
DEVELOPMENT AND
EVALUATION OF TECHNIQUES

FOR ESTIMATING SHORT
DURATION DESIGN RAINFALL

IN SOUTH AFRICA

JC Smithers • RE Schulze

WRC Report No 681/1/00



Disclaimer

This report emanates from a project financed by the Water Research Commission (WRC) and is
approved for publication. Approval does not signify that the contents necessarily reflect the views
and policies of the WRC or the members of the project steering committee, nor does mention of
trade names or commercial products constitute endorsement or recommendation for use.

Vrywaring

Hierdie verslag spruit voort uit 'n navorsingsprojek wat deur die Waternavorsingskommissie
(WNK) gefinansier is en goedgekeur is vir publikasie. Goedkeuring beteken nie noodwendig dat
die inhoud die siening en beleid van die WNK of die lede van die projek-loodskomitee weerspieel
nie, of dat melding van handelsname of -ware deur die WNK vir gebruik goedgekeur of aanbeveel
word nie.



DEVELOPMENT AND EVALUATION OF
TECHNIQUES FOR ESTIMATING SHORT

DURATION DESIGN RAINFALL
IN SOUTH AFRICA

by

J C Smithers and R E Schulze

School of Bioresources Engineering and Environmental Hydrology
University of Natal
Pietermaritzburg

South Africa

Report to the Water Research Commission

WRC Report No: 681/1/00
ISBN No : 1 86845 604 8



EXECUTIVE SUMMARY

The main objective of this project was to develop and evaluate techniques to estimate short

duration (^ 24 h) design storms for South Africa. These were to be based on digitised

rainfall data, whereas previous studies conducted on a national scale in South Africa had

been based on data that were manually extracted from autographic charts. With the longer

rainfall records currently available, compared to the previous studies conducted in late

1970s and the early 1980s, it was expected that by utilising the longer, digitised rainiall data

in conjunction with regional approaches, which had not previously been applied in South

Africa, and new techniques such as L-moments, that more reliable short duration design

rainfall values could be estimated.

In Part A of the document the international and South African literature pertaining to the

estimation of short duration design storms is reviewed (Chapter 2) and the use of stochastic

models to generate synthetic rainfall series is assessed (Chapter 3). The results from

applications of the techniques and the development of new methods are presented in Part

B which consists of Chapters 4 to 8. In Chapter 4 the establishment of a short duration

rainfall database for South Africa is described and the effect of the errors and unreliability

of the data on the estimation of design storms are assessed. The application of an index-

storm based regional frequency analysis algorithm in South Africa is described in Chapter

5. The scaling of L-moments in order to extrapolate design storms for a particular duration

to another duration is discussed in Chapter 6 and results are presented for selected locations

in South Africa. Similarly, in Chapter 7, results are presented from the estimation of design

storms at selected locations in South Africa using synthetic rainfall series generated by

stochastic rainfall models. The various techniques developed and results obtained are

discussed in Chapter 8 and the most appropriate techniques for estimating short duration

design storms in South Africa are recommended.

SHORT DURATION RAINFALL DATABASE

The short duration rainfall database currently consists of data from 412 stations. This



database was constantly updated throughout the study as new data became available. The

largest contribution to the database (81% of all stations) was from the South African

Weather Bureau (SAWB). Processing errors were found in the data from all the

organisations which contributed data to the project. However, numerous errors in the

digitisation of the auto graphically recorded rainfall, in addition to missing events in the

SAWB data, resulted in a large portion of the database to be viewed as being of low

reliability. This is particularly pertinent in the estimation of design events which have a low

probability of being exceeded (e.g. 1 in 100 year return period event), as the autographic

raingauges tend to malfunction more frequently during intense events. The distribution of

record lengths and the spatial distribution of stations with record lengths of digitised data

a 10 years are shown in Figures 1 and 2 respectively.
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Figure 1 Distribution of record lengths in the short duration rainfall database for
South Africa

An analysis of the temporal occurrence, magnitude and frequency of the errors indicated

that the majority of the enors identified in the SAWB data were negative and zero time

steps (infinite intensities). Techniques were developed to identify the errors and to automate

adjustments to the data points to enable smooth screening and processing of the data. The

effect of making the adjustment on estimated design storms was shown not to be significant,

but the exclusion of any event that had an error contained within it did result in a significant

difference, thus indicating that the events should be retained and errors corrected.
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A comparison at selected sites of manually extracted and digitised Annual Maximum Series

(AMS) and the differences between rainfall totals recorded in the daily and digitised

databases led to the conclusion that the digitised SAWB data were generally of low

reliability and contained numerous periods of missing data. These periods were noted to

extend over the whole range of events and were not confined to smaller events. Nearly 3%

of the recorded raindays from the 330 SAWB stations have differences between the

standard raingauge and digitised daily rainfall totals of greater than 20 mm. This, in

conjunction with other analyses, led to the disappointing conclusion that the digitised

SAWB data were generally not adequate for estimating design storms for durations ^24 h.

Consequently, this resulted in the development of three approaches which utilised regional

similarities and scaling properties of the extreme events, as well as stochastic simulation of

rainfall series in order to estimate design storms from an inadequate database.
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SHORT DURATION DESIGN RAINFALL ESTIMATION

The three approaches developed to estimate short duration design rainfall values were all

based on the assumption that daily rainfall data, recorded manually at fixed 24 h intervals,

is more reliable than short duration rainfall data, which is automatically recorded. An added

advantage of using the daily rainfall database to estimate short duration design storms is the

relatively dense network in South Africa of daily rainfall stations, which also generally have

much longer records than the stations making up the short duration rainfall database.

Approach 1: Region a lised Index Storm

The first approach, results of which are outlined in Chapter 5, used an index-storm based

regional L-moment algorithm developed by Hosking and Wallis (1993; 1997) to estimate

design storms for various durations. The use of a regional approach has many claimed

benefits, including robustness and improving the reliability of at-site design values. • The

underlying assumption when using an index-storm type approach is that homogeneous

regions can be identified where the distribution of extreme events is the same, except for a

local scaling factor. Thus, 15 relatively homogeneous regions were identified in South

Africa (Figure 3) and an analysis of 10 probability distributions showed the General Extreme

Value (GEV) to be the most appropriate common distribution to be used in all 15 regions.

Quantile growth curves were developed for each of the 15 homogeneous regions for 16

durations ranging from 15 min to 24 h. The index used to scale the relationships was the

mean of the AMS {L_l) for each duration. Thus, information from the entire region can be

used to estimate design storms at a particular site by utilising the regional growth curve and

the at-site L_l value. This approach lends itself to design storm estimation at ungauged sites

if the index used to scale the relationship can be estimated at the site of interest. As an

example, regression analyses were performed between the 24 h LI values and rainfall

related site characteristics which are readily available as l'xl' images for South Africa

(Schulze, 1997). The results of the regression analyses in 13 of the 15 clusters enabled the

24 h LI values to be estimated with reasonable confidence. It is recommended that only



L_l values determined from gauged data be used in Clusters 10 and 11, where the

regression analyses were not successful.

SOO

• Cluster 1
• Ouster 2
• Cluster 3
* Cluster 4
+ QusterS
X Ouster 6
H Ouster 7
A Clusters

Ouster 9
Cluster 10
Cluster 11
Cluster 12
Ouster 13
Ouster 14
Cluster IS

Provincial &
IntBmsbonai
Boundaries

N

Figure 3 Distribution of 15 relatively homogeneous rainfall clusters in South Africa

The accuracy of the regional design storm estimates were assessed for one site in Cluster

3 which had not been used in the regional analysis. As shown in Figure 4 it was found that

at Ntabamhlope raingauge N23 the regional and at-site estimated design storms

corresponded very well for all durations and return periods. This "hidden station" approach

to testing the method was not used in the other clusters owing to the limited number of

available stations, but this analysis is a qualified validation of the methodology. The

accuracies of the quantile Regional Growth Curves (RGC) were successfully established

using a Monte Carlo type simulation of a hypothetical region which has the same number

of stations and record lengths as the cluster under evaluation. In this manner 90 %

confidence intervals were established for both the regional growth curves and the estimated

at-site design storms.

VI



N23: 1 h N23: 24 h
100

8 0 - -

6 0 - -

40 • -

20

20
Return Period (years)

50 100

200

150 • -

:100 - -

50 ••

i 10 20 50
Return Period (years)

100

QAt-site | Regional

Figure 4 Comparison of design storms estimated using at-site data and regional
analysis: Ntabamhlope raingauge N23

Approach 2: Scaling of L-moments

The second approach to estimating design storms with an inadequate database was to

investigate the scaling relationships between the moments ofthe AMS and rainfall event

duration and detailed results using this approach are reported in Chapter 6. It was noted at

selected sites from different climatic regions in South Africa that the log-transformed

relationship between L-moments and duration was more linear over a wider range of

durations than when conventional moments were used. Thus, the use of L-moments was

adopted for this application in the study.

Multiple linear regression relationships were developed for each cluster to estimate the

regression slope ofthe log-transformed LI and I_2:duration relationships as a function

of site characteristics. The slopes at site / estimated as a function ofthe site characteristics

were termed the Regional Slopes RS0J) and RS{2J) for the LI and LJ2 relationships

respectively. Acceptable relationships were obtained for 13 ofthe 15 clusters.

Six hypotheses were proposed to estimate short duration design rainfalls utilising daily

rainfall data and the scaling characteristics ofthe L-moments ofthe AMS. These hypotheses
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were evaluated at selected sites in each of the relatively homogeneous clusters. The

hypotheses are summarised in Table 1.

Table 1 Summary of hypotheses to estimate short duration design rainfalls using
daily rainfall data and regional rainfall characteristics
(L_x(lD) = x-th L-moment at site i for D hour event duration
Ljfw ~ regional average jc-th L-moment for D hour event duration
RS(jj) = regionalised slope of log-transformed x-th L-moment: duration

relationship, estimated from site characteristics)

Hypothesis

0

1

1

3

4

5

6

Method for Estimation of first and second L-Moments for durations < 24 h

Observed (historical) data

Multiple scaling from 24 h and 48 h values

RSfrj) = fljegion, site characteristics) and observed LjctlM

Lj^m re-scaled with observed L_1VJ})

L_X"(D\ re-scaled with L_1(,_D) estimated using L_l^,2^ = f (region, site characteristics)
and RS{]J) = f(region, site characteristics)

ijc*(oj re-scaled with L_liiD) estimated using £_/(, 24) computed from daily rainfall data
and ftS^ji = f(region, site characteristics)

L_x"lD) re-scaled with L_lUJ}) estimated using L_l(i2iyt computed from daily rainfall
data and adjusted using regionalised 24 h : 1 day ratios, and RSUJ) = f(region, site
characteristics)

Hypotheses 4 - 6 utilise different techniques to estimate the L_l{iJi) values for durations

<.2A h in order to re-scale the Lj^^ at sites where only daily rainfall data are available. In

addition, Hypothesis 4 can be applied to a site that has no gauged data. In order to fit

distributions with more than two parameters, Hypotheses 4 to 6 assume that third and

higher order L-moments can be estimated using the regional, average, record length

weighted L-moment ratios at all sites.

Hypothesis 1, in which L-moment for durations < 24 h are scaled from the 24 h and 48 h

values, is intuitively the most attractive as it is the simplest of the hypotheses evaluated.

Although this hypothesis was found to be adequate at a number of sites in different climatic

regions (e.g. Cathedral Peak, Newlands, Mokobulaan), breaks in linear scaling for durations

< 24 h and s 24 h at a number of stations (e.g. Ntabamhlope, Cedara, Mount Edgecombe)

resulted in the rejection of the hypothesis for general use in South Africa.
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Hypothesis 4, in which the scaled regional average L-moments are re-scaled for site i using

L_1(,,D) values estimated using regional regression relationship of site characteristics to

estimate L_l{i24) and RS( U}, is the only method evaluated that can be applied at an ungauged

site within a cluster. Generally, at sites where the data were deemed to be reliable, the

method performed well. However, at most SAWB stations where the method was

evaluated, the hypothesis did not perform well, as the L-moments computed from the 1 day

data were larger than the L-moments computed from the digitised data. This anomaly is

attributed to periods of missing digitised data for those stations. The errors in the digitised

data from numerous SAWB stations also resulted in Hypotheses 2, 3 and 4 generally not

performing well at these sites when compared to the L-moments and design storms

estimated from the 1 day rainfall data.

All the hypotheses evaluated assume that the L-moment: duration relationship is linear when

plotted as log-transformed values. This power law relation appears to hold true for most

clusters over the range from 4 to 24 h. However, a change in the linear relationship at

durations ranging from 1 to 4 h was noted at most summer rainfall sites (e.g. Ntabamhlope,

Cedara, Kokstad, Mokobulaan and Drieplotte), where thunderstorms are the predominant

rainfall generating mechanism. In the winter rainfall region (e.g. Jonkershoek, Cape Town

and Vredendal), where frontal rainfall systems predominate, the deviation in linear scaling

at a particular duration is not as marked. Although deficiencies in the temporal resolution

of the rainfall measurement and digitisation processes cannot entirely be discounted as the

cause of the change in linear scaling, it is postulated that the phenomenon is mainly the

result of the predominant rainfall generating system. The durations at which the breaks

occur at a particular site are hypothesised to be related to the typical duration of

thunderstorm activity. Thus it is recommended that Hypotheses 4 to 6 should not be used

to estimate design rainfall values for durations < 2 h, particularly in clusters where

thunderstorms are the predominant rainfall generating mechanism.

Hypothesis 6 requires that the 24 h LI value computed from the daily rainfall data be

converted into a continuous 24 h value, as estimated from digitised data. Although different

conversion factors for each cluster were used in this study, it is recommended from the
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results of this study that a generalised value of 1.20 could be used to convert 1 day to 24 h

LI values in South Africa.

The average mean absolute relative errors (A V-MARF) between design rainfall estimated

using the above 6 hypotheses and observed data were computed as:

and AV-MARE =

MAREj

O,Q.t)

No

where

average MAREj (%), computed from ND durations,

mean absolute relative error of/-th hour design rainfall (%),

k-th return period, j-th hour annual maximum design rainfall

computed using hypothesis,

k-th return period, y-th hour design rainfall computed from

observed data, and

number of return periods (2, 5, 10, 20, 50 and 100).

An example of the A V-MARE values for durations of 2 h to 24 h at selected non-SAWB

(CP6," N23 and C182) and SAWB (0239482, 0180722, 0444540) stations in Cluster 3 is

shown in Figure 5. Hypotheses 4 and 6 performed consistently well at the non-SAWB

stations, but resulted in some of the largest errors at the SAWB stations. As shown in

Figure 6 the 24 h L_l values extracted from the digitised data correctly exceed the values

extracted from the daily data at non-SAWB stations, and the adjusted daily value, as used

in Hypothesis 6, is similar to the value extracted from the digitised data. However, at all the

SAWB stations the LI values extracted from the digitised data are less than those

extracted from the daily rainfall data, indicating inconsistencies in the two sets of data. The

limitations of the regional regression relationships which estimate the 24 h LI value as a

function of site characteristics, as used by Hypothesis 4, are evident in Figure 6. The

estimated 24 h L_l values tend to mimic the observed 24 h LI values extracted from the

digitised data, which were used in the development of the regression equations and which

have been shown to be unreliable at some SAWB stations.
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Figure 5 Comparison of mean absolute relative errors of design storms, averaged for
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selected sites in Cluster 3 for the six hypotheses summarised in Table 1
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It is postulated that the method outlined in Hypothesis 6, which performed well in all

clusters and attempts to compensate for errors and periods of missing digitised rainfall data,

will yield the most accurate estimates for design storms of the hypotheses evaluated and

should be adopted in the estimation of design storms.

Although Hypothesis 6 requires daily rainfall data and cannot be applied at sites which have

no rainfall data, which is not the case with Hypothesis 4, the dense network of daily rainfall

stations with relatively long records used in conjunction with Hypothesis 6, enables the

estimation of short duration design storms at a large number of locations in South Africa.

The estimation of regional regression relationships to estimate the 1 day /,_/ value,

computed from the daily rainfall data, as a function of site characteristics would enable

Hypothesis 6 to be applied at any location in South Africa. It is probable that design storms

estimated directly from the SAWB digitised data would, on average over durations ranging

from 2 h - 24 h at most stations considered, have underestimated short duration design

storms by up to 65 %.

Approach 3: Stochastic Rainfall Modelling

In the third approach to short duration design rainfall estimation, detailed results of which

are reported in Chapter 7, two variations of Bartlett-Lewis rectangular pulse type of intra-

daily stochastic models were used to generate synthetic series of rainfall. The estimation of

the parameters of the models proved to be an exacting task, with similar performance

possible with very different sets of parameters. The constrained parameter search technique

developed in this study ensured that the mean storm characteristics computed from the

derived parameters were reasonable and aided in the determination of parameters.

The parameters estimated by function minimisation were found to be relatively sensitive to

the initial estimates of parameters at the start of the minimisation procedure and the

parameter search technique adopted assisted in overcoming this sensitivity. It became clear

that the unconstrained minimisation procedures frequently referred to in the literature are

reliant on the careful selection of initial conditions.



The explicit presentation of the relationships between the model parameters and the

methods used to estimate the parameter correlation matrix are not evident in the literature

reviewed. The correlation matrix assisted in the determination of model parameters by

identifying parameters that were highly correlated and which could thus be assigned a fixed

value.

A comparison between the performances of the Modified Bartlett-Lewis Rectangular Pulse

Model (MBLRPM) and Bartlett-Lewis Rectangular Pulse Gamma Model (BLRPGM) was

performed at selected sites in South Africa. The performance of the models and the ease

of parameter determination were found to be sensitive to the composition of the moments

used to determine the parameters of the model. It was noted that despite the BLRPGM

requiring the estimation of an additional model parameter compared to the MBLRPM, the

performance of the BLRPGM was generally less sensitive than the MBLRPM to the

moments used to estimate the model parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown

to simulate synthetic rainfall series which fitted the statistics of the historical data better than

those computed from the series generated by the MBLRPM. Similarly, the design rainfall

events estimated using the BLRPGM were better than those estimated using the MBLRPM.

Generally the BLRPGM performed better when short duration digitised data were available

to estimate the model parameters than when only daily rainfall data were available. It was

shown that the variances for durations < 24 h could be estimated directly from the 1 and 2

day values and were reasonably accurate at most locations tested for durations as short was

1 h. The use of only the daily rainfall, with the inclusion of variances for durations < 24 h

estimated from the daily data, generally resulted in adequate estimation of design rainfalls.

For the observed data and for each of 100 synthetic series generated by the BLRPGM,

design rainfall depths were estimated using the General Extreme Value (GEV) distribution,

fitted to the Annual Maximum Series (AMS) by L-moments. Design values for 2 to 100

year return periods were computed for rainfall durations ranging from 0.25 h to 24 h. For

each duration and return period, a frequency analysis was performed on the 100 values
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computed from the synthetic rainfall series generated by the model. Histograms depicting

the observed design rainfall computed from the historical data and High-Low bars depicting

the inter-quartile range (25-th to 75-th non-exceedance percentiles) of the 100 synthetic

data sets is one method of visually evaluating the adequacy of the model. For example, the

performance of the BLRPGM at Ntabamhlope raingauge N23, with parameters derived only

from the daily data, is shown in Figure 7 for the best (February) and worst (December) rainy

season months simulated and for annual periods. Further improvements in the estimation

of design rainfalls are possible by adopting a parameter optimisation procedure, which

includes event duration and number of events, in addition to other moments, directly in the

determination of model parameters.

Design storms were well estimated from the synthetic series generated from the BLRPGM

at a range of sites in different climatic regions in the country. However, it is recommended

that design storms for durations shorter than 1 h should not be estimated from the synthetic

series generated by the BLRPGM, even when short duration rainfall data are available to

estimate model parameters. In cases where only daily rainfall data are available to estimate

the parameters of the model, it is recommended that design storms should not be estimated

for durations shorter than 2 h and should be used with caution for durations from 2 to 6 h.

It was evident from the results obtained that any anomalies in the historical data, as was

often the case with the S AWB data, are highlighted by comparisons to the synthetic rainfall

series. Thus it was shown in some cases that design storms estimated using the BLRPGM

were more reliable than the design storms estimated using historical short duration data

Design storms are only estimated well using the BLRPGM when the historical AMS contain

no high outliers and hence the BLRPGM does not appear to work well at locations where

a mixture of meteorological conditions cause extreme events. Thus the model performance

does not appear to be adequate in areas where the variation in range of values in the AMS

for a particular month is smaller for longer duration events than for shorter duration events.
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The temporal distribution of storms generated by the BLRPGM was found to closely match

the observed data at three selected test sites in different climatic regions in South Africa

(Ntabamhlope, Jonkershoek and Mokobulaan). However, the frequency of storms with

particular profiles was not as well simulated as the temporal distribution. It is thus

recommended that the use of the BLRPGM to estimate design rainfall values in South

Africa, particularly for durations of 1 to 24 h, is a feasible option which can also be adopted

at sites where only daily rainfall data are available.

A comparison of the Mean Absolute Relative Error (MARE) between design rainfalls

estimated from the historical data and between values estimated using both Hypothesis 6

and from the synthetic rainfall series generated by the BLRPGM, with optimised parameters

determined using only daily rainfall data, are shown in Figure 8 for selected stations. In the

calculation of the MAREs, the 2, 10, 20 and 50 year return period values for durations of

2, 4, 6, 12 and 24 h durations were considered. It is evident from Figure 8 that design

rainfall values computed using either Hypothesis 6 or from the synthetic rainfall series

generated by the BLRPGM, with parameters estimated from daily rainfall data and

optimised, are similar. Hence it is concluded that both methods are acceptable for estimating

design storms in South Africa for durations > 1 h.

C182 Jnk19A

• BLRPGM (2f, Opt 3)

Figure 8 Mean absolute relative errors of design
rainfalls for durations of 2 - 24 h and return
periods of 2 - 50 years estimated at selected
stations using Hypothesis 6 and the BLRPGM
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The effect of record lengths on the estimation of design rainfall values was investigated at

two sites in South Africa (Ntabamhlope and Jonkershoek). In both cases, the design rainfall

values estimated from the synthetic rainfall series generated by the BLRPGM, with

parameters determined using a short period of record, better approximated the "true" design

values, computed directly from the full period of observed record, than when the design

values were computed directly from the short period of observed record. Thus it is highly

recommended that, particularly when only short periods of record are available and no other

techniques of estimating short duration design rainfall values are available, design rainfall

values should preferably be computed using the synthetic rainfall series generated by the

BLRPGM, with parameters estimated using the short period of data, rather than estimating

the design values directly from the short period of observed data.

RECOMMENDATIONS FOR APPLICATION OF RESEARCH FINDINGS

All three approaches which were evaluated to estimate short duration design storms with

an inadequate database performed well within the limitations of the data. However, the

combined method of regional average L-moments and RS, scaled using an adjusted I J

value computed from the daily rainfall data (Hypothesis 6), is recommended for general use

in South Africa and for durations ;> 1 h, as it combines the strengths of the regional

approach, which may compensate to some extent for stations with poor data, and explicitly

attempts to compensate for the inadequate digitised data by using the LI value computed

from the daily data. It is also recommended that the BLRPGM be used at selected sites in

addition to the method detailed in Hypothesis 6, in order to ensure reasonable design

estimates are obtained.

Hypothesis 6 can only be applied at sites which have daily rainfall data. It is recommended

that regional relationships be developed to estimate the at-site 1 day LJ value, computed

from the daily rainfall data, as a function of site characteristics. This relationship in

conjunction with the regionalised 24 h : 1 day LI ratios and RS, would enable reliable

estimation of design storms for durations s 24 h at any site in South Africa.

xvu



RECOMMENDATIONS FOR FUTURE RESEARCH

Design rainfalls estimated using the recommended approaches generally did not compare

well to design values for durations shorter than 1 h. This suggests either that the digitised

data are more unreliable for shorter durations or that the techniques developed do not

capture the characteristics of the extreme events for shorter scales. It is therefore

recommended that the techniques should be evaluated on more reliable, high resolution data

such as that recorded by data loggers, which may have to be obtained from sites not in

South Africa.

An option not pursued in this study, but which warrants further investigation, is the use of

stochastic dairy rainfall models, as have been developed for South Africa by Zucchini et al.

(1992), to simulate dairy rainfall series. The stochastically generated daily rainfall model

would thus enable Hypothesis 6 to be applied at any ungauged location in South Africa.

Similarly, the stochastically generated daily rainfall series could be used to estimate the

parameters of the BLRPGM.

It has been shown that the short duration data from the SAWB are generally of low

reliability and hence there may be some doubt as to the validity of the homogeneity tests

which may have been based on unreliable data. It is intended that a future project refine and

extend the relatively homogeneous clusters identified in this study by performing a cluster

analysis, similar to the regionalisation performed in this study, but based on the site

characteristics of the locations of the daily rainfall gauges and the subsequent testing of the

clusters identified for homogeneity using the daily rainfall data.

The variances for short duration events, used for determining parameters of the BLRPMs

from the daily rainfall data, were estimated in this study using a linear relationship between

the log of variance and log of duration. This generally resulted in poor estimates of variance

for durations slh. It is recommended that future research should consider adopting a

curvilinear function, which may improve the estimates of variance for short durations and

result in better model parameters and improved model performance.
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CHAPTER 1

INTRODUCTION

Engineers and hydrologists involved in the design of hydraulic structures (e.g. culverts,

bridges, dam spillways and reticulation for drainage systems) need to assess the frequency

and magnitude of extreme rainfall events in order to generate design flood hydrographs.

Many thousands of engineering and conservation design decisions involving millions of

Rands of construction and which require accurate short duration (<, 24 h) design rainfall

intensity information are made annually in S outh Africa. Depth-Duration-Frequency (DDF)

relationships, which utilise recorded events in order to predict future exceedance

probabilities and thus quantify risk and maximise design efficiencies are a key concept in the

design of hydraulic structures (Schulze, 1984).

Estimates of design rainfall for durations shorter than one day were last comprehensively

produced for South Africa in the early 1980s (Midgley and Pitman, 1978; Van Heerden,

1978; Adamson, 1981) and for selected stations in KwaZulu-Natal in the mid 1980s

(Schulze, 1984). The objective of this project was to develop and apply new techniques,

including regional approaches which have not been applied previously, for improving the

estimates of short duration design rainfall values for South Africa. With longer available

records from recording raingauges and an increased spatial density of short duration rainfall

data, more reliable estimates of design storms may now be made than are currently used in

practice.

Techniques used in single site frequency analysis are widely documented (e.g. Stedinger et

at., 1993). One of the requirements of frequency analyses is a collection of long periods

of records. The short duration rainfall data available in South Africa have generally been

recorded autographically and digitised into a computer compatible format. The record

lengths of the available data are relatively short, with only 49 out of a total of 412 recording

rainfall stations in South Africa having record lengths of 30 years or longer, and only 4

stations with record lengths of 50 years and longer. Thus the network of these stations with

record lengths longer than 30 years is very sparse.
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A regional approach to rainfall frequency analysis attempts to supplement the limited

information available from the relatively short periods of record with regional information

from surrounding stations. This approach is not new in frequency analysis, with many

different techniques available. However, until recently, there has been very little consensus

regarding the best technique to use. The development of a regional index-flood type

approach to frequency analysis based on L-moments (Hosking and Wallis, 1993; Hosking

and Wallis, 1997) has many reported benefits and has the potential of unifying current

practices of regional design rainfall analysis.

The main objective of the project was to estimate short duration design rainfalls for South

Africa. These were to be based on current digitised rainfall records, which were

approximately 20 years longer than the manually extracted values used in previous studies

conducted in the 1980s, and to utilise regional techniques to supplement the sparse

distribution of recording raingauges and hence produce more reliable short duration design

rainfall values than are currently available for South Africa.

A short duration rainfall database was established after a survey of the available data in

South Africa. Some of the data were only available in chart form and have been

subsequently digitised as part of this project. The organisation contributing the majority of

the data to the database is the South African Weather Bureau (SAWB). Unfortunately the

guidelines for routine digitisation spelt out by Dent and Schulze (1987) were not followed

by the SAWB and numerous errors and inconsistencies in the SAWB data are evident. After

much interaction with the SAWB it was decided that even the task of re-digitising only the

charts which probably contained extreme events would be too costly and labour intensive

to undertake. Thus this project deviated substantially from its original intentions and a large

amount of energy went into identifying, quantifying and repairing the processing errors in

the database and in developing techniques for estimating design storms from a largely

inadequate database. Therefore approaches were developed to estimate short duration

design rainfall values notwithstanding the limited reliability of the majority of the digitised

rainfall data.



Three approaches to estimating design storms from the unreliable short duration rainfall

database were evaluated. The first approach used a regional frequency analysis, the second

investigated scaling relationships of the moments of the extreme events and the third

approach used a stochastic intra-daily model to generate synthetic rainfall series. A common

theme in all three approaches is the development of techniques to estimate short duration

design storms from the daily rainfall database, which contains rainfall data recorded

manually at daily intervals, and is deemed to be more reliable than the short duration rainfall

data.

The severity of the errors and the amount of missing short duration data varies from station

to station. Hence the use of a regional approach will supplement information at sites which

may have unreliable information with better information from within the region, assuming

that not too many sites in the region have unreliable data. As part of the regional approach,

homogeneous rainfall regions in South Africa were identified and a regionalised, index

storm based frequency analysis using L-moments was adopted. Regionalisation was

perfonned using site characteristics and tested independently using at-site data. For each of

the homogeneous regions and for various durations, growth curves, which relate the ratio

between design rainfall depths and an index storm to return period, have been developed.

Regression equations, based only on site characteristics, have been derived to estimate the

24 h index storm for each region. Thus it is possible to estimate the 24 h index storm at a

site which has no recorded rainfall data, and in conjunction with the regionalised growth

curve, design storms may be estimated at any ungauged site in South Africa.

A second approach developed to overcome the limitations of the short duration rainfall

database was to use the scaling properties of the moments of the extreme events in

conjunction with the moments derived from the daily rainfall database to estimate short

duration design storms at a particular location. In this respect, the use of L-moments instead

of conventional moments were found to scale more linearly over a wider range of durations.

Regionalised regressions to estimate the slope of the L-moment:duration relationships have

been developed. Thus the L-moments for durations less than 24 h can be estimated using



the L-moments computed from the daily data and regionalised regressions, thereby enabling

short duration design storms to be estimated at any location in South Africa.

A third approach to estimating design storms from the generally unreliable database was to

generate synthetic rainfall series using stochastic models and to estimate design storms from

the synthetic series. Techniques have been developed to estimate the parameters for the

models using moments and other information derived only from the daily rainfall data, thus

utmsing the relatively dense network of daily rainfall stations available in South Africa.

Hence, at any site where a reasonable record of rainfall recorded at daily intervals is

available, the parameters of the stochastic model can be derived and hence design storms

for durations less than 24 h can be estimated from the synthetic rainfall series. The effect of

short rainfall record lengths was investigated and the use of a stochastic rainfall model to

overcome the limited available data is illustrated.

This document is divided into two parts. In Part A, the literature are reviewed and the

theoretical framework is presented for the techniques used. The results from applications

of the techniques and the development of new methods are presented in Part B. Part A

consists of Chapters 2 and 3. The international and South African literature pertaining to

the estimation of design storms is reviewed in Chapter 2. Similarly, in Chapter 3 the use of

stochastic models to generate synthetic rainfall series is reviewed. Part B consists of

Chapters 4 to 8. In Chapter 4 the establishment of a short duration rainfall database is

described and the effect of the errors and unreliability of the data on the estimation of design

storms is assessed. The application of the index-storm based regional frequency analysis

algorithm in South Africa is described in Chapter 5. The scaling of L-moments in order to

extrapolate design storms for a particular duration to another duration is discussed in

Chapter 6 and results are presented for selected locations in South Africa. Similarly in

Chapter 7, results are presented from the estimation of design storms at selected locations

in South Africa using synthetic rainfall series generated by stochastic rainfall models. The

various techniques developed and results obtained are discussed in Chapter 8 and the most

appropriate techniques for estimating short duration design storms in South Africa are

recommended.



PART A

LITERATURE REVIEW

In Part A the international and South African literature relevant to this study are reviewed.

Techniques for the estimation of design storms are reviewed in Chapter 2 and the use of

stochastic rainfall models to generate time series of rainfall, from which design storms can

be estimated, are reviewed in Chapter 3.



CHAPTER 2

DESIGN STORM ESTIMATION

Estimates of high intensity rainfall are not only important for flood estimation and

engineering design, but are also important in the estimation of soil loss and vegetation

damage resulting from high intensity storms. It is thus desirable to express, in probabilistic

terms and for different durations, the likelihood of different amounts of rain (Tomlinson,

1980). The results of under- or over-design of even small hydraulic structures such as farm

dams or culverts results in considerable national waste of resources (Reich, 1961; Reich,

1963). Thus rainfall Depth-Duration-Frequency (DDF) relationships are a key concept in

the design ofhydraulic structures where a return period is selected according to the cost and

significance of the structure. In order to minimise risk and maximise efficiency in design,

statistical and probabilistic methods are thus applied to past events in order to predict the

exceedance probability of future events (Schulze, 1984).

Adamson (1981) summarised the state of extreme value analysis as applied in hydrology as

"copious, confusing and conflicting" and adds that many advances in extreme value analysis

rarely find routine application. This results in the practising engineer relying on "well tried

but often crude methodologies" (Adamson, 1981). Although much has been published on

DDF studies since 1981 there still appears to be little consensus in the literature on

preferred approaches to design storm estimatioa However, the relatively recent

developments in regional approaches to the estimation of DDF relationships at a point hold

much promise for more general acceptance. Thus the objective of this chapter is to review

and summarise some established and current, as well as new, procedures to estimate design

storms. Both single at-site approaches (Section 2.1) and joint at-site and regional

approaches (Section 2.2) to design storm estimation are reviewed. This is followed by a

review in Section 2.3 of DDF studies in South Africa. Finally, a review of the use of scaling

relationships is presented in Section 2.4 which includes results from both South African and

international studies.



2.1 SINGLE SITE APPROACH

The objective of frequency analysis is to utilise a recorded sample of the hydrological

variable in order to estimate future probabilities of occurrence (Cannarozzo et al., 1995).

Design rainfall values may be estimated by extracting either the Annual Maximum Series

(AMS) or Partial Duration Series (PDS) from the rainfall data and then analysing the

extracted series analytically or graphically (Hershfield, 1984). Both methods require the

selection of a suitable probability distribution to be fitted to the extracted series. The

analytical method requires a curve-fitting procedure and the graphical method requires the

selection of an appropriate plotting position formula which assigns a probability of

exceedance (Pe) to each value in the extracted series. By definition the relationship between

the return period (T) and Pt is:

The estimation of design storms over a catchment commonly involves all or some of the

following steps (Tomlinson, 1980; Canterford et al., 1987a; Alexander, 1990; Griffiths and

Pearson, 1993):

DDF relationships are developed at each site by fitting probability distributions to

the primary data series.

• Procedures are developed to determine short duration intensities from the daily

raingauge network and thus to supplement the recording raingauge network.

• Relationships are developed to extrapolate from and interpolate between defined

durations.

• Methods are deduced for interpolating between stations.

Point to area relationships are derived to predict areal distribution of extreme

rainfell.

• Procedures are developed to specify the temporal sequences of the design

hyetograph.
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• Guidelines are recommended to try and account for future climate change.

In order to develop the DDF relationships at each site, the following principal steps are

commonly used (Cunnane, 1989; Nathan and Weinmann, 1991):

• A data set to be analysed is selected. This may either be the AMS or PDS.

• An appropriate probability distribution is selected.

» A parameter and quantile estimation method is selected.

A scheme is chosen for joint use of at-site and, where available, regional data.

The above methods involve choices which are both descriptive, with the shape of the

distribution resembling the observed sample's distribution, and predictive where quantile

estimates are robust with small bias and standard error (Cunnane, 1989). Bias is defined

as the difference in the estimated quantile and the population value. The above four steps

are expanded on in the following sections.

2.1.1 Data Series

2.1.1.1 Annual maximum vs partial duration series

In order to perform an extreme value analysis, Sevruk and Geiger (1981) list necessary

assumptions about the data as follows:

• the data are correct or, where necessary, have been corrected,

• the data series is consistent, homogeneous, stationary and independent,

• the length of record is sufficient to represent the population,

• the AMS or PDS series follow a particular distribution, and

• the estimates of the parameters of the distribution are unbiased.



According to Cunnane (1989) either one of the AMS or PDS may be used to derive the

magnitude-return period relationship. The design values estimated using the two series

converge beyond the 10 year return period (Reich, 1963), although Schulze (1998) has

found that the convergence between the two series can occur at return periods as low as 5

years. The theoretical relationship between the return period from the AMS ( 7 ^ ) and PDS

(TpDS) is

Various opinions regarding the use of the AMS and PDS have been expressed in the

literature. An advantage of using the AMS as compared to the PDS is that AMS are

statistically independent if care is taken in the selection of events occurring over the end of

the year, whereas statistical independence is not as easily achieved using the PDS (Cunnane,

1989). However, Adamson (1981) expressed the view that the popular use of the AMS

rather than the PDS was due to the ease of use of the AMS and not on the theoretical

efficiency in characterising extreme value time series. The use of the AMS may, in the case

of short records, result in a considerable loss of information for the estimation of rainfall

probabilities.

Stedinger etal. (1993) report that the use ofPDS overcomes the objection that large events

may be excluded when they are not the largest event in a year and design estimates based

on the PDS should, if the arrival rate of events is large enough, yield more accurate

estimates of quantiles than estimates based on the AMS. A disadvantage of the PDS is that

the events selected have to be independent and the PDS analysis is more complicated than

analysis using the AMS (Stedinger et al, 1993).



2.1.1.2 Record length

Limited length of available records makes it impossible to conclusively select a distribution

that could consistently provide adequate rainfall frequency estimates for return periods

much greater than the period of record (Richards and Wescott, 1987) and a small sample

may define a distribution which is markedly different to the parent population (Schulze,

1980; Oyebande, 1982). The lengths of record used in some rainfall frequency studies

reported in the literature are listed in Table 1. As evident in Table 1, the minimum record

length of 10 years suggested by Viessman et al. (1989) has generally been adhered to in

most studies.

Schulze (1984) questioned the significance of the period of available record on the extreme

events recorded and hence the design values. This issue was addressed by Hogg (1991;

1992) who used a moving window ranging from 10 to 40 years to estimate the 100 year

return period event and compared the results to the 100 year return period event computed

from the entire data set. In addition, Hogg (1991) used an expanding window which used

a window from the starting point to the year in question. The expanding window estimate

of the 100 year event showed some trends at particular stations in Canada, but Hogg

(1991) concludes that these trends reflect natural climate variations and sampling variability,

as the trends were not spatially (i.e. between stations) consistent. Using the moving window

approach Hogg (1991) demonstrated that 20 years of data are not stable enough to

estimate the 10 year return period event, while Hogg (1992) concluded that even a 40 year

period of record is insufficient to estimate the 100 year return period event. Thus, Hogg

(1992) postulates that the assumptions of stationarity and homogeneity of the AMS of

rainfall are seldom valid and suggests that a regional approach may improve the frequency

analysis of extreme rainfall events.
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Table 1 Record lengths used in some rainfall frequency studies

Reference

Van Wyk and Midgley (1966)

Canterford and Pierrehumbert (1977)

Midgley and Pitman (1978)

Oyebande(1982)

Sendil and Sahil (1987)

Schaefer(1990)

Kothyari and Garde (1992)

Cannarozzo et ai. (1995)

Location

South Africa

Australia

South Africa

Nigeria

Saudia Arabia

USA

India

Sicily

Record Length

(years)

5-26

> 12

5-38

5-30

10-20

mean =32

10-53

10-45(mean=23)

2.1.1.3 Errors and missing data

Raingauge malfunctioning and rainfall processing errors are inherent in rainfall data. The

volume of raw data often precludes the manual editing of the data and missing data may be

in-filled using relationships previously established at the site (Aron et ah, 1987), or rules

may be established to exclude the data from the analysis should defined thresholds of

allowable missing data be exceeded (Canterford and Pierrehumbert, 1977).

Weddepohl (1988) discusses problems associated with short duration rainfall data and their

availability in South Africa. Some of the common errors in digitised data include inherent

raingauge malfunctions, raingauge operator errors, errors in transposition of data from

charts into computer compatible format and unrealistically lumped station data when a

station is relocated within a period of record. Other problems associated with the data are

the spatial density and distribution of raingauges, the fact that the standard rain day ends

at 08:00 whereas the digitised data are continuous, the length of available records and the

presence of outliers.
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Errors are apparent when different rainfall depths are recorded at the same site using

different types of raingauges. Differences are common between rainfall recorded at daily

intervals and rainfall recorded continuously and aggregated to the same period as the daily

rainfall. Thus the New Zealand Meteorological Service and the National Water and Soil

Conservation Organisation have similar data editing procedures which contain internal

consistency checks and inter-site comparisons and recording raingauges are scaled to bring

them into agreement with total rainfall recorded by the check gauges (Tomlinson, 1980).

Guttman {1993), in a probabilistic analysis of monthly totals of rainfall in the USA using L-

moments, recognised and accepted that there were still possible errors in the data, but did

not attempt to correct or in-fill the missing data. This decision was based on Hosking's

(1990) assertion that asymptotic biases of L-moments ratios are negligible for sample sizes

greater that 20.

2.1.1.4 Outliers

It is generally accepted that outliers in rainfall data are the result of:

• the occurrence of a meteorological phenomenon different to those which caused

all the other events, or

• a rare occurrence of a meteorological phenomenon similar to which has occurred

previously, or

• incorrect observations or keying in of data (Tomlinson, 1980).

The phenomenon that data may not arise from the same population (distribution) has led to

the use of the two-component extreme value distribution by, inter alia, Rossi etal. (1984),

Versace and Rossi (1985), Arnell and Beran (1987), Pegram and Adamson (1988) and

Cannarozzo et al (1995).
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Outliers are commonly identified by the degree of deviation from their plotted positions on

the frequency curve, by their ratio to the mean, by comparison to other records in the

region of study or if the equivalent return period assigned to an event is much longer than

the length of the series (Wang, 1987). Statistical tests, such as those used by Pilgrim and

Doran (1987), can be developed to identify high and low outliers. These generally relate

deviations about the mean in log-space to identify an outlier. Tomlinson (1980) suggested

three approaches to dealing with outliers:

• Exclude the event and recalculate the parameters of the probability distribution.

• If the event is found to be drawn from a non-homogeneous population, then

exclude the event.

Include the event and select a more appropriate distribution, fitting technique or

plotting formula.

Cunnane (1989) expressed the opinion that outliers should be retained if an efficient

parameter estimation method is used, as the effect of the outliers would then not be

significant. In Australia, guidelines for the treatment of outliers is subjective and the

probable cause of the event, the prior belief and statistical evidence are taken into account.

The omission or deletion of a data point is taken as an extreme step (Pilgrim and Doran,

1987). According to Stedinger et al. (1993) the thresholds used to define high (XH) and low

outliers (XL) in log space are

^ L n S ...3

where

X = mean of the log-transformed data,

S -• standard deviation of log-transformed data,

n = sample size, and

Kn = 3.345Jlog(n) - 0.40461og(«) - 0.9043 . ...4
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2.1.1.5 Conversion of fixed time interval value to true maxima

When converting values calculated at specific times of the day to independent durations of

the same length, conversion factors have to be used (Alexander, 1990). The conversion

factors are dependent on the duration in question and various values have been proposed.

For example, the factors recommended to convert the 1 day (fixed time) to 24 h continuous

maxima are 1.13 in the USA (Hershfield, 1962), 1.06 in the UK (NERC, 1975), 1.13

(Alexander, 1978) and 1.11 (Adamson, 1981) in South Africa. Schulze (1984), using a

digitised database, showed that in South Africa the conversion factor varies regionally and,

at some locations, with return period with variations of up to 20% evident. More recently,

Dwyer and Reed (1995) show that, based on theoretical considerations, the correction

factor should be 1.33, but recommend a value of 1.16, which is based on rainfall data from

the United Kingdom and Australia.

2.1.2 Selection of a Probability Distribution

The question of which probability distribution to adopt and methods of selecting the most

appropriate distribution has received considerable attention in the literature, particularly for

flood frequency estimation and to a lesser extent for rainfall frequency estimation. The

choice is particularly important when estimating extreme events with return periods greater

than the length of record (Canterford and Pierrehurnbert, 1977; Chow et al., 1990; Karirn

and Chowdhury, 1995). Cunnane (1989) reports that the choice is often based on factors

such as the probability distribution being widely accepted, simple, easy to apply, consistent,

theoretically well founded and documented, but concedes that theoretical arguments alone

cannot identify the best distribution. Schulze (1984) postulates that the choice of

distribution may be less important than other factors such as whether manually extracted or

digitised data are used, the stationarity of the data and the method of fitting the distribution

to the data. Cunnane (1989) expresses the opinion that the consequence of using the wrong

form of the distribution is over and under design of hydraulic structures.
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Since the exact probability distribution of the population is not known, it is required to

select a reasonable and simple distribution to describe the phenomenon of interest

(Stedinger etal., 1993). The choice of distribution should take into account both descriptive

abilities, to ensure that the shape of the distribution resembles the observed sample's

distribution, and predictive abilities, which implies that the quantile estimates of possible

candidate distributions are robust with small bias and standard errors (Cunnane, 1989;

Cannarozzo et al, 1995). This view was also expressed by Pegram and Adamson (1988),

who advocate using a "theoretically and intuitively correct model" rather than a best-fit

model, which may be a hazardous strategy for extrapolation. Chow and Watt (1990)

express the opinion that no deductive reasoning or goodness-of-fit tests can arrive

conclusively at a single correct/appropriate distribution. In addition, much uncertainty is

inherent in the estimation of parameters and hence quantile estimates. Therefore Chow and

Watt (1990) believe that it is necessary to use an expert system which mimics heuristics

used by experts. In the light of the instability of design rainfall events, Hogg (1991)

questions the selection of the ''best" probability distribution to use.

The probability distributions investigated and used in selected rainfall frequency studies both

in South Africa and internationally are listed in Table 2. From Table 2 and as reported by

Stedinger et al. (1993) the EV1, LP3 and GEV probability distributions are commonly used

for short-duration rainfall probability analysis. In South Africa the EV 1 distribution has been

extensively used in rainfell DDF studies, even though Adamson (1978) notes that the fixed

skew of 1.13 inherent in the EVI distribution is "a considerable limiting assumption".

Although limited use of the GEV distribution in rainfall frequency analysis is reported in

Table 2, the GEV distribution is extensively used in flood frequency analyses (Cunnane,

1989) and the use of the EVI. EV2 and EV3 distributions and the integrated GEV

distribution is growing in the application of frequency analysis (Raynal-Villasenor and

Acosta, 1995). According to Wallis and Wood (1985) the GEV distribution outperformed

the LP3 in a regional analysis even when the samples used were generated by an LP3

distribution. The selection of an appropriate frequency distribution for South Africa is

described in Chapter 5, Section 5.5.
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Table 2 Summary of probability distributions used in selected rainfall frequency studies

(See Table 3 for explanation of abbreviations)

Reference Location Probability Distribution

Investigated Recommended/Used

South Africa

Reich (1963)

Van Wyk and Midgley (1966)

Bergman and Smith (1973)

Midgley and Pitman (1978)

Adamson(1978)

Schulze(1980)

Adamson(l981)

Schulze(1984)

Pegram and Adamson (1988)

Weddepohl(1988)

Smithers(1996)

SA

SA

Western Cape

SA

SA

SA

SA

KwaZulu-Natal

KwaZulu-Natal

SA

SA LN2, LN3, LP3,

PE3, LP3, EV1,

LEV1,GEV,GPA,

GLO, WAK

EV1

EVI

EV1

LEV1

EVI

EVI

LN3

EV1,LN2, LP3

TCEV

LN2

GEV

International

NERC(1975)

Canterford and Pierrehumbert

(1977)

Tamlinson(1980)

Hershfield(1982)

Oyebande(1982)

Pescod and Canterford (1985)

Aronetal. (1987)

Richards and Westcott (1987)

UK

Australia

New Zealand

USA

Nigeria

Australia

USA

USA

LN2, EVI, GEV,

double LN2 , mixed

distribution

PE3, LP3, GAM,

EV1

GEV

mixed distribution

EVI

EVI

EVI

LN2

LP3

EVI
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Reference

Canterford et al. (1987a)

Canterford etal. (1987b)

James et al. (1987)

Sendil and Salih (1987)

Ferreri and Ferro (1990)

Schaefer(1990)

Shuy (1990)

Buishand(199t)

Griffiths and Pearson (1993)

Naghavi <?r a/. (1993)

Guttman(1992)

Cannarozzo et al. (1995)

Location

Australia

Australia

India

Saudia Arabia

Sicily

USA

Singapore

New Zealand

USA

USA

Sicily

Probability Distribution

Investigated

LP3, GEV, LN3

Recomm ended/Used

LP3

LP3 / LN2

EV!

EV1

EV1

GEV

EV1

GEV

EV1 (local)

KAP (regional)

LP3

LP3

TCEV

Table 3 Abbreviations used for probability distributions

Abbreviation

EV1

GAM

GEV

GPA

GLO

KAP

LN2

Probability Distribution

Extreme Value Type I (Gumbel)

Gamma

General Extreme Value

Generalised Pareto

Generalised Logistic

Kappa

2 parameter Log-Normal

Abbreviation

LN3

LP3

PE3

LEV!

TCEV

WAK

Probability Distribution

3 parameter Log-Normal

Log-Pearson Type HI

Pearson Type III

Log-EVl

Two Component Extreme Value

Wakeby
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2.1.3 Parameter Estimation

The fitting of a distribution to a data set provides a compact and smoothed representation

of the frequency distribution revealed by the limited available data and enables the

systematic extrapolation to frequencies beyond the range of the data set (Stedinger et al,

1993).

2.1.3.1 Fitting procedures

Some approaches available for estimating the parameters of a selected distribution are listed,

with some comments, in Table 4. The use of L-moments to fit distributions has received

extensive coverage in the recent literature (e.g. Wallis, 1989; Hosking, 1990; Pearson et al,

1991; Gingras and AdamowskL 1992; Guttman, 1992; Pilon and Adamowski, 1992;

Guttman, 1993; Guttman et al, 1993; Lin and Vogel, 1993; Vogel and Fennessy, 1993;

Vogel et al, 1993a; Vogel et al, 1993b; Wallis, 1993; Gingras and Adamowski, 1994;

Zrinji and Bum, 1994; Hosking, 1995; Hosking and Wallis, 1995; Karim and Chowdhury,

1995; Hosking and Wallis, 1997). In addition, L-moments are reported to have advantages

when compared to other techniques and hence are reviewed in the following section.

2.1.3.2 L-moments

While being similar to ordinary product moments, the purpose of L-moments and

Probability Weighted Moments (P WMs) is to summarise theoretical probability distributions

and observed samples (Vogel et al, 1993a). Hence L-moments can be used for parameter

estimation, interval estimation and hypothesis testing.

L-moments have several important advantages over ordinary product moments (Vogel et

al, 1993b). In order to estimate the sample variance and sample skew, ordinary product

moments require the squaring and cubing of the observations respectively. Sample
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estimators of L-moments are linear combinations of the ranked observations and do not

require squaring and cubing of the observations. Thus L-moments are subject to less bias

than ordinary product moments (Wallis, 1989; Pearson et al, 1991; Vogel et al, 1993a;

Karim and Chowdhury, 1995).

Table 4 Summary of methods used for parameter estimation (Cunnane, 1989; Lin and

Vogel, 1993; Stedinger et al, 1993)

Method

Moments (MOM)

Maximum Likelihood Procedure

(MLP)

L-Moments (LM) /

Probability Weighted Moments

(PWM)

Bayesian Inference (BI)

Non-Parametric

Comment

• easy to apply and simple to use

• not suitable for distributions with more than 3

parameters

• good statistical properties in large samples

• often cannot be reduced to simple formulae, so are

estimated using numerical methods

• solution not always possible

• easy to apply

• almost as efficient as MLP, particularly in small

samples

• easily used in regional analysis

• LM more reasonable and reliable than MOM

combines prior information and regional

hydrological information with the likelihood

function

allows explicit modelling of uncertainty in

parameters

• an advantage is that they do not assume a

particular family of distributions

• more robust, but less efficient than parametric

methods

have not seen much use in practice and are rarely

used officially
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L-moments, as defined by Hosking (1990), are linear combinations of PWMs. Greenwood

et al. (1979) summarise the theory of PWMs. Unbiased sample estimates for the first four

PWMs can be computed from Equation 5 (Stedinger et al, 1993; Vogel and Fennessy,

1993).

n
...5a

y=i

...5b

1 H-2

n{n-\){n-2)
XJ

...5c

where

...5d

6r = r-th order PWM sample estimate,

n = number of observations in the sample, and

Xj = ranked observations, with x, being the largest observation

and xn the smallest observation.

The first four L-moments for a sample can be computed from the first four PWMs using

b0 s L - location (mean)

2 6 : - 6 0 s L-scale

= 6b2 - 6bx + b0

...6a

...6b

...6c

...6d
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where

Xr = r-th L-moment

Hosking (1990) defines the L-moment ratios as:

r = -~ = L - CV (coefficient of L - variation) ...7a

r3 = — = L - skewness ...7b

r4 = — = L - kurtosis ...7c

Hosking (1990) shows that X2, xi and T4 can be thought of as measures of a sample's scale,

skewness and kurtosis respectively.

In order to select an appropriate distribution and parameter estimation procedure, tests are

required to evaluate the distribution and parameter estimation method.

2.1.3.3 Goodness-of-fit tests

Probability plots are useful to reveal the character of the data set and to determine if a fitted

distribution appears consistent with the data. Analytical Goodness-Of-Fit (GOF) criteria

provide insights as to whether the lack of fit is due to sample variability, or whether the

model and data are significantly different (Stedinger et al., 1993). Generally GOF tests will

identify more than one distribution which is statistically acceptable and are more valuable

in identifying which distributions appear to be inconsistent with the data (Cunnane, 1989;

Stedinger ef al., 1993).
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Cunnane (1989) categorises GOF tests into tests for descriptive ability and predictive ability,

both of which should complement each other. When testing for descriptive ability the best

fitting distribution is sought from known distributions based on one or more of the

following:

• Graphical/Visual inspection.

Although graphical methods have traditionally been used and are a useful check of

reasonable fit, there is a distinct possibility of error when choosing a distribution

using an inspection of a probability plot.

GOF tests such as Chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistical

tests.

These test the null hypothesis that the sample could have been drawn from the

parent population and generally have little statistical power and cannot discriminate

between acceptable distributions.

• Tests based on skewness and moment-ratio diagrams.

It is difficult to attribute the scatter of points in moment-ratio diagrams to sampling

error or to genuine differences between parent populations, particularly when only

short records are available.

• Numerical indices of agreement calculated from probability plots.

These tests do not account for the greater natural sampling variation of the largest

elements in a sample and usually select the 3-parameter distributions.

Regional pooling of data, and applying the above GOF tests to the pooled data.

Behaviour analysis by simulation study or theoretical analysis to determine if the

sample could have been drawn from a candidate distribution.

Tests for predictive ability involve testing how well candidate distributions can estimate

quantiles when the population distribution is not identical to that of the candidate

distribution and may utilise:

• split sample tests, and/or
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tests for robustness by testing whether a distribution and method of parameter

estimation are insensitive to departure from assumptions made.

One relatively recent innovation for visual interpretation of GOF is the L-moment diagram.

L-moment diagrams have been used extensively in recent studies to select appropriate

probability distributions (e.g. Hosking and Wallis, 1987; Vogel etal, 1993a; Vogel et al,

1993b). L-moment diagrams are similar to conventional product moment diagrams and

compare sample estimates of T2, T3 and T4 with a range of different theoretical distributions.

An advantage of L-moment diagrams is that a range of distributions can be plotted on the

same diagram and it is thus useful for evaluating which distribution provides a satisfactory

approximation to the distribution of a particular hydrological variable. Vogel and Fennessey

(1993) advocate the replacement of product moment diagrams by L-moment diagrams

because, unlike product moment diagrams, L-moment ratios are nearly unbiased for all

underlying distributions.

The theoretical relationships between T3 and x4 for the probability distributions shown in

Figure 1 are summarised by Hosking (1991a) and Stedinger et al. (1993). The two

parameter distributions in an L-moment diagram are represented by a single point, and the

3 parameter distributions by a continuous curve.

Regional rainfall frequency estimation methods have been favo ured over conventional at- site

methods in recent years (Nandakumar, 1995) and are hence reviewed in the following

section. Four generic approaches to frequency analysis are listed by Cunnane (1989) and

Nathan and Weinmann (1991) as:

• At site analysis

Hydrometric data at the site are used to estimate the quantiles.

• At site/regional analysis

Quantile estimates are based on both the data of the site under consideration and

the data from other sites in the region.
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Regional analysis only

Quantiles are derived from data from other sites in the region.

Transposition of information from other sites.

0.8

0 -

-0.2

LN3 GPA
GLO * EV1

PE3
LN2

GEV

-0.4 -0.2 0 0.2 0.4

L-SKEWNESS
o.e o.a

Figure 1 L-moment diagram (after Stedinger et al., 1993)

2.2 JOINT AT-SITE AND REGIONAL APPROACHES

Given that the data at a site of interest will seldom be sufBcient or available for frequency

analysis, it is necessary to use data from similar and nearby locations (Stedinger et al,

1993). This approach is known as regional frequency analysis and utilises data from several

sites to estimate the frequency distribution of observed data at each site (Hosking and

Wallis, 1987; Hosking and Wallis, 1997). Thus the concept of regional analysis is to

supplement the time limited sampling record by the incorporation of spatial randomness

using data from different sites in a region (Schaefer, 1990; Nandakumar, 1995).

Regional frequency analysis assumes that the standardised variate has the same distribution

at every site in the selected region and that data from a region can thus be combined to
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produce a single regional flood or rainfall frequency curve that is applicable anywhere in the

region with appropriate site-specific scaling (Cunnane, 1989; Gabriele and Arnell, 1991;

Hosking and Wallis, 1997). This approach can also be used to estimate events if no

information exists (ungauged) at a site (Pilon and Adamowski, 1992).

2.2.1 Advantages

In nearly all practical situations a regional method will be more efficient than the application

of an at-site analysis (Potter, 1987). This view is also shared by both Lettenmaier (1985;

cited by Cunnane, 1989) who expressed the opinion that "regionalisation is the most viable

way of improving flood quantile estimation" and by Hosking and Wallis (1997) who, after

a review of recent literature, advocate the use of regional frequency analysis based on the

belief that a "well conducted regional frequency analysis will yield quantile estimates

accurate enough to be useful in many realistic applications". When regions are "slightly"

heterogenous (i.e.l<//<2, as defined in Section 2.2.3.2), regional analysis yields more

accurate design estimates than at-site analysis (Lettenmaier and Potter, 1985; Lettenmaier

et al., 1987; Hosking and Wallis, 1988). Even in heterogenous regions, regional frequency

analysis may still be advantageous for estimation of extreme quantiles (Cunnane, 1989;

Hosking and Wallis, 1997).

The extrapolation to return periods beyond the record length introduces much uncertainty

which can be reduced by regionalisation procedures which relate the observed flood or

rainfall at a particular site to a regional response (Ferrari et al., 1993). Nathan and

Weinmann (1991) illustrate the effect of record length on quantile estimates and show that

the at-site/regional estimates are far more robust in relation to length of record than those

based only on at-site data, particularly when only short record lengths are available.

The advantages of regionalisation are thus evident from previous studies. The next section

briefly reviews some methods of regionalisation.
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2.2.2 Methods

Frequency analyses estimate how often a specified event is likely to occur and is applicable

to many environmental variables such as rainfall and runoff (Hosking and Wallis, 1997).

Hence the methods described could be applied to both rainfall, flood and low flow

frequency analyses (Stedinger et al.t 1993). General approaches to regional frequency

analysis are categorised by Nathan and Weinmann (1991) as:

• station year methods,

• record extension,

region averaging methods, and

• Bayesian methods.

Regional averaging of at-site statistics of the data is the best known alternative to the station

year method (Buishand, 1991). Hosking and Wallis (1997) summarise approaches to

regionalisation using regional averaging as listed in Table 5. At-site estimation, where all

the parameters of the distribution are estimated from at-site estimates, is included for

reference in Table 5.

The regional shape approach estimates the mean and dispersion from at-site statistics and

the shape parameters are estimated from the mean of the at-site shape measure for the sites

in the region. The method is intermediate between the regional shape estimation procedures

and the index value procedures. Some justification for this approach is that the accuracy of

the higher order moments may be better estimated using a regionalised approach. The

regional shape estimation method may be preferred to the index value method if there are:

• doubts about the homogeneity of extreme rainfall events in the region,

• the main interest is in the estimation of quantiles in the extreme upper tail, or

if the at-site records are fairly long, but the regional estimate of L-skewness is still

more accurate than the at-site estimate (Hosking and Wallis, 1997).
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Table 5 Estimates of distribution parameters used by different variants of regional

frequency analysis (after Hosking and Wallis, 1997)

Variant

At-site

Regional shape

estimation

Index value

Hierarchical regions

Fractional

membership

Region of influence

Mapping

Mean

at-site

at-site

at-site

at-site

at-site

at-site

at-site

Dispersion

at-site

at-site

regional average

regional average for

subregion

Shape

at-site

regional average

regional average

regional average for full

region

weighted average of regional estimates

weighted average of regional estimates, for stations in a site's

region of influence

estimated function of site characteristics

For index-value procedures the mean is estimated from at-site estimates, while the

dispersion and shape statistics are both estimated by regional averaging.

The hierarchical regional approach is an index value procedure in which relatively large

regions are used to define the shape parameter. These regions are then subdivided into

smaller regions over which the dispersion is assumed to be constant. A disadvantage of this

method is that estimated parameters and quantiles may change abruptly between adjacent

regions (Hosking and Wallis, 1997). This approach has been used, inter alia, by Gabriele

and Arnell (1991) and Cannarozzo et at. (1995).

Fractional membership entails a site having fractional membership in several regions, and

not only in a single region. The use of fractional membership does not allow any relaxation

of the criteria for homogeneous regions, but does enable a smooth transition between

regions.
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Using the region of influence approach, parameters and quantiles at the site of interest are

based on a regional frequency analysis in which a region is chosen to consist of sites that are

expected to have a similar distribution to the site of interest. The sites are considered to be

the "region of influence". Smooth transitions between regions are possible. This approach

has been used, inter alia, by Bum (1990a), Burn (1990b) and Zrinji and Bum (1994). A

disadvantage of the method is that appropriate site characteristics have to be chosen and

weights have to be assigned to the characteristics (Hosking and Wallis, 1997).

Mapping involves constructing a map that can be used to estimate the parameters at a

particular site and is applicable when the parameters of a regional frequency analysis vary

smoothly and hence can be mapped (Hosking and Wallis, 1997). For example, Schaefer

(1990) mapped the CV and skewness of a fitted GEV distribution as a function of at-site

Mean Annual Precipitation (MAP). A similar approach has also been used by McKerchar

and Pearson (1990) and McConachy (1995).

Hosking and Wallis (1997) recommend that the following concepts and principles should

be incorporated in a regional frequency analysis:

• Frequency analysis should be robust.

Modelling of environmental variables is extremely complex and hence exact

representations of the physical processes are not feasible. Therefore the procedure

should be such that even when the model's assumptions deviate from the true

physical process, the quantile estimates yielded by the model would not be

seriously degraded.

Simulation should be used to assess a frequency distribution.

Monte Carlo simulation is recommended to evaluate the properties of a frequency

analysis procedure or to compare two or more procedures. Synthetic series can be

generated to simulate real world data, and the adequacy of the proposed modelling

procedure can be assessed for such series, since the true quantiles of the frequency

distribution are known.
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• Regionalisation is valuable.

Based on the assumption that the sites form a homogeneous region, more

information is available from a regional analysis than from an at-site only analysis,

and hence quantile estimates are, potentially, more accurate.

•• Regions need not be geographical.

Station proximity is not necessarily an indicator of the similarity of the frequency

distributions. It is proposed that groupings are formed based on variables or site

characteristics which are thought to influence the frequency distribution, such as

latitude, longitude, altitude or MAP.

• Frequency distributions need not be "textbook" type distributions.

Environmental variables are generally "heavy tailed" (i.e. quantiles increase rapidly

with return period) and usually have a relative short length of record. Hence it is

often not possible to unequivocally identify a particular distribution. Therefore,

distributions other than "standard" distributions should be considered.

• L-moments provide useful summary statistics.

Fitting a distribution to the data involves assuming a particular distribution and

estimating a finite number of parameters. Sample moment statistics such as

skewness and kurtosis are often used to judge the goodness-of-fit between a

sample and a postulated distribution. However, it has been shown that these

statistics are algebraically bounded with bounds dependent on sample size. In

addition, it has been found that the sample skewness and kurtosis, particularly in

small samples, seldom approximate population statistics well. Therefore L-

moments are recommended, as they are able to characterise a wider range of

distributions and, when estimated from a sample, are more robust to the presence

of outliers in the data. When compared to conventional moments, L-moments are

less subject to bias in estimation.

A regional index value based procedure which incorporates the above guidelines has been

developed and has been shown in recent studies to yield suitably robust and accurate

quantile estimates (Guttman, 1993; Hosking and Wallis, 1993; Hosking and Wallis, 1997).
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2.2.3 An Index Value Procedure Based on L-moments

Hosking and Wallis (1993) presented a procedure to estimate the parameters of the regional

frequency distribution by combining the at-site L-moments to give regional values.

Assuming the region to be homogeneous, the regional average L-moment ratios are

computed from observations scaled by an index value. The regional average L-moment

ratios are computed by weighting according to an individual site's record length- These

rcgioTiai average L-moment ratios are equated to the population L-moment ratios and used

to fit the distribution. This distribution, after appropriate re-scaling by the at-site index

value, is used at each she to estimate quantiles. This procedure has been termed the regional

L-moment algorithm (Hosking and Wallis, 1997). The strength of regional frequency

analysis using the regional L-moment algorithm is that it is useful even when not all of its

assumptions are satisfied (Hosking and Wallis, 1997).

An index value approach assumes that the region is homogeneous, i.e. the frequency

distributions of values of all the sites in the region are identical, apart from a site-specific

scaling factor. If data are available from N sites in a region and the record length at site /

is H, , and ifQ,(F) is the quantile of non-exceedance probability F at site /, then

...8

where

/ij = index value, and

q(F) = regional quantile of non-exeedance probability F.

The index value (ft) may be taken as the mean of the at-site frequency distribution or any

other location parameter (Hosking and Wallis, 1997). The regional quantiles (q(F)) define

a dimensionless regional frequency distribution common to all sites, known as a regional

growth curve, i.e. the common distribution of Qtj ipv where Qit is the>th observation at

site /. The mean (Q) is commonly used as the index value, although other location

parameters could be used.
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The dimensionless values (q l} = Q ̂ Zfx} ,j=l,...n,•,, i = 1,...JV) may be rescaled to estimate

q(F). If the form of q(F) is known, then it is necessary to estimate the p parameters,

In the regional L-moment algorithm (Hosking and Wallis, 1993; Hosking and Wallis, 1997)

the p parameters are estimated separately at each site, and if the site / estimate of 6k is

denoted 6^, then the at-site estimators are combined to give regional estimates as

-9

This is a record length weighted average, with the estimate at site i given weight

proportional to n,. The quantile estimates at site i are then obtained by combining the

estimates of fit and q(F) as

The results of statistical analyses are inherently uncertain and require an assessment of the

magnitude of the uncertainty. Hosking and Wallis (1997) point out that the accuracy of the

assessment is a function of the assumptions made and recommend that the method used to

assess the uncertainties should be robust enough to be useful even when the assumptions

are not all satisfied. For example, the region may be slightly heterogenous, the incorrect

distribution may have been chosen, or statistical dependence of the data may exist. Hosking

and Wallis (1997) recommend that Monte Carlo simulations be used to estimate the

accuracy of the estimated quantiles.
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Monte Carlo simulation techniques were used by Hosking and Wallis (1997) to investigate

the performance of the regional L-moment algorithm under a wide range of conditions and

concluded:

Regionaiisation is valuable.

Regional estimation is more accurate than at-site estimation, even if the

region is slightly heterogenous, or if the incorrect distribution is selected, or

if inter-site dependence is evident. This Is particularly so in the estimation

of quantiles far into the tail of the frequency distribution.

There is little gain in using regions containing more than 20 stations.

This is a result of the errors in quantiles and errors in growth curves

decreasing slowly as a function of the number of sites in a region.

• Regional estimates are less valuable relative to at-site estimates as record lengths

increase.

Regions should thus contain fewer sites when the at-sites record lengths are

long.

• The use of 2-parameter distributions are not recommended in regional frequency

analyses.

• Mis-specification of the correct frequency distribution is only important for

quantiles far into the tail of the distribution (F>0.99).

Certain robust distributions such as the Kappa and Wakeby distributions yield

reasonably accurate estimates over a wide range of at-site frequency distributions.

• Heterogeneity introduces bias into estimates which are not typical of the region,

and can be the major source of error in estimated quantiles and growth curves.

• Small amounts of inter-site dependence should not be a concern in regional

estimation.

Inter-site dependence has little effect on bias, but does increase the

variability of estimates.

• The advantage of regional estimates over at-site estimates is greatest at extreme

quantiles (F>0.999), where mis-specification of the frequency distribution is more

important than heterogeneity.
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In order to implement the index value procedure as outlined above, which has been termed

the Regional L-Moment Algorithm (RLMA), Hosking and Wallis (1993; 1997) proposed

the following stages in a regional frequency analysis and developed statistics, based on L-

moments, that provide objective support in this process.

2.2.3.1 Screening of data

Initial screening of the data should aim at verifying that the data collected at a site are a true

representation of the quantity being measured and that all the data are drawn from the same

frequency distribution. Two kinds of important and plausible errors occur in environmental

data:

• data values may be incorrect (incorrect recording/transcription), and/or

• circumstances under which data were collected may have changed over time (e.g.

moving of measuring device).

Gross error checks for outlying values and repeated values should be performed (Hosking

and Wallis, 1997). In addition, checks in levels and trends are useful and comparisons

between sites should be performed to check for any irregularities. The above errors are

reflected in the L-moments of the sample and the use of a convenient amalgamation of the

L-moment ratios into a single measure of discordancy (D) is recommended. Hence sites

whose L-moments are markedly different from those of the other sites in the data set can

be identified as being discordant. The D statistic is based on the "cloud of points" when

plotted in three-dimensional space (L-CV, L-skewness, L-kurtosis). A site is flagged as

being discordant if it is far from the centre of the cloud containing the other points.

Assuming that a region comprises of N sites with u, = [t°}, t3
(i), t/°]T the vector of sample

L-moments for the /-th site in the region i.e. L-CV, L-skewness and L-kurtosis respectively,

which are analogous to the population T, I3 , and x4 in Equation 7, and T denotes the
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transposition of a matrix. Hosking and Wallis (1997) define the discordancy index for site i

as

where

1
u= — £ Uj ,and ...12

> , - u ) ( u , - i i ) T .-13

The critical value of D is determined as a function of the number of sites in the region and

is 3 for N a 15. It is envisaged that the D statistic could initially be used to identify gross

errors within a large group of sites within a defined geographical area. When tentative

homogeneous regions have been identified, the discordancy measure can then be calculated

for each site in a proposed homogeneous region. The use of the discordancy measure in this

study is explained in Section 5.1.

2.2.3.2 Identification of homogeneous regions

The identification of homogeneous regions is usually the most difficult of all the stages in

a regional frequency analysis and requires the most subjective judgment (Hosking and

Wallis, 1997). This step aims to form groups of sites that approximate the homogeneity

condition, i.e. the site's frequency distributions are identical apart from a site-specific scale

factor.

Data available for the formation of regions are site statistics (quantiles calculated from

measurements) and site characteristics (e.g. latitude, longitude, elevation, MAP and other

physical properties). Hosking and Wallis (1997) recommend that the site characteristics,
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and not the site statistics, be used for regionalisation. The at-site statistics should be used

for independent testing of proposed homogeneous regions. Some statistics {e.g. MAP,

rainfoll seasonally) which are estimated from measurements may be included in the site

characteristics, provided that the statistics are not too highly correlated with the variable of

interest. This approach would enable the estimation of quantiles at ungauged sites.

In a homogeneous region all sites will have the same population of L-moments. Owing to

sampling variability, the sample L-moments will be different. Hence it is necessary to

evaluate whether the between-site variation in sample L-moments is what the variation

would be expected to be in a homogeneous region.

Hosking and Wallis (1993) developed a heterogeneity test statistic (H) which compares the

between-site variability (dispersion) of L-moments with what would be expected for a

homogeneous region. Dispersion is measured as the distance on a plot of L-skewness vs L-

CV from a site's plotted point to the group's average point, weighted according to record

length of individual sites.

Assume that a proposed region consists of iV sites with the i-th site having a record length

of nf and sample L-moment ratios of t"\ t3
(t), t/°. The regional average L-CV, L-skewness

and L-kurtosis, denoted by r", t}
R, t* respectively, are weighted proportionally to the sites

rij. For example

The weighted standard deviation of the at-site sample L-CVs are calculated as

N
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The 4-parameters Kappa distribution, which includes as special cases the generalised

logistic, generalised extreme value and generalised Pareto distributions, is fitted to the

regional average L-moment ratios (1, r*, r3
R, r4

R) and a large number (Nim generally z 500)

realisations of a homogeneous region with N sites are simulated using this Kappa

distribution as its frequency distribution. This approach is less restrictive than other

commonly applied homogeneity tests (Hosking and Wallis, 1997). For each simulated

region, Vis calculated and thus the mean (pv) and standard deviation (av) of the JVf,m values

of Tmay be estimated. The H test statistic is computed as

...16

If this test statistic has a large positive value, then the hypothesis of homogeneity is not true.

If H<\, the region is considered "acceptably homogeneous"; if 1 <H<2, the region is claimed

'"possibly heterogeneous" and for H>2 the region is "definitely heterogeneous" (Hosking

and Wallis, 1997). Despite these guidelines, Hosking and Wallis (1997) recommend that the

H test statistic not be used as a significance test, as the criteria are somewhat arbitrary.

Hosking and Wallis (1997) review methods of forming groups of similar sites to be used in

a regional frequency analysis and categorise procedures used in previous studies as:

• geographical convenience,

• subjective partitioning,

• objective partitioning,

• cluster analysis, and

• other multivariate methods of analysis.

Hosking and Wallis (1997) regard cluster analysis as "the most practical method of forming

regions from large data sets". The reciprocal of the Euclidian distance in a space of site-

characteristics is used to measure similarity. The site characteristics should be re-scaled

such that all the characteristics have similar variability, i.e. the ranges or standard deviations
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are similar for all sites in the data set. If equal weighting for each site characteristic is not

required, then subjective weighting may be introduced. As mentioned above, the use of the

site characteristics in the cluster analysis enables the independent testing of clusters for

homogeneity using site statistics. Subjective adjustments of the cluster analysis may reduce

the heterogeneity and improve the physical coherence of regions. For a homogeneous

region, simulation experiments by Hosking and Wallis (1997) indicated that little additional

accuracy is gained by having more than 20 sites per cluster. The use of cluster analysis to

identify homogeneous rainfall regions in South Africa, in conjunction with the H test

statistic, is detailed in Section 5.2.

2.2.3.3 Choice of regional frequency distribution

After initial regionalisation has been performed, regions may still be slightly heterogeneous

(i.e. \<H<2) and the aim when selecting a suitable distribution is not to identify the "true"

distribution, but to select a distribution which provides accurate estimates of quantiles at all

sites in the region and which will give accurate estimates of quantiles of the distribution

from which future events will arise. It is not necessary to seek the distribution that fits the

observed data best, but to select a robust distribution which fits the data adequately. Using

this approach to selection of a distribution will ensure that, even if the selected distribution

is not the true distribution, or if future events come from a slightly different distribution,

reasonably accurate quantiles will still be estimated (Hosking and Wallis, 1997).

In regions with slight heterogeneity, even though no distribution will adequately fit the data

at all sites, a single distribution may still lead to more accurate estimates of the quantiles.

In such cases, robust distributions such as the Kappa and Wakeby distribution should be

used (Hosking and Wallis, 1997).

The choice of distribution may be affected by the intended application and the properties

of the distribution such as the upper bound, upper tail, shape, lower bound and whether zero

values are handled by the distribution.
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Hosking and Wallis (1997) argue against using distributions that have an upper or lower

bound which may impose a physical limit or may compromise the accuracy of estimates for

large return periods. When an unbounded distribution is used, it is assumed that the upper

bound of the distribution cannot be estimated with sufficient accuracy and that over the

range of return periods of interest an unbounded distribution would better approximate the

true distribution. Hosking and Wallis (1997) recommend using a set of candidate

distributions that covers a range of different tail weights, as usually insufficient data are

available to estimate the shape of the tail of the distribution with any accuracy. Most

probability distributions are single peaked, but where observations have qualitatively

different causes, such as when the extreme events arise from different meteorological

conditions, a mixture of two distributions could be used. This approach was used by Pegram

and Adamson (1988) in a risk analysis of extreme storms and floods in KwaZulu-NataL,

South Africa. If estimates of quantiles in the lower tail are of interest, a distribution that

allows for a non-zero proportion of zero values should be considered (Hosking and Wallis,

1997).

Hosking and Wallis (1997) advocate using distributions with three or more parameters in

a regional frequency analysis, as sufficient data are usually available to accurately estimate

the parameters of the distribution. Two parameter distributions are not robust enough for

application in regional frequency analyses and may give rise to large biases in the tails of the

distribution if the selected candidate distribution is not the correct one.

Given a homogeneous region, a GOF test statistic (Z) was developed by Hosking and Wallis

(1993) to test whether a region's average L-moments are consistent with those of the fitted

distribution. In a homogeneous region, the scatter of the sample's L-moments represent no

more than sampling variability and therefore the L-moments are well summarised by the

regional average values. The GOF test statistic is derived by the difference between the L-

kurtosis of the fitted distribution and observed data, scaled by the standard deviation of the

L-kurtosis of the fitted distribution, which is estimated by simulation. The selection of an

appropriate probability distribution for rainfall in South Africa is detailed in Section 5.5.
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Assume that a proposed region consists of N sites with the ;-th site having a record length

of «; and sample L-moment ratios of f\ t3
0), t^. The regional average L-CV, L-skewness

and L-kurtosis, denoted by /*, r3
R, r4

R respectively, are weighted proportionally to the sites

record length («,). A Kappa distribution is fitted to the regional average L-moment ratios

1, f14, f3
R, t4

R and Nsim realisations of a region with N sites are simulated, each with this Kappa

distribution as its frequency distribution. For the m-th simulated region with regional

average L-skewness t3
m and L-kurtosis /4

m, the bias (54) of/4
R is calculated as

.17

and the standard deviation of tA
R as

1 sim

k\

m=\
.18

For each candidate distribution, the goodness-of-fit measure is calculated as

( DIST R
ZDIST _ (r4 -f4

where

TJ>IST _ L-kurtosis of a candidate 3-parameters distribution (DIST) fitted to

the regional average L-moments 1, f11, f3
R.

The fit of a candidate distribution is deemed to be adequate if Izl <. 1.64.
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2.2.3.4 Estimation of regional frequency distribution

Assuming that N sites form a homogeneous cluster, with site i having a record length n,,

sample mean l/iJ (analogous to the population A., in Equation 6), and sample L-moment

ratios f}, t/i}, if, ..., analogous to the population T, T3 and T4 in Equation 7, then the

regional average L-moment ratios f, t3
R, t4

R,...., which are weighted proportionally to the

sites' record length, are computed as:

n, ...20

...21

The regional average mean is set to 1 (//R) = 1) and the selected distribution is fitted by

equating the theoretical L-moment ratios to ls
m, f, t3

R, / / calculated in Equations 20 and

21. As shown in Equation 22. the quantile, with non-exceedance probability F, may be

estimated by combining the quantile function of the fitted distribution ( q ) with the at-site

mean.

...22

Slightly more accurate quantile estimates are obtained in most cases if, as above, L-moment

ratios and not L-moments are averaged (Hosking and Wallis, 1997).

This index value based region frequency analysis approach using L-moments has been

termed the Regional L-Moment Algorithm (RLMA) by Hoksing and Wallis (1997). As

discussed above, the RLMA has many reported advantages, including robustness, and is

relatively simple to apply. Routines obtained from Hosking (1996) were utilised for the
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calculation of the D and H test statistics and for the implementation of the RLMA in South

Africa, as described in Chapter 5. A procedure for the assessment of the accuracy of the

quantiles estimated using the RLMA is described in the following section.

2.2.3.5 Assessment of accuracy of estimated quantiles

The inherent uncertainty in statistical analysis requires that an assessment of the uncertainty

should be made. Traditionally, this has be done by constructing confidence intervals for

estimated parameters and quantiles, assuming that the statistical models assumptions are

satisfied. Such confidence intervals are of limited use as rarely are all the assumptions

regarding the data valid and uncertainty concerning the "correct" model selection is

generally present (Hosking and Wallis, 1997). In particular for the RLMA, the possible of

heterogeneity in the region, mis-specification of the frequency distribution and statistical

dependence between the data should all be taken in account, in a way consistent with the

data, in order to obtain realistic assessments of the accuracy of the quantiles.

Hosking and Wallis (1997) propose that Monte Carlo simulation is a reasonable approach

to estimate the accuracy of the quantiles. The simulated regions should have the same

number of sites, record lengths at each site and regional average L-moments as the actual

data, and should include appropriate combinations and levels of heterogeneity, inter-site

dependence and mis-specification of model. Inter-site dependence is accounted for by

assuming that if each site's frequency distribution were transformed into the Normal

distribution, then the joint distribution of all N site would be multivariate Normal. The

algorithm for the proposed Monte Carlo simulation procedure is:

(i) For each of the specified N sites, with individual record lengths n,, calculate the at-

site L-moments from the observed data,

(ii) Estimate the parameters of the at-site frequency distribution given the at-site L-

moment ratios. The at-site frequency distribution should be chosen using
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goodness-of-fit measures or if several or no distributions are suitable, then the

flexible Wakeby or Kappa distributions may be used.

(iii) Generate the matrix R of inter-site correlations.

(iv) For M repetitions of the simulation procedure a random sample of length n, is

generated from the selected frequency distribution for each site in the region. For

sites that have inter-site dependence:

Generate a realisation of a random vector yh for each time point

*=1,.... max(n,), with elements^ik> r=i,.- N, that have a multivariate Normal

distribution with mean vector zero and covariance matrix R.

Calculate data values Qlk = £>,(<£( yit t)), where Q, is the quantile function for

site / and $ is the cumulative distribution function of the standard Normal

distribution i.e. each v, * is transformed to the required marginal distribution,

(v) Apply the RLMA to the sample of regional data.

• Calculate the at-site and regional average L-moment ratios.

Fit the chosen distribution.

• Calculate estimates of the regional growth curve and at-site quantiles.

(vi) Calculate the measures of accuracy for example as:

...23

where

R/F)

QiF)

M

RMSE,

quantile estimate at i-th site of m-th repetition for non-

exceedance proabability F,

quantile at i-th site for non-exceedance proabability F

estimated using regional growth curve, and

number of repetitions of simulation procedure.
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An estimate of the accuracy of the quantiles over all the sites in the region may be defined

as the regional average relative RMSE, RR(F):

-24

In the following section a review of DDF studies in South Africa is presented. None of the

studies reviewed has adopted a regional approach to design storm estimation in South

Africa.

2.3 REVIEW OF DESIGN STORM ESTIMATION STUDIES IN SOUTH

AFRICA

Vorster (1945) applied regionalised relationships adopted from the USA and identified six

rainfall regions in South Africa which were similar to the regions which had been identified

in the USA. The relationships were modified to fit local conditions based on 24 h rainfall

totals and similarities in vegetation cover. Owing to a paucity of recording raingauges at the

time of the study, he combined data from different sites within a region to produce 5, 10,

30,60,120,240,480, 960 and 1440 min rainfall intensity maps in SA for return periods of

5, 10, 20,40 and 80 years. Weddepohl (1988) points out that the regions in SA and USA

displayed dissimilarities and the practice of combining records into a single record (station

year approach) is now considered a poor procedure. Woolley (1947) stated that Vorster's

regions were too broad and investigated the use of MAP as a predictor variable for design

storms. Bergman and Smith (1973) found that Vorster's (1945) work generally

overestimated the magnitude of extreme events.

The SAWB (1956) used the EV1 distribution to produce 1 day design rainfalls for return

periods of 5, 10, 15, 20, 30, 40, 60, 80 and 100 years for 253 stations in South Africa.

Maps of 1 day : MAP ratios for 5, 10, 20, 30, 60 and 100 year return periods were also
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presented. Weddepohl (1988) refers to possible errors in the data and the short record used

in this study.

Reich (1961) used autographic data from 12 stations in South Africa and the EV1

distribution to estimate the 2,5,10,25,50 and 100 year return period rainfall intensities for

durations of 30 min, 1 and 24 h. Reich (1963) determined and mapped the 2 year return

period, 1 h design storm (P21) using data from 12 autographic and 210 daily raingauges in

South Africa and modified USA depth-frequency relationships, after showing that the USA

relationships underestimated intermediate frequencies. Hershfield's (1962) relationships

were modified to enable the T year return period, D h design storm (PTD) to be predicted

from T, D, average number of days per year on which thunder was heard and average 24 h

annual maximum precipitation.

The depth-duration relationships from the USA were extended by Reich (1963) to include

the estimation for 15 min intervals in South Africa. Maps of the ratio P,W24 / P'l24 were

derived in order to predict the 100 year return period event. Thus from P2j and P2j4, and

the depth-duration relationship, the 2 year return period design storm for any intermediate

duration can be derived. Then using the depth-frequency relationship, Pm,D is obtained

from the P,OO.D/ ?2.D ratio. The 2 and 100 year return period intensities are then used with

the depth-frequency relationship to obtain the PTD value.

The Californian plotting position (i.e. T=N/m) has been used to compute the probabilities

of extreme rainfalls, as used, for example, by Vorster (1945). Bergman and Smith (1973)

recognised the limitations of using this approach as the relative frequencies were based on

short record lengths and cannot be extrapolated. Based on a review of previous work,

Bergman and Smith (1973) adopted the E V1 distribution for use in the Western Cape. Data

from 14 autographic stations in the Western Cape were used with record lengths ranging

from 6 to 30 years. With outliers excluded, the extreme magnitudes obtained were

approximately half of the values estimated by Reich (1963). When the outliers were

included, the design rainfalls were similar to, but generally less than those obtained by

Vorster (1945). Bergman (1974) generalised the design rainfall values for the winter rainfall
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region and introduced a "K- factor", related to MAP and number of raindays, which is used

to estimate P101.

The SAWB (1974) published data from 64 autographic raingauges and used the EV1

distribution to estimate the 15, 30, 45 and 1440 min duration events for return periods of

25, 50 and 100 years. Sinske (1982) points out the difficulty of transferring these data to

a desired location and of interpolating between durations and return periods, but recognises

the pioneering work done. Adamson( 1978) used the database from the SAWB and the EV1

distribution to estimate design storm depths for return periods ranging from 5 to 500 years

and considered durations of 15, 30,45 and 60 min as well as 1 day rainfalls.

Alexander (1978) presented Reich's (1963) graphical relationships in equation form as:

PTD = (0.35 x ln(7") + 0-76) x (0-54D025 -0.50)x (1.83M067*033) ...25

where

PT.D = T v e a r return period, D hour design storm (mm),

D = duration (min), with maximum allowable value = 120 min,

M = mean of the 24 h annual maximum daily rainfall in the

range 50-115 mm, and

R = average number of days per year on which thunder is heard.

Alexander (1978) used the Ps, value as an predictor variable and developed the following

relationship:

...26

Equation 26 is very similar to the equation proposed by Hershfield (1962) and in the light

of Reich's work, Alexander (1978) proposed the following equation:

PTD = 1.13 x (0.27 ln(D + 036) x (0.54D0-25 -0.50) x(1.55A/063R020) ...27
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Midgley and Pitman (1978) derived a generalised Depth-Duration-Frequency (DDF)

relationships using MAP and locality (i.e. inland vs coastal) as input variables. Adamson

(1981) postulates that storms of less than 2 h duration are likely to be independent of MAP.

The co-axial diagram of Midgley and Pitman (1978), which uses MAP as a predictor for

durations of 15, 30, 45, 60 and 1440 min, accounts to some extent for this by introducing

a locality factor which demarcates rainfall regimes. Sinske (1982) refers to the practical

difficulties of reading offthe diagram and on deciding whether an inland or coastal estimate

is applicable to the site of interest. Schulze (1984) highlights some anomalies in the

database used by Midgley and Pitman (1978), is critical of the use of LEV 1 distribution and

points out the physically impossible rainfall values that are estimated by the distribution and

which are contained in the report by Midgley and Pitman (1978).

Op Ten Noort (1983) re-analysed the data used by Midgley and Pitman (1978) and by a

least squares regression analysis derived the following two equations.

(7.5 + 0.034 MAP)T03

Inland region; / = * - ^ ..-28
(0.24 +£>)0 8 9

, . (3.4 + 0.023 MAP)T03

Coastal region : / = - rT=~ -29
0 7 57 5region

(0.20+ D)

where

/ = point rainfall intensity (mm.h"'),

MAP = mean annual precipitation (mm),

D = storm duration (h), and

T = recurrence interval (years).

Van Heerden (1978) produced standard intensity curves for eight intensity classes for

durations up to 2 h and return periods up to 100 years. The classes were based on the

60 min intensity values and hence do not form geographic regions. Hence Sinske (1982)

points out the practical difficulty of knowing which of the eight classes are applicable to the
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site of interest. Adamson (1981) is critical of the subjective nature of the grouping scheme

and the lack of any meaningful reference to meteorological or physical parameters.

Henderson-Sellers (1980) used the data from Midgely and Pitman (1978) to compute the

parameters in Equation 30.

/ = — a — ...30
(D + b)"

where D is the duration (h) and / is the intensity (mm.hi). The optimum solution was found

by holding the value of 6=1/3. Values of a varied widely and n was found to have distinct

regional differences. The four regions subsequently delineated were found to coincide

closely with previous climato logical classifications of precipitation regimes. Henderson-

Sellers (1980) concluded that the value of n could be assumed to be constant within regions

and not to vary with return period. Thus the T year return period rainfall for a duration D

(PTD) can be derived as function of daily rainfall PTld.

24 + b

D + b
PTJd ...31

Henderson-Sellers (1980) only considered return periods of 2, 5 and 10 years in the

derivation of regional values of n in Equation 31, and hence Equation 31 should not be

considered for return periods > 10 years. Although Henderson-Sellers (1980) considers that

the use of Equation 31 would extend the hydrological database by the use ofPTld values,

no adjustment was made to reflect the difference between PTJd and PT24.

Schulze (1980) used the EV1 distribution to estimate the 1, 2 and 7 day duration rainfalls

for the 2, 10, 25 and 50 year return periods. Data from 396 raingauges were used in the

analysis and record lengths ranged from 30 to 100 years.
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Adamson (1981) estimated the 1,2, 3 and 7 day extreme rainfalls for return periods of 2,

5 10, 20, 50, 100 and 200 years and used approximately 8000 stations in his analysis. A

censored log-N model of PDS was used in the analysis. Adamson (1981) expressed doubts

as to the availability and accuracy of estimating both M and R in Equation 27 and hence

replaced these values with the mean annual value of lightning flash density (L, in

flashes-km"1.annum"1) and Plld respectively, as shown in Equation 32.

P = 1.13x (0.27\n(T) + 0.56)x (0.54D025 - 0.50)x (4.53 + 0.55P2Xd + 1.893Z) ...32

Schulze (1984) lists the most widely (as of 1983) used direct methods of estimating short

duration DDF relationships in SA as:

the Midgley and Pitman (1978) co-axial diagram,

the modification of Reich's (1961) equations by both Alexander (1978) and

Adamson (1981),

the tabulated design values by the S AWB (1974), and

the generalised ratios of short duration to 24 h rainfall for summer and winter

rainfall/coastal regions as published by Adamson (1981).

Schulze (1984) used a digitised rainfall database to calculate D:24 h ratios and showed

marked divergence between these ratios and values computed from Midgley and Pitman

(1978), Adamson (1981) and from the SCS type I and II distributions. Schulze's (1984)

study also showed that intensities calculated from the digitised database are generally higher

than when the intensities were manually extracted from autographic rainfall charts.

Weddepohl et al. (1987) and Weddepohl (1988) expanded on concepts used previously by

Schulze (1984) and developed four synthetic extreme storm temporal distributions from

design relationships in South Africa. Hence daily design rainfall values can be disaggregated

to obtain the temporal distribution of the design storms for four different regions in South

Africa.
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More recently, Smithers (1996) used L-moments to fit various distributions to data from

38 sites in South Africa, each of which had more than 30 years of record. Using both

parametric and non-parametric GOF tests, Smithers (1996) recommended that the GEV

distribution is the most appropriate distribution to use in South Africa for 24 h duration

events, but concedes that this recommendation may change at a local scale.

Sinske (1982) illustrates the discrepancies between the different methods, and highlights the

lack of methods to estimate design rainfall beyond the 100 year return periods. Adamson

(1981) concludes from a review of previous short duration rainfall studies that

regionalisation has met with little success in South Africa.

The search for generalised DDF relationships in South Africa has concentrated on linear

associations between selected recurrence interval, short duration rainfall depth and other

readily available predictor values (Adamson, 1981). Selected studies, both in South Africa

and internationally, which have used this approach are reviewed in the next section. In

addition, summaries of depth-duration and depth-frequency ratios, which are extracted

directly or derived from the literature reviewed, are presented.

2.4 SCALING OF FREQUENCY RELATIONSHIPS

A number of studies have mapped predictor values such as design storms for a particular

duration or return period and used regionalised ratios to estimate design storms for other

durations or return periods. Some studies have assumed that these ratios are independent

of return period and others have assumed that the ratios are independent of duration.

2.4.1 Depth-Duration Relationships

Many studies, both in South Africa (e.g. Bergman, 1974; Alexander, 1978) and

internationally (e.g. Chen, 1983;FerreriandFerro, 1990; Blodgett and Nasseri, 1995),have

49



investigated the estimation of design storms for a required duration from an index storm.

A ratio, commonly termed a depth-duration ratio, is used to convert the index storm to the

design storm for the required duration. The advantage of developing D:24 h ratios and thus

utilising the relatively large daily rainfall database in order to estimate shorter duration

events at sites where no short duration data are available, is expanded on by Schulze (1984).

Bergman(1974) computed depth-duration ratios for durations of 15,30,120 and 1440 min

in relation to the 60 min duration and for return periods of 5,10, 20,40, 50 and 100 years

for the Winter Rainfall Region (WRR) in South Africa. No differences in the ratios were

noted for given durations or different return periods and hence average ratios, which are

independent of return period, were computed. Bergman (1974) presented a comparison of

p TD: pTJ ratios (Table 6) with the results published by Bell (1969). Included in Table 6 are

results derived from Henderson-Sellers (1980), using Equation 31 for inland (n=0.92) and

the WRR (n=0.86) in South Africa, as well as results derived from Adamson (1981) for the

WRR and inland regions in South Africa. Some similarities are evident for different regions

in Table 6, particularly for shorter durations. However, differences in the depth-duration

relationships are noted within SA for longer durations.

Froehlich (1995) and Froehlich and Tufail (1995) report on four general forms of intensity-

duration relationships, listed in Table 7, which have been used in the USA. Chen (1983)

derived a generalised rainfall intensity-duration-frequency relationship for use in the USA

and utilised the Pl0,, P,o 24_, Ptoo t and Pm 24 as index values. The depth-duration ratio

(PT ,/ PT 24) w ^ assumed to be independent of return period and varied spatially in the

USA with the values varying from 0.1 - 0.6. From the literature reviewed by Hargreaves

(1988), there is considerable agreement that depth-duration rainfall amounts vary with a 1/4

power function of duration (D015).
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Table 6 Examples of P TD/'PTI ratios

Duration

(h)

0.083

0.250

0.500

2.000

24.000

Bergman (1974)

Winter Rainfall

Region, SA

0.67

0.82

1.26

3.60

Bell (1969)

USA

0.29

0.57

0.79

1.25

Australia

0.30

0.57

0.78

1.24

USSR

0.32

0.S5

0.79

1.30

Derived from

Henderson-

Sellers (1980)

WRR,

SA

0.23

0.51

0.75

1.24

1.97

Inland,

SA

0.24

0.53

0.77

1.20

1.66

Derived from

Adamson(1981)

WRR,

SA

0.56

0.78

1.29

2.44

Inland,

SA

0.53

0.77

1.20

1.67

Derived from Midgley and Pitman

(1978)

Cape Town,

SA

0.53

0.77

1.97

Durban,

SA

0.45

0.72

1.97

Johannesburg,

SA

0.49

0.76

1.71



Table 7 Generalised forms of rainfall intensity equations (after Froehlich, 1995)

Equation Type

I

II

III

IV

Equation Form

I=a,/(D+b,)

I=a3/(D+b3y
3

I=a4/(If
4+b4)

Equation Parameters

a, ,b,

a* c2

a3, b}, c,

a+ bj, c4

In order to estimate design storms for durations and return periods other than those

available from isopluvial maps published for regions in the USA, Froehlich (1995) and

Froehlich and Tufail (1995) used Equation 34 to express

PTD - ...34

where

D h rainfall duration factor that applies to all return periods.

Equation 34, which does not assume that the depth-duration ratio is constant for different

return periods, may be expressed as a ratio ofPTI, as shown in Equation 35 such that

T,D
...35

Ferreri and Ferro (1990) computed depth-duration ratios for data from Sicily and Sardinia

and compared the ratios to those computed from Bell's (1969) depth-duration equation.

The ratios were very similar for durations from 30 - 55 min, but Bells ratios were slightly

smaller for durations less than 30 min. Ferreri and Ferro (1990) conclude that the small

differences in the ratios confirms the independence of short duration depth-duration ratios
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from geographic factors and confirms the applicability of Bell's relationship for these

durations.

These findings by Ferreri and Ferro (1990) contradict those of Canterford et al. (1987b)

who found in Australia that the use of constant ratios to interpolate to durations of less than

1 h from thel h intensity varied significantly and could be explained on a geographical,

meteorological and return period basis.

The depth-duration ratio has also been assumed to be independent of return period in some

studies {e.g. Adamson, 1981; Chen, 1983). However, as shown in Table 8 using data from

Midgley and Pitman (1978) and illustrated for stations in KwaZulu-Natal by Schulze (1984),

the depth-duration ratios do appear to be dependent on return period. In the example

shown in Table 8 for Johannesburg there are distinct trends of the PTtD/ PTtl ratio varying

as a function of return period for all durations shown.

Table 8 PT,D^ PT.I ratios for Johannesburg (derived from Midgley and Pitman, 1978)

Duration

(min)

15

30

60

1440

Return Period

(years)

2

0.55

0.80

1.00

1.84

5

0.52

0.78

1.00

1.77

10

0.50

0.77

1.00

1.72

20

0.48

0.76

1.00

1.68

50

0.45

0.74

1.00

1.63

100

0.43

0.73

1.00

1.59

Mean

0.49

0.76

1.00

1.71
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2.4.2 Depth-Frequency Relationships

Bergman (1974) used the 10 year return period value as the denominator in the computation

of depth-frequency ratios for the WRR in South Africa. No significant differences in the

ratios were found for different durations and averaged values were compared to those

presented by Bell (1969), as listed in Table 9. Also included in Table 9 are depth-duration

ratios derived from results published by Midgiey and Pitman (1978). Again the depth-

frequency ratios appear to vary regionally in SA, particularly for longer durations.

Table 9 Comparison of PT.D^IO.D ratios

Return Period

(years)

2

5

20

25

50

100

Bergman (1974)

WRR

0.66

0.86

1.13

1.30

1.44

Bell (1969)

USA

0.63

0.85

1.17

1.31

1.46

Australia

0.65

0.85

1.18

1.33

1.50

Derived from Midgiey and Pitman

(1978)

Cape Town

0.63

0.83

1.20

1.51

1.80

Johannesburg

0.57

0.80

1.24

1.64

2.01

Durban

0.54

0.78

1.27

1.73

2.18

Hargreaves (198 8) concurs with Bell (1969) that depth-duration and depth-frequency ratios

are approximately constant for diverse countries and regions. However, as shown in Table

9 and illustrated by Schulze (1984) using digitised data from 9 stations in KwaZulu-Natal,

the depth-frequency ratios do appear to vary considerably from location to location.
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2.4.3 Depth-Duration-Frequency Relationships

"Strict sense simple scaling" describes the assumption that storm rainfall is characterised by

the property of scale invariance (Gupta and Waymire, 1990). This implies that the

probability distributions of rainfall depth is the same at different time scales. According to

Burlando and Rosso (1996) this can be written as

...36

where = denotes equality in the probability distribution and

Z/t) =

X =

n

measured rainfall depth in time span of length T,

scale factor and

scaling exponent.

If the assumption that the equality of distributions of maxima for a certain period (e.g.

annual), observed at different time scales, also holds true, then both the quantiles and raw

moments of any order are also scale invariant as shown in Equations 37 and 38 (Burlando

and Rosso, 1996).

where

£q(T) =
HT =

t0 =

r =

...37

g-th quant He of Hr ,

max \Zj{tn).Zj(tn+T)l

point on time axis (e.g. beginning of rainy season), and

length of period (e.g. 1 year for AMS).
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E[H,T] — iTJ ...38

where

n

order of the moment, and

scaling exponent of mean.

The assumptions of scale invariance are based on trends noted in observed data. For

example, as shown in Figure 2, data from raingauge CP6 at Cathedral Peak in KwaZulu-

Natal, South Africa, are used to illustrate the scaling concepts.

CP6
1E+14

100 1000
Duration (minutes)

10000

Figure 2 Scaling of raw moments with duration for raingauge CP6 at Cathedral Peak,
KwaZulu-Natal, South Africa

The slope of the straight line fitted for duration a 1 h and <.2A h to the double logarithmic

plot of raw moments against duration, as shown in Figure 2, is the scaling exponent at, for

each /-th order moment. Simple scaling is said to hold true if a, = n.l, where n is the scaling

exponent of the mean. Multiple scaling is defined as at*n.l (Burlando and Rosso, 1996).

Simple scaling is illustrated in Figure 3 using data from raingauge CP6 at Cathedral Peak,

KwaZulu-Natal, South Africa.
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Burlando and Rosso (1996) explored the scaling properties of the rainfall depth-duration-

frequency relationship in order to interpolate design storms for durations other than those

commonly published. Menabde et ah (1998) tested the scaling concepts on rainfall data

from two stations, one in New Zealand and the other in South Africa, and concluded that

simple scaling was applicable at both sites and postulated that the scaling exponent was

related to local climate. Burlando and Rosso (1996) investigated the scaling of rainfall depth

while Menabde et al. (1998) used rainfall intensity in their investigations. Menabde et al.

(1998) found that the extreme rainfall intensity relationships scaled for durations ranging

from 0.5 - 48 h, while Burlando and Rosso (1996) showed that the range could be from as

little as 2 min and up to 48 h or longer.

1 R

I 1 - 2 :
i t 1 - 0 :
= 0.6 -

1 2

CP6

-----

3
Order of Moment

.^tU 1 LdiCU OKI HJIC

4

scaling

5

1

Figure 3 Simple scaling in the growth of slopes with respect to order of the moments
for raingauge CP6 at Cathedral Peak, KwaZulu-Natal, South Africa
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2.5 CHAPTER CONCLUSIONS

In this chapter both at-site and regional techniques of design rainfall estimation have been

reviewed. Substantial benefits of using a regional approach have been reported in the

literature, assuming that relatively homogeneous regions can be identified. In particular, the

relatively recently developed RLMA appears to be a robust procedure and has been applied

successfully in a number of studies. These techniques have been applied to short duration

rainiaii data from South African and the results are presented in Chapter 5.

The limited number and relatively short record lengths of reliable, observed short duration

rainfall data available in South Africa are highlighted in Chapter 4. A much denser network

of standard daily raingauges, which are manually recorded at 24 h intervals ending at 08:00

every day, and which have relatively longer record lengths than the recording raingauges,

are available in South Africa. A number of studies reported in the literature have

demonstrated the successful use of stochastic rainfall models to estimate design rainfall

values. Hence the literature on modelling rainfall using stochastic Bartlett-Lewis type

models are reviewed next in Chapter 3. The potential thus exists to use the stochastic

rainfall models, with parameters determined from daily rainfall data, to estimate short

duration design rainfall values and thus increase the spatial density at which short duration

design rainfall estimates can be made in South Africa.
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CHAPTER 3

MODELLING POINT RAINFALL AS A CLUSTER PROCESS

In the light of the relatively few recording rainfall stations in South Africa which have

reliable short duration rainfall data, as illustrated in Chapter 4, three approaches for

estimating design rainfall values have been explored. The first is a regional approach, with

techniques discussed in Chapter 2 and results presented in Chapter 5, where the information

at sites not having reliable data is supplemented or replaced by information from the region.

In order to estimate short duration design storms at locations which do not have reliable

short duration rainfall data, the second approach, with results presented in Chapter 6,

attempts to utilise the scaling properties of the moments of the extreme digitised rainfall

events as described in Chapter 2, in conjunction with moments derived from the daily rainfall

data. The third approach, which is discussed in this chapter with results presented in Chapter

7, investigates stochastic, cluster-based rainfall models for use in the estimation of design

rainfall values.

The use of stochastic processes, which consist of point events occurring in time and which

have" characteristics derived from sampling probability density functions, is increasing in

hydrology (Entekhabi et al., 1989). The modelling of rainfall using stochastic techniques has

a wide range of potential hydrological applications ranging from hydrological design to the

disaggregation of large time interval data into shorter durations (Onof and Wheater, 1993;

Onof and Wheater, 1994a). One such application could be the disaggregation of daily

rainfall into shorter time intervals for use in time dependent infiltration modelling (Bo et ah,

1994). Another potential application could be in flood frequency analysis where the use of

a long synthetic rainfall series, generated using appropriate mathematical techniques, can

provide insight and further aid in the extrapolation of the data when estimating design

storms from a limited time series of historical observations (Cowpertwait et al., 1996b;

Verhoest et al., 1997).
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Rainfall models range from complex dynamic meteorological models to empirical statistical

models with stochastic models, which have a modest number of parameters, representing

intermediate complexity (Chandler et al., 1995). While Foufoula-Georgiou and Krajewski

(1995) report on a recent shift from stochastic point process models to models based the

concepts of scale invariance, the use of point process models and, in particular, the use

continuous time cluster based point process models are widely reported in the recent

literature (e.g.Onof and Wheater, 1993; Bo et al., 1994; Velghe et al, 1994; Cowpertwait

sid., 1996; Khaliq and Cunnane, 1996; Verhoest et aL, 1997).

In cluster-based rainfall models, events are modelled as clusters of rain cells and each cell

is a pulse with a random duration and random intensity, which is constant for the duration

of the pulse. Poisson processes are used to model the distribution in time of both the storm

origins and the clusters of cells. Cluster-based models thus combine the rainfall occurrence,

or frequency, and depth process (Khaliq and Cunnane, 1996). One of the main advantages

of rectangular pulse, cluster-based rainfall models is that the parameters are independent of

the time scale used (Verhoest et al, 1997).

It has been shown in the recent literature that cluster models have built into their structure

the capability of representing rain cells and preserving the rainfall statistics over a range of

the time scales (Rodriguez-Iturbe et al., 1987a; Rodriguez-Iturbe et al., 1987b;

Cowpertwait, 1991). Rodriguez-Iturbe e/a/.(1987b) postulated that the range oftemporal

scales over which cluster based rainfall models could achieve aggregation and

disaggregation was likely to be of the order of 1 to 48 h. Bo et al. (1994) showed that

cluster based models are capable of preserving hourly statistics when only 24 and 48 h

moments, computed from historical data, are used in parameter determination. The potential

of using cluster-based models in the estimation of design rainfall events has been

demonstrated inter aha by Onof and Wheater (1993; 1994b), Khaliq and Cunnane (1996),

Cowpertwait et al.{ 1996a) and Verhoest et al. (1997).

The Bartlett-Lewis Rectangular Pulse Model (BLRPM) and the Neyman-Scott Rectangular

Pulse Model (NSRPM) are examples of cluster-based models which have been shown to be
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able to model rainfall characteristics over a range of time scales ranging from 1 to 24 h

(Rodriguez-Iturbe et al, 1987a; Rodriguez-Iturbe et al, 1987b; Entekhabi et al, 1989;

Onof and Wheater, 1993; Bo et al, 1994; Velghe et ah, 1994; Cowpertwait et al, 1996a;

Khaliq and Cunnane, 1996; Verhoest et al, 1997).

3.1 BARTLETT-LEWIS AND NEYMAN-SCOTT RECTANGULAR PULSE

MODELS

In cluster-based models events are represented as clusters of rain cells, with each cell a pulse

of random duration and intensity which is constant throughout the duration. The Poisson

distribution, which has a random number of cells or cluster size, is used to model the storm

origins. A cell arrival distribution is assigned to each storm. The Bartlett-Lewis model

assumes that the number of cells are geometrically distributed, whereas the Neyman-Scott

model allows any convenient form of distribution to be assumed, in addition to the

geometric distribution. The depth and duration of each cell are modelled by an exponential

distributions (Onof and Wheater, 1993; Khaliq and Cunnane, 1996). Thus the rainfall

occurrence process and rainfall depth are described independently and are then

superimposed to form the rainfall model, as shown schematically in Figure 4.

In the NSRPM the cell arrival times are independent, identically distributed exponential

random variables which are measured from the storm origin and have no cell at the storm

origin. The BLRPM has a cell located at the storm origin with the interval between

successive cells independent and exponentially identically distributed. Overlap between and

within storms can occur (Entekhabi et al, 1989; Khaliq and Cunnane, 1996).

Using the NSRPM and BLRPM as described above, Rodriguez-Iturbe et al (1987b) found

that the models were able to preserve the rainfall depth statistics and extreme values of

rainfall at Denver, USA, but did not reproduce the proportion of periods with no rainfall

(dry level states) satisfactorily. The BLRPM was modified by Rodriguez-Iturbe et at. (1988)

to allow random variation from storm to storm of the exponential parameter of the
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distribution of cell duration. This Modified version of the original BLRPM, or MBLRPM,

enabled the model to reproduce the proportion of dry states for various time intervals. The

NSRPM was similarly modified by Entekhabi et al. (1989) to created the Modified NSRPM

(MNSRPM).

Entekhabi et al. (1989) expressed the opinion that the differences between the BLRPM and

NSRPM are subtle and it is unlikely that empirical analysis will be able to distinguish

between them. An advantage of these two cluster-based models is the efficiency of their

parameter estimation procedures (Entekhabi et al., 1989).

Rodriguez-Iturbe et al. (1987b) found that the BLRPM gave slightly more satisfactory

results than the NSRPM. Khaliq and Cunnane (1996) found good agreement between

observed and extreme events simulated by the MBLRPM. Hence further discussion is

focussed on the BLRPM and adaptions thereof.

BARLETT LEWIS RECTANGULAR PULSE RAINFALL. MODEL

Storm origins arrive according to a PolkaOn Pracosa

o o o o o •
Time

Each origin generates a random number of rain cells
with cell origins at-*-

M * * * • * . • * • *»-*«-*« * W L liuillr >
Time

A rectangular pulse Is associated with aach rain celt

Time

The total intensity at any point in time is the sum of the Intensities
of all active cells at that potnt

It a
Time

Figure 4 Schematic diagram of Bartlett-Lewis rectangular pulse model (after
Cowpertwait et al., 1996a)
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3.2 MODIFIED BARTLETT-LEWIS RECTANGULAR PULSE MODEL

3.2.1 Procedure

The algorithm for the MBLRPM (Rodriguez-Iturbe et al., 1988), which is an extension to

the BLRPM (Rodriguez-Iturbe et al., 1987a), is described by Entekhabi (1989), Onof and

Wheater (1993), Bo et al. (1994), Onof and Wheater (1996) and Khaliq and Cunnane

(1996) as:

• a Poisson process (parameter A) used to model arrival rate of storm origins, and

• storm origins are followed by a Poisson process of rain cell origins with rate

parameter /?.

• The process of new rain cell origins terminates after a time that is exponentially

distributed with parameter y, i.e the storms have an exponentially distributed

duration with parameter y.

• The duration of the rectangular pulse of each rain cell is exponentially distributed

with parameter rj, and for distinct storms are assumed to be independent variables

from a gamma distribution with index a and scale parameter v, i.e E(TI) = a/^and

Each rain cell intensity is a random constant, exponentially distributed with mean [t

and

the number of rain cells per storm C has a geometric distribution with a mean of

...39

where K and <f> are dimensionless parameters and

...40

<p= y/rf. ...41
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By keeping *rand 0 constant, the mean and variance of different storms change randomly

from storm to storm. Hence the mean inter-arrival interval time of cells (j3 ') and mean

storm duration (y"') also change randomly.

3.2.2 Characteristic Variables

The six parameters of the MBLRPM (A, K <p, v, a,fix) are estimated by equating the analytical

expressions of certain statistical features of the rainfall process with their numerical

historical counterparts (Entekhabi et al., 1989). Hence at least six equations are needed.

The equations used in the derivation of the model parameters are the mean, variance,

autocorrelation and dry probability. These equations, as given in Equations 42 - 47, are

reproduced from Khaliq and Cunnane (1996). For the MBLRPM the mean depth of rainfall

in the i-th interval of length h hours is computed as shown in Equation 42 and the variance

is computed using Equation 43.

f l ^ l ...42

rA = 2^lf(a - 3)hv2-a - v3"a + (v + hf~
J L J ...43

For a lag k k 1 the covariance is

f - 2(v+ kh)3~a

- 2(v + kjhf ...44

-a
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where

AJ = Mx2

- 1

and

2 a

A2 =

The probability that a period, of length h, is dry is shown in Equation 45 as

= 0) = exp ...45

where ^ r is the expected duration of a single cell storm and can be approximated by

72

...46

and the function

G'P(O,O) * ...47

Further characteristics describing the inter-event properties, the number and average event

duration for the MBLRPM were developed by Onof and Wheater (1993) and expressed in

65



an easier computational form by Onof and Wheater(1994). The mean inter-event (dry)

numbeT of periods is

. P(Yh = 0)
md = 1—^ Tk - 4 8

P(Yh = 0)-P(Y2 =0)

and the average number of hourly events per month is

P{Yl =
.49

where

mn = average number of hourly events in month, and

NM ~ number of days per month.

3.3 BARTLETT-LEWIS RECTANGULAR PULSE GAMMA MODEL

In order to improve the overestimation of daily autocorrelations and extreme events noted

by Onof and Wheater (1993), Onof and Wheater (1994b) replaced the exponential

distribution of cell rainfall intensity in the MBLRPM by a two parameter gamma

distribution which would give greater flexibility in the simulation of extreme events. This

modified version of the BLRPM is termed the Bartlett-Lewis Rectangular Pulse Gamma

model (BLRPGM).

3.3.1 Procedure

The algorithm for the BLRPGM, a seven parameter model, is the same as that described

previously for the MBLRPM, with the exception that the expressions for some of the

characteristics are changed to reflect the gamma distributed cell rainfall intensity.
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3.3.2 Characteristic Variables

The index and scale parameters for the gamma distributed rainfall intensity are p and 6

respectively and the mean is calculated as shown in Equation 50. For completeness,

equations for the entire set of characteristic variables for the BLRPGM are presented.

.-50

The mean amount of rain in the /-th interval of length h hours is

a-\

and the variance is

^ ] = 2A\[(a -

(a - 3)hv2~a - v3~

and for lag k z 1 the covariance is

-2(v+'-'Ai-a

+ (k-\)h]3~a}-A2Uv+(k+l)th\' ~ ...53

-2\y+k0h) + I v + {k- l)$hI |

where
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A\ =

and

A2 =

The time distribution properties of rainfall events for the BLRPGM are not affected by the

change in rainfall cell depth distribution and hence remain the same as for the MBLRPM.

3.4 PARAMETER ESTIMATION

The estimation of the six parameters for the MBLRPM is difficult, and becomes more acute

for the BLRPGM, which has seven parameters (Verhoest etal., 1997). Different procedures

have been used to estimate the model parameters.

3.4.1 Methodology

The use of a formal statistical technique to determine parameters for rectangular pulse

stochastic rainfall models, such as the maximum likelihood procedure, is not practical and

probably would not be the best procedure to use (Rodriguez-Iturbe et al, 1988).

Rodriguez-Iturbe et al. (1988) suggested equating characteristic features computed from

the historical data with corresponding model values, preferably computed theoretically, but

failing that, by simulation. The method of moments approach, which has been frequently

adopted when fitting time series models to historical data (Rodriguez-Iturbe et al, 1987b;

Entekhabi et al., 1989; Cowpertwait, 1991; Onof and Wheater, 1993; Bo et al., 1994; Onof

and Wheater, 1994a; Cowpertwait et al, 1996a; Verhoest et al, 1997), solves a set of
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simultaneous equations which relate model parameters to sampled moments (Cowpertwait

et al., 1996b).

The resulting set of non-linear equations can be solved simultaneously to derive parameters

for the model. Different approaches can be used to solve the set of non-linear equations.

Where possible, unique roots of the equations may be obtained (Rodriguez-lturbe et al.,

1988; Khaliq and Cunnane, 1996). In cases where a unique solution of the non-linear

equations is not possible, a scheme to minimise a defined objective function may be used.

The generic format of a commonly used least squares objective function that has been used

inter alia by Bo et al. (1994), Entekhabi et al (1989), Cowpertwait (1991), Velghe et ai

(1994) and Verhoest et al (1997) to estimate the parameters for the models is

= min ...54

where

F,(X) = model expression for statistic i computed using parameter vector X,

Fl = statistic ;' estimated from historical data at various levels of

aggregation,

JV = number of statistics used in parameter determination, and

Wj = weight assigned to statistic i.

Velghe et al. (1994) and Verhoest et al. (1997) used W=\ for all statistics while

Cowpertwait (1991) and Cowpertwait et al. (1996a) placed emphasis on almost exact

modelling of the mean and thus set F^=100 for the mean and used W=\ for all other

moments.

In deriving model parameters, seasonality was taken into account by deriving parameters

for each month, thus assuming data stationarity for each calendar month (Cowpertwait,
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1991; Bo et al., 1994). In computing the moments of the historical data, Cowpertwait

(1991) and Cowpertwait et al (1996a) pooled all available data for each calendar month.

Velghe et al. (1994) and Verhoest et al (1997) used Powell's quadratically convergent

algorithm to minimise the objective function (2) while Onof and Wheater (1993) used a

modified version of the Powell hybrid method.

The 3LRPGM is a seven parameter model (A, K, <p, v, <*,p, 8) and Onof and Wheater (1994b)

recommend fixing the 6 parameter of the model owing to the difficulty in estimating the

seven parameters. Despite conceding that estimating the parameters for the BLRPGM was

difficult, Verhoest et al. (1997) did not fix any parameters and still managed to obtain a

relatively good fit to the moments computed from the historical observations.

Using a different approach, Chandler (1995) developed a spectral method for estimating the

parameters of point process models, which include the cluster Bartlett-Lewis cluster type

models. The effect of initial conditions and the presence of many local optima necessitate

that the optimisation procedure should be started from several different starting points. A

general problem when estimating parameters of point type rainfall models is the lack of

identifiability of model parameters (Chandler et al., 1995). The disadvantages of estimating

the model parameters using the method of moments is the arbitrary selection of the

properties to be used and the use of only summary statistics of the data, whereas the spectral

method makes more objective use of all the data and not only the summary statistics

(Chandler et al, 1995).

3.4.2 Moments Used

The set of characteristic variables, or moments, chosen to determine model parameters

should have relatively small sampling errors and not be highly mutually correlated. Most

features should be sensitive to the effects of time scale on a single cell and at least one

feature should correspond to the timescale between storms (Rodriguez-Iturbe et al., 1988).
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The sets of variables should thus include features of both the depth process and the

proportion of dry periods (Onof and Wheater, 1993). The better the estimates of analytical

moments used in the parameter estimation, the better the analytical statistics at other levels

of aggregation (Velghe et al, 1994). The moments used in selected applications of

rectangular pulse rainfall models are summarised in Table 10.

Cowpertwait et al. (1996a), using the NSRPM, felt that instead of fitting five moments

exactly, it was better to fit more moments approximately. Khaliq and Cunnane (1996) found

that the MBLRP best resembled the historical observations when more statistics than

necessary (i.e. an over-determined system) were used to determine model parameters and

hence suggest using 16 statistics to determine the 6 model parameters. As evident in Table

10, most applications have used short duration (hourly) resolution data in the derivation of

model parameters and hence the aggregation properties of the models have been validated.

Only Bo et al. (1994) and Cowpertwait et al. (1996a) have tested the disaggregation

properties of the models by using longer duration data only (^ 24-h) in the derivation of

parameters. This aspect was highlighted by Entekhabi et al. (1989), who identified the need

for further research into the robustness of parameter estimation using only large aggregation

periods (12 to 24-h).

In order to utilise daily rainfall data, which is much more widely available than shorter

duration data, Cowpertwait et al. (1996a) determined parameters for the NSRPM using only

daily rainfall data. The poor performance of the NSRPM when fitted using daily moments

resulted in Cowpertwait et al. (1996b) concluding that the higher aggregation levels are

unlikely to contain enough information from which the properties of the cells can be

determined. Thus Cowpertwait et al. (1996a) developed regionalised empirical relationships

between hourly variance and daily variance, thus enabling the estimation of hourly variance

when only daily data were available.
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Table 10 Moments used in parameter determination in selected studies

Reference

Rodriguez-lturbe et al.
(1987b)

Rodriguez- Iturbe et al.
(1988)

Entekhabie/o/.(1989)

Onof and Wheater (1993)

Model

NSRPM/
BLRPM

MBLRPM

MNSRPM

MBLRPM

Data

Location

Denver, USA

Denver, USA
Boston, USA

Denver, USA

Birmingham,
UK

Input
resolution

Hourly

Hourly

Hourly

Hourly

Fitting

(MoM=Method of
moments

MLS=
Minimisation of

least squares)

MoM
Unconstrained
MLS

Roots

MoM
MLS

MoM
2-stage
optimisation

Aggregation Level
of Moments

Mean

(h)

1

1

1

6

1

1

1

1

1

1

1

Variance

(h)

1,6

1,12

1,24

6,12

1,24

1

1,12

1,24

1

1

1,6

Auto-
covariance

(Lag-1)

Auto-
correlation

(Lag-I)

1,6

1,12

1,24

6, 12

1

1,24

1,6,12

1,6,12

1,6,12,
24

1,6

1

Dry
Probability

1,24

1,24

1,24

1,24

Other



u>

Reference

Onof and Wheater
(1994a)

Onof and Wheater
(1994b)

Bo et al. (1994)

Velghee/a/. (1994)

Chandler (1995)

Model

BLRPM

BLRPGM

MBLRPM

MBLRPM

Various

Data

Location

Birmingham,
UK

Birmingham,
UK

Paducah,
USA
Arno, Italy

Denver, USA

South-West
England

Input
resolution

Hourly

Hourly

Hourly

Hourly

15 min

Fitting

(MoM=Method of
moments

MLS=
Minimisation of

least squares)

MoM
2-stage
optimisation

MoM
2-stage
optimisation

MoM
MLS

MoM
MLS

Spectral analysis

Mean

(h)

1

1

1

Variance

(h)

1,6

1

1,6

Aggregation Level
of Moments

Auto-
covariance

(Lag-1)

1,6

1,6,12

1

Auto-
correlation

(Lag-I)

*

Dry
Probability

1,24

Not reported

1

1

6

1

1

n/a

1

1,24

6,24

1,14

1,24

1,24

1

6,24

1,24

1,12,24

1, 24

1,24

6

12

Other



Reference

Cowpertwait et al,
(1996a)

Khaliq and Cunnane
(1996)

Verhoest e/<*/. (1997)

Verhoestera/. (1997)

Model

NSRPM

MBLRPM

MBLRPM

BLRPGM

Data

Location

Manston, UK

Valentia &
Shannon
Airport,
Ireland

Uccle,
Belgium

Uccle,
Belgium

Input
resolution

Hourly

Hourly

10 min

10 min

Fitting

(MoM=Method of
moments

MLS=
Minimisation of

least squares)

MoM
MLS

MoM
Roots/MLS

MoM
MLS

MoM
MLS

Aggregation Level
of Moments

Mean

(h)
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The use of minimisation schemes and the different possible combinations of moments which

may be used to determine model parameters results in non-unique parameter sets which

usually all result in adequate model performance. Hence it is important to identify which

model parameters are most sensitive to the scheme and moments used in parameter

determination.

3.4.3 Sensitivity

The magnitude of variations between the parameter sets derived using moments from

different levels of aggregation were similar to the variations obtained when changing the

initial "guess" vector in the nonlinear minimisation (Rodriguez-Iturbe et al, 1987b). Also

using the BLRPM, Onof and Wheater (1994a) found "considerable differences" in the

parameter sets determined using two different sets of moments.

Rodriguez-Iturbe (1988) reports that when two different sets of moments were used to

derive MBLRPM parameters, the two sets of parameters were different, particularly the a

and vparameters. This was confirmed by Onof and Wheater (1993), who showed that with

the exception of fjx and A, the parameters of the MBLRPM determined by two different sets

of moments were very different, particularly the tf and vparameters, but that both sets of

parameters could yield characteristics on the rainfall process to within 5% of historical

values. In contrast to these findings. Velghe et al. (1994) used five different sets of moment

equations and noted that there were "no striking changes in the parameter values from set

to set", but perusal of their tabulated parameters indicate that large differences do occur, in

particular the v parameter.

Khaliq and Cunnane (1996) performed a sensitivity/stability analysis of parameters for the

MBLRPM. As shown in Table 10. five different sets of statistics were used to estimate five

sets of model parameters. The magnitude of the model parameters determined using the five

different sets of statistics varied considerably. Khaliq and Cunnane (1996) concluded that

[ix and A were the most stable and a and vthe least stable parameters. This led Khaliq and
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Cunnane (1996) to use 16 moments to derive the 6 model parameters and to suggest that

different starting values of or and v should be used during optimisation.

Cowpertwait et al. (1996a) also noted that the parameter estimates for the NRPRM are

dependent on the choice of moments used in the fitting procedure and concluded that the

choice of moments "needs to be made with some discretion".

3.4.4 Optimisation

In order to improve the distribution and duration of events simulated by the BLRPM and

MBLRPM and to enhance the identification of appropriate model parameters, Onof and

Wheater (1993; 1994a) used a two-stage optimisation procedure with the objective function

as shown in Equation 55.

^]2
+f,-^2 ...5J

°d ) V on )

where

d(i) = deviation at /-th iteration,

ml/i) = modelled mean hourly inter-event time at /-th iteration,

ol
d = mean inter-event time of historical hourly data,

m1
n(/) = modelled mean number of hourly events at /-th iteration, and

ol
n = mean number of hourly events in historical data.

By determining the remaining parameters for a fixed value of a poorly defined parameter,

and then varying the value of the poorly selected parameter, an optimum value of the poorly

defined parameter may be determined. For the BLRPM Onof and Wheater (1994a) obtained

solutions for different values of fi. Onof and Wheater (1993) used the MBLRPM and found

that when the autocovariances were used in determining the parameters and either aor v

were kept constant, no optimum solution was found. When autocorrelations instead of
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autoco variances were used, the convergence of the solution was difficult when ar was fixed,

but optimum solutions were obtained when v was kept constant. The optimal values of v

obtained by an analytical solution or by simulation were very similar, but an optimum

solution was not obtained for all months (Onof and Wheater, 1993). The optimised

parameter set improved the simulation of inter-event and duration characteristics, but the

optimised parameters showed no improvement in the simulation of extreme events.

A similar two stage optimisation procedure was used by Onof and Wheater (1994b) to

optimise the parameters for the BLRPGM. The parameter 3 (the scale parameter for the

Gamma distribution) was incremented until an optimum (d,) solution was determined. A

very good reproduction of extremes was obtained when the S was optimised (32) such that

the mean of the 1 h and daily AMS of the simulated series best approximated the historical

values. Although 62 was determined by simulation, as no analytical expressions are possible,

the optimised values 8t and S2 were very similar for most months. This led Onof and

Wheater (1994b) to conclude that the optimised St data set would provide a good

simulation of the extreme values at the hourly and daily levels.

Onof and Wheater (1994a) noted that although there were some discrepancies between

analytical and simulated values of the characteristic variables, the use of analytical values in

the optimisation procedure was acceptable.

3.4.5 Daily Parameters

Onof and Wheater (1993) investigated whether a smoother representation of the parameters

over the year was possible and if the coefficients of this representation could be used for

regionalisation of parameters. The use of a polynomial produced very satisfactory results

and could thus be used to yield more realistic results for periods which are not calendar

months.
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3.5 GOODNESS-OF-FIT CRITERIA

Various tests have been used to assess model performance. Generally both analytical and

simulated values of certain characteristics of the rainfall process are compared with historical

values (Onof and Wheater, 1993; Onof and Wheater, 1994a). Bo et al. (1994) used the

mean sum of squares of the difference between the model estimated and observed mean,

variance, autocorrelation and dry probability statistics for various levels of accumulation as

shown in Equation 56.

1=1

where

F(f) = measure of goodness of fit for j-th statistic, e.g. mean (/=1), variance

'(f=2), autocorrelation (j=3), dry probability (J=4),

Fit{iJ) = value of model computedy-th statistic at aggregation level (duration) /,

His{iJ) = value of/-th statistic computed from historical data at aggregation level

/, and

NL = number of different aggregation levels used.

Verhoest et al. (1997) used the goodness-of-fit statistic (5) defined by Velghe et ai.(1994)

as shown in Equation 57.

100 m A , ; Fj

...57
: ^ \ ' His., . j

7 = 1

where

m = number of moments or statistics considered.
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Cowpertwait et al. (1991) generated a 20 year series of hourly rainfall and used t-tests to

compare simulated and historical moments. Cowpertwait et al. (1996a) validated the

NSRPM by:

• visual comparison of historical data and simulated time series,

• the crossing properties of the time series; and

• the hourly and daily extremes.

Although not explicitly detailed in the literature, the "model computed statistic" can be

either an analytic or simulated value. The theoretical expressions for the moment, if

available, can be computed for a given set of parameters and compared to the equivalent

moment computed from the historical data. The alternative, and the only option if the

theoretical expression for the statistics are not available, is to compute the statistics from

a synthetic time series generated by the model. Both of these options were used by Khaliq

and Cunnane (1996). Analytical moments were identified, at different levels of aggregation,

which differed from the historical moments by more than ± 2SE, where SE is the estimated

standard error. In addition, properties computed from a 200 year record simulated by the

model, with a particular parameter set, were compared to those computed from the

historical data. However, no estimate was made of the variation in the synthetic series as a

result of the stochastic rainfall generation process, i.e. the sampling variation of historical

data was not compared to the variation due to the stochastic process.

Features not used in the determination of parameters can be used to determine the

goodness-of-fit (Rodriguez-Iturbe et al., 1988). Other characteristics used by Khaliq and

Cunnane (1996) to assess the performance of the model include probabilities of observing

small rainfall amounts, distributions of rainfall depth and intensity for given durations, event

profiles and distributions of monthly number of rainfall events, dry durations and wet

durations. Rainfall events were defined as a sequence of wet hours, preceded and followed

by at least one dry hour.
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3.6 REGIONALISATION OF PARAMETERS

Cowpertwait et al (1996a) derived linear regressions between h-hourly (h<24) and daily

variance for 27 stations in the UK. Of the 27 stations which had hourly rainfall data, 66%

had record lengths of between 5-10 years and the remainder had record lengths less than 30

years (Cowpertwait et al, 1996b). Using both daily moments and variances for durations

< 24 h, derived from the regressions, when fitting the NSRPM resulted in a reasonable

simulation of hourly data (Cowpertwait et al, 1996a). It was concluded that the

regionalised model could estimate rainfall properties that were within the sampling error

expected in a 20 year historical record of daily rainfall data.

Cowpertwait et al. (1996b) developed regressions at 112 sites in the UK between NSRPM

parameters and both location dependent variables that influence rainfall and harmonic

variables. At sites where no short duration data were available, four of the NSRPM

parameters were estimated using these regressions and the fifth parameter was estimated

using the mean of a nearby daily rainfall station and the four derived parameters. In order

to simulate durations as short as 5 minutes, a stochastic disaggregation model was

developed which used hourly time series as input.

3.7 MODEL VALIDATION

Model performance can be assessed by checking the model's ability to reproduce rainfail

properties not used in the fitting procedure, but which are considered important (Rodriguez-

Iturbe et al, 1988; Cowpertwait et al, 1996a).

3.7.1 Neyman-Scott Rectangular Pulse Model

Cowpertwait et al (1996a) compared the means and standard deviations of the proportions

of time that the historical and simulated rainfall exceeded various depths. The NSRPM was
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found not to simulate the mean proportion of events less than 1 mm well. Using an

exponential distribution for cell intensity, Cowpertwait et al. (1996a) found that the NSRPM

under-simulated historical extreme events for return periods greater than 5 years. The use

of a Weibull distribution to model cell intensity did not necessarily improve the simulation

of extreme events. Cowpertwait et al. (1996a) conclude that the inconsistent simulation of

extreme events by the NSRPM "may be due to an over-simplification in the parameterisation

of the model" and that consequently a "good fit to the extreme values is unlikely to be

achieved consistently using the present form of the model".

3.7.2 Original and Modified Bartlett-Lewis Rectangular Pulse Models

Rodriguez-Iturbe et al. (1987b) applied the BLRPM to a 27 year record of hourly rainfall

data for one month from Denver, USA, and found that the model was able to preserve the

rainfall depth statistics and extreme values of rainfall, but did not reproduce the proportion

of dry level states satisfactorily. The MBLRPM, which allowed random variation from storm

to storm of the exponential parameter of the distribution of cell duration, enabled the model

to reproduce the proportion of dry states for various time intervals (Rodriguez-Iturbe et al.,

1988).

Rodriguez-Iturbe et al. (1988) found that the MBLRPM underestimated the hourly and 24-

hourly extremes for return periods greater than the record length. By plotting the cumulative

distribution of the modelled and historical extreme values for both the 1 and 24 h

aggregation levels, it was apparent that the MBLRPM underestimated the extreme values

for return periods greater than approximately 10 years.

Onof and Wheater (1993) used the MBLRPM to improve the simulation of rainfall in the

UK. Generally the second-order properties of the data were well reproduced by the model.

In addition, dry periods for all time scales (hourly to daily) and daily rainfall depths were

also well reproduced by the model. The MBLRPM improved the autocorrelations for

lags > 12 h, inter-event intervals (dry periods), the duration and number of events when
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compared to the BLRPM, but autocorrelations were still not adequately simulated by the

MBLRPM. In addition, the design rainfall for return periods longer than the length of the

data set were not reproduced well.

Bo et al (1994) showed that both the aggregation and disaggregation of rainfall using the

MBLRPM were satisfactory and that, using readily available daily rainfall data to determine

model parameters, statistics for finer time scales of up to 1 h could be reproduced using the

MBLRPM.

Khaliq and Cunnane (1996) used the MBLRPM to successfully model point rainfall with

parameters derived from a 45 year record from Valentia, Ireland and from a 38 year record

from Shannon Airport, Ireland. Two hundred years of synthetic data were simulated.

Generally the autocorrelations for lags ranging from 1 to 24 in the hourly data and for lags

from 1 to 10 in the 24 h data were adequately simulated. Probabilities of no rain for

accumulation periods great than 24 h were generally over-simulated by the model. Khaliq

and Cunnane (1996) found that, whilst the simulation of extreme events by the MBLRPM

was dependent on the moment set used in the derivation of the model parameters, the model

generally under-simulated hourly extreme events for return periods greater then 5 years.

However, the model generally reproduced the 24 h extreme values well for most months.

Velghe et al (1994) compared the performance of the NSRPM, MNSRPM, BLRPM and

MBLRPM for the Denver, USA data used by Rodriguez-Iturbe et al (1987b). The

analytical (theoretical) and simulated statistics were compared to the statistics computed

from the historical data. The NSRPM model was found to perform better than the BLRPM.

This was partially attributed by Velghe et al (1994) to the better fit of the analytical values

(lower Z) for the NSRPM. Similar to the finding by Rodriguez-Iturbe et al (1988), Velghe

et al. (1994) found that the modified versions of the NSRPM and BLRPM gave better

estimates of dry (zero depth) probabilities at higher levels of aggregation and better

estimates of extreme values, but that the correlation structure of the original models fitted

the historical values better. The MBLRPM was found by Velghe et al. (1994) to differ more

from the historical statistics than the NSRPM, and the MBLRPM was also more sensitive
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to the sets of moment equations used in parameter estimation. When zero depth probabilities

were used at more than one level of aggregation in the moment equations used to determine

parameters, it was found the zero depth probabilities were well preserved at all levels of

aggregation, but due to the limited number of moments used in the estimation, the second

order moments were not fitted well. When only one or no zero depth probabilities were used

in the moment equations, the zero depth probabilities were overestimated and the second

order moments were better represented at all levels of aggregation. Velghe et al. (1994)

found that the simulation of extreme values by the MBLRPM was not sensitive to different

moment equations, but concluded that the major drawback of applying the MBLRPM was

the sensitivity of the performance to the selected moment equations used in the

determination of the model parameters. For all models, hourly design rainfall depths were

generally underestimated for longer return periods but, for corresponding return periods,

were better simulated for longer durations.

3.7.3 Bartlett-Lewis Rectangular Pulse Gamma Model

Onof and Wheater (1994b) used a 3 8.5 year record of hourly rainfall from Birmingham, UK

and found that after optimising the 6 parameter, the BLRPGM simulated the extreme

events well at both the hourly and daily time scales. The difficulty in estimating the seven

parameters for the model, and the success of the BLRPGM, led Onof and Wheater {1994b)

to conclude that future research effort should concentrate on widespread applications of

the models and regionalisation of the parameters of the model, and not on developing

models with more parameters.

Verhoest et al. (1997) compared the BLRPM, MBLRPM and BLRPGM using a 27 year

period of record of 10 min rainfall data from Uccle, Belgium. Based on first and second

order moments computed from 100 years of generated synthetic rainfall series, it was

shown that all three models performed adequately and that the MBLRPM best simulated the

second order moments of the historical data. It was found that none of the three models

were able to satisfactorily model the extreme value behaviour of the data, particularly for

83



short duration (10 to 200 min) events where the extreme events were under-simulated.

However, Verhoest et al (1997) used a 24 h period of no rain to extract storms and showed

a good agreement between the mass curves generated by the MBLRPM and the observed

rainfall mass curves. The mean length of the synthetic storm was generally found to be

shorter than for the historical series. This led to the conclusion that the cluster-based models

produce individual rain cells more clustered than the historical series.

3.8 CHAPTER CONCLUSIONS

It is apparent from the literature that cluster based rectangular point rainfall models that use

a Poisson process to simulate storm and cell arrival times can adequately reproduce most

of the properties of historical rainfall data. Varied performances of the simulation of

extreme events, which is of most interest to this study, have been reported in the literature.

Cowpertwait et al. (1996a) report that performance of the NSRPM was inconsistent. For

the Bartlett-Lewis based models, the simulated design rainfall values were generally poor

for shorter durations (± s3-h) and for return periods longer than the historical record, but

encouraging for longer durations and return periods up to the record length (Rodriguez-

Iturbe et al, 1988; Onof and Wheater, 1993; Velghe et al, 1994; Khaliq and Cunnane,

1996; Verhoest et al, 1997). However, Onof and Wheater (1994b) obtained satisfactory

results using the BLRPGM, after optimising the 5 parameter, for both hourly and daily

durations and return periods up to 200 years. Hence the results, presented in Chapter 7, of

using stochastic cluster-based rainfall models in South Africa to estimate design rainfalls,

are focussed exclusively on the MBLRPM and BLRPGM.

Most of the studies reported in the literature used data from only one station and. in some

cases, used only data from individual months, e.g. Rodriguez-Iturbe et al (1988). It is

assumed that the limited amount of data used are from selected, well maintained stations

with good, well checked records. Hence, some of the conclusions pertaining to the

performance of the models are only applicable to the site and data used, and may not be
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generally applicable to different locations and with the use of "operational" data, which may

not be as error free as those stations used in the studies reported in the literature.

The inherent stochastic variability of the cluster-based rainfall models has not been

demonstrated explicitly in the literature reviewed. Most studies have generated a long

sequence of synthetic rainfall (e.g. 200 years) and have estimated design rainfall values from

this series. In the application of the stochastic rainfall models to data from South Africa,

presented in Chapter 7, the stochastic variability of design rainfall values computed from the

synthetic rainfall series is shown explicitly.

This chapter concludes Part A, in which the theoretical framework is set for the remainder

of the thesis, with results presented in Chapters 4 - 7 . Chapter 4 following in Part B, details

the compilation of a short duration rainfall database for South Africa and highlights errors

and inconsistencies in the data. The database is used both to estimate short duration design

rainfalls using the techniques presented in Chapter 2, with results presented in Chapters 5

and 6, and to estimate the parameters of the cluster-based models discussed in this chapter.

The results of estimating design rainfalls from the synthetic rainfall series generated by the

stochastic cluster-based rainfall models are presented in Chapter 7.
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PARTB

APPLICATION AND DEVELOPMENT OF TECHNIQUES

In Part B, the results of the study are presented in Chapters 4, 5, 6, and 7. In Chapter 4,

the compilation of a short duration rainfall database is described and techniques are

developed and assessed for identifying and removing errors such as zero and negative time

steps from the data. The consistency of the digitised data are evaluated by comparing daily

rainfall totals computed from the digitised and standard daily rainfall databases. A case study

on the effect of missing data on the estimation of design rainfall depths is also presented.

In Chapter 5 relatively homogeneous regions of design rainfall frequency distribution in

South Africa are identified and the results of a regional index storm based approach to

design rainfall estimation is presented. Regional regression equations are developed to

estimate the index storm for 24 h duration events as a function of site characteristics, thus

enabling the index storm based approach to be applied at any ungauged site in South Africa.

In order to estimate short duration design storms from daily rainfall data, hypotheses were

proposed which combine the properties of homogeneous regions, where the distribution of

the scaled Annual Maximum Series (AMS) is assumed to be the same at each site in the

region, with the scaling characteristics of the AMS. The hypotheses and results of applying

the hypotheses at selected regions and sites in South Africa are presented in Chapter 6.

In Chapter 7 the results from generating stochastic rainfall time series with Bartlett-Lewis

Rectangular Pulse rainfall models and estimating design storms from the synthetic rainfall

series are presented. Both parameter optimisation techniques and a procedure for

determining the model parameters using only daily rainfall data are developed and evaluated.

In addition, the stochastic variability is used to estimate confidence limits for the design

storms and the temporal distribution of synthetic storms estimated at selected sites are

presented. Two interesting case studies are also presented which evaluate two approaches

that can be adopted to estimate short duration design storms at sites which only have a short

period of observed data available.
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CHAPTER 4

ESTABLISHMENT OF A SHORT DURATION RAINFALL

DATABASE FOR SOUTH AFRICA

In order to establish a short duration (£ 24 h) rainfall database for South Africa it was necessary

to assess the availability of automatically recorded rainfall data. Questionnaires were distributed

to numerous organisations, which included Government Departments, Universities and local

authorities, requesting information on rainfall data collected by the organisations. The

organisations which responded positively with relevant information were requested to provide

the data which were included in the database. In numerous cases the rainfall data were still in

chart form and had to be manually digitised for entry into a computer. More than 100 station

years of autographic rainfall data were digitised during the course of the project. The

organisations which contributed relevant and useable data to the database, and the number of

stations which were made available, are listed in Table 2. In total data from 412 stations were

obtained. The distribution of record lengths of the 412 stations in the database is shown in

Figure 5 and the locations of stations with record lengths 110 years is shown in Figure 6.

Table 2 Organisations which contributed short duration rainfall data

Organisation

Department of Agricultural Engineering, University of Natal (DAEUN)

Council for Scientific and Industrial Research (CSIR)

Rhodes University (RU)

South African Sugar Association Experiment Station (SASEX)

University of the Witwatersrand (Wits)

South African Weather Bureau (SAWB)

Cape Town City Engineer's Department (CTCE)

University of Zululand (UZ)

Number of stations

24

4

28

4

3

334

2

13
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Figure 5 Distribution of record lengths in the short duration rainfall database for
South Africa

As shown in Table 11 the majority of stations in the database were contributed by the

SAWB. Errors, such as negative and zero time steps, were found in the data from most of

the organisations which contributed processed rainfall data to the database. A zero time step

occurs when consecutive data points are assigned the same time of day while having an

increase in rainfall and thus create an infinite intensity. With the exception of the SAWB

data, these errors were relatively few, with usually only one or two errors in the entire data

set for a particular station. However, numerous errors were encountered in the data

obtained from the SAWB. Hence the cause of these errors had to be established and

procedures developed in order to correct the errors and allow the continuous processing of

data. The term "correction of errors" used in this chapter refers to the adjustment of data

points in order to eliminate the errors and allow continuous processing of the data and does

not refer to the correction of data in the sense of infilling missing data points.

An analysis of the probable causes and suggested procedures to correct errors in the SAWB

digitised rainfall database are investigated in the following section. This is followed by some

consistency checks on the digitised data, which include sections on comparing the digitised

and manually extracted extreme events, the frequency and magnitude of differences between

digitised and standard, non-recording raingauge daily rainfall totals and an analysis of the

impact of incomplete data on the estimation of design rainfall.
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4.1 ERRORS IN SAWB DATA AND DATA ADJUSTMENT PROCEDURES

The most common errors found in the database consist of rainfall events with negative or

zero time steps. As indicated in Figure 7 the majority of errors found in the database are a

result of negative time steps.

4.1.1 Sources of Errors

As shown in Figure 7(a), the most frequently occurring negative time step errors are those

associated with a decrease in the digitised depth of rainfall (labelled negative & less),

followed by those associated with raingauge siphons (negative siphon), equal rainfell depth

(negative & equal) and increasing digitised rainfall depth (negative and increase). It is

concluded from the intra-daily temporal distribution of the occurrences of the negative time

step errors associated with decreasing digitised rainfall depths, as shown in Figure 7(b), that

the majority of these errors are a result of not synchronising the time at the end of one daily

chart with the beginning time of the following chart. The possible causes of the negative

time step errors which occur at chart changes may be incorrect digitising, autographic

raingauge clock errors and possible incorrect setting or failing to record the time at which

the chart was placed on and removed from the gauge. An analysis of the magnitude of the

time differences of negative time step errors is given in Figure 7(c), with the majority of

negative time step errors being less than 30 minutes. Examination of the intra-daily temporal

distribution of the occurrences of zero time step errors showed that these errors occurred

randomly throughout the day and were thus probably a result of incorrect chart digitisation.

From Figure 7(d), it is seen that the magnitude of the differences in the rainfall amounts

associated with the majority of the zero time step errors is less than 2 mm. The large

number of errors contained in the database makes the task of manually correcting the

database extremely time consuming, which prompted the development of automatic

correcting procedures.
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Figure 7 Relative frequency of occurrence of 25922 errors identified in the digitised
rainfall database from 29 SAWB stations for the period 1960 to 1990:
(a) Occurrences of negative and zero time steps
(b) Temporal distribution of negative time steps associated with a decrease

in digitised rainfall
(c) Magnitude of negative time steps (minutes)
(d) Difference in rainfall depths (mm) of data points associated with zero

time steps

4.1.2 Data Correction and Adjustment Procedures

4.1.2.1 Principles applied

The principles used to correct the data were guided by the analysis of errors, such as

contained in Figure 7. Each "type" of error was identified, and appropriate remedial

actions were performed. The principles applied in these actions are illustrated for a negative

time step error associated with an increase in digitised rainfall, as shown schematically by

the solid line in Figure 8.
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It is assumed that points 1 and 4 are correct and either points 2 or 3 or both are incorrect.

One alternative to correcting this error is to delete either points P2 or P3 such that the

minimum rainfall intensity is introduced (either 113, the intensity between P1 and P3, or 124,

the intensity between P2 and P4). In this case P3 will be deleted and the intensity 124,

shown by the dotted line, is introduced into the data. This approach has been termed the

Lowest Intensity Adjustment (LIA). An alternative to this technique is to delete either P2

or P3 such that the maximum rainfall intensity is introduced in the database. This approach

has been termed Maximum Intensity Adjustment (MIA). A third alternative is to replace P2

and P3 with a single point containing averaged time and rainfall values, and has been termed

Average Intensity Adjustment (AIA).

Figure 8 Schematic diagram depicting a negative time step error, with increase in
digitised rainfall {PI, P2, P3, P4 are consecutive digitised points in the data)

Three sets of Annual Maximum Series (AMS) were extracted from the database corrected

by either the LIA, AIA or MIA procedures. In addition, two AMS were extracted that

excluded corrected data points. The first excluded all erroneous data points from the
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database prior to the extraction of the AMS and was termed EXPOINT. The data were

scanned sequentially and any data point causing an error (e.g. P3 in Figure 8) was discarded,

and the AMS was extracted from the remaining data points. The second method excluded

from the AMS any event that had any errors contained in the data within the duration of the

event and was termed EXEVNT. In order to select which of the LIA, MIA, AIA,

EXPOINT or EXEVNT were appropriate procedures, statistical tests are utilised in Section

4.1.5 which test if the 5 different methods of ensuring continuous processing of the data

result in significantly different AMS.

4.1.2.2 Chart changes

In some cases the time-off recorded on a chart is often later than the time-on for the

following chart. For example, at SAWB Station 0059572 the chart starting on 01/03/42 has

a recorded time-off on 02/03/42 at 09:00, while the chart starting on 02/03/42 has a

recorded time-on of 08.50. In addition, the last digitised point on a chart is often later than

the recorded time-off. For example, at Station 0059572 on 19/12/40 the recorded time-off

is 08:30, but the last digitised point on the chart is 08:32.

In addition on some charts, generally for more recent years, the system of recording the

correct time-on and time-off, which can then be used to correct the chart time-on and time-

off if the clock lost or gained time, seems to have been abandoned. For example, random

checks in years 1975,1980,1985 and 1990 for Station 0059572 reveal that the time-on and

time-off was consistently 8:00 on every day, thus indicating that this is probably not the

correct time noted by the observer. As a result the time-on and time-off values cannot be

used to correct any time errors on the chart.

For the above reasons it was considered that the recorded time-on and off of charts were

too unreliable to use in adjusting negative time steps arising as a result of time clocks

running too fast. It was thus assumed that the time when the chart was put on is correct and

hence the difference between the first digitised point and the last point digitised on the
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previous chart is used to establish the magnitude of the clock time error. This assumes that

the clockwork mechanism is not running fast or slow.

4.1.2.3 Automated correction

Owing to the vast number of errors found in the S AWB digitised database and thus the need

to automate the correction process, the five correction methods (MIA, AIA, LIA,

EXPOINT, EXEVNT) were used to create five different sets of AMS.

The data points were scanned sequentially and the action undertaken and software routine

invoked whenever an error was detected is shown in Table 12. As detailed in the following

section, the automated correction procedures were only undertaken after some manual

editing had been performed.

As indicated in Table 12, whenever an adjustment was made, the affected data points were

assigned a code. These indicate time adjustments (t), siphon adjustments (s) and corrections

(c) to data points where the cause of the error is unknown. A clear distinction is drawn

between adjustments, where the probable cause of the error is known, and errors, where the

cause of the error is unknown.

4.1.2.4 Manual correction

Despite the extensive automatic correction procedures, it was found that using only

automatic procedures to correct large negative steps (> 30 minutes) resulted in unrealistic

corrections. These large negative time steps were largely a result of what appeared to be

either spurious points or the re-digitisation of portions of the same chart. These errors were

thus investigated individually and corrected manually.
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Table 12 Automatic adjustment procedures

Case

Equal time

Equal time and
decrease in
rainfall trace

Trace

I

I

I

I

HUE M A }

A
P i / Ip4

P1,/

Pi/
P3

THE I » U

P4

P3

P2

Error/ Suspected
Cause

Digitising error

Check siphon top
and bottom value
have been placed
in incorrect
column

Siphon

Assumption(s)

Either P2 or P3
incorrect

Method

EXPOINT

All

All

All

Flag

c

c

c

Action

Delete P3

Delete P3

Delete P4

None

Routine
Invoked

DISCAD

DISCAD

DISCAD



Case Trace Error/ Suspected
Cause

Assumption(s) Method Flag Action Routine
Invoked

Equal time and
decrease in
rainfall trace
(continued)

n
Point 3 is a
missing code

All Move point 3 such that T,=T2+I MINADD

Point 2 is a
missing code

All Move point 2 such that T2=T3-1 MINSUB

Equal times
and equal
values

Digitising error
Point 2= Point 3

Duplication of
same point

All Delete P3 EQUAL

Equal time and
increase in
rainfall trace

IP4 Digitising error All Delete P3 DISCAD



Case

Equal time and
increase in
rainfall trace
(continued)

Trace

I
!

I

1

I

!
!

'" [ " '

P1
TIME (ittthuM)

P3

P1 P*
TMEfmtnu

P2

P11 |P3

.._..L
TIME (irtnutw)

P3

P1 PA
TW C <fwi*i

P2

Error/ Suspected
Cause

Digitising error

Digitising error at
siphon

Digitising error of
2 consecutive
siphons during
intense event
T2=T3

Digitising error at
change of chart

Assumption(s)

P2 is not part of
siphon

Method

All

All

All

All

Flag

c

c

c

c

Action

Delete P4

Delete P2

Move point 3 such that T3 = T3+1

Delete P2

Routine
Invoked

D1SCAD

DISCAD

MINADD

DISCAD



00

Case

Equal time and
increase in
rainfall trace
(continued)

Trace

I

!

i

ii3/n/i2<

PI

P 3 p p v
M l

tMEIirtnMI

I

!

p 3 ,'<*<

. - - P2

P1
THE^pnnJtoi)

Error/ Suspected
Cause

Digitising error

Digitising error
PI is either a
missing code or
P2 is the first
point in file

Digitising error
P3 is either the
last point in the
file or P4 is a
missing code

Assumption(s)

Either P2 or P3
is an error

Either P2 or P3
is an error

Either P2 or P3
is incorrect

Either P2 or P3
is incorrect

Method

MIA

AIA

LIA

EXPOINT

MIA

AIA

LIA

MIA

AIA

LIA

Flag

c

c

c

c

c

c

c

c

c

c

Action

I f l l3> 124, delete P2

If 124 > 113, delete P3

Average P2 and P3

If 113 > 124, delete P3

If 124 > 113, delete P2

Delete P3

Delete P3

Average P2 and P3

Delete P2

Delete P2

Average P2 and P3

Delete P3

Routine
Invoked

FOUR

FOUR

FOUR

FOUR

DISCAD

RAINAV

DISCAD

DfSCAD

RAINAV

DISCAD



Case

Equal time and
increase in
rainfall trace
(continued)

Negative time
step

Trace

£

I
1

I

I

PI

PI
rUElimsl

LPI j^H
TIME l * * U M |

P3 - c ^ ^

P1

Error/ Suspected
Cause

P2 is a missing
code

P3 is a missing
code

Unknown
Manual correction
if negative step >
30 minutes

Digitising error

Assumption(s)

Any point
creating an error
is deleted

Method

All

All

Manual
Correction

EXPO1NT

Flag

c

c

c

Action

Move M2 such that T2=T3-1

Move P3 such that T3=T2+1

Delete P3

Routine
Invoked

MINSUB

MINADD

D1SCAD



Case Trace Error/ Suspected
Cause

Assumption(s) Method Flag Action Routine
Invoked

Negative time
step with
decrease in
trace

o
o

Parallax error due
to chart placement
on drum, distorted
frame or incorrect
digitising of a
siphon

All points on
chart are
affected by the
distortion

MIA, LIA,
AIA

Calculate angle of distortion for
each negative siphon on chart, and
use maximum angle to correct all
points on chart

SIPHON

Clock running too
fast - hence
negative time step
ai change of chart

Time is correct
at start of chart.
The error in
clock time is
assumed to be
constant over the
day (i.e. linear)

MIA. LIA,
AIA

Move P2 such that T2=T3
Adjust all points on chart which
ended on P2 (i.e. 1 day)
proportionately backwards

TIMADJ

Negative step
prior to change of
chart

P4 is the 1st
point of the next
chart

MIA, AIA,
LIA

Delete P3 D1SCAD

Negative step
within a siphon

Siphon starts at
P2 and ends at
P4

MIA, AIA,
LIA

Delete P3 DISCAD



Case

Negative time
step with
decrease in
trace
(continued)

Trace

[

I
1

TMEJnftk**)

P3

I

I

i

* P3

* M3

TIME !IT*1U4M|

Error/ Suspected
Cause

Digitising error

P2 is the first
point in the file or
PI is a missing
code

P2 is a missing
code

P3 is a missing
code

Assumption(s)

Either P2 or P3
is incorrect

P2 or P3 is
incorrect

Code inserted
incorrectly

Code inserted
incorrectly

Method

MIA

AIA

LIA

MIA

AIA

LIA

MIA, AIA,
LIA

MIA, AIA,
LIA

Flag

c

c

c

c

c

c

c

c

Action

If 113 > 124, delete P2

If 113 < 124, delete P3

Average P2 and P3 (rain and time)

I f n 3 > 124, delete P3

If 113 > 124, delete P2

Move P3 such that T3=T2+1

Average times of P2 and P3

Move P2 such that T2=T3-1

Move P2 such that T2=T3-1

Move P3 such that T3=T2+1

Routine
Invoked

FOUR-
DISCAD

FOUR-
TPRAVG

FOUR-
DISCAD

T1MEPI

TIMAV

TIMEM1

MINSUB

MINADD



o
to

Case

Negative time
step with
decrease in
trace
(continued)

Negative time
step and trace
is level

Trace

i

!

PZ ..-M

* P3

!
I

THE (if****}

I

!

P3f-—7-P2

P < \ p 4
TWIPOM

TIUC intMUlMl

P2

P3

Error/ Suspected
Cause

P3 is the last point
in the data or P4
is a missing code

Clock running too
fast - hence
negative time step
at change of chart

Negative time step
and P4 is the start
of the next chart

Negative time step
after siphon

Assumption(s)

P2 or P3
incorrectly
digitised

Time is correct
at start of chart
The error in
clock time is
constant over the
day (i.e. linear)

Method

MIA

AIA

LIA

MIA, AIA,
IJA

MIA, AIA,
LIA

M!A, AIA,
LIA

Flag

c

c

c

t

c

c

Action

Move P2 such that T2-T3-1

Average times of T2 and T3

Move P3 such that T3=T2+I

Move P2 such that T2=T3
Adjust all points on chart which
ended on P2 (i.e. 1 day)
proportionately backwards

Delete P3

Delete P4

Routine
Invoked

T1MEM1

T1MEAV

T1MEPI

TIMADJ

D1SCAD

DISCAD



Case Trace Error/ Suspected
Cause

Assumption(s) Method Flag Action Routine
Invoked

Negative time
step and trace
is level
(continued)

Digitising error Either P2 or P3
is incorrect

MIA in i3>124 , delete P2

If 113 < 124, delete P3

AIA Average P2 and P3 (rain and time)

LIA If 113 > 124, delete P3

If 113 > 124, delete P2

FOUR-
DISCAD

FOUR-
TPRAVG

FOUR-
DISCAD

Negative lime
step and
increase in
I race

Change ol chart P4 is the first
poinl of the next
chart

MIA, AIA,
LIA

Delete P2

P3
P2

P4

Siphon P4 is at the
bottom of a
siphon

MIA, AIA,
LAI

Delete P2

P1

P3
-P4

Siphon before
negative time step

MIA, AIA,
LIA

Delete P3

DISCAD

DISCAD

DISCAD



Case Trace Error/ Suspected
Cause

Assumption(s) Method Flag Action Routine
Invoked

Negative time
step and
increase in
trace
(continued)

P2 is the first
point in the file or
PI is a missing
code

P3

P1

P3 is the last point
in the file or P4 is
a missing code

P3
P2 is a code

M3 P4
P3 is a code

MIA Delete P3

AlA Average P2 and P3 (rain and time)

L1A Delete P2

MIA Delete P2

AlA Average P2 and P3 (rain and time)

L1A Delete P3

MIA, AIA,
LIA

Move P2 such that T2=T3-1

MIA, AlA,
LIA

Move P3 such that T3=T2+1

DiSCAD

TPRAVG

DISCAD

DISCAD

TPRAVG

DISCAD

MINSUM

MINADD



Case

Negative time
step and
increase in
trace
(continued)

Trace

I P 3 - ^ — 7 ^ *
113/ ;>-'-'" l«

P1

TME |l**MlHt

Error/ Suspected
Cause

Digitising error

Assumption(s)

Either P2 or P3
is incorrect

Method

MIA

AIA

LIA

Flag

c

c

c

Action

If 113 > 124, delete P2

If 113 < 124, delete P3

Average P2 and P3 (rain and time)

If 113 < 124, delete P2

If 113 > 124, delete P3

Routine
Invoked

FOUR-
DISCAD

FOUR-
TPRAVG

FOUR-
DISCAD



4.1.3 Flagging of Annual Maximum Events

Two methods of flagging the events contained in the AMS extracted from the five databases

were used. The first, termed "Flag_AU", flags the AM event with the appropriate flag (c,s

or t as defined in Section 4.1.2.3) if any data points within the duration of the AM event are

flagged. This is probably too extreme, as the deletion of a single or a number of data points

within the duration of an extreme event, with the remainder of the points assumed to be

correct and with the siphon type of raingauge accumulating rainfall totals, has no effect on

the correct duration of the event or on the total rainfall depth.

A second method was thus adopted, termed "FlagEnd", which only flags the AM event

if the data points spanning the start or end of the extracted annual maximum event are

flagged as being corrected.

The distribution of data points marked as corrected is investigated in the following section.

This is in order to ascertain whether, for example, the errors in the data occur

predominantly in the larger or smaller events, or if the errors occur randomly through the

range of event magnitudes.

Annual maximum events for the each duration considered are extracted from the digitised

rainfall data using a moving window which has a duration equal to the duration of the event

under evaluation. Each point in the break-point digitised data is considered as the potential

starting point of an annual maximum event. The rainfall value at the end point of the event

is interpolated linearly from the digitised data points which span the end points of the event.

4.1.4 Frequency Distribution of Corrected Annual Maximum Events

In order to ascertain the effect of the various procedures for correcting the data, an analysis

was undertaken to determine whether the corrected points were creating artificially high
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rainfall intensities. This was performed for events marked using the "FlagAll" and

"Flag__End" methods of flagging events which had corrected data points.

4.1.4.1 "Flag_Air method

For both methods of flagging events which had corrected points, an analysis was initially

performed at a single station (SAWB 0059572) and then generalised to 29 SAWB stations

that had concurrent data from 1962 -1991.

4.1.4.1.1 Station SAWB 0059572 (EastLondon)

In order to assess the significance of the correction procedures, diagrams showing the

frequencies for 10 equally spaced class intervals were constructed for both the entire AMS

and for the events which contained a corrected point within the duration of the event. As

expected, and illustrated in Figure 9, the number of events in the upper tail of the

distribution which have corrected data points contained within the event, increases as the

event duration increases. However, relatively few events flagged as corrected are found in

the upper tail of the distribution for durations less than 30 minutes. This indicates that

artificially high short duration rainfall intensities are generally not created as a result of the

correction procedures.

The relative frequency distribution, computed by dividing the number of events which have

corrected data points within the event, by the total number of events for each intensity class

interval of events, are summarised for all durations and class intervals in Figure 10. As

expected, the number of events which have flagged data points contained within the event

increases with increasing duration. With some exceptions which are discussed below,

relatively few events in the upper tail (intensity class > 7) of the distribution have flagged

data points.
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Figure 9 Frequency distribution of AMS and events in AMS which are flagged as
corrected using the "Flag_All" method at Station 0059572 (East London)
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Station: 0059572
"Flag-All" Method

Duration (minutes)

Intensity Class

Figure 10 Summary of the relative frequency distribution of events in the AMS flagged
using the "Flag_AU" method at Station 0059572 (East London)

An apparent anomaly in Figure 10 is the high percentage of corrected points in frequency

classes 8, 9 and 10 for durations 30, 45 and 60 minutes. This resulted from the error

depicted in Table 13. This shows that an increase in rainfall from P2 to P3 occurs without

an increase in time and is corrected, using the MIA method, by deleting P3 and flagging P4

as a corrected point.

Table 13 Zero time step error: SAWB Station 0059572 (East London)

Point

PI

P2

P3

P4

Date

21/07/79

21/07/79

21/07/79

21/07/79

Time

08:29

08:35

08:35

08:37

Rainfall Depth

(mm* 10)

32

45

56

72
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As indicated in the digitised data, the Annual Maximum (AM) event for the 30 min duration

started at 08:11 and hence within the 30 min period from 08:11 to 08:41, the corrected

(deleted) point was encountered and thus the AM event is marked as a corrected event.

The deletion of the point (in this case) has no effect on the intensity of the 30 min duration

event. Similarly the AM 45 and 60 min duration events both started at 07:58 and the

deleted point had no effect on the AM event, although both were marked as corrected

events because the corrected point was contained within their durations.

4.1.4.1.2 Twenty-nine SA WB stations

The same analysis as described above was performed on all the SAWB stations that had

concurrent data from 1962 -1991 (29 stations) and the results are summarised in Figure 11.

Concurrent SAWB Station : 1962 -1991
"FlagJUl" Method

Duration (minutes)

9 10

Intensity Class

Figure 11 Summary of relative frequency distribution of events in the AMS flagged
using the 'TlagAll" method at 29 SAWB stations

As shown in Figure 11, when using the "Flag_All" method, relatively few events in the

upper tail of the distribution of AMS have flagged points within the events when the MIA
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correction method is used. Thus, even when the "Flag_All" method is used, the effect of the

automated corrections on the upper tail of the distribution of the AMS is minimal.

4.1.4.2 "Flag_End" method

As discussed previously, the "Flag_All" method may flag events which have corrected data

points contained within the event, but which have no effect on the rainfall intensity.

Therefore the "Flag_End" method, where an event is flagged only if the corrected points

span the start and end of the event, was used in an analysis of the distribution of corrected

points at Station 0059572 and at the 29 SAWB stations that had concurrent data for the

period 1962-1991.

4.1.4.2.1 Station 0059572 (East London)

The frequency distributions for Station 0059572 of both the AMS and the events in AMS

flagged using the "FlagEnd" method, are contained in Figure 12. The relative frequencies

of the events flagged using the "Flag_End" method, expressed as a percentage of total

events in each class and for each duration, are summarised in Figure 13 and indicate that

the effect of the automated correction procedure on the distribution of the AMS at Station

0059572 is negligible.

4.1.4.2.2 Twenty-nine SA WE stations

A relative frequency analysis of the events flagged using the "Flag_End" method was

performed for all 29 SAWB stations which contained concurrent data from 1962 -1991 and

the results are summarised in Figure 14.
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Figure 12 Frequency distribution of AMS and events in AMS flagged as corrected
using the "Flag_End" method at Station 0059572 (East London)

As shown previously, the "Flag_AU" method flagged events which had flagged data points

within the AM event, even though they had no effect on the intensity of the event. Hence

the 'TlagAll" method was deemed to be inappropriate. As shown in Figure 14, the effect

of the automated correction procedure on the distribution of the AMS is relatively small,

with the relative frequency less than 5% for most classes and durations.
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Station: 0059572
"Flag_End" Method

6 9 10

Intensity Class

Figure 13 Summary of relative frequency distribution of events in the AMS flagged
using the "FlagEnd" method at Station 0059572 (East London)

Concurrent SAWB Station : 1962 -1991
"Flag_End" Method

Duration (minutes)

Intensity Class

Figure 14 Summary of relative frequency distribution of events in the AMS flagged
using the "FlagEnd" method at 29 SAWB stations

Having shown that the effect of the correction procedures on the distribution of AMS is not

significant, the differences in the various correction procedures were investigated.
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4.1.5 Differences in Corrected Databases

Both parametric and non-parametric statistical tests were employed to distinguish

differences between the databases corrected using the three different strategies and the

database that excluded error points and error events. These were applied to data from

Station 0059572 and then to data from the 29 SAWB stations that had concurrent data from

1962-1991.

4.1.5.1 Station 0059572 (East London)

The null hypothesis of no significant differences between the means of data groups

corrected using the above procedures, was tested by performing an Analysis of Variance

(ANOVA) and computing the F-test statistic. Implicit in the ANOVA test are the

assumptions of normality of the data and constant variance between groups (Hirsch et al.,

1993). A chi-squared test, as described by Kite (1988), which utilises 10 equally spaced

probability class intervals was performed on each group of data, either rejecting or

accepting the null hypothesis that the data are normally distributed. The homogeneity of

variances was tested by Bartlett's method, as described by Steel and Torrie (1980). Results

of the normality and homogeneity of variances are contained in Tables 14 and 15. Included

in Tables 14 and 15 are the results of the statistical tests performed on 30 years of

consecutive data from 1962 - 1991 and on 40 years of data (i.e. all available data from

Station 0059572) within the period 1940 - 1992.

As shown in Table 14, with a few exceptions, the AMS are normally distributed for most

durations and correction procedure, irrespective of the length of record considered.

Similarly, as shown in Table 15 and with the exception of the comparison between the MIA

and EXPOINT procedures, the variances of the AMS, after correction by each of the 5

correction procedures, are relatively homogeneous. Thus with the exceptions noted, the

assumptions on which the ANOVA are based are generally true and the power of the

analysis is not significantly diminished.
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Table 14 Acceptance ( / ) and rejection (X) at the 95% confidence level of the null

hypothesis of normally distributed AMS after various data correction

procedures: Station 0059572 (East London)

DATABASE

MIA 30 years

MIA 40 years

ALA 30 years

AIA 40 years

LIA 30 years

LIA 40 years

EXPOINT 30 years

EXPOINT 40 years

EXEVNT 30 years

EXEVNT 40 years

EXEVNT 30 years
("Qag_end")

EXEVNT 40 years
f'flag_end")

EVENT DURATION (minutes)

5

•

•

•

•

<

1
0

•

X

/

•

/

/

•

/

X

X

•

1
5

X

X

/

/

X

/

/

/

/

3
0

/

/

/

•

•

•

4
5

•

•

•

•

•

•

•

S

/

6
0

/

•

•

•

•

•

•

•

9
0

•

•

•

•

•

•

•

•

1
2
0

•

•

•

/

/

/

/

/

•

2
4
0

/

•

•

V

s
s
s

'

•

3
6
0

•

•

J

/

/

/

•

/

•

•

•

4
8
0

•

•

/

/

•

/

/

/

•

•

•

6
0
0

•

•

•

•

•

•

•

•

7
2
0

•

•

•

•

•

•

•

9
6
0

•

•

•

•

•

•

X

•

J

1
2
0
0

•

•

•

•

•

•

1
4
4
0

•

•

•

/

/

/

•

X

•

An ANOVA was performed for each of the 16 durations at East London between the 3

groups of AMS, which were extracted from 3 databases, each of which had been corrected

using either the LIA, AIA or MIA correcting procedure. As indicated in Table 16, the null

hypothesis of no significant differences of locations between the 3 data groups, was

accepted at the 95% confidence level on all counts for the AMS. Thus the effect at East

London of the MIA, LIA or AIA data correcting procedures, which are conceptually very

different, on the AMS was negligible.

Results from similar ANOVA tests to those described above and performed on the AMS

extracted from the MIA and EXPOINT databases as well as between the MIA and

EXEVNT ("Flag_All" and "Flag_End" methods) databases are also contained in Table 16.

Both of these tests indicated that there were significant differences, for most durations,
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between the AMS extracted after the MIA, EXPOINT and EXEVNT data correcting

procedures had been implemented. These results indicate that at East London either the

MIA, LIA or AIA procedures are appropriate, but that the EXPOINT and EXEVNT

procedures are not appropriate as they result in significantly different AMS compared to

when the MIA procedure was used.

Table 15 Acceptance ( / ) and rejection (X) at the 95% confidence of the null

hypothesis of homogeneity of variance of the AMS after various data

correction procedures: Station 0059572 (East London)

DATABASE

MIA
AIA 30 years
LIA

MIA
AIA 40 years
LIA

MIA 30 years
EXPOINT

MIA 40 years
EXPOINT

MM 30 years
EXEVNT

MIA 40 years
EXEVNT

MIA 30 years
EXEVNT

MIA 40 years
EXEVNT
Cflag_cnd-)

EVENT DURATION (minutes)

5

•

1
0

J

X

X

X

X

X

•

1
5

'

X

X

X

X

X

•

3
0

•

X

X

/

4
5

X

•

•

6
0

<

X

•

<

9
0

X

•

s

s

I
2
0

•

X

•

•

•

2
4
0

•

•

X

•

3
6
0

•

•

•

<

•

•

4
g
0

•

•

•

•

6
0
0

<

•

•

7
2
0

<

s

<

•

9
6
0

•

•

•

•

•

1
2
0
0

•

•

/

X

X

•

•

I
4
4
0

<

<

X

X

•
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Table 16 Acceptance {/) or rejection (X) at the 95% confidence of the null

hypothesis of no significant differences between data groups after correction

by various procedures: Station 0059572 (East London)

DATABASE

MIA
AIA 30 years
LIA

MIA
AIA 40 years
LIA

MIA 30 years
EXPO [NT

MIA 40 years
EXPOINT

MIA 30 years
EXEVNT
C'flag_all")

MIA 40 years
EXEVNT
Cflag_air)

MIA 30 years
EXEVNT
("flag^end")

MIA 40 years
EXEVNT
("flagjmd")

EVENT DURATION (minutes)

5

/

•

X

X

X

X

X

X

1
0

•

/

X

X

X

X

X

X

I
5

•

•

X

X

X

X

X

X

3
0

/

/

X

X

X

X

X

X

4
5

•

•

X

X

X

X

X

X

6
0

•

•

X

X

X

X

X

X

9
0

•

/

X

X

X

X

X

X

I
2
0

•

X

X

X

X

X

X

2
4
0

•

•

X

X

X

X

X

3
6
0

•

•

X

X

X

X

X

4
8
0

•

/

•

X

X

X

X

6
0
0

•

s

X

X

X

•

X

7
2
0

•

•

/

X

X

X

X

X

9
6
0

•

•

•

X

X

X

•

X

1
2
0
0

/

/

•

X

X

X

•

X

1
4
4
0

/

/

/

X

X

X

•

X

As shown in Table 16, the MIA, AIA and LIA AMS are not significantly different at the

95% confidence level. However, significant differences at the 95% confidence level between

the MIA and both the EXEVNT ("Flag_All"and "Flag_End" method) and EXPOINT AMS

are evident for most durations. Similar results were presented by Smithers (1993), who had

however excluded both the adjusted and corrected events, and not just the corrected events,

as is the case for the results in Table 16.
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According to Hirsch et at (1993) and as shown in Tables 14 and 15, the violation of the

assumptions of normality or of constant variance, results in loss of power of the ANOVA

test. The results from applying the non-parametric Kruskal-Wallis test to the AMS are

contained in Table 17. While some differences are noted between the Kruskal-Wallis test

and the ANOVA, the trends are similar, thus giving greater confidence to the results of the

statistical tests.

Table 17 Acceptance ( / ) or rejection (X) at the 95% confidence of the null

hypothesis of identical distributions between data groups after correction by

various procedures (Kruskal-Wallis test): Station 0059572 (East London)

DATABASE

MIA
AIA 30 years
LIA

MIA
AXA 40 years
LIA

MIA 30 years
EXPO[NT

MIA 40 years
EXPOINT

MIA 30 years
EXEVNT

MIA 40 years
EXEVNT

MIA 30 yean
EXEVNT
("flag_en<r)

MIA 40 years
EXEVNT

EVENT DURATION (minutes)

5

•

S

X

X

X

X

X

X

J
0

•

<

X

X

X

X

X

X

1
5

•

s

X

X

X

X

X

X

3
0

•

X

X

X

X

X

X

4
5

X

X

X

X

X

X

6
0

•

X

X

X

X

X

X

9
0

•

s

<

X

X

X

X

X

1
2
0

•

X

X

X

X

X

2
4
0

'

s

•

X

X

X

X

X

3
6
0

'

s

<

X

X

X

X

X

4
g
0

•

-

X

X

X

•

X

6
0
0

•

X

X

X

•

X

7
2
0

•

•

X

X

X

X

X

9
6
0

•

•

X

X

X

•

X

1
2
0
0

•

X

X

/

X

1
4
4
0

•

X

X

X
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With some exceptions, the length of record generally has no effect on the significance of the

results. No significant differences were found between AMS extracted from databases

corrected using the MIA, ALA or LIA methods. However, the AMS extracted from a

database corrected using the EXPOINT method, as well when events were excluded

(EXEVNT) which have corrected data points, either within the event or at the extremities

of the event, were significantly different to other correction procedures.

A similar analysis to the above was performed at 29 SAWB stations which have concurrent

data for the period 1962 - 1991 and the results are reported in the following section.

4.1.5.2 Twenty-nine SAWB stations

The results of normality tests for all 29 SAWB stations that have concurrent data from 1962

- 1991 are contained in Table 18.

Table 18 Number of stations where the null hypothesis of normally distributed data

was rejected at the 95% confidence level, expressed as a percentage of total

number of stations tested (29)

DATABASE

MIA

A1A

LIA

EXPOJNT

EXEVNT

AMS

AMS

AMS

AMS

AMS

EVENT DURATION (minutes)

5

41

38

45

48

38

1
0

24

28

24

31

24

1
5

24

17

14

24

14

3
0

17

10

14

!0

10

4
5

14

14

17

7

2!

6
0

17

14

21

14

10

9
0

21

17

17

14

24

1
2
0

17

17

21

28

21

2
4
0

10

10

14

3

10

3
6
0

10

10

10

10

14

4
8
0

21

24

21

10

10

6
0
0

10

10

7

14

17

7
2
0

10

7

10

7

21

9
6
0

17

17

21

10

21

1
2
0
0

14

10

17

10

17

1
4
4
0

21

14

14

14

10

The results of homogeneity of variance tests for all 29 SAWB stations that have concurrent

data from 1962-1991 are contained in Table 19.
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Table 19 Number of stations where the null hypothesis of homogeneity of variance

was rejected at the 95% confidence level, expressed as a percentage of total

number of stations tested (29)

DATABASE

MIA
AIA
LIA

MIA
EXEVNT

MIA
EXPOINT

AMS

AMS

AMS

EVENT DURATION (minutes)

5

0

7

17

1
0

0

17

45

1
5

0

14

38

3
0

0

10

38

4
5

0

14

41

6
0

0

14

34

9
0

0

7

48

2
0

0

7

38

2
4
0

0

10

28

3
6
0

0

10

24

4
8
0

0

17

21

6
0
0

0

10

17

7
2
0

0

14

24

9
6
0

0

10

14

1
2
0
0

0

14

14

1
4
4
0

0

3

14

Results from similar ANOVA tests to those described above and performed on the AMS

generated from the MIA and EXPOINT databases as well as between the MIA and

EXEVNT databases are also contained in Table 20.

Table 20 Number of stations where the null hypothesis of no significant differences

between data groups was rejected at the 95% confidence level, expressed

as a percentage of total number of stations tested (29)

DATABASE

MIA
AIA
LIA

MIA
EXPOINT

MIA
EXEVNT

AMS

AMS

AMS

EVENT DURATION (minutes)

5

0

52

72

1
0

0

62

79

1
5

I)

JI

H.l

I

<1

D

<g

i
5

0

55

72

6
0

0

52

72

9
0

0

55

66

1
2
0

0

55

69

2
4
0

0

41

62

3
6
0

0

31

62

4
8
0

0

28

52

6
0
0

0

24

45

7
2
0

0

21

48

9
6
0

0

21

38

1
2
0
0

0

17

14

1
4
4
0

0

10

17
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The results from applying the non-parametric Kruskal-Wallis test to the AMS are contained

in Table 21.

Table 21 Number of stations where the null hypothesis of identical distributions

between data groups (Kruskal-Wallis test) was rejected at the 95%

confidence level, expressed as a percentage of total number of stations

tested (29)

DATABASE

MM
AIA
LIA

MIA
EXPOENT

MIA
EXEVNT

AMS

AMS

AMS

EVENT DURATION (minutes)

5

0

31

59

1
0

0

48

69

]

5

0

55

72

3
0

0

62

72

4
5

0

59

76

6
0

0

55

72

9
0

0

34

66

1
2
0

0

38

72

2
4
0

0

31

62

3
6
0

0

24

45

4
8
0

0

21

31

6
0
0

0

24

31

7
2
0

0

17

21

9
6
0

0

10

17

1
2
0
0

0

7

3

1
4
4
0

0

7

0

4.1.5.3 Concluding remarks on differences in corrected databases

In the case of Station 0059572 and for all 29 SAWB stations that had concurrent data from

1962-1991, no significant differences were found between the means and variances of the

AMS extracted from the MIA, AIA and LIA databases. Significant differences were found

between the AMS extracted from the M A and both the EXPOINT and EXEVNT

databases. The correction approaches used in the MIA, AIA and LIA procedures are

different, yet do not produce significantly different AMS, thus indicating that the procedure

chosen to correct the database is not critical. The exclusion of all erroneous data points

(EXPOINT), or events flagged according to both the "Flag_All" and "FlagEnd" methods

(EXEVNT), does significantly affect the AMS. Thus it is hypothesised that the MIA

correction procedure, or a random selection of the LIA, AIA or MIA procedure, should be
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adopted. The effect of randomly selecting either of the MIA, AIA or LIA procedures is

investigated in the following section.

4.1.6 Correction by Random Selection of MIA, LIA Or AIA Procedures

When the probable cause of an error in the data is unknown, an option (RANDOM) was

developed to randomly invoke the MIA, AIA or LIA procedures, in addition to the options

to correct the data using only one of the procedures. It was assumed that the random

selection of the correcting procedure would better reflect the nature of the errors.

In order to evaluate the RANDOM procedure, errors were randomly introduced into error-

free (clean) data and the RANDOM procedure was used to correct the errors. The

correction procedure was then evaluated by comparing the AMS extracted from the error-

free data and from the data after the randomly introduced errors had been corrected using

the RANDOM procedure.

4.1.6.1 Creating errors in the data for hypothesis testing

Four types of errors were introduced randomly into the data by selecting a line number, in

the data file, at random and reading sequentially from that point in the file until the first

appropriate point (e.g. siphon) which had not previously been altered. The types of errors

introduced are:

• negative time step (not at change of chart or siphon),

" negative time step during siphon,

• negative time step at change of chart, and

• zero time step (infinite intensity).
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The four types of errors were introduced randomly, with the seed value for the selection of

the random number based on the system clock time. The parameters used by the routine and

which are set by the user are:

number of errors to introduce per year,

• maximum negative time step, and

• maximum number of negative time steps.

Based on records from 29 SAWB autographic rainfall stations which had 30 years of

concurrent data, the average number of errors per year was estimated to be 30. Hence the

number of errors introduced into the data was set at 30 per year. The maximum negative

time step was set to 60 minutes. Thus, when negative time step errors were introduced into

the data, a random value between 0 and 60 was used. The maximum number of data points

that were moved when adding negative time steps was 2. Hence, either 1 or 2 data points

were moved to create the maximum negative time step. A typical sequence of errors

introduced into the data is shown in Table 22.

Table 22 Example of errors introduced randomly during a single sequence: Station

0059572 (East London)

Type of Error

Zero time step

Negative step at chart change

Negative step at chart change

Negative step

Negative step at chart change

Negative step

Negative step

Negative step at chart change

Negative step

Date

(dd/mm/yy)

08/07/40

28.1040

21 12 40

12/09/40

OI'll.40

10 08,40

29/02/40

11/11/40

10/08/40

Time

02:16

08:27

08:27

01:54

08:29

08:22

23:58

08:28

10:38

Number of negative time steps

1

2

1

2

Size of
Negative

Time Step
(minutes)

32

24

37

11

59
51

43

32

55
22
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S AWB Station 0059572 (East London) was used in a case study to evaluate the RANDOM

procedure and results of the evaluation are presented in the following section.

4.1.6.2 Evaluation of RANDOM procedure at Station 0059572 (East London)

The digitised rainfall data from Station 0059572 were corrected and the corrected data used

as a control. Errors were randomly inserted into the control (error-free) data and then

corrected using the RANDOM procedure, after which the AMS for durations ranging from

5 min to 24 h were extracted. This process was initially repeated 10 times and subsequently

100, times resulting in 11 (control and 10 corrections) and 101 (control and 100

corrections) sets of AMS respectively. The time used on the CCWR's mainframe computer

to complete the 100 repetitions of this procedure was approximately 10 days and hence

only one case study was performed. The results for only the 100 repetitions are reported.

The null hypothesis of no significant differences existing between the means of the control

and 100 repetitions, was tested by performing an Analysis of Variance (ANOVA) and

computing the F-test statistic. Implicit in the ANOVA test are the assumptions of normality

of the data and constant variance between groups. The homogeneity of variances was

tested by Bartlett's method, as described by Steel and Torrie (1980). Results of the

normality and homogeneity of variances tests are contained in Tables 23 and 24 and, with

the exceptions for durations s 10 min, the power of the ANOVA test is not significantly

diminished as a result of significant deviations from underlying assumptions.

An ANOVA was performed for each of the 16 durations at Station 0059572 between the

control and 100 replications. As indicated in Table 25, the null hypothesis of no significant

differences of locations between the 101 sets of AMS, was accepted at the 95% confidence

level on ail counts for the AMS.
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Table 23 Number of times the null hypothesis of normally distributed AMS of the

control (no errors) and of 100 corrected series of data using the RANDOM

procedure was accepted or rejected at the 95% confidence level: Station

0059572 (East London)

DATABASE

Control
(No errors)

RANDOM
Corrections

Accept

Reject

Accept

Reject

5

1

0

8
7

1
3

1
0

0

1

1
5

g
5

!
5

1

0

9
8

2

3
0

1

0

9
9

1

4
5

1

0

I
0
0

0

EVENT 1

6
0

1

0

9
5

5

9
0

1

0

1
0
0

0

DURATION (minutes)

1
2
0

1

0

1
0
0

0

2
4
0

1

0

1
0
0

0

3
6
0

1

0

8
8

1
2

4
8
0

1

0

t
0
0

0

6
0
0

1

0

9
9

1

7
2
0

1

0

9
4

6

9
6
0

1

0

1
0
0

0

1
2
0
0

1

0

9
6

4

1
4
4
0

1

0

9
4

6

Table 24 Acceptance ( / ) and rejection (X) at the 95% confidence level of the null

hypothesis of homogeneity of variance between AMS extracted from 100

corrections using the RANDOM procedure and AMS of control data :

Station 0059572 (East London)

DATABASE

RANDOM 48 years

EVENT DURATION (minutes)

5

•

1
0

J

1
5

3
0

•

4
5

•

6
0

/

9
0

/

1
2
0

•

2
4
0

/

3
6
0

•

4
8
0

•

6
0
0

/

7
2
0

•

9
6
0

•

1
2
0
0

•

1
4
4
0

/
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In addition to the ANOVA test, a Kruskal-Wallis test was also performed on the null

hypothesis of no significant differences of locations between the 101 sets of AMS. The

results of this analysis are contained in Table 26.

Table 25 Acceptance ( • ) or rejection (X) at the 95% confidence level of the null

hypothesis of no significant differences between AMS extracted from the

control and from 100 corrections to the data using the RANDOM procedure

after errors had been randomly introduced into the control data: Station

0059572 (East London)

DATABASE

Control and 100
RANDOM corrections

EVENT DURATION (minutes)

5

•

1
0

•

1
5

•

3
0

•

4
5

/

6
0

•

9
0

•

I
2
0

2
4
0

•

3
6
0

•

4
8
0

•

6
0
0

•

7
2
0

•

9
6
0

•

1
2
0
0

•

1
4
4
0

S

From the above case study at Station 0059572 and for 100 repetitions of errors introduced

randomly into the control (error-free) data and corrected using the RANDOM procedure,

it appears that the use of the RANDOM correction procedure has no significant effect on

the AMS. Similar results were obtained from 10 repetitions. Processing (CPU) time limited

the study to only 10 and 100 repetitions at a single site. It is thus postulated that the

RANDOM procedure (i.e. a random selection of the MIA, AIA or LIA procedures) to

correct the data better reflects the probable random nature of the causes of the errors in the

data than do the independent use the MIA, AIA or LIA procedures. Hence the RANDOM

procedure was adopted to correct errors in the data.
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Table 26 Acceptance ( / ) or rejection (X) at the 95% confidence level of the null

hypothesis of no significant differences between AMS extracted from the

control and from 100 corrections to the data using the RANDOM procedure

after errors had been randomly introduced into the control data (Kruskal-

Wallis test): Station 0059572 (East London)

DATABASE

Control and 100
RANDOM corrections

EVENT DURATION (minutes)

5

/

1
0

1
5

•

3
0

•

4
5

•

6
0

•

9
0

/

1
2
0

•

2
4
0

3
6
0

•

4
8
0

/

6
0
0

7
2
0

•

9
6
0

•

1
2
0
0

•

1
4
4
0

•

In the following section, the first of the consistency checks on the digitised data is presented

where the digitised and manually extracted extreme events are compared.

4.2 COMPARISON OF DIGITISED AND MANUALLY EXTRACTED

ANNUAL MAXIMUM SERIES

At selected study sites the values of the AMS extracted from the digitised database,

corrected using the MIA procedure, were compared to those reported by Midgley and

Pitman (1978), which had been extracted manually from autographic charts. Where

differences in the AMS were noted, and where available, comparisons were made between

the digitised data, rainfall charts and the manually extracted hourly totals. As noted by inter

alia Schulze (1984) and Weddepohl (1988) it is expected that the AMS extracted from the

digitised data should be greater than the AMS extracted manually from autographic charts,

as the manual extraction used fixed 15 min time increments and hence the recorded maxima

could have been missed, particularly for shorter durations.
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4.2.1 Station 0059572 (East London)

The 15, 30, 45, 60 and 1440 min duration AMS extracted manually from charts and

automatically from the digitised data for SAWB Station 0059572 are plotted in Figure 15.

Included in Figure 15, and plotted using the right hand side (Y2) scale, is the ratio between

the digitised and manually extracted value, expressed as a percentage. As noted above, this

percentage is expected to be 2:100. However, as shown in Figure 15 the percentage is

seldom 2 100, particularly for durations less than 1 h. Assuming that the manually extracted

data are correct, it is thus evident that a number of extreme events were not adequately

digitised. Selected anomalies are discussed below.

As depicted in Figure 15, the manually extracted AMS exceeded the digitised AMS for all

selected durations in 1958. The manually extracted hourly totals indicate that, for the all

selected durations, the AMS events in 1958 occurred between 08:00 on 21 December and

08:00 on 22 December. The chart for this day appears not to have been digitised as it is not

contained in the SAWB digitised database, which does contain data for 20 and 22

December, but not for 21 December 1958.

The AM event during 1967 occurred on 26 May 1967 for all durations. For durations up

to 60 min, the manually extracted data exceeds the digitised data, and for the maximum 24

h event, the digitised AM event is larger. The digitised data indicate that data are missing

on 26 May from 18:54 to 19:37, which may explain the large differences for durations up

to 60 min. A copy of the chart for 26 May 1967 may explain the reason for the missing data

and why the manually extracted data exceed the digitised data.
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15min AMS
4 0 •

OS

40 42 44 46 48 50 52 54 56 58 60 62 64

- -150

•250

-200

CO

4-™
-so !

68 70 72 74 76

30 min AMS
80

40 42 44 46 48 50 52 54 56 58 60 62 64 66 66 70 72 74 76

-250

45 min AMS
100

E 60--

•250

46 46 SO 52 54 56 58 60 62 64 66 68 70 72 74 7640 42

| Manual (Y1) | | Digitised (Y1) % (Y2)

Figure 15 Comparison of digitised and manually extracted AMS at Station 0059572
(East London)
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60 min AMS
100

80-

46 48 50 52 54 56 58 60 62 64 66

-200

40 42

24 h AMS
-300

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

; Manual (Y1) | | Digitised (Y1) %(Y2)

Figure 15 (continued) Comparison of digitised and manually extracted AMS at Station
0059572 (East London)

The maximum 24 h digitised rainfall event during 1970 starts at 02:24 on 27 August 1970

and 237 mm of rainfall is recorded . The manually extracted AM 24 h total for the 24 h

period starting at 08:00 on 27 August 1970 is 447 mm. The digitised data are missing for

the period 07:34 to 13:34 on the 27 August. The rainfall from the manually extracted hourly

data for the period 08:00 to 14:00 is 211 mm At least 190 mm of rainfall recorded on the
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chart during the period of missing data can be reasonably deduced from the indistinct trace.

Thus the period of missing digitised data accounts for the difference between the 24 h

digitised and manually extracted totals. The probable reason for the entire chart not being

digitised is that the ink had run dry and the trace is not that clear.

4.2.2 Station 0317476 (Upington)

Similar to the analyses above, the ratio between the manually extracted and digitised annual

maximum event for SAWB Station 0317467 is shown in Figure 16. Generally the digitised

AMS exceed the manually extracted AMS, although in some years and for some durations

the digitised values may be as little as 60% of the manually extracted value. An anomaly in

the manually extracted data is apparent for 1966 where the 15,30,45 and 60 minute annual

maximum rainfalls are all 7.3 mm and the 24 h rainfall is 9.5 mm, which results in the

digitised/manual ratio of 3.94 for this year. Years in which the digitised value is less than

the manually extracted value (e.g. 1960) are postulated to be the result of portions of the

autographic rainfall charts not being digitised.

Annual Maximum Series
0317476

400

£350

15300-

52 68

15 30 45 60 1440

Figure 16 Comparison of digitised and manually extracted AMS at Station 0317476
(Upington)

131



4.2.3 Station 0677802 (Pietersburg)

The ratio between the manually extracted and digitised AMS for SAWB Station 0677802

is shown in Figure 17. Generally the AMS extracted from the digitised exceeds the manually

extracted values, although on occasion the reverse trend occurs. Similar to Station

0317476, the large differences between the two series, particularly for the 24 h duration

event, is unexpected, but could be explained by errors occurring during the manual

extraction or digitisation of rainfall events.
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Figure 17 Comparison of digitised and manually extracted AMS at Station 0677802
(Pietersburg)

The three examples presented above illustrate the relatively large differences that do occur

between the digitised and manually extracted AMS and that different trends do occur at

particular stations. For example, the manually extracted AMS generally exceed the digitised

AMS at Station 0059572 while the reverse is generally true at Stations 0317476 and

0677802. Another method of assessing the adequacy of the digitised data is to compare the

daily rainfall totals computed from the digitised data to data recorded by the adjacent non-

recording dairy rainfall raingauge. This is again illustrated by means of selected examples.

132



4.3 COMPARISON OF DIGITISED AND STANDARD RAINGAUGE DAILY

TOTALS

In order assess the reliability of the digitised data and to identify where extreme events were

not contained in the digitised rainfall database, a comparison was performed between three

sources of data for obtaining totals of daily rainfall:

• Daily rainfall totals derived from the digitised data for fixed 24 h periods ending

at 08:00 every day are referred to as Digitised.

• Adjacent to each recording raingauge is a standard, non-recording raingauge

measure at 24 h intervals at 08:00 every day, and this source of daily rainfall totals

is referred to as SA WB Daily.

• The daily rainfall total as measured by the adjacent standard, non-recording

raingauge is included within the digitised data file obtained from the SAWB, as a

control for the days digitised rainfall data, and this daily rainfall total obtained from

the digitised rainfall file is referred to as SA WB Control. Hence the SAWB Control

and SAWB Daily values should be the same as they are recorded by the same

raingauge.

The SAWB Daily values were extracted from the SAWB daily rainfall database housed by

the Computing Centre for Water Research (CCWR) and, of the three sources of daily

rainfall data, were assumed to be the most reliable. This assumption is based on the frequent

use of the SAWB daily rainfall database, and hence errors are noted by users. In

comparison, this study is the first major user of the digitised database and hence little

feedback has been given to the SAWB regarding the quality of the digitised rainfall data.

In addition, the processing of the digitised data and the inherent greater potential for

problems when recording rainfall continuously and autographically, and the more thorough

checking of the daily rainfall data by the SAWB, add credibility to this assumption. The

comparisons of daily rainfall totals from these three sources were performed for selected

stations.
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4.3.1 Station 0034767 (Uitenhage)

Cumulative totals of daily rainfall for the Digitised, SAWB Control and SAWB Daily

values, as well as a scatter plot of Digitised vs SAWB Daily values are shown in Figure 18.

For Station 0034767, a good comparison is evident between the SAWB Control and SAWB

Daily values, but the Digitised total is often less than the SAWB Daily value. A comparison

of the daily totals obtained from the three sources for the thirty largest daily rainfall totals

during the period January 1954 - December 1975 is listed in Table 27. From Table 27 it is

evident, that on numerous days when the Digitised total is substantially less than the SAWB

Daily value, no missing data are recorded in the digitised data. Thus, regrettably the missing

data flags in the digitised SAWB data are not a reliable indicator of whether data are

missing or not.

Daily Rainfall Totals
Station 0034767

10000

. - . 8 0 0 Q - -

13-Jarv54 06-JUI-59 1S-Jun-70 09-Deo7S
Date

SAWB Daily SAWB Control Digitised

Daily Rainfall Totals
Station 0034767

160

40 60 80 100
SAWB Daily (mm)

120 140 160

Figure 18 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0034767 (Uitenhage)
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Table 27 Comparison of daily rainfall totals obtained from three sources for the thirty

largest events for period 1954 - 1975 at Station 0034767 (Uitenhage)

Year

68

67

71

54

67

64

70

55

75

63

74

68

59

75

74

56

57

74

66

63

56

62

65

67

65

74

59

59

Month

9

4

8

8

5

9

12

11

2

3

8

6

8

8

1

12

6

9

11

1

9

3

11

4

11

5

7

1

Day

1

9

21

26

26

16

6

29

10

7

22

12

2

31

26

20

30

2

4

23

18

10

3

8

2

2

17

25

Daily Rainfall Total

SAWB
Daily
(mm)

149.2

117.4

84.9

75.0

64.0

63.2

55.2

53.0

52.0

51.5

51.0

47.0

47.0

45.4

43.6

41.5

39.0

39.0

38.5

38.0

37.5

37.5

36.5

35.8

35.5

35.4

35.0

34.6

SAWB
Control
(mm)

149.2

0.0

84.9

75.0

64.0

63.2

55.2

53.0

52.0

51.5

51.0

47.0

47.2

45.4

43.6

41.5

39.0

39.0

39.7

38.0

37.5

37.5

36.5

35.8

35.5

35.4

35.0

34.6

Digitised

(mm)

136.0

0.0

55.8

72.0

44.6

40.9

50.7

48.6

50.8

51.5

38.9

32.2

18.8

28.7

43.4

29.3

9.3

31.3

35.7

37.4

31.2

36.8

34.9

33.6

35.0

14.4

35.8

25.2

Digitised
Flag

(M=Missing)

M

M

M

M

M

M

M

Digitised /
SAWB Daily

(ratio)

0.91

0.00

0.66

0.96

0.70

0.65

0.92

0.92

0.98

1.00

0.76

0.69

0.40

0.63

1.00

0.71

0.24

0.80

0.93

0.98

0.83

0.98

0.96

0.94

0.99

0.41

1.02

0.73
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4.3.2 Station 0035179 (Port Elizabeth)

The accumulated daily rainfall totals obtained from the standard gauge value (SAWB

Control) in the file containing the digitised data and from the SAWB daily rainfall database,

as well as the total derived from the digitised rainfall data for Station 0035179 are shown

in Figure 19. A comparison of the daily totals obtained from the three sources for the thirty

largest daily rainfall totals during the period January 1938 - December 1975 are listed in

Table 28. From Table 28 it is evident, that on numerous days when the Digitised total is

substantially less than the SAWB Daily value, no missing data are recorded in the digitised

data.

25000 - j

-p20000-

§-15000 -

•2 10000-

Q: 5000-

ft _

05-Jan-38

[

24-Mar-46

SAWB

Daily Rainfall Totals
Station 0035179

- -

- -

10-JUP-54 27-Aug-62 13-Nov-70

Date

Daily SAWB Control Digitised

Figure 19 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0035179 (Port Elizabeth)

4.3.3 Station 0059572 (East London)

The accumulative daily rainfall totals obtained from the standard gauge value in the file

containing the digitised data and from the SAWB daily rainfall database (obtained from

CCWR), as well as the total derived from the digitised rainfall data for Station 0059572 are

shown in Figure 20. A comparison of the daily totals obtained from the three sources for
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the thirty largest daily rainfall totals during the period January 1938 - December 1975 are

listed in Table 29. Clearly the SAWB Daily data for Station 0059572 extracted from the

database housed on the CCWR are missing from 1973 to 1987.
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Date

SAWB Daily SAWB Control Digitised

Figure 20 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0059572 (East London)

4.3.4 Station 0088293 (Sutherland)

The accumulative daily rainfall totals obtained from the standard gauge value (SAWB

Control) in the file containing the digitised data and from the SAWB daily rainfall database

(obtained from the CCWR), as well as the total derived from the digitised rainfall data for

Station 0088293 are shown in Figure 21. A comparison of the daily totals obtained from

the three sources for the thirty largest daily rainfall totals during the period January 1961 -

July 1991 are listed in Table 30.
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Table 28 Comparison of daily rainfall totals obtained from three sources for the thirty

largest events for period 1938 - 1975 at Station 0035179 (Port Elizabeth)

Year

54

61

46

62

41

70

-.49

53

51

67

67

39

64

49

54

41

43

53

74

39

74

53

68

74

45

60

53

72

Month

8

2

3

4

12

12

11

10

1

4

5

12

9

11

5

6

9

6

3

7

6

6

6

8

6

5

7

5

Day

26

11

22

26

2!

6

16

20

11

9

26

3

16

17

20

27

14

22

3

6

14

21

1

22

24

6

28

11

Daily Rainfell Total

SAWB

Daily

(mm)

132.5

120.6

108.4

105.4

100.0

94.6

91.9

91.0

88.1

88.0

76.0

72.8

72.4

72.3

72.0

70.3

68.5

64.8

64.3

61.9

59.7

59.5

59.2

59.0

58.9

56.8

56.2

55.4

SAWB

Control

(mm)

132.5

12.0

0.0

105.4

100.0

94.6

91.9

91.0

88.1

88.0

76.0

72.8

72.4

72.3

72.0

70.3

6.8

64.8

64.3

0.0

59.7

59.5

59.2

59.0

58.9

56.8

56.2

55.4

Digitised

(mm)

111.4

118.2

0.0

62.5

8S.1

86.1

83.9

20.1

31.2

83.1

77.4

0.0

70.5

68.0

63.4

65.3

7.6

65.5

19.1

0.0

24.4

57.3

59.1

44.1

18.7

55.8

20.1

44.8

Digitised

Flag

(M=Misstng)

M

M

M

M

M

M

M

M

M

Digitised /

SAWB Daily

(ratio)

0.84

0.98

0.00

0.59

0.88

0.91

0.91

0.22

0.35

1.00

1.02

0.00

0.97

0.94

0.88

0.93

0.11

1.01

0.30

0.00

0.41

0.96

1.00

0.75

0.32

0.98

0.36

0.81
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Table 29 Comparison of daily rainfall totals obtained from three sources for the thirty

largest events for period 1940 -1991 at Station 0059572 (East London)

Year

63

70

70

70

67

58

59

56

56

41

51

51

44

61

48

43

53

51

62

41

70

64

64

48

71

51

41

59

Month

3

8

8

8

4

12

7

2

11

4

3

9

3

7

4

6

1

9

3

4

10

2

6

4

4

1

10

5

Day

7

25

28

27

10

21

18

15

1

5

27

4

9

30

19

21

12

30

10

4

11

1

17

18

5

12

30

15

Daily Rainfall Total

SAWB
Daily
(mm)

199.7

155.3

152.4

147.0

130.6

127.5

122.4

122.3

122.1

119.3

116.3

113.0

112.2

112.!

109.2

109.2

107.5

107.4

105.6

105.6

103.1

103.0

100.8

99.3

97.7

90.6

90.1

89.2

SAWB
Control
(mm)

217.2

115.3

0.0

447.0

130.6

0.0

122.4

122.3

122.1

11.9

103.6

113.0

112.2

112.1

109.2

102.3

10.7

107.4

105.6

10.6

103.1

103.0

100.8

9.9

97.7

77.9

9.1

89.2

Digitised

(mm)

100.5

129.1

0.0

180.8

130.9

0.0

82.0

47.2

114.8

83.6

102.4

59.6

73.9

108.9

91.5

69.5

99.3

70.1

102.5

102.9

20.5

65.9

59.8

91.6

74.5

80.5

79.5

80.8

Digitised
Flag

(M=Missing)

M

M

M

M

M

M

Digitised/
SAWB Daily

(ratio)

0.50

0.83

0.00

1.23

1.00

0.00

0.67

0.39

0.94

0.70

0.88

0.53

0.66

0.97

0.84

0.64

0.92

0.65

0.97

0.97

0.20

0.64

0.59

0.92

0.76

0.89

0.88

0.91
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Table 30 Comparison of daily rainfall totals obtained from three sources for the thirty

largest events for period 1961 - 1991 at Station 0088293 (Sutherland)

Year

80

76

66

81

85

67

91

65

83

73

86

85

76

81

90

82

73

86

75

80

76

76

90

74

76

62

85

81

Month

3

]

3

3

1

6

1

3

5

3

6

1

2

I

4

4

7

4

12

11

11

11

2

6

2

4

12

3

Day

11

20

20

25

16

9

25

22

13

(8

2

14

4

24

21

6

1

25

22

28

4

23

3

25

5

22

19

24

Daily Rainfall Total

SAWB
Daily

(mm)

86.0

62.0

52.5

50.7

49.3

49.0

42.6

41.5

41.0

41.0

39.8

39.3

39.0

38.0

34.8

34.3

34.0

33.6

31.0

30.7

29.5

28.3

28.0

27.7

27.2

27.0

27.0

26.7

SAWB
Control

(mm)

86.0

62.0

0.0

50.7

0.0

49.0

22.0

8.6

41.0

41.0

39.8

39.3

39.0

38.0

34.8

34.3

34.0

33.6

31.0

30.7

0.0

28.3

28.0

27.7

27.2

2.5

27.0

0.0

Digitised

(mm)

83.8

58.4

0.0

34.5

0.0

15.8

0.0

8.4

40.1

29.4

24.2

34.9

34.7

33.3

29.9

33.9

32.3

9.4

28.9

29,1

0.0

27.6

24.5

25.5

25.7

2.3

26.3

0.0

Digitised
Flag

(M=Missing)

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Digitised /
SAWB Daily

(ratio)

0.97

0.94

0.00

0.68

0.00

0.32

0.00

0.20

0.98

0.72

0.61

0.89

0.89

0.88

0.86

0.99

0.95

0.28

0.93

0.95

0.00

0.98

0.88

0.92

0.94

0.09

0.97

0.00
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Figure 21 Comparison of SAWB Daily, SAWB Control and Digitised daily rainfall
totals at Station 0088293 (Sutherland)

4.3.5 Concluding Remarks on Comparison of Digitised and Standard Raingauge

Daily Totals

In the four stations examined, there are differences between the three sources of data which,

when accumulated over a number of years of record, amount to a large amount of rainfall.

The reason for the differences between the SAWB Daily and SAWB Control values can

only be attributed to typographical errors when inputting the data, as the source of the data

is the same. Some of the daily rainfall data for SAWB Station 0059572, obtained from the

CCWR, appear to be missing. In all the cases investigated, the daily rainfall totals derived

from the digitised data are less than the standard gauge values, and in some cases when the

digitised daily rainfall total is less than the standard gauge values, no missing data flags have

been inserted in the data. It is conceded that on occasion the daily rainfall total derived from

the digitised data may correctly be less than the standard gauge value. However, the reasons

for the consistent under-estimation of daily rainfall totals in the absence of missing data flags

needs to be investigated by the SAWB.
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4.4 MAGNITUDE AND FREQUENCY OF ERRORS IN DAILY RAINFALL

TOTALS

In order to further quantify how reliable the digitised data are for a particular site, the

differences between the standard raingauge (SAWB, obtained from CCWR) and digitised

daily totals were computed and categorised. The categories used were differences of

0-5 mm, 5-10 mm, 10-15 mm, 15-20 mm and > 20 mm, with negative categories indicating

that the digitised daUy total is greater than the standard gauge totals. For example, the

results of the above analysis for SAWB station 0239482 (Cedara) are contained in Figure

22. For this station the majority of raindays have differences between the standard gauge

and digitised rainfall totals of less than 5 mm. However, it is disturbing to note that on 58

days the standard gauge values exceeded the digitised values by more than 20 mm, and on

158 days the standard gauge value exceeded the digitised rainfall by more than 10 mm.

As a result of the occasional malfunctioning of the autographic raingauges, it is expected

that the standard raingauge totals would exceed those of the digitised values. Hence the

days when the digitised values exceed the standard raingauge values in Figure 22 require

special investigation. Missing data flags in the digitised data were ignored in the compilation

of Figure 22.

A summary of the above analysis for 330 SAWB stations, but with the number of days when

the differences fall into different classes expressed as a percentage of the total number of

raindays, is shown in Figure 23. Nearly 3% of the recorded raindays from the 330 SAWB

stations have differences between the standard raingauge and digitised daily rainfall totals

of greater than 20 mm. These differences clearly need further investigation. In Figure 23

missing data flags in the digitised data are ignored.
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Figure 22 Analysis of differences between standard gauge and digitised daily rainfall
totals at Station 0239482, Cedara (days with some missing digitised data
included)
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Figure 23 Analysis of differences between standard and digitised daily rainfall totals
at 330 SAWB stations (days with some missing digitised data included)

As shown in Figure 24, even when days which have missing digitised data are excluded,

there remains an excessive number of days which have large differences between the
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standard gauge and digitised daily rainfall totals. When days which have missing digitised

data are excluded, nearly 3% of the standard gauge daily totals exceed the digitised data by

a magnitude of more than 15 mm.
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Figure 24 Analysis of differences between standard and digitised daily rainfall totals

at 330 SAWB stations (days with some missing digitised data excluded)

4.5 ERRORS IN DAILY RAINFALL TOTALS VS EVENT MAGNITUDE

Based on the assumption that the standard gauge daily rainfall total is the "correct" value,

it has been shown that some large errors are contained in the digitised data. However, it is

necessary to determine whether the large differences in the digitised and standard gauge

daily rainfall totals occur only during large events or whether they occur over a range of

rainfall events. For example, in order to investigate the occurrence of the errors as a

function of the daily rainfall total, the error (standard - digitised daily rainfall total) for

SAWB Station 0239482 (Cedara) was plotted against the standard gauge total, as shown

in Figure 25.
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Figure 25 Error in digitised daily rainfall total vs magnitude of event: Station 0239482,
Cedara (days with missing data flags in digitised data included)

From Figure 25 it is apparent that errors in the measurement of daily rainfall totals from

digitised data occur throughout the range of daily rainfalls. However, it is significant that

the largest events could have more than half the rainfall unrecorded in the digitised data.

The digitised daily totals in Figure 25 were calculated by ignoring the missing data flags.

In Figure 26, days which contained missing data flags were excluded. Assuming that the

missing data flags were inserted in the data correctly according to the recorded trace on the

chart, then the similarity between Figures 25 and 26 and the errors still evident in Figure 26

indicate that many occasions when the gauge malfunctioned are not reflected in the digitised

data.

Station : 0239482

40 60
Standard Gauge Daily Total (mm)

80 100

Figure 26 Error in digitised daily rainfall total vs magnitude ofevent: Station 0239482,
Cedara (days with missing data flags in digitised data excluded)
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The plot in Figure 25, which includes days with missing digitised data, is summarised in

Figure 27. This figure depicts the number of days in which the standard gauge and errors

fell into defined classes. A similar analysis utilising data from 330 SAWB stations is shown

in Figure 28.

Station: 0239482

<-60

0-20
'20-40

"40-60
"60-80
100

Error (mm) Standard
Gauge (mm)

Figure 27 Summary of errors in digitised daily rainM total vs magnitude of event:
Station 0239482, Cedara (days with missing data flags in digitised data
excluded)

330 SAWB Stations

MOO

0-20
'20-40

^0-60
'60-80

'80-100

Error (mm) Standard
Gauge (mm)

Figure 28 Summary of errors in digitised daily rainM total vs magnitude of event at
330 SAWB stations
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From Figure 28 it is evident that errors in the daily totals computed from digitised data

occur across the range of daily rainfall totals, and hence the digitised data need to be

adjusted to compensate for the apparent errors.

A Reliability Index (RI) for each SAWB station was developed. This was expressed as the

percentage of total raindays where the difference between the digitised and standard gauge

daily rainfall totals exceeded 5 mm. A frequency analysis of the RI values for all SAWB

stations is shown in Figure 29. Only 1.3% of the SAWB stations have a RI of ^ 2% and

75.4% of the gauges have a difference larger than 5 mm between the standard and digitised

raingauge daily rainfall totals on more than 10% of the raindays.

The processing errors in the SAWB data were corrected and the RANDOM procedure was

adopted. However, it was established that considerable amounts of rainfall were either not

recorded by the autographic gauges or were not digitised and hence are not contained in the

digitised data. In addition many of these missing data are not reflected in the digitised data

file as missing data. Hence it is necessary to establish the impact the missing data has on the

estimation of design storms.

SAWB Digitised Rainfall Database
35

30.7

3 : 2 - -•

0.6

<2 2-4 4-6 6-8 8-10 10-20 20-30 30-40 40-50
Reliability Index (%)

>50

Figure 29 Distribution of reliability index of SAWB digitised rainfall stations
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4.6 IMPACT OF INCOMPLETE DATA ON DESIGN RAINFALL

ESTIMATES

As shown in Figure 29, 24.7% of the raingauges have a difference larger than 5 mm

between the standard and digitised raingauge daily rainfall totals on less than 10% of the

raindays. The analysis of the impact of incomplete data on design rainfall estimates was

performed at a single station which has a relatively long record length and which has an RI

-"valueless than 10%. SAWB Station 00i>9b72TEast London), which has a record length of

51 years and RI=5.8%, was selected as a suitable gauge on which to perform the analysis.

The data from SAWB Station 0059572 are viewed as relatively reliable as approximately

95% of the SAWB stations have a reliability index greater than the value for SAWB

0059572.

4.6.1 Methodology

The Partial Duration Series (PDS) and Annual Maximum Series (AMS) for SAWB Station

0059572, used as a case study, were extracted and design rainM estimates were computed

from the AMS for 16 durations ranging from 5 min to 24 h. These values were used to

represent design values based on a data set with no missing values.

Thereafter, the AMS was extracted from the same PDS to create an AMS with some of the

'true" extreme events missing. This was achieved by not selecting the maximum value in

all years, but for a preselected number of years which were randomly chosen, a user

specified rank was extracted from the ranked PDS (e.g. second largest, third largest, etc.).

Thus an AMS was constructed having "missing" data (the largest values) and design values

were computed from the modified AMS. This process was repeated 100 times and for

varying numbers of years having "missing" data and for the second and third largest values-

used in the modified AMS for the randomly selected years.
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Statistical tests were then performed based on the null hypothesis that there were no

significant differences between the design rainfall estimates computed from the AMS series

extracted from the PDS having no missing data, and extracted from the PDS with some

"missing" data. The t-test statistic was used to test the significance of the null hypothesis

that the mean of the 100 repetitions of design rainfall values was within 5% of the control

value.

4.6.2 Results

The t-test statistic was evaluated for design values at 2 to 100 year return periods and for

durations ranging from 5 minutes to 24 h. Results produced when randomly excluding the

largest value from 10% to 50% of the years, and thus extracting the second or third largest

value in those years as the annual maximum, are contained in Table 31.

A case study was performed at Station 0059572 to estimate the number of years when the

"true" AMS values were not contained in the digitised data. It was assumed that the

manually extracted data used by Midgley and Pitman (1978) contained all the maximum

events and that, where the manually extracted annual maxima exceeded the digitised annual

maxima, the digitised event was not the same as the manually extracted event. Based on

these assumptions, Table 32 contains estimates of the percentage of years in which the

digitised data do not contain the "true" maximum event.

Based on the above analysis on data from East London, it is concluded that if only the

largest event is not contained in the digitised data for 10% of the years, the design rainfall

estimates for all durations are not significantly different for all durations and return periods.

This generally also holds true for the case when the annual maximum event is excluded for

20% of the years, particularly for longer durations. However, when the annual maximum

events are excluded from 30% or more of the years, significantly different design values are

obtained for most durations and return periods. In the case when the two largest events are

excluded in the randomly selected years, similar trends are evident.
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Table 31 Acceptance ( / ) and rejection (X) at the 95% confidence level of the null hypothesis that the mean
estimated by randomly excluding the largest event(s) from varying percentages of the years, falls witru 1
Station 0059572 (East London)

)f 100 design rainfall values,
the 5% of the control value:
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Table 32 Estimated percentage of years with "true" annual maxima missing in the digitised

data: Station 0059572 (East London)

Years

(%)

Duration (minutes)

15

32

30

32

45

35

60

35

1440

38

4.6.3 Concluding Remarks on the Impact of Incomplete Data on Design Rainfall

Estimation

Based on the deductions made above, it is estimated that at Station 0059572 the annual

maximum events are not contained in the digitised data in at least 30% of the years (cf.

Table 32). Hence it is concluded that the digitised data at this station, when used to perform

design rainfall estimation, will underestimate the true design values. As shown in Figure 29,

the reliability index of 5.8% for Station 0059572 indicates that the data for this station are

relatively reliable, and that approximately 95% of the SAWB stations have data which are

less reliable. It is thus hypothesised that at the majority of SAWB stations the impacts of

missing data on design rainfall values would be similar to or greater than the impacts

obtained at Station 0059572.

4.7 CHAPTER CONCLUSIONS

A short duration rainfall database consisting of 412 stations was compiled. The major

portion (81 %) of the data were contributed to the database by the SAWB. Numerous errors

such as negative and zero time step errors were found in the SAWB digitised data which

prompted the development of automated correction procedures. A clear distinction was

drawn between adjustments, where the probable cause of the error is known, and errors,

where the cause of the error was unknown. Five procedures were developed to correct
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these errors with unknown causes. The effect on the AMS of the different procedures was

investigated and it was concluded that the exclusion of erroneous data points or events,

which had an error at the beginning or end of the event, was not an acceptable procedure.

The recommended method to correct the errors in the data was a random selection of either

the MIA, LIA or AIA procedures, and the RANDOM procedure was shown to have no

significant effect on the extracted AMS.

A comparison of the digitised and manuaiiy extracted AMS at a number or sites indicated

that many extreme events were not contained in the digitised data. This was attributed to

inadequate digitisation procedures as the same autographic charts were used in both

methods of data extraction. The adequacy of the digitised data was further assessed by a

comparison of daily rainfall totals computed from the digitised data with daily rainfall values

recorded by standard raingauges at the same location. At all the sites investigated, the

majority of the daily rainfall totals derived from the digitised data were less than the

standard raingauge values, thus indicating significant periods of missing data in the digitised

record. It was found that these periods of missing data were frequently not flagged as

missing in the digitised data and hence the missing codes in the digitised data were viewed

as unreliable.

The reliability of the digitised data was established by the frequency of the differences

between the digitised and standard daily rainfall totals. More than 75% of the SAWB

stations have greater than 10% of raindays which have differences larger than 5 mm

between the digitised and standard gauge daily rainfall totals. It was found that nearly 3%

of the recorded raindays from 330 SAWB stations have differences between the digitised

and standard raingauge daily totals of greater than 20 mm. These errors were found to

occur over the whole range of daily rainfall totals, and were not only associated with smaller

events and thus could not be ignored for the purposes of design rainfall estimation.

The impact of incomplete or missing data on design rainfall values at East London was

assessed by randomly removing maxima and it was found that, for most return periods and

particularly for longer durations, there was no significant effect on the design values if up
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to 20% of the years in the AMS do not contain their true maximum value. However, if 30%

or more of the years have their annual maximum event missing, then significant differences

in the design values were noted. At Station 0059572, which is considered to have relatively

reliable data, it was estimated that at least 30% of the annual maxima which were manually

extracted from the autographic charts were not contained in the digitised data. It is

postulated that the effect of missing data on design rainfall estimates at the majority of

SAWB stations are likely to be similar to, or larger, than those demonstrated at Station

0059572, because approximately 95% of the SAWB stations have digitised rainfall data

which are less reliable than the data for Station 0059572.

A considerable amount of evidence in this chapter indicates that the majority of the SAWB

digitised rainfall data were not reliable enough to use in the estimation of design rainfalls.

Further evidence of this assertion is further illustrated in Chapters 5, 6 and 7 where

comparisons between the 24 h and 1 day design rainfall values are made.

The re-digitisation of the SAWB charts, or even the re-digitisation of charts which should

contain large events as recorded by the standard raingauge was, from a labour and cost

point of view, not a viable option for this study. A list of days when large events occurred

was .provided to the SAWB for possible re-digitisation of the charts for these days, but no

new data was forthcoming. What is thus required is to develop techniques to estimate

design storms from the digitised database and to make some compensation for the

inadequate digitised data and/or to develop techniques to estimate short duration design

storms from the more reliable and spatially more dense standard daily raingauge network.

The results from one such technique, the use a regional approach to design rainfall

estimation, is presented in Chapter 5 following.
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CHAPTER 5

DESIGN RAINFALL ESTIMATION USING A

REGIONALISED APPROACH

As shown in Chapter 4, only 49 stations in South Africa have short duration rainfall data

with a record length ^30 years, in audition, the data contributed by the SAWB, who

contributed the majority of the data to the short duration rainfall database compiled for

South Africa in this study, are regarded as generally unreliable. Hence the problem of

estimating short duration design rainfalls for South Africa using a database with relatively

few stations which have short record lengths, is exacerbated by the majority of the data not

being reliable. One technique which has been successfully applied in other studies for

improving the reliability of design rainfall estimates from limited data, as discussed in

Chapter 2, is to adopt a regional approach.

As discussed in Section 2.2.1, the advantages of using a regionalised approach to design

storm estimation is that the information from the limited and relatively short record lengths

available is supplemented with spatial information, thereby enabling more reliable design

estimates to be obtained. Various methods of regionalisation are summarised in Table 5 and

desirable concepts and principles to be incorporated in a regional approach to design storm

estimation are outlined in Section 2.2.2. The regional, index storm approach based on L-

moments, reported by Hosking and Wallis (1997) and termed the Regional L-Moment

Algorithm (RLMA), incorporates these concepts and principles. In addition, a number of

studies reviewed in Chapter 2 have successfully used the RLMA and it was concluded that

this approach was appropriate for this study. The use of a cluster analysis of site

characteristics to group stations, and not any of the other methods listed in Section 2.2.3.2,

enables independent testing ofcfusters of stations for homogeneity using statistics computed

from at-site data.

After initial screening of the data to identify gross errors and inconsistencies, as addressed

in Section 5.1 for selected sites, relatively homogeneous regions are identified by a cluster
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analysis of she characteristics (e.g. latitude, longitude, altitude, MAP etc) and the

heterogeneity of the regions, or clusters, is evaluated using at-site data. The regions are

assumed to be homogeneous and thus the frequency distribution at all the sites in the region

are assumed to be identical apart from a site-specific scaling factor, the index rainfall. The

regional average L-moment ratios are computed by weighting according to an individual

site's record length. These regional average L-moment ratios are equated to the population

L-moment ratios and used to fit the distribution. Hence it is necessary to determine the most

appropriate distribution to use for each cluster. This distribution, after appropriate re-

scaling by the at-site index value, is used at each site to estimate quantiles. The results of

the implementation of the RLMA in South Africa are reported in Section 5.2. At ungauged

sites or at sites where the data are unreliable, it is necessary to estimate the index value in

order to use the regional growth curve to estimate design rainfalls at that site. The regional

growth curve, as described in Section 2.2.3, is the relationship between the ratio of the

design storm and an index storm and return period. The accuracy of design storms estimated

using regional growth curves is assessed in Section 5.3. The results of estimating the 24 h

index storm at ungauged sites in South Africa are presented in Section 5.4 and the selection

of an appropriate probability distribution is addressed in Section 5.5.

5.1 EVALUATION OF DISCORDANCY MEASURE

When performing a regional rainfall frequency analysis it is necessary to ensure that the data

are a true representation of the rainfall and must be homogeneous i.e. all the data are drawn

from the same frequency distribution. Statistical tests for outliers and trends in the data are

well established in the literature. In a regional context and using L-moments, Hosking and

Waliis (1993) developed a discordancy index (D), as described in Section 2.2.3.1 and

formalised in Equation 11, based on the L-skewness vs L-CV plot to test for incorrect data

values, outliers, trends and shifts in the mean of samples. Any points on the L-skewness vs

L-CV plot which are far from the centre of the cloud are flagged as being discordant. For

samples sizes > 14, a station with D > 3 is considered to be discordant with the rest of the

group (Hosking and Waliis, 1997). This index was used to screen and identify discordant
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data. Examples of using the discordancy measure on data from the Cedara and Ntabamhlope

research catchments are presented in the following two sections.

5.1.1 Cedara Catchments

Rainfall data from 12 sites, listed in Table 33, from the Cedara (C) catchments are available

with record lengths varying from 12 to 21 years. The discordancy index, as described in

Section 2.2.3.1, was computed for 16 rainfall durations ranging from 5 min to 24 h using

Fortran routines provided by Hosking (1996). Based on the Hosking and Wallis (1997)

criterion (D>3), the data for the 10 min duration from site C163 was discordant from the

rest of the data. The L-moment statistics are plotted in Figure 30 and it is clear that the

statistics from one site {C163), which is circled in Figure 30, are different to those from the

other sites.

Table 33 Cedara rainfall stations used in the evaluation of discordancy

Station

Number

CI6I
C162
C163
C164

C165
CI72

C173
C182

C191
C201
C202

C181

Latitude (S)
0

29
29
29

29
29

29

29
29

29
29
29
29

35
34

33
34

33
34

33
35
32
32

32
35

13
40

50
0
0
10

50
18
37

40

0
43

Longitude (E)
o

30

30
30
30

30
30

30
30
30

30
30
30

13

13
15
14
14

15

15
14

16

16
17
15

38

53
10
22

45
50
0
50

34
57
0
43

Plots of the 10 min AMS from sites C163, C164 and C182 are shown in Figure 31. From

Figure 31 it is evident that the extreme event recorded at C163 for the 1989 wet season is

much larger than that at the neighbouring sites.
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Figure 30 Plots of L-moment ratios for 10 min duration rainfall at the Cedara
catchments

AMS Cedara Rainfall
10 min Duration
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C163 C164 C182

Figure 31 AMS of 10 min duration rainfall for three selected stations in the
Cedara catchments (dashed line indicates missing data)
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It is therefore hypothesised that the data for 1989 from C163 are suspect. This could have

been due to the change-over from autographic recorders to data loggers which occurred in

1989. A comparative plot for the period October 1988 to September 1989 of accumulated

daily rainfall at Cl 63 and at neighbouring stations is shown in Figure 32 and confirms that

the data from C163 are suspect. Thus, at the Cedara catchments, the discordancy measure

(£>) successfully identified inconsistencies in the data. Discordant data, such as from C163,

were not included in further analyses.

Accumulated Rainfall
October 1988 - September 1989

1000

200 400 600
C164 Rainfall (mm)

800

Figure 32 Double mass plot of daily rainfall for selected stations in the Cedara
catchments for the period October 1988 - September 1989

5.1.2 Ntabamhlope Catchments

Similar to the Cedara catchments, the Ntabamhlope catchments are research catchments

maintained by the DAEUN. Thus the quality of data from both catchments is expected to

be better than other data which are recorded as part of a national operation. No discordant

data were detected from the 10 De Hoek (D) and Ntabamhlope (N) catchment raingauge

sites, listed in Table 34. By way of example, the L-moment ratio plots for the 24 h annual

maximum events are shown in Figure 33.
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Table 34 Ntabamhlope rainfall stations used in evaluation of discordancy

Station
Number

Dl

D4

Nil

N14

N18

N20

N21

N23

N40

N41

Latitude (S)
0

29

29

29

29

29

29

29

29

29

29

00

00

00

02

02

01

02

03

02

04

•

07

40

44

04

26

10

39

29

08

06

Longitude (E)
o

29

29

29

29

29

29

29

29

29

29

39

39

37

39

39

40

38

39

35

37

•

55

to
38

57

43

21

47

23

54
44

Ntabamhlope Catchments
24 h Duration

Ntabamhlope Catchments
24 h Duration
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Figure 33 Plots of L-moment ratios for 24 h duration rainfall at the Ntabamhlope
catchments

5.1.3 Concluding Remarks on Discordancy Measure

Based on the above analyses, it appears that the discordancy measure developed by Hosking

and Wallis (1993; 1997) is an effective tool for initial screening of the data and thus to

detect probable errors in the data. The index is easy to use and is compatible with the
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regional L-moment approach to frequency analysis. Thus it was adopted for use on all short

duration rainfall data prior to initial regionalisation of the data.

5.2 REGIONALISATION USING L-MOMENTS

The results of a homogeneity test of the frequency distributions of the 24 h AMS extracted

from all available short duration rainfall data in SA which had 10 or more years of data,

indicated that sub-division or regionalisation was necessary. Initial regionalisation of the

frequency distribution of short duration rainfall was performed using criteria used previously

in S A (Midgley and Pitman, 1978) for short duration rainfall frequency analysis, which were

based on identifiable criteria such as Mean Annual Precipitation (MAP) and distance from

sea (inland/coastal). Attempts to create geographically contiguous and relatively

homogeneous regions based on these criteria proved to be fruitless. Hence the regional L-

moment algorithm (RLMA) advocated by Hosking and Wallis (1997) was adapted and

applied.

The rationale behind the RLMA, as described in Section 2.2.3, is that homogeneous regions

are identified based only on site characteristics. The homogeneity of the regions can then

be checked independently based on site statistics computed from the at-site data.

5.2.1 Stations Used

Rainfall stations which had 10 or more years of record and which contained the necessary

information to perform a regional frequency analysis were extracted and 172 (D AEUN= 15;

CTCE=2, CSIR=2; SASEX=4, SAWB=137; UZ=12) stations in South Africa met these

requirements. The location of the stations are shown in Figure 34. The site characteristics

and cluster locations of all these stations used in the cluster analysis are listed in Appendix

A. Regionalisation of sites using only site characteristics was performed by cluster analysis

using routines from the SAS statistical software (SAS, 1989). The cluster analysis is the
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most subjective aspect of the RLMA and it may be necessary to relocate sites/create new

clusters subjectively, but based on geographical and physical considerations (Hosking and

Wallis, 1997), In the cluster analysis, a vector of site characteristics is associated with each

site and standard multivariate statistical analysis is performed to group sites according the

similarity of the vectors (Hosking and Wallis, 1997).

I | Provincial
Boundary
N

W -Jlbf E

s

700 700 1400 KHomattr*

Figure 34 Location of stations used in regional frequency analysis

5.2.2 Site Characteristics Used

The following site characteristics were used in the cluster analysis:

latitude (°),
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• longitude (°),

• altitude (m),

• concentration of precipitation (%),

• mean annual precipitation (mm),

• seasonahty (category), and

• distance from sea (m).

The rainfall seasonality information was extracted from Schulze (1997) and is computed as:

P%i = 025 x (Pmi-1 +2Pmj + />w-'+l) x 100 ...58
MAP

where

P%i = smoothed concentration of precipitation for i-th month,

Pmi = median monthly rainfall for i-th month (mm), and

MAP = mean annual precipitation (mm).

Using P%i a site is categorised as all year (/*«,,_l2 > 20%), winter ( / V M > 8%), early

summer {P%n > 8%), mid summer (P%i > 8%), late summer (P%2 > 8%) or very late

summer (P%3.s > 8%).

Gridded values of the concentration of precipitation were generated by Schulze (1997),

which are based on Markham' s technique (Markham, 1970). This is a monthly rainfall index

and an index of 100% would imply that the rainfall all fell within one month of the year and

an index of 0% would indicate that each month of the year received the same amount of

rainfall.

5.2.3 Initial Transformation of Site Characteristics

Cluster analysis was used in the regionalisation in order to identify groupings of sites which

were relatively homogeneous. Cluster analysis is very sensitive to the Euclidian distance or
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scale (Hosking and Wallis, 1997). A number of different transformations were evaluated

and the final transformations which gave the best results and which were implemented are

summarised in Table 35. The site characteristics from the 172 stations were used in a

cluster analysis using Ward's minimum variance hierarchical algorithm (SAS, 1989), which

tends to form clusters of roughly equal size (Hosking and Wallis, 1997).

Table 35 Initial transformations of site characteristics

Site Characteristic (X)

Latitude (° decimal)

Longitude (° decimal)

Altitude (m)

MAP (mm)

Cluster Variable (10

- ^ x l O O
^max

- ^ x l O O

Site Characteristic (X)

Concentration of
Precipitation (%)

Seasonality (category)

Distance to Sea (m)

Cluster Variable (10

X
(Untransformed)

- ^ x l O O
Amia

Fifteen regions were identified in the cluster analysis of site characteristics. These were

tested for homogeneity based on a heterogeneity measure (H), which utilises L-moment

ratios as described in Section 2.2.3.2 and in Equationl6, and was implemented using

routines provided by Hosking (1996). As discussed in Section 2.2.3.2, the objective is to

estimate the degree of heterogeneity within a group of sites and to test whether the region

may reasonably be treated as a homogeneous region. According to Hosking and Wallis

(1997) a region with a value of H < 1 is considered to be "acceptably homogeneous", when

1 < H< 2 it is "possibly heterogeneous" and when H> 2 it is "definitely heterogeneous".

Table 36 contains the results of the heterogeneity measure.
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The 24 h AMS was used to assess the homogeneity of the clusters. A different set of

relatively homogeneous clusters could be obtained for different storm durations. However,

as the cluster analysis is based on site characteristics, the allocation of stations to clusters

should not change, except for the subjective relocation of clusters. In addition, having a

different set of clusters for each duration is not practical (Wallis, 1997). This approach of

using the same clusters for different durations was also used by Werick et al. (1993) in the

creation of a National Drought Atlas for the USA.

From Table 36 and the spatial distribution of the clusters h was evident that for ClusterlS,

which is definitely heterogeneous, very large spatial distances between the sites in the

region were noted. Therefore, it was suspected that the transformation used for the latitude

and longitude results in a smaller range for these characteristics which therefore have less

weight in the cluster analysis. The reasons for the heterogeneity in the other regions (6 and

7) are not clear. However, as pointed out by Hosking and Wallis (1997), the cluster analysis

is the most subjective aspect of the RLMA and it may be necessary to relocate sites/create

new clusters subjectively, but based on geographic and physiographic considerations.

Table 36 Results of heterogeneity tests for clusters identified using site characteristic

transformations listed in Table 35

Cluster

1

2

3

4

5

6

7

8

Number
of sites

13

6

9

23

16

7

10

7

Heterogeneity
Measure (//)

1.0

I.I

0.3

0.4

1.3

2.2

5.6

0.8

Cluster

9

10

11

12

13

14

15

Number
of sites

24

9

10

4

7

5

6

Heterogeneity
Measure (H)

t.l

0.4

1.2

0.8

0.6

0.5

3.6
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5.2.4 Modified Transformations of Site Characteristics

In an effort to decrease the heterogeneity within clusters, as shown in Table 36, and to

decrease the spatial distances between sites within a cluster, the transformations listed in

Table 37 were implemented. These modified transformations attempted to ensure equitable

scales between the different site characteristics.

Table 37 Final transformations of site characteristics

Site Characteristic (X)

Latitude (° decimal)

Longitude (° decimal)

Altitude (m)

MAP (mm)

Cluster

X-
Xmax-

X-
Xmax'

X

X
1 • - •

Variable

xmn
X

xmm

<100

< 100

m

100

100

Site Characteristic

(JO

Concentration of

Precipitation (%)

Seasonality (category)

Distance to Sea (m)

Cluster

X-
Xmax-

X-
x
max-

X

Variable (Y)

xmm
x 100

x
mm \(\(\" X lUU

< 100

The characteristics of the 172 sites were transformed as shown in Table 37 and the results

of using Ward's minimum variance hierarchical algorithm on the transformed variables, are

presented in Figure 35. In this analysis 17 clusters were created, based on the results of

simulation experiments performed by Hosking and Wallis (1997). These indicated that,

although the accuracy of the design values estimated using the RLMA increases with an

increasing number of stations in a homogeneous region, there is relatively little benefit in

having more than 20 stations per cluster when estimating quantiles with return periods

< 1000 years.
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The regions identified in the cluster analysis of site characteristics shown in Figure 35 were

tested for homogeneity using the Hosking and Wallis (1997) heterogeneity test. Table 38

contains the results of the heterogeneity measure (H) for the clusters depicted in Figure 35.

Table 38 Results of heterogeneity tests for clusters depicted in Figure 35

Cluster

1

2

3

4

5

6

7

8

9

Number
of Sites

19

10

32

6

8

9

14

6

8

Heterogeneity
Measure (H)

0.95

1.04

0.64

-0.76

1.59

-1.07

-0.35

3.06

-0.10

Cluster

10

11

12

13

14

15

16

17

Number
of Sites

S

20

10

5

7

5

3

2

Heterogeneity
Measure (H)

0.59

0.57

1.20

-0.79

-0.45

-0.46

2.93

1.02

The negative measures of heterogeneity contained in Table 38 indicate that there is less

dispersion in the at-site sample L-CV values than would be expected. However, Hosking

and Wallis (1997) indicate that if many large negative values (< -2) are obtained, then the

probable cause is positive correlation between the data. Since no values of H < -2 were

obtained, the negative values of H were considered not to be the result of positive

correlation between the data.

Using the data transformations listed in Table 37, the results in Table 38 indicate that only

two regions (8 and 16) were definitely heterogeneous and require further attention.
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Figure 35 Results from a cluster analysis using final transformations of site characteristics listed in Table 37



5.2.5 Modifications to Regions

According to Hosking and Wallis (1997), subjective intervention, within plausible physical

limits, may be required in the final determination of homogeneous clusters. Stations from

Clusters 8 and 16 were moved to adjacent regions as indicated in Table 39. In addition, the

two stations from cluster 17 were also relocated as it was deemed that a cluster consisting

of only two stations was not satisfactory. The location of stations moved between clusters

are indicated in Figure 35 by their SAWB station numbers. The relocation of the stations

resulted in 15 clusters, with Clusters 16 and 17 having been eliminated. The distribution of

the 15 clusters is presented in Figure 36.

Table 39 Relocation of stations between clusters

Station Number

0411323
0411324

0061298
0106880
0274034

0079712
0059572

Moved from Cluster

8

16

17

Moved to Cluster

7
7

6
15
15

13
13

The modified clusters were tested for homogeneity using the Hosking and Wallis' (1997)

test. Table 40 contains the results of the heterogeneity measure for the clusters depicted in

Figure 36. From the results contained in Table 40 it is concluded that the regions are

sufficiently homogeneous for the RLMA to be applied. Thus growth curves, which depict

the relationship between return period and the ratio of the design storm and an index storm,

can be derived for each cluster.
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Figure 36 Results from a cluster analysis after relocation of stations as listed in Table 39



Table 40 Results of heterogeneity tests

Cluster

1

2

3

4

5

6

7

8

Number of
Sites

19

10

32

6

8

10

16

4

Heterogeneity
Measure (H)

0.95

1.04

0.64

-0.76

1.59

-1.13

1.02

0.26

Cluster

9

10

11

12

13

14

15

Number
of Sites

8

8

20

10

7

7

7

Heterogeneity
Measure (//)

-0.10

0.59

0.57

1.20

0.69

-0.45

1.67

5.3 REGIONAL GROWTH CURVES

Regional growth curves, developed for each cluster and various durations, relate the ratio

between the design rainfall and an index value to return period. Examples of growth curves

for selected clusters and various durations are shown in this section. The GEV distribution,

which is shown in Section 5.5 to be an appropriate distribution for South Africa, was used

to estimate design storms.

5.3.1 Examples

The variation of the regional growth curve of quantiles in Clusters 1 to 6 for two durations

are depicted in Figure 37. These examples indicate that the variation between the growth

curves for different regions and durations increases with return perio d. The re lat i ve ly similar

growth curves for some regions may indicate that some regions may be combined.

However, Hosking and Wallis (1997) caution against this, arguing that the absence of

statistical difference may merely reflect an insufficiency of data.
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Figure 37 Examples of regional quantile growth curves for Clusters 1 to 6

Another example of the variation in the growth curve with duration is shown for Cluster 3

in Figure 38. In Cluster 3 the growth curve for various durations are very similar for return

periods < 10 years, but diverge for longer return periods.
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Figure 38 Variation of regional quantile growth curve for different durations (min)
in Cluster 3

5.3.2 At-site vs Regional Quantiles

The advantage of using a regionalised approach to design storm estimation is that at-site

information is supplemented with information from the entire homogeneous region. Thus

the regional estimates of design rainfall are deemed to be more reliable than estimates based

only on at-site information. An example of the differences between quantiles estimated

using at-site data and the RLMA are shown for 1 h duration events in Figure 39 for five

selected stations in Cluster 3. The variation between the quantiles estimated from the at-site

data and regional approaches shown in Figure 39, which are less than 15% for all durations,

are typical for Cluster 3 and for most other clusters.

Station N23, which has a record length of 32 years, is located in the Ntabamhlope Research

Catchments monitored by the DAEUN and was not used in the cluster analyses or in the

estimation of the regional growth curves. As shown in Figure 40 there is good agreement

between quantiles estimated from the at-site data and from regional analysis for all durations

and return periods. Hence it would appear that the RLMA is capable of estimating design
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storms reliably. However, a formal assessment of the accuracy and confidence limits of

quantiles estimated using the RLMA is necessary.

Cluster 3

100
Return Period (years)

CP6 N11
Station

— C182 0239482 0178689

Figure 39 Ratios of 1 h quantiles estimated from at-site data and regional analysis
for selected stations in Cluster 3

5.3.3 Assessment of Accuracy of Design Rainfalls Estimated Using the RLMA

Uncertainty is inherent in statistical analysis and hence it is necessary to assess the

magnitude of the uncertainty. Traditionally the uncertainty is quantified by constructing

confidence intervals for the estimated model parameters and quantiles, assuming that all the

statistical model's assumptions are satisfied. The assumptions are rarely, if ever, all true

when performing a frequency analysis. Thus a realistic assessment of the accuracy of a

regional frequency analysis should account for the possibility ofheterogeneity in the regions,

inappropriate frequency distribution and dependence between observed data at different

sites. Hosking and Wallis (1997) thus advocate the use of Monte Carlo simulation

procedures to estimate the accuracy of the quantiles in a regional frequency analysis.
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The procedure outlined by Hosking and Wallis (1997) and described in Section 2.2.3.5 was

adopted. For each site in each cluster a random sample is generated, which has the same

record length as the observed data, using the selected frequency distribution at each site

with population equal to the observed data. Thus, for each cluster a region was simulated

having the same numbeT of stations, record lengths and regional average L-moment ratios

as the observed data. This procedure was repeated 100 times, to give 100 simulated

regions. The simulations assumed the regions to be homogeneous with a GEV frequency

distribution and routines provided by Hosking (1991b) were used to implement the

procedure. For each of the 100 repetitions, the errors in the simulated quantiles were

calculated and then accumulated and averaged to estimate the bias and RMSE of the

quantiles estimated from the actual data. Thus, the 90 % confidence interval can be

constructed by selecting the 5th and 95th percentUes from the 100 ranked errors between

the simulated region and actual data. For example, the 90% confidence interval for the

regional growth curve for Cluster 3 is given in Table 41 and shown in Figure 41.

Table 41 Accuracy measures for estimated growth curve for Cluster 3

Duration

(h)
1

24

Return Period

(Years)
->
5

:o
50
10O

5
10

:o
50
100

Growth Curve

0.949
1.288
1.502
1.699
1.943
2.118
0.889
1.260
1.549
1.862
2.329
2.731

RMSE

0.045
0.044
0.064
0.094
0.140
0.179
0.096
0.069
0.088
0.146
0.251
0.341

90 % Confidence Interval

Upper

0.923
1.233
1.402
1.538
1.697
1.803
0.832
1.178
1.402
1.619
1.856
2.053

Lower

0.975
1.320
1.565
1.818
2.112
2.347
0.921
1.250
1.589
1.989
2.647
3.222
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Figure 40 Comparison of design storms estimated using at-site data and regional
analysis: N23
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Figure 41 Accuracy of regional growth curves for Cluster 3 (CI=Confidence Interval)

For each of the fifteen relatively homogeneous clusters in South Africa, and for 16 durations

ranging from 5 min to 24 h, growth curves were developed which relate the ratio, of the

design rainiall and an index value, to return period. The index value used for each duration

was the mean of the AMS (£_7) for that duration. Hence quantiles for a particular site can

be estimated from the regional growth curve and the index (LI) value for that site. The

accuracy of the quantiles for a particular site can be evaluated using the confidence intervals

for the regional growth curve. For example, the 90% confidence interval for the estimated

design storms at Ntabamhlope (Nl 1), which is located in Cluster 13, are shown in Figure

42.

In order to estimate the quantiles at a particular site using the regional growth curve, it is

necessary to estimate the L_l value at that site, either from the observed data if that is

available, or by some other means if the observed data are not available or are not reliable.

In the following section, the results from estimating the 24 h hj. values using multiple
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linear regressions of site characteristics are presented. The methodology used could equally

be applied to other durations. However, when investigating scaling relationships in Chapter

6, it is necessary to estimate the 24 h i_7 value and hence only the results for this duration

are presented.

Design Rainfall :N11
i i i i >+• •

T 1 ~ "I ~ T ~l ~\~
I ...„! t-.-"f-r-r"T

— ' , . i • ' • i
-~.t -•-*"- - t - 1 - - i - i - i -
" i i i i i i i

-H ( I--H-I-I-
I I i i • I I

I I I I I I I
1 | I I l I I

10
Return Period (Years)

100

1 h

24 h

1 h 90% Cl

24 h 90% Cl

Figure 42 Accuracy of design storm estimation at Nl 1 using regional approach

5.4 ESTIMATION OF THE 24 HOUR INDEX STORM

In order to estimate design storms at ungauged sites, or at sites where the data are

unreliable, it is necessary to estimate the index storm used to develop the regional growth

curve and thus dimensionalise the curve. For the 24 h duration storm, the index storm used

was the mean of the 24 h annual maxima (LI). Multiple linear relationships were sought,

using SAS statistical software, between 1 / and the site characteristics used to establish the
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homogeneous regions. It was found that the stepwise method of model selection generally

gave lower Predicted Residual Sum of Square (PRESS) values than the methods which

optimised the R2 value. Since the best estimate of the LI value was required, the stepwise

method of model selection which resulted in the lowest PRESS values was adopted. The

significance level for entry of variables into the model was set very low (0.9) and similarly

the significance level for keeping a variable in the model was also relaxed to 0.4, thus

keeping variables in the model to reduce the PRESS values and improve the estimates of

L_L The coefficients in the linear regression model shown in Equation 59, correlation

coefficient and scatter plot around a line of perfect agreement of the data are presented in

Table 42.

A

L_l = £ Vari x Coft + Cons ...59

where

L—* = first L-moment,

m = number of variables (7),l=Latitude, 2=Longitude, 3=MAP,

4=Altitude, 5=Seasonality, 6=Precipitation Concentration (Ppt.

Cone), 7=Distance to Sea (Dist. Sea),

VaTi = i-th variable,

Cofi = coefficient for i-th variable, and

Cons = constant.

It is conceded that the validity of the regression equations may be affected by dependencies

between the selected "independent" variables. However, the choice of independent variables

was based on the variables that were successfiilly used in the cluster analysis of site

characteristics. The limited number of short duration rainfall stations resulted in fewer

degrees of freedom than the number of independent variables in some clusters. Hence, the

results from these clusters (4, 8 and 9) should be used only with extreme caution and the

success of the methodology should be judged from the results at the remaining sites.
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Table 4 2 R e g r e s s i o n ana lys i s o f 2 4 h annual m a x i m a ( L I ) as a funct ion o f site

character is t ics a n d r eg ion

Cluster
(No. of

stations)

Regression Coefficients

Variable Value

R2 Scatter Plot

\
(19)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-121.33139978
-4,32194141

-0.01709296
0.09016661
-2.71852305
0.62619464

0.73 Mean of 24 h AMS
Cluster 1

40 45 50 55 60 65 70
Observed (mm)

2
(10)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

177.00086849
5.38817353

-0.01992853
0.03934102

0.91 Mean of 24 h AMS
Cluster 2

45

45 55 65 75
Observed (mm)
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Cluster
(No. of

stations)

Regression Coefficients

Variable Value

Scatter Plot

3
(32)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-1092.41031260

32.64016742
0.04122272

39.80853547
-0.73429309
0.00005997

0.77 Mean of 24 h AMS
Cluster 3

40 50 60 70 60 90
Observed (mm)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

12.88186896 0.78 Mean of 24 h AMS
Cluster 4

0.00004616

25 30 35
Observed (mm)

40

5
(9)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration
Dist. from Sea (m)

801.61697120
10.86019307

-0.01864936
-0.03278059

-7.01056913

0.96 Mean of 24 h AMS
Cluster 5

40 50 60
Observed (mm)

70
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Cluster
(No. of

stations)

Regression Coefficients

Variable Value

R2 Scatter Plot

6
(9)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonal ity (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-792.30726324
-79.25404727
-84.90316270

0.07792625

-6.44610538

0.96 Mean of 24 h AMS
Cluster 6

120

20

20 40 60 80 100 120
Observed (mm)

7
(16)

Constant
Latitude (c)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

18.34826103

0.06675284
0.05697078

0.71 Mean of 24 h AMS
Cluster 7

60 80 100 120 140
Observed (mm)

8
(4)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-26798.59576036

843.67627112

0.78885764

0.93 Mean of 24 h AMS
Cluster 8

140

90 100 110 120 130 140
Observed (mm)
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Cluster
(No. of

stations)

Regression Coefficients

Variable Value

Scatter Plot

9 Constant
(8) Latitude (°)

Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration <a'
Dist. from Sea (m)

629.14362760
15.55315626

-0.22293808

10.35689960
-0.00118391

0.97 Mean of 24 h AMS
Cluster 9

30 40 50 60
Observed (mm)

70

10 Constant
(8) Latitude (°)

Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration
Dist. from Sea (m)

225.70304539

-8.38218559

0.05897167

0.23 Mean of 24 h AMS
Cluster 10

40 50 60
Observed (mm)

11 Constant
(19) Latitude (°)

Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

150.41255017
3.14207324

-2.61165855

0.03569725
11.12382858

0.27 Mean of 24 h AMS
Cluster 11

£70-
E.
§60

E
« 5 0
LU

40

J^' 1:1

40 50 60 70
Observed (mm)

80
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Cluster
(No. of

stations)

Regression Coefficients

Variable Value

R2 Scatter Plot

12
(10)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonal ity (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-461.88956151
-12.49114058
-4.06683470

0.13835642
-3.59786280
3.85641434

0.93 Mean of 24 h AMS
Cluster 12

30 35 40 45 50 55 60
Observed (mm)

13
(7)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonal ity (-)
Ppt. Concentration (%)
Dist. from Sea (m)

496.26529036
10.50701317

13.73595647
-4.16359992
0.00005234

1.00 Mean of 24 h AMS
Cluster 13

40 50 60 70 80 90 100
Observed (mm)

14

(7)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-19.11471592
5.78368758
6.95978145

0.06912302
5.66589950

1.00 Mean of 24 h AMS
Cluster 14

45 50 55 60
Observed <mrn)
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Cluster
(No. of

stations)

Regression Coefficients

Variable Value

Scatter Plot

15
(7)

Constant
Latitude (°)
Longitude (°)
Altitude (m)
MAP (mm)
Seasonality (-)
Ppt. Concentration (%)
Dist. from Sea (m)

-21.15989495
-1.23354254

0.00901883

0.92 Mean of 24 h AMS
Cluster 15

10 15 20 25 30 35 40
Observed (mm)

With the exception of Clusters 10 and 11, the mean 24 h annual maximum rainfall event

were predicted adequately and hence the regressions can be used at ungauged sites, or at

sites which have unreliable data, to dimensionalise the regional growth curve and thus to

estimate the design values at these sites. Further subdivision or relocation of stations in

Clusters 10 and 11 did not improve the regressions. Hence it is recommended that caution

should be exercised when applying the RLMA at ungauged sites in Clusters 10 and 11.

The RLMA has been successfully applied and hence it is reasonable, with the exceptions of

Cluster 10 and 11, to estimate design rainfalls for 24 h durations at ungauged sites. Similar

multiple linear regression analysis could be performed to estimate the LJ for each duration

< 24 h as a function of site characteristics, and thus enable the estimation of design values

using the regional growth curve for that particular duration. Alternatively, the index value

used in the estimation of the regional growth curve for durations < 24 h could be replaced

by the 24 h L_l value, which could be estimated at ungauged sites using the results

presented in Table 42. Thus, instead of developing regressions to estimate the LI value for

each individual duration, the regional growth curves could be estimated using only the 24 h

LI as index values, which could be estimated using the results presented in Table 42.

186



Using the RLMA, no fixed boundaries exist between adjacent clusters. Therefore at an

ungauged location, it is necessary to estimate the Euclidean distance between the site

characteristics of the ungauged location and the mean of the site characteristics of all sites

within each cluster. The ungauged site is then assigned to the cluster which has the closest

Euclidean distance to the ungauged site. This gives an estimation of the regional growth

curve at that site. Hence, in order to estimate design values at the ungauged site, it is only

necessary to estimate the index value at that site, as has been performed for the 24 h

duration.

The assumption in the application of the RLMA is that within each relatively homogeneous

cluster, a single probability distribution is applicable to all sites after scaling using an at-site

index value. Hence it is necessary to investigate which probability distribution to adopt for

the estimation of design rainfalls in each of the clusters.

5.5 CHOICE OF FREQUENCY DISTRIBUTION

One option was to determine the most appropriate probability distribution for each duration

in each of the 15 relatively homogeneous clusters. However, from a practical point of view

it was decided to determine, for a selected duration, an appropriate distribution which is

applicable to all clusters and which is then assumed to apply to all durations. This approach

of a single appropriate distribution for all clusters is supported by Wallis (1997). The

assumption that an appropriate distribution for a selected duration is applicable to other

durations at the same site agrees with the property of scale invariance noted by, inter alia,

Gupta and Waymire (1990) and Burlando and Rosso (1996), which implies that the

probability distributions of rainfall depth is the same at different time scales. The selection

of the most appropriate distribution was conducted on the 24 h digitised data. However,

it is conceded that possibly more reliable results at many more sites would be obtained from

the use of daily rainfall totals recorded by standard non-recording raingauges, Thus, these

results may need to be revised after the same analysis has been performed on the daily data.
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Hosking and Wallis (1997) developed a Goodness-of-Fit (GOF) criterion, described in

Section 2.2.2.3, which is based on L-moment ratios to determine suitable probability

distributions to use in a regional frequency analysis. In addition to non-parametric tests,

Smithers (1996) also used L-moment statistics as well parametric tests such as the Chi-

squared test and deviations from a plotting position. All of these techniques are used in the

following section to determine suitable probability distributions for use in South Africa. All

tests are perfonned using the 24 h duration events from the digitised rainfall data.

5.5.1 At-site Parametric Statistics

In order to determine the most appropriate probability distribution to use at all the clusters,

Chi-squared and standardised deviations parametric tests were performed.

5.5.1.1 Chi-squared test

A chi-squared test was employed which utilises 10 equally spaced probability class intervals

and either rejects or accepts the null hypothesis that the sample of data could have been

drawn from the distribution being evaluated (Kite, 1988). In this study the LN2, 3

parameter log-normal (LN3), LP3, Pearson type 3 (PE3), Gumbel (EVl), log-EVl (L-

EV1), General Extreme Value (GEV), generalised Pareto (GPA), generalised logistic

(GLO) and Wakeby (WAK) probability distributions were employed. The probability

density functions and, where possible, the cumulative density functions for these

distributions are defined in Appendix B. The results from the Chi-squared tests performed

for the 24 h duration event and for the 15 relatively homogeneous clusters are contained

in Table 43.

The results in Table 43 indicate that the GEV, GLO, EVl and LN3 probability distributions

were accepted most frequently as suitable distributions in all clusters.
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Table 43 Number of rejections of the null hypothesis that the 24 h AMS could have

been drawn from a parent distribution, at the 95% confidence level, with

results expressed as a percentage of total number of sites in each cluster

Cluster
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sum

Probability Distribution

LN2

32

10

9

33
22

0

19

25

25
0

5

10

0

14

0

206

LN3

10

0

22

17

11

0

13

0

13

13

0

0

0
0

28

130

LP3

26

20

13

50
22

11

25
25

13

0

0

30

14

14

0

266

L-EV1

21

20

3

83

11

0
13

50

0

13

10

10

42

28

0

305

EV1

5

0

21

17

0

0

13

0

13

0

10

0

0

14

28

122

GEV

15

0

6

17

11

0

6

0

13

13

0

0

0

0

28

109

PE3

10

0

25

17

11

0

19

0

13

0

0

10

0

14

14

136

GLO

16

0

3

0

11

0

13

0
25

0

0

10

14

0

28

120

GPA

32

0

25

17

22

11

13

0

38

25

5

30

14

14

14

260

WAK

15

10

19

33

22

11

13

0

38

13

15

0

14

14

28

' 245

5.5.1.2 Standardised deviations

The Standardised Deviation (SD) GOF method adopted is similar to techniques used by

Benson (1968), Bobee and Robitaille (1977) and Kite (1988). The SD is computed as

shown in Equation 60. Return periods of 2, 5,10,20, 50 and 100 years, which correspond

to non-exceedance probabilities of 0.50,0.80,0.90,0.95,0.98 and 0.99 respectively, were

used in the calculation of the SD. The choice of plotting position equation was shown by

the NERC (1975) and Smithers (1994) to affect the computed SD, although Kite (1988)

expressed the opinion that the relative rankings of distributions would not be influenced by

the choice of plotting position.
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where

SD = standardised deviation ofy-th candidate distribution,

yi = recorded data, interpolated (if necessary) but not extrapolated to

correspond to the i-th return period, with probabilities assigned to

observed data using a plotting position equation,

xt = event magnitude computed from the>th probability distribution for

the i-th return period,

k = maximum number of recurrence intervals (5) used in the

computation, and

df - degrees of freedom used to fit the trial distribution.

The Weibull plotting position, as shown in Equation 61, has been shown by means of a

survey conducted indifferent countries by Cunnane (1989), to be the most frequent plotting

position used, despite its bias in graphical quantile estimates.

...61
e N + l

where

Pe = exceedance probability of r-th ranked data,

r = rank of data, and

N = number of points in the data series.

The results from ranking the distributions according to the SD statistic are presented in

Table 44. The results in Table 44 indicate that suitable probability distributions to use are

the PE3, GEV, LP3 and LN3.
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Table 44 Relative ranking of 10 probability distributions for 24 h events according to

computed SD at all 15 clusters (1 = best, 10 = worst), using the Weibull

plotting position to assign probabilities to observed data

Cluster
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sum

Probability Distribution

LN2

8

8

5

9

1

7

4

9

2

4

6

7

1

6

4

81

LN3

2

6

7

3

8

6

6

2

5

3

3

2

4

4

5

66

LP3

6

3

1

8

3

2

1

7

1

1

2

5

8

3

6

57

L-EV1

10

10

8

10

9

9

3

10

9

7

10

10

10

7

10

132

EV1

5

5

10

5

1

8

7

4

6

5

5

9

2

9

1

82

GEV

3

2

3

1

6

5

8

3

7

1

4

3

3

5

2

56

PE3

1

1

6

2

4

3

1

1

3

6

1

1

5

2

3

40

GLO

9

9

9

6

10

10

10

8

10

9

9

8

6

10

9

132

GPA

4

4

2

7

5

1

5

5

4

8

8

4

9

1

7

74

WAK

7

7

4

4

7

4

9

6

8

10

7

6

7

8

9

103

5.5.2 At-site Non-parametric Tests

A non-parametric test was performed to evaluate the ability of the different probability

distributions to provide estimates of the 100 year return period event. Similar tests have

been performed on flood flow data in the USA by Vogel et al. (1993b) and in Australia by

Vogel et al. (1993a). The test uses a "station year" approach and assumes that the AMS

from the sites within a cluster are independent and the extreme events occur independently

from year to year. Thus it may be assumed that the number of exceedances follow a

binomial distribution (Vogel et al.. 1993a). The test comprises of counting, for each

distribution and at each cluster, the number of times (X) an observed value exceeds the

191



estimated T year return period event. Assuming X follows a binomial distribution, the mean

of m site-years within each cluster is E[X] = mPe and variance Var[A] = mPe(\-Pt), where

Pe = \IT. Confidence intervals at the 95% levels may be computed as

*0.975 f \

° - 9 5 = Z \Pe
z(l-Pe)

m'x ...62

A 95% confidence interval was computed as shown in Equation 63 for the expected number

of exceedances using the normal approximation of the binomial distribution, as described

by Steel and Torrie (1980).

0.025 = x m ...63

where

Z005 = 5% exceedance value of Normal distribution with //=0 and

Results from the tests based on the above assumptions are contained in Table 45 and

indicate that the LN2, EVl and PE3 distributions were the only distributions which did not

exceed the 95% confidence interval in all the clusters. No expected probability adjustment

was used in generating the results in Table 45. This non-parametric test's assumptions

(independence) may be compromised by the relatively close locality of the sites to each

other within each cluster.
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Table 45 Number of data values in the AMS that exceed the 100 year return period

event, as estimated by different probability distributions, fitted to the data

using L-moments (* indicates results felling outside the 95 % confidence

interval)

Cluster

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Station
Years
(95%

Confidence
Level)

444(3-15)

195 (0-8)

574(5-18)

150(0-6)

201 (0-8)

228 (0-9)

190 (0-8)

93 (-1-5)

201 (0-8)

178(0-7)

402(3-14)

227(1-10)

178(0-7)

195(0-8)

198(0-8)

Probability Distribution

LN2

5

1

13

0

0

r ]

i

0

0

i

4

4

1

1

1

LN3

4

0

4*

0

0

0

0

0

0

1

3

2

2

1

1

LP3

15

9*

10

10*

5

1

3

3

1

4

13

6

3

4

2

L-EV1

0*

0

4*

0

0

0

0

0

0

0

0*

0*

0

0

0

EV1

4

2

12

0

0

i

l

0

l

2

4

4

2

1

2

GEV

4

0

4*

0

0

0

0

0

0

1

3

2

1

i

0

GPA

12

5

7

7*

5

5

0

1

2

3

11

7

•5

!

6

PE3

6

0

9

0

0

0

0

0

0

2

5

2

2

I

1

GLO

2*

0

6

0

0

0

0

0

0

0

1

2

1

0

0

WAK

1*

0

9

1

0

0

0

0

0

1

2

2

2

0

0

5.5.3 Statistics Based on Regional Average L-moment Ratios

The choice of a regional distribution using L-moment ratios is based on fitting an assumed

distribution to the regional record length weighted L-moment ratios (Hosking and Wallis,

1997). Thus the fitted distribution will have the same L-CV as the regional average values

and the quality of fit is judged by the difference between the L-kurtosis of the fitted

distribution (t4
PD) and the regional average (//). The sampling variability (a4) is obtained by

repeated simulations of a homogeneous region, having the fitted distribution, with the same

number of sites and record lengths as the observed data. In practice, Hosking and Wallis
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(1997) assume that reasonable estimates of the sampling distribution can be obtained by

using the flexible 4-parameter Kappa distribution, instead of repeated simulations with

different candidate distributions. The statistic Z is computed as shown in Equation 64.

Values of Izl s 1.64 are deemed to indicate that the fit of the assumed distribution is

adequate. A formal definition of the statistic is presented in Section 2.2.3.3. The results of

the analysis and associated L-moment diagrams are contained in Table 46.

...64

Table 46 Acceptable probability distributions, Z-test statistic and L-moment ratio

diagrams for 15 relatively homogeneous clusters in South Africa

Cluster
Number

Acceptable
Distributions

L-Moment Diagram

1 GLO -0.65

-0.2
-0.6 -0.8 -0.4 -02 0 0.2 04 0( 08

L-SKEWNESS
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Cluster
Number

Acceptable
Distributions

L-Moment Diagram

GLO
GEV
LN3

-0.22
-1.58
-1.60

0.6

0 4 -

• CSUIW2

•, PE3

LN3 GPA

GEV GLO

A LN2

•0.8 •OS -0.4 - 0 2 0 0 2 D4 0.8 OS

l-SKEWNESS

GLO
GEV
LN3
PE3

1.14
-0.55
-0.33
-0.45

•0.2

-OS -OS -0.4 -0.2 0 0.2 O.4 06 0.8
L-SKEWNESS
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Cluster
Number

Acceptable
Distributions

L-Moment Diagram

GLO
GEV
LN3
PE3

1.03
-0.35
-0.43
-0.79

OS

08

0.4-

•0.2
•0.8 -0.0 -04 -0.2 0 02 04 06 08

L-SKEWNESS

GLO
GEV
LN3
PE3

!.64
0.12

-0.13
-0.74

o-

-a.e -oe -04 -o,2 o 02 a.4 os o.a
L-SKEWNESS

GLO
GEV
LN3
PE3
GPA

0.88
o.:t

-0.31

-1.61

• CtiatKT LN3
PE3 GEV

• EV1 A LN2
GUO

•0.S -09 -0.4 .0.2 0 02 0,4 08 OS
L-SKEWNESS
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Cluster
Number

Acceptable
Distributions

L-Moment Diagram

8 GEV
LN3
PE3
GPA

1.03
1.00
0.74

-1.49

-0,2
-o.e -oe -04 -02 a 0.2 04 0.6 o.s

L-SKEWNESS

GEV
LN3
PE3

0.32
0.07

-0.50
as

0 4 -

02-

-02

• CkW»9 LN3
PE3 GEV

• EV1 A LN2

—• GPA

. . . GLO

-as -ae -0.4 -02 0 0.2 0.4 oe o.e
L-SKEWNESS

10 GLO
GEV

0.04
-0.98

0.8-

0.4

0.2-

0 -

[
i
i

*

•

Cluitir 10
PEJ
EV1 A

LM3

GEV

•

G P »

/>

-o.e -0.4 -02 0 02 04 as as
L-SKEWNESS
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Cluster
Number

Acceptable
Distributions

L-Moment Diagram

11 GLO -1.37
0.8

0.9-

0 4 -

-0.2
-0.8 -OS -04 -02 0 0.2 04 0,B 08

L-SKEWNESS

12 GLO
GEV
LN3

0.32
-0.99
-1.31

-0.8 -06 -04 42 0 02 04 0.6 06
L-SKEWNESS

13 GLO
GEV
LN3

1.09
-0.48
-0.43

0.B'

0 2 -

0 -

•0.8 -OS .0.4 -0.2 0 0.2 04 08 OS
L-SKEWNESS
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Cluster
Number

Acceptable
Distributions

L-Moment Diagram

14 GEV
LN3
PE3

0.37
0.10

-0.49

-0.2
-Q.8 -0.6 -04 -0.2 0 0.2 04 0 8 OB

L-SKEWNESS

15 GLO
GEV
LN3
PE3

1.18
-0.17
-0.36
-0.84

.0.2
•0.8 -0.8 -0.4 -0.2 0 0.2 04 0,e O8

L-SKEWNESS

Hosking and Wallis (1997) recommend that in regions where no distribution is suitable (e.g.

Cluster number 3), the Kappa or Wakeby distribution should be used, as they are "robust

to the mis-specification of the form of the frequency distribution in a regional frequency

analysis". The number of homogeneous regions in which the candidate distributions gave

an acceptable fit to the 24 h AMS are listed in Table 47.
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Table 47 Number of homogeneous regions in which candidate distributions gave an

acceptable fit to the 24 h AMS

Number of homogeneous regions in

which the distribution gave an

acceptable fit to the 24 h AMS

GLO

11

GEV

12

LN3

11

PE3

7

GPA

2

The results contained in Table 47 indicate that, if a single probability distribution was to be

adopted for the all regions according to the regional L-moment ratios test, the GEV would

be the most appropriate distribution.

5.5.4 Concluding Remarks on Choice of Frequency Distribution

There is generally good agreement for most clusters between the probability distributions

deemed to be most suitable by the Chi-squared test (GEV, GLO. EV1, LN3) and the

regional L-moment ratios test (GEV, GLO, LN3). However, the SD test indicated that the

most appropriate distributions were the PE3, GEV and LP3 distributions while the non-

parametric exceedance test selected the PE3, EV1 and LN2 distributions. It is thus

recommended that, if a single distribution were to be adopted for all regions, the GEV

distribution would be the most appropriate probability distribution to use. A similar

conclusion for South Africa was made by Smithers (1996) using data from individual sites

and employing both parametric and non-parametric tests, but not regional tests based on L-

moment ratios.

5.6 CHAPTER CONCLUSIONS

In this chapter the RLMA, which is described in Chapter 2 and is based on the methodology

developed by Hosking and Wallis (1993; 1997), has been applied using data from 172 short
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duration rainfall stations in South Africa. The discordancy index developed by Hosking and

Wallis (1993; 1997) was found to identify erroneous or inconsistent data and was used to

screen all the data used.

Regionalisation based only on site characteristics resulted in, after a few subjective

relocations of stations, in 15 relatively homogeneous clusters in South Africa. The cluster

analysis was found to be sensitive to the scaling of the site characteristics, and the best

results were obtained when the scales of all the site characteristics were within the same

range (0,100).

For each cluster and duration, the mean of AMS (LI) for each duration was used as the

index value when estimating regional growth curves which relate the ratio, of the design and

index values, to return period. Hence, with the regional growth curve and the index value

for a particular site, design rainfalls may be estimated for the site. The index value (LI)

may be estimated from reliable observed data, if available, or at ungauged sites by means

of multiple linear regression relationships of site characteristics.

The accuracy of the regional growth curves was assessed at one "hidden" site (N23) in

Cluster 3, which was not used in the regionalisation or the estimation of the regional growth

curve, and also by means of Monte Carlo type simulations at all the clusters. Thus

confidence or error bands were estimated for the regional growth curves and these were

translated into confidence limits of design rainfalls at selected sites.

A number of tests were employed to determine the most appropriate probability distribution

to use at all clusters. The GE V was found to be an acceptable distribution by most tests and

at most clusters and hence is recommended for general use in South Africa. This finding was

based only on 24 h duration rainfall events and it is hypothesised that it will apply to shorter

durations as well. This assumes that the probability distributions of rainfall depth are the

same at different time scales, i.e. the property of scale invariance noted by, inter alia, Gupta

and Waymire (1990) and Burlando and Rosso (1996). This approach is also supported by
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Wallis (1997). However, it is recommended that further tests be applied for selected

durations shorter than 24 h.

The RLMA has been successfully applied in 15 relatively homogeneous clusters in South

Africa. Ungauged sites or where the observed data are unreliable may be assigned to the

cluster which has the closest Euclidean distance of site characteristics to the ungauged site.

Thus the regional growth curve for the cluster is applicable to the site and in this manner

design storms can be estimated at any location in South Africa where the index storm can

be estimated.

In Chapter 6 the concept of scaling the moments of the AMS with respect to duration is

investigated as another approach to estimating short duration design storms using an

inadequate database.
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CHAPTER 6

SCALING OF DEPTH-DURATION-FREQUENCY

RELATIONSHIPS

In an effort to compensate for the low reliability of much of the data contained within the

short duration rainfall database, three approaches to estimating design storms from the

database were evaluated. The first approach, with results presented in Chapter 5, used a

regional frequency analysis. The second approach, with results presented in this chapter,

investigated scaling relationships of the moments of the Annual Maximum Series (AMS)

and the third approach, with results presented in Chapter 7, used a stochastic intra-daily

model to generate synthetic rainfall series. A common theme in all three approaches was the

development of techniques to estimate short duration design storms from the daily rainfall

totals, as measured by standard, non-recording raingauges for fixed 24 h periods ending at

08:00 each day, and not from the break-point digitised rainfall data where the highest 24 h

period of rainfall may not correspond with the 08:00 - 08:00 period.

The scaling concepts used in this chapter were introduced in Section 2.4.3. The assumption

was made, based on observations, that storm rainfall is characterised by the property of

scale invariance (Gupta and Waymire, 1990), which implies that the probability distributions

of rainfall depth is the same at different time scales.

Previous investigations of scaling properties of rainfall (e.g. Gupta and Waymire, 1990;

Menabde et al., 1998) have utilised ordinary product moments. In Section 6.1, as an

innovation, the scaling properties of extreme rainfall depths are investigated using L-

moments. It is shown that L-moments generally scale better with duration, i.e. are

essentially linear on a log-log plot of moment vs duration, and scale over a wider range of

durations than product moments.

Given the sparsity of recording raingauges in South Africa and low reliability of much of the

digitised rainfall data available from the SAWB, six hypotheses are proposed in Section 6.2
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and evaluated at selected sites and clusters in Section 6.5. The hypotheses utilise the scaling

properties of extreme rainfall and scaled regional average L-moments and, as far as possible,

can be estimated from the widely available and generally reliable daily rainfall data which

are recorded manually for fixed 24 h intervals at 08:00 every day.

In order to apply some of the hypotheses described in Section 6.2, it is necessary to estimate

the slope on a log-log plot of the linear relationship between L-moments and event duration.

The estimation of this slope as a function of site characteristics is developed for each

cluster in Section 6.3, thus enabling the estimation of the slope at ungauged sites. Similarly,

one of the hypotheses requires estimates of the 24 h mean of the AMS (£_/) to be

computed from the daily rainfall data. Hence, regional relationships are developed in Section

6.4 to convert the fixed increment LI value, computed from the daily rainfall database, into

a continuous time value, equivalent to that computed from the digitised rainfall database.

6.1 ADVANTAGES OF SCALING USING L-MOMENTS

In Figure 43 the first and second order product moments and L-moments are presented for

stations in different geographic and climatic locations in South Africa. Included in Figure

43 are the linear regressions for the moments estimated using event durations ranging from

15 min to 5760 min (4 days). By definition the first order L-moment (LI) and conventional

moment (mean) are the same and exhibit nearly linear scaling over this range at most sites

in Figure 43. However, as evident in Figure 43 for all the stations shown, the second L-

moment (L_2) tends to scale more linearly over a wider range of durations than the

conventional second order (variance) moment. The advantages of scaling using L-moments

are illustrated in Figure 44 where the deviations from linear scaling evident in Figure 43 are

quantified as the Mean Absolute Relative Error (MARE), computed as shown in Equation

65, for event durations ranging from 15 min to 4 days.
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Figure 43 Scaling of conventional product moments and L-moments at selected sites
in different climatic and geographic regions in South Africa
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100 *<P
MARE= —— x I

ND k=\

E(k) ~
...65

where

MARE = mean absolute relative error (%),

ND = number of event durations (17),

Em = estimated moment using linear regression for k-th duration, and

O{k) = observed moments for k-th duration.

For all stations shown in Figure 44, the MARE of the estimated LJ2 values are substantially

lower than the MARE of the estimated second order product moments (variance), indicating

more linear scaling of L_2. Thus, further efforts at developing techniques to estimate design

storms using scaling principles were focussed on the use of L-moments, although all the

methods developed could be applied equally to ordinary product moments.

6.2 DESCRIPTION OF HYPOTHESES

Design rainfall values estimated for specified durations are defined as the rainfall magnitude

associated with a specified probability of being equalled or exceeded for the required event

duration. The conventional approach to estimating design rainfall values is to use the L-

moments, computed directly from the AMS of the observed data for the required duration,

to estimate the parameters of an appropriate distribution. Design events for specified

exceedance probabilities are then estimated using the fitted distribution. In the light of the

low reliability of much of the digitised database, and hence dubious quality of L-moments

estimated from the digitised database, other means of estimating the L-moments were

hypothesised and evaluated.
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Figure 44 Deviations from linear scaling of second order product moments and
L-moments at selected sites in South Africa

In this section, six hypotheses are proposed for estimating L-moments for durations £24 h

and the hypotheses are evaluated at selected clusters and stations in Section 6.5. The

hypotheses are based on the scaling properties of the moments of the AMS and the common

distribution of the scaled L-moments of the AMS within a homogeneous region, with the

objective of utilising only the daily rainfall data recorded manually at 08:00 every day for

the preceding 24 h period.

6.2.1 Hypothesis 1

Hypothesis 1 proposed that the log-transformed LI and L_2. duration relationships are

linear and that the first and second order L-moments of the AMS for durations < 24 h can

be estimated from the 24 h and 48 h values, computed from the digitised data. In order to
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estimate the parameters for distributions which have more than two parameters, the

moments for orders higher than two are estimated from the mean of the at-site 24 h and

48 h values. As shown in Equation 66 and schematically in Figure 45, the LJ and L_2

values are estimated by linear extrapolation from the 24 h and 48 h values.

- aW) x (log(1440)- log(Z>x 60))

...66
_* ( , 48) ) -

(Tf0 (log(2880)-log(1440))

where

A

L-X{t D) = estimated first (x=l) and second (x=2) L-moment at site / for

duration D hours and D <24,

a(xi) = slope of log-transformed L-moment vs duration relationship at site

/, and

D = duration (h).

Hence, if Hypothesis 1 is valid, the moments for durations < 24 h can be estimated from the

1 and 2 day values computed from the daily rainfall database, after appropriate scaling to

account for the differences between extreme events extracted using a fixed ("clock time")

and non-fixed ("break-point digitised") time increment.
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Figure 45 Estimation of L-moments for durations < 24 h using Hypothesis 1

Thus, at a site where rainfall data recorded only at a daily interval are available, the 1 and

2 day L-moments can be computed from the daily data and converted into equivalent 24 and

48 h values. L-moments for durations < 24 h can then be estimated using linear

extrapolation of the 24 and 48 h values.

6.2.2 Hypothesis 2

Hypothesis 2 hypothesised that the slopes (aUi)) of the relationships between the log of the

first and second order moments and log of event duration are linear, as shown in Figure 43,

for durations ranging from 1 to 24 h and that the slopes of the relationships can be

regionalised and estimated from site characteristics. The slope at site / of the log-

transformed L-moment:duration relationship, estimated as a function of site characteristics
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for each relatively homogeneous cluster identified in Chapter 5, is termed the Regional

Slope (RS(XI)). Hypothesis 2 is illustrated schematically in Figure 46 and is implemented

using the following algorithm:

(i) The slopes of the log of the L_l (%0) and L_2 (a{2i)) moments vs log of duration

are estimated for each site / in each cluster using observed L_1UD) and L_2(iJ>)

values for durations ranging from 1 to 24 h.

(ii) Using multiple linear regression analysis, the a(SS) and a{2i) values are regressed

against site characteristics and hence the RS{IJ) and RS^ values, estimated using

the regression equation for the relevant cluster and site characteristics for site i,

are estimates of a{lA and <ar(2l) respectively. The relationships for estimating RS(li)

and RS(2r) are presented in Section 6.3.

(iii) L_l(ij>)anc^ L-2(ij» f° r D < 24 h are estimated using Equation 67, where Ljc{i^)

is estimated directly from the observed digitised data.

log L_x J = log(I_x ( , ,2 4 ))- {RS{x4) x (log(1440)- log(Z)x 60))) ...67

The slopes of the log-transformed L_l and I_2:duration relationships are estimated using

RS{li) RSai) and the site characteristics. LI and L_2 moments for durations less than 24 h

are computed from the estimated slope and observed 24 h L-moments as shown in Equation

67, with the 24 h L-moments computed from the digitised rainfall data. Thus Hypothesis

2 is applicable only at sites which have short duration rainfeU data available. In order to fit

distributions which have three or more parameters, Hypothesis 2 assumes that these higher

order moments (a 3) can be estimated using regional record length weighted L-moment

ratios.

210



Hypothesis 2
1000

100
c

o

0.1

I [ i

i II

1 . .

Observed
V a ( u e s

» .

10 100 1000

Duration (minutes)

10000

L 1 L 2

Figure 46 Estimation of L-moments for durations < 24 h using Hypothesis 2

6.2.3 Hypothesis 3

Hypothesis 3 assumed that the Regional L-Moment Algorithm (RLMA), as described in

Section 2.2.3 is applicable. The RLMA is an index value procedure, which is commonly

referred to as an index "flood" procedure. This assumes that the distribution of the

dimensionless values q(ljk) = Q^) I L_J{ik) is common to all sites within a relatively

homogeneous region, where QUj,k) is thej'-th element of the AMS of k hour duration events

at site i and L_l{i^ is the mean of the AMS of k hour duration events at site /. The

algorithm for the implementation of Hypothesis 3 in each relatively homogeneous cluster

is:

(i) Calculate the L-moments (Ljcfik)) of the AMS (Q^jjc-) for k hour duration events

at each site / in the region.

(ii) Calculate regional average, record length weighted, L-moments as shown in

Equation 68.
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,v

, = 1 "-Ml,*)
...68

where

£_*% = regional average x-th order L-moment for duration k hours, x <.5,

L_*[i,k) = *~th order L-moment for duration k hours at site i,

N = number of sites in region, and

n, = record length at site /.

(Hi) The first and second order L-moments at site / are estimated as shown in Equation

69, where L_l{ik) is computed directly from the observed digitised rainfall data.

Z _ 1 W ) . ...69

where
A

= *"tn order L-moment at site /, x <.2.

(iv) In order to fit distributions which have more than two parameters, third and higher

order moments are estimated from the Regional Average L-Moment (Z_x%)

computed as shown in Equation 68.

Thus the first order regional average L-moment, L_lR
(k) = 1. In Hypothesis 3, the regional

average L-moments are re-scaled using L_l(ik) estimated from the observed digitised data

and thus observed short duration rainfall data are required to implement Hypothesis 3.

6.2.4 Hypothesis 4

Hypothesis 4 combines the approaches used in Hypotheses 2 and 3. The algorithm, as

detailed below, utilises the multiple linear regression equations of site characteristics to

estimate L_l{ai), as described in Section 5.4, and with iW(1 () enable the estimation of L_1VJ3)
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values for durations < 24 h, which in turn are used to dimensionlise the regional average L-

moments.

(i) Use Equation 59 with parameters appropriate for the cluster and characteristics of

site / to estimate L_1UM).

(ii) Estimate RSOt) as a function of site characteristics as described for Hypothesis 1.

These relationships are developed for each cluster in Section 6.3.

(iii) Use Equation 67 and the estimated L_x{l2i) from (i) and RS{li) from (ii) to estimate

L_liijy) for site /, where D < 24 h.

(iv) Use L_l(jJ3) estimated in (i) for 24 h durations and in (iii) for durations < 24 h to

dimensionalise the first and second order regional average L-moments, as

computed in Equation 68.

(v) Third and higher order L-moments are assumed to be equal to the regional average

L-moment ratios.

Thus the implementation of Hypothesis 4 does not require any observed data and can be

implemented at any ungauged location in South Africa.

6.2.5 Hypothesis 5

Hypothesis 5 is similar to Hypothesis 4 but the mean of the 24 h AMS (L_l^24^, estimated

as a function of site characteristics in Part (i) of Hypothesis 4, is replaced in Hypothesis 5

by X_i(,^4) estimated from the daily rainfall data. This hypothesis was introduced to

investigate and illustrate discrepancies between the digitised and daily rainfall data. Parts (ii)

to (v) in the algorithm for Hypothesis 4 also apply to Hypothesis 5.

No adjustment is made to convert the moments computed from daily rainfall data,

commonly referred to as fixed time increment or "clock" time, into equivalent 24 h values

extracted from digitised data. Thus differences between the 24 h LI values calculated from

the digitised and daily data are highlighted by this hypothesis.
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6.2.6 Hypothesis 6

Similar to Hypothesis 5, Hypothesis 6 hypothesised that the 24 h regional average

L-moments, as calculated in Equation 68, could be re-scaled using 24 h L_l values

computed from the daily rainfall database and adjusted to account for the difference

between the 24 h (from the digitised database) and 1 day (from the daily rainfall database)

LI values. Hence, L_1{U2A) in part (i) of Hypothesis 4 is estimated from the daily rainfall

database and, increased by the mean, for each cluster, of the ratio of 24 h to 1 day LI

values. The relationship between the L-moments computed from continuous time (digitised)

and fixed time increment data (daily), developed for each relatively homogeneous rainfall

cluster in South Africa, are presented in Section 6.4. Parts (ii) to (v) in the algorithm for

Hypothesis 4 also apply to Hypothesis 6. The six hypotheses evaluated are summarised in

Table 48.

Table 48 Summary of hypotheses

Hypothesis

0

1

2

3

4

5

6

Method for Estimation of first and second L-Moments for durations < 24 h

Historical data

Multiple Scaling from 24 h and 48 h values

RSUJ) = fi[region, site characteristics) and observed L_xliM)

L_X*(D) re-scaled with observed L_l(lD)

Ljt^lP) re-scaled with L luD) est imated using L_l(i24) = f (region, site

characteristics) and RSn^= ftregion, site characteristics)

L_x?(D) re-scaled with L l,,D) estimated using L_l(i2f) computed from daily

rainfall data and RSll]t f[region, site characteristics)

L_x?(D) re-scaled with L fuD) est imated using L_l(i2^, computed from daily

rainfall data and adjusted using regionalised 24 h : 1 day ratios, and RS{ij) = fljregion,

site characteristics)
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The site characteristics and cluster locations of all the stations used in the cluster analysis

are listed in Appendix A. The results from the estimation of the RS{i^4) for each cluster

using site characteristics are presented in the following section.

6.3 ESTIMATION OF REGIONAL L-MOMENT:DURATION SLOPE

In order to estimate a{]i) and a{li), the respective slopes of the linear relationship between

the log of the first and second order L-moments and log of event duration at an ungauged

site /, multiple linear regressions were developed for each cluster between a{hl) and a^ and

the characteristics of each site / in the cluster. The values of ar(U) and <r(2 0 estimated at site

/ using the regression equations and characteristics of site / are termed the Regional Slope,

RS(lJ) and RS(2J) respectively. The form of the regression developed for each relatively

homogeneous cluster is shown in Equation 70 and the results of the multiple linear

regression analyses, with the objective of maximising R2, are presented in Table 49.

RS(XJ) = I 2 , Von * Cof, I + Cons ...70

where

RS{xi) = slope between the log of the first (JC=1) and second (x=2) L-

moments and log of event duration, estimated as a function of site

characteristics,

m - number o( variables (7),l=Latitude, 2=Longitude, 3=MAP,

4=Altitude. 5=Seasonality, 6=Precipkation Concentration (Ppt.

Cone). 7=Distance to Sea(Dist. Sea),

Vari = /-th variable.

Cof, = coefficient for /-th variable, and

Cons = constant.
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The limitations of the regression analysis as a result of the selection of independent variables

and insufficient degrees of freedom in some clusters, as pointed out in Section 5.4, are also

applicable to the analysis in this section. As shown in Table 49, with the exception of

Clusters 1 and 11, the slope of the log-transformed L_i:duration and Z_2:duration curves

can be estimated relatively well using linear relationships of the individual site

characteristics. Generally, an inverse relationship is evident between R2 and the number of

sites (N) where, as expected, high R2 values are obtained for regions with fewer sites,

particularly when N <. number of variables. Clusters 1 and 11, as shown in Figure 36, are

adjacent clusters with the centre of the "cloud" of stations comprising the two stations

located in Gauteng Province, and the clusters extending into the Free State, North-West,

Northern and Mpumalanga Provinces. The H heterogeneity test-statistic, shown in Table

40, is low for both clusters indicating relatively homogeneous clusters. High intensity short

duration thunderstorms dominate in these areas and hence it is probable that the contrast

in the AMS between shorter and longer durations may explain the poor regressions obtained

in these two clusters.

Table 49 Estimation of RS0 0 and RSa<rit the slopes between the log of the first and

second order L-moments and log of event duration at sitei, as function of

site characteristics

Cluster

(No. of

Stations)

L-

moment

Regression

Variable Coefficient R2

Scatter Plot

1

(19)

L 1 Intercept

Latitude

Longitude

MAP

Altitude

Seasonal iry

Ppt. Cone.

Dist. Sea

3.32692878

-0.02261845

-0.08166781

0.00034695

-0.00004258

0.01321386

-0.00182635

-0.00000081

0.40 L_f: Duration Slope
Cluster 1

0.24

0.22

0.20 .

0.18 •

0.16 •

0.14 • — 1:1

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

Observed
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Cluster

(No. of

Stations)

L-

moment

Regression

Variable Coefficient R2

Scatter Plot

1

(19)

L 2 Intercept

Latitude

Longitude

MAP

Altitude

Seasonally

Ppt. Cone.

Dist. Sea

9.29410811

-0.12444888

-0.17344196

0.00061569

0.00011165

-0.00390009

-0.01448632

-0.00000148

0.32 LJZ: DurationSlope
Cluster 1

0 30 .

0.25 •

0.20-

0.15 •

0.10 •

0.05.

0.00 •

— 1:1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Observed

2

(10)

L 1 Intercept

Latitude

Longitude

MAP

Altitude

Seasonality

Ppt. Cone.

Dist. Sea

-7.78895453

0.00152912

0.22013555

-0.00023471

0.00085703

0.16458970

0.00388954

0.00000032

0.80 L_ 7: DurationSlope
Cluster 2

0.26

0.24 -

0.22

I 0.20
1 0.18
in

W 0.16

0.14 •

0.12
0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

Observed

2

(10)

I 2 Intercept

Latitude

Longitude

MAP

Altitude

Seasonality

Ppt. Cone.

Dist. Sea

29.64861821

-0.53645250

-0.47785172

-0.00049777

0.00042750

0.02259341

-0.00028607

-0.00000629

0.73 L_2: DurationSlope
Cluster 2

0.40

•0.10
-0.10 0.00 0.10 0.20 0.30 0.40

Observed
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Cluster

(No. of

Stations)

L-

moment

Regression

Variable Coefficient

Scatter Plot

3

(32)

L 1 Intercept

Latitude

Longitude

MAP

Altitude

Seasonal ity

Ppt Cone.

Dist. Sea

17.08102924

-0.25883251

-0.30461415

0.00025878

O.0OOU395

0.04999653

-0.00475038

-0.00000402

0.77 L_1: DurationSlope
Cluster 3

0.35

. 0.30

1 °-2S '
I 0.20 ]
UJ

0.15.

0 10

0.10 0.15 0.20 0.25 0.30 0.35
Observed

3

(32)

I 2 Intercept

Latitude

Longitude

MAP

Altitude

Seasonality

Ppt. Cone.

Dist. Sea

8.15777083

-0.19290908

-0.09167649

0.00005257

0.00041928

0.20818367

-0.00888683

-0.00000379

0.64 L_2: DurationSlope
Cluster 3

.10 0 00 0.10 0.20 0.30 0.40 0.50 0.60

Observed

4

(6)

L 1 Intercept
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Hypothesis 6 requires that the LI value calculated from the daily rainfall data be adjusted

into a continuous 24 h value, as would be computed from digitised data for a continuous

24 h period. Regionalised 24 h : 1 day ratios for each cluster in South Africa are presented

in the following Section 6.4.
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6.4 CONTINUOUS : FIXED TIME L_l RATIOS

Hypothesis 6 assumes that the mean of the 24 h AMS at site i {L_l{iM), normally computed

using a continuously moving 24 h "window" in the digitised rainfall data, can be estimated

from the mean of the 1 day AMS extracted from the daily rainfall data recorded at fixed

24 h intervals. Thus it is required to convert the 1 day (fixed time) extreme values into

equivalent 24 h values (continuous time).

Values reported in the literature for South Africa suggest that the fixed time interval

extreme values should be increased by between 10 and 20% (Adamson, 1981; Schulze,

1984; Alexander, 1990). More recently, Dwyer and Reed (1995) showed that, based on

theoretical considerations, the correction factor should be 1.33, but recommend a value of

1.16, which is based on rainfall data from the United Kingdom and Australia.

Ratios of the mean (I_/((24)) of the 24 h AMS and 1 day AMS were computed for each

station / in each cluster and averages of these ratios were computed for each cluster. The

results of the analysis are presented in Table 50 which contains the average ratios and their

standard errors for each cluster. As noted, for example, in Sections 4.2, 4.3 and 4.4,

discrepancies are evident between the digitised and daily rainfall data for most SAWB

stations. Hence, in order to ensure consistency of data sets, the 1 day values used in this

analysis were derived by extracting the AMS from the digitised data based on a fixed 24 h

incremental period and the actual 1 day data measured by standard raingauges were not

used. As shown in Table 50, the average 24 h :1 day ratios range from 1.15 to 1.28 in

South Africa. These ratios are slightly larger than the values reported in Chapter 2 for South

Africa which range from 1.11 to 1.20, but which were computed from the 24 h and 1 day

design rainfall depths, which may incorporate bias due to the selection of distribution used

to estimate the design rainfalls. Unexpectedly high values were consistently obtained for the

Eastern and South Eastern Cape regions (Clusters 9 and 13 as shown in Figure 36). The

values presented in Table 50, which are the average ratios for all the stations in each cluster,

were used to estimate the 24 h L_l values from the 1 day LI values, computed from the

daily rainfall record.
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Table 50 Ratios of 24 h : 1 day I lvalues

Cluster

1

2

3

4

5

6

7

8

Mean

1.20

1.21

1.19

1.21

1.20

1.17

1.15

1.20

Std. Error

0.05

0.06

0.07

0.09

0.10

0.06

0.05

0.03

Cluster

9

10

11

12

13

14

15

Mean

1.26

1.19

1.20

1.19

1.28

1.24

1.25

Std. Error

0.11

0.09

0.09

0.04

0.14

0,06

0,10

Techniques for estimating the RS for both the LI and L_2 values, and 24 h : 1 day LJ

ratios have been presented. In the following Section 6.5, the effect on L-moments and

design storms estimated using the six hypotheses described in Section 6.2 are investigated.

6.5 EVALUATION OF SIX HYPOTHESES FOR ESTIMATING SHORT

DURATION LJ AND L_2 VALUES

Rainfall data from selected stations used in the delineation of relatively homogeneous

clusters, as shown in Figure 36, were utilised in the evaluation of the six hypotheses. The

performance of the six hypotheses, detailed in Section 6.2 and summarised in Table 48,

were evaluated by the mean absolute relative deviation:

• between the L-moments estimated by the hypotheses and the L-moments

computed from the observed digitised rainfall data, and

• between design rainfall events estimated using the GEV distribution fitted to the

L-moments estimated by the hypotheses and fitted to the L-moments computed

from the observed digitised rainfall data.
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The errors found throughout the SAWB digitised rainfall database and the inconsistencies

between the digitised and daily rainfall data at SAWB raingauges, as detailed in Chapter 4,

has led to the assumption that the majority of the SAWB digitised rainfall data are of low

reliability. The frequency of errors found in all non-SAWB digitised rainfall data was nearly

zero. However, most of the data from these non-SAWB stations were digitised from

autographic rainfall charts that were changed at weekly intervals. Hence, consistency checks

between the digitised and daily rainfall totals could not be performed, as was done for the

SAWB stations. However, the data collection procedures followed, for example by the

DAEUN, do include routine consistency checks between the total rainfall measured for the

duration of the chart and the rainfall digitised from the chart and data are flagged when

discrepancies are noted. Hence, although the consistency checks for non-SAWB stations

could not be performed as part of this study, the very few digitising errors and knowledge

of data collection procedures at some non-SAWB raingauges, led to the supposition that

the non-SAWB digitised rainfall data are generally relatively more reliable than the SAWB

digitised rainfall data.

Detailed evaluation of the hypotheses at selected sites are presented in Section 6.5.1 for

Cluster 3 which has the most non-SAWB data and which are assumed to be more reliable

than the SAWB data. Thereafter, summarised results are presented for Cluster 6 (Sections

6.5.2) and for one of two selected sites in clusters located in different geographic and

climatic regions of South Africa (Section 6.5.3).

6.5.1 Cluster 3

Thirty-two stations are contained in Cluster 3, of which 16 stations are SAWB stations and

the remaining stations are operated by the DAEUN (15) and FORESTEK (1). Hence 50%

of the stations in Cluster 3 are non-SAWB stations. In the regression analyses performed,

data from SAWB Station 0476131 were omitted as the data did not appear to be consistent

with the rest of the data in the region.
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6.5.1.1 Cathedral Peak

The results of evaluating the six hypotheses outlined in Table 48 to estimate the first two

L-moments at Cathedral Peak (CP6) are shown in Figure 47. As evident from Figure 47

all hypotheses, with the exception of Hypothesis 5, estimate the L_l and L_2 values

computed from the observed data extremely well over the range of 2 h - 24 h duration

events. Since the 24 h regional average L-moment are re-scaled by the unadjusted 1 day

value in Hypothesis 5, it is not unexpected that Hypothesis 5 should estimate lower LI

values. Each hypothesis estimates LI and L_2 values for all durations, and the third order

L-moment used is either the mean of the 24 h and 48 h values (Hypothesis 1) or the regional

record length weighted value (Hypotheses 2-6). The estimates of the first three L-moments

for each duration and hypothesis were used to determine the parameters of the GEV

distribution. The design storm depths computed using the GEV probability distribution

fitted to the L-moments estimated by Hypotheses 1-6 are shown for the 20 year return

period event in Figure 48. Similar results were obtained for other return periods.

CP6
1000

L 1

10 100
Duration (minutes)

1000 10000

Hypothesis

1

5

2
6

Figure 47 Estimation of LI and L_2 at Cathedral Peak (CP6) for the six hypotheses
summarised in Table 48 (O=Observed, 1-6= Hypotheses)
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Figure 48 Design storm depths for twenty year return periods at Cathedral Peak
(CP6) estimated from the observed data and for the six hypotheses
summarised in Table 48 (O=observed, 1-6=Hypotheses)

The results contained in Figure 48 for the 20 year return period design storms may be

further summarised by the Mean Absolute Relative Error {MARE) between design storm

depths computed from the historical data and from each of the six hypotheses for return

periods of 2,5,10,20,50 and 100 years, computed using Equation 71 and shown in Figure

49 for CP6.

231



100 *

k = 1

°(M> ...71

where

MAREj mean absolute relative error of/-th hour design rainfall (%),

^-th return period,y-th hour annual maximum design rainM

computed using hypothesis,

£-th return period, j-th hour design rainfall computed from

observed data, and

number of return periods (2, 5,10,20, 50 and 100).

100

80

4 0

20

CP6

-

-

•

10 100 1000
Duration (minutes)

10000

Hypothesis

1 2

4 5

3
6

Figure 49 Mean absolute relative errors of 2 to 100 year return period design storm
depths estimated at Cathedral Peak (CP6) for the six hypotheses
summarised in Table 48
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From Figures 48 and 49 it is evident that all the MAREs between design storms computed

from the historical data and for each of the 6 hypotheses are less than 20% (deemed to be

acceptable) for durations <. 24 h and the mean error is generally < 10%. Hence all six

hypotheses appear to be able to produce similar L-moments and design storms at Cathedral

Peak (CP6). Thus, in the event of only daily rainfall data being available at this site,

reasonably accurate design storms for durations <, 24 h could be estimated using only data

from a standard non-recording raingauge. Hypothesis 1, which is the simplest of the

hypotheses evaluated and assumes multiple linear scaling of the L_i:duration and

L_2:duration relationships for durations < 24 h and up to 48 h, appears to be applicable at

Cathedral Peak (CP6).

The results contained in Figure 49 can be further summarised as shown in Equation 72.

1 0 0 ^
AV-MARE =-~y MARE, ...72

ND5 '

where

A V-MARE = average MAREj (%), computed from ND durations.

The A V-MARE values were computed for durations <. 1 h and for durations ranging from

2 - 24 h for CP6 as shown in Figure 50. Hypothesis 2 resulted in the best estimation of the

design storm depths at CP6 for all the periods shown in Figure 50. The next best design

storm depths for durations of 2 h - 24 h were estimated by Hypothesis 1. However, the

estimation of design storms at CP6 were acceptable (i.e. errors < 20%) for all hypotheses

evaluated.
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Figure 50 Mean absolute relative errors, averaged for durations of 5 min - 1 h and 2 -
24 h, of 2 to 100 year return period design storm depths estimated at
Cathedral Peak (CP6) for the six hypotheses summarised in Table 48

6.5.1.2 Ntabamhlope

The DAEUN monitors and maintains a dense network of raingauges in the Ntabamhlope/De

Hoek hydrological research catchments near Estcourt. One of these raingauges, N23, was

not used in the establishment of homogeneous regions using cluster analysis, or in any of

the regression analyses to estimate the 24 h LI value or in the regression analyses to

estimate the regional slope of the /. I duration relationship. Hence this site presents a good

and relatively long (31 years) record to evaluate the hypotheses. The results of estimating

the L-moments at Station N23 using the six hypotheses are shown in Figure 51. It is evident

from Figure 51 that changes in the slope of the Z_/:duration relationship occur at event -

durations of approximately 1 h and 24 h Hence Hypothesis 1 is not valid at this site and the

AMS for durations of 1 and 2 days cannot be used to estimate the L-moments for shorter

durations. The breaks in linear scaling at approximately 1 h and 24 h is a characteristic
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displayed by all the data from raingauges at Ntabamhlope. The break in linear scaling at

approximately 1 h could be a result of historical periods when weekly drum-type

autographic charts were used at Ntabamhlope, where each 1 mm on the chart represents

approximately 0.5 h. Whilst the resolution of chart digitisation may theoretically be as good

as 0.5 mm, in practice the effective resolution of the digitiser is probably closer to 1 mm.

Hence, the data for durations shorter than 0.5 h when the weekly drum type charts were

used, are expected to be relatively unreliable and the break in scaling at approximately 1 h

may be the result of the temporal resolution of the digitisation process. However, for more

than half of the 31 years of data, strip-type autographic charts were used which have a time

resolution of as little as 2 minutes. Hence these breaks in linear scaling, which are also

observed at most other sites located in summer rainfall regions in South Africa, may not be

caused by the data measurement system. Again as expected, Hypothesis 5 which uses the

1 day L_l value to scale the RGC and to estimate the RS, underestimates the at-site L-

moments. The A V-MAREs of the design storms computed from the estimated L-moments

for the six hypotheses are shown in Figure 52.
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Figure 51 Estimation of LI and L_2 at Ntabamhlope (N23) for the six hypotheses
summarised in Table 48
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Figure 52 Mean absolute relative errors, averaged for durations of 5 min -1 h
and 2 - 24 h, of 2 to 100 year return period design storm depths
estimated at Natabamhlope (N23) for the six hypotheses summarised
in Table 48

With the exception of Hypothesis 1 and exclusion of Hypothesis 5, all the other hypotheses

are able to estimate the design storm depths extremely well for durations ranging from 2 to

24 h at N23, as shown in Figure 52. For durations <1 h, only Hypothesis 3 resulted in

acceptable design storms. Thus design storms for durations > 1 h and up to 24 h may be

estimated at Ntabamhlope using only the regional average L-moments, scaled either with

observed (if available) or estimated 24 h LI values, in conjunction with the regional slope

of the log transformed Z_7 duration and L_2 duration relationships.

6.5.1.3 Cedara

The DAEUN also monitors and maintains a dense network of raingauges in the Cedara

hydrological research catchments near Pietermaritzburg in KwaZulu-Natal. In addition, an

236



official SAWB station (0239482) is located at the Cedara Agricultural Research Station.

The L-moments estimated by the six hypotheses at Stations C182 and 0239482 are shown

in Figures 53 and 54 respectively. At Station Cl 82, a distinct change in the scaling of the

L-moments at approximately 24 h is evident and hence Hypothesis 1 was not valid, while

Hypotheses 4 and 6 slightly overestimated the Z, 7 values computed from the observed

values. It is noted that the 24 h L_l value used in Hypothesis 5, which is the 1 day LI

value, is less than the observed 24 h LJ value at C182. This is not the case for SAWB

Station 0239482, where the 1 day LJ value (from the standard raingauge) is greater than

the 24 h LJ value (from digitised data). Hence at SAWB Station 0239482, it is postulated

that the unreliability of the data, particularly the number of missing extreme events, has

resulted in the mean of the 24 h AMS to be less than the mean of the 1 day AMS. This

trend is noted at many SAWB stations, reinforcing previous comments regarding the

reliability of the SAWB data and the need to develop techniques to estimate design storms

based on the daily, non-recording raingauge network. For durations less than 30 min the

data at Station 0239482 are not consistent with the rest of the data nor with regional trends

and are thus assumed to be problematic.
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Figure 53 Estimation of LI and L_2 at Cedara (C182) for the six hypotheses
summarised in Table 48 (O=Observed, 1 -6=Hypotheses)
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The A V-MARE of design storm depths estimated for Stations Cl 82 and 0239482 are shown

in Figures 55 and 56 respectively. At C182, application of Hypotheses 3 - 6 result in the

estimation of acceptable design storms for durations ranging from 5 min to 24 h, whilst

design storms estimated using Hypotheses 1 and 2 exceed the "acceptable" 20% error level.

The opposite trends are evident in Figure 56 where, for Station 0239482, the largest errors

appear to result from Hypotheses 4-6. In Hypothesis 4 the 24 h LI value is estimated

using regional regressions of site characteristics, Hypothesis 5 uses the daily rainfall data

to estimate the 24 h LI value and Hypothesis 6 uses an adjusted daily LJ value to

estimate the 24 h LI value. Thus, in the light of the inconsistency between the digitised

and daily rainfall databases at Station 0239482, it is postulated that Hypothesis 4, which

utilises information from the entire region, and Hypothesis 6, which adjusts the LI value

extracted from the daily rainfall data into an equivalent 24 h L_l value, are both more

reliable estimates of the true 24 h I J value than the value computed directly from the

digitised data, as used in Hypotheses 2 and 3. Therefore, it is postulated that the
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discrepancies between design storms estimated using Hypotheses 4-6 and from the digitised

data, as shown in Figure 56, are not "real" errors and merely reflect the errors in the

digitised data. Thus, it is postulated that Hypotheses 4 and 6 result in the most reliable

estimates of design storms at Station 0239482.
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Figure 55 Mean absolute relative errors, averaged for durations of 5 min - 1 h and
2 - 24 h, of 2 to 100 year return period design storm depths estimated at
Cedara (C182) for the six hypotheses summarised in Table 48

6.5.1.4 Comparison between selected stations

A detailed analysis of the performance of the six hypotheses in estimating the first and

second L-moments and design storms have been presented for raingauges located at

Cathedral Peak, Ntabamhlope and Cedara, all of which are located in Cluster 3. In this

section the A V-MAREs of the design storms estimated using the hypotheses at selected

stations in Cluster 3 are compared. The^ V-MARE values of design storms at selected sites

and for durations of 2 - 24 h are shown in Figure 57. In addition to the stations in Cluster
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3 already discussed, Figure 57 includes results from Kokstad (0180722) and Piet Rietief

(0444540).
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Figure 56 Mean absolute relative errors, averaged for durations of
5 min - 1 h and 2 - 24 h, of 2 to 100 year return period
design storm depths estimated at Cedara (0239482) for
the six hypotheses summarised in Table 48
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Figure 57 Comparison of mean absolute relative errors of design

storms, averaged for durations of 2 - 24 h and for return
periods of 2 - 100 years, estimated at selected sites in
Cluster 3 for the six hypotheses summarised in Table 48
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As evident in Figure 57, Hypotheses 4 and 6 performed consistently well at the non-SAWB

stations (CP6, N23 and C182), but resulted in some of the largest errors at the SAWB

stations (0239482, 0180722 and 0444540). As shown in Figure 58 the 24 h LJ values

extracted from the digitised data correctly exceed the values extracted from the daily data

at non-SAWB stations, and the adjusted daily value, as used in Hypothesis 6, is similar to

the value extracted from the digitised data. However, at all the SAWB stations the LI

values extracted from the digitised data are less than those extracted from the daily rainfall

data, indicating inconsistencies in the two sets of data. The limitations of the regional

regression relationships which estimate the 24 h LI value as a function of site

characteristics, as developed in Section 5.4 and used by Hypothesis 4, are evident in Figure

58. The estimated 24 h LJ. values tend to mimic the observed 24 h LI values extracted

from the digitised data, which were used in the development of the regression equations and

which have been shown to be unreliable at some SAWB stations. Hence, as before, it is

postulated that the best estimate of the 24 h LI value is the adjusted value extracted from

the daily rainfall data, as used in Hypothesis 6, and thus design storms based on L-moments

estimated using Hypothesis 6 are deemed to be the most reliable in Cluster 3. Based on this

assumption and on results from Station 0444540, design storms estimated directly from the

digitised rainfell data may underestimate, on average over durations ranging from 2 - 24 h,

the true values by as much as 65% at some sites in Cluster 3.

6.5.2 Cluster 6

Nine stations are contained within Cluster 6, of which six are SAWB stations, one is a CSIR

station (Jnk 19A) and the remaining two stations (Newlands, Athlone) are operated by the

Cape Town City Engineers' Department. All the data for Athlone and Newlands and some

of the data for Jnk 19A were digitised by the DAEUN. The data from these three stations

had no digitising errors and are assumed to be relatively reliable, although no control daily

rainfall data were available to check the consistency of the data. The A V-MARE of design

storms estimated at selected sites in Cluster 6 and for durations ranging from 2 - 24 h are

shown in Figure 59.

241



Cluster 3
80

70

| 60

J= 40-

30

20

10-

0-

;>

>

/

/

f

/

/

/

/ -

X

X

-<

CP6 N23 C182 0239482 0180722 0444540

Digitised Q Daily Adj. Daily Regression

Figure 58 Comparison of 24 h L_J values estimated from various sources for
selected sites in Cluster 3

Cluster 6
35-

30-

25-

u72 0

1 15-

"* 10

5-

0-
Jnk19A Athlone Newlands 0021591 0023710

S3

Figure 59 Comparison of mean absolute relative errors of design storms,
averaged for durations of 2 - 24 h and for return periods of 2 - 100
years, estimated at selected sites in Cluster 6 for the six hypotheses
summarised in Table 48
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Similar to results presented for Cluster 3, design storms resulting from the application of

Hypotheses 4 and 6 generally result in the smallest deviation from design storms estimated

from the digitised rainfall data at most non-SAWB stations and the converse is true at

SAWB stations. Again this may be explained by the results contained in Figure 60, which

indicate that discrepancies exist between the digitised and daily SAWB rainfall data

(0023710, 0021591). It is also noted that Hypothesis 1, which is the simplest of the

hypotheses considered, is not valid at most sites considered in Cluster 6. Hence, it is

proposed that the estimation of the first and second L-moments using Hypothesis 6 results

in the most reliable estimates of design storms in Cluster 6.
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Figure 60 Comparison of 24 h LI values estimated from various sources for
selected sites in Cluster 6

6.5.3 Selected Other Clusters

Results from selected stations in different geographic and climatic regions are presented in

this section. These include stations in the central (Cluster 11), North-Eastem (Cluster 2) ,
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Northern Cape (Cluster 7) and West coast (Cluster 14) regions of South Africa, as indicated

in Figure 36.

The CSIR stations at Mokobulaan, which were not used in the clustering procedure or

regression analyses, fall geographically on the boundary of Clusters 2 and 11, but are closer

to the Euclidian mean of site characteristics of Cluster 11 than of Cluster 2. Hence these

stations provide an opportunity for an independent validation of the hypotheses. In addition,

SAWB Station 0476398 (Johannesburg International Airport) also located in Cluster 11 is

considered. The station selected for Cluster 2 is SAWB Station 0596179 (Skukuza), for

Cluster 7 is SAWB Station 0258213 (Drieplotte) and for Cluster 14 is SAWB Station

0106880 (Vrendendal). The A V-MARE values for these stations are shown in Figure 61 and

a comparison of the L_l estimated from various sources for the same stations is shown in

Figure 62. The discrepancies at the SAWB between the LJ values estimated from the

digitised and daily rainfall data again indicate that the most reliable design storms are

estimated when Hypothesis 6 is used to estimate short duration L-moments.

The relatively high average deviation of 20% in design storms estimated using Hypothesis

6 at Moko 3A for durations ranging from 2 h - 24 h reduces to an acceptable 12% if the

range is reduced to 4 h - 24 h, thus indicating a break in linear scaling for shorter durations.

This trend is evident in the observed and estimated L-moments for Moko 3 A shown in

Figure 62. Similar breaks in linear scaling at durations ranging from 1 to 4 h were also noted

at other sites, for example, Ntabamhlope, Cedara, Kokstad, Piet Rietief, Johannesburg,

Skukuza and Drieptotte, which are all located in the summer rainfall region where short

duration, intense events resulting from thunderstorm activity is the predominant rainfall

generating mechanism. The breaks in linear scaling at shorter durations were not evident at,

for example, Jonkershoek. Cape Town or Vredendal, which are all in the winter rainfall

region and generally experience low intensity, longer duration frontal type rainfall events.

An anomaly to this explanation is Cathedral Peak, which is in a summer rainfall region and

experiences thunderstorm activity, but scales linearly to durations as short as 5 minutes.
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Figure 61 Comparison of mean absolute relative errors of design storms,
averaged for durations of 2 - 24 h and for return periods of 2 -
100 years, estimated at selected sites and clusters for the six
hypotheses summarised in Table 48
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6.6 CHAPTER CONCLUSIONS

The focus of this chapter has been on estimating design storms for durations < 24 h from

daily rainfall data. Six hypotheses for estimating design storm depths for durations up to

24 h were examined. In most cases the stations evaluated were also used in the regression

analyses. However, this was unavoidable owing to the limited number of stations which

have recording raingauges. Where possible stations have been "hidden" (e.g. N23 and Moko

3A) and used to evaluate the hypotheses.

Of the six hypotheses evaluated, the simplest and intuitively most attractive to adopt is

Hypothesis 1 which assumes that the L_l and L_2 values for durations < 24 h can be

derived directly from the at-site 24 h and 48 h values. However, while this hypothesis

resulted in good estimates of design storms at some sites, it was shown not to be valid at

other sites and is therefore not recommended for general use.

It was evident for stations within a relatively homogeneous cluster, that the slope of the

LI :duration and L_2:duration relationships, when plotted on log scales (Le. power law

relationships), were similar at the sites within the cluster. Hence equations based on multiple

linear regression relationships of site characteristics were developed to estimate this slope,

and the slope estimated using the regression analyses and site characteristics was termed the

Regional Slope (RS). The estimation of the slope from site characteristics proved to be

feasible for most clusters, except for Cluster 1 and 11. Even in clusters where relatively

weak relationships were obtained (e.g. Clusters 7 and 11), reasonable design storm depths

were estimated. Thus, given an index point such as the 24 h values used in this analysis, the

LI and L_2 moments can be estimated for durations shorter than 24 h. Scaling of the site

characteristics prior to the regression analysis would have resulted in more reasonable

coefficients in the multiple linear regression equation and it is recommended that this should

be done in future work of this nature.

The use of the regional average L-moments, which are record length weighted averages of

L-moments of the AMS scaled by the at-site mean of the AMS (LI) for each different
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duration (Hypothesis 3), also proved to be successful within the limitations of the reliability

of the majority of the digitised data. Thus, in the derivation of the regional average L-

moments, the at-site L_l value for the D h duration is used as an index storm. Observed

L_I values were used to re-scale the regional average L-moments in Hypothesis 3.

Hypothesis 4 re-scaled the 24 h regional average L-moments using 24 Ll values estimated

from site characteristics and regressions developed for each cluster as reported in Chapter

5. D h L_l values (D < 24) were then be derived from the 24 h L_l value estimated in this

manner in conjunction with the RS, estimated using the regression equations and site

characteristics for the site in question. Again, within the limitations of the data, Hypothesis

4 generally performed well at most sites evaluated. Although Hypothesis 4 incorporates

information from the region via the regional average L-moments and RS and thus should

compensate for limited amounts of unreliable data, the large amount of unreliable data in

some clusters used in this study resulted in the compensation by Hypothesis 4 to be

relatively ineffective.

It was very evident that from the results presented in this and other chapters that the S AWB

digitised and daily rainfall data sets are not consistent. The inconsistency between the 1 day

and 24 h LI values resulted in Hypothesis 6 being developed. The 24 h L_l value used

in Hypothesis 6 was calculated from the daily rainfall data and converted into a continuous

time value using the regionalised ratios developed in Section 6.4. The regionalised slope of

the log-transformed Z_7:duration relationship was then used in conjunction with the

estimated 24 h L_l value to estimate L_l for other durations, which are then used to re-

scale the regional average L-moments. The GEV distribution was fitted to the estimated L-

moments for durations <, 24 h and hence design storms are estimated for these durations.

Hypothesis 6 is thus eminently suitable for application at sites which have daily, but not

shorter, duration data available. The use of the daily rainfall data and the regionalised

continuous: fixed time L_l ratios to estimate the true 24 h L 1 values thus attempt to

compensate for any bias that may be contained in the 24 h LI computed from the digitised

data as a result of, for example, missing data either caused by instrument maliunction or

incorrect digitisation of charts. The use of Hypothesis 6 indicates that design events

247



estimated directly from at-site digitised rainfall data obtained from the SAWB would, at

some sites, have underestimated the "true" design value by up to 65% on average over

durations ranging from 2 - 24 h.

The use of regional average L-moments, particularly when scaled as in Hypothesis 6 with

a better estimate of the true 24 h LI, performed well in all clusters. In particular, the use

of a regional record length weighted T3 (third L-moment ratio = skewness) value, as the

third moment for the fitting of the GEV distribution resulted in reasonable design rainfall

estimates at all sites.

Hypotheses 4 to 6 assume that the L-moment:duration relationship is linear when plotted

as log-transformed values. This power law function appears to hold true for most clusters

over the range from 1 to 24 h. However, a change in the linear relationship at durations

ranging from 1 to 4 h was noted at most sites which experience summer rainfall (e.g.

Ntabamhlope, Cedara, Kokstad, Mokobulaanand Drieplotte), where thunderstorms are the

predominant rainfall generating mechanism. In the winter rainfall region (e.g. Jonkershoek,

Cape Town and Vredendal), where frontal rainfall systems predominate, the deviation in

linear scaling at a particular duration is not as marked. Although deficiencies in the temporal

resolution of the rainfall measurement and digitisation processes cannot entirely be

discounted as the cause of the change in linear scaling, it is postulated that the phenomenon

is mainly the result of the predominant rainfall generating system. The durations at which

the breaks occur at a particular site are hypothesised to be related to the typical duration of

thunderstorm activity.

Regional ratios of 24 h : 1 day LI values were used to estimate the 24 h value from the

daily rainfall data for each site in each cluster. When the standard error of the mean ratios

for each cluster are considered, it is noted that the mean value (=1.20) for all clusters fails

within one standard deviation of the mean value for all clusters. Hence a generalised value

of 1.20 may be adopted for use in South Africa.
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Hypotheses 4 to 6 assume that the slope of the log-transformed L-moment:duration

relationship used is correct even though it has been pointed out that the majority of the

SAWB digitised rainfall data were not reliable, as result of numerous digitising errors and

inconsistencies between the digitised and daily rainfall data. The limited amount of non-

SAWB digitised rainfall data resulted in the use of some SAWB data in the regional

analyses to estimate the RS, although it is conceded that some of this data was unreliable.

It was shown in Chapter 2 that the errors in the daily totals of rainfall computed from the

digitised database occurred over a wide range of values. It is probable that the wide range

of event totals where errors occurred is associated with a wide range of event durations.

Thus, it is postulated that the slopes are probably reasonable estimates of their "true"

values, as events over a range of durations were affected by the periods of missing data. It

is thus assumed that missing events affect all durations equally and thus that the "true" slope

and the slope derived from the data are similar.

Of the hypotheses considered in this chapter, Hypothesis 6 performed consistently well at

sites where no discrepancies were noted between the digitised and daily rainfall data. At

sites where inconsistencies were noted, it is postulated that Hypothesis 6 compensates for

deficiencies in the digitised data. Thus Hypothesis 6, which combines a regional index value

approach to design storm estimation and the scaling properties of the extreme rainfall

events, is recommended for estimating design storms in South Africa for durations ranging

from 2 h to 24 h. However, Hypothesis 6 should be used with caution for durations < 2 h

and further research into estimating design storms for these shorter durations is

recommended.

Hypothesis 6 can only be applied at sites which have daily rainfall data. It is recommended

that regional relationships be developed to estimate the at-site 1 day L_l value, computed

from the daily rainfall data, as a function of site characteristics as reported in Section 6.3

for the 24 h L_l values, which were computed from the digitised rainfall data. This

relationship in conjunction with the regionalised 24 h : 1 day LI ratios and RS would

enable reliable estimation of design storms for durations z 24 h at any site in South Africa.

249



In this chapter, regional average L-moments have been combined with the power law

relationship between the first and second order L-moments and duration to give a technique

for estimating short duration design rainfall values at ungauged sites or at sites where only

daily rainfall data are available. In Chapter 7, the use of stochastic intra-daily rainfall models

to estimate short duration design rainfall values is investigated.
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CHAPTER 7

MODELLING RAINFALL AND ESTIMATING SHORT

DURATION DESIGN STORMS IN SOUTH AFRICA USING

THE BARTLETT-LEWIS RECTANGULAR PULSE MODEL

The Bartlett-Lewis (BL) stochastic rainfall models described in Chapter 3 were applied to

rainfall data from various locations in South Africa, in this chapter the methodology of

determining and optimising the parameters for the models, measures of performance and the

results from applying the models to selected stations are presented. The performances of

both the Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM) and the Bartlett-

Lewis Rectangular Pulse Gamma Model (BLRPGM), as described in Chapter 3, were

assessed for various sets of historical moments used to determine model parameters. The

assessments include comparisons between observed and both analytical as well as simulated

moments and between design rainfall depths computed from the observed data and from the

synthetic rainfell series generated by the models.

In addition to establishing whether the performances of the models were adequate, and in

the light of the low reliability of much of the SAWB digitised rainfall data, the focus was

also on determining model parameters using readily available daily rainfall values, and on

inferring shorter duration statistics using statistics computed from the daily data. Most of

the selected case studies presented use data from sources considered reliable and/or which

were dighised by the DAEUN. The locations of the stations used in this chapter are

illustrated in Figure 63. Within the limits of available reliable data, the models were

evaluated in different regions of the country. In regions where no reliable data were

available, data which were deemed to be of low reliability were used to illustrate some of

the inconsistencies in the data.

The method of estimating the parameters for the models is described in Section 7.1. A

goodness-of-fit index and sets of moments to be used for parameter estimation are proposed

in Section 7.2 and the performance of the models in terms of moments, event characteristics
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and extreme values are evaluated at selected sites in Sections 7.7 and 7.8 for parameters

determined using the different sets of moments. Section 7.3 addresses the estimation of

monthly moments from the observed data. In order to estimate the parameters of the models

at sites which have only daily rainfall data, a technique was developed to estimate short

duration variances from the daily data, and this technique is explained in Section 7.4. One

of the problems noted with the use of the BLRPMs was the difficulty in identifying model

parameters, and the correlation between model parameters is investigated in Section 7.5 and

based on these correlations, a parameter search strategy was developed as detailed in

Section 7.6. The performance of the models with respect to the temporal distribution of

storms is evaluated at selected sites in Section 7.9. In order to identify better parameters for

the models the results of various parameter optimisation strategies are presented in Section

7.10. In two interesting case studies presented in Section 7.11, the problem of estimating

design rainfall depths from a short period of record is addressed.
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MBLRPM and the BLRPGM
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7.1 PARAMETER ESTIMATION

The parameters for the models were determined by the method of moments which equates

moments computed from observed data (historical moments) with the equivalent analytical

expressions of the moments derived for the model. The resulting set of non-linear equations

were solved using a quasi-Newton routine to minimise the objective function given in

Equation 54 and repeated here as Equation 73, constrained such that the parameters were

Z= min
N

/ = ]

F, (X)
- I ...73

where

X =

Z(X) =

m =

parameter vector with 6 elements for the MBLRPM and 7 elements for

the BLRPGM,

goodness-of-fit statistic or residual of least square function,

model expression for statistic /at specified level of aggregation (duration)

computed using parameter vector X,

statistic / estimated from historical data at the same level of aggregation,

number of statistics and different levels of aggregation used in parameter

determination, and

weight assigned to /-th statistic (set = 1 for all statistics in this study).

The parameters were transformed as shown in Equation 74 such that each parameter was

constrained to fall within defined ranges. The transformation generally aided the estimation

of the parameters when the range of the transformed values was limited to (0:1), i.e. YMAX{

= 1 and YMINt = 0.

j - XMINj

XMAX{-XMINh

VMIN! ...74
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where

Y,

YMAX{

YMIN,

XMAX,

XMIN;

transformed value for i-th parameter (X,),

required maximum transformed value for /-th parameter

(usually 1),

required minimum transformed value for i-th parameter (usually

0),

maximum allowable value for i-th parameter, and

minimum allowable value for i-th parameter.

7.2 SELECTION OF MOMENTS

As shown in Table 10 in Chapter 3, the choice of the combinations of statistical moments

used in the estimation of parameters affects the values of the parameters and could also

influence the performance of the model. Hence a comparison was made between the

statistical moments and other storm characteristics (e.g. dry probability, event duration and

number of events) computed from the observed data (historical moments) and those

computed using the estimated parameters and derived moment expressions (analytically

derived moments), both at the levels of aggregation of the moments used in the estimation

of the parameters and at other levels. A goodness-of-fit statistic was computed as the

deviation between the analytical and historical moments, expressed as a percentage of the

historical moments for different levels of aggregation and moments and averaged over all

months as shown in Equation 75.

Hlmjj
...75

where

GOF goodness-of-fit mean scaled absolute deviation (%),

analytical moment for month m, i-th aggregation level andy-th

moment.

254



H{miJ) = historical moment for month m, /-th aggregation level andy-th

moment,

NL = number of aggregation levels used, and

NM = number of moments used.

The above GOF was computed for different sets of moments in order to establish an

optimum set to use in the derivation of model parameters. Two approaches were used in

the selection of sets of moments to use. In the first approach the GOF was evaluated

assuming that reliable short duration rainfall data were available and thus moments for any

level of aggregation could be used in the composition of parameter sets. The sets of

moments evaluated by this approach are termed Set 1 in Table 51. The second approach

attempted to derive the model parameters based only on moments and storm characteristics

that could be derived or estimated from the daily rainfall data and are denoted as Set 2 in

Table 51. Thus the 24 h and 48 h values referred to in Table 51 are derived from the

digitised data for Parameter Set 1 and from the daily rainiall data for Parameter Set 2. The

method of deriving the variance for durations < 24 h from the daily rainiall data, as required

in Set 2f, is outlined in the Section 7.4. The computation of moments from the data is

discussed in Section 7.3.

7.3 ESTIMATION OF MOMENTS

In the literature two approaches have been adopted in the estimation of moments from the

historical data. One option is to pool the data for each calendar month and to calculate the

moments from the pooled data. The second approach computes the moments from the

individual months of data and then pools the moments for each calendar month. Pooling

the data into a continuous series could result in some erroneous moments (e.g. variance and

autocorrelation) as a result of the moments computed for the period from the end of one

month to the beginning of the next month. Problems are also encountered in the

computation of the autocorrelation when periods of missing data are encountered in the

pooled data. In the pooled moments approach, the moments for the month are excluded if
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any part of the month has missing data. Hence the pooling of moments approach was

adopted in this study, although the differences in the moments computed using the two

approaches were generally found to be small.

Table 51 Definition of sets of statistics used for estimating model parameters

( ) indicates that the moment was used for the BLRPGM only

[] indicates values are estimated from daily rainfall data

Set
No.

la

1b

lc

Id

le

If

lg

2a

2b

2c

2d

2e

2f

Level of Temporal Aggregation of Moment / Event Characteristics Used (h)

Mean

1

1

1

1

1

24

1,6,12,24

24

24

24

24

24,48

24

Variance

1,24

1

1,24

1,6

1,6

1.6, 12,24,48

1,6, 12,24

24, (48)

24,48

24,48

24,48

24,48

[1.6, 12], 24, 48

Lag-1 Auto-
Correlation

1,(24)

1,24

1,24

1,(6)

1(6)

24

1,6, 12,24

24,48

24

24,48

24,48

24,48

24

Dry
Probability

1,24

1,24

1

1,24

1,6

24,48

1,6, 12,24

24,48

24,48

24

24,48

24,48

24,48

A problem encountered with the digitised rainfall data was the apparent digitisation of

spurious periods of very low intensity rainfall. The linear interpolation between adjacent

data points within the breakpoint digitised rainfall data can result in very small amounts of

apparent rainfall when totals of rainfall for fixed time increments (e.g. 15 minutes) are
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extracted from the data. For example, if two consecutive digitised points have a time

difference of 24 h between them and have a slightly different rainfall depth, then the linear

interpolation between data points would result in the extraction of a small amount of rainfall

for each of the intervals within the 24 h period and would thus appear as continuous rainfall

in the extracted data. Hence apparent rainfall rates of less than 1 mm per day or 0.01 mm

per 15 min increment were assumed to be periods with zero rainfall.

7.4 ESTIMATION OF VARIANCES FOR SHORT DURATION RAINFALL

Analytically derived moments matched the historical moments better when historical

moments for durations shorter than 24 h were included in the set of moments used to

estimate the model parameters. Marked improvements in analytically derived moments

resulted when second-order moments for shorter durations (1 to 24 h) were used in the

estimation of parameters. Hence, in the absence of short duration data as assumed for Set 2

moments, which were based on daily rainfall data, or when the short duration rainfall are

considered unreliable, it is necessary to estimate the shorter duration moments.

Cowpertwait et al. (1996b) estimated the variances of rainfall for durations shorter than

24 h from the variances of daily rainfall totals, using a regionalised regression approach

between the shorter duration and daily variances. In this study, insufficient reliable short

duration data were available to estimate regional relationships. Hence an alternative

approach had to be devised.

It was noted at sites where the short duration rainfall data were considered to be reliable,

that the relationship between variance and duration, when plotted on a log scale, is nearly

linear. This is depicted in Figure 64 for selected stations from different climatic regions and

for selected months. Hence, assuming a linear relationship on a log-scale between variance

at a particular aggregation level and duration, the variance for any duration can be estimated

given the daily rainfall data. The results of estimating the variance for durations shorter than

24 h from the variance of 1 and 2 day daily rainfall data are shown in Figure 65 for selected

stations and include results from all calendar months. As shown in Figure 65 by the
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deviation of the estimated values from the 1:1 line, it was found that the estimated variances

generally exceed the observed variances for values < 1 mm2. The variance of hourly data

is generally < 1 mm2 for most stations. Hence the estimation method is deemed to be

suitable for durations z. 1 h. Thus this method was used to estimate the historical variance

for durations shorter than 24 h from daily rainfall data and enables the estimation of the

historical moments in Set 2f to be derived entirely from daily rainfall data.
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0.0
10 100 1000
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10000
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Ntabamhlope (N23)
1000.0

r 100.0
E
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U

100 1000
Duration (min)

10000

Jan Feb Mar Oct Nov Dec

Figure 64 Variance vs duration at selected stations and for selected months
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10000
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Figure 64 (continued) Variance vs duration at selected stations and for selected months

7.5 PARAMETER CORRELATION

The constrained minimisation of Z(X) Equation 73 generally resulted in a satisfactory

solution with the constraints on the parameters set to values such that the physical attributes

of the parameters, such as inter-storm and storm duration, were realistic and/or to ensure
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that the parameters generally fell within the bounds of parameters reported in the literature.

However, on occasion with particular sets ofhistorical moments at some sites, and generally

with the Set 2 moment combinations, difficulties were encountered and the minimum of the

objective function was frequently located at the limits set for one or more of the parameters.

In addition, the relationships between the parameters of the models are not explicit and the

quasi-Newton minimisation procedure gives no confidence interval to the estimated

parameters.
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Figure 65 Estimated vs observed variance at selected stations
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The sum-of-squares function in Equation 73 can be re-written as a set of m simultaneous

equations with n parameters in matrix notation (matrix and vectors shown in bold typeface),

as shown in Equation 76.

Z{X) = i[r,.(AT)]2 = r7'r ....76

where

f = [r,(X)ir2(X),....,rm(X)],

in which

and the first and second order derivatives of Z(A) can be derived (Fletcher, 1987) as

...-77

m

= 2AAT + 2^rjV
2ri ....78

where

....79

is the n x m Jacobian matrix the columns of which are the first derivative vectors Vr, of the

components of r (Ai} = drj I dX?), i.e.

Vr,. = [dri/dXhdr,/dX2, ,dri/dXn]
T ...80

The Hessian matrix of second partial derivatives is

H(X) = [v2
n,V2r2 V2rm\ ...81

where
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V2r, = [d1rl/dXidXhd
2r,/dXidX2, ,&r, / dX, dXH]T . -82

When Z(X) is minimised, the residual r, values are generally small and hence the second term

in Equation 78 can be ignored. Assuming that the residual (r,) values are normally

distributed with variance c? and using this approximation, the variance-covariance matrix

(V) may be estimated according to Fletcher (1987) as

..-83

and the variance estimated as

m-n

where Z(X) is the maximum likelihood sum of squares obtained by minimising Z(X), m is

the number of equations and n is the number of parameters.

The diagonal of the V matrix corresponds to the variance of the parameters and the off-

diagonal elements correspond to the covariance between the parameters. Hence the

correlation coefficient between parameter i andy may be computed as ptj = VtJ{ at o^ where

Vy is the element in row i and columny in f (Stuart and Ord, 1987).

The variance-covariance matrix Kmay also be estimated from the Hessian {H) matrix for

maximum likelihood functions as was performed by Woolhiser and Pegram (1979). In the

case ofleast squares estimates, accordmg to Fletcher (1987), the variance-covariance matrix

Vmscy also be estimated from the Hessian (//) matrix as

...85
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Thus the correlation matrix (R) may, according to Woolhiser and Pegram (1979) and (Press

et al., 1992), be derived as

....86

where S is a square matrix with oi (derived from the diagonal of V) on the diagonal and the

rest of the matrix void.

Using the above relationships, the standard deviation of the parameters can be estimated and

relationships between the parameters can be investigated. The variance-covariance matrix

was calculated with very similar results using both the Jacobian matrix and the Hessian

matrix. For a well determined system {m-ri), acannot be estimated using Equation 84 and

hence crwas estimated as Z(A") when m~n.

The estimates of the values of the parameters and the results from estimating the Standard

Deviation of the estimates (SD), Coefficient of Variation (CV) as SD/estimate and the

correlation between parameters of the MBLRPM, computed using Equation 86, are

contained in Table 52 for raingauge N23 in the Ntabamhlope research catchments. The

parameters of the MBLRPM were determined using moment Set lb in Table 51 and are

referred to as parameter Set lb. Thus the term "parameter Set lb" refers to the set of

parameters derived for the model using the Set lb moments referred to in Table 51.

From Table 52 it is evident that there is a high degree of correlation between parameters

and that the parameters are not well defined. This is apparent from computing the CV, i.e.

the ratio between the SD and parameter value. In particular, the K, <p, v and fix parameters

are poorly defined. The most poorly defined parameter is v and the results of fixing v at a

value determined by the constrained minimisation procedure, thus reducing the parameter

space by one, are contained in Table 53.
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Table 52 Estimated parameters, correlation matrix and goodness-of-fit ofthe MBLRPM,

fitted to data for January from N23, using parameter Set lb

Parameter

Name

A

K

<P

V

a

Value

0.0380

0.09 U

0.0861

0.9734

4.5231

10.2520

SD

0.0057

0.2594

0.1113

2.6474

5.3119

3.5456

CV

0.1511

2.8455

1.2924

2.9199

1.1744

0.3458

Correlation Coefficient

A

1.0000

0.7702

0.8060

-0.8556

-0.8671

0.7819

K

0.7702

1.0000

0.9900

-0.9571

-0.9319

0.8200

0.8060

0.9900

1.0000

-0.9716

-0.9589

0.8435

V

-0.8556

-0.9571

-0.9716

1.0000

0.9952

-0.9378

a

-0.8671

-0.9319

-0.9589

0.9952

1.0000

-0.9427

0.7819

0.8200

0.8435

-0.9378

-0.9427

1.0000

z

0.0062

Table 53 Estimated parameters, correlation matrix and goodness-of-fit for the

MBLRPM, fitted to data for January from N23, using parameter Set lb and

with v fixed

Parameter

Name

A

K

4>
V

a

Value

0.0380

0.0909

0.0860

0.9763

4.5290

10.2483

SD

0.0030

0.0750

0.0264

CV

0.0782

0.8:55

0.3066

Correlation Coefficient

A

1 0000

-0.3240

-0.2067

K

-0.3240

J.O00O

0.8779

-0.2067

0.8779

1.0000

V a

-0.3077

0.7264

0.3477

fix

-0.1145

-0.7708

-0.8235

Fixed

0.5206

1.2303

0.1149

0.1201

-0.3077

-0.1145

0.7264

-0.7708

0.3477

-0.8235

1.0000

-0.2753

-0.2753

1.0000

Z

0.0062

The effect of fixing the value of v in the MBLRPM results in better defined parameters with

lower inter-parameter correlations. However, the goodness-of fit (Z) is not improved using
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this strategy. A similar analysis to the above was performed for the BLRPGM and the

results for a selected month are contained in Tables 54 and 55.

Table 54 Estimated parameters, correlation matrix and goodness-of-fit forthe BLRPGM,

fitted to data for January fromN23, using parameter Set If

Parameter

Name

X

K

<fi

V

a

P

6

Value

0.0344

0.1350

0.0708

45.3685

105.1307

0.3571

0.0717

SD

0.0077

0.0544

0.0131

58.1870

86.5885

0.1135

0.0167

cv

0.2223

0.4028

0.1857

1.2825

0.8236

0.3178

0.2325

Con-elation Coefficient

X

1.0000

-0.2961

0.6942

-0.9153

-0.9153

0.5929

0.0079

K

-0.2961

1.0000

0.0879

0.3056

0.3063

-0.8712

-0.7240

<P

0.6942

0.0879

1.0000

-0.7138

-0.7144

0.3516

-0.0089

V

-0.9153

0.3056

-0.7138

1.0000

1.0000

-0.6176

0.0851

a

-0.9153

0.3063

-0.7144

1.0000

1.0000

-0.6181

0.0840

P

0.5929

-0.8712

0.3516

-0.6176

-0.6181

1.0000

0.6843

5

0.0079

-0.7240

-0.0089

0.0851

0.0840

0.6843

1.0000

Z

0.O084

From Table 54 it is evident that there is a large degree of correlation between some

parameters of the BLRPGM and that the parameter u is the least well defined. In this

instance the a and v parameters are completely correlated and fixing either of these

parameters will fix the other parameter. The results of fixing v, and thus reducing the

parameter space by one, are contained in Table 55. Similar to the results from the

MBLRPM, this strategy results in better defined parameters for the BLRPGM, but does not

improve the fit (2) of the model. A strategy to reduce the parameter space, and thus have

more reliable estimates of the parameters of the model, while simultaneously improving the

overall fit of the model is investigated in the following section.
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Table 55 Estimated parameters, correlation matrix and goodness-of-fit for the BLRPGM,

fitted to data for January at N23, using parameter Set If and with u fixed

Parameter

Name

A

K

4>

V

a

P

6

Value

0.0344

0.1349

0.0708

42.8269

99.3731

0.3574

0.0717

SS

0.0028

0.0473

0.0084

CV

0.0817

0.3503

0.1188

Correlation Coefficient

A

1.0000

-0.0425

0.1451

K

-0.0425

1.0000

0.4591

0.1451

0.4591

1.0000

V a

0.0110

0.2558

-0.2668

P

0.0867

-0.9113

-0.1621

6

0.2137

-0.7905

0.0741

Fixed

0.2354

0.0815

0.0152

0.0024

0.2281

0.2116

0.0110

0.0867

0.2137

0.2558

-0.9113

-0.7905

-0.2668

-0.1621

0.0741 •

1.0000

-0.1720

-0.3607

-0.1720

1.0000

0.9405

-0.3607

0.9405

1.0000

Z

0.0084

7.6 SEARCH STRATEGY FOR IMPROVING MODEL FIT

As shown in the previous section, the effect of fixing one or more of the least well defined

parameters is to improve the confidence in the remaining non-fixed parameters, but with no

decrease in the goodness-of-fit (Z). In order to determine the optimum value at which to

set the fixed parameters(s), a search was performed between user-defined boundaries for

the fixed parameter(s). Once the optimum value(s) for the parameters) being fixed had been

established, the parameters) were set to these values and remaining parameters were

determined using the constrained minimisation procedure. An example of the constrained

minimisation procedure and parameter search is shown in Figure 66 where the least well

defined parameter has been established as v and a constrained minimisation procedure is

implemented for each fixed value of v. In order to determine better defined parameters, the

constraints used in the minimisation procedure were such that the mean storm

characteristics, as shown in Figure 67, made reasonable physical sense. Based on these and

other successful improvements in Z, the search strategy was adopted for all model

parameter estimation, with the exception of results in Section 7.10, where additional

parameter optimisation techniques are evaluated.
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Figure 66 Example of parameter search and relationships between
parameters: BLRPGM (Set le), Raingauge N23
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Figure 67 Example of parameter search and relationships between mean
storm characteristics: BLRPGM (Set le), Raingauge N23
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7.7 ANALYTICAL PERFORMANCE

The performance of the two models can be evaluated by comparing model moments and

event characteristics with the historical values. Model moments may be computed either by

using the analytical expressions for the moments and fitted mode] parameters, which are

termed "analytical" moments, or by using the model to simulate rainfall and compute the

"simulated" moments from the synthetic rainfall series by re-sampling. In this section the

analytical performance of the models is investigated and the simulated performance is

analysed in the following section.

Three GOF indices were computed for the analytical moments, using Equation 75. The first,

termed "Fit Only", only incorporated the moments at the levels of aggregation used in the

determination of the parameters i.e. as per list in Table 51. The second , termed "Lag-1

Only", used the mean, standard deviation, lag-1 autocorrelation, probability of dry periods

and the duration and number of wet periods, computed at 16 levels of aggregation ranging

from 15 min to 48 h, to compute the GOF. The third GOF computed was similar to the

"Lag-1 Only", but included the lag-2 and lag-3 autocorrelations and is termed "Lag 1-3".

As an example, these indices are shown in Figure 68 for both the MBLRPM and BLRPGM

fitted to data from raingauge N23 in the Ntabamhlope catchments for the sets of moments

used in parameter determination listed in Table 51.

From Figure 68 it is evident that the performances of both the MBLRPM and BLRPGM are

affected by the set of moments used in the determination of parameters. Parameter Set le

gave the best performance for both the MBLRPM and BLRPGM in the scenario that

assumed that short duration rainfall data were available. If only daily data were available

(i.e. Set 2), Set 2f resulted in the best performance for the MBLRPM when only the lag-1

autocorrelations were considered and similar performance was obtained from Sets 2a, 2d

and 2e if the lag-2 and lag-3 autocorrelations were included. Similarly, for the BLRPGM

and assuming only daily rainfall data were available, the best parameter set for the Lag-1

Only GOF was Set 2f, while Sets 2d and 2e resulted in similar values for the Lag 1-3 GOF.

The relatively larger Fit Only GOF obtained with both models for Sets 2a, 2c, 2d and 2e is
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a result of the inclusion of the 48 h lag-1 autocorrelation in these sets and which was

negative for some months at raingatige N23. This does not appear to affect the overall

performance of the analytical moments of these moment sets. For example, the Fit Only

GOF of Set 2b, which does not include the 48 h lag-1 autocorrelation, is much smaller than

the other Set 2 analytical moments, but the overall analytical moments obtained using Set

2b are not as good as that obtained using the other Set 2 moments.

MBLRPM

£

1000 -g
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1

1a 1b 1c 1d 1e 1f 1g 2a
Parameter Set

2b 2c 2d 2e 21

Fit Only Lag-1 Only Lag 1-3

BLRPGM

O
O

1000

100

10

1

1a

L
i

1f 1g
Parameter Set

2d 2e 2f

Fit Only Lag-1 Only Lag 1-3

Figure 68 GOF computed from analytical moments at raingauge N23

Unexpectedly, the overall performance of the models did not improve when more than the

minimum number of moments (Sets If , lg and 2f) were used in the estimation of
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parameters. Thus the expected improvement in GOFas a result of including more moments

to be used for parameter estimation is off-set by the difficulty in estimating parameters with

more degrees of freedom, as indicated by larger Fit Only GOF for Sets If and lg.

A comparison of analytical and observed moments for selected durations in January at N23

using the MBLRPM and the BLRPGM, both with parameters derived using moment Set

1 e, is shown in Figure 69. The relative error is the absolute difference between the analytical

and historical moment expressed as a percentage of the historical moment. As illustrated in

Figure 69 the analytical moments of the BLRPGM better represent the historical values,

particularly for shorter durations. In addition, it is noted that both the mean and probability

of no rain are better represented by the BLRPGM over all the range of durations shown.

Duration = 1 h
100

I
uj

0.1 .M.

I
yA : I 1s1

Mean AC-1 AC-2 AC-3 Pdry

Duration = 24 h
1E3-

1E-1

i I I I i I
var AC-1 AC-2 AC-3

Moments
PBiy Mti

MBLRPM BLRPGM

Figure 69 Comparison of analytical moments of the MBLRPM and BLRPGM at N23
during January (Var = variance; AC-n = lag-n autocorrelation: Pdrv = dry
probability; Mw = event duration; Md = dry duration; Mn = no. ot events)
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A comparison of the analytical moments using the Lag-1 Only GOF is shown for selected

stations in Figure 70. For the MBLRPM and assuming that digitised data were available,

then parameter Sets lb. If and lg gave the best fit to the historical values, whereas if only

the daily data had been available, then parameter Set 2f resulted in the best fit at the stations

shown. Similar fits to the historical values were obtained using the BLRPGM for the Set

1 parameters. However, if only daily rainfall data were available, then Set 2f resulted in the

best analytical fit to the historical moments at the stations shown, except for Station Cl 82.

A comparison, for the same parameter set, of the fit to the historical moments of the

analytical moments computed by the two models indicates that the BLRPGM, despite

needing to estimate an additional parameter, generally performs better than the MBLRPM.
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Figure 70 Comparison of analytical moments at selected stations
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It has been established that, at the sites considered and which fell in different climatic

regions in South Africa, the analytical moments computed using the BLRPGM generally fit

the historical moments better than those computed from the MBLRPM, irrespective of

which set of moments was used to determine the parameters of the models. Assuming that

the short duration digitised data were available then, for the MBLRPM, moment Sets lb,

1 f and 1 g resulted in the best fit to historical values when using analytical moments, whereas

for the BLRPGM a similar performance was obtained for all the parameter sets used. Hence

the fit of the BLRPGM analytical moments to the historical values appears to be less

dependent than that of the MBLRPM on the set of moments used to derive the parameters.

If only daily rainfall data are available then parameter Set 2f, which includes estimated

variances for durations shorter than 24 h, generally resulted in the best fit for both models.

In the following section the simulated performance of the models, with parameters

determined using different sets of moments, are examined.

7.8 SIMULATED PERFORMANCE OF THE MODELS

In the previous section the performance of the model was assessed relative to the analytical

moments of the model. In order to quantify the simulated performance of the models,

moments and other event characteristics computed from the simulated synthetic rainfall

series are compared to the equivalent values computed from the observed data in Section

7.8.1. Similarly, design rainfall depths computed from the simulated synthetic rainfall series

are compared to the equivalent values computed from the observed data in Section 7.8.2.

For each evaluation at a particular she, one hundred sets of synthetic rainfall series were

generated, each with a record length equal to that of the historical data. The performance

of the model is assessed using two measures. In the first measure, seven moments and

statistics (mean, standard deviation, auto-correlation, dry probability, durations of wet and

dry periods and the number of events) of the synthetic data are compared to the

corresponding characteristics of the historical data. More emphasis is placed on the second
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measure of performance of the model where design storms, computed from the synthetic

series, are compared to those computed from the historical data.

The measures of performance of the models are both initially focussed on detailed results

using data from raingauge N23 in the Ntabamhlope catchments, and are subsequently

generalised and expanded to data from other raingauges in order to lead to some general

conclusions.

7.8.1 Moments and Statistics

At each of the selected stations the stochastic variability of the BL models was simulated

by generating 100 sets of synthetic rainfall series, each with the same length of record as the

observed data, for each of the parameter sets outlined in Table 51. A frequency analysis

for each statistic and for each duration was performed on the 100 sets of synthetic rainfall.

High -Low bar graphs depicting the observed moments and 25-th and 75-th non-

exceedance percentiles of the 100 synthetic data sets are used to graphically depict the

adequacy of the models. For example, the results from generating synthetic rainfall series

using the MBLRPM, fitted to the data from N23 using parameter Set lb, are shown in

Figure 71. For the moments and statistics shown in Figure 71, the MBLRPM with

parameters derived using Set I b generally simulates the observed values welL particularly

for durations longer than 15 min.

In order to objectively assess the performance of the models, the Mean Absolute Relative

Error (MARE), as calculated in Equation 87, is shown in Figure 72 for the MBLRPM fitted

to data from raingauge N23 using moment Set lb. The number of aggregation levels in

Equation 87 (NL) was set to 10 and the durations used were 2,3,4, 5, 6,9,12,15,18 and

24 h. For the summer months (Oct - Mar), when more than 80% of the rainfall occurs and

when the extreme rainfall events usually occur, the MARE for the 10 levels of aggregation

used are less than 10% for the mean, standard deviation and dry probability.
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a,
...87

where

MARE,UJ) mean absolute relative error (%) for month i, and statistic/ (%),

mean (/—I), standard deviation (/=2), autocorrelation lag-1

(/=3), dry probability (/=4), duration of wet periods (/=5),

duration of dry periods (/=6) and number of wet periods (/=7),

meany-th statistic computed from the 100 synthetic rainfall

series generated for month /,

/-th statistic computed from observed data for month /, and

number of aggregation levels used.

1000^

100 -:

UJ 1 0 , .-rr^

Jan Feb Mar Apr May Jun Jui Aug Sep Oct Nov Dec
Month

M e a n — * - SD AC-1 Pdry - • — Mw Md Mn

Figure 72 Mean absolute relative errors of rainfall series simulated using the MBLRPM
(Set lb) at raingauge N23 (SD = standard deviation; AC-1 = lag-1
autocorrelation; Pdry = dry probability; Mw = event duration; Md = dry
duration; Mn = no. of events)
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The MARE value shown in Figure 72 reflects the differences between the mean of the

statistic computed from the 100 synthetic rainfall series and the corresponding statistic

computed from the observed data, and does not reflect the stochastic variation within the

100 values computed from the 100 synthetic series. Thus a frequency analysis was

performed on the 100 values for each of the statistics and the percentage of times (EXC)

the observed statistic fell outside of the 25th and 75th percentile of simulated values was

computed. The MARE value was adjusted using the EXC value for the statistic as shown

in Equation 88. In addition, a mean adjusted MARE value (STA TSJNDEX) was computed

as the mean of the MARE values for individual months to form a composite index for the

statistic for the 10 durations considered and for all the rainy season months.

STATS_INDEX{j) = - x I MARE(iJ) x
o j ij= i

EXC
1 +

50
...88

where

STATS INDEX,- = performance index for rainy season months for statistic/

which includes 10 aggregation levels, and

= percentage of times the observed y-th statistic in month i

fell outside the range of the 25th and 75th percentiles of

100 values computed from the synthetic series.

The STATSJNDEX values for both the MBLRPM and BLRPGM at raingauge N23, with

parameters determined using the Set 1 moments, are shown in Figure 73. By comparing

the STATS_INDEXTor different parameter sets for the same statistic, it is evident that the

seven moments computed from the synthetic rainfall series generated by the MBLRPM best

fit the historical values when moments Sets lb, If and Ig are used to determine the model

parameters. These are the same findings as when the analytical moments were considered.

Parameter Sets 1 e and Ig resulted in the best fit of the simulated moments of the BLRPGM.

When the STA TSJNDEX computed from the MBLRPM and the BLRPGM are compared

for the same parameter set shown in Figure 73, it is evident that moments computed from
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the synthetic rainfall series generated by the BLRPGM fit the observed moments better than

those from the MBLRPM.

Assuming only daily rainfall data to have been available at raingauge N23, the moments

computed from the synthetic rainfall series generated by the MBLRPM best fitted the

observed values, as shown in Figure 74, when parameter Set 2f was used. For the

BLRPGM, very little difference in performance is noted between the Set 2 parameters,

although Set 2f performed slightly better than either Sets 2d or 2e. A comparison between

the performance of the MBLRPM and BLRPGM at raingauge N23, for the same Set 2

parameters, indicates that the moments computed from the synthetic rainfall series generated

by the BLRPGM fit the observed moments better than those from the MBLRPM.

In order to compare the performance of the models at different stations, the mean, value

(MSTATSJNDEX) of the seven STATSINDEX^ values were computed foT each station

and parameter set as shown in Equation 89.

. 7

M_STATS_INDEX = - £ STATS_ INDEX{j) ...89

where

MSTA TSINDEX = goodness-of-fit index of model to all seven moments for

durations ranging from 2 h to 24 h and for all rainy season

months
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Figure 73 Simulated performance of the MBLRPM and BLRPGM at N23 using Set 1
parameters for rainy season months and durations ranging from 2 h to 24 h
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Figure 74 Simulated performance of the MBLRPM and BLRPGM at N23 using Set
2 parameters for rainy season months and durations ranging from 2 h to 24 h

The MJSTATSJNDEX was computed at selected stations for both the MBLRPM and

BLRPGM using all parameters sets. The results for the Set 1 parameters are shown in

Figure 75 and for the Set 2 parameters in Figure 76. Assuming that short duration rainfall

data were available at all the sites, then the best performance for the MBLRPM, relative to

the seven statistics considered, was achieved with parameter Set If while for the BLRPGM

the performance for all Set 1 parameters were similar. However, if the performance of

MBLRPM and BLRPGM are considered for the same Set 1 parameters it is evident that the

synthetic rainfall series generated by the BLRPGM fit the observed data better than the

series generated by the MBLRPM. Assuming that only daily rainfall data are available at the
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selected stations then, as shown by the results for Set 2 parameters in Figure 76, the

performance of the two models is very similar for both the parameter sets and, with the

exception of Station Moko3a, the best performance for both models is obtained using

parameter Set 2f. These trends in the simulated performance of the models for the different

parameters sets reflect the trends noted in the analytical performance of the models. With

the focus of the study being the estimation of design rainfell values, the most important

assessment of the models is how well the extreme events are modelled in the synthetic

rainfall series.
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i f
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LU200
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1f

N23 CP6 Jnk19A Moko3A

Figure 75 Simulated performance for rainy season months and for durations ranging
from 2 h to 24 h of the MBLRPM and BLRPGM at selected stations using
Set 1 parameters
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Figure 76 Simulated performance for rainy season months and for durations ranging
from 2 h to 24 h of the MBLRPM and BLRPGM at selected stations using
Set 2 parameters

7.8.2 Extreme Rainfall Events

For the observed data and for each of the 100 synthetic series generated by the model,

design rainfall depths were calculated using the General Extreme Value (GEV) distribution

fitted to the Annual Maximum Series (AMS) by L-moments. Design values for 2,5,10,20,

50 and 100-year return periods were computed for rainfall durations of 0.25. 0.5, 1, 2, 3,

4, 5, 6, 9, 12, 15, 18 and 24 h. For each duration and return period, a frequency analysis

was performed on the 100 values computed from the synthetic rainfall series generated by
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the model. High -Low bar graphs depicting the observed design rainfall computed from the

observed data and the 25-th and 75-th non-exceedance percentiles of the 100 synthetic

data sets were used to evaluate the adequacy of the models. For example, the performance

of the MBLRPM (Set lb) for the best (January) and worst (December) rainy season month

and annual totals is shown in Figure 77.

The estimation of design rainfall values at N23 from the synthetic rainfall series generated

by the MBLRPM using Set 1 b parameters compares well with the design values computed

from observed data for January and annual totals shown, particularly for durations > 3 h and

return periods < 50 years. The fit is not as good for December where the performance for

durations £ 1 h and return periods <. 20 years is better than for durations > 1 h and return

periods > 20 years. In order to objectively assess the performance of the two models and

the various parameter sets, relative to the estimation of design rainfalls, the Mean Absolute

Relative Error (MARE) was calculated to include rainy season months and annual totals

and return periods ranging from 2 to 50 years, as shown in Equation 90.

100

' RP
i = 1 j = I k = O

...90

where

MARE

oti

N,M

mean absolute relative error of design rainfall (%),

mean &-th return period,y-th hour design rainfall computed for

i-th period from model generated rainfall series,

k-th return period, y-th hour design rainfall computed for i-th

period from observed data,

number of periods (7), 1 to 6 = rainy season months and 7 =

annual period

number of aggregation levels (=10)

number of return periods (=5 for 2,5,10,20 and 50 year return

periods)
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Figure 77 Design rainfall estimated using the MBLRPM (Set lb): N23 (Historical
values in histograms. Interquartile range of 100 simulations in I-beams)
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The design rainfall MARE values, for rainy season months and annual periods and for 10

aggregation levels (2,3,4,5,6,9,12,15,18 and 24 h), computed at selected stations from

rainfel] series generated by both the MBLRPM and BLRPGM, are shown in Figure 78. For

both models the MARE values for parameter Set 1 are better than those for Set 2, indicating

that when short duration rainiall data are available at a she, better design rainfeU values are

computed using the models than when only daily rainiall data are available. Parameter Sets

If and lg resulted in the best performance of the MBLRPM for the Set 1 parameters, while

similar performance at all stations was obtained for all Set 1 parameters for the BLRPGM.

Parameter Set 2f, which uses variances estimated from the daily rainfall data for durations

shorter than 24 h, resulted in the lowest MARE values for Set 2 parameters for both models

and is thus recommended for use when only daily rainfall data are available for parameter

determination. The MARE values from the BLRPGM are generally lower than those from

the MBLRPM and hence the BLRPGM is recommended as the preferred model to use.

Although the Set 2 parameters resulted in MARE values larger than those from the Set 1

parameters, the MARE values for Set 2 were generally less than 20 % for Set 2f at most

stations. Thus the use of only daily rainiall data to determine the parameters for the models

is considered to be feasible.

The above analysis has only considered MARE values durations > 1 h. The MARE values,

computed using the BLRPGM, for durations <. 1 h (15, 30 and 60 min) as well as MARE

values for durations > lh are shown in Figure 79 for the test stations. Generally the Set 1

parameters result in better estimates of design rainfall values for longer duration values than

for shorter (< 2h) durations. Clearly the use of the BLRPGM to estimate design rainfalls for

short durations (< 2h), particularly when only daily data are used to determine the model

parameters (Set 2), results in unacceptably large MARE values. The contrast in the MARE

values when the digitised data are available (Set 1) and when only the daily data are

available (Set 2) for parameter determination, particularly for the durations < 2h, is

attributed to the poor estimates of the variances for shorter durations.
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Figure 78 Mean absolute relative errors of design rainfall at selected stations computed
from the synthetic rainfall series generated by the MBLRPM and BLRPGM,
using various parameter sets
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Figure 79 Comparison in estimation of design rainfall values at selected stations for
shorter and longer durations using the BLRPGM

The trends in the estimation of design rainfall using the two models and various parameter

sets are consistent with those found when evaluating the analytical performance of the

models. The incremental search technique, developed to determine model parameters,

improved the fit of the models to the observed moments and for all three measures of

performance it was noted that:
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the BLRPGM generally performed better than the MBLRPM,

• the performance of the BLRPGM was generally less sensitive to the set of moments

used to determine the model parameters than the MBLRPM,

• the performance of both models was best when over determined systems (more

equations than parameters, e.g. Sets If, lg and 2f) were used to determine model

parameters,

• the use of variances for durations < 24 h estimated from the daily values successfully

improved the model performance when only daily data are available to estimate model

parameters, and

• the use of the BLRPGM with parameters determined using either Sets If or 2f

moments, dependent on the availability of short duration rainfall data, is deemed to

be a suitable technique to estimate design rainfall values in South Africa.

The above selection of the most appropriate model and parameter set and results are based

on a selected number of non-SAWB stations where the data are considered to be reliable.

The use of the BLRPGM to estimate design storms for these test stations and other

stations, using parameter Sets If and 2f, is shown in Figure 80. The results contained in

Figure 80 exclude outlier events in the observed data. For example, design storms estimated

from the observed data at Cedara (SAWB 0239482) excluded outlier events from 26-29

September 1987. Similarly, outlier events which occurred on 20 January 1972 and 22

December 1978 at Johannesburg International Airport (SAWB 0476398) were excluded in

the estimation of design storms from the observed data. Despite the exclusion of outlier

events the performance of the models at some sites, even when digitised rainfall data are

available (Set If), is not considered to be adequate. These anomalies are investigated in the

following section.

7.8.3 Anomalies in the Estimation of Design Rainfalls

The relatively large differences in MARE values obtained using Set 2f parameters compared

to values obtained using Set le parameters, as shown in Figure 80 at stations Jnkl9A,
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Moko3A and Newlands, is postulated to be the result of the poor estimation, from daily

data, of the variance of short durations when parameters were determined using moment

Set 2f.
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Figure 80 Performance of BLRPGM in the estimation of design rainfall depths at
selected stations using parameter Sets If and 2f
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As shown in Figure 80 for Set If parameters, design rainfall values estimated from the

synthetic rainfall series generated by the BLRPGM are, without exception, better at non-

SAWB stations than at SAWB stations. The reasons for this are attributed to the general

unreliability and periods of missing data in the SAWB digitised database. These

inconsistencies in the SAWB digitised database are illustrated in Figure 81 using data from

SAWB 0258213 (Drieplotte). The results from the month which resulted in the smallest

design rainfall MARE value (March) and the largest MARE value (November) and a month

to illustrate the effect of periods of missing data (January) on design values are shown in

Figure 81.

No high outliers were detected in the AMS extracted from either the digitised or daily

rainfall data. However, an inconsistency between the 1 day and 24 h design storms is

evident with the 1 day values exceeding the 24 h values for all months shown in Figure 81,

thus indicating periods of missing digitised data during significant events. The effect of

missing periods of digitised data on design values is also evident for January where the 100

year return period, 1440 min event is smaller than for shorter durations. Thus some larger

events, which are extracted in the AMS for shorter durations, are not extracted for longer

durations events, as periods of missing data appear within the longer duration and hence the

entire event is excluded.

The problem of missing periods of data, particularly in the digitised data set, not only affects

the design values computed from the data, but also affects the reliability of model

parameters determined using the data. Twenty eight years of digitised rainfall records are

available at Station 0258213. In the calculation of the moments from the observed data

which are used to derive the parameters for the model, months are excluded if any missing

data are encountered within the month. As shown in Table 56, more than 60 % of months

are not used in parameter determination as a result of periods of missing data within the

months and this consequently affects the reliability of the estimated model parameters.
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Table 56 Percentage of months with no missing data: Drieplotte (SAWB 0258213)

Month

Percentage

Jan

39

Feb

29

Mar

21

Apr

36

May

39

Jun

21

Jul

25

Aug

11

Sep

21

Oct

29

Nov

29

Dec

32

For the Set 2f parameters shown in Figure 80 the station with the largest MARE value was

SAWB 0059572 (East London). The month at SAWB station 0059572 with the largest

MARE value was November and although a number of large historical events occurred in

November, these are statistically not outliers and hence are retained in the observed data.

Two AMS, plotted using the Weibull plotting position, are shown for January and

November in Figure 82. It is noticeable that the events in November appear to arise from

two distinct meteorological conditions, as indicated by the sharp change in gradient at a

return period of approximately 6 to 10 years. The design storms estimated from the

observed data using the GEV distribution and those derived from the Weibull plotting

formula agree reasonably well despite the possibility of the events arising from the different

conditions. Hence it appears that the BLRPGM is unable to simulate extreme events arising

from differing meteorological conditions. It is postulated that these relatively few larger

events probably have little affect on the moments computed from the data which are used

in the estimation of model parameters, but do have a large effect on the estimation of design

storms from the synthetic rainfall series. These differing meteorological conditions resulting

in an AMS with two distinct populations is typical of the East Coast of South Africa, where

the use of the Two Component Extreme Value Distribution (TCEV) was used by Pegram

and Adamson (1988).
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Figure 82 Three hour AMS plotted using the Weibull plotting position at East
London

7.8.4 Concluding Remarks on Simulated Performance

The simulated performances of the MBLRPM and BLRPGM have been evaluated, at a

number of sites in different climatic regions in South Africa, for different sets of moments

used to determine model parameters. The estimation of model parameters proved to be an

exactmg task, particularly as similar performances were obtained from sets of parameiers
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which are very different. The use of constrained minimisation procedures, thereby ensuring

reasonable mean analytical storm characteristics, aided in the estimation of parameters. In

addition, the estimation of the reliability (CV) of the parameters and the correlation

between the model parameters assisted in developing a strategy of fixing one or more of the

parameters. Despite these measures, difficulties were still encountered in estimating

"reasonable" parameters for some months at some locations. This can be only explained by

either the total unsuitability of the BLRPGM to be applied at the location or the result of

inconsistencies and errors in the data, some of which have been illustrated.

The three measures of performance used to evaluate the fit between observed and model

values were analytical moments, simulated moments and the estimation of design values

from the simulated rainfall series. It was noted that the performance of the BLRPGM,

despite having one more parameter to estimate compared to the MBLRPM, was generally

less sensitive than the MBLRPM to the set of moments used to estimate the parameters of

the model. In addition it was found that the use of the BLRPGM generally resulted in better

estimates of design rainfall values than those computed using the MBLRPM. Parameter

Sets le and If resulted in the best performance of the models, assuming that the short

duration digitised data were available, and parameter Set 2f gave the best performance when

only daily rainfall data were available to estimate model parameters. Hence the use of the

variances estimated from the daily data for durations < 24 h successfully assisted in the

estimation of model parameters and improved the performance of the model.

Design storms were generally well estimated from the synthetic rainfall series generated by

the BLRPGM for durations > 1 h when short duration data were available and for durations

> 3 h when only daily recorded interval data were available. Thus, the BLRPGM with model

parameters determined using moment Sets 1 for 2f, dependent on the availability of digitised

data, is recommended as a feasible option for estimating short duration design rainfall values

in South Africa. Thus, in cases where errors were apparent in the digitised data, it is

postulated that the use of the BLRPGM would result in more reliable estimates of design

storms than if the design storms were estimated directly from the observed data.
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The model performed better for the durations of the moments which were used in the

estimation of the model parameters, than for other durations. However, the BLRPGM did

scale reasonably well particularly in an aggregation sense where, for example, the model

performs better for longer durations when only shorter duration moments are used in the

estimation of model parameters than for shorter durations when the parameters are

estimated from longer durations (disaggregation).

Although limited by the amount of the data which was considered to be acceptably reliable,

the use of the BLRPGM to estimate design storms was relatively successful in different

climatic regions of South Africa. However, it appears that the model does not perform well

at locations where there is a distinct difference between two sets of data in the AMS,

probably as a result of different meteorological conditions. In the following section, the

temporal distribution of synthetic hyetographs generated by the BLRPGM are investigated.

7.9 TEMPORAL DISTRIBUTION OF STORMS

Mass curves depicting, from the onset of a storm, the dimensionless cumulative storm

duration vs the cumulative storm depth are important in certain hydrological design

problems where it is necessary to estimate a design hyetograph. Thus it is important to

assess how the stochastically generated storms compared to the historical storms.

The analysis performed was similar to that presented by Huff (1967) and Verhoest et al.

(1997). Various periods of no rainfall or Inter Event Times (LET), for identifying

independent storms have been used in previous studies. For example, IETs that have been

used are 1 h (Van den Berg, 1982). 3 h (Calles and Kulander, 1995), 6 h (Huff, 1967) and

24 h (Verhoest et al, 1997). In this study a period of 12 h of no rainfall was used to

identify independent storms.

The independent storms identified were classified into four groups or quartiles, depending

on whether the heaviest rainfall fell in the first, second, third or fourth quarter of the
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duration of the storm. A frequency analysis was then performed on the storms in all four

quartiles. This analysis was performed both on the historical data and on periods of

synthetic rainfall series, generated by the BLRPGM, which was equal in length to the

historical data. In addition, the frequencies of occurrence of storms in the four quartiles

computed from the historical data and synthetic series were compared.

The above analyses were performed at selected stations in South Africa. The results of the

analyses are presented in the following sections.

7.9.1 Ntabamhlope (N23)

As shown in Figure 83 for storms identified having a 12 h IET, the temporal distribution of

historical storms and synthetic storms generated by the BLRPGM using parameters Set le

at Ntabamhlope (N23) are very similar, However, as shown in Figure 84, the frequency of

Quartile 1 storms in the synthetic series is less than in the historical series and the frequency

of Quartile 4 storms in the synthetic series is greater than in the historical data. Similar

results were obtained for storms at N23 identified by 1, 6 and 24 h IETS. The frequency

distribution of storm depths and durations computed from the historical data and synthetic

series generated by the BLRPGM (Set le) are shown in Figure 85. The distribution of

storm depths in the synthetic series is very similar to the historical distribution. However,

the synthetic series contain fewer longer duration storms.

As shown in Figure 86, when the BLRPGM was used with parameter Set 2f, the temporal

distribution of storms corresponded closely to those computed from the historical data and

were similar to results obtained when parameter Set le was used. However, as shown in

Figure 87, the duration of storms in the simulated series corresponded better to the

durations of the observed storms when parameter Set 2f, which utilised longer duration

moments in the estimation of parameters, than when parameter Set le was used.
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N23: BLRPGM (Setie)
Distribution of Storms

Quartile

Observed Simulated

Figure 84 Frequency of occurrence per quartile in historical data and synthetic
storm series generated by BLRPGM (Set le) at N23
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Figure 85 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (Set le) at N23

297



"•*$

io
n

12
'5L
o
~̂

Q.

la
tiv

3
E

%
) uo|

ta
ti

a.
o

pr
e

at
iv

3

E
3
o

100 i

80-
•

60-
•

4 0 -

20-

n

0

too

80-

60-

40-

20-

0 -

C

First

r- r

r
v

f

>

A*
/

/• *
r / A

/ • *

20

Quartile

• • j

40 60 80 100
Cumulative storm time (%)

Third

w w

20

I Quartile

/ /*
* / *
/

• • • / . '

• • • • •

40 60 80 100
Cumulative storm time (%)

-Obs 10%—Obs

• Sim 10% • Sim

g100]

co
B
a.
o<u
Q.
d)
.>

"5
3

E
d

80-

6 0 -
•

40-

20-

0

o

S
a.
o
Q.

>

CO
3

E

Q

50%

50%

80-

60-

40 -

20-

0 -

c

Second Quartile

/ . *
• / *

* ^̂
' >/ '

J ^ * ^ • *

20 40 60 80 100
Cumulative storm time {%)

Fourth Quartile

' /
* / • r

T • * /

' * / •

I 20 40 60 80 100
Cumulative storm time (%)

- O b s 90%

• Sim 90%

Figure 86 Mass curves of rainfall vs storm duration computed from historical data
and from synthetic rainfall series generated by BLRPGM (parameter Set
2f) at N23

298



(m
m

)
m

 d
ep

th
to

r

CO

40 i

30-

20-

10-

0<

N23 (BLRPGM, Set 2f)

5 15 25 35 45 55 65 75 85 95
Non-exceedance depth (%)

-•-Observed -»-Simulated

50 .j

S40 •

1 2 0 •

I 10 -
35

c

N23 {BLRPGM, Set 2f)

/
: ; ] : : : : : jti-

* - - - -•T*^^

15 25 35 45 55 65 75 85 95
Non-exceedance duration (%)

-•- Observed -»- Sim u lated

Figure 87 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at N23

7.9.2 Jonkershoek (Jnk 19A)

As shown in Figure 88, the BLRPGM, with parameters derived using Set 2f, underestimated

the frequency of Quartile 2 and 3 storms and overestimated the frequency of occurrence of

Quartile 4 storms at Jnkl9A. The distribution of storm depths was well simulated by the

model, as shown in Figure 89. However, the longer duration storms in the synthetic series

were generally shorter than the historical durations. The mass curves computed from the

historical data and synthetic rainfall series at Jnkl 9A, shown in Figure 90, indicate that the

synthetic rainfall storms generated by the BLRPGM have a similar distribution to the

historical storms.
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Jnk 19A: BLRPGM (Set2f)
Distribution of Storms

Quartile

I I Observed Simulated

Figure 88 Frequency of occurrence per quartile in historical data and synthetic
storms series generated by BLRPGM (parameter Set 2f) at Jnkl9A
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Figure 89 Frequency distribution of depths and duration of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at Jnkl9A
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7.9.3 Mokobulaan (Moko3A)

As shown in Figure 91, the BLRPGM, with parameters derived using Set 2f underestimated

the frequency of Quartiles 2 and 3 storms and overestimated the frequency of occurrence
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of Quartiles 1 and 4 storms at Moko3 A. The distribution and duration of storm depths was

well simulated by the model, as shown in Figure 92. The mass curves computed from the

historical data and synthetic rainfall series at Moko3 A, shown in Figure 93, indicate that the

synthetic rainfall storms generated by the BLRPGM have a similar distribution to the

historical storms.

Distribution of Storms

Quartile

j | Observed ^ B Simulated

Figure 91 Frequency of occurrence per quartile in historical data and synthetic
storms series generated by BLRPGM (parameter Set 2f) at Moko3A
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Figure 92 Frequency distributions of depths and durations of historical data and
synthetic series generated by BLRPGM (parameter Set 2f) at Moko3A
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7.9.4 Concluding Remarks on Temporal Distribution of Storms

The temporal distribution of historical and synthetic storms generated by the BLRPGM

have been presented for three locations (Ntabamhlope, Jonkershoek and Mokobulaan) in

very different climatic regions in South Africa. At all three locations the frequency of

occurrence of storms in the different quartiles were different to those found in the historical

data. However, at all three sites, the mass curves of the synthetic rainfall series and the

frequency of rainfall depths and event durations matched the historical values very well for

all quartiles. Hence it is concluded that temporal distribution of synthetic storms generated

by the BLRPGM, with parameters determined from dairy rajnfell data, match the historical

storms relatively well and can be used to estimate hyetographs..

It has been established that design rainfall depths for durations S: 1 h estimated from the

synthetic rainfall series generated by the BLRPGM with parameter Set 1 f, and in most cases

Set 2f, correspond closely with those computed from the observed data. In the next section

the optimisation of parameters to improve the estimation of design events from the synthetic

rainfall series is investigated.

7.10 PARAMETER OPTIMISATION

In order to improve the simulations by BLRP models and to make the identification of

parameters unique and better defined, three parameter optimisation strategies were

evaluated at three selected stations. These were based on the moments of the AMS and on

the characteristics of the events.
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7.10.1 Annual Maximum Series

The magnitudes of design storms are a function of the statistical characteristics of the AMS

and hence are a function of the mean, standard deviation and skewness of the AMS. Hence

the parameters were optimised using a two-stage procedure. Initially the parameters were

estimated as described in Section 7.6. Then one of the parameters associated either with cell

intensity or duration was varied and the remaining parameters determined for discrete values

of this parameter. For the BLRPGM the index of the gamma distributed cell intensity (S)

was kept constant. For each set of parameters determined for a single pre-determined

parameter, a rainfall series was simulated with a record length equal to the historical data

and the moments of the simulated and historical AMS were compared using the statistic Z

defined in Equation 73 (Section 7.1). The first three moments (mean, variance and

skewness) of the AMS of the observed data and simulated series for varying durations were

used in the calculation of Z. Hence for each set of parameters, and for a constant value of

the selected parameter, a value of Z was computed which reflected the difference in the

moments of the historical and simulated AMS. The optimum parameter set selected was

thus the set which resulted in the minimum value of Z. This optimisation procedure was

termed Opt 1.

7.10.2 Event Characteristics

Usually only four moments (mean, variance, autocorrelation and dry probability) for

different levels of aggregation (duration) were used in the estimation of model parameters.

Onof et al. (1994) presented analytical expressions of event duration, inter-event duration

and mean number of events for the BL models. Onof and Wheater (1994a) and Onof and

Wheater (1994b) adopted a two-stage procedure whereby, for incremental values of a fixed

parameter, the remaining parameters were determined and the statistic Z in Equation 73 was

computed for each solution using the event characteristics. A similar approach was adopted

in this study and termed Opt2.
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In an extension to this approach, instead of using a two-stage search approach, the event

characteristics were used directly in the estimation of parameters in addition to the other

moments. This procedure was termed Opt3. For example, if the model parameters were

determined using moment Set le and optimised using the Opt3 procedure, the 1 h event

duration and number of events would be used in addition to the moments in Set le in the

determination of parameters. Similarly, if the parameters of the model were determined

using moment Set 2f, which assumed that only daily rainfall data were available at the site,

then the 24 h event duration and number of events would be used in addition to the

moments in Set 2f in the determination of parameters. The three parameter optimisation

techniques have been evaluated at a number of sites and the results are presented below.

7.10.3 Ntabamhlope (N23)

The effects of attempting to improve the simulations using the optimisation strategies

outlined above were investigated at raingauge N23. The study was limited to the BLRPGM

only and attempted to improve the estimation of parameters using moment Sets le and 2f.

Owing to the vast amount of computing time required to implement Optl, the procedure

was limited to parameter Set le at N23. A comparison of the performance relative to the

estimation of design rainfalls for the two sets of parameters and the effect of optimising the

parameters is shown in Figure 94. Parameter optimisation had relatively little effect on the

estimation of design events at raingauge N23, although Opt3 applied to Set 2f parameters

performed slightly better than any of the other parameter estimation methods.
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Figure 94 Effect of parameter optimisation strategies on the estimation of design
rainfalls at N23

7.10.4 Cedara (C182)

The effect at Cl 82 on design rainfall values, estimated using the BLRPGM with parameters

determined using moments Sets le and 2f, of the Opt2 and Opt3 parameter optimisation

strategies are shown in Figure 95. The parameter optimisation strategies had no effect on

the estimation of design rainfall values for the Set 1 parameters, but did improve the MARE

values for Set 2f parameters, with Opt3 giving the smallest MARE value.

7.10.5 Jonkershoek (Jnk 19A)

The effect at Jnkl9A on design rainfall values of the Opt2 and Opt3 parameter optimisation

strategies, estimated using the BLRPGM with parameters determined using moments Sets

le and 2f, are shown in Figure 96. At Jnkl9A the use of the Opt3 strategy improved the

estimation of design rainfall values for both the Set le and Set 2f parameters.
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Figure 96 Effect of parameter optimisation strategies on the estimation of design
rainfalls at Jnkl9A

7.10.6 Concluding Remarks on Parameter Optimisation

Of the three parameter optimisation strategies evaluated, the Opt3 strategy, which includes

the event duration and number of events directly in the parameter determination procedure,
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resulted in the best estimation of design rainfall depths using the BLRPGM model. In cases

where the BLRPGM with non-optimised parameters resulted in MARE values < 10% (e.g.

Set le at N23 and C182), relatively little improvement was gained using the optimised

parameters. However, in cases where the non-optimised parameters resulted in poorer

estimation of design rainfalls (e.g Jnkl9A), the Opt3 parameter estimation procedure

improved the estimation of design rainfalls. Hence it is recommended that the Opt3

parameter determination procedure should be adopted in future use of the BLRPGM in

South Africa

Frequently at a site where an estimate of design rainfall is required, only a short period of

data is available. In the absence of regional schemes for estimating design events at the site,

the design values are estimated using the short period of record, which may include the

estimation of design values for return periods far in excess of the period of record. In the

next section the use of the BLRPGM to estimate design storms from a short period of

record vs the estimation of the design storms directly from the short record is investigated.

7.11 EXTENDING SHORT RECORD LENGTHS

The use of a short record length (e.g. s 10 years) to estimate design events for return

periods greater than twice the record length (e.g. £ 20 years) is generally not recommended.

However, if only a short period of record is available at the site of interest and regional and

other techniques of estimating the design event at the site are not available, then the design

events would have to be estimated from the short period of available record.

This section investigates, by way of two case studies, whether a design event would be

better estimated from the short record or if the design event would be better estimated by

using the short record to estimate the parameters of the BLRPGM and then computing the

design event from the synthetic rainfall series generated by the BLRPGM.
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7.11.1 Ntabamhlope (N23)

The first case study utilised the 32 year rainfall record from raingauge N23 at Ntabamhlope,

which is located in a summer rainfall region. Design storms for durations ranging from 15

min to 24 h were computed from both the entire record and using only the last 10 years of

record. Similarly, parameters for the BLRPGM were derived using the full record and only

the last 10 years of record. One hundred synthetic rainfall series were simulated for each set

of the two sets of parameters, with the period simulated for each series equal to the record

length used to derive the parameters (i.e. 32 and 10 years). The results of the study for the

50 year return period design storm for varying durations and for the 1 h design storm for

varying return periods are shown in Figure 97. It is assumed that the best estimates of

design rainfall are obtained from the full (32 year) period of record. From Figure 97, as

shown by the 25-th and 75-th percentile range (high-low bars) of design values computed

from the 100 synthetic series, h is evident that, at Ntabamhlope, the use of the BLRPGM,

with parameters determined using only 10 years of data, to estimate the 50 year return

period event would result in improved estimates of design storms, particularly for longer

duration storms. Similarly for the relatively short 1 h duration event, the modelling

approach would result in more reliable estimates of the design storms, particularly for larger

return periods. Hence, based on the assumption that the design storms computed from the

full record length are the best estimate of the true value, the use of the BLRPGM to

estimate the design storms is recommended at Ntabamhlope.

7.11.2 Jonkershoek (Jnk 19A)

The second case study utilised the 54 year rainfall record from raingauge Jnk 19A at

Jonkershoek, which is located in a winter rainfall region. The same analysis as described

above was performed and the results of the study for the 50 year return period storm and

24 h design storms are shown in Figure 98. Again the estimation of design storms from the

synthetic rainfall series simulated by the BLRPGM, with parameters determined using only
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10 years of data, would result in more reliable estimates than direct estimation of design

storms from the short period of data.
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Figure 97 Effect of record length on design storm estimation at N23
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7.11.3 Concluding Remarks on Extending Short Record Lengths

In both case studies presented, the interquartile range of the design events estimated from

the synthetic rainfall series, generated using parameters based on the shorter record length,

resulted in better estimates of the "true" design values, estimated using the longer period

of observed data, than had the design events been estimated directly from the shorter period

of observed data. Thus it is concluded that, based on these two case studies, where only

short periods of observed rainfall data are available, the design values should preferably be

based on the synthetic rainfall series generated by the BLRPGM, with parameters estimated

using the short period of data, than on estimating the design values directly from the short

period of observed data.

7.12 CHAPTER CONCLUSIONS

The relationships between the parameters of the BL-models have been investigated and have

revealed strong correlations between some parameters and hence some poorly denned

parameters. Thus an incremental search strategy, with one of more parameters fixed, was

successfully implemented to form a relatively robust technique to determine better defined

parameters.

A comparison between the performances of the MBLRPM and BLRPGM was undertaken.

The measures of performance used were analytical and simulated moments and the

estimation of design rainfall events from the synthetic rainfall series generated by the

models. It was noted that despite the BLRPGM requiring the estimation of an additional

model parameter compared to the MBLRPM, the performance of the BLRPGM was

generally less sensitive than the MBLRPM to the moments used to estimate the model

parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown

to simulate synthetic rainfall series which fitted the statistics of the historical data better than
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those computed from the series generated by the MBLRPM. Similarly, the design rainfall

events estimated using the BLRPGM were better than those estimated using the MBLRPM.

Generally the BLRPGM performed better when short duration digitised data were available

to estimate the model parameters than when only daily rainfall data were available.

However, the inclusion of variances for durations < 24 h, estimated from the daily data (Set

2f), generally resulted in adequate estimation of design rainfalls. The variances for short

duration events were estimated using a linear relationship between the log of variance and

log of duration. This generally resulted in poor estimates of variance for durations z In. It

is recommended that future research should consider adopting a curvilinear function, as

proposed by Pegram (1998), and thus improve the estimates of variance for shorter

durations.

Further improvements in the estimation of design rainfalls are possible by adopting the Opt3

parameter optimisation procedure, which includes event duration and number of events, in

addition to other moments, directly in the determination of model parameters.

The temporal distribution of storms generated by the BLRPGM was found to closely match

the observed data at three sites in different climatic regions in South Africa. However, the

frequency of storms with particular profiles was not as well simulated as the temporal

distribution. It is thus recommended that the use of the BLRPGM to estimate design rainfall

values in South Africa, particularly for durations of lh to 24 h, is a feasible option which

can also be adopted at sites where only daily rainfall data are available.

The effect of record lengths on the estimation of design rainfall values was investigated at

two sites in South Africa. In both cases, the design rainfall values estimated from the

synthetic rainfall series generated by the BLRPGM, with parameters determined using a

short period of record, better approjumated the "true" design values, computed directly

from the full period of observed record, than when the design values were computed

directly from the short period of observed record. Thus it is recommended that, particular

when only short periods of record are available and no other techniques of estimating short

duration design rainfall values are available, design rainfall values should preferably be
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computed using the synthetic rainfall series generated by the BLRPGM, with parameters

estimated using the short period of data, than on estimating the design values directly from

the short period of observed data.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The main objective of this project was to estimate short duration (& 24 h) design storms for

South Africa. These were to be based on digitised rainfall data whereas previous studies

conducted on a national scale in South Africa were based on data that were manually

extracted from autographic charts. With the longer rainfall records currently available

compared to the studies conducted in the early 1980s, it was expected that by utilising the

longer, digitised rainfall data in conjunction with regional approaches, which have not

previously been applied in South Africa, and new techniques such as L-moments, that more

reliable short duration design rainfall values could be estimated. A short duration rainfall

database was thus established for South Africa.

8.1 SHORT DURATION RAINFALL DATABASE

The short duration rainfall database currently consists of data from 412 stations and was

constantly updated throughout the project as new data became available. The largest

contribution to the database was.from the South African Weather Bureau (S AWB). Some

processing errors were found in the data from all the organisations which contributed data

to the project. However, numerous errors in the digitisation of the autographically recorded

rainfall, in addition to missing events in the SAWB data, resulted in a large portion of the

database to be viewed as being of low reliability. This is particularly pertinent in the

estimation of extreme events, as the autographic raingauges tend to malfunction during

intense events. It is expected that the conversion of the recording rainfall network from

autographic raingauges to data logger recorded rainfall systems will not only improve the

reliability of the data, with a smaller probability of errors introduced into the data during the

processing stage, but will also improve the temporal and depth resolution of the recorded

rainfall data. It is estimated that the minimum temporal resolution of the autographically

recorded and digitised rainfall data from charts changed on a daily basis may be as small
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as 5 minutes and proportionately larger for charts changed once a week. In this project the

minimum event duration analysed was 15 minutes. However, all the techniques evaluated

in this project can generate design storms for durations shorter than 15 minutes, but the

results should then be used with caution.

The majority of the errors identified in the SAWB data were negative and zero time steps

(infinite intensities). Techniques were developed to identify the errors and make adjustments

to the data points to enable smooth, automatic screening and processing of the data. The

adjustments initially made an attempt to identify the probable cause of the error and, if

successful, to make adjustments automatically in accordance with the nature of the probable

cause of the error. If the probable cause of the error could not be identified a procedure

was developed to make adjustments automatically such that a random selection of either the

maximum, average or minimum intensity was introduced into the data as a result of

adjusting the data points. The effect of making the adjustment on estimated design storms

was shown not to be significant, but the exclusion of any event that had an error contained

within it did result in a significant difference, thus indicating that the events should be

retained and errors corrected.

A comparison at selected sites of manually extracted and digitised Annual Maximum Series

(AMS) and the differences between rainfall totals recorded in the daily and digitised

databases led to the conclusion that the digitised SAWB data were generally of low

reliability and contained numerous periods of missing data. These periods of missing data

were noted to extend over the whole range of events and were not confined to the smaller

events. The effect of missing periods of data on the estimation of design storms was

investigated at a selected site (East London) which had a long (> 50 years) period of record

and which was judged to be in the top 5% of most reliable SAWB stations. In the analysis,

a selected number of events for a selected number of years in the AMS were excluded and

the differences in the estimated design values led to the disappointing conclusion, which is

supported by other evidence throughout the document, that the digitised SAWB data were

generally not adequate for estimating design storms for durations s24 h. This led lo the

317



development of a three-pronged approach for estimating design storms from an inadequate

database.

8.2 SHORT DURATION DESIGN RAINFALL ESTIMATION

The three approaches developed to estimate short duration design rainfall values were all

based on the assumption that the daily manually recorded rainfall database was more reliable

than the short duration rainfall database. An added advantage of using the daily rainfall

database to estimate short duration design storms is the relatively dense network of daily

raingauges available in South Africa which generally have much longer records than the

short duration rainfall database.

8.2.1 Regional Approach

The first approach used an index-storm based regional L-moment algorithm developed by

Hosking and Wallis (1993; 1997) to estimate design storms for various durations and results

for South Africa were presented in Chapter 5. The use of a regional approach has many

claimed benefits, including robustness and improving the reliability of at-site design values.

The underlying assumption when using an index-storm type approach is that homogeneous

regions can be identified where the distribution of extreme events is the same, except for a

local scaling factor. Thus 15 relatively homogeneous regions were identified in South

Africa and the General Extreme Value (GEV) distribution was determined to be the most

appropriate common distribution to use in all 15 regions. The homogeneous regions were

successfully identified by an appropriately scaled cluster analysis of site characteristics which

included indices of location. MAP. altitude, seasonality of rainfall, distance from the sea and

concentration of rainfall. The advantage of using only site characteristics in the cluster

analysis is that the clusters identified can be tested independently for homogeneity using

data from the site. The 24 h duration rainfall data from the short duration rainfall database

were used to establish the homogeneity of the clusters. It has been shown that the short
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duration data from the SAWB is generally of low reliability and hence there may be some

doubt as to the validity of the homogeneity tests which may have been based on unreliable

data. It is intended that a future project will refine and extend the relatively homogeneous

clusters identified in this project by performing a cluster analysis, similar to the

regionalisation performed in this project, but based on the site characteristics of the

locations of the daily rainfall gauges and the subsequent testing of the clusters identified for

homogeneity using the daily rainfall data.

Quantile growth curves were developed for each of the 15 homogeneous regions for 16

durations ranging from 15 min to 24 h. The index used to scale the relationships was the

mean of the AMS (£_/) for each duration. Thus, information from the entire region can be

used to estimate design storms at a particular site by utilising the regional growth curve and

the at-site LI value. This approach lends itself to design storm estimation at ungauged sites

if the index used to scale the relationship can be estimated at the site of interest. As an

example, regression analyses were performed between the 24 h LI values and rainfall

related site characteristics which are readily available as l'xl1 images for South Africa

(Schulze, 1997). The results of the regression analyses in 13 of the 15 clusters enabled the

24 h L_l values to be estimated reasonably confidently. It is recommended only LI values

determined from gauged data be used in Clusters 10 and 11, where the regression analyses

were not successful.

The accuracy of the regional design storm estimates were assessed for one site (N23) in

Cluster 3 which was not used in the regional analysis. It was found that at N23 the regional

and at-site estimated design storms corresponded extremely well for all durations and return

periods. This "hidden station" approach to testing the method was not used in the other

clusters owing to the limited number of available stations, but this analysis is a qualified

validation of the methodology.

The accuracies of the quantile Regional Growth Curves (RGC) were successfully

established using a Monte Carlo type simulation of a hypothetical region which has the same

number of stations and record lengths as the cluster under evaluation. In this manner 90 %
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confidence intervals were established for both the regional growth curves and the estimated

at-site design storms. The simulation of more than 100 hypothetical regions for each cluster

may increase the reliability of the confidence intervals at the expense of more computing

time.

8.2.2 Scaling of L-moments

The second approach to estimating design storms with an inadequate database was to

investigate the scaling relationships between the moments of the AMS and rainfall event

duration and results using this approach were reported in Chapter 6. Previous studies have

used this approach to interpolate design values from published durations to other durations

and have used conventional product moments in deriving the relationships. It was noted at

selected sites from different climatic regions in South Africa that the log-transformed

relationship between L-moments and duration was more linear over a wider range of

durations than when conventional moments were used. Thus, the use of L-moments was

adopted for this application in the project.

Six hypotheses were proposed and evaluated at selected sites in each of the relatively

homogeneous clusters. Hypothesis 1 proposed that the L-moments for durations < 24 h

could be derived directly from the 24 h and 48 h L-moments, which can be computed from

the daily rainfall data. It was found that the slope of the relationship for durations from lh

to 24 h was frequently different to the slope computed for durations a 24 h and hence the

L-moments for durations < 24 h could not be reliably estimated directly from the 24 h and

48 h values at all sites.

It was noted that the slopes of the log transformed L-moment:duration relationship at

different sites within a cluster tended to be similar. Multiple linear regression relationships

were thus developed for each cluster to estimate the regression slope of the log-transformed

LI and Z_2:duration relationships as a function of site characteristics. The slopes at site

i estimated as a function of the site characteristics were termed the Regional Slopes, RS(l l}

and RS(2f) for the LI and L_2 relationships respectively. Reasonably good relationships
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were obtained for 13 of the 15 clusters. However, Clusters 1 and 11 had coefficient of

determination values < 0.5 for both the LI and L_2 regressions. Case studies using the

RS at selected sites in Cluster 11 yielded acceptable results despite the poor estimation of

the RS in Cluster 11. Hence the use of the RS could be used with caution to estimate L-

moments in Clusters 1 and 11.

In Hypothesis 2 the RS and 24 h LI and L_2 values, computed from the observed digitised

data, were used to estimate the first two L-moments for durations < 24 h.

Hypotheses 4, 5 and 6 all utilise the regional average L-moments, which are record length

weighted averages of the L-moments computed for the AMS, scaled by the mean of the

AMS (LI), for each duration at each site. Thus the first regional average L-moment

([_/") , being the regional average of the first at-site L-moments, which are scaled by L_l,

is equal to 1. These hypotheses differ in the manner in which the regional average L-

moments ( ! _ / ) are re-scaied at each site.

Hypothesis 3 assumed that the observed L_J0D) values for each duration (D) were available

at each site (/) in order to re-scale L_1R
(D) and £_2*fD) and thus estimate the first two L-

moments at each site. Hypothesis 4 estimated the at-site L_l{i24) value using regional

regression relationships and site characteristics and L_l{iJD) values for durations < 24 h were

then computed using the estimated L_l(u2A) value and the RS(li). The L_1(W) value for each

duration estimated in this manner was then used to re-scale the relevant L_1R
(D). Instead of

estimating L_llfM) from site characteristics, Hypothesis 5 estimated this value directly from

the dairy data and then used the same procedure as Hypothesis 4 to estimate L_l{iX>) for

shorter durations, which were then used to re-scale L_x?{D), where x < 2. Similarly,

Hypothesis 6 used the 1 day L J \ alue computed from the daily data and adjusted this value

into L_1V24) using regionalised 24 h : I day LI ratios, which compensate for the differences

between the AMS extracted from rainfall recorded continuously (24 h) and at fixed intervals

(1 day). Thus Hypotheses 4 - 6 utilised different techniques to estimate the L_l{{£)) values

for durations ^24 h in order to re-scale the Lj^{D) at sites where only daily rainfall data are

available. In addition Hypothesis 4 can be applied to a site that has no gauged data. In order
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to fit distributions with more than two parameters, Hypothesis 4,5 and 6 assume that third

and higher order L-moments can be estimated using the regional, average, record length

weighted L-moment ratios at all sites.

Hypothesis 1 is intuitively the most attractive as it is the simplest of the hypotheses

evaluated. Although this hypothesis was found to be adequate at a number of sites in

different climatic regions (e.g. Cathedral Peak, Newlands, Mokobulaan), breaks in linear

scaling for durations < 24 h and > 24 h at a number of stations (e.g. Ntabamhlope, Cedara,

Mount Edgecombe) resulted in the rejection of the hypothesis for general use in South

Africa.

The estimation of the RS for LI and L_2 from regionalised regressions and site

characteristics, as used in Hypotheses 2, 4, 5 and 6, did not appear to adversely influence

the estimation of design storms even in regions where weak relationships were obtained.

Hypothesis 4 is the only method evaluated that can be applied at an ungauged site within

a cluster and would be expected to yield reasonable estimates of the at-site L-moments and

hence design storms within a homogeneous region. Generally, at sites where the data were

deemed to be reliable, the method performed well. However, at most SAWB stations where

the method was evaluated, the hypothesis did not perform well as the L-moments computed

from the 1 day data were larger than the L-moments computed from the digitised data. This

anomaly is attributed to periods of missing digitised data for those stations. The errors in

the digitised data from numerous SAWB stations also resulted in Hypotheses 2, 3 and 4

generally not performing well at these sites when compared to the L-moments and design

storms estimated from the 1 day rainfall data.

All the hypotheses evaluated assume that the L-moment:duration relationship is linear when

plotted as log-transformed values. This power law relation appears to hold true for most

clusters over the range from 4 to 24 h. However, a change in the linear relationship at

durations ranging from 1 to 4 h was noted at most summer rainfall sites (e.g. Ntabamhlope,

Cedara, Kokstad, Mokobulaan and Drieplotte), where thunderstorms are the predominant
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rainfall generating mechanism. In the winter rainfall region (e.g. Jonkershoek, Cape Town

and Vredendal), where frontal rainfall systems predominate, the deviation in linear scaling

at a particular duration is not as marked. Although deficiencies in the temporal resolution

of the rainfall measurement and digitisation processes cannot entirely be discounted as the

cause of the change in linear scaling, it is postulated that the phenomenon is mainly the

result of the predominant rainfall generating system. The durations at which the breaks

occur at a particular site are hypothesised to be related to the typical duration of

thunderstorm activity. Thus it is recommended that Hypotheses 4 to 6 should not be used

to estimate design rainfall values for durations < 2 h, particularly in clusters where

thunderstorms are the predominant rainfall generating mechanism.

Hypothesis 6 requires that the 24 h LI value computed from the daily rainfall data be

converted into a continuous 24 h value, as would be estimated from the digitised data.

Although different conversion factors for each cluster were used in this project, it is

recommended that a value of 1.20 could be used to convert 1 day to 24 h LI values in

South Africa

It is postulated that the method outlined in Hypothesis 6, which performed well in all

clusters and attempts to compensate for errors and periods of missing digitised rainfall data,

will yield the most accurate estimates for design storms of the hypotheses evaluated and

should be adopted in the estimation of design storms. Although Hypothesis 6 requires daily

rainfall data and cannot be applied at sites which have no rainfall data, as is the case with

Hypothesis 4, the dense network of daily rainfall stations with relatively long records used

in conjunction with Hypothesis 6. enables the estimation of short duration design storms at

a large number of locations in South Africa. The estimation of regional regression

relationships to estimate the 1 day LI value, computed from the daily rainfall data, as a

function of site characteristics would enable Hypothesis 6 to be applied at any location in

South Africa.

An option not pursued in this project, but which warrants further investigation, is the use

of stochastic daily rainfall models, as have been developed for South Africa by Zucchini et
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al. (1992), to simulate daily rainfall series. The stochastically generated daily rainfall model

would thus enable Hypothesis 6 to be applied at any ungauged location in South Africa.

As discussed in Chapter 6, it is assumed that the regional average L-moments and RS

estimated from the digitised data are sufficiently reliable to be used despite the numerous

deficiencies illustrated in the digitised S AWB rainfall database. It was shown in Chapter 2

that the errors in the daily totals of rainfall computed from the digitised database occurred

over a wide range of values. It is probable that the wide range of event totals where errors

occurred is associated with a wide range of event durations. Thus it is postulated that RGC

and RS are probably reasonable estimates of their "true" values as events over all durations

are affected by the periods of missing data. It is noted in Chapter 6 that it is probable that

design storms estimated directly from the SAWB digitised data would, on average over

durations ranging from 2 h - 24 h at most stations considered, have underestimated short

duration design storms by up to 65 %.

8.2.3 Stochastic Rainfall Modelling

In the third approach to short duration design rainfall estimation, with results reported in

Chapter 7, two variations of Bartlett-Lewistype of intra-daily stochastic models were used

to generate synthetic series of rainfall. The series were accumulated at 1 minute intervals

within the models and output at 15 minute incremental totals in order to conserve disk space

and subsequent processing time.

The estimation of the parameters of the models proved to be an exacting task with similar

performance possible with very different sets of parameters. The constrained parameter

search technique developed in this project ensured that the mean storm characteristics

computed from the derived parameters were reasonable and aided in the determination of

parameters. The parameters estimated by function minimisation were found to be relatively

sensitive to the initial estimates of parameters at the start of the minimisation procedure and

the parameter search technique adopted assisted in overcoming this sensitivity. It became
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clear that the unconstrained minimisation procedures frequently used in the literature are

reliant on the careful selection of initial conditions. The explicit presentation of the

relationships between the model parameters and the methods used to estimate the parameter

correlation matrix are not evident in the literature reviewed. The correlation matrix assisted

in the determination of model parameters by identifying parameters that were highly

correlated and which could thus be fixed.

Despite the utilisation of these parameter determination procedures, the parameters for

some months at some stations were difficult to estimate. This can only be attributed to the

unsuitability of the model to the data which, in the range of locations and months where the

parameters were relatively easily determined, is improbable, or to errors and missing periods

of the data which alter the moments used in the estimation of parameters. Another problem

encountered, particularly with the SAWB data, is that frequently a long period of record

only contains relatively few individual months with no missing data and hence the reliability

of the moments computed for the months is low, which in turn may affect the performance

of the model.

The confidence intervals estimated by computing the 25-th and 75-th percentiles and thus

explicitly showing the stochastic variation in the output from the models was not evident

in the literature reviewed pertaining to stochastic rainfall models. Generally, other studies

have only generated a single long synthetic rainfall series, frequently only for a single month

of good data with a long record. In such cases, when the moments of the historical data

have been reported in the literature, the determination of reasonable parameters similar to,

or better than, those reported, were relatively easily obtained.

In this project, a means of assessing the fit and appropriateness of models to different data

sets of varying reliabilities and from varying climates had to be devised and applied in a

routine way. This was an ambitious task and was not achieved without difficulties. For

example, the cost of estimating the stochastic confidence intervals in terms of computing

time was enormous and the mainframe computing facilities provided by the Computing

Centre for Water Research (CCWR) proved to be inadequate with most runs for a single
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station generally taking longer than 24 h. Hence the super-parallel computing facilities

provided at the University of Potchefstroom were utilised successfully.

A comparison between the performances of the Modified Bartlett-Lewis Rectangular Pulse

Model (MBLRPM) and Bartlett-Lewis Rectangular Pulse Gamma Model (BLRPGM) was

performed at selected sites in South Africa. The performance of the models and the ease

of parameter determination were found to be sensitive to the composition of the moments

used to determine the parameters of the model. It was noted that despite the BLRPGM

requiring the estimation of an additional model parameter compared to the MBLRPM, the

performance of the BLRPGM was generally less sensitive than the MBLRPM to the

moments used to estimate the model parameters.

At a number of sites in different climatic regions in South Africa, the BLRPGM was shown

to simulate synthetic rainfall series which fitted the statistics of the historical data better than

those computed from the series generated by the MBLRPM. Similarly, the design rainfall

events estimated using the BLRPGM were better than those estimated using the MBLRPM.

Generally the BLRPGM performed better when short duration digitised data were available

to estimate the model parameters than when only daily rainfall data were available. It was

shown that the variances for durations < 24 h could be estimated directly from the 1 and 2

day values and were reasonably accurate at most locations tested for durations as short as

1 h. The use of only the daily rainfall, with the inclusion of variances for durations < 24 h

estimated from the dairy data (Set 2f), generally resulted in adequate estimation of design

rainfalls. Further improvements in the estimation of design rainfalls are possible by adopting

the Opt3 parameter optimisation procedure, which includes event duration and number of

events, in addition to other moments, directly in the determination of model parameters.

The performance of both the MBLRPM and BLRPGM was generally better for durations

close to those defining the moments used to determine the model parameters than for other

durations, but did scale reasonably well to other durations.
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Design storms were well estimated from the synthetic series generated from the BLRPGM

at a range of sites in different climatic regions in the country. However, it is recommend that

design storms for durations shorter than 1 h should not be estimated from the synthetic

series generated by the BLRPGM, even when short duration rainfall data are available to

estimate model parameters. In cases where only daily rainfall data are available to estimate

the parameters of the model, it is recommended that design storms should not be estimated

for durations shorter than 2 h and should be used with caution for durations from 2 to 6 h.

It was evident from the results obtained that any anomalies in the historical data, as was

often the case with the S A WB data, are highlighted by comparisons to the synthetic rainfall

series. Thus it was shown in some cases that design storms estimated using the BLRPGM

were more reliable than the design storms estimated using historical short duration data.

Design storms are only estimated well using the BLRPGM when the historical AMS contain

no high outliers and hence the BLRPGM does not appear to work well at locations where

a mixture of meteorological conditions cause extreme events. Thus the model performance

does not appear to be adequate in areas where the variation in range of values in the AMS

for a particular month is smaller for longer duration events than for shorter duration events.

The temporal distribution of storms generated by the BLRPGM was found to closely match

the observed data at three sites in different climatic regions in South Africa. However, the

frequency of storms with particular profiles was not as well simulated as the temporal

distribution. It is thus recommended that the use of the BLRPGM to estimate design rainfall

values in South Africa, particularly for durations of lh to 24 h, is a feasible option which

can also be adopted at sites where only daily rainfall data are available.

The effect of record lengths on the estimation of design rainfall values was investigated at

two sites in South Africa. In both cases, the design rainfall values estimated from the

synthetic rainfall series generated by the BLRPGM, with parameters determined using a

short period of record, better approximated the "true" design values, computed directly

from the full period of observed record, than when the design values were computed

directly from the short period of observed record. Thus it is highly recommended that,
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particularly when only short periods of record are available and no other techniques of

estimating short duration design rainfall values are available, design rainfall values should

preferably be computed using the synthetic rainfall series generated by the BLRPGM, with

parameters estimated using the short period of data, than when estimating the design values

directly from the short period of observed data.

An option not considered in this project, but one which would allow the BLRPGM to be

applied at any location in South Africa, would be to generate daily rainfall series using

stochastic models such as developed by Zucchini et al. (1992) and then to use the synthetic

daily rainfall series to estimate the parameters of the BLRPGM.

In the folio wing section design storms estimated using Hypothesis 6, which estimates design

storms using a combination of the regional and scaling approaches, are compared to the

design storms estimated from the synthetic rainfall series generated by the BLRPGM.

8.3 COMPARISON OF TECHNIQUES

The Mean Absolute Relative Error (MARE) between design rainfall values estimated using

both Hypothesis 6 and the synthetic rainfall series generated by the BLRPGM, with

parameters determined using Set 2f and optimised using the Opt 3 option as described in

Section 7.10.2 and design values estimated from the historical data, are shown in Figure 99

for selected stations where the data were deemed to be reliable. In the calculation of the

MAREs, the 2, 10,20 and 50 year return period values for durations of 2,4,6,12 and 24 h

durations were considered. It is evident from Figure 99 that design rainfall values computed

using either Hypothesis 6 or from the synthetic rainfall series generated by the BLRPGM,

with parameters estimated from daily rainfall data, are similar. Hence it is concluded that

both methods are acceptable for estimating design storms in South Africa for durations
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Figure 99 Mean absolute relative errors of design rainfalls for durations of 2 -
24 h and return periods of 2 - 50 years estimated at selected stations
using Hypothesis 6 and the BLRPGM

8.4 RECOMMENDATIONS

All three approaches which were evaluated to estimate short duration design storms with

an inadequate database performed well, considering the limitations of the data. However,

the combined method of regional average L-moments and RS, scaled using an adjusted LJ.

value computed from the daily rainfall data (Hypothesis 6), is recommended for general use

as it combines the strengths of the regional approach, which may compensate to some

extent for stations with poor data, with the explicit attempt to compensate for the

inadequate digitised data by using the LI value computed from the daily data. It is also

recommended that the BLRPGM be used at selected sites, in addition to the method

detailed in Hypothesis 6, in order to ensure reasonable design estimates are obtained.

The results of the regional regression analyses used to estimate LI and RS as a function

of site characteristics may have been affected by correlation between the independent

variables and, in some clusters, by the limited number of stations and hence insufficient
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degrees of freedom in the analyses. It is recommended that the selection of independent

variables should be reviewed and simpler approaches to the regression analyses should be

sought.

Hypothesis 6 can only be applied at sites which have dairy rainfall data. It is recommended

that regional relationships be developed to estimate the at-site 1 day LJ value, computed

from the daily rainfall data, as a function of site characteristics, as reported in Section 5.4

for the 24 h LJ values, which were computed from the digitised rainfall data. This

relationship, in conjunction with the regionalised 24 h : 1 day LJ ratios and RS, would

enable reliable estimation of design storms for durations ^ 24 h at any site in South Africa.

Design rainfalls estimated using the recommended approaches generally did not compare

well to design values for durations shorter than 1 h. This suggests either that the data are

more unreliable for shorter durations or that the techniques developed do not capture the

characteristics of the extreme events for shorter scales. It is therefore recommended that the

techniques should be evaluated on more reliable, high resolution rainfall data such as

recorded by data loggers, which may have to be obtained from sites not in South Africa.

The breaks in scaling at approximately 1 h and 24 h durations noted at many of the sites in

South Africa, should be further investigated. Reliable, high resolution rainfall data should

be obtained to further investigate the nature of these inconsistencies.

The variances for short duration events, used for determining parameters of the BLRPMs

from the daily rainfall data, were estimated in this project using a linear relationship

between the log of variance and log of duration. This generally resulted in poor estimates

of variance for durations <lh. It is recommended that future research should consider

adopting a curvilinear function, which may improve the estimates of variance for short

durations and result in better model parameters and improved model performance.

It is further recommended that the stochastic daily rainfall models, as developed by Zucchini

et al. (1992) for South Africa, should be evaluated as a technique to estimate the mean of
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the AMS at ungauged site, as is required for Hypothesis 6. If successful, this would provide

an alternative method for Hypothesis 4 in order to estimate design rainfall values for

durations shorter than 24 h at ungauged sites. The stochastic rainfall series should also be

evaluated as a means to determine the parameters of the BLRPGM, which in turn could be

used to estimate short duration design rainfall values.

The 15 relatively homogeneous rainfall regions should be further verified and refined using

the daily rainfall database for South Africa. The results in this project should then be

adjusted to make use of a single set of homogeneous clusters for all durations.
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APPENDIX A

SITE CHARACTERISTICS OF STATIONS USED IN CLUSTER ANALYSIS AND SCALING
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APPENDIX B

PROBABILITY DISTRIBUTIONS

A number of probability distribution were evaluated in Chapter 5 as candidate distributions

for estimating short design rainfalls in South Africa. These were the log-normal LN2, 3

parameter log-normal (LN3), Pearson type 3 (PE3), log-Pearson type 3 (LP3), Gumbel

(EV1), log-EVl (L-EV1), General Extreme Value (GEV), generalised Pareto (GPA),

generalised logistic (GLO) and Wakeby (WAK) probability distributions. Where possible,

the probability density function, fix), and cumulative density function, F(x), inverse of the

cumulative density function x(F), L-moments and parameters as reported by Hosking and

Wallis (1997), are presented in this Appendix. These distributions were implemented in the

study using routines developed by Hosking (1996).

B.I GUMBEL (EXTREME-VALUE TYPE I) DISTRIBUTION

B.I.I Definition

Parameters (2) : /(location), a (scale)
Range of x : -oo < x < a>

...91

F{x) = exp[-exp{-(x - <f) / a j] ...92

...93

B.1.2 L-moments

A.x=4 + ar - 94

...95
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T3 =0.1699 = log(9/8)/log2 ...96

r4 = 0.1504 = (161og2-101og3)/log2 ...97

where y Euler's constant (0.5772).

B.I.3 Parameters

4=kx-ya ...98

B.2 NORMAL DISTRIBUTION

B.2.1 Definition

Parameters (2) : pi (location), a (scale).
Range of x : - oo < x < oo

...99

.100

x(F) has no explicit analytical form

where
1 / 2 ( ! 2 ) [ ...101

B.2.2 L-moments

1!=^ ...102

r 3 = 0 ...104

r4 =0.1226 = 3O;r~1arctanV2~- 9 ...105
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B.2.3 Parameters

fd — Ay CT = 71 A>2 ... 1UD

B.3 GENERALISED PARETO DISTRIBUTION

B.3.1 Definition

Parameters (3) : ^ (location), a (scale), k (shape).

Rangeofx : (<. x <; £ + a/kifk>Q; fz x < « if* <; 0.

...108

...,09

When * = 0, y(j:) is the exponential distribution and for k = 1 /[x) is the uniform distribution
on the interval g z x <, £+ a.

B.3.2 L-moments

L-moments are defined for k > -1.

...110

*)f -111

...112

4 { ( 3 + *M4 + Ar)} ...113

The relation between r3 and r4 is defined as

±5£3). ...114

5+r3
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B.3.3 Parameters

If "̂is known, the two parameters a and k are given by

-£>. ...115

If ^"is unknown, the three parameters are given by

, £ = A, - (2 + *U2 • ...116

B.4 GENERALIZED EXTREME-VALUE DISTRIBUTION

B.4.1 Definition

Parameters (3) : ^(location), a (scale), k (shape).
Range of x : - » < JC <; g + a/k if k > 0;

[ ( ^ ) / k=0

...118

When A = O/fx) is the Gumbel distribution and when k = 1 fix) is a reverse exponential
distribution i.e, 1 - F(-x) is the cumulative distribution function of an exponential
distribution. Three types of extreme-value distributions are often classified with cumulative
distribution functions as follows:

Type I : F(x) = exp(e~x), -<x<x<<x>, ...120

Type II : F(x) = exp(-x~s), 0<x<n, ...121

Type III : F(x) = exp(-;t*), -oo<x^0. ...122
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B.4.2 L-moments

L-moments are defined for k > -1.

A, = | + a { l - r O + *)}/Jfc ...124

* Jfe)/Jfc ...125

2-*)-3 ...126

r4 = J5(l-4"*)-10(1-3"*) + 6(1- 2~*)}/(l-2~*) ...127

where F (.) denotes the gamma function

r(x)=ftx-le~'dt. ...128

B.4.3 Parameters

* * 7.8590c + 2.9554c2, c = — ^ l i . ...129
3+r 3 Iog3

B.5 GENERALIZED LOGISTIC DISTRIBUTION

B.5.1 Definition

Parameters (3) : ^(location), a (scale), k (shape).

Range ofx : - °© < x s <f + a/k if fc> 0;

< x < °° if Jt < 0.

.132
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f# + flr[l-{(l-F)/F}*]/*,
.133

When k = Of(x) is the logistic distribution.

B.5.2 L-moments

L-moments are defined for -1 < k < 1.

A^e + ail/k-ff/sinikx)) ...134

Xi = akn I sin{^) ...135

v3=-k ...136

r 4 =( l + 5A2)/6 ...137

B.5.3 Parameters

-138

B.6 LOG-NORMAL DISTRIBUTION

B.6.1 Definition

Parameters (3) : ^(location), or (scale), k (shape).

Range of x : -°°<x <> £+ ctfk \f k>0;

- oo<x<oo if A: = 0;

f+a/k < x < oo if k < 0.

.140
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x(F) has no explicit analytical fonn

Here <& is the cumulative distribution function of the standard Normal distribution,
defined in Equation 101.

The lognormai distribution is usually defined by

.141

B.6.2 L-moments

L-moments are defined for all values of k.

.142

.143

There are no simple expressions for the L-moment ratios tr,r s 3. They are functions of
k alone and can be computed by numerical integration, as in Hosking (1996).

B.6.3 Parameters

The approximation

is valid for j r3 j * 0.94 , corresponding to | k\ <; 3, with E0..,E3 and F^.-.F^ defined by
Hosking and Wallis (1997, page 199)

x —(i_ e
k/2). ...145
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B.7 PEARSON TYPE III DISTRIBUTION

B.7.1 Definition

Parameters (3) : //(location), a (scale), y (shape).

Range : £"<; 0 < °° for y > 0

oo< o < oo for y=0

-°a<0<£fory<0

If y* 0, let a=4/f , /?= \ a\ y\, and £= n - 2afy, then

fiaTia)

G{a)/T(a).

x(F) has no explicit analytical form

where

.146

...147

o
is the incomplete gamma function.

B.7.2 L-moments

L-moments are defined for all values of a, 0 < a < °°.

...148

...149

...150

where I^ip.q) is the incomplete beta function ratio

-O^dt. ...151
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If a t 1, the following approximations are accurate to 10"

.13Z

--2 , r _-3

...153

if a<\,

•E3a
:

...
.154

with coefficients as defined by defined by Hosking and Wallis (1997, page 201).

B.7.3 Parameters

The following approximations have relative accuracy better than 5 x 10'5 for all values of
a. IfO< | r , | < 4 , l e t z= "5nt\ and use

l + 0.2906z
a =s T r-; ...156

z + 0.1882z2+0.0442z3

if j ^ \T3\ < 1, letz= \-\T3\ and use

036067z - 0i9567z2 + 025361z3 . ._
a » = ^. ...157

1 - 2.7886 lz + 2J6096z2 - 0.77045z3

o = ...158
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B.8.3 Parameters

No simple expressions exist for the parameters, but the Newton-Raphson iteration
algorithm described by Hosking (1996) may be used.

B.9 WAKEBY DISTRIBUTION

B.9.1 Definition

Parameters (5) : ^"(location), a, /?, y, 6.

Range of* : £<, x< °° if 6 ;> Oand y>0;
<f <.x<. f+a/fi- yld if <5<0or y=0.

f(x), F(x) not explicitly defined

*} ...167

B.9.2 L-moments

L-moments are defined for 6 < 1.

X = 1 + L
2 (l

+

^) (\-S)(2-S)(3~S)

fi) , y(\ + S)(2 + 5)
4 (1 ^ ( 2 ^X3 ^ ( 4 ^ ) ( 1 ^ 2 ^ X 3 ^ X 4 ^ )

There is no simple expression for xr

B.9.3 Parameters

Hosking and Wailis (1997) advocate using an algorithm based on L-moments implemented
by Hosking (1996) to estimate the parameters of the Wakeby distribution.
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B.8 KAPPA DISTRIBUTION

B.8.1 Definition

Parameters (4) :

Range of x :

^(location), or (scale), k, h.

upper bound is £"+ a/k if k > 0, °° if k iO;
lower bound is £+ a(l-k*)Ik if h > - 0, ^+ alk if h s 0 and k< 0,

and - °° if /i s 0 and A a 0.

llh

...159

...160

...161

B.8.2 L-moments

L-moments are defined if h z 0 and J t > - l , o r i f / i < 0 and -1 < k < -\lh.

= (Si +6g2 -10g3 +5g4)/(gj -g2)

where

gr =

k)T(r/h)
, h>0

-^-,/i<0.

.162

.163

.164

.165

.166
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