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EXECUTIVE SUMMARY

1. INTRODUCTION

Many industrial sectors, especially the agriculture and food production sectors, exhibit a strong
seasonal character. In addition, climate variability is factored into the performance of such
industries. The availability of relatively accurate seasonal forecasts would therefore be invaluable
for production prediction and operational planning. Seasonal climate variability is modulated by
atmospheric circulation features, which are considered non-linear of nature.

Progress in the field of seasonal forecasting over the last couple of decades has revealed that the
processes involved in seasonal forecasting arc complex. Not only do seasonal changes in global
Sea Surface Temperatures (SSTs) and land surface characteristics interfere with the conventional
El Nino Southern Oscillation (ENSO) signal, but natural variability in the atmosphere (also
known as random internal variability or chaos) also appears to be a major contributing factor that
prevents forecasters from producing the so called "perfect deterministic seasonal forecast". Since
anomalous changes in the ocean circulation evolve over longer periods than in the atmosphere,
the response of atmospheric circulation (and therefore rainfall) to the global SST variability is
still regarded as a key factor in the process of longer term forecasting. Both statistically and
numerically-based (also dynamic) models have shown significant skill in the forecasting of
rainfall at many locations on the globe. One benefit of numerically-based models is that natural
variability forms part of the general or overall climate variation simulated by these models.

In this study the CSIRO9 Atmospheric Circulation Model (AGCM) with a R21 resolution is used
in an effort to produce improved seasonal rainfall forecasts for South Africa. The COCA Coupled
Atmosphere Ocean General Circulation Model (CGCM) simulates forecasted SST patterns that
serve as boundary forcing for the AGCM. Both the AGCM and CGCM models were developed
by the CSIRO Atmospheric Research in Australia. SST forecasts are supplied by Australian
collaborators, while AGCM rainfall simulations are performed on a local super computer.



2. OBJECTIVES OF THE CLIPWATER PROJECT

The two main objectives of the CLIPWATER project can be summarised as follows:

a. To collaborate with the CSIRO Atmospheric Research in Australia in order to
develop a CGCM (referred to as the COCA CGCM) by coupling a dynamic OGCM
to the CS1RO9 Mark II global AGCM with a T63 resolution (referred to as the
CSIRO9(T63) AGCM). The CSIRO Atmospheric Research has developed both
models.

b. To prescribe the CGSM simulated SST forecasts generated and issued by the CSIRO
Atmospheric Research as boundary1 forcing in a coarser resolution model locally
available (CSIRO9 Mark II global AGCM with a R21 resolution or CSIRO9(R21)
AGCM) in order to investigate the skill and ability of this model to generate
seasonal rainfall forecasts for Southern Africa.

The research objectives were successfully achieved:

Good collaboration was established between the research team and the CSIRO Atmospheric
Research in Australia. The CGCM was developed during the research project and the research
team as well as students involved benefit significantly in terms of knowledge transfer from an
international research organisation. The research team obtained code for the CSIRO9 Mark II
AGCM (T63 resolution) and a number of simulations were completed on a local supercomputer.

Monthly SST forecasts generated by the CGCM were acquired from the CSIRO and these
forecasts were compared to local SST forecasts. A thourough investigation indicated that CGCM
forecasts are superior to persistence and locally generated statistical forecasts. CGCM SST
forecasts were prescribed as boundary forcing to the CSIRO Mark II AGCM (R21 resolution). A
forecasting technique was developed and probabilistic rainfall forecasts were successfully
generated on a local super computer for the 2001/2002 summer season.

3. SUMMARY OF RESEARCH

In this study observed rainfall over South Africa was analysed from spatial and temporal
perspectives and was compared with the associated AGCM simulated rainfall, where rainfall
climatologies were derived in accordance with the CSIRO9(R21) and T(63) spectral resolutions.
These climatologies formed the basis from which deviations in forecast rainfall were assessed.

A first numerical rainfall forecast was obtained by using the CSIRO9(R21) AGCM for the
1998/1999 summer season and verified against observations. Instead of CGCM SST forecasts,
statistical Canonical Correlation Analysis (CCA) SST forecasts were employed as surface
boundary forcing in this first experiment.

The research team collaborated closely with Australian scientists during the development phase
of the COCA CGCM. Aspects of anomaly coupling, nudging and the initialisation procedure for
forecast simulations were addressed and complex processes involved in ocean-atmosphere
coupling as well as forecasting procedures were considered. In this project the COCA CGCM
was primarily used for global SST forecasts.

Finally, COCA CGCM SST forecasts were evaluated against persisted SST forecasts and
compared with forecasts generated by a statistical model. The CGCM forecasts outscored
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persistence and statistical forecasts, which motivated why CGCM SST forecasts were used.
Spatial anomaly correlation patterns between observations and CGCM SST forecasts were
illustrated and ocean regions with significant skill were highlighted.

The CSIRO9(R2J) AGCM was forced with CGCM SST forecast fields to in an effort to generate
probabilistic seasonal forecasts for the 2001/2002 summer season. An 18-ycar hindcast
simulation was used to determine the skill of the AGCM, and different rainfall categories were
defined. Hit rate scores were calculated. CGCM SST forecasts for the October, November,
December (OND) 2001 and January, February, March (JFM) 2002 seasons were prescribed as
boundary forcing for the AGCM and rainfall simulations were performed. Probabilistic forecasts
were prepared for the three rainfall categories.

The OND 200} (early-summer) and JFM 2002 (late-summer) forecasts favoured wetter
conditions during the early-summer season followed by somewhat drier conditions during the
late-summer season. These forecasts agreed with observations during the 2601/2002 summer
season.

The report on capacity building and technology (knowledge) transfer gives an overview on the
knowledge that was generated and how it will be applied in future.

4. OUTLOOK FOR THE FUTURE

The CLIPWATER project established a firm basis for further research in the field of numerical-
based rainfall forecasting. A most challenging prospect is to produce improved seasonal forecasts
on the regional scale. The CLIPWATER research team will continue with their efforts to
investigate means of improving seasonal forecasts, and will most probably focus on the
development of regional scale rainfall forecasting.
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REPORT ON CAPACITY BUILDING
The CLIPWATER project extended over a period of three years. The primary objective of the
project was to establish a numerically-based seasonal rainfall forecasting facility. For this purpose
a numerical model (CSIRO9 (R2I) AGCM) has been installed on a local super computer, and
numerous simulations were performed to achieve what is outlined in the final report. Although
probabilistic rainfall forecasts are locally generated, coupled model SST forecasts that serve as
boundary forcing for the local atmospheric model, are still required from Australia.

1. INTERNATIONAL COLLABORATION

The CLIPWATER project encouraged international collaboration, in particular between the
CS1RO Atmospheric Research in Australia and the Meteorology Group at the University of
Pretoria. During the execution of the project three international scientists, all experts in the fields
of cither numerical modelling or seasonal forecasting, visited South Africa and contributed to
transfer of knowledge to local scientists and students. The visiting scientists were:

1.1 1998: Barrie Hunt (Program Leader, CSIRO Atmospheric Research, Australia)
1.2 1999: Dr Steve Wilson (Ocean modeller, CSIRO, Atmospheric Research,

Australia.
1.3 2000: Dr Ian Smith (Seasonal forecasting, CSIRO Atmospheric Research,

Australia)

During visits these scientists participated in local workshops and conferences.

The project leader visited the CSIRO Atmospheric Research on an annual basis to assist with the
development of the coupled atmosphcrc-ocean model.

2. QUALIFICATIONS

2.1 As part of their studies, many undergraduate students worked on aspects of seasonal
forecasting and model verification in internal research projects.

2.2 The project leader obtained his PhD in 1999. His research focused on model development
and verification (CSIRO9 (R21) AGCM). His PhD studies established a basis from which
the model could be applied in the CLIPWATER project.

2.3 Ms A.G. Bartman from the South African Weather Service enrolled for her MSc studies
at the University of Pretoria. The purpose of her research was to employ an empirical
recalibration technique in order to improve rainfall forecasts over South Africa. The
CSIRO9 (R21) AGCM was used for this purpose. Me Bartman submitted her dissertation
entitled PATTERN ANALYSIS AND RECALIBRATION OF A PERFECTLY FORCED
ATMOSPHERIC GENERAL CIRCULATION MODEL in 2002.

2.4 Ms A. Thackrah from the Institute for Soil Climate and Water enrolled for her MSc
studies at the University of Pretoria. She will use seasonal rainfall forecasts from the
CLIPWATER project to develop an early warning system for Brown Locust Outbreaks
over the western parts of South Africa. Ms Thackrah will submit her dissertation before
the end of 2003.
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2.5 The modelling facility and international collaboration established by the CLIPWATER
project contributed to the initiation of research in the field of Regional Modelling. Many
students from previously disadvantaged communities are currently entering the
University of Pretoria and sharing in the knowledge gained over the past few years.

3. CONFERENCE PRESENTATIONS

Nationally

1. Rautenbach C.J.dcW (1998) Telcconnections between global sea-surface temperatures
and the inter-annual variability of observed and model simulated rainfall over Southern
Africa. Skooi vir Mynbou & Mineraalwetenskap, Navorsingseminaar, Universiteil van
Pretoria, Pretoria, Suid-Afrika (poster presentation)

2. Rautenbach, C.J.deW. (2000) Seasonal surface tempararure and rainfall projections with
a coupled atmosphcrc-ocean General Circulation Model (GCM), 2000 Annual
Conference of the South African Society of Atmospheric Science, 16-17 October 2000,
San/am Auditorium, University of Pretoria

3. Rautenbach, CJ.dcW. (2001) A cost effective procedure to construct coupled ocean-
atmosphere model seasonal rainfall forecasts for South Africa. 2001 Annual Conference
of (he South African Society of Atmospheric Science, 6,7.September 2001, University of
Cape Town.

Internationally

1. Rautenbach, C.J.deW. (1998) The CSIRO-9 AGCM and climate variability over
Southern Africa. Presentation during the annual AMOS conference in Wellington. New
Zealand, (oral presentation) (Session chairman during this conference)

2. Engelbrecht, F.A. and Rautenbach, CJ.dcW. (1999) The contribution of extra tropical
sea-surface temperature anomalies to the 1996/97 rainfall simulations over the South
African summer rainfall region. UNESCO International conference on integrated
drought management, CS1R. Pretoria, South Africa, (oral presentation).

3. Rautenbach, C.J.deW. (1999) Numerical rainfall forecasts for the South African 1998/99
summer season using the CSIRO-9 (R21) AGCM. UNESCO International conference on
integrated drought management. CSIR, Pretoria, South Africa, (oral presentation).

4. PUBLICATIONS IN PEER-REVIEWED JOURNALS

4.1 Jury, M.R., Mulenga, H. and Rautenbach, C.J.deW. (2000) Tropical Atlantic variability
and lndo-Pacific ENSO: Statistical analysis and numerical simulation. The Global
Atmosphere and Ocean System, 7(2), 107-124.

4.2 Rautenbach, CJ.deW. and Smith, I.N. (2001) Teleconncctions between global sea-
surface temperatures and the interannual variability of observed and model simulated
rainfall over Southern Africa. Journal of Hydrology?, 254, 1-15.

The availability of the CSIRO9 (R21) AGCM also encouraged the project leader to publish the
following paper:



4.3 Rautenbach, C.J.dcW. A hypothetical approach to determining the effect of
palaeorotational rates on late Precambrian Earth's palacoclimate. Accepted for
publication in the African Journal of Geology in 2002..

5. CONTRIBUTION TO THE SADC COMMUNITY

The project leader attended all the Southern African Regional Climate Outlook Forum
(SARCOF) meetings presented from 1998 to 2000. CSIRO9(R21) rainfall forecasts were
presented.

6. OTHER PROJECTS

Research achievements in the CLIPWATER project enabled the project leader to become
involved and to make a significant contribution to a project funded by the South African
Department of Arts, Culture, Science and Technology entitled SEASONAL WEATHER
FORECASTING FOR AGRICULTURAL. WATER AND FISHERIES IMPACT PLANNING
THROUGH INNOVATED COMPUTING (2000 to 2002). The project is managed by the
University of Cape Town.

REPORT ON TECHNOLOGY TRANSFER

Probabilistic seasonal rainfall forecasts will be made available on the World-Wide-Web
(WWW) through the Seasonal Forecasting facility at the South African Weather Service
(SAWS). To facilitate this process, a WWW link will be created between the SAWS and
University of Pretoria. Here the Water Research Commission will be acknowledged for
their involvement and contribution that made such a facility possible.

The University of Pretoria will build on the knowledge gained in the CLIPWATER
project. Emanating from the CLIPWATER project, a LABORATORY FOR POST-
GRADUATE RESEARCH IN ATMOSPHERIC MODELLING (LRAM) has already been
established in the Department of Geography, Geoinformatics and Meteorology, Faculty
of Natural and Agricultural Sciences, University of Pretoria. This facility will encourage
local students and scientists to become involved in the field of atmospheric modelling
and numerical seasonal forecasting.
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FIGURE 1.1
A typical example of the various models (or methods) used during the two phases of a two-tiered
forecasting procedure. As a result of the response of the atmosphere to ocean forcing. Sea Surface
Temperature (SST) forecasts are normally used to estimate future rainfall projections over land
(or ocean).

FIGURE 2.1
Averages of (a) observed October, November, December (OND) rainfall and (b> CSIRO9(R21)
AGCM simulated OND rainfall in mm/season. Model simulated fields represent ten-year
ensemble means obtained from a seasonal cycle control simulation.
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Averages of (a) observed January, February, March (JFM) rainfall and (b) CSIRO9(R21) AGCM
simulated JFM rainfall in mm/season. Model simulated fields represent ten-year ensemble means
obtained from a seasonal cycle control simulation.

FIGURE 2.3
Median of (a) observed October. November, December (OND) rainfall and (b) CS1RO9(R2I)
AGCM simulated OND rainfall in mm/season. Observed and AGCM simulated (from prescribed
SST simulations) rainfall medians have been calculated from an 18-ycar rainfall record (1982 to
1999).
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Median of (a) observed January, February, March (JFM) rainfall and (b) CSIRO9(R21) AGCM
simulated JFM rainfall in mm/season. Observed and AGCM simulated (from prescribed SST
simulations) rainfall medians have been calculated from an 18-year rainfall record (1982 to
1999).

FIGURE 2.5
A map depicting the location of South Africa and Namibia. The grid points of the CSIRO9(T63)
Atmospheric General Circulation Model (AGCM) are located at the centre of each shaded grid
box. The rainfall value at each grid point represents the spatial average of the rainfall of the
overlying grid box.

FIGURE 2,6
The observed rainfall climate for the (a) austral summer season (October to March) and (b)
austral winter season (May to August) in millimetres per day over southern Africa.

FIGURE 2.7 The AGCM simulated rainfall climate for the (a) austral summer season
(October to March) and (b) austral winter season (May to August) in millimetres per day over
southern Africa.

FIGURE 2.8
The first observed summer (October-March) rainfall principal component pattern (PCI) with the
associated amplitude time series (1961-1990) for southern Africa. The pattern accounts for 54%
of the total variance. The bar-chart depicts the Nino4 Sea Surface Temperature (SST) variation in



Kelvin. Because of negative spatial loadings the PC scores are inverted so that negative values
indicate wet conditions.

FIGURE 2.9
The first AGCM simulated summer (October-March) rainfall principal component pattern (PCI)
with the associated amplitude time series (1961-1990) for southern Africa. The pattern accounts
for 39% of the total variance. The bar-chart depicts the Nino4 Sea Surface Temperature (SST)
variation in Kelvin. Because of negative spatial loadings the PC scores are inverted so that
negative values indicate wet conditions.

FIGURE 2.10
The first observed mid-summer (December, January) rainfall principal component pattern (PCI)
with the associated amplitude time series (1961-1990) for southern Africa. The pattern accounts
for 54 % of the total variance. The bar-chart depicts the Nifio4 Sea Surface Temperature (SST)
variation in Kelvin. Because of negative spatial loadings the PC scores are inverted so that
negative values indicate wet conditions

FIGURE2.il
The first AGCM simulated mid-summer (December, January) rainfall principal component
pattern (PCI) with the associated amplitude time scries (1961-1990) for southern Africa. The
pattern accounts for 29 % of the total variance. The bar-chart depicts the Nino4 Sea Surface
Temperature (SST) variation in Kelvin. Because of negative spatial loadings the PC scores are
inverted so that negative values indicate wet conditions.

FIGURE 2.12.
The first observed winter (May-August) rainfall principal component pattern (PCI) with the
associated amplitude time scries (1961-1990) for southern Africa. The pattern accounts for 36 %
of the total variance. Because of negative spatial loadings the PC scores arc inverted so that
negative values indicate wet conditions.

FIGURE 2.13
The first AGCM simulated winter (May-August) rainfall principal component pattern (PCI) with
the associated amplitude time series (1961-1990) for southern Africa. The pattern accounts for
55 % of the total variance. Because of negative spatial loadings the PC scores are inverted so
that negative values indicate wet conditions.

FIGURE 2.14.
Correlation coefficients (r x 10) between the observed summer (October-March) rainfall PCI
time series (Figure 2.8) over southern Africa and global observed sea-surface temperatures
(SSTs). Solid and dashed lines denote positive and negative values respectively. Spatially
coherent correlations with values higher than the 99% significance level (0.47) are shaded. The
symbols A, B. C and D denote the geographical location the Ninol.2 (0p-5°S)(9O°-80"W). Nino3
(5°N-5"S)(150<'-90"W), Nifto3.4 (5oN-5oS)(170°-120oW) and Nifio4 (5t'N-5<'S)(160E °-150"W)
regions respectively.

FIGURE 2.15
Correlation coefficients (r x 10) between the AGCM simulated summer (October-March) rainfall
PCI time scries (Figure 2.9) over southern Africa and global observed sea-surface temperatures
(SSTs). Solid and dashed lines denote positive and negative values respectively. Spatially
coherent correlations with values higher than the 99% significance level (0.47) arc shaded.



FIGURE 3.1
Spatial regions used in the forecast analyses, namely (a) seven separate model grid boxes (Gl to

G7), (b) a composite of four model grid boxes to form a central continental region (Al) and (c> a
composite of seven model grid boxes to form one region (SA) that covers most parts of South
Africa.

FIGURE 3.2
Area averages of observed rainfall calculated from land rainfall records alone (gray areas). In
model grid boxes where the ocean forms part of the grid box area, it was assumed that the
average rainfall over the land fraction represents the total grid average rainfall.

FIGURE 3.3
Spatial distribution of the SST anomaly grid used as AGCM boundary input during rainfall
forecast simulations.

FIGURE 3.4
Canonical Correlation Analysis (CCA) Sea Surface Temperature (SST) anomaly forecast issued
during May 1998 for the July. August, September (JAS) 1998 season.

FIGURE 3.5
Canonical Correlation Analysis (CCA) Sea Surface Temperature (SST) anomaly forecast issued
during May 1998 for the October, November, December (OND) 1998 season

FIGURE 3.6
Three separate twelve-month AGCM rainfall forecast simulations, each initiated from a different
month (namely January, April and June 1998), and each representing a five-member ensemble
mean, have been compiled. Monthly Sea Surface Temperature (SST) anomalies were prescribed
as ocean boundary forcing. Shaded / unshaded months denote observed/predicted SSTs. Forecast
SSTs were issued as three-month averages. Weights of 1/3, 2/3 and 3/3 were applied to rainfall
forecasts with 3, 2 and 1 month lead limes, respectively in the forecast seasons (October, November,
December (OND) 1998 and January, February, March (JFM) 1999).

FIGURE 3.7
Percentage of months (from the 12-year hindcast) where the model simulated and observed
rainfall fell in the same category (hits). Categories are in terms of tcrcilcs indicating above-
normal (AN), near-normal (NN) and below-normal (BN) rainfall.

FIGURE 3. 8(a)
Accumulated monthly observed rainfall (thick black line), forecast rainfall (shaded line) and the
five ensemble members (thin black lines), measured in mm/season, for the OND 1998 and JFM
1999 seasons over region Gl . Vertical thick black and shaded bars depict the near-normal (NN)
category for the observed and AGCM simulated (forecast) rainfall, respectively.

FIGURE 3. 8(b)
As figure 3.8(a) but for region G6

FIGURE 3. 8(c)
As figure 3.8(a) but for region G7



FIGURE 3. 8(d)
As figure 3.8(a) but for region A1

FIGURE 3. 8(e)
As figure 3.8(a) but for region SA

FIGURE 3.9
Categorical probabilistic rainfall forecasts (left) for the (a) OND 1998 and (b) JFM 1999 seasons
over regions Gl , G6, G7 and Al . Observed rainfall catogaries are shown on the right.
Probabilities have been derived from a 12-year hindcast simulation. The interpellation of the
forecast probabilities is depicted by figure 3.10.

FIGURE 3.10
Interpretation of the diagram printed in the forecast regions (maps on the left in figure 3.9(a) and

FIGURE 4.1
Diagram of COCA CAGCM Coupling (CS1RO9(T63) AGCM and ACOM2 OGCM)

FIGURE 5.1
Anomaly correlations between CGCM forecast SSTs and persistence over the NINO34 region.
The correlations have been calculated from 48 hindcast simulations where the model was
initialised at the beginning of January, February, March (1987 to 1999 = 13 years) and October
(1990 to 1998 = 9 years). The 99% significance level is 0.33.

FIGURE 5.2
Anomaly correlations between COCA CGCM (solid black lines) SST forecasts and observations,
and CCA/POPs (dotted black lines) SST forecasts and observations in the NINO34 region over a
13-ycar period (1987 to !999) for different month lag times (+3, +6, +9, +12). Correlations arc
for the seasons (a) OND, (b) JFM, (c) AMJ and (d) JAS. The 95% and 99% significance levels
are 0.54 and 0.69 respectively.

FIGURE 5.3
Global spatial anomaly correlations between CGCM forecast SSTs with a time lag of 6 months
and observations. The correlations have been calculated from 48 hindcast simulations where the
model was initialised at the beginning of January. April, July (1987 to 1999 = 13 years) and
October (1990 to 1998 = 9 years). The 95% and 99% significance levels are 0.29 and 0.33
respectively.

FIGURE 5.4 Regional spatial anomaly correlations between CGCM forecast SSTs with a time
lag of 6 months and observations. The correlations have been calculated from 13 hindcast
simulations (1987 to 1999 = 13 years) where the model was initiated at the beginning of (a) July
to forecast for January and (b) January to forecast for July. The 95% and 99% significance levels
are 0.54 and 0.69 respectively.

FIGURE 5.5(a)
NINO34 SST forecast simulations by the COCA CGCM for the 2001/2002 summer season.
Neutral ENSO conditions are expected.



FIGURE 5.5(b)
CGCM forecast Sea Surface Temperature (SST) anomalies for December 2001 measured in °C.
The forecast simulation has been initialised from the beginning of August 2001. The dotted line
represent the zero isotherm and the shaded areas has temperatures of 0.2 degrees and higher.

FIGURE 5.6<a)
Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JFM 2002 seasons over
regions Gl to G7 as calculated for category classification A (6:6:6). Probabilities have been
derived from a 18-year hindcast simulation. The interpretation of the forecast probabilities is
depicted by figure 3.10.

FIGURE 5.6(b)
As figure 5.6(a) but for region Al.

FIGURE 5.6(c)
As figure 5.6(a) but for region SA.

FIGURE 5.7(a)
Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JFM 2002 seasons over
regions Gl to G7 as calculated for category classification B (5:8:5). Probabilities have been
derived from a 18-year hindcast simulation. The interpretation of the forecast probabilities is
depicted by figure 3.10.

FIGURE 5.7(b)
As figure 5.7(a) but for region A1.

FIGURE 5.7(c)
As figure 5.7(a) but for region SA.

FIGURE 5.8(a)
Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JFM 2002 seasons over
regions Gl to G7 as calculated for category classification C (4:10:4). Probabilities have been
derived from a 18-year hindcast simulation. The interpretation of the forecast probabilities is
depicted by figure 3.10.

FIGURE 5.8<b)
As figure 5.8(a) but for region Al.

FIGURE 5.8(c)
As figure 5.8(a) but for region SA.
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CHAPTER 1

INTRODUCTION
1.1 BACKGROUND

Many industrial sectors, especially the agriculture and food production sectors, exhibit a strong
seasonal character. In addition, climate variability is factored into the performance of such
industries. The availability of relatively accurate seasonal forecasts would therefore be invaluable
for production prediction and operational planning.

During the 1980s forecasts of summer rainfall over South Africa was closely associated with the
phase of the El Nino Southern Oscillation (ENSO) with abovc/bclow-normal rainfall driven by
cold/warm ENSO phases. The association was mostly based upon a statistically significant linear
correlation between the Southern Oscillation Index (SOI) in the equatorial Pacific Ocean and
summer rainfall over the central continental parts of South Africa. In recent years statistical
models have provided valuable information concerning the complex behaviour of atmospheric
flow, and even succeeded to a certain degree of accuracy, in forecasting year-to-year changes in
climate.

Progress in the field of seasonal forecasting over the last couple of decades has revealed that the
processes involved in seasonal forecasting are much more complex. Not only do seasonal changes
in global Sea Surface Temperatures (SSTs) and land surface characteristics interfere with the
conventional ENSO signal, but natural variability in the atmosphere (also known as random
internal variability or chaos) also appears to be a major contributing factor that prevents
forecasters from producing the so called "perfect deterministic seasonal forecast". Since
anomalous changes in the ocean circulation evolve over longer periods than in the atmosphere,
the response of atmospheric circulation (and therefore rainfall) to the global SST variability is
still regarded as a key factor in the process of longer term forecasting.

Both statistically and numerically-based (also dynamic) models have shown significant skill in
the forecasting of rainfall at many locations on the globe (Kumar et. al., 1996). One benefit of
numerically-based models is that natural variability forms part of the general or overall climate
variation simulated by these models. Improvements in super computer technology contributed
significantly to better global climate field simulations by numerically-based Atmospheric General
Circulation Models (AGCMs).

In this study (also known as the CLIPWATER project) an AGCM that runs on a local super
computer is used in an effort to produce improved seasonal rainfall forecasts for South Africa.
Coupled Atmosphere Ocean General Circulation Model (CGCM) simulations from Australia
supply forecast SSTs that serve as boundary forcing for the AGCM. CGCM generated SST
forcing is employed to modulate future rainfall deviations in the AGCM.

1.2 TELECONNECTIONS BETWEEN OCEANS AND LOCAL RAINFALL

Rainfall is one of the most important atmospheric variables as far as agriculture and water
resource management is concerned, but is difficult to predict at the seasonal time scale. Global
SST anomalies have often been analysed in an effort to better understand the factors that may be
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responsible for anomalously drier or wetter rainfall seasons for various regions. It has been
demonstrated, for instance, that ENSO events, which evolve in the equatorial Pacific Ocean
region, are a significant contributor lo the inter-annual rainfall variability throughout much of the
global tropics and beyond (Ropelewski and Halpert, 1987).

1.2.1 Equatorial Pacific Ocean

Statistically significant correlation patterns between SST anomalies over the equatorial Pacific
Ocean and rainfall over South Africa have been described by many researchers (van Heerden et
al., 1988; Lindesay and Vogel, 1990 and Allan et al., 1996). Warm ENSO phases, also known as
El Nino events, usually coincide with below-normal summer rainfall over the central and western
continental regions of South Africa. In general, these drier conditions have a detrimental impact
on the availability of water resources, agricultural activities and food production. It has also been
demonstrated that cold ENSO phases (La Nina events) are often associated with wet summer
seasons over the same region.

1.2.2 Indian Ocean

Walker (1990), Jury and Pathack (1993) and Reason and Mulenga (1999) also indicated that wet
summer rainfall conditions over the continental parts of South Africa are usually associated with
relatively warmer SSTs in the south-west Indian Ocean south of 25° south, and lower SSTs north
of this region to the east of Madagascar. Landman (1995, 1997) also found that SST anomalies
over the tropical western Indian Ocean are negatively correlated with summer rainfall over the
South African plateau, with the most significant correlations occurring during February. Landman
and Mason (1999) later demonstrated that the latter association had been more profound prior to
the late-1970s, and that warm/cold events in the tropical western Indian Ocean are, at present,
more frequently associated with above-normal/below-normal rainfall conditions over South
Africa.

Statistically significant links between South African rainfall and SST anomalies over both the
Pacific and Indian Oceans might imply a semi-consistent remote response of the atmospheric
circulation to ocean thermal boundary forcing.

1.23 Adjacent regional oceans

The effects of more localised forcing have also been explored. Lutjeharms and Ruijter (1996), for
example, found that atmospheric convection induced by the warm Agulhas Ocean current might
contribute to local precipitation along the south and southeastern coastline of South Africa.
Walker (1990) and Crimp et al. (1998) postulated that surface heat and moisture fluxes, which
appear in the Agulhas retroflection region during the summer months, may have an influence on
the continental atmospheric pressure (tropical-temperate trough formation), and therefore can
contribute to summer rainfall patterns over southern Africa (Harrison, 1984). It has also been
suggested that SST fluctuations in the South Atlantic Ocean may contribute to cyclogenesis,
which usually enhances favourable winter rainfall conditions confined to the southwestern parts
of South Africa (Brundrit and Shannon, 1989; Majodina and Jury, 1996). Comprehensive
statistical studies by Walker (1990); Mason et al. (1994); Mason (1995), Jury (1996); Reason
(1998) and Reason and Mulenga (1999) have conclusively indicated that links between regional
SST anomalies and South African rainfall are complex and difficult to formulate.
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1.2.4 SST as boundary forcing

The ability of an AGCM to represent monthly average climatic conditions on a global scale
(McGregor el a!., 1993; Rautenbach, 1999) suggests that it may also be suitable for estimating the
combined effects of both remote and localised SST forcing. For example, the effect of Indian
Ocean SSTs on the large-scale atmospheric circulation and associated rainfall patterns have been
investigated by Jury et al. (1996) and Tennant (1996) who performed AGCM simulations with
prescribed above-normal SST anomalies for the central Indian Ocean. Reason (1998) and Reason
and Mulenga (1999) used the same principle to investigate the impact of SST changes in the
southeast Atlantic and southwest Indian Oceans on atmospheric circulation and rainfall patterns
over southern Africa.

Furthermore, AGCMs offer the opportunity of forecasting seasonal climate anomalies (e.g.
rainfall) if the relevant SST anomalies can be reliably forecast in advance. Most rainfall
forecasting schemes make use of prescribed SSTs as boundary forcing for an AGCM, which then
produces monthly or seasonal simulated mean atmospheric circulation anomalies. Unlike extra-
tropical SSTs, tropical SSTs related to ENSO variability are predictable with lead times of several
months (Zebiak and Cane, 1987; Landman, 1999). Since the atmospheric response to SST
variability in the tropics is more direct than in the extra-tropics (Webster, 1981; Lau and Nath,
1994), AGCM simulated forecasts usually exhibit better skill over regions directly affected by
tropical ocean teleconnections (Hunt et al., 1994; Palmer and Anderson, 1994; Kumar et al.y
1996; Mason eta!., 1996; Hunt, 1997;Rowell, 1998; Yang et al., 1998).

1.3 CLIMATE SIMULATIONS WITH NUMERICAL MODELS

1.3.1 Boundary forcing and initial conditions

Atmospheric mechanisms that contribute to teleconnections between globally-observed SST
fields and South African rainfall can be investigated by forcing AGCMs with observed SST fields
at the lower surface boundary (thermal boundary forcing). This approach is also followed when
hindcast simulations are prepared in order to estimate the reliability of a model in producing
seasonal forecasts. Even if one assumes that perfectly observed SST fields are used to force the
same AGCM at its boundaries, noticeable deviations may occur in different simulations that start
with a slight difference in initial conditions (Dix and Hunt, 1995). As demonstrated by Lorenz
(1964), this is a result of the presence of natural variability in the non-linear dynamic system of
the atmosphere. The implication is that even if a perfect SST field is forecast and fed into an
AGCM, diverse atmospheric circulation anomalies (rainfall included) are most likely to appear in
model simulations that start off with a slight difference in initial conditions.

According to Kumar et al. (1996) anomalies that result from climate variability in AGCM
simulations may be expressed in terms of the following two components:

a) Boundary-forced component

b) Random internal variability component

The boundary-forced component of the resulting anomaly of an atmospheric variable is due to
modulation of the atmospheric circulation by local or remote boundary forcing through SSTs and
land cover characteristics, while the random internal variability component forms part of the
internal nature of atmospheric flow as indicated by the non-linear atmospheric equations. It is
therefore recommended that a number of model simulations be performed with the same
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response of the model is to be examined. One such simulation is known as an ensemble member.
An estimation of the climate variability of an AGCM can be obtained by calculating the average
(ensemble mean) of all the individual model simulations (ensemble members). To a certain
extent, ensemble averaging might smooth random internal variability, meaning that ensemble
averaged AGCM anomalies give a good estimation of boundary-forced results.

1.3.2 Probabilistic nature of seasonal forecasting

A simple procedure to distinguish between the boundary-forced (for example fluxes from SST
anomalies) and random internal variability components in observed climate anomalies does not
exist, which implies that AGCM ensemble simulations for a particular observed event arc
difficult to interpret. There will always be a degree of uncertainty caused by actual random
internal variability. In addition SST forecasts, which are still far from perfect, arc needed as
boundary forcing. The following statement is therefore extremely important:

THE PROBLEM OF SEASONAL FORECASTING IS INHERENTLY
PROBABILISTIC BY NATURE

1.4 SEASONAL FORECASTING WITH NUMERICAL MODELS

Numerical models might be suitable for producing relatively reliable forecasts from certain long-
lived boundary forcing conditions (Kamur ct al., 1996). Remarkable progress has been made in
forecasting SST anomalies in the equatorial Pacific Ocean up to one year in advance. Rainfall in
regions, which experience a local or remote response to these SSTs, might therefore be
successfully forecast to a certain degree of skill.

Two procedures are currently followed in seasonal climate forecasting:

a) TWO- TIERED FORECASTING PROCEDURE

An AGCM is employed exclusively to produce future climate simulations with prescribed
or imposed SST input at the lower surface boundary. These observed or forecast SSTs
might be produced by either CGCM or empirical techniques.

b) ONE-TIERED FORECASTING PROCEDURE

An AGCM is coupled to interact with a numerically based Ocean General Circulation
Model (OGCM) to form a CGCM. The CGCM is then released from a given point in time,
allowing if to evolve and produce estimates (scenarios) of future climate.

Both AGCM and OGCM models solve the equations of motion. Physical parameterisation is
applied, where sub-grid scale processes are parametcrised empirically.

When used alone the AGCM may be forced with cither persistence (here one assumes that the
SST field at the point of release will persist during the period of prediction), future SST
projections from empirical models or future SST projections generated independently by a
CGCM. Climate or rainfall forecasts therefore depend purely upon the AGCMs response to the
prescribed SST input. This method of forecasting is a two-tiered forecasting procedure in which
SSTs are forecast during the first phase and a climate variable during the second phase as
indicated in figure I.I (Hunt, 1997; 1994).
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More advanced and faster super computers have made it possible to introduce the one-ticrcd
forecasting approach of using a CGCM to generate future climate projections. The forecasting
procedure involves a strong nudging, during prc-forccast simulations, of CGCM simulated
parameters towards the observed climate and the use of anomaly coupling. This prevents the
model from "drifting" away from realistic values as the integration proceeds. During forecast
simulations, the CGCM is released from a given point in time allowing it to evolve freely and
produce future scenarios of estimated climate (one-tiered forecasting procedure).

As a consequence of the boundary-forced and random internal variability components in
deviations from the normal in the climate system (discussed in section 1.2.1), it is required that
numerical forecasts consist of an ensemble of simulations, which obviously leads to probabilistic
climate forecasts.

PHASE 1

SST FORECASTS:
Persistence
Empirical or Statistical models
Numerical models
(OGCMsorCGCMs)

PHASE 2

RAINFALL FORECASTS:
Empirical or Statistical models
Numerical models
(AGCMsorCGCMs)

OCEAN LAND

FIGURE 1.1: A typical example of the various models (or methods) used during the two phases of
a two-tiered forecasting procedure. As a result of the response of the atmosphere lo
ocean forcing. Sea Surface Temperature (SST) forecasts are normally used to
estimate future rainfall projections over land (or ocean).

A first attempt using the Australian CSIRO9 Mark II global AGCM with a R21 resolution (refer
to as the CSIRO9(R21) AGCM) to produce two-tiered rainfall forecasts for lead times of up to
twelve months was made by Hunt et a/. (1994). Forecast SST anomalies were imposed over the
equatorial Pacific Ocean as ocean thermal forcing (Zcbiak and Cane, 1987). In a follow-up study
Hunt (1997) investigated the prospects and problems concerning these rainfall forecasts.

In this study a CGCM, known as the Coupled Oasis CAR-AGCM ACOM2 model (COCA
CGCM described in CHAPTER 4), developed in Australia was used to forecast global SST fields.
These SSTs will then be prescribed as surface boundary forcing for an AGCM available in South
Africa, which will finally produce the probabilistic seasonal rainfall forecasts. However, during
the development phase of the CGCM, the AGCM was forced with statistically (Canonical
Correlation Analysis: CCA) predicted SST fields obtained from the South African Weather
Service (SAWS). A two-tiered forecasting procedure was employed.

An outstanding overview of current approaches followed in seasonal to inter-annual climate predictions
can be found in Goddard ct al. (2001).
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1.5 OBJECTIVES OF THE CLIPWATER PROJECT

The two main objectives of the CLIPWATER project can be summarised as follows:

a. To collaborate with the CSIRO Atmospheric Research in Australia in order to
develop a CGCM (referred to as the COCA CGCM) by coupling a dynamic OGCM
to the CSIRO9 Mark II global AGCM with a T63 resolution (referred to as the
CSIRO9(T63) AGCM). The CSIRO Atmospheric Research has developed both
models.

b. To prescribe the CGSM simulated SST forecasts generated and issued by the CSIRO
Atmospheric Research as boundary forcing in a coarser resolution model locally
available (CSIRO9 Mark II global AGCM with a R2I resolution or CSIRO9(R2I)
AGCM) in order to investigate the skill and ability' of this model to generate
seasonal rainfall forecasts for Southern Africa.

South Africa (in this project the University of Pretoria or UP) docs not have adequate computer
resources to run the complete COCA CGCM on a routine basis. Local and international
researchers agreed to perform CGCM simulations in Australia, and to use the CGCM forecast
SST anomalies to force the coarser resolution version of the CSIRO9(R21) to produce future
rainfall projections for South Africa. The CSIRO9(R21) AGCM does run on a local
supercomputer at the SAWS, which enabled the research team to perform local analyses. A more
detailed description of the various atmospheric models used in the CLIPWATER project is
outlined in CHAPTER 2.

1.6 ORGANISATION OF THE REPORT

CHAPTER 1 has given an overview of relevant teleconnections between rainfall over South
Africa and the global oceans. The concept of numerical seasonal forecasting has also been
discussed and it was emphasised that numerical seasonal forecasting is probabilistic in nature.
The first chapter also contains the objectives of the research.

Observed rainfall over South Africa is analysed from spatial and temporal perspectives in
CHAPTER 2 and is compared with the associated AGCM simulated rainfall. Rainfall
climatologies are provided in terms of the CSIRO9(R21) and T(63) spectral resolutions. These
climatologies provide a basis for evaluating deviations in forecast rainfall.

A first numerical rainfall forecast by using the CSIRO9(R21) AGCM for the 1998/1999 summer
season is presented and verified against observations in CHAPTER 3. At this point in the
CLIPWATER project the COCA CGCM was still in a developing stage, and statistical (CCA)
SST forecasts are therefore employed as surface boundary forcing.

The research team collaborated closely with Australian scientists during the developing phase of
the COCA CGCM. A detailed description of the configuration of the COCA CGCM is outlined in
CHAPTER 4. Aspects of anomaly coupling, nudging and the initialisation procedure for forecast
simulations are some of the points that are addressed. The complex process of ocean-atmosphere
coupling and forecasting is illustrated. The CGCM is primarily used for global SST forecasts.

In CHAPTER 5 COCA CGCM SST forecasts are verified against persistence and forecasts
generated by a statistical model. These forecasts serve as base line against which the performance
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of CGCM forecasts is measured. Spatial anomaly correlation patterns between observations and
CGCM forecasts are illustrated and discussed. The CSIRO9(R21) AGCM is forced with CGCM
SST forecast fields to in an effort to generate a seasonal forecast for the 2001/2002 summer
season. An 18-ycar hindcast simulation is used to determine the skill of the AGCM, and different
rainfall categories are defined. Hit rate scores arc calculated, SST forecasts for the October,
November, December (OND) 2001 and January, February, March (JFM) 2002 seasons are
prescribed as boundary forcing for the AGCM and rainfall simulations are performed.
Probabilistic forecasts are prepared for the three category classifications and rainfall forecast
results are discussed.

It is concluded in CHAPTER 6 that the research indicates that it is feasible to prepare and issue
seasonal rainfall forecast with the CSIRO9(R21) AGCM over South Africa. As an alternative,
AGCM recalibration techniques should be considered for rainfall estimations. Concluding
remarks and recommendations are made in this final chapter.
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CHAPTER 2

OBSERVED AND MODEL SIMULATED

RAINFALL
2.1 INTRODUCTION

Rainfall is one of the most complex atmospheric variables to simulate. Rainfall climate simulated
by AGCMs typically has biases in relation to observed rainfall. In both the CSIRO9(R21> and
(T63) AGCMs (described in sections 2.2.1 and 2.2.2), rainfall is overestimated over most of the
eastern parts of South Africa. It is therefore more appropriate to compare anomalous rainfall
fields produced by an AGCM with the associated observed rainfall anomaly fields and therefore
to express AGCM forecasts in terms of anomalies rather than to make direct comparisons
between observed and model-simulated rainfall projections.

Because rainfall anomalies rather than actual rainfall totals are forecast, end users of seasonal
forecasts, whether probabilistic or deterministic, always need a reference base from which to
interpret the results. The average rainfall measured over a given period of time is an obvious part
of such a reference base. Knowing this, and given a seasonal rainfall forecast, a user can estimate
whether dry or wet conditions arc likely to occur in the coming season. For this reason, rainfall
maps of observed averages arc displayed in this chapter.

2.2 ATMOSPHERIC GENERAL CIRCULATION MODELS (AGCMs)

The CSIRO9 Mark II AGCM with both a R21 and T63 spectra! resolution has been used. The
R21 resolution has been used in local forecast integrations forced by prescribed SSTs while the
T61 resolution model serves as the atmospheric component of the CGCM (the configuration of
the COCA CGCM is described in detail in CHAPTER 3). Forecast SST fields arc made available
in T63 resolution and arc interpolated to R21 resolution for use as surface boundary fields in local
rainfall forecast simulations.

2.2.1 CSIRO9 Mark II AGCM (R21 spectral resolution)

The horizontal grid of the CSIRO9(R21) AGCM comprises 64 zonal and 56 meridional
(gaussian) grid points, which yields a resolution of approximately 5.6° by 3.3°. In zonal-
meridional dimension that gives a grid box of approximately 622 km x 360 km at the equator and
180 km x 317 km at a latitude of 30° south. In the AGCM dynamics the spectral atmospheric
equations in flux formulation (Gordon. 1981; Rautcnbach, 1999) arc integrated over nine sigma
model levels (Phillips, 1957) in the vertical. A comprehensive range of physical processes like
radiation and rainfall are also included (Rotstayn. 1996, 1997). The model has full diumal and
annual cycles, gravity wave drag, a mass flux scheme for convection. scmi-Lagrangian water
vapour transport and a relative humidity-based cloud paramcterisation. Surface interactions arc
parameteriscd using a soil-canopy model (Kowalczyk et al. 1994). A more detailed description of
the model is provided in McGregor et al. (1993).
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2.2.2 CSIRO9 Mark II AGCM (T63 spectral resolution)

The horizontal grid of the CSIRO9(T63) AGCM comprises 192 zonal and 96 meridional
(gaussian) grid points, which yields a resolution of approximately 1.9° by 1.9°. In zonal-
meridional dimension that gives a grid box of approximately 208 km x 208 km at the equator and
180 km x 208 km at a latitude of 30° south. With the exception of horizontal grid resolution, the
dynamical and physical configuration is similar to that of the CSIRO9(R21) AGCM described in
SECTION 2.2.1.

2.3 OBSERVED AND MODEL SIMULATED RAINFALL

The final probabilistic rainfall forecasts made in this report by means of a two-tiered forecasting
procedure (the COCA CGCM is employed to produce SST forecasts while a local AGCM
produces probabilistic rainfall forecasts - CHAPTER 5) as produced by the CSIRO9(R2I)
AGCM are time averaged over the months OND and JFM. These two seasons have been selected
since the Southern African Regional Climate Outlook Forum (SARCOF) regards OND and JFM
as standard pre-summcr and post-summer seasons. Observed rainfall averages and medians
calculated over a period of 18-years are therefore displayed and compared with AGCM results for
these two seasons only.

Likewise rainfall variability characteristics of the CSIRO9(T63> AGCM (atmospheric component
of the COCA CGCM) arc also compared with the associated observed fields and global SSTs.
This part of the study, however, focuses on the October to March, December to January and the
May to August seasons. Comparisons made refer to the development phase of the COCA CGCM,
and give an overview of how the atmospheric component of the CGCM perform with regard to
rainfall simulations. Since the primary purpose of the CGCM was to produce SST forecasts for
use as boundary fields for the CSIRO9(R21) AGCM, it is important to note that rainfall
simulations from the CGCM were not considered for seasonal forecasts.

2.3.1 CSIKO9(R21) AGCM simulated vs observed rainfall

2.3.1.1 Average or mean rainfall

CSIRO9(R21) AGCM simulated rainfall averages over seven grid boxes from the R21 horizontal
spectral resolution that cover South Africa, are compared with the equivalent observed climate
fields acquired from the SAWS. Rainfall averages for the prc-summcr (namely OND) and post-
summer (namely JFM) seasons arc illustrated in figures 2.1 and 2.2. Rainfall averages are
expressed in mm per season. Model simulated rainfall averages represent ten-year ensemble
averages obtained from a seasonal cycle control simulation. Observed rainfall averages had been
calculated from model grid box area averages of point stations.

In agreement with results of Joubcrt (1997), the model significantly overestimates rainfall totals
over the eastern interior for both the OND and JFM and seasons (figures 2.1 and 2.2). The
observed increase of summer rainfall totals from west to east over the country is well captured by
the CSIRO9(R21) AGCM simulations for both seasons. In reality most parts of South Africa
receive more rain during the post-summer (JFM) than during the pre-summcr (OND) season - a
feature also well reproduced by the model simulations.

21



1: 267.7 mm
2: 245.(i mm
3: 101.2 mm
4: 216 2 mm
5; 68.1 mm
6; 35.8 mm
7: 118.7 mm

27

FIGURE 2.1 Averages of (a) observed October. November. December (OND) rainfall and
(b) CS1RO9(R21) AGCM simulated OND rainfall in mm/season. Model
simulated fields represent ten-year ensemble means obtained from a seasonal
cycle control simulation.

I: 316.8mm
2: 283.5 mm
3: 180.9 mm
4: 270.9 mm
5: 1143 mm
6: 25.2 mm
7: 115.2 mm

: 592.2 mm
2: 516.9 mm
3: 228.6 mm
4: 362.7 mm
5: 107.1 mm
6: 8.1 mm
7: 74.7 mm

FIGURE 2.2 Averages of (a) observed January, February. March (JFM) rainfall and (b)
CSIRO9(R21) AGCM simulated JFM rainfall in mm/season. Model
simulated fields represent ten-year ensemble means obtained from a seasonal
cycle control simulation.

2.3.1.2 Rainfall median

It is sometimes more appropriate to use the median rainfall instead of average or mean rainfall
values. For example, differences between the average and median may be significant in a dry
region where a few unusually high rainfall figures might result in a skew frequency distribution.
In such an event the mean will be higher (as a result of the odd high rainfall episodes) than the
median which will give a much more realistic value of the prevailing rainfall.
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The rainfall median for the prc-summer (OND) and post-summer (JFM) seasons is illustrated in
figures 2.3 and 2.4. Observed and AGCM simulated (rainfall from prescribed observed SST
simulations) medians have been calculated from an 18-year rainfall record (1982 to 1999).

FIGURK2.3 Median of (a) observed October, November. December (OND) rainfall and (b)
CS1RO9(R21) AGCM simulated OND rainfall in mm/season. Observed and AGCM
simulated (from prescribed SST simulations) rainfall medians have been calculated from an
18-year rainfall rccord(1982 to 1999).
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FIGURE 2.4 Median of (a) observed January, February, March (JFM) rainfall and (b) CS1RO9(R2I)
AGCM simulated JFM rainfall in mm/season. Observed and AGCM simulated (from
prescribed SST simulations) rainfall medians have been calculated from an 18-year rainfall
record (1982 lo 1999).

2.3.2 CSIRO9(T63) AGCM simulated vs observed rainfall

During the development phase of the CGCM a comprehensive analysis was done on the dominant
rainfall variability pattern of the CSIRO9(T63) AGCM. This AGCM serves as the atmospheric
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component of the coupled model developed by the CSIRO Atmospheric Research in the
CL1PWATER project.

The objective of this part of the study is to investigate the CS1RO9(T63) AGCM's response to
some of the major global SST forcing that contributes to observed rainfall patterns over South
Africa and Namibia. This will give an indication whether the model is suitable for use in seasonal
forecasting research. Globally observed SSTs of a 30-year period (1961 to 1990) have been
prescribed as boundary forcing for the AGCM. Since global SST forcing responsible for southern
African rainfall variability is regarded as complex, only dominant rainfall patterns are considered.

2.3.2.1 SST data and hindcast simulations

The Hadlcy Centre of the United Kingdom Meteorological Office compiled, and is revising,
global data for SSTs and sea-ice for the purpose of analysing climatic variations (Parker et aL,
1995; Folland and Rowell, !995). An early version of this data (referred to as GISST1.I)
comprises monthly mean SST values from 1871 to 1991. This data, interpolated to daily values,
were prescribed as the lower boundary condition in a scries of climate simulations as described
by Smith et aL (1998) and Smith (1999).

Five separate 120-year long CSIRO9(T63) AGCM simulations were completed using the same
SST forcing, each starting with different initial conditions. However, only results from a shorter
period (1961 to 1990) arc considered here as this period coincides with the period when the
observed rainfall data used for verification arc regarded as complete and reliable. For a given year
and month, the AGCM simulated rainfall from each of the 5 simulations will differ because of the
internal random variability introduced by the different initial conditions. When calculating the
long-term average means, we average the results over 30 years and across the 5 simulations
(sample size of 150). When dealing with a given year and month, we average the results across
the 5 simulations (sample size of 5). These monthly values were then aggregated into summer
(October to March) average values (sample size of 30), mid-summer (December to January)
(sample size of 10) and winter (May to August) (sample size of 20). The effect of averaging
across the ensemble is to reduce the noise due to chaos in the data and to better exhibit any
underlying signals.

SST anomalies in the Nino 1.2, Nifk>3, Nifio3.4 and Nifio4 regions (indicated by A, B, C and D in
figure 2.14 which will be discussed in further detail later), were obtained from the June 1998
calculated monthly atmospheric and SST index values of the Climate Prediction Centre (CPC),
Washington, USA. Nino4 SST anomalies arc depicted by bar charts in figures 2.8 to 2.11. The
report will focus on these figures in greater detail later. The ENSO classification proposed by
Zhang (1997) is used in this study to distinguish between El Nino and La Nifta events.

2.3.2.2 Observed rainfall data

Figure 2.5 shows that South Africa and Namibia arc geographically located in the subtropical
high-pressure zonal belt where the atmospheric circulation is governed by dry descending air.
Arid regions such as the Namib Desert. Atakama desert as well as the Australian deserts all lie in
the subtropics. During summer, however, contrasts in the horizontal temperature distribution
result in relatively low surface pressure over continents compared to the oceans. These pressure
features (subtropical troughs), in conjunction with mid-latitude westerly waves (cyclonic frontal
systems) and tropical circulation perturbations (tropical lows and easterly waves), form the major
driving forces behind moisture advection and finally summer rainfall over southern Africa
(Hattlc, 1968; Harrison. 1984; Tyson, 1986; Preston-Whytc and Tyson, 1993).
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Observed rainfall data from 93 homogeneous rainfall districts over South Africa for the period
1961 to 1990 were acquired from the SAWS. In previous studies, the rainfall value allocated lo
each rainfall district in South Africa represented the area average of the measured rain gauge
values over the given district (Harrison. 1984; van Hcerden et al.y 1988). In this study, however, a
rainfall value for a specific district has been calculated from rain gauge values weighted
according to data point concentration distribution (Tennant ,1995: personal communication).

•tJohannesbujg /

SOUTH AFRICA

20" E 25" E 30" E

FIGURE 2.5 A map depicting the location of South Africa and Namibia. The grid points of the
CSIRO9(T63) Atmospheric General Circulation Model (AGCM) arc located at the
centre of each shaded grid box. The rainfall value al each grid point represents the
spatial average of the rainfall of the overlying grid box.

Weighted means were used to calculate a final rainfall value for each South African rainfall
district. It was subsequently assumed that the rainfall value allocated to each one of the 93 rainfall
districts is geographically located at the centre of the district. In addition to the South African
rainfall district values. 96 complete rainfall records from point stations (rain gauges) were
available for the period 1961 to 1990 from the Namibian Weather Service (Botha. 1997). These
point stations are well distributed over the entire country. Finally, rainfall values at these
positions (central points of rainfall districts over South Africa and rain gauge points over
Namibia) were area averaged to obtain the rainfall for each model grid box over South Africa and
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Namibia or southern Africa (depicted as shaded boxes in Figure 2.5). Grid boxes containing less
than two rainfall observation points have been ignored.

Figure 2.6(a) shows average observed summer (October to March) rainfall (measured in
millimetres per day) on the model grid. The pattern is characterised by a gradual increase in
rainfall towards the eastern parts of the country.
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FIGURE 2.6 The observed rainfall climate for the (a) austral summer season (October to March)
and (b) austral winter season (May to August) in millimetres per day over southern
Africa.

During the same season, the northern part of Namibia receives more rain than the rest of the
country, with the first significant rains appearing in January (Botha, 1997). Figure 2.6(b) shows
average winter (May to August) rainfall that, unlike the summer rainfall, is confined to the south
and southwestern coastline and the adjacent interior, and is almost entirely modulated by the
eastward propagation of mid-latitude cyclonic frontal systems. Namibia receives little or no rain
during this season. Both the summer and winter seasons exhibit high inter-annual variability.

2.3.2.3 Model simulated rainfall climate

Figures 2.7(a) and (b) show the long-term average (1%1 to 1990) AGCM simulated rainfall for
the summer (October to March) and winter (May to August) rainfall seasons respectively.

The AGCM adequately captures the general spatial distribution of higher and lower seasonal
rainfall patterns for both the summer and winter seasons, but overestimates the mean summer
rainfall for the entire South African region cast of 20"E, as well as over the northeastern parts of
Namibia. This agrees well with results previously obtained by Joubcrt (1997) in validation studies
that involved the coarser resolution version (R21) of the AGCM as well as results from this report
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(figures 2.1 to 2.4). The rainfall comparison for the western region, which receives little rain
during the summer season, shows smaller differences with the AGCM simulated rainfall - even
slightly lower than observed. The AGCM also overestimates winter rainfall for most grid points
over southern Africa (figure 2.7(b)). The highest observed rainfall (figure 2.7(b)) for the winter
season, however, occurs over the southwestern parts of the southern Africa region (West Cape
province). It is important to note from figure 2.7(b) that the AGCM underestimates the mean
seasonal rainfall over this part of the region.
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FIGURE 2.7 The AGCM simulated rainfall climate for (he (a) austral summer season (October (o
March) and (b) austral winter season (May to August) in millimetres per day over
southern Africa.

2.3.2.4 Statistical methods

Principal component (PC) analysis (Kachigan, 1991; Harrison, 1984), which represents unrotatcd
eigenvectors of the covariance matrix, is applied to both the observed and AGCM simulated
rainfall data on the spatial grid field depicted in figure 2.5. Detrended rainfall data for the summer
season (October to March), mid-summer season (December and January) and winter season (May
to August) for the 30-year period (1961 to 1990) are separately analysed. Dctrending eliminates
long-term changes in the rainfall and is essential when dealing with inter-seasonal rainfall
fluctuations (Smith, 1994). The empirical orthogonal function (EOF) spatial patterns (also
referred to as the PC patterns), with the associated amplitude time scries, are calculated for each
one of the three seasons. Due to the high percentage variance explained by the first observed
rainfall PC and as a result of the complexity of SST-rainfall associations, we focus on the
dominant rainfall (or PCI) patterns (figures 2.8 to 2.13).

In the search for SST-rainfall associations, correlation analyses are applied to compare rainfall
PCI patterns over southern Africa with the corresponding time series at each GISST grid point on
the globe (figures 2.14 and 2.15). Standardised departures are used for comparisons, meaning that
the anomaly for each data value in the rainfall PC and GISST time series is expressed in terms of
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a fraction of the standard deviation. This allows for the correlation of data sets with diverse
statistical features, and reduces the bias in data series with a high temporal variability. Correlation
between the different seasonal rainfall PCI patterns and the Nino4 SST anomalies are obtained by
applying the same method.

The 1961-1990 summer and mid-summer rainfall PCI time series have sample sizes of 29, while
the 1961-1990 wintertime series has 30 values (figures 2.8 to 2.13). Significance levels for the
different seasonal SST-rainfall comparisons (figures 2.14 and 2.15) arc derived by a Monte Carlo
approach, and levels greater than 95% are regarded as statistically significant.

2.3.2.5 Observed and model simulated rainfall (Summer season (October - March))

The observed summer rainfall PCI pattern with the associated amplitude time scries is illustrated
in figure 2.8.
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FIGURE 2.8 The first observed summer (October-March) rainfall principal component pattern (PCI)
with the associated amplitude time series (1961-1990) for southern Africa. The pattern
accounts for 54% of the total variance. The bar chart depicts the Nino4 Sea Surface
Temperature (SST) variation in Kelvin. Because of negative spatial loadings ihe PC
scores are inverted so thai negative values indicate wet conditions.

This pattern accounts for 54% of the total variance, and corresponds well with the first January
component revealed by Harrison (1984). The PCI spatial pattern is characterised by a strong
northwest to southeast trough located over the central continental part of southern Africa, with a
steep gradient towards the southwest. Lindcsay and Vogel (1990) and van Heerdcn et al. (1988)
demonstrated that the area with the strongest spatial coherent correlation between the phase of the
ENSO (in this case the Southern Oscillation Index or SOI) and observed summer rainfall also lies
over the central continental part of southern Africa. The contours of these correlation patterns
closely relate to those of the observed summer rainfall PCI spatial pattern, indicating that the
observed summer rainfall PCI time series is strongly ENSO related. These results are confirmed
by the strong relationship between the observed summer rainfall PCI time scries and SST
anomalies over the central equatorial Pacific Ocean (Ninol .2, 3, 3.4 and 4 which arc also regions
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A, B. C and D respectively in figure 2.14). Linear correlation analyses (table 1) reveal significant
coefficients (r = 0.48, 0.54, 0.56 and 0.57) between the observed summer rainfall PCI time series
and the Nino 1.2, 3, 3.4 and 4 SST anomalies (r is significant at the 99% level if it exceeds 0.47).
The strongest relation is with the Nifio4 SST anomalies depicted by bars in figure 2.8. Figure 2.8
also indicates that six of the seven (86%) El Nino events coincided with below-normal summer
rainfall, while above-normal summer rainfall has been experienced during four of the five (80%)
La Nina events. The extremely wet summers during the 1973/74 and 1975/76 seasons, as well as
the prevailing drier conditions during the early 1980s are well captured by the observed summer
rainfall time series (figure 2.8).

TABLE 1
Correlation coefficients (r) between the observed rainfall first principal component (PCI) time
series, CS1RO9(T63) AGCM rainfall PCI time series of the ensemble mean and mean ensemble

and the Niftol.2, 3, 3.4 and 4 SST anomalies (1961-1990) for the summer, mid-summer and winter
seasons. The geographical location of the Ninol.2, 3, 3.4 and 4 SST regions are depicted as A, B, C

and D in figure 10. The summer and mid-summer coefficients are all greater than the 99%
significance level <r= 0.47), while low coefficients have been calculated for the winter.

1961 lo 1990

Nino 12 versus
Observed PCI
Ensemble mean PCI
Mean ensemble PCI
Nino3 versus
Observed PCI
Ensemble mean PCI
Mean ensemble PCI
Nifio 34 versus
Observed PCI
Ensemble mean PCI
Mean ensemble PCI
Nino 4 versus
Observed PCI
Ensemble mean PCI
Mean ensemble PCI

SUMMER
(October lo March)

0.48
0.51
0.47

0.54
0.64
0.59

0.56
0.72
0.70

0.57
0.82
0.79

MID-SUMMER
(December and January)

0.52
0.49
0.47

0.61
0.52
0.50

0.65
0.55
0.51

0.68
0.59
0.55

WINTER
(May lo Aupusl)

-0.16
0.31
0.27

-0.18
0.20
0.15

-0.12
0.21
0.19

0.01
0.29
0.26

Figure 2.9 illustrates the AGCM simulated summer rainfall PCI pattern with its associated
amplitude time series. The pattern accounts for 39% of the total variance and, as for the observed
rainfall, the correlation of model simulated rainfall with the phase of the ENSO is strongest over
the central continental parts of southern Africa.

Although less extreme than the observed rainfall, the wet conditions simulated during the 1973/74
and 1975/76 summer seasons are well captured by the PCI amplitude time scries (figure 2.9).
Noticeable ENSO associations arc also evident. Six of the seven (86%) El Nifio events coincided
with below-normal AGCM simulated summer rainfall while all (100%) the La Nina events were
associated with above-normal AGCM simulated summer rainfall. Table 1 reveals that the AGCM
simulated summer rainfall PCI time scries (constructed from the ensemble mean) was more
strongly correlated than observed rainfall with the Nifio 1.2, 3, 3.4 and 4 SST anomalies (r = 0.5,
0.64, 0.72 and 0.82). The latter should be interpreted carefully since the ensemble mean has the
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advantage over the observations of being less noisy. For this purpose mean ensemble correlations
are additionally listed in table 1. These values arc obviously slightly lower than the correlations
for ensemble means, but still superior to correlations for observed rainfall. It is important to note
that the PCI time scries of the model rainfall accounts for a smaller fraction of the total variance
(54%) than the corresponding time scries for observed rainfall (39%), implying that the higher
correlations obtained from model results do not necessarily provide adequate information
concerning model sensitivity as a result of SST forcing.

1M5/66 1970/71 197W76 1980(81 1985O6 IBM/91

Year

FIGURE 2.9 The first AGCM simulated summer (October-March) rainfall principal component
pattern (PCI) with (he associated amplitude time scries (1961-1990) for southern Africa.
The pattern accounts for 39% of the total variance. The bar chart depicts the Nino4 Sea
Surface Temperature (SST) variation in Kelvin. Because of negative spatial loadings the
PC scores are inverted so that negative values indicate wet conditions.

As a consequence of the lower percentage of variance, ENSO signals may also be present in other
PCs of the model. It is, however, suggested that a large percentage of the model rainfall
variability emanates from SST forcing over those global regions whose SSTs are observed to be
associated with southern Africa's rainfall.

Note that the correlation coefficient (;• = 0.49) between the observed and AGCM simulated
summer rainfall PCI amplitude time scries is greater than the 99% significance level (table 2).

The second observed and AGCM simulated summer
account for 9% and 16% of the total variance and are
east coast line, correlates poorly (r = 0.22 in table 2).
higher PC patterns. It is, however, important to note
features of rainfall variability, and unless the pcrcentaj
correlation analysis is not a definite way of identifying
rainfall variability accurately.

rainfall PC patterns, which respectively
more obvious along the south and south-
This is also applicable for the remaining
that unless two PCs represent the same

ge variance explained is sufficiently high,
whether the AGCM captures the observed
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TABLE 2
Correlation coefficients (r) between the CSIRO9(T63) AGCM and observed rainfall time series

(1961 to 1990) for the first two principal components (PCI and PC2). The coefficients arc
provided in terms of summer, mid-summer and winter seasons. The light and dark shaded cells

denote significance greater than the 95% (r=0J7) and 99% (r=0.47) levels respectively.

1961 to 1990

OBSERVED PCI
versus
CSIRO-9PC1
(95%/99%)
significance level

OBSERVED PC2
versus
CSIRO-9 PC2
(95%/99%)
significance level

SUMMER
(October lo March)

0.49

(0.37/0.47)

0.22

(0.37/0.47)

MID-SUMMER
<December and January)

0.44

(0.37/0.47)

-0.06

(0.37/0.47)

WINTER
(May to August)

0.05

(0.36/0.46)

0.12

(0.36/0.46)

2.3.2.6 Observed and model simulated rainfall (Mid-summer season (December and January))

Sufficient rainfall during the months December and January (mid-summer) is of vital importance
for agricultural purposes in southern Africa, and therefore the rainfall frequency for these two
months is investigated separately.
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The firs! observed mid-summer (December. January) rainfall principal component
pattern (PCI) with the associated amplitude time series (1961-1990) for southern
Africa. The pattern accounts for 54 % of the total variance. The bar chart depicts the
Nino4 Sea Surface Temperature (SST) variation in Kelvin. Because of negative
spatial loadings the PC scores are inverted so that negative values indicate wet
conditions.
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The observed mid-summer rainfall PCI pattern with the associated amplitude time scries (figure
2.10) accounts for 54% of the total variance. Similar to the summer rainfall pattern, the spatial
observed mid-summer rainfall PCI pattern is characterized by a distinctive northwest to southeast
ENSO related trough over the southern African interior.

Table 1 indicates significant correlation coefficients (/- = 0.52, 0.61, 0.65 and 0.68) between the
Nifiol.2, 3, 3.4 and 4 SST anomalies and the observed mid-summer rainfall PCI amplitude time
series. These coefficients are stronger than calculated for the summer season. All the coefficients
are equal or greater than the 99% significance level (r = 0.47). The Nifio4 SST anomalies, which
correlate the strongest, are expressed in terms of bar charts in figure 2.10. The strong ENSO
associations are emphasized by the 100% (80%) of the El Nino/La Nina events that coincided
with bclow-normal/abovc-norrnal rainfall (figure 2.10).

The spatial distribution and amplitude time series of the AGCM simulated mid-summer PCI
pattern is depicted in figure 2.11. A percentage of 29% of the total variance is explained by this
pattern. This pattern is, in accordance with previous patterns, centred over the central continental
part of southern Africa, but gradients towards the coast are noticeably stronger than found in the
PC analysis of observed rainfall (figure 2.10).
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FIGURE2.il The first AGCM simulated mid-summer (December, January) rainfall principal
component pattern (PCI) wilh the associated amplitude time series (1961-1990) for
southern Africa. The pattern accounts for 29 % of the total variance. The bar chart
depicts the Nino4 Sea Surface Temperature (SST) variation in Kelvin. Because of
negative spatial loadings the PC scores are inverted so that negative values indicate wet
conditions.

Unlike the summer pattern, equatorial Pacific Ocean SSTs relate less strongly to the AGCM
simulated rainfall PCI pattern than to the observed rainfall PCI pattern (table 1). This could
indicate that the AGCM simulations have a longer season of strong ENSO influence than the
observations. Coefficients, however, are still in excess of the 99% significance level (r = 0.49,
0.52, 0.55 and 0.59 for the Ninol.2, 3, 3.4 and 4 regions respectively). The El Nino (La Nina)
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events coinciding with below-normal (above-normal) rainfall are identical to those found in the
observed mid-summer analysis.

The correlation (r = 0.44) between the observed and AGCM simulated mid-summer rainfall PCI
time series is slightly weaker than the corresponding summer correlation (Table 2). but still falls
between the 95% and 99% significance level. The weaker correlation may be partly because of
the fact that the two PCI time series do not quite represent the same features of rainfall
variability. It may also be possible that the ENSO signal is apparent in more than one rainfall PC
in the model. Comparisons were found to be insignificant for the remaining higher mid-summer
rainfall PC patterns.

2.3.2.7 Observed and model simulated rainfall (Winter season (May - August))

The observed and AGCM simulated winter rainfall PCI patterns are illustrated in figures 2.12
and 2.13. The two patterns respectively account for 36% and 55% of the total rainfall variance
and are both spatially most obvious over the central interior of southern Africa.

Year

FIGURE 2.12. The first observed winter (May-August) rainfall principal component pattern (PCI)
with the associated amplitude lime series (1961-1990) for southern Africa. The pattern
accounts for 36 % of the total variance. Because of negative spatial loadings the PC
scores are inverted so that negative values indicate wet conditions.

Very little precipitation occurs over this region during winter months since the winter rainfall
region is geographically located over the southwestern part of the analysis region. Relatively low
correlation coefficients (r = 0.05 and 0.12) between the observed and AGCM winter rainfall PCI
and PC2 amplitude time series are shown in table 2. Table 1 confirms the well-known fact that
the winter rainfall variability over southern Africa corresponds poorly with global SST
perturbations in the equatorial Pacific Ocean. No further analyses in terms of seasonal forecasting
will be done for winter rainfall, since the coarser resolution CSIRO9(R21) AGCM produces
similarly poor model simulations.
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FIGURE 2.13 The first AGCM simulated winter (May-August) rainfall principal component pattern
(PCI) with the associated amplitude time scries (1961-1990) for southern Africa. The
pattern accounts for 55 % of the total variance. Because of negative spatial loadings
the PC scores are inverted so that negative values indicate wet conditions,

2.3.2.8 Global sea surface temperature correlation patterns

The dominant (PCI) summer season amplitude time series (1961 to 1990) for the observed and
AGCM simulated rainfall patterns over southern Africa arc compared with the temporal SST
variability at each global GISST grid point (figures 2.14 and 2.15). The spatial correlation is
significant at the 95% and 99% levels if the value of r exceeds 0.37 and 0.47 respectively.

Summer season (October - March)

Spatial correlation patterns between global GISST data and temporal PCI summer rainfall
variability (observed and AGCM simulated) arc depicted by figures 2.14 and 2.15 respectively.

Shaded areas reflect the 99% significance level. Since ensemble averages are often used to
produce standard model output in seasonal forecasting experiments, correlation patterns of the
individual ensemble members have not been determined. The most significant positive spatial
correlation patterns (r > 0.6 and 0.8 for the observed and AGCM simulated summer rainfall PCI
amplitude time scries respectively) occur over the central equatorial Pacific Ocean. These values
arc considerably higher than the 99% significance level. The high correlation patterns derived
from the AGCM simulated analysis (r > 0.8 in figure 2.15) indicate that the AGCM
overemphasised the effect of ocean thermal fluxes from the Pacific Ocean on the leading summer
rainfall pattern (PCI pattern) over southern Africa. These results correspond well with the notably
stronger SST-rainfall links earlier identified (table 1) between the CPC derived SST anomalies in
the Ninol.2, 3, 3.4 and 4 regions and AGCM simulated summer rainfall PCI amplitude time
series over southern Africa.

No statistically significant links appear between the observed summer rainfall PC 1 pattern and
the SST variability over the southern Atlantic Ocean (figure 2.14). As for the Pacific Ocean
analysis, AGCM simulated rainfall-SST links (r < -0.4 in the south and r > 0.4 in the north) are
over emphasised in certain regions of the Atlantic Ocean (figure 2.15).
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FIGURE 2.14. Correlation coefficients (r x 10) between the observed summer (Oclober-March)
rainfall PCI time scries (Figure 2.8) over southern Africa and global observed sea-
surface temperatures (SSTs). Solid and dashed lines denote positive and negative
values respectively. Spatially coherent correlations with values higher than the 99%
significance level (0.47) are shaded. The symbols A, B, C and D denote the
geographical location (he Ninol.2 (0°-5"S}(90 °-80"W), Nifio3 (5<1N-5<>S)(15O°-
90°W), Niiio3.4 (5"N-5°S>(170"-120"W) and Nino4 (5"N-5"S)(160E "-150°W)
regions respectively.
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FIGURE 2.15 Correlation coefficients (r x 10) between the AGCM simulated summer (October-March)
rainfall PCI time series (Figure 2.9) over southern Africa and global observed sea-
surface temperatures (SSTs). Solid and dashed lines denote positive and negative values
respectively. Spatially coherent correlations with values higher lhan (he 99%
significance level (0.47) are shaded.
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The observed difference in sign between SST correlation patterns in the south-western (Reason
and Mulcnga, 1999) and central equatorial parts (at approximately 10° south) of the Indian Ocean
is well depicted in Figure 2.14 (Walker, 1990; Jury and Pathack.,1993). This involves statistically
significant positive correlations (r > 0.4; greater than the 95% significance level) over the central
equatorial Indian Ocean, and negative correlations (r < -0.4) over the ocean to the southeast of
southern Africa. AGCM related patterns indicate that the core of positive and negative correlation
fields are located eastwards in relation with observed patterns (figure 2.15). Here, the ocean
region with stronger negative anomalies does not appear to the east of South Africa.

2.3.2.9 Discussion

The study focuses on the response of the atmosphere, and in particular rainfall over South Africa
and Namibia (or southern Africa), to globally observed SST boundary forcing for the period 1961
to 1990.

Comparisons between global SST and observed rainfall variability are in accordance with
associations obtained from previous studies. On the global scale, these comparisons indicate that
above-normal/be low-normal austral summer rainfall usually coincides with La Nina/El Nifio
events (Ropelewski and Halpcrt, 1987) as well as cold/warm SSTs over the tropical western
Indian Ocean (Jury ct al., 1996 and Tennant 1996). Landman and Mason (1999), however,
demonstrated that the latter association was more profound prior to the late-1970s, and that warm
(cold) events in the tropical western Indian Ocean are, at present, more frequently associated with
above-normal (below-normal) rainfall conditions over southern Africa. Regional SST anomalies
to the southeast of South Africa also appear to be related to South African rainfall fluctuations
(Reason and Mulcnga, 1999). Walker (1990), Jury and Pathack (1993) and Mason (1995) have
also revealed other regional teleconnections.

The CSIRO-9 (Mark II) AGCM with a T63 spectral resolution (McGregor el al., 1993) has been
forced with global monthly-observed SST anomalies (1961 to 1990). The AGCM's rainfall
response to this imposed SST forcing has been examined over southern Africa by means of PC
analysis. Global ocean correlation patterns have subsequently been constructed for the dominant
(PCI) AGCM simulated and observed rainfall variability.

Strong signals in the rainfall PCI spatial patterns have been characterised by a distinctive
northwest to southeast trough over the continental parts of the region under investigation. This
applies to the observed as well as AGCM simulated summer, mid-summer and winter rainfall
variability, and corresponds well with an area exhibiting the strongest spatial coherent
correlations between the ENSO and summer (also mid-summer) rainfall over southern Africa
(van Hccrden et al. 1988: Lindcsay and Vogcl, 1990). Since the major winter rainfall region is
located to the southwest of the area under investigation, little rain occurs over the region with
stronger PCI signals during winter months. Both the observed summer and mid-summer rainfall
PCI patterns account for 54% of the total variance, while only 39% and 29% of the total variance
is accounted for in the corresponding AGCM patterns. These percentages (39% and 29%
respectively) are not only smaller, but also more dispersed in the associated AGCM patterns. It is
therefore likely that the observed and AGCM rainfall PCI patterns do not represent the same
features of summer rainfall variability.

As illustrated by the associated PCI amplitude time series, some of the most extreme observed
summer rainfall anomalies, such as the wet conditions that occurred during the 1973'74 and
1975/76 seasons, are to some extent captured in the AGCM simulations. Even though the PCI
patterns of observed and AGCM simulated summer rainfall might not necessarily represent the
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same rainfall variability features, large correlations still exist between the two amplitude time
series (table 2). Both these amplitude time scries arc also strongly ENSO related (table 1), as
indicated by statistically significant and spatially coherent correlation patterns over the equatorial
Pacific and Indian Oceans (figures 2.14 and 2.15). Here, correlation patterns of the AGCM
amplitude time series are noticeably stronger than those calculated for the observed time series.
With this in mind, and since the percentage of the total variance accounted for by the AGCM
simulated summer rainfall PCI pattern is noticeably lower than for the observed, it is possible
that these ocean signals are also apparent in the remaining higher AGCM PCs. Unlike the
summer patterns, winter rainfall variability corresponds poorly with global SST perturbations.

Despite differences in the percentage variability of the dominant (PCI) observed and AGCM
simulated summer rainfall patterns, it is postulated the CSIRO9(T63) AGCM seems capable of
capturing at least some of the important observed remote signals from the global equatorial
oceans (ENSO and tropical Indian Ocean).

The model may therefore be regarded as suitable for future use in seasonal rainfall forecasting
research, either in atmosphere-ocean coupled mode or with forecast SSTs imposed as boundary
forcing. Probabilistic rainfall projections might be of significant value for hydrological planning
and water resource management.
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CHAPTER 3

CSIRO9(R21) AGCM RAINFALL
PROJECTIONS FROM STATISTICAL SST

FORECASTS
3.1 INTRODUCTION

In this chapter a two-phase forecasting procedure (figure 1.1) using the CSIRO9(R21) AGCM is
employed in a first attempt to retrospectively forecast rainfall for a early-summer (OND 1998)
and late-summer (JFM 1999) season. Tropical SST anomalies over the Indian, Atlantic and
Pacific Oceans were firstly predicted using an empirical technique namely CCA (Landman and
Mason, 2001), whereafter these anomalies were prescribed as ocean boundary forcing for the
AGCM simulations (in CHAPTER 5 forecast SSTs produced by the COCA CGCM will be
prescribed as boundary forcing).

To achieve this rainfall regions were defined according to model grid box resolution and observed
station data were area averaged for the two seasons under consideration. Three separate twelve-
month AGCM forecast simulations, each initiated from a different month (January, June and
August 1998) were completed for the 1989/99 summer season. Based on a 12-ycar hindcast
simulation forced with observed SSTs (1985 to 1996), rainfall probability distributions for the
early-summer and late-summer seasons were constructed in order to establish categories of
below-normal (BN), near-normal (NN) and above-normal (AN) rainfall. AGCM simulated
forecasts were validated by comparisons with observed fields using a straightforward hit-score
approach.

3.2 RAINFALL REGIONS

To begin with, seven regular model grid boxes that cover South Africa (Gl to G7 in figure 3.1 (a))
were used as the basic rainfall regions for South Africa. Since it is recommended that area
averages over more than one grid box arc considered when analysing numerical forecasts, a
composite of four model grid boxes was defined to form a central continental region (Al in figure
3.1(b)), and a composite of the seven model grid boxes to form one region (SA) that covers most
of South Africa (figure 3.1(c)>.

Region Al (a composite of grid boxes G2. G3. G4 and G5) represents the best fit of the area
containing the leading (first) observed summer (October to March) rainfall PC pattern (figure
2.8). The relatively higher summer rainfall experienced over the northeastern interior is included
in grid box G1. Rainfall patterns in regions G7 and G6 have diverse characteristics. Region or
grid box G6 covers a semi-arid winter rainfall (May to August) region, while most parts of region
or grid box G7 receive rain throughout most of the year.

One model grid box has a dimension of approximately 180 km x 317 km at latitude 30° south
(R21 spectral resolution of the CSIRO9 AGCM as discussed in SECTION 2.2.1).
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FIGURE 3.1 Spatial regions used in the forecast analyses namely (a) seven separate model grid boxes
(Gl to G7). (b> a composite of four model grid boxes to form a central continental region
(A 1) and (c) a composite of seven model grid boxes to form one region <SA) that covers
most parts of South Africa.

3.3 GRID AVERAGES O F RAINFALL

Mode! grid points arc located at the centre of each grid box. Each observed grid point value
represents the non-weighted spatial mean of the climatic variable considered in the appropriate
grid box. Observed rainfall values for grid boxes in figure 3.1(a) were obtained by calculating
area averages from observed continental rainfall stations alone. In model grid boxes where the
ocean forms part of the grid box area (figure 3.2), it was assumed that the average rainfall over
the land fraction represents the total grid average rainfall.

FIGURE 3.2 Area averages of observed rainfall
calculated from land rainfall
records alone (grey areas). In
model grid boxes where the ocean
forms part of the grid box area, it
was assumed lhal the average
rainfall over the land fraction
represents the tola! grid average
rainfall.
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Observed monthly averaged rainfall has been obtained from the SAWS. The approximate number
(missing data occurred in some of the most recent months) of rainfall stations (observed data
points) used in each grid box area is listed in Table 3.

Number of rainfall

Region
Number of rainfall

stations

TABLE 3
stations (observed data points) used per model grid box for boxes G1

figure 3.1(a) for calculating area averages.

G1

261

G2

369

G3

135

G4

312

G5

198

G6

30

oG7in

G7

111

The climate of CSIRO9(R21) AGCM simulated rainfall for the OND and JFM seasons has been
verified against observed fields in SECTION 2.3.1 (Maps in figures 2.1 to 2.4)

3.4 SEA SURFACE TEMPERATURE PROGNOSES

Three-month averaged CCA predicted SST anomalies, issued on a monthly basis by the Research
Group for Statistical Studies (RGSCS) at the SAWS (Landman and Mason, 2001), were
prescribed as model ocean boundary forcing for a period of nine months in advance.

* Atlantic Ocean Indian Ocean

FIGURE 33 Spatial distribution of the SST anomaly grid used as AGCM boundary input
during rainfall forecast simulations.

As indicated by figure 3.3, SST anomalies are generally forecast for lower (equatorial) latitudes
covering the Pacific, Atlantic and Indian Oceans. A point of concern is that the CCA SST fields
have a much coarser resolution (4° by 6" spatial resolution) than that of the CSIRO9(R21) AGCM
meaning that relatively smoothed SST were forecast.

Examples of average CCA SST anomaly forecasts issued during May 1998 for July, August,
September (JAS) 1998 and October, November, December (OND) 1998 arc illustrated in figures
3.4 and 3.5. The CCA model indicated that the ENSO was entering a cold phase, which was in
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agreement with observed trends during the 1998/1999 summer season. Note that the CCA
forecast cold ENSO event was somewhat milder than observed. These SST anomaly forecasts
(and updated fields) were used to produce the numerical rainfall projections discussed later in this
chapter.

FIGURE 3.4 Canonical Correlation Analysis (CCA) Sea Surface Temperature (SST) anomaly forecast
issued during May 1998 for the July, August, Sepiember (JAS) 1998 season

FIGURE 3.5 Canonical Correlation Analysis (CCA) Sea Surface Temperature (SST) anomaly forecast
issued during May 1998 for the October, November, December (OND) 1998 season

3.5 RAINFALL FORECASTING PROCEDURE

Rainfall forecasts were prepared for regions Gl , G6, G7, Al and SA (figure 3.1). Three 12-month
AGCM forecast simulations with prescribed SST anomalies (figure 3.6) were completed. The
first simulation was initiated from January 1998 while the second and third started from April and
July 1998. respectively. Rainfall forecasts from each simulation represent the average of five
ensemble members. In the first simulation, globally observed SST anomalies (shaded boxes in
figure 3.6) were imposed for the first three months (January, February and March) while three
month averaged CCA predicted SST anomalies (white boxes in figure 3.6) were prescribed for
the remaining nine months (April, May, June; July, August, September; October, November,
December) over the region indicated in figure 3.3. A similar procedure was followed in the
second and third AGCM simulations.

Results from three/two forecast runs are therefore available to calculate rainfall forecasts for the
OND 1998/JFM1999 seasons (figure 3-6). Weights, according to three-month average time lags,
were allocated to the forecast rainfall totals before seasonal averages were calculated.
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FIGURE 3.6 Three separate twelve-month AGCM rainfall forecast simulations, each initiated from a different
month (namely January, April and June 1998). and each representing a five-member ensemble
mean, have been compiled. Monthly Sea Surface Temperature (SST) anomalies were prescribed
as ocean boundary forcing. Shaded/unshaded months denote observed/predicted SSTs.
Forecasted SSTs were issued as three-month averages. Weights of 1/3, 2/3 and 3/3 were applied
to rainfall forecasts with 3, 2 and 1 month lead times, respectively in the forecast seasons
(October, November. December (OND) 1998 and January, February, March (JFM) 1999).

Apart from rainfall forecast simulations, five rainfall simulations (five ensemble members) were
generated for evaluation against observed rainfall. During these simulations, observed SST
anomalies from 1985 to 1996 (12-years) were imposed as ocean boundary forcing over grid areas
Gl , G6, G7, Al (depicted in figure 3.1). Five-member ensemble means of model-simulated
rainfall were calculated for the four AGCM rainfall regions over South Africa. In each one of the
regions, monthly simulated rainfall was ranked to obtain tercile values. The ranked rainfall data
series was classified into three categories namely rainfall smaller than tercile I (BN), rainfall
between tercile 1 and tercile 2 (NN) and rainfall greater than tercile 2 (AN). The AGCM rainfall
time series for each month comprises 12 values (1985 to 1996) implying that only four values
were available per tercile category for rainfall verification.

Monthly area averaged observed rainfall (1985 to 1996) was also calculated for each one of the
four rainfall regions (Gl, G6, G7, Al), and similar to model simulations, categorized in terms of
terciles. These results were used to determine the percentage probability for BN, NN or AN
AGCM-simulatcd rainfall to appear over a given region.

3.6 H1NDCAST SIMULATIONS AND MODEL SKILL

The AGCM's ability in reproducing monthly rainfall for each one of the rainfall regions (Gl, G6,
G7, Al in figure 3.1), as well as for South Africa in total (region SA in figure 3.1(c>), is
expressed in terms of the percentage of months in which model simulated rainfall (from the 12-
ycar hindcast simulation) falls in the same category (AN, NN, BN) as the observed rainfall
(figure 3.7). This is based on a simple hit rate score approach where the model scores one point
when the observed and model-simulated rainfall falls in the same category, and zero points when
rainfall categories differ. The number of points scored out of 12 (the total number of hindcasts) is
expressed as a percentage that gives an indication of model performance (or skill) relative to what
has been observed. A similar hit rate score will be used in the final CGCM forecasts discussed in
CHAPTER 5. In figure 3.7. the points scored in the 12 months arc expressed in terms of
percentages. Scores lower than 33.3% may be attributed to chance (random forecasts), while hit
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rate scores greater than 33.3% may indicate that a certain degree of skill exists in the ability of the
AGCM to forecast rainfall.
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FIGURE 3.7 Percentage of months (from the 12-year hindcast) where the model simulated and
observed rainfall fell in the same category (hits). Categories are in terms of lercilcs
indicating above-normal (AN), near-normal (NN) and below-normal (BN) rainfall.

3.7 RAINFALL FORECASTS (1998/1999)

3.7.1 ACCUMULATED RAINFALL VERIFICATION

Figures 3.8(a), 3.8(b), 3.8(c), 3.8(d) and 3.8(c) depict time series of the accumulated numerical-
forecast monthly rainfall compared with the corresponding observed scries for the OND 1998 and
JFM 1999 seasons over the four rainfall regions as defined in figure 3.1. Time scries for regions
G l , G6, G7 and Alas well as for South Africa in total (region SA) are provided. Thin lines in the
figures also illustrate rainfall projections by the separate ensemble members. The range of the NN
categories is shown by vertical thick black and shaded bars for the observed and AGCM
simulated (forecast) rainfall, respectively.

43



FIGURE 3. 8(a) Accumulated monthly observed rainfall (thick black line), forecast rainfall (shaded line) and ihe
five ensemble members (thin black lines), measured in mm/season, for the OND 1998 and JFM
!999 seasons over region Gl . Vertical thick black and shaded bars depict (he near-normal (NN)
category for the observed and AGCM simulated (forecast) rainfall respectively.
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FIGURE 3. 8(b) As figure 3.8(a) but for region G6
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FIGURE 3. 8(e) As figure 3.8(a) but for region G7
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FIGURE 3. 8(d) As figure 3.8(a) but for region Al
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FIGURE 3. 8(e) As figure 3.8(a) hul for region SA

3.7.2 SPATIAL RAINFALL VERIFICATION

Categorical probabilistic forecasts expressed in percentages of rain occurring in the AN, NN and
BN categories, as well as the associated categories (AN, NN, BN) of observed rainfall for the
OND 1998 and JFM 1999 seasons, are depicted in figures 3.9(a) and 3.9(b). These forecasts arc
for regions Gl , G6. G7 and AI (as defined in figure 3.1) and might differ from the almost
deterministic categorical forecasts given in figures 3.8(a) to 3.8 (c).

If the model simulates rainfall in the AN category, it does not necessarily means that AN rainfall
was actually observed - the percentage probabilities might show that NN or BN rainfall might
have occurred historically.

The probabilistic forecasts in figures 3.9(a) and 3.9(b) depend upon the AGCM's skill (figure
3.7). It is strongly recommended that a measure of skill (based upon hindcast simulations) be
allocated to any probabilistic numerical forecast. This measure of skill is embedded in the
percentage probabilities indicated in figures 3.9(a) and 3.9(b).
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FIGURE 3.9 Categorical probabilistic rainfall forecasts (left) for the (a) OND 1998 and (b) JFM 1999
seasons over regions Gl, G6. G7 and Al. Observed rainfall catogarics arc shown on the
right. Probabilities have been derived from a 12-year hindcast simulation. The
interpertation of the forecast probabilities is depicted by figure 3.10.

An interpretation of the forecast probabilities displayed on the maps of figures 3.9(a) and 3.9(b)
(left) is provided in figure 3.10.

Probability
Forecast according

to hindcast
simulations

AN, NN, BN

Percentage
probability for
above-normal (AN)
rainfall

Percentage
probability for
near-normal (NN)
rainfall

Percentage
probability for
below-normal (BN)
rainfall

FIGURE 3.10 Interpretation of the diagram printed
in the forecast regions (maps on the
left in figure 3.9(a) and <b))
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3.8 SUMMARY

Rainfall forecasts depicted in figure 3.8 are categorically correct for both the OND 1998 and JFM
1999 seasons in region GI . for the OND ] 998 season in regions G6 and G7 and for the JFM 1999
season in region AI. This implies that 63% (5 from 8) of the forecasts fell in the same category as
observed. The two rainfall forecasts issued for the SA region (figure 8(c)) are also categorically
correct.

The percentage probabilistic rainfall forecasts (figure 3.9) arc based upon the model's
performance over a twelve-year hindcast run (1985 to 1996). As illustrated by figure 3.9(a), the
model fails to forecast the good rain (NN to AN) which occurred over the summer rainfall region
(regions Gl and Al) during the OND 1998 season. For this case, the forecast probabilities arc
overwhelming in favour of NN to BN rainfall. The AGCM, however, correctly forecast the OND
1998 rainfall over region G7. Percentage probabilistic rainfall forecasts improved in the JFM
1999 season, when the model succeeded in forecasting probabilities in favour of the drier
conditions experienced over regions A1 and G6. The model forecast an equal probability for AN
and BN rainfall in region Gl , implying either a lack of skill or too narrow a NN range in the
tcrcile category distribution (an issue that will be addressed in CHAPTER 5).
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CHAPTER 4

A COUPLED ATMOSPHERE-OCEAN
GENERAL CIRCULATION MODEL FOR

SEASONAL FORECASTING
Contributions made to this chapter by Dr Steve Wilson from the CS1RO

Atmospheric Research in Australia are greatly acknowledged.

4.1 INTRODUCTION

As indicated in this CHAPTER the configuration of the COCA CGCM (also known as the
Coupled Oasis CAR-AGCM ACOM2 model) forms the basis of the research and is unique in the
world. Examples from similar coupled model simulations have been examined, and with the
various advantages and shortcomings in mind, a new coupling procedure has been constructed. It
was therefore decided to include a detailed description of components of the CGCM
configuration. The CGCM configuration and forecasting initialisation is summarised in a flow
diagram at the end of the CHAPTER.

4.2 THE ATMOSPHERIC MODEL (AGCM)

The AGCM used is the T63 version of the CSIRO9 AGCM (McGregor et al., 1993) that has been
used in a number of coupled model studies (see for example Hirst et al., 1996; Gordon and
O'Farrcl, 1997; Hirst,1999 and Hirst et a!., 2000). A description of the AGCM can be found in
SECTION 2.2.2.

4.3 THE OCEAN MODEL (OGCM)

The OGCM used is the ACOM2 (Schiller et al., 1997) global domain configuration of the
Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 2.0 (MOM2)
code (Pacanowski,1995).

The CSIRO Marine Research in Australia has developed the ACOM2 OGCM configuration. A
detailed description of the configuration is given in Schiller*?/ al. (1997). The model is global and
has a tropically enhanced latitudinal resolution of 0.5° within 8° of the equator, increasing
gradually to 5.9" at the poles. The longitudinal resolution is uniformly 2°. The zonal and
meridional viscosity is latitude dependent to maintain numerical stability despite the strong
change from high latitudinal resolution at the equator to coarse resolution at the poles.
Meridional viscosity is in the order of 2.0x101 m~s"' from the equator to poles. Zonal viscosity is
set to 2.0x104 m V at the equator and increases to 3.1 xlQ5 nrs"1 at the poles. Horizontal
diffusivity is uniformly set to 4.0x10?mV\

The OGCM's vertical structure has 25 vertical levels with a maximum depth of 5000m. There are
8 x 15m uniform thickness levels in the upper 120m. Below 120m level, thickness expands
gradually at first, so that there are 12 levels in upper 185m. and then expands more strongly to an
almost 1000m depth thickness at 5000m. Bathymetry is a smoothed approximation to that of
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Gates and Nelson (1975) and has been further modified in the Indonesian Through Flow region to
allow transport of water through Lombok Strait and the Timor Sea. Surface heat flux is
partitioned below the ocean surface by a solar penetration scheme that employs spatially varying
extinction coefficients (Simonot and Le Treut 1988; Wilson 2000b). The model includes active
salinity with surface forcing by relaxation to Levitus (1982) salinity on a time scale of 17 days.
Vertical mixing is parameterised using a formulation of the Chen et al. (1994) vertical mixing
scheme. To improve vertical mixing performance at low latitudes this scheme has been modified
to use the IP mixing profile (Wilson, 2000a; 2000b; 2000c) that is based on the observations of
Peters, Gregg and Toolc (1988). Sea ice is constrained to a seasonal cycle defined by the GISST
SST climatology.

4.4 COUPLING PROCEDURE

The AGCM and OGCM are synchronously coupled with a time step of 15 minutes. The
misalignment of the ocean and atmosphere cells, particularly at the equator and in the modified
Indonesian Through Flow region, has required use of the interpolation and filling procedures
provided by the OASIS coupler (Terray et al..1995) to exchange wind stresses (t), heat fluxes (Q)
and SSTs between the OGCM and AGCM. All of the additional coupling procedures that are
described below have been done outside of the OASIS coupler. These procedures have all been
done within the OGCM and on the OGCM's grid.

Anomaly coupling is used to correct the AGCM's wind stresses before using them to force the
OGCM. The anomaly wind stress coupling is achieved by first using the AGCM wind stress (xm)
to calculate an AGCM wind stress anomaly (z\) relative to the AGCM wind stress climatology,
so that x*m = Tm - xm. The procedure for obtaining !„, will be described in detail in the next section.
To obtain the wind stress that is used to force the OGCM, the AGCM wind stress anomaly is then
superimposed onto an observed global wind stress climatology, xo, so that T = t'm - xo. Both the
model and observed climatologies arc stored as monthly mean seasonal cycles and linear
temporal interpolation between adjacent months is used to obtain values at the current model
time. The observed wind stress climatology is the mean seasonal cycle of 1985-1990 Florida
State University (FSU) (Goldberg and O'Brien, 1981; Legler et u/,,1989 and Stricherz et al.,1992)
wind stresses for both the Indian and Pacific Oceans, that are combined with a mean seasonal
cycle of global Hcllerman and Roscnstcin (1983) (hereafter HR) wind stresses. The FSU stresses
arc obtained with a constant drag coefficient, CD = 1.5 x 10'\ and as these stresses are available
only within 3O"N-3O"S in the Indian and Pacific Oceans, they are embedded within the global HR
stresses. To avoid discontinuities in the transition between the FSU and HR stresses, data are
blended over three grid points.

SSTs are directly coupled (that is, without anomaly coupling) but, to stabilise the CGCM's
climatology, the OGCM SSTs (SSTm) are gently nudged toward the observed global 1985 to
1990 Reynolds (1988) SST climatology (SST,,). To do so, the heat flux (Q) that forces the OGCM
is calculated by adding a weak stabilising heat flux relaxation term (Ji et al. 1998) to the AGCM's
heat fluxes (Qm).

Q = Qn, + Ys(SSJ,,-SSTm) (4.1)

where the stabilising relaxation coefficient (ys) varies latitudinally and is ys= 5 W m""K"' from the
equator to 5°N and 5°S, and then varies with a cos function from ys = 5 W m"2K'' at 5°N and 5°S
to ys = 15 W m":K'' at 15°N and I5°S. and then is maintained at ys = 15 W m":K'' poleward of
15°Nand 15°S.
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4.5 USE OF A "HEAT FLUX-SST COUPLED SPIN-UP" TO OBTAIN AGCM WIND
STRESS CLIMATOLOGY

It is well understood that OGCMs cannot reproduce the observed SST climatology without
significant systematic errors. Errors occur even under quite strong relaxation toward the observed
SST climatology, and arc considerably worse in a CGCM (Mechoso et a/., 1995). The SST
climatology that forces the atmosphere in a CGCM therefore differs significantly from the
observed SST climatology. However, despite this difference, the normal procedure for an
anomaly wind stress coupling is to use, as the AGCM's wind stress climatology, the climatology
that the atmosphere produces when forced by the observed rather than coupled SST climatology.
Thus, when the CGCM is run and the coupled SSTs systematically differ from the observed SST,
the wind stress climatology actually produced by the atmosphere model will systematically differ
from that used in the anomaly coupling. This has the potential to bias the wind stress anomalies
produced by the anomaly coupling.

A coupled spin-up procedure has therefore been developed to avoid such a bias and to obtain an
AGCM wind stress climatology (xm) that is compatible with the coupled OGCM's SST
climatology. In this coupled spin-up procedure, the ocean model alone is spun up for 20 years by
forcing it with the observed wind stress climatology (x()) and by relaxing toward the observed
SST climatology, SST,,, with a strong forcing relaxation coefficient, yf = 48 W m":K"'. The
resulting 20-year forced ocean-state is then saved. The CGCM is then started, using the 20-year
OGCM's forced slate as the OGCM initial condition1, and the CGCM is run for a further 20 years.
The coupling is as described in the section above, with the exception that the wind stress anomaly
coupling is disabled by zeroing the AGCM's wind stress anomalies (i'm). The ocean is therefore
forced only by the observed wind stress climatology. (x0). Consequently, during this "heat flux-
SST coupled spin-up" the ocean is forced by the same wind stress climatology that it is forced by
during full anomaly coupling, and inter-related coupled SST and heat flux climatologies evolve.

These coupled inter-relationships arise because during this spin-up, the AGCM is forced by the
evolving coupled SST climatology. In response to these SSTs, the atmosphere produces a
climatology of heat fluxes that, in turn, force the coupled SSTs. Thus SSTs feedback on heat
fluxes and on SSTs, and so on, in a coupled inter-relationship. Meanwhile, in response to the
coupled SSTs, the AGCM is also producing wind stresses. Because the anomaly wind stress
coupling is disabled during this spin-up, these AGCM wind stresses arc not communicated to the
OGCM. but the data are saved for averaging into a climatology. A hovmoeller plot (not shown)
reveals that SSTs settle into their new-coupled climatology after about two model years.
Therefore, from the last 18 years of this 20-year coupled spin-up, the AGCM's wind stresses arc
averaged to form the AGCM's wind stress climatology (!,„) for use in the anomaly wind stress
coupling. SSTs are also averaged to form a corresponding coupled ocean model SST climatology
(SSTm) that is needed for initialising the model in EN SO forecast mode.
Thus the heat fluxes interact with the ocean model to produce the OGCM's coupled SST
climatology, whilst the SST climatology interacts with the AGCM to produce the cliamtology of
heat fluxes.

4.6 FORECASTING INITIALISATION

A coupled-nudging technique is used to generate the initial model condition for launching 12-
month seasonal forecasts. This technique is similar that first used by Chen et al. (1995) to

The atmosphere model's initial condition is not as important as that for the ocean because the atmosphere model
"forgets" its initial condition alter about a month and is than forced by the ocean condition.
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initialise the Lamont model (Cane et a/., 1986; Zebiak and Cane 1987). Here the CGCM
assimilates data by nudging towards time varying monthly observations of surface anomalies,
with the forecast initial condition obtained by nudging the CM for a period of some years up to
the forecast starting time. The present CGCM has been nudged for 5 years prior to the starting
time of the first hindcast experiments in 1985, and for a further 15 years prior to the starting time
of current year 2000 forecast experiments.

In Chen el al. (1995) coupled-nudging with wind stress data alone was used to initialise the
Lamont model. This technique achieved much better results lhan their previous technique for
initialising the Lamont model in which the ocean model alone was forced by the same wind stress
data and then coupled to the atmosphere model. Chen et al. (1995) believed that this good result
arose because use of coupled-nudging avoided coupling shock and filtered noise out of the wind
stress observations. In a later paper, Chen et al. (1997) also investigated two cases of coupled-
nudging with SST data, but reported problems. In the first case they tried initialising the OGCM
alone by forcing it with observed wind stress whilst nudging the OGCM's SST anomalies toward
observations. In the second case they tried coupled-nudging in which both wind stress and SST
anomalies were nudged toward observations. In both cases Chen et al. (1997) found that use of
SST-nudging degraded their forecast initialisation. They speculated that the poor performance of
their SST-nudging " could result from a poor choice of nudging parameters or systematic
errors in model winds introduced by assimilating SST. The latter is known to be a potential
problem, from the results of Zebiak (1986)." They also note that they had not attempted an SST-
only coupled-nudging experiment because "of the serious errors in off-equatorial winds"
produced by their simple atmosphere model (Zebiak, 1990).

Oberhuber et al. (1998) have conducted an SST-only coupled-nudging experiment in which they
used only SST data to initialise their model. They reported success, where many other models had
failed, in correctly predicting the onset of the 1997/1998 El Nino event and mid-1998 onset of the
subsequent La Nina event. Although only used for a single experiment, these results suggest that
SST-nudging can be successfully used for model initialisation.

A degradation in ENSO forecast skill of the Lamont model during the late 1990s has been
attributed to its sole dependence upon wind stress data and equatorial upwelling dynamics for
initialisation (Chen et al.t 1998). In particular, for the 1997/1998 El Nino, poor forecast skill has
been attributed to easterly winds in the east Pacific that were too strong before onset in the FSU
data (Chen et al., 1999). In the present coupled nudging technique, both observed wind stress and
SST data arc used to generate the initial CGCM condition. SSTs such as the satellite-derived
Reynolds (1988) data have higher temporal and spatial resolution than the surface FSU wind
observations and so have the potential to provide additional information to the CGCM
initialisation. There arc also a number of reasons why we believe that coupled SST nudging will
improve initialisation of the present model, rather than degrade it as in the Chen et al. (1997)
model:

a) There is the success of the Oberhuber et al. (1998) model.

b) SSTs are used not just to nudge the SSTs that force the AGCM, but an additional
constraint is applied by also using the SSTs to nudge the heat flux fields that force the
coupled ocean model - as explained below.

c) The present atmosphere GCM may not suffer the same serious errors in SST-forced winds
as in Zebiak's simple atmosphere model.
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d) Finally, the present model's "heat flux/SST coupled spin-up" (as described above)
ensures that the wind stress climatology used in the anomaly wind stress coupling is
compatible with the CGCM's SSTs. This eliminates one potential source of the systematic
wind stress errors that occurred when Chen et al. (1997) assimilated SST.

The present model's coupled-nudging technique is as follows:

At each time step, for wind stress (x) and SST, a nudging anomaly (subscript n) is obtained by a
linear- weighting of the anomaly generated by the CGCM (subscript m) with the observed
anomaly (subscript o) using the following linear weighting

T'I^WTT'O + U - (0T) ^ ' m (4.2)

SSTn = COSST SST'O + (1 - «SST> SST'm (4.3)

where w, and <DSST are weighting coefficients for wind stress (x) and SST respectively. As
described in more detail below, both the observed and model anomalies are calculated by
subtracting the appropriate climatology from the current value. Again, because these
climatologies and the current observations are stored as monthly values, a linear temporal
interpolation between adjacent months is used to obtain values at the current model time.

For wind stress, the weighting coefficient (to,) is set to a spatially uniform value of 0.5. An
observed wind stress anomaly (x\,) is obtained by subtracting the observed wind stress
climatology (x0) from the time varying 1985 through to 1999 observations (x,,). These
observations contain FSU data in the tropical Pacific and Indian Oceans and have been blended
with the global HR climatology in the same manner described above for the observed
climatology. The model wind stress anomaly (t 'm) is obtained by subtracting the model's wind
stress climatology (in,) from the AGCM's wind stress (x'm). After applying a linear-weighting in
accordance with equation (4.2), the resulting nudged wind stress anomaly (x'n) is used to nudge
the coupled ocean model. To do so, the nudged wind stress anomaly (x\) replaces the model
wind stress anomaly (x'm) in the anomaly wind stress coupling, so that x = x'n + xo.

For SSTs, the blending coefficient (<oSST) varies linearly with latitude from 0.5 at 5"N and S to
0.75 at 15" N and S. The observed SST anomaly (SST,'). is obtained by subtracting the observed
SST climatology (SST0) from the time varying monthly global Reynolds SST observations from
1985 through to 1999 (SST,,). The model SST anomaly (SSTm) is obtained by subtracting the
model's SST climatology. (SST,,,), from the OGCM's SST (SSTm). Equation (4.3) is then used to
calculate the nudged SST anomaly (SST'J. As a consequence of the "heat flux-SST coupled spin-
up" described above, the wind stress anomaly coupling is based on the CGCM's true SST
climatology (SSTm). Consequently, the nudged SST (SSTn), is calculated by superimposing the
nudged anomaly. (SSTn), onto the CGCM's SST climatology (SSTm), rather than the
conventional approach of superimposing these anomalies onto the observed SST climatology
(SSTo). The nudged SST (SSTn) is then used to force the AGCM.

In using the model in nudged mode, it was found that the OGCM's SST anomalies at high-
latitudes did not correspond well to observed SST anomalies. The upper ocean dynamical and
thermal structures are largely determined by wind forcing (Chen et al., 1999b), so this lack of
correspondence in SSTs is probably because the time varying FSU wind stress observations do
not extend beyond latitudes 30°N and S. To correct the OGCM's SST anomalies at high latitudes.
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an additional heat flux nudging term yn(SST'o - SST*m> based on the difference between the
observed SST anomaly (SST'O) and the model's SST anomaly (SST'm) is added to the
atmosphere's heat fluxes, together with a modified form of the weak stabilising heat flux
relaxation term described above. This term is modified to use the current SST observations
(SST(>) rather than the observed SST climatology, (SSTo), so that equation (4.1) becomes

Q = Qm + T.(SST0 - SSTm) + y n (SSr 0 - SST'm) (4.4)

Because the difference between the SST anomalies (SST*O - SST'm is quite small) a strong
nudging coefficient, yr = 100 W m ' l ' 1 is used. At the transition from coupled nudging to coupled
prediction, the nudging scheme is wound-off over the last month of nudging by linearly reducing
the coefficients <oT, WSST and yn from the values specified above at the beginning of the last month,
to 0 at the end of the month. Additionally, a linear-weighting is used to make a transition of the
weak stabilising relaxation (term yO from using current SST observations in equation (4.4) back
to using the observed SST climatology as in equation (4.1). This linear weighting is, SST(1 = G>Q
SST,, + (1-(OQ) SST.,, where o>Q is I during nudging and is linearly reduced to 0 during the last
month.
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CHAPTER 5

CSIRO9(R21) AGCM RAINFALL
PROJECTIONS FROM CGCM SST

FORECASTS
Contributions made to this chapter by Mr Richard Sewell from the

South African Weather Senice and Dr Jan Smith from the
CS1RO Atmospheric Research are greatly acknowledged

5.1 INTRODUCTION

The ultimate objective of the CLIPWATER project is to produce seasonal rainfall forecasts
modulated by forecast SST boundary forcing from the COCA CGCM discussed in CHAPTER 4.
As mentioned earlier, rainfall forecasts were simulated by the CSIRO9(R21) AGCM on a local
super computer. This introductory section gives a brief overview of the content of CHAPTER 5
where the achievements during the final phase of the research project are outlined.

Before introducing any forecasting procedure, an assessment of the ability of the COCA CGCM
to produce the boundary SST forecast fields (measure of skill) is required. Persistence and
blended statistical SST forecasts arc employed as a baseline against which these CGCM results
arc compared. It is indicated that the CGCM's SST forecasts outscore forecasts from both these
methods when the relationship between forecast and observed SST fields are statistically
significant. This gives a good motivation why SST forecasts from the CGCM arc superior and
more appropriate to use. The verification analysis was based upon 13 (1987 to 1999) hindcast
simulations, and is only valid for the NINO34 region in the eastern equatorial Pacific Ocean.

Four ensembles of an 18 year (1982 to 1999) hindcast simulation were completed on a local super
computer using the CSIRO9 (R21) AGCM, forced with observed SSTs, to generate an ensemble
averaged model simulated monthly rainfall database for model skill assessment and category
classification. Observed monthly rainfall fields for the same period have been calculated for the
seven model grid boxes that cover South Africa (Gl to G7 in figure 3.3). Three different category
classifications of AN, NN and BN in the model simulated and observed rainfall distribution are
considered and compared in the skill score analyses. The conventional tercile distribution
employed in CHAPTER 3 has been employed.

Seasonal rainfall forecast simulations produced by the CSIRO9(R21) AGCM, with SST boundary
forcing input from the CGCM, have been completed for the OND 2001 and JFM 2002 seasons,
and categorical probabilistic forecasts for these seasons are issued for the seven grid boxes (Gl to
G7) and areas (Al and SA) as defined in figure 3.3.

5.2 CGCM SST FORECAST VERIFICATION

In order to determine the skill or verify the performance of the COCA CGCM. multiple hindcast
simulations have been generated for a historical period of 13 years (1987 to 1999). Different
epochs from this period have been considered in the verification process where SSTs from the
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CGCM was compared to those of other models used in South Africa. The CGCM, which employs
a "nudging" initialisation technique to incorporate observations, has been released at the
beginning of the months January, April, July and October to generate monthly SST projections
for a period of 12 months in advance. These predicted SST fields were time averaged over three-
months to obtain forecasts for the JFM, AMJ, JAS and OND seasons.

Model performance in 48 hindcast simulations (see figure 5.1), with differed time lags (months),
is first measured against persistence (SECTION 5.2.1) in the NINO34 region (5° North to 5°
South and 170° West tol20° West; figure 2.14 in CHAPTER 2). Here, persistence will serve as a
baseline against which the CGCM SST forecasting performance is measured. In addition to
persistence seasonal (3 month average) CGCM SST hindcasts for the NINO34 region will also be
compared with results from a blended statistical forecasting model (CCA SST forecasts blended
with Principal Oscillation Patterns (POPs) SST forecasts or CCA/POPs forecasts) developed by
Sewcll (2001; personal communication) at the SAWS (SECTION 5.2.2). Similar to persistence,
the CCA/POPs model's performance will serve as a second baseline against which the CGCM
SST forecasting performance is measured.

Apart from the NINO34 analyses, global spatial anomaly correlation patterns between 48 6-
month lead-time forecasts and the associated observed fields arc also illustrated and discussed in
SECTION 5.2.3.

5.2.1 CGCM SST FORECASTS AGAINST PERSISTENCE

To begin with, CGCM simulated SST hindcasts are compared with the most basic form of
forecasting (also refcred to as "poor" man's forecasting), namely persistence. Persistence implies
that one assumes that observed SSTs measured during a specific month persist in the following
(forecast) months.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

co
J3
"33
t
o
o

«
o

99%
* Jim

• _ — : — _

—;_i—%,„

significance level""

COCA

xj. -
Persistence **•..

CGCM

-^V

^x—
3 4 5 6 7 8

Lag time (months)

9 10 11 12

FIGURE 5.1 Anomaly correlations between CGCM forecast SSTs and persistence over the NINO34
region. The correlations have been calculated from 48 hindcasl simulations where (he model
was initialised at the beginning of January, February, March (1987 to 1999 = 13 years) and
October (1990 to 1998 * 9 years). The 99% significance level is 0.33.
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In figure 5.1 anomaly correlations between the monthly observed and persisted (forecast) SSTs
are calculated for different lead times in the NINO34 region. These correlations represent
comparisons between observed and 48 forecast SST fields initialised from January, April, July
(1987 to 1999 = 13 years) and October (1990 to 1998 = 9 years).

Figure 5.1 indicates that the CGCM outscorcs persistence in forecasts with a time lag of three
months and longer. The correlation between persistence and observations at the point of release
will obviously be perfect, while CGCM comparisons shows a correlation of approximately 0.95.
This may be attributed to the fact that although model simulated SSTs are nudged towards
observations, they are still not equal to observed fields. CGCM forecast SSTs retain a relatively
high correlation (above the 99% significance level), even over a period of 11 months in advance
(correlation = 0.49). The 95% and 99% significance levels are 0.29 and 0.33, respectively.

5.2.2 CGCM AND CCA/POPs SST FORECAST COMPARISONS

In SECTION 5.2.1 it has been indicated that the CGCM forecasts outscores persistence in the
NINO34 region with forecasts with a time lag of 3 months and longer. In this section seasonal (3
month average) CGCM SST forecasts (JFM, AMJ, JAS, OND) for the NINO34 region are
compared with results from the CCA/POPs model (Sewell, 2001; personal communication). In
addition to persistence, the CCA/POPs model's performance will also serve as a baseline against
which the CGCM SST forecast performance is measured.

The aim of this verification experiment is to compare the output of the CGCM with that of the
CCA/POPs model over a period of 13 years (1987 - 1999). For each year, four seasons are
predicted namely JFM, AMJ, JAS, OND which will be denoted Sn , Sn+| , Sn-:, Sno, respectively.
This is clone using each season S n , (n=l,4) as predictor, so that if (n+r) > 4 for (r= 1,3) Sn.r falls in
the following year. There is one difference in the method employed to produce seasonal forecasts
between the CGCM and CCA/POPs model. The CGCM uses the first month of the first season,
Sn, as the initialised state and then predicts the individual months up to 12 months ahead as
predictands. These are then averaged to obtained seasons. The rationale behind this is that in the
case of the statistical model the data is already in the form of seasons and because of the nature of
the model S,,., is used to predict Sn,t, (r=0.3, n=l,4). Note that in the case of n=l, JFM, Sn.i, falls
in the previous year.

The treatment of the data in the preparatory phase is the same in both the statistical models (CCA
and the POPs model). The data for the predictor and the prcdictand is averaged over a 3-month
period, centred and standardised. This is done for each of the 13 years under consideration, giving
a time series for each grid point in the domain of the model. In order to reduce the amount of data
and thus to scale down the problem from a computational aspect and to eliminate noise the data is
transformed into mode space using EOF analysis. Only the first 10 modes are retained using a
refinement of the 'scree' (Jackson, 1991) method as arbiter. The refinement involves determining
the cut-off point, namely the point where the difference in the eigenvalues is less than the
difference in the differences.

In both the CCA and the POPs methods the prediction equations can be expressed in the form:

Y = M X

where Y is the predicted anomaly vector and X is the value of the predictor anomaly vector. JV1 is
the transformation matrix as derived by cither CCA (Glahn 1968) or the POPs technique (von
Storchef a/., 1988; Pcnland, 1989).
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The CCA/POPs model used reconstructed historical SSTs from 1987 to 1995 (Smith etai.A996).
together with the latest optimal interpolation data from 1996-1999 (Reynolds and Smith, 1994) to
compile a 13-ycar (1987 - 1999) record length. Prior to the use of satellite retrievals in the early
1980s. SST data analysis depended largely on 'in situ' data which was adequate to describe SST
patterns between 30"S and 60"N except the eastern tropical and South Pacific (Reynolds. 1988).
The data is supplied on a 1° by 1° grid. To make the problem more tractable this is interpolated to
a 4° by 6" grid (I"E to 397"E and 45°S to 45°N). This spatial grid configuration has previously
been illustrated in figure 3.3.

The initialisation method employed to produce CGCM SST forecasts has been discussed in detail
in CHAPTER 4. The SST output from the CGCM is supplied on a global 192 by 96 grid which is
the grid resolution of the CSIRO9(T63) AGCM. For direct comparison with the output of the
CCA/POPs model, this is linearly interpolated to the same 4° by 6° spatial resolution as
introduced to the statistical models (figure 3.3).

SST forecasts in the NINO34 region, as generated by both the CGCM and CCA/POPs models,
have been compared with observations for the four seasons (OND, JFM, AMJ, JAS) with
different three-month time lags. In an effort to compare the performance of the two models,
anomaly correlations between model and observed SSTs have been calculated. Results are
displayed in figures 5.2 (a), (b), (c) and (d) as well as in table 4.

OND SST forecasts (figure 5.2(a)) from the CGCM (solid black line) are superior to those
produced by the CCA/POPs model (dotted black line) in the interval where the anomaly
correlations are above the 95% significance level. This applies for forecasts of 3 months in
advance. Forecasts in the interval where the CCA/POPs model performs better that the CGCM
are not regarded as statistically significant. The same conclusion can be made for the JFM SST
forecasts (figure 5.2(b)). The CCA/POPs model performs better with JFM forecasts of six, nine
and twelve moths in advance, but it is again important to note that these forecasts are not
statistically significant. In relation to the CCA/POPs model, the CGCM performs exceptionally
well (an anomaly correlation coefficient difference of approximately 0.2) with AMJ SST
forecasts (figure 5.2(c)) in the interval above the 95% significance level. The CAC/POPs model,
however, performs better with twelve-month time lag forecasts where relative small anomaly
correlation coefficients have been calculated. The JAS forecasts of the CGCM outscorc the
CCA/POPs forecasts with the three, nine and twelve month forecasts (figure 5.2(d)). To conclude,
the CGCM performs better than the CCA/POPs model in the interval above the 95% significant
level for all seasons (OND, JFM, AMJ and JAS).

In table 4 the magnitude of the anomaly correlation values for the CGCM and CCA/POPs models
(graphically displayed in figures 5.2 (a), (b), (c) and (d)) arc listed. Cases where one of the two
anomaly correlations is above the 95% significance level arc in bold. In all these cases anomaly
correlation coefficients calculated for the CGCM arc larger than those of the associated
CCA/POPs coefficients.

Model performance during 48 hindcast simulations, with differed time lags (months), was
measured against persistence (SECTION 5.2.1) in the NINO34 region as well as against
CCA/POPs SST forecasts. Persistence and CCA/POPs SST forecasts served as a baseline against
which the CGCM SST forecasting performance was measured. In both comparisons the CGCM
generally performed better than the other models, which justifies the prescription of CGCM SST
forecasts as surface boundary forcing in the final CSIRO9(R21) rainfall forecast analyses.
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FIGURE 5.2 Anomaly correlations between COCA CGCM SST forecasts (solid black lines) and
observations, and CCA/POPs (dotted black lines) SST forecasts and observations in the
N1NO34 region over a 13-year period (1987 to 1999) for different month lag times (+3, +6,
+9. +12). Correlations arc for the seasons (a) OND. (b) JFM. (c) AMJ and (d) MS. The 95%
and 99% significance levels arc 0.54 and 0.69 respectively.

Up to this point the verification analyses focused on forecasting performance in the NINO34
region alone. It is, however, a well-known fact that remote and regional responses from other
ocean regions might also have a significant influence on rainfall variability over Southern Africa.
The following section will give some insight concerning the SST forecasting performance of the
CGCM over the global oceans as well as in regional oceans in the vicinity of South Africa.
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TABLE 4
Anomaly correlation coefficients between COCA CGCM SST forecasts and observations, and

CCA/POPs SST forecasts and observations in the MNO34 region over a 13 year period (1987 to 1999)
for different month lag times and seasons. The 95% and 99% significance levels are 0.54 and 0.69

respectively. Coefficients greater than the 95% significance level are in bold.

Lag times

+3 months
+6 months
+9 months

+ 12 months

OND
correlation

CCA/POPs - CGCM
.68 - .74
.45-.41
.36 - .37
.24 - .25

JFM
correlation

CCA/POPs - CGCM
.60 - .68
.44 - .43
.48 - .40
.39 - .29

AMJ
correlation

CCA/POPs - CGCM
.60 - .78
.50 - .61
.48 - .51
.33 - .29

JAS
correlation

CCA/POPs - CGCM
.68 - .78
.54-.54
.25-.41
.17-.30

5.23 SPATIAL SST CORRELATION PATTERNS

The same hindcast results obtained from the 48 forecast simulations discussed in section 5.2.1
have been used to calculate global spatial correlation between CGCM forecast and observed SST
patterns. Composite correlations have been calculated from all the seasonal forecasts that have
been initiated from January, April, July and August. Forecast SST fields with a 6-month time lag
have been compared with observations. These correlations fields are depicted in figure 5.3. The
CGCM exhibits most skill in the Pacific Ocean, especially over the eastern equatorial Pacific
Ocean where correlations in access of 0.8 occur. In contrast, the CGCM has very little or no skill
to predict SST patterns 6 months in advance over the Atlantic and Indian Oceans. As far as
regional correlations in the vicinity of South Africa are concerned, the model shows slightly
improved skill (0.3 and higher: > 95% significance level) in the northern Mozambique Channel,
along the western coastline of South Africa and over extensive areas to the southeast of the
African continent (shaded in figure 5.3).

0.6

FIGURE 53

0.5

- 0.3

L J 0.0

Global spatial anomaly correlations between CGCM forecast SSTs wilh a time lag of 6
months and observations. The correlations have been calculated from 48 hindcast
simulations where the model was initialised at the beginning of January, April, July
(1987 to 1999 = 13 years) and October (1990 to 1998 = 9 years). The 95% and 99%
significance levels arc 0,29 and 0.33 respectively.

60



If selected periods from the 48 hindcasts are chosen, anomaly correlation patterns in the South
African region improve noticeably. Note that figure 5.3 gives the composite average anomaly
correlation patterns between forecasts with a time lag of 6 months and observations derived from
all (48) the hindcast simulations initiated from the beginning of four different months (January,
April, July and October). In contrast, figure 5.4 (a) and (b) give the associated anomaly
correlations calculated from the hindcast simulations initiated from the individual months June
and January alone, to forecast for January and June (6 months in advance). Figure 5.4(a) and (b)
illustrate anomaly correlations calculated from 13 hindcast simulations, implying that the 95%
and 99% significance levels are 0.54 and 0.69, respectively.

Encouraging arc the higher anomaly correlation patterns to the south of the continent, and
especially over the Mozambique Channel (figures 5.4(b) and 5.4(b)) depicted by shaded areas (>
95% significance level). The January forecast shows significant skill over an area to the northeast
of Madagascar in the Indian Ocean and the south western Indian Ocean (figure 4.5(a)). The July
forecasts show improved skill in the Mozambique Channel. These local ocean regions might
influence rainfall patterns over South Africa (Reason and Mulcnga; 1999) implying that the
forecasting of regional SST patterns is important.

30S 30S

30E 60E 90E 30E 60E 90E

FIGURE 5.4 Regional spatial anomaly correlalions between CGCM forecast SSTs with a time lag of 6
months and observations. The correlations have been calculated from 13 hindcast
simulations (1987 to 1999 = 13 years) where the model was initialed al the beginning of
(a) July to forecast for January and (b) January to forecast for July. The 95% and 99%
significance levels arc 0.54 and 0.69 respectively.

5.3 CSIRO9 (R21) AGCM RAINFALL VERIFICATION

Seasonal rainfall projections are generated by using CSIRO9(R21) AGCM (the same AGCM that
has been used for rainfall forecasts in CHAPTER 3). The COCA CGCM provides the monthly
SST forecasts (predictor), which will then be prescribed as thermal boundary forcing for the
CSIRO9(R21) AGCM to simulate the rainfall (prcdictand) response. A two*ticrcd forecasting
procedure is therefore applied (illustrated in figure 1.1). In SECTION 1.2.2 it was emphasised
that the problem of numerical seasonal forecasting is inherently probabilistic by nature. A
requirement is therefore to issue rainfall forecasts in terms of percentage probabilities in the BN,
NN or AN categories. These percentage probabilities arc calculated by comparing historically
observed rainfall records to model simulated rainfall results emanating from hindcast AGCM
simulations forced by perfectly observed SST patterns.
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5.3.1 HINDCAST SIMULATIONS

Four ensembles of an 18 year (1982 to 1999) hindcast simulation were completed on a local super
computer using the CSIRO9 (R21) AGCM, forced with observed SSTs (Smith et al. (1996) and
Reynolds and Smith (1994)). to generate an ensemble averaged model simulated monthly rainfall
database for model skill assessment and category classification. Observed monthly rainfall fields
for the same period have been calculated for the seven model grid boxes that cover South Africa
(Gl to G7 in figure 3.3). Three different category classifications of AN, NN and BN in the model
simulated and observed rainfall distribution are considered and compared in the skill score
analyses. The conventional tercile distribution employed in CHAPTER 3 has been employed.

5.3.2 RAINFALL CATEGORY CLASSIFICATION

The CS1RO9(R21) AGCM*s ability to reproduce monthly rainfall episodes for each rainfall
region (Gl to G7 and Al in figure 3.1 (a) and (b)), as well as for South Africa in total (region SA
in figure 3.1(c)), is expressed in terms of the percentage of events where model simulated rainfall
(from the 18-ycar hindcast simulation) falls in the same category (AN, NN and BN) as the
associated observed rainfall. In this chapter AN, NN and BN categories arc obtained from a data
scries that consists of 18 rainfall values.

The most commonly used category classification is the tercile classification. However, if the AN
and BN category percentages arc both significantly larger than the NN category percentage in a
rainfall forecast distribution, a noticeable fraction of the NN variability might still be captured in
the AN and BN distribution. In this study, it was found that this often happened in the tercile
category distribution, which could result in poor forecasts of the more extreme wet and dry
rainfall events. The tercile category classification of the 18 rainfall values (6:6:6 classification or
classification A in table 5) therefore often appears not to be the best choice. An alternative
approach would be to create a category distribution where the AN and BN rainfall events are
defined in such a way that they are, to a great extent, excluded from the normal variability in a
rainfall distribution. To avoid noise from the normal distribution affecting the AN and BN
categories, it is recommended that a wider range in the rainfall distribution be allocated to the NN
category. This may be achieved by introducing an 5:8:5 and 4:10:4 category classifications, or
classifications B and C in table 5.

TABLE 5
The three category classifications (A,B,C) of the rainfall distribution from 18 values considered in the
skill score analysis of this chapter. Category classification A represents the usual tercile classification,

while classifications B and C allow for a wider range in the near-normal (NN) category.

ABOVE-NORMAL (AB)
NEAR-NORMAL (NN)
BELOW-NORMAL (BN)
TOTAL YEARS 1882-1990

Classification A
6 (33%)
6 (33%)
6 (33%)
18

Classification B
5(28%)
8 (44%)
5 (28%)
18

Classification C
4 (22%)

10(56%)
4(22%)
18

Consider a time series that consists of 18 rainfall values and is ranked from the smallest to largest
value, namely w,, i=l, 18.

62



The median of such a time series (denoted in figures 2.3 and 2.4 for the rainfall used in this study)
would be

More precise formulations of classifications A, B and C (table 5) are:

a) Classification A (6:6:6 or tercile classification)

Below Normal (BN) Near Normal (NN)

2 " ' * 2

Above Normal (AN)
w p + w n

b) Classification B (5:8:5 classification)

Below Normal (BN)

W: < =
2

Near Normal (NN)
W 5 + W 6 . w , W B + W 1 4

2 ~ ' ^ 2

Above Normal (AN)
w W , 3 + W 1 4

2

c) Classification C (4:10:4 classification)

Below Normal (BN)

2

Near Normal (NN)

2 ^ ' "* 2

Above Normal (AN)

2

A well-known disadvantage in the verification of current AGCM ensemble hindcast simulations
is the relatively short time series that arc available for category classification (Goddard et.aL,
2001). This will certainly have a negative influence on skill-score estimations, and that is also
why rainfall in this study is verified in terms of an elementary hit rate score. Had a longer record
been available, more advanced evaluation scores such as Linear Error in Probability Space
(LEPS) scores could have been be calculated.

In this chapter a relatively short time series of 18 years is examined. The worst case would be that
probabilistic forecast percentages in the AN and BN categories (classification C in Table 5) arc
confined to a factor of 25% (100/4) since only 4 rainfall values occur in these categories. Despite
these constraints, category classifications A, B and C arc all examined in the skill score analysis.

5.33 MODEL SKILL

The AGCM's ability to reproduce rainfall events for each rainfall region (Gl, G6, G7, Al in
figure 3.1), as well as for South Africa in total (region SA in figure 3.l(c)), is expressed in terms
of the percentage of events where model-simulated rainfall (from the 18-year hindcast simulation)
falls in the same category (AN. NN, BN) as the observed rainfall. Similar to the procedure
followed in CHAPTER 3 (SECTION 3.6), model verification is based on a hit-rate score
approach. In this chapter, however, hit-rate scores (expressed as percentages) are calculated for
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all the regions and for each one of the three category classifications in table 5. Model
performance in terms of individual months as well as three-month average seasons is analysed.

5.3.3.1 Percentages of hit rate scores for monthly simulations

TABLE 6(a)
Percentages of monthly hi* rate scores for the AN, NN and B.N categories in regions GI to G7, Al
and SA. Hit rate scores are calculated for three category classifications (6:6:6, 5:8:5 and 4:10:4) as

defined in table 5. Periods with scores bigger than 33% are shaded.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Des
Region Gl

6:6:6
5:8:5

4:10:4

28
39
53

38
43
37

22
19
28

28
39
42

28
34
33

39
37
48

28

26
37

50
37
40

44
50
33

28
22
25

22
34
25

39
26
33

Region G2
6:6:6
5:8:5

4:10:4

33
41
40

22
33
33

50
39
30

56
50
42

50
43
57

28
48
45

28
33
45

39
33
33

44
33
42

27
22
22

39
37
40

44
61

68
Region G3

6:6:6
5:8:5

4:10:4

33
28
22

44
41
40

33
37
37

22
19

25

H 2 2
19

22

50
58
63

33
39
45

28
26
25

22
26
25

28
26
22

44
30
28

33
35
42

Region G4
6:6:6
5:8:5

4:10:4

17

26
40

39
37
37

50
57
53

33
37
36

33
37
40

44
65
65

39
48
45

33
33
48

28
23
25

28
39
33

39
33
33

61
54
53

Region G5
6:6:6
5:8:5

4:10:4

39
33
37

28
30
43

22
26
37

17
13
13

39
48
45

39
48
40

33
43
57

33
15
22

11
23
28

22
30
37

17
23
35

33
33
37

Region G6
6:6:6
5:8:5

4:10:4

33
30
25

44
54
37

33 ^
41
37

22
19
28

28 ^
43
53

22
26
22

28 1

28
45

44
39
33

44
41
28

22
23
32

39
41
32

28
37
40

Region G7
6:6:6
5:8:5

4:10:4

39
58
60

33
48
60

50
43
45

28
26
22

17
19
25

22
23
25

39
33
48

28
30
28

28
41
40

r 28
19

22

44
43
37

39
41
40

Region Al
6:6:6
5:8:5

4:10:4

33
37
25

39
24
18

28
26
25

39
26
33

28
37
37

28
33
37

39
33
33

r 50
43
57

44
50
45

33
41
37

39
39
33

28
26
25

Region SA
6:6:6
5:8:5

4:10:4

33
26
13

28
22
22

33
43
45

22
28
42

39
33
37

22
18
18

50
54
53

33
28
30

33
19
28

50
43
45

39
37
48

44
54
68
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The higher percentages in hit rate scores in classification B (5:8:5) and C (4:10:4) (table 6(a))
might be attributed to biases as a result of the wider range in the rainfall distribution allocated to
the NN category. This means that more hits might occur in the NN category of these distributions
than in the NN category of classification A (6:6:6). To estimate to what extent extreme rainfall
(AN and BN categories) is captured by the AGCM, selected hit rate scores for the more extreme
AN and BN rainfall categories are calculated in table 6(b).

TABLE 6(b)
Percentages of monthly hit rate scores for the more extreme AN and BN categories in regions

G7, Al and SA. Hit rate scores are calculated for three category classifications (6:6:6, 5:8:5
4:10:4) as defined in table 5. Periods with scores bigger than 33% are shaded.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Gl to
and

Des
Region G1

6:6:6
5:8:5

4:10:4

34
40
50

42
40
25

25
10
13

33

40
38

17
20

25

33
30
38

34
20

25

50
30
25

42
50
25

33
20

13

17
20

13

34
20
25

Region G2
6:6:6
5:8:5

4:10:4

25
30
25

25
30
25

50
40
25

59
50
38

50
40
50

33

40
38

25
30
38

33
30
25

42
30
38

34
20

13

33
30

25

50
60
63

Region G3
6:6:6
5:8:5
4:10:4

34
30
13

42
30
25

33
30

25

25
10
13

17

10

13

50

50

50

42
40
38

33
20

13

17
20
13

25
20
13

33
20

13

42
40

38
Region G4

6:6:6
5:8:5

4:10:4

17
20
25

33
30
25

59
60
50

33
30
25

33
30

25

50
60
63

33
40
38

42
30

38

25
10
13

42
40
25

42
30

25

59
50
50

Region G5
6:6:6
5:8:5 '

4:10:4

42
30
25

25
20
25

59
20
25

9
0
0

33
40
38

34

40
25

42
40
50

34
10

13

9
10

13

25
20
25

9
10
13

33
30
25

Region G6
6:6:6
5:8:5

4:10:4

33
20
13

42
50
25

33
30

25

17
10

13

33
40
50

25
20

13

33
30
38

50
40
25

42
30

13

17
10

13

33
30
13

25
30
25

Region Gl
6:6:6
5:8:5

4:10:4

42
50
50

34
40
7

50
40
50

25
20
38

9
10
13

17

10
13

42
30
13

25
20
38

25
30
13

25
10

25

50
40
13

33
30
25

Region Al
6:6:6
5:8:5

4:10:4

33
30
13

6:6:6
5:8:5

4:10:4

34
20
0

50

30

13

33

20
13

25
20

13

42

40
38

42
20

25

25
30

38

25
30
25

34
30
25

42
30
25

Region SA
42
30
25

33
20

13

50
50
50

50
40
50

33
30
25

50
50
38

25
10
13

33
30

25

50
40

38

50
40
25

34
30
38

25
20
13

50
50
63
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5.3.3.2 Percentages of hit rate scores for three-month average (seasonal) simulations

TABLE 7(a)
Percentages of three-month averaged (seasonal) hit rate scores for the AN, NN and BN categories in
regions Gl to G7, Al and SA. Hit rate scores are calculated for three category classifications (6:6:6,

5:8:5 and 4:10:4) as defined in table 5. Periods with scores bigger than 33% are shaded.

JFM FMA MAM AMJ MJJ JJA JAS ASO SON1 OND1 NDJ DJF
Region Gl

6:6:6
5:8:5

4:10:4

28
28
22

33
22
10

33
28
30

22
28
45

17
22
30

27
26
33

33
41
37

39
22
13

50
26
25

39
43
33

33
37
45

39
39
33

Region G2
6:6:6
5:8:5

4:10:4

22
33
37

50
54
48

50
50
57

44
68
65

44
43
60

44
37
40

22
33
33

22
23
28

44
37
40

39
54
45

33
50
57

44
39
45

Region G3
6:6:6
5:8:5

4:10:4

22
15
25

28
30
20

50
39
22

44
28
22

56 1
54
45

33
33
22

22
22
25

28 1
23
28

17 1
11
22

28
26
22

39
37
37

33
15
25

Region G4
6:6:6
5:8:5

4:10:4

17
23
28

39
58
68

50
50
45

44
28
30

39
39
30

39
39
42

22
34
37

17
30
37

17
11
22

33
11
13

50
39
33

33
37
25

Region G5
6:6:6
5:8:5

4:10:4

28
30
28

17
30
28

44
43
33

33
33
45

39
33
45

50
50
57

39
34
35

39
34
28

11
17
20

28
37
37

28
26
37

17
37
37

Region G6
6:6:6
5:8:5

4:10:4

28
33
25

39
37
40

50
48
33

22
34
28

39
48
37

Re
6:6:6
5:8:5

4:10:4

33
52
48

28
33
33

17
19

13

22
17
20

22
13
16

22
28
22

33
30
43

11
23
32

29
23
28

44
33
33

28
30
20

17
22
33

*ion G7
33
33
45

39
48
36

22
26
28

33
37
42

39
35
30

28
26
33

50
41
37

Region Al
6:6:6
5:8:5

4:10:4

28
26
22

28
28
30

44
43
45

39
43
48

28
48
60

39
43
57

28
33
45

44
28
22

33
28
22

28
26
25

17
22
13

28
22

^ 2 2
Region SA

6:6:6
5:8:5

4:10:4

22
26
25

39
37
40

39
33
22

44
46
30

33 1
33
45

39
39
57

39
37
37

44
41
37

33
41
37

50
43
57

33
43
33

56
50
45

Similar to the monthly verification, higher percentages in hit rate scores in classification B (5:8:5)
and C (4:10:4) (table 7(a)) might be attributed to biases as a result of the wider range in the
rainfall distribution allocated to the NN category. This means that more hits might occur in the
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NN category of these distributions than in the NN category of classification A (6:6:6). To
estimate to what extend extreme rainfall (AN and BN categories) is captured by the AGCM,
selected hit rate scores for the more extreme AN and BN rainfall categories are calculated in table
7(b).

TABLE 7(b)
Percentages of three-month average (seasonal) hit rate scores for the more extreme AN and BN

categories in regions Gl to G7, Al and SA. Hit rate scores are calculated for three category
classifications (6:6:6, 5:8:5 and 4:10:4) as defined in table 5. Periods with scores bigger than 33%

are shaded.

JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ DJF
Region Gl

6:6:6
5:8:5

4:10:4

42
40
25

42
30
13

42
20
0

42
30
25

33
30
38

17
20
25

25
20
25

25
30
25

42
20
0

50
20
13

42
40
25

33
30
38

Region G2
6:6:6
5:8:5

4:10:4

50
40
38

34
30
25

50
50
38

58
50
50

58
70
63

42
40
50

42
30
25

25
30
25

17
10
13

42
30
25

42
50
38

42
50
50

Region G3
6:6:6
5:8:5

4:10:4

33
10
13

17
10
13

17
20
0

50
40
13

50
30
13

59
50
38

42
30
13

25
20
13

25
10
13

17
10
13

33
20
13

42
30
25

Region G4
6:6:6
5:8:5

4:10:4

33
30
13

17
10
13

42
50
63

59
50
38

50
30
25

50
40
25

50
40
38

17
20
25

17
20
25

17
10
13

42
10
0

50
40
25

Region G5
6:6:6
5:8:5
4:10:4

25
30
25

25
20
13

17
20
13

50
40
25

33
30
38

42
30
38

50
50
50

33
20
13

25
20
13

0
0
0

33
30
25

33
20
25

Region G6
6:6:6
5:8:5

4:10:4

25
20
25

33
30
13

33
30
25

50
40
25

17
20
13

Re
6:6.6
5:8:5

4:10:4

42
30
25

33
40
38

25
30
25

17
10
0

17
0
0

34
40
25

25
30
13

25
20
25

9
10
13

17
10
13

42
30
25

25
20
0

E»ion G7
17
0
0

42
30
38

42
40
25

25
20
13

34
30
38

50
40
25

33
20
25

Region A l
6:6:6
5:8:5

4:10:4

25
20
13

25
20
13

33
30
25

42
40
38

42
40
38

33
40
50

42
40
50

34
30
38

50
30
13

34
30
13

33
20
13

25
20
0

Region SA
6:6:6
5:8:5
4:10:4

59
50
38

25
20
13

34
30
25

42
30
13

50
50
25

42
30
38

50
40
50

33
30
25

33
30
25

34
30
25

50
40
50

42
40
25
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A number of conclusions can be made when Tables 6(a), 6(b), 7(a> and 7(b) arc examined. Most
obviously are:

(a) Tables 6(a) and 7(a) indicate that in most regions percentage hit rate scores for the AN.
NN and BN categories improve from classification A (6:6:6) towards classifications B
(5:8:5) and C (4:10:4). This improvement might be attributed to biases as a result of the
wider range in the rainfall distribution allocated to the NN category, meaning that more
hits might occur in the NN category of classifications B (5:8:5) and C (4:10:4) than in the
NN category of classification A (6:6:6).

To a certain extent the latter is confirmed in tables 6(b) and 7(b). These tables might be of
value when one has to decide which category classification (classification A, B or C
defined in table 5) is the most appropriate to use. The category classification with the
highest hit rate score in these tables indicate that AN or BN (AN and BN) rainfall is well
captured in AGCM simulations. The following will help with the interpretation of tables
6(a), 6(b), 7(a) and 7(b):

Hit rale score for AN, NN, BN Hit rate score fur AN. BN Implication
(tables 6(«) and 7<»» (tables 6(b) and 7(b)>
High Low NN distribuiion too wide
Low High NN distribution loo narrow
High High High general skill
Low Low Low general skill

Higher percentage probabilities of rainfall towards category classification C (4:10:4) of
AN or BN (NOT AN and BN) could be of great value for seasonal forecasts because
such probabilities will indicate that the AGCM captures the variability of more extreme
rainfall events.

(b) Percentage hit rate scores do not improve significantly from monthly to three-month
averaged rainfall analyses in individual grid boxes (regions Gl to G7 and even Al in
figures 6(a) and 6(b)).

(c) Percentage hit rate scores do improve noticeably when area averages are considered with
time-averaged rainfall analyses (region SA in figures 6(a) and 6(b)).

5.4 CGCM SST FORECASTS FOR THE 2001/2002 SUMMER SEASON

The CGCM was employed to generate global SST forecasts for the 2001/2002 summer season.
These simulations were performed at the CSIRO Atmospheric Research in Australia. Surface
temperatures fields from the atmospheric component of the CGCM with a T63 horizontal
resolution, which are equivalent to SST fields over the oceans, were used. In order to obtain a
final ENSO outlook for 2001/2002, a number of SST forecasts were analysed. Four SST forecast
simulations with the CGCM that were initiated from the beginning of July and August 2001 tend
to indicate neutral ENSO conditions for the 2001/2002 summer season (figure 5.5 (a)). The two
predictions initialised from August I (dotted lines in figure 5.5 (a)) indicate slightly positive
anomalies in the NINO34 region for a few months, eventually decaying by early 2002. These
forecasts give no strong indication of the development of persistent neutral ENSO conditions.

In addition to the NINO34 SST forecasts where the CGCM has significant skill, global SST
forecasts were also issued. One of these forecasts, namely OND/JFM SST anomalies of globally
forecast SSTs initiated from the beginning of August 2001, served as boundary forcing for the
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CSIR09 (R21) AGCM. Anomalies of global SST forecasts for December 2001, initiated from the
beginning of August 2001, arc displayed in figure 5.5(b).

•JUI2001 -Mar 2002
-Jul2001 - Jun2002
•Aug2001 -Jun2002

<

o
<
to
CO

I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I
2000 2001 2002 2003

YEAR

FIGURE 5.5(a) N1NO34 SST forecast simulations by the COCA CGCM for the 2001/2002 summer
season. Neutral ENSO conditions are expected.

FIGURE 5.5(b) CGCM forecast Sea Surface Temperature (SST) anomalies for December 2001 measured
in "C. The forecast simulation has been initialised from the beginning of August 2001.
The dotted line represent the zero isotherm and the shaded areas has temperatures of 0.2
degrees and higher.

A matter of interest is that global and ENSO related SST forecasts being produced by the COCA
CGCM are now issued on a routine basis by the CSIRO Atmospheric Research1.

http://www.dar.csiro.au/res/cm/coca.htm
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5.5 PROBABILISTIC RAINFALL FORECASTS FOR 2001/2002

Seasonal cycle model simulations with the CSIRO9(R21) AGCM were performed with global
COCA CGCM forecast SSTs prescribed as boundary forcing. SST fields from the CGCM
simulations initiated from the beginning of August 2001, were prescribed. A spin-up simulation,
where observed SSTs were prescribed for April, May, June and July 2001, preceded the AGCM
rainfall forecast simulations. Four-member ensemble averages were calculated from
CSIRO9(R21) AGCM rainfall simulations to yield monthly rainfall fields for the grid boxes that
cover South Africa. Each ensemble run was initialised with slightly different initial conditions.
Monthly model simulated rainfall fields were time averaged to produce rainfall forecasts for the
OND 2001 and JFM 2002 seasons.

Category classifications A, B and C have been used to prepare categorical probabilistic rainfall
forecasts for each one of the South African grid boxes (Gl to G7) and regions (Al and SA).
AGCM simulated rainfall forecast totals for the OND 2001 and JFM 2002 seasons have been
compared to values of AN, NN and BN rainfall categories obtained from the 18-year hindcast
simulation to determine the forecast category. From here, percentage probabilistic forecasts,
depicted in figures 5.6 (a), (b), (c), figures 5.7 (a), (b), (c) and figures 5.8 (a), (b), and (c), have
been prepared.

5.6 DISCUSSION

Percentage probabilistic rainfall forecasts for the early-summer period (OND 2001) over regions
Gl to G7 in figures 5.6(a), 5.7(a) and 5.8(a) favoured AN rainfall over the eastern parts of the
country. AN conditions were consistently forecast for grid G2 (Free State Province and Lesotho)
in all three the category classifications. The associated forecasts for the late-summer season (JFM
2002) indicated that drier conditions in the NN category might follow. Category classification C
(4:10:4) indicates that BN conditions were most likely to occur over grid box G7 (eastern parts of
the Western Cape and western parts of the Eastern Cape) during the JFM 2002 season. There is
also an indication that NN to AN conditions might have occured over the West Coast region for
the rest of the summer season. There is no consistent signal for rainfall over the central parts of
the country, although NN conditions becoming somewhat drier in the late-summer season might
have been expected to occur for region Al.

Figures 5.6(b), 5.7(b) and 5.8(b) exhibited no forecasting skill for region Al in category
classification A (6:6:6), while BN and NN rainfall were forecast in classifications B (5:8:5) and C
(4:10:4), respectively. This applies for both the OND 2001 and JFM 2002 seasons. The
percentage probabilistic rainfall forecasts indicated that the expected rainfall in region Al should
be similar for both seasons.

In general the forecasting patterns pointed towards a wetter early-summer (OND 2001) and drier
late-summer (JFM 2002) season (region SA in figures 5.6(c), 5.7(c) and 5.8(c)). This is
particularly significant in figure 5.8(c) where the model forecast a 50% chance for AN conditions
to occur during OND 2001 in the 4:10:4 classification, followed by drier conditions during JFM
2002.

If observed rainfall is considered, the OND 2001 season was indeed wetter than the JFM 2002
season - an indication that the seasonal forecasting method discussed in this chapter exhibits
significant skill and could therefore produce rainfall forecasts for the two seasons under
consideration.
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5.5.1 Rainfall forecasts with category classification A (6:6:6)

(a) Forecast OND 2001 (a) Forecast JFM 2002

FIGURE 5.6(a) Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JKM 2002
seasons over regions Gl to G7 as calculated for category classification A (6:6:6).
Probabilities have been derived from a 18-ycar hindcast simulation. The interpretation
of the forecast probabilities is depicted by figure 3.10.

(b) Forecast OCT 2001
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FIGURE 5.6(b) As figure 5.6(a) but for region A1.
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FIGURE 5.6(c) As figure 5.6(a) but for region SA.
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5.5.2 Rainfall forecasts with category classification B (5:8:5)

(a)

INN

Forecas

20
60
20

V

JNN
^ ^

|NN
. - •

BN

OND

37
37
26

BM
38
50

25
25
50

2001 /S-^—\

lf-^4-—25_J|A

-rjJLJL/
•AN | 70 I /

llNNI SO (1

K
1

(a) Forecas

L
|BN

• ^

[NN

BN

: JFM

12
25
63

12
M
38

40
0

60

2002

I
11

0

HId
•AN1
1NN

37 H/

?!T/

12 [1

|u-UaJI

Y
1

/

FIGURE 5.7(a) Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JFM 2002
seasons over regions Gl to G7 as calculated for category classification. B (5:8:5)
Probabilities have been derived from a 18-year hindcast simulation. The interpretation
of the forecast probabilities is depicted by figure 3.10.
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FIGURE 5.7(b) As figure 5.7(a) but for region Al.
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FIGURE 5.7(c) As figure 5.7(a) but for region SA.
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5.5.3 Rainfall forecasts with category classification C (4:10:4)
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FIGURE 5.8(a) Categorical probabilistic rainfall forecasts for the (a) OND 2001 and (b) JFM 2002
seasons over regions Gl to G7 as calculated for category classification C (4:10:4).
Probabilities have been derived from a 18-year hindcasl simulation. The interpretation
of the forecast probabilities is depicted by figure 3.10.
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FIGURE 5.8(b) As figure 5.8(a) but for region Al.
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FIGURE 5.8(c) As figure 5.8(a) but for region SA.
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CHAPTER 6

CONCLUSION
6.1 SUMMARY OF RESEARCH

In this study observed rainfall over South Africa was analysed from spatial and temporal
perspectives and was compared with the associated AGCM simulated rainfall, where rainfall
climatologies were derived in accordance with the CSIRO9(R21) and T(63) spectral resolutions.
These climatologies formed the basis from which deviations in forecast rainfall were assessed.

A first numerical rainfall forecast was obtained by using the CSIRO9(R21) AGCM for the
1998/1999 summer season and verified against observations. Instead of CGCM SST forecasts,
statistical Canonical Correlation Analysis (CCA) SST forecasts were employed as surface
boundary forcing in this first experiment.

The research team collaborated closely with Australian scientists during the development phase
of the COCA CGCM. Aspects of anomaly coupling, nudging and the initialisation procedure for
forecast simulations were addressed and complex processes involved in ocean-atmosphere
coupling as well as forecasting procedures were considered. In this project the COCA CGCM
was primarily used for global SST forecasts.

Finally, COCA CGCM SST forecasts were evaluated against persisted SST forecasts and
compared with forecasts generated by a statistical mode!. The CGCM forecasts outscored
persistence and statistical forecasts, which motivated why CGCM SST forecasts were used.
Spatial anomaly correlation patterns between observations and CGCM SST forecasts were
illustrated and ocean regions with significant skill were highlighted.

The CSIRO9(R21) AGCM was forced with CGCM SST forecast fields to in an effort to generate
probabilistic seasonal forecasts for the 2001/2002 summer season. An 18-ycar hindcast
simulation was used to determine the skill of the AGCM, and different rainfall categories were
defined. Hit rate scores were calculated. CGCM SST forecasts for the October, November,
December (OND) 2001 and January, February, March (JFM) 2002 seasons were prescribed as
boundary forcing for the AGCM and rainfall simulations were performed. Probabilistic forecasts
were prepared for the three rainfall categories.

The OND 2001 (early-summer) and JFM 2002 (late-summer) forecasts favoured wetter
conditions during the early-summer season followed by somewhat drier conditions during the
late-summer season. These forecasts agreed with observations during the 2001/2002 summer
season.

6.2 OUTLOOK FOR THE FUTURE

The CLIPWATER project established a firm basis for further research in the field of numerical-
based rainfall forecasting. During the CLIPWATER project Ms Anna Bartman completed and
submitted an MSc dissertation, which addresses the field of downscaling, and in particular
focuses on recalibration techniques (Bartman. 2002). A most challenging prospect is to produce
improved seasonal forecasts on the regional scale. The CLIPWATER research team will continue
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with their efforts to investigate means of improving seasonal forecasts, and will most probably
focus on the development of regional scale rainfall forecasting.
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Other related WRC reports available:

Development of statistical forecast models of summer climate and hydrological
resources over Southern Africa

Mark R Jury

This research project seeks to develop prediction models for water, climate and related
resources from the following realisations: - the climate of Southern Africa often exhibits
large departures from average; - these unexpected events impact water resources and
economic activity; - climate fluctuations are related to nearby tropical ocean - monsoon
conditions; - the fluctuations can be replicated using various climate and oceanic indices;
and - regression equations can be formulated at useful lead-times to predict the climate.

In summary, this WRC project has successfully studied, formulated and implemented
models to predict the variability of Southern African climate and water resources, 3-6
months in advance. The project has built on past efforts and drawn ideas from graduate
students and collaborating scientists, to provide Southern African water and resource
managers with optimum statistical forecasts via the internet website:
<http://www.1stweather.com/forecasts/cip seasonal outlook.shtml>
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