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EXECUTIVE SUMMARY

AIM

The objectives of the research programme were as follows:

1. Develop and test a low cost methodology for estimating river flows and pollutant loads at

ungauged sites.

2. Evaluate the potential for a low cost, low technology, non-site specific methodology that can

be used to relate in-stream water quality to type and intensity of land use.

3. Determine if the proposed methodology warrants further research and development.

MOTIVATION

Non-point source pollution has been identified as a priority research area. There is limited

information available locally to support non-point source quantification for management purposes.

One of the major obstacles in increasing the database is the high cost associated with conventional

methods of monitoring diffuse source loads.

The conventional rigorous approach calls for extremely expensive continuous flow gauging in

conjunction with high frequency water quality sampling. A high level of technical competence is also

required to maintain equipment and process the large volumes of data. This has tended to limit

research to a few small site specific study catchments. Since small study catchments are typically

dominated by relatively unique local land use characteristics, it is difficult to apply the research

results to wider catchment areas. Construction of the large number of monitoring stations that would

be required to derive reliable relationships between land use and river water quality will in all

probability never be realised in time to be of use in predicting the effects of rapid urbanisation.

Moreover, the constraints imposed by the difficulty in locating suitable flow gauging sites often

prevent the optimal selection of sub-catchments (which should be land use driven).
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This raises the need to develop a low cost, low technology methodology that can be used to estimate

diffuse source loads and develop usefui relationships between in-stream river quality and land-use.

The research project is aimed at meeting this need.

APPROACH

The study is to be addressed in two phases, the first of which is encapsulated in this study and

comprises a preliminary investigation. The second phase would involve further research to prove and

develop the methodology. Execution of the second phase will depend on the outcome of the

preliminary investigation.

Phase 1 was confined to developing the methodology, with only limited water qualitv sampling and

testing. The second phase will address the development of a database, additional sampling and

analysis and the development of relationships for a range of type and intensity of land use.

TASKS

The specific study tasks include:

• Identify land uses and sampling points

• Water quality sampling

• Calibrate hydrological model

Develop flow / water quality relationships

Evaluate methodology

Document research findings

SELECTION OF SAMPLING POINTS

Budget constraints limited the number of samples that could be analysed. Sample points were chosen

below areas with relatively uniform land use development.

Data was collected at six sites in the Rietspruit catchment. Predominant land uses include:

low density residential / CBD

high density residential (two sites)

industrial

rural (dry land cultivation)

undeveloped.
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WATER QUALITY SAMPLING

Ten samples were taken at each site over a six-month period from March to September 1997. Some

of the sample dates were planned to coincide with wet weather conditions, thereby ensuring that the

limited number of samples covered a reasonable range of flow conditions. The key water quality

variables that were sampled included pH, electrical conductivity, sulphate, nitrate, ammonia, total

phosphate, faecal coliform, dissolved oxygen and temperature. The later two variables were used to

calculate the percentage oxygen saturation. Very crude estimates of flow were made at each site.

However, most of these estimates are considered to be highly inaccurate and were not used in further

processing. This had no detrimental effect, since the methodology is based on the assumption that

definitive flow data is not available at the monitoring stations.

The small database prevented an assessment of the effect of sampling frequency and sample size on

the model results. It also prevented partitioning the sample to test the effect of deriving separate

relationships for wet and dry flow ranges.

HYDROLOGICAL MODELLING

The daily time step NACL model was used to simulate flows at each monitoring site. A correction

was applied to the data to make the modelled flows coincide with those observed at the catchment

outlet (RW station R6).

As expected, spatial and temporal variations in rainfall prevented the model from accurately

replicating the flows that occurred on each day on which water quality sampling took place. The

actual accuracy of flow estimation at the sampling points could not be assessed, since only very

inaccurate flow observations could be made.

WATER QUALITY RELATIONSHIPS

Both natural and power regressions between modelled flow and concentration were derived for key

parameters at each site. The water quality variables for which these regressions were derived

included:

electrical conductivity

sulphate

nitrate
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ammonia

total phosphate

faecal coliform

percentage oxygen saturation.

The NACL model was used to simulate a large number of daily flows for the period October 1%5 to

September 1997. This period covers a wide range of hydrological conditions, including severe

droughts and extreme floods.

ESTIMATION OF RANGE OF CONCENTRATIONS

The most appropriate regression equation for each water quality variable was used to estimate a

regressed concentration corresponding to each simulated daily flow. Normalised random noise was

then added to the regressed values to allow for the considerable variation that was attached to the

observed data. Provision was made for specifying an applicable range of flow conditions (in this

case close to the flow range of the observed data). Allowance was also made to filter out

unreasonably high or low concentrations.

The range of concentrations thus generated for each water quality variable and station was also

presented in the form of a duration curve. The results were tabulated to show key statistical

properties, including mean, standard deviation, regression constants, standard error, correlation

coefficient and selected percentile values (98%, 95%, 90% high values plus the median).

CONCLUSIONS

Application of methodology

The strength of the methodology was demonstrated by means of an example of the impact of an

assumed new high densit\ urban development. The potential for using the methodology in

conjunction with GIS based land use data was also discussed.

Advantage of methodology

The use of a regression equation results in severe damping of the generated concentrations of non-

conservative pollutants. The use of this methodology (or mean values) inevitably leads to gross

understatement of the true range of concentrations that arise. The methodology put forward in this
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report holds the advantage of taking account of the semi-stochastic manner in which concentrations

vary about the regressed values.

Use of modelled flow data (suitably corrected against observations at a downstream reference gauge)

has the advantage of freeing the practitioner of the need to confine water quality sampling to sites

were flows can be gauged. Application of this methodology means that monitoring sites can now be

chosen close to source areas, thereby monitoring relatively homogeneously developed areas. The

main requirement is that sufficient samples should be gathered to cover a range of flow conditions. It

has been demonstrated that by varying sampling dates according to weather conditions it is possible

to monitor a wide range of flows with relatively few samples.

Partitioning of data

The sample size was too small to permit partitioning of the data into low and high flow conditions.

Nor was it possible to investigate the impact of sample size and sampling frequency on the key

statistical properties (such as mean, standard deviation and standard error). There is merit in

investigating both of these effects.

Limitations of methodology

The following factors are limitations on the methodology and the extent to which it could be tested in

the study:

Relatively infrequent and short sampling records can miss first flush events at the onset of

rain.

The effect of temporal and spatial variation in rainfall on the accuracy of flow estimation at

upstream sites needs to be evaluated, along with its effect on the required water quality

sampling period.

In some instances the results can be sensitive to the choice of regression equation (section

5), particularly when the sample size is small.

A linear regression often gives a superior representation to an exponential regression.

However, applying random noise to a linear regression can result in negative estimated

concentrations. Correction by eliminating such values has the effect of increasing the
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average of the generated values. This implies the need to investigate other types of

regression equation.

Preliminary results

A methodology has been developed successfully and the results of its application are promising.

However, the small water quality database prevented assessment of the unknowns listed above.

Hence further investigations are necessary to determine the value of the method, before it can be

regarded as a final or accepted technology.

RECOMMENDATIONS

• Determination of required sample sizes

It is desirable to test the methodology that has been derived against fuller and longer data

sets to determine the number of samples required to achieve a reasonable representation of

the key statistical parameters. The effect of partitioning the data into low and high flow

ranges should also be investigated.

• Assessment of required sampling frequency

The effect of sampling frequency on the results should be investigated, including evaluation

of the effect of the first flush at the onset of rainfall events.

• Investigation of flow modelling time step

The use of daily flow models is constrained by the effort and time required to calibrate the

models. However, monthly flow modelling is widespread in southern Africa. The potential

exists to apply the same methodology to coarser monthly time step flow modelling data. The

overall benefit of being able to use monthly flow modelling would be very far reaching.

• Evaluation of flow modelling accuracy

The impact of spatial and temporal rainfall distribution on the accuracy of simulated flows

at sites upstream of the reference gauge needs to be investigated.
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Investigate use of other statistical distributions

The current study used only linear and power regression curves. Further investigation of

other types of regression is recommended. In particular, alternative methods of handling the

addition of normalised random noise to the regression line should be investigated. This is

because this can result in concentrations that lie outside the plausible range and therefore

have to be filtered out, thereby affecting the statistical properties.

Development of national database

The results thus far achieved indicate that there is much merit in developing a national data

base of key statistical parameters associated with different land uses. This proposal is linked

to the application of the methodology discussed in this report. However, even without the

new technology, there is a pressing need to consolidate data on the effect of land use on

water quality.

Minimisation of flow gauging requirements

The methodology described in this report can be used effectively to reduce flow gauging

requirements in water quality studies. This would enable water quality monitoring sites to be

selected primarily on the basis of upstream land use and access, rather than on the

suitability of the site for flow gauging. The techniques that have been developed can also be

used to maximise the use of data that has already been accumulated at a number of sites that

are not suitable for flow gauging.

Testing of scenarios

A serious weakness of most water quality studies that have been carried out to date lies in

the tendency to rely on flow/concentration regressions to explain catchment export. This

inevitably leads to severe damping of the resulting scenarios of water quality concentrations.

This points to the need to take better account of the variability of observed concentrations

about the mean or regression line. This is especially important with regard to non-

conservative constituents, which can typically show a very wide variation. The methodology

that has been presented provides a means of taking this variation into account. Hence it has

great potential to be applied in water quality studies to test scenarios (such as assessment of

the impact of planned management options or scenarios of projected land use development).
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However, use of the new methodology in this manner should not proceed until some of the

key outstanding issues have been addressed in follow up studies.

Use of random number processing in other applications

The methodology that has been developed for dealing with the variation in observed

concentrations has great potential for application in a simplified. eas\ to calibrate river

routing model. A simple decay model was developed and used successfully for the

Environmental Impact Assessment for ERWAT's proposed new Welgedacht water care

works. Proposals have been made for extending this simple but robust technology to include

the methodology discussed in this report.

Evaluation of dependence on hydrologieal model

It is desirable to test the dependence of the results on the choice of hydrologieal model.
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1. INTRODUCTION

1.1 Aim

The objectives of the research programme were as follows:

• Develop and test a low cost methodology for estimating river flows and pollutant

loads at ungauged sites.

• Evaluate the potential for a low cost, low technology, non-site specific methodology

that can be used to relate in-stream water quality to type and intensity of land use.

• Determine if the proposed methodology warrants further research and development.

1.2 Motivation

Most catchments in South Africa are dominated by surface washoff and therefore have a

high potential for generating non-point (diffuse) source pollution. Consequently, the Water

Research Commission has identified non-point source pollution as a priority research area.

One of the recent projects supported by the Water Research Commission is a study

conducted by Sigma Beta / 1WQS (WRC Project No. K5/696, 1997). In Phase I of this

study (a situation assessment of the current state of knowledge of non-point source problems

in South Africa) it was concluded that much of the work has been research orientated and

that there is limited data to support non-point source quantification for management

purposes. Also, previous studies have often been site specific and/or limited to a small area.

Some of the recommendations of the Sigma Beta/IWQS study were:

Information (at an appropriate level of detail) must be presented for the purposes of

catchment management.

The cost-effectiveness of practices, including new techniques to address non-point

source production, must be estimated.

One of the major obstacles in addressing the above needs is the high cost associated with



conventional methods of monitoring diffuse source loads from different land uses. The

conventional rigorous approach calls for continuous flow gauging in conjunction with high

frequency water quality sampling, both of which are usually extremely expensive and

require a high level of technical competence to maintain equipment and process the large

volumes of data. The requisite field instrumentation is also vulnerable to vandalism. These

factors have tended to limit research to a few small site specific study catchments. Since

small study catchments are typically dominated by relatively unique local land use

characteristics, it is difficult to apply the research results to wider catchment areas. A targe

number of monitoring stations would be required to derive reliable relationships between

land use and river water quality. Economic realities mean that construction of these works

will in all probability never be realised in time to be of use in predicting the effects of the

rapid urbanisation associated with the Reconstruction Development Plan (RDP). Moreover,

the constraints imposed by the difficulty in locating suitable flow gauging sites often prevent

the optimal selection of sub-catchments (which should be land use driven).

This raises the need to develop a low cost, low technology methodology that can be used to

estimate diffuse source loads and develop useful relationships between in-stream river

quality and land-use. The research project reported on in this document is aimed at meeting

this need.

1.3 Simplified approach

At the heart of the simplified approach is a methodology that combines low cost flow

estimation at an appropriate level of precision with judicious water quality sampling aimed

at estimating diffuse source loads from different land uses. These can then be used as input

to a suitable model that can be used to simulate the routing of the pollutant loads derived

from both point and diffuse sources, in-stream decay processes and ultimately the impact of

expected development and intended management.

At a later stage it may be possible to find a means of simplifying the routing process. At

first it was thought that this could be achieved by means of compiling scalable concentration

frequency distribution curves and other relevant statistical properties for each pollutant that

can be regarded as typical for the land uses under investigation. However, in the interim the

research team has become convinced that a much better approach would be to simplify the

modelling of the decay and routing process. Promising and practical proposals in this regard



have been put forward to the WRC and the DWAF.

Irrespective of the approach (simple or complex) later adopted for simulating the routing

and in-stream decay process, a simple but robust method of estimating the diffuse load

export from developed areas is required. The results of the study could form the start of a

database that can supply information on non-point source quantification at an appropriate

level of detail for catchment management purposes. This database could then be used in

conjunction with GIS information on land use to estimate the diffuse export from different

portions of catchment of concern.

1.4 Basis for simplified approach

The following two factors have a critical effect on the cost-effectiveness of the methodology

adopted for assessing the impact of diffuse source washoff from land use development on

water quality:

the appropriate level of precision in flow gauging; and

the appropriate duration and frequency of water quality sampling.

1.4.1 Appropriate level of precision in flow gauging

Achievement of an appropriate level of precision in the gauging of flow rates is

especially pertinent in the case of non-conservative pollutants (which are of most

concern with regard to the rapid expansion of low cost housing projects associated

with the RDP). Such pollutants are subject to high in-stream decay rates and do not

always correlate well to flow rate. For example, faecal coliform counts can vary by

orders of magnitude from one sample to another, even for similar flow conditions

(due sometimes to local environmental changes that affect the decay rate, or to

inaccuracies in sample analyses). Such effects obviously greatly reduce the

accuracy with which the instantaneous load can be estimated even with perfect flow

gauging. Moreover, natural decay in the delivery system between the land use in

question and the point of monitoring further reduces the accuracy with which non-

point source loads can be estimated. This means that in the case of non-conservative

pollutants the conventional approach of providing expensive structures to make

precise measurements will not necessarily result in accurate diffuse source load

estimation.



The approach adopted in this study is based on the use of a daily time step rainfall-

runoff model to simulate the runoff from a number of selected key sub-catchments

reflecting a range of type and intensity of catchment development. The observed

runoff record at the established downstream Rand Water flow gauging station at R6

was used to adjust the simulated runoff from the entire catchment and from each of

the smaller upstream sub-catchments, thereby greatly improving the estimation of

the dailv flow. This was used to improve the accuracy of flow estimation at each of

the upstream sampling points, without having to incur the cost of expensive new

gauging structures and instrumentation. It also permitted more appropriate

selection of sub-catchments based solely on land use, rather than on the constraints

imposed by the availability of suitable flow gauging sites.

The spatial and temporal variation in rainfall still affects the accuracy with which

river flows were estimated at each upstream monitoring point. However, the

correction procedure using the downstream weir record should serve to preserve the

general trend in the relative magnitude of the flow at the time when each sample is

taken. While the accuracy w ith which the load can be estimated at the time of taking

any individual sample will still be limited, the general relationship between flow rate

and water quality should be reasonably preserved. The reliability of the

relationships derived between flow and pollutant load would steadily improve as the

number of samples that are collected increases. This should not significantly

increase the water quality sampling requirements, since the semi-stochastic high

variability of non-conservative pollutant concentrations for ostensibly similar flow

conditions also requires a reasonably large number of samples to be taken before

reliable load estimates can be made.

Any loss in accuracy should be more than compensated for by the ability to

estimate the runoff from several sub-catchments at an appropriate level of

accuracv, all of which can be selected according to land use criteria, rather than the

availability of (low gauging sites. This opens the possibility of choosing water

quality monitoring sites in close proximity to upstream catchment developments of

interest.



1.4.2 Appropriate duration and frequency of water quality sampling

In addition to accurate flow gauging, the conventional approach to studying non-

point source pollution usually calls for intensive high frequency sampling, yielding

a large amount of data from which accurate estimates of pollutant loads can be

derived. However, intensive high frequency sampling can prove to be expensive. As

a result, budget constraints usually allow only a few events to be monitored. Since

the magnitude and timing of each hydrological event is highly variable and can

result in wide variations in water quality response, the results are usually difficult to

extrapolate to other unseen hydrological events in the study catchment itself, let

alone to other catchments. Moreover, equipment failure, human error, exceedence

of the rated capacity of the flow gauging structure or overloading of laboratory

facilities often lead to gaps in the record that prevent accurate load estimation

despite the sophistication of the technology employed.

Due consideration needs to be given to how the data will be used in practice before

determining the appropriate duration and frequency of water quality sampling. For

conservative pollutants, such as salts, a time series of pollutant loads can be used as

input to load based dynamic models to estimate the change in water quality likely to

arise from a given option for a wide range of hydrological conditions. However, in

the case of non-conservative pollutants, the complexities of decay processes have

generally confined model development and application to steady state models (such

as the EPA supported QUAL2E model) that are concentration, rather than load

driven. Accurate load estimation is therefore of less importance than the

determination of concentrations for specific critical (usually low flow, or small

runoff event) conditions.

In view of the above considerations, it is difficult to justify high frequency sampling

to estimate non-conservative pollutant diffuse loads (the sampling and analysis of

which have a wide band of uncertainty). Instead, sustained low frequency (weekly

or fortnightly) sampling could be aimed at covering a range of hydrological

conditions. Sampling dates could also be adjusted in response to weather conditions

to ensure that sufficient samples are obtained corresponding to high flow events.

This will provide the basis for building up relationships between in-stream water

quality and river flow and seasonal factors, which can in turn be used to estimate



diffuse source loads from the full flow record.

1.4.3 Characterisation of in-stream water quality

Water quality management studies are aimed primarily at achieving receiving water

quality objectives. In this regard the pollutant concentration duration curve (i.e. the

percentage time that a given pollutant concentration can be expected to be

exceeded) is of most concern. Water and pollutant mass balance simulation

modelling has been used with some success to predict the effect of upstream

catchment development on salinity. However, this approach is much more difficult

to apply in the case of non-conservative pollutants where decay processes play an

important role.

The second objective of this study was aimed at developing direct relationships

between non-conservative pollutant concentration frequency distribution curves and

the type and intensity of land use. The intention was that as the data base is built up

over time from this and other studies, suitable factors could be developed for

scaling the duration curve characteristics. Scaling can be according to factors such

as the density of land use development, type and length of river reach between the

land use and the point of interest, and the relative contribution to the runoff from

the developed area. Suitable relationships could then be sought for other relevant

statistical properties, such as the mean concentration and the standard deviation.

However, it soon became apparent that there are a large number of possible

combinations of upstream land use, intensity of development and distance

downstream at which the samples are taken. Against this, the Phase 1 study

obtained data for only six monitoring points. It was considered imprudent to attempt

to establish such complex inter-relationships from so small a sample.

Further crystallisation of the ideas promoted the development of what is considered

a much more practical method of estimating downstream impacts. This calls for the

generation of a range of possible diffuse source washoff scenarios for each land

use. A simple river routing and decay mode! has then been proposed as a vehicle for

simulating a range of downstream pollutant concentrations associated with both the

range of hydrological events and the management option under consideration.



1.4.4 Data base development

The results of the second phase of the study will form the start of a database that

can supply information on non-point source quantification at an appropriate level of

detail for catchment management purposes. The data base, as well as the land-use

classification and the monitored river water quality at various points along the river

would be entered in a G1S, thereby enabling evaluation of the possible effect of

changing land-use on river water quality.

The information stored in the data base would be confirmed as experience is gained

from longer monitoring records and subsequent studies on other catchments. In

time the database can also be extended to include coverage of a wider range of

water quality variables and land uses.

1.5 Phasing of project

The current Phase 1 study has been confined to developing the methodology, with only

limited water quality sampling and testing. The second phase will address the development

of the database, additional sampling and analysis and the development of relationships for a

range of type and intensity of land use. But it is important to ensure that the right type of

data is stored in the database. Typically literature sources site some estimate of the total

annual export from different land uses. However, these estimates also carry an underlying

range of estimation uncertainty, which is usually not given.

Subject to approval of the positive findings of this preliminary investigation, the WRC will

decide on proceeding with the second phase of the study.

1.6 Expected benefits

The current study has put forward a novel cost saving approach that bypasses the need to

monitor flow rate at every sampling point. But at the same time the probabilistic approach

provides a means of taking due account of the variability of the observed data.

Initiation of the proposed database will provide an important longer term benefit to water



quality practitioners by giving them a means of unravelling the data that is accumulated

from various studies of land use impacts.

Finally, bv linking river water quality to land-use using GIS techniques, a what-if situation

for a particular area can be assessed, i.e. the effect of a change in land-use on river qualitv

can be evaluated. This aspect should prove to be particularly valuable for planning

purposes.

1.7 Tasks

The specific study tasks of the Phase 1 study are discussed briefly in the following sections.

Task 1 : Identify land uses and sampling points

This task involved examination of land uses within the Rietspruit / Natalspruit catchment

and the identification of sub-catchments characterised by relatively homogeneous land use.

Land use information was obtained from Local Authorities and various other sources.

Appropriate water quality sampling points were then selected, close to the affected areas.

Task 2: Water quality sampling

A low cost water quality sampling programme was initiated, based on infrequent grab

samples. This was aimed at monitoring the runoff from a range of different land-uses and

establishing flow / water quality relationships. Steps were taken to obtain coverage of a

range of both dry and wet weather flow conditions. Sampling dates during the wet months

were adjusted to ensure that a reasonable coverage of higher flow events were monitored by

the limited number of samples that were collected. Despite this, the small size of the

experimental sampling regime would most probably have missed the first flush at the onset

of rain events. A few key indicator water quality variables were selected. These included

electrical conductivity, sulphate, nitrate, ammonia, total phosphate, faecal coliform and

dissolved oxygen. Temperature was also measured to permit the calculation of the oxygen

deficit.



Task 3: Calibrate hydrological model

The NACL daily time step model was used to simulate the runoff from the entire Rietspruit

catchment upstream of Rand Water's flow gauging weir R6. The model layout was

disaggregated into sub-catchments corresponding to the sub-catchments selected in Task 1.

Due account was taken of known point source wastewater discharges.

Task 4: Develop flow / water quality relationships

The hydrological model was used to simulate river flows at all points of interest in the study

catchment for the period during which water quality monitoring took place. The observed

flows at station R6 were compared with those simulated to derive correction factors, which

were used to adjust the simulated flows throughout the system. The adjusted flows were in

turn used to estimate the pollutant loads at each point at the time of sampling. Suitable

regression relationships between adjusted flow and sample water quality were derived.

These relationships were used in conjunction with a longer simulated flow record to

calculate daily loads for a wide range of hydrological conditions. These were next used to

estimate the annual loads at each monitoring point.

Task 5: Evaluate methodology

The methodology developed for estimating river flows and diffuse source pollutant loads

and for relating in-stream water quality to type and intensity of land use has been developed

and tested on the available sample data. The procedures have been shown to be feasible, and

recommendations made on how they can be further improved.



2. IDENTIFICATION OF LAND USES AND SAMPLING POINTS

2.1 Study catchment

The Rietspruit catchment was selected for the study area. This choice was governed b> the

following factors:

• The catchment is highly developed, with a number of significant land uses,

including high and low density urban, industrial, mining and agricultural

development, as well as an undeveloped nature conservation area.

• A previous study of the Klip River System (Stewart Scott, 1996) showed that this

area contributes significantly to the pollution load in the Klip River. However, the

pollution load in the Natalspruit/Rietspruit catchment area has never been

quantified.

• A flow gauging station (R6) is located at the outlet of the catchment.

• Water quality is of great interest in this catchment.

• Physical and other constraints limit the availability of flow gauging sites within the

catchment.

• F.RWAT, who were to do the water quality sampling and analyses, are active in the

catchment.

A map of the study area is given in Figure 2.1.

2.2 Land uses

Land use information was obtained from available GIS mapping. Figure 2.1 shows the main

land uses within the stud\ area. The Rietspruit and Natalspruit catchments were examined

to identify smaller sub-catchments dominated by relatively homogeneous land use. Within

this constraint, an attempt was also made to locate catchments that were large enough to

contribute significant runoff down a defined watercourse with reasonable road access.
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Figure 2.1 : Map of study area
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A preliminary identification of potential sites was based on available mapping and the

experience of the project team. Thereafter, sites were visited and samples taken at promising

sites. An attempt was also made to estimate the flow at each site and arrangements made for

similar crude estimates to be made when future samples were collected by ERWAT.

It was recognised that the method of flow estimation was highly inaccurate. The flow

estimates are therefore considered unreliable. This is especially true of low flow conditions

when flow velocities were very low and effective section widths and depths were hard to

estimate. Alterations to river courses during the study period also prevented flow estimation

at some sites.

The inability to accurately gauge flows was anticipated from the outset. The methodology

under investigation is not dependent on accurate flow gauging at the sampling points. The

methodology is aimed at overcoming this data deficit.

2.3 Selection of sampling points

Following analysis of the preliminary samples and the examination of the sites, six sampling

sites were chosen. The main selection criterion was the coverage of a range of land uses.

These included:

Largely undeveloped (dominated by the Suikerbosrand Nature reserve)

Cultivated farmland

Mixed low density residential and central business district

Industrial

Formal high density residential

Informal high density residential.

A range of climatic and geographical regions would also have been desirable, but this was

not possible given the low cost nature of the study.

The chosen monitoring stations are shown in Figure 2.1. Table 2.1 shows the main

characteristics of the monitoring points and their upstream catchments.
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Table 2.1 : Description of monitoring sites

Description

Low density residential ( km)

Higri density residential tkm")

Central Business District (km")

Industrial (km")

Dry land fuming (km" I

Victoria late (km")

Undeveloped (km^)

Impervious area IknTj

Monttoiing station

SI

12 74

5 70

1 4 !

500

000

000

061

OOfi

S2

3 30

090

000

000

2-40

000

000

000

] 04

S3

1 ff>

000

1 bl

000

000

000

000

o;s

0 42

S4

2 37

000

2 15

000

000

000

000

o I :

0 5B

ss

1 3 %

000

000

ooo

000

13 98

000

000

000

S6

S30

1100

000

000

000

uoo

000

S30

(100

The areas given in Table 2.1 were obtained from GIS overlays of different land uses. The

impervious (paved areas) were calculated from land use data combined with the percentages

derived from DWAF report PC000/00/16396 (Stewart Scott, 1999). The percentage of land

estimated as being paved for the propose of the Vaal River System Analysis Update study

were as follows:

Low density residential : 12.9%

High density residential : 25.8%

Industrial / Commercial : 38.7%

Brief descriptions of the six monitoring stations are given below.

2.3.1 SI: Jan Frederik Street, Germiston

Co-ordinates: (26°13'58" S, 28°11'55" E)

This monitoring station is located in a stream in parkland below the greater part of

the Germiston central business district (CBD), just upstream of its confluence with

the Elsburgspruit. Low-density residential areas dominate the lower portion of the

catchment, with the CBD located in the upper third of the catchment. The

northeastern fringe of the catchment may just include a small portion of some

mining areas, although this boundary is difficult to distinguish. An industrial area

13



called "South Germiston (Industrial East)" appears on the northern edge of the

catchment. Victoria Lake is located at the southwestern extremity of the catchment.

Rain occurred on the day when the sites were visited (10 March 1997). The site

comprises a natural open channel. When the site was inspected the flow was super

critical, with a surface velocity of 2.5 m/s, a flow depth of about 0.20 m and a top

width of 1.6 m. The water was observed to be clear and free of reeds. The channel

shape was relatively regular and simple methods could > ield a rough estimate of the

How.

2.3.2 S2: Wadeville, corner Lamp and Barracuda Streets

Co-ordinates: (26°16'3 1" S, 28° 1 l'O6" E)

This monitoring station is located in an open channel downstream of Lamp Street.

The stream drains the industrial area of Wadeville. The far northern portion of the

catchment includes the low-density residential areas at the southern end of

Germiston. On 10 March 1997 the flow was reasonably strong, with a surface

velocity of about 0.35 m/s, an average depth of 0.65 m and surface width of 3.1 m.

The water was muddy. Reliable flow estimation at this point would require current

metering, and even then the channel shape was not regular. Hence flow velocity and

depth would vary across the section.

2.3.3 S3: Channel below Vosloorus

Co-ordinates: (26O21'26" S, 28°10'46" E)

S3 is located in a shallow open concrete drain below Vosloorus, located on the

property of ERWAT's Vlakplaats Waste Water Treatment Works (WWTW). The

bottom of the canal was covered by algae and sewage fungus. There was also some

foam, possibly due to washing activities in Vosloorus. The shallow flow depth

(80 mm at its deepest) and the growth in the channel (which caused an irregular

flow path) militate against reliable flow estimation. On 10 March 1997 the surface

velocity was estimated at about 0.54 m/s and the surface flow width at 1.6 m. Flow

estimates at this point are considered to be very inaccurate.

14



2.3.4 S4: Eastern Katlehong

Co-ordinates: (26°21'03" S, 28°10'07" E)

This monitoring point is located in a drainage stream near the eastern edge of

Katlehong, on the western side of the Natalspruit opposite the northern edge of

ERWAT's Vlakplaats WWTW property. The original site was at a gabion weir,

which was later disrupted by diversion works associated with road construction.

The site is located within an area dominated by high-density informal settlement.

The upstream catchment comprises high-density residential areas.

Although most of the flow was passing over the gabions (which could be treated as

a pseudo broad-crested weir), there also appeared to be some leakage. The flow

depth over the gabions was shallow (40 to 45 mm) and irregular. The entire weir

crest was not accessible. Reeds also obstructed the approach to the gabion weir.

Hence accurate assessment of the flow depth was not possible. Flow estimation

ceased entirely after construction on the new road commenced.

2.3.5 S5: Kliprivier / Heidelberg road R550

Co-ordinates: (26°25"38" S, 28O12'I3" E)

Station S5 is located at a road bridge. Although the bridge has 4 spans of 2.4 m

width, flow was passing through only two spans. The stream flows northwards

under the road. The northern portion of the stream drains part of the Suikerbosrand

Nature Reserve, after which it flows through a farmed area. The catchment was

assessed as being largely unimpacted.

On 10 March 1997 the water was observed to be clear, with lots of Bullrush (Typha

Capensa) growth and some macrophytes. The surface flow velocity was very low

(only 0.06 m/s) and consequently very difficult to measure. The irregular channel

shape also created difficulties in measuring both the depth and width of flow. This

difficulty' was compounded by the low velocity, which prevented a reasonable

estimate of the effective flow width and depth. Flow estimation is therefore

15



considered to be completely unreliable.

2.3.6 S6: R103 Heidelberg road

Co-ordinates: (26°25'38" S. 28°12'13" E)

Station S6 is located on a secondary road about 1 km due east of the point where

the Kliprivier/Heidelberg road crosses the N3 motorway. The small road bridge on

the secondary road at which the site is located runs parallel with the N3, about

900 m northeast of the N3. The catchment is dominated by agricultural use (mainly

maize), with some cattle grazing the area.

On 10 March 1997 a very heavy growth of Bulirushes was observed in the stream

and in the bridge openings. The flow was extremely sluggish (surface flow only

0.06 m/s), with a flow depth of approximately 0.22 m. Only two of the four 2.4 m

bridge spans showed any sign of surface flow. Estimation of surface flow was

found to be adversely affected by wind effects at such low velocity Flow estimation

at this point is considered to be highly inaccurate.
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3. WATER QUALITY SAMPLING

3.1 General considerations

A water quality sampling programme was initiated at the six designated sampling points.

This programme was aimed at monitoring the runoff from a range of different land-uses.

Sampling was carried out over a six-month period. The length and intensity of the sampling

programme was constrained by the limited objectives and budget for the Phase 1 study. In

effect ten samples were taken at each of the six sampling sites. This limitation arose from

the relatively small budget available for sample collection and analysis. As a result the

sampling programme is likely to have missed the "first flush" of pollution. Hence the results

would tend to under-estimate such concentrations at the onset of runoff events. This could

be important with regard to the toxicological impact. This could affect the determination of

the ecological reserve. However, this impact may not be a great in high-density urban areas,

where peak concentrations are frequently associated with sewer spillage, even during dry

weather. Even the small experimental water quality sample is expected to partially cover

these conditions. Thus the random noise added to the regressions (see Section 6) should to

some extent account for this semi-random fluctuation in pollutant export. The constraint on

the number of samples was not considered an over-riding obstacle to the testing of the

methodology. This is because the objective of the first phase is to develop the methodology,

rather than to provide a definitive analysis of the data.

The best use was made of the available samples by ensuring that a range of wet and dry

weather events was sampled. A reasonable representation of wet weather events was

achieved by timing such sampling trips to occasions when significant rainfall events

occurred.

3.2 Variables

A range of representative water quality variables was sought.

The variables selected are given in Table 3.1.
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Table 3.1 : Water quality variables sampled

Parameter

Sulphate

Nitrate (as N)

Ammonia (as N)

Total phosphate (as P)

Faecal coliform

Dissolved oxygen

Temperature

Symbol

EC

SO4

NO*

NH?

PO4

FC

DO

T

Units

mS/m

mg!

mg/1

mg/l

mg/1

N/lOOml

mg/1

~c

Electrical conductivity was chosen as an indicator of conservative salts. Salinity is a

primary concern in most de\ eloped catchments and also affects some natural catchments,

particularly in more arid regions. Salinity impacts are also evident downstream of

significant irrigation areas. Sulphate also falls within this category, but was added since it is

a major ion associated with mining activities. It is also subject to soil absorption and release

processes and precipitation. It can also be released into the atmosphere by veld burning and

biological processes. Hence the net effective retention time for sulphate can be significantly

different from that for TDS in general. Soil adsorption / desorption process also tend to

reduce the variation in sulphate concentrations between wet and dry periods. (As soil

moisture concentrations rise, more sulphate is adsorbed by soi! particles; with desorption

occurring when the soii moisture is diluted by the ingress of rainwater). Aside from these

considerations, sulphate is a major anion in areas affected by mining pollution.

Nitrate, ammonia and phosphate were chosen since they are major nutrients that can

promote eutrophication. which is a major water quality problem. These nutrients behave in a

different manner from salts, in that they are subject to in-stream decay processes. Phosphate

can also behave differently from the nitrogen compounds, in that it can be contained in

particulate form on catchment surfaces and in stream sediments. Hence, although phosphate

appears to be subject to decay processes, it is not a true non-conservative pollutant because

it generally tends to remain in the environment, even though sedimentation and various other

processes can render it either temporally or (for all practical purposes) permanently

unavailable to the water environment. Ammonia is also an indicator of incomplete oxidation

18



of nitrogen compounds. As such, its presence can point to the impact of human and animal

waste.

Faecal coliform was chosen as an indicator of human and animal contamination. In most

developed catchments most of the faecal colifonn count is made up of E.co/i. Faecal

coliform was chosen since it is easier and less expensive to analyse. There are many other

measures of human and animal waste. However, faecal coliform is the most commonly

measured parameter and is a good overall indicator, making it a natural choice for testing.

Dissolved oxygen was chosen as the oxygen deficit is indicative of the presence of

unoxidised metals (e.g. from mining operations), biologically active suspended and

paniculate matter, or faecal contamination. Its behaviour can be affected by the propensity

of water bodies to re-dissolve oxygen from the air.

The time of site visits could have an influence on both dissolved oxygen and temperature.

The fist site (station SI) was visited early in the morning, when low temperature and high

dissolved oxygen could be expected. The last site (station 6) was visited at noon, when

higher temperature and lower dissolved oxygen levels would occur. These diurnal effects

were not explicitly accounted for by the methodology.

Although temperature was measured, a reliable regression with flow is not expected.

However, temperature, together with altitude, was used to calculate the saturated oxygen

content for the water at each sampling point. The oxygen deficit was then calculated by

subtracting the observed dissolved oxygen values. The oxygen deficit (expressed as a

percentage) is considered a more meaningful parameter to regress against flow, since it is a

direct measure of the water quality constituents that exercise an oxygen demand on the

water body.

pH was measured, but used purely as an indicator of general water quality. No attempt was

made to regress pH against flow, as the relationship was expected to be poor. On all but one

occasion pH levels also did not present a problem and were therefore of little interest.



Period

From the outset of the project a sample period of 6 months was planned for. The initial

intention was to take roughly two samples per month (i.e. 12 samples per site). However,

the actual number of samples taken was dependent on the number of sampling sites. In the

end 10 samples were taken at 6 different sites between March and September 1997.

This period did not span the wettest part of the summer. However, by selecting sampling

periods to coincide with the largest available storm events it was possible to obtain data for

some sizeable storm events. Based on the model simulation data for 11 688 days from

October 1965 to September 1997. the runoff at station SI on 10 March 1997 was exceeded

for only 3% of the time, while three other events were exceeded for between 14% and 26%

of the time. Hence four (40%) of the samples corresponded with wet weather events, the

remainder being more akin to dry weather conditions. Thus a reasonable spread of dry and

wet weather events was achieved.

3.4 Water quality data

The water quality data collected at the six sampling points is summarised in Appendix A.
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4. HYDROLOGICAL MODELLING

4.1 Choice of model

The NACL suite of daily time step rainfall / runoff models was chosen for the following

reasons:

• A reasonable spread of daily rain gauges is readily available for the catchment. A

significant spread of finer time step rainfall records is not available for this

catchment. Nor are such records long enough to represent a full range of

hydrological conditions. Such data will also be available for few other catchments

throughout the country. Hence there is little point in choosing an hourly, or finer,

time step model, since this would defeat the purpose of developing a methodology

that can be widely applied.

• Apart from the general scarcity of the requisite data, the data requirements for an

hourly or shorter time step model are extremely onerous.

• The NACL model was originally developed and tested for the Klip River catchment,

including the Rietspruit (Herald, 1981). These models were also used in a number

of applications in this area. Moreover these models have recently been recalibrated

for the Rietspuit as part of the DWAF's Vaal River System Analysis Update study

(Stewart Scott. 1999).

• The project team is familiar with the working of the NACL model. As such they are

well placed to apply it.

4.2 Model layout

The NACL model (Herald, 19H1) comprises two main components. The first (NACL01) is

a daily time step catchment rainfall-runoff model, based on that developed by Pitman

(1976). NACL01 includes modules for simulating the surface and sub-surface daily salt

balance. The salinity modelling functions are not described in detail, since only the flow

modelling component results were used in this study. NACL01 is run for each sub-

catchment of interest and the results stored.
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NACL02 is the second model component. This model accepts as input the daily output from

NACL01 for each sub-catchment. NACL02 routes the runoff and associated salt load

through a system of river reaches to the catchment outlet. Allowance is made for point input

to be entered at the head of each defined channel reach, along with independent mine

discharge inputs. Riparian irrigation, channel bed losses and point abstractions arc also

provided for. This routing module takes account of channel slope, channel and wetland cross

sectional properties and allows for separate friction factors for the main channel and the

flood plain. The model includes a number of salinity related processes. However, these have

little bearing on the current discussion, since only the flow output data has been used.

Figure 4.1 shows the model layout used to represent the Rietspruit catchment upstream of

Rand Water (RW) gauge R6. This mode! layout is similar to that used in calibrating the

model. The main difference is that the Natalspruit and Rietspruit catchments have been sub-

divided and extra river reaches included representing the six small new monitoring points.

The catchment was divided into 8 sub-catchments. This was done partially to represent the

main features of the river system and to differentiate the inputs from the six new sampling

points. These had to be represented by different sub-catchments, because each has its own

impervious area (as defined in Table 2.1). II channel reaches were defined to link up the

main river channels.

Flow gauging station N8 comprises a Parshall flume set in an old road causeway.

Unfortunately this weir has long been inoperative since the old causeway has not been

maintained. Moreover, flow recording equipment is prone to vandalism. Although various

proposals for re-instating flow gauging at this site have been put forward, these have been

rejected on the grounds that site security is jeopardised by the proximity1 of large informal

settlements. Two hijackings of DWAF personnel have already occurred at this site even

when only water quality' sampling is taking place at the road bridge. The risk to staff would

be compounded by the need to leave the road to service flow gauging equipment.
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Figure 4.1 : NACL model layout for the Rietspruit
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A notable feature of the system is the bed loss of water from reach 5. downstream of the

HRPM gold mine. This loss is thought to be to dolomitic groundwater. with ingress to

underground mine workings. Reach 6 represents the Natalspruit wetland, with an area of

7.4 km2

Rand Water station R6 is the onl\ serviceable flow gauging station in the Rietspruit

catchment. R6 comprises a Crump weir. Flow gauging at this station appears to be reliable,

although the record is relative!) short. This problem was overcome when the model was

calibrated for the Vaa! River System AnaKsis Update study by taking account of the longer

record available at other flow gauging stations in the Klip River catchment. Consistent

model calibration parameters were sought for all of the Klip River catchments, including the

Rietspruit.

4.3 Point sources

Major point sources comprise:

ERPM gold mine

FRWAT's Rondebult WWTW

ERWAT's Dekema WWTW

ERWAT's Vlakplaats WWWTW

• leakage from the ERGO plant and tailings dam

• leakage from sewers.

While the last two are not true point sources, they were treated as such for the purpose of

hydrological modelling.

4.4 Irrigation

Estimated irrigation areas for each river reach are given in Table 4.1.

Table 4.1 : Present day irrigation (km")

{PRIVATE l

i

no

2

0 0

3

DO

4

0 0

River channel reach

6

o 5

i

0 0

8

0.0

9

44

10

17.6

!!

44
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4.5 Model calibration

The model was calibrated for the period October 1977 to September 1995 (Stewart Scott,

1999). While this was the length of the record for the longest maintained stations in the Klip

River catchment, that for station R6 was only available for the 4V2-year period from April

1991. The purpose of the present report is not to give a detailed discussion of the calibration

of the flow simulation model. This process is highly complex, because the calibration of all

the flow gauges in the Klip River (each with different periods of available record) has to be

assessed. Model calibration also had to take account of the remainder of the Barrage

catchment and the flow records in the Vaal River itself. Suffice it to say that model

calibration for the Rietspruit was not based only on the short record available at station R6.

A summary of the modelled and observed daily flow records at station R6 are given in Table

4.2. Figure 4.2 is a plot of the modelled and observed daily flows at this station.

Table 4.2 : Comparison between modelled and observed daily flows at station R6

Parameter

Mean

Standard deviation

Linear correlation coefficient

RMS error

Sample size

Observed
(m3/s)

2.58

1.91

Modelled
<nr7s)

2.64

1.76

Error
(%)

+2.36

-7.49

.785

1.21

1587

4.6 Extension of flow records

Weather Bureau data was used to extend the catchment rainfall records for the Natalspruit

and Rietspruit catchments. Sub-catchments 1, 2, 3, 4 and 5 all shared the same rainfall data

file (for the Natalspruit). The remaining sub-catchments (6 and 7) made use of the

Rietspruit catchment rainfall data file.
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Figure 4.2 : Modelled and observed daily flows at station R6
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The effluent flow records for the major point sources were extended for the next two years,

to the end of September 1997.

No attempt was made to re-calibrate the model for the last two years up to the end of

September 1997. This is because the small change in the model calibration resulting from

two years of extra data does not warrant the extra effort required to recalibrate the model

for the entire Klip River catchment.

The model as calibrated using the 1997 water quality data was used to simulate the daily

flow record for the period October 1965 to September 1997.

4.7 Flow correction

Rand Water provided 1997 flow data for station R6 on the lower Rietspruit for the period

during which the water quality data was gathered. The observed flow at R6 on each

sampling day is compared with that modelled in Table 4.3.

Table 4.3 : Comparison between modelled and observed daily flows at station R6
on days when water quality sampling took place

Date

1003 1W7

04.QJ 1997

IT 05 1997

2205 1997

10/06/1997

25/06 1997

10 07 1997

20 '08.1997

08 09 1997

18 09'|907

Axrijt

Observed
(m3/s)

I I 83

1547

3 08

3 02

6 02

4 48

421

284

.V50

3 73

$.82

Modelled
<mJ/s)

15 5')

14 IS

4 83

3 68

4 17

3 75

3 24

2 38

3 08

3 0"

5.78

Difference
(%)

'31 8

-8 3

-56 8

• 2 1 •'

-30 7

-If. 3

-23 0

-162

-122

-IT1

-0.4

Table 4.3 shows that for the period in question there was a reasonable comparison between

the modelled and observed flows at station R6. Although the average error is very small, the

error on any one-day can be much larger. This is an inevitable and expected result of the
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temporal and spatial distribution of the rainfall over the catchment. The actual variation in

rainfall intensity cannot be replicated by the spatially averaged rainfall data used for each

sub-catchment. A daily time step model also cannot replicate shorter duration fluctuations in

rainfall input. Hence on a sample-by-sample basis the modelled flows can vary quite widely

from the actual values. However, as the sample size increases, the modelled mean should

approach that observed. Moreover, as the sample size corresponding to each incremental

range of flow increases, the modelled average for each flow range should also tend towards

that observed (provided the model calibration is valid).

In the general case an adjustment can be made to the simulated flows to account for the

difference between the modelled and obsened means at the reference gauge (in this case

R6). However, this is considered unnecessary, since the model has already been calibrated

against the observed data. One of the key objectives of the calibration was to obtain good

correspondence between the modelled and observed means. Hence, provided the calibration

has been carried out properly, the error between modelled and observed means should be

insignificant. This is bore out by Table 4.3, which shows very close fit between the modelled

and observed means, even for the small flow sample corresponding to the days when water

quality samples were taken.

Since the sample size is small (and generally always will be smaller than the desirable) an

attempt was made to reduce the error on each occasion when sampling occurred. Ideally this

could be achieved by using the estimated observed flows made at each site on occasions

when samples were taken. However, as discussed in section 2. the observed (lows were

generally highly unreliable. This finding was not unexpected, given that small upland

catchments near 10 the pollution source areas are generally characterised by poorly defined

and shallow streams devoid of tlow gauging structures. This results in very large errors. In

view of this problem, the hydrological model was used to estimate the flows. The flow

estimates were refined by applying a correction to the modelled flows, based on the modelled

and observed results at the gauged point (i.e. at station R6). "Phis was achieved by applying

a correction factor based on the last column of Table 4.3 to the upstream modelled flows.

For example, on 10 March the modelled flow at R6 was 31.8% larger than that observed. A

factor of 0.759 was therefore applied to reduce the modelled flow. Applying the same

correction to the remaining flows meant resulted in a reduction of the modelled flow at

station S1 from 0.287 m3/s to 0.219 nvVs.
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The methodology could be further refined by taking account of both point and catchment

runoff inputs. For example, it could be assumed that the entire error at R6 was attributable

to inaccuracy in the catchment runoff. However, this would imply that the point discharge

gauging is perfect and does not vary between recording dates, which is not likely to be true.

It also implies that the estimation of bed, irrigation and evapotranspiration losses is perfect.

Clearly this approach would require estimation of the error associated with every flow

component of the river flow (both inputs and losses). A method of dealing with

inconsistencies would also have to be developed. (For example, as soon as each component

is dealt with separately it is possible to arrive at "correction" factors that lead to negative

flows.)

In the absence of definitive information regarding the relative contribution of each flow

component to the overall error, the simplifying assumption has been made that the

percentage error applies equally to all simulated flow components. This produces a robust

model that cannot lead to negative flows. The flow adjustment has been applied merely to

speed up the process by somewhat reducing the error applicable on each day that samples

were taken. The degree to which this reduces the number of samples required to arrive at a

reliable concentration/flow regression has not been assessed, since the observed sample size

was already small and could not be split further for this purpose. Nor has any attempt been

made to refine the method used to distribute the error to upstream monitoring points.

The adjusted flows were non-dimensionalised prior to comparison with the water quality.

This was done by expressing the flows as mm per day (by dividing the flows in m7s by the
_2catchment area in km and multiplying by 86.4). This approach was adopted to facilitate

using the regressions to estimate the impact of future catchment development or project the

results to estimate the contribution of other catchment areas.
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5. WATER QUALITY RELATIONSHIPS

5.1 Approach

The hydrological model was used to simulate river flows at all points of interest in the study

catchment. The modelled flows at R6 were compared with those observed in order to derive

daily adjustment factors. These factors were used to adjust the modelled flows at stations S1

to S6, thereby providing revised estimates of the flows at these monitoring points. The

adjusted flows were then compared with the sampled water quality variables. Various

regressions between adjusted flow and sample quality were then tested for each station and

variable.

5.2 Regression types

Both linear and power regressions were tested.

The linear regression is of the form:

C = A-Q + B (1)

The power regression was of the form:

C = A.QB (2)

where:

C = concentration of water quality variable (appropriate units)

A,B = regression constants

Q = flow (m3/s)

Means, standard deviations, correlation coefficients, standard errors and 95% confidence

and prediction intervals were also calculated for each regression type, variable and sample

point.
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Ideally the same type of regression equation should be selected for all stations for the same

water quality parameter. This is based on the expectation that the same underlying processes

will control the accumulation, mobilisation and decay of a given water quality variable.

However, in some instances a significantly better correlation could be obtained for some

stations using a different regression equation. Sometimes this may have resulted from the

small sample size, which could cause one extreme high or low value to favour another type

of regression at a given station. Typically this was found to apply in cases of low

correlation. However, the nature of the catchment development could also lead to a

legitimate shift from one type of regression line to another. Cognisance was also taken of

the reasonableness of the regression results. Hence, as a general rule an attempt was made

to select one type of regression line for a variable, but judgement was applied where

necessary to select another type of regression where deemed necessary for some monitoring

stations or parameters.

There is merit in partitioning the data between high and low flows, to arrive at two sets of

regression equation. The rationale behind this approach is that during low flow conditions

the concentration of pollutants (particularly those in particuiate form derived from urban

environments) can remain high and even increase as low flows increase. Base flow

concentrations can also be highly variable, depending on antecedent flow conditions and

fluctuating local conditions (such as intermittent sewer overflows). As the discharge

increases beyond a certain point the concentrations will tend to decline due to the exhaustion

of accumulated pollutants. Hence a dual set of regressions for high and low flow conditions

is well justified. Consequently the programs used to carry out the water quality analyses

have been designed to allow for partitioning of the data according to flow range. However,

this has not been done with the current test data set. since the sample size is already small

(10 samples). Partitioning of the data would further reduce the sample size (especially that

for high flow conditions) thereby rendering the analysis worthless.

5.3 Regression results

Table 5.1 gives a summary of the linear correlation coefficients achieved using both linear

and power regression equations. Plots showing the chosen regression equations and the

confidence and prediction intervals are given in Appendix B.
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Table 5.1 : Linear correlation coefficients (r) obtained from different regression

types

Variable

EC

SO4

Na

NHi

Total P

Faecal coliform

Oxygen saturaion

Parameter

N

Linear

Power

N

Linear

Power

N

Linear

Power

N

Lmear

Power

N

Linear

Power

N

Linear

Power

N

Linear

Power

Sampling stall on

Si

10

-0 5205

-06110

10

-0 5M2

-0 6644

10

0 1781

0 n is

10

-0 1792

-0 4089

10

-0 3333

- 0 - 1 " !

'}

-0.1772

0 0884

10

0 5454

07 T21

s:

10

-0 0430

-00118

10

-0 1680

-0 0931

10

0 1134

0.1258

10

0 2506

0 2264

10

-0 4635

-0^396

0

0.7172

-0 0605

10

06991

0.65-2

S3

10

-0 326"

-0 448?

1

00041

00811

7

-0 0999

-0 3184

7

-0 1077

-0 278.1

7

0 078"*

0 4214

0.7078

0.7939

7

-0 3821

-O41-0

S4

10

-0 0980

-0 0981

10

-02151

-0 1604

10

0 3715

0 5598

10

0 0863

0 3851

10

0 2882

0 152.1

-)

0 2902

0 2644

10

0 1569

0 0903

55

10

-0.4902

-0.6981

to

0 3250

0 0573

10

-0.0656

0.2368

9

-0 0360

0.1433

10

-0 4358

-0 7002

9

-0.2091

-0 2652

10

-0 0595

0 1180

II)

-0 4 " 5

-0 66"2

10

-0 03ir

0 1609

Hi

-0 2426

0 (X)̂ 6

9

0 012.1

0 150"

10

-0 4413

-0 5560

9

-0 2075

0 0437

10

0 1924

0 3060

The results for each water quality variable are discussed in the following sections.
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5.3.1 Electrical conductivity

A power regression was found to give the best overall results for electrical

conductivity. At station S2 a linear regression produced slightly better results.

However, the correlations at this station were very poor and the results were not

considered significant enough to alter the choice of equation type. A power

regression with a negative exponent is also thought to be more likely to mimic the

variation of EC concentration with flow.

Further details are given in Table 5.2.

Table 5.2 : Statistical details for electrical conductivity (mS/m)

Parameter

Average

Standard deviation

Maximum

Minimum

Regression t>pe

Regression constant A

Regression constant B

Correlation coefficient. R

Standard Error. SE

Sample size. N

SI

76 9

18 1

103 0

58.0

power

6! 327

- 12454

-06110

14.67

10

S2

49 8

13 0

81 0

33.0

power

48.269

-.00257

-0118

13 05

10

S3

51.6

12.7

63.0

27.0

power

42 291

-.12302

-4487

II 11

7

S4

34 8

7 3

51.0

25 0

power

33.233

-.01740

-0981

7.367

10

S5

43 9

10.1

57.0

26.0

power

30 997

- 17958

-.6981

6.911

10

S6

33 i

14.6

67.0

19.0

power

19031

-.26805

-6672

11 73

10

The relatively small variation in the mean electrical conductivity recorded at the six

sites was unexpected. In particular, the average for station S5 (which is sited below

the Suikerbosrand Nature Reserve) was higher than expected.

5.3.2 Sulphate

A power regression was found to give the highest average correlation coefficient.

Sulphate behaves in a manner similar to electrical conductivity, as it is a salt that

behaves in a predominantly conservative fashion. However, it has been observed

that during wet conditions the sulphate proportion of the electrical conductivity in

the diffuse source washoffcan rise (Herold et al, 1997). This is attributable to the
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tendency of catchment soils to adsorb sulphate as the soil moisture concentration

rises (thereby reducing the potential increase in sulphate concentration during dry

periods). Conversely, desorption of sulphate occurs as the soil moisture

concentration is diluted during wet conditions. This means that the variation in

sulphate concentrations is damped by adsorption / desorption processes and

consequently tends to be much lower than that for electrical conductivity. Hence

sulphate does not behave as a normal conservative constituent. For this reason a

linear regression was sometimes found to produce a better correlation than a power

regression. Moreover, in some instances use of a power regression resulted in an

abnormally high upper boundary for the 95% confidence interval. For example.

Figure B.2.12 indicates 95 percentile values up to 350 mg/1 for a dry land farming

catchment. This is considered unrealistic, and the linear regression was favoured

(see Figure B.2.11). even though it yielded a lower correlation.

The improbable result also sometimes occurred that as the flow increases the

regression curve results in increasing sulphate concentrations. It is unlikely that this

trend can hold true indefinitely, as dilution should occur at higher flow rates. This

aberration is probably attributable to the small sample size and a cluster of sample

points for low flows that are poorly correlated. (This could also arise from the use

of data with a limited range comprising only low flows. However, although the

sample size is small, the data includes a reasonable range of high flows.)

Further details for the chosen regression types are given in Table 5.3

A high mean sulphate concentration at station St could be expected since the upper

portion of the catchment is affected by mining development. However, once again

the values recorded at station S5 were higher than expected. This could be due to a

natural sulphate yield from the weathering of rocks in the Suikerbosrand Nature

Reserve catchment. However, it could also be related to the relatively low soil

moisture storage in the thin soils of the upland portion of this catchment. This could

mean that this catchment could show a more rapid response to enhanced

atmospheric sulphate deposition, than would be the case for the deeper soils of the

more low lying areas.
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Table 5.3: Statistical details for sulphate (mg/1)

Parameter

Average

Staidard deviation

Maximum

Minimum

Regression i>-pe

Recession constant A

Regression constant B

CorrelalKin coefficient. R

Siandaid error

Sarcple size. M

SI

2*fl •

102 8

449

power

182 22

-21927

-0 6644

s : 30

10

S2

"8 4

62 3

2J2

}->

linear

-22 018

86 19

41 1680

61 K4

10

S3

19.0

153

49

5

linear

13331

18 94

00041

15 33

S4

3 t :

20 9

13

linear

-4 894

39 9K

-02151

20 4*

Hi

S5

38 3

30 6

94

4

linear

3d tH 5

30 i r

0 3250

28 93

Id

S6

24 3

1? 5

5.1

:

linear

-1 K"W

24 81

-011387

l<45

10

5.3.3 Nitrate

A power regression was found to give slightly better overall results than was the

case for a linear regression. However, the correlation coefficients were low; as can

be expected from a non-conservative pollutant. Moreover, ammonia tends to decay

to nitrate, further reducing the effectiveness with which it can be regressed. At such

low correlations the choice of regression type should not be dictated solely by a

marginal increase in the overall correlation coefficient. A power regression (since it

uses the logarithms of the concentrations) was found to lead to unreasonably high

natural concentrations for the upper boundaries of the 95% prediction interval (see

Figure B.3.8). A linear regression was adopted since this resulted in more

reasonable upper prediction intervals.

Further details are given in Table 5.4
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Table 5.4: Statistical details for nitrate (mg N/I)

Parameter

Ai eraa:

Standard de\iation

Maximum

Minimum

Recession t>pe

Recession consiait A

Regression constant B

CorrelatKMi coefficient. R

Standard error

Sample size. N

SI

81

36

127

.10

linear

1400"

"59

rsi

354

10

S2

2 19

1 18

3 80

28

linear

2"9OO

2 M0

1134

1 PO

10

S3

1 33

I 62

480

15

linear

-34641

14"8

-0999

1 608

7

S4

96

1 42

4 83

05

linear

1 1618

518

3"M5

1 .'22

10

S5

206

126

40

02

linear

- 02508

213

-0656

126

10

S6

232

143

51

05

linear

- 10894

261

-2426

139

10

5.3.4 Ammonia

As with nitrate, a linear regression was found to give more realistic results for the

first three stations. A power regression was found to give better results for the last

three stations. In some instances a single isolated high value at relatively low flow

may be an outlier (e.g. see Figure B.4.10), but the sample size is too small to

confirm this. However, the high values could also have been influenced by the

excreta from cattle or the natural decay of plant material (in the case of station S5)

or sewer spillage (as indicated by the presence of sewage ftingus at station S3). As

such the data (and hence the variation in concentration) would be quite legitimate

and should be taken into account. Hence, for the purpose of this exercise all of the

data was used. The low correlation coefficients were expected, as they are

consistent with this non-conservative pollutant.

Further details are given in Table 5.5.

The results indicate high ammonia values in the drainage from Vosloorus. However,

ammonia levels in the stream draining Katlehong (station S4) appear to be

comparable to those at the two least developed catchments (stations S5 and S6).

This result is encouraging, given that sampling point S4 was located in an area

dominated by informal housing.
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Table 5.5: Statistical details for ammonia (mg N/1)

Parameter

Average

Standard deviation

Maximum

Mint mum

Regression r>pe

Recession amslant A

Regression constant B

Correlation coefficient. R

Standard error

Sample size, N

SI

1 18

179

62

2

linear

- 69635

1.43

- P92

1 "48

10

S2

4 85

790

24 1

.7

linear

4 1367

3.38

2506

"651

10

S3

13 29

1721

47 51

21

linear

-3 9787

14 98

- 1077

P 114

7

S4

i - :

1 66

5 60

63

power

1 9015

27475

3851

1 6^4

10

S5

i " i

: - T i

890

70

power

1.3511

14379

1433

2817

9

S6

1 2b

1 42

5 00

70

power

1 8825

11838

I507

1 465

9

5.3.5 Total phosphorus

The high variation of this non-conservative pollutant and the small sample size

resulted in variation in the choice of regression type at each site. Further details are

given in Table 5.6.

Table 5.6: Statistical details for total phosphorus (mg P/l)

Parameter

A\erage

Standard deviation

Maximum

Minimum

Regression type

Regression constant A

Regression constant B

Correlation coefficient, R

Standard error

Sample size. N

SI

4t.

280

04

power

03278

- 92660

-7174

837

10

S2

27

26

.90

.06

power

07137

-59082

- 7 3 %

.219

10

S3

1 28

1 22

3 81

20

Linear

205%

1 194

0787

1 216

-

S4

1 67

4 45

14 30

01

linear

2 8164

594

.2882

4 260

10

S5

16

19

60

01

linear

- 25635

235

- 4358

175

10

S6

22

20

60

01

linear

-27844

292

-4413

180

10

The high disparity between phosphate levels in the two undeveloped catchments (S5
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and S6) and those measured at the remaining sites indicates the impact of

development on phosphate production. The particularly high values at station S3

and S4 could be indicative of the use of detergents for clothes washing.

5.3.6 Faecal coliform

A power regression was found to lead to unreasonably high faecal coliform counts

for the upper boundary of the 95% prediction interval (see Figure B.6.6). In any

event, a linear regression was found to give better correlations for most stations. For

these reasons a linear regression was adopted for all stations for faecal coliform.

Further details are given in Table 5.7.

Table 5.7: Statistical details for faecal coliform (N/100 ml)

Parameter

A\erape

Standard deviation

Maximum

Minimum

Regression r>pe

Regression constant A

Regression constant B

Correlation coefficient. R

Standard error

Sample size. S

SI

20 4.12

59 843

180 000

0

linear

-22 370

: 9 ]gq

- I7"2

58 895

0

S2

12451

21 644

63 000

60

linear

.11061

623

7172

15 083

9

S3

112 676

13"-363

298 000

13

linear

202 555

26 429

T078

94 209

-

S4

239 415

716 470

2 150 000

20

linear

439 475

59 085

2902

685 62")

9

S5

35'

993

3000

0

linear

-597.62

525

-.2091

971

9

S6

968

1941

5900

2

linear

-1 202 7

1309

-2075

1 899

9

The results show much higher faecal coliform counts for the developed catchments

(station I to 4) than was the case for catchments 5 and 6. An average count of 353

per 100 ml seems quite high for station S5. However, closer examination of the data

(see Figure B.6.9) shows that this result was swayed by a single sample value of

3000 counts per 100 ml. The somewhat higher average at the rural station S6 may

have resulted from the cattle that uere observed to frequent the site. This level is to

be expected for an agricultural drainage site.
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5.3.7 Dissolved oxygen

Dissolved oxygen was measured in the field. However, it was thought that a

regression with oxygen deficit or percentage saturation should yield better results.

Hence temperature was also measured in the field. The attitude of the stations was

then used to estimate the oxygen saturation. The observed dissolved oxygen content

was then subtracted from this figure and the result expressed as a percentage of full

saturation. Both linear and power regressions were chosen for the various sites.

Further details are given in Table 5.5.

Table 5.8: Statistical details for oxygen saturation (%)

Parameter

Average

Standard deviation

Maximum

Minimum

Regression type

Regression constant A

Kegressi (Hi constant B

Correlation coefficient, R

Standard error

Sample size. N

SI

82.7

11.2

1014

63 6

power

95.362

.09260

7721

7.30

10

S2

59 1

129

79.7

19 2

linear

18 807

52.48

6991

921

10

S3

41 6

17.1

648

21.8

linear

-14.037

47.56

-.3821

15.82

7

S4

69 9

2 6 !

92 0

59

linear

8 9842

66 52

1569

25 75

10

S5

70.3

10.1

85 1

59.1

power

71.832

.01726

.1180

10.13

10

S6

45 6

137

63 8

178

power

53 654

12190

.3060

13.37

10

High dissolved oxygen levels at SI are consistent with this site being below a

largely low-density residential area and the relatively steep channel slope.

Reductions in dissolved oxygen at the industrial site (S2) and the high-density

residential sites (S3 and S4) are also to be expected. Although not alarmingly low,

the 70% oxygen saturation at station S5 below the undeveloped catchment is

unexpectedly lower than that observed at SI. This may be attributable to the flat

terrain and consequent low flows. The presence of a few small farm dams upstream

of the site may also have contributed to a reduction in aeration of the water. A ready

explanation for the low values (46% saturation) at station S6 is hard to find,

although generally low flow velocity and the presence dense reed growth around this

bridge would have affected oxygen levels.
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6. ESTIMATION OF RANGE OF CONCENTRATIONS

6.1 Generation of sequences

6.1.1 Regression with flow

The NACL daily time step model was used to simulate daily flows at stations SI to

S6 and R6 for the period October 1965 to September 1997. The procedure

described in Section 4 was then used to obtain adjusted dailv flows at monitoring

stations SI to S6. The regression equations given in Section 5 were next used to

calculate the regressed concentrations on each day that flows were modelled (i.e.

1 1668 days). Provision was made for the user to specify maximum and minimum

flow rates (to avoid applying the regressions to flows that were outside the range of

the observed data).

6.1.2 Addition of random noise

A random number generator was used to provide a random number for each sample

point on each day. These random numbers were then normalised (to conform to a

normal distribution) to yield normalised random numbers. The normalised random

number for each day simulated was then multiplied by the standard error (see

Section 5} for the observed data set. This provided the normalised random noise,

which was then added to the regressed values for each da\. Bv this means 11668

estimates of the concentration at each point were generated by this means.

Allowance was made for the user to specify upper and lower bounds for the

calculated concentrations. This was necessar> to prevent the generation of negative

concentrations or levels that are unnaturally high.

Figure C.I {see Appendix C) is an example of the resulting range of phosphate

concentrations at station S2. calculated from the adjusted simulated daily flows for

the period October 1965 to September 1995. This period covers a wide range of

possible hydrological conditions. Extreme droughts and floods are included in this

period, along with many more normal periods.
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Alternatively, the methodology can be (and has been) used to estimate a range of

concentrations for a fixed flow rate. In this case the 95% low flow for station S2 is

0.0015 mVs (i.e. 0.0393 mm/day). Any other percentile low flow can be chosen, in

place of the 95% low flow. (For example, the 7-ay average low flow with a

recurrence interval of 10 years is often used.) However, it is very difficult to specify

a single flow rate to be used to assess the effect of an option on water quality.

However. Appendix B shows that high concentrations (which are often related to

failure of the system, such as overflowing sewers) cannot be linked invariably to a

particular low flow discharge. The inability to link the resulting concentration

statistics to a probability of occurrence is considered a serious weakness of the

methodology of adopting a fixed flow rate for analysis.

6.1.3 Generation of duration curves

Figure C.2 shows the result of ranking the phosphate concentrations contained in

Figure C.I, to form a duration curve. This is a powerful tool that can be used to

pick out a range of key percentile values that can be used to assess the impact of

expected new developments or the implementation of planned management options.

Table 6.1 is an example of the statistical properties of the sequence of

concentrations generated by the above methodology.

Table 6.1 : Statistical properties of simulated phosphate concentrations at
station S2

Parameter

Mean

Standard Deviation

Minimum

Maximum

2% high

5% high

10% high

50% (median)

Concentration (mg/l)

0.517

0.546

001

3.05

0.87

0.65

0.50

0.17

Load (t/d)

0.0383

0.0412

0 002

0 960

0 173

0 118

0.084

0 025
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6.1.4 Consequence of not including random noise

Figure C.3 shows the impact on the results of failing to add the random noise to the

regression line. Use of the regression line alone with no allowance for the observed

variance about the regression damps the results very- severely, with the result that

the peak values are much too low. This clearly demonstrates the importance of

taking proper account of the variance observed in nature.

6.2 Example of application of methodology

The main purpose of this study was to develop a usable methodology, rather than to

generate a large volume of data. Faecal coliform was chosen to illustrate the use of the

methodology. The results for stations S4 and S5 have been used for this purpose. Faecal

coliform at these two stations have been chosen for the following reasons:

• Faecal coliform washoff from informal / low cost housing developments is one of

the most common problems associated with rapid urbanisation;

• Faecal coliform correlations are generally poor (linear correlation coefficients of

only .29 and .21 at stations S4 and S5 respectively). As such they are typical of

non-conservative pollutants and are most in need of a methodology that can

simulate the wide variation in observed concentrations.

• The results can be used to illustrate the possible effect of urban development of an

erstwhile rural catchment.

In short, if the methodology works for faecal coliform, it can be applied to just about

anything.

In order to illustrate the methodology the hypothetical situation was chosen based on the

assumption that 50% of the catchment upstream of station S5 would be developed into a

low cost housing estate similar to that commanded by station S4 at Katlehong.

The hvdrological model was used to simulate this hypothetical option, taking due account of

the increased runoff due to the new paved area. The generated faecal coliform values before
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and after the hypothetical urban development have been ranked to produce the duration

curves given in Figure C.3.

Table 6.2 gives the corresponding statistical properties at S5 before and after the new

development.

Table 6.2 : Statistical properties of simulated faecal coliform counts at station S5,
before and after the hypothetical development of a new high-density
urban settlement (TV/100 ml)

Parameter

Mean

Standard Deviation

Minimum

Maximum

98% high

95% high

90% high

50% (median)

Before development

461

1 068

0

2 709

2 461

2 110

1 802

438

After development

143 487

735 894

0

2 483 095

1 640 193

1 280 063

1 113618

11 932

The approach used in this example can be applied for a range of management options.

It is important to observe that successful use of the methodology does not depend on the

goodness of fit of the regression equation used. What is important is that:

(a) the regression used should result in a reasonable normal!} distributed scatter of

values around the regression line; and

(b) the sample size is large enough to yield a reasonable representation of the regression

line and the random variation around it.

With non-conservative pollutants, the latter becomes more important, since much of the

variation is better explained by the random noise.
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6.3 Extension to ungauged catchments or new conditions

The same methodology could be used to extend the results to any ungauged catchment

within the Rietspruit catchment. This could easily be achieved by using the GIS overlays to

determine the areas under each type of development above any selected portion of the

catchment. This was not done, since the illustration of the effect of the hypothetical

development of the S5 sub-catchment is sufficient to demonstrate the potential use of the

methodology. Moreover, extension to the entire Rietspruit catchment would require the use

of a water quality routing model to account for in-stream decay process between the source

areas and the catchment outlet. The use of such a routing model falls outside the scope of

the present study.
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7. DATA BASE REQUIREMENTS

7.1 Overview

The methodology put forward in this report requires some additional information to enable

the characteristics of the observed data to be replicated by a second user. This additional

information is relatively easy for the original researcher to compile from their raw data, but

virtually impossible for a second party to achieve, except at great cost and repetition of

work. Proposals are put forward for standardising these data requirements and the

development of a national database. The idea is that the key statistical requirements will be

accumulated from more detailed studies that are regularly conducted by researchers and

water quality practitioners around the country In some instances it might be possible for

researchers to process their data sources at relatively low cost to provide the required

information for earlier studies. As the results of projects are accumulated, the database will

become a valuable source that future researchers can draw on to arrive at estimates of the

likely response of catchment areas to different land use developments.

The results of the second phase of the study will form the start of a database that can supply

information on non-point source quantification at an appropriate level of detail for

catchment management purposes. The data base, as well as Ihe land-use classification and

the monitored river water quality at various points along the river will be entered in a GIS,

thereby enabling evaluation of the possible effect of changing land-use on river water

quality.

The information stored in the data base can be confirmed as experience is gained from

longer monitoring records and subsequent studies on other catchments. In time the database

can also be extended to include coverage of a wider range of water quality variables and

land uses.

7.2 Data base requirements

A detailed evaluation of the data base requirements is to be covered during Phase 2 of the

study. This section therefore contains only a rough evaluation of the requirements for a

national database.
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The purpose of the database is to accumulate appropriate data from previous and future

studies. The data that is accumulated should be in a form that can easily be interpreted by

users to estimate the impact of projected land use changes and the effect of existing

developments that have not yet been monitored and studied. In order to fulfil these

requirements the data must be relevant to the methodology that will be used. In this regard

the data quoted in the literature tends to be in a largely unusable form, with each practitioner

quoting various statistical properties (usually an average annual load).

In order to arrive at an annual load, each practitioner should have at his or her disposal a

comprehensive observed data set. The objective is to carry out relatively simple additional

processing of the databases to provide useful information with which to populate the

national database.

Fulfilment of this ideal will require some measure of agreement on the parameters to be

stored. It might also be desirable to make available an easy to use software package

available to water quality practitioners to facilitate the processing of databases to produce

the required statistical properties.

Some of the key values that would be useful for application of the methodology described in

this report include (for each water quality variable):

• A and B linear regression constants

A and B power regression constants

mean concentration (natural)

mean concentration (log)

• standard error of observed concentrations (natural)

• standard error of observed concentrations (log)

applicable range of flows used

applicable range of concentrations

• indication of type of regression that yielded the best results

• correlation coefficient achieved

• type of land use (percentages of area in each specified category)

• land use management

• sanitation type and age of sanitation system
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• age of sanitation system

• Origin of waste loads(e.g. domestic or industrial)

• locality and climate

• geology and catchment soil types

• catchment area

• slope

Most of the above information could be obtained using standard software that could be

made available to practitioners.

The foregoing list of requirements is by no means fixed, but could require modification in

the light of discussions held with a range of practitioners. The success of the project would

depend on the co-operation of those carrying out investigations of land use effects. It would

also be essential for an authority (such as the Department of Water Affairs and Forestry or

the WRC) to take ownership of the database and to ensure that it is populated with data as

further investigations take place. In this regard the WRC and other employers could require

future researchers in this field to provide the necessary information as one of their research

products.
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8. CONCLUSIONS

8.1 Water quality data

A limited amount of water quality data has been collected at six sites in the Rietspruit

catchment. Predominant land uses include:

low-density formal residential / CBD

high-density and informal residential

industrial

rural (dry land cultivation)

undeveloped (nature reserve).

Ten samples were taken at each site over a six-month period from March to September

1997. Some of the sample dates were planned to coincide with wet weather conditions,

thereby ensuring that the limited number of samples covered a reasonable range of flow

conditions. The key water quality variables that were sampled included pll. electrical

conductivity, sulphate, nitrate, ammonia, total phosphate, faecal coliform, dissolved oxygen

and temperature. The later two variables were used to calculate the percentage oxygen

saturation. Very crude estimates of flow were made at each site. However, most of these

estimates are considered to be highly inaccurate and were not used in further processing.

This had no detrimental effect, since the methodology is based on the assumption that

definitive flow data is not available at the monitoring stations.

8.2 Flow modelling

The daily time step NACL model was used to simulate flows at each monitoring site. A

correction was applied to the data to make the modelled flows at the catchment outlet (RW

station R6) coincide with those observed.

8.3 Water quality relationships

Both natural and power regressions between modelled flow and concentration were derived

for key parameters at each site. The water quality variables for which these regressions were

derived included:

electrical conductivitv
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sulphate

nitrate

ammonia

total phosphate

faecal coliform

percentage oxygen saturation.

The NACL model was used to simulate a large number of daily flows for the period October

1965 to September 1997. This period covers a wide range of hydrological conditions,

including severe droughts and extreme floods. The most appropriate regression equation for

each water quality variable was then used to estimate a regressed concentration

corresponding to each simulated daily flow. Normalised random noise was then added to the

regressed values to allow for the considerable variation that was attached to the observed

data. Provision was made for specifying an applicable range of flow conditions (in this case

close to the flow range of the observed data). Allowance was also made to filter out

unreasonably high or low concentrations.

The range of concentrations thus generated for each water quality variable and station was

also presented in the form of a duration curve. The results were tabulated to show key

statistical properties, including mean, standard deviation, regression constants, standard

error, correlation coefficient and selected percentile values (98%, 95%, 90% high values

plus the median).

8.4 Application of methodology

The strength of the methodology was demonstrated by means of an example of the impact of

an assumed new high-density urban development. The potential for using the methodology

in conjunction with G1S based land use data was also discussed. The methodology can be

applied as a screening tool and be of some assistance in the determination of the water

quality reserve.

8.5 Advantage of methodology

The use of a regression equation results in severe damping of the generated concentrations

of non-conservative pollutants. The use of this methodology (or mean values) inevitably
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leads to gross understatement of the true range of concentrations that arise. The

methodology put forward in this report holds the advantage of taking account of the semi-

stochastic manner in which concentrations vary about the regressed values.

Use of modelled flow data (suitably corrected against observations at a downstream

reference gauge) has the advantage of freeing the practitioner of the need to confine water

quality sampling to sites were flows can be gauged. Application of this methodology means

that monitoring sites can now be chosen close to source areas, thereby monitoring relatively

homogeneously developed areas. The main requirement is that sufficient samples should be

gathered to cover a range of flow conditions. It has been demonstrated that by varying

sampling dates according to weather conditions it is possible to monitor a wide range of

flows with relatively few samples.

The sample size was too small to permit partitioning of the data into low and high flow

conditions. Nor was it possible to investigate the impact of sample size on the key statistical

properties (such as mean, standard deviation and standard error). There is merit in

investigating both of these effects.

8.6 Limitations of methodology

The following factors are limitations on the methodology:

• Relatively infrequent sampling can miss first flush events at the onset of rain. In

some instances a long period of sampling may be required before such events are

sufficiently represented in the data base on which the statistics of the regression line

and random noise is based.

• Temporal variation in rainfall of shorter duration than the model time step (i.e. less

than a day) and spatial variation in rainfall reduce the accuracy with which flows at

distant sites can be estimated. This could be particularly significant for small sub-

catchments.

• Flow estimation could be model dependent. This might affect the application of

results obtained with one model to areas where another hydrological model is in use.
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• In some instances the results can be sensitive to the choice of regression equation

(section 5), particularly when the sample size is small.

• A linear regression often gives a superior representation to an exponential

regression (see figures B.6.11 and B.6.12). However, applying random noise to a

linear regression can result in negative estimated concentrations. Correction by

eliminating such values has the effect of increasing the average of the generated

values. This implies the need to investigate other types of regression equation.

8.7 Preliminary results

Although a methodology has been developed successfully and the results of its application

are promising, the small water quality database prevented assessment of the unknowns listed

above. Hence further investigations are necessary to determine the value of the method.

Until such time as the major outstanding issues are addressed, the methodology cannot be

regarded as a final or accepted technology.
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9. RECOMMENDATIONS

9.1 Determination of required sample sizes

It is desirable to test the methodology that has been derived against fuller and longer data

sets to determine the number of samples required to achieve a reasonable representation of

the key statistical parameters. The effect of partitioning the data into low and high flow

ranges should also be investigated. The use of longer data sets collected for other studies is

required for this purpose.

9.2 Assessment of required sampling frequency

The effect of sampling frequency on the results should be investigated. This should include

evaluation of the effect of the first flush at the onset of rainfall events. Attainment of these

ends requires the choice of one or more monitoring stations at which long records of high

frequency sampling are available.

9.3 Investigation of flow modelling time step

The use of daily flow models is constrained by the effort and time required to calibrate the

models. However, monthly flow modelling is widespread in southern Africa. The potential

exists to apply the same methodology to coarser monthly time step flow modelling data.

This could well require a larger number of samples before a reasonable representation of the

key statistical properties is achieved. However, the overall benefit of being able to use

monthly flow modelling would be very far reaching.

9.4 Evaluation of flow modelling accuracy

The impact of spatial and temporal rainfall distribution on the simulated flows at sites

upstream of the reference gauge needs to be investigated. This will require the use of data

for a catchment with good flow records at a number of sites controlling relatively small sub-

catchments. A mobile hand-held current metering could be used in some instances.

However, the time taken at each site would be lengthened, thereby curtailing the number of

sites that can be assessed. Since current metering could only be applied to future data, this

method could not make use of longer historical records.
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9.5 Investigation of other statistical distributions

The current study used only linear and power regression curves. Further investigation of

other types of regression is recommended. In particular, alternative methods of handling the

addition of normalised random noise to the regression line should be investigated. This is

because this can result in concentrations that lie outside the plausible range and therefore

have to be filtered out. This filtering can in turn affect the mean and standard deviation of

the generated sequence of concentrations. The best means of handling this phenomenon

should be investigated.

9.6 Development of national database

The results thus far achieved indicate that there is much merit in developing a national data

base of key physical and statistical characteristics associated with different land uses. This

proposal is linked to. but not dependent on, the application of the methodology discussed in

this report. Even without the new technology, there is a pressing need to consolidate and

standardise data on the effect of land use on water quality.

It is recommended that at least steps 9.1 and 9.2 be carried out before a national database is

developed. (Completion of recommendation 9.3 is also desirable, but not essential before

proceeding to develop a national database. Recommendations 9.1 and 9.2 could be carried

out simultaneously as part of the same or separate projects.)

9.7 Minimisation of flow gauging requirements

The methodology described in this report can be used effectively to reduce flow gauging

requirements in water quality studies. This would enable water quality monitoring sites to be

selected primarily on the basis of upstream land use and access, rather than on the

suitability of the site for flow gauging. The techniques that have been developed can also be

used to maximise the use of data that has already been accumulated at a number of sites that

are not suitable for flow gauging. It is recommended that once step 9.3 has been

implemented, an early start should be made on utilising the technology. The initial focus

could be on the Vaal Barrage catchment, since the NACL daily time step model has recently

been re-calibrated for this catchment as part of the DWAF's Vaal River System Analysis
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Update Study. Pollution of the Vaal Barrage sub-catchments is also a cause of great

concern to water quality managers.

9.8 Testing of scenarios

A serious weakness of most water quality studies that have been carried out to date lies in

the tendency to rely on flow/concentration regressions to explain catchment export. This

inevitably leads to severe damping of the resulting scenarios of water quality concentrations.

This points to the need to take better account of the variability of observed concentrations

about the mean or regression line. This is especially important with regard to non-

conservative constituents, which can typically show a very wide variation. The methodology

that has been presented provides a means of taking this variation into account. Hence it has

great potential to be applied in water quality studies to test scenarios (such as assessment of

the impact of planned management options or scenarios of projected land use development).

However, use of the new methodology in this manner should not proceed until some of the

key outstanding issues have been addressed in follow up studies.

9.9 Use of random number processing in other applications

The methodology described in Section 6 for dealing with the variation in observed

concentrations has great potential for application in a simplified, easy to calibrate river

routing model. A simple decay model was developed and used successfully for the

Environmental Impact Assessment for ERWAT's proposed new Welgedacht water care

works (Stewart Scott, 1998). Proposals have been made for extending this simple but robust

technology to include the methodology discussed in Section 5.

9.10 Evaluation of dependence on hydrological model

It is desirable to test the dependence of the results on the choice of hydro logical model. Such

testing may prove difficult, since a great deal of time and effort goes into calibrating daily

time step models. The cost of calibrating more than one model in each catchment could

prove costly. The results may not be sensitive to this, since the objective of all hydrological

model calibrations is to replicate the observed data. Because such models employ similar

algorithms to simulate hydrological processes, there should not be much difference between

the flow results obtained, especially if the same person calibrates each model. The
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differences in flow estimation by each model should in any event be much less significant to

the methodology than the observed variation in water quality. Consequently this

recommendation has been given a low priority.
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APPENDIX A

WATER QUALITY SAMPLE DATA

Description Page

A.I Observed water quality at station SI A.I

A.2 Observed water quality at station S2 A.I

A.3 Observed water quality at station S3 A.I

A.4 Observed water quality at station S4 A.2

A.5 Observed water quality at station S5 A.2

A.6 Observed water quality at station S6 A.2



Station :
ERWAT

: SI- Jan
observations

Year Mon

1997
1997
1997
1997
1997
1997
1997
1997
1997
1997

3
4
5
5
6
6
7
8
9
9

Day

10
4
7

2?
10
25
10
20
e

18

Time

0800
0740
1015
0752
0814
0924
0926
1047
0923
0644

Table
Frederick

k
PH
-

7. 50
7.22
7.60
7.90
7.50
8.20
7.70
7.30
7.60
8.00

A.1 :
Street

Observed water quality at station Si
Germiston (page 112

:\common\wrcdiff\wqdata\s!
EC

mS/m
62
58
103
101
85
63
66
99
63
69

NO 3

mg/1
1.04
0.67
0.86
0.54
1.02

+ 0.10
1.27
1.20
0.90
0.50

TPO4
mq/1
0.04
0.04
0. 10
0.98
0.15

+ 0.10
+ 0.05
0.30

+ 0.05
2.80

NH4

mg/1
0.28
0.92
6.20
0.23

+0.70
+ 0.7 J
+ 0.70
+ 0.70
+ 0.70
+ 0.70

L. raw
S04

rag/I
179
190
412
449
360
252
247
317
153
208

, DZ

11. B4
DO

mg/1
6.12
7.49
6.17

5.20
6.80
7.01
6.90

6.IB
B.02
6.41

119) - Residential + CBD
kro2 26'
F.coli

N/lOOml
0
95

180000
155
79
400
-1
159

2400
600

'123'58
T
'C

20.6
18.4
16.0
13.8
12.0
11.2
10.6
14.4
15.4
15.0

" S 28[

O.Flow I
m3/s
0.530
0.620
0.0-12
0.040
0.000*
0.069
0.046
0.025
0.320
0.067

'11-55"
4-Flow
ra3/s

.2896

.0949

.0386

.0099

.0199

.0199

.0099

.0089

.0798

.0092

E
P. Flow
m3/s
.2169
.1035
.0247
.0081
.0287
.0237
.0129
.0106
.0907
.0112

Denotes value below detection limit, when half of detection limit was used.
Denotes missing data.
"urrent velocity too low to estimate flow, but noticable flow.

Table A.2: Observed water quality at station S2

Station : S2 - Opposite
EBWAT observations k
Year Mon Day Time pH

1997
1997
1997
1997
1997
1997
1997
1997
1997
1997

10 0900
4 0620
7 1043

22 0824
10 0S41
25 0959
10 0950
20 1112
6 0953

18 0908

c/o Lamp and Baracuda Ereets,
; \coirjnon\wrcdif f \wqdatas s2.raw

IC NO3 TPO4 NH4 SO4

8.00
7.82
7.20
7.70
7.60
7.80
3.70
8.30
7.60
7.90

mS/m
49
54
49
;̂3
-25

11
• 5

- 4

mg/1
2.18
3.11
0.28
.86
.78

,38
.80
.90

mg/1 mg/1
0.06 13.63
0.06 1.52
0.24 5.00
0.13 24.10
0.25 +0.70

0 . 4 0 + 0 . 1 0 + 0 . 7 0

2.20

0.37 +0.70
0.50 +0.70
0. 10 +0.70
0.90 +0.70

Wadeville (page 156,
3.40 Jon2 26°16 '31"

DO F .co l i T
mg/1

58
48
38
37
47
77

242
116
B2
39

mg/1
5.71
4.65
3.37
.70
.30
.94
.60
, 14
.79

4.
5.
3.
4.
3.
5.
5.30

N/lOOml
63000

60
1700
4400
3000
2200

-1
2600
1500

33600

20.7
18.7
17.3
14.7
14.0
14. 1
12.8
15.1
15.6
15.7

EF118) -
S 2 8=11'
O.Flow H
m3/s
0.470
0.260
0.150
0.190
0.000'
0.130
0. 140
0.120
0.240
0. 150

I n d u s t r i a l
O6" E
Flow P.Flow

m3/s
.0798
.0212
.0097
.0031
.0043
.0039
.0033
.0019
.0198
.0024

m3/s
.0605
.0231
.0062
.0025
.0062
.0047
.0043
.0023
.0225
.0029

Table A.3: Observed water quality at station S3
Station : S3 - Via
ERWAT observations
Year Mon Day Time

kplaats Wastewater
k:\common\wrcd

pH EC NO3

Treatment Works internal stonnwatet -
1.77 km2 26°21'26"

DO F.coli T
iff\wqdata\s3.raw
TPO4 NH4 SO4

low cost residential
S 28c10'46" E
O.Flow M.Flow P.Flow

1997
1997
1997
1997
1997
1997
1997
1997
1997
1997

3
4
5
5
6
6
7
8
9
9

10
4
7

22
10
25
10
20
8

18

0930
0910
1150
0916
0928
1059

-1
-1

1104
1021

-
7.80
7.67
7.80
7.90
8.00

-1
-1
-1

7. 40
8.40

mS/m
47
63
52
60
49
-1
-1
-1
27
63

mg/1
0.35
0.15
0.70
0.78
0.73

-1
-1
-1

4.80
1.80

mg/1
0.71
3.61
0.8B
0.72
1.85
-1
-1
-1

0.80
0.20

mg/1
0.21

47.51
20.70
+ 0.70
17.00

-1
-1
-1

+ 0.70
6.20

mg/1
11
20
5

17
5

-1
-1
-1
49
26

mg/1
1.94
1.71
4.31
4.30
2.00
-1
-1
-1

5.19
4.32

N/lOOml
296000
242000
218000

520
4200
-1
-1
-1

26000
13

"C
21.6
19.7
12.8
10.7
9.0
-1
-1
-1

15.3
15. 3

m3/s
0.046
0.085
0.000*
0.000*
0.000*
0.000
0.000
0.000
0.013
0.000*

m3/s
.0400
.0111
.0062
.0021
.0029
.0026
.0022
.0015
.0198
.0014

m3/s
.0303
.0121
.0039
.0017
.0042
.0031
.0029
.0019
.0113
.0017



Table A.4 : Observed water quality at station S4

Station : S4 - Katlehong
ERWAT observations k:
Year Mon Day Time pH

(Turn left after crossing spr
\common\wrcdiff\wqdata\s4 .raw

EC N03 TPC4 NH4 SO4

uit on main road) - low cost residential
2.44 km2 26-~21'03" S 28°10'07" E

DO F.coll T O.Flow M.Flow ?.Flow

1997
1597
1997
1997
1997
1997
1997
1997
1997
1957

3
4
5
5
6
6
7
8
9
9

10
4
7

22
10
25
10
20
8

18

1030
0950
1249
0958
0955
1143
1136
1311
1200
1117

-
7 .90
7.94
7.90
8. 10
7.80
7.90
8. 10
8 . 10
7 . 80
S .50

raS/rr.
25
34
34
32
31
27
38
40
51
36

mg/1
0.41
4.83
0. 39
0.07
1.07

+ 0.10
1. 19
0.50
1.00

+0 .05

mg/i
0 . 14
0 .04
0.01
0.05
1.05
0.21
0.19
0.30

14. 30
0.40

mg/1
0.63
2.40
5.60

+ 0.70
1.70

+ 0.70
+ 0.70
+ 0.70
3.40

+0.70

mg/i
30
26
44
21
13
26
83
60
33
26

mg/1
6.00
5.79
3 . 36
7.20
7.30
0.51
6. 40
6.95
5.75
6.42

N/lOOml
1000

60
20

630
1000
233
-1

1200
2150000

590

"C
20.2
17. 4
17.8
10.7
11 .0
12.3
11 .5
18 .2
15.5
20 .4

m3/s
0.068
0.000'

-1
— 1

-1
— 1

0.013
0.000*

-1
-1

mj/s
.0500
.0110
.0079
.0024
.0034
.0031
.0026
.0013
. 0167
. 001"7

irij/s

.03~9

.0229

.0050

.0020

.0049

.0037

.0034

.0015

.0213

.0021

Table A.5 : Observed water quality at station S5

Station
reserve
ERWAT observations
Year Mon Day Time

S5 - Kliprivier/Heialeiberg Road R550 bridge at small farm dams - farmland below nature

1997
1997
1997
1997
1997
1997
1997
1997
1997
1997

10 1110
4 1015
7 1309

22 1020
10 1017
25 1207
10 1207
20 1329
8 1222

18 1138

k:\common\wrcd
pH EC NO3

mS/m
26.00

.83

.80

.00

.20

.20

. 10

.00

. 10

.20

mg/1
0.22
0.15
0.27
0.02
0.32

iff\wqdata\s5.raw
TPO4 NH4 SO4
mg/1 mg/1 mg/1 mg/1 N/lOOml

44
48
45
33
37 +0.10
40 0.33
53 0.20
57 0.40
56 +0.05

0.03 0.00
0.01 1.62
0.07 8.90
0.04 +0.70
0. 10 +0.70

+ 0. 10 +0.70
0.25 +0.70
0.60 +0.70

+0.05 +0.70
0.40 +0.70

9
94
14
9

22
28
67
79
26
35

13.70 Hm2 26=25'3B"
DO F.coli T

"C
19.2
17.4
13.2
9. 4
9. 0
9.7
8 .8
16.0
14 . 3
14 .7

5.00
5. 17
4.95
5.70
7.70
7. 69
5.70
6.47
6.02
4.87

0
15

3000
6
7
1

-1
13

100
34

S 29=12'13" E
O.Flow M.Flow P.Flow

m3/s
0.042
0.220
0.084
0.044

o.ooo-
0.150
0.130
0.000-
0.250
0. 300

m3/s
.0960
. 1489
.0261
.0183
.0246
.0246
.0185
.0121

.ona

.0070

m3/s
.1237
.1625
.0166
.0150
.0355
.0293
.0240
.0144
.0134
.0085

Table A.6 : Observed water quality at station S6

Station : S6 - R103
EPWAT observations
Year Men Day Time

Heidelberg (Turn right out of R550,

k:\common\wrcdiff\wqdats\s6.raw
pH EC NO3 TPO4 NH4 SO4

600m) - Rural cultivated

S.77 km2 26 c25'00" S 28!I17'09" E
DO F.coli T O.Flow M.Flow P.Flow

1997
1997
1997
1997
1997
1997
1997
1997
1997
1997

3
4
5
5
6
6
7

8
9
9

10
4
7

22
10
25
10
20
8

13

1230
1125
1329
1045
1046
1226
1227
1349
1242
1156

-
7.80
7.72
7. 30
7.20
7.90
8.00
7.90
7.70
7.60
8.00

mS/m
19
24
27
24
22
28
33
42
67
45

mg/1
0.23
0.11
0.51
0.19
0.33

+ 0.10
0.20
0.20
0.40

+ 0.05

mg/1
0. 14
0.01
0.04
0.23
0. 17

+ 0. 10
0.33
0.60

+ 0.05
0 .50

mg/1
0.00
1.42
5.00

tO.70
+0.70
+ 0.70
+ 0.70
+ 0.70
+ 0.70
+ 0.70

mg/1
27
20
53
2

21
36
11
13
42
18

mg/1
3.67
3.48
1.53
2.60
6.10
5.73
5. 10
3.97
4.01
4. 11

N/lOOml
700
105

5900
2
4
3

-1
4

1800
200

°C
20 .2
17.9
11.6
7.8
7.0
6.9
5.8
9.6

12.0
11.0

m3/s
0.008
0.005
0.000*
0.000*
0.000*
0.000*
0.000*
0.000*
0.014

o.ooa

m3/s
.0960
.0864
.0150
.0111
. 0148
.0148
.0111
.0074
.0073
.0039

m3/s
.0728
.0923
.0096
.0091
.0214
.0177
.0144
.0088
.0083
.0047

kl



APPENDIX B

REGRESSION PLOTS

Description Page

B.1 Regressions between flow and electrical conductivity B.1
B.2 Regressions between flow and sulphate B.7
B.3 Regressions between flow and Nitrate B.13
B.4 Regressions between flow and ammonia B.19
B.5 Regressions between flow and total phosphate B.25
B.6 Regressions between flow and faecal coliform B.31
B.7 Regressions between flow and oxygen saturation B.37
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Figure B.1.1 : Linear regression between flow and electrical conductivity at station S1
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Figure B.1.2 : Power regression between flow and electrical conductivity at station SI
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Figure B.1.3 : Linear regression between flow and electrical conductivity at station S2
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Figure 6.1.5 : Linear regression between flow and electrical conductivity at station S3
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Figure B.1.6 : Power regression between flow and electrical conductivity at station S3
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Figure B.1.7 : Linear regression between flow and electrical conductivity at station S4
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Figure B.1.8 : Power regression between flow and electrical conductivity at station S4
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Figure B.1.9 : Linear regression between flow and electrical conductivity at station S5
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Figure B.2.1 : Linear regression between flow and sulphate at station S1
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Figure B.2.2 : Power regression between flow and sulphate at station SI
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Figure B.2.4 : Power regression between flow and sulphate at station S2
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Figure B.2.6 : Power regression between flow and sulphate at station S3
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Figure B.2.8 : Power regression between flow and sulphate at station S4
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Figure B.2.9 : Linear regression between flow and sulphate at station S5
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Figure B.2.10 : Power regression between flow and sulphate at station S5
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Figure B.2.11 : Linear regression between flow and sulphate at station S6
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Figure B.2.12 : Power regression between flow and sulphate at station S6
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Figure B.3.1 : Linear regression between flow and nitrate at station S1
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Figure B.3.2 : Power regression between flow and nitrate at station S1

B.13



E<

3.00 -

O 2.00
z
•a
t- 1.00

0.50 1.00

Adjusted flow at S2 ( m m / d a y )

LINEAR REGRESSION: Y = A'X + B KEY: —
A = 0.27900
B = 2.09024
R = 0.11340 °
N = 10.

1.50

Regression line
95% confidence interval
95^ prediction interval
Raw data

Figure B.3.3 : Linear regression between flow and nitrate at station S2
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Figure B.3.4 : Power regression between flow and nitrate at station S2
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Figure B.3.5 : Linear regression between flow and nitrate at station S3
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Figure B.3.6 : Power regression between flow and nitrate at station S3
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Figure B.3.7 : Linear regression between flow and nitrate at station S4
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Figure B.3.8 : Power regression between flow and nitrate at station S4
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Figure B.3.9 : Linear regression between flow and nitrate at station S5
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Figure B.3.10 : Power regression between flow and nitrate at station S5
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Figure B.3.11 : Linear regression between flow and nitrate at station S6
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Figure B.7.10 : Power regression between flow and oxygen saturation at station S5
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