110 |24 110 7117 [ 0| 14
LIA AMS |45 ] 24 | 14 | 14 ] 17 ] 21 17 121 8 i4 | 10 21 71104121 17 ] 14
EXPOINT | AMS |48 J 31 ) 24 7 10 7 114 | 14 | 28 3w jiop 14 7110 )10} 14
EXEVNT | AMS 38 |24 | 14 | 10 | 21 10 J2a 2110w ]i10]17}]21 |21 7] 10

The results of homogeneity of variance tests for all 29 SAWB stations that have concurrent
data from 1962 - 1991 are contained in Table 19.
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Table 19 Number of stations where the null hypothesis of homogeneity of variance
was rejected at the 95% confidence level, expressed as a percentage of total

number of stations tested (29)
DATABASE EVENT DURATION (minutes)
s Lo Lo f3 lale o {02 3 |4 {7 |o |1 |
o |5 o |s |o o 2 ]4 |6 |8 o |21te |2 |4
o o Jo [o Jo Jo jo |o |a
o |o
MIA oJlojolojoloefo|l o]l oflo]lo]lo|lo]lo]o}o
AIA AMS
LIA
MIA AMS 7 17 4 10 14 14 7 7 10 10 17 10 14 10 t4 3
EXEVNT
MIA AmS buz |as J3s f3ejan{3a [as |38 |2s[2¢)zi |17 ]2a]ea]ra]a
EXPOINT

Results from similar ANOVA tests to those described above and performed on the AMS
generated from the MIA and EXPOINT databases as well as between the MIA and
EXEVNT databases are also contained in Table 20.

Table 20 Number of stations where the null hypothesis of no significant differences
between data groups was rejected at the 95% confidence level, expressed

as a percentage of total number of stations tested (29)

DATABASE EVENT DmﬂON (muinutes)
5 1 1 1 4 6 ' 1 2 3 4 6 7 9 1 1
3 L s 0 ] 2 4 6 8 0 2 6 2 4
[ 0 0 0 0 ¢ 0 ¢ 4
¢ 0
MLA 0 0 It u t 0 ¢ 0 0 L] 0 ¢ 0 0 0 0
AlA AMS
LlA
MIA AMS [Ss2 62| | |ss|s2ssyss a2ty
EXPOINT
Mia AMS 2F9 8y || 72| 72|66 |69 | 6216252145 |48 ]384 |17
EXEVNT
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The results from applying the non-parametric Kruskal-Wallis test to the AMS are contained
in Table 21.

Table 21

Number of stations where the null hypothesis of identical distributions
between data groups (Kruskal-Wallis test) was rejected at the 95%
confidence level, expressed as a percentage of total number of stations
tested (29) | |

DATABASE EVENT DURATION {minuics}
5 I 1 3 4 6 9 1 2 3 4 6 7 9 1 l
5 0 5 0 0 2 4 6 8 o 2 6 | 2]4
0 0 o 0 0 1} o jo]4
019
Mla
Ala AMS 0 0 o 0 0 0 0 0 0 )] i} 0 0 ojo]o
LiA
Mila AMS
EXPOINT 31 |ag |55 |62 459 Es5 134 |38 |3 {2124 1710 ]7
Mi1A AMS
EXEVNT S s || T2 V6| T2 |66y T2 |62 |45 3L |17TF3)O

4.1.5.3 Concluding remarks on differences in corrected databases

In the case of Station 0059572 and for all 29 SAWB stations that had concurrent data from
1962-1991, no significant differences were found between the means and variances of the
AMS extracted from the MIA, AIA and LIA databases, Significant differences were found
between the AMS extracted from the MIA and both the EXPOINT and EXEVNT
databases. The correction approaches used in the MIA, AIA and LIA procedures are
different, yet do not produce significantly different AMS, thus indicating that the procedure

chosen to correct the database is not critical. The exclusion of all erroneous data points
(EXPOINT), or events flagged according to both the “Flag_All” and “Flag End” methods
(EXEVNT), does significantly affect the AMS. Thus it is hypothesised that the MIA

correction procedure, or a random selection of the LIA, AIA or MIA procedure, should be
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adopted. The effect of randomly selecting either of the MIA, AIA or LIA procedures is
investigated in the following section.

4.1.6 Correction by Random Selection of MIA, LIA Or AIA Procedures

When the probable cause of an error in the data is unknown, an option (RANDOM) was
developed to randomly invoke the MiA, AIA or LIA procedures, in addition to the options
to correct the data using only one of the procedures. It was assumed that the random

selection of the correcting procedure would better reflect the nature of the errors.

In order to evaluate the RANDOM procedure, errors were randomly introduced into error-
free (clean) data and the RANDOM procedure was used to correct the errors. The
correction procedure was then evaluated by comparing the AMS extracted from the error-
free data and from the data after the randomly introduced errors had been corrected using
the RANDOM procedure.

4.1.6.1 Creating errors in the data for hypothesis testing

Four types of errors were introduced randomly into the data by selecting a line number, n
the data file, at random and reading sequentially from that point in the file until the first
appropriate point (e.g. siphon) which had not previously been altered. The types of errors
introduced are:

’ negative time step (not at change of chart or siphon),
° negative time step during siphon,

’ negative time step at change of chart, and

. zero time step (infinite intensity).
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The four types of errors were introduced randomly, with the seed value for the selection of
the random number based on the system clock time, The parameters used by the routine and

which are set by the user are:

. number of errors to introduce per year,
. maximum negative time step, and
’ maximum number of negative time steps.

Based on records from 29 SAWB autographic rainfall stations which had 30 years of
concurrent data, the average number of errors per year was estimated to be 30. Hence the
number of errors introduced into the data was set at 30 per year. The maximum negative
time step was set to 60 minutes. Thus, when negative time step errors were introduced into
the data, a random value between 0 and 60 was used. The maximum number of data points
that were moved when adding negative time steps was 2. Hence, either 1 or 2 data points
were moved to create the maximum negative time step. A typical sequence of errors
introduced into the data is shown in Table 22.

Table 22 Examplie of errors introduced randomly during a single sequence: Station
0059572 (East London)

Type of Error Date Time | Number of negative time steps Size of

Negative

(dd:mm‘yy) Time Step

(minutes)

Zero time step 08:07:140 | 02:16

Negative step at chart change { 2810.40 | 08:27 : 32
Negative step at chart change | 21 1240 | 08:27 24
Negative step 120940 | 01:54 ] 37
Negative step at chart change | 01/11.40 | 08:29 11
Negative step 100840 | 08:22 2 59
51
Negative step 19/02/40 | 23:58 1 43
Negative step at chart change | 1/11/40 | 08:28 32
Negative step 10/08/40 | 10:38 2 55
22
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SAWB Station 0059572 (East London) was used in a case study to evaluate the RANDOM
procedure and results of the evaluation are presented in the following section.

4.1.6.2 Evaluation of RANDOM procedure at Station 0059572 (East London)

The digitised rainfall data from Station 0059572 were corrected and the corrected data used
as o control. Errors wore randomly inserted into the control (error-free) data and then
corrected using the RANDOM procedure, after which the AMS for durations ranging from
5 min to 24 h were extracted. This process was mnitially repeated 10 times and subsequentiy
100, times resulting in 11 (control and 10 corrections) and 101 (control and 100
corrections) sets of AMS respectively. The time used on the CCWR’s mainframe computer
to complete the 100 repetitions of this procedure was approximately 10 days and hence
only one case study was performed. The results for only the 100 repetitions are reported.

The null hypothesis of no significant differences existing between the means of the control
and 100 repetitions, was tested by performing an Analysis of Variance (ANOVA) and
computing the F-test statistic. Implicit in the ANOV A test are the assumptions of normality
of the data and constant variance between groups. The homogeneity of variances was
test;ed by Bartlett’s method, as described by Steel and Torrie (1980). Results of the
normality and homogeneity of variances tests are contained in Tables 23 and 24 and, with
the exceptions for durations < 10 min, the power of the ANOVA test is not significantly

diminished as a result of significant deviations from underlying assumptions.

An ANOVA was performed for each of the 16 durations at Station 0059572 between the
control and 100 replications. As indicated in Table 25, the null hypothesis of no significant
differences of locations between the 101 sets of AMS, was accepted at the 95% confidence
level on all counts for the AMS.
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Table 23

Number of times the null hypothesis of normally distributed AMS of the

control (no errors) and of 100 corrected series of data using the RANDOM

procedure was accepted or rejected at the 95% confidence level : Station

0059572 (East London)

DATABASE EVENT DURATION (minutes)
slalefolrl2talafsl)lrlol ]t
o[s|o|oz2]sfs]s]ol2]e]2]s

oloto]olo|ofalo |4
oo
Contro! Accept 1 AR R B R R A
{Mo errors) s
Reject 0 olololoe]lololo|loloefjo|lo|lofo
RANDOM Accept | 8 sbtlol v ol uls]e]le]lo|]s]o
Corrections 7 9lo|s|ololo|ls]|o]lefjalole]+
0 olo]e 0 0
Reject tbalslololoftlol 1 |s]o]a]s
2
Table 24 Acceptance {v") and rejection (X) at the 95% confidence level of the null
hypothesis of homogeneity of variance between AMS extracted from 100
corrections using the RANDOM procedure and AMS of controi data :
Station 0059572 (East London)
DATABASE EVENT DURATION (minutes)
' ale ol Ja2alta]ladel 2o |
0 sloJolz|alels)ol2ls]2]a
plojoloJolojolo]|4
oo
RANDOM | 48 years / elvelelvejvrlvelelvlrislvlv
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In addition to the ANOVA test, a Kruskal-Wallis test was also performed on the null
hypothesis of no significant differences of locations between the 101 sets of AMS. The
results of this analysis are contained in Table 26.

Table 25 Acceptance («') or rejection (X) at the 95% confidence level of the null
hypothesis of no significant differences between AMS extracted from the
contrel and from 100 corrections to the data using the RANDOM procedure
after errors had been randomly introduced into the control data: Station

0059572 (East London)
DATABASE EVENT DURATION (minutas)
slrfbolslaleloba|z]3lals]rls} |1
ofslo|s|ololz]|a]les{s]|olz]s]z]s
o lolo|o|o]o|afol]s
o fo

Coowrel and 100
RANDOM corrections AN AN A A RA T AN rararararararsars

From the above case study at Station 0059572 and for 100 repetitions of errors introduced
randomly into the control (error-free) data and corrected using the RANDOM procedure,
it appears that the use of the RANDOM correction procedure has no significant effect on
the AMS. Similar results were obtained from 10 repetitions. Processing (CPU) time limited
the study to only 10 and 100 repetitions at a single site. It is thus postulated that the
RANDOM procedure (i.e. a random selection of the MIA, AIA or LIA procedures) to
correct the data better reflects the probable random nature of the causes of the errorsinthe
data than do the independent use the MIA, AIA or LI1A procedures. Hence the RANDOM

procedure was adopted to correct errors in the data.
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Table 26 Acceptance (V) or rejection (X) at the 95% confidence level of the null
hypothesis of no significant differences between AMS extracted from the
controland from 100 corrections to the data using the RANDOM procedure
after errors had been randomly introduced into the control data {Kruskal-
Wallis test): Station 0059572 (East London)

DATABASE EVENT DURATION {minutes)
s i 1 3 4 6 9 1 2 3 4 6 7 9 1 1
0 5 0 5 0 0 2 4 -] 8 0 2 [ 2 4
0 0 0 )] 0 ] 1] 1] 4
0 o
Control and 100
RANDOM corrections A4 R AR EANATrEraraArararsayars v

Inthe following section, the first of the consistency checks on the digitised data is presented
where the digitised and manually extracted extreme events are compared.

4.2 COMPARISON OF DIGITISED AND MANUALLY EXTRACTED
ANNUAL MAXIMUM SERIES

At selected study sites the values of the AMS extracted from the digitised database,
corrected using the MIA procedure, were compared to those reported by Midgley and
Pitman (1978), which had been extracted manually from autographic charts. Where
differences in the AMS were noted, and where available, comparisons were made between
the digitised data, rainfall charts and the manually extracted hourly totals. As noted by inter
alia Schulze (1984) and Weddepohl (1988) it is expected that the AMS extracted from the
digitised data should be greater than the AMS extracted manually from autographic charts,
as the manual extraction used fixed 15 min time increments and hence the recorded maxima

could have been missed, particularly for shorter durations.

127



4.2.1 Station 0059572 (East London)

The 15, 30, 45, 60 and 1440 min duration AMS extracted manually from charts and
automatically from the digitised data for SAWB Station 0059572 are plotted in Figure 15.
Included in Figure 15, and plotted using the right hand side (Y2) scale, is the ratio between
the digitised and manually extracted value, expressed as a percentage. As noted above, this
percentage is expected to be »100. However, as shown in Figure 15 the percentage is
seidom > 100, particularly for durations less than 1 h. Assuming that the manually extracted
data are correct, it is thus evident that a number of extreme events were not adequately
digitised. Selected anomalies are discussed below.

As depicted in Figure 15, the manually extracted AMS exceeded the digitised AMS for all
selected durations in 1958. The manually extracted hourly totals indicate that, for the all
selected durations, the AMS events in 1958 occurred between (8:00 on 21 December and
08:00 on 22 December. The chart for this day appears not to have been digitised as it is not
contained in the SAWB digitised database, which does contain data for 20 and 22
December, but not for 21 December 1958,

The AM event during 1967 occurred on 26 May 1967 for all durations. For durations up
to 60 min, the manually extracted data exceeds the digitised data, and for the maximum 24
h event, the digitised AM event is larger. The digitised data indicate that data are missing
on 26 May from 18:54 to 19:37, which may explain the large differences for durations up
to 60 min. A copy ofthe chart for 26 May 1967 may explain the reason for the missing data
and why the manually extracted data exceed the digitised data.

128



Rainfall

(mmL

o]
o

-
i~

15 min AMS

40 250

[=]

0 40 42 44 48 48 5D 52 54 56 5B 60 62 G4 S8 €8 70 72 T4 75-0
Year
30 min AMS
80 250
,.ésa ____________________________ 200 §
o]
E t+-------F---- +4-------4§--------4 150 g
=40
..g 100 %
g £
= 50 D
a
0 40 42 a4 46 4B S50 52 5S4 56 S8 6D 62 64 66 68 7O V2 74 6
Year
45 min AMS
100 250
S Y T U 200 %
E ®
Eeot-------fF----f14-4-------2~--"-----. 150 &
3 s
g wlfo . 100 g
L]
@ =
20 -50 D
B8
° 4D 42 44 48 48 50 S2 54 56 580 60 62 64 65 BA VO V2 14 76
Year
| B Manual (v1) "] Oigitsed (Y1) — % /) |
Figure 15 Comparison of digitised and manually extracted AMS at Station 0059572

(East London)
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Figure 15 (continued) Comparison of digitised and manually extracted AMS at Station
0059572 (East London)

The maximum 24 h digitised rainfall event during 1970 starts at 02:24 on 27 August 1970
and 237 mm of rainfall is recorded . The manually extracted AM 24 h total for the 24 h
period starting at 08:00 on 27 August 1970 is 447 mm. The digitised data are missing for
the period 07:34 to 13:34 onthe 27 August. The rainfall from the manually extracted hourly
data for the period 08:00 to [4:00 is 2i l mm. At least 190 mm of rainfall recorded on the
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chart during the period of missing data can be reasonably deduced from the indistinct trace.

Thus the period of missing digitised data accounts for the difference between the 24 h
digitised and manually extracted totals. The probable reason for the entire chart not being
digitised is that the ink had run dry and the trace is not that clear.

4.2.2 Station 0317476 (Upington)

Similar to the analyses above, the ratio between the manually extracted and digitised annual
maximum event for SAWB Station 0317467 is shown in Figure 16. Generally the digitised
AMS exceed the manually extracted AMS, although in some years and for some durations
the digitised values may be as little as 60% of the manually extracted value. An anomaly in
the manually extracted data is apparent for 1966 where the 15, 30, 45 and 60 minute annual
maximum rainfalls are all 7.3 mm and the 24 h rainfall is 9.5 mm, which results in the
digitised/manual ratio of 3.94 for this year. Years in which the digitised value is less than
the manually extracted value {(e.g. 1960) are postulated to be the result of portions of the

autographic rainfall charts not being digitised. ' |

Annual Maximum Series
0317476

—-— 15 —— 3 —e— 45 —e— 50 —a— 1440

Figure 16 Comparison of digitised and manually extracted AMS at Station 0317476
(Upington)
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4.2.3 Station 0677802 (Pietersburg)

The ratio between the manually extracted and digitised AMS for SAWB Station 0677802
is shown in Figure 17. Generally the AMS extracted from the digitised exceeds the manually
extracted values, although on occasion the reverse trend occurs., Similar to Station
0317476, the large differences between the two series, particularly for the 24 h duration
evemt, is unexpected, but could be explained by errors occurring during the manual
extraction or digitisation of rainfall events.

Annual Maximum Series
0677802

g

o)

€
3

12043-- .7

-t

Digitised/Manual
8 8 8
| i

il

—a— 15 —ww ) —— 45 —a— 60 -~ 1440

Figure 17 Comparison of digitised and manually extracted AMS at Station 0677802
(Pietersburg)

The three examples presented above illustrate the relatively large differences that do occur
between the digitised and manually extracted AMS and that different trends do occur at
particular stations. For example, the manually extracted AMS generally exceed the digitised
AMS at Station 0059572 while the reverse is generally true at Stations 0317476 and
0677802. Another method of assessing the adequacy of the digitised data is to compare the
daily rainfall totals computed from the digitised data to data recorded by the adjacent non-
recording daily rainfall raingauge. This is again illustrated by means of selected examples.
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4.3 COMPARISON OF DIGITISED AND STANDARD RAINGAUGE DAILY
TOTALS

In order assess the reliability of the digitised data and to identify where extreme events were
not contained in the digitised rainfall database, a comparison was performed between three
sources of data for obtaining totals of daily rainfall:

. Daily rainfall totals derived from the digitised data for fixed 24 h periods ending
at 08:00 every day are referred to as Digitised.

. Adjacent to each recording raingauge is a standard, nomrecordmg raingauge
measure at 24 h intervals at 08:00 every day, and this source of daily rainfall totals
is referred to as SAWB Daily.

, The daily rainfall total as measured by the adjacent standard, non-recording

raingauge is included within the digitised data file obtained from the SAWB, asa
control for the days digitised rainfall data, and this daily rainfall total obtained from
the digitised rainfall file is referred to as S4 WB Control. Hence the SAWB Control
and SAWB Daily values should be the same as they are recorded by the same

raingauge.

The SAWB Daily values were extracted from the SAWB daily rainfall database housed by
the Computing Centre for Water Research (CCWR) and, of the three sources of daily
rainfall data, were assumed to be the most reliable. This assumption is based on the frequent
use of the SAWB daily rainfall database, and hence errors are noted by users. In
comparison, this study is the first major user of the digitised database and hence little
feedback has been given to the SAWB regarding the quality of the digitised rainfall data.
In addition, the processing of the digitised data and the inherent greater potential for
problems when recording rainfall continuously and autographically, and the more thorough
checking of the daily rainfall data by the SAWB, add credibility to this assumption. The
comparisons of daily rainfall totals from these three sources were performed for selected

stations.
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4.3.1 Station 0034767 (Uitenhage)

Cumulative totals of daily rainfall for the Digitised, SAWB Control and SAWB Daily
values, as well as a scatter plot of Digitised vs SAWB Daily values are shown in Figure 18.
For Station 0034767, a good comparison is evident between the SAWB Controland SAWB
Daily values, but the Digitised total is often less than the SAWB Daily value. A comparison
of the daily totals obtained from the three sources for the thirty largest daily rainfall totals
during the period January 1954 - December 1975 is listed in Table 27. From Table 27 it is
evident, that on numerous days when the Digitised total is substantially less than the SAWB
Daily value, no missing data are recorded in the digitised data. Thus, regrettably the missing
data flags in the digitised SAWB data are not a reliable indicator of whether data are

missing or not.

Daily Rainfall Totals
Station 0034767

Rainfall {mm)

Daity Rainfall Totals
Station 0034767
3
E
B -
= -
g - r -
60 80 100 120 140 160
SAWE Daily (mm)

Figure 18 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0034767 (Uitenhage)
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Table 27 Comparison of daily rainfall totals obtained from three sources for the thirty
largest events for period 1954 - 1975 at Station 0034767 (Uitenhage)

Year | Month | Day Daily Rainfall Total Digitised Digitised /
Flag SAWB Daily

SAWB | SAWB | Digitised | (M=Missing) (ratio)

Daily | Control

(mm) {mm}) (mm)
68 9 149.2 149.2 136.0 0.91
67 4 91 1174 0.0 0.0 0.00
71 38| 21 849 84.9 55.8 0.66
54 8] 26 75.0 75.0 72.0 M 0.96
67 5 26 64.0 64.0 44.6 0.70
64 91 16 63.2 63.2 40.9 0.65
70 12 6 55.2 55.2 50.7 0.92
55 1y 29 53.0 53.0 4236 M 0.92
75 2] 10 52.0 52.0 50.8 0.98
63 3 7 51.5 51.5 515 1.00
74 gl 22 51.0 51.0 38.9 0.76
68 6 12 47.0 47.0 32.2 0.69
59 8 2 47.0 472 18.8 M 0.40
75 8 31 454 454 28.7 0.63
74 11 26 43.6 43.6 43.4 M 1.00
56 2] 20 41.5 41.5 293 M 0.71
57 6| 30 39.0 32.0 93 M 0.24
74 9 2 390 390 313 0.80
66 11 4 385 39.7 357 0.93
63 ! 23 33.0 38.0 374 0.98
56 9 18 375 37.5 31.2 : 0.83
62 3] 0] 375 37.5 36.8 0.98
65 11 3 36.5 36.5 349 0.96
67 4 8 35.8 358 336 0.94
65 11 2 355 355 35.0 0.99
74 5 2 354 354 4.4 M 041
59 7 17 35.0 350 35.8 1.02
59 1] 25 34.6 346 252 0.73
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4.3.2 Station 0035179 (Port Elizabeth}

The accumulated daily rainfall totals obtained from the standard gauge value (SAWB
Control) in the file containing the digitised data and from the SAWB daily rainfall database,
as well as the total derived from the digitised rainfall data for Station 0035179 are shown
in Figure 19. A comparison of the daily totals obtained from the three sources for the thirty
largest daily rainfall totals during the period January 1938 - December 1975 are listed in
Table 28. From Table 28 it is evident, that on numerous days when the Digitised total is
substantially less than the SAWB Daily value, no missing data are recorded in the digitised
data.

Daily Rainfail Totals
Station 0035179

—-= SAWB Daily —— SAWB Controi = Digitised

Figure 19 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0035179 (Port Elizabeth)

4.3.3 Station 0059572 (East London)

The accumulative daily rainfall totals obtained from the standard gauge value in the file
containing the digitised data and from the SAWB daily rainfall database (obtained from
CCWR), as well as the total derived from the digitised rainfall data for Station 0059572 are
shown in Figure 20. A comparison of the daily totals obtained from the three sources for
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the thirty largest daily rainfall totals during the period January 1938 - December 1975 are
listed in Table 29. Clearly the SAWB Daily data for Station 0059572 extracted from the
database housed on the CCWR are missing from 1973 to 1987.

Daily Rainfall Totals
Station 0059572

s SAWB Daily —— SAWB Control = Digitised

Figure 20  Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0059572 (East London)

4.3.4  Station 0088293 (Sutherland)

The accumulative daily rainfall totals obtained from the standard gauge value (SAWB
Control) in the file containing the digitised data and from the SAWB daily rainfall database
(obtained from the CCWR), as well as the total derived from the digitised rainfall data for
Station 0088293 are shown in Figure 21. A comparison of the daily totals obtained from
the three sources for the thirty largest daily rainfall totals during the period January 1961 -
July 1991 are listed in Table 30.
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Table 28 Comparison of daily rainfall totals obtained from three sources for the thirty
largest events for period 1938 - 1975 at Station 0035179 (Port Elizabeth)

Year | Menth ] Day Daily Rainfall Total Digitised Digitised /
— Flag SAWB Daily

SAWB | SAWB | Digitised (M=Missing) (ratio)

Daily | Conitrol

(mm) {mm) (mm)
54 s | 26| 1325| 1325| 114 M 0.84
61 2| 1} 1206 i2.0 118.2 0.98
46 3 22| 1084 0.0 0.0 0.00
62 4| 26| 1054 105.4 625 0.59
41 2 21] 1000 100.0 88.1 0.88
70 121 6| 946 94,6 86.1 M 0.91

~49 11| 161 919 91.9 £3.9 0.91

53 10] 20 91.0 91.0 201 | M 0.22
51 1y 88.1 88.1 31.2 M 0.35
67 41 9| 880 88.0 88.1 1.00
67 5| 26 76.0 76.0 77.4 1.02
39 121 3 2.8 72.8 0.0 M 0.00
64 9l 16 72.4 124 70.5 0.97
49 nyj 1z 72.3 72.3 68.0 0.94
54 5] 2] mno 72.0 63.4 0.88
a1 6] 271 703 70.3 65.3 0.93
43 9 14( 685 6.8 7.6 0.11
53 6| 2| 6438 64.8 65.5 1.01
74 31 31 643 64.3 19.1 M 0.30
39 71 6] 619 0.0 0.0 0.00
74 6| 14] 3597 59.7 24.4 M 0.41
53 6{ 21 59.5 59.5 57.3 0.96
68 6 1 59.2 59.2 59.1 1.00
74 $| 22| 390 59.0 44.1 0.75
45 6| 24| 589 58.9 18.7 M 0.32
60 5| 6] 3568 56.8 55.8 0.98
53 71 28] 562 56.2 201 | M 0.36
72 st 55.4 55.4 4.8 0.81
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Table 29 Comparison of daily rainfall totals obtained from three sources for the thirty
largest events for period 1940 - 1991 at Station 0059572 (East London)

Year | Month | Day Daily Rainfall Total Digitised Digitised/
— Flag SAWB Daily
SAWB | SAWB | Digitised (M=Missing) (ratio)
Daily | Control
(mm) (mm) (mm)
63 3 7 199.7 217.2 100.5 0.50
70 8| 25| 1553 115.3 129.1 0.83
70 8| 28 152.4 0.0 0.0 0.00
70 8 27 147.0 447.0 180.8 M 1.23
67 4 10 130.6 130.6 1309 1.00
58 12 21 127.5 0.0 0.0 0.00
59 71 18| 1224 122.4 82.0 0.67
56 21 15] 1223 122.3 47.2 M 0.39
56 11 1 1221 122.1 114.8 0.94
41 4 5 119.3 1.9 816 M 0.70
51 31 27| 1163 103.6 102.4 0.88
51 9 1130 113.0 59.6 0.53
44 3 112.2 112.2 73.9 M 0.66
61 7 30 112.1 112.1 108.9 0.97
48 4 19 109.2 109.2 91.5 0.84
43 6 21 109.2 102.3 69.5 0.64
53 1 12 107.5 10.7 993 0.92
51 9 30 1074 107.4 70.1 0.65
62 3 10 105.6 105.6 102.5 : 0.97
41 4 41 1056 10.6 102.9 0.97
70 10| 11 103.1 103.1 20.5 M 0.20
64 2 1 103.0 103.0 65.9 M 0.64
64 63 7] 1008 100.8 59.8 0.59
48 4 18 99.3 9.9 01.6 0.92
1! 4 5 97.7 97.7 74.5 0.76
51 1] 12 0.6 779 80.5 0.89
41 10 30 90.1 9.1 79.5 0.88
59 5] 15 89.2 89.2 80.8 0.9
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Table 30 Comparison of daily rainfall totals obtained from three sources for the thirty
largest events for period 1961 - 1991 at Station 0088293 (Sutherland)
Year | Month | Day Daily Rainfail Total Digitised Digitised /
— Flag SAWB Daily

SAWB | SAWB | Digitised | (M=Missing) (ratio)

Daily | Control

{mm) (mm) {mm)
80 31 1 26.0 86.0 83.3 0.97
76 I 20 62.0 62.0 584 M 0.94
66 3| 20 52.5 0.0 0.0 M 0.00
81 3 25 50.7 50.7 345 M 0.63
85 1 16 493 0.0 0.0 0.00
67 ] 9 490 49.0 15.8 M 0.32
9] 1 25 426 22.0 0.0 M 0.00
65 3 22 41.5 g6 84 M 0.20
83 sy 13| a0 41.0 40.1 0.98
73 3 I8 410 410 294 M 0.72
8 6 2 398 39.8 242 M 0.61
85 1[ 14 39.3 39.3 34.9 M 0.89
76 2| 4 390 39.0 347 M 0.89
81 i 24 38.0 380 333 0.88
90 4 21 348 348 29.9 M 0.86
82 4 6 343 343 339 0.99
73 7 1 340 340 323 0.95
86 4 25 336 136 94 M 0.28
75 12 22 310 30 28.9 0.93
80 11 28 30.7 307 291 0.95
76 ] 4 395 0.0 0.0 M 0.00
76 11 23 283 28.3 27.6 0.98
X% 3 28.0 28.0 24.5 M 0.88
74 6 25 272 217 255 0.92
76 2 5 27.2 272 25.7 0.94
62 41 22 270 2.5 23 0.09
85 12 19 370 27.0 26.3 0.97
81 3 24 26.7 0.0 0.0 0.00
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Daily Rainfall Totals

Station 0088293
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Figure 21 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0088293 (Sutherland)

4.3.5 Concluding Remarks on Comparison of Digitised and Standard Raingauge
Daily Totals

In the four stations examined, there are differences between the three sources of data which,
when accumulated over a number of years of record, amount to a large amount of rainfall.
The reason for the differences between the SAWB Daily and SAWEB Control values can
only be attributed to typographical errors when inputting the data, as the source of the data
is the same. Some of the daily rainfall data for SAWB Station 0059572, obtained from the
CCWR, appear to be missing. In all the cases investigated, the daily rainfall totals derived
from the digitised data are less than the standard gauge values, and in some cases when the
digitised daily rainfall total is less than the standard gauge values, no missing data flags have
been inserted in the data. It is conceded that on occasion the daily rainfall total derived from
the digitised data may correctly be less than the standard gauge value. However, the reasons
for the consistent under-estimation of daily rainfall totals in the absence of missing data flags
needs to be investigated by the SAWB.

141



4.4 MAGNITUDE AND FREQUENCY OF ERRORS IN DAILY RAINFALL
TOTALS

In order to further quantify how reliable the digitised data are for a particular site, the
differences between the standard raingauge (SAWB, obtained from CCWR) and digitised
daily totals were computed and categorised. The categories used were differences of
0-5 mm, 5 -10 mm, 10-15 mm, 15-20 mm and > 20 mm, with negative categories indicating
that the digitised daily total is greater than the standard gauge totals. For example, the
results of the above analysis for SAWB station 0239482 (Cedara) are contained in Figure
22, For this station the majority of raindays have differences between the standard gauge
and digitised rainfall totals of less than 5 mm. However, it is disturbing to note that on 58
days the standard gauge values exceeded the digitised values by more than 20 mm, and on
158 days the standard gauge value exceeded the digitised rainfall by more than 10 mm.

As a result of the occasional malfunctioning of the autographic raingauges, it is expected
that the standard raingauge totals would exceed those of the digitised values. Hence the
days when the digitised values exceed the standard raingauge values in Figure 22 require
special investigation. Missing data flags in the digitised data were ignored in the compilation
of Figure 22. '

A summary ofthe above analysis for 330 SAWB stations, but with the number of days when
the differences fall into different classes expressed as a percentage of the total number of
raindays, is shown in Figure 23. Nearly 3% of the recorded raindays from the 330 SAWB
stations have differences between the standard raingauge and digitised daily rainfall totals
of greater than 20 mm. These differences clearly need further investigation, In Figure 23
missing data flags in the digitised data are ignored.
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Standard vs Digitised Daily Rainfall
Station ; 0239482
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Figure 22 Analysis of differences between standard gauge and digitised daily rainfall
totals at Station 0239482, Cedara (days with some missing digitised data
included)
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Figure 23 Analysis of differences between standard and digitised daily rainfall totals
at 330 SAWB stations (days with some missing digitised data included)

As shown in Figure 24, even when days which have missing digitised data are excluded,

there remains an excessive number of days which have large differences between the
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standard gauge and digitised daily rainfall totals. When days which have missing digitised
data are excluded, nearly 3% of the standard gauge daily totals exceed the digitised data by
a magnitude of more than 15 mm.

SAWB Digitised Database
330 Stations; 210252 Raindays
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Figure 24 Analysis of differences between standard and digitised daily rainfall totals
at 330 SAWB stations (days with some missing digitised data excluded)

4.5 ERRORS IN DAILY RAINFALL TOTALS VS EVENT MAGNITUDE

Based on the assumption that the standard gauge daily rainfall total is the “correct™ value,
it has been shown that some large errors are contained in the digitised data. However, it is
necessary to determine whether the large differences in the digitised and standard gauge
daily rainfail totals occur only during large events or whether they occur over a range of
rainfall events. For example, in order to investigate the occurrence of the etrors as a
function of the daily rainfall total, the error (standard - digitised daily rainfall total) for
SAWB Station 0239482 (Cedara) was plotted against the standard gauge total, as shown
in Figure 25.
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Figure 25 Error in digitised daily rainfall total vs magnitude of event : Station 0239482,
Cedara (days with missing data flags in digitised data included)

From Figure 25 it is apparent that etrors in the measurement of daily rainfall totals from
digitised data occur throughout the range of daily rainfalls. However, it is significant that
the largest events could have more than half the rainfall unrecorded in the digitised data. .
The digitised daily totals in Figure 25 were calculated by ignoring the missing data flags.
In Figure 26, days which contained missing data flags were excluded. Assuming that the
missing data flags were inserted in the data correctly according to the recorded trace on the
chart, then the similarity between Figures 25 and 26 and the errors still evident in Figure 26
indicate that many occasions when the gauge malfunctioned are not réﬂected in the digitised

data.

Station : 0239482

Standard - Digitised (mm)
s82s8.8288

Standard Gauge Daily Total (mm)

Figure 26 Error in digitised daily rainfall total vs magnitude of event : Station 0239482,
Cedara {days with missing data flags in digitised data excluded)
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The plot in Figure 25, which includes days with missing digitised data, is summarised in
Figure 27. This figure depicts the number of days in which the standard gauge and errors
fell into defined classes. A similar analysis utilising data from 330 SAWB stations is shown

in Figure 28.
Station: 0239482
.
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Figure 27 Summary of errors in digitised daily rainfall total vs magnitude of event:
Station 0239482, Cedara (days with missing data flags in digitised data
excluded)

330 SAWB Stations

Error (mm) Standard
Gauge (mm}

Figure 28 Summary of errors in digitised daily rainfall total vs magnitude of event at
330 SAWB stations
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From Figure 28 it is evident that errors in the daily totals computed from digitised data
occur across the range of daily rainfall totals, and hence the digitised data need to be
adjusted to compensate for the apparent errors. '

A Reliability Index (RI) for each SAWB station was developed. This was expressed as the
percentage of total raindays where the difference between the digitised and standard gauge
daily rainfal} totals exceeded 5 mm. A frequency analysis of the RI values for all SAWB
stations is shown in Figure 29. Only 1.3% of the SAWB stations have a RI of < 2% and
75.4% of the gauges have a difference larger than 5 mm between the standard and digitised
raingauge daily rainfall totals on more than 10% of the raindays.

The processing errors in the SAWB data were corrected and the RANDOM procedure was
adopted. However, it was established that considerable amounts of rainfall were either not
recorded by the autographic gauges or were not digitised and hence are not contained in the
digitised data. In addition many of these missing data are not reflected in the digitised data
file as missing data. Hence it is necessary to establish the impact the missing data has on the

estimation of design storms.

SAWB Digitised Rainfall Database

6-8 8-10 10-20 20-30
Reliability Index (%)

Figure 29 Distribution of reliability index of SAWB digitised rainfall stations
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4.6 IMPACT OF INCOMPLETE DATA ON- DESIGN RAINFALL
ESTIMATES

As shown in Figure 29, 24.7% of the raingauges have a difference larger than 5 mm
between the standard and digitised raingauge daily rainfall totals on less than 10% of the
raindays. The analysis of the impact of incomplete data on design rainfall estimates was
performed at a single station which has a relatively long record length and which has an Rl

value lessthan [0%. S "Station 72 {East London),

51 yearsand RI=5.8%, was selected as a suitable gauge on which to perform the analysis.
The data from SAWB Station 0059572 are viewed as relatively reliable as approximately
95% of the SAWB stations have a reliability index greater than the value for SAWB
0059572, |

4.6.1 Methodology

The Partial Duration Series (PDS) and Annual Maximum Series (AMS) for SAWB Station
0059572, used as a case study, were extracted and design rainfall estimates were computed
from the AMS for 16 durations ranging from 5 min to 24 h. These values were used to
represent design values based on a data set with no missing values.

Thereafier, the AMS was extracted from the same PDS to create an AMS with some ofthe
“true” extreme events missing. This was achieved by not selecting the maximum value in
all years, but for a preselecied number of years which were randomly chosen, a user
specified rank was extracted from the ranked PDS (e.g. second largest, third largest, etc.).
Thus an AMS was constructed having “missing” data (the largest values) and design values
were computed from the modified AMS. This process was repeated 100 times and for
varying numbers of years having “missing” data and for the second and third largest values. -
used in the modified AMS for the randomly selected years.
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Statistical tests were then performed based on the null hypothesis that there were no
significant differences between the design rainfall estimates computed from the AMS series
extracted from the PDS having no missing data, and extracted from the PDS with some
“missing” data. The t-test statistic was used to test the significance of the null hypothesis
-that the mean of the 100 repetitions of design rainfall values was within 5% of the control
value.

4.6.2 Results

The t-test statistic was evaluated for design values at 2 to 100 year return periods and for
durations ranging from 5 minutes to 24 h. Resuits produced when randomly excluding the
largest value from 10% to 50% of the years, and thus extracting the second or third largest

value in those years as the annual maximum, are contained in Table 31.

A case study was performed at Station 0059572 to estimate the number of years when the
“true” AMS values were not contained in the digitised data. It was assumed that the
manually extracted data used by Midgley and Pitman (1978) contained all the maximum
events and that, where the manually extracted annual maxima exceeded the digitised annual
maxima, the digitised event was not the same as the manually extracted event. Based on
these assumptions, Table 32 contains estimates of the percentage of years in which the

digitised data do not contain the “true” maximum event.

Based on the above analysis on data from East London, it is concluded that if only the
largest event is not contained in the digitised data for 10% of the years, the design rainfall
estimates for all durations are not significantly different for all durations and return periods.
This generally also holds true for the case when the annual maximum event is excluded for
20% of the years, particularly for longer durations. However, when the annual maximum
events are excluded from 30% or more ofthe years, significantly different design values are
obtained for most durations and return periods. In the case when the two largest events are
excluded in the randomly selected years, similar trends are evident.
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Tabie 32 Estimated percentage of years with “true” annual maxima missing in the digitised
data: Station 0059572 (East London)

Duration {minutes)
15 30 45 0 1440
Years 32 32 35 35 38
(%)

4.6.3 Concluding Remarks on the Impact of Incomplete Data on Design Rainfall

Estimation

Based on the deductions made above, it is estimated that at Station 0059572 the annual
maximum events are not contained in the digitised data in at least 30% of the years (cf
Table 32). Hence it is concluded that the digitised data at this station, when used to perform
design rainfall estimation, will underestimate the true design values. As shown in Figure 29,
the reliability index of 5.8% for Station 0059572 indicates that the data for this station are
relatively reliable, and that approximately 95% of the SAWB stations have data which are
less reliable. It is thus hypothesised that at the majority of SAWB stations the impacts of
missing data on design rainfall values would be similar 10 or greater than the impacts
obtained at Station 0059572.

4.7 CHAPTER CONCLUSIONS

A short duration rainfall database consisting of 412 stations was compiled. The major
portion (81%) of the data were contributed to the database by the SAWB. Numerous errors
such as negative and zero time step errors were found in the SAWB digitised data which
prompted the development of automated correction procedures. A clear distinction was
drawn between adjustments, where the probable cause of the error is known, and errors,

where the cause of the error was unknown. Five procedures were developed to correct
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these errors with unknown causes. The effect on the AMS of the different procedures was
investigated and it was concluded that the exclusion of erroneous data points or events,
which had an error at the beginning or end of the event, was not an acceptable procedure.
The recommended method to correct the errors in the data was a random selection of either
the MIA, LIA or AIA procedures, and the RANDOM procedure was shown to have no
significant effect on the extracted AMS.

A comparison of the digitised and manuaily extracled AMS al a fumb<r of sites dicaed
that many extreme evenis were not contained in the digitised data. This was attributed to
inadequate digitisation procedures as the same autographic charts were used in both
methods of data extraction. The adequacy of the digitised data was further assessed by a
comparison of daily rainfall totals computed from the digitised data with daily rainfall values
recorded by standard raingauges at the same location. At all the sites investigated, the
majority of the daily rainfall totals derived from the digitised data were less than the
standard raingauge values, thus indicating significant periods of missing data in the digitised
record. It was found that these periods of missing data were frequently not flagged as
missing in the digitised data and hence the missing codes in the digitised data were viewed

as unreliable,

The reliability of the digitised data was established by the frequency of the differences
between the digitised and standard daily rainfall totals. More than 75% of the SAWB
stations have greater than 10% of raindays which have differences larger than 5 mm
between the digitised and standard gauge daily rainfall totals. It was found that nearly 3%
of the recorded raindays from 330 SAWR stations have differences between the digitised
and standard raingauge daily totals of greater than 20 mm. These errors were found to
occur' over the whole range of daily rainfall totals, and were not only associated with smaller
events and thus could not be ignored for the purposes of design rainfall estimation.

The impact of incomplete or missing data on design rainfall values at East London was

assessed by randomly removing maxima and it was found that, for most return periods and
particularly for longer durations, there was no significant effect on the design values if up
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to 20% of the years in the AMS do not contain their true maximum value. However, if 30%
or more of the years have their annual maximum event missing, then significant differences
in the design values were noted. At Station 0059572, which is considered to have relatively
reliable data, it was estimated that at least 30% of the annual maxima which were manually
extracted from the autographic charts were not contained in the digitised data. It is
postulated that the effect of missing data on design rainfall estimates at the majority of
SAWB stations are likely to be similar to, or larger, than those demonstrated at Station
0059572, because approximately 95% of the SAWB stations have digitised rainfall data
which are less reliable than the data for Station 0059572.

A considerable amount of evidence in this chapter indicates that the majority of the SAWB
digitised rainfall data were not reliable enough to use in the estimation of design rainfalls.
Further evidence of this assertion is further illustrated in Chapters 5, 6 and 7 where
comparisons between the 24 h and 1 day design rainfall values are made.

The re-digitisation of the SAWB charts, or even the re-digitisation of charts which should

contain large events as recorded by the standard raingauge was, from a labour and ccrst.
point of view, not a viable option for this study. A list of days when large events occurred

was provided to the SAWB for possible re-digitisation of the charts for these days, but no

new data was forthcoming. What is thus required is to develop techniques to estimate

design storms from the digitised database and to make some compensation for the

inadequate digitised data and/or to develop techniques to estimate short duration design

storms from the more reliable and spatially more dense standard daily raingauge network.

The results from one such technique, the use a regional approach to design rainfall

estimation, is presented in Chapter S following.
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CHAPTER 5

DESIGN RAINFALL ESTIMATION USING A
REGIONALISED APPROACH

As shown in Chapter 4, only 49 stations in South Africa have short duration rainfall data

with a record lengih 23U years, in addition, the Jdatg comtripwed by e SAWE, who
contributed the majority of the data to the short duration rainfail database compiled for

South Africa in this study, are regarded as generally unreliable. Hence the problem of
estimating short duration design rainfalls for South Africa using a database with relatively

few stations which have short record lengths, is exacerbated by the majority of the data not

being reliable. One technique which has been successfully applied in other studies for

improving the reliability of design rainfall estimates from limited data, as discussed in

Chapter 2, is to adopt a regional approach.

As discussed in Section 2.2.1, the advantages of using a regionalised approach to design
storm estimation is that the information from the limited and relatively short record lengths
available is supplemented with spatial information, thereby enabling more reliable design
estimates to be obtained, Various methods of regionalisation are summarised in Table 5 and
desirable concepts and principles to be incorporated in a regional approach to design storm
estimation are outlined in Section 2.2.2. The regional, index storm approach based on L-
moments, reported by Hosking and Wallis (1997) and termed the Regional L-Moment
Algorithm (RLMA), incorporates these concepts and principles. In addition, a number of -
studies reviewed in Chapter 2 have successfully used the RLMA and it was concluded that
this approach was appropriate for this study. The use of a cluster analysis of site
characteristics to group stations. and not any of the other methods listed in Section 2.2.3.2,
enables independent testing of clusters of stations for homogeneity using statistics computed
from at-site data.

After initial screening of the data to identify gross errors and inconsistencies, as addressed

in Section 5.1 for selected sites, relatively homogeneous regions are identified by a cluster
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analysis of site characteristics (e.g. latitude, longitude, altitude, MAP eic) and the
heterogeneity of the regions, or clusters, is evaluated using at-site data. The regions are
assumed to be homogeneous and thus the frequency distribution at all the sites in the region
are assumed to be identical apart from a site-specific scaling factor, the index rainfall. The
regional average L-moment ratios are computed by weighting according to an individual
site’s record length. These regional average L-moment ratios are equated to the population
L-moment ratios and used to fit the distribution. Hence it is necessary to determine the most
appropriate distribution to use for each cluster. This distribution, after abpropriaie re-
scaling by the at-site index value, is used at each site to estimate quantiles. The results of
the implementation of the RLMA in South Africa are reported in Section 5.2, At ungauged
sites or at sites where the data are unreliable, it is necessary to estimate the index value in
order to use the regional growth curve to estimate design rainfalls at that site. The regional
growth curve, as described in Section 2.2.3, is the relationship between the ratio of the
design storm and an index storm and retum period. The accuracy of design storms estimated
using regional growth curves is assessed in Section 5.3. The results of estimating the 24 h |
index storm at ungauged sites in South Africa are presented in Section 5.4 and the selection
of an appropriate probability distribution is addressed in Section 5.5.

5.1 EVALUATION OF DISCORDANCY MEASURE

When performing a regional rainfall frequency analysis it is necessary to ensure that the data
are a true representation of the rainfall and must be homogeneous i.c. all the data are drawn
from the same frequency distribution. Statistical tests for outliers and trends in the data are
well established in the kiterature. In a regional context and using L-moments, Hosking and
Wallis (1993) developed a discordancy index (D), as described in Section 2.2.3.1 and
formalised in Equation 11, based on the L-skewness vs L-CV plot to test for incorrect data
values, outliers, trends and shifts in the mean of samples. Any points on the L-skewness vs
L-CV plot which are far from the centre of the cloud are flagged as being discordant. For
samples sizes > 14, a station with D > 3 is considered to be discordant with the rest of the
group (Hosking and Wallis, 1997). This index was used to screen and identify discordant
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data. Examples of using the discordancy measure on data from the Cedara and Ntabamhlope
research catchments are presented in the following two sections.

5.1.1 Cedara Catchments

Rainfall data from 12 sites, listed in Table 33, from the Cedara (C) catchments are available

with record lengths varying from 12 to 21 years. The discordancy index, as described in
Section 2.2.3.1, was computed for 16 rainfall durations ranging from 5 min to 24 h using
Fortran routines provided by Hosking (1996). Based on the Hosking and Wallis (1997)
criterion (D>3), the data for the 10 min duration from site C163 was discordant from the
rest of the data. The L-moment statistics are plotted in Figure 30 and it is clear that the
statistics from one site {C163), which is circled in Figure 30, are different to those from the

other sites.

Table 33 Cedara rainfall stations used in the evaluation of discordancy

Station Latitude (5) Longitude (E)
Number " : . p” ;
Cl61 29 35 [13 30 13 38
162 29 34 |40 30 13 53
C163 29 33 ] 50 30 15 10
Cl64 29 34 50 30 14 2
C165 29 3|0 30 14 45
C172 29 34 110 30 15 50
C173 29 33 | 50 30 15 0
Cig2 29 35 |18 30 14 50
C191 29 32 |37 30 16 34
C201 29 32 |40 30 16 57
C202 29 32 10 30 17 0

| C181 29 35 143 30 15 43

Plots of the 10 min AMS from sites C163, C164 and C182 are shown in Figure 31. From
Figure 31 it is evident that the extreme event recorded at C163 for the 1989 wet season is
much larger than that at the neighbouring sites.
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Figure 30 Plots of L-moment ratios for 10 min duration rainfall at the Cedara
catchments
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Figure 31 AMS of 10 min duration rainfall for three selected stations in the

Cedara catchments (dashed line indicates missing data)
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It is therefore hypothesised that the data for 1989 from C163 are suspect. This could have
been due to the change-over from autographic recorders io data loggers which occurred in
1989. A comparative plot for the period October 1988 to September 1989 of accumulated
daily rainfall at C163 and at neighbouring stations is shown in Figure 32 and confirms that
the data from C163 are suspect. Thus, at the Cedara catchments, the discordancy measure
(D) successfully identified inconsistencies in the data. Discordant data, such as from C163,

were not included in further analyses.

Accumulated Rainfall
October 1988 - September 1989

1000
E 800
£ go0
S 400
2 200

0 200 400 600 800
C164 Rainfall (mm)

—— C163—— C182

Figure 32 Double mass plot of daily rainfall for selected stations in the Cedara
catchments for the period October 1988 - September 1989

5.1.2 Ntabamhlope Catchments

Similar to the Cedara catchments, the Ntabamhlope catchments are research catchments
maintained by the DAEUN. Thus the quality of data from both catchments is expected to
be better than other data which are recorded as part of a national operation. No discordant
data were detected from the 10 De Hoek (D) and Ntabamhlope (N) catchment raingauge
sites, listed in Table 34. By way of example, the L-moment ratio plots for the 24 h annual

maximum events are shown in Figure 33.
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Table 34 Ntabamhlope rainfall stations used in evaluation of discordancy

Station Latitude (S) Longitude (E)
MNumber o ' - [ ' -
D1 29 00 07 29 39 55
D4 29 00 40 29 39 i0
N1l 29 00 44 29 7 38
Ni4 29 02 04 29 39 57
N18 29 02 26 29 39 43
N20 29 01 10 29 40 21
N21 29 02 39 29 38 47
N23 29 03 29 29 39 23
N40 29 02 08 29 35 54
N41| 20 04 06 29 37 44
Ntabamblope Catchments Ntabamhlope Catchments
24 h Duration 24 h Duration
0.4 - 0.7
04 ] . 0.6 1 . *
%03 1 0.4 ]
o £
-'03 1 3.0.3 -' -
] S ., ~0.2 .
021, L. 01l - - .s
0.2 —_— . — 0.0 4 . . . .
01 06 01 02 03 04 05 01 00 0t 02 03 04 05
L-skewness L-skewress

Figure 33 Plots of L-moment ratios for 24 h duration rainfall at the Ntabamhlope
catchments

5.1.3 Concluding Remarks on Discordancy Measure
Based on the above analyses. it appears that the discordancy measure developed by Hosking

and Wallis (1993; 1997) is an effective tool for initial screening of the data and thus to

detect probable errors in the data. The index is easy to use and is compatible with the
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regional L -moment approach to frequency analysis. Thus it was adopted for use on all short
duration rainfzall data prior to initial regionalisation of the data.

5.2 REGIONALISATION USING L-MOMENTS

The results of a homogeneity test of the frequency distributions of the 24 h AMS extracted
from all available short duration rainfall data in SA which had 10 or more years of data,
indicated that sub-division or regionalisation was necessary. Initial regionalisation of the
frequency distribution of short duration rainfall was performed using criteria used previously
in SA (Midgley and Pitman, 1978) for short duration rainfall frequency analysis, which were
based on identifiable criteria such as Mean Annual Precipitation (MAP) and distance from
sea (inland/coastal). Attempis to create geographicaily contiguous and relatively
homogeneous regions based on these criteria proved to be fruitless. Hence the regional L~
moment algorithm (RLMA) advocated by Hosking and Wallis (1997) was adapted and
applied.

The rationale behind the RLMA, as described in Section 2.2.3, is that homogeneous regions
are identified based only on site characteristics. The homogeneity of the regions can then
be checked independently based on site statistics computed from the at-site data.

§5.2.1 Stations Used

Rainfall stations which had 10 or more years of record and which contained the necessary
information to performa regional frequency analysis were extracted and 172 (DAEUN=135;
CTCE=2, CSIR=2; SASEX=4, SAWB=137; UZ=12) stations in South Africa met these
requirements. The location of the stations are shown inFigure 34. The site characteristics
and cluster locations of all these stations used in the cluster analysis are listed in Appendix
A. Regionalisation of sites using only site characteristics was performed by cluster analysis
using routines from the SAS statistical software (SAS, 1989). The cluster analysis is the
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most subjective aspect of the RLMA and it may be necessary to relocate sites/create new
clusters subjectively, but based on geographical and physical considerations (Hosking and
Wallis, 1997). In the cluster analysis, a vector of site characteristics is associated with each
site and standard multivariate statistical analysis is performed to group sites according the
similarity of the vectors (Hosking and Wallis, 1997).

m

Figure 34 Location of stations used in regional frequency analysis

5.2.2 Site Characteristics Used

The following site characteristics were used in the cluster analysis:

. latitude (°),
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. longitude (°),
. altitude (m),

. concentration of precipitation (%), -
. mean annual precipitation (mm),

. seasonality (category), and

. distance from sea (m).

The rainfall seasonality information was extracted from Schulze (1997) and is computed as:

(PMJ—| +2Pm.| + Pm,r'-i-l) x

P, =025x T 100 .58
where
Py, = smoothed concentration of precipitation for i-th month,
P, = median monthly rainfall for i-th month (mm), and
MAP = _mean annual precipitation (mm).

Using Py, a site is categorised as all year (P, , ., > 20%), winter (P, ., > 8%), early
summer (Py |, > 8%), mid summer (P, > 8%), late summer (P,,, > 8%) or very late

surmmer (Py ;. s > 8%).

Gridded values of the concentration of precipitation were generated by Schulze (1997),
which are based on Markham’s technique (Markham, 1970). This is a monthly rainfall index
and an index of 100% would imply that the rainfall all fell within one month of the year and
an index of 0% would indicate that each month of the vear received the same amount of
rainfall.

5.2.3 Initial Transformation of Site Characteristics

Cluster analysis was used in the regionalisation in order to identify groupings of sites which

were relatively homogeneous. Cluster analysis is very sensitive to the Euclidian distance or
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scale (Hosking and Wallis, 1997). A number of different transformations were evaluated
and the final transformations which gave the best results and which were implemented are
summarised in Table 35. The site characteristics from the 172 stations were used in a
cluster analysis using Ward'’s minimum variance hierarchical algorithm (SAS, 1989), which
tends to form clusters of roughly equal size (Hosking and Wallis, 1997).

Table 35 Initial transformations of site characteristics

Site Characteristic {(X) | Cluster Variable (¥) || Site Characteristic (X) | Cluster Variable (¥)
Latitude (° decimal) X Conceniration of X

30> 100 Precipitation (%) (Untransformed)
Longitude (* decimal) X Seasonality (category) | 3

—x 100 -—x 100

90 10
Altitude (m) X Distance to Sea {m) X

x 100 x 100

X X ax

MAP (mm}
X x 100

Fifteen regions were identified in the cluster analysis of site characteristics. These were
tested for homogeneity based on a heterogeneity measure (H), which utilises L-moment
ratios as described in Section 2.2.3.2 and in Equationl6, and was implemented using
routines provided by Hosking (1996). As discussed in Section 2.2.3.2, the objective is to
estimate the degree of heterogeneity within a group of sites and to test whether the region
may reasonably be treated as a homogeneous region. According to Hosking and Wallis
(1997) a region with a value of // < 1 is considered to be “acceptably homogeneous”, when
1 < H <2 it is “possibly heterogeneous™ and when H > 2 it is “definitely heterogeneous™.

Table 36 contains the results of the heterogeneity measure,
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The 24 h AMS was used to assess the homogeneity of the clusters. A different set of
relatively homogeneous clusters could be obtained for different storm durations. However,
as the cluster analysis is based on site characteristics, the allocation of stations to clusters
should not change, except for the subjective relocation of clusters. In addition, having a
different set of clusters for each duration is not practical (Wallis, 1997). This approach of
using the same clusters for different durations was also used by Werick er af. (1993) in the
creation of a National Drought Atlas for the USA.

From Table 36 and the spatial distribution of the clusters it was evident that for Cluster13,
which is definitely heterogeneous, very large spatial distances between the sites in the
region were noted. Therefore, it was suspected that the transformation used for the latitude
and longitude results in a smaller range for these characteristics which therefore have less
weight in the cluster analysis. The reasons for the heterogeneity in the other regions (6 and
7T) are not clear. However, as pointed out by Hosking and Wallis (1997), the cluster analysis
is the most subjective aspect of the RLMA and it may be necessary to relocate sites/create
new clusters subjectively, but based on geographic and physiographic considerations,

Table 36 Results of heterogeneity tests for clusters identified using site characteristic

transformations listed in Table 35

Cluster Number Heterogeneity Cluster Number Heterogeneity
of sites Measure (H) of sites Measure ()
1 13 1.0 9 24 1.1
2 6 1.1 10 9 04
3 9 0.3 11 10 1.2
4 23 04 12 4 08
5 16 1.3 13 7 0.6
6 7 22 14 5 0.5
7 10 5.6 15 6 36
8 7 0.8
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5.2.4 Modified Transformations of Site Characteristics

In an effort to decrease the heterogeneity within clusters, as shown in Table 36, and to
decrease the spatial distances between sites within a cluster, the transformations listed in
Table 37 were implemented. These modified transformations attempted to ensure equitable
scales between the different site characteristics.

Table 37 Final transformations of site characteristics

Site Characteristic (X) | Cluster Variable (1) Site Characteristic Cluster Variable (¥)
X)

Latitude (* decimal) YX-Xx Concentration of X-X
— % 100 e —=2— » 100
Ko = Xy Precipitation (%) Koae = Xom

Longitude (* decimal) X-X,. 100 Seasonality (category) X-X,, 100
Xmm- - XMM! " XM = X!INJ! )

Altitude (m) X Distance to Sea (m)

‘ 7 ox 100 Xi x 100

MAP (mm) X

:{’;— x 100

The characteristics of the 172 sites were transformed as shown in Table 37 and the results
of using Ward’s minimum variance hierarchical algorithm on the transformed variables, are
presented in Figure 35. In this analysis 17 clusters were created, based on the results of
simulation experiments performed by Hosking and Wallis (1997). These indicated that, |
although the accuracy of the design values estimated using the RLMA increases with an
increasing number of stations in a homogeneous region, there is relatively little benefit in
having more than 20 stations per cluster when estimating quantiles with return periods
<1000 years.
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The regions identified in the cluster analysis of site characteristics shown in Figure 35 were
tested for homogeneity using the Hosking and Wallis (1997) heterogeneity test. Table 33
contains the results of the heterogeneity measure () for the clusters depicted in Figure 35.

Table 38 Resuits of heterogeneity tests for clusters depicted in Figure 35

Cluster | Number | Heterogeneity Cluster Num ber Heterogeneity
of Sites Measure () of Sites Measure (H)

1 19 0.95 10 8 0.59
2 10 1 044" 11 20 0.57
3 32 0.64 12 10 .20
4 6 -0.76 13 5 -0.79
5 8 1.59 14 7 -0.45
6 9 =1.07 H 15 5 -0.46
7 14 -0.35 “ 16 3 2.93
8 6 3.06 17 2 1.02
% 8 0.1 01

The negative measures of heterogeneity contained in Table 38 indicate that there is less
dispersion in the at-site sample L-CV values than would be expected. However, Hosking
and Wallis (1997) indicate that if many large negative values (< -2) are obtained, then the
probable cause is positive correlation between the data. Since no values of H < -2 were
obtained, the negative values of i were considered not to be the result of positive
correlation between the data.

Using the data transformations listed in Table 37, the results in Table 38 indicate that only
two regions (8 and 16) were definitely heterogeneous and require further attention.
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5.2.5 Modifications to Regions

According to Hosking and Wallis (1997), subjective intervention, within plausible physical
limits, may be required in the final determination of homogeneous clusters. Stations from
Clusters 8 and 16 were moved to adjacent regions as indicated in Table 39. In addition, the
two stations from cluster 17 were also relocated as it was deemed that a cluster consisting
of only two stations was not satisfactory. The location of stations moved between clusters
are indicated in Figure 35 by their SAWB station numbers. The relocation of the stations
resulted in 15 clusters, with Clusters 16 and 17 having been eliminated. The distribution of
the 15 clusters is presented in Figure 36.

Table 39 Relocation of stations between clusters
Station Number { Moved from Cluster | Moved to Cluster
0411323 2 7
0411324 7
0061298 16 6
0106880 15
0274034 15
0079712 17 13
0059572 13

The modified clusters were tested for homogeneity using the Hosking and Wallis’ (1997)
test. Table 40 contains the results of the heterogeneity measure for the clusters depicted in
Figure 36. From the results contained in Table 40 it is concluded that the regions are
sufficiently homogeneous for the RLMA to be applied. Thus growth curves, which depict
the relationship between return period and the ratio of the design storm and an index storm,
can be derived for each cluster.
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Table 40 Results of heterogeneity tests

Cluster | Number of | Heterogeneity Cluster | Number | Heterogeneity
Sites Measure ()} of Sites Measure (H)

1 19 0.95 o 8 -0.10
2 10 1.04 10 8 0.59
3 32 0.64 11 20 0.57
4 6 -0.76 12 10 1.20
5 1.59 13 7 0.69
6 {1] -1.13 14 7 -0.45
7 16 1.02 15 7 1.67
8 4 0.26

5.3 REGIONAL GROWTH CURVES

Regional growth curves, developed for each cluster and various durations, relate the ratio
between the design rainfall and an index value to return period. Examples of growth curves
for selected clusters and various durations are shown in this section. The GEV distribution,
which is shown in Section 5.5 to be an appropriate distribution for South Africa, was used

to estimate design storms.

5.3.1 Examples

The variation of the regional growth curve of quantiles in Clusters 1 to 6 for two durations
are depicted in Figure 37. These examples indicate that the variation between the growth
curves for different regions and durations increases with return period. The relatively similar
growth curves for some regions may indicate that some regions may be combined.
However, Hosking and Wallis (1997) caution against this, arguing that the absence of
statistical difference may merely reflect an insufficiency of data.
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Figure 37 Examples of regional quantile growth curves for Clusters 1 to 6

Another example of the variation in the growth curve with duration is shown for Cluster 3
in Figure 38. In Cluster 3 the growth curve for various durations are very similar for return

periods < 10 years, but diverge for longer return periods.
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Figure 38 Variation of regional quantile growth curve for different durations (min)
in Cluster 3

5.3.2 At-site vs Regional Quantiles

The advantage of using a regionalised approach to design storm estimation is that at-site
information is supplemented with information from the entire homogeneous region. Thus
the regional estimates of design rainfall are deemed to be more reliable than estimates based
only on at-site information. An example of the differences between quantiles estimated
using at-site data and the RLMA are shown for 1 h duration events in Figure 39 for five
selected stations in Cluster 3. The variation between the quantiles estimated from the at-site
data and regional approaches shown in Figure 39, which are less than 15% for all durations,
are typical for Cluster 3 and for most other clusters.

Station N23, which has a record length of 32 years, is located in the Ntabamhlope Research
Catchments monitored by the DAEUN and was not used in the cluster analyses or in the -
estimation of the regional growth curves. As shown in Figure 40 there is good agreement
between quantiles estimated from the at-site data and from regional analysis for all durations
and return periods. Hence it would appear that the RLMA is capable of estimating design
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storms reliably. However, a formal assessment of the accuracy and confidence limits of
quantiles estimated using the REMA is necessary.

Cluster 3

1 10 100
Return Period (years)

Station
—=— CP6 —— N1 —— G182 —a— 0239482 —— 017868

Figure 39 Ratios of 1 h quantiles estimated from at-site data and regional analysis
for selected stations in Cluster 3

5.3.3 Assessment of Accuracy of Design Rainfalls Estimated Using the RLMA

Uncertainty is inherent in statistical analysis and hence it is necessary to assess the
magnitude of the uncertainty. Traditionally the uncertainty is quantified by constructing
confidence intervals for the estimated model parameters and quantiles, assuming that all the
statistical model’s assumptions are satisfied. The assumptions are rarely, if ever, all true
when performing a frequency analysis. Thus a realistic assessment of the accuracy of a
regional frequency analysis should account for the possibility ofheterogeneity inthe regions,
inappropriate frequency distribution and dependence between observed data at different
sites. Hosking and Wallis (1997) thus advocate the use of Monte Carlo simulation
procedures to estimate the accuracy of the quantiles in a regional frequency analysis.
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The procedure outlined by Hosking and Wallis (1997) and described in Section 2.2.3.5 was
adopted. For each site in each cluster a random sample is generated, which has the same
record length as the observed data, using the selected frequency distribution at each site
with population equal to the observed data. Thus, for each cluster a region was simulated
having the same number of stations, record lengths and regional average L-moment ratios
as the observed data. This procedure was repeated 100 times, to give 100 simulated
regions. The simulations assumed the regions to be homogeneous with a GEV frequency
distribution and routines provided by Hosking (1991b) were used to implement the
procedure. For each of the 100 repetitions, the errors in the simulated quantiles were
calculated and then accumulated and averaged to estimate the bias and RMSE of the
quantiles estimated from the actual data. Thus, the 90 % confidence interval can be
constructed by selecting the Sth and 95th percentiles from the 100 ranked errors between
the simulated region and actual data. For example, the 90% confidence interval for the
regional growth curve for Cluster 3 is given in Table 41 and shown in Figure 41.

Table 41 Accuracy measures for estimated growth curve for Cluster 3

Duration | Return Period | Growth Curve | RMSE | 90 % Confidence Intervai
(h) (Years) Upper Lower
1 3 0.949 | 0.045 0.923 0.975
5 [.288 | 0.044 1.233 1.320
10 1.502 | 0.064 1.402 1.565
20 1699 | 0.094 1.538 1.818
50 1.543 | 0.140 1.697 2112 _|
100 2108 | 0.179 1.803 2.347
24 5 0.889 | 0.096 0.832 0.921
3 1.260 | 0.060 1.178 1.250
10 [.549 | 0.088 1.402 1.589
) 1.862 | 0.146 1619 1.989
<0 2329 | 0.251 1.856 2.647
100 2.731_| 0.341 2.053 3372

176



N23: 15 min N23:1h
50 100 J
40 i 804 -
_— — 1
€ a0 E g0 - ...
£ .0 £
[= % - =% -
s a
10 . -
0
2.0 10.0 50.0 2.0 10.0 50.0
Return Period {years) Return Period (years)
N23:24 h
140 - 200
120 -
. 100 JRELE Sl
£ E
E & g
O 40 o
20
2.0 10.0 50.0 2.0 10.0 50.0
Retumn Period (years) Return Period {years)
[ JAt-site  JjRegional
Figure 40 Comparison of design storms estimated using at-site data and regional
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Figure 41 Accuracy of regional growth curves for Cluster 3 (CI=Confidence Interval)

For each ofthe fifteen relatively homogeneous clusters in South Africa, and for 16 durations
ranging from 5 min to 24 h, growth curves were developed which relate the ratio, of the
design rainfall and an index value, to return period. The index value used for each duration
was the mean of the AMS (L _1) for that duration. Hence quantiles for a particular site can
be estimated from the regional growth curve and the index (£ 1) value for that site. The
accuracy of the quantiles for a particular site can be evaluated using the confidence intervals
for the regional growth curve, For example, the 90% confidence interval for the estimated
design storms at Ntabamhlope (N11), which is located in Cluster 13, are shown in Figure
42,

In order to estimate the quantiles at a particular site using the regional growth curve, it is-
necessary to estimate the L / value at that site, either from the observed data if that is
available, or by some other means if the observed data are not available or are not reliable.
In the following section, the results from estimating the 24 h L_J values using multiple
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linear regressions of site characteristics are presented. The methodology used couid equally
be applied to other durations. However, when investigating scaling relationships in Chapter
6, it is necessary to estimate the 24 h L_/ value and hence only the results for this duration

are presented.

Design Rainfall : N11

A
[
0 1 L | ) N T 1 1 1 1 Ll
1 10 100
Return Period (Years) )
. 1h v 1 h 0% Cl
* 24h e 24 h 90% CI

Figure 42 Accuracy of design storm estimation at N11 using regional approach

54 ESTIMATION OF THE 24 HOUR INDEX STORM

In order to estimate design storms at ungauged sites, or at sites where the data are
unreliable, it is necessary to estimate the index storm used to develop the regional growth
curve and thus dimensionalise the curve. For the 24 h duration storm, the index storm used
was the mean of the 24 h annual maxima (L_/7). Multiple linear relationships were sought,
using SAS statistical software, between L I and the site characteristics used to establish the
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homogeneous regions. It was found that the stepwise method of model selection generally
gave lower Predicted Residual Sum of Square (PRESS) values than the methods which
optimised the R? value. Since the best estimate ofthe L_] value was required, the stepwise
method of mode) selection which resulted in the lowest PRESS values was adopted. The
significance level for entry of variables into the model was set very low (0.9) and similarly
the significance level for keeping a variable in the model was also relaxed to 0.4, thus
keeping variables in the model to reduce the PRESS values and improve the estimates of
L 1. The coefficients in the linear regression model shown in Equation 59, correlation
coefficient and scatter plot around a line of perfect agreement of the data are presented in
Table 42.

L_1= (Z Var, x Cof}) + Cons 39
i=1
where

L_I = first L-moment,

m = number of variables (7),]=Latitude, 2=Longitude, 3=MAP,
4=Altitude, 5=Seasonality, 6=Precipitation Concentration (Ppt.
Conc.), 7=Distance 1o Sea (Dist. Sea),

Var, = i-th variable,

Cof, = coefficient for /-th variable, and

Cons = constant.

It is conceded that the validity of the regression equations may be affected by dependencies
between the selected “independent” variables. However, the choice of independent variables
was based on the variables that were successfully used in the cluster analysis of site
characteristics, The limited number of short duration rainfall stations resulted in fewer
degrees of freedom than the number of independent variables in some clusters. Hence, the
results from these clusters (4, 8 and 9) should be used only with extreme caution and the
success of the methodology should be judged from the results at the remaining sites.
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Table 42 Regression analysis of 24 h annual maxima (L_J/) as a function of site
characteristics and region
Cluster Regression Coefficients R? Scatter Plot
(No. of
stations) Variable Valug
i Constant -121.33139978 | 0.73 Mean of 24 h AMS
(19) | Latitude (°) -4.3219414) Cluster 1
Longitude (*) 70
Altitude (m) 0.01709296
MAP (mm) 0.09016661 256 1 .
Seasonality (-) -2.71852305 oo
Ppt. Concentration (%) 0.62619464 gss Vl
Dist. from Sea (m) Esof - . AN
Sasi. . 1
40 N —
40 45 50 55 €0 65 70
Observad (mm)
2 Constant 177.00086849 | 0.91 Mean of 24 h AMS
{16 Latitude () 5.3881735] Cluster 2
Longitude (°) 5
Altitude (m) -0.01992853
MAP (mm) 0.03934102 ETS 1 . .
Seasonality (-) &
Ppt. Concentration (%) B 65
Dist. from Sea (m) g .
E 55 - [ ] —
11
45
45 55 65 75 85
Observed (mm)
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Cluster Regression Coefficients R? Scafter Plot
(No. of
stations) Variable Vaiue
(332) mt(o) -1092.41031260 | 0.77 Mean of 24 h AMS
C
Longitude (%) 32.64016742 " hister 3
Altirude (m) 0.04122272
MAP (mm) ~d
Seasonality (=) 39.80853547 Eqp ] o
Ppt. Concentration (%) -0.73429309 B 7 :
Dist, from Sea (m) 0.00005997 2601
& 80 1 :1
40 e
0 50 70 80 90
Qbservad (mm)
4 CorEStam . 12.88186896 | 0.78 Mean of 24 h AMS
6) I[:ao:;:dt:d(e )(u) Cluster 4
Altitude (m) 40 :
MAP (mm) £35
Seasonality (-) £
Ppt. Concentration (%%) $30 1 y
Dist. from Sea (m) 0.00004616 g
355 =
11
20—
20 25 30 3/ 40
QObserved {mm)
5 Constant 801.61697120 | 0.96 Mean of 24 h AMS
(4]
Altitude (m) -0.01864936 ™
MAP (mm) 003278059 —80 |
Seasonality (-} g |
Ppt. Concentration (%) -7.01056913 850 .
Dist, from Sea (m) 2
%40 < -—
“ 4 11
30 — ——r
3 4 50 6 70
Observed (mm)
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Cluster Regression Coefficients R Scatter Plot
(No. of
stations) Variable Value
6 Constant =792.30726324 | 0.96 Mean of 24 h AMS
9 | Latitude () -79.25404727 Cluster 6
Longitude () -84.90316270 120
Altitude (m)
MAP (mm) 0.07792625 £ 100 ;
Seasonality (-) E gl
Ppt. Concentration (%a) -6.44610538 k]
Dist. from Sea (m) ’E 80 .
E 401 . :1
vo1 ) A —
20 40 60 @0 100 120
Observed (mm}
7 Cor}stam 18.34826103 | 0.7] Mean of 24 h AMS
(16) Latitude (%) Cluster 7
Longitude (*) 140
Altitude (m) 0.06675284
MAP (mm) 0.05697078 7 120 ; . )
Sﬁ.soﬂa]ity ("} ‘E' 100 R . .t
Ppt. Concentration (%) 3 i
Dist. from Sea {m) E 80 ;
8 604 :1
40 v ' . —
40 60 80 100 120 140
) Qbserved (mm)
R Cor-lstant «26798.59576036 | 0.93 Mean of 24 h AMS
4) Latitude (°) Cluster 8
Longitude (*) 843.67627112 w0
Altitude {m) )
MAP (tum) 0.78885764 130
Seasonality (+) 120 ] f
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Cluster Regression Coefficients R? Scarter Plot
{(No. of
stations) Variable Value
9 Constant 629.14362760 | 097 Mean of 24 h AMS
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Longitude () 70
Altitude (m) ] ;
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Cluster Regression Coefficients R? Scatter Plot
{(No. of
stations) Variable Value
12 Cor}stant -461.88956151 | 0.93 Mean of 24 h AMS
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Cluster Regression Coefficients R Seatter Plot
(No. of

stations) Variable Value
15 Coqstam <21.15989495 | 0.92 Mean of 24 h AMS
(| Latitude (% -1.23354254 Cluster 15
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Altitude (m) 0.00901883
MAP (mm) 23
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& 15 4 T
10
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With the exception of Clusters 10 and 11, the mean 24 h annual maximum rainfall event
were predicted adequately and hence the regressions can be used at ungauged sites, or at
sites which have unreliable data. to dimensionalise the regional growth curve and thus to
estimate the design values at these sites. Further subdivision or relocation of stations in
Clusters 10 and 11 did not improve the regressions. Hence it is recommended that caution
should be exercised when applying the RUMA at ungauged sites in Clusters 10 and 11.

The RLMA has been successfully applied and hence it is reasonable, with the exceptions of
Cluster 10 and 11, to estimate design rainfalls for 24 h durations at ungauged sites. Similar
multiple linear regression analysis could be performed to estimate the L_/ for each duration
< 24 h as a function of site characteristics, and thus enable the estimation of design values
using the regional growth curve for that particular duration. Alternatively, the index value
used in the estimation of the regional growth curve for durations < 24 h could be replaced
by the 24 h L_7 value, which could be estimated at ungauged sites using the results.
presented in Table 42, Thus, instead of developing regressions to estimate the L_{ value for
each individual duration, the regional growth curves could be estimated using only the 24 h
L_1 as index values, which could be estimated using the results presented in Table 42.
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Using the RLMA, no fixed boundaries exist between adjacent clusters. Therefore at an
ungauged location, it is necessary to estimate the Euclidean distance between the site
characteristics of the ungauged location and the mean of the site characteristics of all sites
within each cluster. The ungauged site is then assigned to the cluster which has the closest
Euclidean distance to the ungauged site. This gives an estimation of the regional growth
curve at that site. Hence, in order to estimate design values at the ungauged site, it is only
necessary to estimate the index value at that site, as has been performed for the 24 h

duration.

The assumption in the application of the RLMA is that within each relatively homogeneous
cluster, a single probability distribution is applicable to all sites after scaling using an at-site
index value. Hence it is necessary to investigate which probability distribution to adopt for
the estimation of design rainfalls in each of the clusters.

5.5 CHOICE OF FREQUENCY DISTRIBUTION

One option was to determine the most appropriate probability distribution for each duration
in each of the 15 relatively homogeneous clusters. However, from a practical point of view
it was decided to determine, for a selected duration, an appropriate distribution which is
applicable to all clusters and which is then assumed to apply to all durations. This approach
of a single appropriate distribution for all clusters is supported by Wallis (1997). The
assumption that an appropriate distribution for a selected duration is applicable to other
durations at the same site agrees with the property of scale invariance noted by, inter alia,
Gupta and Waymire (1990) and Burlando and Rosso (1996), which implies that the
probability distributions of rainfall depth is the same at different time scales. The selection -
of the most appropriate distribution was conducted on the 24 h digitised data. However,
it is conceded that possibly more reliable results at many more sites would be obtained from
the use of daily rainfall totals recorded by standard non-recording raingauges. Thus. these
results may need to be revised after the same analysis has been performed on the daily data.
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Hosking and Wallis (1997) developed a Goodness-of-Fit {GOF) criterion, described in
Section 2.2.2.3, which is based on L-moment ratios to determine suitable probability
distributions to use in a regional frequency analysis. In addition to non-parametric tests,
Smithers {1996) also used L-moment statistics as well parametric tests such as the Chi-
squared test and deviations from a plotting position. All of these techniques are used in the
following section to determine suitable probability distributions for use in South Africa. All
tests are performed using the 24 h duration events from the digitised rainfall data.

£.5.1 At-site Parametric Statistics

In order to determine the most appropriate probability distribution to use at all the clusters,
Chi-squared and standardised deviations parametric tests were performed.

5.5.1.1 Chi-squared test

A chi-squared test was employed which utilises 10 equally spaced probability class intervals
and either rejects or accepts the null hypothesis that the sample of data could have been
drawn from the distribution being evaluated (Kite, 1988). In this study the LN2, 3
parameter log-normal (LN3), LP3, Pearson type 3 (PE3), Gumbel (EV1), log-EV1 (L-
EV1), General Extreme Value (GEV), generalised Pareto (GPA), generalised logistic
(GLO) and Wakeby (WAK) probability distributions were employed. The probability
density functions and, where possible, the cumulative density functions for these
distributions are defined in Appendix B. The results from the Chi-squared tests performed
for the 24 h duration event and for the 15 relatively homogeneous ciusters are contained
in Table 43. |

The results in Table 43 indicate that the GEV, GLO, EV1 and LN3 probability Jistributions

were accepted most frequently as suitable distributions in all clusters.
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Table 43 Number of rejections of the null hypothesis that the 24 h AMS could have
been drawn from a parent distribution, at the 95% confidence level, with

results expressed as a percentage of total number of sites in each cluster

Cluster Probability Distribution
Number LN2 | LN3 LP3 L-EV1 EV1l | GEV | PE3 | GLO { GPA | WAK
1 32 10 26 21 5 15 10 16 32 15
2 10 1] 20 20 0 1] 0 0 0 10
3 9 22 13 3 21 6 25 3 25 19
4 33 17 50 83 17 17 17 0 17 33
5 22 11 22 11 0 1l it 11 22 22
6 0 0 11 0 0 0 1] 0 11 11
7 19 13 25 13 13 6 19 13 13 13
8 25 0 25 50 ] 0 0 0 0 0
9 25 13 13 0 13 13 13 25 38 38
10 13 0 13 H 13 0 0 25 13
11 5 0 o 10 10 0 0 0 5 15
12 10 0 30 10 0 0 10 10 30 0
13 0 0 14 42 it 0 | i4 i4 14
14 14 0 14 28 14 0 14 0 14 14
15 0 28 0 0 28 28 i4 28 14 28
Sum 206 130 266 305 122 109 136 120 260 - 245

5.5.1.2 Standardised deviations

The Standardised Deviation (SD) GOF method adopted is similar to techniques used by
Benson (1968), Bobee and Robitaille (1977) and Kite (1988). The SD is computed as
shown in Equation 60. Return periods of 2, 5, 10, 20, 50 and 100 years, which correspond
to non-exceedance probabilities 0f 0.50, 0.80, 0.90, 0.95, 0.98 and 0.99 respectively, were
used in the calculation of the SD. The choice of plotting position equation was shown by
the NERC (1975) and Smithers (1994) to affect the computed SD, although Kite (1938)
expressed the opinion that the relative rankings of distributions would not be influenced by -

the choice of plotting position.
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s, Lybizs) 6
ITdf &y, -
where

§D, = standardised deviation of j-th candidate distribution,

¥, = recorded data, interpolated (if necessary) but not extrapolated to
correspond to the i-th return period, with probabilities assigned to
observed data using a plotting position equation,

X; = event magnitude computed from the j-th probability distribution for
the i-th return period,

k = maximum number of recurrence intervals (5) used in the
computation, and

a = degrees of freedom used to fit the trial distribution.

The Weibull plotting position, as shown in Equation 61, has been shown by means of a
survey conducted in different countries by Cunnane (1989), to be the most frequent plotting
position used, despite its bias in graphical quantile estimates.

fe=o .61
where

P, = excecdance probability of r-th ranked data,

r = rank of data, and

N = number of points in the data series.

The results from ranking the distributions according to the SD statistic are presented in
Table 44, The results in Table 44 indicate that suitable probability distributions to use are
the PE3, GEV, LP3 and LN3.
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Table 44 Relative ranking of 10 probability distributions for 24 h events according to
computed SD at all 15 clusters (1 = best, 10 = worst), using the Weibull
plotting position to assign probabilities to observed data

Cluster Probability Distribution
Number [>T LN3 | LP3 | L.EVI | EVI | GEV | PE3 | GLO | GPA | WAK
) 8] 2| 6 TN 31 1| o 4 7
2 8| 6| 3 0| s 2| 1| o9 4 7
3 5 7 1 8| 10 3| 6 2 2
4 9| 3 g T 1| 2 7 4
5 I s | 3 ] 6| al 10 5 7
6 71 6| 2 o | s s 31 10 | 4
7 4] 6 1 3| 7 g 1] 10 5 9
8 o 2 7 0| 4 3] 1| 8 5 6
9 2| s I 5 71 3| 10 4 8
10 N E i 71 5 | 6| 9 8| 10
T s| 3| o2 0] s a1 3 7
12 71 2| 5 0| 9 A 2 6
13 1 s | 8 o] 2 3| s| 6 9 7
" 6| 4| 3 71 o s 2] 10 1 B
15 5 6 0 | 2| 3] o 7 9
Sum | 81 | 6 | 57| 12| 82| 61 40 | 132 74| 103

5.5.2 At-site Non-parametric Tests

A non-parametric test was performed to evaluate the ability of the different probability
distributions to provide estimates of the 100 year return period event. Similar tests have
been performed on flood flow data in the USA by Vogel ef al. (1993b) and in Australia by
Vogel er al. (1993a). The test uses a “station year” approach and assumes that the AMS
from the sites within a cluster are independent and the extreme events occur independently
from year to year. Thus it may be assumed that the number of exceedances follow a
binomial distribution (Vogel er af.. 1993a). The test comprises of counting, for each

distribution and at each cluster, the number of times (X) an observed value exceeds the
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estimated 7 year return period event. Assuming X follows a binomial distribution, the mean
of m site-years within each cluster is E[X] = mP, and variance Var[X] = mP (1-P,), where
P, = 1/T. Confidence intervals at the 95% levels may be computed as

o075 o
0.95= i ( JP:,‘(L- Py™* .62
X

X=Xp.075

A 95% confidence interval was computed as shown in Equation 63 for the expected number
of exceedances using the normal approximation of the binomial distribution, as described
by Steel and Tormie (1980).

Xoo%s = {ﬂ 2y 05 X ‘j—"——& - (:l- k) ] X m .63

where

Zoos = 5% exceedance value of Normal distribution with 4=0 and o=1.

Results from the tests based on the above assumptions are contained in Table 45 and
indicate that the LN2, EV1 and PE3 distributions were the only distributions which did not
exceed the 95% confidence interval in all the clusters. No expected probability adjustment
was used in generating the results in Table 45. This non-parametric test’s assumptions
(independence) may be compromised by the relatively close locality of the sites to each
other within each cluster.
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Table 45 Number of data values in the AMS that exceed the 100 year return period
event, as estimated by different probability distributions, fitted to the data
using L-moments (* indicates results falling outside the 95 % confidence

interval)
Cluster Station Probability Distribution
Years
(95%
Confidence | LN2 | LN3 § LP3 | L-EV1 | EVI | GEV | GPA | PE3 | GLO | WAK
Level)
1 444 (3-15) 5 4 15 o* 4 4 12 6 2 1*
2 195 (0-8) i ol 9= 0 0 5 0 0 0
3 574 (5-18) 13 4* 10 4* 12 4+ 7 9 6 9
4 150 (0-6) 0 o] 10* 0 0 0 74 0 0 |
5 201 (0-8) ] 0 5 0 0 0 5 0 0 0
6 228 (0-9) ! 0 l 1] H 0 5 0 0 0
7 190 (0-8) 1 0 3 0 1 0 0 0 ] 0
] 93 (-1-5) 0 0 3 0 0 0 1 0 0 0
9 201 (0-8) 0 0 1 0 1 0 2 0 0 0
10 178 (0-7) l 1 4 0 2 l 3 2 0 1
11 402 (3-14) 4 3 13 0* 4 3 1 5 1 2
12 227 {1-10) 4 2 6 o* 4 2 7 2 2 2
13 178 (0-7) { 2 3 2 1 h] 2 1 2
id 195 (0-8) t ( 4 1 i i [ 0 0
15 198 (0-8) l 1 2 2 0 ] | 0 0

5.5.3 Statistics Based on Regional Average L-moment Ratios

The choice of a regional distribution using L-moment ratios is based on fitting an assumed
distribution to the regional record length weighted L-moment ratios (Hosking and Wallis,
1997). Thus the fitted distribution will have the same L-CV as the regional average values
and the quality of fit is judged by the difference between the L-kurtosis of the fitted
distribution (¢,”2) and the regional average (¢,%). The sampling variability { 7,) is obtained by
repeated simulations of a homogeneous region, having the fitted distribution, with the same
number of sites and record lengths as the observed data. In practice, Hosking and Wallis
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(1997) assume that reasonable estimates of the sampling distribution can be obtained by
using the flexible 4-parameter Kappa distribution, instead of repeated simulations with
different candidate distributions. The statistic Z is computed as shown in Equation 64.
Values of [Z| < 1.64 are deemed to indicate that the fit of the assumed distribution is
adequate. A formal definition of the statistic is presented in Section 2.2.3.3. The results of
the analysis and associated L-moment diagrams are contained in Table 46.

R _,PD
;=) »
T4
Table 46 Acceptable probability distributions, Z-test statistic and L-moment ratio
diagrams for 15 relatively homogeneous clusters in South Africa
Cluster Acceptable A L-Moment Diagram
Number | Distributions
I GLO -0.65

a8 A8 -4 +02 o o2 04 as o8
L-SKEWNESS
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Hosking and Wallis (1997) recommend that in regions where no distribution is suitable (e.g.
Cluster number 3), the Kappa or Wakeby distribution should be used, as they are “robust
to the mis-specification of the form of the frequency distribution in a regional frequency
analysis”. The number of homogeneous regions in which the candidate distributions gave
an acceptable fit to the 24 h AMS are listed in Table 47.
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Table 47 Number of homogeneous regions in which candidate distributions gave an
acceptable fit to the 24 h AMS

Number of homogeneous regions in
which the distribution gave an
acoeptable fit to the 24 h AMS

GLO | GEV | EN3 | PE3 | GPA
(1 12 11 7 2

The results contained in Table 47 indicate that, if a single probability distribution was to be
adopted for the all regions according to the regional L-moment ratios test, the GEV would
be the most appropriate distribution.

5.5.4 Concluding Remarks on Cheice of Frequency Distribution

There is generally good agreement for most clusters between the probability distributions
deemed 10 be most suitable by the Chi-squared test (GEV, GLO. EV1, LN3) and the
regional L-moment ratios test (GEV, GLO, LN3). However, the SD test indicated that the
most appropriate distributions were the PE3, GEV and LP3 distributions while the non-
parametric exceedance test selected the PE3, EV! and LN2 distributions. It is thus
recommended that, if a single distribution were to be adopted for all regions, the GEV
distribution would be the most appropriate probability distribution to use. A similar
conclusion for South Africa was made by Smithers (1996) using data from individual sites
and employing both parametric and non-parametric tests, but not regional tests based on L-

moment ratios.

5.6 CHAPTER CONCLUSIONS

In this chapter the RLMA, which is described in Chapter 2 and is based on the methodology
developed by Hosking and Wallis (1993; 1997), has been applied using data from 172 short
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duration rainfall stations in South Africa. The discordancy index developed by Hosking and
Wallis (1993; 1997) was found to identify erroneous or inconsistent data and was used to
screen all the data used.

Regionalisation based only on site characteristics resulted in, after a few subjective
relocations of stations, in 15 relatively homogeneous clusters in South Africa. The cluster
analysis was found to be sensitive to the scaling of the site characteristics, and the best
resuits were obtained when the scales of all the site characteristics were within the same
range (0,100).

For each cluster and duration, the mean of AMS (L_/) for each duration was used as the
index value when estimating regional growth curves which relate the ratio, ofthe designand
index values, to return period. Hence, with the regional growth curve and the index value
for a particular site, design rainfalls may be estimated for the site. The index vaiue (L_7)
may be estimated from reliable observed data, if available, or at ungauged sites by means

of multiple linear regression relationships of site characteristics.

The accuracy of the‘ regional growth curves was assessed at one “hidden” site (N23) in
Cluster 3, which was not used in the regionalisation or the estimation of the regional growth
curve, and also by means of Monte Carlo type simulations at all the clusters. Thus
confidence or error bands were estimated for the regional growth curves and these were
translated into confidence limits of design rainfalls at selected sites.

A number oftests were emploved to determine the most appropriate probability distribution
to use at all clusters. The GEV was found to be an acceptable distribution by most tests and
at most clusters and hence is recommended for general use in South Africa, This finding was
based only on 24 h duration raintall events and it is hypothesised that it will apply to shorter
durations as well. This assumes that the probability distributions of rainfall depth are the
same at different time scales. i.e. the property of scale invariance noted by, inter alia, Gupta
and Waymire (1990) and Burlando and Rosso (1996). This approach is also supported by
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Wallis (1997). However, it is recommended that further tests be appfied for selected
durations shorter than 24 h.

The RLMA has been successfully applied in 15 relatively homogeneous clusters in South
Africa. Ungauged sites or where the observed data are unreliable may be assigned to the
cluster which has the closest Euclidean distance of site characteristics to the ungauged site.
Thus the regional growth curve for the cluster is applicable to the site and in this manner
design storms can be estimated at any location in South Africa where the index storm can

be estimated.
In Chapter 6 the concept of scaling the moments of the AMS with respect to duration is

investigated as another approach to estimating short duration design storms using an
inadequate database.
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CHAPTER 6

SCALING OF DEPTH-DURATION-FREQUENCY
RELATIONSHIPS

In an effort to compensate for the low reliability of much of the data contained within the
short duration rainfall database, three approaches to estimating design storms from the
database were evaluated. The first approach, with results presented in Chapter 5, used a
regional frequency analysis. The second approach, with results presented in this chapter,
investigated scaling relationships of the moments of the Annual Maximum Series (AMS)
and the third approach, with results presented in Chapter 7, used a stochastic intra-daily
mode] 1o generate synthetic rainfall series. A common theme in all three approaches was the
development of techniques to estimate short duration design storms from the daily rainfall
totals, as measured by standard, non-recording raingauges for fixed 24 h periods ending at
08:00 each day, and not from the break-point digitised rainfall data where the highest 24 h
period of rainfall may not correspond with the 08:00 - 08:00 period.

The scaling concepts used in this chapter were introduced in Section 2.4.3. The assumption
was made, based on observations, that storm rainfall is characterised by the property of
scale invariance (Gupta and Waymire, 1990), which implies that the probability distributions
of rainfall depth is the same at different time scales.

Previous investigations of scaling properties of rainfall (e.g. Gupta and Waymire, 1990,
Menabde et al., 1998) have utilised ordinary product moments. In Section 6.1, as an
innovation, the scaling properties of extreme rainfall depths are investigated using L-
moments. It is shown that L-moments generally scale better with duration, i.e. are
essentially linear on a log-log plot of moment vs duration, and scale over a wider range of

durations than product moments.

Given the sparsity of recording raingauges in South Africa and low reliability of much of the
digitised rainfall data available from the SAWB, six hypotheses are proposed in Section 6.2
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and evaluated at selected sites and clusters in Section 6.5. The hypotheses utilise the scaling
properties of extreme rainfall and scaled regional average L.-moments and, as far as possible,
can be estimated from the widely available and generally reliable daily rainfall data which
are recorded manually for fixed 24 h intervals at 08:00 every day.

In order to apply some of the hypotheses described in Section 6.2, it is necessary to estimate
the slope on a log-log plot of the linear relationship between L-moments and event duration.
The estimation of this slope as a function of site characteristics is developed for each
cluster in Section 6.3, thus enabling the estimation of the slope at ungauged sites. Similarly,
one of the hypotheses requires estimates of the 24 h mean of the AMS (L_1I) to be
computed from the daily rainfall data. Hence, regional relationships are developed in Section
6.4 to convert the fixed increment L/ value, computed from the daily rainfall database, into
a continuous time value, equivalent to that computed from the digitised rainfall database.

6.1 ADVANTAGES OF SCALING USING L-MOMENTS

In Figure 43 the first and second order product morments and L-moments are presented for
stations in different geographic and climatic locations in South Africa. Included in Figure
43 are the linear regressions for the moments estimated using event durations ranging from
15 min to 5760 min (4 days). By definition the first order L-moment (L_/) and conventional
moment (mean) are the same and exhibit nearly linear scaling over this range at most sites
in Figure 43. However, as evident in Figure 43 for all the stations shown, the second L-
moment (L_2) tends to scale more linearly over a wider range of durations than the
conventional second order (variance) moment. The advantages of scaling using L-morments
are illustrated in Figure 44 where the deviations from linear scaling evident in Figure 43 are
quantified as the Mean Absolute Relative Error (MARE), computed as shown in Equation
635, for event durations ranging from 15 min to 4 days.
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Figure 43

Scaling of conventional product moments and L-moments at selected sites
in different climatic and geographic regions in South Africa
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= 100 x ZD il (k)l .65
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where
MARE = mean absclute relative error (%),
Ny = number of event durations (17),
Eq = estimated moment using linear regression for k-th duration, and
On =  observed moments for A-th duration.

For all stations shown in Figure 44, the MARE of the estimated L _2 values are substantially
lower than the MARE of the estimated second order product moments (variance), indicating
more linear scaling of L_2. Thus, further efforts at developing techniques to estirnate design
storms using scaling principles were focussed on the use of L-moments, although all the
methods developed could be applied equally to ordinary product moments.

6.2 DESCRIPTION OF HYPOTHESES

Design rainfall values estimated for specified durations are defined as the rainfall magnitude
associated with a specified probability of being equalled or exceeded for'the required event
duration. The conventional approach to estimating design rainfall values is to use the L-
moments, computed directly from the AMS of the observed data for the required duration,
to estimate the parameters of an appropriate distribution. Design events for specified
exceedance probabilities are then estimated using the fitted distribution. In the ight of the
low reliability of much of the digitised database, and hence dubious quality of L-moments
estimated from the digitised database. other means of estimating the L-moments were

hypothesised and evaluated.
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Figure 44 Deviations from linear scaling of second order product moments and
L-moments at selected sites in South Africa

In this section, six hypotheses are proposed for estimating L-moments for durations <24 h
and the hypotheses are evaluated at selected clusters and stations in Section 6.5. The
hypotheses are based on the scaling properties of the moments of the AMS and the common
distribution of the scaled L-moments of the AMS within a homogeneous region, with the
objective of utilising only the daily rainfall data recorded manually at 08:00 every day for
the preceding 24 h period.

6.2.1 Hypothesis 1
Hypothesis 1 proposed that the log-transformed L [ and L_2:duration relationships are

linear and that the first and second order L-moments of the AMS for durations < 24 h can

be estimated from the 24 h and 48 h values, computed from the digitised data. In order to
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estimate the parameters for distributions which have more than two parameters, the
moments for orders higher than two are estimated from the mean of the at-site 24 h and
48 h values. As shown in Equation 66 and schematically in Figure 45, the L / and L_2
values are estimated by linear extrapolation from the 24 h and 48 h values.

fal
log[ L_x, D)) = 108(L_ X 24)) - Qs 1y * {10B(1440) - log(Dx 60))

...06
('°S(L—x(:,4s)) — log(L_ x(r‘.z-n))

(10g(2880) - log(1440))

A(xiy =

where
L_x;p = estimated first (x=1) and second (x=2) L-moment at site / for
duration D hours and D <24,
&, = slope of log-transformed L-moment vs duration relationship at site
i, and
D = duration (h).

Hence, if Hypothesis 1 is valid, the moments for durations <24 h can be estimated from the
1 and 2 day values computed from the daily rainfall database, after appropriate scaling to
account for the differences between extreme events extracted using a fixed (“clock time™)
and non-fixed (“break-point digitised”) time increment.
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Figure 45 Estimation of L-moments for durations < 24 h using Hypothesis 1

Thus, at a site where rainfall data recorded only at a daily interval are available, the 1 and
2 da}‘r L-moments can be computed from the daily data and converted into equivalent 24 and
48 h values. L-moments for durations < 24 h can then be estimated using linear
extrapolation of the 24 and 48 h values.

6.2.2 Hypothesis 2

Hypothesis 2 hypothesised that the slopes {4, ) of the relationships between the log of the
first and second order moments and log of event duration are linear, as shown in Figure 43,
for durations ranging from 1 to 24 h and that the slopes of the relationships can be
regionalised and estimated from site characteristics. The slope at site / of the log-

transformed L-moment:duration relationship, estimated as a function of site characteristics
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for each relatively homogeneous cluster identified in Chapter 5, is termed the Regional
Slope (RS,, ). Hypothesis 2 is illustrated schernatically in Figure 46 and is implemented
using the following algorithm:

M The slopes of the log of the L_1 (&, ) and L_2 (a;,,) moments vs log of duration
are estimated for each site / in each cluster using observed L_1;p, and L_2,,,
values for durations ranging from I to 24 h.

(ii) Using multiple linear regression analysis, the &;; , and &y, values are regressed
against site characteristics and hence the RS, , and RS, vaiues, estimated using
the regression equation for the relevant cluster and site characteristics for site 7,
are estimates of &, , and &, ,, respectively. The relationships for estimating RS, ,
and RS,; , are presented in Section 6.3.

(ki) L_I,pand L_2,, for D <24 hare estimated using Equation 67, where L x4,
is estimated directly from the observed digitised data.

A

The slopes of the log-transformed L [ and L_2:duration relationships are estimated using
RS, ;. RS, and the site characteristics. L_/ and L _2 moments for durations less than24 h
are computed from the estimated slope and observed 24 h L-moments as shown in Equation
67, with the 24 h L-moments computed from the digitised rainfall data. Thus Hypothesis
2 is applicable only at sites which have short duration rainfall data available. In order to fit
distributions which have three or more parameters, Hypothesis 2 assumes that these higher
order momenis (2 3) can be estimated using regional record length weighted L-moment .
ratios.
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Figure 46 Estimation of L-moments for durations < 24 h using Hypothesis 2

6.2.3 Hypothesis 3

Hypothesis 3 assumed that the Regional L-Moment Algorithm (RLMA), as described in
Section 2.2.3 is applicable. The RLMA is an index value procedure, which is commonly
referred to as an index “flood” procedure. This assumes that the distribution of the
dimensionless values g, = Qi / L_J is common to all sites within a relatively
homogeneous region, where Q,,, ,, is the j-th element of the AMS of & hour duration events
at site j and L_1;, is the mean of the AMS of & hour duration events at site /. The
algorithm for the implementation of Hypothesis 3 in each relatively homogeneous cluster

M *
18:

() Calculate the L-moments (L_x,,) of the AMS (Q,,;,) for k hour duration events
at each site / in the region.

(i) Calculate regional average, record length weighted, L-moments as shown in
Equation 68.
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R L_x(,-‘“ N
L_x% = Zn,—xm / Zn; ...68

where
L x*,, = regional average x-th order L-moment for duration & hours, x <5,
L x;, = x-thorder L-moment for duration k hours at site i,
N = number of sites in region, and
n; = record length at site i.

(iii) The first and second order L-moments at site 7 are estimated as shown in Equation
69, where L_1/;,, is computed directly from the observed digitised rainfall data.

Fal
L_xgu =L x"wx L Ly, | .69

where

FaN
L_x;4 = x-thorder L-moment at site i, x <2.

(iv) In order to fit distributions which have more than two parameters, third and higher
order moments are estimated from the Regional Average L-Moment (L_x*;)
computed as shown in Equation 68.

Thus the first order regional average L-moment, L_1%,,= 1. In Hypothesis 3, the regional
average L-moments are re-scaled using L_1;,, estimated from the observed digitised data
and thus observed short duration rainfall data are required to implement Hypothesis 3.

6.2.4 Hypothesis 4

Hypothesis 4 combines the approaches used in Hypotheses 2 and 3. The algorithm, as
detailed below, utilises the multiple linear regression equations of site characteristics to

estimate L _/; ,,), as described in Section 5.4, and with RS, ;, enable the estimationof L I,
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values for durations < 24 h, which in turn are used to dimensionlise the regional average L-

moments.

(i) Use Equation 59 with parameters appropriate for the cluster and characteristics of
site 7 to estimate L_1,,,,.

(i) Estimate RS, , as a function of site characteristics as described for Hypothesis 2.
These relationships are developed for each cluster in Section 6.3.

(iii) Use Equation 67 and the estimated L_x,, ,,, from (i) and RS, ,, from (ii) to estimate
L_1,p, for site /, where D <24 h.

(iv) Use L_I, , estimated in (i) for 24 h durations and in (iii) for durations < 24 hto
dimensionalise the first and second order regional average L-moments, as
computed in Equation 68.

V) Third and higher order L-moments are assumed to be equal to the regional average

L-moment ratios.

Thus the implementation of Hypothesis 4 does not require any observed data and can be
implemented at any ungauged location in South Africa. ‘

6.2.5 Hypothesis 5

Hypothesis 5 is similar to Hypothesis 4 but the mean ofthe 24 h AMS (L_1; ,,)). estimated
as a function of site characteristics in Part (i) of Hypothesis 4, is replaced in Hypothesis 5
by L_1.4, estimated from the daily rainfall data. This hypothesis was introduced to
investigate and illustrate discrepancies between the digitised and daily rainfall data. Parts (ii)
to (v) in the algorithm for Hypothesis 4 also apply to Hypothesis 5.

No adjustment is made to convert the moments computed from daily rainfall data,
commonly referred to as fixed time increment or “clock™ time, into equivalent 24 h vaiues
extracted from digitised data. Thus differences betweenthe 24 h L_7 values calculated from
the digitised and daily data are highlighted by this hypothesis.
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6.2.6 Hypothesis 6

Similar to Hypothesis 5, Hypothesis 6 hypothesised that the 24 h regional average
L-moments, as calculated in Equation 68, could be re-scaled using 24 h L [ values
computed from the daily rainfall database and adjusted to account for the difference
between the 24 h (from the digitised database) and 1 day (from the daily rainfall database)
L_1 values. Hence, L_{,, in part (i) of Hypothesis 4 is estimated from the daily rainfall
database and, increased by the mean, for each cluster, of the ratio of 24 hto 1 day L_/
values. The relationship between the L-moments computed from continuous time (digitised)
and fixed time increment data (daily), developed for each relatively homogeneous rainfall

cluster in South Africa, are presented in Section 6.4. Parts (ii) to (v) in the algorithm for
Hypothesis 4 also apply to Hypothesis 6. The six hypotheses evaluated are summarised in

Table 48.
Table 48 Summary of hypotheses
Hypothesis Method for Estimation of first and second L-Moments for durations < 24 h
O Historical data
1 Multipte Scaling from 24 h and 48 h values
2 RS, = firegion, site characteristics) and observed L_x;,,,
3 L_x* 5, re-scaled with observed L_/,, 5,
4 L_x ;, re-scaled with L _1,, 5, estimated using L_1,;,,, = f (region, site
characteristics) and RS,,,, = Rregion, site characteristics)
3 L 3y re-scaled with L [, p, estimated using L_J,; ,,, computed from daily
rainfall data and RS,,,, flregion, site characteristics)
6 L_x p re-scaled with L _/,, ;, estimated using L_1,; ,,, computed from daily
rainfall data and adjusted using regionalised 24 h : 1 day ratios, and RS, ,, = f{region,
site characteristics)
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The site characteristics and cluster locations of all the stations used in the ¢luster analysis
are listed in Appendix A. The results from the estimation of the RS;;,,, for each cluster

using site characteristics are presented in the following section.

6.3 ESTIMATION OF REGIONAL L-MOMENT:DURATION SLOPE

In order to estimate «;, , and &, ,, the respective slopes of the linear relationship between
the log of the first and second order L-moments and log of event duration at an ungauged
site i, multiple linear regressions were developed for each cluster between &;, , and &;, ;, and
the characteristics of each site / in the cluster. The values of &, and &, ,, estimated at site
i using the regression equations and characteristics of site 7 are termed the Regional Slope,
RS, , and RS, respectively. The form of the regression developed for each relatively
homogeneous cluster is shown in Equation 70 and the results of the multiple linear
regression analyses, with the objective of maximising R?, are presented in Table 49.

RS = {Z Var,; x CqﬁJ + Cons ... 70

i=1

where
RSun = slope between the log of the first (x=1) and second (x=2) L-
moments and log of event duration, estimated as a function of site
characteristics,
m = number of variables (7),1=Latitude, 2=Longitude, 3=MAP,
=Altitude. 5=Seasonality, 6=Precipitation Concentration (Ppt.

Conc.). 7=Distance to Sea (Dist. Sea),

Var, = i-th variable.
Cof, = coefficient for i-th variable, and
Cons = constant.
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The limitations of the regression analysis as a resuit of the selection of independent variables
and insufficient degrees of freedom in some clusters, as pointed out in Section 5.4, are also
applicable to the analysis in this section. As shown in Table 49, with the exception of
Clusters 1 and 11, the slope of the log-transformed L_/:duration and L_2:duration curves
can be estimated relatively well using linear relationships of the individual site
characteristics. Generally, an inverse relationship is evident between R? and the number of
sites (V) where, as expected, high R? values are obtained for regions with fewer sites,
particularly when N < number of variables. Clusters 1 and 11, as shown in Figure 36, are
adjacent clusters with the centre of the “cloud” of stations comprising the two stations
located in Gauteng Province, and the clusters extending into the Free State, North-West,
Northern and Mpumalanga Provinces, The H heterogeneity test-statistic, shown in Table
40, is Jow for both clusters indicating relatively homoge.lz;eous clusters. High intensity short
duration thunderstorms dominate in these areas and hence it is probable that the contrast
in the AMS between shorter and longer durations may explain the poor regressions obtained
in these two clusters.

Table 49 Estimation of RS, ;, and RS, ; the slopes between the log of the first and
second order L-moments and log of event duration at site /, as function of
site characteristics
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Cluster L- Regression Scatter Plot
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Hypothesis 6 requires that the L I value calculated from the daily rainfall data be adjusted

into a continuous 24 h value, as would be computed from digitised data for a continuous

24 h period. Regionalised 24 h : 1 day ratios for each cluster in South Africa are presented

in the following Section 6.4.
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6.4 CONTINUOUS : FIXED TIME L [ RATIOS

Hypothesis 6 assumes that the mean of the 24 h AMS atsite i (L_I,,,,), normally computed
using a continuously moving 24 h “window”” in the digitised rainfall data, can be estimated
from the mean of the 1 day AMS extracted from the daily rainfall data recorded at fixed
24 h intervals. Thus it is required to convert the 1 day (fixed time) extreme values into

equivalent 24 h values (continuous time).

Values reported in the literature for South Africa suggest that the fixed time interval
extreme values should be increased by between 10 and 20% (Adamson, 1981; Schulze,
1984; Alexander, 1990). More recently, Dwyer and Reed ( 1995) showed that, based on
theoretical considerations, the correction factor should be 1.33, but recommend a value of
1.16, which is based on rainfall data from the United Kingdom and Australia.

Ratios of the mean (L_/;,,) of the 24 h AMS and 1 day AMS were computed for each
station # in each cluster and averages of these ratios were computed for each cluster. The
results of the analysis are presented in Table 50 which contains the average ratios and their
standard errors for each cluster. As noted, for example, in Sections 4.2, 4.3 and 4.4,
discrepancies are evident between the digitised and daily rainfall data for most SAWB
stations. Hence, in order to ensure consistency of data sets, the 1 day values used in this
analysis were derived by exiracting the AMS from the digitised data based ona fixed 24 h
incremental period and the actual 1 day data measured by standard raingauges were not
used. As shown in Table 50, the average 24 h :1 day ratios range from [.15 to 1.28 in
South Africa. These ratios are slightly larger than the values reported in Chapter 2 for South
Africa which range from 1.11 10 1.20, but which were computed from the 24 hand 1 day
design rainfall depths, which may incorporate bias due to the selection of distribution used
to estimate the design rainfalls. Unexpectedly high values were consistently obtained for the
Eastern and South Eastern Cape regions (Clusters 9 and 13 as shown in Figure 36). The
values presented in Table 50, which are the average ratios for all the stations in each cluster,
were used to estimate the 24 h L_7 values from the 1 day L_J values, computed from the
daily rainfall record. '
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Table 50 Ratios of 24 h :1 day L_1values

Cluster § Mean Std. Error Cluster | Mean Std. Error

1 1.20 0.05 9 1.26 0.11
2 1.21 0.06 10 1.19 0.09
3 1.19 0.07 11 1.20 0.09
4 1.21 0.09 12 1.19 0.04
5 1.20 0.10 13 1.28 0.14
6 1.17 0.06 14 1.24 0.06
7 .15 0.05 15 1.25 0.10
3 1.20 0.03

Techniques for estimating the RS for boththe L_/ and [_2 values,and 24 h: 1 day L _/
ratios have been presented. In the following Section 6.5, the effect on L-moments and
design storms estimated using the six hypotheses described in Section 6.2 are investigated.

6.5 EVALUATION OF SIX HYPOTHESES FOR ESTIMATING SHORT
DURATIONL {ANDL 2VALUES

Rainfall data from selected stations used in the delineation of relatively homogeneous
clusters, as shown in Figure 36, were utilised in the evaluation of the six hypotheses. The
performance of the six hypotheses, detailed in Section 6.2 and summarised in Table 48,
were evaluated by the mean absolute relative deviation:

. between the L-moments estimated by the hypotheses and the L-moments
computed from the observed digitised rainfall data, and
. between design rainfall events estimated using the GEV distribution fitted to the

L-moments estimated by the hypotheses and fitted to the L-moments computed
from the observed digitised rainfall data.
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The errors found throughout the SAWB digitised rainfall database and the inconsistencies
between the digitised and daily rainfall data at SAWB raingauges, as detailed in Chapter 4,
has led to the assumption that the majority of the SAWB digitised rainfall data are of low
reliability. The frequency of errors found in all non-SAWB digitised rainfall data was nearly
zero. However, most of the data from these non-SAWB stations were digitised from
autographic rainfall charts that were changed at weekly intervals. Hence, consistency checks
between the digitised and daily rainfall totals could not be performed, as was done for the
SAWB stations. However, the data collection procedures followed, for example by the
DAEUN, do include routine consistency checks between the total rainfall measured for the
duration of the chart and the rainfall digitised from the chart and data are flagged when
discrepancies are noted. Hence, although the consistency checks for non-SAWB stations
could not be performed as part of this study, the very few digitising errors and knowiedge
of data collection procedures at some non-SAWB raingauges, led to the supposition that
the non-SAWB digitised rainfall data are generally relatively more reliable than the SAWB
digitised rainfall data.

Detailed evaluation of the hypotheses at selected sites are presented in Section 6.5.1 for
Cluster 3 which has the most non-SAWB data and which are assumed to be more reliable
than the SAWB data. Thereafter, summarised results are presented for Cluster 6 (Sections
6.5.2) and for one of two selected sites in clusters located in different geographic and
climatic regions of South Africa (Section 6.5.3). ‘

6.5.1 Cluster 3

Thirty-two stations are contained in Cluster 3, of which 16 stations are SAWB stations and
the remaining stations are operated by the DAEUN (15) and FORESTEK (1). Hence 50%
of the stations in Cluster 3 are non-SAWB stations. In the regression analyses performed,
data from SAWB Station 0476131 were omitted as the data did not appear to be consistent

with the rest of the data in the region.
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6.5.1.1 Cathedral Peak

The results of evaluating the six hypotheses outlined in Table 48 to estimate the first two
L-moments at Cathedral Peak (CP6) are shown in Figure 47. As evident from Figure 47
all hypotheses, with the exception of Hypothesis 5, estimate the L_7 and L_2 values
computed from the observed data extremely well over the range of 2 h - 24 h duration
events. Since the 24 h regional average L-moment are re-scaled by the unadjusted 1 day
value in Hypothesis 5, it is not unexpected that Hypothesis 5 should estimate lower L /
values. Each hypothesis estimates L [ and L 2 values for ail durations, and the third order
L-moment used is either the mean of the 24 h and 48 h vatues (Hypothesis 1) or the regional
record length weighted value (Hypotheses 2-6). The estimates of the first three L-moments
for each duration and hypothesis were used to determine the parameters of the GEV
distribution. The design storm depths computed using the GEV probability distribution
fitted to the L-moments estimated by Hypotheses 1-6 are shown for the 20 year return
period event in Figure 48. Similar results were obtained for other return periods.
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Figure 47 Estimation of L 1 and L_2 at Cathedral Peak (CP6) for the six hypotheses
summarised in Table 48 (O=0bserved, 1-6= Hypotheses)
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Figure 48 Design storm depths for twenty year return periods at Cathedral Peak
{CP6) estimated from the observed data and for the six hypotheses
summarised in Table 48 (O=observed, 1-6=Hypotheses)

The results contained in Figure 48 for the 20 year return period design storms may be
further summarised by the Mean Absolute Relative Error (MARE) between design storm
depths computed from the historical data and from each of the six hypotheses for return
periods of 2, 5, 10, 20, 50 and 100 years, computed using Equation 71 and shown in Figure
49 for CP6.
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NRP S i — O .
MARE, = _j%]&x T ([ 3 UJC)[] e
R k=1 O[j.i)

where

MARE; = mean absolute relative error of j-th hour design rainfall (%),

Sup = k-threturn period, j-th hour annual maximum design rainfall
computed using hypothesis,

Opu = k-th return period, j-th hour design rainfall computed from
observed data, and

Nee = number of return periods (2, §, 10, 20, 50 and 100).

CP6
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Figure 49 Mean absolute relative errors of 2 to 100 year return period design storm
depths estimated at Cathedral Peak (CP6) for the six hypotheses
summarised in Table 48
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From Figures 48 and 49 it is evident that all the MARESs between design storms computed
from the historical data and for each of the 6 hypotheses are less than 20% (deemed to be
acceptable) for durations < 24 h and the mean error is generally < 10%. Hence all six
hypatheses appear to be able to produce similar L-moments and design storms at Cathedral
Peak (CP6). Thus, in the event of only daily rainfall data being available at this site,
reasonably accurate design storms for durations < 24 h could be estimated using only data
from a standard non-recording raingange. Hypothesis 1, which is the simplest of the
hypotheses evaluated and assumes multiple linear scaling of the L /:duration and
L_2:duration relationships for durations < 24 h and up to 48 h, appears to be applicable at
Cathedral Peak (CP6).

The results contained in Figure 49 can be further summarised as shown in Equation 72.

100 «
AV - MARE = —— ) MARE; e 72
T Np &
f=1
where
AV-MARE = average MARE, (%), computed from N, durations,

The AV-MARE values were computed for durations <1 h and for durations ranging from
2 - 24 h for CP6 as shown in Figure 50. Hypothesis 2 resulted in the best estimation of the
design storm depths at CPé6 for all the periods shown in Figure 50. The next best design
storm depths for durations of 2 h - 24 h were estimated by Hypothesis 1. However, the
estimation of design storms at CP6 were acceptable (i.e. errors < 20%) for all hypotheses

evaluated.
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Figure 50 Mean absolute relative ervors, averaged for durations of S min- 1 hand 2 -
24 h, of 2 to 100 year return peniod design storm depths estimated at
Cathedral Peak (CP6) for the six hypotheses summarised in Table 48

6.5.1.2 Ntabamhlope

The DAEUN monitors and maintains a dense network of raingauges in the Ntabamhlope/De
Hoek hydrological research catchments near Estcourt, One of these raingauges, N23, was
not used tn the establishment of homogeneous regions using cluster analysis, or in any of
the regression analyses to estimate the 24 h L/ value or in the regression analyses to
estimate the regional slope of the /. / duration relationship. Hence this site presents a good
and relatively long (31 years) record 10 evaluate the hypotheses. The results of estimating
the L-moments at Station N23 using the six hypotheses are shown in Figure 51. It is evident
from Figure 51 that changes in the slope of the L I:duration relationship occur at-event -
durations of approximately 1 h and 24 h. Hence Hypothesis 1 is not valid at this site and the
AMS for durations of 1 and 2 days cannot be used to estimate the L-moments for shorter

durations. The breaks in linear scaling at approximately 1 h and 24 h is a characteristic
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displayed by all the data from raingauges at Ntabamhiope. The break in linear scaling at
approximately 1 h could be a result of historical periods when weekly drum-type
autographic charts were used at Ntabamhlope, where each 1 mm on the chart represents
approximately 0.5 h. Whilst the resolution of chart digitisation may theoretically be as good
as 0.5 mm, in practice the effective resolution of the digitiser is probably closer to 1 mm.
Hence, the data for durations shorter than 0.5 h when the weekly drum type charts were
used, are expected to be relatively unreliable and the break in scaling at approximately 1 h
may be the result of the temporal resolution of the digitisation process. However, for more
than half of the 31 years of data, strip-type autographic charts were used which have a time
resolution of as little as 2 minutes. Hence these breaks in linear scaling, which are also
observed at most other sites located in summer rainfall regions in South Africa, may not be
caused by the data measurement system. Again as expected, Hypothesis 5 which uses the
| day L_/ value to scale the RGC and to estimate the RS, underestimates the at-site L-
moments. The 4V-MARFEs of the design storms computed from the estimated L-moments
for the six hypotheses are shown in Figure 52.
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Figure 51 Estimation of L _/ and L 2 at Ntabamhiope (N23) for the six hypotheses
summarised in Table 48
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Figure 52 Mean absolute relative errors, averaged for durations of 5min-1h
and 2 - 24 h, of 2 to 100 year return period design storm depths
estimated at Natabamhiope (N23) for the six hypotheses summarised
in Table 48

With the exception of Hypothesis 1 and exclusion of Hypothesis 5, all the other hypotheses
are able to estimate the design storm depths extremely well for durations ranging from 2 to
24 h at N23, as shown in Figure 52. For durations <1 h, only Hypothesis 3 resulted in
acceptable design storms. Thus design storms for durations > 1 h and up to 24 h may be
estimated at Ntabamhlope using only the regional average L-moments, scaled either with
observed (if available) or estimated 24 h L_/ values, in conjunction with the regional slope
of the log transformed L /:duration and L_2 duration relationships.

6.5.1.3 Cedara

The DAEUN also monitors and maintains a dense network of raingauges in the Cedara

hydrological research catchments near Pietermaritzburg in KwaZulu-Natal. In addition, an
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official SAWB station {0239482) is Jocated at the Cedara Agricultural Research Station.
The L-moments estimated by the six hypotheses at Stations C182 and 0239482 are shown
in Figures 53 and 54 respectively. At Station C182, a distinct change in the scaling of the
L-moments at approximately 24 h is evident and hence Hypothesis 1 was not valid, while
Hypotheses 4 and 6 slightly overestimated the L_/ values computed from the observed
values. It is noted that the 24 h [_J value used in Hypothesis 5, which is the 1 day L_/
value, is less than the observed 24 h L_7 value at C182. This is not the case for SAWB
Station 0239482, where the 1 day L_! value (from the standard raingauge) is greater than
the 24 h L_{ value (from digitised data). Hence at SAWB Station 0239482, it is postulated
that the unreliability of the data, particularly the number of missing extreme events, has
resulted in the mean of the 24 h AMS to be less than the mean of the 1 day AMS. This
trend is noted at many SAWB stations, reinforcing brevious comments regarding the
reliability of the SAWB data and the need to develop techniques to estimate desigh storms
based on the daily, non-recording raingauge network. For durations less than 30 min the
data at Station 023 9482 are not consistent with the rest of the data nor with regional trends

and are thus assumed to be problematic.
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Figure 53 Estimation of L_/ and L_2 at Cedara (C182) for the six hypotheses
summarised in Table 48 (O=0bserved, 1-6=Hypotheses)
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Figure 54 Estimation of L 1 and L_2 at Cedara (0239482) for the six hypotheses
summarised in Table 48

The 4V-MARE of design storm depths estimated for Stations C182 and 0239482 are shown
in Figures 55 and 56 respectively. At C182, application of Hypotheses 3 - 6 result in the
estimation of acceptable design storms for durations ranging from 5 min to 24 h, whilst
design storms estimated using Hypotheses 1 and 2 exceed the “acceptable” 20% error level.
The opposite trends are evident in Figure 56 where, for Station 0239482, the largest errors
appear to result from Hypotheses 4-6. In Hypothesis 4 the 24 h L_7 value is estimated
using regional regressions of site characteristics, Hypothesis 5 uses the daily rainfall data
to estimate the 24 h L ] value and Hypothesis 6 uses an adjusted daily L_I value to
estirnate the 24 h L_7 value. Thus, in the light of the inconsistency between the digitised
and daily rainfall databases at Station 0239482, it is postulated that Hypothesis 4, which
utilises information from the entire region, and Hypothesis 6, which adjusts the L_1 value
extracted from the daily rainfall data into an equivalent 24 h L_17 value, are both more
reliable estimates of the true 24 h L_/ value than the value computed directly from the
digitised data, as used in Hypotheses 2 and 3. Therefore, it is postulated that the
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discrepancies between design storms estimated using Hypotheses 4-6 and from the digitised
data, as shown in Figure 56, are not “real” errors and merely reflect the errors in the
digitised data. Thus, it is postulated that Hypotheses 4 and 6 result in the most reliable
estimates of design storms at Station 0239482.
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Figure 55 Mean absolute relative errors, averaged for durations of 5 min - 1 h and
2-24h, of 2 to 100 year return period design storm depths estimated at
Cedara (C182) for the six hypotheses summarised in Table 48

6.5.1.4 Comparison between selected stations

A detailed analysis of the performance of the six hypotheses in estimating the first and
second L-moments and design storms have been presented for raingauges located at
Cathedral Peak, Ntabamhlope and Cedara, all of which are located in Cluster 3. In this-
section the AV-MAREs of the design storms estimated using the hypotheses at selected
stations in Cluster 3 are compared. The AV-MARE values of design storms at selected sites

and for durations of 2 - 24 h are shown in Figure 57. In addition to the stations in Cluster
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3 already discussed, Figure 57 includes results from Kokstad (0180722) and Piet Rietief
(0444540).
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Figure 56 Mean absolute relative errors, averaged for durations of
5min-1hand 2 - 24 h, of 2 to 100 vear return period
design storm depths estimated at Cedara (0239482) for
the six hypotheses summarised in Table 48
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Figure 57 Comparison of mean absolute relative errors of design
storms, averaged for durations of 2 - 24 h and for return
periods of 2 - 100 years, estimated at selected sites in
Cluster 3 for the six hypotheses summarised in Table 48
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As evident in Figure 57, Hypotheses 4 and 6 performed consistently well at the non-SAWB
stations (CP6, N23 and C182), but resulted in some of the largest errors at the SAWB
stations (0239482, 0180722 and 0444540). As shown in Figure 58 the 24 h L_ values
extracted from the digitised data correctly exceed the values extracted from the daily data
at non-SAWB stations, and the adjusted daily value, as used in Hypothesis 6, is similar to
the value extracted from the digitised data. However, at all the SAWB stations the L_7
values extracted from the digitised data are less than those extracted from the daily rainfall
data, indicating inconsistencies in the two sets of data. The limitations of the regional
regression relationships which estimate the 24 h L I value as a function of site
characteristics, as developed in Section 5.4 and used by Hypothesis 4, are evident in Figure
58. The estimated 24 h L_/ values tend to mimic the observed 24 h L_7 values extracted
from the digitised data, which were used in the development ofthe regression equations and
which have been shown to be unreliable at some SAWB stations. Hence, as before, it is
postulated that the best estimate of the 24 h L I value is the adjusted value extracted from
the daily rainfall data, as used in Hypothesis 6, and thus design storms based on L-moments
estimated using Hypothesis 6 are deemed to be the most reliable in Cluster 3. Based on this
assumption and on results from Station 0444 540, design storms estimated directly from the
digitised rainfall data may underestimate, on average over durations ranging from2 - 24 h,
the true values by as much as 65% at some sites in Cluster 3.

65.2 Cluster 6

Nine stations are contained within Cluster 6, of which six are SAWB stations, one isa CSIR
station (Jnk 19A) and the remaining two stations (Newlands, Athlone) are operated by the
Cape Town City Engineers’ Department. All the data for Athlone and Newlands and some
of the data for Jnk 19A were digitised by the DAEUN. The data from these three stations
had no digitising errors and are assumed to be relatively reliable, although no control daily
rainfall data were available to check the consistency of the data. The 4V-MARE of design
storms estimated at selected sites in Cluster 6 and for durations ranging from 2 - 24 hare

shown in Figure 59.
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Figure 58 Comparison of 24 h [_1 values estimated from various sources for
selected sites in Cluster 3
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Figure 59 Comparison of mean absolute relative errors of design storms,

averaged for durations of 2 - 24 h and for return periods of 2 - 100
years, estimated at selected sites in Cluster 6 for the six hypotheses
summarised in Table 48
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Similar to results presented for Cluster 3, design storms resulting from the application of
Hypotheses 4 and 6 generally result in the smallest deviation from design storms estimated
from the digitised rainfall data at most non-SAWB stations and the converse is true at
SAWB stations. Again this may be explained by the results contained in Figure 60, which
indicate that discrepancies exist between the digitised and daily SAWB rainfall data
(0023710, 0021591). It is also noted that Hypothesis 1, which is the simplest of the
hypotheses considered, is not valid at most sites considered in Cluster 6. Hence, it is
proposed that the estimation of the first and second L-moments using Hypothesis 6 results

in the most reliable estimates of design storms in Cluster 6.
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Figure 60 Comparison of 24 h L_/ values estimated from various sources for
selected sites in Cluster 6

6,5.3  Selected Other Clusters

Results from selected stations in different geographic and climatic regions are presented in

this section. These include stations in the central (Cluster 11), North-Eastern (Cluster 2),
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Northern Cape (Cluster 7) and West coast (Cluster 14) regions of South Africa. as indicated
in Figure 36.

The CSIR stations at Mokobulaan, which were not used in the clustering procedure or
regression analyses, fall geographically on the boundary of Clusters 2 and 11, but are closer
to the Euclidian mean of site characteristics of Cluster 11 than of Cluster 2. Hence these
stations provide an opportunity for an independent validation of the hypotheses. In addition,
SAWB Station 0476398 (Johannesburg International Airport) also located in Cluster 11 is
considered. The station selected for Cluster 2 is SAWB Station 0596179 (Skukuza), for
Cluster 7 is SAWB Station 0258213 (Drieplotte) and for Cluster 14 is SAWB Station
0106880 (Vrendendal). The 4V-MARE values for these stations are shown in Figure 61 and
a comparison of the L_/ estimated from various sources for the same stations is shown in
Figure 62. The discrepancies at the SAWB between the L [ values estimated from the
digitised and daily rainfall data again indicate that the most reliable design storms are
estimated when Hypothesis 6 is used to estimate short duration L-moments.

The relatively high average deviation of 20% in design storms estimated using Hypothesis
6 at Moko 3A for durations ranging from 2 h - 24 h reduces to an acceptable 12% if the
range is reduced to 4 h - 24 h, thus indicating a break in linear scaling for shorter durations.
This trend is evident in the observed and estimated L-moments for Moko 3A shown in
Figure 62. Similar breaks in linear scaling at durations ranging from | to 4 h were also noted
at other sites, for example, Ntabamhlope, Cedara, Kokstad, Piet Rietief, Johannesburg,
Skukuza and Drieplotte, which are all located in the summer rainfall region where short
duration, intense events resulting from thunderstorm activity is the predominant rainfall
generating mechanism. The breaks in linear scaling at shorter durations were not evident at,
for example, Jonkershoek. Cape Town or Vredendal, which are all in the winter rainfall -
region and generally experience low intensity, longer duration frontal type rainfall events.
An anomaly to this explanation is Cathedral Peak, which is in a summer rainfall region and -

experiences thunderstorm activity. but scales linearly to durations as short as 5 minutes.
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6.6 CHAPTER CONCLUSIONS

The focus of this chapter has been on estimating design storms for durations < 24 h from
daily rainfall data. Six hypotheses for estimating design storm depths for durations up to
24 h were examined. In most cases the stations evaluated were also used in the regression
analyses. However, this was unavoidable owing to the limited number of stations which
have recording raingauges. Where possible stations have been “hidden” (e.g. N23 and Moko
3A) and used to evaluate the hypotheses.

Of the six hypotheses evaluated, the simplest and intuitively most attractive to adopt is
Hypothesis 1 which assumes that the L_J and L_2 values for durations < 24 h can be
derived directly from the at-site 24 h and 48 h values. However, while this hypothesis
resulted in good estimates of design storms at some sites, it was shown nat to be valid at

other sites and is therefore not recommended for general use.

It was evident for stations within a relatively homogeneous cluster, that the slope of the
L_I:duration and L 2:duration relationships, when plotted on log scales (i.e. power law
relationships), were similar at the sites within the cluster. Hence equations based on multiple
linear regression relationships of site characteristics were developed to estimate this slope,
and the slope estimated using the regression analyses and site characteristics was termed the
Regional Slope (RS). The estimation of the slope from site characteristics proved to be
feasible for most clusters, except for Cluster I and 11. Even in clusters where relatively
weak relationships were obtained (e.g. Clusters 7 and 11), reasonable design stormn depths
were estimated. Thus, given an index point such as the 24 h values used in this analysis, the
L 1 and I 2 moments can be estimated for durations shorter than 24 h. Scaling of the site
characteristics prior to the regression analysis would have resulted in more reasonable
coefficients in the multiple linear regression equation and it is recommended that this should

be done in future work of this nature.

The use of the regional average L-moments, which are record length weighted averages of
L-moments of the AMS scaled by the at-site mean of the AMS (L_/) for each different
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duration {Hypothesis 3), also proved to be successful within the limitations of the reliabiiity
of the majority of the digitised data. Thus, in the derivation of the regional average L-
moments, the at-site L_J value for the D h duration is used as an index storm. Observed

L_1 values were used to re-scale the regional average L-moments in Hypothesis 3.

Hypothesis 4 re-scaled the 24 hregional average L-moments using 24 L _/ values estimated
from site characteristics and regressions developed for each cluster as reported in Chapter
5. Dh L_1I values (D <24) were then be derived from the 24 h L_/ value estimated in this
manner in conjunction with the RS, estimated using the regression equations and site
characteristics for the site in question. Again, within the limitations of the data, Hypothesis
4 generally performed well at most sites evaluated. Although Hypothesis 4 incorporates
information from the region via the regional average L-moments and RS and thus should
compensate for limited amounts of unreliable data, the large amount of unreliable data in
some clusters used in this study resulted in the compensation by Hypothesis 4 to be

relatively ineffective.

It was very evident that from the results presented in this and other chapters that the SAWB
digitised and daily rainfall data sets are not consistent. The inconsistency between the 1 day
and 24 h L_1 values resulted in Hypothesis 6 being developed. The 24 h L_/ value used
in Hypothesis 6 was calculated from the daily rainfall data and converted into a continuous
time value using the regionalised ratios developed in Section 6.4, The regionalised slope of
the log-transformed L_I:duration relationship was then used in conjunction with the
estimated 24 h L_/ value to estimate L_J for other durations, which are then used to re-
scale the regional average L-moments. The GEV distribution was fitted to the estimated L-
moments for durations < 24 h and hence design storms are estimated for these durations,
Hypothesis 6 is thus eminently suitable for application at sites which have daily, but not
shorter, duration data available. The use of the daily rainfall data and the regionalised
continuous: fixed time L_/ ratios to estimate the true 24 h L_7 values thus attempt to
compensate for any bias that may be contained in the 24 h L 1 computed from the digitised
data as a result of, for example. missing data either caused by instrument malfunction or

incorrect digitisation of charts. The use of Hypothesis 6 indicates that design events
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estimated directly from at-site digitised rainfall data obtained from the SAWB would, at
some sites, have underestimated the “true” design value by up to 65% on average over

durations ranging from 2 - 24 h.

The use of regional average L-moments, particularly when scaled as in Hypothesis 6 with
a better estimate of the true 24 h L_/, performed well in all clusters. In particular, the use
of a regional record length weighted T3 (third L-moment ratio = skewness) value, as the
third moment for the fitting of the GEV distribution resulted in reasonable design rainfall

estimates at all sites.

Hypotheses 4 to 6 assume that the L.-moment:duration relationship is linear when plotted

as log-transformed values. This power law function appéars to hold true for most clusters

over the range from 1 to 24 h. However, a change in the linear relationship at durations

ranging from 1 to 4 h was noted at most sites which experience summer rainfall (e.g.

Ntabamhlope, Cedara, Kokstad, Mokobulaan and Drieplotte), where thunderstorms are the

predominant rainfall generating mechanism. In the winter rainfall region (e.g. Jonkershoek,

Cape Town and Vredendal), where frontal rainfall systems predominate, the deviation in
linear scaling at a particular duration is not as marked. Although deficiencies in the temporal
resolution of the rainfall measurement and digitisation processes cannot entirely be
discounted as the cause of the change in linear scaling, it is postulated that the phenomenon
is mainly the result of the predominant rainfall generating system. The durations at which
the breaks occur at a particular site are hypothesised to be related to the rypical duration of
thunderstorm activity.

Regional ratios of 24 h: 1 day L/ values were used to estimate the 24 h value from the
daily rainfall data for each site in each cluster. When the standard error of the mean ratios
for each cluster are considered, it is noted that the mean value (=1.20) for all clusters falls
within one standard deviation of the mean value for all clusters. Hence a generalised value
of 1.20 may be adopted for use in South Africa.

248



Hypotheses 4 to 6 assume that the slope of the log-transformed L-moment:duration
relationship used is correct even though it has been pointed out that the majority of the
SAWRB digitised rainfall data were not reliable, as result of numerous digitising errors and
inconsistencies between the digitised and daily rainfall data. The limited amount of non-
SAWB digitised rainfall data resulted in the use of some SAWB data in the regional
analyses to estimate the RS, although it is conceded that some of this data was unreliable.
It was shown in Chapter 2 that the errors in the daily totals of rainfall computed from the
digitised database occurred over a wide range of values. It is probabie that the wide range
of event totals where errors occurred is associated with a wide range of event durations.
Thus, it is postulated that the slopes are probably reasonable estimates of their “true”
values, as events over a range of durations were affected by the periods of missing data. It
is thus assumed that missing events affect all durations equally and thus that the “true™ slope
and the slope derived from the data are similar.

Of the hypotheses considered in this chapter, Hypothesis 6 performed consistently well at
sites where no discrepancies were noted between the digitised and daily rainfall data. At
sites where inconsistencies were noted, it is postulated that Hypothesis 6 compensates for
deficiencies in the digitised data. Thus Hypothesis 6, which combines a regional index value
approach to design storm estimation and the scaling properties of the extreme rainfall
events, is recommended for estimating design storms in South Africa for durations ranging
from 2 h to 24 h. However, Hypothesis 6 should be used with caution for durations <2 h
and further research into estimating design storms for these shorter durations is
recommended.

Hypothesis 6 can only be applied at sites which have daily rainfall data. It is recommended
that regional relationships be developed to estimate the at-site 1 day L_I value, computed
from the daily rainfall data, as a function of site characteristics as reported in Section 6.3
for the 24 h L_1 values, which were computed from the digitised rainfall data. This
relationship in conjunction with the regionalised 24 h : 1 day L_/ ratios and RS would

enable reliable estimation of design storms for durations < 24 h at any site in South Africa.
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In this chapter, regional average L-moments have been combined with the power law
relationship between the first and second order L-moments and duration to give a technique
for estimating short duration design rainfall values at ungauged sites or at sites where only
daily rainfall data are available. In Chapter 7, the use of stochastic intra-daily rainfall models

to estimate short duration design rainfall values is investigated.
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CHAPTER 7

MODELLING RAINFALL AND ESTIMATING SHORT
DURATION DESIGN STORMS IN SOUTH AFRICA USING
THE BARTLETT-LEWIS RECTANGULAR PULSE MODEL

The Bartlett-Lewis (BL) stochastic rainfall models described in Chapter 3 were applied to
rainfalf data from various locations in South Africa. In this chapter the methodology of
determining and optimising the parameters for the models, measures of performance and the
results from applying the models to selected stations are presented. The performances of
both the Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM) and the Bartlett-
Lewis Rectangular Pulse Gamma Model (BLRPGM), as described in Chapter 3, were
assessed for various sets of historical moments used to determine model parameters. The
assessments include comparisons between observed and both analytical as well as simulated
moments and between design rainfall depths computed from the observed dataand from the
synthetic rainfall series generated by the models.

In addition to establishing whether the performances of the models were adequate, and in
the light of the low reliability of much of the SAWB digitised rainfall data, the focus was
also on determining model parameters using readily available daily rainfall values, and on
inferring shorter duration statistics using statistics computed from the daily data. Most of
the selected case studies presented use data from sources considered reliable and/or which
were digitised by the DAEUN. The locations of the stations used in this chapter are
illustrated in Figure 63. Within the limits of available reliable data, the models were
evaluated in different regions of the country. In regions where no reliable data were
available, data which were deemed to be of low reliability were used to illustrate some of

the inconsistencies in the data.

The method of estimating the parameters for the models is described in Section 7.1. A
goodness-of-fit index and sets of moments to be used for parameter estimation are proposed

in Section 7.2 and the performance of the models in terms of moments, event characteristics
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and extreme values are evaluated at selected sites in Sections 7.7 and 7.8 for parameters
determined using the different sets of moments. Section 7.3 addresses the estimation of
monthly moments fromthe observed data. In order to estimate the parameters of the models
at sites which have only daily rainfall data, a technique was developed to estimate short
duration variances from the daily data, and this technique is explained in Section 7.4. One
of the problems noted with the use of the BLRPMs was the difficulty in identifying model
parameters, and the correlation between model parameters is investigated in Section 7.5 and
based on these correlations, a parameter search strategy was developed as detailed in
Section 7.6. The performance of the models with respect to the temporal distribution of
stormms is evaluated at selected sites in Section 7.9. In order to identify better parameters for
the models the results of various parameter optimisation strategies are presented in Section
7.10. In two interesting case studies presented in Section 7.11, the problem of estimating
design rainfall depths from a short period of record is addressed.

Figure 63 Locations of stations used in case studies of the performance of the
MBLRPM and the BLRPGM
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7.1 PARAMETER ESTIMATION

The parameters for the models were determined by the method of moments which equates
moments computed from observed data (historical moments) with the equivalent analytical
expressions of the moments derived for the model. The resulting set of non-linear equations
were solved using a quasi-Newton routine to minimise the objective function given in
Equation 54 and repeated here as Equation 73, constrained such that the parameters were
20.

2
zemi zw(w] 2
i=] F,
where
X = parameter vector with 6 elements for the MBLRPM and 7 elements for
the BLRPGM,

Z(X) =  goodness-of-fit statistic or residual of least square function,

F(X) =  modelexpressionfor statistic / at specified level of aggregation (duration)

computed using parameter vector X,
F' = statistic / estimated from historical data at the same level of aggregation,
m = number of statistics and different levels of aggregation used in parameter
determination, and
W, = weight assigned to i-th statistic (set = 1 for all statistics in this study).

The parameters were transformed as shown in Equation 74 such that each parameter was
constrained to fall within defined ranges. The transformation generally aided the estimation
ofthe parameters when the range of the transformed values was limited to (0:1), i.e. YMAX,
=1and YMIN, = 0.

z=[[ %1 - ZM,

- ,-] x (YMAX, - YMIN, )]+YMIM .74
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where

Y, = transformed value for i-th parameter (X)),

YMAKX, = required maximum iransformed value for i-th parameter
(usually 1),

YMIN, = required minimum transformed value for i-th parameter (usually
0,

XMAX, = maximum allowable value for i-th parameter, and

XMIN, = minimum allowable value for i-th parameter.

7.2 SELECTION OF MOMENTS

As shown in Table 10 in Chapter 3, the choice of the combinations of statistical moments
used in the estimation of parameters affects the values of the parameters and could also
influence the performance of the model. Hence a comparison was made between the
statistical moments and other storm characteristics (e.g. dry probability, event duration and
number of events) computed from the observed data (historical moments) and those
computed using the estimated parameters and derived moment expressions {analytically
derived moments), both at the levels of aggregation of the morents used in the estimation
of the parameters and at other levels. A goodness-of-fit statistic was computed as the
deviation between the analytical and historical moments, expressed as a percentage of the
historical moments for different levels of aggregation and moments anél averaged over all

months as shown in Equation 75,

1 12 Y ’A(m.f = Himg, il
GOF = x ¥ 2 .75
(12)( NL XN L ) m= % i=1 H{m,l.})
where
GOF = goodness-of-fit mean scaled absolute deviation (%),
Aimin = analytical moment for month m, i-th aggregation level and j-th
moment,
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Hopin = historical moment for month m, i-th aggregation level and j-th

moment,
N, = number of aggregation fevels used, and
Ny = number of moments used.

The above GOF was computed for different sets of moments in order to establish an
optimum set to use in the derivation of model parameters. Two approaches were used in
the selection of sets of moments to use. In the first approach the GOF was evaluated
assuming that reliable short duration rainfall data were available and thus moments for any
level of aggregation could be used in the composition of parameter sets. The sets of
moments evaluated by this approach are termed Set 1 in Table 51. The second approach
attempted to derive the model parameters based only on moments and storm characteristics
that could be derived or estimated from the daily rainfall data and are denoted as Set 2 in
Table 51. Thus the 24 h and 48 h values referred to in Table 51 are derived from the
digitised data for Parameter Set 1 and from the daily rainfall data for Parameter Set 2. The
method of deriving the variance for durations < 24 h from the daily rainfall data, as required
in Set 2f, is outlined in the Section 7.4. The computation of moments from the data is

discussed in Section 7.3.

7.3 ESTIMATION OF MOMENTS

In the literature two approaches have been adopted in the estimation of moments from the
historical data. One option is to pool the data for each calendar month and to calculate the
moments from the pooled data. The second approach computes the moments from the
individual months of data and then pools the moments for each calendar month. Pooling
the data into a continuous series could result in some erroneous moments {e.g. variance and
autocorrelation) as a result of the moments computed for the period from the end of one
month to the beginning of the next month. Problems are also encountered in the
‘computation of the autocorrelation when periods of missing data are encountered in the

pooled data. In the pooled moments approach, the moments for the month are excluded if

255



any part of the month has missing data. Hence the pooling of moments approach was
adopted in this study, aithough the differences in the moments computed using the two
approaches were generally found to be small.

Table 51 Definition of sets of statistics used for estimating mode] parameters
{ ) indicates that the moment was used for the BLRPGM only
(] indicates values are estimated from daily rainfall data

Level of Temporal Aggregation of Moment / Event Characteristics Used (h)
:]: Mean Variance ing-l Auto- Dry
Correlation Probability
la 1 1,24 1, (24) 1,24
ib B { 1,24 1,24
le 1 1,24 124 1
1d 1 1,6 1, (6) 1,24
le 1 l,6 1(&) 1.6
1f 24 1.6,12, 24, 48 24 24,48
Ig 1,6,12,24 1,6,12, 24 1.6 12,24 1,6, 12,24
2a 24 24, (48) 24,48 24,48
2b 24 24,48 24 24,48
2¢ 24 24,48 24,48 24
2d 24 24,48 24, 48 24,48
2e 24, 48 24,48 24,48 24,43
2f 24| {1.6,12]).24, 48 24 24, 43

A problem encountered with the digitised rainfall data was the apparent digitisation of
spurious periods of very low intensity rainfall. The linear interpolation between adjacent
data points within the breakpoint digitised rainfall data can result in very small amounts of
apparent rainfall when totals of rainfall for fixed time increments {e.g. 15 minuies) are
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extracted from the data. For example, if two consecutive digitised points have a time
difference of 24 h between them and have a slightly different rainfall depth, then the linear
interpolation between data points would result in the extraction of a small amount of rainfall
for each of the intervals within the 24 h period and would thus appear as continuous rainfall
in the extracted data. Hence apparent rainfall rates of less than 1 mm per day or 0.01 mm

per 15 min increment were assumed to be periods with zero rainfall.

7.4 ESTIMATION OF VARIANCES FOR SHORT DURATION RAINFALL

Analytically derived moments matched the historical moments better when historical
moments for durations shorter than 24 h were included in the set of moments used to
estimate the model parameters. Marked improvements in analytically derived moments
resulted when second-order moments for shorter durations (I to 24 h) were used in the
estimation of parameters. Hence, in the absence of short duration data as assumed for Set 2
moments, which were based on daily rainfall data, or when the short duration rainfall are
considered unreliable, it is necessary to estimate the shorter duration moments.
Cowpertwait et al. (1996b) estimated the variances of rainfall for durations shorter than
24 h from the variances of daily rainfall totals, using a regionaliséd regression approach
between the shorter duration and daily variances. In this study, insufficient reliable short
duration data were available to estimate regional relationships. Hence an alternative

approach had to be devised.

[t was noted at sites where the short duration rainfall data were considered to be reliable,
that the relationship between variance and duration, when plotted on a log scale, is nearly
linear. This is depicted in Figure 64 for selected stations from different climatic regions and
for selected months. Hence, assuming a linear relationship on a log-scale between variance
at a particular aggregation level and duration, the variance for any duration can be estimated
given the daily rainfall data. The resuits of estimating the variance for durations shorter than
24 h from the variance of 1 and 2 day daily rainfall data are shown in Figure 65 for selected
stations and include results from all calendar months. As shown in Figure 65 by the
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deviation of the estimated values fromthe 1:1 line, it was found that the estimated variances
generally exceed the observed variances for values < 1 mm’. The variance of hourly data
is generally < 1 mm?® for most stations. Hence the estimation method is deemed to be
suitable for durations > 1 h. Thus this method was used to estimate the historical variance
for durations shorter than 24 h from daily rainfall data and enables the estimation of the
historical moments in Set 2f to be derived entirely from daily rainfall data.

Cedara (C182)

Variance (mm*2)

10 10Q 1000 10000
Duration (min)

—=— Jan —=— Feb —e— Mar —— Qct —=— Nov —— Dec

Ntabamhlope (N23)

10 100 1000 10000
Duration (min)

—=— Jan —=— Feb —e— Mar —a— QOc¢t —=— Nov —=— Dec

Figure 64 Variance vs duration at selected stations and for selected months
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Jonkershoek (Jnk19A)
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Figure 64 (continued) Variance vs duration at selected stations and for selected months

7.5 PARAMETER CORRELATION

The constrained minimisation of Z(X) Equation 73 generally resulted in a satisfactory
solution with the constraints on the parameters set to values such that the physical attributes

of the parameters, such as inter-storm and storm duration, were realistic and/or to ensure
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that the parameters generally fell within the bounds of parameters reported in the literature.
However, on occasion with particular sets of historical moments at some sites, and generally
with the Set 2 moment combinations, difficulties were encountered and the minimum of'the
objective function was frequently located at the limits set for one or more of the parameters.
In addition, the relationships between the parameters of the models are not explicit and the
quasi-Newton minimisation procedure gives no confidence interval to the estimated

pararneters.
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Figure 65 Estimated vs observed variance at selected stations
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The sum-of-squares function in Equation 73 can be re-written as a set of m simultaneous
equations with » parameters in matrix notation (matrix and vectors shown in bold typeface),

as shown in Equation 76.

()= X[no] = s .76
where

rT = [P’; (X)9 r.? (X)9 resey rm (X)]!
in which

r(X)= (—'_E (:X') - 1]
F,

{

and the first and second order derivatives of Z(X) can be derived (Fletcher, 1987) as

Z(X)=2Ar 277
"
Z'(X)= 2447 + 2D _rV70 .78
i=f
where
A(X) =[Vr;,VP'2 ----- Vrm] _ ....79

is the » x m Jacobian matrix the columns of which are the first derivative vectors Vr, of the

components of 7 (4, = Jr;/ dX). te.
Vr, = [0r./ 08X, 0r, /0K, .....Or / 0X,] .80

The Hessian matrix of second partial derivatives is

H(X):[Vzr,,V‘-’rz ..... v"r,,,] .81

where
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©r, = [Pr./3X,3X,, 3,/ 3X, 0K, .ol ] 8K OX,)T . .82
When Z(X) is minimised, the residual r, values are generally small and hence the second term
in Equation 78 can be ignored. Assuming that the residual (r;) values are normally

distributed with variance ¢ and using this approximation, the variance-covariance matrix
(V) may be estimated according to Fletcher (1987) as

V=44 "6? .83

and the variance estimated as

....34

where Z(X) is the maximum likelihood sum of squares obtained by minimising Z(X), m is

the number of equations and » is the number of parameters.

The diagonal of the ¥ matrix corresponds to the variance of the parameters and the off-
diagonal elements correspond to the covariance between the parameters. Hence the
correlation coefficient between parameter / and j may be computed as p,= V,/(g, g) where

¥ is the element in row i and column j in V' (Stuart and Ord, 1987).
The variance-covariance matrix ¥ may also be estimated from the Hessian () matrix for
maximum likelihood functions as was performed by Woolhiser and Pegram (1979). Inthe

case of least squares estimates, according to Fletcher (1987), the variance-covariance matrix

¥ may also be estimated from the Hessian (H) matrix as

V=gz(.12.fr‘) .85
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Thus the correlation matrix (R) may, according to Woolhiser and Pegram (1979) and (Press
et al., 1992), be derived as

R= s"[a 2(%1;")] 5! .86

where § is a square matrix with o, (derived from the diagonal of ) on the diagonal and the

rest of the matrix void.

Using the above relationships, the standard deviation of the parameters can be estimated and
relationships between the parameters can be investigated. The variance-covariance matrix
was calculated with very similar results using both the Jacobian matrix and the Hessian
matnx. For a well determined systern (m=r), o cannot be estimated using Equation 84 and

hence o was estimated as Z(X’) when m=n.

The estimates of the values of the parameters and the results from estimating the Standard
Deviation of the estimates (SD), Coefficient of Variation (CV) as SD/estimate and the
correlation between parameters of the MBLRPM, computed using Equation 86, are
contained in Table 52 for raingauge N23 in the Ntabamhlope research catchments. The
parameters of the MBLRPM were determined using moment Set 1b in Table 51 and are
referred to as parameter Set 1b. Thus the term “parameter Set 1b” refers to the set of
parameters derived for the model using the Set 1b moments referred to in Table 51.

From Table 52 it is evident that there is a high degree of correlation between parameters
and that the parameters are not well defined. This is apparent from computing the CV, i.e.
the ratio between the SD and parameter value. In particular, the &, ¢, vand u, parameters
are poorly defined. The most poorly defined parameter is v and the resuits of fixing vat a
value determined by the constrained minimisation procedure, thus reducing the parameter

space by one, are contained in Table 53.
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Table 52  Estimated parameters, correlation matrix and goodness-of-fit of the MBLRPM,
fitted to data for January from N23, using parameter Set b

Parameter Correlation Coefficient Z

Name { Value SD cv A 'y fr) v a Hs

A 0.0380 |0.0057 [0.1511 |1.0000 |0.7702 {0.8060 |-0.8556 [-0.8671 |0.7819 |0.0062

x 0.0911 [0.2594 {2.8455 {0.7702 |1.0000 |0.9900 1-0.9571 |-0.9319 |0.8200

¢ | 0.0861 |0.1113 }1.2924 [0.8060 0.9900 | 1.0000 1-0.9716 |-0.9589 |0.8435

v 0.9734 [2.6474 |2.9199 |-0.8556 |-0.957) }|-0.9716 | 1.0000 |0.9952 |-0.9378

a | 45231 |5.3119 |1.1744 |-0.8671 |-0.9319 1-0.9589 [0.9952 | 1.0000 1-0.9427

Hy  |10.2520 [3.5456 |0.3458 {0.7819 [0.8200 |0.8435 1-0.9378 |-0.9427 | 1.0000

Table 53 Estimated parameters, correlation matrix and goodness-of-fit for the
MBLRPM, fitted to data for January from N23, using parameter Set 1b and

with o fixed
Parameter Correlation Coefficient z
Name | Value | SD Ccv A X & v a Hy
P! 0.0380 |0.0030 0.0782 {1.0000 |-0.3240 {0.2067 0.3077 |-0.1145 |0.0062
x |0.0909 10.0750 {0.8255 |-0.3240 | 1.0000 10.8779 0.7264 1-0.7708
0.0860 {0.0264 10.5066 |-1.2067 |0.8779 |1.0000 0.3477 |-0.8235
v {0.9763 Fixed
a 4.5290 [0.5206 0.1139 |-0.3077 |0.7264 |0.3477 1.0000 |-0.2753
4, |10.2483 11.2303 10.1201 {-0.1135 {-0.7708 |-0.8235 -0.2753 }1.0000

The effect of fixing the value of vin the MBLRPM results in better defined parameters with
lower inter-parameter correlations. However, the goodness-of fit (Z) is not improved using
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this strategy. A similar analysis to the above was performed for the BLRPGM and the

results for a selected month are contained in Tables 54 and 35.

Table54  Estimated parameters, correlation matrix and goodness-of-fit for the BLRPGM,
fitted to data for January from N23, using parameter Set 1f

Parameter Correlation Coeflicient Z

Name | Value sD Ccv A K @ 7 a Fo) 2]

A 0.0344 ] 0.0077 |0.2223 | 1.0000 |-0.2961 |0.6%42 |-0.9153 |-0.9153 |0.5929 |0.0079 10.0084

x 0.1350 } 0.0544 |0.4028 [-0.2961 | 1.0000 J0.0879 |0.3056 {0.3063 |-0.8712 |-0.7240

¢ 0.0708 | 0.0131 |0.1857 |0.6942 $0.0879 | L.00O0 1-0.7138 [-0.7144 10.3516 |-0.0089

v 45.3685 |58.1870 11.2825 |-0.9153 |0.3056 |-0.7138 [1.0000 | 1.04K00 {-0.6176 |0.0851

a |105.1307 |86.5885 |0.8236 [-0.9153 |0.3063 {-0.7144 |1.0000 |1.0000 [-0.6181 [0.0840

P 0.3571 | 0.1135 10,3178 [0.5929 [-0.8712 [0.3516 |-0.6176 |-0.6181 |1.0000 {0.6843

00717 10.6167 |0.2325 |0.0079 {-0.7240 |-0.0089 {0.0851 ]0.0840 |0.6843 |1.0000

From Table 54 it is evident that there is a large degree of correlation between some
parameters of the BLRPGM and that the parameter v is the least well defined. In this
instance the ¢ and v parameters are completely correlated and fixing either of these
parameters will fix the other parameter. The results of fixing v, and thus reducing the
parameter space by one, are contained in Table 55. Similar to the results from the
MBLRPM, this strategy results in better defined parameters for the BLRPGM, but does not
improve the fit (Z) of the model. A strategy to reduce the parameter space, and thus have
more reliable estimates of the pararneters of the model, while simultaneously improving the

overall fit of the model is investigated in the following section.
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Table 55  Estimated parameters, correlation matrix and goodness-of-fit for the BLRPGM,
fitted to data for January at N23, using parameter Set 1f and with v fixed

Parameter Correlation Coefficient Z
Name | Value 88 cv A x @ v & fo) S

4 (0.0344 [0.0028 10.0817 § 1.0000 [-0.0425 | 0.1451 0.0110 | 0.0867 { 0.2137 |0.0084
x 0.1349 [0.0473 0.3503 |-0.0425 | 1.0000 | 0.4591 0.2558 |-0.9113 |-0.7905

@ 0.0708 10.0084 |(.1188 | 0.1451 { 0.4591 | 1.0000 02668 [-0.1621 | 0.0741

v 428269 Fixed

a {99.3731 10.2354 j0.0024 | 0.0110 | 9.2558 |-0.2668 1.000¢ [-0.1720 }-0.3607

2 0.3574 |0.0815 |0.2281 | 0.0857 {-0.9113 1-0.1621 -0.1720 { 1.0000 | 0.9405

& 0.0717 [0.0152 |0.2116 | 0.2137 §-0.7905 | 0.0741 |} -0.3607 | 0.9405 | 1.0000

7.6 SEARCH STRATEGY FOR IMPROVING MODEL FIT

As shown in the previous section, the effect of fixing one or more of the least well defined
parameters is to improve the confidence in the remaining non-fixed parameters, but with no
decrease in the goodness-of-fit (Z). In order to determine the opt'imum value at which to
set the fixed parameters(s). a search was performed between user-defined boundaries for
the fixed parameter(s). Once the optimum value(s) for the parameter(s) being fixed had been
established, the parameter(s) were set to these values and rcmammg parameters were
determined using the constrained minimisation procedure. An example of the constrained
minimisation procedure and parameter search is shown in Figure 66 where the least well
defined parameter has been established as v and a constrained minimisation procedure is
implemented for each fixed value of v. In order to determine better defined parameters, the
constraints used in the minimisation procedure were such that the mean storm
characteristics, as shown in Figure 67, made reasonable physical sense. Based on these and
other successful improvements in Z, the search strategy was adopted for all model
parameter estimation, with the exception of results in Section 7.10, where additional

parameter optimisation techniques are evaluated.
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7.7 ANALYTICAL PERFORMANCE

The performance of the two models can be evaluated by comparing model moments and
event characteristics with the historical values. Model moments may be computed either by
using the analytical expressions for the momemnts and fitted mode} parameters, which are
termed “analytical” moments, or by using the model to simulate rainfali and compute the
“simulated” moments from the synthetic rainfall series by re-sampling. In this section the
analytical performance of the models is investigated and the simulated performance is
analysed in the following section.

Three GOF indices were computed for the analytical moments, using Equation 75. The first,
termed “Fit Only”, only incorporated the moments at the levels of aggregation used in the
determination of the parameters i.e. as per list in Table 51. The second , termed “Lag-1
Only”, used the mean, standard deviation, lag-1 autocorrelation, probability of dry periods
and the duration and number of wet periods, computed at 16 levels of aggregation ranging
from 15 min to 48 h, to compute the GOF. The third GOF computed was similar to the
“Lag-1 Only”, but inciuded the lag-2 and lag-3 autocorrelations and is termed “Lag 1-3”.
As an example, these indices are shown in Figure 68 for both the MBLRPM and BLRPGM
fitted to data from raingauge N23 in the Ntabamhlope catchments for the sets of moments
used in parameter determination listed in Table 51.

From Figure 68 it is evident that the performances of both the MBLRPM and BLRPGM are
affected by the set of moments used in the determination of parameters. Parameter Set e
gave the best performance for both the MBLRPM and BLRPGM in the scenario that
assumed that short duration rainfall data were available. If only daily data were available
(i.e. Set 2), Set 2f resulted in the best performance for the MBLRPM when only the lag-1
autocorrelations were considered and similar performance was obtained from Sets 2a, 2d
and 2e if the lag-2 and lag-3 autocorrelations were included. Similarly, for the BLRPGM
and assuming only daily rainfall data were available, the best parameter set for the Lag-1
Only GOF was Set 2f, while Sets 2d and 2e resulted in similar values for the Lag 1-3 GOF.
The relatively larger Fit Only GOF obtained with both models for Sets 2a, 2c, 2d and 2e is
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a result of the inclusion of the 48 h lag-1 autocorrelation in these sets and which was

negative for some months at raingauge N23. This does not appear to affect the overall

performance of the analytical moments of these moment sets. For example, the Fit Only

GOF of Set 2b, which does not include the 48 h lag-1 autocorrelation, is much smaller than
the other Set 2 analytical moments, but the overall analytical moments obtained using Set

MBLRPM
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2b are not as good as that obtained using the other Set 2 moments.
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Figure 68

Unexpectedly, the overall performance of the models did not improve when more than the

minimum number of moments (Sets 1f , 1g and 2f) were used in the estimation of
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parameters. Thus the expected improvement in GOF as a resuit of inciuding more moments
to be used for parameter estimation is off-set by the difficulty in estimating parameters with
more degrees of freedom, as indicated by larger Fit Only GOF for Sets 1fand 1g.

A comparison of analytical and observed moments for selected durations in January at N23
using the MBLRPM and the BLRPGM, both with parameters derived using moment Set
le, is shown in Figure 69. The relative error is the absolute difference between the analytical
and historical moment expressed as a percentage of the historical moment. As illustrated in
Figure 69 the analytical moments of the BLRPGM better represent the historical values,
particularly for shorter durations. In addition, it is noted that both the mean and probability
of no rain are better represented by the BLRPGM over all the range of durations show.
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Figure 69 Comparison of analytical moments of the MBLRPM and BLRPGM at N23
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A comparison of the analytical moments using the Lag-1 Only GOF is shown for selected
stations in Figure 70. For the MBLRPM and assuming that digitised data were available,

then parameter Sets 1b, 1fand 1g gave the best fit to the historical values, whereas if only

the daily data had been available, then parameter Set 2fresulted in the best fit at the stations
shown. Similar fits to the historical values were obtained using the BLRPGM for the Set

then Set 2fresulted in the

if only daily rainfall data were available,
best analytical fit 10 the historical moments at the stations shown, except for Station C182.

| parameters. However,

MEBLRPM

T (%) 409 A0 1-Be

2a

tg
arameter Set

BLRPGM

g

(%) 309 Aup -Be

72 CP6 = Jnk19a Moko3AZZ] C182

N23

Comparison of analytical moments at selected stations

A comparison, for the same parameter set, of the fit to the historical moments of the

analytical moments computed by the two models indicates that the BLRPGM, despite
needing to estimate an additional parameter, generally performs better than the MBLRPM.

Figure 70
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It has been established that. at the sites considered and which fall in different climatic
regions in South Africa, the analytical moments computed using the BLRPGM generally fit
the historical moments better than those computed from the MBLRPM, irrespective of
which set of moments was used to determine the parameters of the modeis, Assuming that
the short duration digitised data were available then, for the MBLRPM, moment Sets 1b,
1fand 1g resulted in the best fit 1o historical values when using analytical moments, whereas
for the BLRPGM a similar performance was obtained for all the parameter sets used. Hence
the fit of the BLRPGM analytical moments to the historical values appears to be less
dependent than that of the MBLRPM on the set of moments used to derive the parameters.
If only daily rainfall data are available then parameter Set 2f, which includes estimated
variances for durations shorter than 24 h, generally resulted in the best fit for both models.

In the following section the simulated performance of the models, with parameters
determined using different sets of moments, are examined.

7.8 SIMULATED PERFORMANCE OF THE MODELS

In the previous section the performance of the model was assessed relative to the analytical
moments of the model. In order to quantify the simulated performance of the models,
moments and other event characteristics computed from the simulated synthetic rainfall
series are compared to the equivalent values computed from the observed data in Section
7.8.1. Similarly, design rainfall depths computed from the simulated synthetic rainfall series
are compared to the equivalent values computed from the observed data in Section 7.8.2.

For each evaluation at a particular site, one hundred sets of synthetic rainfall series were
generated, each with a record length equal to that of the historical data. The performance
of the model is assessed using two measures. In the first measure, seven moments and
statistics (mean, standard deviation, auto-correlation, dry probability, durations of wet and
dry periods and the number of events) of the synthetic data are compared to the
corresponding characteristics of the historical data. More emphasis is placed on the second
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measure of performance of the model where design storms, computed from the synthetic
series, are compared to those computed from the historical data.

The measures of performance of the models are both initially focussed on detailed results
using data from raingauge N23 in the Ntabamhlope catchments, and are subsequently
generalised and expanded to data from other raingauges in order to lead to some general

conclusions.

7.8.1 Moments and Statistics

At each of the selected stations the stochastic variability of the BL models was simulated
by generating 100 sets of synthetic rainfall series, each with the same length of record as the
observed data, for each of the parameter sets outlined in Table 51. A frequency analysis
for each statistic and for each duration was performed on the 100 sets of synthetic rainfall,
High -Low bar graphs depicting the observed moments and 25-th and 75-th non-
exceedance percentiles of the 100 synthetic data sets are used to graphically depict the
adequacy of the models. For example. the results from generating synthetic rainfall series
using the MBLRPM, fitted to the data from N23 using parameter Set 1b, are shown in
Figure 71. For the moments and statistics shown in Figure 71, the MBLRPM with
parameters derived using Set 1b generally simulates the observed values well, particularly
for durations longer than 15 min.

In order to objectively assess the performance of the models, the Mean Absolute Relative
Error (MARE), as calculated in Equation 87, is shown in Figure 72 for the MBLRPM fitted
to data from raingauge N23 using moment Set 1b. The number of aggregation levels in
Equation 87 (N;) was set to 10 and the durations used were 2,3,4, 5, 6,9, 12, 15, 18 and
24 h. For the summer months (Oct - Mar), when more than 80% of the rainfall occurs and
when the extreme rainfall events usually occur, the MARE for the 10 levels of aggregation
used are less than 10% for the mean. standard deviation and dry probability.
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MARE,, ,, = T*’l:_x J_%L] 100 x [&{%}"—'IJ .87
where
MARE;, = mean absolute relative error (%) for month 7, and statistic j (%),
mean (j=1), standard deviation (j=2), autocorrelation lag-1
{/=3), dry probability (/=4), duration of wet periods (=5},
duration of dry periods (/=6) and number of wet periods (=7),
Sip = mean j-th statistic computed from the 100 synthetic rainfall
series generated for month /, '
Oip = J-th statistic computed from observed data for month /, and
N, = number of aggregation levels used.
1000
100
X
g 10
=
1

Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov Dec
Month

—=— Mean—w— S0 —e— AC-1 —a— Pdry —e— MW s Md —=— Mn

Figure 72 Mean absolute relative errors of rainfall series simulated using the MBLRPM
(Set 1b) at raingauge N23 (SD = standard deviation; AC-1 = lag-1
autocorrelation; Pdry = dry probability; Mw = event duration; Md = dry
duration; Mn = no. of events}
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The MARE value shown in Figure 72 reflects the differences between the mean of the
statistic computed from the 100 synthetic rainfall series and the corresponding statistic
computed from the observed data, and does not reflect the stochastic variation within the
100 values computed from the 100 synthetic series. Thus a frequency analysis was
perforned on the 100 values for each of the statistics and the percentage of times (EXC)
the observed statistic fell outside of the 25™ and 75% percentile of simulated values was
computed. The MARE value was adjusted using the EXC value for the statistic as shown
in Equation 88. Inaddition, a mean adjusted MARE value (STATS_INDEX) was computed
as the mean of the MARE values for individual months to form a composite index for the
statistic for the 10 durations considered and for all the rainy season months.

1 Zﬁ EXC, »
STATS_WDEIY(;) = 6 X i=|MREUJ] X ].+ 50 ..-88
where
STATS INDEX, = performance index for rainy season months for statistic j

which includes 10 aggregation levels, and

EXC,, =  percentage of times the observed j-th statistic in month i
fell outside the range of the 25" and 75 percentiles of
100 values computed from the synthetic series.

The STATS INDEX values for both the MBLRPM and BLRPGM at raingauge N23, with
parameters determined using the Set 1 moments, are shown in Figure 73, By comparing
the STATS_INDEX for different parameter sets for the same statistic, it is evident that the
seven moments computed from the synthetic rainfall series generated by the MBLRPM best
fit the historical values when moments Sets 1b, 1fand 1g are used to determine the model
parameters. These are the same findings as when the analytical moments were considered.
Parameter Sets 1e and 1g resulted in the best fit of the simulated moments of the BLRPGM.
When the STATS INDEX computed from the MBLRPM and the BLRPGM are compared

for the same parameter set shown in Figure 73, it is evident that moments computed from
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the synthetic rainfall series generated by the BLRPGM fit the observed moments better than
those from the MBLRPM.

Assuming only daily rainfall data to have been available at raingauge N23, the moments
computed from the synthetic rainfall series generated by the MBLRPM best fitted the
observed values, as shown in Figure 74, when parameter Set 2f was used. For the
BLRPGM, very little difference in performance is noted between the Set 2 parameters,
although Set 2f performed slightly better than either Sets 2d or 2e. A comparison between
the performance of the MBLRPM and BLRPGM at raingauge N23, for the same Set 2
parameters, indicates that the moments computed from the synthetic rainfall series generated
by the BLRPGM fit the observed moments better than those from the MBLRPM.

In order to compare the performance of the models at different stations, the mean value
(M_STATS_INDEX) of the seven STATS_INDEX, values were computed for each station

and parameter set as shown in Equation 89,

T
> STATS_INDEX, .89
s=1

M_STATS _INDEX =

~3 | —

where
M STATS INDEX =  goodness-of-fit index of model to all seven moments for
durations ranging from 2 hto 24 h and for all rainy season
months
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mputed at selected stations for both the MBLRPM and
BLRPGM using all parameters sets. The results for the Set 1 parameters are shown in

The M _STATS INDEX was co

Figure 75 and for the Set 2 parameters in Figure 76. Assuming that short duration rainfall

data were available at all the sites, then the best performance for the MBLRPM, relative to

was achieved with parameter Set 1f while for the BLRPGM

L}

the seven statistics considered

if the performance of

the performance for all Set 1 parameters were similar. However,

MBLRPM and BLRPGM are considered for the same Set I parameters it is evident that the

synthetic rainfall series generated by the BLRPGM fit the observed data better than the
series generated by the MBLRPM. Assuming that only daily rainfall data are available at the
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selected stations then, as shown by the results for Set 2 parameters in Figure 76, the
performance of the twe models is very similar for both the parameter sets and, with the
exception of Station Moko3a, the best performance for both models is obtained using
parameter Set 2f. These trends in the simulated performance of the models for the different
parameters sets reflect the trends noted in the analytical performance of the models, With
the focus of the study being the estimation of design rainfall values, the most important
assessment of the models is how well the extreme events are modelled in the synthetic
rainfall series.
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Figure 75 Simulated performance for rainy season months and for durations ranging
from 2 h to 24 h of the MBLRPM and BLRPGM at selected stations using
Set | parameters
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7.8.2 Extreme Rainfall Events

For the observed data and for each of the 100 synthetic series generated by the model,
design rainfall depths were calculated using the General Extreme Value (GEV) distribution
fitted to the Annual Maximum Series (AMS) by L-moments. Design values for 2, §, 10, 20,
50 and 100-year return periods were computed for rainfall durations 0f 0.25. 0.5, 1, 2, 3,

4,5,6,9,12,15, 18 and 24 h. For each duration and return period, a frequency analysis

was performed on the 100 values computed from the synthetic rainfall series generated by
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the model. High -Low bar graphs depicting the observed design rainfall computed from the
observed data and the 25-th and 75-th non-exceedance percentiles of the 100 synthetic
data sets were used to evaluate the adequacy of the models. For example, the performance
of the MBLRPM (Set 1b) for the best (January) and worst (December) rainy season month
and annual totals is shown in Figure 77.

The estimation of design rainfall values at N23 from the synthetic rainfall series generated
by the MBLRPM using Set 1b parameters compares well with the design values computed
from observed data for January and annuat totals shown, particularly for durations > 3 hand
return periods < 50 years. The fit is not as good for December where the performance for
durations <! h and return periods < 2( years is better than for durations > 1 h and return
periods > 20 years. In order to objectively assess the performance of the two models and
the various parameter sets, relative to the estimation of design rainfalls, the Mean Absolute
Relative Error (MARE) was calculated to include rainy season months and annual totals
and return periods ranging from 2 to 50 years, as shown in Equation 90.

N, N N -
MARE = 5 ;1\?? Nep © _ZM >3 ls{'"j’“ Zusb .50
i=lj=tk=] G, j. b
where
MARE = mean absolute relative error of design rainfall (%),
Siizn = mean &-th return period, j-th hour design rainfall computed for
i-th period from model generated rainfall series,
Oys = k-th return period, j-th hour design rainfall computed for i-th
period from observed data,
Ny = number of periods (7), 1 to 6 = rainy season months and 7 =
annual period
N, = number of aggregation levels (=10)
Nep = number of return periods (=5 for 2, 5, 10, 20 and 50 year return
periods)
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The design rainfall MARE values, for rainy season months and annual periods and for 10
aggregation levels (2, 3,4, 5,6, 9, 12, 15, 18 and 24 h), computed at selected stations from
rainfail sertes generated by both the MBLRPM and BLRPGM, are shown in Figure 78. For
both models the MARE values for parameter Set 1 are better than those for Set 2, indicating
that when short duration rainfall data are available at a site, better design rainfall values are
computed using the models than when only daily rainfall data are available. Parameter Sets
Ifand 1g resulted in the best performance of the MBLRPM for the Set | parameters, while
similar performance at all stations was obtained for all Set 1 parameters for the BLRPGM.
Parameter Set 2f which uses variances estimated from the daily rainfall data for durations
shorter than 24 h, resulted inthe lowest A4 RE values for Set 2 parameters for both models
and is thus recommended for use when only daily rainfall data are available for parameter
determination. The MARE values from the BLRPGM are generally lower than those from
the MBLRPM and hence the BLRPGM is recommended as the preferred model to use.
Although the Set 2 parameters resulted in MARE values larger than those from the Set 1
parameters, the MARE values for Set 2 were generally less than 20 % for Set 2f at most
stations. Thus the use of only daily rainfall data to determine the parameters for the models
is considered to be feasible.

The above analysis has only considered MARE values durations > 1 h. The MARE values,
computed using the BLRPGM. for durations <1 h (15, 30 and 60 min) as well as MARE
values for durations > 1h are shown in Figure 79 for the test stations. Generally the Set |
parameters result in better estimates of design rainfall values for longer duration values than
for shorter (< 2h) durations. Clearty the use of the BLRPGM to estimate design rainfalls for
short durations (< 2h), particuiarly when only daily data are used to determine the model
parameters (Set 2), results in unacceptably large MARE values. The contrast in the MARE
values when the digitised data are available (Set 1) and when only the daily data are
available (Set 2) for parameter determination, particularly for the durations < 2h, is

attributed to the poor estimates of the variances for shorter durations.
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Figure 79 Comparison in estimation of design rainfall values at selected stations for
shorter and longer durations using the BLRPGM

The trends in the estimation of design rainfall using the two models and various parameter
sets are consistent with those found when evaluating the analytical performance of the
models. The incremental search technique, developed to determine model parameters,
improved the fit of the models to the observed moments and for all three measures of

performance it was noted that:

286



, the BLRPGM generally performed better than the MBLRPM,

. the performance of the BLRPGM was generally less sensitive to the set of moments
used to determine the model parameters than the MBLRPM,

. the performance of both models was best when over determined systems (more
equations than parameters, e.g. Sets 1f, 1g and 2f) were used to determine model
parameters,

. the use of variances for durations < 24 h estimated from the daily values successfully
improved the model performance when only daily data are available to estimate model
parameters, and

’ the use of the BLRPGM with parameters determined using either Sets 1f or 2f
moments, dependent on the availability of short duration rainfall data, is deemed to
be a suitable technique to estimate design rainfall values in South Africa. ‘

The above selection of the most appropriate model and parameter set and results are based
on a selected number of non-SAWB stations where the data are considered to be reliable.
The use of the BLRPGM to estimate design storms for these test stations and other
stations, using parameter Sets 1f and 2f, is shown in Figure 80. The resuits contained in
Figure 80 exclude outlier events in the observed data. For example, design storms estimated
from the observed data at Cedara (SAWB 0239482) excluded cutlier events from 26-29
Sepiember 1987. Similarly, outlier events which occurred on 20 January 1972 and 22
December 1978 at Johannesburg International Airport (SAWB 0476398) were excluded in
the estimation of design storms from the observed data. Despite the exclusion of outlier
events the performance of the models at some sites, even when digitised rainfall data are
available (Set 1f), is not considered to be adequate. These anomalies are investigated in the

following section.

7.8.3 Anomalies in the Estimation of Design Rainfalls

The relatively large differences in MARE values obtained using Set 2f parameters compared
to values obtained using Set le parameters, as shown in Figure 80 at stations Jnk19A,
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Moko3A and Newlands, is postulated to be the result of the poor estimation, from daily

data, of the variance of short durations when parameters were determined using moment

Set 2f,
Set 1f Parameters
40
0 N23 Jnk19A  C182  Athlone 0239482 0596179 0258213
CP6 Moko3A  Newlands  SALIO 0476308 0050572
Station
Set 2f Parameters
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Figure 80 Performance of BLRPGM in the estimation of design rainfall depths at

selected stations using parameter Sets 1fand 2f
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As shown in Figure 80 for Set 1f parameters, design rainfall values estimated from the
synthetic rainfall series generated by the BLRPGM are, without exception, better at non-
SAWB stations than at SAWB stations. The reasons for this are attributed to the general
unreliability and periods of missing data in the SAWB digitised database. These
inconsistencies in the SAWB digitised database are illustrated in Figure 81 using data from
SAWB 0258213 (Drieplotte). The results from the month which resulted in the smallest
design rainfall MARFE value (March) and the largest MARE value (November) and a month
to illustrate the effect of periods of missing data (January) on design values are shown in
Figure 81.

No high outliers were detected in the AMS extracted from either the digitised or daily
rainfall data. However, an inconsistency between the 1 day and 24 h design storms is
evident with the 1 day values exceeding the 24 h values for all months shown in Figure 81,
thus indicating periods of missing digitised data during significant events. The effect of
missing periods of digitised data on design values is also evident for January where the 100
year return period, 1440 min event is smaller than for shorter durations, Thus some larger
events, which are extracted in the AMS for shorter durations, are not extracted for longer
durations events, as periods of missing data appear within the longer duration and hence the

entire event is excluded.

The problem of missing periods of data, particularly in the digitised data set, not only affects
the design values computed from the data, but also affects the reliability of model
parameters determined using the data. Twenty eight years of digitised rainfall records are
available at Station 0258213. In the calculation of the moments from the observed data
which are used to derive the parameters for the model, months are excluded if any missing
data are encountered within the month. As shown in Table 56, more than 60 % of months
are not used in parameter determination as a result of periods of missing data within the

months and this consequently affects the reliability of the estimated model parameters.
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Table 56 Percentage of months with no missing data: Drieplotte (SAWB 0258213)

Month Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

Percentage | 39 | 29 21 36 39 21 ¢ 25 11 21 29 | 29 32

For the Set 2f parameters shown in Figure 80 the station with the largest MARE value was
SAWB 0059572 (East London), The month at SAWB station 0059572 with the largest
MARE value was November and although a number of large historical events occurred in
November, these are statistically not outliers and hence are retained in the observed data.
Two AMS, plotted using the Weibull plotting position, are shown for January and
November in Figure 82. It is noticeable that the events in November appear to arise from
two distinct meteorological conditions, as indicated by the sharp change in gradient at a
return period of approximately 6 to 10 years. The désign storms estimated from the
observed data using the GEV distribution and those derived from the Weibull plotting
formula agree reasonably well despite the possibility of the events arising from the different
conditions. Hence it appears that the BLRPGM is unable to simulate extreme events arising
from differing meteorological conditions. It is postulated that these relatively few larger
events probably have little affect on the moments computed from the data which are used
in the estimation of model parameters, but do have a large effect on the estimation of design
storms from the synthetic rainfali series. These differing meteorological conditions resulting
in an AMS with two distinct populations is typical of the East Coast of South Africa, where
the use of the Two Component Extreme Value Distribution (TCEV) was used by Pegram
and Adamson (1988).
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Figure 82 Three hour AMS plotted using the Weibull plotting position at East
London

7.8.4 Concluding Remarks on Simulated Performance

The simulated performances of the MBLRPM and BLRPGM have been evaluated, at a
number of sites in different climatic regions in South Africa, for different sets of moments
used to determine model parameters. The estimation of model parameters proved to be an
exacting task, particularly as similar performances were obtained from sets of parameters
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which are very different. The use of constrained minimisation procedures, thereby ensuring
reasonable mean analytical storm characteristics, aided in the estimation of parameters. In
addition, the estimation of the reliability (C} ) of the parameters and the correlation
between the model parameters assisted in developing a strategy of fixing one or more of the
parameters. Despite these measures, difficulties were still encountered in estimating
“reasonable” parameters for some months at some locations. This can be only explained by
either the total unsuitability of the BLRPGM to be applied at the location or the result of
inconsistencies and errors in the data, some of which have been illustrated.

The three measures of performance used to evaluate the fit between observed and model
values were analytical moments, simulated moments and the estimation of design values
from the simulated rainfall series. [t was noted that the performance of the BLRPGM,
despite having one more parameter to estimate compared to the MBLRPM, was generally
less sensitive than the MBLRPM to the set of moments used to estimate the parameters of
the model. In addition it was found that the use of the BLRPGM generally resulted in better
estimates of design rainfall values than those computed using the MBLRPM. Parameter
Sets le and 1f resulted in the best performance of the models, assuming that the short
duration digitised data were available, and parameter Set 2f gave the best performance when
only daily rainfall data were available to estimate model parameters. Hence the use of the
variances estimated from the daily data for durations < 24 h successfilly assisted in the

estimation of model parameters and improved the performance of the model.

Design storms were generally well estimated from the synthetic rainfall series generated by
the BLRPGM for durations > 1 h when short duration data were available and for durations
> 3 h when only daily recorded interval data were available. Thus, the BLRPGM with mode!
pararmneters determined using moment Sets 1 for 2f, dependent on the availability of digitised
data, is recommended as a feasible option for estimating short duration design rainfall values
in South Africa. Thus, in cases where errors were apparent in the digitised data, it is
postulated that the use of the BLRPGM would result in more reliable estimates of design
storms than if the design storms were estimated directly from the observed data.
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The model performed better for the durations of the moments which were used in the
estimation of the model parameters, than for other durations. However, the BLRPGM did
scale reasonably well particularly in an aggregation sense where, for example, the model
performs better for longer durations when only shorter duration moments are used in the
estimation of model parameters than for shorter durations when the parameters are
estimated from longer durations (disaggregation).

Although limited by the amount of the data which was considered to be acceptably reliable,
the use of the BLRPGM to estimate design storms was relatively successful in different
climatic regions of South Africa. However, it appears that the model does not perform well
at locations where there is a distinct difference between two sets of data in the AMS,
probably as a result of different meteorological conditions. In the following section, the
temporal distribution of synthetic hyetographs generated by the BLRPGM are investigated.

7.9 TEMPORAL DISTRIBUTION OF STORMS

Mass curves depictiﬁg, from the onset of a storm, the dimensionless curmulative storm
duration vs the cumulative storm depth are important in certain hydrological design
problems where it is necessary to estimate a design hyetograph. Thus it is important to
assess how the stochastically generated storms compared to the historical storms.

The analysis performed was similar to that presented by Huff (1967) and Verhoest et al.
(1997). Various periods of no rainfall, or Inter Event Times (IET), for identifying
independent storms have been used in previous studies. For example, IETs that have been
used are 1 h (Van den Berg, 1982). 3 h (Calles and Kulander, 1995), 6 h (Huff, 1967) and
24 b (Verhoest er al., 1997). In this study a period of 12 h of no rainfall was used to
identify independent storms.

The independent storms identified were classified into four groups or quartiles, depending
on whether the heaviest rainfall fell in the first, second, third or fourth quarter of the
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duration of the storm. A frequency analysis was then performed on the storms in all four
quartiles. This analysis was performed both on the historical data and on periods of
synthetic rainfall series, generated by the BLRPGM, which was equal in length to the
historical data. In addition, the frequencies of occurrence of storms in the four quartiles

computed from the historical data and synthetic series were compared.

The above analyses were performed at selected stations in South Africa. The results of the
analyses are presented in the following sections.

7.9.1 Ntabamhlope (N23)

As shown in Figure 83 for storms identified having a 12 h IET, the temporal distribution of
historical storms and synthetic storms generated by the BLRPGM using parameters Set le
at Ntabamhlope (N23) are very similar, However, as shown in Figure 84, the frequency of
Quartile 1 storms in the synthetic series is less than in the historical series and the frequency
of Quartile 4 storms in the synthetic series is greater than in the historical data. Similar
resuits were obtained for storms at N23 identified by 1, 6 and 24 h IETs. The frequency
distribution of storm depths and durations computed from the historical data and synthetic
series generated by the BLRPGM (Set 1e) are shown in Figure 85, The distribution of
storm depths in the synthetic series is very similar to the historical distribution. However,

the synthetic series contain fewer longer duration storms.

As shown in Figure 86, when the BLRPGM was used with parameter Set 2f; the temporal
distribution of storms corresponded closely to those computed from the historical data and
were similar to results obtained when parameter Set le was used. However, as shown in
Figure 87, the duration of storms in the simulated series corresponded better to the
durations of the observed storms when parameter Set 2f, which utilised longer duration

moments in the estimation of parameters, than when parameter Set le was used.

295



First Quartile Second Quartile

§100 "-' L'.‘_._...t-r-'—'—"-’ §100
§80{ . ey § 80
8 A 8
S 60 . 5 60 {
S o - 8
a 40 A 8 40 -
g r . & g 20 F
b 204 £.- 8 1
= /. - ]
g 0 — e ——— e —— g O st ——
4 0 20 40 60 80 100 © 0 20 40 60 80 100

Cumulative storm time (%) Cumulative storm time (%)

Third Quartile Fourth Quartile
g100 ] gwo - —
S 80 - S 80 - !

J E [ ] 1

8 60 3 60 R
5 40 - S 40 - e
E 20 Ny E 20 1 -7 gL . . “
= 1 = 1 i
E ol E oMt
© o0 20 4 60 80 100 © o0 20 40 60 80 100

Cumulative storm time (%) Cumulative storm time (%)

—QObs 10% =—0Obs50% -- Obs 90%
a Sim10% a Sim 50% v Sim 90%

Figure 83 Mass curves of rainfall vs storm duration computed from historical data
and from synthetic rainfall series generated by BLRPGM (parameter Set
le) at N23
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Figure 84 Frequency of occurrence per quartile in historical data and synthetic
storm series generated by BLRPGM (Set le) at N23
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Figure 85 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (Set le) at N23
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Figure 86 Mass curves of rainfall vs storm duration computed from historical data
and from synthetic rainfall series generated by BLRPGM (parameter Set
2f) at N23
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Figure 87 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at N23

7.9.2 Jonkershoek (Jak 19A)

As shown in Figure 88, the BLRPGM, with parameters derived using Set 2f, underestimated
the frequency of Quartile 2 and 3 storms and overestimated the frequency of occurrence of
Quartile 4 storms at Jnk19A. The distribution of storm depths was well simulated by the
model, as shown in Figure 89. However, the longer duration storms in the synthetic series
were generally shorter than the historical durations. The mass curves computed from the
historical data and synthetic rainfall series at Jnk19A, shown in Figure 90, indicate that the
synthetic rainfall storms generated by the BLRPGM have a similar distribution to the
historical storms.
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Figure 88 Frequency of occurrence per quartile in historical data and synthetic
storms series generated by BLRPGM (parameter Set 2f) at Jnk19A
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Figure 89 Frequency distribution of depths and duration of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at Jnk19A
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Figure 90 Mass curves of rainfall vs storm duration computed from historical data
and from synthetic rainfall series generated by BLRPGM {parameter Set
2f) at Jnk19A

7.9.3 Mokobuiaan (Moko3A)

As shown in Figure 91, the BLRPGM, with parameters derived using Set 2f underestimated

the frequency of Quartiles 2 and 3 storms and overestimated the frequency of occurrence
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of Quartiles 1 and 4 storms at Moko3A. The distribution and duration of storm depths was
well simulated by the model, as shown in Figure 92. The mass curves computed from the
historical data and synthetic rainfall series at Moko3 A, shown in Figure 93, indicate that the
synthetic rainfall storms generated by the BLRPGM have a similar distribution to the
historical storms.
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Figure 91 Frequency of occurrence per quartile in historical data and synthetic
storms series generated by BLRPGM (parameter Set 2f) at Moko3A
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Figure 92 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at Moko3A
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Figure 93 Mass curves of rainfall vs storm duration computed from historical data
and from synthetic rainfall series generated by BLRPGM (parameter Set
2f) at Moko3A
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7.9.4 Concluding Remarks on Temporal Distribution of Storms

The temporal distribution of historical and synthetic storms generated by the BLRPGM
have been presented for three locations (Ntabamhlope, Jonkershoek and Mokobulaan) in
very different climatic regions in South Africa. At all three locations the frequency of
occurrence of storms in the different quartiles were different to those found in the historical
data. However, at all three sites, the mass curves of the synthetic rainfall series and the
frequency of rainfall depths and event durations matched the historical values very well for
all quartiles. Hence it is concluded that temporal distribution of synthetic storms generated
by the BLRPGM, with parameters determined from daily rainfall data, match the historical

storms relatively well and can be used to estimate hyetographs.,

It has been established that design rainfall depths for durations > 1 h estimated from the
synthetic rainfall series generated by the BLRPGM with parameter Set 1f, and in most cases
Set 2f, correspond élosely with those computed from the observed data. In the next section
the optimisation of parameters to improve the estimation of design events from the synthetic
rainfall series is investigated.

7.10 PARAMETER OPTIMISATION
In order to improve the simulations by BLRP models and to make the identification of
parameters unique and betier defined, three parameter optimisation strategies were

evaluated at three selected stations. These were based on the moments of the AMS and on
the characteristics of the events.
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7.10.1 Annual Maximum Series

The magnitudes of design storms are a function of the statistical characteristics of the AMS
and hence are a function of the mean, standard deviation and skewness of the AMS. Hence
the parameters were optimised using a two-stage procedure. Initially the parameters were
estimated as described in Section 7.6. Then one of the parameters associated either withcell
intensity or duration was varied and the remaining parameters determined for discrete values
of this parameter. For the BLRPGM the index of the gamma distributed cell intensity (&)
was kept constant. For each set of parameters determined for a single pre-determined
parameter, a rainfall series was simulated with a record length equal to the historfcal data
and the moments of the simulated and historical AMS were compared using the statistic Z
defined in Equation 73 (Section 7.1). The first three moments (mean, variance and
skewness) of the AMS ofthe observed data and simulated series for varying durations were
used in the calculation of Z. Hence for each set of parameters, and for a constant value of
the selected parameter, a value of Z was computed which reflected the difference in the
moments of the historical and simulated AMS. The optimum parameter set selected was
thus the set which resulted in the minimum vaiue of Z. This optimisation procedure was

termed Optl.

7.10.2 Event Characteristics

Usually only four moments (mean, variance, autocorrelation and dry probability) for
different levels of aggregation (duration) were used in the estmation of model parameters.
Onof et al. (1994) presented analytical expressions of event duration, inter-event duration
and mean number of events for the BL models. Onof and Wheater (1994a) and Onof and
Wheater (1994b) adopted a two-stage procedure whereby, for incremental values of a fixed
parameter, the remaining parameters were determined and the statistic Z in Equation 73 was
computed for each solution using the event characteristics. A similar approach was adopted
in this study and termed Op12.
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In an extension to this approach, instead of using a two-stage search approach, the event
characteristics were used directly in the estimation of parameters in addition to the other
moments. This procedure was termed Opt3. For example, if the mode! parameters were
determined using moment Set le and optimised using the Opt3 procedure, the 1 h event
duration and number of events would be used in addition to the moments in Set le in the
determination of parameters. Similarly, if the parameters of the model were determined
using moment Set 2f, which assumed that only daily rainfall data were available at the site,
then the 24 h event duration and number of events would be used in addition to the
moments in Set 2f in the determination of parameters. The three parameter optimisation
techniques have been evaluated at a number of sites and the results are presented below.

7.10.3  Ntabamhlope (N23)

The effects of attempting to improve the simulations using the optimisation strategies
outlined above were investigated at raingauge N23. The study was limited to the BLRPGM
only and attempted to improve the estimation of parameters using moment Sets le and 2f.
Owing to the vast amount of computing time required to implement Optl, the procedure
was limited to parameter Set Te at N23. A comparison of the perfdmlance relative to the
estimation of design rainfalls for the two sets of parameters and the effect of optimising the
parameters is shown in Figure 94. Parameter optimisation had relatively little effect on the
estimation of design events at raingauge N23, although Opt3 applied to Set 2f parameters
performed slightly better than any of the other parameter estimation methods.

306



;;:f;::::_'::::::::-"‘\é":\““:':§
EJL -§-'—1§1 1_1§n_'_1§3-' §2§;2§;

Figure 94 Effect of parameter optimisation strategies on the estimation of design
rainfalls at N23

7.10.4 Cedara (C182)

The effect at C182 on design rainfall values, estimated using the BLRPGM with parameters
determined using moments Sets le and 2f, of the Opt2 and Opt3 parameter optimisation
strategies are shown in Figure 95. The parameter optimisation strategies had no effect on
the estimation of design rainfall values for the Set 1 parameters, but did improve the MARE
values for Set 2f parameters, with Opt3 giving the smallest MARE valug.

7.10.5 Jonkershoek (Jnk 19A)
The effect at Jnk19A on design rainfall values of the Opt2 and Opt3 parameter optimisation
strategies, estimated using the BLRPGM with parameters determined using moments Sets

le and 2f, are shown in Figure 96. At Ink19A the use of the Opt3 strategy improved the
estimation of design rainfall values for both the Set 1e and Set 2f parameters.
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7.10.6 Concluding Remarks on Parameter Optimisation

Ofthe three parameter optimisation strategies evaluated, the Opt3 strategy, which includes
the event duration and number of events directly in the parameter determination procedure,
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resulted in the best estimation of design rainfall depths using the BLRPGM model. Incases
where the BLRPGM with non-optimised parameters resulted in MARE values < 10% (e.g.
Set le at N23 and C182), relatively little improvement was gained using the optimised
parameters. However, in cases where the non-optimised parameters resulted in poorer
estimation of design rainfalls (e.g Jnk19A), the Opt3 parameter estimation procedure
improved the estimation of design rainfalls. Hence it is recommended that the Opt3
parameter determination procedure should be adopted in future use of the BLRPGM in
South Africa

Frequently at a site where an estimate of design rainfall is required, only a short period of
data is available, In the absence of regional schemes for estimating design events at the site,
the design values are estimated using the short period of record, which may include the
estimation of design values for return periods far in excess of the period of record. In the
next section the use of the BLRPGM to estimate design storms from a short period of

record vs the estimation of the design storms directly from the short record is investigated.

7.11 EXTENDING SHORT RECORD LENGTHS

The use of a short record length (e.g. < 10 years) to estimate design events for return
periods greater than twice the record length (e.g. 2 20 years) is generally not recommended.
However, if only a short period of record is available at the site of interest and regional and
other technigues of estimating the design event at the site are not available, then the design
events would have to be estimated from the short period of available record.

This section investigates, by way of two case studies, whether a design event would be
better estimated from the short record or if the design event would be better estimated by
using the short record to estimate the parameters of the BLRPGM and then computing the
design event from the synthetic rainfall series generated by the BLRPGM.

309



7.11.1  Ntabamhlope (N23)

The first case study utilised the 32 year rainfall record from raingauge N23 at Ntabamhlope,

which is located in a summer rainfall region. Design storms for durations ranging from 15

min to 24 h were computed from both the entire record and using only the last 10 years of
record. Similarly, parameters for the BLRPGM were derived using the full record and only
the last 10 years of record. One hundred synthetic rainfall series were simulated for each set

of the two sets of parameters, with the period simulated for each series equal to the record

length used to derive the parameters (i.e. 32 and 10 years). The results of the study for the

50 year return period design storm for varying durations and for the 1 h design storm for

varying return periods are shown in Figure 97. It is assumed that the best estimates of
design rainfall are obtained from the full (32 year) period of record. From Figure 97, as

shown by the 25-th and 75-th percentile range (high-low bars) of design values computed

from the 100 synthetic series, it is evidert that, at Ntabamhlope, the use of the BLRPGM,

with parameters determined using only 10 years of data, to estimate the 50 year retumn
period event would result in improved estimates of design storms, particularly for longer
duration storms. Similarly for the relatively short 1 h duration event, the modelling
approach would result in more reliable estimates of the design storms, particularly for larger
return periods. Hence, based on the assumption that the design storms computed from the
full record length are the best estimate of the true value, the use of the BLRPGM to
estimate the design storms is recommended at Ntabamhlope.

7.11.2 Jonkershoek (Jnk 19A)

The second case study utilised the 54 year rainfall record from raingauge Jnk 19A at
Jonkershoek, which is located in a winter rainfall region. The same analysis as described
above was performed and the results of the study for the 50 year return period storm and
24 h design storms are shown in Figure 98. Again the estimation of design storms from the
synthetic rainfall series simulated by the BLRPGM, with parameters determined using only
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10 years of data, would result in more reliable estimates than direct estimation of design

storms from the short period of data.
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Effect of record length on design storm estimation at Jnk 19A
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7.11.3 Concluding Remarks on Extending Short Record Lengths

In both case studies presented, the interquartile range of the design events estimated from
the synthetic rainfall series, generated using parameters based on the shorter record length,
resulted in better estimates of the “true” design values, estimated using the longer period
of observed data, than had the design events been estimated directly from the shorter period
of observed data. Thus it is concluded that, based on these two case studies, where only
short periods of observed rainfall data are available, the design values should preferably be
based on the synthetic rainfall series generated by the BLRPGM, with parameters estimated
using the short period of data, than on estimating the design values directly from the short
period of observed data.

7.12 CHAPTER CONCLUSIONS

The relationships between the parameters ofthe BL-models have been investigated and have
revealed strong correlations between some parameters and hence some poorly defined
parameters, Thus an incremental search strategy, with one of more parameters fixed, was
successfully implemented to form a relatively robust technique to determine better defined

parameters.

A comparison between the performances of the MBLRPM and BLRPGM was undertaken.
The measures of performance used were analytical and simulated moments and the
estimation of design rainfall events from the synthetic rainfall series generated by the
models. It was noted that despite the BLRPGM requiring the estimation of an additional
model parameter compared to the MBLRPM, the performance of the BLRPGM was
generally less sensitive than the MBLRPM to the moments used to estimate the model

parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown
to simulate synthetic rainfall series which fitted the statistics of the historical data better than
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those computed from the series generated by the MBLRPM. Similarly, the design rainfall
events estimated using the BLRPGM were better than those estimated using the MBLRPM.
Generally the BELRPGM performed better when short duration digitised data were available
to estimate the model parameters than when only daily rainfall data were available.
However, the inclusion of variances for durations < 24 h, estimated from the daily data (Set
21), generally resulted in adequate estimation of design rainfalls. The variances for short
duration events were estimated using a linear relationship between the log of variance and
log of duration. This generally resulted in poor estimates of variance for durations <1h, It
is recommended that future research should consider adopting a curvilinear function, as
proposed by Pegram (1998), and thus improve the estimates of variance for shorter

durations.

Further improvements in the estimation of design rainfalls are possible by adopting the Opt3
parameter optimisation procedure, which includes event duration and number of events, in

addition to other moments, directly in the determination of model parameters.

The temporal distribution of storms generated by the BLRPGM was found to closely match
the observed data at three sites in different climatic regions in South Africa. However, the
frequency of storms with particular profiles was not as well simulated as the temporal
distribution. It is thus recommended that the use of the BLRPGM to estimate design rainfall
values in South Africa, particufarly for durations of [h to 24 h, is a feasible option which
can also be adopted at sites where only daily rainfall data are available.

The effect of record lengths on the estimation of design rainfall values was investigated at
two sites in South Aftica. In both cases, the design rainfall values estimated from the
synthetic rainfall series generated by the BLRPGM, with parameters determined using a
short petiod of record, better approximated the “true” design values, computed directly
from the full period of observed record, than when the design values were computed
flh‘ectly from the short period of observed record. Thus it is recommended that, particular
when only short periods of record are available and no other techniques of estimating short
duration design rainfall values are available, design rainfall values should preferably be
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computed using the synthetic rainfall series generated by the BLRPGM, with parameters
estimated using the short period of data, than on estimating the design values directly from
the short period of observed data.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The main objective of this project was to estimate short duration (< 24 h) design storms for
South Africa. These were to be based on digitised rainfall data whereas previous studies
conducted on a national scale in South Africa were based on data that were manually
extracted from autographic charts. With the longer rainfall records currently available
compared to the studies conducted in the early 1980s, it was expected that by utilising the
longer, digitised rainfall data in conjunction with regional approaches, which have not
previously been applied in South Africa, and new techniques such as L-moments, that more
reliable short duration design rainfall values could be estimated. A short duration rainfall
database was thus established for South Africa.

8.1 SHORT DURATION RAINFALL DATABASE

The short duration rainfall database currently consists of data from 412 stations and was
constantly updated throughout the project as new data became available. The largest
contribution to the database was from the South African Weather Bureau (SAWB). Some
processing errors were found in the data from all the organisations which contributed data
to the project. However, numerous errors in the digitisation of the autographically recorded
rainfall, in addition to missing events in the SAWB data, resuited in a large portion of the
database to be viewed as being of low reliability. This is particularly pertinent in the
estimation of extreme events, as the autographic raingauges tend to malfunction during
intense events. It is expected that the conversion of the recording rainfall network from
autographic raingauges to data logger recorded rainfall systems will not only improve the
reliability of the data, with a smaller probability of errors introduced into the data during the
processing stage, but will also improve the temporal and depth resolution of the recorded
rainfall data. It is estimated that the minimum temporal resolution of the autographically
recorded and digitised rainfall data from charts changed on a daily basis may be as small
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as 5 minutes and proportionately larger for charts changed once a week. In this project the
minimum event duration analysed was 15 minutes. However, all the techniques evaluated
in this project can generate design storms for durations shorter than 15 minutes, but the
resuits should then be used with caution.

The majority of the errors identified in the SAWB data were negative and zero time steps
(infinite intensities). Techniques were developed to identify the errors and make adjustments
to the data points to enable smooth, automatic screenmg and processing of the data. The
adjustments initially made an attempt to identify the probable cause of the error and, if
successful, to make adjustments automatically in accordance with the nature of the probable
cause of the error. If the probable cause of the error could not be identified a procedure
was developed to make adjustments automatically such that a random selection of either the
maximum, average or minimum intensity was introduced into the data as a result of
adjusting the data points. The effect of making the adjustment on estimated design storms
was shown not to be significant, but the exclusion of any event that had an error contained
within it did result in a significant difference, thus indicating that the events should be

retained and errors corrected.

A comparison at selected sites of manually extracted and digitised Annual Maximum Series
(AMS) and the differences between rainfall totals recorded in the daily and digitised
databases led to the conclusion that the digitised SAWB data were generally of low
reliability and contained numerous periods of missing data. These periods of missing data
were noted to extend over the whole range of events and were not confined to the smaller
events. The effect of missing periods of data on the estimation of design storms was
investigated at a selected site (East London) which had a long (> 50 years) period of record
and which was judged to be in the top 5% of most reliable SAWB stations. In the analysis,
a selected number of events for a selected number of years in the AMS were excluded and
the differences in the estimated design values led to the disappointing conclusion. which is
supported by other evidence throughout the document, that the digitised SAWB data were
generally not adequate for estimating design storms for durations <24 h. This led 10 the
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development of a three-pronged approach for estimating design storms from an inadequate
database,

82 SHORT DURATION DESIGN RAINFALL ESTIMATION

The three approaches developed to estimate short duration design rainfall values were all
based on the assumption that the daily manuaily recorded rainfall database was more reliable
than the short duration rainfall database. An added advantage of using the daily rainfall
database to estimate short duration design storms is the relatively dense network of daily
raingauges available in South Africa which generally have much longer records than the
short duration rainfall database.

8.2.1 Regional Approach

The first approach used an index-storm based regional L-moment algorithm developed by
Hosking and Wallis (l 993; 1997) to estimate design storms for various durations and results
for South Africa were presented in Chapter 5. The use of a regional approach has many
clairned benefits, including robustness and improving the reliability of at-site design values.
The underlying assumption when using an index-storm type approach is that homogeneous
regions can be identified where the distribution of extreme events is the same, except for a
local scaling factor. Thus 15 relatively homogeneous regions were identified in South
Africa and the General Extreme Value (GEV) distribution was determined to be the most
appropriate common distribution 10 use in all 15 regions. The homogeneous regions were
successfully identified by an appropriately scaled cluster analysis of'site characteristics which
included indices of location. MAP. altitude, seasonality of rainfall, distance from the sea and
concentration of rainfall. The advantage of using only site characteristics in the cluster
analysis is that the clusters identified can be tested independently for homogeneity using
data from the site. The 24 h duration rainfall data from the short duration rainfall database
were used to establish the homogeneity of the clusters. It has been shown that the short

318



duration data from the SAWB is generally of low reliability and hence there may be some
doubt as to the validity of the homogeneity tests which may have been based on unreliable
data. 1t is intended that a future project will refine and extend the relatively homogeneous
clusters identified in this project by performing a cluster analysis, similar to the
regionalisation performed in this project, but based on the site characteristics of the
locations ofthe daily rainfall gauges and the subsequent testing of the clusters identified for
homogeneity using the daily rainfall data.

Quantile growth curves were developed for each of the 15 homogeneous regions for 16
durations ranging from 15 min to 24 h. The index used to scale the relationships was the
mean of the AMS (L_I) for each duration. Thus, information from the entire region can be
used to estimate design storms at a particular site by utilising the regional growth curve and
the at-site L [ value, This approach lends itselfto design storm estimation at ungauged sites
if the index used to scale the relationship can be estimated at the site of interest. As an
example, regression analyses were performed between the 24 h L_{ values and ranfall
related site characteristics which are readily available as 1'x1’ images for South Africa
(Schulze, 1997). The results of the regression analyses in 13 of'the 15 clusters enabled the
24 h L_1 values to be estimated reasonably confidently. It is recommended only _J values
determined from gauged data be used in Clusters 10 and 11, where the regression analyses

were not successful,

The accuracy of the regional design storm estimates were assessed for one site (N23) in
Cluster 3 which was not used in the regional analysis. It was found that at N23 the regional
and at-site estimated design storms corresponded extremely well for all durations and return
periods. This “hidden station™ approach to testing the method was not used in the other
clusters owing to the limited number of available stations, but this analysis is a qualified
validation of the methodology.

The accuracies of the quantile Regional Growth Curves (RGC) were successfully

established using a Monte Carlo type simulation of a hypothetical region which has the same
rumber of stations and record lengths as the cluster under evaluation. In this manner 90 %
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confidence intervals were established for both the regional growth curves and the estimated
at-site design storms. The simulation of more than 100 hypothetical regions for each cluster
may increase the reliability of the confidence intervals at the expense of more computing

time.

8.2.2 Scaling of L-moments

The second approach to estimating design storms with an inadequate database was to
investigate the scaling relationships between the moments of the AMS and rainfall event
duration and results using this approach were reported in Chapter 6. Previous studies have
used this approach to interpolate design values from published durations to other durations
and have used conventional product moments in deriving the relationships. [t was noted at
selected sites from different climatic regions in South Africa that the log-transformed
relationship between L-moments and duration was more linear over a wider range of
durations than when conventional moments were used. Thus, the use of L-moments was

adopted for this application in the project.

Six hypotheses were proposed and evaluated at selected sites in each of the relatively
homogeneous clusters. Hypothesis 1 proposed that the L-moments for durations <24 h
could be derived directly from the 24 h and 48 h L-moments, which can be computed from
the daily rainfall data. It was found that the slope of the relationship for durations from 1h
to 24 h was frequently different to the slope computed for durations =24 h and hence the
L-moments for durations < 24 h could not be reliably estimated directly from the 24 h and
48 h values at all sites.

It was noted that the slopes of the log transformed L-moment:duration relationship at
different sites within a cluster tended to be similar. Multiple linear regression relationships
were thus developed for each cluster to estimate the regression slope of the log-transformed
L_1 and L_2:duration relationships as a function of site characteristics. The slopes at site
i estimated as a function of the site characteristics were termed the Regional Slopes, RS,
and RS, , for the L_/ and L_2 relationships respectively. Reasonably good relationships
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were obtained for 13 of the 15 clusters. However, Clusters | and 11 had coefficient of
determination values < 0.5 for boththe L 7 and L 2 regressions. Case studies using the
RS at selected sites in Cluster 11 yielded acceptable results despite the poor estimation of
the RS in Cluster 11. Hence the use of the RS could be used with caution to estimate L-

moments in Clusters 1 and 11.

InHypothesis 2 the RSand 24 hL [ and L _2 values, computed from the observed digitised

data, were used to estimate the first two L-moments for durations < 24 h.

Hypotheses 4, 5 and 6 all utilise the regional average L-moments, which are record length
weighted averages of the L-moments computed for the AMS, scaled by the mean of the
AMS (L D), for each duration at each site. Thus the first regional average L-moment
(L_I*), being the regional average of the first at-site L-moments, which are scaied by L_/,
is equal to 1. These hypotheses differ in the manner in which the regional average L-

moments (L x* ) are re-scaled at each site.

Hypothesis 3 assumed that the observed L_I; ;, values for each duration (D) were available
at each site (i) in order to re-scale L_1%, and L_2% ,, and thus estimate the first two L-
moments at each site. Hypothesis 4 estimated the at-site L_I;,,, value using regional
regression relationships and site characteristicsand L_J,, 5, values for durations <24 h were
then computed using the estimated L_/,,,,, value and the RS, ;. The L_1,, ,, value for each
duration estimated in this manner was then used to re-scale the relevant L 1%, Instead of
estimating L_1,;.,, fromsite characteristics, Hypothesis 5 estimated this value directly from
the daily data and then used the same procedure as Hypothesis 4 1o estimate L_/, 5, for
shorter durations, which were then used to re-scale L_x%p, where x < 2. Similarly,
Hypothesis 6 used the 1 day L/ value computed from the daily data and adjusted this value
into L_J;,,, using regionalised 24 h : | day L_/ ratios, which compensate for the differences
between the AMS extracted trom rainfall recorded continuously (24 h) and at fixed intervals: -
(1 day). Thus Hypotheses 4 - 6 utilised different techniques to estimate the L_/, ;, values
for durations <24 h in order to re-scale the L_x" ;, at sites where only daily rainfall data are
available. In addition Hypothesis 4 can be applied to a site that has no gauged data. In order
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to fit distributions with more than two parameters, Hypothesis 4, 5 and 6 assume that third
and higher order L-moments can be estimated using the regional, average, record length

weighted L-moment ratios at all sites.

Hypothesis | is intuitively the most attractive as it is the simplest of the hypotheses
evaluated. Although this hypothesis was found to be adequate at a number of sites in
different climatic regions {(e.g. Cathedral Peak, Newlands, Mokobulaan), breaks in linear
scaling for durations < 24 hand > 24 h at a number of stations (e.g. Ntabamhlope, Cedara,
Mount Edgecombe) resulted in the rejection of the hypothesis for general use in South
Aftica.

The estimation of the RS for L_J and L_2 from regionalised regressions and site
characteristics, as used in Hypotheses 2, 4, 5 and 6, did not appear to adversely influence
the estimation of design storms even in regions where weak relationships were obtained.

Hypothesis 4 is the only method evaluated that can be applied at an ungauged site within
a cluster and wouid be expected to yield reasonable estimates of'the at-site L-moments and
hence design storms within a homogeneous region. Generally, at sites where the data were
deemed to be reliable, the method performed well. However, at most SAWB stations where
the method was evaluated, the hypothesis did not perform well as the L-moments computed
fromthe 1 day data were larger than the L-moments computed from the digitised data. This
anomaly is attributed to periods of missing digitised data for those stations. The errors in
the digitised data from numerous SAWB stations also resuited in Hypotheses 2, 3 and 4
generally not performing well at these sites when compared to the L-moments and design
storms estimated from the 1 day rainfall data.

Allthe hypotheses evaluated assume that the L-moment:duration relationship is linear when
plotted as log-transformed values. This power law relation appears to hold true for most
clusters over the range from 4 10 24 h. However, a change in the linear relationship at
durations ranging from 1 to 4 h was noted at most summer rainfall sites (e.g. Ntabamhlope,
Cedara, Kokstad, Mokobulaan and Drieplotte), where thunderstorms are the predominant
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rainfall generating mechanism. In the winter rainfall region (e.g. Jonkershoek. Cape Town
and Vredendal), where frontal rainfall systems predominate, the deviation in linear scaling
at a particular duration is not as marked. Although deficiencies in the temporal resolution
of the rainfall measurement and digitisation processes cannot entirely be discounted as the
cause of the change in linear scaling, it is postulated that the phenomenon is mainly the
result of the predominant rainfall generating system. The durations at which the breaks
occur at a particular site are hypothesised to be related to the typical duration of
thunderstorm activity. Thus it is recommended that Hypotheses 4 to 6 should not be used
to estimate design rainfall values for durations < 2 h, particularly in clusters where
thunderstorms are the predominant rainfall generating mechanism. |

Hypothesis 6 requires that the 24 h L 7 value computed from the daily rainfall data be
converted into a continuous 24 h value, as would be estimated from the digitised data.
Although different conversion factors for each cluster were used in this project, it is
recommended that a value of 1.20 could be used to convert 1 day to 24 h L_1 values in
South Africa

It is postulated that the method outlined in Hypothesis 6, which performed well in all
clusters and attempts to compensate for errors and periods of missiné digitised rainfall data,
will yield the most accurate estimates for design storms of the hypotheses evaluated and
should be adopted in the estimation of design storms. Although Hypothesis 6 requires daily
rainfall data and cannot be applied at sites which have no rainfall data, as is the case with
Hypothesis 4, the dense network of daily rainfall stations with relatively long records used
in conjunction with Hypothesis 6. enables the estimation of short duration design storms at
a large number of locations in South Africa. The estimation of regional regression
relationships to estimate the 1 day L_/ value, computed from the daily rainfall data, as a
function of site characteristics would enable Hypothesis 6 to be applied at any location in
South Africa.

An option not pursued in this project, but which warrants further investigation, is the use
of stochastic daily rainfall models. as have been develoﬁed for South Africa by Zucchini et
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al, (1992), to simulate daily rainfall series. The stochastically generated daily rainfall model
would thus enable Hypothesis 6 to be applied at any ungauged location in South Africa.

As discussed in Chapter 6, it is assumed that the regional average L-moments and RS
estimated from the digitised data are sufficiently reliable to be used despite the numerous
deficiencies illustrated in the digitised SAWB rainfall database. It was shown in Chapter 2
that the errors in the daily totals of rainfall computed from the digitised database occurred
over a wide range of values. It is probable that the wide range of event totals where errors
occurred is associated with a wide range of event durations. Thus it is postulated that RGC
and RS are probably reasonable estimates of their “true” values as events over all durations
are affected by the periods of missing data. It is noted in Chapter 6 that it is probable that
design storms estimated directly from the SAWB digitised data would, on average over
durations ranging from 2 h - 24 h at most stations considered, have underestimated short
duration design storms by up to 65 %.

8.2.3 Stochastic Rainfall Modelling

In the third approach to short duration design rainfall estimation, with results reported in
Chapter 7, two variations of Bartlett-Lewis type of intra-daily stochastic models were used
to generate synthetic series of rainfall. The series were accumulated at 1 minute intervals
within the models and output at 15 minute incremental totals in orderto conserve disk space

and subsequent processing time.

The estimation of the parameters of the models proved to be an exacting task with similar
performance possible with very different sets of parameters. The constrained parameter
search technique developed in this project ensured that the mean storm characteristics
computed from the derived parameters were reasonable and aided in the determination of -
parameters. The parameters estimated by function minimisation were found to be relatively
sensitive to the initial estimates of parameters at the start of the minimisation procedure and

the parameter search technique adopted assisted in overcoming this sensitivity. [t becarne
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clear that the unconstrained minimisation procedures frequently used in the literature are
reliant on the careful selection of initial conditions. The explicit presentation of the
relationships between the model parameters and the methods used to estirate the parameter
correlation matrix are not evident in the literature reviewed. The correlation matrix assisted
in the determination of model parameters by identifying parameters that were highly
correlated and which could thus be fixed.

Despite the utilisation of these parameter determination procedures, the parameters for
some months at some stations were difficult to estimate. This can only be attributed to the
unsuitability of the model to the data which, in the range oflocations and months where the
parameters were relatively easily determined, is improbable, or to errors and missing periods
of the data which alter the moments used in the estimation of parameters. Another problerﬁ
encountered, particularly with the SAWB data, is that frequently a long period of record
only contains relatively few individual months with no missing data and hence the reliability
of the moments computed for the months is low, which in turn may affect the performance
of the model.

The confidence intervals estimated by computing the 25-th and 75-th percentiles and thus
explicitly showing the stochastic variation in the output from the modeis was not evident
in the literature reviewed pertaining to stochastic rainfall models. Generally, other studies
have only generated a single long synthetic rainfall series, frequently only for a single month
of good data with a long record. In such cases, when the moments of the historical data
have been reported in the literature, the determination of reasonable parameters similar to,
or better than, those reported, were relatively easily obtained,

In this project, a means of assessing the fit and appropriateness of models to different data
sets of varying reliabilities and from varying climates had to be devised and applied in a
routine way. This was an ambitious task and was not achieved withowt difficulties. For
example, the cost of estimating the stochastic confidence intervals in terms of computing
time was enormous and the mainframe computing facilities provided by the Computing
Centre for Water Research (CCWR) proved to be inadequate with most runs for a single
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station generally taking longer than 24 h. Hence the super-parallel computing facilities
provided at the University of Potchefstroom were utilised successfully.

A comparison between the performances ofthe Modified Bartlett-Lewis Rectangular Pulse
Model (MBLRPM) and Bartlett-Lewis Rectangular Pulse Gamma Model (BLRPGM) was
performed at selected sites in South Africa. The performance of the models and the ease
of parameter determination were found to be sensitive 1o the composition of the moments
used to determine the parameters of the model. It was noted that despite the BLRPGM
requiring the estimation of an additional model parameter compared to the MBLRPM, the
performance of the BLRPGM was generally less sensitive than the MBLRPM to the

moments used to estimate the model parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown
to simulate synthetic rainfall series which fitted the statistics of the historical data better than
those computed from the series generated by the MBLRPM. Similarly, the design rainfall
events estimated using the BURPGM were better than those estimated using the MBLRPM.
Generally the BLRPGM performed better when short duration digitised data were available
to estimate the model parameters than when only daily rainfall data were available. It was
shown that the variances for durations < 24 h could be estimated directly from the | and 2
day values and were reasonably accurate at most locations tested for durations as short as
1 h. The use of only the daily rainfall, with the inclusion of variances for durations < 24 h
estimated from the daily data (Set 2f), generally resuited in adequate estimation of design
rainfalls. Further improvements in the estimation of design rainfalls are possible by adopting
the Opt3 parameter optimisation procedure, which includes event duration and number of
events, in addition to other moments, directly in the determination of model parameters.

The performance of both the MBLRPM and BLRPGM was generally better for durations

close to those defining the moments used to determine the model parameters than for other
durations, but did scale reasonably well to other durations.
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Design storms were well estimated from the synthetic series generated from the BLRPGM
at a range of sites in different climatic regions in the country. However, it is recommend that
design storms for durations shorter than 1 h should not be estimated from the synthetic
series generated by the BLRPGM, even when short duration rainfall data are available to
estimate model parameters. In cases where only daily rainfall data are available to estimate
the parameters of the model, it 1s recommended that design storms should not be estimated
for durations shorter than 2 h and should be used with caution for durations from 2to 6 h.
It was evident from the results obtained that any anomalies in the historical data, as was
often the case with the SAWB data, are highlighted by comparisons to the synthetic rainfall
series. Thus it was shown in some cases that design storms estimated using the BLRPGM

were more reliable than the design storms estimated using historical short duration data.

Design storms are only estimated well using the BLRPGM when the historical AMS contain
no high outliers and hence the BLRPGM does not appear to work well at locations where
a mixture of meteorological conditions cause extreme events. Thus the model performance
does not appear to be adequate in areas where the variation in range of values in the AMS

for a particular month is smaller for longer duration events than for shorter duration events.

The temporal distribution of storms generated by the BLRPGM was found to closely match
the observed data at three sites in different climatic regions in South Africa. However, the
frequency of storms with particular profiles was not as well simulated as the temporal
distribution. It is thus recommended that the use of the BLRPGM to estimate design rainfall
values in South Africa, particularly for durations of 1h to 24 h, is a feasible option which
can also be adopted at sites where only daily rainfall data are available.

The effect of record lengths on the estimation of design rainfall values was investigated at
two sites in South Africa. In both cases, the design rainfall values estimated from the

synthetic rainfall series generated by the BLRPGM, with parameters determined using a - -

short period of record, better approximated the “true” design values, computed directly
from the full period of observed record, than when the design values were computed
directly from the short period of observed record. Thus it is highly recommended that,
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particularly when only short periods of record are available and no other techniques of
estimating short duration design rainfall values are available, design rainfall values should
preferably be computed using the synthetic rainfall series generated by the BLRPGM, with
parameters estimated using the short period of data, than when estimating the design values
directly from the short period of observed data.

An option not considered in this project, but one which would allow the BLRPGM 1o be
applied at any location in South Africa, would be to generate daily rainfall series using
stochastic models such as developed by Zucchini et al. (1992) and then to use the synthetic
daily rainfall serfes to estimate the parameters of the BLRPGM.

In the following section design storms estimated using Hypothesis 6, which estimates design
storms using a combination of the regional and scaling approaches, are compared to the
design storms estimated from the synthetic rainfall series generated by the BLRPGM.

8.3 COMPARISON OF TECHNIQUES

The Mean Absolute Relative Error (M4 RE) between design rainfall values estimated using
both Hypothesis 6 and the synthetic rainfall series generated by the BLRPGM, with
parameters determined using Set 2f and optimised using the Opt 3 option as described in
Section 7.10.2 and design values estimated from the historical data, are shown in Figure 99
for selected stations where the data were deemed to be reliable. In the calculation of the
MARES, the 2, 10, 20 and 50 vear return period values for durations 0f 2, 4,6, 12and 24 h
durations were considered, It is evident from Figure 99 that design rainfall values computed
using either Hypothesis 6 or from the synthetic rainfall series generated by the BLRPGM,
with parameters estimated from daily rainfall data, are similar. Hence it is concluded that
both methods are acceptable tor estimating design storms in South Africa for durations
>1h
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Figure 99 Mean absolute relative errors of design rainfalls for durations of 2 -
24 h and return periods of 2 - S0 years estimated at selected stations
using Hypothesis 6 and the BLRPGM

84 RECOMMENDATIONS

All three approaches which were evaluated to estimate short duration design storms with
an inadequate database performed well, considering the limitations of the data. However,
the combined method of regional average L-moments and RS, scaled using an adjusted L _/
value computed from the daily rainfall data (Hypothesis 6), is recommended for general use
as it combines the strengths of the regional approach, which may compensate to some
extent for stations with poor data, with the explicit attempt to compensate for the
inadequate digitised data by using the L_1 value computed from the daily data. [t is also
recommended that the BLRPGM be used at selected sites, in addition to the method

detailed in Hypothesis 6, in order to ensure reasonable design estimates are obtained.

The results of the regional regression analyses used to estimate L_7 and RS as a function
of site characteristics may have been affected by correlation between the independent .

variables and, in some clusters, by the limited number of stations and hence insufficient
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degrees of freedom in the analyses. It is recommended that the selection of independent
variables should be reviewed and simpler approaches to the regression analyses should be

sought.

Hypothesis 6 can only be applied at sites which have daily rainfal} data. It is recommended
that regional relationships be developed to estimate the at-site | day L_7 value, computed
from the daily rainfall data, as a function of site characteristics, as reported in Section 5.4
for the 24 h L_1I values, which were computed from the digitised rainfall data. This
relationship, in comjunction with the regionalised 24 h : 1 day L_/ ratios and RS, would

enable reliable estimation of design storms for durations < 24 h at any site in South Aftica.

Design rainfalls estimated using the recommended approaches generally did not compare
well to design values for durations shorter than 1 h. This suggests either that the data are
more unreliable for shorter durations or that the techniques developed do not capture the
characteristics of the extreme events for shorter scales. It is therefore recommended that the
techniques should be evaluated on more reliable, high resolution rainfall data such as
recorded by data loggers, which may have to be obtained from sites not in South Aftica.

The breaks in scaling at approximately | h and 24 h durations noted at many of the sites in
South Africa, should be further investigated. Reliable, high resolution rainfall data should

be obtained to further investigate the nature of these inconsistencies.

The variances for short duration events, used for determining parameters of the BLRPMs
from the daily rainfall data, were estimated in this project using a linear relationship
between the log of variance and log of duration. This generally resulted in poor estimates
of variance for durations <1h. It is recommended that future research should consider
adopting a curvilinear function, which may improve the estimates of variance for short
durations and result in better model parameters and improved model performance.

Itis further recommended that the stochastic daily rainfall models, as developed by Zucchini
et al. (1992) for South Africa, should be evaluated as a technique to estimate the mean of
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the AMS at ungauged site, as is required for Hypothesis 6. If successful, this would provide
an alternative method for Hypothesis 4 in order to estimate design rainfall vaiues for
durations shorter than 24 h at ungauged sites. The stochastic rainfall series should also be
evaluated as a means to determine the parameters of the BLRPGM, which in turn could be
used to estimate short duration design rainfall values.

The 15 relatively homogeneous rainfall regions should be further verified and refined using

the daily rainfall database for South Africa. The results in this project should then be

adjusted to make use of a single set of homogeneous clusters for all durations.
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APPENDIX A

SITE CHARACTERISTICS OF STATIONS USED IN CLUSTER ANALYSIS AND SCALING

()4

Organisation Location Station | Years [Cluster Latitude Longitude | MAP [ Altitude [ Scasonality | Precipitation | Distance

No. Record | Mo. Concentration to

5€a
_ i I N A A A (G0N ) (%) {m) |
DAEUN CEDARA CI6l i5 3| 200 350 13| 30| i3] 38] 974 1340 4 50| 83758
DAEUN CLOARA C162 0 3125 34] 30} 30] 13] 53 903 1207 ] 0] 84339
DAEUN CEDARA CI63 14 31 29) 33| s0]| 30| 15] 10] 866 1170 3 501 81924
DALUN (TDARA Ci64 70 31 29| 34| 0] 30| 4] 22 891 1158 ] 50| 82810
DALLIN CEDARA Ciphs 20 3] 29) 33 0| 30| 14| 45| 8a8| 1130 ) S0 83439
DALUN CEDARA Cl72 30 31291 34| 10| 30[ 15§ 50| 383 1175 ] 50| 81284
DALUN CEDARA C173 20 37 29) 33 50] 30| 15] O] 8661 1143 3 S0 31924
IDAEUN CEDARA Ci82 20 31 29| 35| IS] 30| 14| S0f 957 1261 | S0 82207
[DAEUN CEDARA CI9f 20 T 291 32[ 371 30 16| 34| 873 1058 4 50] 81103
DAEUN CEDARA C201 30 31291 32] d0[ 30f 16 57| &73 1121 4 S0y 8103
IDAEUN CEDARA Cisl i 3] 20| 351 43| 30] V5] 43| 906[ 1445 4 SO B0G6BD
IDAEUN DEHOEK 3]} Tt 11 2 O 7F 29F 39} 551 92571 1201 4 56 IB&
DAEUN NTABAMHLOPE NI 19 31291 af 43| 291 37| 38| &5t 1529 4 S6] 185238
|DAEGN NTABAMHLOPE Ni8 20 3| 201 2| 261 29[ 39| 43] 1103] 1448 ] S6 | 180620|
DAEUN NTABAMHLOPE N20 I 3| 29[ T| 10] 29| 40] 21] 8591 1473 ] 561 181169
BIESIEVLEI Jnk10a 52 6] 33] 58] 21] 18] 56 1095 382 2 a1] 18215
[CSIR CATHEDRAL PEAK Cpb 32 3] 28] 591 151 291 15 1046 1930 ] 551 196426
SASEX MTUNZINL Samtz 4 71281 561 o 3t a2 O] 1338 36 3 29 6368
[SASEX MT_EDGECOMBE, Samic 19, gl 201 42| af 3t] 21 af 931 96 4 30 53
ISASEX OMHLANGA Sacls 70 81 291 a3] o] 31| 3I O] o513 7 4 38 1267
SASEX LAMERCY Sall0 20 8[ 291 36| Of 31| 71| Of 937 1] 3 42| 12051
SAWD RIVERSDALE 0010425 12 G134l sy al 21] isf ol 3717 137 1 71 35104
[SAWH RIVERSDALE 0010456 27 9347 6] O 21] 16] oJ 416 I3 i 7| 33938
SAWD CAPE TOWN:WINGFIELD 0021054 19 61 331 54] 0] 18] 32| 0| 440 17 ) 50 a184
[SAWD CAPE TOWNDFMALAN _[00Z1178 28 61 33| 581 O 181 361 0] 535 46 7 301 12678]
SAWD CAPE TOWN:DFMALAN _ 0021179 1 61 33| 59| 0] 18] 361 0] 3361 17 2 SO 10824
[SAWB ELSENBURG 002159] 37 6] 33] 51| O] 18] 50| 0] 658 181 2 71 26317
SAWB [ROBERTSON _ 0023708 0 330 481 0] 191 54| 0| 34s] 209 2 —_28] 88086




vt

Organisation Location Station [ Years |Cluster |  Latitude Longitude I MAP | Ahitude I Seasonality 1 Precipitation | Disiance

No. Record | WNo. Concentration 10

sca

| A I R I {mm m (%) {m)
SAWB ROBERTSON 0023710 75 6] 33| 56| Of 19§ 541 0 27')2' "'L";'sﬁ 2 301 85199
SAWB ROOIHEUWEL 0028428 2 91 33| 38 o] 22] 151 0] 348 301 S| 46292
SAWB GEORGE 0025690 3 o[ 341 of of 22| 23] Of 58t 193 g 6352
ISAWD DITENHAGE 0034767 40 9] 33] 47| 0] 25| 26] 0] a00 32 ] 6] 20589
SAWD [PORT ELIZABETH 0035179 35 9] 33( 59{. o[ 251 361 0] oli 50 10 7748
SAWB BATHURST 0037541 11 o 33 31{ 0] 26| 491 O] 669 259 121 1239
SAWSB MATROOSBURG 0043566 37 15] 33] 261 0] 191 491 0] 263 967 2 46| 118849
SAWR [TOUWSRIVIER 0044081 14 15] 33] 211 0] 20] 3] 0f 256 778 y) 4l 132500
SAWR WILLOWMORT 0050887 17 T0] 331 (7] Of 23] 30{ 6] 233 840G 3 241 77518
SAWD 1 AST TONDON 0059572 51 13] 03] 21 0] 27f 501 ©] 874 25 3 2 3868
SAWH TANGE BAANWL G (K61 298 30 s132] s8] Of 18] 10| ol 263 31 ) SR| 13057
CAWD JANSTNVILL ] 74296 36 0] 32] 561 0% 24| a0] ©] 268 417 6 35| 120409
SAWR SOMERSET BEAST 0076134 33 10] 32] 44§ O] 25f 35] 0] 380 717 I3 201 112642
SAWB KING WILLIAMS TOWN 0079712 17 i3] 321 521 of 271 24| o 594 400 3 33{ 41811
SAWD DOHNE 0079811 33 Bl 3z[ 311 o[ 271 28] o) 752 299 5 41| 6955
SAWB SUTHERLAND D083293 38 15§ 32 23] QF 20] 40] O] 339] 1459 ) 321 219373
SAWE BEAUFORT WEST 0092141 16 0] 321 21F O] 22| 35§ 0l 238 857 3 331 183219
SAWB BEAUFORT WEST 0092229 11 100 32| 19] 0] 221 38] 0| 190 869 6 351 186914
[SAWE BEAUFORT WEST 0092288 23 0] 321 18] O] 22] 40] Gl 188 893 3 6] 188777
SAWD GRAAFF-REINET 0096045 25 10] 321 15| Of 24| 32] @] 32 741 6 35| 196982
SAWD CRADOCK-MUN 0098190 12 0] 32] 101 0] 25] 370 O 312 927 3 A4 173885
[SAWB VREDENDAL 0106380 35 ST 31| 40 O] i8] 30f 0] 14 37 2 59t 27941
SAWB QUEENSTOWN 0123654 22 3] 31| 541 0] 26] 528 0] 52001 1066 5 47| 156714
SAWD NCORA 0125409 19 13] 31| 49 o] 271 44 0 648 ﬂ 5 47 12175
SAWB UMTATA 0127272 21 I3[ 311 32| o| 28 4¢] of 608 742 5 47y 67162
[SAWB UMTATA 0127485 17 13f 3] 351 Of 28] 47 o 595 683 3 45| 53452
[SAWB CALVINIA 0134478 76 1s{ 31| 28] ©] 19| 46% O 210 980 3 3| 139386
SAWB GROQTFONTEIN D145059 33 12] 31] 29] 0] 25] 2] ©J 354 1263 3 371 260128
SAWD CARNARVON 0165898 74 2] 30] 58] 0l 22] Ol O] 204] 1280 6 511 340975
SAWD DE AAR 0170009 33 2| 30] 39 Of 24| 1| 0| 3031 1243 r3 51§ 370883
SAWB ALIWAL NORTH 0175371 14 121 30] atl o] 26| 43 of 524 1310 5 47| 269401
SAWB ALIWAL NORTH 0175373 16 12{ 30| 43] O] 26 43] 0] si! 1348 5 361 266867
SAWB SHEEPRUN 0178689 22 3] 30591 ol 281 231" ol "RI3| V213 5 s2{ 126727
SAWD KOKSTAD 0180722 20 T[] 30] 321 0] 20] 25] 0] 756 304 3 53| 95959




e

Organisation Location Station | Years |Cluster Latitude Longitude | MAP [ Allitude | Scasonality | Precipitation | Distance

No. Recard | No, Concentration 1]

! €

] ] " o t L {mm) (m) _{% } m
[SAWD VANWYKSVLEI 0193381 35 a1 300 211 ol 21] 49] o[ 175 963 5 63| 377867
AWR MATATIELE 0207531 1 3] 30] 21| 0] 28] 48] _Of 838 1490 I 561 152896
SAWB OKIEP 0214635 76 151 29% 361 o 171 521 ©f 173 531 2 551 79412
SAWA PRIESKA 0224430 31 4| 25| 40 o[ 22| 45| O 228 932 6 62| 481168
AWD FAURESMITH 0229556 32 12] 29] 46| 0] 25| 191 0] 422] 1363 3 S1| 431424
[SAWD WEPENER 0233044 36 12} 29] 44| 0] 27| 2| ©] s03] 1438 S 50316023
SAWD WATERFORD 023759 20 31 291 511 ol 201 201 ol 9751 1643 ) 581 144406
SAWD SHALEBURN_ 0237618 16 339 48] 0] 29] 21| 0] o7 614 3 S7{_ 145719
SAWB CEDARA 02319433 46 31 29] 32 0] 300 17 o] 876 076 4 50 T9609
SAWS PIETERMARTIZBURG-PUR [0239577 _ 3 3129] 37| _0Of 30| 20| 0] 949 765 4 50| 7i8a2
SAWE PILTERMARITZBURG-PUR | 0239756 9 31291 361 ¢ 30] 26] 0] 817 613 ) 49| 63319
SAWE LOUIS BOTHA AIRPORT | 240808 36 By 29] 58] 0] 30] 57] 0] 986 i 3 37| 2433
[SAWD POFADDER _ 0247668 34 31 25] 8| Of 19] 23] 0] 130 08} 6 53] 235432
SAWD UGLAS 0256424 7 a{ 291 4| o[ 23[ 451 o] 316 904 6 62| 345129
SAWE RIETRIVIER 0238157 15 14120 7] Ol 241 36§ ©] 38s5f 1140 3 S4{ 524499
SAWB DRIEPLOTTE 0258213 29 141291 3T 0f 24{ 38] O] a04] 1120 3 53] 530950
AWD BLOEMFONTEIN 0261516 31 2] 9] 6| Of 261 18] 0] 514 351 5 53] 415980
SAWB ESTCOURT 0263631 13 3{29] 1] 0] 29] 521 o[ 700 31 4 56] 141406
SAWD ALEXANDER BAY 0274034 38 S 28] 3a] 0] 16] 32] 0] 43 21 ) 58] 9563
[SAWB KIMBERLEY _ 0290468 %) 4| 28] e8] Of 24[ a6 0] d1a_ v 8 56| 549313
SAWD UINTHESHOEK 0296005 1 1] 28] 35| 0] 27] 311 Ol 639 384 y 53] 366341
SAWD GLENMORG, 0296589 1 1| 28] 431 0] 271 50] O] 685 676 3 521 332048
SAWB LADYSMITH 0300423 13 3{ 28] 33] 0] 29| 45] 0] 78 034 3 59| 179743
SAWB LADYSMITH 0300454 2] 7| 28] 341 0] 29| 46| 0] 734 079 ] 391177332
SAWB __________ |ESTCOURT 0300690 24 31201 0] O] 291 53] ©] 731 1148 3 561 130971
SAWB  [RICHARDS BAY 0305168 i3 71 28] 47| 301 321 6| 0] 1226 47 5 22 500
[SAWD UPINGTON 0317474 25 4] 28] 24| 0] 211 18] 0] 176 836 3 65 |_436190]
SAWD UPINGTON 0317476 18 4] 28] 26] 0] 21] i6] 0] 180 814 6 65] 434974
SAWD KOOPMANSFONTEIN 323102 30 31 28] 12| 0] 24] 4] 0 4191 1341 5 63| 633824
SAWES ROODEPOORT _ 0330421 11 28 o 27| &5 ol 612 569 4 561 376479
SAWB CHICAGO 0330843 I il 28] 3] of 27] 59| ©| 616 615 ) 57| 354813
SAWE LOCH LOMOND _ 0331520 37 28] 10| 0] 28| 18] 0] 662] 1631 2 3551 321496
[SAWB BETHLEHEM 0331585 3 28] 15] 0] 28] 26| 0] 670 680 3 s4] 313910
SAWD BABANANGO 0337143 IS 3] 28] 23] ©) 31] 5| 0) 88 288 3 Al 92293
'SAWB TAUNG 0360453 n 14] 27| 331 0] 24| a6] 0] 453 124 5 64| 643931




13 4%

PILANESBERG _

Organisalion Location Station | Years |Cluster ]  Latitude Longitude | MAF [ Altitude | Scasonality | Precipilation ] Distance

Nao. Record | No. Concentration 1o

3€4

-1 N {mm) | (m) (%) {m)
SAWB HOOPSTAD 0362710 13 1] 27] 50] 0] 251 54] 0} 4a6 235 3 59343512
SAWE PLESSISDRAAI 0363239 19 T 27] 39] o] 361 8| | 4| 1249 ] 59| $17400
SAWD KROONSTAD 0365430 26 11270 40 o] 371 15| o] 593] 1348 4 55| 438626
SAWD NEWCASILE 0370734 11 3] 27] 441 O] 29] 551 Ol 846] 1235 3 591 225976
SAWB NEWCASTLE 0370763 13 31271 451 o] 291 s6f 0 8I8 197 q 50] 223515
SAWB “J[KURUMAN 039377 26 14[ 27} 28] O] 23} 26} O] 480 312 5 64| 67224
SAWB CILLIERSRUS _ 0403537 i 111 271 271 0] 28] 18] 0] 617] 1630 4 55| 367183
SAWDB FRANKFORT 0403336 37 1] 27| 16| Of 28] 30| 0} 6a7] 1500 3 561 364509
RAWD MAKAT N 0411323 5 71 z7] 231 oY 320 11| o] 558 63 3 491 51267
SAWD MARATINI D411324 6 TL 271 24| of 32 n[ o] 37 73 3 48| 50832
SAWR ARMOEDSVEAKTE 0432237 36 141261 571 0| 24] 381 0] 4371 1234 5 64] 702258
SAWD 0T TOSDAL 0435019 20 T[26] 491 Ol 26] 1] OF 359 498 3 64] 592201
SAWD DOORNLAAGTE 0435157 16 1261 371 o] 261 6 O] 574 473 4 631 397721
SAWE POTCHEFSTROOM 0437104 15 T 26] aa| o] 271 4] 0] 618 350 ) 601 512613
SAWB POTCHEFSTROOM 0437134 30 11261 44 o] 271 51 0Of 61 1345 4 60| 511304
SAWB VANDERBYLPARK 0438553 V3 1] 261 43] 0] 27] 491 01 674 496 3 $T] 433738
SAWH STANDERTON 0441416 15 11261 561 o) 291 1al o] 610] 1570 3 58] 333867
SAWB NOOTTGEDACHT 0442811 78 Ti] 26| 31| 0| 291 s8] 0] 722 694 [ 3 57| 266978
[SAWB PIET RETIEF 0444510 21 31370 0] o] 301 48] o} 887 235 3 541 195096
SAWD CARLETONVILLE 0474630 19 1) 26] 30) 0] 27] 23] 0] 660 500 3 551 516176
[SAWD KRUGERSDORP 0475456 a0 2661 O] 27] 46| 0] 798 699 3 601 481914
SAWR JOHANNESBURG 0476042 16 26| 12] O] 28] 2f 0] 701 1719 3 59| 455411
SAWB JOHANNESBURG 0476131 17 191 36] 11] OF 281 5] O] 784} 1700 3 591 450362
[SAWB JTAN SMUTS 0476398 33 26] 8] O] 28] 1a] ol 696] 1692 3 S8} 435247
SAWB CAROLINA 0430184 32 26| 4] 0] 30f 7] 0] 749 696 3 SO 246510
SAWE MMABA THO 0508047 3 25| 47] 0] 25] 32} O] 3503 281 7] 64| 698043
SAWB MAFIKENG 0508261 ] 251 51| 0] 25] 39] Ol 5851 1278 4 64] 684235
SAWB RUSTENBURG 0511523 15 TE25] 431 o] 27| 18] O] 639 57 4 83| 330374
SAWE PRETORIA 0513314 20 1] 25] 4] 0] 2 0f 674 330 3 62| 441852
SAWD IRENE 0513385 19 | 251 55] O| 28| 13| ©| 667§ 1524 i 60] 437225
SAWB PRETORIA 0513405 37 11 25§ 450 o 28] 14] 0] 765 372 4 62| 436694
SAWEH PRETORIA 0513465 31 1§ 251 45] o 28] 161 O] 687 372 3 62| 433359
SAWR RIETVLE| 0513531 20 Tl 25| 51| o] 28] 18] ©f 743 524 4 61| 429241
SAWD ROODEPLAAT 0513605 25 t[25F 351 of 28] 211 O] 653 1164 3 61| 426975]
[SAWR 0548290 12 1] 251 200 01 271 i0]_0] 61} 1043 4 63 [ 548773
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Organisation Location Siation | Years |Cluster Latitude Longitude | MAP | Altitude { Scasonality | Precipitation [ Distance

No. Record | No. Conceniration 10

’ sea

—— - Sl et mmy ] (m) (%) (m})
SAWD OUDESTAD 0552581 18 2| 25] 11| 0] 291 20] 0] 609 9353 3 611 338860
SAWE LYDENBURG 0554816 3 11]25] 6 O] 30] 28] o] 6o 1439 3 50| 234622
SAWD NELSPRUIT 0555837 14 2] 25| 27] 0] 30| 58] o] 750 660 3 s8] 173136
SAWB — INELSPRUIT-FRIEDENHEIM ] 0555866 20 21250 26] OF 300 591 O] 752 671 3 58] V72215
SAWH —__ [WARMBAD (589504 51 T 241 541 O] 28] 201 O 629 143 3 64| 444649
SAWR TSWELOPELE 0593489 2§ 24| 39] Of 300 17] 0] 3566 700 3 62| 274905
SAWD SKUKUZA 0596179 L3 2| 241 59| Of 31[ 36] 0] 526 263 4 SO 121097
SAWD GROENDRAAI 0631791 i 1f2a] 1v] o0F 27f 571 O} 546f 1025 3 651 3500049
SAWS POTGIETERSRUS-TABAK 063401 1 33 1] 24 (1] 0] 29] ([ 0] 624 1116 4 65| 411937]
SAWD ELIISRAS 0674311 Tl st 23l 4t ol 27[ 41| 0] 471 849 F] 68| 551127
SAWA PIETERSBURG 0677802 39 51231 521 @l 291 271 G 458 1230 3 65| 392429
SAWD PIETERSBURG 0677366 14 5231 56| O] 29] 29 0] 446 1294 3 64| 385834
SAWDB TZANEEN 0679260 13 2] 23] 50 01 30| 9] o] 972 716 ) 61| 33440
SAWB PUSELLA 0679289 14 21 23 49| ol 30 ol of 1015 749 a 611 334127
|SAWD PHALABORWA 0681266 24 2| 231 561 0] 31 9] 0] 3531 307 ] 65| 250416
SAWB MARNITZ 0719369 14 5123( 9] O 28] 31 o 382 546 4 67| 541394
SAWD MARNITZ 0719370 77 ST 23] 10 o[ 28( 13] ol 932 4 6711 540448
SAWD MAT}A 0722099 36 S 23] 91 of 291 34| o] 433 897 3 66| 428169
SAWB LEVUBU 0723485 32 | 231 S| 0] 30f 17| O 882 706 4 60| 179990
SAWB THOHOYANDOU 0766898 5 2] 22| 58] ol 300! 30] of 812 600 4 62] 374833
SAWB TSHANDAMA 0767046 2 s[22] 461 01 30] 32| O] 555 600 ) 5_4% 390011
SAWB MESSINA 0809706 32 s{2z] 16] o] 29[ 54 of 345 525 4 70 474148
SAWD GEORGE 0028743 18 91 33] 581 o 22 251 o[ o606l = 22t 1 1Ll 10086
SAWB FRASERBURG 0113025 40 2] 1] 35] 0] 21| 3 o] 181 1264 6 a6 | 246825
[SAWE BLOEMFONTEIN 0261307 24 2] 291 71 O] 260 1 01 537 422 S 52| 422895
SAWB BETHAL 0478867 23 1) 261 27| 0| 291 29 O 689 663 3 58| 313261
[CICE ATHLONE Athlone 40 6|33 s7f 1| 18] 30] 351 638 14 2 500 5617
CICE NEWLANDS Newlands 20 6] 33| 58 8] 27] 31 913 40 ) 37 208
U7 KWA-DLANGZWA 0304320 12 71281 501 ©] 31 at[ ©f 1201 378 4 34 5067
13 RWA-DLANGZWA (304353 2 7) 28] 33| O] 31| 42| 0] 1323 173 4 30 0356
17 RWA-DLANGZ WA 0304410 2 7] 28| 50 0] 3t 441 O] 1269 331 7] 32| 14028,
17 RWA-DLANGZ WA 0304412 12 7] 28] 521 0] 31] 44| of 1310 142 4 30 0707
V7 RWA-DLANGZWA 0304470 T —7] 281 56{ ol 311 46| O] 1314 352 4 30 2604
U/ KWADLANGZWA 0304473 12 7 —53|_ o0l a1l 461 of 1310 63 3 27 757
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Organisation Location Station Years {Cluster Latitude Longitude | MAP | Altitude | Seasonality | Precipitation ] Distance

No. Record | No. Concentration to

' 5ea

- i 1 mm) | (m) (%) (m)
UZ KWA-DLANGZWA 0304474 12 7] 28] 5a] 0] 3] 46| 0 1292 32 3 36 5965
UZ KWA-DLANGZ WA 0304501 12 TI 28Y 511 0] 31] 47] O] 1320 142 ] 28 0349
02 KWA-DLANGZ WA 0304530 2 7] 28] 50] 0] 3i| a8 o1 1243 142 2 28 1819
UZ KWA-DLANGZWA 0304562 2 7| 28] 52| O] 31| 49 0f 1384 95 3 25 7767
[UZ KWA-DLANGZ WA 0304593 12 7| 28| 53] o 3t 50 ol ia7e 45 r] 24 3443
[0Z KWA-DLANGZ WA 0304622 12 71 284 52{ O] 3(] si{ 0] 1390 95 S 24 6622




APPENDIX B

PROBABILITY DISTRIBUTIONS

A number of probability distribution were evaluated in Chapter 5 as candidate distributions
for estimating short design rainfalls in South Africa. These were the log-normal LN2, 3
parameter log-normal (LN3), Pearson type 3 (PE3), log-Pearson type 3 (LP3), Gumbel
(EV1), log-EV1 (L-EV1), General Extreme Value (GEV), generalised Pareto (GPA),
generalised logistic (GLO) and Wakeby (WAK) probability distributions. Where possible,
the probability density function, Ax), and cumulative density function, F{x), inverse of the
cumulative density function x(F), L-moments and parameters as reported by Hosking and
Wallis (1997), are presented in this Appendix. These distributions were implemented in the
study using routines developed by Hosking (1996).

B.1 GUMBEL (EXTREME-VALUE TYPE I) DISTRIBUTION

B.1.1 Definition

Parameters (2) : £ (location), a (scale)

Range of x ;. —0<X<®©
f(x)=a'exp{—(x-£)/ a}exp[-exp{~(x-£)/a}] 91
F(x) = exp|-exp{~(x - £)/ a}] .92
x(F) = ¢ - a log(- log F) .93

B.1.2 L-moments
A =&+ay .94

A, =alog2 .95
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73 = 0.1699 = log(9/8) / log 2 .96
7, = 01504 = (16log2 —10log3) /log2 .97

where y Euler’s constant (0,5772).

B.1.3 Parameters

a:jqz"logz, E=A4) -y .98

B.2 NORMAL DISTRIBUTION

B.2.1 Definition

Parameters (2} :  u (location), o(scale).

Range of x T —o<Xx<®

f(x)=a“¢(i'—‘”] .99

o
F(x) =d{"‘”) 100
o

x(F) has no explicit analytical form
where

d(x) = 2r)'? exp{—-.‘}xz), Q(x) = J‘_q. g}t . -.101

B.2.2 L-moments

Ay =u 102
A, = 056420 = 1775 ..103
7,20 ..104
£y = 01226 = 307 ' arctany2 - 9 ..105
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B.2.3 Parameters

n= A’l. g = .72'”2/12

B.3 GENERALISED PARETO DISTRIBUTION

B.3.1 Definition

Parameters (3) : ¢ (location), & (scale), k (shape).
Range ofx : Esx<E+akifk>0;fsx< ®ifk <.

-k7! log{l—k(x-g’)/a}, k0

— —(l—k)y’ =
J(x)=a"'e y {(x-g’)fa, 0

F(x) =l—e¢7¥

;’-Fa{l—(l-F)"}/k, k#0

x(F):{
§-alog(l- F). k=0

...106

...107

..108

...109

When & = 0, f{x) is the exponential distribution and for £= 1 f{x) is the uniform distribution

ontheinterval £sx s £+ a.

B.3.2 L-moments
L-moments are defined for & > -1.

L=E+al(l+k)

b =al{(1+ B2+ b))

r3=(1-k)/(3+k)

74 = (1-KN2-K)/ {13+ kX3 + b))
:I'he relation between 7, and r, is defined as

ro = f3(1+573)
4 5+ T3 )
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B.3.3 Parameters
If £is known, the two parameters « and k are given by

k=(4,~&/4,-2, a=(1+k)i,-&). 118

If £is unknown, the three parameters are given by

k=(1-320/(1+7), a=0+kQ2+k)A,, &=1~C2+k,. 116
B.4 GENERALIZED EXTREME-VALUE DISTRIBUTION

B.4.1 Definition

Parameters (3) : £ (location), & (scale), & (shape).
Range of x - o< x <§ + akif k>0
- WLy« 0 if k=0;

Frak < x< oifk<0,

-k logl{l- k(x-&)/a}, k20
x-&8/a, k=0

flxy= g lebw-e [ 117

Fix)=e*" 118

;+a{1—(-1ogF)*};k, k0
{~alog(-~logF), k=0

x(F)=[ 119

When & = 0 f{x) is the Gumbel distribution and when & = 1 f{x) is a reverse exponential
distribution i.e. 1 - F(-x) is the cumulative distribution function of an exponential
distribution. Three types of extreme-value distributions are often classified with cumulative
distribution functions as follows:

Type I : F(x)=-exp(e™™), —w<X <o, ..120
Type i : F(x) = exp(-x7%), 0<x <o, 121
Type III . F®)= exp(—]x|"), ~o<x<0. 122
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B.4.2 L-moments

L-moments are defined for k> -1,

A =&+afl-TO+k)}/k

Ay =a(l=-2"T(+k)/ k

1 =2(1-37%70-27%)-3

£y = 51-47-100-375)+ 60-27H}ra-27)
where T (.} denotes the gamma function

I(x)= J::“‘e"d:.

B.4.3 Pa rameterﬁ

2 log2

k ~78590c+29554¢%, = )
3+¢, log3l

] ik
= a-2hra+ k)’

B.5 GENERALIZED LOGISTIC DISTRIBUTION

B.5.1 Definition

Parameters (3} :  £(location), a (scale), £ (shape).

Rangeofx : -oo<xs f+ak if k>0
~ o< x< 2 if k=0
E+ak sx< = if k<Q.

_aste ™ e Nog{l- k(x- &) e},
/= (+e”)y y_{(x—.f)/a,

Fx)=1/(1+e™)
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..124

125

126

127

..128

..129

...130
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§+a[1-{(1-F)fF}*]fk, k%0

x(F)= 133
&-alog{(1- F)/ F}, k=0

When & = 0 f{x) is the logistic distribution.
B.5.2 L-moments
L-moments are defined for -1 < &£ < 1.

Ay =&+ all/ k-7 /sin(kz)) ~ 134

Ay = akr / sinkr) ..135

r =k ..136

74 = (1+5k%)/6 137
B.5.3 Parameters

_ - Aysin(kx) L [l__ T )

k=-r,, @ =~ =4, -a ybe ..138
B6 LOG-NORMAL DISTRIBUTION
B.6.1 Definition
Parameters (3) : ¢ {location). a (scale), k (shape).
Rangeofx : -o<x s{&+akif k>0

~®o<x<oifk=10;
f+atk < x< ™ if k<.
k-2 I_ -1 {
e k' log{l- k(x- &)/a}, k=0
= , V= ..139
f=Trm ltx- /e, k=0
F(x)=®(y) .. 140
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*(F) has no explicit analytical form

Here ® is the cumulative distribution function of the standard Normal distribution,
defined in Equation 101.

The lognormal distribution is usually defined by

F(x)=d>[{log{x—{)-p}/a'], fSx<w.

141
B.6.2 L-moments
L-moments are defined for all values of &
A =E+al-eF )k 142
by == 1- 20k 142} 143

There are no simple expressions for the L-moment ratios z.,r > 3. They are functions of
k alone and can be computed by numrerical integration, as in Hosking (1996).

B.6.3 Parameters

The approximation

Eo+ E;r] + Ey135 + Eyrt

...144
1+ Rt} + Fyrl + Fyrl

k=f3

is valid for || < 0.94, corresponding to |4} < 3, with £,...E; and F,....F, defined by
Hosking and Wallis (1997, page 199)

jzke—kzl'z
a= ,
1- 20(-k/+2)

£= 4=, 145
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B.7 PEARSON TYPE III DISTRIBUTION

B.7.1 Definition

Parameters (3) :  u (location), o(scale), y {(shape).
Range i f<O0<oofor y>0
<< for y=0
-o0<@<§ for y<0

If y=0,let a=4/y*,f=L1olyl,and {=u-20y,then

_ pa-l -Gx-gp :
- e 146

J(x)=
A%T(a)
F(x) = G(a X f} IT(a). ..147
x(F) has no explicit analytical form
where
Gla,%)= [ro-lear
d
is the incomplete gamma function.
B.7.2 L-moments
L-moments are defined for all values of @, 0 < < oo,
A =E+ap ..148
A= pr(a+ 1)/ T(a) 149
r3 = 6/ 3(a2a) -3 ..150
where [ (p.q) is the incomplete beta function ratio
L(pg) = 22D " e _pya-gy, 151

I'(pTg) Jo
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If & > 1, the following approXimations are accurate to 10 :

172 AO + A,a" + Aza"z + A3a'3

i . ..152
3 t+Ba' + Bya™?
-1 -2 -3
7o x Co +C]a -I:an '5‘;53& ,a.nd ."153
1+ Da™ + Dy
if <1,
2 3
e 1+ E[ﬂ“'Ezaz +E3a3 ’ 154
i+ F,a + an + F;a
ryx 1+ G +Gza2 +G3a3 155

-~ s
1+ Hya + Hya* + Hya?

with coefficients as defined by defined by Hosking and Wallis (1997, page 201).

B.7.3 Parameters

The following approximations have relative accuracy better than 5 x 10 for all values of
. If0< [l <i,let z=3m? and use

1+0.29062

~ - - 156
z+ 01882z + (00442~
if +<]z|<1,letz=1-|{7] and use
036067z ~ 05956722 +025361z> 157
1-2.78861z + 2560962° — 0.770452°
y =2a Vsign(r;).  o=ir"e"’T(a)/T@+d). u=4. 158
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B.8.3 Parameters

No simple expressions exist for the parameters, but the Newton-Raphson iteration
algorithm described by Hosking (1996) may be used.

B.9 WAKEBY DISTRIBUTION

B.9.1 Definition

Parameters (5) : ¢ (location), &, B, ¥, O.
Range of x ;. fsx<wif §>0and y>0;
fsxs &+ aP-yl6if 6<0or ¥=0.

Sf(x), F{x) not explicitly defined
- T T A U A T T
x(F)-§+ﬁ{1 (1 F)} 5{1 a- 167

B.9.2 L-moments

L-moments are deﬁned ford <1.

- a Y '
Ay -§+(l+ﬂ)+(1—§) ...168

= a rd
LA a-0aE-0) 169

P (57 N (5. 170
(1+8)2+HG+H)  (1-86X2-5X3-5)

_ a(l- 2 -5 + y(1+6X2+9) 171
T U2+ HBHAG S (1-8N2-EX3-8X4~8)

There is no simple expression for 1,

B.9.3 Parameters

Hosking and Wallis (1997) advacate using an algorithm based on L-moments implemented
by Hosking (1996) to estimate the parameters of the Wakeby distribution.
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B.8 KAPPA DISTRIBUTION

B.8.1 Definition

Parameters (4) : £ (location), & (scale), &, A

Range of x :  upper bound is £+ ak if k>0, if k <0;
lower bound is &+ @ (1-A*Vkif h>-0, {+ alkif h<0 and k<O,

and ->°if k<0 and £2 0.

f=a{l-k(x-)/a} P} ..159

F(x)=[1—h{1—k(x-§)/a}m]m ..160

WFy=¢+2 1-[1“'?#]* .16l
k ?

B.8.2 L-moments

L-momenits are defined if #A>0and ¢>-l,orif h<0 and-1 < k<-1/h

j’l =§+a(1—gl)fk -..162
A =alg -8) k 163
13 =(-8 +38,-28&)/ (2 - &) ..164
74 = (-8 +68, - 102, +58,)/ (2, ~ &) 165
where

T+ KT (r/ b

WAL k+rihy 0
& = ..166

M+ K[ (~k~r/h) h<0
(=h)'"*T-r/ty '
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