

C Meyer • A Rooseboom • MJ Retief • GC Cloete

WRC Report No 980/3/00

Water Research Commission

Disclaimer

This report emanates from a project financed by the Water Research Commission (WRC) and is approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC or the members of the project steering committee, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Vrywaring

Hierdie verslag spruit voort uit 'n navorsingsprojek wat deur die Waternavorsingskommissie (WNK) gefinansier is en goedgekeur is vir publikasie. Goedkeuring beteken nie noodwendig dat die inhoud die siening en beleid van die WNK of die lede van die projek-loodskomitee weerspieël nie, of dat melding van handelsname of -ware deur die WNK vir gebruik goedgekeur of aanbeveel word nie.

DISCHARGE MEASUREMENT IN TERMS OF PRESSURE DIFFERENCES AT BRIDGE PIERS

by

C Meyer, A Rooseboom, M J Retief & G C Cloete

SIGMA BETA

CONSULTING CIVIL ENGINEERS

WRC Report No. 980/3/00 ISBN: 1 86845 665 X

February 2002

PREFACE

This report is one of five which were produced under Water Research Commission contract No. 980, and which are listed below.

The first three reports contain results which may be regarded as conclusive, whilst the last two contain the results of exploratory research which may serve as the basis of further research.

WRC Report No. 980/1/00

The rating of compound sharp-crested weirs under modular and non-modular flow conditions.

WRC Report No. 980/2/00

The rating of sluicing flumes in combination with sharp-crested and Crump weirs under modular and non-modular flow conditions.

WRC Report No. 980/3/00

Discharge measurements in terms of pressure differences at bridge piers.

WRC Report No. 980/4/00

Flow gauging in rivers by means of natural controls.

WRC Report No. 980/5/00

The application of Doppler velocity meters in the measurement of open channel discharges.

EXECUTIVE SUMMARY:

This study entailed the successful investigation and evaluation of a new methodology for measuring high discharges passing through bridges. Pressure differences generated around bridge piers have been measured and related to discharges. These pressure differences are mainly functions of downstream flow conditions. The pressure differences have been converted into velocities by applying Newton's second law expressed in terms of the laws of conservation of energy, momentum, and of power.

The energy principle was re-evaluated following a previous study (Retief 1998) on a limited number of model pier combinations and flow conditions. Comparison of the energy approach with newly developed theories in terms of the momentum and power laws respectively led to the conclusion that the energy principle gave the best results. The question of applicability of the theory to different practical pier/stream width and length ratios as well as its validity under flow conditions commonly found under flood conditions required that additional laboratory tests be done.

The energy-based discharge equation was calibrated in terms of newly selected measuring points, different pier width and length ratios, as well as pier rotations for both super and sub-critical downstream conditions. According to the new tests performed at the Hydraulies Laboratory of the University of Stellenbosch on model piers, clear relationships were found between discharges and pressure differences measured against the pier. Calibration curves for practical flow measurement application were derived in terms of principal dimensionless parameters.

Following on the very positive results which were obtained in the laboratory, tests were also performed on a real bridge. Even though conditions at this bridge (across the Breede River) were far from ideal, very encouraging results were obtained. This methodology therefore holds much promise for application in practice.

ACKNOWLEDGEMENTS

The authors wish to thank the following members of the Steering Committee for their appreciated contributions to the project.

Mr. D S van der Merwe (Chairman)

Mr. H Maaren

Prof G R Basson

Prof A H M Görgens

Mr F P le Roux

Dr J Rossouw

Prof G G S Pegram

Dr M J Shand

Mr S van Biljon

Mr J van Heerden

Dr P Wessels

Mr O C E Hempel

Ms S Matthews

Ms U Wium

A special word of thanks is due to the Department of Water Affairs for their support and advice, particularly through the stimulating involvement of Dr P Wessels, as well as their inputs into the field tests.

Messrs M J Retief and G C Cloete made very important contributions to this study as undergraduate thesis students. Thanks are also due to the personnel in the workshops and Hydraulics Laboratory of the Civil Engineering Department at the University of Stellenbosch who assisted with implementing a successful test programme.

CONTENTS:

			Page number:
Prefac	e		i
Execu	tive Su	mmary	ii
Ackno	wledge	ements	iii
List of	conter	nts	iv
List of	figure	s	viii
List of	tables		xii
List of	photo	S	xiii
List of	List of symbols		
1.	Introd	luction	1
2.		ground	4
	2.1	South African rivers	4
	2.2	Occurrence and management of floods in South Africa	6
	2.3	Criteria for new measuring techniques for South African conditions	11
3.	Flow	measuring theory	12
	3.1	Approach followed	12
	3.2	Description of Retief Model	13
	3.3	Introduction to flow measurement	16
	3.4	Fundamental concepts related to flow measurement	17
		Newton's second law and the Law of Conservation of Mass	17
		Choice of control volumes in the analysis of pier flow	19
	3.5	Continuity	20
		Derivation	20
		Application of the continuity equation	22
		Defining the geometry of a typical bridge pier	22
	3.6	Energy Approach Derivation	23 23
		Water surface level differences at bridges in terms of the energy equation	27
		Energy transformation at a bridge pier	31

	Conventional applications of the Energy equation for flow measure-	
	ment: D'Aubuisson, Nagler and the "Bridge damming formula"	33
	Application of the Energy equation in terms of measured pressures	
	and water depths at bridge piers	41
	Introduction, the Pitôt-tube theory	41
	Theory	46
	Results	48
3.7	Momentum Approach	49
	Derivation	49
	An overview of drag forces	52
	Forces acting on bridge piers	56
	Conventional applications of the Momentum equation with respect	
	to flow measurement	57
	Application of the Momentum principle in terms of measured pressures	
	and water depths at bridge piers	59
	Introduction	59
	Theory	59
	Results	61
3.8	Power Approach	63
	Derivation	63
	Application of the Power equation in terms of measured pressures and	
	water depths at bridge piers	66
	Introduction	66
	Derivation	67
	Power approach, another perspective	72
	Establishing the relevant velocity associated with the pier drag	
	force	75
	Calibration of the "general flow rate equation" (power based) in	
	terms of appropriate control volumes	80
	Results	84
3.9	Summary of theories and results	85
3.10	Results in graph form, discussion	87

		Energy Power Momen		88 92 96
	3.11		usions and recommendations	100
4.	Mode	tests ar	nd results	102
	4.1	Model	analysis and similarity study	102
	4.2	Model	tests in the laboratory	110
		4.2.1	Introduction	110
		4.2.2	Description of the laboratory lay-out used for the tests	112
		4.2.3	Defining the configuration of the model piers and the arrange-	
			ment of pressure measurement.	115
		4.2.4	Defining the different flow conditions	120
		4.2.5	Model tests on flow patterns around piers, pictorial record.	123
			4.2.5.1 Parallel flow approaching pier	123
			4.2.5.2 Non-parallel flow approaching pier	136
		4.2.6	Defining the energy based discharge equation in terms of the	
			new system of pressure measurements	139
		4.2.7	Calibration of the energy based discharge equation (equation 4.4)	
			for the different flows considered, paragraph 4.2.4.	143
			4.2.7.1 Parallel approaching flow direction	144
			4.2.7.2 Non-parallel approaching flow direction	146
	4.3	Result	s in graph form and Conclusions	148
		4.3.1	Parallel approaching flow direction	149
			Conclusions and recommendations	165
		4.3.2	Non-parallel approaching flow direction	167
			Conclusions and recommendations	179
5.	Overa	ll concl	usions and recommendations	181
6.	Refer	ences		182
	Apper	ndix A -	- Laboratory Results and coefficients – Retief data: Energy Approach Momentum Approach Power Approach	A.1-A.2 A.1-A.2 A.1-A.4
	Apper	ndix B -	Energy Approach, Laboratory Data and calibrated coefficients - additional test: 32mm Short	B.1 - B.3

32mm Medium	B.1 - B.3
32mm Long	B.1 - B.3
40mm Short	B.1 - B.3
40mm Medium	B.1 – B.3
40mm Long	B.1 – B.3
49mm Short	B.1 – B.3
49mm Medium	B.1 – B.3
49mm Long	B.1 – B.3
62mm Short	B.1 – B.3
62mm Medium	B.1 – B.3
62mm Long	B.1 – B.3
32mm Short 5 Deg.	B.1 – B.3
32mm Short 10 Deg.	B.1 - B.3
32mm Short 15 Deg.	B.1 - B.3
32mm Medium 5 Deg.	B.1 - B.3
32mm Medium 10 Deg	B.1 - B.3
32mm Medium 15 Deg	B.1 – B.3
32mm Long 5 Deg	B.1 - B.3
32mm Long 10 Deg.	B.1 - B.3
32mm Long 15 Deg.	B.1 - B.3
Appendix C - Field Tests	C.1 - C.5

FIGURE:	DESCRIPTION:
Figure 3.1	Schematic side view of model pier set-up in the Hydraulics Laboratory, University of Stellenbosch
Figure 3.2	Schematic plan view of model pier set-up in the Hydraulics Laboratory, University of Stellenbosch
Figure 3.3	The three basic hydraulic laws, Continuity, Energy and Momentum
Figure 3.4	An extension on the three basic hydraulic laws, Power being added
Figure 3.5	Describing and defining the plan view of a typical pier lay-out
Figure 3.6	Typical open channel flow profile, taken between section 1 and section 2 $$
Figure 3.7	Typical relationship between the flow depth and the specific energy for a rectangular section
Figure 3.8	Typical pier lay-out, the flow is approaching from the left
Figure 3.9	Flow depths vs. specific energy for two rectangular sections with widths B and b respectively
Figure 3.10	Theoretical potential and kinetic energy values upstream and within the contraction before damming takes place
Figure 3.11	Potential and kinetic energy values upstream and within the contraction with damming
Figure 3.12	Longitudinal section of a bridge pier under high discharges
Figure 3.13	Plan view of a typical pier lay-out
Figure 3.14	Measuring water surface level differences between upstream and
	downstream of a bridge
Figure 3.15	Water surface level differences between upstream and downstream of a bridge pier
Figure 3.16	A typical Pitôt-tube for measuring stream velocity; po = dynamic
	or stagnation pressure, $p_s = hydrostatic pressure$, $h = p_0-p_s$ (White, 1986)

Figure 3.17	Typical flow lines around a bridge pier, p_0 = dynamic or
Figure 2.18	stagnation pressure, p, = hydrostatic pressure
Figure 3.18	The same flow set-up as shown in figure 3.15, pressure and pressure differences in terms of manometer levels and manometer level differences
Figure 3.19	A small particle with mass dm forms part of a fluid mass flowing from section 1 to section 2
Figure 3.20	Flow lines around a bridge pier for the case of an ideal fluid
Figure 3.21	Flow lines around a bridge pier for the case of turbulent flow of a non-ideal fluid
Figure 3.22	Elemental forces acting on area dA of a typical pier; $p.dA$ forms an angle of θ with the flow direction and $\tau.dA$ an angle of (90- θ)
Figure 3.23	A control volume for the application of the momentum equation; section A being the inflow section and section B the outflow section
Figure 3.24	Longitudinal flow section taken at a bridge pier; $v = flow$ velocity, $F = pier$ drag force, $\Delta h = water$ level difference and $L = length$ of the pier
Figure 3.25	Typical longitudinal flow pattern at a bridge pier, water flowing from left to right
Figure 3.26	Moving a boat through a fluid mass towards the left hand side in the sketch
Figure 3.27	Longitudinal section of pier for normal flow conditions
Figure 3.28	Longitudinal section of an idealised boat [having the same dimensions as the bridge pier] being dragged through a stationary mass of water, the pier moves to the left and water therefore flows to the right in the sketch
Figure 3.29	Defining the boundary lines of control volume 0

Figure 3.30	Defining the boundary lines of control volume 0
Figure 3.31	C ₄ -calibration curves , ENERGY approach
Figure 3.32	C _d -calibration curves, POWER approach
Figure 3.33	C _d -calibration curves, MOMENTUM approach
Figure 4.1	Typical flow element shown in three dimensions, x, y & z
Figure 4.2	Defining the sections for the new configuration of pressure measurements
Figure 4.3	Detail of pressure measurement positions at ${\bf A}$ and ${\bf B}$ at the
Figure 4.4	upstream pier end (downstream lay-out similar)
Figure 4.4	Typical flow lines around the upstream end of a bridge pier, a convergence takes place when the width of flow changes from B
	to (B-b _p) where b _p depicts the pier width
Figure 4.5	Typical flow lines past a converging transition channel when the
	width of flow changes from B to (B-b _p) where (B-b _p) depicts the
	contracted width (analogous to flow entering between piers
Figure 4.6	C_d ; y_{UB}/y_{DS} ; Fr_{DS} – CALIBRATED COEFFICIENTS FOR $B/b_{\mathfrak{p}}$
	$= 19 (32 \text{ mm}), L/b_p = 6.9 (LONG)$
Figure 4.7	C_{d} ; y_{UE}/y_{DS} ; $Fr_{DS}-$ Calibrated coefficients for $B/b_{\mathfrak{p}}$
	= 19 (32 mm), L/b _p = 5.6 (MEDIUM)
Figure 4.8	C_d ; y_{UE}/y_{DS} ; Fr_{DS} – CALIBRATED COEFFICIENTS FOR $B/b_{\mathfrak{p}}$
	= 19 (32 mm), L/b _p = 4.2 (SHORT)
Figure 4.9	C_{d} ; y_{UE}/y_{DS} ; $Fr_{DS}-CALIBRATED$ COEFFICIENTS FOR B/b_{p}
	= 15.2 (40 mm), L/b _p = 6.9 (LONG)
Figure 4.10	C_d ; y_{LE}/y_{DS} ; Fr_{DS} – CALIBRATED COEFFICIENTS FOR B/b_p
	= 15.2 (40 mm), L/b _p = 5.6 (MEDIUM)
Figure 4.11	C _d ; y _{UE} /y _{DS} ; Fr _{DS} – CALIBRATED COEFFICIENTS FOR B/b _p
	= 15.2 (40 mm), L/b_p = 4.2 (SHORT)
Figure 4.12	C _d ; y _{UE} /y _{DS} ; Fr _{DS} - CALIBRATED COEFFICIENTS FOR B/b _p
	= 12.4 (49 mm), L/b _p = 6.9 (LONG)

Figure 4.13	C_d ; y_{UE}/y_{DS} ; Fr_{DS} – CALIBRATED COEFFICIENTS FOR $B/b_{\rm p}$
	$= 12.4 (49 \text{ mm}), L/b_p = 5.6 (MEDIUM)$
Figure 4.14	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-CALIBRATED$ COEFFICIENTS FOR $B/b_{\rm p}$
	- 12.4 (49 mm), L/b _p = 4.2 (SHORT)
Figure 4.15	C_d ; y_{UE}/y_{DS} ; Fr_{DS} – CALIBRATED COEFFICIENTS FOR B/b_p
	= 9.7 (62.5 mm), L/b _p = 6.9 (LONG)
Figure 4.16	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-CALIBRATED$ COEFFICIENTS FOR $B/b_{\rm p}$
	= 9.7 (62.5 mm), L/b _p = 5.6 (MEDIUM)
Figure 4.17	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-CALIBRATED$ COEFFICIENTS FOR B/b_{μ}
	= 9.7 (62.5 mm), L/b _p = 4.2 (SHORT)
Figure 4.18	C_{d} ; y_{UU}/y_{DS} ; Fr_{DS} – CALIBRATION CURVES ALL B/b_{p} and
	L/b _p combinations
Figure 4.19	C_d ; y_{UE}/y_{DS} ; Fr_{DS} – CALIBRATION CURVES ALL $B/b_{\mathfrak{p}}$ and
	L/b _p combinations
Figure 4.20	C_{d} ; y_{UU}/y_{DS} ; $Fr_{DS}-$ CALIBRATION CURVES FOR L/b_{p} = 6.9
	(LONG), $\theta = 5^{\circ}$, B/b _{p_eff} = 12.4
Figure 4.21	C_{d} ; y_{UE}/y_{DS} ; $Fr_{DS}-$ CALIBRATION CURVES FOR $L/b_{p}=6.9$
	(LONG), $\theta = 10^{\circ}$, B/b _{p_eff} = 9.4
Figure 4.22	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-$ CALIBRATION CURVES FOR $L/b_p=6.9$
	(LONG), $\theta = 15^{\circ}$, B/b _{p_eff} = 7.5
Figure 4.23	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-$ Calibration curves for $L/b_p=5.6$
	(MEDIUM), $\theta = 5$ °, B/b _{p,eff} = 13.5
Figure 4.24	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-$ Calibration curves for L/b_p = 5.6
	(MEDIUM), $\theta = 10^{\circ}$, B/b _{p,eff} = 10.7
Figure 4.25	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-$ Calibration curves for $L/b_{\text{p}}=5.6$
	(MEDIUM), $\theta = 15$ °, B/b _{p,eff} = 8.7
Figure 4.26	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-CALIBRATION$ CURVES FOR L/b_p = 4.2
	(SHORT), $\theta = 5^{\circ}$, $B/b_{p_eff} = 15.2$
Figure 4.27	C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATION CURVES FOR $L/b_p = 4.2$
	(SHORT), $\theta = 10^{\circ}$, B/b _{p_eff} = 12.4
Figure 4.28	C_d ; y_{UE}/y_{DS} ; $Fr_{DS}-$ CALIBRATION CURVES FOR $L/b_p=4.2$
	(SHORT), $\theta = 15^{\circ}$, B/b _{p_eff} = 10.5

Table 3.1 Summary, a comparison between the continuity, energy, momentum and power entities. Table 4.1 Calibrated C_d-values, parallel approaching flow, normal flow conditions downstream Table 4.2 Calibrated C_d-values, parallel approaching flow, drowned flow conditions downstream Table 4.3 Calibrated C_d-values, non-parallel approaching flow, normal flow conditions downstream Table 4.4 Calibrated Cd-values, non-parallel approaching flow, drowned flow conditions downstream Table 4.5 Non-parallel flow conditions where pressure US exceeds pressure UE (marked with crosses)

DESCRIPTION:

TABLE:

Photo 3.1 Wooden model pier used by Retief, defining the sections used by him and the corresponding pressure measuring points Photo 3.2 A typical water surface profile at a bridge pier under flood conditions, Δh_1 showing the normal water surface level difference measured at bridge piers and Ah, the pressure difference obtained by measuring pressures next to the pier Photo 4.1 Side view of glass flume used for testing the model piers. Hydraulies Laboratory University of Stellenbosch Photo 4.2 Side view of glass flume used for testing the model piers, Hydraulics Laboratory University of Stellenbosch Photo 4.3 Looking downstream at the glass flume used for testing the model piers, Hydraulies Laboratory University of Stellenbosch Photo 4.4 Sluice at the end of the glass flume used for testing the model piers, Hydraulics Laboratory University of Stellenbosch Photo 4.5 PVC 63 mm pier (SHORT) during a ±130 l/s test, normal flow conditions downstream etc. Photo 4.6 Measured pressure heads inside manometer pipes during a test on a PVC 63 mm pier (SHORT) ,±130 l/s test, normal flow conditions downstream etc. Photo 4.7 Defining sections 1,2,3 and 4 and measuring positions UE, US, DS and DE Photo 4.8 Four different model pier widths of the model piers: A=63 mm (B/b_p=9.6), B=50 mm (B/b_p=12.2), C=40 mm (B/b_p=15.2), D=32 mm (B/b_p=19.0) Photo 4.9 "Building blocks" of a typical PVC pier model. A=upstream end, B-extension for "MEDIUM" length, C-extension for "LONG" length, D-downstream end Photo 4.10 Defining the rotation of the model pier. A=direction of approaching flow, B=long axis direction,θ=relative angle between A and B

DESCRIPTION:

PHOTOS:

Photo 4.11	Defining the effective pier width for non-parallel flow conditions,
	$B = total$ flume width, $B_{p,eff} = effective$ pier width and $(B-b_{p,eff})$
	the effective or net width of passing flow
Photo 4.12	Flow patterns past model pier, parallel approaching flow, B/bp -
	9.7, L/b _p = 6.9 (LONG), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.13	Flow patterns past model pier, parallel approaching flow, B/bp =
	9.7, L/b _p = 5.6 (MEDIUM), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.14	Flow patterns past model pier, parallel approaching flow, B/bp =
	9.7, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, normal flow conditions
	downstream
Photo 4.15	Flow patterns past model pier, parallel approaching flow, B/bp =
	12.2 , L/bp = 6.9 (LONG), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.16	Flow patterns past model pier, parallel approaching flow, B/bp =
	12.2 , $L/b_p = 5.6$ (MEDIUM), Q = ± 130 1/s, normal flow
	conditions downstream
Photo 4.17	Flow patterns past model pier, parallel approaching flow, B/b _p =
	12.2 , L/b _p = 4.2 (SHORT), $Q = \pm 130$ l/s, normal flow conditions
	downstream
Photo 4.18	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , L/b _p = 6.9 (LONG), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.19	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, normal flow
	conditions downstream
Photo 4.20	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , L/b _p = 4.2 (SHORT), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.21	Flow patterns past model pier, parallel approaching flow, B/bp =
	19.0 , L/b _p = 6.9 (LONG), Q = ± 130 l/s, normal flow conditions
	downstream

Photo 4.22	Flow patterns past model pier, parallel approaching flow, B/bp =
	19.0 , L/b, = 5.6 (MEDIUM), Q = ± 130 l/s, normal flow
	conditions downstream
Photo 4.23	Flow patterns past model pier, parallel approaching flow, B/bp =
	19.0 , L/b _p = 4.2 (SHORT), Q = ± 130 l/s, normal flow conditions
	downstream
Photo 4.24	Flow patterns past model pier, parallel approaching flow, B/bg =
	9.7 , L/b, = 6.9 (LONG), Q = ± 130 l/s, drowned flow conditions
	downstream
Photo 4.25	Flow patterns past model pier, parallel approaching flow, B/b _p =
	9.7 , $L/b_p = 5.6$ (MEDIUM), Q = ± 130 l/s, drowned flow
	conditions downstream
Photo 4.26	Flow patterns past model pier, parallel approaching flow, B/b ₀ =
	9.7 , $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, drowned flow conditions
	downstream
Photo 4.27	Flow patterns past model pier, parallel approaching flow, B/bp =
	12.2 , $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions
	downstream
Photo 4.28	Flow patterns past model pier, parallel approaching flow, B/bp =
	12.2 , $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow
	conditions downstream
Photo 4.29	Flow patterns past model pier, parallel approaching flow, B/bp =
	12.2 , $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ 1/s, drowned flow
	conditions downstream
Photo 4.30	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions
	downstream
Photo 4.31	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ Vs, drowned flow
	conditions downstream
Photo 4.32	Flow patterns past model pier, parallel approaching flow, B/bp =
	15.2 , $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ Us, drowned flow
	conditions downstream

Photo 4.33	Flow patterns past model pier, parallel approaching flow, B/b_p =
	19.0 , $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions
	downstream
Photo 4.34	Flow patterns past model pier, parallel approaching flow, B/bp =
	19.0 , $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow
	conditions downstream
Photo 4.35	Flow patterns past model pier, parallel approaching flow, B/bp =
	19.0 , $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ 1/s, drowned flow
	conditions downstream
Photo 4.36	Flow patterns past model pier, non-parallel approaching flow,
	$B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "positive pier
	side" shown, Q = ±130 l/s, normal flow conditions downstream
Photo 4.37	Flow patterns past model pier, non-parallel approaching flow,
	$B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "negative (lee)
	pier side" shown, Q = ±130 1/s, normal flow conditions
	downstream
Photo 4.38	Flow patterns past model pier, non-parallel approaching flow,
	$B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "negative (lee)
	pier side" shown, Q = ±130 1/s, drowned flow conditions
	downstream
Photo 4.39	Flow patterns past model pier, non-parallel approaching flow,
	$B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "looking
	upstream" view, $Q = \pm 130$ l/s, normal flow conditions
	downstream
Photo 4.40	Manometer stand pipe readings for normal flow conditions and
1 1010 4.40	zero pier rotation
Photo 4.41	
FROID 4.41	Manometer standing pipe readings for normal flow conditions and
	non-zero pier rotation

SYMBOL:

 L_{p}

DESCRIPTION:

A	Area [m²]
A*	Plan or projected area [m ²]
ϵ_{p}	Potential energy [J]
$\epsilon_{\mathbf{k}}$	Kinetic energy [J]
κ	Kappa term - power correction factor [non dim]
Q	Flow rate [m ³ /s]
Q_{50}	Peak flow rate with a 50 year return period
b	Width between piers [m]
В	Centreline distance for piers [m]
b_p	Pier width (maximum) [m]
s	Slope [m/m]
S_f	Energy slope [m/m]
S_0	Bed slope [m/m]
V	Volume [m³]
v	Velocity [m/s]
Vpier	Theoretical velocity of the pier (special case) [m/s]
Vappreach	Velocity of approaching fluid [m/s]
V_{∞}	Velocity of fluid far upstream of the pier [m/s]
C_d	Flow correction factor [non dim]
C_d	Drug coefficient [non dim]
q	Flow rate per unit width [m²/s]
L	Length [m]

Pier length [m]

y Flow depth [m]

d Flow depth [m]

F Force [N]

M Momentum [N]

Power [W]

H₀ Work line distance of a force taken from point 0

Moment around point 0 [N.m]

h_L Transitional losses [m]

hf Frictional losses [m]

g Gravitational acceleration [m/s²]

ρ Rho, fluid density [kg/m³]

ABBREVIATIONS:

DESCRIPTION:

DWAF Department of Water Affiars and Forestry (RSA)

RMF Regional Maximum Flood

MAR Mean Annual Run-off

RSA Republic of South Africa

1. INTRODUCTION

South Africa is a water poor country. It is thus of the utmost importance to measure the run-off from catchments as accurately as possible in order to quantify the country's water resources. The measurement of run-off is undertaken by the Department of Water Affairs and Forestry (DWAF) by using a network of flow gauging stations. These gauging stations are usually restricted to lower flows in terms of their capacity. Therefore, the measurement of high flows has become very important because most gauging stations can not cope with these flows. Being able to measure higher flows (floods), one will also be able to analyse and predict the occurrence of floods more accurately.

Therefore, in order to assure reliable continuous flow records, improved methods for measuring high discharges need to be found. The existing network of flow gauging stations on South African rivers consists mainly of compound gauging weirs. Most of these weirs become inaccurate when high discharges occur because they cannot be built large enough to cope with very high flows. These inaccuracies are mainly due to drowned conditions. The geometry of the gauging weir and the average energy slope taken across the weir become insufficient to prevent the sub-critical flow downstream from influencing the flow upstream i.e. of drowning the weir. The flow regime associated with drowned conditions is also known as non-modular flow. The calculation of the flow rate Q based on flow depths measured under drowned conditions tends to be quite inaccurate due to the fact that a control section with a unique relationship between depth and discharge no longer exists. Research is presently being done on the phenomenon of drowned conditions at gauging stations in a separate parallel study. Flow gauging under drowned conditions however remains problematic. It is also important to mention that weirs that are large enough to be able to measure the full range of flows become very expensive and often cause the inundation of large areas upstream of the weirs.

The accurate measurement of high discharges has several advantages and uses:

- O For example the design of a new dam. One of the most important design aspects in the design of a new dam is the flood analysis which forms part of the stability analysis of the dam wall. Flood analysis includes testing of the dam wall stability, as well as the determination of the capacity of the overflow section during flood events which directly affect the load on the wall. The safety aspect associated with downstream flooding (also when the dam wall would fail) is directly linked to high inflows. The quantification of these high inflows is therefore of great importance in order to perform reliable calculations in terms of safety.
- If a method for measuring high discharges more accurately can be found, one will be able to test the accuracy of hydrological models which describe the complex relationship between run-off as a function of precipitation and other input parameters. These models are subject to uncertainties due to the simplified assumptions that have to be made in order to compensate for the complex nature of the run-off process, as well as the limited availability of data on a regional scale. This implies that these models also need calibration these models will therefore benefit from flow records that include more accurate higher discharge values.
- By quantifying high discharges accurately, the calculation of flood levels and potential damage can be made more accurately. This means for example that if the flow rate at a calibrated bridge upstream of a town or settlement exceeds the Q₅₀ flood discharge, which has been used to determine the Q₅₀ flood lines for the town/settlement, one will know with greater certainty when to evacuate people.
- The modelling of estuaries can also benefit from accurately measured high inflow discharges. Flushing (dilution of the salt concentration within the estuary) occurs mainly during high inflows of fresh water from the inland. By quantifying these high discharges, one can link the degree of flushing to specific inflows. The ability of predicting the flushing of an estuary in terms of inflows will enable ecologists to predict environmental and biological changes within the estuary with greater accuracy. In addition, knowing the

high inflow discharges will enable engineers to predict the extent to which a certain flood will breach the sand spit which separates the estuary from the ocean during low flow periods. These events can then be related to specific return periods.

Given the possible ability of measuring high discharges accurately at existing bridges (the method being investigated in this report), one will be able to update the RMF-indices of Kovacs. This implies that having an extreme flood event and having the ability to measure the peak discharge accurately, adjustments to the RMF-index can be made if this flood has exceeded the historical Regional Maximum Flood as documented for the specific region.

This study has concentrated on the possible application of bridge piers as high discharge measuring structures by analysing flow patterns and flow characteristics around pier models for different flow conditions. The use of the fundamental laws of nature and "reasonable" simplified assumptions have led to a variety of possible mathematical models (Energy, Momentum and Power) which were investigated individually both in terms of their suitability and accuracy in terms of model description. Several theoretical approaches and models that appeared to have satisfied the criteria were eventually investigated in further detail.

The fundamental phenomenon on which the bridge pier concept is based, is the stagnation of flow at the upstream end of a bridge pier and the associated conversion of potential energy into kinetic energy from the stagnation point in the direction of the downstream end of the pier. The phenomenon of stagnation of fluids has been used with great success in velocity gauges for many years and forms the principle on which the Pitôt-tube velocity gauge works. The velocity of aeroplanes as well as water flowing under uniform conditions can be measured to an accuracy of about 1% by using this technique (White 1986). The theory of the Pitôt-tube will be discussed as an introduction to flow measuring theory in terms of the energy equation with specific reference to the application at bridge piers.

2. BACKGROUND:

(Retief, M.J., 1998 -extended and amended)

2.1 SOUTH AFRICAN RIVERS:

South Africa is a relative dry country with an average annual rainfall of about 500 mm. This is much less than the world average of 860 mm. In addition, the temporal distribution of lower rainfalls in South Africa is such that, the run-off in rivers may be lower than average for periods of up to 10 years (DWAF 1986). It is for this reason that accurate knowledge about the discharge of water for use as well as for the temporary storage of floodwater is so important.

2.1.1 Factors which are problematic for flow measurement in South Africa:

O Climate:

Not only is the flow in South African rivers limited but also highly unsteady. In contrast, Europe for example is dependent for a major part of its river flows from the melting of snow in the mountain areas. The snow plays a dual role: gradually releasing water during the physical process of melting of the snow and secondly rain is trapped in the snow and released only when the snow starts to melt. In European countries the cause of flood events is usually the rapid melting of snow in which rain has been trapped ("The Institution of Civil Engineers, London", 1966). This may happen when warmer weather follows a period of cold rainy weather.

The generally wetter climate of Europe contributes further to more steady and uniform flows in rivers than in South Africa. The flow characteristics of South African rivers are much more unstable and unpredictable. Comparing the River Thames in England with the Limpopo River for example, a huge difference in variability of discharge is evident.

The South African climate is one of extreme events. Floods are usually associated with rainstorms, thunderstorms and tropical cyclones. In spite of the extreme events of floods, South Africa on average has a relatively dry climate with snow making very little contribution to run-off during or after the winter season. The run-off in rivers is very unsteady in South Africa due to the fact that there are large areas which are either summer or winter rainfall areas. This means that we do not have rain on a regular basis, but rather at random during a specific rainfall season. A further contribution to the unsteadiness of flow is the variation in rainfall durations and rainfall intensities, which is found on a country-wide scale. These large variations in flow depths make discharge measurement difficult.

Sediment:

Sediment problems are experienced at conventional gauging stations especially in the following regions: Eastern Cape, Western Cape, Free State and Kwazulu Natal (Rooseboom 1992).

Sediment accumulation at existing flow gauging stations poses serious problems, especially during high discharges when flooding rivers carry heavy loads of sediment. (Rossouw. et al, 1998) deal with the design and maintenance of flow gauging stations on sediment carrying rivers in South Africa.

Labour and financial problems:

A shortage of personnel and funds contributes further to the flow-measuring problem. Sufficient skilled human power is usually not available during flood events—this is due to the vast areas which are usually affected by floods and the short time span during which most floods occur. Field trips are however undertaken during floods to measure flow depths, flow velocities etc. in order to collect flood data. Unfortunately, gauging stations are often inaccessible during these times posing a logistical problem to physical flow measurements.

O Vandalism:

This has become a major problem in certain parts of South Africa and contributes to incomplete flow records. Measures need to be taken in order to safeguard measuring equipment at flow gauging stations which contribute to high maintenance costs.

2.2 OCCURRENCE AND MANAGEMENT OF FLOODS IN SOUTH AFRICA:

As mentioned earlier, South Africa experiences large variations in river run-off. These varying floods are important both in terms of their destructive abilities as well as their contribution to the mean annual run-off (MAR).

2.2.1 Defining a flood:

A flood can be defined as an event during which the water surface in a river rises to such an extent that the river is no longer flowing only in the main channel, but also fills the floodplains on the sides, therefore rising above the normal flow boundaries. From the point of view of hydrology (Rooseboom, 1985): "a flood is a wave that progresses along a watercourse and causes changes in water level, discharge, flow velocity and water surface slope all along the course".

2.2.2 The nature of floods:

Floods in South Africa can be quite destructive. Recent examples are the 1998 floods along the Orange River and the floods in Natal during September 1987 (Du Plessis, 1989).

Other examples, which illustrate the nature of southern African floods, are the flood events that were associated with the tropical cyclone "Domoina" (Retief, 1998). "Domoina" was first noticed on 17 January 1984 on satellite photos and 10 days later it started to move towards the Mozambique coast and from there further inland over the African continent. During the 5 days that followed, heavy rains fell over southern Mozambique, Mpumalanga, Swaziland and the northern parts of Kwazulu-Natal. More than 10 000 people were directly affected by the floods and more than 200 lives were lost during the events. In South Africa alone more than R100 million's damage was caused to communication installations, the agricultural sector and nature reserves.

2.2.3 Methods for flow measurement presently used in the R.S.A.:

Due to the lack of better and more efficient measuring methods for very high flows, as well as the problems of accessibility of gauging stations during flood events, the past practice of the DWAF was to wait for a flood to subside before flood levels were determined (*Herschy*, 1978). Maximum flow depths were taken up to the highest levels of scouring and debris accumulation afterwards.

Methods, which are generally used in South Africa for high flow measurement, include the slope-area method and the bridge contraction method. These methods are used in conjunction with flow measurement data from gauging stations and reservoir spillways. Standard gauging stations are usually unable to measure high flows as they become drowned which means that a control section ceases to exist

and the calculation of flow rates as functions of upstream water depths therefore becomes inaccurate.

Slope Area method:

This method is used most frequently. It is based on the assumption that the flow is uniform (cross-sections' geometry relatively constant) for the reach where flow measurement is being undertaken. This method assumes that the flow depth is a function of the average bed slope s_o , bed roughness (Manning n-value or Chezy C-value) and cross sectional geometry and is not influenced by control sections and/or obstructions elsewhere along the river. The maximum water levels that have been reached during the flood are determined and by using the Manning or Chezy equation for steady uniform open channel flow, the average flow velocities can be calculated. From the velocities and information on the cross sections the flow rate can then be calculated. The equations of Manning and Chezy are well known and can be found in any hydraulics handbook.

The following problems were found using the Slope Area method:

- The calculated flow rate Q is very sensitive to the energy slope and small errors made with the energy slope may result in large variations in the flow rate. The assumption of uniform flows implies that the energy slope S_f is taken as the same as the bed slope S_o which is not always correct especially if accelerating flow is present.
- The bed roughness, which is used as a parameter in the open channel flow equations, is typically taken as the k-value of the irregular bed as found after the flood has passed. Recent research (Rooseboom, Le Grange, 2000) has shown that the bed roughness (k-value) in sand-bedded rivers is totally different during the flood event compared to after the flood event. The reason for this is that deformation of sand beds occurs when flows pass over

them, especially during high flows. The formation of bed forms of several metres in height is quite possible during large floods. This means that the estimation of bed roughness according to the bed profile after a flood can lead to the under-estimation of bed roughness (Manning n-value or Chezy C-value).

@ Bridge contraction method:

This method is based on the fact that flows approaching a bridge experience contraction due to the bridgeheads and undergo an associated drop in water surface level upon passing through the bridge openings. The flow equation for calculating the flow rate can be determined by using the continuity law as well as the energy equation of *Bernoulli*. This method cannot be used reliably at most South African bridges because the drops in surface levels are too small to measure with sufficient accuracy.

2.2.4 Other flow measuring techniques:

Increased use is being made in South Africa of stream gauging. This involves the measurement of flows through near uniform river reaches and the derivation of stage-discharge relationships. OTT Southern Africa (Pty) Ltd is supplying the equipment which is currently being used for velocity measurements. The equipment consists mainly of a heavy elongated fin-shaped instrument with a propeller directed in the upstream direction. This instrument is supported by a cable that runs across a river and the instrument can be lowered into the stream. The instrument is sometimes lowered to a level that corresponds to **0.4** times the flow depth (measured from the riverbed). The reason for this is that the average velocity of an open channel stream is approximately equal to the velocity found at a distance of **0.4D** above the riverbed, where **D** is the total depth of flow at a specific location. The flow of the water drives the propeller and by doing a simple calculation that correlates the revolutions per unit time with the velocity, local velocities within the stream can be calculated. By taking these measured

velocities as being representative of their associated area elements and multiplying them with their elemental areas, one can obtain the flow rate for each elemental area. By adding these flow rates, one can obtain a relatively accurate estimation of the total flow rate. To allow for the deformation of sand beds, the area of the cross section should reflect conditions during the flood event and not after the flood event. More accurate results are obtained by measuring velocities at different levels. A bridge is also a convenient structure from which velocity measurements can be performed at representative points across the flow sections perpendicular to the flow direction although velocity distribution may differ from that in open channels and be more complex.

The cost of a calibration as described above is about R 80 000. This cost includes the installation as well as the maintenance of the cableway. A conventional gauging station costs at least R 250 000 (1998 prices).

This method provides us with an additional flow measuring technique which can be used to test the accuracy of newly proposed methods.

Advantages of stream gauging:

- This method does not require the building of a large structure.
- There is no damming or deceleration of the flow velocity as in the case of a gauging weir. This means that sediment build-up may not be a problem.

Disadvantages of stream gauging:

- It is quite expensive at a cost of around R80 000 (1998) per calibration.
- The cableway, if inappropriately sited, can be easily damaged or dragged along by larger debris (bridges can be used to support the velocity meters)

- Vandalism poses a serious problem for both the cableway and the measuring equipment.
- The velocity meter needs a minimum depth of about one meter to be able to register properly.

Stream gauging is the preferred method of calibration of flow gauging stations in most countries, particularly where river flows do not vary greatly.

2.3 CRITERIA FOR NEW MEASURING TECHNIQUES FOR SOUTH AFRICAN CONDITIONS:

Given the problems that have been experienced in the past with flow measurements during floods, a list of guidelines that will assist in the development of new measuring methods and techniques can be drawn up (Lotriet, Rooseboom, 1995):

- It is important to note the large variation in flow rates in typical South African rivers. A new system of flood measurement should therefore provide reliable and continuous flow records over a large spectrum of flows.
- The system should be less susceptible to sediment problems than the existing gauging weirs found in South Africa.
- South African rivers cross international boundaries and the proposed system should therefore comply with international standards.
- New methods should be economical and if possible not require the construction of additional structures but rather be incorporated in existing structures.
- Maintenance of structures should be a minimum.
- The system should be sturdy to resist the forces of nature and vandalism.

3. FLOW MEASURING THEORY:

3.1 APPROACH FOLLOWED:

The main aim of this investigation was to determine whether pressure differences at bridge piers could be related to discharges. *Retief* (1998) showed that the energy principle combined with the stagnation phenomenon did work for a limited number of model pier combinations. The energy principle was re-evaluated as a first step in the development of new theories to describe the pier pressure/discharge relationship.

This chapter describes a fundamental investigation undertaken in order to study the processes of energy, momentum and power conversion within set boundaries of a stream that incorporates an obstruction in the form of a bridge pier. Theoretical trends were analysed with the help of the basic laws of nature that are applicable to the hydraulic field. These theories were subsequently tested using laboratory data gathered by *Retief*, (1998) (covered in sections 3.4, 3.5, 3.6, 3.7, 3.8 and summarised in section 3.9).

The re-evaluation of the energy based discharge equation, as well as the evaluation of the momentum and power based discharge equations (new theories, covered in sections 3.7 and section 3.8 respectively), led to promising conclusions and recommendations (section 3.11). These conclusions and recommendations helped with the identification of additional tests needed in order to investigate and answer problems and questions that arose from results based on Retief's (1998) data.

Additional tests performed during July/August 2000 (covered in *chapter 4*) at the Hydraulics Laboratory of the University of Stellenbosch helped to develop a better understanding of the process of pressure conversion at bridge piers and calibrated curves could be established according to the energy based theory for discharge measurement.

3.2 MODEL DESCRIPTION - Retief:

Figure 3.1 is a schematic representation of the laboratory lay-out used by Retief (1998) for his tests on model piers. These tests were performed at the Hydraulics Laboratory of the University of Stellenbosch. The glass flume that was used to simulate the prototype "river" or "channel" was flume number 3 in the laboratory with a width of 609 mm. Water was supplied via a 300 mm diameter pipe. This pipe is connected to a constant head tank to ensure constant discharge during the tests. Perforated blocks installed at the entrance of the flume ensured smooth inflow to the model.

Figure 3.1: Schematic side view of model pier set-up in the Hydraulics Laboratory, University of Stellenbosch

The mathematical models that will be derived in sections 3.6 to 3.8 were calibrated using model data. Scale models of the real structure (prototype) were constructed from wood (photo 3.1, p.16) and tested in order to investigate flow conditions around bridge piers.

Figure 3.2: Schematic plan view of model pier set-up in the Hydraulics Laboratory, University of Stellenbosch

Discharge measurement was done with a 213.0 mm orifice disc installed inside the 300 mm diameter pipe. The difference in water pressure upstream and downstream of the measuring disc was measured with a water/mercury manometer. From the pressure differences the discharge was calculated using the following equation:

$$Q = C_a a_1 \sqrt{\frac{2gh}{k^2 - 1}}$$

where C_d = coefficient of discharge = 0.61 and

$$k = \frac{a_1}{a_1}$$

 $a_1 = pipe diameter and <math>a_2 = diameter of disc opening$

In order to have been able to test different ratios of channel width to pier width (B/b_p), three different pier widths were used by *Retief*. Each pier was constructed with three horizontal holes for measuring pressures (A, B and C in *photo 3.1, p.16*), a hole in the front, a hole on the side (in the middle) and a hole at the downstream pier end. Three vertical shafts within the model were used to measure water levels (pressures) by connecting them to clear cylinders ensuring more stable water surfaces in order to increase the accuracy of measurement.

The different piers were placed symmetrically within the glass flume and were fixed to the flume floor to prevent movement during tests.

Three different flow conditions were investigated by Retief, viz: "Normal flows", "Debris flows" and "Sluice controlled flows". The "Normal flows" refer to flow conditions where a control section (critical depth) is found within the pier length. "Debris flows" refer to flow conditions where the effects of the accumulation of debris at the upstream end of the pier on the flow conditions were investigated. "Sluice controlled flows" refer to drowned flow conditions downstream of the pier.

For the "Normal flows" and "Debris flows", water depths were measured 900 mm upstream of the upstream pier end (section 1, photo 3.1), at the upstream end (section 2, corresponds to pressure measuring at A), at the middle of the pier (section 3, corresponds to pressure measured at B), at the downstream end (section 4, corresponds to pressure measured at C) and 4570 mm downstream from the downstream end of the pier (section 5) near to the sluice controlling the downstream conditions. For the "Sluice controlled flows", water depths were measured at the same positions but instead of measuring the downstream depth at 4570 mm, it was measured closer, viz. 700 mm downstream of section 4. The following picture shows one of the wooden model piers that was used in Retief's study. According to the pressure measuring configuration used

for the wooden piers, the following sections were defined accordingly and are shown as dotted lines:

Photo 3.1: Wooden model pier used by Retief, defining the sections used by him and the corresponding pressure measuring points

The discharge equations derived in sections 3.6, 3.7 and 3.8 were calibrated using the data collected by Retief and the results of these fundamentally based equations are therefore applicable to a model pier set-up as has been described in figure 3.1, figure 3.2 and photo 3.1.

3.3 INTRODUCTION TO FLOW MEASUREMENT:

The typical problems engineers usually face with open channel flow is either of the following (Rooseboom 1985):

- O "Given the flow rate, determine the flow depth in the channel"
- "Given the flow depth in the channel, determine the flow rate"

The first problem is typically a design problem and is most commonly being encountered by water engineers. Using either the Manning or Chezy equation for steady uniform open channel flow, one can determine the flow depths for a given discharge if the bed roughness and bed levels are known. These calculations usually form part of a water surface profile analysis.

The second stated problem forms the basis of this report, i.e. the measurement problem. Measurement here refers to the calculation of velocity as a function of measurable flow characteristics in order to estimate the flow rate. By measuring flow depths and pressure differences and applying the energy and continuity laws, one can calculate theoretical velocity values and by compensating for energy losses, accurate results can be obtained.

3.4 FUNDAMENTAL HYDRAULIC CONCEPTS RELATED TO FLOW-MEASUREMENT:

Newton's Second Law and the Law of Conservation of Mass:

There are two fundamental laws of nature which are used by civil engineers working in the water field – variations and combinations of these two laws are commonly used when tackling hydraulic problems. These two laws are basically: "The Law of the Conservation of Mass" and "Newton II". It will be shown that Newton II can be rewritten to indicate that force equals momentum change.

The following laws are used in different combinations in the field of hydraulics in order to analyse a wide range of problems:

Figure 3.3: The three basic hydraulic laws, Continuity, Energy and Momentum

An extension (figure 3.4) of the three laws has been proposed by Rooseboom (1992) by the introduction of Power Theory, in which he proved on a theoretical basis that the Von Karman coefficient nearly equals 0.4. The arrows in the sketch below imply that different combinations of these laws may be used in calculations.

Figure 3.4: An extension on the three basic hydraulic laws, Power being added

In the sketch above a forth law, namely the Conservation of Power, has been introduced. It is further important to note that these four laws are not all independent. Any combination of two laws that include continuity forms an independent combination. This implies that the combination of the Energy, Momentum and Power Laws do not constitute an independent set. The reason for this will be shown later to be the fact that all three of these laws can be derived from Newton's second law.

The continuity law represents "The Law of the Conservation of Mass" whilst the Energy, Momentum and Power Laws can all be derived by using different integration manipulations of Newton's second law.

The derivation of these four laws will be performed next for clarity. Consider firstly the choice of hydraulic configurations being used in the derivation of equations based on these laws.

Choice of control volumes in the analysis of pier flow:

The selection of configurations for the application of the 4 laws depends firstly on which of the 4 laws is being applied. The Energy equation is applicable along a continuous streamline whilst the Momentum equation applies to an enclosed control volume. The Power equation also requires a control volume for application purposes.

The choice depends secondly on where uniformity of flow exists. A section where the velocity or depth varies across the width is not suitable as an enclosing section for use with the Momentum or Power Laws.

A third consideration which influences the selection of sections is the location of large transitional losses. By using **section 4** rather that **section 5** for instance in (Figure 3.5, p.23), uncertainties concerning the transitional losses occurring within the control volume can be drastically reduced. By doing this, more stable coefficients (resulting from the calibration process) were found.

Taking a section at the upstream end of the pier ensures greater water level differences and consequently more accurate measurements. **Section 2** (next to the upstream end of the pier) was not suitable due to the non-uniform flow conditions across the section.

3.5 CONTINUITY:

Derivation:

The Law of Conservation of Mass states (Serway 1982): "Matter is neither created nor destroyed" That is, the mass of the system before a process equals the mass of the system after the process.

Consider a system where the flow of water is continuous as it moves from point \mathbf{p}_{in} to point \mathbf{p}_{out} enclosed by isolating boundaries. The enclosed volume between \mathbf{p}_{in} and \mathbf{p}_{out} forms the control volume. The system can be either pipe flow or open channel flow.

Assuming that no mass is stored between points **p**_{in} and **p**_{out} in the system, there will be no volume change within if we assumed water to be incompressible for the purposes of this study. The above-mentioned assumption leads to the following derivation:

Definitions of symbols:

min: mass entering the system [kg]

mout: mass exiting the system [kg]

ρ: mass density of the fluid [kg/m³]

V_{in}: volume entering the system [m³]

Vou: volume exiting the system [m³]

dx/dt: time derivative with respect to variable x [non dim]

Mass entering the system = mass leaving the system

$$\Rightarrow$$
 mass in (m_{in}) = mass out (m_{in})

Taking the time derivative on both sides:

$$\Rightarrow \frac{d}{dt}(m_{is}) = \frac{d}{dt}(m_{ext})$$

$$\Rightarrow \frac{d}{dt}(\rho V_{is}) = \frac{d}{dt}(\rho V_{est})$$

The density is constant (incompressible fluid):

$$\Rightarrow \frac{d}{dt}(V_{ss}) = \frac{d}{dt}(V_{sss})$$

$$\Rightarrow Q_{is} = Q_{sat}$$
 (Equation 3.1)

Equation 3.1 is known as the continuity equation for application in fluid mechanics.

Applications of the continuity equation:

The continuity equation is used as a "primary tool" together with the Energy, Momentum and Power equations in solving hydraulic problems. The continuity equation links flow depths and velocities. In order to use the continuity equation in this study, it is necessary to describe the flow region in the vicinity of the pier as well as possible. This description will be used throughout *chapter 3* and is discussed in more detail in the following paragraph "Defining the geometry of a typical bridge lay-out".

Defining the geometry of a typical bridge pier lay-out:

This study entailed the investigation of flow patterns around isolated bridge piers under high flow conditions. This was done in order to determine whether piers could be used as flow measuring structures. The term "isolated pier" in this context refers to a pier where the flow conditions upstream and downstream are uniform across the width of flow. This condition is approached at long bridges where span lengths are constant and where flow conditions are the same for the different openings. The theories that were developed were based on the assumption of isolated piers. It was further assumed that the bed around the pier is horizontal for at least the length of the pier.

For application of the Energy, Momentum and Power equations, specific control volumes were considered as part of the theoretical approach. In order to ensure consistency in the definition of sections and points defining the possible control volumes, the following plan view of a typical pier lay-out was used.

Figure 3.5: Describing and defining the plan view of a typical pier lay-out

The numbering system depicted above is followed throughout chapter 3 (except for p.33 to p.40 where figure 3.12's configuration, taken from Webber (1971)is used). Please note that when there are references to the pier width $(\mathbf{b_p})$, it always denotes the maximum dimension of the pier measured at right angles to the long axis of the pier. The distance between piers (\mathbf{B}) is measured from centre to centre.

3.6 ENERGY APPROACH:

Derivation:

Newton's second law states Serway (1982): "The time rate of change of momentum of a body is equal to the resultant force acting on the body. If the mass of the body is constant, the net force equals the product of the mass and the acceleration."

Definitions of symbols:

a: Acceleration of the particle [m/s²]

m: Mass of the body [kg]

F_{res}: Resultant force acting upon a system [N]

v: Velocity of flow [m/s]

s: Distance [m]

dx: Small increment in variable x [dim of x]

dx/dt: Time derivative with respect to variable x [non dim]

U₁₋₂: Work done between sections 1 and 2 (positive work is defined as work

related to movement from section 1 toward section 2) [N]

 $a \propto F_{res}$

$$a \propto \frac{1}{m}$$

$$\Rightarrow a = \frac{F_{res}}{m}$$

$$\Rightarrow F_m = ma$$
 (Equation 3.2)

Note the following manipulation that is introduced:

$$a = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt}$$

$$\Rightarrow a.ds = dv \left(\frac{ds}{dt} \right)$$

$$\Rightarrow F_{res} = ma = m \frac{v.dv}{ds}$$

$$\Rightarrow F_{res}.ds = mv.dv$$

$$\int_{r_0}^{r_1} F_{r_0} ds = \int_{r_0}^{r_2} mv dv$$
 (Equation 3.3)

$$\Rightarrow F_{res}(s_2 - s_1) = \frac{m(v_2^2 - v_1^2)}{2}$$

$$\Rightarrow \frac{mv_1^2}{2} + U_{1-2} = \frac{mv_2^2}{2}$$
 (Equation 3.4)

The term U₁₋₂ represents the work done between points 1 and 2. This term may also be seen as a differential potential energy value which is equal to the water surface level difference in terms of open channel flow (which is being studied here).

Figure 3.6: Typical open channel flow profile, taken between section 1 and section 2

Consider a flow line along the surface as represented by the upper solid line in figure 3.6. The potential energy value at the surface at section 1 equals $\varepsilon_{p1} = mg(y_1+z_1)$ and at section 2 the value is $\varepsilon_{p2} = mg(y_2+z_2)$, measured relative to the dotted datum line.

Substitute $U_{1\cdot2}$ with its differential definition in terms of the potential energy, viz. $U_{1\cdot2} = \varepsilon_{p1} - \varepsilon_{p2}$. The reason why it is defined in this fashion comes from the definition of g, the earth's acceleration. If the unit gravitational force performs positive work it implies that the object on which the force is being exerted moves in the same direction in which the acceleration g works. This implies that positive work is associated with the movement of an object from a state of higher potential energy to a state of lower potential energy. Take for example an apple falling freely from a tree. The dominating force exerted on the apple is the gravitational force. The result of this force is a movement in a downward

direction, therefore resulting in a positive amount of work being done. Note that the term ε_{p1} - ε_{p2} will therefore be positive because the apple has lost potential energy falling from **position 1** (up in the tree) to **position 2** (at any state during the free fall).

The work done between points 1 and 2, U₁₋₂, takes on the following definition:

$$U_{1-2} = mgy_1 + mgz_1 - (mgy_2 + mgz_2)$$
 (Equation 3.5)

Substitute U₁₋₂ (as defined in equation 3.5) into equation 3.4:

$$\Rightarrow \frac{mv_1^2}{2} - mgy_2 - mgz_2 = \frac{mv_2^2}{2} - mgy_1 - mgz_1$$

$$\Rightarrow \frac{mv_1^2}{2} + mgy_1 + mgz_1 = \frac{mv_2^2}{2} + mgy_2 + mgz_2$$

For the application of this equation in the Hydraulics field, all terms are expressed per unit volume of fluid. Divide by **W =mg**:

$$\Rightarrow \frac{v_1^{-1}}{2g} + y_1 + z_1 = \frac{v_2^{-1}}{2g} + y_1 + z_2$$
 (Equation 3.6)

Equation 3.6 is known as the Bernoulli energy equation for the conservation of energy.

Note that the friction and transitional loss terms do not appear on the right hand side of
the equation. The reason for this is that these were ignored in the above derivation for
simplicity.

The total energy equation can be obtained by adding the loss terms to the right hand side of equation 3.6 and introducing a factor which compensates for the assumption of constant velocity across the section, namely the Coriolis coefficient α . The Coriolis coefficient has been taken as being = 1 throughout the text.

$$\Rightarrow \frac{\alpha \overline{v}_{1}^{2}}{2g} + y_{1} + z_{1} = \frac{\alpha \overline{v}_{2}^{2}}{2g} + y_{2} + z_{2} + \sum_{i=1}^{2} h_{i-1} + h_{j_{1-2}}$$
 (Equation 3.7)

The term Σh_{L1-2} represents the sum of all the transitional losses that occur between sections 1 and 2 whilst h_{f1-2} represents the frictional loss between the same two sections. It should be clear that the Law of Conservation of Energy implies that there is a continuous exchange of potential energy ε_p and kinetic energy ε_k and that losses are associated with this process. It is the variation in relative magnitudes of $v^2/2g$ and (z+y) that represents the energy exchange process.

Water surface level differences at bridges in terms of the energy equation:

The tol energy head at a point in open channel flow according to Bernoulli can be written as follows:

$$H = total\ energy\ [head\ in\ m\ water]$$

$$H = y + \frac{v^2}{2g} + z \qquad (Equation\ 3.8)$$

where y represents the flow depth, $v^2/2g$ the kinetic energy component and z the absolute height relative to a chosen datum level.

If we define $E_s = y + v^2/2g$ as the specific energy head, or in other words as the energy head component of H (total energy) that excludes z, E_s represents the energy head of the stream relative to the bed. By using E_s throughout our work where channels are prismatic in shape, calculations and the representation by means of graphs can be simplified.

The graphs in figure 3.7 and figure 3.9 show the relationship of y vs. Es for a specific flow rate and specific channel shape, taken to be rectangular in both cases:

Figure 3.7: Typical relationship between the flow depth and the specific energy for a rectangular section

The value of E_s changes according to the flow depth y. If the flow depth reaches a critical value, that is $y = y_c$, the specific energy takes on a minimum value, $E_s = E_c$. It is quite clear from the graph that two different flow depths may be associated with a specific value of E_s . This means that the flow may be either subcritical or supercritical for the same value of E_s and quite different values for flow depths and velocities are possible.

Consider the following plan figure (showing a typical lay-out of bridge piers), as well as figure 3.9, in order to understand the change in water surface levels as water enters the space between the piers.

Figure 3.8: Typical pier lay-out, the flow is approaching from the left

The distance between bridge pier centres is equal to \mathbf{B} and this is also the representative width of approaching flow associated with each pier. The distance between piers in the contraction is equal to \mathbf{b} and the width of each pier equals \mathbf{b}_p . The flow rate across width \mathbf{B} is defined as \mathbf{Q} as shown in the sketch. The total flow rate \mathbf{Q}_{tot} can be calculated as the sum of \mathbf{Q} 's, or: $\Sigma \mathbf{Q}$. (According to convention flow will be towards the right in most figures.)

Figure 3.9: Flow depths vs. specific energy for two rectangular sections with widths B and b respectively

It is important to note that the **y** vs. **E**_s relationship in *figure 3.9* is a function of the channel width. If we assume for the time being that both the approaching flow as well as the flow within the contraction are subcritical (which is often the case with high flows), one may explain the drop in water surface level in terms of energy principles. Assuming no energy losses (this assumption is justifiable because the energy losses occur mainly as transitional losses downstream of the pier) and constant specific energy head before and within the contraction (represented by the B and b curves respectively in *Figure 3.9*) it is evident from the graph that the flow depths have to differ (red lines). The depth associated with the **B** width is greater than that for the **b** width. The velocities must differ if the flow depths differ whilst water will flow slower upstream of the pier and faster within the contraction. This inter-relationship between depth and velocity makes it possible to measure pressure or depth differences around bridge structures and to convert these values into velocities. The conventional flow measuring method at bridges (bridge contraction method) is based on average depths and velocities and works on the same principle as a Venturi flume.

This study entailed the measurement of water pressures around a bridge pier. Due to stagnation the water at the upstream end of the pier is almost stationary, the specific energy value E_s here is virtually equal to the flow depth value as the velocity is almost zero. Within the contraction the E_s-value is made up of a smaller depth and a larger velocity head. Larger pressure or depth differences exist close to the pier as compared to the averaged values further upstream and downstream used in the conventional approach as followed by d'Aubuisson for instance Webber (1971).

Energy transformation at a bridge pier:

High flow rates past bridge piers are usually associated with damming upstream of the bridge and a consequent drop in water levels as the flow moves into the constriction between the piers. This has been discussed in detail in the previous section.

The conservation of the total energy head implies that the sum total of potential ε_p and kinetic ε_k energies stays the same if we ignore the losses as a first assumption and this may be used to explain the energy transformation associated with high flows around bridge piers.

It is a fact that an elemental particle of fluid at a fixed section and fixed values of flow rate **Q** and cross section (area **A** or width **B**) can not have a lower specific energy head than the critical specific energy head. For a given high flow rate **Q** it may happen that the specific energy of the approaching stream is lower than the critical specific energy associated with the same **Q** and reduced width (**B-b**_p), which is the width of the contraction. The only way in which the given discharge can pass through the constriction and at the same time satisfy the energy equation, is by increasing the approaching stream's energy head. This energy head must be larger than the specific energy value in the contraction, if losses are to be taken into account, or equal to the specific energy in the contraction, for the case of no losses.

In this case the upstream water level rises, resulting in a higher potential energy head. The kinetic energy head decreases at the same time because the flow rate **Q** stays the same while the cross sectional flow area **A** increases resulting in a decreased flow velocity **v** upstream. The result is an increase in energy head. This energy head increase (by means of a rise in water level) will continue until enough head has been built up to provide the critical energy head in the contraction. Figure 3.10 shows the energy situation without damming; the solid line represents the water surface and the dotted line the energy line.

Figure 3.10: Theoretical potential and kinetic energy values upstream and within the contraction before damming takes place

The relative contributions of kinetic and potential energy heads are represented by the ϵ_k and ϵ_p and blue rectangles respectively. It is evident that the sum totals of the energy components differ and they represent an unbalanced energy system.

Consider the same flow situation with enough damming to ensure a balance between the upstream and downstream energy heads.

Figure 3.11: Potential and kinetic energy values upstream and within the contraction with damming

Energy heads are now balanced as can be seen in figure 3.11. The sum totals of energy heads upstream and downstream of the bridge are the same.

Conventional applications of the Energy Equation for Flow Measurement: D'Aubuisson, Nagler and the "Bridge damming formula":

The method of d'Aubuisson (covered in Webber (1971)) is a classical example of a method which can be used for calculating flow rates at bridges in terms of average water surface levels upstream and downstream of bridges. The equation of d'Aubuisson was originally developed for calculating damming at bridges and can be derived as follows according to Webber, (1971).

Consider the following longitudinal section of a bridge pier (figure 3.12) and plan view (figure 3.13).

Figure 3.12: Longitudinal section of a bridge pier under high discharges

Figure 3.13: Plan view of a typical pier lay-out

Bernoulli's energy equation can be applied between sections 1,2 and 3, that is sections taken upstream, within the contraction, and downstream of the piers.

From Bernoulli's energy equation we have:

$$H_1 = H_2 + (energy losses)_{1-2}$$

Also...

$$H_1 = H_3 + (energy losses)_{1-3}$$

Expressing the energy heads in terms of specific energy $(E_s = H-z)$ and assuming a horizontal bed:

 $E_1 = E_2 + (energy losses)_{1-2}$

$$\Rightarrow d_1 + \frac{v_1^2}{2g} = d_2 + \frac{v_2^2}{2g} + h_{i_{1-2}}$$
 (Equation 3.9)

and
$$d_1 + \frac{v_1^2}{2g} = d_3 + \frac{v_3^2}{2g} + h_{t_{1-3}}$$

$$\Rightarrow d_1 + \frac{v_1^2}{2g} = d_3 + \frac{v_3^2}{2g} + h_{t_{3-2}} + h_{t_{2-3}}$$
 (Equation 3.10)

where hL1-2 primarily represents the contraction loss and hL2-3 the divergence loss.

The simplified assumption which is now made by d'Aubuisson is that the recovery of kinetic energy (ε_k) in the form of potential energy (ε_p) between sections 2 and 3 is negligible. This can be justified by the fact that such recovery is typically small, thus $d_2=d_3$. The divergence energy loss thus equals:

$$h_{L_{2-3}} = \frac{{v_2}^2 - {v_3}^2}{2g}$$

Without recovery of ε_p , thus:

$$h_e = d_1 - d_3 = \frac{v_2^2}{2\varrho} - \frac{v_1^2}{2\varrho} + h_{\ell_{1-2}}$$

And from the continuity equation:

$$v_2 = \frac{Q}{A_1} = \frac{Q}{b_1 d_1} = \frac{Q}{b_1 d_1}$$

Therefore:

$$h_{s} = \frac{1}{2g} \left[\frac{Q^{2}}{b_{1}^{2} d_{3}^{2}} - v_{1}^{2} \right] + h_{L_{1-2}}$$

$$\Rightarrow 2g(h_{s} - h_{L_{1-2}}) = \frac{Q^{2}}{b_{2}^{2} d_{3}^{2}} - v_{1}^{2}$$

$$\Rightarrow \frac{Q^{2}}{b_{1}^{2} d_{3}^{2}} = 2g(h_{s} - h_{L_{1-2}}) + v_{1}^{2}$$

$$\Rightarrow Q = b_{1} d_{3} \sqrt{2g(h_{s} - h_{L_{1-1}}) + v_{1}^{2}}$$
(Equation 3.11)

 C_d is defined as a flow correction factor that compensates for the loss H_{L1-2} as well as other simplifying assumptions.

Therefore:

$$Q = C_{a}b_{b}d_{3}\sqrt{2gh_{a} + v_{1}^{2}} = C_{a}b_{3}d_{3}\sqrt{2g(d_{1} - d_{3}) + v_{1}^{2}}$$
 (Equation 3.12)

This equation has been in use for a long time and provides good results for long bridges, i.e. bridges which are long enough for piers to be considered as "isolated". Isolated piers

are defined as piers for which flow lines are not influenced by the effect of bridgeheads or neighbouring piers.

Nagler (Webber, 1971), also developed a formula. In the derivation of his equation he made provision for the recovery of potential energy providing very accurate results for cases with low turbulence.

According to Basson's (1990) work on damming at bridges, Bradley summarised the studies of Liu, Bradley and Plate (1957) on damming at bridges and called it "Hydraulics of Bridge Waterways" (University of Stellenbosch Department of Transport 1973). In this text he provides the general equation for calculating the height of dam upstream of a bridge:

Definitions of symbols:

h₁*: Total increase in upstream depth [m].

K*: Total damming coefficient [non dim].

α₁: Kinetic energy coefficient at section 1 [non dim] (figure 3.12)

α₂: Kinetic energy coefficient at section 2 [non dim] (figure 3.12)

A_{n2}: Cross-sectional area in the contraction measured below the normal water surface level [m²].

 $v_{n2} = Q/A_{n2}$

A₃: Cross-sectional area at section 3 (figure 3.12)

A₁: Cross-sectional area at section 1 (figure 3.12)

The formula reads (figure 3.12 configuration):

$$h_1' = K\alpha_2' \frac{v_{s2}^2}{2g} + \alpha_1 \left(\left(\frac{A_{s2}}{A_3} \right)^2 - \left(\frac{A_{s2}}{A_1} \right)^2 \right) \frac{v_{s2}^2}{2g}$$
 (Equation 3.13)

By replacing $\mathbf{v_{n2}}$ with $\mathbf{Q/A_{n2}}$ in equation 3.13 and because $\mathbf{h_1}^*$ is basically equal to $(\mathbf{d_1} - \mathbf{d_3})$ in figure 3.12, equation 3.13 can be rewritten in order to express \mathbf{Q} as a function of $\mathbf{h_1}^*$ or $(\mathbf{d_1} - \mathbf{d_3})$. This energy based equation is basically the same as those of D'Aubuisson and Nagler for \mathbf{Q} is written as a function of water surface level differences measured upstream and downstream of a bridge.

Flood events in South Africa typically go hand in hand with high velocities and associated large fluctuations in water surface levels due to wave action. This also makes the above-mentioned bridge damming formulas (D'Aubuisson, Nagler and the general equation from "The Hydraulics of Bridge Waterways") inaccurate for discharge measurement purposes, given the relatively small differences in averaged water depths upstream and downstream of a bridge.

The unsuitability of the bridge damming formulas for accurate discharge measurement due to the small differences in averaged water depths can be explained as follows:

Figure 3.14: Measuring water surface level differences between upstream and downstream of a bridge

Figure 3.15: Water surface level differences between upstream and downstream of a bridge pier

Sections 1 and 3 in figure 3.14 and figure 3.15 indicate positions where water levels are measured. Figure 3.14 depicts the conventional system of defining water depths upstream and downstream of a bridge (d'Aubuisson, Nagler and the "The Hydraulics of Bridge Waterways" equations) whilst figure 3.15 depicts the difference in water surface elevations between the upstream and downstream ends of a pier.

The flow rate \mathbf{Q} is a function of $\Delta \mathbf{h} = \mathbf{d_1} - \mathbf{d_3}$ (this follows later from the Pitôt-tube theory). By expressing the error made in $\Delta \mathbf{h}$ as a function of "measurement errors in depths $\mathbf{d_1}$ and $\mathbf{d_3}$ ", we can calculate the error made in the calculation of \mathbf{Q} . By expressing the error made in $\Delta \mathbf{h}$ for both configurations (figure 3.14 and figure 3.15), it can be shown that the latter method gives more accurate results than the other.

Consider the following definition for the error in Δh :

ERROR in
$$\Delta h$$
 as % of $\Delta h = \frac{error \text{ in } \Delta h}{correct \text{ value of } \Delta h \text{ value}} * \frac{100}{1}$

$$\Rightarrow ERROR = \frac{\Delta h - [(d_1 - \Delta d_1) - (d_2 - \Delta d_3)]}{correct \Delta h \text{ value}} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta h - [(d_1 - \Delta d_1) - (d_3 - \Delta d_3)]}{\Delta h} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta h - [d_1 - d_3 + \Delta d_3 - \Delta d_1]}{\Delta h} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta h - \Delta h - (\Delta d_3 - \Delta d_1)}{\Delta h} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta d_1 - \Delta d_3}{\Delta h} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta d_1 - \Delta d_3}{\Delta h} * \frac{100}{1}$$

$$\Rightarrow ERROR = \frac{\Delta d_1 - \Delta d_3}{d_1 - d_3} * \frac{100}{1}$$
(Equation 3.14)

Let us assume that the variations in the water surface level will cause the same measurement errors Δd_1 and Δd_3 for the two flow measuring configurations. It is now evident from equation 3.14 that the error made in Δh and also the error in the flow rate Q will be greater for the measuring configuration shown in figure 3.14. The reason for this is that a smaller water surface level difference (Δh) is observed for the same value of ($\Delta d_1 - \Delta d_3$) in the figure 3.14-configuration. It is for this reason that the configuration in figure 3.15 has been adopted.

The above discussion can be summarised by the detail in photo 3.2. Note that Δh_1 depicts the normal water surface level difference used by methods such as D'Aubuisson, Nagler and the "Bridge damming formula" being measured by the two water level recorders shown on photo 3.2. By measuring the water surface level difference next to the pier (Δh_2) it is possible to obtain a larger water surface level difference and therefore better accuracy.

Photo 3.2: A typical water surface profile at a bridge pier during flood conditions, Δh_1 showing the normal water surface level difference measured at bridge piers and Δh_2 the pressure difference obtained by measuring pressures next to the pier

Such an approach is not only more accurate, but is at the same time also fundamentally sound because it is based on the fact that water becomes stationary at the stagnation point upstream of a pier making a reliable estimate of the flow velocity possible here.

Application of the Energy equation in terms of measured pressures and water depths at bridge piers:

Introduction, the Pitôt tube theory (White, 1986):

Flow measurement at bridges based on the measurement of pressures around piers relies on the existence of a stagnation point. A measuring device which has long been in use to measure flow velocities and which is based on the principle of conservation of energy between a stagnation point and flow elsewhere, has prompted investigations into the possible use of a pier for flow measurement. The instrument or measuring device is called a Pitôt-tube. The principle on which the Pitôt-tube works and the analogies between this simple measuring device and a pier as flow measuring device are set out in the following paragraphs.

A typical layout of a Pitôt-tube is depicted in *figure 3.16* (lay-outs differ but they all work on the same principle):

Figure 3.16: A typical Pitôt-tube for measuring stream velocity; $p_0 = \text{dynamic}$ or stagnation pressure, $p_z = \text{hydrostatic pressure}$, $h = p_0 - p_z$ (White, 1986)

The $Pit\hat{o}t$ -tube essentially measures the difference between the dynamic (stagnation pressure) and hydrostatic pressure along a streamline. Note that $\mathbf{p_0}$ represents the dynamic or stagnation pressure and $\mathbf{p_s}$ the hydrostatic pressure or free flow pressure. On the side of the $Pit\hat{o}t$ -tube there are holes to measure the static pressure $\mathbf{p_0}$. As liquid inside the tube is stagnant, the approaching liquid will be decelerated to zero velocity. The pressure at this opening represents the dynamic or stagnation pressure $\mathbf{p_0}$. The

pressures **p**₀ and **p**_s are not measured separately but the difference between them is recorded by using the manometer as shown in *figure 3.16*.

Energy losses for flow past the Pitôt-tube are small and *Bernoulli's* energy equation therefore gives accurate results.

For incompressible fluids along a stream line (broken line in figure 3.16) with small energy losses:

$$\frac{p_s}{\rho g} + \frac{v_s^2}{2g} + z_s \approx \frac{p_o}{\rho g} + \frac{v_o^2}{2g} + z_o \qquad (Equation 3.15)$$

By taking a horizontal streamline $z_0 = z_s$, equation 3.15 can be simplified giving the following result:

$$v_s = \sqrt{\frac{2(p_o - p_s)}{\rho}}$$
(Equation 3.16)

Where v_0 has been taken as ≈ 0

This equation is known as the *Pitôt*-formula and is named after a French Engineer who developed the instrument in 1732 (White, 1986).

There is a resemblance between a Pitôt-tube and a bridge pier:

Figure 3.17: Typical flow lines around a bridge pier, $p_0 \equiv$ dynamic or stagnation pressure, $p_s \equiv$ hydrostatic pressure

Figure 3.18: The same flow set-up as shown in figure 3.17, pressure and pressure differences in terms of manometer levels and manometer level differences

Applying Bernoulli's energy equation for open channel flow along the dotted line (between the straight arrows) in *figure 3.17* and assuming that water may be regarded as incompressible in this case:

$$y_0 + \frac{v_0^2}{2g} + z_0 = y_1 + \frac{v_1^2}{2g} + z_1$$
 (Equation 3.17)

Adopting a horizontal river bed alongside the bridge pier, the term $(\mathbf{z_s} - \mathbf{z_0})$ will be zero and y_o and y_s are the flow depths. We also assume that only small frictional and transitional losses occur over the short distance between points "0" and "s". This assumption is justifiable as the transitional losses occur mainly downstream of the pier and friction losses are small. The positioning of point "s" is upstream of the downstream end of the pier, i.e. upstream of the region where the main transitional losses occur in break-away eddies.

A stagnation point exists at the pier head and $v_s \approx 0$. Equation 3.17 becomes:

$$y_0 + 0 = y_1 + \frac{v_1^2}{2g}$$

$$\Rightarrow v_1^2 = 2g(y_0 - y_1)$$

$$\Rightarrow v_2 = \sqrt{2g(y_0 - y_2)}$$

$$y_0 = \frac{p_0}{\gamma} \text{ and } y_1 = \frac{p_2}{\gamma}$$
(Equation 3.18)

The pressure distribution in open channel flow is hydrostatic if flow is either uniform or stagnant, therefore:

$$p = \rho gy$$

 $\Rightarrow y = \frac{p}{\rho g}$

Substitute y as defined above into equation 3.18:

$$\Rightarrow v_s \approx \sqrt{\frac{2g}{\rho g}(p_o - p_s)}$$

$$\Rightarrow v_s \approx \sqrt{\frac{2(p_s - p_s)}{\rho}}$$
 (Equation 3.19)

This equation corresponds with the previous equation for the Pitôt-tube (equation 3.16).

This relationship forms the basis of flow measurement by means of pressure recordings alongside bridge piers based on the *energy principle*.

Theory (Application of the Energy equation in terms of measured pressures and water depths at bridge piers):

The following approach uses the energy equation express the flow rate **Q** in terms of measurable flow variables in the vicinity of the pier.

Consider the energy equation of Bernoulli:

$$\frac{\alpha \overline{v_1}^2}{2g} + y_1 + z_1 = \frac{\alpha \overline{v_2}^2}{2g} + y_2 + z_2 + \sum h_{t_{1-2}} + h_{f_{1-2}}$$
 (Equation 3.20)

This equation is applicable along any streamline. By applying this equation between points **F** and **G** and **I** (figure 3.5) respectively, we end up with two possible flow rate equations in terms of flow variables at sections **1**, **2** and **4** (figure 3.5).

Consider firstly a flow line taken between \mathbf{F} and \mathbf{G} . By ignoring frictional losses since the distance is very short, the term $\Sigma \mathbf{h}_{fl-2}$ (equation 3.20) can be eliminated:

$$\frac{\alpha \bar{v}_{F}^{2}}{2g} + y_{F} + z_{F} = \frac{\alpha \bar{v}_{G}^{2}}{2g} + y_{G} + z_{G} + h_{L_{F-G}}$$
 (Equation 3.21)

hLF-G represents the transitional losses between positions F and G.

Assuming a horizontal bed around the pier, i.e.:

$$z_F = z_G$$

Substituting $\mathbf{z_F} = \mathbf{z_G}$, equation 3.21 simplifies to:

$$\frac{\alpha \bar{v}_{F}^{2}}{2g} + y_{F} = \frac{\alpha \bar{v}_{G}^{2}}{2g} + y_{G} + h_{L_{F-G}}$$
 (Equation 3.22)

A stagnation point forms at **G** where the water is decelerated to zero velocity next to the upstream head of the pier. We can therefore set:

$$v_{G} \approx 0$$

$$\Rightarrow \frac{v_{G}^{-1}}{2g} \approx 0$$

$$\Rightarrow \frac{\alpha \overline{v_{F}}^{-1}}{2g} + y_{F} = y_{G} + h_{L_{F-G}}$$

$$\Rightarrow v_{F}^{-2} = \frac{2g}{a} [(y_{G} - y_{F}) + h_{L_{F-G}}]$$

$$\Rightarrow v_{F} = \sqrt{\frac{2g}{a}} [(y_{G} - y_{F}) + h_{L_{F-G}}]$$
(Equation 3.23)

Applying the continuity equation to section 1 at F (figure 3.5):

$$Q = \overline{v}_1 A_1 = \overline{v}_F A_F = \overline{v}_F B y_F$$

This implies that we assume a uniform flow depth over the width at **section 1** and therefore also uniform velocity. This is a reasonable assumption for the flow at **section 1** has not yet experienced any contraction. Using the energy and continuity results together:

$$\begin{aligned} v_F &= \frac{Q}{B_F y_F} = \sqrt{\frac{2g}{a} \left[\left(y_G - y_F \right) + h_{L_{F-G}} \right]} \\ \Rightarrow Q &= B_F y_F \sqrt{\frac{2g}{a} \left[\left(y_G - y_F \right) + h_{L_{F-G}} \right]} = C_d B_F y_F \sqrt{\frac{2g}{a} \left[\left(y_G - y_F \right) \right]} \end{aligned}$$
(Equation 3.24)

The C_d-value is known as a flow correction factor and compensates for transitional losses and simplified assumptions made in the energy based model.

By considering secondly a streamline along **GI** we find exactly the same form of equation as equation 3.24, but in terms of flow characteristics at **G** and **I** (figure 3.5).

$$Q = C_d B_t y_t \sqrt{\frac{2g}{a}} [(y_G - y_t)]$$
 (Equation 3.25)

Results (Energy based flow rate equation):

Both equation 3.24 and equation 3.25 (preferred) were calibrated using model data and very good results were obtained in terms of C_d-values. The data used for the calibration process were obtained from tests done by Retief (1998) in the Hydraulics Laboratory at the University of Stellenbosch.

The energy-based theory is simple and gives good results within a narrow accuracy band. C_d-values varied from **0.89** to **1.03** for the "normal flows" (control forming within the pier opening), it varied from **0.95** to **1.04** for the case of debris accumulation and varied from **0.82** to **0.97** for drowned conditions. This means that the purely theoretical flow rates differed from the real flow rates by a maximum value of **11%** for the supercritical flows, **5%** with debris accumulation and **18%** for drowned conditions. Refer to section 3.9 for graphs based on the energy theory applied to Retief's data. Refer to Appendix A "Energy Approach" for the laboratory data and results.

3.7 MOMENTUM APPROACH:

Derivation:

Newton's second law has been linked in the previous section to "The Law of the Conservation of Energy" which has been used to find a flow rate equation in terms of flow variables for the pier flow lay-out. In this section the Law of Conservation of Momentum is considered in order to find a flow rate equation. It will be shown that this law also originates from Newton's second law.

Definitions of symbols:

a: Acceleration of the particle [m/s²]

m: Mass of the particle [kg]

Fres: Resultant force acting upon as system [N]

v: Velocity of flow [m/s]

dx: Small increment in variable x [dim of x]

dx/dt: Time derivative with respect to variable x [non dim]

I₁₋₂: Impulse transferred to a particle within a time equal to t₂-t₁ [kg.m/s]

M: Momentum [kg.m/s]

 $F_{res} = ma$

$$\Rightarrow F_{res} = m \frac{dv}{dt}$$

$$\Rightarrow F_{res}.dt = m.dv$$

$$\Rightarrow (\sum dF)dt = m.dv$$

$$\Rightarrow \int_{t_1}^{t_2} \left(\sum_{t} dF \right) dt = \int_{t_1}^{t_2} m . dv$$

$$\Rightarrow Impulse = I = mv_2 - mv_1 = m\Delta v$$
 (Equation 3.26)

$$\Rightarrow I_{1-2} = M_2 - M_1$$

Note that the l_{1-2} -term (l = force multiplied by time) represents an impulse. Equation 3.26 basically states that if an impulse l_{1-2} is transferred to an object with constant mass m, it will give rise to a change in velocity Δv over a short time interval $\Delta t = t_2 - t_1$.

This result is known as the principle of linear impulse and momentum. Momentum is defined as the product of mass and velocity with units of [kg.m/s].

The Law of Conservation of Momentum can be described for fluid mechanics as follows (Hibbeler, 1992):

Figure 3.19: A small particle with mass dm forms part of a fluid mass flowing from section 1 to section 2

Starting with the principle of linear impulse and momentum:

$$M_{I} + I_{I-2} = M_{2}$$

$$\Rightarrow dm.v_{I} + m\overline{v} + \sum F_{I-2}.dt = dm.v_{2} + m\overline{v}$$

$$\Rightarrow \sum F_{I-2}.dt = dm.v_{2} - dm.v_{1}$$

$$\Rightarrow \sum F_{I-2} = \frac{dm}{dt}(v_{2} - v_{1})$$

$$\Rightarrow F_{res} = \frac{d}{dt}(m)(v_{2} - v_{1})$$

$$\Rightarrow F_{res} = \frac{d}{dt}(\rho V)(v_{2} - v_{1})$$

$$\Rightarrow F_{res} = \rho Q(v_{2} - v_{1})$$

$$\Rightarrow F_{res} = \rho Qv_{2} - \rho Qv_{3} = \rho Qv_{3} - \rho Qv_{4}$$
(Equation 3.27)

Equation 3.27 is known as the momentum equation in fluid mechanics. Note that reference is made to a momentum equation even though the terms have units of force. The reason is that the equation is based on momentum principles, or the change in momentum with time.

An overview of drag forces (Webber, 1971):

This study focused on the flow patterns around a bridge pier in order to determine the possibility of using it as a flow measuring structure. One possible approach is to use drag force theory considering a liquid and a stationary object (in our case) which experience relative movement.

The bridge pier exercises a force on the passing stream. According to Newton's Third Law (N III) the liquid will also exercise a force of the same magnitude but opposite in direction on the bridge pier.

Drag forces are observed in everyday life. Take for example a boat in a river. If it were not for an anchor holding the boat in position, the boat would drift off in the flow direction. If the boat was to be anchored, which force was to cause the tensile stress in the anchor rope? It should be a force that originates from the flowing current which acts upon the boat and is then transferred to the anchor rope. This force acting on the boat is nothing else but a drag force — this is pure evidence of the existence of drag forces exerted by flowing currents on objects.

Consider the plan view of a bridge pier in figure 3.20 and figure 3.21:

Figure 3.20: Flow lines around a bridge pier for the case of an ideal fluid

Figure 3.21: Flow lines around a bridge pier for the case of turbulent flow of a nonideal fluid

For an ideal fluid (figure 3.20), no viscous drag forces exist. In addition to this the symmetrical arrangement of flow lines implies that the effective force due to pressure differences will be zero and this being the only force, the drag force will be zero.

For the case of turbulent flow (figure 3.21), which is typically found in rivers, we find that the symmetrical flow pattern becomes disturbed. The flow lines break away from the surface near the downstream end of the pier and rotating eddies start forming. A reduction in the pressure force acting on the downstream end of the pier results and we find an unbalanced system in terms of upstream and downstream forces acting on the pier. This pressure difference forms the main contribution to the total drag force

experienced by blunt piers. Consider figure 3.22 showing the forces acting on a typical pier:

Figure 3.22: Elemental forces acting on area dA of a typical pier; p.dA forms an angle of θ with the flow direction and $\tau.dA$ an angle of $(90-\theta)$

The forces acting on a small elementary area dA of the pier can be split into two components, a force p.dA normal to the surface and a shear force τ.dA working in a tangential direction to the pier surface. Taking both forces' components in a direction parallel to the flow direction and summing them, the resultant force dF follows:

$$dF = p \cos(\theta) dA + \tau \sin(\theta) dA$$

Integrating dF around the pier:

$$F = \int p \cos(\theta) dA + \int \tau \cos(\theta) dA$$

$$\Rightarrow F = F_s + F_s$$
(Equation 3.28)

The force F is the total drag force and is the sum of F_p , the pressure drag force or form drag force and F_s , the surface drag force or skin friction drag force. The relative contributions of these two forces depend mainly on the shape and size of the obstruction within the flowing stream. It is clear that a blunt object will give rise to strong eddy formation at the downstream end leading to a larger contribution of F_p than of F_s . On the other hand, one will find that a streamlined obstruction orientated with its longest axis parallel to the flow direction will experience a much greater contribution of F_s than of F_p .

A streamlined "aerofoil" is the most effective shape to ensure a minimum drag force. This shape would be ideal for a pier seen from a hydraulic resistance point of view, but due to structural and aesthetical considerations only a limited amount of streamlining is possible in general.

The drag coefficient C_d represents the ratio of the true drag force relative to the dynamic force:

$$C_4 = \frac{F}{\frac{1}{2}\rho v^2 A}$$
 (Equation 3.29)

Note that **v** represents the relative velocity and **A** the projected area of the object measured in a plane perpendicular to the flow direction. The direct measurement of the drag force is usually done in wind tunnels, canals, towing tanks etc.

The form drag F_p can be determined by measuring the pressures along the surface of an obstruction with a stream of water or air flowing past. Integrating over the total surface area yields the form drag. The surface drag F_s can be determined if the total drag F and form drag F_p are known, from:

$$F = F_p + F_s \tag{Equation 3.30}$$

Large contributions to \mathbf{F} in the form of $\mathbf{F}_{\mathbf{p}}$ go hand in hand with large transitional energy losses. $\mathbf{F}_{\mathbf{p}}$ is usually associated with eddying motion leeward of the obstruction. Eddies are associated with changes in both the direction and the magnitude of the flow velocity and give rise to transitional energy losses which occur mainly downstream of the pier.

Forces acting on bridge piers:

The typical design problem constitutes the calculation of forces in the flow direction that will have an impact on the structure under investigation. These forces can be calculated using the following equation:

$$F = \frac{1}{2}C_4 \rho L v^2 y \qquad (Equation 3.31)$$

Definitions of symbols:

F: drag force on the pier [N]

Cd*: drag coefficient (equation 3.29) [non dim]

ρ: mass density of fluid under investigation [kg/m³]

L: length of the obstruction [m]

v: velocity of fluid [m/s]

y: height to which flow dams up at the upstream side of the obstruction [m]

It is clear from equation 3.31 that for calculating **F**, the velocity **v** should be known, therefore, the flow rate **Q** needs to be known - whether estimated from measurements or calculated.

Conventional applications of the Momentum equation with respect to flow measurement

It is normally used to calculate forces on bridge piers knowing the flow rate. Basson's (1990) study made use of the Momentum equation in order to calculate forces on bridges during high flows and knowing the forces he was able to calculate the drag coefficients from the general drag formula. The following are typical formulae for calculating the drag forces on bridge piers and could be used in conjunction with the Momentum equation to calculate the respective drag coefficients (when the flow rate is known) or to calculate the flow rate when accurate values of drag coefficients are known.

The following formulae were taken form Basson's (1990) work on damming at bridges and can all be used to calculate the forces acting on bridge piers.

The Ontario format:

$$F = \frac{\rho C_b A v^2}{2}$$
 (Equation 3.32)

Definitions of symbols:

F: The force exerted on the bridge pier [N].

A: Projected pier area perpendicular to the flow direction [m2].

C_D: Drag coefficient according to the pier shape: Rectangular (C_D = 1.4); Rounded (C_D = 0.7); Sharp nose (C_D = 0.8); Debris accumulating around a rectangular pier (C_D = 1.4) [non dim].

ρ: Mass density of water [1000 kg/m³]

v: Flow velocity [m/s]

The South African format:

$$F = KA_{\nu}^{2}$$

(Equation 3.33)

Definitions of symbols:

- F: The force exerted on the bridge pier [kN].
- A4: Projected pier area perpendicular to the flow direction [m2].
- K: Coefficient which is a function of the pier shape [non dim].
- v: Flow velocity [m/s]

The Apelt&Isaacs format:

$$F = C\rho v^2 y \frac{L}{2}$$

(Equation 3.34)

Definitions of symbols:

- F: The force exerted on the bridge pier [N]
- L: Length or diameter of pier [m]
- C: Coefficient of drag [non dim]
- v: Approach flow velocity [m/s]
- ρ: Mass density of water [1000 kg/m³]

The general drag force equation:

$$F = \rho \frac{A_p}{2} v_{s2N}^2 C_p$$

(Equation 3.35)

Definitions of symbols:

F: The force exerted on the bridge pier [N]

C_D: Hydrodynamic drag coefficient [non dim]

 v_{n2N} : Approach flow velocity [m/s]

ρ: Mass density of water [1000 kg/m³]

 A_p : Projected pier area in line with the flow direction, taken to be bounded by the

upstream water surface level [m2]

Application of the Momentum principle in terms of measured pressures and water depths at bridge piers:

Introduction:

A formula is sought which can express the flow rate in terms of measurable flow parameters at bridge piers by applying the fundamental laws of fluid mechanics. In this section we focus on the application of the Momentum equation in order to find a formula for Q.

Theory (Application of the Momentum principle in terms of measured pressures and water depths at bridge piers):

The Momentum equation is applicable to a control volume and not to a streamline as is the case with the energy equation. A suitable control volume should be enclosed by sections where the velocity and depth do not change across each section. Such sections were earlier identified as sections 1, 3, 4 and 5 (figure 3.5). Section 2 does not comply with the criteria for a suitable section due to the damming around the pier and the variation in water depth over the width. Section 5 is situated downstream of the pier. Between section 4 and section 5 large eddies form implying high transitional energy

losses, as well as momentum transfer and this section has therefore not been used as a control volume boundary. Only sections 1, 3 and 4 were identified as being suitable. To ensure measurable water level differences, the 1-3 and 1-4 combinations of sections were selected.

The derivation of the Momentum based flow rate equation follows the same steps for each of the two combinations and therefore only the 1-3 combination's derivation is shown.

The momentum equation states:

$$F_{res} = \sum_{res} F = \rho Q v_{learing} - \rho Q v_{enering}$$
 (Equation 3.36)

The 1-3 combination corresponds to control volume ACMK (refer to figure 3.5). The resultant force F_{res} is made up of the two hydrostatic forces acting at sections 1 and 3 as well as the drag force due to the pier, therefore:

$$\frac{1}{2}\rho g y_1^2 B_1^2 - \frac{1}{2}\rho g y_3^2 B_3^2 - F_{pier} = \rho Q v_3 - \rho Q v_1$$

$$\Rightarrow \frac{1}{2}\rho g y_1 B_1^2 - \frac{1}{2}\rho g y_3 B_3^2 - \frac{1}{2}\rho C_4^2 A v_1^2 = \rho Q v_3 - \rho Q v_1 \qquad (Equation 3.37)$$

The "general drag force equation" ($F = \frac{1}{2}\rho C_d Av^2$), as discussed in the previous section (p.56 and p.58) is used to represent the pier force F_{pier} in equation 3.37.

From the continuity law:

$$Q = v_1 y_1 B_1 = v_3 y_3 B_3$$

$$\Rightarrow v_1 = \frac{Q}{y_1 B_3} en v_2 = \frac{Q}{y_3 B_3}$$

Substitute these terms into equation 3.37:

$$\frac{1}{2}\rho g y_1^2 B_1 - \frac{1}{2}\rho g y_3^2 B_3 - \frac{1}{2}\rho C_4 A \left[\frac{Q^2}{y_1^2 B_1^2} \right] = \rho Q \left[\frac{Q}{y_3 B_3} \right] - \rho Q \left[\frac{Q}{y_1 B_1} \right]$$

After simplification:

$$Q = C_4 \sqrt{\frac{\frac{1}{3}g(y_1^2 B_1 - y_3^2 B_3)}{\frac{1}{y_1 B_3} - \frac{1}{y_1 B_1} + \frac{C_4 \cdot A^*}{y_2 B_2^2}}}$$
 for the **1-3** combination of sections or

$$Q = C_4 \sqrt{\frac{\frac{1}{3} g(y_1^2 B_1 - y_4^2 B_4)}{\frac{1}{y_1 B_4} - \frac{1}{y_1 B_4} + \frac{C_4^* A^*}{2y_1^2 B_2^2}}}$$
 for the **1-4** combination of sections (Equations 3.38)

Note that C_d is the drag coefficient and C_d the flow correction factor. C_d represents the ratio between the real flow rate and the theoretical flow rate compensating for transitional losses.

Results:

Retief's data were used to calibrate equation 3.38. A drag coefficient of C_d = 0.7 was used as recommended by the Ontario Bridge Design Code for the pier shape (bull nose) to which Basson (1992) refers in his work on hydraulic forces on bridges. He suggested that larger values for C_d of up to 3 could possibly apply. The results of the laboratory

tests confirmed this. During the calibration process the value of $\mathbf{C_d}$ for each model pier (1-4 section combination only) was determined in order to see whether this value changes with the pier width and with flow rate. In order to calculate $\mathbf{C_d}$, the value of $\mathbf{C_d}$ was set equal to one. $\mathbf{C_d}$ values varied from 3 to 7 confirming the potential underestimation of the drag force on bridge piers for high flows.

The goal with the calibration process was to see whether stable C_d -coefficients could be found in order to use equation 3.38 as a reliable flow rate equation. As the flow rate is not greatly dependent on the drag force (and therefore on C_d), a C_d -value of 0.7 was adopted for the bull-nose shaped pier. The C_d -value was therefore fixed and the calibration process merely required the calculation of the C_d -value for each respective flow rate.

It was surprising to note that the C_d -values did not vary much and were close to unity (especially for the 30 mm pier). This implies firstly that the flow rate is not very sensitive to the drag force and therefore to the C_d -value in terms of the Momentum based theory (if the drag force is defined in terms of the upstream velocity). Secondly, the Momentum theory proves to work well even if a constant C_d -value is assumed, and can therefore be used to calculate the flow rate with relatively good accuracy.

The flow rate according to laboratory data has been overestimated by equation 3.38 and errors varied between +9% and +19% (constant C_d^* -value assumed) for supercritical flows where a control section occurred within the pier length.

One of the drawbacks of the momentum based flow equation is the fact that the flow rate Q is defined in terms of depths y_1 and y_4 whilst in practice y_2 and y_4 will be measured.

The 1-3 combination gave C_d-values that varied from 0.78 to 1.09 whilst the 1-4 combination of sections gave values of C_d from 0.81 to 0.90. The 1-4 combination was identified as the most suitable configuration to use in order to obtain the least variable

C_d-coefficients. The C_d-values for the condition with debris varied from 0.80 to 0.98 and for the drowned conditions from 0.50 to 0.87. Refer to Appendix A "Momentum Approach" for the laboratory data and results.

3.8 POWER APPROACH:

Derivation:

In the previous section the momentum equation was derived from **Newton II**. It was also shown that a flow rate equation could be derived using the Law of the Conservation of Momentum. In this section the focus is transferred to the concept of the time derivative of work. **Newton II** will again be used to show that the Power Law originates from it. A flow rate equation based on the Power Law is also derived.

Power is defined as the rate at which work is performed:

Definitions of symbols:

P: Power [N.m/s = Watt]

W: Work [J]

t: time [s]

F: Force [N]

v: Velocity of flow [m/s]

dx: Small increment in variable x [dim of x]

dx/dt: Time derivative with respect to variable x [non dim]

ε_k: Kinetic energy at a specific section [J = N.m]

ε_n: Potential energy at a specific section [J = N.m]

$$P = \frac{work}{time} = \frac{W}{t} = \frac{dW}{dt}$$
 (Equation 3.39)

$$\Rightarrow P = \int dP = \int \left(\frac{dW}{dt}\right)$$

We define work as the product of force and distance viz. W = Fs:

$$\Rightarrow P = \int \frac{d(Fs)}{dt} = F \int \frac{ds}{dt} = F \int dv = F.v$$

The equation for the Conservation of Power can be derived from the basic energy equation which originates from Newton's second law.

$$\varepsilon_{\rho_1} + \varepsilon_{k_1} + \sum U_{1-2} = \varepsilon_{\rho_2} + \varepsilon_{k_2}$$
 (Equation 3.40)

$$\Rightarrow \sum U_{1-2} = (\varepsilon_{\rho_1} - \varepsilon_{\rho_1}) + (\varepsilon_{k_2} - \varepsilon_{k_1})$$

Take the time derivative on both sides:

$$\Rightarrow \frac{d}{dt} \left(\sum U_{1-2} \right) = \frac{d \left(\Delta \varepsilon_p \right)}{dt} + \frac{d \left(\Delta \varepsilon_k \right)}{dt}$$
 (Equation 3.41)

Equation 3.41 implies that the "net power" of a system represents the rate at which potential energy ε_p changes between sections 1 and 2 plus the rate at which the kinetic energy ε_k changes between the same two sections.

Take the example of a ship moving at a constant velocity v along a horizontal trajectory.

Applying equation 3.41 to our example problem and writing the left-hand side in terms of parameters describing movements, we find the following (note that LHS = Left hand side of equation 3.41):

Definitions of symbols:

LHS: Left Hand Side of equation 3.41 [N.m/s = Watt]

RHS: Right Hand Side of equation 3.41 [N.m/s = Watt]

F_i: Force associated with a specific action, mechanical, friction etc. [N]

 F_{res} : Resultant force, resultant of forces $\Sigma F_i[N]$

v: Velocity of the ship relative to the water mass [m/s]

U₁₋₂: Work performed by the resultant force F_{res} from point 1 to point 2 [J]

m: Mass of the ship [kg]

g: Unit gravitational force [m/s²]

h: Vertical distance measured from a specific datum line [m]

mgh: General product for potential energy [J]

1/2mv2: General product for kinetic energy [J]

$$LHS = \frac{d}{dt} \Big(\sum U_{\scriptscriptstyle 1-2} \Big) = \frac{d}{dt} \Big[F_{\scriptscriptstyle ship_engine} . v - F_{\scriptscriptstyle uir\,resistance} . v - F_{\scriptscriptstyle uir\,resistance} . v \pm F_{\scriptscriptstyle uir\,resistance} . v \pm F_{\scriptscriptstyle uir\,resistance} . v \Big] = \frac{d}{dt} \Big[F_{\scriptscriptstyle res} . v \Big]$$

The right hand side of the equation may be written as follows:

$$RHS = \frac{d(mgh_2 - mgh_1)}{dt} + \frac{d(\frac{mv_1^2}{2} - \frac{mv_1^2}{2})}{dt} = \frac{d(mgh - mgh)}{dt} + \frac{d(\frac{mv^2}{2} - \frac{mv^2}{2})}{dt} = \frac{d(0)}{dt} = 0$$

The right hand side of equation 3.41 equals zero as can be seen above. For the equation to hold, the left-hand side needs to be zero too, this means the net power should be zero. This is indeed true because the ship moves at a constant velocity and therefore experiences no acceleration. This is true because there are no unbalanced forces resulting

in a zero resultant force. A zero resultant force implies zero net work and therefore zero net power. This agrees with the zero RHS of the equation. Therefore, this simple example shows that the net power (time derivative of the work done by the net or resultant force) equals the rate of change in kinetic energy plus the rate of change in potential energy.

Application of the Power equation in terms of measured pressures and water depths at bridge piers:

Introduction:

The following equation states "The law of the conservation of power". It was derived earlier on and was shown to be a time derivative of the total energy equation. In this section the power equation will be used to show its application in terms of pressures at bridge piers for the measurement of flow rates.

Consider the power equation as derived earlier:

$$\frac{d}{dt} \left[\sum_{i=2}^{n} U_{i-2} \right] = \frac{d}{dt} \left(\Delta \varepsilon_p \right) + \frac{d}{dt} \left(\Delta \varepsilon_k \right)$$
 (Equation 3.42)

This equation states that the change in power between section 1 and 2 as depicted in terms of the change in potential and kinetic energy (RHS of equation 3.42), should equal the change in power between the same two sections, generated by the resultant force acting upon the system under investigation. The resultant and dominating force has been identified as the total drag force on the pier.

The impact of secondary forces as contributors to the resultant force has been ignored in the power approach for they are of much smaller value than the total drag force.

Derivation (Application of the Power equation in terms of measured pressures and flow depths at bridge piers):

Rewriting equation 3.42 in terms of drag power:

$$\Rightarrow \kappa P_{pierdrag} = \frac{d(\Delta \varepsilon_p)}{dt} + \frac{d(\Delta \varepsilon_s)}{dt}$$
(Equation 3.43)

Define the potential energy ε_p as follows:

$$\varepsilon_{p} = mgy$$

$$\Rightarrow \Delta \varepsilon_{p} = mg\Delta y$$

$$\Rightarrow \frac{d}{dt} (\Delta \varepsilon_{p}) = \Delta \frac{d}{dt} (mgy) = \Delta \left[gy \frac{d}{dt} m \right]$$

$$\Rightarrow \frac{d}{dt} (\Delta \varepsilon_{p}) = \Delta \left(gy \rho \frac{dV}{dt} \right) = \Delta (\rho gy Q) = \rho g Q \Delta y$$
(Equation 3.44)

Define the kinetic energy Ek as follows:

$$\varepsilon_k = \frac{1}{2} m v^2$$

 $\Rightarrow \Delta \varepsilon_k = \frac{1}{2} m \Delta (v^2)$

$$\Rightarrow \frac{d}{dt} (\Delta \varepsilon_k) = \Delta \frac{d}{dt} (\frac{1}{2} m v^2) = \Delta \left(\frac{1}{2} v^2 \frac{dm}{dt} \right)$$

$$\Rightarrow \frac{d}{dt} (\Delta \varepsilon_k) = \Delta \left(\frac{1}{2} v^2 \frac{d}{dt} (\rho V) \right)$$

$$\Rightarrow \frac{d}{dt} (\Delta \varepsilon_k) = \Delta \left(\frac{1}{2} \rho v^2 Q \right) = \frac{1}{2} \rho Q \Delta v^2$$
(Equation 3.45)

Substitute the time derivative terms into equation 3.43:

$$\Rightarrow \kappa P_{pirton} = \rho g Q \Delta y + \frac{1}{2} \rho Q \Delta (v^2) \qquad (Equation 3.46)$$

The drag force on the pier can be described in terms of the momentum equation, the force being defined in terms of the momentum equation. Suppose sections A and B are such that they enclose a control volume and comply with criteria for the application of the momentum equation. We define the drag force (as referred to in terms of pier drag power) as follows:

Figure 3.23: A control volume for the application of the momentum equation; section A being the inflow section and section B the outflow section

The following derivation relates to figure 3.23:

$$\sum F = F_{rec} = \rho Q v_{tearing} - \rho Q v_{searing}$$

$$\Rightarrow \frac{1}{2} \rho g y_A^2 B_A - \frac{1}{2} \rho g y_B^2 B_B - F_{pirr} = \rho Q v_B - \rho Q v_A$$

$$\Rightarrow F_{rec} = \frac{1}{2} \rho g \left(y_A^2 B_A - y_B^2 B_B \right) - \rho Q \left(v_B - v_A \right)$$
(Equation 3.47)

By expressing the drag force on the pier in terms of flow conditions at sections A and B, the applied power associated with the total drag force as a function of water depths and velocities can now be determined. Note the following definition:

$$Power = P = \frac{dW}{dt}$$

and W = Fs

$$\Rightarrow P = \frac{d(Fs)}{dt} = F \frac{ds}{dt} = Fv$$

The power associated with the total drag force can be expressed as the product of the drag force and the applicable relative flow velocity. The significant flow velocity and the associated section where this velocity is found, will be treated later. If we consolidate all the applicable definitions concerning the power approach, it is possible to derive a flow rate equation:

Substitute Fpier drag (equation 3.47) into equation 3.46:

$$\Rightarrow \kappa \left[\frac{1}{2} \rho g \left(y_{A}^{2} B_{A} - y_{B}^{2} B_{B}\right) - \rho Q \left(v_{B} - v_{A}\right)\right] v = \rho g Q \left(y_{B} - y_{A}\right) + \frac{1}{2} \rho Q \left(v_{B}^{2} - v_{A}^{2}\right)$$
(Equation 3.48)

From the continuity law:

$$O = vA = vyB$$

In terms of sections A and B:

$$Q = v_A y_A B_A = v_B y_B B_B \tag{Equation 3.49}$$

Rewriting equation 3.49 with v_A and v_B as subjects respectively:

$$v_A = \frac{Q}{y_A B_A}; \quad v_B = \frac{Q}{y_B B_B}$$
 (Equation 3.50)

Replace VA, VB and V in equation 3.50 with their respective definitions:

$$\Rightarrow \kappa \left[\frac{1}{2}\rho g\left(y_{A}^{2}B_{A}-y_{B}^{2}B_{B}\right)-\rho Q^{2}\left(\frac{1}{y_{B}S_{B}}-\frac{1}{y_{A}S_{A}}\right)\right]\frac{\varrho}{\gamma\delta}=\rho gQ\left(y_{B}-y_{A}\right)+\frac{1}{2}\rho Q\left(\frac{\varrho^{2}}{y_{B}^{2}S_{B}^{2}}-\frac{\varrho^{2}}{\gamma_{A}^{2}S_{A}^{2}}\right)$$
(Equation 3.51)

Divide equation 3.51 by \mathbf{Q} (we eliminate the root $\mathbf{Q} = \mathbf{0}$ from the $\mathbf{3}^{rd}$ degree polynomial, an answer which is irrelevant to our study):

$$\Rightarrow \kappa \left[\frac{1}{2} \rho g \left(y_A^2 B_A - y_B^2 B_B \right) - \rho Q^2 \left(\frac{1}{y_B B_B} - \frac{1}{y_A B_A} \right) \right] \frac{1}{y_B} = \rho g \left(y_B - y_A \right) + \frac{1}{2} \rho \left(\frac{Q^2}{y_B^2 B_B^2} - \frac{Q^2}{y_A^2 B_A^2} \right)$$

Simplifying:

$$Q^{2}\left[\frac{s_{y}}{s}\left(\frac{1}{y_{s}B_{s}}-\frac{1}{y_{A}B_{A}}\right)+\frac{1}{2}\left(\frac{1}{y_{B}^{2}B_{s}^{2}}-\frac{1}{y_{A}^{2}B_{s}^{2}}\right)\right]=g\left(y_{A}-y_{B}\right)+\frac{s_{g}}{2y_{B}}\left(y_{A}^{2}B_{A}-y_{B}^{2}B_{s}\right)$$

Rewriting Q as the subject:

$$Q = \sqrt{\frac{g(y_A - y_B) + \frac{c_F}{2yB}(y_A^2 B_A - y_B^2 B_B)}{\frac{\kappa}{y_B}(\frac{1}{y_B B_B} - \frac{1}{y_A B_A}) + \frac{1}{2}(\frac{1}{y_A^2 B_B^2} - \frac{1}{y_A^2 B_B^2})}}$$
(Equation 3.52)

The term **K** (**kappa**) is a power correction factor. Calibration of equation 3.52 using the laboratory data of Retief (1998) mentioned earlier, resulted in quite favourable results in terms of **kappa** (**kappa** being nearly 1 for the higher flows) values.

Rewriting equation 3.52 into a more conventional discharge equation format requires the elimination of the power correction factor (kappa term) and the introduction of a flow correction factor C_d . The following equation results:

$$Q = C_d Q_{theoretical}$$
 (Equation 3.53)

$$\Rightarrow Q = C_4 \sqrt{\frac{g(y_A - y_B) + \frac{g}{2yB}(y_A^2 B_A - y_B^2 B_B)}{\frac{1}{yB}(\frac{1}{y_B B_B} - \frac{1}{y_A B_A}) + \frac{1}{2}(\frac{1}{y_B^2 B_B^2} - \frac{1}{y_A^2 B_A^2})}}$$
(Equation 3.54)

Calibrating this equation resulted in favourable C_d -values as they did not vary much. The results will be discussed later on.

Units:

It can be shown that all the terms in equation 3.48 have units of power and that the equation is dimensionally homogeneous:

$$\frac{d}{dt}\left(\Delta \varepsilon_{p}\right) = \rho g Q \Delta y = \left[\frac{kg}{m^{3}} \prod_{s}^{m} \prod_{s}^{m}\right] = \left[\frac{kg \cdot m^{2}}{s^{2}}\right]$$
 (Equation 3.55)

$$\frac{d}{dt}\left(\Delta \varepsilon_{k}\right) = \frac{1}{2} \rho Q \Delta v^{2} = \left[\frac{kg}{m^{2}} \prod_{i} \frac{m^{2}}{s^{2}}\right] = \left[\frac{kg.m^{2}}{s^{3}}\right]$$
 (Equation 3.56)

It can be poven that the power term associated with the pier force also possesses units of power, viz:

$$Fv = \frac{1}{2} \rho g y^2 B v + \rho Q v^2 = \left[\frac{kg}{m^2} \prod_{s^2} \prod_{1}^{m} \prod_{1}^{m} \prod_{s} \right] + \left[\frac{kg}{m^2} \prod_{s^2} \prod_{1}^{m^2} \right] = \left[\frac{kg \cdot m^2}{s^2} \right]$$
 (Equation 3.57)

It has been shown above that all the relevant terms in the power equation do possess the units of power.

$$P = \frac{work}{time} = \frac{force.distance}{time} = \frac{mass.acceleration.distance}{time}$$

$$\Rightarrow P = \frac{\begin{bmatrix} \frac{kg}{I} & \prod_{j=1}^{m} & \prod_{j=1}^{m} \\ \frac{kg}{I} & \end{bmatrix}}{\begin{bmatrix} \frac{kg}{I} & \prod_{j=1}^{m} & \dots \\ \frac{kg}{I} & \end{bmatrix}} = \begin{bmatrix} \frac{kg-m^2}{I} & \dots \\ \frac{kg-m^2}{I} & \dots \end{bmatrix}} = \begin{bmatrix} Watt \end{bmatrix}$$
(Equation 3.58)

The power equation is therefore dimensionally homogeneous with units of Watts (W).

Power approach, another perspective:

The following fundamental approach consisted of the balancing of power terms. It included finding expressions for available power and applied power and applying them to a control volume. The available and applied power should be the same for a steady system and the terms were therefore equated.

Consider figure 3.24 showing the applicable parameters describing the available and applied power.

Figure 3.24: Longitudinal flow section taken at a bridge pier; v = flow velocity, F = pier drag force, $\Delta h = water$ level difference and L = length of the pier

The power made available per unit volume according to Rooseboom, (1992) is:

$$P_{available} = \rho gsv$$
 (Equation 3.59)
where $s = slope$.

P_{available} is expressed in terms of a control volume with the upstream section taken to be section 2 and downstream section to be section 4 and centrelines between piers to be the boundaries on the sides (figure 3.5):

$$P_{available} = \rho gsv(AL)$$
 (Equation 3.60)

Note that A represents the average flow area within the control volume and L the length of the control volume. According to the continuity law, Q = vA, substituting it into equation 3.60:

$$\Rightarrow P_{\text{evaluable}} = \rho g s Q L$$
 (Equation 3.61)

Define the energy slope as the average slope between sections 2 and 4 (describing the control volume, figure 3.5):

$$s = \frac{\Delta h}{L}$$

$$\Rightarrow P_{\text{evaluable}} = \rho g \left[\frac{\Delta h}{L} \right] QL = \rho g \Delta h Q = \rho g Q \Delta y \qquad (Equation 3.62)$$

The applied power is made up of the power associated with overcoming friction as well as eddies that are kept in motion. Since most eddies are eliminated from our control volume due to our choice of downstream section (i.e. section 4 rather than section 5) and the fact that the pier drag force dominates, the term Peddies may be eliminated in the following equation.

$$\Rightarrow P_{applied} = P_{eddies} + P_{drag force}$$

$$\Rightarrow P_{applied} = \overline{\tau(\frac{dr}{dr})}AL + Fv$$

$$\Rightarrow P_{applied} \approx Fv \qquad (Equation 3.63)$$

Since a power balance always exists.

 $\Rightarrow P_{available} = P_{applied}$ (based on the total volume, i.e. the control volume)

(Equation 3.64)

Substituting the relevant definitions into equation 3.64:

$$\rho g Q \Delta y = F v \tag{Equation 3.65}$$

Equation 3.65 is similar to the power result found earlier under the paragraph "Derivation". The only difference is that equation 3.65 lacks the following term:

$$\frac{1}{2} pQ \Delta v^2$$

The reason why this term is missing from equation 3.65 follows directly from the assumption of uniform flow implying a constant energy slope between **section 2** and **section 4**, i.e. taking $\mathbf{s} = \Delta \mathbf{h}/\mathbf{L}$. This implied that the velocities were assumed to be the same $(\mathbf{v}_2 = \mathbf{v}_4)$ and resulted therefore in the $\Delta \mathbf{v}^2$ -term in $^{1}/_{2}\rho \mathbf{Q}\Delta \mathbf{v}^2$ to be zero – because $\Delta(\mathbf{v}^2) = \mathbf{v}_2^2 - \mathbf{v}_4^2$.

Although the assumptions which led to equation 3.65 may have been "too simplified", a similar power equation was found just by reasoning and thinking fundamentally in terms of power conservation.

Establishing the relevant velocity associated with the pier drag force:

Boat analogy:

The motivation for the use of the power approach was the analogy that exists between a bridge pier and a boat i.e. that the flow around a pier may be seen to be analogous to a boat being pulled through water. Consider the following figures:

Figure 3.25: Typical longitudinal flow pattern at a bridge pier, water flowing from left to right

Figure 3.26: Moving a boat through a fluid mass towards the left hand side in the sketch

The flow around a pier (figure 3.25) can be visualised as the movement of an idealised boat through stationary water (figure 3.26). The drag force that was referred to earlier, is therefore analogous to the force needed to move the boat through a stagnant water mass at a constant velocity.

The fact that a boat would require a force to be displaced within a fluid, emphasises the fact that a certain amount of power is required to maintain its movement (an amount of power is therefore also associated with the continuous flow of water around a pier). This force, which is equal but opposite in direction to the drag force, causes dissipation of an amount of power. By quantifying the change in power within the defined control volume, in terms of potential and kinetic energy changes and the drag force, the C_d-value can be obtained. With C_d known, the flow rate becomes the only unknown

variable and is therefore quantifiable in terms of measurable flow parameters around the bridge pier. The only unknown term in the rewritten equation (with **Q** as the subject) is the "applicable velocity" which is associated with the pier drag force.

The boat analogy helped us to explain the "applicable velocity", or in other words, the velocity at which the pier drag force is transferred. Assume a flow rate **Q** past a pier reaching equilibrium as the water accelerates around the pier and returns to the normal flow condition downstream. Now: "At which velocity should a boat (analogous to the pier) be dragged through a stationary mass of fluid in order to obtain the same flow conditions as defined above, i.e. the same amount of damming upstream of the pier, the same acceleration around the pier as well as the same draw-down at the downstream end?" This is not an easy question, but can be resolved by considering the relative velocity between the pier and the oncoming flow.

Consider the real situation: The pier is fixed to the bed and a stream approaching at velocity \mathbf{v}_{∞} flows around the pier.

Figure 3.27: Longitudinal section of pier for normal flow conditions

The following variables and their values are applicable to figure 3.27:

$$v_{pier} = 0$$
; $v_{approaching flow} = v_{\infty}$

The relative velocity between pier and the approaching flow is defined as:

$$v_{relative} = v_{pier} - v_{approaching flow} = 0 - v_{\infty} = v_{\infty}$$

This implies that if the observer was to move with the oncoming flow the pier would have seemed to move to the left in figure 3.27 at a velocity of v_{∞} .

Consider the boat analogy now. An idealised boat with the same dimensions as the bridge pier (figure 3.27) is pulled towards the left in figure 3.28 within an endless "ocean" of stationary water. The water depth before movement starts equals the oncoming flow depth in figure 3.27.:

Figure 3.28: Longitudinal section of an idealised boat [having the same dimensions as the bridge pier] being dragged through a stationary mass of water; the pier moves to the left and water flows therefore to the right in the sketch

The following variables and their values are applicable to figure 3.28:

$$v_{boat} = unknown; \quad v_{approach} = 0$$

The relative velocity between the boat and the approaching flow should be the same for the two conditions (real phenomenon (figure 3.27) and analogy (figure 3.28)) to assure that the analogy represents the correct simulation of the real phenomenon.

The relative velocity between steady pier flow and the idealised boat is defined as follows:

$$v_{relative} = v_{boat} - v_{\infty} = v_{boat} - \theta = v_{boat}$$

The relative velocity for the real situation and the analogy should be the same to ensure the same relative velocity in both the real situation and the analogy.

$$\Rightarrow v_{relative} = v_{boat} = -v_{\infty}$$

This implies that the boat needs to be moved with a velocity of \mathbf{v}_{∞} in a direction opposite to the normal flow direction (the negative sign indicates this) in order to ensure the same hydraulic result found with the real phenomenon.

Thus, the "applicable velocity" at which the pier needs to be moved in terms of our analogy should equal the approach velocity. The approach velocity is therefore the correct velocity to use in conjunction with the pier drag force to ensure the correct value of drag power.

The approach velocity is per definition the average velocity found in **section 1** (defined earlier). By equating the applicable velocity (for the pier drag force) to the **velocity at 1** (section 1), the power based discharge equation can now be calibrated.

Define: B = B; $v = v_{\infty} = v_1$; $y = y_{\infty} = y_1$ to obtain the following "general discharge equation" (power based):

$$Q = C_4 \sqrt{\frac{g(y_A - y_B) + \frac{g}{2yB}(y_A^2 B_A - y_B^2 B_B)}{\frac{1}{yB}(\frac{1}{y_B B_B} - \frac{1}{y_A B_A}) + \frac{1}{2}(\frac{1}{y_B^2 B_B^2} - \frac{1}{y_A^2 B_A^2})}}$$
(Equation 3.66)

By defining the geometry of sections A and B, the C_d-valu can be calibrated accordingly:

Calibration of the power based "general flow rate equation" (equation 3.66) in terms of appropriate control volumes:

The power based discharge equation $[Q = f(y^{rs}, B^{rs}, v^{rs})]$ has been defined in general terms for the application between an upstream (section A) and a downstream section (section B) up to now. In order to have been able to calibrate the Q-equation, it was necessary to define a proper control volume in terms of any two of the following sections: 1,2,3,4 and/or 5. The velocity which relates the pier drag force to the pier drag power has already been discussed and was taken as $v_{\infty} = v_1$, the average velocity at section 1.

There are basically only two control volumes that have been identified as being suitable for the application of the power equation. The most important consideration that influenced our decision was the uniformity of water depth and velocity as required at the boundary sections describing the control volume. It was assumed that Q = vBy (flow rate equals velocity times width times depth) which means that constant depths and constant velocities across the two boundary sections were assumed.

The two control volumes referred to are discussed separately:

Control volume 0:

Sections were defined in the following manner for this control volume. The upstream section was taken as **section 1** and the downstream section as **section 3** (this section is halfway between **section 2** and **section 4** in terms of the pier length). Note that the lines AE and KO bound control volume **0** on either side (*figure 3.5*).

The following plan view of a typical pier set-up shows the geometry for control volume

O:

Figure 3.29: Defining the boundary lines of control volume 0

The general flow rate equation (power based) is (note that $\mathbf{v}_{\infty} = \mathbf{v}_1$):

$$Q = C_d \sqrt{\frac{g(y_{in} - y_{out}) + \frac{1}{2} \frac{g}{y_1 B_1} (y_{ip}^2 B_{in} - y_{out}^2 B_{out})}{\frac{1}{y_1 B_1} (\frac{1}{y_{out} B_{out}} - \frac{1}{y_{10} B_{in}}) + \frac{1}{2} (\frac{1}{y_{out}^2 B_{out}^2} - \frac{1}{y_{10}^2 B_{out}^2})}}$$
(Equation 3.67)

Now substitute yout with y3, Bout with B3, yin, with y1 and Bin with B1:

$$\Rightarrow Q = C_4 \sqrt{\frac{g(y_1 - y_3) + \frac{1}{2} \frac{g}{y_1 B_1} (y_1^2 B_1 - y_3^2 B_1)}{\frac{1}{y_1 B_1} (y_2^2 B_1 - y_3^2 B_1) + \frac{1}{2} (\frac{1}{y_3^2 B_3^2} - \frac{1}{y_1^2 B_1^2})}}$$

$$\Rightarrow Q = C_4 \sqrt{\frac{g[(y_1 - y_3) + \frac{1}{2} (y_1 - \frac{y_2^2 B_2}{y_1 B_1})]}{\frac{1}{y_1 B_1} (\frac{1}{y_2 B_2} - \frac{1}{y_1 B_1}) + \frac{1}{2} (\frac{1}{y_2 B_2} - \frac{1}{y_1 B_1}) (\frac{1}{y_3 B_2} + \frac{1}{y_1 B_1})}}$$

$$\Rightarrow Q = C_4 \sqrt{\frac{g[(y_1 - y_3) + \frac{1}{2} (y_1 - \frac{y_2^2 B_2}{y_1 B_1})]}{(\frac{1}{y_2 B_3} - \frac{1}{y_1 B_1}) (\frac{1}{y_1 B_1} + \frac{1}{2} (\frac{1}{y_2 B_2} + \frac{1}{y_1 B_1})]}}}$$

(Equation 3.68)

Note $B_3 = (B - b_p)$ and $B_1 = B$.

Control volume 0:

For this control volume we take **sections 1** and **4** as the boundary lines. **Section 1** is taken again as the upstream section and **section 4** as the downstream one. Lines **AE** and **KO** (figure 3.5) bound control volume **9** on the sides

Figure 3.30: Defining the boundary lines of control volume 9

The general discharge equation (from power concepts) reads:

$$Q = C_d \sqrt{\frac{g(y_{is} - y_{out}) + \frac{1}{2} \frac{g}{y_1 B_1} (y_{ig}^2 B_{is} - y_{out}^2 B_{out})}{\frac{1}{y_1 B_1} (\frac{1}{y_{out} B_{out}} - \frac{1}{y_{is} B_{is}}) + \frac{1}{2} (\frac{1}{y_{out}^2 B_{out}^2} - \frac{1}{y_{in}^2 B_{is}^2})}}$$

Now substitute yout with y4, Bout with B4, yin, with y1 and Bin with B1:

$$\Rightarrow Q = C_4 \sqrt{\frac{g(y_1 - y_4) + \frac{1}{2} \frac{g}{y_1 B_1} (y_1^2 B_1 - y_4^2 B_4)}{\frac{1}{y_1 B_1} (\frac{1}{y_4 B_4} - \frac{1}{y_1 B_1}) + \frac{1}{2} (\frac{1}{y_4^2 B_4^2} - \frac{1}{y_1^2 B_1^2})}}$$
(Equation 3.69)

Note $B_1 = B_4 = B$:

$$\Rightarrow Q = C_4 \sqrt{\frac{g\left(y_1 - y_4\right) + \frac{1}{2}\left(y_1 - \frac{y_4^2}{y_1}\right)}{\frac{1}{B^2}\left(\frac{1}{y_1y_4} - \frac{1}{y_1^2}\right) + \frac{1}{2}\left(\frac{1}{y_4^2} - \frac{1}{y_1^2}\right)}}$$
(Equation 3.70)

Simplifying and then multiplying above and below the line (within the square root sign) with $2y_1^2y_4^2$:

$$\Rightarrow Q = C_4 \sqrt{\frac{gB^2 \left[y_1 - y_4 + \frac{1}{2} y_1 - \frac{1}{2} \frac{y_4^2}{y_2^2} \right]}{\left[\frac{1}{y_1 y_4} - \frac{1}{y_1^2} + \frac{1}{2} \frac{1}{y_4^2} - \frac{1}{2} \frac{1}{y_1^2} \right]}}$$

$$\Rightarrow Q = C_4 B \sqrt{g} \sqrt{\frac{\left[2 y_1^3 y_4^2 - 2 y_1^2 y_4^3 + y_1^3 y_4^2 - y_1 y_4^4 \right]}{\left[2 y_1 y_4 - 2 y_4^2 + y_1^2 - y_4^2 \right]}}$$

$$\Rightarrow Q = C_4 B \sqrt{g} \sqrt{\frac{y_1 y_4^2 (3 y_1 + y_4) (y_1 - y_4)}{(y_1 + 3 y_4) (y_1 - y_4)}}$$

$$\Rightarrow Q = C_4 B y_4 \sqrt{g y_1} \sqrt{\frac{(3 y_1 + y_4)}{(y_1 + 3 y_4)}}$$

$$\Rightarrow Q = C_4 B y_4 \sqrt{g y_1} \sqrt{\frac{(3 y_1 + y_4)}{(y_1 + 3 y_4)}}$$

After simplification we end up with the following simple result:

$$Q = C_4 B y_4 \sqrt{g y_1 \varepsilon}$$
 (Equation 3.71)

where
$$\varepsilon = \frac{\left(3y_1 + y_4\right)}{\left(y_1 + 3y_4\right)}$$

This shows that the discharge per unit $(\mathbf{q} = \mathbf{Q/B})$ width is a function of the square root of the upstream depth $(\mathbf{y_1})$, the downstream depth $(\mathbf{y_4})$, the gravitational acceleration (\mathbf{g}) and the ratio ε defined above.

Results:

Calibrating equations 3.68 and 3.70 resulted in C_d-values ranging from 0.8 to 0.9 on average. The variation in C_d-values was low, implying a consistent model description. Both equations (control volume ① and control volume ②) gave consistent C_d-values but equation 3.70's results showed that control volume ② performed slightly better in terms of stable coefficients and is therefore preferred. For control volume ② the C_d-values ranged from 0.79 to 0.92 for the "Normal flows", from 0.79 to 0.99 for the "Debris flows" and from 0.43 to 0.86 for the "Drowned flows". Refer to Appendix A "Power Approach" for detail on the laboratory data and results.

A final choice:

The power equation applied to control volume Θ was adopted as the best alternative to the energy equation and momentum equation as a method for accurate calculation of the discharge Q as a function of flow parameters around a bridge pier. The power equation is much the same as the momentum equation in terms of the selection of the upstream enclosing section for the control volume. The power based Q-function is also a function of y_1 (like the **momentum based** one) where y_2 will be measured in practice. This problem needs to be addressed when deciding to use the power based discharge equation in practise.

3.9 SUMMARY OF THEORIES, RESULTS:

The following table provides an overall summary of the alternative fundamental approaches which have been discussed in the previous paragraphs. The aim of presenting the detail of the approaches in a comparative fashion is to give the reader an understanding of which approaches should be appropriate in the study and which not and where they are applicable and where not (figure 3.5).

Comparison between the four fundamental hydraulic laws

	LAWS				
	Continuity	Energy	Momentum	Power	
Symbol used	Q	Е	M	P	
Fundamental origin of the entity	Law of conservation of mass	Newton II	Newton II	Newton II	
Vector or Scalar function	Scalar	Scalar	Vector	Scalar	
Applicable domain	Control volume	Stream line	Control volume	Control volume	
Boundary values	In terms of cross-sectional data	In terms of point data	In terms of cross-sectional data	In terms of cross-sectional data	
Requirements at the boundaries	Uniform conditions at sections	Points should be on the streamline	Uniform conditions at sections	Uniform conditions at sections	
Point data (qualifications)	n.a.	Points should be adjacent to the stream line	n.a.	n.a.	

	LAWS				
	Continuity	Energy	Momentum	Power	
Symbol used	Q	E	M	P	
Section:	Applicational suitability at sections 1,2,3,4 and 5				
Section 1 (with	Well suitable		Well suitable	Well suitable	
uniform flow	for	n.a.	for	for	
approaching)	application		application	application	
Section 2	Not suitable		Not suitable	Not suitable	
(upstream end	for	n.a.	for	for	
of the pier)	application		application	application	
Section 3	Well suitable		Well suitable	Well suitable	
(half-way in terms	for	n.a.	for	for	
of the pier length)	application		application	application	
Section 4	Less suitable		Less suitable	Less suitable	
(at the downstream	for	n.a.	for	for	
end of the pier)	application		application	application	
Section 5	Well suitable		Well suitable	Well suitable	
(further down-	for	n.a.	for	for	
stream of the pier)	application		application	application	
stream of the pier)	application		application	application	
Streamlines:		al suitability of s	application treamlines FG, G		
		al suitability of s Well suitable			
Streamlines:	Applicationa	Well suitable	treamlines FG, G	I, IJ and AE	
Streamlines:	Applicationa	Well suitable for	treamlines FG, G	I, IJ and AE	
Streamlines:	Applicationa	Well suitable for application	treamlines FG, G	I, IJ and AE	
Streamlines: Between F & G	Applicationa n.a.	Well suitable for application Well suitable	treamlines FG, G n.a.	I, IJ and AE	
Streamlines: Between F & G	Applicationa n.a.	Well suitable for application Well suitable for	treamlines FG, G n.a.	I, IJ and AE	
Streamlines: Between F & G	Applicationa n.a.	Well suitable for application Well suitable for application	treamlines FG, G n.a.	I, IJ and AE	
Streamlines: Between F & G Between G & I	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for	n.a.	n.a.	
Streamlines: Between F & G Between G & I	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable	n.a.	n.a.	
Streamlines: Between F & G Between G & I	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for application	n.a.	n.a.	
Streamlines: Between F & G Between G & I Between I & J	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for application Well suitable	n.a.	n.a.	
Streamlines: Between F & G Between G & I Between I & J	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for application Well suitable for	n.a.	n.a.	
Streamlines: Between F & G Between G & I Between I & J	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for application Well suitable for	n.a.	n.a.	
Streamlines: Between F & G Between G & I Between I & J Between A & E	Applicationa n.a. n.a.	Well suitable for application Well suitable for application Less suitable for application Well suitable for application	n.a. n.a. Yes	n.a. n.a. n.a.	

	LAWS				
[Continuity	Energy	Momentum	Power	
Symbol used	Q	Е	M	P	
Function of v ⁿ (value of n)	v ¹ (one)	v ² (two)	v ² (two)	v ³ (three)	
Units (comment)	m ³ /s (cumec)	m (meter water)	kg.m/s ² (Newton)	kg.m ² /s ³ (Watt)	
The implication of a negative sign in the results	Not possible	Not possible	The direction is opposite to that assumed	Not possible	
Results (Cd-values) based on data by Retief (1998)					
Normal Debris Drowned	n.a.	0.89-1.03 0.95-1.04 0.82-0.97	0.81 - 0.91 0.86 - 0.90 0.50 - 0.87	0. 79- 0.92 0.79 - 0.99 0.43 - 0.86	

Table 3.1

3.10 RESULTS IN GRAPH FORM, DISCUSSION:

The energy approach gave very good results (variability of C_d -values small) and was therefore developed further in terms of dimensionless ratios which were presented in graph form. The momentum and power approaches gave reasonably good results for the supercritical flow conditions but could not match the energy theory's stable coefficients for the whole flow range. Figure 3.31 shows the calibration curves (energy approach) in terms of dimensionless parameters Fr_4 (Froude number at section 4, photo 3.1) and H/y_4 (note $H = y_2$) and figures 3.32 and 3.33 show the calibrated C_d -curves (power and momentum approaches respectively) in terms of dimensionless parameters Fr_4 (Froude number at section 4, photo 3.1) $y_{upstream}/y_4$ (note $y_{upstream} = y_1$).

Using the ENERGY approach:

In order to present the results of the energy based discharge equation in a meaningful way, it was necessary to rewrite the equation in terms of dimensionless parameters:

Consider the energy based discharge equation given as equation 3.25 earlier on:

Definitions of symbols:

- Q: Flow rate [m³/s]
- Cd: Discharge coefficient compensating for transitional losses [non dim]
- B: Representative width of oncoming flow for each bridge pier [m]
- y: Flow depth [m]
- α: Coriolis coefficient compensating for assumption of constant velocities [non dim], taken to be 1 throughout the text
- v: Velocity of flow [m/s]
- g: Unit gravitational force [m/s2]
- H: Energy head at the upstream end of the pier [m]
- Fri: Froude number at section i [non dim]

$$Q = C_{\epsilon}B_{\epsilon}y_{\epsilon}\sqrt{\frac{2\epsilon}{\alpha}[(y_{\epsilon} - y_{\epsilon})]}$$

Rewriting it with velocity as subject by using the continuity law:

$$v_t = C_4 \sqrt{\frac{2g}{a}} \left[(y_G - y_t) \right]$$
 (Equation 3.72)

Squaring both sides of equation 3.72 and manipulating as follows:

$$v_1^2 = C_4^2 \frac{2t}{a} (y_G - y_1)$$
 or $v_4^2 = C_4^2 \frac{2t}{a} (y_2 - y_4)$

Let $y_2 = H$, where H represents the stagnation head (hydrostatic + kinetic energy component):

$$\Rightarrow v_4^2 = C_4^2 \frac{1}{\alpha} (H - y_4)$$

$$\Rightarrow \frac{v_4^2}{2gy_4} = \frac{C_4^2}{\alpha} \left(\frac{H}{y_4} - 1 \right)$$

$$\Rightarrow \frac{1}{2} F_{r4}^2 = \frac{C_4^2}{\alpha} \left(\frac{H}{y_4} - 1 \right)$$
(Equation 3.73)

where Fr4 denotes the Froude number at section 4.

Rewriting equation 3.73 with Cd as the subject:

$$\Rightarrow C_d^2 = \frac{\alpha F_{r_a}^2}{2(\frac{R}{r_a} - 1)}$$

$$\Rightarrow C_d = \frac{F_{r_a}}{\sqrt{\frac{2}{\alpha}} \sqrt{(\frac{R}{r_a} - 1)}}$$
(Equation 3.74)

taking ∝ = 1

$$\Rightarrow C_{4} = \frac{kF_{r_{4}}}{\sqrt{\left(\frac{y}{r_{4}} - 1\right)}} \text{ where k is a constant.}$$

Equation 3.74 indicates that a square root relationship should exist between the discharge coefficient C_d and the Froude number at the downstream end of the pier for a constant ratio of stagnation head H upstream to downstream depth y_4 taken at **section 4** (figure 3.5) at the pier. This was confirmed by the model data (figure 3.31).

CALIBRATION CURVES

ENERGY APPROACH, C_d-value as a function of Froude number (Fr₄) and depth ratio (H/y₄)

The following points are considered to be important:

- More data points were available for supercritical downstream conditions and this enabled the drawing of lines for this condition with greater accuracy. It is evident from the data points that for the supercritical condition, C_d-values closer to 1 were found. This implies that transitional losses tend to be small when we have a control section forming within the pier length. C_d-values close to 1 also reflect a more accurate representation of the real phenomenon.
- The uncertainty in flow parameters shown by the results for the condition of Froude numbers near to unity, is quite common for the transition region between subcritical and supercritical flow.
- The best results were obtained for condition of supercritical flow at the downstream end of the pier. For these conditions C_d-values close to 1 were found. Favourable conditions (C_d being close to 1) are represented by high Froude numbers at the downstream end as well as high H/y₄ values (large pressure differences along the pier).

Using the POWER approach:

The calibrated C_d-values of the discharge equation (power based) are presented as functions of dimensionless parameters. By rewriting the discharge equation a functional relationship could be established.

Definitions of symbols:

Q: Flow rate [m3/s]

Cd: Discharge coefficient compensating for transitional losses [non dim]

B: Representative width of oncoming flow for each bridge pier [m]

y: Flow depth [m]

v: Velocity of flow [m/s]

g: Unit gravitational force [m/s2]

H: Energy head at the upstream end of the pier [m]

Fri: Froude number at section i [non dim]

Consider the power based discharge equation derived as equation 3.71:

$$Q = C_4 B y_4 \sqrt{g y_1} \sqrt{\frac{(3 y_1 + y_4)}{(y_1 + 3 y_4)}}$$

Eliminating the $\varepsilon = \frac{(3y_1 + y_4)}{(y_1 + 3y_4)}$ term above in order to simplify the complex equation and then rewriting with velocity as subject by using the continuity law:

$$\Rightarrow \frac{Q}{By_4} = C_4 \sqrt{gy_1}$$

$$\Rightarrow v_4 = C_4 \sqrt{gy_1}$$
(Equation 3.75)

Divide both sides by (gy4)0.5:

$$\Rightarrow \frac{v_4}{\sqrt{gy_4}} = C_4 \frac{\sqrt{y_1}}{\sqrt{y_4}}$$

$$\Rightarrow F_{r_4} = C_4 \frac{\sqrt{y_1}}{\sqrt{y_4}}$$
(Equation 3.76)

Rewriting with Cd as the subject of the equation:

$$\Rightarrow C_4 = \frac{F_{r_4} \sqrt{y_4}}{\sqrt{y_1}} = \frac{F_{r_4}}{\sqrt{\frac{p_1}{p_4}}}$$
(Equation 3.77)

Equation 3.77 indicates that a square root relationship exists between the **Froude** number at section 4 and the pressure ratio y_1/y_4 for constant C_d -values. This was confirmed by the model data (figure 3.32).

In practice the $y_{upstream}$ value cannot be measured accurately, it is only the pressure heads y_2 (upstream end of the pier) and y_4 (downstream end of the pier) that are measured. This problem needs to be kept in mind when deciding between discharge theories.

The following points are considered to be important:

- C_d -value curves in the $Fr_4 > 1$ region (supercritical downstream conditions, normal flows) show a definite trend as a function of Fr_4 and $y_{upstream}/y_4$ and corresponds well with the theoretical function: $Fr_4 = f(y_1/y_4)^{0.5}$.
- Orowned conditions are not reflected well by this power based theory resulting in C_d-values varying from 0.44 to 0.94. There is therefore much uncertainty about the validity of the C_d-curves for the condition of drowned flow and the limited amount of data points available underline the uncertainty.
- The gap in data reflects the uncertainty in calibrated data for the range of Froude numbers 0.8 to 1.0. This uncertainty was to be expected due to unstable flow condition in the transitional region between subcritical and supercritical flow.

CALIBRATION CURVES

POWER APPROACH, C_d-value as a function of Froude number (Fr₄) and depth ratio (y_{upstream}/y₄)

 $(y_{upstream}/y_4)[y_{upstream} = y_1]$

(Figure 3.32)

Using the MOMENTUM approach:

The calibrated Cd-values for the discharge equation (momentum based) are presented as functions of dimensionless parameters. This equation (equation 3.38) was too complex (it incorporated the 1/2pCdAv2 term for example) to rewrite in terms of simple dimensionless parameters as was possible with the energy and power based discharge equations. In order to overcome this, it was assumed that the three fundamental approaches (energy, momentum and power) with their common base (Newton II) should more or less lead to the same relationship between dimensionless parameters. This was already seen for the energy and power approaches as both could be rewritten in terms of the same dimensionless parameters. It was therefore decided to express the discharge coefficient Cd in the momentum equation in terms of the same dimensionless parameters that were determined for the other two fundamental equations. Therefore, Cd was expressed in terms of the Froude number Fr4 measured at the pier end as well as the ratio yupstream/y4 which is the ratio between upstream depth and the depth at the downstream pier end. Note that yupstream was used as in the power approach because the momentum based equation was based on the same control volume used in the power approach.

Definitions of symbols:

- Q: Flow rate [m3/s]
- Cd: Discharge coefficient compensating for transitional losses [non dim]
- B_i: Representative width at section i of oncoming flow for each bridge pier [m]
- y: Flow depth [m]
- v: Velocity of flow [m/s]
- g: Unit gravitational force [m/s2]
- Fri: Froude number at section i [non dim]

Consider the momentum based discharge equation derived as equation 3.38 (1-4 sectional combination, thus in terms of the better configuration: section 1 and section 4):

$$Q_{v} = C_{d} \sqrt{\frac{\frac{1}{2} g \left(y_{1}^{2} B_{1} - y_{4}^{2} B_{4}\right)}{\left(\frac{1}{y_{4} B_{4}} - \frac{1}{y_{1} B_{1}} + \frac{C_{d}^{*} A^{*}}{2 y_{1}^{2} B_{1}^{2}}\right)}}$$

As was described above, the C_d -value in the above mentioned equation was expressed in terms of dimensionless parameters found by rewriting the flow rate equations based on the other two fundamental approaches (energy and power), viz:

$$C_4 = f\left(F_{r_4}, \frac{y_{upstream}}{y_4}\right)$$

In practice the y_{upstream} value cannot be measured accurately, it is only the pressure heads y₂ (upstream end of the pier) and y₄ (downstream end of the pier) that are measured next to or along the pier length. This problem needs to be resolved if the momentum based discharge equation is to be used for flow measuring and only pressures next to the pier are being measured.

The following points are considered to be important:

A rather clear trend of C_d-curves in terms of Fr₄ (Froude number at section 4) and y₁/y₄ values for the region Fr₄ > 1 is evident from figure 3.33. This implies that the momentum based discharge equation describes the normal flow condition (supercritical downstream conditions) rather well with C_d-values varying very little.

- The drowned condition (Fr₄ < 1) is not described satisfactory by this theory, C_d-values varied from 0.50 to 0.87 implying inadequate description of the real phenomena. Data for the drowned condition were also limited and there is therefore much uncertainty about the validity of C_d-curves for the drowned condition.
- Uncertainty in the Froude number range 0.8 to 1.0 was again evident but to be expected for the transitional region.

CALIBRATION CURVES

MOMENTUM APPROACH, C_d-value as a function of Froude number (Fr₄) and depth ratio (y_{upstream}/y₄)

3.11 CONCLUSIONS AND RECOMMENDATIONS:

Calibrating the Energy, Momentum and Power based discharge theories with data collected by *Retief*, the following conclusions and recommendations are made:

- The energy based model gave the best results (least variability in C_d-values, table 3.1) for the whole flow spectrum (supercritical & drowned flow conditions).
- flow condition with less accuracy (C_d-values unstable, table 3.1) than the supercritical flow condition (control forming). This is also evident from the calibration curves, figure 3.32 and figure 3.33 respectively.
- iii) It was realised that the energy based equation would work better in practise for it requires the measurement of pressures next to the pier only – therefore no need to measure water depths upstream of the pier as required by the momentum and power based models.
- iv) It was not possible to measure a representative flow depth at the downstream end. The flow depth measured at **point C** (photo 3.1) was not a representative depth over the width of flow and an additional flow measuring point was therefore needed. Results in terms of pressure measurement at the middle of the pier (over the length) showed to be unsatisfactory (Retief's data) and pressure measurement was of little value here.
- v) It is recommended that more realistic ratio's of B/b_p (flow width/pier width) should be considered during additional model pier tests. The 90 mm pier tested by Retief gave a B/b_p ratio of 6.67 which is not often found in practice. The other ratio's considered by Retief were more representative and could be used again combined with a new pressure measuring configuration.

- vi) The effect of changing the pier length should be considered. The piers tested by Retief all had a L/b_p (pier length/pier width) ratio of 5.56. Different L/b_p ratio's are therefore recommended for further tests on model piers.
- vii) Although the ideal flow pattern at bridge piers in terms of stable coefficients would be parallel flow approaching the pier, the effect of non-parallel flow approaching the pier should be considered. In practice it may be difficult to find a bridge with perfect zero pier rotation in terms of approaching flow and the relative rotation between pier and approaching flow directions may even change with discharge.
- viii) The configuration of pressure measurement was to be changed in order to accommodate pressure measurement along the pier for non-parallel flow conditions as well as to measure a more representative flow depth at the downstream end. It is therefore recommended that two flow measuring points be added to the side of the pier, one at the upstream head and one at the downstream head. These are both to be positioned as close as possible to the pier end in order to be able to measure the maximum pressure difference over the length of the pier.
- ix) Drowned conditions experienced at the downstream end of the pier should be investigated in detail. More tests on drowned conditions (which occur mainly during flood events) should be performed including more combinations of B/b_p, L/b_p and pier rotations.
- x) Calibration curves should be constructed in order to present C_d-values as functions of dimensionless parameters in order to calculate discharges according to measured pressures at bridge piers.

4. MODEL TESTS AND RESULTS:

4.1 MODEL ANALYSIS AND SIMILARITY STUDY

Model analysis:

The mathematical models that were derived earlier in the text (refer to *chapter 3*) were calibrated using model data. Scale models of real structures (called prototypes) were tested to investigate flow conditions around piers. Results obtained from such model tests may not necessarily be applicable to the prototypes for example, due to inaccurate scaling of bed roughness or inappropriate scale distortions.

A brief discussion of similarity, which is very important for any model analysis, is therefore appropriate.

Similarity:

To assure perfect similarity between model and prototype, all relevant dimensionless hydraulic parameters should have the same values in both model and prototype. If this is true, the ratios between forces and momentum components within the model equal those in the prototype. This results in fluid elements being accelerated similarly in both model and prototype and therefore ensuring a true copy of the real phenomenon.

Considering all possible forces acting within the model boundaries during the modelling process is not necessary. Only the dominant forces need to be considered. Therefore, the first step in modelling the prototype structure is the identification of the most important or dominant forces.

The gravitational force is almost always of great importance. Froude similarity is necessary to ensure the correct ratio of momentum to gravitational force for both the model and the prototype.

Shear forces are not dominant forces except when conditions of low Reynolds numbers hold and viscous forces start to dominate, therefore Reynolds similarity is not important in normal models of bridge piers.

The following similarities exist:

- Geometric similarity
- Dynamic similarity
- Kinematic similarity

Geometric similarity:

Geometric similarity implies that the model looks exactly like the prototype except that the model dimensions are proportionally smaller. This implies that the ratios between lengths and widths and heights should be the same in both the model and in the prototype in a so-called undistorted model. Because of the three-dimensional nature of flows around bridge piers, pier models need to be undistorted.

Dynamic similarity:

Dynamic similarity incorporates Froude similarity which is discussed later on.

Dynamic similarity refers to the similarity of forces as expressed through dimensionless ratios of momentum and force for example the ratio between momentum and the gravitational force, viscous shear force or the surface tension force. These ratios include Froude, Weber and Reynolds numbers. This study concerns mainly turbulent flows around piers and therefore Reynolds similarity is not required. Weber similarity is also not applicable. On the other hand, Froude similarity is of utmost importance as is evident from the section on Froude similarity below.

Kinematic similarity:

Kinematic similarity concerns the "steady even motion of fluids" and is usually automatically satisfied if dynamic similarity holds.

Froude similarity:

In turbulent open channel flow, which is the most important field of model studies for civil engineers, a very important requirement in terms of similarity is that the Froude numbers should be the same in both the model and the prototype. The Froude number has the following definition:

$$F_{r} \equiv \frac{Momentum}{Gravitational\ force}$$

The Fr-number also represents a ratio of kinetic energy to potential energy, viz:

$$F_r = f\left(\frac{\varepsilon_1}{\varepsilon_p}\right) \Rightarrow F_r = f\left(\frac{\frac{1}{2}mv^2}{mgy}\right)$$

For our model, being an open channel flow model, in addition to geometrical similarity (which should be aimed for at all times), it is also essential to ensure Froude similarity i.e. ensuring the same Froude numbers in both the model and in the prototype.

One way to ensure Froude similarity is to use the correct scaling laws when determining the dimensions of the model. These scaling laws can be derived from basic scale ratios that are related to the Froude number.

The scale ratio can be determined as follows (Rooseboom, 1992).

For Froude similarity:

$$F_{r_p} = F_{r_m}$$

$$\Rightarrow \frac{v_p}{\sqrt{g_p y_p}} = \frac{v_m}{\sqrt{g_m y_m}}$$
(Equation 4.1)

$$\Rightarrow \frac{v_p}{v_m} = \sqrt{\frac{y_p}{y_m}}$$

$$\Rightarrow n_v = \sqrt{n_y}$$
(Equation 4.2)

Note that there are two traditional definitions for the Froude number, viz.:

$$F_r = \frac{v^2}{gy} \tag{Equation 4.3}$$

And also the square root of equation 4.3:

$$F_r = \frac{v}{\sqrt{gy}}$$
 (Equation 4.4)

The definition according to equation 4.3 is more appropriate than according to equation 4.4. Consider the following sketch and derivation in order to explain this statement.

Consider a flow element as shown in figure 4.1:

Figure 4.1: Typical flow element shown in three dimensions, x, y & z

The Froude number has been defined as being the ratio of momentum to the gravitational force, therefore:

The following definitions hold:

Fr: Froude number [non dim]

ρ: Mass density of the fluid [kg/m³]

Q: Discharge [m³/s]

v: Velocity of flow [m/s]

m: Mass of fluid or fluid particle [kg]

g: Unit gravitational force [m/s²]

x: Horizontal dimension, flow element [m]

y: Vertical dimension, flow element [m]

z: Horizontal dimension, flow element [m]

$$F_{r} = \frac{Momentum}{Gravitational\ force} = \frac{\rho Q v}{mg}$$

$$\Rightarrow F = \frac{\rho \left(\frac{V}{t}\right)v}{\rho Vg} = \frac{\rho \left(\frac{xyz}{t}\right)v}{\rho (xyz)g} = \frac{xzv^2}{xyzg} = \frac{v^2}{gy}$$

which is in line with the definition of equation 4.3.

An investigation of Froude similarity results in a remarkable outcome, being the following: "Geometrical similarity in a model automatically ensures Froude similarity for equilibrium flow conditions in terms of hydraulic roughness".

This can be proven as follows for open channel uniform flow:

Say for instance a representative model is built of a river reach (prototype). The model is undistorted (vertical scale ratio equals horizontal scale ratio). The roughness has also been scaled accordingly. Geometric similarity holds:

Chezy's energy equation for open channel uniform flow, is used to represent the relationship between velocity and channel characteristics.

The following definitions hold:

v: Velocity of flow

g: Unit gravitational force [m/s2]

R: Hydraulic radius (= A/P, = [flow area]/[wetted perimeter]) [m]

S_f: Energy slope [m/m]

So: Bed slope [m/m]

k: Absolute roughness [m]

y: Flow depth, vertical [m]

xm: Parameter x in the model [dim of x]

xp: Parameter x in the prototype [dim of x]

$$v = 5.75\sqrt{g} \log \left(\frac{12R}{k}\right) \sqrt{RS_f}$$
 (Equation 4.5)

For a wide river the hydraulic radius R ≈ y, the average flow depth:

$$\Rightarrow v = 5.75 \sqrt{g} \log \left(\frac{12 y}{k}\right) \sqrt{y S_f}$$

$$\Rightarrow \frac{v}{\sqrt{g}} = 5.75 \log \left(\frac{12 y}{k}\right) \sqrt{S_f}$$

The same roughness-depth ratio has been applied, therefore:

$$\left(\frac{y}{k}\right)_{p} = \left(\frac{y}{k}\right)_{m}$$
 (Equation 4.6)

Geometrical similarity holds, therefore the bed slopes are equal and from the uniform flow assumption the energy gradients are equal, viz:

$$(s_0)_p = (s_0)_m \implies (s_f)_p = (s_f)_m$$

Consolidating, the following equality holds:

$$5.75 \log \left(\frac{12 y}{k}\right)_{p} \sqrt{\left(s_{f}\right)_{p}} = 5.75 \log \left(\frac{12 y}{k}\right)_{m} \sqrt{\left(s_{f}\right)_{m}}$$

$$\Rightarrow \left(\frac{v}{\sqrt{g y}}\right)_{p} = \left(\frac{v}{\sqrt{g y}}\right)_{m}$$

$$\Rightarrow \left(F_{r}\right)_{p} = \left(F_{r}\right)_{m}$$

Therefore, Froude similarity holds, or in other words, the Froude number takes on the same value in both the model and in the prototype.

Summary:

- Firstly, if Froude similarity holds, and a model is either a scaled up or scaled down version of the prototype, the gravitational force (which dominates in open channel flow) will ensure the same acceleration pattern in both the model and the prototype.
- Secondly, the results obtained from a Froude resistance model are directly applicable and can be extrapolated to prototype results. This means the prototype will respond in the same manner as the model if the depth-roughness ratios are kept the same.

4.2 MODEL TESTS IN THE LABORATORY:

4.2.1 Introduction:

Model tests performed by Retief (1998) provided data for three model piers. From the calibration of the newly developed discharge equations using Retief's, data it proved that all three fundamental approaches (Energy, Momentum and Power) could be calibrated accurately, the Energy approach for the whole spectrum of flows and the other two theories for the "Normal flows" (supercritical downstream conditions) specifically. It was therefore shown that the Energy (whole flow spectrum), Momentum and Power approaches could be used to measure flows (momentum and power only for "Normal flows") at bridge piers in terms of measured pressures at and in the vicinity of the pier and that the pier approach may therefore be of great value to measure floods at prototype piers.

Because the momentum and power based discharge equations are based on the flow patterns within a control volume and the control volume needs to be bounded by constant depth sections, it was necessary to use **section 1** (photo 3.1) as the upstream enclosing section in order to have a constant flow depth across the width, as well as to include the pier within the control volume boundaries. The coefficients based on the Momentum and Power approaches were therefore determined in terms of the flow depth at **section 1** (photo 3.1). It is therefore important to note that if the momentum and power based discharge equations are to be used, the upstream flow depth **section 1** (photo 3.1) need to be known. This implies therefore that the Momentum and Power approaches cannot be used if pressures are measured against the pier only. Because of practical problems associated with the measurement of pressures upstream of piers, a system which only requires pressure measurements against piers is preferable.

The energy equation, based on pier pressures only, was therefore investigated in more detail in terms of different flow conditions, different ratios of channel width to pier width (B/b_p) and pier length to pier width (L/b_p) , as well as different pier orientations relative to the direction of the oncoming flow in order to estimate the applicability of the energy theory to a wider flow regime. It was found that some of the ratio's describing the width of the pier relative to the width of the approaching stream in Retief's study were not representative of typical prototype ratios and additional tests on 4 different b_p/B (pier width / stream width) ratio's were conducted, these ratio's being more representative of those found in practice. The ratio describing the width of the pier relative to the length of the pier was also investigated. This was done because in the tests conducted by Retief a L_p/b_p ratio of 5.56 only was used. Retief's work included only a very brief reference to drowned pier flow conditions, i.e. sub-critical flow conditions. It was therefore decided that additional tests should be done for both supercritical and sub-critical downstream conditions.

The energy equation was expressed in terms of the pressure at a measuring position near the downstream end and this necessitated the introduction of an additional position for measuring the pressures along the pier. Please refer to paragraph 4.2.3 for more detail on the pressure measuring configuration.

In conclusion, the aim of these additional laboratory tests was to determine whether the energy based discharge equation is applicable to a wide variety of practical bridge pier lay-outs combined with different flow conditions typically found under flood conditions. The following paragraphs cover the laboratory tests whilst the laboratory data can be found in the Appendices.

4.2.2 Description of the laboratory lay-out used for the test:

Photo 4.1 shows a side view of the laboratory lay-out used for the additional tests referred to in 4.2.1.

Photo 4.1: Side view of glass flume used for testing the model piers, Hydraulics Laboratory, University of Stellenbosch

Note that the lay-out is similar to that used by Retief. A glass flume (A, photo .1) of 609 mm width was used to test the pier models. The bed slope was fixed at a very slight slope of 0.0025 m/m over about 75 % of the flume length and increased near the end in order to ensure supercritical conditions downstream during some of the tests. Downstream flow depths were registered from a moving trolly (B) and upstream by means of a measuring needle fixed to a portable frame (C). The position of the pier (D) is shown in photo 4.1 and the arrows indicate the direction of flow. Manometer pipes

fixed to a wooden stand (E) were used to measure pressures at four points alongside the pier. The manometer pipes are shown in photo 4.2:

Photo 4.2: Side view of glass flume used for testing the model piers, Hydraulics Laboratory, University of Stellenbosch

Photo 4.2 shows the 4 manometer stand pipes (A) fixed to the wooden stand. These are connected to the pressure measuring points on the model pier (B) via flexible clear tubing (C). The water levels registered in the manometer pipes therefore correspond to the pressures alongside the pier. The manometer pipes were installed in such a way that the reading (in mm) on the adjacent scales (D) corresponded to the heads at the four points on the pier measured relative to the head of the furthest upstream pressure point (position UE, figure 4.2, section 4.2.3). The arrows show the direction of flow.

Photo 4.3: Looking downstream at the glass flume used for testing the model piers.

Hydraulics Laboratory, University of Stellenbosch

Photo 4.3 shows a downstream view of the upstream part of the glass flume with the baffle blocks (A) and wave dampener (B). The arrows indicate the direction of flow.

In order to simulate drowned conditions downstream of the pier, it was necessary to raise the tail water level. This was done by fixing a gate to the end of the flume. By adjusting its height the tail water could be raised or lowered accordingly. *Photo 4.4* shows the gate.

Photo 4.4: Gate at the end of the glass flume used for testing the model piers, Hydraulics Laboratory, University of Stellenbosch

4.2.3 Defining the configuration of the model piers and the arrangement of pressure measurement:

Optimisation of the energy based discharge equation for the above-mentioned flow conditions necessitated changing the pressure measuring configuration. In order to change the pressure measuring configuration and at the same time introduce additional measuring points, it was decided to construct new model piers from PVC. These model piers were made from hollow sections which could be joined as "building blocks" so as to form different combinations of lengths and widths. The advantage of these piers being hollow was that the water which accumulated "within" the pier ensured more stable water surface levels within the manometer pipes. The following changes were made to the pressure measuring configuration - note that 4 different positions along the pier surface were identified for calibration of the discharge formulae.

Figure 4.): Defining the sections for the new configuration of pressure measurements

- The pressure at the upstream end of the pier (position UE, figure 4.2 or photo 4.5) was still measured as was done by Retief. This pressure represents the stagnation pressure, an important parameter in the energy based discharge equation.
- In addition to the pressure measurement at the face of the upstream end, the hydrostatic pressure on the side of the pier (position US, figure 4.2 or photo 4.5) was measured. This pressure was measured at the upstream end of the pier where the curve of the semi-circular head joins the straight side of the pier.
- The third and fourth positions of pressure measurement (positions DS and DE, figure 4.2 or photo 4.5) were used at equivalent positions to those mentioned above but at the downstream end of the pier. Retief used the DE-position (section 4) for pressure measuring during his tests. This was found to be unsatisfactory at high discharges for the pressure (depth) at DE is not representative of the total flow width due to the formation of eddies and draw-down of the water surface. This phenomenon was also observed during the model tests on the PVC piers as illustrated by the following two photos (photo 4.5 and photo 4.6):

Photo 4.5: PVC 63 mm pier (SHORT) during a ±130 l/s test, supercritical flow conditions downstream etc.

Note that the flow depth at **section DE** at the pier (**y**_{DEpier}) is much less than the flow depth at the same cross section but midway between two piers, i.e. flow depth **y**_{DEmid-way}. **y**_{DEpier} is therefore not representative of flow across **section DE**. **Section 3** and pressure point **DS** were therefore introduced in order to obtain a downstream water depth that would be more representative of the flow depth across the width between neighbouring piers. The differences in head are reflected by the manometer readings shown in *photo 4.6*. The water surfaces within the manometer pipes correspond to the flow depths at sections **UE**, **US**, **DS** and **DE** respectively as seen in *photo 4.5*.

Photo 4.6: Measured pressure heads inside manometer pipes during a test on a PVC 63 mm pier (SHORT) ,±130 l/s test, supercritical flow conditions downstream etc.

The water surface level in manometer **pipe DE** corresponds to the depth **y**_{DEpier} and is much lower than the depth **y**_{DEmid way} which is found within the contraction.

Although measuring **position DS** was introduced, **position DE** was kept for use under drowned conditions where the pressure or depth becomes more representative of that across the flow width.

Figure 4.3 shows details of the pressure measuring lay-out at the upstream and downstream ends of the pier:

Figure 4.3: Detail of pressure measurement positions at A and B at the upstream pier end (downstream lay-out similar)

Photo 4.7 combines the details mentioned above.

Photo 4.7: Defining sections 1,2,3 and 4 and measuring positions UE, US, DS and DE

4.2.4 Defining the different flow conditions:

The following flow conditions were investigated:

Flow approaching the pier in line with the pier under non-drowned conditions, as well as drowned flow conditions downstream (supercritical vs. sub-critical conditions) for bull-nose shaped piers with different B/b_p ratios. The bull-nose shape is very common at existing bridges in the RSA and an estimated 80% of piers are of this shape for construction and hydraulic reasons. Pressure measuring was done according to the lay-out shown in *figure 4.3*. Four different B/b_p ratios were tested, they were: 9.7, 12.2, 15.2 and 19.0. Photo 4.8 shows the different pier widths that were used in the 609 mm wide flume in the laboratory:

Photo 4.8: Four different pier widths of the model piers: $A=63 \text{ mm } (B/b_p=9.6)$, $B=50 \text{ mm } (B/b_p=12.2)$, $C=40 \text{ mm } (B/b_p=15.2)$, $D=32 \text{ mm } (B/b_p=19.0)$

For each of the piers with different B/b_p ratios the L/b_p ratio was changed. This was done by adding a central section to a model pier in order to increase the length of the pier (L_p). Three different L/b_p ratios were used for each B/b_p ratio resulting in 12 combinations of width and length ratios. Tests on these 12 combinations covered both super and sub-critical downstream flow conditions (note that for all these tests, flows were in line with the piers, i.e. no rotation of the pier relative to the approaching flow). Photo 4.9 shows one of the piers with its "building blocks" taken apart. By joining these "building blocks" in different combinations it was possible to obtain different L/b_p ratios for the same B/b_p ratio.

Photo 4.9: "Building blocks" of a typical PVC pier model. A=upstream end, B=extension for "MEDIUM" length, C=extension for "LONG" length, D=downstream end)

Non-parallel flow conditions were also considered and investigated, i.e. conditions where the approaching flow does not enter the constriction between the piers parallel to the long-axis of the pier, but at a certain angle. As it was not possible to change the approaching flow direction within the laboratory (glass flume) it was necessary to rotate the model pier relative to the flow direction. The degree of rotation was defined as the angle between the direction of approaching flow (A) and the long axis (B) of the pier. The angle was expressed as theta (θ) as shown in photo 4.10. The same pressure measuring lay-out was used as in figure 4.3.

Photo 4.10: Defining the rotation of the model pier. A=direction of approaching flow, B=long axis direction, θ =relative angle between A and B

Note that the pier was rotated so that the side on which the pressure holes were made was on the "positive" pier side, i.e. the side that faces the approaching stream and experiences increased pressures. The flow passing on this side displays a more stable flow pattern with associated larger flow depths. The "negative" pier side is also shown in photo 4.10. On this lee-side flows are shallower and more turbulent, and unsteady and fluctuating. The small arrows in photo 4.10 indicate the positions of the pressure measuring holes shown in photo 4.7.

Photo 4.11: Defining the effective pier width for non-parallel flow conditions, B = total flume width, $b_{p_eff} = effective$ pier width and $(B-b_{p_eff})$ the effective or net width of passing flow

4.2.5 Model tests on flow patterns around piers, pictorial record:

4.2.5.1 Parallel flow approaching pier:

SUPERCRITICAL flow conditions downstream of the pier

Photo 4.12: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.13: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.14: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.15: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.16: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.17: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.18: Flow patterns past model pier, parallel approaching flow, $B/b_p = 15.2$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.19: Flow patterns past model pier, parallel approaching flow, $B/b_p = 15.2$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.20: Flow patterns past model pier, parallel approaching flow, $B/b_p = 15.2$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.21: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.22: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.23: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130 \text{ Us}$, supercritical flow conditions downstream

DROWNED flow conditions downstream of the pier

Photo 4.24: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.25: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.26: Flow patterns past model pier, parallel approaching flow, $B/b_p = 9.7$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.27: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.28: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.29: Flow patterns past model pier, parallel approaching flow, $B/b_p = 12.2$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.30: Flow patterns past model pier, parallel approaching flow, $B/b_p = 15.2$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.31: Flow patterns past model pier, parallel approaching flow, $B/b_p \approx 15.2$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.32: Flow patterns past model pier, parallel approaching flow, $B/b_p = 15.2$. $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.33: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 6.9$ (LONG), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.34: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 5.6$ (MEDIUM), $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.35: Flow patterns past model pier, parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $Q = \pm 130$ l/s, drowned flow conditions downstream

4.2.5.2 Non-parallel approaching flow:

DROWNED flow conditions downstream of the pier

Photo 4.36: Flow patterns past model pier, non-parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "positive pier side" shown, $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.37: Flow patterns past model pier, non-parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "negative (lee) pier side" shown, $Q = \pm 130$ l/s, supercritical flow conditions downstream

Photo 4.38: Flow patterns past model pier, non-parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "negative (lee) pier side" shown, $Q = \pm 130$ l/s, drowned flow conditions downstream

Photo 4.39: Flow patterns past model pier, non-parallel approaching flow, $B/b_p = 19.0$, $L/b_p = 4.2$ (SHORT), $\theta = 15$ degrees, "looking upstream" view, $Q = \pm 130$ l/s, supercritical flow conditions downstream

4.2.6 Defining the energy based discharge equation in terms of the new configuration of pressure measurements:

The energy equation of Bernoulli was derived from Newton's second law in section 3.6:

$$\Rightarrow \frac{\alpha \bar{v}_{1}^{2}}{2g} + y_{1} + z_{1} = \frac{\alpha \bar{v}_{2}^{2}}{2g} + y_{2} + z_{2} + \sum_{i} h_{i_{3-2}} + h_{j_{3-2}}$$
 (Equation 4.1)

It is only applicable between two points (1 and 2) on a streamline. Consider a stream line taken between UE and DS (figure 4.3). Ignoring frictional losses as the distance is very short, it is therefore justifiable to delete the term Σh_{f1-2} from equation 4.1 and thus:

$$\frac{\alpha \overline{y}_{UE}^{2}}{2g} + y_{UE} + z_{UE} = \frac{y_{DS}^{2}}{2g} + y_{DS} + z_{DS} + h_{z_{UE-DS}}$$
 (Equation 3.21)

 $h_{\text{LUE-DS}}$ represents the transitional losses between positions UE and DS.

Assuming a horizontal bed, i.e.:

$$z_{UE} = z_{DS}$$

Substituting ZuE=ZDS, equation 4.1 simplifies to:

$$\frac{\alpha \overline{v}_{tE}^{2}}{2g} + y_{tE} = \frac{\alpha \overline{v}_{DS}^{2}}{2g} + y_{DS} + h_{L_{EE-DS}}$$
 (Equation 4.2)

A stagnation point forms at **UE** where the water is decelerated to zero velocity next to the upstream head of the pier. We can therefore assume:

$$v_{UE} \approx 0$$

$$\Rightarrow \frac{v_{tx}^{2}}{2g} \approx 0$$

$$\Rightarrow y_{tx} = y_{DS} + \frac{\alpha \overline{v}_{DS}^{2}}{2g} + h_{L_{tx-DS}}$$

$$\Rightarrow v_{DS}^{2} = \frac{2\pi}{a} \left[(y_{tx} - y_{DS}) - h_{L_{tx-DS}} \right]$$

$$\Rightarrow v_{DS} = \sqrt{\frac{2\pi}{a}} \left[(y_{tx} - y_{DS}) - h_{L_{tx-DS}} \right]$$
(Equation 4.3)

Applying the continuity equation at section 3 at DS (figure 4.2):

$$Q = \overline{v}_{_{3}}A_{_{3}} = \overline{v}_{_{DS}}A_{_{DS}} = \overline{v}_{_{DS}}y_{_{DS}}B$$

This implies that we assume a uniform flow depth across the width at section 3 and also a uniform velocity. This is a reasonable assumption as the flow at section 3 has not yet experienced any divergence as it is still contained within the space between the two neighbouring piers. Combining the energy and continuity equations and taking $\infty = 1$:

$$v_{DS} = \frac{Q}{B_{DS} y_{DS}} = \sqrt{\frac{2g}{a} \left[\left(y_{tE} - y_{DS} \right) - h_{L_{CE-DS}} \right]}$$

$$\Rightarrow Q = B_{DS} y_{DS} \sqrt{\frac{1g}{a} \left[\left(y_{tE} - y_{DS} \right) - h_{t_{tE-DS}} \right]} = C_{d} B_{DS} y_{DS} \sqrt{2g \left[\left(y_{tE} - y_{DS} \right) \right]}$$
 (Equation 4.4)

The C_d-value is known as a flow correction factor and compensates for the transitional losses and simplified assumptions made in the energy based model.

It can be shown that the C_d -value in equation 4.4 is a function of the C_L -value used in the formula for the calculation of a convergence head loss (as found at a bridge pier). This formula defines the head loss due to the convergence effect in terms of the downstream velocity (within the contraction), viz:

The following definitions hold:

H_L: Transitional head loss [m]

Ct: Transitional loss coefficient [non dim]

v: Average velocity at the downstream end of the converging section [m/s]

$$h_{L} = C_{L} \frac{v^{2}}{2g}$$
 (Equation 4.5)

Consider the following two figures illustrating the analogy between convergence within a channel contraction and convergence around a pier. This analogy will be used to illustrate that C_d should be a function of C_L , viz. the degree of contraction through the transition section.

Figure 4.4: Typical flow lines around the upstream end of a bridge pier, flow convergence takes place when the width of flow changes from B to $(B-b_p)$ where b_p depicts the pier width

Figure 4.5: Typical flow lines past a converging transition channel when the width of flow changes from B to $(B-b_p)$ where $(B-b_p)$ depicts the contracted width (analogous to flow entering between piers

Now, if equation 4.5 is substituted for the h_{LUE-DS} term in equation 4.2, a discharge equation in terms of C_L (convergence coefficient) can be found:

$$\Rightarrow \frac{\alpha \overline{v}_{LE}^{2}}{2g} + y_{LE} = \frac{\alpha \overline{v}_{DS}^{2}}{2g} + y_{DS} + C_{L} \left(\frac{\alpha \overline{v}_{DS}^{2}}{2g}\right)$$

 $v_{UE} \approx 0$

$$\Rightarrow y_{\ell E} = \frac{\alpha \bar{v}_{DS}^{2}}{2g} + y_{DS} + C_{L} \left(\frac{\alpha \bar{v}_{DS}^{2}}{2g} \right)$$

$$\Rightarrow \frac{\alpha \overline{v}_{DS}^{2}}{2g} + C_{L} \left(\frac{\alpha \overline{v}_{DS}^{2}}{2g} \right) = y_{tE} - y_{DS}$$

$$\Rightarrow \frac{\alpha \bar{v}_{DS}^{2}}{2g} = \frac{1}{(1+C_{L})} (y_{UE} - y_{DS})$$

taking $\infty = 1$ and applying the continuity equation, $Q = V_{DE}B_{DE}y_{DE}$

$$\Rightarrow Q = \sqrt{\frac{1}{1+C_L}} B_{DS} y_{DS} \sqrt{2g[(y_{EE} - y_{DS})]}$$
 (Equation 4.6)

Comparing equation 4.6 with equation 4.4 it is seen that C_d is indeed a function of C_L . This result is to be expected as C_d compensates for transitional losses and C_L is a transitional converging loss coefficient. From this result a rough prediction of the C_d values can be made according to a predicted C_L -value for the converging flow past the pier.

4.2.7 Calibrating the energy based flow rate equation (equation 4.4) for the different flows considered, paragraph 4.2.4:

4.2.7.1 Parallel approaching flow direction:

Introduction:

This section deals with the calibration of equation 4.4 in terms of laboratory data collected during tests on model piers with 4 different B/b_p ratios. Each model pier was constructed so as to be lengthened by introducing a straight section between the upstream and downstream nose ends. The 4 different B/b_p ratios that were considered were: $B/b_p = 609/32 = 19.0$; 609/40 = 15.2; 609/50 = 12.2 and 609/63 = 9.7. For each pier 3 different L/b_p ratios were used, namely: $L/b_p = 4.2$, 5.6 and 6.9. These combinations of B/b_p and L/b_p values were intended to cover most combinations found in practice.

Calculating Cd-values:

In order to calculate the C_d -values in equation 4.4, it was necessary to determine the values of B_C , taking $g = 9.81 \text{ m/s}^2$ and measuring the depths y_A and y_C for each measured discharge Q. Therefore, equation 4.4 was rewritten with C_d as subject and Q,g,B_C,y_A and y_C as known values, being either measured or assuming as being constant during the tests:

$$\Rightarrow C_{d} = \frac{Q_{\text{maximum}}}{B_{DS_{\text{maximum}}} y_{DS_{\text{maximum}}} \sqrt{2g \left[\left(y_{\text{LE}_{\text{maximum}}} - y_{DS_{\text{maximum}}} \right) \right]}$$

The following results were obtained for the parallel approaching flows, i.e. flow conditions where the angle between the approaching flow direction and the long axis of the pier was zero. The results are given in table format. Note that table 4.1 refers to supercritical flow conditions downstream of the pier and table 4.2 to drowned conditions downstream of the pier.

PARALLEL APPROACHING FLOW					
NORMAL FLOW CONDITIONS DOWNSTREAM OF PIER					
	$L/b_p = 6.9$	$L/b_p = 5.6$	$L/b_p = 4.2$		
	(LONG)	(MEDIUM)	(SHORT)		
$B/b_p = 19.0$	$C_d = 1.03-1.05$	C _d = 1.04-1.08	$C_d = 0.97-1.09$		
(32 mm)	C _{d_avg} = 1.04	C _{d_avg} = 1.07	C _{d_avg} = 1.06		
$B/b_p = 15.2$	$C_d = 1.00-1.05$	C _d = 1.02-1.04	C _d = 1.01-1.06		
(40 mm)	C _{d_avg} = 1.04	C _{d_avg} = 1.03	C _{d_avg} = 1.03		
$B/b_p = 12.2$	$C_d = 0.96-1.05$	$C_d = 1.01-1.07$	C _d = 1.00-1.06		
(50 mm)	C _{d_avg} = 1.02	C _{d_avg} = 1.04	C _{d_avg} = 1.03		
$B/b_p = 9.7$	$C_d = 0.99-1.02$	$C_d = 0.95-1.04$	$C_d = 0.99-1.06$		
(63 mm)	C _{d_avg} = 1.01	C _{d_avg} = 1.01	C _{d_avg} = 1.01		

Table 4.1: Calibrated C_d-values, parallel approaching flow, supercritical flow conditions downstream

PARALLEL APPROACHING FLOW					
DROWNED FLOW CONDITIONS DOWNSTREAM OF PIER					
	$L/b_p = 6.9$	$L/b_p = 5.6$	$L/b_p = 4.2$		
	(LONG)	(MEDIUM)	(SHORT)		
$B/b_p = 19.0$	$C_d = 0.95-1.03$	$C_d = 0.95-1.05$	$C_d = 0.92-1.05$		
(32 mm) B/b _p = 15.2	$C_{d_{avg}} = 0.98$	$C_{d_avg} = 0.97$	$C_{d_avg} = 0.98$		
	$C_d = 0.95-1.03$	$C_d = 0.95-1.05$	C _d = 0.95-1.05		
(40 mm)	$C_{d_{avg}} = 0.99$	$C_{d_{avg}} = 0.99$	C _{d_avg} = 1.00		
(40 mm) B/b _p = 12.2	$C_d = 0.93-1.01$	$C_d = 0.95-1.01$	$C_d = 0.95-1.01$		
(50 mm)	$C_{d_{avg}} = 0.98$	$C_{d_{avg}} = 0.97$	C _{d_avg} = 0.98		
(50 mm) B/b _p = 9.7	$C_d = 0.93-1.01$	$C_d = 0.92-1.01$	$C_d = 0.95-1.01$		
(63 mm)	$C_{d_{avg}} = 0.96$	$C_{d_{avg}} = 0.97$	C _{d_avg} = 0.97		

Table 4.2: Calibrated C_d-values, parallel approaching flow, drowned flow conditions downstream

Values of C_L (equation 4.6) corresponding to the above mentioned C_d -values varied from 0.00 to 0.09 for the sub-critical (drowned) downstream flow condition (table 4.2) implying very small transitional losses between points UE and DS along the pier. Refer to Appendix B for the laboratory data and results.

4.2.7.2 Non-parallel approaching flow direction:

Introduction:

Calibrating the discharge equation for the non-parallel flow test results was somewhat different to that for parallel flows. The tests conducted on parallel flows covered 3 different L/b_p ratios for the pier model and for each of these 3, different rotation angles were used. It was possible to obtain a range of b_{p_eff} (the effective pier width) values which are commonly found in practice. The 32 mm pier was used for the tests on non-parallel flow conditions. The 3 different L/b_p values were: $L/b_p = 4.2$, 5.6 and 6.9. The 3 rotation angles used were: $\theta = 5^{\circ}$, 10° and 15°. Combining these different values, 9 different tests were performed. These 9 different tests were performed for both supercritical and drowned conditions downstream of the pier.

Calculating the Cd-values:

In order to calculate the C_d-values in equation 4.4, it was necessary to calculate the effective flow area first. The effective flow width B_{eff} was taken as the projected width between two neighbouring rotated isolated piers. B_{eff} was calculated as follows (refer to photo 4.11):

$$B_{eff} = B - b_{s-eff} = B - (L_s \sin(\theta) + b_s(1 - \sin(\theta)))$$
 (Equation 4.7)

Note that the value of B_{eff} is a function of the pier length (L_p) and the rotation angle (θ) as well as the pier width (b_p) . As b_p was a constant during the tests and L_p and θ each had 3 different values, there were 3*3=9 different B_{eff} values used during the tests.

The gravitational acceleration value was taken as $g = 9.81 \text{ m/s}^2$ and the depths y_A and y_C were measured for each measured flow rate Q. Equation 4.4 was rewritten with C_d as subject and $Q_1g_1B_{eff}$, y_{UE} and y_{DS} as known values, being either measured or taken as constants during the tests:

$$\Rightarrow C_{d} = \frac{Q_{maximum}}{B_{eff_{constant}} y_{DS_{measured}} \sqrt{2g \left[\left(y_{UE_{measured}} - y_{DS_{mass,umed}} \right) \right]}$$

The following results were obtained for the non-parallel approaching flows, i.e. flow conditions where there was an angle between the approaching flow direction and the long axis of the pier. The results are given in table format, (note that table 4.3 refers to supercritical flow conditions downstream of the pier and table 4.4 to drowned conditions downstream of the pier.

NON-PARALLEL APPROACHING FLOW					
NORMAL FLOW CONDITIONS DOWNSTREAM OF PIER					
	$L/b_p = 6.9$	$L/b_p = 5.6$	$L/b_p = 4.2$		
	(LONG)	(MEDIUM)	(SHORT)		
	$B/b_{p_eff} = 12.4$	B/b _{p_eff} = 13.5	$B/b_{p_eff} = 15.2$		
$(\theta = 5 \text{ degrees})$	C _d = 1.01-1.14	$C_d = 0.93-1.11$	C _d = 0.91-1.14		
	C _{d_avg} = 1.08	C _{d_avg} = 1.05	C _{d_avg} = 1.06		
	$B/b_{p_{eff}} = 9.4$	$B/b_{p_eff} = 10.7$	B/b _{p_eff} = 12.4		
$(\theta = 10 \text{ degrees})$	C _d = 1.10-1.43	$C_d = 0.90-1.31$	$C_d = 0.87-1.21$		
	C _{d_avg} = 1.29	C _{d_avg} = 1.13	C _{d_avg} = 1.11		
	$B/b_{p_{eff}} = 7.5$	$B/b_{p_{eff}} = 8.7$	$B/b_{p_eff} = 10.5$		
$(\theta = 15 \text{ degrees})$	$C_d = 1.12-1.24$	$C_d = 1.17-1.38$	$C_d = 1.12-1.65$		
	C _{d_avg} = 1.17	C _{d_avg} = 1.27	C _{d_avg} = 1.41		

Table 4.3: Calibrated C_d-values, non-parallel approaching flow, supercritical flow conditions downstream

NON-PARALLEL APPROACHING FLOW					
DROWNED FLOW CONDITIONS DOWNSTREAM OF PIER					
	$L/b_p = 6.9$	$L/b_p = 5.6$	$L/b_p = 4.2$		
	(LONG)	(MEDIUM)	(SHORT)		
	B/b _{p_eff} = 12.4	$B/b_{p_{eff}} = 13.5$	$B/b_{p_eff} = 15.2$		
(θ = 5 degrees)	$C_d = 0.92-1.09$	C _d = 1.03-1.15	C _d = 1.06-1.16		
200000000000000000000000000000000000000	C _{d_avg} = 1.12	C _{d_avg} = 1.10	C _{d_avg} = 1.12		
	$B/b_{p_{eff}} = 9.4$	$B/b_{p_{eff}} = 10.7$	$B/b_{p_{eff}} = 12.4$		
(θ = 10 degrees)	$C_d = 1.25-1.42$	$C_d = 1.20-1.35$	$C_d = 1.15-1.30$		
1800 1800	C _{d_avg} = 1.34	C _{d_avg} = 1.29	C _{d_avg} = 1.23		
	$B/b_{p_{eff}} = 7.5$	$B/b_{p_{eff}} = 8.7$	$B/b_{p_{eff}} = 10.5$		
(θ = 15 degrees)	C _d = 1.11-1.20	$C_d = 1.22-1.32$	$C_d = 1.40-1.56$		
44544-12	C _{d_avg} = 1.17	C _{d_avg} = 1.28	C _{d_avg} = 1.45		

Table 4.4: Calibrated C_d-values, non-parallel approaching flow, drowned flow conditions downstream

Refer to Appendix B for detail on the laboratory data and results.

4.2 RESULTS IN GRAPH FORM, DISCUSSION

It was shown in section 3.9 (using the ENERGY approach) that the energy equation (equation 4.4) can be written in terms of dimensionless coefficients, namely in terms of the Froude number at the downstream section of the pier (section 3, figure 4.2) and also the ratio of upstream stagnation head (y_{UE}) to downstream flow depth or head (y_{DS} , also section 3), viz. in terms of F_{rDS} and y_{UE}/y_{DS} , therefore:

The following definitions hold:

Q: Flow rate [m³/s]

Cd: Discharge coefficient compensating for transitional losses [non dim]

B: Representative width of oncoming flow for each bridge pier [m]

y: Flow depth [m]

α: Coriolis coefficient compensating for assumption of average velocity [non dim]

v: Velocity of flow [m/s]

g: Unit gravitational force [m/s2]

H: Energy head at the upstream end of the pier [m]

Fri: Froude number at section i [non dim]

k: Constant [non dim]

$$Q = C_4 B_{DS} y_{DS} \sqrt{2g[(y_{cx} - y_{DS})]}$$

$$\Rightarrow C_{4} = \frac{kF_{r_{bs}}}{\sqrt{\frac{r_{ex}}{r_{ps}}-1}}$$

The rewritten discharge equation (above, but see also equation 3.74) is now used to construct graphs in terms of C_d , F_{rDS} and y_{UE}/y_{DS} for each of the flow conditions mentioned earlier on, viz. for the parallel approaching flows (supercritical and drowned) and non-parallel flows (supercritical and drowned). Note that the terms F_{r4} , H and y_4 (equation 3.74) become F_{rDS} , y_{UE} and y_{DS} respectively. These graphs can then be used to find a C_d -value in terms of measured values of y_{UE} and y_{DS} and calculated values of y_{UE}/y_{DS} and F_{rDS} . The C_d -value is then used to calculate the flow rate in terms of the measured pressures alongside the pier (y_{UE} and y_{DS}).

4.3.1 Parallel approaching flow direction:

The following 14 graphs show the calibrated C_d-values according to the laboratory data mentioned earlier. The graphs are in terms of dimensionless parameters which were shown to be significant variables in the revised energy based discharge equation (equation 4.4). These variables are: C_d, y_{UE}/y_{DS} and F_{rDS} where C_d denotes the discharge coefficient compensating for transitional losses, y_{UE}/y_{DS} the pressure head ratio of upstream dynamic pressure head to downstream depth measured alongside the pier and F_{rDS} the Froude number at section DS.

i) The general tendency of constant C_d-value lines following a convex curve sloping upwards from left to right was evident for all 12 model pier combinations that were tested. It is for this reason that all values were plotted on one diagram (figure 4.19) in order to show the limited distribution of C_d-values in terms of the pressure ratio (yue/yps) and Froude number (Frps) as described earlier. It is evident from figure 4.19 that the data points fall in a narrow band following the general tendency found on each of the individual graphs (figure 4.6 to figure 4.17). Calibration curves were therefore constructed according to the combined data points. It was possible to draw constant C_d-lines representing all combinations of B/b_p and L/b_p ratios considered. Figure 4.19 shows the calibration curves with C_d-values varying from 0.93 to 1.04 for sub-critical conditions at DS and from 0.95 to 1.09 for supercritical conditions also at DS.

 C_d ; y_{UE}/y_{US} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 19.0 (32 mm), L/b_p = 6.9 (LONG)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 19.0 (32 mm), L/b_p = 4.2 (SHORT)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 15.2 (40 mm), L/b_p = 6.9 (LONG)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 15.2 (40 mm), L/b_p = 5.6 (MEDIUM)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 12.4 (49 mm), L/b_p = 6.9 (LONG)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - **CALIBRATED COEFFICIENTS** FOR B/b_p = 12.4 (49 mm), L/b_p = 5.6 (MEDIUM)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR B/b_p = 12.4 (49 mm), L/b_p = 4.2 (SHORT)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR $B/b_p = 9.7$ (62.5 mm), $L/b_p = 5.6$ (MEDIUM)

 C_d ; y_{UE}/y_{DS} ; Fr_{DS} - CALIBRATED COEFFICIENTS FOR $B/b_p = 9.7$ (62.5 mm), $L/b_p = 4.2$ (SHORT)

 $C_{\rm d}$; y_{UE}/y_{DS} ; Fr_{DS} - <code>CALIBRATION CURVES</code> , ALL B/b_p and L/b_p combinations

 $C_{\rm d}$; y_{UE}/y_{DS} ; Fr_{DS} - <code>CALIBRATION CURVES</code> , ALL B/b_p and L/b_p combinations

- ii) Note that the dotted lines depict extrapolated parts of curves following the generalised trend whilst the solid lines pass through measured data (from laboratory tests). These generalised curves are recommended for practical use, applicable to all combinations with B/b_p-values ranging from 9.7 to 19.0 and L/b_p-values ranging from 4.2 to 6.9.
- iii) Note that the calibration represents constant C_d-value or discharge coefficient lines as functions of the Froude number at section DS, i.e. Fr_{DS} = Froude number at the downstream_side position as well as the pressure ratio y_{UE}/y_{DS}, i.e. the ratio: dynamic pressure measured at UE (upstream end of pier) to the hydrostatic pressure measured at DS (downstream and side of pier). The y_{UE}/y_{DS} ratio varies from ± 1.0 to almost 2.5. This ratio gives an indication of the energy slope over the pier length and the relative velocity found at DS. Constant C_d-value lines vary for each combination of (B/b_D; L/b_D) values according to table 4.1 and table 4.2.

Conclusions and Recommendations:

- i) Changing the length of a pier for a constant B/b_p-value does not have a significant effect on the shape and position of the constant C_d-lines, therefore, length is not a primary variable influencing the transitional losses past a pier.
- ii) Changing the width of a pier for a constant L/b_p-value does not have a significant influence on the shape and position of the constant C_d-lines, therefore, width is not a primary variable influencing the transitional losses past a pier either.
- iii) Remarks (i) and (ii) above can be explained in terms of the geometry of flow lines. Considering photo's 4.12 to 4.14, 4.15 to 4.17, 4.18 to 4.20 and 4.21 to 4.23 it is clear that the general geometry of the flow profile past the pier does not differ much as the width ratio changes, implying therefore that C_σ-values are not influenced significantly by the length or width ratio of the pier.

- iv) The variability in C_d-values for drowned conditions proved to be much less than for the control forming condition (Fr_{DS} > 1 or supercritical). This was to be expected due to the fact that the coefficient varies proportionally to the degree of turbulence of the flow. The more turbulent the more fluctuating the flow, leading to greater variation in coefficient values. This was found to be true for all combinations of (B/b_p; L/b_p) values tested (graph 4.6 to graph 4.17) and is also evident from graph 4.18 showing the combined data points.
- v) C_d-curves have not been drawn in for Froude numbers ranging between 0.90 and 1.10. This is due to the instability of flow for these velocity/depth combinations. Such instability is generally found with Froude numbers close to 1.
- vi) Using the calibrated curves in order to calculate the flow rate for a pier with a specific width-ratio and a length-ratio, it is necessary to do an iterative calculation. This can be explained in the following four steps:

Firstly, measure the pressures H and yos respectively

<u>Secondly</u>, estimate a flow rate and calculate an estimated **Froude**-number at **DS** according to the measured value of **y**_{DS}.

<u>Thirdly</u>, read off the appropriate C_d -value from the curves for the y_{UE}/y_{DS} and Fr_{DS} values obtained above

Fourthly, use this C_d-value in order to calculate a flow rate from equation 4.4 and check whether the calculated flow rate corresponds to the estimated value. If so, the flow rate was estimated correctly, if not, start with the newly calculated flow rate and repeat the process.

4.3.2 Non-parallel approaching flow:

The following 9 graphs (figure 4.20 to figure 4.28) show the calibrated C_d-values according to laboratory tests conducted on 9 different model piers as described in section 4.2.3 and section 4.2.4. The results of the 5 degree rotation tests corresponded well with those for zero rotation (parallel flow) which suggests that small rotations (up to 5 degrees) do not have a significant influence on the flow patterns and therefore C_d-values. A large variation in C_d-values was found for the other non-parallel flow tests as can be seen in table 4.3 and table 4.4. It is for this reason that separate curves were constructed for each of the 9 different combinations of B/b_{p eff}.

The graphs are all plotted using the same dimensionless parameters which were shown to be important variables in the energy based discharge equation (equation 4.4). These variables are: C_d , y_{UE}/y_{DS} and F_{rDS} where C_d denotes the discharge coefficient compensating for transitional losses, y_{UE}/y_{DS} the pressure ratio of upstream dynamic pressure head to downstream depth measured on the pier side and F_{rDS} the Froude number at section C or DS (downstream_side). In some cases the variable H has been replaced by y_{US} referring to the dynamic pressure at section B or US (upstream_side), the reason for this will be discussed now.

 $B/b_{p_{eff}} = 12.4$

C_d, y_{US}/y_{DS} , Fr_{DS} – CALIBRATION CURVES FOR L/b_p = 6.9 (LONG), θ = 10°

 $B/b_{p_off} = 9.4$

 $C_{d},\,y_{US}/y_{DS},\,Fr_{DS}$ – CALIBRATION CURVES FOR L/b $_{p}$ = 6.9 (LONG), θ = 15°

 $B/b_{p_{-}off} = 7.5$

 $B/b_{p_eff} = 13.5$

 C_{dr} , y_{UE}/y_{DS} , Fr_{DS} – CALIBRATION CURVES FOR L/b_p = 5.6 (MEDIUM), θ = 10°

 $B/b_{p_{eff}} = 10.7$

 $C_{\text{d}},\,y_{\text{US}}/y_{\text{DS}},\,Fr_{\text{DS}}-$ CALIBRATION CURVES FOR L/b $_{p}$ = 4.2 (SHORT), θ = 15°

 $B/b_{p_{-}eff} = 10.5$

From the laboratory data it was evident that rotation of the pier relative to the approaching flow direction results in a change in pressure distribution. The following photograph shows the pressure distribution along the pier (UE, US, DS and DE) for a typical flow condition with NO pier rotation as recorded with manometer stand pipes:

Photo 4.40: Manometer stand pipe readings for supercritical flow conditions and zero pier rotation

Note that the highest pressure is being measured as the dynamic pressure at UE, the upstream end of the pier. All other pressures show a declining tendency in the downstream direction.

Photo 4.41: Manometer stand pipe readings for supercritical flow conditions and nonzero pier rotation

NON	-PARALLEL F	LOW APPROAC	HING
	$L/b_p = 6.9$ (LONG)	L/b _p = 5.6 (MEDIUM)	$L/b_p = 4.2$ (SHORT)
$(\theta = 5 \text{ degrees})$			
(θ = 10 degrees)	Χ		
(θ = 15 degrees)	Х	Х	Х

Table 4.5: Non-parallel flow conditions where pressure US exceeds pressure UE (marked with crosses)

Photo 4.41 depicts the typical pressure distribution that was found for the combinations marked with a cross in table 4.5. Note that the pressure distribution indicates a larger pressure (dynamic) reading at the upstream side point (US) than at the upstream end point (UE). This is probably due to the fact that air is sucked in as shown in photo 4.37. Air is sucked in because the flow lines tend to maintain their direction when passing the

upstream end of the pier and not bend entirely around the pier head. Consequently air is sucked in resulting in a lower pressure head being measured. The eddy that forms whilst air is being sucked in can clearly be seen on photo 4.36. This phenomenon of air being sucked in was found for all three cases where the rotation angle was 15 degrees. In addition, this phenomenon was also found for the combination of $L/b_p = 6.9$ and $\theta = 10$ degrees. This can be ascribed to the fact that although the rotation is not as severe in this case, the fact that the pier is very long combined with a substantial rotation of 10 degrees, the flow lines again had difficulty bending around the head and air was sucked in. A second reason for the higher pressure head at US than at UE is the fact that due to the rotation of the pier, the pressure being measured at US includes a component perpendicular to the pier long axis, therefore also experiencing a dynamic pressure component (hydrostatic head plus part velocity head).

The calibration of C_d-values for the 4 combinations mentioned above (marked with crosses) therefore entailed the use of y_{US} in stead of y_{UE} and the calibration curves for these cases were also drawn accordingly. Therefore, note that the calibration curves for the combinations marked with crosses in table 4.5 should be used in accordance with measured values of y_{US} and not y_{UE}.

Conclusions and Recommendations:

- Rotation of the pier through angles up to 5 degrees does not affect the calibration of the C_d-values curves significantly.
- ii) It is evident from the calibration curves that as the rotational angle θ becomes smaller, the C_d-value lines approach those found for zero rotation as is to be expected.

- iii) For a rotational angle θ of 15 degrees, it is found that the pressure head at section UE (upstream end) is smaller than that at section US (upstream side). This can be ascribed to the fact that air is sucked in when the flow can not sufficiently bend around the upstream head of the pier as it passes the upstream head. This condition is found for the 15 degrees rotational condition as well as the 10 degrees rotation combined with the greatest pier length-to-width ratio tested. For the 10 degrees condition, the phenomenon of air being sucked in can be ascribed to the long pier length having the same effect, i.e. the inability of flow to bend around the upstream head on the "negative pier side" (photo 4.36).
- iv) C_d-curves are not drawn in for Froude numbers ranging between 0.90 and 1.10. This is due to the instability of flow conditions for these velocity/depth combinations associated with Froude numbers close to 1.
- with a pier with a specific length-ratio as well as rotation, it is necessary to do an iterative calculation. This can be done in the following four steps:

<u>Firstly</u>, measure the pressures y_{UE} (or y_{US} for all 15 degree pier rotations as well as 10 degree rotations combined with $L/b_p = 6.9$).

<u>Secondly</u>, estimate a flow rate and calculate the corresponding **Froude**-number at **DS** according to the measured value of **y**_{DS}. The **Froude**-number should be calculated for the effective flow width as shown in *photo 4.11* (equation 4.7).

<u>Thirdly</u>, Read the appropriate C_d-value off the curves for measured and calculated values: y_{UE}/y_{DS} and Fr_{DS}.

Fourthly, use this C_d-value in order to calculate a flow rate from equation 4.4 and check whether the calculated flow rate corresponds to that estimated. If so, the flow rate was estimated correctly. If not, start with the previous calculated flow rate and repeat the process. Note that the effective flow width should be used in equation 4.4.

5. OVERALL CONCLUSIONS AND RECOMMENDATIONS:

- i) It has been found possible to develop formulae which can be used to calculate river discharges from pressures measured alongside bridge piers. These formulae cater for both supercritical and sub-critical downstream conditions.
- ii) The reliability of these formulae under laboratory conditions is underscored by the limited and systematic variations in the calibration coefficients.
- iii) By changing the system of pressure measurement used by Retief (chapter 3) it was possible to increase the prediction accuracy (decreased C_d-value variation) of discharge formulae mentioned above. The new system of pressure measurement is discussed in chapter 4.
- iv) Calibration curves were constructed in terms of measurable dimensionless flow parameters in the vicinity of bridge piers making it possible to extrapolate these calibration results to prototype structures.
- v) It is recommended that piers identified for measuring purposes should ideally be parallel to the flow direction with a maximum rotation of 5 degrees to ensure accurate results. Where pier rotations exceed 10 degrees, special attention should be given to where the upstream pressure is measured.
- vi) Bridge piers as flow measuring structures have the following advantages complying with the pre-determined criteria:
 - providing an economical solution by using existing structures (bridges)
 - minimum maintenance is required
 - the pressure sensors can be sunk into piers and can resist the forces of nature as long as the pier does not fail
- vii) Application of the methodology at the prototype level needs further investigation.

6. REFERENCES:

- Basson G.R., 1990: "Opdamming by brûe en hidrouliese kragte op strukture."; Mthesis, University of Stellenbosch.
- Du Plessis D.B., 1989: "Documentation of the February-March 1988 floods in the Orange River basin."
- DWAF, 1986: "Management of the water resources of the Republic of South Afrea."
 Pretoria: Department of Water Affairs and Forestry.
- Featherstone R.E., Nalluri C., 1995: "Civil Engineering Hydraulics"; Blackwell Science.
- Finney R.L., Thomas G.B., 1994: "Calculus"; Addison-Wesley publishing company.
- Herschy R.W., 1978: "Hydrometry: Principles and practices." John Wiley & Sons, Chichester.
- Hibbeler R.C., 1992: "Engineering Mechanics (Dynamics)"; McMillan Publishing Company, New York
- Lotriet H.H., Rooseboom A., 1995: "River Discharge Measurement in South African rivers: The development of Improved Measuring Techniques"; WRC Report No 442/2/95
- Liu, H.K.; Bradley, J.N.; Plate, E.J., 1957: "Backwater effects of piers and abutments"
 Report CER 57HKL10, Civil Engineering Section, Colorado State University
- Massey B.S., 1989: "Mechanics of Fluids"; Chapman & Hall.
- Retief M.J., 1998: "Meting van Hoë Vloeitempo's in riviere", Skripsie Nr. W12/98, University of Stellenbosch.

- Rooseboom A., 1985: "HYDRO '85 Course notes". Pretoria. University of Pretoria.
- Rooseboom A. et al., 1986: "Handleiding vir paddreinering"; Departement van Vervoer
- Rooseboom A., 1990: "Hydraulics 344 class notes on model analysis." Stellenbosch.
 University of Stellenbosch
- Rooseboom A., 1992: "Sediment Transport in Rivers and Reservoirs a Southern African Perspective"; WRC Report No 297/1/92
- Rooseboom A., Le Grange A., 2000: "The Hydraulic Resistance of sand streambeds under steady flow conditions"; Journal of Hydraulic Research, Vol 38, 2000, No 1.
- Rossouw J., Loubser C., Rooseboom A., Bester A., 1998: "A New Structure for Discharge Measurement in Sediment-laden Rivers". WRC Report No TT 103/98.
- Serway R.A., 1982: "Physics for Scientists and Engineers", Saunders College Publishing, London Sydney Tokyo.
- The Institution of Civil Engineers, London, 1966: "River Flood Hydrology"
- United States, Department of Transportation: Federal Highway Administration, 1973:
 "Hydraulics of Bridge Waterways".
- Ven te Chow, 1959: "Open-channel Hydraulics"; McGraw-Hill Book Company Inc.
- Webber N.B., 1971: "Fluid Mechanics for Civil Engineers", S.I. Edition, Chapman and Hall, London; New York
- White F.M., 1986: "Fluid Mechanics", Second Edition, McGraw-Hill Book Company

APPENDIX A

ENERGY, MOMENTUM AND POWER APPROACHES, LABORATORY RESULTS AND CALIBRATED COEFFICIENTS - Retief's (1998) DATA

ENERGY APPROACH, RESULTS (LABORATORY):

Calculation of C_g-values for flow rate equations which have been derived:

EQUATION (Flow line FG):

$$Q_{\nu} = C_{\mu}B_{\mu}y_{\mu}\sqrt{\frac{2g(y_{\mu}-y_{\mu})}{a}}$$

90 mm Pier:

Pier characteristics:

$$B = 0.609 \text{ m}$$

$$b_p = 0.09 \text{ m}$$

$$\frac{B}{b_s} = 6.77$$

$$\frac{L}{b_{-}} = 5.56$$

Q., [l/s]	y _r [m]	У _Б [m]	B, [m]	Q, [l/s]	C ₄
0.03073	0.1010	0.1130	0.609	0.0298	1.03
0.06257	0.1620	0.1820	0.609	0.0618	1.01
0.09091	0.2085	0.2280	0.609	0.0785	1.16
0.11980	0.2500	0.2740	0.609	0.1045	1.15
0.15060	0.2850	0.3200	0.609	0.1438	1.05
0.16591	0.3020	0.3400	0.609	0.1588	-1.04
0.18027	0.3190	0.3600	0.609	0.1742	4.03
M	easured dat	1005 1000	Geometry	Calc	ulated

45 mm Pier:

Pier characteristics:

$$B = 0.609 \text{ m}$$

$$b_p = 0.045 \text{ m}$$

$$\frac{B}{b} = 13.53$$

$$\frac{L}{b_{\perp}} = 5.56$$

Q., [l/s]	У _F [m]	Ус [m]	B _r [m]	Q, [l/s]	C _d
0.03032	0.0830	0.1020	0.609	0.0238	1.27.
0.06247	0.1440	0.1720	0.609	0.0650	0.96
0.09022	0.1800	0.2050	0.609	0.0768	1.18
0.12084	0.2150	0.2460	0.609	0.1021	1.18
0.14956	0.2400	0.2810	0.609	0.1311	1.14
0.16459	0.2530	0.3050	0.609	0.1556	1.06
0.18010	0.2710	0.3200	0.609	0.1618	2511
CP SEC M	sasaired data	1500.4353	Geometry	Calci	listed -

30 mm Pier:

Pier characteristics:

$$b_n = 0.03 \text{ m}$$

$$\frac{B}{b_s} = 20.30$$

$$\frac{L}{b} = 5.56$$

Q,, [l/s]	yr [m]	y _G [m]	B _F [m]	Q, [l/s]	C _o
0.03153	0.0920	0.1060	0.609	0.0294	1.07
0.06187	0.1340	0.1650	0.609	0.0636	0.97
0.09293	0.1750	0.2050	0.609	0.0818	1114
0.11929	0.2040	0.2400	0.609	0.1044	1.14
0.14956	0.2270	0.2750	0.609	0.1342	-1.11
0.16572	0.2450	0.2950	0.609	0.1478	1.12
0.18044	0.2590	0.3160	0.609	0.1668	1.08
Measured data			Geometry	Calcu	lated.

EQUATION (Flow line GI):

$$Q_{u} = C_{I}B_{I}y_{I}\sqrt{\frac{2g(y_{G}-y_{I})}{\alpha}}$$

90 mm Pier:

Pier characteristics:

$$B = 0.609 \text{ m}$$

$$b_p = 0.09 \text{ m}$$

$$\frac{B}{b_{-}} = 6.77$$

$$\frac{L}{b_n} = 5.56$$

Q_ [l/s]	Уı [m]	y _a [m]	B, [m]	Q, [l/s]	F _{rg}	C.
0.03073	0.0260	0.1130	0.609	0.0202	3.84	1.52
0.06257	0.0750	0.1820	0.609	0.0646	1.60	0.97
0.09091	0.1040	0.2280	0.509	0.0964	1.42	0.94

SECTION SA	sosured dat	\$10.19 × 30.00	Geometry	CONTRACTO	Calculated	5 F-23
0.18027	0.1840	0.3600	0.609	0.2032	1.20	0.89
0.16591	0.1710	0.3400	0.609	0.1851	1.23	0.90
0.15060	0.1590	0.3200	0.609	0.1680	1.25	0.90
0.11980	0.1320	0.2740	0.609	0.1309	1.31	0.91

Pier characteristics:

 $B = 0.609 \, \text{m}$

 $b_p = 0.045 \text{ m}$

$\frac{B}{-} = 13.53$	-	
- = 13.32	B	
	- 1	13.20

L	
b. "	5.50

Q., [l/s]	У ₁ [m]	ya [m]	B _i [m]	Q, [l/s]	Frai	C.
0.03032	0.0480	0.1020	0.609	0.0294	1.51	1.03
0.06247	0.0840	0.1720	0.609	0.0656	1.35	0.95
0.09022	0.1150	0.2050	0.609	0.0908	1.21	0.99
0.12084	0.1470	0.2460	0.609	0.1218	1.12	0.99
0.14956	0.1780	0.2810	0.609	0.1504	1.04	- 0.99
0.16459	0.1890	0.3050	0.609	0.1695	1.05	0.97
0.18010	0.2030	0.3200	0.609	0.1828	1.03	0.99
ST. STAN	easured data	TESSES.	Geometry	1714 Mark	Calculated	0.4840

30 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.03 \text{ m}$

$$\frac{B}{b} = 20.30$$

F	
4.	. 5 56
	- 5.50

Q_ [l/s]	Уı [m]	y _G [m]	B _i [m]	Q _i [l/s]	F _{r@1}	C,
0.03153	0.0520	0.1060	0.609	0.0318	1.39	0.99
0.06187	0.0900	0.1650	0.609	0.0649	1.20	0.95
0.09293	0.1260	0.2050	0.609	0.0932	1.09	1.00
0.11929	0.1540	0.2400	0.609	0.1189	1.03	1.00
0.14956	0.1770	0.2750	0.609	0.1459	1.05	11:03
0.16572	0.1920	0.2950	0.609	0.1622	1.03	1.02
0.18044	0.2010	0.3160	0.609	0.1794	1.05	1.01
1.6	easured data	3 100 450	Geometry	CONTROL	Calculated	040000

30 mm Pier (with debris):

Pier characteristics: B = 0.609 m

$$b_p = 0.03 \text{ m}$$

$$\frac{B}{b} = 20.30$$

$$\frac{L}{b} = 5.56$$

Q., [l/s]	y ₁ [m]	ya [m]	B, [m]	Q, [l/s]	F _{r@l}	C,
0.03212	0.0485	0.1070	0.609	0.0309	1.58	1.04
0.06217	0.0860	0.1640	0.609	0.0632	1.29	0.98
0.09350	0.1290	0.2110	0.609	0.0972	1.06	0.96
0.11903	0.1600	0.2450	0.609	0.1228	0.98	0.97
0.14980	0.1890	0.2830	0.609	0.1525	0.96	0.98
0.16497	0.2020	0.3060	0.609	0.1715	0.95	0.96
0.18080	0.2130	0.3270	0.609	0.1893	0.96	0.95
STATEM	iosured dat	经历史为	Geometry	COR ST	Calculated	25902

30 mm Pier (drowned conditions):

Pier characteristics:

$$B = 0.609 \text{ m}$$

$$b_p = 0.03 \text{ m}$$

$$\frac{B}{b_p} = 20.30$$

$$\frac{L}{h} = 5.56$$

Q_ [l/s]	y ₁ [m]	ys [m]	B, [m]	Q, [l/s]	F _{r@1}	C.
0.06106	0.0920	0.1640	0.609	0.0650	1.15	0.94
0.06106	0.1350	0.1790	0.609	0.0745	0.65	0.82
0.06106	0.1640	0.1940	0.609	0.0748	0.48	0.82
0.11955	0.1560	0.2410	0.609	0.1197	1.02	1.00
0.11955	0.2080	0.2590	0.609	0.1237	0.66	0.97
0.11955	0.2670	0.3030	0.609	0.1334	0.45	0.90
0.17941	0.2120	0.3150	0.609	0.1791	0.96	1.00
0.17941	0.2960	0.3600	0.609	0.1971	0.58	0.91
0.17941	0.3520	0.3980	0.609	0.1987	0.45	0.90
STETM	easured data	335,520	Geometry	N. 2000 23	Calculated	75550.3

MOMENTUM APPROACH, RESULTS (LABORATORY):

Calculation of C₆-values for flow rate equations which have been derived:

EQUATION (Section 1-3 combination):

$$Q_{*} = C_{\epsilon} \sqrt{\frac{g(y_{1}^{2}B_{1} - y_{1}^{2}B_{1})}{2(\frac{1}{c_{1}B_{1}} - \frac{1}{c_{1}B_{1}} + \frac{C_{\epsilon}c_{1}c_{1}}{2c_{1}c_{2}c_{1}})}}$$

90 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_{o} = 0.09 \text{ m}$

Q., [l/s]	y ₁ [m]	y ₂ [m]	Уз [m]	B, [m]	B, [m]	[m]	A* [m²]	Q, [1/s]	C.
0.03073	0.1010	0.1130	0.0660	0.609	0.519	0.7	0.0102	0.0374	10.82
0.06257	0.1620	0.1820	0.1080	0.609	0.519	0.7	0.0164	0.0766	0.82
0.09091	0.2085	0.2280	0.1470	0.609	0.519	0.7	0.0205	0.1148	0.79
0.11980	0.2500	0.2740	0.1840	0.609	0.519	0.7	0.0247	0.1533	0.78
0.15060	0.2850	0.3200	0.2170	0.609	0.519	0.7	0.0288	0.1888	0.80
0.16591	0.3020	0.3400	0.2320	0.609	0.519	0.7	0.0306	0.2062	0.80
0.18027	0.3190	0.3600	0.2470	0.609	0.519	0.7	0.0324	0.2243	0.80
	Measure	ed date	A12.50	Geo	hetry 5.35	Constant		Calculated.	27088
									0.80

45 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.045 \, \text{m}$

Q_ [l/s]	y ₁ [m]	y ₂ [m]	Уз [m]	B ₁ [m]	B ₁	[m] C ⁴ .	A* [m²]	Q, [1/s]	C.
0.03032	0.0930	0.1020	0.0660	0.609	0.564	0.7	0.0046	0.0377	0.80
0.06247	0.1440	0.1720	0.1170	0.609	0.564	0.7	0.0077	0.0766	D.82
0.09022	0.1800	0.2050	0.1510	0.609	0.564	0.7	0.0092	0.1080	0.84
0.12084	0.2150	0.2460	0.1830	0.609	0.584	0.7	0.0111	0.1412	0.86
0.14956	0.2400	0.2810	0.2380	0.609	0.564	0.7	0.0126	0.1373	1.09
0.16459	0.2530	0.3050	0.2220	0.609	0.564	0.7	0.0137	0.1797	0.92
0.18010	0.2710	0.3200	0.2370	0.609	0.564	0.7	0.0144	0.1995	3.90
(Tipe in	Measure	id data	C:048	U. Geo	metry	Constant	282.5050	Calculated	75.X

30 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_a = 0.03 \text{ m}$

 $\frac{B}{b_s} = 20.30$

Q., [l/s]	y ₁ [m]	y ₂ [m]	Уз [m]	B., [m]	B ₃	[m]	A*	Q, [1/s]	C.
0.03153	0.0920	0.1060	0.0710	0.609	0.579	0.7	0.0032	0.0401	0.79
0.06187	0.1340	0.1650	0.1140	0.609	0.579	0.7	0.0050	0.0728	0.85
0.09293	0.1750	0.2050	0.1470	0.609	0.579	0.7	0.0062	0.1085	0.86
0.11929	0.2040	0.2400	0.1730	0.609	0.579	0.7	0.0072	0.1369	0.87
0.14956	0.2270	0.2750	0.1970	0.609	0.579	0.7	0.0083	0.1611	0.93
0.16572	0.2450	0.2950	0.2120	0.609	0.579	0.7	0.0089	0.1806	- 0.92
0.18044	0.2590	0.3160	0.2260	0.609	0.579	0.7	0.0095	0.1963	0.92
STATE OF THE	Measure	ed data	CV-2-32	Geo	metry	Constant	FEET 18	Calculated	March 15

EQUATION (Section 1-4 combination):

$$Q_{\star} = C_{s} \sqrt{\frac{\left(y_{1}^{2}B_{1} - y_{s}^{2}B_{s}\right)}{2\left(\frac{1}{c_{s}B_{s}} - \frac{1}{r_{1}B_{1}} + \frac{c_{s}r_{s}r_{s}}{2r_{1}B_{s}^{2}}\right)}}$$

90 mm Pier:

Pier characteristics: B = 0.609 m

 $b_p = 0.09 \text{ m}$

Q., [1/s]	y ₁ [m]	y ₂ [m]	Уэ [m]	У4 [m]	B, [m]	B ₄ [m]	[m]	A*	Q, [1/s]	C,
0.03073	0.1010	0.1130	0.0660	0.0260	0.609	0.609	0.7	0.0102	0.0244	1.26
0.06257	0.1620	0.1820	0.1080	0.0750	0.609	0.609	0.7	0.0164	0.0706	0.89
0.09091	0.2085	0.2280	0.1470	0.1040	0.609	0.609	0.7	0.0205	0.1080	0.84
0.11980	0.2500	0.2740	0.1840	0.1320	0.609	0.609	0.7	0.0247	0.1468	-0.82

y-/y4	Fr ₄	H/y,
3.88	3.84	3.88
2.16	1.60	2.16
2.00	1.42	2.00
1.89	1.31	1.89

	0.0000	2.0000	0.0170	0.000		0.000			a con the same			
0.15060	0.2850		0.2170	0.1590	0.609	0.609	0.7	0.0288	0.1847 0082		1.25	1.79
0.16591	0.3020	0.3400		0.1710	0.609	0.609	0.7	0.0306	0.2032 6.82		1.23	1.77
0.1802/		unured da		0.1040	Ti Riff Georg		Contant		Calminded	1.73	1.60	1.73
Co. Co.		and the same		L. Carriero	2000	200	T COMPANY		0.89)		
45 mm P	ier:											
							R		1			
Pier charac	starietine:		B = 0.60	0 m	b _p = 0.045	m	$\frac{B}{b_r} = 13.$	53	$\frac{L}{b_s} = 5.56$			
Fig Grara	LUBY 180 LIS.		D = 0.00		u _p = 0.043	***			0,			
Q,	У1	У2	У3	y4	B,	В,	C,*	A*	Q C	100		
								[m²]			F	A115.
[Us]	[m]	[m]	[m]	[m]	[m]	[m]	[m]		[l/s] []		Fr ₄	HUY4
0.03032	0.0930	0.1020	0.0660	0.0480	0.609	0.609	0.7	0.0046	0.0333 0.91	Section 1	1.51	1.94
0.09022	0.1800	0.2050	0.1510	0.1150	0.609	0.609	0.7	0.0092	0.1028 0.86		1.21	1.71
0.12084	0.2150	0.2460	0.1630	0.1470	0.609	0.609	0.7	0.0111	0.1399 0.86		1.12	1.46
0.14956	0.2400	0.2810	0.2380	0.1780	0.609	0.609	0.7	0.0126	0.1729 0.87		1.04	1.35
0.16459	0.2530	0.3050	0.2220	0.1890	0.609	0.609	0.7	0.0137	0.1876 0.86		1.05	1.34
0.18010	0.2710	0.3200	0.2370	0.2030	0.609	0.609	0.7	0.0144	0.2085 0.86	1.33	1.03	1.33
STREET,	M	epsured da	1000		Geon	resty	Constant	15500	Calculated	5.3		
30 mm P	ier:							-				
							$\frac{B}{-} = 20$	30	$\frac{L}{b_s} = 5.56$			
Pier charac	cteristics:		B = 0.60	9 m	$b_p = 0.031$	m	b,		b,			
Q,	y1	y ₂	У3	y4	В,	B ₄	C".	A*	Q, C,			
[Us]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m ³]	[l/s] []	y-/y4	Fr ₄	H/y.
0.03153	0.0920	0.1060	0.0710	0.0520	0.609	0.609	0.7	0.0032	0.0350 - 0.90		1.39	1.77
0.06187	0.1340	0.1650	0.1140	0.0900	0.609	0.609	0.7	0.0050	0.0686 - 0.90	1.49	1.20	1.49
0.09293	0.1750	0.2050	0.1470	0.1260	0.609	0.609	0.7	0.0062	0.1071 (30.8)	and the same of th	1.09	1.39
0.11929	0.2040	0.2400	0.1730	0.1540	0.609	0.609	0.7	0.0072	0.1388		1.03	1.32
0.14956	0.2270	0.2750	0.1970	0.1770	0.609	0.609	0.7	0.0083	0.1658 0.90	_	1.05	1.28
0.16572	0.2450	0.2950	0.2120	0.1920	0.609	0.609	0.7	0.0089	0.1885		1.03	1.28
0.18044				0.2010	0.609	0.009	U.r	0.0095	0.2015 0.00.90	1.29	1.00	1.29
EL2 TO TRANSPORT OF		المتك المستحدث	2000L/250P1	WIGHT NOTICE OF	C. T. St. Physics	Salara Company	(Pinnellan)	1 March 1		0.75		
H10900	GUEL M	esured da	100000	59000	Georg	netry.	Constant	300	Calculated	2		
30 mm P					Georg	retry	Constant	10000		0.2		
30 mm P					Georg	netry	B	delle	Calculated	0.3		
	ier (with		2:	A m			$\frac{B}{b} = 20$	delle	Calculated	0.00		
30 mm P	ier (with			9 m	b _p = 0.03 i		B	delle				
Pier charac	tier (with	debris): B = 0.60		b _p = 0.03 i	m	$\frac{B}{b_s} = 20.$.30	$\frac{L}{b_{\mu}} = 5.56$			
Pier charac	tier (with deristics:	y ₂	B = 0.600	У4	b _p = 0.03 (m B ₄	$\frac{B}{b_s} = 20.$	30 A*	$\frac{L}{b_{p}} = 5.56$ $Q_{t} = C_{g}$	CORN B	E,	Hi.
Pier charac	tier (with cteristics: y ₁ [m]	y ₂ [m]	B = 0.600 y ₃ [m]	y ₄ [m]	b _p = 0.03 (B. [m]	$\frac{B}{b_s} = 20.$ C_d^* [m]	30 A* [m²]	$\frac{L}{b_{\mu}} = 5.56$ $Q_{ij} \qquad Q_{ij}$ $[[Vs]]$	y-/y4	Fr ₄	H/y ₄
Q, [Us] 0.03212	tier (with	y ₂ [m] 0.1070	y ₃ [m] 0.0690	y ₄ [m] 0.0485	B ₁ [m]	B ₄ [m] 0.609	$\frac{B}{b_p} = 20.$ C_d^* [m] 0.7	30 A* [m²] 0.0032	Calcusted L b _c = 5.56 Q _t C _s [l/s] [] 0.0329 0.09	y ₇ /y ₄ 1.87	1.58	1.87
Q, [Us] 0.03212 0.06217	ter (with teristics: y ₁ [m] 0.0905 0.1380	y ₂ [m] 0.1070 0.1840	y ₃ [m] 0.0690 0,1115	y ₄ [m] 0.0485 0.0860	B ₁ [m] 0.609 0.609	B ₄ [m] 0.609 0.609	$\frac{B}{b_{\mu}} = 20.$ C_{d}^{*} [m] 0.7	A* [m²] 0.0032 0.0049	Calcusted L b _p = 5.56 Q ₁ C ₂ [l/s] [] 0.0329 0.99 0.0684 0.9	y+/y ₄ 1.87 1.60	1.58 1.29	1.87
Q, [Us] 0.03212 0.06217 0.09350	tier (with	y ₂ [m] 0.1070	y ₂ [m] 0.0690 0.1115 0.1530	y ₄ [m] 0.0485 0.0860 0.1290	B ₁ [m] 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.609	$\frac{B}{b_p} = 20.$ C_d^* [m] 0.7 0.7 0.7	30 A* [m²] 0.0032	Calcusted L b _p = 5.56 Q, C _p [I/s] [] 0.0329 0.99 0.0884 0.99 0.1131 0.88	1.87 1.60 1.42	1.58	1.87
Q, [Us] 0.03212 0.06217	y ₁ [m] 0.0905 0.1380 0.1830	y ₂ [m] 0.1070 0.1840 0.2110	y ₃ [m] 0.0690 0,1115	y ₄ [m] 0.0485 0.0860	B ₁ [m] 0.609 0.609	B ₄ [m] 0.609 0.609	$\frac{B}{b_{\mu}} = 20.$ C_{d}^{*} [m] 0.7	A* [m²] 0.0032 0.0049 0.0063	Calcusted L b _p = 5.56 Q, C _p [I/s] [] 0.0329 0.9 0.0684 0.9 0.1131 0.8	y,/y ₄ 1.87 1.60 1.42 1.34	1.58 1.29 1.06	1.87 1.60 1.42
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497	y ₁ [m] 0.0905 0.1380 0.2150 0.2490 0.2630	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 2830 0 3060	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020	B ₁ [m] 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m³] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092	Calculated L b c c c c c c c c c c c c c c c c c	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q., [Us] 0.03212 0.05217 0.09350 0.11903 0.14980	y ₁ [m] 0.0906 0.1380 0.2150 0.2490 0.2785	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 2830 0 3060 0 3270	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890	B ₁ [m] 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.609	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m*] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092	Calculated L b c c c c c c c c c c c c c c c c c	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96	1.87 1.60 1.42 1.34 1.32
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497	y ₁ [m] 0.0906 0.1380 0.2150 0.2490 0.2785	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 2830 0 3060	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020	B ₁ [m] 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.609	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m*] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092	Calculated L b c c c c c c c c c c c c c c c c c	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q_ [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	y: [m] 0.0905 0.1380 0.2150 0.2450 0.2765	y: [m] 0 1070 0 1640 0 2110 0 2450 0 3060 0 3270	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1600 0.2020 0.2130	B ₁ [m] 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.609	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m*] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092	Calculated L b c c c c c c c c c c c c c c c c c	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497	y: [m] 0.0905 0.1380 0.2150 0.2450 0.2765	y: [m] 0 1070 0 1640 0 2110 0 2450 0 3060 0 3270	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1600 0.2020 0.2130	B ₁ [m] 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.609	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0096 0.0096	Calculated L b c Calculated Calculated Calculated Calculated Calculated Calculated Calculated	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with terristics: y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2250 0.2765	y: [m] 0 1070 0 1640 0 2110 0 2450 0 3060 0 3270	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130	B ₁ [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.809 0.509 0.509 0.509	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0096	Calculated L b c Calculated Calculated Calculated Calculated Calculated Calculated Calculated	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q_ [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with terristics: y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2250 0.2765	y: [m] 0 1070 0 1640 0 2110 0 2450 0 3060 0 3270	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130	B ₁ [m] 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.809 0.509 0.509 0.509	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0096	Calculated L b c c c c c c c c c c c c c c c c c	y y/y ₄ 1.87 1.60 3 1.42 0 1.34 0 1.32 1 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q_ [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with the states of the s	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 3050 0 3270 swied da	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 g	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 s);	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.809 0.509 0.509 0.509	$\frac{B}{b_{r}} = 20$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092 0.0098	$\begin{split} \frac{L}{b_{_{p}}} &= 5.56 \\ \hline Q_{_{1}} &= C_{_{2}} \\ [I/s] & [] \\ 0.0329 & 0.98 \\ 0.0884 & 0.9 \\ 0.1131 & 0.8 \\ 0.1490 & 0.8 \\ 0.1879 & 0.8 \\ 0.2053 & 0.8 \\ 0.2216 & 0.8 \\ \hline Calculated \\ \hline \frac{L}{b_{_{p}}} &= 5.56 \\ \hline \end{split}$	y,/y, 1.87 1.60 3.1,42 0.1,34 1.32 0.1,30 1.30	1.58 1.29 1.06 0.98 0.96 0.95	1.87 1.60 1.42 1.34 1.32 1.30
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with teristics: y ₁ [m] 0.0906 0.1380 0.1830 0.21490 0.2530 0.2785 Mer (droiteristics: y ₁	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 3050 0 3270 swined da	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130	B ₁ [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.509	B = 20. C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0096 0.0000000000	$\frac{L}{b_{p}} = 5.56$ $\frac{Q_{t}}{[Vs]} = \frac{C_{s}}{[1]}$ $0.0329 = 0.96$ $0.0884 = 0.97$ $0.1131 = 0.85$ $0.1490 = 0.86$ $0.1879 = 0.86$ $0.2053 = 0.86$ $0.2216 = 0.85$ $0.2216 = 0.85$ $0.2216 = 0.85$ $0.2216 = 0.85$	y,/y, 1.87 1.60 3.1,42 0.1,34 1.30 1.30 1.30	1.58 1.29 1.06 0.98 0.96 0.95 0.96	1.87 1.60 1.42 1.34 1.32 1.30
Q_ [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2450 0.2630 0.2765 tier (droiteristics: y ₁ [m]	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 3050 0 3270 swied da	B = 0.609 [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 B = 0.609	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 s);	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.509 0.609	$\frac{B}{b_{\rho}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092 0.0098	$\frac{L}{b_{\mu}} = 5.56$ $\frac{Q_{i}}{[Vs]} = \frac{C_{i}}{[1]}$ $0.0329 = 0.96$ $0.0884 = 0.97$ $0.1131 = 0.85$ $0.1879 = 0.86$ $0.2053 = 0.86$ $0.2216 = 0.85$ $0.2216 = 0.85$ $0.2216 = 0.85$ $0.2216 = 0.85$ $0.2216 = 0.85$	y,/y, 1.87 1.60 3.1,42 9.1,34 1.30 1.32 1.30 2.1,30	1.58 1.29 1.06 0.98 0.96 0.95 0.96	1.87 1.60 1.42 1.34 1.32 1.30
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080 0.338333333333333333333333333333333	tier (with y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2450 0.29530 0.2765 tier (droiteristics: y ₁ [m] 0.1360	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 3370 0 3370 wned co	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 0.2360 0.2360 0.2360 0.2360 0.2360 0.2360 0.2360	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2130 s); 9 m y ₄ [m] 0.0920	b _p = 0.03 (m) (m) 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.509 0.509 0.509 0.509	$\frac{B}{b_{r}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0095 0.0098 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y,/y, 1.87 1.60 3.1,42 9.1,34 9.1,32 1.30 2.1,30 2.1,30 3.7 4.7 1.48	1.58 1.29 1.06 0.98 0.96 0.95 0.96	1.87 1.80 1.42 1.34 1.32 1.30 1.30
Q. [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with the control of the contro	y: [m] 0 1070 0 1640 0 2110 0 2450 0 3270 0 3066 dar wned co	y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 8 = 0.60 y ₃ [m] 0.1160 0.1430	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0054 0.0054	Calculated L b _p = 5.56 Q ₁ C ₂ [I/s] [] 0.0329 0.9 0.0684 0.9 0.1131 0.8 0.1490 0.8 0.1879 0.8 0.2053 0.8 0.2216 0.8 Calculated L b _p = 5.56 Q ₁ C ₂ [I/s] [] 0.0705 0.8 0.1010 0.8	y,/y, 1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.30 1.30 1.48 1.17	1.58 1.29 1.06 0.98 0.96 0.95 0.96 Fr ₄ 1.147 0.645	1.87 1.60 1.42 1.34 1.32 1.30 1.30
Q_ [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with the characteristics: y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2490 0.2705 0.2705 ier (droiteristics: y ₁ [m] 0.1360 0.1580 0.1760	y: [m] 0.1070 0.2450 0.3270 0.3270 0.3270 0.3270 0.000	B = 0.600 y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 B = 0.600 y ₃ [m] 0.1160 0.1430 0.1675	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350 0.1640	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.509 0.509 0.509 0.609 0.609 0.609 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0083 0.0074 0.0085 0.0092 0.0096 0.0096 0.0096 0.0054 0.0054 0.0054 0.0058	Calculated L b _p = 5.56 Q ₁ C ₂ [I/s] [] 0.0329 0.9 0.0684 0.9 0.1131 0.8 0.1490 0.8 0.1879 0.8 0.2053 0.8 0.2216 0.8 Calculated L b _p = 5.56 Q ₁ C ₂ [I/s] [] 0.0705 0.8 0.1010 0.8 0.1190 0.5	y,/y, 1.87 1.60 3.1.42 3.1.34 3.1.30 1.30 2.1.30 2.1.30 4.48 5.1.48 6.1.7 1.07	1.58 1.29 1.06 0.98 0.96 0.95 0.96 Fr ₄ 1.147 0.645 0.482	1.87 1.60 1.42 1.34 1.32 1.30 1.30
Q. [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080 0.16497 0.18080 0.16497 0.18080 0.16497 0.18080 0.16497 0.18080 0.16496 0.16496 0.06106 0.06106 0.06106 0.06106 0.11955	Vi [m] 0.0908 0.1380 0.2150 0.2490 0.2785 Mer (dro	y ₂ [m] 0 1070 0 1840 0 2250 0 3370 0 3370 wned co	B = 0.600 y ₃ [m] 0.0690 0.1115 0.1530 0.2120 0.2250 0.2360 B = 0.600 y ₃ [m] 0.1160 0.1430 0.1675 0.1760	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350 0.18640 0.1560	b _p = 0.03 (m) (m) (0.609 (0.	B ₄ [m] 0.609 0.609 0.509 0.509 0.509 0.509 0.609	$\frac{B}{b_{\mu}} = 20.$ C _d * [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092 0.0098 0.0098 0.0098 0.0054 0.0058 0.0072	$\frac{L}{b_{x}} = 5.56$ Q. C. [I/s] [] 0.0329 0.99 0.0684 0.9 0.1131 0.83 0.1490 0.8 0.1879 0.8 0.2053 0.8 0.2216 0.83 Carbusted $\frac{L}{b_{x}} = 5.56$ Q. C. [I/s] [] 0.0705 0.8 0.1190 0.5 0.1405 0.8	y,/y, 1.87 1.60 3.1.42 3.1.34 3.1.30 1.30 2.1.30 2.1.30 4.48 7.1.48 0.1.17 1.07 5.1.31	1.58 1.29 1.06 0.98 0.96 0.95 0.96 Fr ₄ 1.147 0.645 0.482 1.017	1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.48 1.17 1.07 1.31
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080 4305544 30 mm P Pier chara [Us] 0.06106 0.06106 0.06106 0.11955 0.11955	Vier (with the charistics: y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2490 0.2630 0.2765 Vier (droiteristics: y ₁ [m] 0.1360 0.1580 0.1760 0.2050 0.2380	y ₂ [m] 0 1070 0 2450 0 3270 0 3270 0 1640 0 1790 0 1640 0 1790 0 1540 0 1790 0 1590	y ₂ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360 0.2360 0.1160 0.1160 0.1160 0.1675 0.1760 0.2190	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350 0.1350 0.1640 0.1560 0.2060	b _p = 0.03 (m) (m) (m) (0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.509 0.609 0.609 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	A* [m³] 0.0032 0.0049 0.0054 0.0092 0.0094 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0057 0.0078	$\frac{L}{b_p} = 5.56$ Q ₁ Q ₂ Q ₃ Q ₄ Q ₅ Q ₇ Q ₈	y,/y, 1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.31 1.42 1.31 1.31 1.43 1.31 1.44 1.32 1.30 1.31 1.30 1.31	1.58 1.29 1.06 0.98 0.96 0.95 0.96 1.147 0.645 0.482 1.017 0.661	1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.48 1.17 1.07 1.31 1.14
Pier chara: Q. [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	tier (with) [m] 0.0906 0.1380 0.1830 0.21490 0.2530 0.2785 tier (droiteristics: y1 [m] 0.1360 0.1580 0.1780 0.2050 0.2380 0.2840	y ₂ [m] 0 1070 0 1640 0 2110 0 2450 0 3050 0 3270 swred da wned co	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2250 0.2360 9 0.1600 0.1600 0.1675 0.1760 0.2760	y ₄ [m] 0 0485 0 0860 0 1290 0 1600 0 1890 0 2020 0 2130 s); 9 m y ₄ [m] 0 0920 0 1350 0 1640 0 1560 0 2080 0 2067	b _p = 0.03 (m) B ₁ [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.609 0.509 0.509 0.509 0.509 0.509 0.609 0.609 0.609 0.609 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ $\begin{array}{c} C_{d}^{*} \\ [m] \\ 0.7$	A* [m*] 0.0032 0.0049 0.0063 0.0075 0.0092 0.0098 340 A* [m*] 0.0094 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054		y,/y, 1.87 1.60 3.1,42 0.1,34 0.1,32 0.1,30	1.58 1.29 1.06 0.98 0.96 0.95 0.96 1.147 0.645 0.482 1.017 0.661 0.454	1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.30
Q. [Us] 0.03212 0.06217 0.09350 0.11903 0.14980 0.16497 0.18080 4305544 30 mm P Pier chara [Us] 0.06106 0.06106 0.06106 0.11955 0.11955	Vier (with the charistics: y ₁ [m] 0.0906 0.1380 0.1830 0.2150 0.2490 0.2630 0.2765 Vier (droiteristics: y ₁ [m] 0.1360 0.1580 0.1760 0.2050 0.2380	y ₂ [m] 0 1070 0 2450 0 3270 0 3270 0 1640 0 1790 0 1640 0 1790 0 1540 0 1790 0 1590	y ₂ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360 0.2360 0.1160 0.1160 0.1160 0.1675 0.1760 0.2190	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350 0.1350 0.1640 0.1560 0.2060	b _p = 0.03 (m) (m) (m) (0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.509 0.609 0.609 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	A* [m³] 0.0032 0.0049 0.0054 0.0092 0.0094 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0057 0.0078	$\frac{L}{b_p} = 5.56$ Q ₁ Q ₂ Q ₃ Q ₄ Q ₅ Q ₇ Q ₈	y,/y, 1.87 1.60 3.1,42 0.1,34 0.1,32 0.1,30 2.1,30 2.1,30 3.1,48 0.1,77 1.07 1.07 1.07 1.08 1.17 1.08 1.17 1.08 1.125	1.58 1.29 1.06 0.98 0.96 0.95 0.96 1.147 0.645 0.482 1.017 0.661	1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.48 1.17 1.07 1.31 1.14
Q_ [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080	Vi [m] 0.0905 0.1380 0.2150 0.2490 0.2630 0.2705 0.1580 0.1780 0.1580 0.1580 0.1780 0.2050 0.2050 0.2330 0.3710	y: [m] 0 1070 0 1640 0 2110 0 28300 0 30270 0 30270 0 1940 0 1790 0 1940 0 2410 0 2590 0 30300 0 3980 0 3980	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360 8 = 0.60 9 [m] 0.1160 0.1430 0.1675 0.1760 0.2190 0.2760 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.1890 0.2020 0.2130 y ₄ [m] 0.0920 0.1350 0.1640 0.1560 0.2080 0.2670 0.2160	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.509 0.509 0.509 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	$\frac{B}{b_{\rho}} = 20.$ $\begin{array}{c} C_{d}^{*} \\ [m] \\ 0.7$	A* [m²] 0.0032 0.0049 0.0063 0.0074 0.0085 0.0092 0.0098 0.0054 0.0054 0.0055 0.0072 0.0096 0.0098 0.0099 0.009 0.009 0.009 0.009 0.009 0.009 0.0090 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0		y,/y, 1.87 1.60 3.1,42 9.1,34 1.32 0.1,30 2.1,30 2.1,30 2.1,30 3.1,48 9.1,17 1.07 1.1,17 1.07 1.1,13 3.1,14 9.1,08 5.1,25 0.1,09	1.58 1.29 1.06 0.98 0.96 0.95 0.96 1.147 0.645 0.482 1.017 0.661 0.454 0.964	1.87 1.60 1.42 1.34 1.32 1.30 1.30 1.30
Q. [Us] 0.03212 0.05217 0.09350 0.11903 0.14980 0.16497 0.18080 1-33838 30 mm P Pier chara Q. [Us] 0.06106 0.06106 0.06106 0.11955 0.11955 0.11955 0.17941	Vi [m] 0.0905 0.1380 0.2150 0.2490 0.2630 0.2705 0.1580 0.1780 0.1580 0.1580 0.1780 0.2050 0.2050 0.2330 0.3710	y ₂ [m] 0 1070 0 1840 0 22110 0 2450 0 3370 0 3940 0 1790 0 1940 0 2450 0 3500 0 3750 0 3600 0 3750 0 3600 0 3750 0 3600 0 3750 0 3600	y ₃ [m] 0.0690 0.1115 0.1530 0.1820 0.2120 0.2250 0.2360 8 = 0.60 9 [m] 0.1160 0.1430 0.1675 0.1760 0.2190 0.2760 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350 0.2350	y ₄ [m] 0.0485 0.0860 0.1290 0.1600 0.2130 0.2130 y ₄ [m] 0.0920 0.1350 0.1640 0.1560 0.2670 0.2120 0.2960	b _p = 0.03 s [m] 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	B ₄ [m] 0.809 0.809 0.809 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509 0.509	$\frac{B}{b_{\rho}} = 20.$ C_{d}^{*} [m] 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.	A* [m²] 0.0032 0.0049 0.0085 0.0074 0.0085 0.0096 0.0054 0.0054 0.0056 0.0056 0.0072 0.0096 0.00096 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		y,/y, 1.87 1.60 3.1,42 9.1,34 1.32 0.1,30 2.1,30 2.1,30 2.1,30 3.1,48 9.1,17 1.07 1.1,17 1.07 1.1,13 3.1,14 9.1,08 5.1,25 0.1,09	1.58 1.29 1.06 0.98 0.96 0.96 0.96 0.96 1.147 0.645 0.482 1.017 0.661 0.454 0.964 0.584	1.87 1.80 1.42 1.34 1.32 1.30 1.30 1.30

POWER APPROACH, RESULTS (LABORATORY):

Calculation of K- en Cg-values for flow rate equations which have been derived

K-EQUATION (Section 1-3 combination, control volume 1):

$$Q = \sqrt{\frac{g[(y_1 - y_3) + \frac{\kappa}{2yB}(y_{3y}^2 B_1 - y_3^2 B_3)]}{\frac{\kappa}{x_1B_1}(\frac{1}{x_1B_2} - \frac{1}{x_1B_1}) + \frac{1}{2}(\frac{1}{y_3^2B_3^2} - \frac{1}{y_1^2B_2^2})}}$$

Note that if we make κ (kappa) the subject of the equation we have:

$$\kappa = \frac{g(y_1 - y_3) + \frac{1}{2}Q^2 \left(\frac{1}{y_1^2 B_1^2} - \frac{1}{y_3^2 B_2^2}\right)}{\left[\frac{1}{2}g(y_3^2 B_3 - y_1^2 B_1) + Q^2 \left(\frac{1}{y_2 B_3} - \frac{1}{y_1 B_1}\right)\right]\left(\frac{1}{y_2 B_1}\right)}$$

90 mm Pier:

Pier characteristics:

$$\frac{L}{b_{*}} = 5.56$$

Q., [l/s]	у ₁ [m]	Уз [m]	B, [m]	B, [m]	Q ₁ (x = 1) [l/s]	× U
0.03073	0.1010	0.0660	0.609	0.519	0.0361	9.56
0.06257	0.1620	0.1080	0.609	0.519	0.0742	0.57
0.09091	0.2085	0.1470	0.609	0.519	0.1114	0.60
0.11980	0.2500	0.1840	0.609	0.519	0.1490	0.58
0.15060	0.2850	0.2170	0.609	0.519	0.1836	0.50
0.16591	0.3020	0.2320	0.609	0.519	0.2008	0.47
0.18027	0.3190	0.2470	0.609	0.519	0.2185	0.46
M	sesured dat	THE STATE OF	Geo	metry	Calcul	sted.

45 mm Pier:

Pier characteristics:

$$b_p = 0.045 \, \text{m}$$

$$\frac{B}{6} = 13.53$$

$$\frac{L}{h} = 5.56$$

Q., [1/s]	У ₁ [m]	У ₃ [m]	B, [m]	B ₃	Q ₁ (x = 1) [1/s]	K II
0.03032	0.0930	0.0660	0.609	0.564	0.0372	0.81
0.06247	0.1440	0.1170	0.609	0.564	0.0763	0.66
0.09022	0.1800	0.1510	0.609	0.564	0.1075	0.55
0.12084	0.2150	0.1830	0.609	0.564	0.1406	0.46
0.14956	0.2400	0.2380	0.609	0.564	0.1211	-6.44
0.16459	0.2530	0.2220	0.609	0.564	0.1793	0.11
0.18010	0.2710	0.2370	0.609	0.564	0.1988	0.20
Measured data			Geo	metry	Calcul	beta

30 mm Pier;

Pier characteristics:

$$B = 0.609 \text{ m}$$

$$b_p = 0.03 \text{ m}$$

$$\frac{B}{b} = 20.30$$

$$\frac{L}{b} = 5.56$$

Q_ [1/s]	y ₁ [m]	Уз [m]	B, [m]	B, [m]	Q _t (x = 1)	Y II
0.03153	0.0920	0.0710	0.609	0.579	0.0399	0.87
0.06187	0.1340	0.1140	0.609	0.579	0.0731	2.0.64
0.09293	0.1750	0.1470	0.609	0.579	0.1087	0.65
0.11929	0.2040	0.1730	0.609	0.579	0.1371	0.59
0.14956	0.2270	0.1970	0.609	0.579	0.1617	0.29
0.16572	0.2450	0.2120	0.609	0.579	0.1812	0.36
0.18044	0.2590	0.2260	0.609	0.579	0.1971	0.33
Mr.	sasured dat	2000	Geo	metry	Calcul	bete

K-EQUATION (Section 1-4 combination, control volume 2):

$$Q = \sqrt{\frac{g[(y_1 - y_4) + \frac{\kappa}{2jB}(y_{1j}^2 B_1 - y_4^2 B_4)]}{\frac{\kappa}{2jB_1}(\frac{1}{2g_4^2 B_4} - \frac{1}{2jB_1}) + \frac{1}{2}(\frac{1}{g_4^2 g_4^2} - \frac{1}{g_1^2 g_4^2})}}$$

Note that if we make κ (kappa) the subject of the equation we have:

$$\kappa = \frac{g(y_1 - y_4) + \frac{1}{2} Q^2 \left(\frac{1}{y_1^2 B_1^2} - \frac{1}{y_4^2 B_4^2}\right)}{\left[\frac{1}{2} g(y_4^2 B_4 - y_1^2 B_1) + Q^2 \left(\frac{1}{y_4 B_4} - \frac{1}{y_1 B_1}\right)\right]\left(\frac{1}{y_1 B_1}\right)}$$

Pier characteristics:

B = 0.609 m

 $b_p = 0.09 \text{ m}$

 $\frac{B}{b_s} = 6.77$

 $\frac{L}{b_s} = 5.56$

Q_ [l/s]	y ₁ [m]	y ₄ [m]	B, [m]	B. [m]	Q ₁ (x = 1) [l/s]	11
0.03073	0.1010	0.0260	0.609	0.609	0.0214	3.97
0.06257	0.1620	0.0750	0.609	0.609	0.0693	0.74
0.09091	0.2085	0.1040	0.609	0.609	0.1072	0.99
0.11980	0.2500	0.1320	0.609	0.609	0.1471	1.08
0.15060	0.2850	0.1590	0.609	0.609	0.1868	1.70
0.16591	0.3020	0.1710	0.609	0.609	0.2061	1:10-
0.18027	0.3190	0.1840	0.609	0.609	0.2269	1.12
TO SERVICE	susured dut	15°4000	Geo	matry	Calcu	lated :

45 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.045 \text{ m}$

 $\frac{B}{h} = 13.53$

 $\frac{L}{b} = 5.56$

Q., [l/s]	y, [m]	y ₄ [m]	B, [m]	B., [m]	Q ₁ (x = 1) [l/s]	n n
0.03032	0.0930	0.0480	0.609	0.609	0.0328	D.71.4
0.06247	0.1440	0.0840	0.609	0.609	0.0694	0.93
0.09022	0.1800	0.1150	0.609	0.609	0.1040	1.05
0.12084	0.2150	0.1470	0.609	0.609	0.1429	1.09
0.14956	0.2400	0.1780	0.609	0.609	0.1792	7.09
0.16459	0.2530	0.1890	0.609	0.609	0.1950	7.09
0.18010	0.2710	0.2030	0.609	0.609	0.2166	1.09
D	speciment state	12000	Ceo	metry	Calcul	abd Section

30 mm Pier;

Pier characteristics:

B = 0.609 m

 $b_0 = 0.03 \, \text{m}$

 $\frac{B}{b} = 20.30$

 $\frac{L}{b_s} = 5.56$

Q., [Vs]	y ₁ [m]	у ₄ [m]	B, [m]	B, [m]	Q _r (x = 1) [l/s]	C C
0.03153	0.0920	0.0520	0.609	0.609	0.0346	0.87
0.06187	0.1340	0.0900	0.609	0.609	0.0693	1.03
0.09293	0.1750	0.1260	0.609	0.609	0.1091	1.08
0.11929	0.2040	0.1540	0.609	0.609	0.1423	1.09
0.14956	0.2270	0.1770	0.609	0.609	0.1711	1.07
0.16572	0.2450	0.1920	0.609	0.609	0.1926	5/1.07
0.18044	0.2590	0.2010	0.609	0.609	0.2078	1.07
AND MA	sasured dat	5/2000 B	Geo	metry	Calcul	lated -5.

C_d-EQUATION (Section 1-3 combination, control volume 1):

$$Q = C_d \sqrt{\frac{g\left[(y_1 - y_3) + \frac{1}{2}\left(y_1 - \frac{y_1^2 B_3}{y_1 B_1}\right)\right]}{\left(\frac{1}{y_1 B_1} - \frac{1}{y_1 B_1}\right)\left[\frac{1}{y_1 B_1} + \frac{1}{2}\left(\frac{1}{y_1 B_1} + \frac{1}{y_1 B_1}\right)\right]}}$$

Note that if B₁ is not equal to B₃ then no further simplification of the above equation is possible.

90 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.09 \text{ m}$

 $\frac{B}{b} = 6.77$

 $\frac{L}{b} = 5.56$

Q_ [l/s]	y, [m]	у ₂ [m]	B, [m]	B, [m]	Q, [l/s]	C, II
0.03073	0.1010	0.0660	0.609	0.519	0.0361	0.85
0.06257	0.1620	0.1080	0.609	0.519	0.0742	16.84
0.09091	0.2085	0.1470	0.609	0.519	0.1114	0.82
0.11980	0.2500	0.1840	0.609	0.519	0.1490	0.80
0.15060	0.2850	0.2170	0.609	0.519	0.1836	0.82
0.16591	0.3020	0.2320	0.609	0.519	0.2008	0.83

0.18027	0.3190	0.2470	0.609	0.519	0.2185	0.83
Measured data			Geometry		- Calculated	

Pier characteristics:

B = 0.609 m

 $b_p = 0.045 \text{ m}$

 $\frac{B}{b_c} = 13.53$

 $\frac{L}{b} = 5.56$

Q., [l/s]	y ₁ [m]	У ₃ [m]	B, [m]	B, [m]	Q, [l/s]	C ₄
0.03032	0.0930	0.0660	0.609	0.564	0.0372	0.82
0.06247	0.1440	0.1170	0.609	0.564	0.0763	0.82
0.09022	0.1800	0.1510	0.609	0.564	0.1075	0.84
0.12084	0.2150	0.1830	0.609	0.564	0.1406	0.86
0.14956	0.2400	0.2380	0.609	0.564	0.1211	1.24
0.16459	0.2530	0.2220	0.609	0.564	0.1793	0.92
0.18010	0.2710	0.2370	0.609	0.564	0.1988	0.91
-Me	setured dat	12250	Geo	molty	Calcu	lafed"

30 mm Pier:

Pier characteristics:

B = 0.609 m

b_o = 0.03 m

 $\frac{B}{b} = 20.30$

 $\frac{L}{b_{*}} = 5.56$

Q_ [l/s]	у ₁ [m]	У ₃ [m]	B, [m]	B ₃ [m]	Q, [l/s]	C ₄
0.03153	0.0920	0.0710	0.609	0.579	0.0399	0.79
0.06187	0.1340	0.1140	0.609	0.579	0.0731	0.65
0.09293	0.1750	0.1470	0.609	0.579	0.1087	0.86
0.11929	0.2040	0.1730	0.609	0.579	0.1371	0.87
0.14956	0.2270	0.1970	0.609	0.579	0.1617	0.93
0.16572	0.2450	0.2120	0.609	0.579	0.1812	0.91
0.18044	0.2590	0.2260	0.609	0.579	0.1971	0.92
O. T. M	satured dat	9001000	Geo	moley 273	Calcu	lated

C_c-EQUATION (Section 1-4 combination, control volume 2):

$$Q_w = C_d \sqrt{\frac{g\left[\left(y_4 - y_1\right) - \frac{1}{2}\left(\frac{y_1^2 B_4}{y_1 B_1} - y_1\right)\right]}{\left(\frac{1}{y_2 B_4} - \frac{1}{y_1 B_1}\right)\left[\frac{1}{y_2 B_2} - \frac{1}{2}\left(\frac{1}{y_2 B_4} + \frac{1}{y_2 B_2}\right)\right]}}$$

Note that B₁ = B₄ = B and therefor the equation above will simplify as follows:

$$Q = C_{\ell} \sqrt{B^{2} g y_{1} y_{4}^{2} \frac{(3y_{1} - y_{4})}{(y_{1} - 3y_{4})}} \Rightarrow Q = C_{\ell} B y_{4} \sqrt{g y_{1}} \sqrt{\frac{(3y_{1} - y_{4})}{(y_{1} - 3y_{4})}}$$

90 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.09 \text{ m}$

 $\frac{B}{b} = 6.77$

 $\frac{L}{b_s} = 5.56$

 Fr_k

3.84

1.60

1.42

1.31

1.25

1.23

1.20

y+'y₄ 3.88

2.16

2.00

1.89

1.79

1.77

1.73

Q., [l/s]	y ₁ [m]	y ₄ [m]	B., [m]	B ₄ [m]	Q, [l/s]	c, U
0.03073	0.1010	0.0260	0.609	0.609	0.0214	1.44
0.06257	0.1620	0.0750	0.609	0.609	0.0693	0.90
0.09091	0.2085	0.1040	0.609	0.609	0.1072	0.85
0.11980	0.2500	0.1320	0.609	0.609	0.1471	0.81
0.15060	0.2850	0.1590	0.609	0.609	0.1868	0.81
0.16591	0.3020	0.1710	0.609	0.609	0.2061	0.81
0.18027	0.3190	0.1840	0.609	0.609	0.2269	0.79
M	sasured dat	10000	Geo	metry	Calcu	Apried

45 mm Pier:

Pier characteristics:

B = 0.609 m

 $b_p = 0.045 \text{ m}$

 $\frac{B}{b_p} = 13.53$

 $\frac{L}{h} = 5.56$

Q_ [l/s]	у ₁ [m]	У4 [m]	B, [m]	B, [m]	Q, [1/s]	G U	v ₄	y-/y ₄	Fr4
0.03032	0.0930	0.0480	0.609	0.609	0.0328	0.92	1.04	1.94	1.51
0.06247	0.1440	0.0840	0.609	0.609	0.0694	0.90	1.22	1.71	1.35
0.09022	0.1800	0.1150	0.609	0.609	0.1040	0.87	1.29	1.57	1.21
0.12084	0.2150	0.1470	0.609	0.609	0.1429	0.85	1.35	1.46	1.12
0.14956	0.2400	0.1780	0.609	0.609	0.1792	0.83	1.38	1.35	1.04

M	specimed date	13,585(3)	Con	metry of A	Calo	lated -			
0.18010	0.2710	0.2030	0.609	0.609	0.2166	0.83	1.45	1.33	1.03
0.16459	0.2530	0.1890	0.609	0.609	0.1950	0.84	1.43	1.34	1.05

Pier characteristics:

B = 0.609 m

 $b_p = 0.03 \text{ m}$

400	200	78.4
_	= 200	L-34

A.	_	5.	56
b.		-	

 $\mathrm{Fr}_{\mathbf{z}}$

1.39

1.20

1.09

1.03

1.05

1.03

1.05

Q_ [l/s]	y, [m]	y ₄ [m]	B, [m]	B ₄ [m]	Q, [l/s]	C.
0.03153	0.0920	0.0520	0.609	0.609	0.0346	8.91
0.06187	0.1340	0.0900	0.609	0.609	0.0693	0.89
0.09293	0.1750	0.1260	0.609	0.609	0.1091	0.85
0.11929	0.2040	0.1540	0.609	0.609	0.1423	0.84
0.14956	0.2270	0.1770	0.609	0.609	0.1711	0.87
0.16572	0.2450	0.1920	0.609	0.609	0.1926	-0.86
0.18044	0.2590	0.2010	0.609	0.609	0.2078	0.87
M	nosured date	12025	Geo	metry PCC	Calo	lated - 4.5

30 mm Pier (with debris):

Pier characteristics:

B = 0.609 m

$$b_p = 0.03 \text{ m}$$
 $\frac{B}{b_p} = 20.30$

$$\frac{L}{b_s}$$

y√y₄ 1.77

1.49

1.39

1.32

1.28

1.28

1.29

Q_ [l/s]	y, [m]	y ₄ [m]	B, [m]	B, [m]	Q, [l/s]	C,
0.03212	0.0905	0.0485	0.609	0.609	0.0324	0.99
0.06217	0.1380	0.0860	0.609	0.609	0.0685	0.91
0.09350	0.1830	0.1290	0.609	0.609	0.1148	0.81
0.11903	0.2150	0.1600	0.609	0.609	0.1523	0.78
0.14980	0.2490	0.1890	0.609	0.609	0.1927	0.78
0.16497	0.2630	0.2020	0.609	0.609	0.2110	0.78
0.18080	0.2765	0.2130	0.609	0.609	0.2280	0.79
SCHOOL	sasured dat	4300	Geo	metry	Calc	stated in 166

1.09	1.87	1.58
1.19	1.60	1.29
1.19	1.42	1.06
1.22	1.34	0.98
1.30	1.32	0.96
1.34	1.30	0.95
1.39	1.30	0.96

y-/y4

30 mm Pier (drowned conditions):

Pier characteristics:

B = 0.609 m

 $b_p = 0.03 \text{ m}$

$$\frac{B}{b_p} = 20.30$$

$$\frac{L}{b_s} = 5.56$$

Q_ [Vs]	y ₁ [m]	y ₄ [m]	B, [m]	B, [m]	Q, [1/s]	C II
0.06106	0.1360	0.0920	0.609	0.609	0.0713	0.86
0.06106	0.1580	0.1350	0.609	0.609	0.1065	0.57
0.06106	0.1760	0.1640	0.609	0.609	0.1336	0.46
0.11955	0.2050	0.1560	0.609	0.609	0.1442	0.83
0.11955	0.2380	0.2080	0.609	0.609	0.2002	0.60
0.11955	0.2840	0.2670	0.609	0.609	0.2756	0.43
0.17941	0.2650	0.2120	0.609	0.609	0.2201	0.82
0.17941	0.3230	0.2960	0.609	0.609	0.3280	0.55
0.17941	0.3710	0.3520	0.609	0.609	0.4144	0.43
M	so sured dat	170000	Geo	metry	Calcu	aled .

V_{d}	y-y-	Fr ₄
1.09	1.48	1.15
0.74	1.17	0.65
0.61	1.07	0.48
1.26	1.31	1.02
0.94	1.14	0.66
0.74	1.06	0.45
1.39	1.25	0.96
1.00	1.09	0.58
0.84	1.05	0.45

APPENDIX B

ENERGY APPROACH, LABORATORY DATA AND CALIBRATED COEFFICIENTS - ADDITIONAL LABORATORY TESTS

MODEL PIER, bp = 32 mm_SHORT_NORMAL Q's

OK

DATA	Saturday.	5 August	2000					UE	us	0.5	DE				
								upstream	upstream :	downstream	downstream				
Q	Program.	Direct, 2	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric	properties:
dred Aevels			12.5	10.5	95.0	12.6	15.5					147.5	147.0		
10	11.5	110	HC	DT MEASUR	ABLE	58.6	56.9	56.0	35.0	22.5	16.0	197.5	193.3	D =	31.5 mm
30	73.0	73.0				92.4	90.0	101.0	62.5	51.3	42.3	224.8	240.5	L _p =	132 mm
50	204.0	205.0				119.4	114.4	134.5	82.5	77.0	71.8	274.4	260.6	Za =	0.7 mm
70	400.0	400.0				145.9	142.0	164.3	103.5	99.6	97.5	299.2	275.0	Z ₀ =	1.4 mm
90	665.0	675.0				171.7	163.0	196.5	122.0	121.3	124.0	312.9	306.3	24.0	3.3 mm
110	970.0	975.0				191.6	181.0	219.3	139.8	142.0	144.5	343.3	327.2	70°	4.0 mm
130	1385.0	1385.0				217.6	210.6	246.8	144.3	148.8	152.8	313.1	333.5		
150	1850.0	1830 D				233.1	225.3	269.1	960.0	164.6	169.8	338.6	363.2		
170	2330.0	2320.0				249.6	244.3	291.9	173.8	179.6	184.5	363.1	366.4		

CALCULATIONS

			FLOW DEPTHS																		
								UE	US	DS	DE										
			Dis	tance meas	ured downsh	earn within the	e flume	upstream	upstream	downstream	downstream										
			0 m	1 000	2 m	3 /11	4 m	and	wide	side	end	6 m	7 m			war w					
Bearing.	Q _{cabc}	Q [Fe]	Ve	Y ₁	Va .	Ys.	Ye	Yor	Year	You	Yes	74	y2	n	B-b _p	2g(yor-you)" "	Quarry	32041	Fr. 4m	Fr_DS	Fr_DE
11.3	0.011824	11.6				45.3	41.4	58.0	36.4	25.8	20.0	50.0	46.3	0.609	0.578	0.83	0.012311	0.96	0.74	1.58	2.19
73.0	0.030120	30.1				78.9	74.5	101.0	63.9	54.6	46.3	77.3	93.5	0.509	0.576	0.98	0.030904	0.97	0.78	1.31	1.59
204.5	0.050413	50.4				105.9	98.9	134.5	83.9	80.3	75.8	126.9	113.6	0.609	0.578	1.06	0.048954	1.03	0.85	1.22	1.27
400.0	0.070506	70.5				132.4	126.5	164.3	104.9	103.1	101.5	151.7	126.0	0.609	0.576	1.12	0.066582	1.06	0.82	1.18	1.14
670 G	0.091249	91.2				158.2	147.5	196.5	123.4	124.6	128.0	165.4	159.3	0.509	0.576	1.21	0.088990	1.05	0.04	1.15	1.04
972.5	0.109635	109.9				178.1	165.5	219.3	141.2	145.3	148.5	195.8	180.2	0.509	0.576	1.23	0.102935	1.07	0.56	1.10	1.01
1385.0	0.131195	131.2				204.1	195.3	245.B	145.7	152.1	156.8	165.6	186.5	0.600	0.576	1.38	0.121323	1.08	0.80	1.22	1.11
1840.0	0.151217	151.2				219.6	209 B	209.1	161.4	168.1	173.8	191.3	206.2	0.609	0.578	1.43	0.138396	1.09	0.62	1.21	1.09
2325.0	0.109963	170.0				236.1	228.8	291.9	175.2	183.1	188.5	215.6	219.4	0.639	0.576	1.48	0.156319	1.06	0.61	1.20	1.09
																		1.06			

MODEL PIER, bp = 32 mm_SHORT_DROWNED Q's

DATA: Sahurday, 5 August 2000, Sunday, 6 August 2000

			upstream		OS downstream	downstream		
Roar, J. Roar, J.		4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
675-0	660.0	166.3	195.4	127.5	126.0	126.5	322.5	314.3
675.0	660 D	166.5	206.3	155.0	157.0	154.0	335.0	335.2
675.0	660 D	207.6	219.3	180 D	181.0	178.5	355.2	353.2
675.0	660.D	225.4	235.4	200 ₿	201.0	201.3	369.7	372.0
675.0	660.0	244.1	249.6	221.0	222.8	221.0	392.2	388.5
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Beer 1	Now. 3	4 m	end	side	side	end	6 m	7 m
		15.5					147.8	147.0
965.0	975.0	222.1	242.0	191.3	192.5	190.8	370.3	366.4
965 D	975.0	239.5	254.6	213.0	214.3	212.3	391.0	382.2
965.0	975.0	258.8	269.5	232.3	234.5	232.6	403.1	404.2
965.0	975.0	276.8	287.5	255.0	256.6	255.5	425.5	425.7
\$65.0	975.0	297.3	306.0	274.3	277.5	276.0	445.1	443.8
			ue	us	DS	DE		
			upstream	upalre am	downstream	downstream		
								7 m

																Fr. 400	1.03	0.74	0.52	0.44			Fr.an	980	0.00	0.43	0.30			Fr.	0.63	920	0.49	0.44			
																Fr. see	0.82	0.00	0.50	0.44			France	16.0	100	0.43	0.38			Fr	100	0.53	0.48	0.43	0.00		
																355405	1.05	101	980	0.97			12.4	66'0	0.00	0.95	0.92			DATE AND	V (0)	0.00	960	0.96	-		
																Ormany	0 DB66 N	0.090350	0.096001	0.083651			Opposit	0.110943	0.110946	0.115334	0.119763					0.132014	3.133090	0.132629	0.1400000		
															W- W	2p(yer-yes)	1.15	86.0	0.81	0.72		9	290've-Yeal	96.0	0.00	0.77	0.74 0.11			=	d			0.79			
																6.6,	0.578	0.578	0.578	0.578				0.578						418	1000	0.578	0.578	0.578	0.00		
																	609.0	6090	0.609	6090				609.0	0.000	0.609	0.609				2000	0.609	0.609	0.609	0.000		
													90		7 00	ŝ	167.3	188.2	225.0	241.5			ŝ	221.4	2382	278.7	236.8		ļ		-	273.5	536.6	306.8	9000		
147.8 394.2 420.5 420.6 653.8 476.8	147.0	450.5	483.6	499.1		7 m	147.0	436.6	459.0	503.6	0.628		FLOW DEPTHS		8	N.	175.0	187.5	222.2	244.7				222.8	243.5	278.0	297.6			E ,	-	276.4	286.4	306.6	257.3		
47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5	147.5	446.7	480.5	497.0		E	147.5	441.3	469.2	508.1	525.0		PLC	30	downstrain	NIK	130.5	158.0	200.3	225.0	De	COMPANDED	Yes	194.8	5 10 2	250.5	260.0	Ħ	downstraam	pus ,	E	246.0	267.5	289.0	310.0	36	downstream
222 3 242 0 243 5 243 5 243 6 243 6 243 6 243 6 243 6 243 6 244 6	249.3	280.8	3100	331.0	90	downstream		273.5	291.6	336.0	355.6			Sco .	downstream	Yes	129.3	1603	2043	238.1	gg	downstream	No.	195.6	217.6	380.1	280.8	SO	downstream	8998	You	1.002	268.1	289.1	310.1		downstream
234.6 284.0 284.8 285.8 308.8 08		2000	311.5	332.0	SO	Side side		275.0	294.5	336.8	357.5			65	patroam	Yes	128.9	156.4	2002	722.4	5	and and a	No.	1927	214.4	256.4	275.7	5	patram	100	N.	266.4	284.9	284.4	330.4	50	petram
223.3 243.0 243.0 263.0 305.0 US	240.0	266.0	310.5	330.0	g	upstream o		274.5	291.9	336.3	355.0			5	upstream o	1	155.4	206.3	219.3	249.6	5	mestion.	1	242.0	254.6	287.5	306.0	5	upstream o	949	Yes	270.3	303.1	318.6	239.0	5	upstream i
276.3 288.3 388.1 388.1 388.6 388.6 388.6		315.8	348.3	365.4	35	upstream		328.4	344.5	378.0	394.9						1														- 1			292.7			
15.5 254.9 270.7 200.2 300.2 301.2	18.5	296.2	335.6	353.8			18.8	306.0	322.5	361.5	380.6	2000				D (Mal	91.1	91.1	5 6	01.1			O Shall	109.8	100.8	100.8	906.8				d phy	130.6	130.6	130.6	130.6		
1375.0 1375.0 1375.0 1375.0	1830 0	1630.0	1830 0	1830.0		į		23200	23200	232000	23200	THOME				9	0.001079	0.091079	0.001079	0.001079			0	0.109794	0.109794	0.100794	0.109794				o o	0.130002	0.130602	0.130602	0.130602		
1270 0 1270 0 1270 0 1370 0	18100	1610.0	1810.0	1810.0		4		2320.0	2320 0	23200	23200	SAFCULATIONS	-			Part of				667.5			-	1			870.0							1372.5			

	ı														
-	0.56	0.48	0.44	0.41	0.36				Fr. an	0.56	0.49	0.43	0.41	0.36	
-	0.62	96 0	0.50	0.45	0.41				France	0.61	0.55	0.50	0.45	0.41	
1	0.87	0.53	0.48	0.44	0.40				France	0.57	0.52	0.48	0.44	0.40	
	1.01	1.00	1 00	0.96	0.97				16216	1.04	1.00	1.00	96 0	96 0	0.98
0	0.148418	0.150007	0.151081	0.152893	0.155040				Queen	0.163387	0.169141	0.169538	0.177309	0.176747	
South and all	1.62	96.0	0.89	0.64	0.80			* 54	20ther Teal	1.02	95.0	0.92	0.90	0.85	
2	0.578	0.578	0.578	0.578	0.578				4.8	0.578	0.578	0.578	0.578	0.578	
	0.609	0.609	0.609	0.609	0.609				6	0.609	0.609	0.809	0.609	0.809	
E ;	273.0	1001	312.5	336.6	352.1			1 11	361	3000	312.8	347.0	3666	3820	
Ę,	272.5	289.2	319.1	333.0	349.5			Ē	ž,	283.8	321.7	348.7	360.6	377.5	
pue	253.3	272.8	293.8	314.0	3350	DE	downstream	pase	Yes	277.5	285.8	317.8	3400	359.8	
slide	252.8	271.8	293.3	314.8	336.3	80	downstream	slide	You	278.3	297.8	318.1	340.1	360.8	
abida	250.2	267.4	289.2	3111.9	331.4	5	pubeam	side	Yes	275.9	2803.2	314.9	336.7	356.4	
pus ,	302.0	315.8	3313	348.3	305.4	3	upstream s	pue	Yes	308.4	344.5	358.9	379.0	394.9	
ij,	300.0	280.7	301.1	320.1	339.3			Ę	3,1	2007	307.0	306.9	346.0	365.3	
Dill O	150.4	150.4	150.4	150.4	150.4				0 10	169.8	8.680	169.8	100.8	169.8	
0	0.150303	0.150393	0 150393	0.150393	0.150393				Q.es	0.165600	0.343600	0.163600	0.369800	0.969600	
					1820.0				Mary Ash						

MODEL PIER, bp = 32 mm_MEDIUM_NORMAL Q'S

		u	n
	J	U	Ö
	J	Ų	Ö
		Ų	Ö
			0
	ċ		
	į		
	ç		
	Ç		
	Ç		
-			
-			
-			
-			
-			
	200		
	200		
	2		
	2		
	200		
	THE PARTY OF		
	200		
	200		

X

10.5 MEAS
ATAL Friday, 4 August 2000 a ham, ham, one had harely at 12.5 10 73.5 72.5 NO 20.0 10 390.0 396.5 100 850.0 650.0 110 970.0 1390.0 110 970.0 1390.0 110 970.0 1390.0

8750 8750 8750 8750 8750 8750 8750 8750 Defendations and Section 202 202 202 242 2117.7 1117.7 1155.7 115 US 989 17814 17814 17814 17814 17814 17814 17814 17814 17814 17814 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 17817 ared down 2 m 7) 0 [M] 10 8 30 1 50 3 60 8 90 2 130 7 140 8 9.6 73.0 203.3 393.3 655.0 972.5 1375.0 1805.0 2345.0

8682262888

8234883878

0.011579 0.027954 0.026904 0.026112 0.122955 0.12890 0.13890

100 100 100 100 100 100 100 100 100

MODEL PIER, bp = 32 mm_MEDIUM_DROWNED Q'S

DATA: Friday, 4 August 2000

			UE	US	60wm/tresm	downstream		
ī	Par.	#	pue	side	side	pue	E	7 m
		15.5					147.5	947.0
45.0	640.0	168.1	184.7	129.0	115.8	117.8	323.8	302.5
45.0	640.0	185.4	2005.9	151.8	147.3	147.5	335.3	335.5
45.0	6400	205 6	218.0	1775	175.5	174.8	351.6	356.2
45.0	6400	222.4	231.8	197.3	198.0	1973	367.5	372.3
45.0	640.0	241.1	247.4	218.5	220.0	219.3	300.1	388.5
			DE	90	80	DE		
			upstream	upstream	downstream	downstream		
ì	Page 2	E	pue	slide	side	pue	E e	7 3
		18.5					147.5	147.0
200	9750	203.4	228.6	965.0	158.0	158.8	333.8	359.0
30	975.0	220 5	242.3	187.5	163.0	185.0	370.3	372.8
200	975.0	239.7	254.3	2103	207.8	209 3	387.8	381.7
200	975.0	281.0	269.5	2333	232.8	233.3	401.0	4033.2
0.94	975.0	278.7	288.0	2540	255.0	254.6	430.1	425.5
			Ji.	Si	SO	20		
		,	upstream	upatream	downstream	downstream		

			7. 135 0.83 0.62 0.63 0.63	F _{da} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fr. pa 0.77 0.65 0.57 0.50 0.64
			7 7 7 7 7 7 7 8 8 8 8 8 8 8 8	4 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 000 000 000 000 000 000 000 000 000 0
			5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	101 0 95 0 95 0 95 0 95	0.00
			Query 0.065028 0.052798 0.052794 0.05233	Query 0.105122 0.115385 0.115385 0.115385	Quary 0.1301/2 0.134106 0.136306 0.136306
			29/1/2 / 1/2	2007c=7cs, 1.16 0.056 0.78	2g/s-r/tosi
			8-4p- 0 578 0 578 0 678 0 678 0 678	44 8 82 9 0 0 82 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8-4- 0.578 0.578 0.578 0.578
			e 0 609 0 0 609 0 0 609 0 0 609 0 0 609 0 0 609 0	m 009 0	- 0000 0000 0000 0000
			7 a 1565 2002 2002 2015	7 m 212.8 225.8 225.7 236.2 276.5 276.5	7 m 2435 2505 2513 282.8 388.2
7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	4229 417.8 453.2 464.8 493.3	547.0 451.5 448.2 448.9 528.5 FLOW DEPTHS	8m 176.3 187.8 206.1 220.0 242.6	6 m 7 V 196.0 222.6 222.6 223.5 222.6 222.0	224.6 224.6 224.6 227.0 228.0 307.7
247.5 272.5 272.5 404.0 404.5 404.5 406.5	400 9 400 9 460 9 460 9	M00000	DE and and New Table 1995 5 177 7 2002 2 222 2	DE son end had been end end end end end end end end end	2010 2010 2010 2215 285.0 285.0 285.0 285.0 285.0
198.0 218.5 204.3 204.3 207.3 DE downstream	258.0 250.0 250.0 294.3 315.5 DE downstream	236.5 281.8 334.5 328.5 361.3	DS side Ne 118.3 140.8 178.0 220.5 222.5	DS downstream vide yes 185.5 210.3 2257.5 DS 257.5 DS 257	2
1965 5 214 5 242 0 204 3 206 3 05 6va nathraam side	227.0 246.0 274.0 254.5 315.5 06 downstream	202 0 202 0 304 5 308 5	US side side (125.4 152.2 177.9 107.7 218.9	US side side 105.4 105.4 107.9 220.7 220.7 250.7 250.7 105.4 US	1864 1864 2184 2432 2448 2872 US
195.0 218.0 242.8 264.5 264.5 264.5 264.6 US upstream d	225.3 226.5 270.5 200.5 314.3 Upstream	256.0 205.5 305.5 305.5 305.5	UE send send Fee 7184.7 225.9 2718.0 221.8 247.4	UE spatroam a end 74 a 225 2 254 3 256 5 265 5 265 6 265 5 265 6 2	74 A 20 A 2
2020 2754 2001 2013 2013 2013 2013	2018 2018 2018 2019 2019 400 400 400 400 400 400 400 400 400 40	30.00 p 30.00	152 6 160 9 160 9 206 9 206 8	# 107 9 205 0 205 0 205 5 205 5	7 Y Y Z316 G Z326 B Z32
78.5 254.1 254.1 276.1 270.1 270.1 270.1 270.1 270.1	284.5 200.5 201.9 301.9	15.5 293.0 275.1 236.9 357.5 378.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 [04] 11011 11011 11011	Q PM 1338 1338 1308 1308 1308
9800 9800 9800 9800 9800	18000 0 18000 0	2319.0 2319.0 2319.0 2319.0 2319.0	0.008257 0.0082257 0.0082257 0.008257 0.008257	0,110077 0,110077 0,110077 0,110077	0,13638 0,13638 0,13638 0,136338 0,136338
13800	1810 0 1810 0 1810 0 1810 0 1810 0	23190 23190 23190 23190 23190 23190 23190 23190 23190 23190	Para 6025 6025 6025 6025 6025	875 6 875 8 875 8 875 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1377.5 1377.5 1377.5 1377.5 1377.5

	Fr. se	0.62	0.53	0.46	0.43	0.41				Pr. Am	0.60	0.51	0.64	0.42	0.39	
	Frans	0.71	0.62	0.55	0.43	0.44				Fr. 200	500	65.0	0.52	0.47	0.42	
	Fr. an	0.63	950	0.51	0.46	0.42				Fr. de	0.61	0.54	0.49	0.44	0.41	
	MACH	1.00	260	96.0	26.0	0.95				423.4	660	0.98	0.98	0.96	96.0	0.97
	Quest)				0.154007	0.157548				Oppose,	0.170523	0.173626	0.172250	0.179920	0.177190	
. 34	200 year Year	1.13	1.06	06.0	06.00	0.86				29(For Year)	1.15	1.06	0.97	0.92	0.87	
	9-9				0.578	0.578				8.45	0.578	0.578	0.578	0.578	0.578	
		0.509	0.000	0.000	0.600	0.600				8	0.609	0 600	0.600	0.000	0.609	
1 1	74	275.9	270.8	306.2	317.6	342.3			E to	3,4	304.5	3012	341.5	301.9	3795	
8	No.	252.5	280.5	308.9	322.4	334.7			E	£	279.5	310.5	343.1	357.0	330.7	
Burg	Yes	231.0	253.0	272.7	297.2	338.5	De.	downstream	pus	Yes	258.5	284.7	307.5	331.5	354.2	
a) de	Yes	229.8	251.5	272.5	297.0	318.0	SQ	downstream	side	Yes	2563	284.5	307.0	331.0	352.5	
skie	Yes	229.7	249.9	270.9	253.9	314.7	Sin	upstream	nithe	9.00	256.4	283.4	305.9	328.9	350.7	
Pue	No.	291.9	306.1	300.1	338.6	353.0	ň	upstream	pue	Yes	321.4	339,5	352.6	372.0	388.6	
E .	×	249.0	2666	287.0	306.4	325.3			E 4	3.	277.5	200.5	321.4	342.0	3600.5	
	O [M]	149.8	149.8	149.8	149.8	149.8				O [Mil]	169.4	169.4	169.4	169.4	160.4	
	0,00	0.546772	0.549772	0.549772	0.145772	0.149772				9	0.166433	0.166433	0.165433	0.165433	0.165433	
	Page 22	1805.0	1805.0	1805.0	1805.0	1805.0				Page 30	2390.0	2390.0	2390.0	2310.0	2310.0	

MODEL PIER, bp = 32 mm_LONG_NORMAL Q's

OK

Q	Brown 1	Ploque 2	0 m	1 m	2 m	3 m	4 m	upstream	side	side	downstream	8	7	Geometric	properties:
ed levels	11000	140	12.5	10.5	15.0	13.5	15.5	\$mg	8109	8-36	4113	5 m	7 m	Geometric	properties.
10	10.5	10.0		OT MEASUR		58.5	57.2	57.8	35.0	23.0	13.5	192.8	192.5	D =	31.5 mm
30	74.0	76.0				95.9	94.4	102.5	65.5	44.8	42.5	213.6	222.2	L ₀ =	222 mm
50	205.0	200.0				123.5	120.3	136.0	91.5	70.8	65.0	224.5	240.3	$\chi_A =$	0 mm
70	395.0	396.0				148.4	147.0	167.2	109.3	93.3	86.0	241.1	267.8	Z ₀ =	0.4 mm
90	660.0	565.0				173.0	169.2	197.0	131.3	118.3	112.8	257.3	292.0	Z; =	3.3 mm
110	979.0	950.0				193.9	106.2	222.0	146.0	134.8	129.5	276.7	306.9	20.0	3.7 mm
130	1350.0	1340.0				218.0	208.8	247.1	166.5	157.0	152.8	300.5	323.5		
150	1625.0	1830.0				236.8	229.2	276.5	171.0	171.5	169.8	329 9	349.6		
170	2350 0	2360 0				253.5	248.2	301.0	188.3	190.3	189.5	356.5	364.5		
CAL CULA	WARRY	HEEPS H													
UNE COL	(Indias	HI WINES													
		L						FLOW DEPT	HS						
								UE	US	D/S	DE				
			Pi-	stance measure	stand doorwant	name willfold the	Firema.	Appropriate party	constructor.	downstrane	downstance				

								1000	100	Service .	676										
			Dis	tance meas	sured downer	ream within the	e fluene	upstream	upstream	downstream	downstream										
			O me	1 en	2 m	3 m	4 m	end	uide	side	end	6 m	7 m			v _c =					
Down any	Que	Q [l/e]	y ₀	y,	Ye	Yı	y.,	Yes	You	You	You	Ye	y,	В	B-b _p	2g(yor-You)"1	Quarry	DOMESTIC:	Fr_4m	Fr_DS	Fr_DE
10.3	0.011286	11.3				45.0	41.7	57.8	35.4	26.3	17.2	45.3	45.5	0.609	0.578	0.83	0.012536	0.90	0.70	1.46	2.62
75.0	0.030530	30.5				82.4	78.9	102.5	65.9	45 D	46.2	66.1	75.2	0.609	0.578	1.06	0.029530	1.03	0.72	1.60	1.61
202.5	0.050186	50.2				110.0	104.8	136.0	91.9	74.0	68.7	77.0	93.3	0.609	0.578	1.13	0.048378	1.04	0.78	1.38	1.45
395.5	0.070108	70.1				134.9	131.5	167.2	109.7	96.5	89.7	93.6	140.8	0.609	0.578	1.20	0.067154	1.04	0.77	1.29	1.37
662.5	0.090737	90.7				159.5	153.7	197.0	131.7	121.5	116.5	109 8	145.0	0.609	0.578	1.24	0.087245	1.04	0.79	1.10	1.20
963 D	0.109227	109.2				180.4	170.7	222 0	146.4	138.0	133.2	129.2	150.0	0.609	0.578	1.31	0.104300	1.05	0.81	1.10	1.15
1345.0	0.129287	129.3				204.5	193.3	247.1	166.9	160.3	156.5	153.0	176.5	0.609	0.578	1.33	0.123091	1.05	0.60	1.11	1.10
1827.5	0.150703	150.7				223.3	213.7	276.5	171.4	174.8	173.5	182.4	202.6	0.609	0.578	1.44	0.144680	1.04	0.83	1.14	1.09
2355.0	0.171076	171.1				240.0	232.7	301.0	158.7	193.5	193.2	209.0	217.5	0.809	0.578	1.47	0.164756	1.04	0.80	1.11	1.06
																		4 54			

MODEL PIER, bp = 32 mm_LONG_DROWNED Q's

DATA: Thursday, 3 August 2000

			UE	US upstream	DS downstream	DE downstream		
hour, t	Nous. 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.6
665 D	660.0	175.2	201.6	137.5	126.8	120.0	338.7	324
665.0	660 0	192.3	210.0	161.0	154.5	151.0	348.6	345
665.0	660 0	210.4	221.6	182.8	184.5	180 B	354.8	362
665.0	660.0	229.6	237.9	204.3	207.3	205.3	369.4	377
665.0	660 0	247.8	253.9	223.8	227.5	225.8	401.3	391
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Bran, I	Bran, I	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147
985 0	1000 D	207.9	234.0	172.3	167.0	160.8	338.3	357
985.0	1000.0	225.5	243.6	193.3	194.0	190.5	377.5	381
985.0	1000.0	242.3	257.8	215.5	216.5	212.8	395.5	380
985.0	1000.0	261.8	271.2	235.5	236.3	234.3	401.1	410
985.0	1000 0	276.2	283.2	252.3	255.3	252.8	419.4	424
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Bran, I	Brown, 2	4 m	and	wiide	alde	end	6 m	7 19

1360.0	1360.0	226.9	256.7	193.3	193.0	188 C	347.5	393.8									
1360.0	1360.0	248.0	271.1	215 0	213.3	212.8	391.1	382.3									
1360.0	1360.0	267.5	284.0	237.8	237.5	234.5	422.6	419.2									
1360.0	1360 0	284.5	298 3	257.0	260.0	256.5	433.5	425.6									
1360.0	1360.0	333.9	313.3	276.5	280.0	277.5	442.3	454.1									
			UE	us	DrS	DE											
						downstream											
Property.	Noge, 7	4 m	end	side	side	end	6 m	7 m									
		15.5					147.5	147.0									
1830.0	1840.0	251.8	288 6	218.8	217.0	211.0	396.3 407.5	401.5 420.0									
1830.0	1840.0	294.5	314.8	255.8	265.5	253.0	443.3	437.2									
1930.0	1840.0	313.0	330.3	287.0	288.0	286.0	468.5	461.0									
1830.0	1840.0	334.3	346.3	305.3	308.8	307.5	477.1	476.3									
				***	-												
			UE	US	DS	DE											
Bran, I	hour_2	4 m	end	side	side	downstream	6 m	7 m									
	1100	15.5	4.10	2.54	2100		147.5	147.0									
2330.0	2315.0	278.9	311.7	242.6	242.8	240.5	422.7	425.3									
2330.0	2315.0	300.5	326.6	269.5	268.3	264.3	435.3	458.2									
2330 0	2315.0	320.3 340.2	343.8	289 8 312 0	313.3	287.3	453.8	455.3									
2330.0	2315 0	361.5	377.5	334.3	336.8	335.0	494 B 510 B	494.0 503.2									
							0.00	300.2									
CALCUE	ATIONS:	guary	1														
							FL	OW DEPT	145								
				UE	US	DS	DE										
					upstream		downstream										
			4 m	end	side	side	end	6 m	7 m			v. =					
hou, eq.	Quer	0 [/s]	y,	end Yus	side Yus	side You	word You	y,	Ye.	8	B-b,	2g(y _{10,} y ₁₀)**	Q _{remy}	J. MERC	Fr_an	Fr_os	Fr_he
662.5	0.090737	90.7	y _e 159.7	Fix 201.6	Yus 137.9	You. 130.0	90e 123.7	161.2	177.5	0.609	0.578	2g(y ₁₀ -y ₁₀) ^{5 1} 1.21	0.091021	1.00	0.75	1.01	0.73
	Q _{set} 0.090737 0.090737 0.090737		y,	7ks 201.6 210.0	Yus 137.9 161.4	side You	word You	76 161.2 201.1	177.5 198.1			2g(y _{10,} y ₁₀)**	0.091021	1.00	0.75	0.76	0.73
662.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7	94 159.7 176.8 194.9 214.1	201.6 210.0 221.6 237.9	Yus 137.9 161.4 183.2 204.7	130.0 130.0 157.8 187.8 210.5	9nd 7is 123.7 154.7 184.5 209.0	76 161.2 201.1 207.3 221.9	Yr 177.5 198.1 215.2 230.9	0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578	2g(y _{10.} -y ₁₀) ^{3.5} 1.21 1.04 0.85 0.78	0.091021 0.095088 0.092525 0.094286	1.00 0.95 0.98 0.96	0.75 0.64 0.55 0.46	0.78 0.58 0.49	9.73 9.53 9.50 9.46
662.5 662.5	0.090737 0.090737 0.090737	90.7 90.7 90.7	159.7 175.8 194.9	201.6 210.0 221.6	9us 137.9 161.4 183.2	90s 130.0 157.8 187.8	9nd You 123.7 154.7 184.5	76 161.2 201.1 207.3	Yr 177.5 198.1 215.2	0.609 0.609 0.609	0.578 0.578 0.578	2g(y ₁₀ -y ₁₀)** 1.21 1.04 0.85	0.091021 0.095088 0.092525	1 00 0 95 0 98	0.75 0.64 0.55	0.78 0.58	9.73 9.53 9.50
662.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7	94 159.7 176.8 194.9 214.1	201.6 290.0 221.6 237.9 253.9	137.9 161.4 183.2 204.7 224.2	130.0 130.0 157.8 187.8 210.5 230.8	976 123.7 154.7 184.5 209.0 229.5	76 161.2 201.1 207.3 221.9	Yr 177.5 198.1 215.2 230.9	0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578	2g(y _{10.} -y ₁₀) ^{3.5} 1.21 1.04 0.85 0.78	0.091021 0.095088 0.092525 0.094286	1.00 0.95 0.98 0.96	0.75 0.64 0.55 0.46	0.78 0.58 0.49	9.73 9.53 9.50 9.46
662.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7	94 159.7 176.8 194.9 214.1	201.6 210.0 221.6 237.9 253.9 UE	137.9 161.4 183.2 204.7 224.2	130.0 137.8 187.8 210.5 230.8 DS	904 704 123.7 154.7 184.5 209.0 229.5 DE	76 161.2 201.1 207.3 221.9	Yr 177.5 198.1 215.2 230.9	0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578	2g(y _{10.} -y ₁₀) ^{3.5} 1.21 1.04 0.85 0.78	0.091021 0.095088 0.092525 0.094286	1.00 0.95 0.98 0.96	0.75 0.64 0.55 0.46	0.78 0.58 0.49	9.73 9.53 9.50 9.46
662.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7	94 159.7 176.8 194.9 214.1	201.6 210.0 221.6 237.9 253.9 UE	137.9 161.4 183.2 204.7 224.2	130.0 130.0 157.8 187.8 210.5 230.8	904 704 123.7 154.7 184.5 209.0 229.5 DE	76 161 2 201 1 207 3 221 9 253 6	y, 177.5 198.1 215.2 230.9 244.5	0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578	29(y ₁₀ , y ₁₀) ^{2,8} 1.21 1.04 0.85 0.78 0.72	0.091021 0.095088 0.092525 0.094286	1.00 0.95 0.98 0.96	0.75 0.64 0.55 0.46	0.78 0.58 0.49	9.73 9.53 9.50 9.46
602.5 602.5 602.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7	94 159.7 176.8 194.9 214.1 232.3	end 76s 2016 210.0 221.0 237.9 253.9 UE upstream	side Yus 137.9 161.4 163.2 204.7 224.2 US upstream	130.0 130.0 157.8 187.8 210.5 230.8 DS downstream	end Yes 123.7 154.7 184.5 209.0 229.5 DE downstream	76 161.2 201.1 207.3 221.9	Yr 177.5 198.1 215.2 230.9	0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578	29(y ₁₀ , y ₁₀) ^{2,8} 1.21 1.04 0.85 0.78 0.72	0.091021 0.095088 0.092525 0.094280 0.095822	1.00 0.95 0.98 0.96	0.75 0.64 0.55 0.46	1 01 0 78 0 58 0 49 0 43	9.73 9.53 9.50 9.46
602.5 602.5 602.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7 90.7 90.7	y _e 159.7 176.8 194.9 214.1 232.3 4 m y _e	end No. 201.6 290.0 221.6 237.9 253.9 UE upstream end No. 234.0	side Yus 137.9 161.4 163.2 204.7 224.2 US upstream side Yus 172.7	side Tos 130.0 157.8 187.8 210.5 230.6 DS downstream side Tos	errd Yos 123.7 154.7 164.5 209.0 229.5 DE downstream end Yos	96 161.2 201.1 207.3 221.9 253.6 6 m 96	7/ 177.5 198.1 215.2 230.9 244.5 7 m Yr	0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀) ² 1 1 21 1 .04 0 85 0 78 0 72 v _C = 2g(y ₁₀ , y ₁₀) ² 1	0.591021 0.995088 0.992525 0.994296 0.995922	1 00 0 95 0 96 0 96 0 95	0.75 0.64 0.55 0.46 0.43	1.01 0.76 0.58 0.49 0.43	9.73 9.53 9.50 9.46 9.37
602.5 602.5 602.5 602.5 662.5 662.5	0.090737 0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7 90.7 90.7 90.7	9. 159.7 176.8 194.9 214.1 232.3 4 m 9. 192.4 210.0	end No. 2016 210.0 2216 227.9 253.9 UE upstream end No. 231.9 243.9	side Yus 137.9 161.4 163.2 204.7 224.2 US upstream side Yus 172.7 193.7	side You 130.0 157.8 187.8 210.5 230.8 DS downstream side You 170.3 197.3	end Yos 123.7 154.7 184.5 209.0 229.5 DE downstream end Yos 164.5 194.2	96 161.2 201.1 207.3 221.9 253.6 6 m 96 190.8 230.0	7v 177.5 198.1 215.2 230.9 244.5 7 m y _v 210.8 234.0	0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{jm})** 1 21 1 .04 0.85 0.78 0.72 v _c = 2g(y _m , y _{jm})** 1.15 0.99	0.591021 0.995098 0.992505 0.994290 0.995902 0.112752 0.112752 0.112394	1 00 0 95 0 96 0 96 0 95	0.75 0.64 0.55 0.46 0.43	1.01 0.76 0.58 0.49 0.43 Fr_ps 0.83 0.86	0.73 0.53 0.50 0.40 0.37 Fr 0.70 0.53
602.5 602.5 602.5 662.5 662.5 992.5 992.5	0.090737 0.090737 0.090737 0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7 90.7 90.7 90.7	9x 159.7 176.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8	end Yes 201.6 230.0 221.6 237.9 253.9 UE upstream end Yes 234.0 243.6 257.8	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9	9500 Tos. 130.0 157.8 187.8 210.5 230.8 D5 downstream side Tos. 170.3 197.3 219.8	end Nos 123.7 154.7 164.5 209.0 229.5 DE downstream end Yes 164.5 194.2 216.5	Fs 161.2 201.1 207.3 221.9 253.6 6 m Fs 190.8 230.0 248.0	7 m 210.8 7 m 210.8 244.5 7 m 244.5 234.0 233.5	0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀) ² * 121 1.04 0.85 0.78 0.72 v _c = 2g(y ₁₀ , y ₁₀) ² * 1.15 0.99 0.90	0.095088 0.09525 0.095022 0.095022 0.095022 0.112752 0.112752 0.112754 0.114188	100 095 096 096 096 095	0.75 0.64 0.55 0.48 0.43 Fr_m 0.60 0.61 0.54	1.01 0.78 0.58 0.49 0.43 Fr_ms 0.83 0.85 0.57	9.73 9.53 9.50 9.46 9.37 Fr 9.70 9.70 9.47
602 5 602 5 662 5 662 5 662 5	0.090737 0.090737 0.090737 0.090737 0.090737	90.7 90.7 90.7 90.7 90.7 90.7 90.7	9. 159.7 176.8 194.9 214.1 232.3 4 m 9. 192.4 210.0	end No. 2016 210.0 2216 227.9 253.9 UE upstream end No. 231.9 243.9	side Yus 137.9 161.4 163.2 204.7 224.2 US upstream side Yus 172.7 193.7	side You 130.0 157.8 187.8 210.5 230.8 DS downstream side You 170.3 197.3	end Yos 123.7 154.7 184.5 209.0 229.5 DE downstream end Yos 164.5 194.2	96 161.2 201.1 207.3 221.9 253.6 6 m 96 190.8 230.0	7v 177.5 198.1 215.2 230.9 244.5 7 m y _v 210.8 234.0	0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{jm})** 1 21 1 .04 0.85 0.78 0.72 v _c = 2g(y _m , y _{jm})** 1.15 0.99	0.591021 0.995098 0.992505 0.994290 0.995902 0.112752 0.112752 0.112394	1 00 0 95 0 96 0 96 0 95	0.75 0.64 0.55 0.46 0.43	1.01 0.76 0.58 0.49 0.43 Fr_ps 0.83 0.86	9.73 9.53 9.50 9.40 9.37 Fr 9.70 9.53
602 5 602 5 662 5 662 5 662 5	0.090737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 91.1 111.1 111.1	9x 159.7 176.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8 245.3	end For 201.6 290.0 221.6 237.9 253.9 UE upstream end For 234.0 243.5 257.8 271.2	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9	9800 700 130.0 157.8 187.8 210.5 230.6 DS downstream 9800 700 170.3 197.3 219.6 239.5	errd Yos 123.7 154.7 164.5 209.0 229.5 DE downstream end Yos 164.5 194.2 216.5 238.9	% 161.2 201.1 207.3 221.9 253.6 6 m % 190.8 230.8 248.0 253.6	7 m 210.8 244.5 7 m 240.8 224.0 233.5 234.0 233.5 263.5	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀) ² 1 1 21 1 .04 0 85 0 78 0 72 72 v _C ** 2g(y ₁₀ , y ₁₀) ² 1 1 .15 0 99 0 90 0 83	G 591021 0.095088 0.095255 0.094298 0.095922 0.112752 0.112752 0.112763 0.114551	1 00 0 95 0 96 0 96 0 95 0 95	0.75 0.64 0.55 0.46 0.43 Fr_sec 0.60 0.61 0.54 0.48	101 076 0.58 0.49 0.43 Fr_ms 0.83 0.66 0.57 0.50	9.73 9.53 9.50 9.40 9.37 Fr _ss 9.70 9.53 9.47 9.46
602 5 602 5 662 5 662 5 662 5	0.090737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 91.1 111.1 111.1	9x 159.7 176.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8 245.3	end Yes 2018 2000 2216 2379 2539 UE upstream end Yes 2340 2350 2438 2578 2712 2832 UE	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 205.9 205.7 US	9500 700 137.0 187.0 210.5 230.0 D5 downstream 9500 170.3 197.3 219.5 239.5 258.5 D5	end Yise 123.7 154.7 184.5 209.0 229.5 DE downstream end Yise 164.5 194.2 216.5 238.0 256.5 DE	% 161.2 201.1 207.3 221.9 253.6 6 m % 190.8 230.8 248.0 253.6	7 m 210.8 244.5 7 m 240.8 224.0 233.5 234.0 233.5 263.5	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀) ² 1 1 21 1 .04 0 85 0 78 0 72 72 v _C ** 2g(y ₁₀ , y ₁₀) ² 1 1 .15 0 99 0 90 0 83	G 591021 0.095088 0.095255 0.094298 0.095922 0.112752 0.112752 0.112763 0.114551	1 00 0 95 0 96 0 96 0 95 0 95	0.75 0.64 0.55 0.46 0.43 Fr_sec 0.60 0.61 0.54 0.48	101 076 0.58 0.49 0.43 Fr_ms 0.83 0.66 0.57 0.50	9.73 9.53 9.50 9.40 9.37 Fr _ss 9.70 9.53 9.47 9.46
602 5 602 5 662 5 662 5 662 5	0.090737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 91.1 111.1 111.1	9x 159.7 175.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8 245.3 263.7	end Yes 2016 240.0 2216 237.9 253.9 UE upstream end Xes 234.0 243.6 257.8 271.2 283.2 UE upstream	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 255.9 252.7 US upstream	9800 700 137.8 187.8 210.5 230.8 DS downstream 1800 700 170.3 197.3 219.8 239.5 258.5 DS downstream	ernd Yes 123.7 154.7 164.5 209.0 229.5 DE downstream end Yes 164.5 194.2 216.5 238.0 256.5 DE downstream	9s 1612 2013 2013 2219 2538 6 m 9s 1908 2300 248.0 253.6 271.9	7, 177.5 198.1 215.2 230.9 244.5 7 m 7, 210.8 234.0 233.5 251.5 277.8	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{1m})** 1 21 1.04 0.85 0.78 0.72 V _C ** 2g(y _m , y _{1m})** 1.15 0.99 0.90 0.83 0.74	G 591021 0.095088 0.095255 0.094298 0.095922 0.112752 0.112752 0.112763 0.114551	1 00 0 95 0 96 0 96 0 95 0 95	0.75 0.64 0.55 0.46 0.43 Fr_sec 0.60 0.61 0.54 0.48	101 076 0.58 0.49 0.43 Fr_ms 0.83 0.66 0.57 0.50	9.73 9.53 9.50 9.40 9.37 Fr _ss 9.70 9.53 9.47 9.46
602.5 602.5 662.5 662.5 662.5 992.5 992.5 992.5 992.5	0.090737 0.090737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 90.7 111.1 111.1 111.1	y ₄ 159.7 176.8 194.9 214.1 232.3 4 m y ₄ 192.4 210.0 225.8 263.7	end Yes 2016 2100 2216 2379 2539 UE upstream end Yes 2340 2435 25712 2632 UE upstream end	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9 252.7 US upstream side	#866 For 130.0 157.8 187.8 210.5 230.6 DS downstream side For 170.3 157.3 219.6 239.5 258.5 DS downstream side	errd You 123.7 154.7 154.7 164.5 209.0 229.5 DE downstream errd You 164.5 194.2 216.5 238.0 256.5 DE downstream errd	9s 1612 2013 2073 2219 2538 6 m 9s 1908 2300 2430 2719	7m 210.8 234.0 234.0 233.5 277.6	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀)** 1 21 1.04 0.85 0.78 0.72 v _c = 2g(y ₁₀ , y ₁₀)** 1.15 0.99 0.83 0.74	0.991021 0.995025 0.994525 0.994296 0.995022 0.112752 0.112794 0.114188 0.114565	1 00 0 96 0 96 0 96 0 96 0 96 0 99 0 99 0	0.75 0.64 0.45 0.46 0.43 Fr_m 0.60 0.61 0.54 0.44	1.01 0.78 0.58 0.49 0.43 0.43 0.65 0.57 0.50 0.44	9.73 9.53 9.50 9.46 9.37 9.70 9.53 9.47 9.46 9.41
602.5 602.5 662.5 662.5 662.5 902.5 902.5 902.5 902.5	Q _{int} 0.190737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 90.7 91111 11111 11111 11111	9x 159.7 179.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8 245.3 260.7	end Xe 2018 2100 2210 2210 2219 2539 UE upstream end Xe 2310 2410 2410 2410 2410 2410 2410 2410 24	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9 252.7 US upstream side Yus 172.7 215.9 235.9 252.7 US	# # # # # # # # # # # # # # # # # # #	end Nise 123.7 154.7 154.5 209.0 229.5 DE downstream end Yes 154.5 238.9 256.5 DE downstream end Yes Total end Total	Fs 161 2 207 3 221 9 253 8 6 m Fs 248 0 253 6 271 9	7- 177.5 196.1 215.2 230.9 244.5 7-m 7- 210.8 234.0 233.5 263.5 277.8	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀)** 1 21 1 04 0 85 0 78 0 72 v _c = 2g(y ₁₀ , y ₁₀)** 1 15 0 99 0 83 0 74 v _t = 2g(y ₁₀ , y ₁₀)**	0.991021 0.995025 0.99525 0.994296 0.995922 0.112752 0.112794 0.114565 0.114565	1 00 0 96 0 96 0 96 0 96 0 96 0 99 0 97 1 00	0.75 0.64 0.55 0.46 0.43 0.61 0.54 0.61 0.54 0.44	1.01 0.78 0.58 0.49 0.43 0.43 0.85 0.57 0.57 0.50 0.44	9.73 9.53 9.50 9.46 9.37 9.70 9.53 9.47 9.46 9.41
602.5 662.5 662.5 662.5 662.5 992.5 992.5 992.5 992.5 992.5	0.090737 0.090737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7	59.7 159.7 176.8 194.9 214.1 232.3 4 m 59. 192.4 210.0 245.3 263.7 4 m 74.	end Yes 2018 2019 2210 2210 2217 253.9 UE upstream end Yes 254.0 255.7 UE upstream end Yes 257.8 271.2 283.2 UE upstream end Yes 256.7	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 255.9 252.7 US upstream side Yus 172.7 193.7 24.2 25.9 25.2 25.9 25.2 25.9 25.2 25.9 25.2	#860 For 130.0 157.8 187.8 210.5 230.8 D5 downstream #860 For 170.3 157.3 219.8 239.5 258.5 D3 downstream side For 190.3	end Yes 123.7 154.7 164.5 209.0 229.5 DE downstream end Yes 164.5 238.0 256.5 DE downstream end Yes 159.7 To the transfer end	9 ₆ 161 2 207 3 221 9 253 8 6 m 9 ₆ 190 8 230 0 248 0 248 0 253 6 271 9	7, 177.5 198.1 215.2 230.9 244.5 7 m 7, 210.8 234.0 233.5 263.5 277.8	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{1m})** 1.21 1.04 0.85 0.78 0.72 v _c * 2g(y _m , y _{1m})** 1.15 0.99 0.83 0.74 v _c * 2g(y _m , y _{1m})** 1.15 0.99 0.83 0.74	G.991021 0.995025 0.99525 0.994296 0.095822 0.112752 0.112294 0.114188 0.114185 0.114551 0.11294 0.11294	1 00 0 96 0 96 0 96 0 96 0 96 0 97 0 97 1 00	0.75 0.86 0.46 0.43 0.60 0.61 0.61 0.61 0.43	1 01 0 76 0 58 0 49 0 43 Fr_ma 0 83 0 85 0 57 0 50 0 44	9.73 9.53 9.50 9.40 9.37 9.70 9.70 9.53 9.47 9.46 9.41
602.5 602.5 662.5 662.5 662.5 902.5 902.5 902.5 902.5	Q _{int} 0.190737 0.090737 0.090737 0.090737 0.090737 0.111060 0.111060 0.111060 0.111060	90.7 90.7 90.7 90.7 90.7 90.7 90.7 91111 11111 11111 11111	9x 159.7 179.8 194.9 214.1 232.3 4 m 9x 192.4 210.0 225.8 245.3 260.7	end Xe 2018 2100 2210 2210 2219 2539 UE upstream end Xe 2310 2410 2410 2410 2410 2410 2410 2410 24	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9 252.7 US upstream side Yus 172.7 215.9 235.9 252.7 US	# # # # # # # # # # # # # # # # # # #	end Nise 123.7 154.7 154.5 209.0 229.5 DE downstream end Yes 154.5 238.9 256.5 DE downstream end Yes Total end Total	Fs 161 2 207 3 221 9 253 8 6 m Fs 248 0 253 6 271 9	7- 177.5 196.1 215.2 230.9 244.5 7-m 7- 210.8 234.0 233.5 263.5 277.8	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀)** 1 21 1 04 0 85 0 78 0 72 v _c = 2g(y ₁₀ , y ₁₀)** 1 15 0 99 0 83 0 74 v _t = 2g(y ₁₀ , y ₁₀)**	0.991021 0.995025 0.99525 0.994296 0.995922 0.112752 0.112794 0.114565 0.114565	1 00 0 96 0 96 0 96 0 96 0 96 0 99 0 97 1 00	0.75 0.64 0.55 0.46 0.43 0.61 0.54 0.61 0.54 0.44	1.01 0.78 0.58 0.49 0.43 0.43 0.85 0.57 0.57 0.50 0.44	9.73 9.53 9.50 9.46 9.37 9.70 9.53 9.47 9.46 9.41
802 5 662 5 662 5 662 5 662 5 992 5 992 5 992 5 992 5 992 5 992 5 992 5	Q _{tast}	90.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7	59.7 159.7 176.8 194.9 214.1 232.3 4 m 54. 210.0 245.3 263.7 4 m 74. 211.4 202.5 250.0 246.0 246.0 260.0 260.0	end Yes 2018 2019 2100 2216 2379 253.9 UE upstream end 234.0 243.8 271.2 263.2 UE upstream end Yes 256.7 271.1 264.0 268.3	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 252.7 US upstream side Yus 172.7 193.7 215.9 252.7 US upstream side Yus 215.9 252.7 US upstream side Yus 215.9 252.7 US upstream side Yus 253.7 255.9 252.7 US upstream side Yus 255.9 252.7 US upstream side Yus 255.9 252.7 US upstream side Yus 255.9 252.7 US upstream side Yus 255.9 252.7 US upstream side Yus 255.9 255.9 252.7 US upstream side Yus 255.9 255	#860 For 130.0 157.8 187.8 210.5 230.8 D5 downstream #860 For 170.3 197.3 219.8 239.5 258.5 D3 downstream #860 For 196.3 216.5 240.8 240.8 240.8	end you 123.7 154.7 164.5 209.0 229.5 DE downstream end You 256.5 238.0 256.5 DE	Fs 161 2 201 3 221 9 253 8 6 m Fs 190 8 271 9 253 6 271 9 253 6 271 9 253 6 271 9 6 m Fs 275 2 243 6 275 3 6 2	7, 177.5 198.1 215.2 230.9 244.5 7 m 7, 210.8 234.0 233.5 263.5 277.8 7 m 7, 246.8 235.3 272.2 279.6	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{col})** 1 21 1.04 0.85 0.78 0.72 2g(y _m , y _{col})** 1.15 0.99 0.83 0.74 2g(y _m , y _{col})** 2g(y _m , y _{col})** 1.07 0.96 0.87	G.991021 0.995025 0.99525 0.994296 0.095822 0.112752 0.112394 0.114188 0.114551 0.114555 0.112565	1 00 0 98 0 98 0 96 0 96 0 97 0 97 1 00 0 98 0 98 0 98 0 98 0 98 0 98 0 98 0	0.75 0.84 0.45 0.43 0.60 0.61 0.61 0.43 0.60 0.61 0.61 0.46 0.46 0.46	Fr_me 0.83 0.85 0.57 0.50 0.44	9.73 9.53 9.50 9.40 9.37 9.70 9.70 9.53 9.47 9.46 9.41
802 5 662 5 662 5 662 5 662 5 992 5 992 5 992 5 992 5 992 5 992 5 992 5	Q _{total} 0.190737 0.090737 0.090737 0.090737 0.090737 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080 0.111080	90.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7	9x 159.7 179.8 194.9 214.1 232.3 4 m 9x 152.4 210.0 225.8 245.3 260.7	end Xe 2018 2100 2210 2210 2210 2210 2539 UE upstream end Xe 2310 2410 2410 2410 2410 2410 2410 2410 24	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 215.9 235.9 252.7 US upstream side Fis 193.7 215.9 235.9 252.7 US upstream side Fis 235.9 252.7	### ### ### ### ### ### ### ### ### ##	ernd Fine 123.7 154.7 164.5 209.0 229.5 DE downstream end Year 164.5 238.9 256.5 DE downstream and Toe 194.7 296.7	Fs 161 2 207 3 221 9 253 8 6 m Fs 190 8 2248 0 253 6 271 9 6 m Fs 248 248 248 248 248 248 248 248 248 248	7 m 177.5 198.1 215.2 230.9 244.5 7 m 92 210.8 234.0 233.5 263.5 277.6 7 m 91 246.6 235.2 272.2	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y ₁₀ , y ₁₀)** 1 21 1 .04 0 85 0 .78 0 .72 v _c = 2g(y ₁₀ , y ₁₀)** 1 .15 0 .99 0 .53 0 .74 v _t = 2g(y ₁₀ , y ₁₀)** 1 .12 1 .07 0 .96	G.991021 0.995025 0.99525 0.994296 0.112252 0.112252 0.112354 0.114551 0.114551 0.115555 0.133726 0.133726 0.133726	1 00 0 95 0 96 0 96 0 95 0 99 0 97 1 00 1 03 0 98 0 98	0.75 0.64 0.55 0.46 0.43 0.60 0.61 0.54 0.44 0.44	1.01 0.78 0.58 0.49 0.43 0.43 0.85 0.57 0.50 0.44 Fr.26 0.78 0.68 0.58	9.73 9.53 9.50 9.46 9.37 9.46 9.53 9.47 9.46 9.41
802 5 662 5 662 5 662 5 662 5 992 5 992 5 992 5 992 5 992 5 992 5 992 5	Q _{tast}	90.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7	59.7 159.7 176.8 194.9 214.1 232.3 4 m 54. 210.0 245.3 263.7 4 m 74. 211.4 202.5 250.0 246.0 246.0 260.0 260.0	end Xe 2016 2100 2216 2219 2539 UE upstream end Xe 2240 2435 2578 2712 2832 UE upstream end Yet 2960 2971 2960 30133	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9 252.7 US upstream side Fus 193.7 215.4 238.2 257.4 276.9	### ### ### ### ### ### ### ### ### ##	ernd Nise 123.7 154.7 154.5 209.0 229.5 DE downstream end Yes 154.5 238.0 256.5 DE downstream end You 154.5 238.0 256.5 DE downstream end You 154.7 238.2 280.2 281.2	Fs 161 2 201 3 221 9 253 8 6 m Fs 190 8 271 9 253 6 271 9 253 6 271 9 253 6 271 9 6 m Fs 275 2 243 6 275 3 6 2	7, 177.5 198.1 215.2 230.9 244.5 7 m 7, 210.8 234.0 233.5 263.5 277.8 7 m 7, 246.8 235.3 272.2 279.6	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{col})** 1 21 1.04 0.85 0.78 0.72 2g(y _m , y _{col})** 1.15 0.99 0.83 0.74 2g(y _m , y _{col})** 2g(y _m , y _{col})** 1.07 0.96 0.87	G.991021 0.995025 0.99525 0.994296 0.095822 0.112752 0.112394 0.114188 0.114551 0.114555 0.112565	1 00 0 98 0 98 0 96 0 96 0 97 0 97 1 00 0 98 0 98 0 98 0 98 0 98 0 98 0 98 0	0.75 0.84 0.45 0.43 0.60 0.61 0.61 0.43 0.60 0.61 0.61 0.46 0.46 0.46	Fr_me 0.83 0.85 0.57 0.50 0.44	9.73 9.53 9.50 9.40 9.37 9.70 9.70 9.53 9.47 9.46 9.41
802 5 662 5 662 5 662 5 662 5 992 5 992 5 992 5 992 5 992 5 992 5 992 5	Q _{tast}	90.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7	59.7 159.7 176.8 194.9 214.1 232.3 4 m 54. 210.0 245.3 263.7 4 m 74. 211.4 202.5 250.0 246.0 246.0 260.0 260.0	end Yes 2018 2019 2100 2216 2379 253.9 UE upstream end 234.0 243.8 271.2 263.2 UE upstream end Yes 256.7 271.1 264.0 268.3	side Yus 137.9 161.4 183.2 204.7 224.2 US upstream side Yus 172.7 193.7 215.9 235.9 252.7 US upstream side Fin 193.7 215.4 238.2 257.4 276.9 US	#860 For 130.0 157.8 187.8 210.5 230.8 D5 downstream #860 For 170.3 197.3 219.8 239.5 258.5 D3 downstream #860 For 196.3 216.5 240.8 240.8 240.8	ernd Yise 123.7 154.7 154.5 209.0 229.5 DE downstream end Yise 164.5 238.0 256.5 DE downstream and You 191.7 216.5 238.0 256.5 DE downstream and You 191.7 216.5 238.2 290.2 281.2 DE	Fs 161 2 201 3 221 9 253 8 6 m Fs 190 8 271 9 253 6 271 9 253 6 271 9 253 6 271 9 6 m Fs 275 2 243 6 275 3 6 2	7, 177.5 198.1 215.2 230.9 244.5 7 m 7, 210.8 234.0 233.5 263.5 277.8 7 m 7, 246.8 235.3 272.2 279.6	8 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	2g(y _m , y _{col})** 1 21 1.04 0.85 0.78 0.72 2g(y _m , y _{col})** 1.15 0.99 0.83 0.74 2g(y _m , y _{col})** 2g(y _m , y _{col})** 1.07 0.96 0.87	G.991021 0.995025 0.99525 0.994296 0.095822 0.112752 0.112394 0.114188 0.114551 0.114555 0.112565	1 00 0 98 0 98 0 96 0 96 0 97 0 97 1 00 0 98 0 98 0 98 0 98 0 98 0 98 0 98 0	0.75 0.84 0.45 0.43 0.60 0.61 0.61 0.43 0.60 0.61 0.61 0.46 0.46 0.46	Fr_me 0.83 0.85 0.57 0.50 0.44	9.73 9.53 9.50 9.40 9.37 9.70 9.70 9.53 9.47 9.46 9.41

	Fr. An	0.64	0.60	0.49	0.44	0.42				11.40	0.62	95.0	0.50	0.44	0.41	
	1,44									1,00	73	63	3	20	45	
													0 53 0			
	ž	0.6	990	0	ō	ō				T.	Г					
			0.07							100			0.98		_	0
	Queeny	0.156782	0.154988	0.153664	0.153248	0.154673				Opening	0.1652902	0.167785	0.173158	0.170520	0.175587	
. 34	200'se Yest	1.19	1.10	0.36	16.0	98.0			W.C.W	29the Yeal	1.16	1.07	1 00	0.83	0.80	
	9-9	0.578	0.578	0.578	0.578	0.578				9-9	0.578	0.578	0.578	0.578	0.578	
		0.609	0.609	0.639	0.699	0.039					0.600	0.609	0.609	0.609	0.600	
7 (3)	ú	254.5	273.0	280.2	314.0	329.3			7 80	361	278.3	311.2	308.3	347.0	366.2	
E	ž	248.8	250.0	295.8	321.0	329.6			E	g,	206.2	287.8	3163	347.3	363.3	
pue	Yes	254.7	242.0	266.7	2883 J	311.2	36	downstream	pera	You	244.2	268.0	291.0	315.5	338.7	
aide	You	220.3	243.0	258.8	291.3	312.0	90	downstream	100	Yes	246.0	271.5	294.0	316.5	340.0	
spira	Yes	218.2	239.4	266.2	287.4	306.7	8	upstream	side	Yes	243.2	269.9	2002	3124	334.7	
pue	7.4	286 6	301.9	314.8	3303	346.3	5	mesundo	end	Yes	311.7	3066	343.8	357.6	3775	
4	3,4	236.3	258.4	279.0	297.5	318.8			÷	ž	203.4	288.0	304.8	324.7	346.0	
	Q [VK]	151.0	151.0	151.0	151.0	1510				Q IIIs	166.8	169.9	165.9	160.5	160.0	
	O.m.	0.151012	0.151012	0.151012	0.151012	0.151012				O	0.169891	0.160691	0.1699991	0.169601	0.169691	
						1835.0				Pare 22						

MODEL PIER, bp = 40 mm_SHORT_NORMAL Q's

OK

						3-	4			downstream				Committee	
Q	Plysen, 6	B _{man_2}	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric	properties:
ed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	11.5	11.5	P-B	OT MEASURE	ADILE	60.2	59.4	61.5	35.5	21.4	16.0	197.5	193.6	D =	39.5 mm
30	77.5	75.0				97.3	95.6	105.5	70.3	47.5	39.0	210.0	223.5	L _p =	168 mm
50	206.0	205.0				125.4	123.0	139.8	95.5	77.0	66.8	243.1	251.2	ZA =	0.0 mm
70	396.0	294.0				140.7	147.4	169.5	109.0	97.5	93.0	295.1	269.8	Zn *	0.9 mm
90	635.0	640.0				172.0	170.2	200.5	130.0	118.3	114.8	285.8	311.1	2c *	2.6 mm
110	970.0	955.0				194.2	106.8	227.5	145.0	136.3	137.0	275.3	306.2	Z _D =	3.2 mm
130	1360.0	1375.0				218.8	209.4	253.0	154.3	157.8	161.0	299.2	320.4		
150	1830.0	1830.0				137.4	230.2	277.5	171.5	171.8	178.0	328.2	344.5		
130 150 170	2350.0	2350.9				253.5	247.9	301.0	187.3	166.6	196.5	353.6	362.5		
CALCULA	TODE:	DRET (87-71)													
CALCUL	KINDNS:	Oliver & Debut													
								FLOW DEPT	HS						
								UE	US	DS	DE				
			Dis	tance mean	ared downst	ream within the	flume	upstream	upstream	downstream	downstream				

			Dist		ured downst	ream within the		upstream	upstream	downstream	downstream										
	0	CI TIME	O en	1 m	2 m	3 m	4 m	end	5100	stoe	end	6 m	7 /111		B-b.	7 m 10 1	0 1	and the same			F- DF
Programmy	Make.	O Link	Fe	P1	71	F1	71	Yor	Yus	Fox	You	Yu	91		0-0 _p	#PESON SON	Meany	THE REAL PROPERTY.	Fr_4m	Fr_DS	Fr_DE
11.5	0.011955	12.0				45.7	43.9	61.5	36.4	24.0	21.2	50.0	46.6	0.609	0.569	0.89	0.612113	0.99	0.68	1.80	2:04
76.3	0.030783	30.8				83.8	80.3	105.5	71.1	50.1	42.2	62.5	76.5	0.609	0.569	1.07	0.030411	1.01	0.71	1.54	1.86
205.5	0.050536	50.5				111.9	107.5	130.8	96.4	79.6	69.9	95.6	104.2	0.600	0.569	1.11	0.050256	1.01	0.75	1.26	1.43
395.0	0.070063	70:1				135.2	131.9	169.5	109.9	100.1	96.2	147.6	122.8	0.609	0.569	1.19	0.067697	1.03	0.77	1.24	1.23
637.5	0.089009	89.0				158.5	154.7	200.5	130.9	120.9	117.9	138.3	164.1	0.609	0.569	1.27	0.087354	1.02	0.77	1.19	1.15
962.5	0.109369	109.4				180.7	171.3	227.5	145.9	138.9	140.2	127.8	159.2	0.609	0.569	1.34	0.105713	1.03	0.81	1.19	1.09
1367.5	0.130364	130.4				205.3	193.9	253.0	165.1	150.4	164.2	151.7	173.4	0.609	0.569	1.37	0.124729	1.05	0.80	1.14	1.03
1830.0	0.150806	150.8				123.9	2147	277.5	172.4	174.4	181.2	180 7	197.5	0.609	0.569	1.44	0.142898	1.06	0.79	1.16	1.03
2350.0	0.170894	170.9				240.0	232.4	301.0	188.1	191.4	199.7	206.1	215.5	0.609	0.569	1.48	0.161579	1.08	0.80	1.15	1.00
																		1.03			

MODEL PIER, bp = 40 mm_SHORT_DROWNED Q's

DATA: Wednesday, 2 August 2000

			UE	US upstream	DS downstream	DE downstream		
Base, 1	Bour F	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
660.0	650.0	180.5	203.8	143.8	136.5	136.8	319.0	312.5
660 D	650 0	198.2	215.5	168.6	163.5	162.5	349.3	341.5
€60.0	650.0	217.1	224.5	189.5	186.8	185 D	359.5	362.0
660.D	650 C	233.8	240.5	210.0	208.5	208.5	383.6	380.5
660.0	650.0	250.5	254.5	229.0	228.5	228.8	397.1	397.9
			UE	UB	DS	DE		
			upstream	upstream	downstream	downstream		
Rear_t	Brand.	4 m	end	nide	side	end	6 m	7 m
		15.5					147.5	147.0
\$60.0	965.0	213.1	232.8	174.8	173.0	168.8	348.9	348.6
980.0	965.0	227.5	245.8	195.5	192.3	188.0	377.5	375.5
580.0	965.0	245.5	250.5	216.8	214.3	213.0	390.0	390.5
980.0	965.0	262.3	268.5	234.8	234.0	234.0	406.6	405.2
960.0	965.0	279.5	296.5	255.0	254.5	253.3	425.3	426.3
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Dog 1	Donn /	4 m	end	alida	side	end	6 m	7 m

147.0	363.0	300.5	4165	437.5	4626			7 m	147.0	417.0	419.2	444.5	462.2	479.5			7 3	147.0	432.8	463.9	462.5	489.1	5033.3
147.5	367.8	307.6	420.1	434.5	451.2			E	147.5	396.0	419.2	4483	457.0	481.2				147.5	419.6	439.7	420.8	459.9	1,005
	100 0	212.5	236.0	260.5	282.8	90	downstream	pue		2213	241.5	266.0	289.3	300 5	90	downstream	pue		2440	284.5	286.5	311.3	231.0
	189.0	215.5	238.0	280.5	282.0	SC	downstream	side		220.0	243.5	284.5	288.5	308.0	80	downstream	apia		243.0	266.0	288.0	310.0	3338
	1937.3	216.5	240.5	262.8	2833	g	mestinge	side		220 8	246.5	267.3	290.0	310.0	5	upsheam	ajide		246.6	266.8	2390.5	3115	31111
	261.0	274.0	285.3	302.0	316.8	33	upstram	pue	١	202 6	303.6	316.5	3355	350.0	5	upstream	pue		318.0	307.0	342.5	361.0	30% 8
18.8	233.9	262.2	270.2	280.6	308.9			:	18.8	2560 0	282.3	300.4	319.9	337.4			Ē	15.5	283.5	302.5	324.5	340.4	3460.0
	13750	1375.0	1375.0	1375.0	1375.0			Paren's		19000	1960.0	1960.0	1963.0	1860.0			Page 1		2300 0	23000	2300.0	2300.0	2300.0
	0.0960	0.090	0.0000	0.0961	3000			Pract.		0.09.0	0.040	1940.0	0.040	0.086			Promi.		310.0	3100	310.0	2310.0	0.010

CALCULATIONS

Particle	THE PERSON NAMED IN	-															
Q _{sc} Q A V D								E	OW DEPT	248							
Quencing State of the					35	5	DS	DE									
Q _{sc} <th< th=""><th></th><th></th><th></th><th></th><th></th><th>upstream</th><th>downstream</th><th>downstream</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>						upstream	downstream	downstream									
Q _i con 1 1 i con 1 i				Ē		side	side	pas	E	7.00			# 3A				
0 0000222 0.0.2 1155 2156 1156 1156 1156 1156 1156 115	100	Q,m	O IV	1,4		You	You	You	ž	i,			200 veryon	of crosin.	Fr. an	Fr. an	Fr. bro
Controller Con	988.0	0.090222	2005	165.0	ı	144.6	136.1	139.9	171.5	965.5	0.606		1.15	L	0.71	16.0	582
Control Cont	988.0	0.090222	90.2	162.7		169.6	1961	168.7	201.8	154.5	0.600		1.01		0.61	0.70	0.52
Control Cont	0.55	0.090222	90.2	201.6		190.4	189.4	188.2	212.0	215.0	909.0		0.86		0.52	0.57	0.48
October Column	0.550	0.090222	90.2	218.3		210.9	211.1	2117	233.1	233.5	0.609		0.79		0.46	0.40	0.42
Class	0.55	0.090222	90.2	235.0		229.9	231.1	231.9	249.6	250.9	0.809		14.0		0.42	0.43	0.38
Query Query Vis.						95	90	×									
Quest Quest Fr. Fr. Side Side Fr. F					2	upstream	downstream	downstream									
Classical Column Property P				E #		alite	side	pue	E	7 190			m 7A				
0.1000/05 10.08 197 0.222 0.175 0.175 0.171 0.2014	4.44	0	O [he]	3,0		2	3,04	Yes	ž	ik.			29(Nor Year)	100,070	Pr. de	Fr. DO	Pr. An
0.1000055 100-9 232-0 250-5 250-5 277-6 216-0 276-5 200-5 220-5 0-6000 0.540-0 0.540-0 0.540-0 0.590-0 0.97-0 0.590-0 0.67-0 0.1000055 100-9 230-0 250-5 276-5 276-5 276-5 277-5 270-5 270-5 0-6000 0.540-0 0.	0.25	0.1086035	109.8	9 /81	ı	175.0	175.6	171.9	201.4	201.6	6090	I	108	1.62	0.666	0.78	0.64
0.100035 100.0 230.0 250.5 231.5 211.6 216.9 216.2 242.5 242.5 0.000 0.540 0.160.0 0.06 0.05 0.05 0.05 0.05 0.05 0.05	02.5	0.108935	109.8	212 0		196.4	194.9	191.2	230.0	228.5	6090	-	1.02	0.87	0.50	0.67	0.52
0.100005 100.9 246.6 200.5 225.6 226.7 226.7 226.7 226.2 200.2 0.569 0.569 0.100 0.10010 0.699 0.47 0.569 0.47 0.569 0.47 0.569 0.47 0.569 0.47 0.569 0.47 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44 0.569 0.44	72.5	0.109935	8 601	230.0		217.6	216.9	216.2	242.5	243.5	609.0	-	0.54	0.86	0.82	0.57	0.48
10.1000CO 10.3 B 204 0 205 5 25.5 0 25.7 1 256.4 277.5 279.3 0.609 0.549 0.79 0.115915 0.65 0.42 0.44	72.5	0 1000035	100 8	246.6		235.6	236.6	237.2	259.1	258.2	0.609	_	0.62	0.00	0.47	0.50	0.44
Quart Q [R] Val. Vis. <	72.5	0.108635	100.9	264.0		255.9	257.1	256.4	277.8	279.3	0.009	-	0.79	0.95	0.42	0.44	0.39
Q _{cut} Q [N] Y ₁ We seed We seed We seed We seed Fr. Los Fr.						Sn	88	De									
4 cm end able able end end 6 cm 7 cm N ₁₀ =						upstream	downstraam	downstream									
Q _{state} Q _{post} Y _s				÷		skie	shide	pue	E	7 08			# 24				
0.150364 1304 2164 2010 158.1 1616 183.2 220.3 246.0 0.009 0.547 1.10 0.124567 106 0.67 0.61 0.150364 1304 220.2 234.2 217.4 218.1 216.7 220.2 244.5 0.009 0.547 1.07 0.127812 1.02 0.59 0.67 0.10006 130.4 276.4 276.2 217.4 218.1 218.2 276.2 277.5 276.5 0.009 0.547 0.00 0.127817 1.02 0.59 0.67 0.10006 130.4 276.1 30.2 0.20 261.5 276.5 276.5 276.5 276.5 0.009 0.547 0.00 0.126917 1.01 0.53 0.59 0.130064 130.4 276.1 30.2 0.2 276.4 276.5 276.5 276.5 270.5 0.000 0.547 0.00 0.126912 1.01 0.43 0.45 0.130064 130.4 276.1 30.2 0.5 276.5 276.5 276.5 276.5 276.5 0.009 0.547 0.00 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.130064 130.4 276.1 276.5 0.127854 1.01 0.43 0.45 0.127854 1.01 0.43 0.45 0.127854 1.01		O, ale	D BW	7.		Yes	You	For	N.	1,1			Zglyw Yes,	17.50	P. As	Fr. 24	Pr. Ass
0.150364 13.04 226.7 274.0 217.4 218.1 216.7 250.0 243.5 0.60.9 0.547 1.67 0.127812 182 0.59 0.67 0.150364 13.04 226.3 244.4 240.5 226.2 272.5 272.5 260.0 0.647 0.60 0.127812 182 0.59 0.67 0.150364 13.04 276.1 312.0 261.5		0.130364	130.4	218.4		1,98.1	101.6	193.2	220.3	246.0	009.0		1.19	1.05	0.67	0.81	99'0
0130060 1304 254.7 205.3 241.4 240.6 236.2 272.5 248.5 0.609 0.547 0.56 0.12617 1,03 0.53 0.59 0.59 0.13004 130.4 274.1 302.0 263.4 246.5 246.5 247.0 260.6 0.547 0.60 0.12662 1,00 0.48 0.51 0.13006 130.4 261.5 246.5 246.5 246.5 246.5 0.600 0.547 0.63 0.12654 1,01 0.43 0.45 0.45 446.5 246.5 246.5 246.5 0.600 0.547 0.63 0.12654 1,01 0.43 0.45 0.45 446.5 246.5 246.5 246.5 0.600 0.547 0.63 0.12654 1,01 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45		0.130364	130.4	236.7		217.4	218.1	215.7	200.0	243.5	6090		1.67	1,62	0.50	59'0	0.55
0130004 1304 2741 302.0 263.6 263.1 263.7 267.0 260.6 0.600 0.547 0.60 0.12662 1.00 0.48 0.51 0.13004 130.4 263.0 303004 130.4 264.5 265.0 265.0 265.0 0.547 0.63 0.12654 1.01 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45		0.130064	130.4	254.7		241.4	240.6	239.2	272.6	2758.5	0.609		95.0	1,03	0.53	0.58	0.40
0130004 130.4 263.4 310.8 284.6 286.6 363.7 365.6 0.600 0.547 0.63 0.128544 1.01 0.43 0.45 (4.5)		0.130364	130.4	274.1		263.6	263.1	263.7	287.0	2005	0.609		0.00	1,00	0.48	0.51	0.44
us DS DS upstream de		0.130364	130.4	2034		284.1	284.6	286.9	303.7	308.6	0.600		0.63	1.01	0.43	0.45	0.41
upstream downstream du					5	Sn	80	30									
					apalesam	upstream	downstream	downstream									

			4 m	end	side	side	end	6 m	7 m			v _C =					
h _{man_mag}	Quate	Q [Fs]	Ye	Yes	You	You	You	Ye	y.	В	B-b _p	2 gr(you-Year)**	Query	4029.50	Fr_an	Fr_ne	Fr_ten
1850 D	0.151628	151.6	243.5	262.5	221.6	222.6	224.4	247.5	270.0	0.609	0.547	1.19	0.145222	1.04	0.66	0.76	0.65
1850.0	0.151628	151.6	266.8	303.8	247.4	246.1	244.7	271.7	272.2	0.600	0.547	1.00	0.146362	1.04	0.58	0.65	0.56
1850 D	0.151628	151.6	284.9	316.5	258.1	267.1	269.2	300.8	297.5	0.609	0.547	1.01	0.147576	1.03	0.52	0.58	0.48
1850 D	0.151626	151.6	304.4	335.5	290.9	291.1	292.4	319.5	315.2	0.609	0.547	0.96	0.152908	0.99	0.47	0.51	0.44
1850.0	0.151628	151.6	321.9	350.0	310.9	311.6	3117	333.7	332.5	0.609	0.547	0.90	0.152872	0.99	0.44	0.46	0.41
				UE	us	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	bess	side	side	end	6 m	7 m			V; *					
Power, and	Qualit	Q [Ne]	Ye.	Yue	Yun	You	You	y4.	Yv	В	B-b,	2glyterYeal**	Q _{reary}	10525-00	Fr_an	Fr_pa	Fr_an
2305.0	0.169250	169.2	268.0	315.0	247.6	245.6	247.2	272.1	285.8	0.609	0.547	1.21	0.162966	1.04	0.64	0.73	0.63
2305.0	0.169250	169.2	287.0	327.0	267.6	268.6	267.7	292.2	336.9	0.609	0.547	1.09	0.180735	1.05	0.58	0.64	0.56
2305.0	0.169250	169.2	309.0	342.5	291.4	290 6	291.7	323.3	315.5	0.609	0.547	1.03	0.164374	1.03	0.52	0.57	0.45
2305.0	0.169250	109.2	324.9	361.0	312.4	312.6	314.4	342.4	342.1	0.609	0.547	1.00	0.171046	0.99	0.48	0.51	0.44
2305.0	0.169250	169.2	344.5	375.8	334.1	334.1	334.2	358.6	356.3	0.609	0.547	0.93	0.170283	0.99	0.44	0.45	0.41
														1.00			

MODEL PIER, bp = 40 mm_MEDIUM_NORMAL Q's

OK

FLOW DEPTHS

DATA:	Wedneso	day, 2 Aug	pust 2000					UE	US	0.5	DE					
								upstream	upstream	downstream	downstream					
Q	Bour. 1	Plogn. 2	0 m	1 m	2 m	3 m	4 m	amd	side	side	end	6 m	7 m		Geometric	properties:
bed levels			12.5	10.5	15.0	12.5	75.5					147.5	147.0			
10	9.5	9.5	NC.	OT MEASUR	ABLE	58.2	57.0	56.3	31.6	21.4	17.5	188.6	192.5	0.94	D =	39.5 mm
30	72.5	72.0				96.9	95.8	104.3	69.6	43.8	39.5	203.9	224.3	1.03	Lo =	222 mm
50	204.0	206.0				127.4	126.7	139.5	100.5	71.3	64.5	216.0	253.7	1.03	Za =	0.0 mm
70	398.0	391.0				151.7	149.1	109.8	116.3	94.5	87.8	234.2	271.2	1.04	Za =	0.6 mm
90	660.0	665.0				176.6	175.2	203.5	135.8	115.8	110.0	252.3	299.5	1.02	Zc =	3.2 mm
110	970.0	970.0				197.4	191.3	225.8	152.0	135.0	132.5	273.0	313.2	1.00	2 ₀ =	3.7 mm
130	1375.0	1380.0				229.4	211.4	257.0	168.8	153.0	152.3	296.0	324.5	1.00		
150	1800.0	1800 0				242.9	236.4	277.5	186.0	175.8	176.0	318.5	341.6	1.04		
170	2300.0	2300 O				256.1	249.8	302.0	195.8	189.3	191.8	343.1	360.3	1.04		

CALCULATIONS

								UE	US	DS	DE										
			Di	stance meas	sured downst	ream within th	e flume	upstream	upstream	downstream	downstream										
			O em	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			W _C =					
Programme 1	Q _{rate}	Q [l/s]	Ye	T1	¥2	Y1	y4	You	You	You	You	Ye	V+	8	B-b _p	20(Yor-You) 1	Quanty	CLIPATED	Fr_4m	Fr_DS	Fr_DE
9.5	0.010866	10.9	N	OT MEASUR	VABLE	44.7	41.5	56.3	32.3	24.6	21.2	41.3	45.5	0.609	0.569	0.63	0.011563	0.94	0.67	1.58	1.84
72.3	0.029965	30.0	N	OT MEASUR	VABLE	83.4	80.3	104.3	70.3	45.9	43.2	56.4	77.3	0.609	0.569	1.00	0.029091	1.03	0.60	1.65	1.75
205.0	0.050474	50.5				113.9	111.2	139.5	101.1	74.4	68.2	68.5	106.7	0.609	0.569	1.16	0.049005	1.03	0.71	1.39	1.48
394.5	0.070019	70.0				138.2	133.6	109.8	116.0	97.7	91.5	86.7	124.2	0.609	0.569	1.22	0.067531	1.04	0.75	1.29	1.33
662.5	0.090737	90.7				163.1	159.7	203.5	136.3	116.9	113.7	104.8	152.5	0.609	0.569	1.31	0.088790	1.02	0.75	1.24	1.24
970.0	0.109794	109.8				183.9	175.8	228.8	152.6	138.2	136.2	125.5	166.2	0.609	0.569	1.36	0.106631	1.03	0.78	1.20	1.14
1377.5	0.130839	130.6				206.9	195.9	257.0	169.3	156.2	156.0	148.5	177.5	0.609	0.569	1.43	0.126939	1.03	0.79	1.19	1.11
1800.0	0.149565	149.6				229.4	220.9	277.5	186.6	176.9	179.7	171.0	194.6	0.609	0.569	1.41	0.143848	1.04	0.76	1.11	1.00
2300.0	0.169066	169.1				242.6	234.3	302 0	196.3	192.4	195.5	195.6	213.3	0.609	0.569	1.49	0.162649	1.04	0.76	1.12	1.03

MODEL PIER, bp = 40 mm_LONG_DROWNED Q's

DATA: Wednesday, 2 August 2000 UE

			upstream	upstream	DS downstream	downstream		
Bran, I	Piman_2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
650.0	650.0	190.1	210.5	159.0	149.3	142.6	340.9	339 3
650.0	650.0	209.9	218.0	101.3	175.5	173.0	353.5	358.0
650.0	650.0	225.2	233.5	200.0	200.0	200.0	368.6	370.3
650.0	650.0	239.9	247.0	216.3	218.0	210.8	391.1	364.2
650.0	650.0	256.0	260.5	233.8	235.8	236.5	395.6	400.2
			UE	us	0.5	DE		
			upstream	upstream	downstream	downstream		
Boar, I	Power, 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
965.0	955.0	215.9	238.0	182.3	174.3	170.5	365.5	357 2
965.0	955.0	229.2	248.0	199.0	193.8	190.0	383.5	373.1
965.0	955.0	247.9	260.3	218.8	217.5	216.8	391.5	395.2
905.0	955.0	267.1	274.5	240.0	240.3	240.5	410.2	410.5
965.0	955.0	283.7	289.5	259.0	259.8	250.8	435.2	428.5
			UE	us	DS	DE		
			upsfream	upstream	downstream	downstream		
							6 m	7 m

2.0	6.7	0.9	8.8	0.0	453.4			E	0.747	0.2	8.8	6.3	9.8	919			E	147.0	9.0	1.5	5.0	910	3.1
	20	40	÷	7	45			4	7	4	4	4	45	4			p.	14	9	ç	47	Ŷ	8.6
147.5	377.0	407.7	426.3	436.3	450.7			E	147.3	390.6	419.7	450.6	467.2	477.1			Ē	147.5	417.6	450.0	480.0	499.7	5102
	197.5	219.0	242.5	263.3	283.3	30	downstream	pue		213.5	238.3	263.0	286.5	308.8	30	downstream	pue		243.3	270.8	285.5	3111.5	335.8
	1999.3	2213	245.5	205.3	263.6	90	downstream	side		217.0	241.0	263.8	286.5	308.5	8	downstramm	spits		245.0	271.5	2390.0	319.3	T UPS
	205.8	224.8	247.5	285.0	283.6	S	upspage	side		223.0	244.5	266.5	287.0	308.0	Sin	meaquda	epis		250.3	273.3	298.0	320.0	240.0
	266.5	278.0	292.8	305.3	319.8	5	mesopade	pus		291.0	304.8	319.8	332.5	349.5	35	upstream	pue		316.3	332.5	348.8	366.4	381.0
13.5	241.8	258.1	275.5	292.6	309.5			Ē	13.5	2503	281.9	2005	317.3	336.5			E	15.5	285.8	308.9	330.2	349.2	344.
	1360.0	1360.0	13600	13600	13600			7		1810 0	1810.0	1810.0	1810 0	1830 0			Promo		23000	2300.0	2300.0	2300.0	2 900 0
	380.0	360.0	0.000.0	300 0	0.090			-		0.011	0.014	0.011	0.0181	0.001			ì		000	2310.0	0.010	0.010	0.011

CALCULATIONS

				Fr. an	0.55	0.50	0.45	0.30	0.38				Fr. Am	95'0	0.50	0.48	0.43	0.37				Fr. dan	290	0.51	0.46	0.44	0.41	
				Fr. De	0.75	0.62	0.51	0.45	0.40				Fr. as	0.77	0.66	99.0	0.48	0.42				Pr. an	0.75	0.64	0.55	0.49	0,44	
				Fr. Ass	0.65	0.55	0.49	0.44	0.40				Fr. An	990	0.58	0.81	0.45	0.41				Fr. com	0.63	0.57	0.51	0.47	0.43	
				Serve	0.95	0.97	0.96	96.0	0.95				16000	0.97	0.94	0.96	0.96	0.96				MON.	1.01	1 00	0.99	1 00	66.0	
				Query	0.098077	0.092838	0.093726	0.094529	0.094736				Oceany	0.112907	0.1159002	0.1146997	0.113543	0.114298				Onen	0.128299	0.129537	0.130970	0.130075	0.131904	
			* 5a	29Dur-Youl"	1.10	0.91	0.81	0.75	0.70			. 74	Pathar Year	1.12	1 03	0.92	0.82	0 0 0 0			# 24	20ther Year	117	106	980	0.89	0.84	
				40	6960	6.569	605.0	6,569	0.569				9-9'	0.569	6050	6960	0.563	0.569				9.49	0.547	0.547	0.547	0.547	0.547	
					0.809	0.800	0.609	0.609	0.600				0	0.609	0.609	0.609	0.600	0.809				6	0.609	0.809	0.800	0.809	0.609	
			7 m	ń.	192.3	211.0	223.3	237.2	253.2			E L	ú	210.2	228.1	248.2	263.5	281.5			1	ý,	235.7	6 092	271.5	293.0	308.4	
FLOW DEPTHS			E	70	193.4	2060	221.1	243.6	248.1			E	g.	218.0	236.0	264.0	282.7	287.7			E	ž	229.5	2002	278.8	288.8	303.2	
FLC	DE	downstream	pue	Yes	346.5	176.7	203.7	222.5	240.2	50	downstream	pue	Tree	174.2	193.7	220.5	244.2	263.5	30	downstream	pus	You	2012	222 7	246.2	287.0	287.0	
	503	downstream	shdo	Yes	152.4	178.7	203.2	221.2	238.9	0.0	Sownstream	slide	Yes	177.4	196.9	2207	243.4	262.9	0.0	downstream	side	For	202.4	224.4	248.7	258.4	286.9	
	25	pstream	alde	Yes	159.6	181.8	200.6	215.8	234.3	Sn	prefream	side	Yes	182.8	199.6	219.3	240.6	259.6	Sn	patroam	aide	Yes	296.3	225.3	248.1	265.6	284.3	
	30	upstream u	pus	Yes	280.5	218.0	233.5	247.0	200.5	5	upstroam u	pus	Yes	238.0	248.0	260.3	274.5	289.5	5	upstream u	pue	Yes	266.6	278.0	292.8	305.3	319.8	
			Ę	N.	174.6	1944	209.7	224.4	240.5			Ē	ů.	2007	213.7	232.4	910	288.2			Ę	1,4	226.3	242.6	260.0	277.1	254.4	
				Q [M]	6.68	900	98.0	0.00	883.5				O [M]	100 2	100 2	109.2	109 2	109 2				Olle	130.0	130 0	130.0	130.0	130.0	
				0.0	0.099877	0.089877	0.060677	0.099877	0.089877				O.m.	0.109227	0.109227	0.109227	0.109227	0.109227				9	0.130006	0.130000	0.130008	0.130006	0.130006	
				Promoted in	0.059	66000	650.0	6000	650.0				To and	0.006	0.090	860.0	0.096	0.096				1	13600	13600	13600	13600	13600	

DS DE downstream downstream

upstream upstream

	11,400	990	0.55	0.47	0.43	0.42				Fr. an	0.63	0.53	0.45	0.42	0.41	
	17,00	0.76	0.65	0.57	0.50	0.45				Fr.an	0.72	0.62	200	0.46	0.44	
	Pr. an	990	0.67	0.52	0.47	0.43				Fr. an	0.63	980	0.50	0.46	0.42	
	15.50	1.03	1.00	0.98	1.00	0.93				100	1.05	1.03	1.02	1.00	1.00	0.00
	Queen	0.145119	0.1463376	0.153046	0.150532	0.152909				Q.	0.160506	0.164370	O MS5712	0.169557	0.169765	
* 24	2glyu-you	130	1.12	108	0.95	0.90			W. C.	200 year year	1.18	1.09	101	96.0	0.00	
	8.6,	0.547	0.547	0.547	0.547	0.547				8-9'	0.547	0.547	0.547	0.547	0.547	
		609.0	6099	0.609	6090	609.0					0.609	6090	6090	0.609	0.600	
7 m	-in	263.2	271.5	298.3	311.5	336.5			7 8	ů.	292.6	334.5	328.0	346.8	366.1	
E o	Z.	243.3	272.2	303.1	319.7	329.6			E	£	270.1	302.5	332.5	362.2	362.7	
gue	Non-	217.2	242.0	2007	290.2	312.5	90	downstream	end	Yes	247.0	2745	2002	322.2	343.5	
side	You	220.2	244.2	200.9	209.7	311.7	OS	downstream	side	You	248.2	274.7	200.0	322.4	343.4	
100	Yes	223.6	245.1	287.1	287.6	308.6	20	spetream	side	F-14	250.6	273.8	298.6	320.6	343.6	
pese	Yes	291.0	304.8	313.8	332.5	349.5	5	meanada	ppe	Ye	396.3	332.5	348.8	366.4	381.0	
E 4	3.0	243.6	286.4	284.0	301.0	3210			E	3,0	270.3	293.4	3347	333.7	352.6	
	(Ma) (0.051	150.0	150.0	150.0	150.0				(((()	169 2	169.2	169.2	160.2	169.2	
	O man	0.149980	0.149990	0.149990	0.149990	0.149980				O.m.	0.169250	0.189250	0.1690%0	0.169250	0.969250	
	Parent of the last	0.0888	1885.0	0.0480	0.0488	0.0488				Parents.						

MODEL PIER, bp = 40 mm_LONG_NORMAL Q's

DATA: - Monday, 31 July 2000

OK

and a fee of a little								100	-	0.0	67.60										
								upstream	upstream	downstream	downstream										
Q	Proper 1	h _{man, 2}	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			Geometric p	roperties:				
bed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0								
10	10.5	10.0	NO	OT MEASURA	ABLE	60.4	59.4	59.0	63.5	23.5	10.2	199.0	193.2	0.86		D =	39.5 mm	1			
30	75.5	75.5				98.4	97.5	104.5	71.0	46.0	41.3	207.6	225.0	1.00		L. =	276 mm	n			
50	203.0	201.0				128.3	128.3	141.0	101.3	67.5	64.8	214.5	251.0	1.02		2 A =	0.0 mm	N.			
70	397.0	399.0				153.9	150.4	172.0	122.0	91.0	83.3	231.5	264.6	1.03		2 ₀ =	0.6 mm	4			
90	655.0	657.5				178.0	176.2	195.5	139.8	112.8	105.3	251.9	306.3	1.05		20 11	4.1 mm				
110	960.0	955.0				198.6	193.7	224.0	157.3	133.0	125.0	270.8	313.7	1.05		z ₀ =	4.7 mm				
130	1360.0	1350.0				220.0	212.2	251.5	172.3	151.0	144.5	293.9	323.8	1.05			4.1				
150	1510.0	1800.0				245.7	239.5	276.0	195.8	172.3	166.8	310.5	342.5	1.05							
170	2340.0	2340.0				260.9	255.3	300.0	207.5	191.0	188.8	339.2	362.4	1.05							
CALCUL	A VIANIET	TO COM																			
CALCOL	Allons,	53667/3																			
		- 1						FLOW DEPTI	HS												
								UE	US	DS	DE										
			Dis	čance measu	red downst	eam within th	e flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	tilde	end	6 m	7 m			vc =					
Programa.	Q _{calc}	Q [19]	Ye	y.	Yr	Yı .	Ye	Yor	You	You	You	Y4	у,		B-b,	2g(y ₁₀ -y ₁₀)**	Onery Mil	2500	Fr_4m	Fr_DS	Fr_DE
10.3	0.011266	11.3		OT MEASURA		46.9	43.9	59.0	64.1	27.6	20.9	51.5	46.2	0.509	0.569	0.83	0.013115	0.86	0.54	1.30	1.96
75.5	0.030631	30.6	NI,	OT MEASURA	MILE	84.9	82.0	104.5	71.6	50.1	45.9	60.1	78.0	0.609	0.569	1.07	0.030551	1.00	0.68	1.53	1.63

69.4

87.9

109.9

130.7

149.2

171.4

193.4

104.0

117.6

159.3

166.7

176.8

195.5

215.4

84.0

104.4

123.3

146.4

163.0

191.7

0.509

0.509

0.609

0.609

0.609

0.509

0.609

0.569

0.569

0.569

0.569

0.569

0.569

0.569

1.20

1.28

1.30

1.34

1.40

1.43

1.46

0.045335

0.065228

0.086378

0.104250

0.123938

0.143177

0.162357

1.02

1.03

1.05

1.05

1.05

1.05

0.69

0.74

0.73

0.78

0.74

0.76

1.47

1.35

1.27

1.19

1.13

1.11

1.44

1.41

1.30

1.18

1.11

1.05

DE

MODEL PIER, bp = 40 mm_LONG_DROWNED Q's

DATA: Tuesday, 1 August 2000

0.050104

0.070329

0.090306

957.5 0.100084

1355 0 0.129767

1805.0 0.149772

2340 0 0 17053

398.0

656.3

50.1

70.3

90.3

109.1

149.8

			UE	US upstream	DS downstream	DE		
Bear, t	Property.	4 m	end	side	side	ered	6 m	7 m
		15.5					147.5	147.0
660.0	650.0	179.6	201.8	143.3	120.8	117.0	311.2	319.3
660.0	650 0	194.3	210.5	164.B	156.3	155.5	348.2	345.6
660.0	650.0	213.7	225.3	187.8	185.5	187.0	354.4	365.5
660.0	650.0	232.6	238.8	208 D	209.5	209.8	370.3	379.7
660.0	650.0	251.0	256.3	229.3	231.5	232.5	401.3	368.5
			ue	US	DS	DE		
			upstream	upstream	downstream	downstream		
Nown, 1	Boan, 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
980.0	990.0	215.9	237.8	187.0	173.3	171.0	355.5	350.5
980.0	990.0	232.3	246.5	202.5	198.D	195.0	385.9	381.0
980.0	990.0	251.7	264.0	224.5	221.8	220.5	392.4	394.3
980.0	990.0	267.3	276.3	243.3	243.3	243.3	403.5	409.3
580.0	990.0	285.7	292.0	263.0	264.0	264.5	439.6	433.5
			UE	US	DS	DE		
			upsfream	ups/ream	downstream	downstream		
Ploner, 1	hour, I	4 m	end	side	nide	and	6 m	7 m

114.8

140.4

154.5

185.1

296.5

232.2

247.4

112.8

134.9

160.7

178.2

196.7

224.0

239.8

141.0

172.0

198.8

224.0

251.5

276.0

101.8

122.6

140.3

157.8

172.8

196.3

208.1

71.8

95.1

116.9

137.1

155.1

176.4

195.1

																							Que,	0.060668	0.094141	0.000000	0.000424						0.112165	0.117012	0.113256	0.113075	
																						# 3A	28(Nor-Yest)	第1	1,03	2 2 0	0.70			# 2ª	Spirar Foul	1.12	0.00	0.91	0.80	0.74	
																							9-9'	0.560	0.560	0.000	0.560				8-9'	0.560	0.560	0.560	0.569	0.566	
																							0	0.606	0.800	0.000	0.800					0.609	0.809	0.809	0.009	0.000	
																						7 m	3,0	172.3	198.6	210.7	281.5			E 2	44	203.5	234.9	247.3	282.3	286.5	
147.0 381.6 409.0	438.7			0 475	415.0	417.8	457.8	400.8	497.3			7 m	147.0	4513	453.3	472.4	5393		FLOW DEPTHS			E	3,0	163.7	200.7	223 8	253.8			E	ž,	208.0	238.4	244.9	256.0	282.1	
147.5 201.0 407.8	438.0			4 070	363.2	417.5	463.5	477.3	465 8			Es	147.5	4317	452.6	2 809	9 0000	2	1	90	Son refresen	pus	Yes	121.7	160.2	216.4	237.2	ä	fownstream	end	For	175.7	196.7	228.2	247.9	280.2	
138.8 222.8 347.0	287.0	90	downstream	6113	215.6	242.6	270.8	299.0	122.0	pg	downstream	end		236.5	278.3	2010	360.0			DIS	downstream d	side	Yes	124.9	160.4	2000	235.6	DS	downstream d	side	You	177.4	202.1	225.0	247.4	288.1	
2000 2000 2000 2000	267.5	90	Ē	8000	2103	246.0	273.5	300.5	322.6	8	ş	skide		258.0	280.8	203.0	2000			100	apalream	slide	Yes	143.8	1653	2000	2258.8	5	apetream	alde	700	187.6	203.1	225.1	243.8	283.6	
228.8	287.5	SO	upstream	200	236.8	248.3	273.8	3000	321.8	Sn	upstream	alele		284.3	283.0	2000	3503			911	upatream	pas	Yes	201.8	219.6	234 8	256.3	5	mendeda	pue	You	237.8	246.5	264.0	276.3	292.0	
278.5	385.0	3	upstream		263.0	365.0	322.5	343.0	358.0	an	upstream	per	1	325.3	338.8	2000	388.8					#	ž	164.1	178.8	2 888 6	238.5			8	No.	200.4	216.6	236.2	281.8	270.2	
2440 2804	280.5				282.8	281.6	304.4	327.2	348.0			Ē	15.5	200	3166	250.4	325.8	100	Democra 3				Q Jila	500	902	200	80.2				0 [14]	110.6	110.6	110.6	110.6	110.6	
13450	13450				1800.0	1800.0	1600.0	1800.0	1800.0			Person 2	-	2300.0	2300 0	2300.0	2300.0	MANAGES AND	All Policy				Q.ec	0.090222	0.090222	0.090466	0.090222				Q.m	0.110643	0.110643	0.110643	0.110640	0.110840	
1355.0	1355.0		,	1	0.0038	1830.0	1830.0	1830.0	0.0000			1		2335.0	2308.0	2333.0	2336.0	MATERIAL STATES	200000				Mar. my	0.889	0.000	60000	665.0						965.0				

4 200000

7 0000

7 0000 0000 047

0.00

4 000000

0.74 0.62 0.48 0.48

7 0 0 0 0 0 0 0 0 0 0 0 0

55888

0.128913 0.1283719 0.126328 0.127441

7gf/cr.Tod²⁴ 1.15 1.03 0.04 0.70

4 3 3 3 3 3 3

8000 8000 8000 8000

7 m 2346 2820 2718 2917

2335 2003 2003 2005 2005

DE downstream end 754 227.4 251.7 271.7 271.7

DS downshear side 204.1 228.8 252.9 271.6 271.6

2228.5 2248.5 2248.0 2278.0 228.1

1295 1295 1295 1295

0.12657 0.12657 0.12657 0.12657 0.12657

1350 0 1350 0 1350 0 1350 0

10 DS Modes 30 appears

			4 m	end	side	side	end	6 m	7 m			v _c =					
Power, my	Qualit	Q [list]	y.	Yes	Yes	You	You	Ye	y,	8	B-b _p	2g(yor-You) 15	Quary	15/25/6/	Fr_ten	Fr_pa	Fr_tm
1815.0	0.150187	150.2	247.3	293.0	227.3	223.4	220.2	245.7	268.0	0.609	0.547	1.20	0.149973	1.02	0.64	0.75	0.65
1815.0	0.150187	150.2	266.1	305.0	248.8	250.1	247.2	270.0	270.5	0.809	0.547	1.08	0.147200	1.02	0.57	0.63	0.56
1815.0	0.1501BT	150.2	268.9	322.5	274.3	277.6	275.4	306.0	310.5	0.609	0.547	0.98	0.148895	1.01	0.54	0.54	0.47
1815.0	0.150187	150.2	311.7	343.0	301.1	334.6	303.7	329.8	313.5	0:609	0.547	0.91	0.152155	0.99	0.45	0.47	0.42
1815 0	0.150187	150.2	332.5	359 0	322.3	326.9	326 7	338.3	350.3	0.600	0.547	0.84	0.150786	1.00	0.41	0.42	0.40
				UE	US	os	OE.										
				upstream (apstroam	downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			v _c =					
b																	
Primar and	Quer	Q [Us]	y,	Yes	Yes	You	You	Yu	y2		H-b _p	2g(you You) 12	Q _{many}	252345	Fr_m	Fr_as	Fr_an
2302.5	0.169158	Q [Un] 159.2	y ₄ 283.3	764 325.3	9es 264.8	You 292.1	You 201.2	294.2	304.3	0.939		2g(y ₀₅ -y ₀₆) ^{0.5}	Q _{many} 0.104994	1.03	Pr_m 0.59	0.66	
											B-b _p 0.547 0.547	1.15		1.03			0.59
2302.5	0.169158	199.2	283.3	325.3	264.8	292.1	261.2	204.2	304.3	0.609	0.547	1.15	0.104094		0.59	0.66	0.59
2302.5 2302.5	0.169158	169.2 159.2	283.3 301.1	325.3 336.8	264.8 283.6	292.1 294.9	261.2 283.9	284.2 305.1	304.3 306.3	0.939	0.547	1.15 1.07 0.99	0.164994 0.166224	1.02	0.59 0.54	0.66	0.59
2302.5 2302.5 2302.5	0.169158 0.169158 0.169158	199.2 199.2 199.2	283.3 301.1 320.9	325.3 338.8 353.3	264.8 283.6 305.6	292.1 294.9 397.1	261.2 283.9 305.7	294.2 305.1 336.7	304.3 306.3 332.4	0.509 0.509 0.509	0.547 0.547 0.547	1.15 1.07 0.96 0.93	0.164994 0.166224 0.166805	1.02	0.59 0.54 0.49	0.66 0.58 0.52	0.50 0.53 0.45

MODEL PIER, bp = 49 mm_SHORT_NORMAL Q's

OK

Q	Disser, 1	Doger 2	0 m	1 m	2 m	3 m	4 m	end	nicio	nide	end	6 m	7 m	Geometric	properties:
ed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	8.5	8.0	N.	OT MEASUR	ABLE	55.9	55.2	54.5	23.8	21.3	16.0	184.6	169.7	D =	49 mm
30	73.0	73.5				99.7	99.2	105.0	72.0	47.8	37.0	195.0	232.5	L _p =	208 mm
50	200.0	200.5				130.7	129.4	141.5	101.3	76.0	60.3	208.6	254.3	$x_{\Delta} =$	0 mm
70	397.5	395.0				155.9	153.1	174.0	123.3	101.0	84.8	229 6	253.8	Za *	0.7 mm
90	655.0	660.0				160 B	178.5	202.0	142.3	124.3	112.5	249.7	307.6	Zc =	2.8 mm
110	970.0	979.0				201.9	197.5	226.5	150.3	144.B	135.5	269.2	321.6	20 =	3.5 mm
130	1350.0	1350.0				220.9	214.2	251.3	173.0	161.5	155.8	290.4	325.8		
150	1840-0	1830.0				247.5	240.2	278.0	195.0	182.5	178.3	307.0	342.0		
1.70	2340.0	2350 0				263.4	257.1	301.6	207.3	200 0	200.0	334.1	361.1		
CALCULA	(WOODS)	712 6117-70													
CALCUL	CHONS:	SERVICE.													
		- L						LOW DEPT	HS						
								UE	US	08	DE				
			Di	stance meas	used downst	ream within the	flume			downstream	downstream				

								UE	US	08	DE										
			Dis	tance meas	ured downstr	ream within the	e flume	upetream	upstream	downstream	downstream										
			O m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			v _c =					
Programme and the same of the	Que	Q [8/e]	Yo	y.	¥o	Ye	Y4	Yes	You	You	You	Ye	Vir.	8	8-6,	Zg(yor-You)"1	Queen	STATE OF	Fr_4m	Fr_DS	Fr_DE
8.3	0.610126	10.1				42.4	39.7	54.5	24.4	24.1	19.5	37.1	42.7	0.609	0.560	0.81	0.010882	0.93	0.67	1.55	1.95
73.3	0.030171	30.2				86.2	63.7	105.0	72.7	50.6	40.5	47.5	85.5	0.606	0.580	1.06	0.030007	1.01	0.65	1.51	1.94
200.3	0.049886	49.9				117.2	113.9	141.5	101.9	78.6	63.7	61.3	107.3	0.609	0.580	1.13	0.050030	1.00	0.68	1.29	1.63
396.3	0.070174	70.2				142.4	137.6	174.0	123.0	103.8	88.2	62.1	106.8	0.609	0.580	1.20	0.069572	1.01	0.72	1.20	1.40
657.5	0.090394	90.4				167.3	163.0	202.0	142.9	127.1	116.0	102.2	160 6	0.609	0.560	1.24	0.087880	1.03	0.72	1.14	1.20
970.0	0.109794	109.8				100.4	182.0	226.5	159.9	147.6	139.0	121.7	174.5	0.609	0.560	1.27	0.104651	1.05	0.74	1.10	3.11
1350 0	0.129527	129.5				207.4	198.7	251.3	173.7	164.3	159.2	142.9	178.8	0.609	0.560	1.33	0.122100	1.08	0.77	1.11	1.07
1835.0	0.151012	151.0				234 D	224.7	276.0	195.7	185.3	1817	150.4	195.0	0.609	0.560	1.37	0.142048	1.06	0.74	1.08	1.02
2345.0	0 170712	1707				249.9	241.6	301.6	207.9	202.8	203.5	186.6	214.1	0.609	0.560	1.41	0 150469	1.05	0.75	1.07	0.97

MODEL PIER, bp = 49 mm_MEDIUM_DROWNED Q's

			upstream	upstream	DS downstream	downstream		
Power_1	h _{rang})	4 m	end	side	side	and	6 m	7 m
		75.5					147.5	147.6
655.0	640 D	183.8	205.0	147.3	132.8	122.5	316.5	317.
655.0	640.0	201.2	215.0	172.5	165.0	158.5	347.2	346.0
655.0	640 D	216.9	227.0	190.D	187.0	185.5	369.2	362.6
655.0	640 D	234.2	240.5	211.5	210.3	210.0	383.6	380.5
655.0	640 D	251.9	256.3	230.3	230.0	229 0	395.4	368.
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Diago, 1	Dogs, F	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.6
975 D	9/70 D	221.8	241.3	187.0	178.5	160.5	364.8	362
975.0	970.0	233.8	248.5	203.5	198.5	101.5	383.6	377.0
975.0	970.0	251.1	262.0	224.5	229.3	217.3	394.5	397.5
975 D	970.0	268.2	276.8	243.3	241.5	240.0	403.9	414.5
975.0	970.0	264.5	266.5	261.3	260.8	258.5	433.2	430.2
			UE	US	DS	DE		
			wpstream	opstream	downstream	downstream		
Post, 1	Bran, F	4 m	end	side	side	end	6 m	7 m

		15.5	000.0	222.0	100.0	1011	147.5	147.0									
1385.0	1380.0	244.2	269.0	206.0	199.0	194.5	384.0	382.1									
1385.0	1380.0	260.1	278.3	228.5	224.3	217.5	435.5	402.1									
1385.0	1380.0	277.5	292.3	243.5	245.8	241.5	425.0	422.8									
1385 0	1380.0	295.4	305.8	269.5	296.8	264.0	439.1	441.8									
1365.0	1380.0	314.0	322.0	288.3	287.0	285.3	457.5	458.5									
			UE	us	DS	DE											
						m downstream											
Page 1	Presi y	4 m	end	side	side	end	6 m	7 m									
		15.5					147.5	147.0									
1540.0	1815.0	271.5	297.3	235.8	229.5	226.0	415.1	419.9									
1643.0	1815.0	267.2 305.6	309.3	253.0	249.0	244.0	432.3	427.3									
1840.0	1815.0		338.0	276.3	273.0 295.5		459.8	451.8									
1840.0	1815.0	324.0	353.0	297.0	315.0	292.8 312.5	497.8	488.2									
1040.0	1010.0	242.0	000.0	510.5	3-3-0	0.00	-31.0	400.8									
			UE	US	DS	DE											
			upstream	upstream	downstream	n downstream											
Power, 6	Pergn. 2	4 m	end	side	side	end	6 m	7 m									
		15.5					147.5	147.0									
2310.0	2320.0	298.0	324.5	260.0	255.8	252.0	432.6	448.0									
2310.0	2320.0	314.5	336.0	279.8	276.6	271.3	456.2	454.5									
2310.0	2320.0	333.5	354.0	302.3	299.0	296.0	483.0	477.8									
2310.0	2320.0	351.1	387.5	323.3	329.8	318.0	497.7	496.5									
2310.0	2320 0	369.5	383.8	341.8	340.8	338.8	513.4	513.2									
CALCUL	ATIONS:	0.65.55	3														
							FI	OW DEPT	HS								
				UE	US	DS	DE										
					upstream	downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			w _c =					
h _{man,mg}	Quen	Q [l/s]	y,	You	Yes	You	You	y ₁	y,		B-b,	2g(y ₁₀ -y ₁₀) ^{4 4}	Q _{navy}	105000	Fr_an	Fr_08	Fr_am
647.5	0.089704	89.7	105.3	205.0	147.9	135.6	126.0	169.0	170.3	0.609	0.560	1.19	0.093382	0.99	0.68	0.94	0.68
647.5	0.089704	89.7	105.7	215.0	173.2	167.6	162.0	199.7	199 D	0.609	0.560	0.99	0.093076	0.96	0.59	0.68	0.53
647.5	0.089704	59.7	201.4	227.0	190.7	189.6	189.0	212.7	215.6	0.609	0.560	0.89	0.094164	0.95	0.52	0.57	0.48
647.5	0.089704	89.7	218.7	240.5	212.2	213.1	213.5	236.1	233 5	0.500	0.560	0.77	0.091918	0.98	0.46	0.48	0.41
647.5	0.089704	89.7	235.4	256.3	230.9	232.8	232.5	247.9	251.7	0.609	0.560	0.72	0.093562	0.96	0.41	0.42	0.38
				UE	us	DS	DE										
					upstream		downstream										
			4 m	end	nide	side	end	6 m	7 m			ve =					
hour, mg	Que	Q [liv]	y4	You	Yes	You	You	Ye	Y1	8	B-b _p	29(yex-Yee)**	Q _{resty}	COLD.	Fr_an	Fr_oe	Fr.an
972.5	0.109935	100.0	206.3	241.3	187.7	181.3	173.0	217.3	215.3	0.609	0.560	1.11	0.112658	0.98	0.62	0.75	0.57
972.5	0.109935	109.9	218.3	248.5	204.2	201.3	195.0	236.1	230.0	0.609	0.560	0.99	0.111657	0.98	0.57	0.64	0.50
972.5	0.109935	109.9	235.6	262.0	225.2	223.1	220.7	247.0	250.5	0.609	0.560	0.91	0.113054	0.97	0.50	0.55	0.47
972.5	0.109935	109.9	252.7	276.8	243.9	244.3	243.5	256.4	267.5	0.639	0.560	0.83	0.113777	0.97	0.45	0.48	0.44
972.5	0.109935	109.9	269.0	288.5	261.9	263.6	262:0	285.7	283.2	0.639	0.560	0.74	0.108905	1.01	0.41	0.43	0.38
				UE	US	DS	DE										
					upstream		downstream										
			4 m	end	side	side	end	6 m	7 m			v _c =					
Bran, ag	Q _{cate}	Q [Ma]	y _e	Fox	Yes	Yes	You	ye.	y,		B-b.	2p(y ₁₀ -y ₁₀)**	Onesy	11000	Fr_am	Fr_on	Fr_an
1312.5	0.131077	131.1	226.7	269.0	206.7	201.6	198.0	236.5	235.1	0.609	0.560	1.17	0.132442	0.99	0.63	0.76	0.60
1382.5	0.131077	131.1	244.6	278.3	229.2	227.1	221.0	258.0	255.1	0.609	0.560	1.03	0.130880	1.00	0.57	0.64	0.52
1382.5	0.131077	131 1	262.0	292.3	249.2	248 6	245.0	277.5	275.8	0.609	0.560	0.96	0.132951	0.99	0.51	0.55	0.47
1382.5	0.131077	131.1	279.9	305.8	270.2	209.6	267.5	291.6	294.8	0.609	0.560	0.87	0.132045	0.99	0.46	0.49	0.44
1382.5	0.131077	131.1	298.5	322.0	288.9	289.0	200.7	310.0	311.5	0.609	0.560	0.83	0.134488	0.97	0.42	0.44	0.40
				UE	us	os	DE										
					upstream	downstream											

	3	527	52	909	43	0.40				1	95	52	146	43	0 40	
	-	9		-0							ľ	0	0	9	0	
	Fr. pa	0.71	0.63	0.65	0.46	0.44				Fr as	0.68	0.60	95.0	0.48	20 D	
	Pr. Ja	0.67	0.56	0.51	0.465	0.42				Frank	0.59	0.54	0.50	0.46	0.42	
	100	100	0.50	0.00	66.0	0.08				100	1.01	1.00	0.97	0.04	98 0	-
	Openio .	0.140968	0.153376	0.152976	0.152545	0.153672				O.	0.168164	0.1694022	0.175570	0.173533	0.176715	
W.C.	200 Mar Year	2.25	1.09	66.0	160	0.86			W.C.	200 m Yeal	1.10	1.08	104	96.0	0.92	
-	9-6	0.560	0.560	0.560	0.560	0.560				9-6	0000	0.560	0.500	0.560	0.560	
		609.0	0.809	0.809	909 0	0.809				10	0.800	0.609	0.600	0.609	0.809	
1 11	30	272.0	280.3	304.8	322.8	341.2			7 m	1,6	301.0	307.5	330.8	349.5	366.2	
E	N.	357.6	284.8	308.0	322.3	343.3			E	×	285.3	338.7	335.5	359.2	365.9	
pee	You	229.5	247.5	272.5	2062	316.0	8	downstream	pue	Yes	288.5	274.7	200 5	321.5	342.2	
alide	Nos	2353	251.8	275.8	298.3	317.8	SO	downstream	side	Yes	258.6	278.8	301.8	323.6	343.6	
e jide	Yes	236.4	283.7	276.9	2507	317.2	g	pulseam	side	Yes	2002	280.4	902.9	323.9	342.4	
Bud	Yes	297.3	309.3	323.0	3380	353.0	an o	upatream u	pue	You	324.5	336.0	354.0	367.5	383.8	
Ē	3,6	256.0	2717	290 1	308.5	328 1			E 4	3,	282.5	2880	388.0	3356	354.0	
-	O Day	150.7	150.7	150.7	150.7	150.7				O [NF]	9895	108.6	2000	9 691	198.6	
4	Ques.	0 150703	0.150703	0.150703	0.150703	0.150703				O.min	0.166617	0.100017	0.160617	0.160617	0.169617	
		5.459.5								Mar. Co.						

MODEL PIER, bp = 49 mm_MEDIUM_NORMAL Q's

OK

DATA:	Friday, 28	July 2000	2					UE	US	DS	DE				
								upstream	wps/ream	downstream	downstream				
Q	Bount, 1	Property P	D ms	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric	properties:
bed levels			12.5	10.5	15.0	12.5	15.5					147.5	147.0		
10	10.5	10.0	N	OT MEASUR	ABLE	9.00	60.3	60.0	32.0	24.0	15.3	195.5	192.7	D =	49 mm
30	72.5	72.5				100.0	99.5	105.0	73.3	45.0	38.0	190.2	221.5	L _p =	278 mm
50	201.0	199.0				132.1	130 B	142.5	104.3	67.0	60.3	210.0	226.5	Z4 =	0 mm
70	391.0	360 0				156.6	155.2	173.5	127.0	90.0	82.5	227.5	259 4	$x_{\alpha} =$	0.7 mm
90	650.0	650 0				182.8	181.2	203.8	147.5	113.0	104.8	245.9	319.2	Z. =	4.0 mm
110	B75.0	960.0				205.8	204.5	233.0	167.8	134.0	126.5	267.2	323.5	Z ₃ =	4.7 mm
130	1,360.0	1360 0				225.3	221.5	253.5	184.3	150.0	148.3	286.0	327.2		
150	1800.0	1810.0				248.3	240.6	279.0	196.8	170.5	166.0	304.8	351.7		
170	2350.0	2370.0				270.9	265.5	299.5	219.3	192.8	191.3	321.3	372.3		

CALCULATIONS: A PER IN

								FLOW DEPT	THS												
								UE	US	05	DE										
			Dist	lance mean	ured downst	ream within the	e flume	upstream	upstream	downstream	downstream										
			O ms	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			We m					
Person may	Q _{cab}	Q [l/e]	Ye	Yı	Y2	Y1	Y4	Yue	Yun	You	Yes	76	Ye	В	B-b _p	29(Nor You) 1	Queery	0.00400	Fr_4m	Fr_DS	Fr_DE
10.3	0.011286	11.3				47.3	44.8	60.0	32.7	28.0	19.9	48.0	45.7	0.609	0.560	0.84	0.013171	0.86	0.62	1.37	2.10
72.5	0.033017	30.0				86.5	84.0	105.0	73.9	49.0	42.7	42.7	74.5	0.609	0.560	1.08	0.029763	1.01	0.65	1.58	1.79
200.0	0.049855	49.9				118.6	115.3	142.5	104.9	71.0	54.9	62.5	79.5	0.609	0.590	1.22	0.048381	1.03	0.67	1.50	1.58
390.5	0.069663	69.7				143.1	139.7	173.5	127.7	94.0	87.2	80.0	112.4	0.609	0.580	1.28	0.067365	1.03	0.70	1.38	1.42
650.0	0.089877	89.9				169.3	165.7	203.8	148.2	117.0	109.4	99.4	172.2	0.609	0.560	1.33	0.087416	1.03	0.70	1.28	1.30
967.5	0.109653	109.7				192.3	189.0	233.0	168.4	138.0	131.2	119.7	176.5	0.609	0.500	1.39	0.107692	1.02	0.70	1.22	1.21
1360 D	0.130006	130.0				211.8	206.0	253.5	184.9	154.0	152.9	138.5	180.2	0.609	0.550	1.43	0.122881	1.06	0.73	1.23	1.14
1805.0	0.149772	149.8				234.6	225.1	279.0	199.4	174.5	170.7	157.3	204.7	0.609	0.580	1.46	0.142564	1.05	0.74	1.17	1.11
2360.0	0.171257	171.3				257.4	250.0	299.5	219.9	196.7	195.9	173.8	225.3	0.609	0.560	1.45	0.159442	1.07	0.72	1.12	1.04

MODEL PIER, bp = 49 mm_MEDIUM_DROWNED Q's

None 1	Name 2	4 m	UE upstream end	US upstream side	DS downstream side	DE downstream end	6 m	7 m
-	rage j	15.5	-		1.00		147.5	147.0
655.0	640.0	190.2	210.8	158.3	135.0	130.3	330.5	329.3
655.0	640.0	209.0	221.8	180.0	173.3	174.0	351.5	347.2
655.0	640.0	225.4	233.0	199.5	198.8	200.5	365.8	368.5
655.0	640.0	242.9	248.5	220.5	221.8	221.5	395.1	388.5
655.0	640.0	261.8	263.5	240.3	242.5	242.5	409.1	408
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Nows, 1	han, P	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
950.0	970.0	226.9	242.5	195.3	181.0	175.5	376.5	373.2
950 0	970.0	239.4	255.5	212.5	206.5	204.5	390.0	382 6
950 0	970.0	258.4	267.0	233.3	230.5	229.8	397.6	407.6
950.0	970.0	277.4	294.5	253.3	253.5	253.5	419.5	4201
950.0	970.0	295.5	299.5	274.0	274 8	274.5	443.1	439
			UE	US.	DS	DE		
			upstream	upstream	downstream	downstream		
Planer, 1	Proper, P	4 m	ered	wide	side	end	6 m	7 m

12.5 202.5 222.5 222.5 222.5 422.5	147.0	406.6	421.7	1.014	458.2	481.2		,	1 m	147.0	431.0	453.2	465.5	492.0	502.6			7.m	147.0	463.3	482.5	496.5	520.5	837.9	
202.5 222.6 244.5 244.5 240.5 240.5 240.5 244.5 244.5 244.5 244.5 240.5	147.0	412.2	429.3	437.2	451.7	483.4			8.00	147.5	430.8	456.8	473.2	484.3	50 V G			E 9	147.5	6 909	486.5	503.6	516.6	0.829	
202.5 222.5 200.5		220.5	242.5	267.5	288.5	311.0	90	downstream	660		246.5	270.0	293.3	317.5	338.0	90	downstrainn	pus		281.0	300.0	323.5	345.5	366.0	
202 5 200 5 200 5 200 0 200 0 200 0 200 0 200 0 200 0 200 0 201 5 200 0 200 0		222.8	244.5	268.6	289.5	3110	90	downstream	8128		299.5	2710	295.5	317.5	338.3	90	downstream	alde		284.8	303.0	326.0	347.3	368.0	
\$		232.5	249.5	270.5	2002	3110	50	upstream	8990		2500.0	276.3	2380	319.0	338.5	SO	upstream	akde		2010	338.0	3039.5	349.0	369.0	
65.5 65.7 65.7 65.6 65.6 65.6 65.6 65.6 65.6 65.6 65.7 65.6 65.7		282.5	200.5	307.0	324.0	340.0	5	mendade	pue		312.8	323.5	339.5	357.0	371.5	3	mesquie	pus		346.3	3563	371.5	3800	403.8	
	15.5	263.2	277.7	296.1	314.9	333.0			ē	15.5	291.5	307.5	324.5	344.3	362.6			Ē	15.5	322.0	337.9	356.6	374.5	392.5	Control of the Contro
13900 13000 13000 13000 13000 13000 13000 13000 13000		3800	3600	0.090	0.090	0.090			Penne, 1		630.0	8300	0.003	1830.0	0.000			Page 1		2310.0	0010	0.010	0.000	310.0	

400000 125558 488448 0.00 438448 8888 0.000 100000 0.094884 0.094884 0.09067 0.097578 0.098801 0.113/22 0.115/23 0.111/23 0.112453 0.10472 0.132310 0.132310 0.132210 0.135217 122 0.08 0.02 0.72 1.10 0.00 0.00 0.00 0.00 0.500 0.500 0.500 0.500 0.500 B 6000 7 m 1823 2002 2215 2215 2418 7 m / 250.6 250.5 250.1 250.1 250.1 250.2 FLOW DEPTHS 2040 2040 2040 2040 2040 8 m 2228.0 2228.0 2922.5 292.0 292.0 295.0 8 m 2 284.7 281.8 288.7 288.7 338.2 335.9 DE sond part 134.9 178.7 226.2 226.2 226.2 227.2 DE ond ond 225.2 2 272.2 2 272.2 2 273 98 side side side No. 228.7 228.5 229.5 229.5 23 US side 198.9 198. us side 7332 2332 2332 2312 2312 3317 UE sad year sad year 255.8 221.8 2213.0 248.5 248.5 UE send Na 242.5 242.5 253.5 254.5 254.5 259.5 2 74 A 280.5 2 4 m 174.7 193.5 209.9 227.4 246.3 887 887 887 887 109.2 109.2 109.2 109.2 109.2 0 PM 123.8 123.8 123.8 123.8 123.8 0,128787 0,128787 0,128787 0,128787 0,128787 0.0085704 0.0085704 0.0085704 0.0085704 0.0085704 0.106227 0.106227 0.106227 0.106227 0.106227 10000 23333 1000000

	Fr. de	0.52	0.46	0.42	0.40	0.37				Fr. an	0.49	0.45	0.42	0.40	0.36	
	Fr. an	1910	0.55	0.40	0.43	0.39				Fr. 000	48.0	0.52	0.47	0.43	0.39	
	Fr. de	25.0	0.50	0.46	0.42	0.39				Fr. des	28.0	0.49	0.45	0.41	0.38	
	3525.00	960	96.0	0.90	0.00	0.97				157.000	95.0	96.0	0.97	98.0	0.97	0.67
	O. com	0.157436	0.156288	0 155825	0.155488	0.154795				Quant	0.177613	0.175717	0,174597	0.178015	0,174462	
. 7	Zgthur Yeal**	1111	101	6.93	0.68	180			# 2ª	Pathur Year	1.10	1.02	0.54	160	0.84	
	8.9	0.560	0.560	0.560	0.560	0.560				9.9	0.560	0.560	0.560	0.560	0.560	
	8	0.609	0.609	0.909	9090	0.609				0	0.609	0.000	0.009	60000	6090	
7 13	16	284.0	306.2	3185	345.0	355.8			E	3,6	396.3	335.5	351.5	373.5	330.9	
E 60		г														
pue	Yes	251.2	274.7	297.9	302.2	342.7	DE	downstream	pue	Yes	285.7	304.7	328.2	350.2	379.7	
aide	Yes	234.5	275.0	239.5	321.5	342.2	DS	downstream	side	Yes	288.7	337.0	333.0	351.2	372.0	
side	Yes	256.7	276.9	236.7	319.7	339.2	9	getream	slide	Yes	284.7	306.7	330.2	349.7	309.7	
pue	Year	312.8	323.5	339.5	357.0	371.5	an	upstream u	pue	You	346.3	356.3	371.5	383.0	403.8	
E 4	72	276.0	292.0	309.0	328.8	347.1			E	N.	306.5	322.4	341.1	359.0	3770	
	Q [Nel	150.2	150.2	150.2	150.2	150.2				O [III]	160.4	109.4	100.4	169.4	169.4	
	0,00	0.150187	0.150187	D 150187	0.150167	0.150187				O	0.169433	0.169433	0,169433	0.169433	0.150433	
	Breat, seg									Bran, and						

MODEL PIER, bp = 49 mm_LONG_NORMAL Q's

OK

_					-			upstream		downstream					
9	Pour 1	Prograt.	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric p	properties:
ed fevels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	9.0	8.5	h	OT MEASUR	BABLE	57.6	56.6	56.3	25.5	24.0	14.0	168.2	190.4	D =	49 mm
30	75.5	74.0				100.9	99.5	105.8	73.0	48.5	40.0	192.0	229.8	Lo *	346 mm
50	208.0	206.5				133.6	131.9	146.0	104.5	68.5	61.8	211.5	236.5	2 _A =	O mm
70	408 D	408.0				160.6	158.2	177.0	129.0	91.0	85.0	230.9	306.0	7 ₆ =	0.7 mm
90	665 D	665.D				156.3	164.5	204.0	150.5	112.3	103.6	250.3	246.3	2c =	5.2 mm
110	990.0	985.D				208.9	208.3	233.5	171.0	132.3	122.3	266.6	274.6	$x_0 =$	5.8 mm
130	1340.0	1345.0				227.8	224.8	256.0	187.8	151.5	141.0	285.2	302.1		
150	1830 D	1830-0				250.0	243.0	260.5	202.6	170.0	159.0	303.8	331.2		
170	2310.0	2320.0				273.0	267.9	301.5	222.5	187 B	179.0	318.5	347.5		
ALCOUR	TIONS:	WE 2013													
NI TEMPE	13101191	ALC: NO.						FLOW DEPT	HS						
								UE	US	DS	DE				
			Di	stance meas	ured downst	ream within the	flume	upstream	upstream :	downstream	downstream				
			0 ms	1 m	2 m	3 m	4 m	end	nide	side	end	6 m	7 m	W. *	

								UE	US.	DS	DE										
			Die	tance meas	ured downstr	warn within the	e flume	upstream	upstream	downstream	downstream										
			0 ms	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			ve =					
Power, and	Que	Q [Fe]	Ye	y-1	Ya.	3/u	Ye	Yes	Yes	Yes	You	Ye	y1	0	B-b _p	Zglyur-You)"	Queen	CONTRACT.	Fr_4m	Fr_DS	Fv_DE
8.0	0.010428	10.4				44.3	41.1	56.3	26.2	29.2	19.8	40.7		0.609	0.550	0.80	0.012990	0.50	0.66	1.19	1.96
74.6	0.030479	30.5				87.4	64.0	105.8	73.7	53.7	45.8	44.5		0.609	0.560	1.06	0.031848	0.96	0.66	1.40	1.63
207.3	0.050751	50.8				120.1	115-4	146.0	105.2	73.7	67.6	64.0		0.609	0.560	1.23	0.050865	1.00	0.67	1.45	1.51
408.0	0.071207	71.2				147.1	142.7	177.0	129.7	96.2	90 B	83.4		0.609	0.560	1.30	0.069949	1.02	0.69	1.36	1.36
665 D	0.090908	90 B				172.8	159.0	204.0	151.2	117.4	109.6	132.8	99.3	0.609	0.560	1.34	0.088216	1.03	0.69	1.29	1.31
687.5	0.110780	110.8				195.4	192.8	233.5	171.7	137.4	128.1	122.1	127.6	0.609	0.550	1.41	0.105456	1.02	0.69	1.24	1.27
1342.5	0.129167	129.2				214.3	209.3	256.0	188.4	156.7	146.8	137.7	165.1	0.609	0.560	1.43	0.125619	1.03	0.71	1.19	1.20
1830 0	0.150806	150.0				230.5	227.5	260.5	203.4	175.2	164.8	156.3	184.2	0.609	0.560	1.47	0.144429	1.04	0.73	1.17	1.10
2315.0	0.169617	169.5				250.5	252.4	301.5	223.2	192.9	184.8	171.0	200.5	0.609	0.560	1.49	0.161387	1.05	0.70	1.14	1.12
																		0.00			

MODEL PIER, bp = 49 mm_LONG_DROWNED Q's

DATA: Wedvesday, 26 July 2000

			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		-
B _{man,1}	Drugg 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
645.0	635.0	191.0	209.0	160.0	138.5	138.5	331.3	328.5
645.0	635.0	210.0	220.5	181.8	179.8	180.8	356.2	353.3
645.0	635.0	226.1	232.5	201.5	203.3	204.3	361.0	368.2
645.0	635.0	244.4	245.0	223.0	224 8	224.0	388.7	393.2
645.0	635.0	262.5	204.0	242.0	243.0	241.0	400.7	407.9
			LME	US	DS	DE		
			upstream	upstream	downstream	downstream		
Post, I	Property 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
960.0	965.0	225.0	245.5	192.3	178.3	172.5	362.5	359.8
960.0	965.0	237.5	253.0	209.0	202.5	203.5	393.1	381.5
960.0	965-0	256.6	264.5	230.5	230.3	230.0	394.8	403.9
960.0	965.0	274.9	282.5	251.0	252.8	253.5	416.4	419.4
960.0	965.0	293.1	297.5	270.8	272.8	272.0	430.4	439.5
			UE	0.5	DS	DE		
			upstream	upstream	downstream	downstream		
Pope, 1	Boat J	4 m	end	side	side	end	6 m	7 m

		15.5					147.5	147.0									
1350 0	1350 0	251.3	270.0	217.3	203 0	197.0	389.0	388.7									
1350.0	1350 0	265.5	284.0	234.3	227.0	223.8	415.4	411.9									
1350.0	1350 0	281.3	295.5	255.5	252.5	250.5	435.3	422.1									
1350.0	1350 0	300.5	310.0	274.8	276.0	275.0	440.5	450.0									
1350.0	1350.0	319.4	327.3	296.3	297.8	296.5	459.5	465.0									
			UE	US	DS	DE											
			upstream	upstream	downstream	n downstream											
Pres, i	Piran, I	4 m	and	side	side	end	6 m	7 m									
		15.5					147.5	147.0									
1800.0	1.780.0	276.9	300.0	241.0	227.5	222.0	410.6	417.6									
1800.0	1780.0	289.3	311.5	259.0	253.0	245.5	427.4	430.9									
1800.0	1780.0	338.8	324.0	280.8	277.8	274.5	461.5	454.4									
1800.0	1780.0	328.1	340.5	301.5	301.3	298.0	480.8	464.6									
1800.0	1780.0	345.5	356.5	322.0	322.3	321.3	483.7	492.9									
					-												
			UE	US	DS	DE											
						n downstream											
Property.	house, F	4 m	end	side	side	end	6 m	7 m									
20000 0	2226.0	15.5	200	200		200.0	147.8	147.0									
2320.0	2325.0	301.3	327.5	267.3	254.5	246.5	434.7	446.5									
2320.0	2325.0	336.9	341.3	295.5 309.0	278.5 305.5	300.5	453.3	458.2 479.8									
2320 0	2325.0	354.5	372.8	328.3	326.8	324.5	511.2	503.5									
2320.0	2325.0	372.8	366.0	347.3	347.0	345.5	515.3	512.8									
23200	2323.0		3600	341.0	341.0	313.5	3.23	-12.0									
CALCUL	ATIONS:	577 P. C.															
							FL	OW DEPT	THS								
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	6 m	7 ms			Vc #					
hour, my	Ques	O [liv]	y.,	You	You	You	You	y _e	71		B-b,	29(you-you)12	Qresy	CONTRACT	Fr_an	Fr_pa	Fr_se
640.0	0.089183									7.110					0.64	0.86	
	G.D09103	89.2	175.5	209.0	160.7	143.7	144.3	183.8	181.5	0.609	0.500	1.18	0.094617	0.54		U.ee	0.59
643.0	0.089183	89.2	175.5	209.0	182.4	184.9	186.6	208.7	206.3	0.609	0.580	0.49	0.092590	0.96	0.55	0.59	0.49
		89.2 89.2				184.9 208.4	210.1	208.7 213.5	206.3 221.2		0.560	0.49	0.092590	0.96	0.55	0.59	0.49
643.0 643.0	0.089183 0.089183 0.089183	89.2 89.2 89.2	194.5 210.6 228.9	220.5 232.5 248.0	182 4 202 2 223 7	184.9 208.4 229.9	186.6 210.1 229.8	208.7 213.5 241.2	206.3 221.2 246.2	0 609 0 609 0 609	0.560 0.560	0.49 0.76 0.60	0.092590 0.088414 0.086958	0.96 1.01 1.03	0.55 0.48 0.43	0.59 0.49 0.42	0.49 0.47 0.39
643.0	0.089183	89.2 89.2	194.5 210.6	220.5	182.4	184.9 208.4	210.1	208.7 213.5	206.3 221.2	0.609	0.560	0.49	0.092590	0.96	0.55	0.59	0.49
643.0 643.0	0.089183 0.089183 0.089183	89.2 89.2 89.2	194.5 210.6 228.9	220.5 232.5 248.0 264.0	182 4 202 2 223 7 242 7	184.9 208.4 229.9 245.2	186.6 210.1 229.8 246.8	208.7 213.5 241.2	206.3 221.2 246.2	0 609 0 609 0 609	0.560 0.560	0.49 0.76 0.60	0.092590 0.088414 0.086958	0.96 1.01 1.03	0.55 0.48 0.43	0.59 0.49 0.42	0.49 0.47 0.39
643.0 643.0	0.089183 0.089183 0.089183	89.2 89.2 89.2	194.5 210.6 228.9	220.5 232.5 248.0 264.0	182 4 202 2 223 7 242 7	184.9 208.4 229.9 246.2 DS	186.6 210.1 229.8 246.8 DE	208.7 213.5 241.2	206.3 221.2 246.2	0 609 0 609 0 609	0.560 0.560 0.560	0.49 0.76 0.60	0.092590 0.088414 0.086958	0.96 1.01 1.03	0.55 0.48 0.43	0.59 0.49 0.42	0.49 0.47 0.39
643.0 643.0 643.0	0.089183 0.089183 0.089183	89.2 89.2 89.2	194.5 210.6 228.9 247.0	220.5 232.5 248.0 264.0 UE upstream	182 4 202 2 223.7 242.7 US upstream	184.9 208.4 229.9 246.2 DS downstream	186.6 210.1 229.8 246.8 DE downstream	206.7 213.5 241.2 261.2	206.3 221.2 246.2 260.9	0 609 0 609 0 609	0.560 0.560 0.560	0.49 0.76 0.68 0.64	0.092590 0.088414 0.086958	0.96 1.01 1.03	0.55 0.48 0.43	0.59 0.49 0.42	0.49 0.47 0.39
643.0 643.0 643.0 643.0	0.089183 0.089183 0.089183	89 2 89 2 89 2 89 2	194.5 210.6 228.9 247.0	220.5 232.5 248.0 264.0 UE upstream end	182 4 202 2 223.7 242.7 US upstream side	164.9 208.4 229.9 246.2 DS downstream side	196.6 210.1 229.6 246.6 DE downstream end	208.7 213.5 241.2 261.2	206.3 221.2 246.2 260.9	0.609 0.609 0.609	0.560 0.560 0.560 0.560	0.40 0.76 0.60 0.64	0.082590 0.088414 0.086958 0.089233	0.96 1.01 1.03 1.00	0.55 0.48 0.43 0.38	0.59 0.49 0.42 0.38	0.49 0.47 0.39 0.35
640.0 640.0 640.0 640.0	0.089183 0.089183 0.089183	89 2 89 2 89 2 89 2	194.5 210.6 228.9 247.0 4 m Ye	220.5 232.5 248.0 264.0 UE upstream end Yve	182 4 202 2 223.7 242.7 US upstream side Vos	184.9 208.4 229.9 249.2 DS downstream side Yee	196.6 210.1 229.6 246.6 DE downstream end You	208 7 213 5 241 2 261 2 6 m 7s	206.3 221.2 246.2 260.9 7 m yr	0.609 0.609 0.609	0.560 0.560 0.560 0.560	0.49 0.76 0.65 0.64 V ₆ = 2g(y ₁₀ , y ₁₀) ^{6,1}	0.082590 0.088414 0.080958 0.089203	0.96 1,01 1,03 1,00	0.55 0.48 0.43 0.38	0.59 0.49 0.42 0.38	0.49 0.47 0.39 0.35
640.0 640.0 640.0 640.0	C 089183 C 089183 C 089183 C 089183	89 2 89 2 89 2 89 2 89 2	194.5 210.6 228.9 247.0 4 m y ₄ 209.5	220.5 232.5 248.0 264.0 UE upstream end Yue 245.5	182 4 202 2 223 7 242 7 US upsfream side Vot	184.9 208.4 229.9 248.2 DS downstream side Yes	196.6 210.1 229.6 246.8 DE downstream end You 170.3	208 7 213 5 241 2 261 2 6 m 7s	206 3 221.2 246.2 250.9 7 m y _y 212.6	0.609 0.609 0.609	0 560 0 560 0 560 0 560 0 560	0.40 0.76 0.60 0.64 V _E = 28(F _M -F _{DB}) ^{6.5}	0.092990 0.088414 0.090958 0.089293 0.117980	0.96 1.01 1.03 1.00	0.55 0.48 0.43 0.38	0.59 0.49 0.42 0.38 Fr _{all} t	0.49 0.47 0.39 0.35
643.0 643.0 643.0 643.0 643.0	C 089183 C 089183 C 089183 C 089183 C 089183	89 2 89 2 89 2 89 2 89 2 89 2 109 4 109 4	194.5 210.6 228.9 247.0 4 m y ₄ 209.5 222.0	220.5 232.5 248.0 264.0 UE. upstream and Yue. 245.5 253.0	182 4 202 2 223 7 242 7 US upsfream side Yus 102 9 209 7	184.9 208.4 229.9 246.2 DS downstream side Yes 183.4 207.7	196.6 210.1 229.8 246.8 DE downstream end Yes 178.3 209.3	206 7 213 5 241 2 261 2 6 m 74 215 0 245 6	206.3 221.2 246.2 260.9 7 m y ₂ 212.8 234.5	0 609 0 609 0 609 0 609	0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.60 0.64 v _c = 2g(y _{str} -y _{cel}) ^{6.8} 1.15 1.00	0.092590 0.088414 0.0969258 0.089233 Q _{heavy} 0.117980 0.115754	0.96 1,01 1,03 1,00	0.55 0.48 0.43 0.38 Fr_as 0.60 0.55	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61	0.49 0.47 0.39 0.35
643.0 643.0 643.0 643.0 643.0 862.5 962.5	C 089183 C 089183 C 089183 C 089183	89 2 89 2 89 2 89 2 89 2	794.5 210.6 228.9 247.0 4 m y ₄ 209.5 222.0 241.1	220.5 232.5 248.0 264.0 UE. upstream and Yve. 245.5 253.0 264.5	182 4 202 2 223 7 242 7 US upsfream side Vot	184.9 208.4 229.9 248.2 DS downstream side Yes	196.6 210.1 229.6 246.8 DE downstream end You 170.3	208 7 213 5 241 2 261 2 6 m 7s	206 3 221.2 246.2 250.9 7 m y _y 212.6	0.609 0.609 0.609	0 560 0 560 0 560 0 560 0 560	0.40 0.76 0.60 0.64 V _E = 28(F _M -F _{DB}) ^{6.5}	0.092990 0.088414 0.090958 0.089293 0.117980	0.96 1.01 1.63 1.00	0.55 0.48 0.43 0.38	0.59 0.49 0.42 0.38 Fr _{all} t	0.49 0.47 0.39 0.35
643.0 643.0 643.0 643.0 643.0	Q 089183 6 089183 6 089183 6 089183 0 089183	89 2 89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m y ₄ 209.5 222.0	220.5 232.5 248.0 264.0 UE. upstream and Yue. 245.5 253.0	182 4 202 2 223.7 242.7 US upstream side ¥ss 162.9 230.7 231.2	164.9 206.4 229.9 246.2 D5 downstream side Yos 183.4 207.7 235.4	196.6 210.1 229.8 246.8 DE downstream end You 176.3 209.3 235.8	208 7 213 5 241 2 261 2 6 m 74 215 0 245 6 247 3	206.3 221.2 246.2 260.9 7 m y _y 212.8 234.5 256.9	0 609 0 609 0 609 0 609 0 609 0 609 0 609	0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 v _c = 2g(y _m -y _{col}) ^{6,8} 1.15 1.00 0.82	0.092590 0.088414 0.096926 0.089223 0.117980 0.115754 0.108067	0.96 1.01 1.63 1.00 0.93 0.94 1.01	0.55 0.48 0.43 0.38 Fr_m 0.60 0.55 0.48	0.50 0.49 0.42 0.38 Fr_09 0.73 0.61 0.50	0.49 0.47 0.39 0.35 Fr.as 0.55 0.47 0.47
643.0 643.0 643.0 643.0 643.0 643.0 962.5 962.5 962.5	C 089183 C 089183 C 089183 C 089183 C 089183 C 165369 C 165369 C 165369 C 165369	89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m % 209.6 222.0 241.1 259.4	220.5 232.5 248.0 264.0 UE. upstream end Yve. 245.5 253.0 264.5 282.5 282.5 287.5	182 4 202 2 223 7 242 7 US upstream side Yus 182 9 209 7 231 2 251 7	154.9 208.4 229.9 245.2 D5 downstream side Yee 183.4 207.7 235.4 257.9	196.6 210.1 229.8 246.8 DE downstream end Yes 178.3 209.3 235.8 259.3	206.7 213.5 241.2 261.2 6 m Ye 215.0 245.6 247.3 268.9	206.3 221.2 246.2 250.9 7 m y ₂ 212.8 234.5 256.9 272.4	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2g(y _m -y ₀₀) ^{6.5} 1.00 0.82 0.76	0.092990 0.088414 0.096950 0.089293 0.117980 0.115754 0.196067 0.110344	0.96 1.01 1.03 1.00 1.00 0.93 0.94 1.01 0.99	0.55 0.48 0.43 0.38 0.60 0.60 0.65 0.43	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.64	0.49 0.47 0.39 0.35 Fr.as 0.58 0.47 0.47 0.41
643.0 643.0 643.0 643.0 643.0 643.0 962.5 962.5 962.5	C 089183 C 089183 C 089183 C 089183 C 089183 C 165369 C 165369 C 165369 C 165369	89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m % 209.6 222.0 241.1 259.4	220.5 232.5 248.0 264.0 UE. upstream and Yee 245.5 253.0 264.5 262.5 267.5 UE	182 4 202 2 223 7 242 7 US upsfream side Yes 192 9 290 7 231 2 251 7 271 4	164.9 208.4 229.9 246.2 DS downstream side Yes 183.4 207.7 235.4 257.9 277.9	196.6 210.1 229.6 246.6 DE downstream end You 176.3 209.3 235.8 250.3 277.5 DE	206.7 213.5 241.2 261.2 6 m Ye 215.0 245.6 247.3 268.9	206.3 221.2 246.2 250.9 7 m y ₂ 212.8 234.5 256.9 272.4	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2g(y _m -y ₀₀) ^{6.5} 1.00 0.82 0.76	0.092990 0.088414 0.096950 0.089293 0.117980 0.115754 0.196067 0.110344	0.96 1.01 1.03 1.00 1.00 0.93 0.94 1.01 0.99	0.55 0.48 0.43 0.38 0.60 0.60 0.65 0.43	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.64	0.49 0.47 0.39 0.35 Fr.as 0.58 0.47 0.47 0.41
643.0 643.0 643.0 643.0 643.0 643.0 962.5 962.5 962.5	C 089183 C 089183 C 089183 C 089183 C 089183 C 165369 C 165369 C 165369 C 165369	89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 259.4 277.6	220.5 232.5 248.0 264.0 UE. upstream end Vue 245.5 253.0 264.5 262.5 267.5 UE. upstream	182 4 202 2 223 7 242 7 US upstream side For 192 9 200 7 231 2 251 7 271 4 US upstream	164.9 208.4 229.9 246.2 DS downstream adde Yee 183.4 207.7 235.4 257.9 277.9 DS downstream	199.6 210.1 229.6 246.6 DE downstream end Yis 176.3 209.3 215.8 250.3 277.8 DE downstream	206.7 213.5 241.2 261.2 6 m Y _k 215.0 245.6 247.3 268.9 288.9	206.3 221.2 246.2 260.9 7 m yy 212.8 234.5 256.9 272.4 292.5	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.80 0.76 0.65 0.64 0.64 2g(y ₁₀₁ -y ₁₀₁) ^{6,1} 1.00 0.82 0.76 0.70	0.092990 0.088414 0.096950 0.089293 0.117980 0.115754 0.196067 0.110344	0.96 1.01 1.03 1.00 1.00 0.93 0.94 1.01 0.99	0.55 0.48 0.43 0.38 0.60 0.60 0.65 0.43	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.64	0.49 0.47 0.39 0.35 Fr.as 0.58 0.47 0.47 0.41
643.0 643.0 643.0 643.0 643.0 962.5 962.5 962.5 962.5	0.99183 0.99183 0.099183 0.099183 0.109369 0.109369 0.109369 0.109369 0.109369	89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 259.4 277.6	220.5 232.5 248.0 264.0 UE. sepatream end Ye. 245.5 253.0 264.5 282.5 287.5 UE. sepatream end	182 4 2022 2 223 7 242 7 US upstream side Yes 192.9 209.7 231.2 251.2 271.4 US upstream side	164.9 208.4 229.9 246.2 DS downstream side Yee 163.4 207.7 235.4 267.9 277.9 DS downstream side	196.6 210.1 229.6 246.6 DE downstream end Yez 176.3 209.3 256.8 250.3 277.8 DE downstream end	206.7 213.5 241.2 261.2 6 m 74 215.0 245.6 247.3 268.9 8 m	206.3 221.2 246.2 260.9 7 m 87 212.8 234.5 256.9 272.4 292.5	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 0.64 2g(y _m , y ₂₀) ^{6.1} 1.15 1.00 0.82 0.76 0.70	0.082590 0.088414 0.006950 0.086950 0.0869233 0.115754 0.1167667 0.110344 0.106450	0.96 1.01 1.03 1.00 0.93 0.94 1.01 0.99	0.55 0.48 0.43 0.38 Fr 0.60 0.55 0.48 0.41 0.39	0.59 0.49 0.42 0.38 Fr29 0.73 0.61 0.50 0.44 0.39	0.49 0.47 0.39 0.35 0.35 0.47 0.47 0.47 0.41 0.37
643.0 643.0 643.0 643.0 643.0 962.5 962.5 962.5 962.5	Q _{1,00} Q _{1,00}	89 2 89 2 89 2 89 2 89 2 109 4 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m % 209.5 222.0 241.1 259.4 277.6	220.5 232.5 248.0 264.0 UE sepstream end Yve 245.5 253.0 264.5 262.5 267.5 UE sepstream end Yve	182 4 202 2 203 7 242 7 US upstream side Yas 1029 7 231 2 251 7 271 4 US upstream side Yas	164.9 206.4 229.9 246.2 DS downstream side Yes 183.4 207.7 235.4 257.9 277.9 DS downstream side Yes	196.6 210.1 229.6 245.6 DE downstream end No. 176.3 209.3 235.8 259.3 277.8 DE downstream end For	206 7 213 5 241 2 261 2 6 m 7s 245 6 247 3 268 9 268 9	206.3 221.2 246.2 260.5 7 m yr 212.8 234.5 256.9 272.4 292.5	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 2g(y _m y ₂₀) ^{6,1} 1.15 1.00 0.82 0.76 0.70	9.082590 9.0868414 9.086853 9.086853 9.0868233 0.115754 0.115754 0.106067 0.110344 0.106450	0.96 1.63 1.63 1.60 0.94 1.01 0.99 1.01	0.55 0.48 0.43 0.38 Fr_m 0.55 0.43 0.43 0.39	0.59 0.49 0.42 0.38 0.73 0.61 0.50 0.64 0.39	0.49 0.47 0.39 0.35 0.35 0.47 0.47 0.47 0.47 0.47
643.0 643.0 643.0 643.0 643.0 643.0 862.5 962.5 962.5 962.5	© 069183 © 069183 © 069183 © 069183 © 069183 © 069369 © 509369 © 509369 © 509369 © 509369 © 509369	89 2 89 2 89 2 89 2 89 2 89 2 89 4 109 4 109 4 109 4 109 4	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 299.4 277.6	220.5 232.5 248.0 264.0 UE upstream and Yve 245.5 253.0 264.5 262.5 267.5 UE upstream and Yve 270.0	182 4 202 2 223 7 242 7 US upstream side Vs 1929 7 231 2 251 7 271 4 US upstream side Vs 229 7 231 2 251 7 271 4 US	184.9 208.4 229.9 249.2 DS downstream side Yes 183.4 257.7 235.4 257.9 277.9 DS downstream side Yes	196.6 210.1 229.6 246.6 DE downstream end You 176.3 209.3 235.8 259.3 277.8 DE downstream end For 262.8	206.7 213.5 241.2 261.2 6 m 7s 215.0 245.6 247.3 268.9 268.9	206.3 221.2 246.2 260.9 7 m y ₁ 212.8 234.5 256.9 272.4 292.5 7 m y ₁	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2gf _{Fat} -y ₁₀ f ⁶ 1.00 0.82 0.76 0.70	9.092990 9.0898414 9.096955 9.096953 9.089293 0.115754 0.196957 0.110344 0.106450	0.96 1.01 1.03 1.00 0.94 1.01 0.99 1.01	0.55 0.48 0.43 0.36 Fr_m 0.60 0.55 0.43 0.39	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.44 0.39	0.49 0.47 0.39 0.35 0.58 0.47 0.47 0.41 0.37
643.0 643.0 643.0 643.0 643.0 643.0 642.5 962.5 962.5 962.5	0.099183 0.099183 0.099183 0.099183 0.009183 0.509369 0.509369 0.509369 0.509369 0.509369 0.509369	89.2 89.2 89.2 89.2 89.2 69.4 109.4 109.4 109.4 109.4	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 297.6 4 m y ₂ 277.6	220.5 232.5 248.0 264.0 UE. sepatream and Yue. 245.5 253.0 264.5 262.5 267.5 UE. sepatream and Yue. 270.0 264.0	182 4 2022 2 233 7 242 7 US upstream side Yes 1929 7 209 7 231 2 251 7 271 4 US upstream side Yes 209 7 231 2 271 4 US 209 7 271 4 271 4 2	164.9 208.4 229.9 246.2 DS downstream side Yee 163.4 207.7 235.4 267.9 277.9 DS downstream side Yee 208.2 232.2	196.6 210.1 229.6 246.6 DE downstream end Yes 170.3 256.8 250.3 277.8 DE downstream end Fee 202.8 220.3 200.3 200.	206.7 213.5 241.2 261.2 261.2 245.6 247.3 258.9 6 m 74 241.5 267.9	206.3 221.2 246.2 260.9 7 m 87 212.6 234.5 256.9 272.4 292.5 7 m 87 241.7 264.9	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 V _C = 2g(y ₁₀₀ - y ₁₀₀) ^{6,1} 1.15 1.00 0.82 0.76 0.70 0.70 V _C = 2g(y ₁₀₀ - y ₁₀₀) ^{6,1} 1.15 1.15	0.082990 0.088933 0.089933 0.089933 0.115754 0.195667 0.1109450 0.109450	0.96 1.60 1.60 1.60 0.93 0.94 1.01 0.99 1.01	0.55 0.48 0.43 0.36 0.55 0.65 0.43 0.39	0.59 0.49 0.42 0.38 0.38 0.73 0.61 0.50 0.44 0.39	0.49 0.47 0.39 0.35 0.47 0.47 0.47 0.41 0.37
643.0 643.0 643.0 643.0 643.0 542.5 562.5 562.5 562.5 562.5 562.5	Q _{tate} 0.129527 0.129527 0.129527	89 2 89 2 89 2 89 2 89 2 89 2 89 4 109 4 109 4 109 4 109 4 109 4 109 5 129 5 129 5 129 5	194.5 210.6 228.9 247.0 4 m % 209.5 222.0 241.1 259.4 277.6 4 m % 235.8 250.3 255.8	220.5 232.5 248.0 264.0 UE. sepatream end Yue. 245.3 264.5 287.5 287.5 UE. sepatream end Yue. 270.0 27	182 4 202 2 203 7 242 7 US upstream side Yas 1029 7 231 2 251 7 271 4 US upstream side Yas 271 4 271 9 271 9 271 9 271 9 271 9 271 9 271 9 271 9 271 9	164.9 208.4 229.9 246.2 DS downstream side Yes 183.4 207.7 235.4 257.0 277.9 DS downstream side Yes 208.2 232.2 257.7	196.6 210.1 229.8 246.8 DE downstream end No. 178.3 209.3 235.8 259.3 277.8 DE downstream end For 202.8 202.8 202.8 202.8 202.8 202.8	206 7 213 5 241 2 261 2 6 m 7s 245 6 247 3 268 9 8 m 7s 241 5 268 9	206.3 221.2 246.2 246.2 290.9 7 m 9, 212.6 234.5 256.9 272.4 292.5 7 m 9, 241.7 264.9 275.1	0.609 0.609 0.609 0.609 0.609 0.609 0.603 0.603	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 2g(y _M y _{2g}) ^{6,1} 1.15 1.00 0.82 0.76 0.70 v _L = 2g(y _M y _{2g}) ^{6,1} 1.15 1.06 0.92	9.082590 9.080595 9.080595 9.080595 9.181790 0.115754 0.196067 0.110344 0.106450	0.96 1.01 1.03 1.00 0.94 1.01 0.99 1.01	0.55 0.48 0.43 0.38 0.55 0.45 0.43 0.39	0.59 0.49 0.42 0.38 0.73 0.61 0.50 0.44 0.39	0.49 0.47 0.39 0.35 0.35 0.47 0.47 0.41 0.37
643.0 643.0 643.0 643.0 643.0 643.0 862.5 962.5 962.5 962.5 962.5	Q _{cate} 0.129527 0.129527 0.129527	G [Maj] 109 4 109 4 109 4 109 4 109 4 109 4 109 4 109 5 129 5 129 5 129 5	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 259.4 277.6 4 m y ₂ 235.8 200.3 205.0	220.5 232.5 248.0 264.0 UE. upstream end Ywe 245.5 253.0 264.5 262.5 267.5 UE. upstream end Ywe 270.0 284.0 295.5 310.0	182 4 202 2 223 7 242 7 US upstream side Fin 192 9 299 7 231 7 271 4 US upstream side 277 9 214 9 255 7 214 9 255 4	164.9 206.4 229.9 246.2 DS downstream adde Yee 163.4 267.7 235.4 267.9 277.9 DS downstream adde Yee 208.2 232.2 257.7 281.2	199.6 210.1 229.8 246.8 DE downstream end 170.3 209.3 235.8 250.3 277.8 DE downstream end For 202.8 229.0 256.3 220.6	206 7 213 5 241 2 261 2 261 2 265 0 245 6 247 6 247 6 268 9 268 9 268 9 268 9	206.3 221.2 246.2 250.9 7 m y _y 212.8 234.5 256.9 272.4 292.5 7 m y _y 241.7 264.9 275.1 303.0	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2gf _{Fat} -y ₁₀ f ⁵ 1.00 0.82 0.76 0.70 0.70 0.70 0.70	9.092990 9.089814 9.096955 9.089293 9.117980 0.115754 0.19695 0.110344 0.106450 0.132487 0.132432 0.132532 0.125567	0.96 1.60 1.60 1.60 0.90 0.94 1.01 0.97 0.97 0.94 0.94 0.94	0.55 0.48 0.43 0.38 Fr_m 0.90 0.55 0.43 0.39 Fr_m 0.50 0.55 0.43 0.39	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.44 0.39 Fr_ps 0.72 0.61 0.72 0.61 0.72 0.46	0.49 0.47 0.39 0.35 0.58 0.47 0.41 0.37 Fr
643.0 643.0 643.0 643.0 643.0 643.0 862.5 962.5 962.5 962.5 962.5	Q _{tate} 0.129527 0.129527 0.129527	89 2 89 2 89 2 89 2 89 2 89 2 89 4 109 4 109 4 109 4 109 4 109 4 109 5 129 5 129 5 129 5	194.5 210.6 228.9 247.0 4 m % 209.5 222.0 241.1 259.4 277.6 4 m % 235.8 250.3 255.8	220.5 232.5 248.0 264.0 UE. sepatream end Yue. 245.3 264.5 287.5 287.5 UE. sepatream end Yue. 270.0 27	182 4 202 2 203 7 242 7 US upstream side Yas 1029 7 231 2 251 7 271 4 US upstream side Yas 271 4 271 9 271 9 271 9 271 9 271 9 271 9 271 9 271 9 271 9	164.9 208.4 229.9 246.2 DS downstream side Yes 183.4 207.7 235.4 257.0 277.9 DS downstream side Yes 208.2 232.2 257.7	196.6 210.1 229.8 246.8 DE downstream end No. 178.3 209.3 235.8 259.3 277.8 DE downstream end For 202.8 202.8 202.8 202.8 202.8 202.8	206 7 213 5 241 2 261 2 6 m 7s 245 6 247 3 268 9 8 m 7s 241 5 268 9	206.3 221.2 246.2 246.2 290.9 7 m 9, 212.6 234.5 256.9 272.4 292.5 7 m 9, 241.7 264.9 275.1	0.609 0.609 0.609 0.609 0.609 0.609 0.603 0.603	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.68 0.64 2g(y _M y _{2g}) ^{6,1} 1.15 1.00 0.82 0.76 0.70 v _L = 2g(y _M y _{2g}) ^{6,1} 1.15 1.06 0.92	9.082590 9.080595 9.080595 9.080595 9.181790 0.115754 0.196067 0.110344 0.106450	0.96 1.01 1.03 1.00 0.94 1.01 0.99 1.01	0.55 0.48 0.43 0.38 0.55 0.45 0.43 0.39	0.59 0.49 0.42 0.38 0.73 0.61 0.50 0.44 0.39	0.49 0.47 0.39 0.35 0.35 0.47 0.47 0.41 0.37
643.0 643.0 643.0 643.0 643.0 643.0 862.5 962.5 962.5 962.5 962.5	Q _{cate} 0.129527 0.129527 0.129527	G [Maj] 109 4 109 4 109 4 109 4 109 4 109 4 109 4 109 5 129 5 129 5 129 5	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 259.4 277.6 4 m y ₂ 235.8 200.3 205.0	220.5 232.5 248.0 264.0 UE sepatream end Yue 245.5 253.0 264.5 287.5 UE sepatream end Yue 270.0 284.0 284.0 285.5 310.0 327.3	182 4 202 2 223 7 242 7 US upstream side Yes 1029 7 231 2 251 7 271 4 US upstream side Yes 275 4 244 9 256 2 275 4 206 9	164.9 206.4 229.9 246.2 DS downstream adde Yee 163.4 267.7 235.4 267.9 277.9 DS downstream adde Yee 208.2 232.2 257.7 281.2	199.6 210.1 229.8 246.8 DE downstream end 170.3 209.3 235.8 250.3 277.8 DE downstream end For 202.8 229.0 256.3 220.6	206 7 213 5 241 2 261 2 261 2 265 0 245 6 247 6 247 6 268 9 268 9 268 9 268 9	206.3 221.2 246.2 250.9 7 m y _y 212.8 234.5 256.9 272.4 292.5 7 m y _y 241.7 264.9 275.1 303.0	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2gf _{Fat} -y ₁₀ f ⁵ 1.00 0.82 0.76 0.70 0.70 0.70 0.70	9.092990 9.089814 9.096955 9.089293 9.117980 0.115754 0.19695 0.110344 0.106450 0.132487 0.132432 0.132532 0.125567	0.96 1.60 1.60 1.60 0.90 0.94 1.01 0.97 0.97 0.94 0.94 0.94	0.55 0.48 0.43 0.38 Fr_m 0.90 0.55 0.43 0.39 Fr_m 0.50 0.55 0.43 0.39	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.44 0.39 Fr_ps 0.72 0.61 0.72 0.61 0.72 0.46	0.49 0.47 0.39 0.35 0.58 0.47 0.41 0.37 Fr
643.0 643.0 643.0 643.0 643.0 643.0 862.5 962.5 962.5 962.5 962.5	Q _{cate} 0.129527 0.129527 0.129527	G [Maj] 109 4 109 4 109 4 109 4 109 4 109 4 109 4 109 5 129 5 129 5 129 5	194.5 210.6 228.9 247.0 4 m y ₁ 209.5 222.0 241.1 259.4 277.6 4 m y ₂ 235.8 200.3 205.0	220.5 232.5 248.0 264.0 UE. upstream end Ywe 245.5 253.0 264.5 262.5 267.5 UE. upstream end Ywe 270.0 284.0 295.5 310.0	182 4 202 2 203 7 242 7 US upstream side Yas 1029 7 231 2 251 7 271 4 US upstream side Yas 217 9 217 9 224 9 256 2 275 4 206 9	164.9 208.4 229.9 246.2 DS downstream side Yes 183.4 207.7 235.4 257.9 277.9 DS downstream side Yes 208.2 257.7 281.2 302.9	196.6 210.1 229.8 246.8 DE downstream end No. 176.3 209.3 215.8 259.3 277.8 DE downstream end You 202.8 202.	206 7 213 5 241 2 261 2 261 2 265 0 245 6 247 6 247 6 268 9 268 9 268 9 268 9	206.3 221.2 246.2 250.9 7 m y _y 212.8 234.5 256.9 272.4 292.5 7 m y _y 241.7 264.9 275.1 303.0	0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609 0.609	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	0.40 0.76 0.65 0.64 0.64 2gf _{Fat} -y ₁₀ f ⁵ 1.00 0.82 0.76 0.70 0.70 0.70 0.70	9.092990 9.089814 9.096955 9.089293 9.117980 0.115754 0.19695 0.110344 0.106450 0.132487 0.132432 0.132532 0.125567	0.96 1.60 1.60 1.60 0.90 0.94 1.01 0.97 0.97 0.94 0.94 0.94	0.55 0.48 0.43 0.38 Fr_m 0.90 0.55 0.43 0.39 Fr_m 0.50 0.55 0.43 0.39	0.59 0.49 0.42 0.38 Fr_ps 0.73 0.61 0.50 0.44 0.39 Fr_ps 0.72 0.61 0.72 0.61 0.72 0.46	0.49 0.47 0.39 0.35 0.58 0.47 0.41 0.37 Fr

	Fr. Am	95.0	0.53	0.44	0.41	0.40					Fr. Am	0.58	0.53	0.46	0.41	0.40	
	Fr.as	0.79	0.60	0.52	0.46	0.42					Fr. 106	0.67	0.50	0.51	0.47	0.43	
	Fr. de	0.59	0.55	0.49	0.45	0.41					Fr. de	0.58	0.54	0.48	0.45	0.42	
	1,74.00	96.0	96 0	0.00	0.00	66.0					100000	60.0	0.96	06.0	0.56	0.56	0.98
	Queen)	0.155392	0.154883	0.150918	0.150578	0.150300					Quest)	0.174022	0.176256	0.176564	0.176578	0.172508	
# 5A	200 See Year	1.19	1.07	96.0	0.88	0.82				* 0A	200 year year	130	1.11	1.01	98.0	0.87	
	9.0	096'0	0.560	0.560	0.560	0.500					949	0.563	0.503	0.563	0.560	0.560	
	8	6090	0.609	0.609	0.609	0.609					8	0.609	0.809	0.609	0.609	0.609	
7 m	ii.	270.6	283.9	307.4	3176	345.9			,	7 m	3/4	296.5	3111.2	332.6	356.5	3605.8	
E	1,0	263.1	279.9	314.0	3333	336.2				E	3,6	287.2	305.8	337.1	363.7	367.8	
pus	You	227.8	2552.3	280.3	303.6	327 1	8	den national		pue	You	252.3	260.3	306.3	330.3	351.3	
side	You	232.7	258.2	282.9	306.4	327.4	80	downstraam		side	Yes	258.7	283.7	310.7	331.9	362.2	
spire	Yes	2417	259.7	281.4	302.2	322.7	Sn.	matrage		side	3.00	267.9	286.2	309.7	328.0	347.9	
pue	7.4	300.0	3115	324.0	340.5	356.5	an	undrasm .		pue	FA	307.5	3413	358.0	372.8	398.0	
E 4	No.	261.4	273.6	293.3	312.6	330.0				E	3,4	285.8	301.9	323.4	339.0	357.3	
	0 [84]	1491	149.1	149.1	149.1	149.1					Q [Mil]	5.691	199.9	169.5	160.9	160.9	
	Q.es	0.149149	0.149149	0.549149	0.149149	0.149149					O,mir	0.100861	0.159861	0.1500001	0.160991	0.169991	
	Parent and	1790.0	1790.0	1790.0	1790.0	1790.0					Bear, mg	2322.5	2322.5	2322.5	2332.5	2322.5	

MODEL PIER, bp = 62 mm_SHORT_NORMAL Q's

OK

DATA:	Wednesd	tay. 26 July	y 2000					UE	US	DIS	DE										
								upstream		downstream											
_ Q	Please, 1	Please, F	0 m	1 m	2 m	3 m	4 m	end	side	tide	end	6 m	7 m			Geometric pr	operties	ET.			
bed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0								
10	9.0	9.5	N	OT MEASUR	ABLE	58.5	58.0	56.5	23.0	23.5	15.0	187.0	191.5			D =		12 mm			
30	73.0	72.0				102.4	101.4	107.5	73.0	48.0	35.0	189.0	250.5			L _p =	26	3 mm			
50	202.5	203.0				136.8	135.8	147.0	104.0	73.3	58.8	208.3	205.5			2A =		0 mm			
70	385.0	385.0				165.4	164.1	176.5	130.0	57.8	79.3	225.4	223.4			20=	0	9 mm			
90	645.0	650.0				190.8	189.5	209.5	153.3	122.8	191.8	243.8	237.2			Zc =	3	6 mm			
110 130 150 170	965.0	950.0				212.8	211.5	235.5	170.8	143.5	126.0	261.5	259.1			$x_0 =$	4	4 mm			
130	1340.0	1330.0				235.0	232.2	259.5	188.5	164.0	148.3	280.5	269.9								
150	1820.0	1800.0				254.2	249.6	285.5	204.5	164.0	172.0	298.8	323.5								
170	2300.0	2290.0				275.7	269.0	303.5	218.0	198.0	188.8	315.0	356.2								
CALCUD	ATIONS:	77.77																			
								FLOW DEPT	HS												
								UE	US	DS	DE										
			Dis	tance measu	ured downst	ream within th	e flume	upstream	upstream :	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	Nide	end	6 m	7 m			vc =					
h _{man_mag}	Que	G [1/s]	Y ₁	y.	Yı	Ys.	Ye	You	You	You	Yes	y ₀	y,	В	B-b _p	2g(y ₁₀ -y ₁₀) ^{0.5}	Querry	1555-87	Fr_4m	Fr_DS	Fr_E
4.5		100.3				45.0	45.6	66.0	22.0	57.4	45.7	22.6		0.000	20.000	0.80		0.00	0.01		

h _{man_mag}	Que	Q [1/s]	y,	y1	Ye	Ys.	Ye	You	You	You	Yes	Ye	y,	В	B-b,	Zg(y _{ce} -y _{ce}) ^{2 t}	Querry	155530	Fr_4m	Fr_DS	Fr_DE
9.3	0.010722	10.7				45.0	42.5	56.5	23.9	27.1	19.4	39.5	44.5	0.609	0.547	0.80	0.011906	0.90	0.64	1.41	2.08
72.5	0.030017	30.0				88.9	85.9	107.5	73.9	51.6	39.4	41.5	103.5	0.609	0.547	1.06	0.030467	0.99	0.63	1.50	2.01
202.0	0.050197	50.2				123.3	120.3	147.0	104.9	76.8	63.2	60 B	58.5	0.609	0.547	1.20	0.050534	0.99	0.63	1.38	1.66
385.0	0.069171	69.2				151.9	148.6	176.5	130.9	101.3	83.7	77.9	76.4	0.609	0.547	1.24	0.068877	1.00	0.63	1.25	1.50
647.5	0.089704	89.7				177.3	174.0	209.5	154.1	126.3	106.2	96.3	90.2	0.609	0.547	1.30	0.090131	1.00	0.65	1.17	1.36
957.5	0.109084	109.1				199.3	196.0	235.5	171.6	147.1	130.4	114.0	112.1	0.609	0.547	1.34	0.108068	1.01	0.66	1.13	1.21
1335.0	0.128805	128.8				221.5	296.7	259.5	189.4	167.6	152.7	133.0	142.9	0.509	0.547	1.37	0.125454	1.03	0.67	1.10	1.13
1810.0	0.149980	150.0				240.7	234 1	265.5	205.4	187.6	176.4	151.3	176.5	0.509	0.547	1.41	0.144773	1.04	0.59	1.08	1.06
2295 0	0.168882	168.9				262.2	253.5	303.5	216.9	201.6	193.2	167.5	209.2	0.609	0.547	1.44	0.158616	1.06	0.59	1.09	1.04
																		1.01			

MODEL PIER, bp = 62 mm_SHORT_DROWNED Q's

DATA: Wordnesday, 26 July 2000

h _{man} s	None 2	4 m	UE upstream end	US upstream side	DS downstream side	DE downstream end	6 m	7 m
Printer 1	Triple 1	15.5	9110	3100	2100		147.5	147.0
650.0	650.0	192.7	211.3	156.3	132.8	116.8	328.3	326.5
650.0	650.0	209.3	221 0	177.0	170.0	167.5	350.5	354.1
650.0	650.D	223.8	231.0	195.0	194.3	193.8	364.8	369.2
650.0	650.0	240.0	246.5	214.3	216.3	216.5	390.1	384.5
650.0	650.0	262.0	264.5	239.0	241.8	241.6	405.4	406 9
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Poper t	hour 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
970.0	975.0	224.2	242.5	184.8	165.8	151.0	358.5	355.3
970.0	975.0	235.0	251.5	200 D	192.0	184.5	379.5	376.2
970.0	975 0	252.1	263.0	220 D	218.5	215.5	392.0	390.2
970.0	975.0	268.1	278.0	238.5	239.8	236.0	410.1	409.1
970.0	975.0	265.8	290 5	259 8	261.5	261.0	432.7	432.2
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Please, 1	Brown, 2	4 m	end	side	side	end	6 m	7 m

			7 00000 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3	7 a a a a a a a a a a a a a a a a a a a	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			458828	4 8 8 8 8 5 4	# 8 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			2 2 2 2 2	2 8 8 8 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			Query 0.064367 0.064367 0.065625 0.065645	0,173641 0,173641 0,17363 0,175791 0,195041	0.134192 0.135154 0.134180 0.134180
			2015a Yead 154 150 150 150 150 150 150 150 150 150 150	240 kg - 1 23 1 23 1 23 1 23 1 23 1 23 1 23 1	200 m. 1.11 1.24 1.01 1.01 0.02 0.05
			4 2 2 2 2 2 2		4 1500 1500 1500 1500 1500 1500 1500 1500
			80000 80000 80000 80000	9 8000 9000 9000 9000 9000 9000 9000	8 000 0 000 0 000 0 000 0
		e e	7 m 175 p 207 1 202 2 202 2 203 5 200 5	7 m 208.3 228.2 286.2 286.2 286.2 286.2	7 m y y m 2502 2 2502 2 2502 2 2005 2
147.0 380.2 433.2 436.2 453.3 7.m	447.0 425.0 448.0 686.0 684.0	147.6 48.2 48.2 48.1 48.7 505.6 OW DEPTHS	7 M M M M M M M M M M M M M M M M M M M	211.0 211.0 232.0 234.5 202.6 205.2	8 m 252.4 252.1 276.3 267.0 304.9
147.5 379.0 403.0 423.0 424.5 452.4	467.5 403.0 428.0 400.5 400.3 401.5	447.8 427.8 447.8 447.8 447.8 446.0 505.2	DE downstream end 75e 1212 1779 9 1982 2 226 2 246 2	Defendantings and Par 186.3 278.9 278.9 278.9 278.4 266.4	deventees end Yes 2014 2014 2014 2014 2014 2014 2014 2014
1810 2000 2370 2370 2565 2020 DE dewnstream end	200.0 232.5 261.3 266.5 306.8 DE Grevititesan	232 3 282 8 280.8 280.8 328.5	DS alde side // / / / / / / / / / / / / / / / / /	DS devertification sales Pos (196.8) (1 1
193.5 218.3 243.3 242.0 263.6 0.5 downstraam side	217.8 241.0 266.8 260.3 310.0 08 downstream	243.3 244.8 286.0 3318.0 331.8	US side Na 157.1 177.9 195.9 275.1 275.9	US side side Yea 200.0 220.0 220.0 200.0 US	Marken Ma
208.5 228.0 246.3 283.0 283.0 US upatream side	231.3 245.0 270.8 291.0 310.3 US	254.3 271.6 201.6 311.8 312.5	UE upsilosam end Na 221.3 221.0 221.0 246.5 264.5	UE 2005	Pia Fia 2025 2025 2025 2025 2025 2025 2025 202
272.5 281.5 285.5 305.5 321.0 UE upstream end		205.5 205.5 200.5 277.0	77.7 192.8 224.5 246.5		7 2 24 3 2 24 3 2 24 5 2 27 5 2 26 5 2 27 5 2 26 5 2 27 5 2 26 5
		2017 8 2017 8 2015 2015 2015 2015 2015	M 0 0 0 0 0	0 [bx] 0 100.0 100.0 100.0 100.0 100.0	0 PM 120.8 120.8 120.8 120.8 120.8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2225.0 2225.0 2225.0 2225.0	0.00817 0.00817 0.00817 0.00817	0 100035 0 100035 0 100035 0 100035	0.126767 0.126767 0.126767 0.126767
1205 0 1205 0 1205 0 1205 0 1205 0	1625 0 1625 0 1635 0 1635 0 1635 0	2320 c 2325 c 2325 c 2320 c 2325 c 23	1000000	Deces	1355.0 1355.0 1355.0 1355.0 1355.0

7. 0.00 0.00 0.00 0.00 0.00 0.00 7. 050 052 0.62 0.63 0.63

			4 m	end	side	side	end	6 m	7 m			w _c =					
from my	Ques	G [1/4]	Ye	Yor	Yes	Yes	You	Ye	Yr	0	B-b _p	20(Kar-Wool) 15	Qnery	03/23/66	Fr. Am	Fr_ps	Fr. be
1822.5	0.150497	150.5	257.2	299.0	232.1	221.3	210.4	255.5	262.5	0.609	0.547	1.26	0.152838	0.96	0.60	0.76	0.61
1822.5	0.150497	150.5	273.0	210.0	249.9	244.6	236.9	279.4	278.0	0.609	0.547	1.16	0.155643	0.90	0.55	0.65	0.53
1822.5	0.150497	150.5	291.0	325.0	271.6	270.3	265.7	302.3	331.0	0.609	0.547	1.07	0.158063	0.95	0.50	0.56	0.47
1872.5	0.150497	150.5	338.4	339.3	291.9	293.8	290.9	318.8	319.8	0.609	0.547	0.98	0.157575	0.96	0.46	0.50	0.44
1872.5	0.150497	150.5	325.9	353.5	311.1	313.6	313.2	334.0	337.0	0.609	0.547	0.92	0.158449	0.95	0.42	0.45	0.41
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	emd	side	side	end	6 m	7 00			4° a					
h _{man,evg}	Que	G [1/4]	Y.	Yes	You	You	You	y.	yr.		B-b _p	2g(you'You)"1	Query	254360	Fr_sa	Ft_24	Fr_in
2322.5	0.169891	169.9	292.3	325.5	255.1	246.8	236.7	290.3	269.5	0.609	0.547	1.27	0.171495	0.99	0.59	0.73	0.60
2322.5	0.169891	169.9	298.7	335.5	272.6	268.3	261.9	300.3	302.2	0.609	0.547	1.18	0.172911	0.98	0.55	0.64	0.54
2322.5	0.169891	169.9	315.0	350.5	292.6	291.6	285.2	323.2	321.1	0.609	0.547	1.11	0.176600	0.96	0.50	0.57	0.48
2322.5	0.169891	109.9	330.3	363.5	312.6	313.6	310.4	341.5	340.8	0.609	0.547	1.02	0.175720	0.97	0.47	0.51	0.45
2322.5	0.169691	169.9	346.6	377.0	333.4	335.3	333.9	357.7	358.5	0.609	0.547	0.94	0.172815	0.98	0.43	0.46	0.42
														0.97			

MODEL PIER, bp = 62 mm_MEDIUM_NORMAL Q'S

š

							upatream	upolitroam	down stream	downstream downstream				
2	I Page 1	W 0	E	2 81	3 13	÷	pue	alibe	slide	pro	E	7 m	Gaometri	: broperties:
of fermits		12.8	10.5	18.0	13.5	18.8		١			147.5	147.0		
10 11.0		WO	T MEASURO	3101	61.1	01.5	59.8	12	28.0	15.5	199.5	192.1	* Q	62 mi
30 75.0					103.4	903.0	109.0	74.0	49.5	38.0	192.0	226.5	1,00	351 end
500 200 6	0 2030				138.4	137.5	146.3	104.3	68.3	5.00	210.0	226.9	28.0	O min
70 385.0					167.7	166.6	179.3	130.5	0.8.0	77.8	226.6	226.1	* 45	6.0
000 650					194.3	192.5	210.0	155.0	111.0	1003	245.5	244.0	20.1	5 0 mm
110 1300					210.4	2180	237.0	178.0	134.0	123.3	265.6	260.5	Po **	5.9 mm
1300					241.2	2383	2005.3	193.0	152.0	1413	263.1	296.3		
150 1815					750.4	258.3	286.5	210.0	173.0	9615	330.7	323.6		
170 2320	_				280.6	274.2	306.5	224.0	169.0	179.3	319.8	346.6		

FLOW DEPTHS

62 mm 251 mm 0 mm 0.9 mm 5.0 mm 5.9 mm

								in	sn	50	90										
			Dist	Ance measu	ured downstra	Natance measured downstream within the flums	Burne	upstream u	patream di	variationm d	townsteam.										
			Eo		2 3	3 m	u,	pue	side	niste	pere	E	7 10								
See and	O _{coc}	O [1/4]	No.	ń	1/1	3,0	7,4	Yes	F14	Nos	Yes	×	16		B-b, 2g	(Nor. Nos.)	Dawn,	2000	Fr. des	Fr. DS	7r_DE
110	0.011692	1117				47.6	46.0	50.6	20.6	31.0	21.4	52.0	45.1	0.639	0.547		0.013861	0.85	0.62	125	1.96
75.0	0.030530	30.5				6.09	875	108.0	74.9	545	41.9	44.5	78.5	0.039	0.547		0.0002277	0.95	0.62	1.40	1.87
300.5	0.050166	500 2				124.6	122.0	146.3	106.1	73.3	62.6	62.5	78.0	0.639	0.547		0.049586	101	0.62	1.48	168
3850	0.065171	69.2				154.2	161.1	178.3	131.4	93.0	83.6	79.1	78.1	609.0	0.547		0.068088	1.02	0.62	1.42	1.50
0.009	0.089877	0.00				180.6	177.0	230.0	155.9	116.0	1001	96.0	0.78	0.609	0.547		0.068455	1 00	0.63	1.33	1.36
0.0000	0.1111479	111.5				205.9	2002 5	237.0	178.9	130.0	159.1	118.1	122.6	0.639	0.547		O 108HOU	1.03	0.64	130	1.28
1360.0	0.129627	129.5				227.7	222.8	205.3	193.9	157.6	147.1	135.6	148.3	0.639	0.547		0.129037	1.01	99.0	1.21	1.20
1817.5	0.150290	150.3				246.9	242.5	2382	210.9	178.0	167.4	153.2	176.6	0.009	0.547		0.145320	1.03	90.0	1.17	1.15
2310.0	0.109433	169.4				267.1	258.7	308.5	224.9	194.0	165.1	1723	199.6	6000	0.547		0.162513	101	99.0	1.16	1.11
																		1.01			

MODEL PIER, bp = 62 mm_MEDIUM_DROWNED Q's

		è	
		ŝ	2
			ì
		1	
		1	
			Ę
			i
		j	í
		1	H
		1	
			ě
		į	Ų
	į	í	į
	į	i	Š
		ş	2

j	j		upstream	us side	DS downstream side	DE downstream end	E	1
		18.8					147.5	147.0
0.58	0.000	196.6	210.5	158.5	121.0	113.8	322.2	323.6
0.99	0.000	2003	220.8	171.3	161.5	167.0	354.4	346.3
0.68	0.000	223.3	232.0	191.5	194.0	197.8	340.0	367.9
0.99	0.099	240.5	245.0	2111.0	217.5	219.5	349.0	385.6
0.58	0.000	267.6	2000	230.8	235.3	235.5	4013	604.9
			5	Sin	90	30		
			mendedu	upstream	downstream	downstream		
· ·	Press. 7	÷	end	side	side	pue	E 9	7 3
		15.5					147.5	147.0
0.08	0.000	225.0	241.5	184.5	9615	158.5	356.3	300.5
0.084	0.096	239.5	251.5	202 8	1975	199.5	385.3	384.2
0.08	0.000	255.0	266.5	2222 3	223.8	225.8	360.0	4000
0.08	0.595	274.0	281.0	243.0	247.3	249.5	411.7	416.5
0.000	0.000	289.5	286.0	261.0	266.5	267.5	434.0	431.6
			3	S	DS	30		
			upstream	upstream	downstream	downstream		
-	T. I	Ę	end	side	side	pue	E	7 83

147.0	396.4	419.2	433.0	452.3	467.0		,	7 180	147.0	429.5	454.0	470.5	482.1	505.2			4	147.0	459.2	475.0	491.4	506.1	516.2
147.5	399.5	420.1	437.0	604.4	494.6			E	147.5	430.3	451.7	472.0	480.1	496.3			E	147.5	455.8	475.1	491.6	510.0	521.1
	206.5	238.0	200.5	281.8	300.8	90	downstream	end		244.5	267.0	290.5	313.5	333.0	90	downstraam	pus		2000 0	290.5	310.0	330.3	349.0
	212.0	234.8	257.0	279.0	236.8	50	downstream	side		246.0	267.0	290.5	312.0	332.0	90	downstream	side		275.3	2900	319.0	339.0	348.8
	219.0	238.3	252.0	274.8	234.5	85	mbaquda	ajide		253.3	268.5	288.3	309.0	327.0	sn	upstream	side		276.5	292.8	3800	3280	345.0
	279.5	290.0	302.8	317.0	330.5	5	upalream	pue		312.0	326.3	337.8	352.5	367.8	30	upstream	pene		343.5	353.0	362.5	377.5	330.0
15.5	260.6	274.0	2013	306.5	322.5		,	E F	13.5	293.6	305.4	324.3	341.1	357.6			E 4	13.5	319.1	332.5	3465 0	3640	378.2
	1360.0	1360.0	1360.0	1360.0	1360.0			Person J.		1600.0	1800.0	1600.0	0.0091	1800.0			ì		2330.0	2330.0	2330 0	2330.0	2330.0
	1303.0	13600	0.0003	0.0003	0.0003					0.0280	88200	66200	0.0299	0.0291			Proc. 1		0.0163	23100	23100	2310.0	0.0162

CALCU	CALCULATIONS	からなど を															
							R	FLOW DEPTHS	45								
				30	Sn	DOS	30										
				upstream	upspram	downstream	downstream										
			Ē	pus	ajde	shde	pus	£	100			# 24					
To and		0 18	*	You	Yes	Yes	You	ş,	i,	80	8.6,	Z@th.e.Yeal	Opposit	20,000	Fr. Am	FF. 000	Fr. an
662.5		90.7	179.5	210.5	159.4	126.0	119.6	174.7	176.6	0.609	0.547	133		0.00	0.63	106	0.65
662.5		90.7	190.8	220.8	172.1	166.5	172.9	5002	199.3	0.600	0.547	108		0.92	0.57	0.70	0.51
662.5		90.7	207.8	232.0	192.4	199.0	203.6	212.5	220.9	0.609	0.547	98 0		0.97	0.50	0.54	0.49
662.5		90.7	225 0	245.0	211.9	222.5	225.4	241.5	238.6	609.0	0.547	0.73		101	0.45	0.45	0.40
662.5	0.090737	80.7	242.1	2800	231.6	240.3	241.4	253.8	257.9	0.609	0.547	0.70		66.0	0.40	0.40	0.30
				20	55	90	DE										
				upstream	upstream	downstream	downstream										
			Ē	pue	side	side	pue	Ē	7.00			* 04					
Prop. no.	0	Office	No.	Yes	Yes	For	Yes	N.	i,		9-9	200 year Year	Opposit	100000	Fr. de	Fr. 200	Fr. se
862.5		110.5	2005	241.5	165.4	166.5	164.4	210.8	213.5	909.0	0.547	128	0.114122	26'0	090	0.85	0.60
5 296		1105	2240	251.5	203 6	202.5	205.4	237.8	237.2	609.0	0.547	1.03	0.114030	0.97	0.55	0.84	0.50
962.5		110.5	239.5	286.5	223.1	228.8	2316	242.5	253.0	0.809	0.547	0.85	0.114610	96.0	0.49	0.53	0.49
962.5		110.5	258.5	281.0	243.9	252.3	255.4	284.2	269.5	0.609	0.547	0.81	0.112293	0.98	0.44	0.46	0.43
9 296	0.110499	110.5	2740	296.0	96192	271.5	2734	298.5	284.6	0.609	0.547	0.75	0.111004	66.0	0.40	0.41	0.36
				30	g	0.5	30										
				upstream	apstream	downstream	downstream										
			E	pue	shide	side	pus	E	7 m			# 3A					
Bear and		O post	3,6	F.es	Yes	Yes	Yes	3,6	3/4		B-b,	2p(yar-yes)**	Quant.	10,234	Fr. see	Fr.18	Fr. m.
1380.0		135.0	245.1	279.5	219.9	217.0	254.4	252.0	251.4	6000	0.547	1.15	0.136617	98.0	95.0	28.0	0.54
1380.0		1300	258.5	290.0	239.1	239.8	243.9	2726	272.2	0.609	0.547	104	0.138557	0.95	0.52	0.58	0.48
1380.0		1300	275.8	302.8	257.9	252.0	206.4	289.5	286.0	0.609	0.547	96.0	0.125794	96.0	0.47	0.51	0.44
1360.0		1300	2810	317.0	275.6	284.0	287.6	296.9	305.3	0.609	0.547	0.86	0.134150	26'0	0.43	0.45	0.42
1360.0	0.133006	130.0	307.0	339.5	288.4	303.8	3066	317.1	3200	609.0	0.547	67.0	0.131149	66.0	0.40	0.41	0.36
				an.	90	90	90										
				on other same	on a few services.	downstraam.	drop reference										

Fr. de	0.52	0.47	0.43	0.41	0.36				Fr. Ass	0.52	0.47	0.44	0.41	0.10	
Fr.28	0.63	0.55	0.49	0.44	0.40				FF. 100	29.0	96.0	0.50	0.46	0.42	
Fran	0.54	0.50	0.46	0.42	0.30				Fran	0.53	0.50	0.47	0.43	0.41	
1	96.0	0.93	0.00	26.0	0.92				MATERIA.	0.94	0.95	0.07	0.56	0.06	0.87
O _{bears})	0.156254	0.160434	0.155646	0.154583	0.154398				Queery	6 180815	0.179420	0.174501	0.178915	0.174063	
20the Yeal	1.14	100	96.0	0.89	0.84			. 74	2 Bire Yeal"	1.20	111	101	0.07	0.90	
448	0.547	0.547	0.547	0.547	0.547				9-9	0.547	0.547	0.547	0.547	0.547	
	0.000	0.009	0.609	0.609	0.800					0.600	0.809	0.609	6000	6090	
7 80	282.5	307.0	323.8	305.1	355.2			7 80	361	312.2	308.0	344.4	359.1	2695	
. s	282.8	334.2	324.5	332.6	348.8			E	N.	336.3	327.6	344.1	362.5	373.6	
Yes	250.4	272.0	200.4	319.4	338.9	8	downstream	pue	Yes	274.9	206.4	315.9	336.1	354.9	
slide For	251.0	272.0	295.5	317.0	337.0	Sd	downstream	side	Yes	275.3	295.0	3150	3350	353.6	
side Yes	254.1	2003.4	209.1	309.8	307.9	8	patrones	side	Yes	277.4	293.6	310.9	328.9	345.9	
Per N	312.0	326.3	337.8	352.5	367.8	30	upstream u	pue	Yes	3455	353.0	362.5	377.5	380.0	
ē z	278.1	290.9	304.8	325.6	342.1			E +	3.6	363.6	317.0	331.4	248.5	362.7	
Q [kil]	150.0	150.0	1750.0	150.0	150.0				Q [Ma]	9889	109.8	109.8	169.0	169.0	
O	0.149660	0.149980	0.149680	0.149680	0.149980				0.00	0.165600	0.169600	0.166600	0.169333	0.169300	
Pear, mg	1810.0	1810.0	1810.0	1810.0	1810.0				New Joy	2330.0	2330.0	2320.0	23300	23200	

MODEL PIER, bp = 62 mm_LONG_NORMAL Q's

OK

DATA:	Friday, 21	8 July 2006)					UE	US	DS	DE				
								upstream	upstream	downstream	downstream				
Q	Please, 1	Pope, 2	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric	properties:
bed fevels			12.5	10.5	F5.0	12.5	15.5					147.5	147.0		
10	8.0	7.5	NO	IT MEASURE	ABLE	57.5	57.2	56.0	22.3	23.5	14.5	154.9	189.2	D =	62 mm
30	69.5	70.0	NO	IT MEASUR	ABLE	101.5	100.9	105.8	73.0	45.8	32.0	193.8	213.0	L, =	437 mm
50	202.0	200.0				137.1	137.2	147.0	107.0	55.0	56.0	210.5	227.5	ZA =	0:0 mm
70	391.0	389.0				167.6	166.0	179.5	133.8	85.0	77.3	227.8	234.6	Z ₀ =	0.9 mm
90	665 D	655.0				195.6	194.0	213.0	160.0	106.3	99.0	248.2	250.8	Z _C =	6.5 mm
110	970.0	970.0				220.3	218.5	240.5	180.3	126.0	120.3	265.4	270.9	Z ₀ *	7.3 mm
130	1370.0	1370.0				243.2	242 1	299.0	200.0	145.0	137.5	286.0	297.2		
150	1800.0	1820.0				263.7	261.6	291.0	218.5	164.0	153.3	303.3	318.0		
170	2340.0	2320.0				283.0	279.7	314.0	234.5	183.0	173.0	321.5	338.6		

CALCULATIONS:

								FEOTH DEF	III a												
								UE	US	DS	DE										
			Dis	stance mean	ured downst	ream within the	e flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	emd	side	side	end	6 m	7 m			V. *					
News, any	Q _{cale}	Q [Va]	Ye.	y,	y,	T)	y.,	You	Yes	You	You	y ₀	Ye.	B	IB-b _p	20(Nor You) 11	Querry	SECTION 1	Fr_4m	Fr_DS	Fr_DE
7.8	0.009614	9.8	N	OT MEASUR	MBLE	44.0	41.7	56.0	23.1	30.0	21.8	37.4	42.2	0.609	0.547	0.80	0.013032	0.75	0.60	1.10	1.50
69.8	0.029442	29.4	N	OT MEASUR	BABLE	88.0	85.4	105.8	73.9	55.2	39.3	46.3	66.0	0.609	0.547	9.06	0.031945	0.92	0.62	1.32	1.98
201.0	0.049979	50.0				123.6	121.7	147.0	107.9	74.5	63.3	63.0	80.5	0.609	0.547	1.24	0.050717	0.99	0.62	1.44	1.64
390.0	0.069619	69.6				154.1	150.5	179.5	134.6	91.5	84.6	80.3	87.6	0.609	0.547	1.36	0.068132	1.02	0.63	1.47	1.48
660.0	0.090566	90.5				182.1	178.5	213.0	160.9	112.7	106.3	100.7	103.8	0.609	0.547	1.45	0.089235		0.63	1.40	1.37
970.0	0.109794	100.8				206.8	203.0	240.5	181.1	132.5	127.6	110.9	123.9	0.609	0.547	1.50	0.108610	1.01	0.63	1.33	1.26
1370.0	0.130483	130.5				229.7	226.6	269.0	200.9	151.5	144.8	138.5	150.2	0.609	0.547	1.56	0.129238	1.01	0.63	1.29	1.24
1810.0	0.14998	150.0				250.2	246.1	291.0	219.4	170.5	150.6	155.8	1710	0.609	0.547	1.58	0.147196		0.64	1.24	1.22
2330 0	0.170165	170.2				209.5	254.2	314.0	235.4	189.5	160.3	174.0	191.6	0.609	0.547	1.60	0.166158	1.02	0.66	1.20	1.16

MODEL PIER, bp = 62 mm_LONG_DROWNED Q's

DATA: 1 Felday, 28 July 2000 UE US

			60.00	1,012	50.00	5.7%		
			sipetneam	upstream	downstream	downstream		
Nows, 1	hour, i	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.6
605.0	655.0	200.1	215.0	166.3	145.0	153.0	335.0	338.6
605.0	655.0	217.4	229.5	186.0	190.3	193.5	360.3	369.2
665.0	655.0	233.2	241.5	205.0	209.5	210.0	376.7	380.4
665.0	655.0	249.3	253.6	223.5	226.8	225.0	203.3	395 1
665.0	655.0	264.9	267.0	241.5	243.3	241.8	407.5	4112
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
Name 7	Person, P	4 m	emd	side	side	end	6 m	T en
		15.6					147.5	147.0
990.0	975.0	226.9	248.0	190.0	166.0	170.0	359.6	361.2
990.0	975.0	241.2	256.0	207.3	204.8	209.5	369.1	386.2
990.0	975.0	260.7	269 D	229.3	233.3	236.3	307.7	406.0
990.0	975.0	277.1	285.5	249.3	253.0	253.5	423.9	422.2
990.0	975.0	295.0	300.0	270.0	272.0	271.0	438.4	439.8
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
						end	6 m	7 m

		15.5					147.5	147.0									
\$350 D	1355.0	260.2	278.5	222.3	207 B	209.0	395 0	394.5									
1350.D	1355.0	271.9	288.8	237.3	233.5	237.5	414.6	415.4									
1360.0	1355.0	239.8	302.5	257.5	260.5	263.6	441.5	432.0									
1360 D	1355.0	304.5	316.0	275.0	260.0	281.5	443.6	450.5									
1360.0	1355.0	327.6	330.0	294.5	297.8	296.8	470.3	459 B									
			UE	us	D/S	DE											
			upstream		downstream	downstream											
Plean_1	Nows_1	4 m	end	side	side	end	6 ra	7 m									
		15.5					147.5	147.0									
1810.0	1820.0	283.5	306.0	243.0	224.8	224.0	417.5	419.5									
1810.0	1820 0	296.4	317.8	258.3	251.0	255.0	430.5	432.5									
1810.0	1820 0	313.7	329.8	280.0	279.6	261.0	464 1	456.5									
1810.0	1820.0	330.0	345.5	318.3	301.3	303.5	479 9	472.6									
1010.0	1020.0	341.4	200 0	319.3	322.0	323.0	487.2	497.6									
			UE	US	DS	DE											
		4 m	end	side	downstream side	downstream	6 m	7 m									
Plean, 1	Noge, 2	15.5	6110	5136	Bicon	eng	147.5	147.0									
2300.0	2310.0	310.0	334.5	270 D	252.0	251.5	446.3	448.5									
2300 0	2310.0	322.5	345.0	284.0	276.0	275.5	457.5	460.9									
2300 0	2310.0	338.6	358.8	304 D	300.8	301.0	478.1	481.6									
2300.0	2310.0	355.5	373.0	324.8	326.0	327.8	511.1	499.5									
2300.0	2310.0	374.0	388.6	344.0	348.0	349.0	518.5	520.6									
CALCUC	ATIONS	10.000															
							FL	OW DEPT	HS								
				WE	us	DS	DE										
				upubream.	upstream	downstream o	iown stream.										
			4 m	end	skile	side	end	6 m	7 m			We m					
Pour, esp	Qualit	Q [Vv]	146	90.00	140	44	100	to a	y,	n	B-b ₂	Starley on 1972	Q _{restry}	SEPLE.	Fr_an	Fr. 24	Fit Am
			Уe	Yor	Yun	You	You	Ye	21			*William Tom?	- Presery	DESCRIPTION OF			
600.0	0.090566	90.6	104.6	215.0	167.1	154.5	761.5	187.5	191.0	0.609	0.547	2g(you You)**	0.096879	0.93	0.60	0.78	0.58
600.0	0.090566	90.6	184.6 201.9	215 0 229 5	186.9	154.5 196.7	161.5 200.6	187.5 212.8	191 8 222 3	0.509	0.547	0.88	0.096879	0.93	0.60	0.78	0.58 0.48
660.0	0.090566	90.6 90.6	184.6 201.9 217.7	215 0 229 5 241 5	167 1 186.9 205.9	194.5 196.7 216.0	161.1 200.8 217.3	187.5 212.8 231.2	191.8 222.3 233.4	0.509 0.509 0.509	0.547 0.547 0.547	0.85 0.79	0.096879 0.094431 0.093608	0.93 0.96 0.97	0.60 0.52 0.47	0.78 0.54 0.47	0.58 0.48 0.43
660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6	184.6 201.9 217.7 233.8	215 0 229 5 241 5 253 8	167 1 186.9 205.9 224.4	154.5 196.7 216.0 233.2	161.1 200.6 217.3 232.3	187.5 212.6 231.2 245.6	191 8 222 3 233.4 248.1	0.509 0.509 0.509 0.609	0.547 0.547 0.547 0.547	0.88 0.79 0.73	0.066879 0.064431 0.063608 0.062952	0.93 0.96 0.97 0.98	0.60 0.52 0.47 0.42	0.78 0.54 0.47 0.42	0.58 0.48 0.43 0.39
660.0	0.090566	90.6 90.6	184.6 201.9 217.7	215 0 229 5 241 5	167 1 186.9 205.9	194.5 196.7 216.0	161.1 200.8 217.3	187.5 212.8 231.2	191.8 222.3 233.4	0.509 0.509 0.509	0.547 0.547 0.547	0.85 0.79	0.096879 0.094431 0.093608	0.93 0.96 0.97	0.60 0.52 0.47	0.78 0.54 0.47	0.58 0.48 0.43
660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6	184.6 201.9 217.7 233.8	215 0 229 5 241 5 253 8 267 0	187 1 186 9 205 9 224 4 242 4	154.5 196.7 216.0 233.2 249.7	161.1 200.8 217.3 232.3 249.1	187.5 212.6 231.2 245.6	191 8 222 3 233.4 248.1	0.509 0.509 0.509 0.609	0.547 0.547 0.547 0.547	0.88 0.79 0.73	0.066879 0.064431 0.063608 0.062952	0.93 0.96 0.97 0.98	0.60 0.52 0.47 0.42	0.78 0.54 0.47 0.42	0.58 0.48 0.43 0.39
660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6	184.6 201.9 217.7 233.8	215 D 229 5 241 5 253 8 267 D	186.9 205.9 224.4 242.4 US	154.5 196.7 216.0 233.2 249.7	161.1 200.8 217.3 232.3 249.1 DE	187.5 212.6 231.2 245.6	191 8 222 3 233.4 248.1	0.509 0.509 0.509 0.609	0.547 0.547 0.547 0.547	0.88 0.79 0.73	0.066879 0.064431 0.063608 0.062952	0.93 0.96 0.97 0.98	0.60 0.52 0.47 0.42	0.78 0.54 0.47 0.42	0.58 0.48 0.43 0.39
660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6	184.6 201.9 217.7 233.8 249.4	215 0 229 5 241 5 253 8 267 0 UE spetream	167 1 186.9 205.9 224.4 242.4 US upstream	154.5 196.7 215.0 233.2 249.7 DS downstream of	161.1 200.6 217.3 232.3 249.1 DE fownstream	167.5 212.6 231.2 245.8 260.0	191 0 222 3 233.4 248.1 264.2	0.509 0.509 0.509 0.609	0.547 0.547 0.547 0.547	0.85 0.79 0.73 0.68	0.066879 0.064431 0.063608 0.062952	0.93 0.96 0.97 0.98	0.60 0.52 0.47 0.42	0.78 0.54 0.47 0.42	0.58 0.48 0.43 0.39
660 0 660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6 90 6	184.6 201.9 217.7 233.8 249.4	215 D 229 5 241 5 253 8 267 D UE upstream end	167 1 186.9 205.9 224.4 242.4 US upstream side	154.5 196.7 215.0 233.2 249.7 DS downstream of side	161.1 200.6 217.3 232.3 249.1 DE fownstream end	187.5 212.8 231.2 245.8 260.0	191 0 222 3 233 4 248 1 264 2 7 m	0.539 0.539 0.539 0.539 0.539	0.547 0.547 0.547 0.547 0.547	1.15 0.85 0.79 0.73 0.68	0.666879 0.664431 0.663608 0.662852 0.663246	0.93 0.96 0.97 0.98 0.97	0.60 0.52 0.47 0.42 0.38	0.78 0.54 0.47 0.42 0.35	0.58 0.48 0.43 0.39 0.36
600 0 660 0 660 0 660 0	0 090566 0 090566 0 090566	90 6 90 6 90 6 90 6	184.6 201.9 217.7 233.8 249.4	215 0 229 5 241 5 253 8 267 0 UE upstream end Yet	167 1 186.9 205.9 224.4 242.4 US upstream side Yun	154.5 196.7 216.0 233.2 249.7 DS downstream of side You	161.1 200.6 217.3 232.3 249.1 DE downstream end Fiss	187.5 212.8 231.2 245.8 260.0 6 m 74	191 8 222 3 233 4 248 1 264 2 7 m Fr	0.509 0.509 0.509 0.509 0.509	0.547 0.547 0.547 0.547 0.547	1.15 0.85 0.79 0.73 0.68	0.066879 0.064431 0.063608 0.062852 0.063246	0.93 0.96 0.97 0.98 0.97	0.60 0.52 0.47 0.42 0.38	0.78 0.54 0.47 0.42 0.38	0.58 0.46 0.43 0.39 0.36
600 0 600 0 600 0 601 0	0 090566 0 090566 0 090566 0 090566	90 6 90 6 90 6 90 6	184.6 201.9 217.7 233.8 249.4 4 m y ₄ 211.4	215 0 229 5 241 5 253 8 267 0 UE opstream end Vot 248 0	167 1 186 9 205 9 224 4 242 4 US upstream side Yus 190 9	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5	761.1 200.8 217.3 232.3 249.1 DE downstream end For 177.3	107.5 212.8 231.2 245.8 260.0 6 m 74	191 8 222 3 233 4 248 1 264 2 7 m Fr 214 2	0.639 0.639 0.639 0.639 0.639	0.547 0.547 0.547 0.547 0.547	1, 15 0,88 0,79 0,73 0,68 %c = 29(Kar You) ^{0,8}	0.696879 0.694431 0.693608 0.692952 0.693246	0.93 0.96 0.97 0.98 0.97	0.60 0.52 0.47 0.42 0.38	0.78 0.54 0.47 0.42 0.35	0.58 0.48 0.43 0.39 0.39 0.36
600 0 600 0 600 0 601 0 h _{rest, eq.} 662 5 982 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409	90 6 90 6 90 6 90 6 110.5	184.6 201.9 217.7 233.8 249.4 4 m y ₄ 211.4 225.7	215 0 229 5 241 5 253 8 267 0 UE upstream end Yet 248 0 256 0	167 1 186 9 205 9 224 4 242 4 US upstream side You 190 9 208 1	154.5 196.7 215.0 233.2 249.7 D5 downstream of side You 172.5 211.2	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 216.6	187.5 212.8 231.2 245.8 260.0 6 m 74 212.1 241.6	191 8 222 3 233.4 248.1 264.2 7 m Fr 214.2 239.2	0 509 0 509 0 509 0 609 0 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547	1, 15 0,88 0,79 0,73 0,68 4c = 2gly,ar youl ^{0,8} 1,27	0.696879 0.694431 0.693808 0.692952 0.693246 0.115665 0.115858	0.93 0.96 0.97 0.98 0.97	0.60 0.52 0.47 0.42 9.38 Fr_an	0.78 0.54 0.47 0.42 0.33 Fr _{_ass} 0.61 0.60	0.58 0.45 0.43 0.39 0.39 0.36 Fr_an
600 0 600 0 600 0 600 0	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 91.6 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 7s 211.4 225.7 245.2	215 0 229 5 241 5 253 8 267 0 UE: spatream end Vsc 248 0 256 0 259 0	167 1 186 9 205 9 224 4 242 4 US upstream side Yus 190 9 208 1 230 1	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7	761.1 200.8 217.3 232.3 249.1 DE fownstream end Yos 177.3 216.8 243.6	187.5 212.8 231.2 245.8 260.0 6 m 76 212.1 241.6 250.2	7 m 7 m 7 m 7 m 7 m 7 m 234 2 239 2 239 2 259 0	0 509 0 509 0 509 0 509 0 509 0 509 0 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 *c = 2g(\$x_{in} *y_{in})^{1.8} 1.27 1.00 0.84	Q _{many} 0.11565 0.11558 0.10621	0.93 0.96 0.97 0.98 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.48	0.78 0.54 0.47 0.42 0.38 Fr_ps 0.81 0.60 0.49	0.58 0.45 0.43 0.29 0.36 Fr _{ubn} 0.59 0.49
600 0 600 0 600 0 601 0 h _{rest, eq} 622 5 922 5 922 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 110.5 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 9- 211.4 225.7 245.2 261.6	215 0 229 5 241 5 253 8 267 0 UE: upstream end Vot 248 0 256 0 269 0 269 5	167 1 186 9 205 9 224 4 242 4 US upstream side Yus 190 9 208 1 230 1 250 1	154.5 196.7 215.0 233.2 249.7 DS downstream o side Yos 172.5 211.2 239.7 259.5	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 26.6 243.6 240.8	187.5 212.6 231.2 245.8 260.0 6 m 74 212.1 241.6 250.2 276.4	191 0 222 3 233 4 248 1 264 2 7 m y ₁ 214 2 230 2 256 0 275 2	0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.63 *c = 29(Kar You) ^{2.8} 1.27 1.00 0.84 0.80	Q _{basy} 0.1966246 Q _{basy} 0.19665 0.115656 0.10621 0.113337	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.43	0.78 0.54 0.47 0.42 0.35 Fr_ms 0.01 0.00 0.49 0.44	0.58 0.45 0.43 0.39 0.36 Fr_an 0.59 0.49 0.49
600 0 600 0 600 0 600 0	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 91.6 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 7s 211.4 225.7 245.2	215 0 229 5 241 5 253 8 267 0 UE: spatream end Vsc 248 0 256 0 259 0	167 1 186 9 205 9 224 4 242 4 US upstream side Yus 190 9 208 1 230 1	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7	761.1 200.8 217.3 232.3 249.1 DE fownstream end Yos 177.3 216.8 243.6	187.5 212.8 231.2 245.8 260.0 6 m 76 212.1 241.6 250.2	7 m 7 m 7 m 7 m 7 m 7 m 234 2 239 2 239 2 259 0	0 509 0 509 0 509 0 509 0 509 0 509 0 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 *c = 2g(\$x_{in} *y_{in})^{1.8} 1.27 1.00 0.84	Q _{many} 0.11565 0.11558 0.10621	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.48	0.78 0.54 0.47 0.42 0.38 Fr_ps 0.81 0.60 0.49	0.58 0.45 0.43 0.29 0.36 Fr _{ubn} 0.59 0.49
600 0 600 0 600 0 601 0 h _{rest, eq} 622 5 922 5 922 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 110.5 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 9- 211.4 225.7 245.2 261.6	215 0 229 5 241 5 253 8 267 0 UE: upstream end Vot 248 0 256 0 269 0 269 5	167 1 186 9 205 9 224 4 242 4 US upstream side Yus 190 9 208 1 230 1 250 1	154.5 196.7 215.0 233.2 249.7 DS downstream o side Yos 172.5 211.2 239.7 259.5	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 26.6 243.6 240.8	187.5 212.6 231.2 245.8 260.0 6 m 74 212.1 241.6 250.2 276.4	191 0 222 3 233 4 248 1 264 2 7 m y ₁ 214 2 230 2 256 0 275 2	0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.63 *c = 29(Kar You) ^{2.8} 1.27 1.00 0.84 0.80	Q _{basy} 0.1966246 Q _{basy} 0.19665 0.115656 0.10621 0.113337	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.43	0.78 0.54 0.47 0.42 0.35 Fr_ms 0.01 0.00 0.49 0.44	0.58 0.45 0.43 0.39 0.36 Fr_an 0.59 0.49 0.49
600 0 600 0 600 0 601 0 h _{rest, eq} 622 5 922 5 922 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 110.5 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 9- 211.4 225.7 245.2 261.6	215 0 229 5 241 5 253 8 267 0 UE: spatream end Yes: 248 0 256 0 269 0 265 5 300 0	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 206 1 230 1 270 9 US	154.5 196.7 215.0 233.2 249.7 D5 downstream o side Yos 172.5 211.2 239.7 259.5 278.5	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 216.8 243.6 260.8 278.3 DE	187.5 212.6 231.2 245.8 260.0 6 m 74 212.1 241.6 250.2 276.4	191 0 222 3 233 4 248 1 264 2 7 m y ₁ 214 2 230 2 256 0 275 2	0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.63 *c = 29(Kar You) ^{2.8} 1.27 1.00 0.84 0.80	Q _{basy} 0.1966246 Q _{basy} 0.19665 0.115656 0.10621 0.113337	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.43	0.78 0.54 0.47 0.42 0.35 Fr_ms 0.01 0.00 0.49 0.44	0.58 0.45 0.43 0.39 0.36 Fr_an 0.59 0.49 0.49
600 0 600 0 600 0 601 0 h _{rest, eq} 622 5 922 5 922 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 110.5 110.5 110.5	184.6 201.9 217.7 233.8 249.4 4 m 9- 211.4 225.7 245.2 261.6	215 0 229 5 241 5 253 8 267 0 UE spetram end Yet 283 0 269 0 269 0 265 5 300 0 UE	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 206 1 230 1 270 9 US	154.5 196.7 215.0 233.2 249.7 DS downstream o side Yos 172.5 211.2 239.7 259.5 278.5	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 216.8 243.6 260.8 278.3 DE	187.5 212.6 231.2 245.8 260.0 6 m 74 212.1 241.6 250.2 276.4	7 m y 214 2 254 2 7 m y 214 2 259 2 259 0 275 2	0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1, 15 0,88 0,79 0,73 0,63 0,63 1,27 1,00 0,84 0,80 0,74	Q _{reavy} 0.194451 0.69308 0.092952 0.092246 Q _{reavy} 0.119055 0.115358 0.109621 0.115358 0.115358	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.54 0.45 0.43 0.43	0.78 0.54 0.47 0.42 0.35 Fr_ms 0.01 0.00 0.49 0.44	0.58 0.45 0.43 0.39 0.36 Fr_an 0.59 0.49 0.49
600 0 600 0 600 0 601 0 h _{rest, eq} 622 5 922 5 922 5	0.090566 0.090566 0.090566 0.090566 0.110409 0.110409 0.110409 0.110409	90.6 90.6 90.6 90.6 110.5 110.5 110.5	164.6 201.9 217.7 233.8 249.4 4 m y ₄ 211.4 225.2 261.6 279.5	215 0 229 5 241 5 253 8 267 0 UE spetram end Vet 248 0 256 0 256 0 256 5 300 0 UE spetram end Vet 258 0 258	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 208 1 230 1 250 1 270 9 US upstream	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7 259.5 278.5 DS downstream of side	761.1 200.8 217.3 232.3 249.1 DE fownstream end Fox 177.3 216.8 243.6 243.6 260.8 278.3	187 5 212 6 231 2 245 8 260 0 6 m 7s 212 1 241 6 250 2 276 4 290 9	191 8 222 3 233 4 248 1 264 2 7 m y, 214 2 239 2 259 0 275 2 292 8	0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1, 15 0,88 0,79 0,73 0,63 0,63 1,27 1,00 0,84 0,80 0,74	Q _{reavy} 0.194451 0.69308 0.092952 0.092246 Q _{reavy} 0.119055 0.115358 0.109621 0.115358 0.115358	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97	0.60 0.52 0.47 0.42 0.38 Fr_an 0.54 0.45 0.43 0.43	6.78 0.54 0.47 0.42 0.38 Fr _{_max} 0.81 0.60 0.49 0.44 0.30	0.58 0.45 0.43 0.39 0.36 Fr_an 0.59 0.49 0.49
600 0 600 0 600 0 601 0 602 5 982 5 982 5 982 5 982 5	0.090566 0.090566 0.090566 0.090566 0.110499 0.110499 0.110499 0.110499	90 6 90 6 90 6 90 6 91 10 5 110 5 110 5	194.6 201.9 217.7 233.8 249.4 4 m y ₁ 211.4 225.7 245.2 261.6 279.5	215 0 229 5 241 5 253 8 267 0 UE spetream end 248 0 256 0 256 0 255 5 300 0 UE spetream end 268 0 269 0 269 0 269 5 269 0 269 0 269 5 269 0 269 0 260	167 1 186 9 205 9 224 4 242 4 US upstream side You 190 9 208 1 230 1 270 9 US upstream side	154.5 196.7 215.0 233.2 249.7 DS downstream c side Yos 172.5 211.2 239.7 259.5 278.5 DS downstream c side	761.1 200.8 217.3 232.3 249.1 DE fownstream end Fos 177.3 216.8 243.6 243.6 260.8 278.3 DE fownstream end	107.5 212.6 231.2 245.8 260.0 6 m 74 212.1 241.6 250.9 276.4 290.9	7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	0 509 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1, 15 0,88 0,79 0,73 0,63 0,63 29(Ker Yor) ^{2,8} 1,27 1,00 0,84 0,80 0,74	0.006379 0.006308 0.006308 0.0062052 0.007246 0.119005 0.119005 0.119005 0.119002 0.130060	0.93 0.96 0.97 0.98 0.97 0.97 0.92 0.95 1.01 0.97 0.98	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.43	0.78 0.54 0.47 0.42 0.33 Fr_ps 0.31 0.69 0.44 0.39	0.58 0.48 0.43 0.39 0.39 0.36 Fr.an 0.59 0.49 0.49 0.46 0.40 0.37
600 0 600 0 600 0 601 0 662 5 962 5 962 5 962 5 962 5	0.090566 0.090566 0.090566 0.090566 0.110499 0.110499 0.110499 0.110499	90 6 90 6 90 6 90 6 110 5 110 5 110 5	184 E 201.9 217.7 233.8 249.4 4 m 71 211.4 225.7 245.2 261.6 279.5	215 0 229 5 241 5 253 8 267 0 UE spetream end Vet 298 0 298 0 298 0 298 5 300 0 UE spetream end Vet upstream end Vet upstream end Vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end vet upstream end end end end end end end end end end	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 208 1 230 1 270 9 US upstream side Yes	154.5 196.7 215.0 233.2 249.7 D5 downstream of side You 172.5 211.2 239.7 259.5 278.5 D5 downstream of side You	761.1 200.8 217.3 232.3 249.1 DE fownstream end For 177.3 216.8 243.6 243.6 200.8 278.3 DE downstream end World States of the series of the se	107.5 212.6 231.2 245.8 260.0 6 m 7s 212.1 241.6 250.2 276.4 290.9	7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	0 509 0 509 0 509 0 509 0 509 0 509 0 509 0 509 0 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.63 29(Ker You) ^{0.8} 1.00 0.84 0.80 0.74 v _C = 29(Yer You) ^{0.8} 1.15	Q _{reery} 0.136668 0.66268 0.66268 0.662652 0.662246 Q _{reery} 0.116665 0.115558 0.10662 0.115050 0.1130606 0.136668	0.93 0.96 0.97 0.98 0.97 0.92 0.92 0.95 1.01 0.97 0.98	0.60 0.52 0.47 0.42 0.38 Fr_an 0.60 0.54 0.43 0.39	6.78 0.54 0.47 0.42 0.33 Fr_ps 0.61 0.60 0.49 0.44 0.39	0.58 0.45 0.43 0.39 0.39 0.39 0.49 0.49 0.40 0.37
house pg 1357 5 1357 5 1357 5	0.090566 0.090566 0.090566 0.090566 0.110499 0.110499 0.110499 0.110499 0.110499	90 6 90 6 90 6 90 6 110.5 110.5 110.5 110.5	164.6 201.9 217.7 233.8 249.4 4 m y ₄ 211.4 225.7 245.2 261.6 279.5	215 0 229 5 241 5 253 8 267 0 UE spetream end Vid 248 0 256 0 269 0 269 0 265 3 300 0 UE spetream end Vid spetream end Vid spetream end 248 0 258 0 269 0 269 0 269 5 300 0 300 0 30	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 208 1 230 1 270 9 US upstream side Yes 223 1 238 1 238 1	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7 259.5 279.5 DS downstream of side You 214.2 249.0 267.0	761.1 200.8 217.3 212.3 249.1 DE fownstream end For 177.3 216.6 243.6 243.6 260.8 278.3 DE fownstream end Wor 216.3 244.8 271.1	6 m 74 212 1 245 8 260 0 6 m 74 241 6 250 2 276 4 290 9 6 m 74 290 9	7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	0 509 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.85 0.79 0.73 0.63 0.63 0.63 1.00 0.84 0.80 0.74 0.80 0.74 0.80 0.74	Q _{reavy} 0.196429 0.69308 0.692952 0.692952 0.119065 0.119558 0.109621 0.115306 0.115306 0.13306 0.13306 0.13306 0.13306 0.13306	0.93 0.96 0.97 0.98 0.97 0.92 0.95 1.01 0.97 0.98	0.60 0.52 0.47 0.42 0.38 Fr_an 0.54 0.48 0.48 0.39	Fr_ps 0.54 0.47 0.42 0.38 Fr_ps 0.60 0.49 0.44 0.30 Fr_ps	0.58 0.48 0.43 0.39 0.39 0.39 0.49 0.49 0.40 0.37 Fr _{Jan} 0.55 0.43
600 0 600 0 600 0 601 0 602 5 902 5 902 5 902 5 902 5 1357 5 1357 5 1357 5	0 390566 0 390566 0 390566 0 390566 0 110499 0 110499 0 110499 0 110499 0 12660 0 12660 0 12660 0 12660	90 6 90 6 90 6 90 6 90 6 110 5 110 5 110 5 110 5 110 5 110 5 129 9 129 9 129 9 129 9	194.6 201.9 217.7 233.8 249.4 4 m 74 211.4 225.7 245.2 261.6 279.5 4 m 74 244.7 256.4 274.3 264.7 266.4 274.3 266.4 274.3 266.4 274.3 266.4	215 D 229 S 241 S 253 B 267 D UE spetram end Yes 248 D 256 D 256 D 269 D 265 S 300 D UE spetram end Yes 278 S 278 S 278 S 278 S 278 S 278 S 278 S 278 S 278 S	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 206 1 230 1 270 9 US upstream side 223 1 236 1 236 1	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7 259.5 278.5 DS downstream of side You 214.2 240.0 267.0 286.5	761.1 200.8 217.3 232.3 249.1 DE Sownstream end 77.3 216.8 243.6 260.8 278.3 DE Sownstream end For 216.3 244.8 271.1 266.8	107.5 212.6 231.2 245.8 260.0 6 m 76 212.1 241.6 250.9 250.9 247.5 267.1 294.0 296.1	191 8 222 3 233 4 248 1 294 2 7 m 7, 214 2 299 2 259 0 275 2 202 8 7 m 7, 247 5 260 4 285 0 303 5	6 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 0.73 0.69 1.27 1.00 0.84 0.80 0.74 0.80 0.74	0.056379 0.054308 0.053008 0.052052 0.051246 0.115052 0.115052 0.115052 0.130608 0.130608 0.130608 0.131606	0.93 0.96 0.97 0.98 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.98 0.99	0.60 0.52 0.47 0.42 0.39 0.60 0.54 0.43 0.39 0.56 0.52 0.44	6.78 0.54 0.47 0.42 0.33 Fr_pe 0.31 0.69 0.44 0.39 Fr_pe 0.69 0.58 0.58 0.58	0.58 0.45 0.43 0.39 0.39 0.39 0.59 0.49 0.49 0.40 0.37 Fr _{_be} 0.55 0.49 0.42
600 0 600 0 600 0 601 0 602 5 902 5 902 5 902 5 902 5 1357 5 1357 5 1357 5	0.090566 0.090566 0.090566 0.090566 0.110499 0.110499 0.110499 0.110499 0.110499 0.126606 0.126606 0.126606 0.126606	0 [84] 0 [84] 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5 110.5	164.6 201.9 217.7 233.8 249.4 4 m y ₄ 211.4 225.7 245.2 261.6 279.5	215 0 229 5 241 5 253 8 267 0 UE spetream end Vid 248 0 256 0 269 0 269 0 265 3 300 0 UE spetream end Vid spetream end Vid spetream end 248 0 258 0 269 0 269 0 269 5 300 0 300 0 30	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 208 1 230 1 270 9 US upstream side Yes 223 1 238 1 238 1	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7 259.5 279.5 DS downstream of side You 214.2 249.0 267.0	761.1 200.8 217.3 212.3 249.1 DE fownstream end For 177.3 216.6 243.6 243.6 260.8 278.3 DE fownstream end Wor 216.3 244.8 271.1	6 m 74 212 1 245 8 260 0 6 m 74 241 6 250 2 276 4 290 9 6 m 74 290 9	7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	0 509 0 539 0 539	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.85 0.79 0.73 0.63 0.63 0.63 1.00 0.84 0.80 0.74 0.80 0.74 0.80 0.74	Q _{reavy} 0.196429 0.69308 0.692952 0.692952 0.119065 0.119558 0.109621 0.115306 0.115306 0.13306 0.13306 0.13306 0.13306 0.13306	0.93 0.96 0.97 0.98 0.97 0.92 0.95 1.01 0.97 0.98	0.60 0.52 0.47 0.42 0.38 Fr_an 0.54 0.48 0.48 0.39	Fr_ps 0.54 0.47 0.42 0.38 Fr_ps 0.60 0.49 0.44 0.30 Fr_ps	0.58 0.48 0.43 0.39 0.39 0.39 0.49 0.49 0.40 0.37 Fr _{Jan} 0.55 0.43
600 0 600 0 600 0 601 0 602 5 902 5 902 5 902 5 902 5 1357 5 1357 5 1357 5	0 390566 0 390566 0 390566 0 390566 0 110499 0 110499 0 110499 0 110499 0 12660 0 12660 0 12660 0 12660	90 6 90 6 90 6 90 6 90 6 110 5 110 5 110 5 110 5 110 5 110 5 129 9 129 9 129 9 129 9	194.6 201.9 217.7 233.8 249.4 4 m 74 211.4 225.7 245.2 261.6 279.5 4 m 74 244.7 256.4 274.3 264.7 266.4 274.3 266.4 274.3 266.4 274.3 266.4	215 0 229 5 241 5 253 8 267 0 UE spetream end 748 0 298 0 298 0 298 0 298 5 300 0 UE spetream end Vist spetream end 748 0 298 5 300 0 305 5 300 0 305 5 306 6 306	167 1 186 9 205 9 224 4 242 4 US upstream side You 190 9 208 1 230 1 230 1 270 9 US upstream side You 223 1 256 4 275 9 266 4	154.5 196.7 216.0 233.2 249.7 D5 downstream claids 172.5 211.2 239.7 259.5 278.5 D5 downstream claids You side You 242.0 267.0 286.5 304.2	761.1 200.8 217.3 232.3 249.1 DE fownstream end Fos 177.3 216.8 243.6 243.6 278.3 DE fownstream end Wos 216.3 244.8 271.1 266.8 271.1 266.8 271.1 266.8 271.1	107.5 212.6 231.2 245.8 260.0 6 m 76 212.1 241.6 250.9 250.9 247.5 267.1 294.0 296.1	191 8 222 3 233 4 248 1 294 2 7 m 7, 214 2 299 2 259 0 275 2 202 8 7 m 7, 247 5 260 4 285 0 303 5	6 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 0.73 0.69 1.27 1.00 0.84 0.80 0.74 0.80 0.74	0.056379 0.054308 0.053008 0.052052 0.051246 0.115052 0.115052 0.115052 0.130608 0.130608 0.130608 0.131606	0.93 0.96 0.97 0.98 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.98 0.99	0.60 0.52 0.47 0.42 0.39 0.60 0.54 0.43 0.39 0.56 0.52 0.44	6.78 0.54 0.47 0.42 0.33 Fr_pe 0.31 0.69 0.44 0.39 Fr_pe 0.69 0.58 0.58 0.58	0.58 0.45 0.43 0.39 0.39 0.39 0.59 0.49 0.49 0.40 0.37 Fr _{_be} 0.55 0.49 0.42
600 0 600 0 600 0 601 0 602 5 902 5 902 5 902 5 902 5 1357 5 1357 5 1357 5	0 390566 0 390566 0 390566 0 390566 0 110499 0 110499 0 110499 0 110499 0 12660 0 12660 0 12660 0 12660	90 6 90 6 90 6 90 6 90 6 110 5 110 5 110 5 110 5 110 5 110 5 129 9 129 9 129 9 129 9	194.6 201.9 217.7 233.8 249.4 4 m 74 211.4 225.7 245.2 261.6 279.5 4 m 74 244.7 256.4 274.3 264.7 266.4 274.3 266.4 274.3 266.4 274.3 266.4	215 0 229 5 241 5 253 8 267 0 UE spetream end Vid 298 0 299 0 295 5 300 0 UE spetream end Vid 278 5 288 0 278 5 288 0 278 5 288 0 278 5 288 0 278 5 288 0 278 5 278 5 27	167 1 186 9 205 9 224 4 242 4 US upstream side Yes 190 9 208 1 230 1 230 1 270 9 US upstream side Yes 223 1 236 1 236 1 236 4 275 9 295 4	154.5 196.7 215.0 233.2 249.7 DS downstream of side You 172.5 211.2 239.7 259.5 278.5 DS downstream of side You 214.2 249.0 267.0 296.5 334.2 DS	761.1 200.8 217.3 212.3 249.1 DE downstream end For 177.3 216.6 243.6 243.6 260.8 278.3 DE downstream end For 216.3 243.6 243.	107.5 212.6 231.2 245.8 260.0 6 m 76 212.1 241.6 250.9 250.9 247.5 267.1 294.0 296.1	191 8 222 3 233 4 248 1 294 2 7 m 7, 214 2 299 2 259 0 275 2 202 8 7 m 7, 247 5 260 4 285 0 303 5	6 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 0.73 0.69 1.27 1.00 0.84 0.80 0.74 0.80 0.74	0.056379 0.054308 0.053008 0.052052 0.051246 0.115052 0.115052 0.115052 0.130608 0.130608 0.130608 0.131606	0.93 0.96 0.97 0.98 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.98 0.99	0.60 0.52 0.47 0.42 0.39 0.60 0.54 0.43 0.39 0.56 0.52 0.44	6.78 0.54 0.47 0.42 0.33 Fr_pe 0.31 0.69 0.44 0.39 Fr_pe 0.69 0.58 0.58 0.58	0.58 0.45 0.43 0.39 0.39 0.39 0.59 0.49 0.49 0.40 0.37 Fr _{_be} 0.55 0.49 0.42
600 0 600 0 600 0 601 0 602 5 902 5 902 5 902 5 902 5 1357 5 1357 5 1357 5	0 390566 0 390566 0 390566 0 390566 0 110499 0 110499 0 110499 0 110499 0 12660 0 12660 0 12660 0 12660	90 6 90 6 90 6 90 6 90 6 110 5 110 5 110 5 110 5 110 5 110 5 129 9 129 9 129 9 129 9	194.6 201.9 217.7 233.8 249.4 4 m 74 211.4 225.7 245.2 261.6 279.5 4 m 74 244.7 256.4 274.3 264.7 266.4 274.3 266.4 274.3 266.4 274.3 266.4	215 0 229 5 241 5 253 8 267 0 UE spetream end Yes 248 0 256 0 269 0 265 3 300 0 UE spetream end Yes 278 5 288 0 278 5 288 0 278 5 288 0 278 5 288 0 278 5 288 0 278 5 278 5 27	167 1 186 9 205 9 224 4 242 4 US upstream side You 190 9 208 1 230 1 230 1 270 9 US upstream side You 223 1 256 4 275 9 266 4	154.5 196.7 216.0 233.2 249.7 D5 downstream claids 172.5 211.2 239.7 259.5 278.5 D5 downstream claids You side You 242.0 267.0 286.5 304.2	761.1 200.8 217.3 212.3 249.1 DE downstream end For 177.3 216.6 243.6 243.6 260.8 278.3 DE downstream end For 216.3 243.6 243.	107.5 212.6 231.2 245.8 260.0 6 m 76 212.1 241.6 250.9 250.9 247.5 267.1 294.0 296.1	191 8 222 3 233 4 248 1 294 2 7 m 7, 214 2 299 2 259 0 275 2 202 8 7 m 7, 247 5 260 4 285 0 303 5	6 509 0 509	0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547 0.547	1.15 0.88 0.79 0.73 0.69 0.73 0.69 1.27 1.00 0.84 0.80 0.74 0.80 0.74	0.056379 0.054308 0.053008 0.052052 0.051246 0.115052 0.115052 0.115052 0.130608 0.130608 0.130608 0.131606	0.93 0.96 0.97 0.98 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.98 0.99	0.60 0.52 0.47 0.42 0.39 0.60 0.54 0.43 0.39 0.56 0.52 0.44	6.78 0.54 0.47 0.42 0.33 Fr_pe 0.31 0.69 0.44 0.39 Fr_pe 0.69 0.58 0.58 0.58	0.58 0.45 0.43 0.39 0.39 0.39 0.59 0.49 0.49 0.40 0.37 Fr _{obs} 0.55 0.40 0.37

			4 m	end	side	side	end	6 m	7 m			v _c =					
hour, my	Ques	Q [1/s]	y.	Yes	Yes	You	You	y,	y'r	В	0-b ₂	2g(you-you)"	Query	03/25/60	Fr_su	Fr.24	Fr. am
1815.0	0.150187	150.2	258.0	306.0	243.9	231.2	231.3	270.0	272.5	0.609	0.547	1.26	0.159601	0.94	0.57	0.71	0.56
1815.0	0.150187	150.2	250.9	317.8	259.1	257.5	262.3	283.0	285.5	0.609	0.547	1.14	0.161174	0.93	0.53	0.60	0.52
1815.0	0.150187	150.2	298.2	329.8	250.9	286.2	266.3	316.6	309.5	0.609	0.547	0.99	0.155070	0.97	0.43	0.51	0.44
1815.0	0.150187	150.2	314.5	345.5	298.9	307.7	310.8	332.4	325.6	0.609	0.547	0.93	0.156839	0.96	0.45	0.46	0.41
1815.0	0.150187	150.2	331.9	359.8	319.1	328.5	330.3	339.7	350 6	0.609	0.547	0.96	0.154631	0.97	0.41	0.42	0.40
				UE	us	DS	DE										
				upstream :	pstream	downstream	downstream										
			4 m	end	side	side	bmd	6 m	7 m			vc =					
hour, eq.	Ques	Q [1/a]	y.	Yes	Yes	You	You	Ye	y-	B	В-ь,	2p(yor-you)**	Query	29550	Fr_an	Fr	Fr_no
2305.0									81		a	- British Prints					
2200.0	0.109250	169.2	294.5	334.5	270.9	258.5		298.0	301.5	0.609	0.547	1.27		0.94	0.56	0.68	
2305.0	0 169250	169.2 169.2	294.5 307.0				258.8 292.6						0.179679		0.56		0.54
				334.5	270.9	258.5	250.8	298.0	301.5	0.609	0.547	1.27	0.179679	0.94 0.94	0.56	0.68	0.54
2305.0	0.169250	169.2	307.0	334.5 345.0	270.9 264.9	258.5 282.5	258.8 292.6	298.8 310.0	313.9	0.609 0.609	0.547	1.27 1.16 1.07	0.179679	0 94 0 94 0 94	0.56 0.52 0.48	0.68 0.59 0.52	0.54 0.51 0.47
2305.0 2305.0	0.169250	169.2 169.2	337.0 323.3	334.5 345.0 358.8	270.9 284.9 304.9	258.5 282.5 307.2	210.8 212.8 308.3	298.8 310.0 330.6	301.5 313.9 334.6	0.609 0.609 0.609	0.547 0.547 0.547	1.27	0.179879 0.179779 0.179299	0.94 0.94	0.56	0.68	0.54

MODEL PIER, bp = 32 mm_SHORT_5Degrees_NORMAL Q's

OK

Q		b	0 m	1	2 m	3 m	4 m	end		side	downstream		7	Geometric p	consettles:
	Pinan, 1	Pinan, I						4110	side	8101	8190	6 m	7 m	Geometric p	roperties.
ed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	12.0	12.0				59.0	57.2	58.9	39.1	27.4	15.8	195.2	195.2	D =	31.5 mm
30	73.0	73.0				93.3	91.9	98.9	70.1	55.3	40.9	228.1	204.6	L _p =	132 mm
50	205.0	206.0				120.2	115.9	134.9	96.1	83.1	72.4	275.3	232.1	$z_A =$	1.4 mm
70	395 D	360.0				145.6	142.4	162.1	116.0	104.4	91.1	296.5	254 6	2a =	1.8 mm
90	665.D	650 0				170.2	192.7	193 8	138.5	125.8	120.5	306.5	290 4	ZC #	3.1 mm
110	970 D	9.70 D				192 D	182.4	215.9	161.9	147.8	143.3	333.8	305.8	2 ₀ =	3.6 mm
130	1340.0	1345.0				215.4	207.8	241.9	170.5	158.9	156.3	306.5		Thota =	5 degrees
150	1800.0	1890.0				233.4	225.0	262.4	190.0	177.1	174.1	337.1			
170	2320.0	2390.0				249.2	243.7	290.1	209.1	192.6	188.5	360.4			
CALCULA	WINDEY?	SEC. 250													
PHILIPPIN	I JUNO!	min and													
		L					F	LOW DEPTI	45						
								UE	US	DS	DE				
			Dist	tance mean	ured downsh	ream within the	Sume	upstream	upstream i	downstream	downstream				

			Dis	tance mean	ured downstr	eam within the	- Sume	UE upstream	US upstream	DS DE											
			0 m	1	2 m	3 en	4 m	end	side	side	end	5 m	7 en			we m					
Power, and	Quer	Q [Fe]	Ye	y-1	Yr	¥2	Ye	Yor	You	Yes	You	Ye	Y11	8	B-b _e	20(You You!"	Quarry	SILESCEN.	Fr_4m	Fr_DS	Fr_DE
12.0	0.012212	12.2				45.5	41.7	58.9	43.9	30.5	19.3	47.7	48.2	0.609	0.569	0.77	0.013356	0.91	0.75	1.29	2.38
73.0	0.030120	30.1				79.8	76.4	98.9	71.9	58.4	44.4	80.6	57.8	0.600	0.569	0.91	0.030260	1.00	0.75	1.20	1.69
205.5	0.050536	50.5				106.7	100.4	134.9	97.9	86.3	75.9	127.8	85.1	0.809	0.569	0.99	0.048781	1.04	0.83	1.12	1.27
392.5	0.069841	69.8				132.1	125.9	162.1	117.8	107.5	94.7	149.0	107.6	0.609	0.569	1.05	0.064316	1.09	0.81	1.11	1.26
657.5	0.090394	90.4				156.7	147.2	193.8	140.3	128.9	124.1	159.0	133.4	0.609	0.509	1.14	0.063618	1.00	0.84	1.10	1.08
970.0	0.109794	109 8				178.5	166.9	215.9	163.7	150.9	146.0	186.3	158.8	0.609	0.569	1.14	0.098218	1.12	0.84	1.05	1.02
1342.5	0.129167	129.2				2019	192.3	241.9	172.3	162.0	150.6	150.0	-147.0	0.609	0.569	1.27	0.116617	1.11	0.60	1.11	1.06
1805.0	0.149772	149.8				219 9	209.5	262.4	254.0	180.3	177.7	189.6	-147.0	0.609	0.569	1.28	0.131579	1.14	0.82	1.10	1.05
2315 0	0.169617	169.6				235 7	228.2	290.1	296.0	195.8	192.1	212.9	-147.0	0.609	0.509	1.37	0.152913	1.11	0.82	1.10	1.06
																		1.06			

MODEL PIER, bp = 32 mm_SHORT_5Degrees_DROWNED Q's

DATAS Tuesday, 15 August 2000

			UE	US upstream	DS downstream	DE downstream		
Piner, I	Plonan, 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
640.0	635.0	170.5	195.1	149.1	137.6	131 1	305.0	
640.0	635.0	190.1	204.9	177.8	168.4	161.3	345.3	
640.0	635.0	211.1	219.7	198.6	191.1	187.4	356.0	
640.0	635.0	229.9	237.3	217.6	213.0	208.5	375.1	
640.0	635.0	245.2	249.1	235.9	230.0	229.1	394.3	
			UE	us	06	DE		
			upstream	upstream	downstream	downstream		
Down 1	Proper 7	4 m	end	side	side	end	6 m	7 m
		15.5					147.6	147.0
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
							6 m	7 m

	Q _{cate} 0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 0.0 130.7 130.7 130.7 130.7	-15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -200.6 -225.3 -240.7 -200.5 -201.7	0.0 0.0 0.0 0.0 UE upstream end Yue 247.9 262.1 278.5 295.0 313.9	1.8 1.8 1.8 1.8	3.1 3.1 3.1 3.1 DS downstream side Yie 191.6 216.0 244.9 206.9 291.4	3.6 3.6 3.6	-547.5 -547.5 -547.5 -547.5 -547.5 -6 m Vs -224.7 -228.0 -257.6 -253.6 -303.4	-1470 -1470 -1470 -1470 -1470 -1470 -1470 -1470 -1470	0 909 0 909 0 909 0 609 0 609 0 609 0 509 0 609 0 609	0.569 0.569 0.569 0.569 0.569 0.569 0.569 0.569	#NUM #NUM #NUM #NUM 107 107 055 083 0.77 0.69	PNJ.RE BNJ.RE BNJ.RE BNJ.RE C 116236 C 116236 C 116254 C 116254 C 116254	8NUAR 8NUAR 8NUAR 8NUAR 112 111 113 113 114	Fr_m 0.76 0.64 0.56 0.43	0.00 0.00 0.00 0.00 0.00 0.62 0.67 0.57 0.57 0.50 0.64	Fr. se 0.54 0.63 0.50 0.41
0.0 0.0 0.0 0.0 0.0 1375.0 1375.0	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 130.7 130.7 130.7 130.7	-15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5	0 0 0 0 0 0 UE upstream end Yue 247.9 262.1 278.5 295.0	1.5 1.5 1.5 1.5 US upstream side Not 2017 228.9 2517 273.5	3.1 3.1 3.1 DS clownstream (side Yes 191.8 218.0 244.9 206.9	3 6 3 6 3 6 3 6 0 E downstream end 164 2 214 8 236 6 203 3	-547.5 -547.5 -547.5 -547.5 -147.5 -8 m 	7 m 9-147.0 147.0 147.0 7 m 9-147.0 147.0 147.0 147.0	0 909 0 909 0 909 0 609 0 609 0 909 0 909 0 909	0.569 0.569 0.569 0.569 0.569 0.569 0.569	#NUM# #NUM# #NUM# 20(9/# 9/m) ^{0.5} 1 07 0 55 0 83 0 77	PNUME PNUME PNUME PNUME C 116236 C 117580 C 116254	81/UAR 81/UAR 81/UAR 1.12 1.11 1.13 1.12	FF_as 0.64 0.45	0.00 0.00 0.00 0.00 Fr.an	FY_84 0.63 0.50 0.45
0.0 0.0 0.0 0.0 0.0 1375.0 1375.0 1375.0	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0 0.0 130.7 130.7 130.7	-15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5 -15.5	0.0 0.0 0.0 UE upstream end Yor 247.9 262.1 278.5	1.5 1.5 1.8 1.8 US upstream side For 2017 228.9 251.7	3.1 3.1 3.1 DS downstream side Yes 191.8 218.0 244.9	3.6 3.6 3.6 3.6 3.6 DE downstream end Yee 164.2 214.8 239.6	-547.5 -547.5 -547.5 -147.5 -147.5 -8 m -96 -224.7 -228.0 -257.6	-1470 -1470 -1470 -1470 -1470 -1470 -1470 -1470	0 909 0 909 0 909 0 609 0 609 0 609 0 909	0.569 0.569 0.569 0.569 0.569	#NUM# #NUM# #NUM# 20(9/m 9/m) ^{0.5} 1 07 0 95 0 83	PNUME PNUME PNUME PNUME C 116236 C 117580 C 116067	#NUM# #NUM# #NUM# 112 111 113	#NUM #NUM #NUM 0.76 0.64 0.56	0.00 0.00 0.00 Fr_ma 0.67 0.57	Fr
0.0 0.0 0.0 0.0 0.0	0.000000 0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0	-15.5 -15.5 -15.5 -15.5 -15.5	UE upstream end Yor 247.9	1.5 1.5 1.8 1.8 1.8 US upstream side Yos	3.1 3.1 3.1 DS downstream side Yes	3.6 3.6 3.6 3.6 DE downstream end Yes	-547.5 -547.5 -547.5 -547.5 -547.5 -8 m -96	-147 0 -147 0 -147 0 -147 0 -147 0 7 m 9-	0 909 0 909 0 909 0 909 0 609	0.569 0.569 0.569 0.569	#NUM #NUM #NUM 20(%; *yon) ^{0.1}	EVURE EVURE EVURE C 116236	enguar enguar enguar enguar	BNUM BNUM BNUM BNUM BNUM BNUM BNUM BNUM	0.00 0.00 0.00 Fr_es	Fr_m
00 00 00 00	0.000000 0.000000 0.000000 0.000000	0.0 0.0 0.0	-15.5 -15.5 -15.5 -15.5	UE upstream end Yue	1.5 1.5 1.5 1.5 US upstream side Yus	31 31 31 DS downstream	3 6 3 6 3 6 3 6 3 6 DE downstream end Yee	-547.5 -547.5 -547.5 -547.5 -547.5	-1470 -1470 -1470 -1470 -1470	0.909 0.909 0.909 0.909	0.569 0.569 0.569 0.569	SNUMS SNUMS SNUMS SNUMS VC = 20(yet - yet) ^{2.1}	EVUME EVUME EVUME	angute angute angute	BYUM BYUM BYUM	0.00 0.00 0.00	ENUME ENUME ENUME
00 00 00 00	0.000000 0.000000 0.000000 0.000000	0.0	-15.5 -15.5 -15.5	00 00 00 UE upstream end	1.8 1.8 1.8 1.8 US upstream side	3.1 3.1 3.1 DS downstream	3 6 3 6 3 6 3 6 DE downstream end	-547.5 -547.5 -547.5 -147.5	-1470 -1470 -1470 -1470	0 909 0 909 0 909 0 909	0 569 0 569 0 569 0 569	WOUND WOUND	EVAN EVAN	ENUME ENUME	INUM INUM	0.00 0.00 0.00	ENJAM ENJAM
00	0.000000 0.000000 0.000000	0.0	-15.5 -15.5 -15.5	00 00 00 UE upstream	1.8 1.8 1.8 1.8 US upstream	3.1 3.1 3.1 DS downstream	3 6 3 6 3 6 3 6 DE downstream	-547.5 -547.5 -547.5 -147.5	-1470 -1470 -1470 -1470	0.909	0.569 0.569 0.569	INUM INUM	MALIAN MALIAN	WINDS.	INUM	0.00	MILLIAN
00	0.000000 0.000000 0.000000	0.0	-15.5 -15.5	0.0 0.0	1.8 1.8 1.8 1.8	3.1 3.1 3.1	3.6 3.6 3.6	-147.5 -147.5 -147.5	-147.0 -147.0 -147.0	0.909	0.569 0.569 0.569	#NUM	MALIAN MALIAN	WINDS.	INUM	0.00	MILLIAN
00	0.000000 0.000000 0.000000	0.0	-15.5 -15.5	0.0	1.8 1.8 1.8	3.1	36 36 36	-147.5 -147.5 -147.5	-147.0 -147.0 -147.0	0.909	0.569 0.569 0.569	#NUM	MALIAN MALIAN	WINDS.	INUM	0.00	MILLIAN
00	0.000000 0.000000 0.000000	0.0	-15.5 -15.5	0.0	1.8 1.8 1.8	3.1	36 36 36	-147.5 -147.5 -147.5	-147.0 -147.0 -147.0	0.909	0.569 0.569 0.569	#NUM	MALIAN MALIAN	WINDS.	INUM	0.00	MILLIAN
0.0	0.000000 0.000000 0.000000	0.0	-15.5	0.0	1.8	3.1	36	-147.5 -147.5	-147.0 -147.0	0.909	0.569	MINITED	ENUM	WINDS	BNUM	0.00	WILLIAM
0.0	0.000000				1.8		3.6	-147.5	-147.0	0.909	0.569						
h _{man, ang}																	
h	Quele	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.909	0.569	#NUM	PAUL	ANULE	INUM	0.00	BNUM
	-	Q [1/s]	Ye	Yes	Yes	You	You	y ₀	y ₇	В	B-b,	29(yes-yes)22	Q _{Peop}	Marsh.	Fr_es	Fr_ca	Fr_an
			4 m	end	side	side	end	6 m	7 m			Vc =					
				UE upstream	US	DS downstream	DE fowtstowers										
637.5	0.089009	89.0	232.7	249 1	237.7	233 1	232.7	246.8	-147.0	0.609	0.569	0.50	0.078299	1.14	0.42	0.41	0.38
637.5	0.089009	89.0	214.4	237.3	219.4	216.1	212.1	227.6	-147.0	0.609	0.569	0.67	0.082392	1.08	0.47	0.46	0.43
637.5	0.069009	89.0	195.6	219.7	200.4	194.3	190.9	208.5	-147.0	0.609	0.569	0.73	0.080725	1.10	0.54	0.55	0.49
637.5	0.089009	89.0	155.0	195.1 204.9	150.9	171.5	134.7	157.5	-147.0 -147.0	0.609	0.569	0.83	0.084022	1.10	0.76	0.86	0.76
Press, and	Q _{cate}	Q [Fs]	y ₄	Yor	You	You	Yes	Уu	У»	8	B-b _p	2g(yor-you)"	Q _{nany}	37.2 GH	Fr_an	Fr_ps	87_4m
			4 m	end	side	side	end	6 m	7 m			V. =					
				upstream		downstream											
				UE	US	DS	DE										
UMBUUI	and the same	22-9-140					FL	OW DEPT	es								
CALCO	LATIONS:	CONTRACTOR OF THE PARTY OF THE	1														
2350.0	2335.0	356.5	368.6	345.9	337.1	333.8	504.3										
2350 0	2335.0	334.0	348.1	321.5	312.9	308.3	455.6										
2350.0	2335.0 2335.0	284.5 314.2	332.6	272.9 301.0	290.9 298.8	251.4 282.6	429.5 450.2										
2350.0	2335.0	262.9	295.6	243.0	230.1	226.0	421.3										
		15.5					147.5	147.0									
Boan,	Bear, I	4 m	end	side	side	end	6 m	7 m									
			UE	US	DS	DE downstream											
0.0	0.0																
0.0	9.0																
0.0	0.0																
0.0	0.0																
		15.5					147.5	147.0									
Propr. 1	R _{man_2}	4 m	end	side	side	end	6 m	7 m									
			UE	US upstream	DS downstream	DE downstream											
		307.2	295.0	295.0	263.8	259.8	431.1										
1375.0		262.2	278.5	249.9 272.0	241.6	236.0	415.1										
1375.0 1375.0 1375.0	1375.0	240.8	262.1	227.1	214.9	211.3	375.5										
1375.0	1375.0	216.1	247.9	199.9	188.6	180.6	372.2	141.0									

1	BALLAN	NUM	PULME	WUM	PVL/MI				Fr. an	0.62	0.60	0.54	0.45	0.42	
	000								Pr. as	0.79	99.0	0.57	0.50	0.45	
77	MACINE	BNUMB	BHUNG	SHUM	SHOW				Fr. con	0.73	0.64	0.55	0.50	0.45	
	BNOM	BALINE	SNUMB	SHUME	BALIAN				20,000	1.15	1.52	1.13	1.16	1.15	1.12
_	BNONE	-	-	-	-				Oppose	0.148828	0.152242	0.151629	0 146672	0.148835	
20(free Yea)**	MALINE.	MALINE	SP4,040	BRUM	BP4,3AI			* 24	20the Teel	8.12	101	160	0.82	0.77	
	0.569	_							9-9'	L					
=	609.0	0.000	0.609	6000	0.000					0.000	0.600	0.600	0.000	0.009	
E 4	-147.0	147.0	147.0	-147.0	-147.0			E /	ú	-147.0	-147.0	-147.0	-147.0	-147.0	
į ,	-147.5	147.5	-147.5	-147.5	-147.5			Ē	ş,	273.8	281.0	302.7	339.1	356.8	
P 2	3.6	3.6	3.6	3.6	3.6	De	downstream	pue	Yes	229.6	254.0	286.2	3118	337.3	
able Yes	3.1	3.1	3.1	3.1	3.1	Sco	downstraam	nide	Yes	2333	2840	2010	316.0	340.3	
al de	1.8	18	18	1.6	0 0	sn	pubroasm	side	Yes	244.8	274.7	302.8	323.3	347.7	
, e	0.0	0.0	0.0	0.0	0.0	5	upstream u	pue	Yes	200.6	314.6	332.6	348.1	300.6	
£ ,2	-18.6	-15.5	-15.5	15.5	-15.5			÷	74	247.4	0.00%	298.7	3185	341.0	
Q (Ma)	00	0.0	0.0	0.0	0.0				O [M]	170.6	170.6	170.6	1706	1706	
0	0.0000000	0.00000.0	0000000	0 000000	0.000000				0,00	0.170621	0.170621	0.170621	0.170621	0.170621	
1	0.0	00	00	00	00				Parent of						

MODEL PIER	bp = 32 mm	SHORT	10Degrees	NORMAL	Q's
------------	------------	-------	-----------	--------	-----

OK

DATA:	Monday.	14 August	2000					UE	US	DS	DE				
								upstream	upstream	downstream	downstream				
Q	Boar, r	Non-2	0 m	1 m	2 m	3 m	4 m	end	side	side	and	6 m	7 m	Geometric pr	roperties:
Ded /evels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	10.0	10.0				56.8	55.3	56.8	39.5	27.9	15.5	188.7		D =	31.5 mm
30	75.0	75.0				94.2	92.6	100.6	73.9	58.8	40.4	226.5		L _p =	132 mm
50	202.0	203.5				120.8	117.1	134.8	102.6	87.8	71.5	277.5		$p_A =$	1.4 mm
70	390.0	393.0				145.2	144.0	159.6	124.3	100.0	96.5	294.5		y _m =	1.8 mm
90	665.0	665.0				171.8	156.0	189.9	150.0	132.0	129.5	305.3		7 _C =	3.1 mm
110	960.0	950.0				192.3	184.5	211.6	170.5	150.6	138.4	332.5		P _O =	3.6 mm
130	1370.0	1375.0				219.4	210.4	236.4	196.1	174.6	154.B	305.8		Theta -	10 degrees
150	1810.0	1620.0				237.1	229.2	259.4	208.0	186.8	177.9	336.2			
170	2300.0	2310.0				251.7	246.2	280.0	230.4	204.9	195.9	360.2			

FLOW DEPTHS

CALCULATIONS,

								UE	US	DS	DE										
			Div	tance mean	ured downstr	ream within the	e flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			vc =					
h _{man, ang}	Quer	Q [1/s]	Ye	y,	Yz	y ₂	y,	For.	Yes	You	You	Ye	y.	В.	B-b _p	2g(yor-Youlds	Querry	.53.ph.200	Fr_4m	Fr_DS	Fr_DE
10.0	0.011148	11.1				43.3	39.8	56.8	41.3	31.0	19.1	41.2	-147.0	0.609	0.560	0.73	0.012759	0.87	0.74	1.16	2.22
75.0	0.030530	30.5				80.7	77.1	100.6	P5.7	61.9	43.9	79.0	-147.0	0.609	0.560	0.89	0.030877	0.99	0.75	1.13	1.74
202.8	0.050197	50.2				107.3	101.6	134.8	104.4	90.9	75.1	130.0	-147.0	0.509	0.560	0.95	0.048200	1.04	0.81	1.04	1.28
391.5	0.069752	69.8				132.7	128.5	159.6	126.0	111.1	100.1	147.0	-147.0	0.609	0.560	0.99	0.061773	1.13	0.79	1.07	1.16
565 O	0.000008	90.9				158.3	150.5	180.9	151.8	135.1	124.1	157.8	-147.0	0.609	0.550	1.05	0.079696	1.14	0.82	1.04	1.09
955.0	0.108942	108.9				178.8	169.0	211.6	172.3	153.6	141.9	185.0	-147 D	0.609	0.500	1.08	0.093154	1.17	0.82	1.03	1.07
1372.5	0.130602	130.6				205.9	194.9	236.4	197.9	177.8	168.3	158.3	-147.0	0.609	0.560	1.09	0.108369	1.21	0.80	0.99	0.99
1815.0	0.150187	150.2				223.6	213.7	259.4	254.0	189.9	181.4	188.7	-147.0	0.609	0.560	1.18	0.125752	1.19	0.80	1.03	1.02
2305.0	0.168250	160.2				238.2	230 T	280.0	296.0	508.0	199.4	212.7	-147.0	0.609	0.560	1.20	0.140151	1.21	0.50	1.02	1.00

MODEL PIER, bp = 32 mm_SHORT_10Degrees_DROWNED Q's

DATA: Monday, 14 August 2000

			UE	US upstream	DS downstream	DE		
Power_1	Proger 2	4 m	end	side	side	emd	6 m	7 m
		15.5					147.5	147.0
650.0	635.0	181.6	195.8	171.4	155.3	145.4	326.4	
650.0	635.0	203.7	210.0	194.8	182.4	176.6	348.8	
650.0	635.0	221.4	222.9	214.1	203.6	200.3	368.5	
650.0	635.0	240.5	240.7	232.4	223.8	220.3	384.5	
650.0	635.0	256.5	258 7	247.4	242.0	249.8	404.2	
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
h _{man_1}	Boar, I	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
hoat, t	heer,I	4 m	end	side	side	end	6 m	7 m

		15.5					147.5	147.0									
1370.0	1370.0	228.6	249.6	219.0	203.5	194.5	366.9										
1370.0	1370.0	251.9	263.0	244.3	228.9	221.4	397.2										
1370.0	1370.0	268.8	277.0	261.3	249.9	243.3	419.1										
1370.0	1370.0	289.2	293.0	280 0	267.5	261.1	433.9										
1370.0	1370.0	307.7	312.4	297.6	298.5	263.9	453.9										
			UE	us	DS	DE											
					downstream												
Pres, r	B _{man_2}	4 m	end	skio	side	end	5 m	7 m									
		15.5					147.5	147.0									
0.0	0.0																
0.0	0.0																
0.0	0.0																
0.0	0.0																
0.0	0.0																
			UE	US	DS	DE											
			upstream		downstream												
Brean, 1	h _{ope, 2}	4 m	end	side	side	end	6 m	7 m									
		15.5					147.5	147.0									
2360.0	2390.0	275.2	293.6	268.3	245.9	236.8	423.9										
2360.0	2390 0	297.8	314.3	291.9	273.4	266.9	431.6										
2360.0	2390.0	317.0	328.9	309.5	292.9	286.3	452.8										
2360.0	2390.0	336.7	348.0	348.0	312.4	304.8	487.5										
2360.0	2390.0	353.0	364.5	346.0	333.1	324.8	502.1										
CALCUI	ATIONS:	NEC (SE	ī														
and the second		4000					FL	OW DEPT	145								
				UE	US	DS	DE										
					upstream	downstream											
			4 m	end	side	side	end	6 m	7 m			vc =					
Boat mg	Quali	O [ke]	y,	You	Yes	You	You	Ye	y,	В	B-b _a	2g(Nas You)**	Q _{rany}	DISTRIBUTE	Fr_an	Fr_24	Fr.an
642.5	0.089357	39.4	166.1	195.8	173.2	158.4	151.9	178.9	-147.0	0.009	0.560	0.01	0.077737	1.15	0.69	0.74	0.62
642.5	0.089057	09.4	168.2	210.0	196.5	195.5	180.2	201.3	-147.0	0.539	0.560	0.72	0.074592	1.20	0.57	0.59	0.52
642.5	0.089357	89.4	205.9	222.9	215.9	206.6	203.8	221.0	-147.0	0.539	0.560	0.59	0.068619	1.30	0.50	0.50	0.45
642.5	0.089357	89.4	225 0	240.7	234.2	226.9	223.8	237.0	-147.0	0.609	0.560	0.55	0.070266	1.27	0.44	0.43	0.41
642.5	0.089357	89.4	241.0	258.7	249.2	245.1	244.3	256.7	-147.0	0.509	0.560	0.55	0.075307	1.19	0.40	0.39	0.36
				UE	UB	DS	D€										
					upstream	downstream			1-								
	0	Ø 100-1	4 m	end	sácio	side	end	6 m	7 m		8-6,	Zg(Yue You)**	0 1	and the last	Fr.	Fr	Er .
Property and	Q ₁₄₁	Q [Fe]	-15.5	Yue	You	You	70e 3.6	-147.5	-147 D	0.509	0.560	#NUME	Q _{rang}	ENLM	Fr_an	Fr_pa 0.00	Fr_an
0.0	0000000	0.0	-15.5	0.0	1.8	31	3.6	-147.5	-147.0	0.609	0.560	ENLINE	BNUM!	MILIM.	874,RA	0.00	SNUM
0.0	0.000000	0.0	-15.5	0.0	1.8	31	36	-147.5	-147.0	0.609	0.560	MNUME	BNUM.	MAJAN	874,947	0.00	WHILE IN
0.0	0.000000	0.0	15.5	0.0	18	3.1	3.6	-147.5	-147.0	0.609	0.560	MNUME	BINUBAR	MULMI	814UM	0.00	WHILINE
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	147.5	147.0	0.609	0.560	MNUM	BNUBA	MULTIN	STALBAR	0.00	MINLINE
				UE	us	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	ered	side	side	end	6 m	7 m			v ₀ =					
Proper page	Quer	Q [84]	Y-4	Yor	Fire	You	You	74	Yr	В	B-b _j	2g(For You) 14	Qrany	DISSIMIL	Fr_an	Fr_24	Fr.an
1370.0	0.130453	130.5	213.1	249.6	220.8	206 B	198.1	219.4	-147.0	0.609	0.560	0.94	0.108462	1.20	0.70	0.73	0.67
1370.0	0.130483	130.5	236.4	263.0	246.0	232.0	224.0	249 7	-147.D	0 609	0.580	0.80	0.104192	1.25	0.60	0.61	0.55
1370.0	0.130483	130.5	253.3	277.0	263 0	253.0	245.B 254.7	271.6	-147.D	0 609	0.580	0.71	0.100761	1.29	0.48	0.54	0.48
1370.0		11 Table 18															
1220.0	0.130453	130.5	273.7	293.0	281.8	270.6											
1370.0		130.5 130.5	292.2	312.4	299.4	291.6	287.4	306.4	-147.D	0 609	0.560	0.66	0.108575	1.20	0.43	0.43	0.40
1370.0	0.130453																
1370.0	0.130453			312.4	299.4 US	291.6	287.4 DE										

			4 m	end	side	side	emel	6 m	7 m			VC W					
Non-mg	Q _{cole}	Q [IIs]	Y4	You	Yes	You	You	Ye	Y1	В	В-Ь,	2p(yor-Yes)**	Quarry	(0.2%-00)	Fr.on	Fr.os	Ft.an
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.560	ANUSE	MV,MP	MNUM	MNUME	0.00	HINLINE
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.560	WHILE	BNUME.	MNUME	MINUME	0.00	STATUTE
0.0	0.0000000	0.0	-95.5	0.0	1.8	3.1	3.6	147.5	-147.0	0.609	0.560	WNURE	ENUM	MNUMB	MNUME	G.00	ANUME
0.0	0.000000	0.0	-95.5	0.0	1.0	3.1	3.6	-147.5	-147.0	0.609	0.569	WINUSE	BINUBAT	MNUM	MINLUM	0.00	BUILDING
0.0	0.000000	0.0	-15.5	0.0	1.0	3.1	3.6	-147.5	-147.0	0.600	0.580	and the	BNUM!	MARIAN	MNUM	0.00	814,008
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			Vc *					
Pear, eq.	Que	Q [IN]	y ₄	Per	Non	You	You	y _e	y,	В	В-ь,	29(y ₁₈ -y ₁₈) ¹¹	Queen	425-0	Fr_ten	Fr_00	Fr_en
2375.0	0.171801	171.8	259.7	293.6	270.0	250.0	240.3	275.4	-147.0	0.609	0.560	0.94	0.132143	1.30	0.66	0.72	0.62
2375.0	0.171801	171.8	262.3	314.3	293.7	276.5	270.4	284.3	-147.0	0.606	0.560	0.88	0.136366	1.26	0.60	0.62	0.59
2375.0	0.171801	171.8	301.5	326.9	311.3	296.0	289.6	335.3	-147.0	0.609	0.560	0.82	0.136684	1.26	0.54	0.56	0.53
2375.0	0.171801	171.8	321.2	348.0	349.8	315.5	308.3	343.0	-147.0	0.609	0.560	0.82	0.144808	1.19	0.49	0.51	0.45
2375.0	0.171801	171.8	337.5	364.5	347.8	336.3	328.3	354.6	-147.0	0.539	0.560	0.77	0.144536	1.19	0.46	0.46	0.43
														1.23			

MODEL PIER, bp = 32 mm_SHORT_15Degrees_NORMAL Q's

OK

DATA	Sunday,	13 August	2000					UE	us	DS.	DE				
Q	Dogs 1	Bear I	0 m	1 m	2 m	3 m	4 m	upstream	side	side	downstream	8 m	7 m	Geometric pr	operties:
bed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	11.0	10.5				58.5	57.0	57.8	44.6	31.8	15.0	197.7		D =	31.5 mm
39	71.5	71.0				93.7	92.2	96.6	82.0	63.1	41.5	232.6		L _v =	132 mm
50	208.0	207.5				125.0	122.1	125.1	118.5	94.9	74.5	217.5		Z4 =	1.4 rom.
70	395.0	397.0				149.3	147.8	150.2	142.3	119.3	102.9	293.5		Z4 *	1.8 mm
90	660 D	645.0				173.9	172.7	171.3	168.6	141.3	125.5	286.9		2: *	3.1 mm
110	965.0	960.0				197.3	191.2	199.3	189.9	162.1	147.3	320.5		20 *	3.6 mm
130	1350.0	1353.0				219.2	210.5	225.1	209.1	178.1	160.8	302.4		Theta =	15 degrees
150	1820.0	1530.0				246.2	239.4	246.5	238.4	201.8	182.3	322.3			
170	2300.0	2300.0				261.6	256.8	258.4	252.9	215.4	194.8	341.8			

CALCULATIONS

FLOW DEPTHS

UE US DS DE

			Dis	tance meas	ared downst	ream within the	flume	upstream	upstream	downstream	downstream										
			0 m	1 cm	2 00	3 m	4 m	end	nicle	side	end	6 m	7 m			w _C =					
Personal Property and Property	Q _{cate}	Q [Ua]	Ye	No.	Ya	Va.	74	You	Yes	You	You	Ye	V+	8	B-b _p	20(You You)"*	Querry	Sarrage.	Fr_4m	Fr_DS	Fr_DE
10.8	0.011558	11.6				45.0	41.5	57.8	46.4	34.9	18.6	50.2	-147.0	0.609	0.551	0.70	0.013376	0.86	0.72	1.03	2.39
71.3	0.029757	29.8				80.2	76.7	96.6	83.6	66.3	45.1	85.3	-147.0	0.609	0.551	0.79	0.025990	1.03	0.73	1.01	1.63
207.6	0.050812	50.8				111.5	106.6	125.1	120.5	98.0	76.1	70.0	-147.0	0.609	0.551	0.75	0.040653	1.25	0.77	0.96	1.22
396.0	0.070152	70.2				135.6	132.3	153.2	144.0	122.4	106.4	1465 D	-147.0	0.609	0.551	0.76	0.051421	1.36	0.76	0.95	1.06
652.5	0.090050	99.0				160.4	157.2	171.3	170.4	144.4	129.1	139.4	-147.0	0.609	0.551	0.75	0.059696	1.51	0.76	0.95	1.02
962.5	0.109369	109.4				183.B	175.7	199.3	191.7	165.3	150.6	173.0	-147.0	0.609	0.551	0.64	0.076419	1.43	0.78	0.94	0.98
1350 0	0.129527	129.5				205.7	195.0	225.1	290.9	181.3	164.3	154.9	-147.0	0.609	0.551	0.95	0.094599	1.37	0.79	0.97	1.02
1825.0	0.150600	150.6				2327	223.9	245.5	254.0	204.9	185.8	174.8	-147.0	0.609	0.551	0.92	0.104261	1 44	0.75	0.94	0.99
2300.0	0.159066	169.1				246.1	241.3	268.4	296.0	218.5	198.3	194 3	-147.0	0.609	0.551	1.01	0.121304	1.39	0.75	0.96	1.00
																		4.76			

MODEL PIER, bp = 32 mm_SHORT_15Degrees_DROWNED Q's

DATAT Sunday, 13 August 2000

			UE	US upstream	DS downstream	DE. downstream		
Power, 1	Bear 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
630 D	660.0	191.2	188.6	191.8	170.0	158.9	339.5	
630.0	660 D	212.5	209.6	210.5	193.3	182.4	357.8	
630.0	650 D	230.9	232 1	225.6	211.5	202.9	375.0	
630.0	650 D	248.2	247.1	243.9	228 8	220.4	392.5	
630.0	660 D	264.9	263.9	254.6	245.4	240.0	409.9	
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Down, 1	h _{nat,2}	4 m	end	side	side	ered	6 m	7 m
		15.5					147.5	147.0
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE upstream	US upstream	DS downstream	DE. downstream		
h		4	and	mide	whele	and	£	7 -

					Fr. 20	0.00	0.42			Pr. 04	88	000	000			1	0.68	950	0.52	0.47	0.42	
					Fr. de	9000	2400			4	BNOM:	BNUM	INUM				2.63	0.00	080	0.45	0.41	
					SCHOOL	200	55			HORNIE	MNUNE	MALINE	MALINE			100000	17.	121	1.41	1.27	1.10	
					Opposite	0.059044	0.073906			Opposed to	NOW.	BACK!	00000			0	A CONTRACTA	0.099492	0.092055	0.102767	0.108859	
					29the Yeal ⁴¹⁸	0.56	880			29(For Ton)	MACINE	MACANE	BALINE		;	Solve of the						
					8-0,	0.561	0.551			4	0 80	0.551	0.951			8.6	1981	1980	0.551	0.551	0.251	
						0 0000	6090				0.639	6090	0.000				0000	0.000	0000	6000	6000	
				13	ú	147.0	147.0		7 33	ù	147.0	0.294	.147.0		1	E ,	0.000	147.0	147.0	0.734	-147.0	
9 5	147 0 10 0	0.00	FLOW DEPTHS	E e	ž	2103	245.0		E	£	147.5	147.5	147.5		1	E i	2	242.8	277.0	2002	312.3	
147.5 372.5 470.3 424.5 463.2 463.2	147.5 E	147.3 452.2 454.5 455.3 482.9 500.9		downstream	N.A.	185.9	223.9	DE	pue	For	3.6	3.6	9 9 0	2	downstream	pue	Z I	223.3	245.8	258.1	286.7	DE
197.6 242.3 242.3 264.5 263.1 DE downstream end	DE doese thram	222.4 244.5 288.4 291.1 317.9	SG	downstream side	Yes	195.4	231.9	DS downstram	side	Yes	31	3.1	31	\$a	downstream		Ton.	240.6	259.1	277.3	296.6	ps downstream
213.1 2237.5 256.0 274.1 203.5 DS downstream side	DS formation and the second transfer age of the	241.8 285.1 307.5 309.6	S	patream	Yes	2123	242.7	CS California	slide	Yes	0 0	9 1	0 6	25	patream		Post .	282.8	276.8	293.4	310.4	US upstream
239 6 281 0 275 0 201 6 308 6 US upstiruan	US upolinemn d	274.5 294.3 311.8 351.8 351.3	5	pusteram u	You	209.8	247.1	30 cm	pus	Yes	000	0.0	000	3	upstream		Post I	267.5	278.5	2862	317.4	Sp. mentequ
245.5 277.5 278.5 278.5 317.4 UE Upshream end	Head See			E T	Z,	197.0	2327			r.	15.5	-15.5	15.5			E ,	1	249.4	3643	2902.0	301.6	
W40805 #	5E \$	THE SERVICE			O [Ne]	900	200			O [N+]	000	0.0	000	3		2000	d live	1301	1301	1301	130.1	
1360 0 1360 0 1360 0 1360 0	20000]	2330 2330 2330 2330 2330 2330			Ques	0.089531	0.009531			Q.m.	00000000	0000000	0000000	200000		¢	Sec.	0.130125	0.130125	0.130125	0.130125	
1305.0 1305.0 1305.0 1305.0	88888	2330 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330 2330			- 1	6450				- 1	000							1362.5				

			4 m	and	slide	wide	end	6 m	7 m			v _c =					
Boan, mg	Quate	Q [1/e]	Y4	Yor	Yes	You	You	Ye	Yr	8	B-b,	20(Nor-You) 11	Quarry	CHICAGO	Fr.an	Fr_en	Fr_An
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.551	MINUSE	ENUM	KNUM	BNUMB.	0.00	MANUAL PARK
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.551	WHILE	INJUM!	PRUM	BNUMBAR	0.00	WINDOW
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.551	MINIJAR	ENUM	PULM	MINE SMITH	0.00	MINELED IN
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.509	0.551	ANULE	ENGAN.	MINUTE.	BINGUISM	0.00	BINGUISH
0.0	0.000000	0.0	-15.5	0.0	1.8	3.1	3.6	-147.5	-147.0	0.609	0.551	MNUMBER	INUM	MUM	BNUMB	0.00	BNUMB
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			Vc m					
Property.	Que	Q [l/s]	y.	Fee	You	You	You	Ye	y-		B-b _p	2g(y ₁₈ -y ₂₆)**	Quarry	125 kills.	Fr_an	Fr_04	Fr_an
2325.0	0.169983	170.0	262.4	281.3	276.3	244.9	225.9	304.7	-147.0	0.609	0.551	0.87	0.116836	1.45	0.66	0.74	0.53
2325.0	0.169963	170.0	282.5	303.8	296.0	268.3	246.1	277.0	-147.0	0.609	0.551	0.86	0.126513	1.34	0.59	0.64	0.61
2325.0	0.169963	170.0	302.6	323.8	313.5	288.9	271.9	307.8	-147.0	0.609	0.551	0.85	0.135093	1.26	0.54	0.57	0.52
2325.0	0.169963	170.0	322 3	341.3	333.5	310.6	294.7	335.4	-147.0	0.609	0.551	0.80	0.136582	1.24	0.49	0.51	0.46
2325.0	0.169963	170.0	341.5	360.4	353.0	332.8	321.4	353.4	-147.0	0.609	0.551	0.76	0.139372	1.22	0.45	0.46	0.42
														1.32			

MODEL PIER, bp = 32 mm_MEDIUM_5Degrees_NORMAL Q's

OK

									+114+	white.			*-	Consentate	nen o nellon
0	Rear 1	Rose, I	9 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m	Geometric	properties:
hed levels			12.5	10.5	15.0	13.5	75.5					147.5	147.0		
10	12 D	12.5				59.2	57.3	59.1	38.5	26.3	16.8	195.7		D.	31.5 mm
30	79.0	78.0				95.3	94.5	103.1	72.4	53.0	42.0	236.D	204.5	L _p =	178 mm
50	209.0	208.5				122.3	118.9	138.8	99.8	81.3	67.9	277.1	231.0	$Z_{A} =$	0.8 mm
70	406.0	405.0				146.1	145.4	166.6	120.4	103.3	93.0	297.2	257.0	Z ₀ =	1.3 mm
90	640.0	650.0				169.2	165.1	194.5	140.9	124.5	115.0	299.1	274.0	Z ₀ =	3.4 mm
110	955.0	960.0				191.7	183.6	218.1	162.5	143.8	134.4	277.6		Z ₀ =	3.8 mm
130	1350.0	1350.0				215.9	209.0	242.5	178.0	163.6	157.3	333.5			
150	1840.0	1825.0				234.6	227.3	269.9	195.0	178.8	173.5	328.9			
170	2360.0	2315.0				251.5	246.6	291.6	212.6	197.0	192.0	356.4			
CALCULA	TOPING	POTEST.													
PALLOLA	(Included)	Printerior and the second													
								FLOW DEPT	HS						
								UE	us	DS	DE				

								LEGAL DEL	1110					J							
								UE	us	DS	DE										
			Dis	lance meas	sured downsh	ream within the	flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			ve =					
Power, and	Que	Q [1/s]	Fe	y,	Ye	7)	y.	You	You	For	You	74	y-		B-b _y	2g(Nar-You)"	Quany	101-27 MED	Fr_4m	Fr_DS	Fr_DE
12.3	0.012338	12.3				45.7	41.0	59.1	39.8	29.6	29.6	48.2	-147.0	0.609	0.564	0.79	0.013261	0.93	0.76	1.37	2.19
79.5	0.031234	31.2				81.8	79.0	103.1	73.7	56.4	45.0	88.5	57.5	0.609	0.564	0.98	0.031292	1.00	0.74	1.32	1.67
208.8	0.050934	50.9				108.8	103.4	138.8	101.0	84.6	71.7	129.6	84.0	0.609	0.564	1.05	0.050050	1.01	0.80	1.17	1.39
405.5	0.070989	71.0				134.6	129.9	168.6	121.7	106.6	96.8	149.7	110 D	0.609	0.564	1.11	0.065623	1.07	0.79	1.15	1.24
645.0	0.089531	89.5				155.7	149.6	194.5	142.2	127.9	119.5	151.6	127.0	0.609	0.564	1.16	0.084367	1.07	0.81	1.11	1.14
957.5	0.109084	109.1				178.2	168.1	218.1	163.8	147.1	138.2	130.1	-147.0	0.609	0.564	1.20	0.099732	1.09	0.83	1.00	1.11
1350.0	0.129527	129.5				202.4	193.5	242.5	179.3	157.0	161.1	156.0	-147.0	0.609	0.554	1.24	0.110016	1.11	0.80	107	1.05
1832.5	0.150909	150.9				221.1	211.8	269.9	264.0	182:1	177.3	181.4	-147.0	0.609	0.584	1.33	0.136795	1.10	0.81	1.10	1.00
2337.5	0.170439	170.4				238.0	231.1	291.0	296.0	200.4	195.8	208.9	-147.0	0.600	0.554	1.36	0.153391	1.11	0.80	1.07	1.03

MODEL PIER, bp = 32 mm_MEDIUM_5Degrees_DROWNED Q's

DATAS Sunday, 13 August 2000

Name of	h _{man,3}	4 m	UE upstream end	US upstream side	DS downstream side	DE downstream and	6 m	7 m	
-140	1100	15.5	4			-	147.5	147.0	
640.0	645.0	189.4	205.8	174.9	163.3	154.6	342.1	140.0	1
640.0	645.0	205.1	218.9	994.1	183.1	128.1	354.0		1.
640.0	645.0	222.5	229.4	212.4	204.0	199.3	370.5		1
640.0	645.0	242.2	245.4	231.6	225.3	222.4	389.2		1
640.0	645.0	262.1	263.4	251.1	246.5	244.1	407.0		1
			UE	US	DS	DE			
			upstream	upretream	downstream	downstream			
Pour, t	hour. I	4 m	end	side	side	end	6 m	7 m	
		15.5					147.5	147.0	
0.0	0.0								
0.0	0.0								
0.0	0.0								
0.0	0.0								
0.0	0.0								
			UE	US	DS	DE			
			upstream	ugstream	downstream	downstream			
Boar, I	han 2	4 m	end	side	side	end	6 m	7 m	

			4	0 58 0 50 0 43 0 38	Fr. 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			7.	0.56 0.56 0.43 0.38	Fr. as muse muse muse	77.00 0.05 0.05 0.47 0.42
			No.	1183	MUM MUM MUM MUM	9 8 8 8 5 5
			Geen	0 GB/101 0 GB/101 0 GB/101 0 GB/101 0 GB/101 0 GB/101	PRUM PRUM PRUM PRUM	O.121676 0.175671 0.175671 0.173719 0.113019
				000000000000000000000000000000000000000	2glyar had a second sec	240 vc
			ž.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.564 0.564 0.564 0.564 0.564	400000000000000000000000000000000000000
				0.6000 0.6000 0.6000 0.6000 0.0000	809 0 809 0 809 0	e 0000 0
100		8 5 5 5 8	7 m rg	147.0 147.0 147.0 7.m	97. 147.0 147.0 147.0 147.0	7 m 7 v 7 v 7 v 7 v 7 v 7 v 7 v 7 v 7 v
147.0	7 m 147.0	7 m	FLOW DEPTHS	206.5 2223 0 241.7 258.5 6.m	100 S S S S S S S S S S S S S S S S S S	2242 2358 2748 310 0
147.5 371.7 403.1 422.1 437.6 457.5	277.5	418 5 418 5 418 5 418 5 418 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	158.5 122.0 203.1 226.2 246.0 06 downstream and	74 33 33 33 33 34 36 36 36 36 36 36 36 36 36 36 36 36 36	764 7 204 7 228 2 240 8 272 8 272 8 294 7 DE
200.0 204.4 200.0 200.0 200.0	downstream end end	DE downsteam end end 234.1 254.8 231.5 201	DS downstream side Fis	186.6 207.4 228.6 248.9 DS downsheam side	Yes 34 34 34 34 34 34 34 34 34	210.0 234.3 234.3 234.3 276.4 276.4 296.4
207.5 230.0 250.3 273.0 283.0	DS side side	DS sownstream side 240.4 284.3 286.3 310.8 311.3	US side yes	176.2 195.4 213.7 222.9 252.4 uS spatream side	Topodo a	150 A 200 B 200 B 200 B 200 A
219.5 245.1 261.0 279.0 300.5	upatream side	US side side 274.6 274.0 300.8 301.3 342.3	UE of the state of	205 8 218 9 229 4 245 4 263 4 263 4 263 4 263 4 263 4	974 000 000 000 000	251.6 273.4 285.8 286.9 300.0 UE upobsess u
251.6 273.4 266.9 300.8 319.3	nesteep Per Per	UE spakesen end 306.3 314.6 3103.0 318.5 3	E #	1738 1806 207 0 226.7 246.6	22222	A M Z 293.0 229.3 229.3 229.0 270.4 200.6
78.5 234.5 272.5 291.9 312.3	# E	4.m 18.5 272.4 292.0 313.1 316.3 310.6		8 8 8 8 8	000000 000000	0 PM 10 0 S 10 S 1
1275.0 1375.0 1375.0 1375.0] :::::	23560 27560 27560 27560 27560	d	0 088257 0 088257 0 088257 0 088257	0.000000 0.0000000 0.0000000 0.00000000	Q ₁₈ 0.130483 0.130483 0.130483 0.130483
1365.0 1365.0 1365.0 1365.0 1365.0	2 00000	2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	1	942.5 942.5 942.5 942.5	200000	1370 6 1370 6 1370 6 1370 6 1370 6

Fr_{an} Prache Prache Prache Prache Prache

7 88 4 8 8 8 8 4 8 8

			4 m	end	side	side	end	6 m	7 m.			V _C =					
New year	Que	Q [Fe]	y.,	You	You	You	You	Ye	91	В	B-b _p	20(Yes-Yes)"	Q _{rheory}	STATE OF	Fr. An	Fr.no	Fr. an
0.0	0.000000	0.0	-15.5	0.0	13	3.4	3.6	-147.5	-147.0	0.609	0.564	MNUM	WHILINE	MNUM:	BNUM!	0.00	814,858
0.0	0.000000	0.0	15.5	0.0	1.3	3.4	3.8	147.5	-147.0	0.609	0.564	#NUM!	MALIME	MINE THE	8143,3646	0.00	MINUSTREE.
0.0	0.000000	0.0	15.5	0.0	1.3	3.4	3.6	-147.5	-14T.0	0.609	0.564	MNUM	WNUM	MINUM	STYLES	0.00	STOUTH .
0.0	0.000000	0.0	15.5	0.0	1.3	3.4	3.0	-147.5	-147.D	0.609	0.564	MINILINA	MNUM	MNUM	BENJUMBER	0.00	MINE THE RESERVE
0.0	0.000000	0.0	-15.5	0.0	1.3	3.4	3.6	-147.5	-147.0	0.609	0.564	MENTAL	MATING	MUM	BPUL/BAT	0.00	60.00
				UE	US	08	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			vc =					
Bearing.	O.se	9 [1/4]	Y4	You	You	You	Yes	Ye	91		H-b _p	20(Yes-Yes)**	Querry	10/25/62	Fr_en	Fr.as	Fr_an
2350 0	0.170894	170.9	256.9	306.3	255.9	243.8	238.0	269.0	-147.0	0.609	0.564	1,13	0.155380		0.69	0.74	0.64
2350.0	0.170894	170.9	274.5	314.6	277.3	267.6	262.6	276.7	-147.0	0.609	0.564	0.99	0.148885	1.15	0.62	0.65	0.62
2350.0	0.170894	170.9	297.6	333.0	302.0	269.6	285.3	305.5	-147.0	0.509	0.564	0.95	0.155115		0.55	0.57	0.53
2350.0	0.170894	170.9	319.8	348.5	322.5	314.1	308.2	333.8	-147.0	0.609	0.564	0.85	0.150844		0.50	0.51	0.46
2350.0	0.170894	170.9	337.1	368.1	343.5	334.6	333.6	354.6	-147.0	0.609	0.564	0.84	0.158772	1.08	0.49	0.46	0.42
														1,10			

MODEL PIER, bp = 32 mm_MEDIUM_10Degrees_NORMAL Q'S

OK

DATA:	Saturday	12 Augus	sf 2000					UE	US	DS	DE										
								upetream	upstream	downstream	downstream										
Q	Plope 1	Boun J	0 m	1 m	2 m	3 m	4 m	end	nide	side	and	6 m	7 m			Geometric p	roporties:				
bed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0								
10	13.0	13.5				60.4	59 D	61.1	43.9	30.3	15.8	201.5				[] =	31.5	MONTH.			
30	78.0	76.5				96.2	94.5	102.9	81.0	58.0	41.5	227.1				L _p =	178	green.			
50	212.5	212.5				125.9	123.8	134.4	114.6	88.0	69.0	243.3				2A -	0.8	mm			
70	405.0	405.0				150.3	149.2	161.9	138.3	111.9	96.4	295.0				z _m =	1.3	enm.			
90	660.0	650.0				175.4	174.4	189.6	163.1	133.9	120 0	255.7				400	3.4	mn			
110	970.0	970.0				197.1	190.7	215.1	184.5	152.9	139.5	278.0				20 =		mm			
130	1385.0	1385.0				221.2	212.4	237.3	207.3	173.0	159.5	301.3				-0	-				
150	1810.0	1830.0				244.3	237.6	255.6	230.5	196.1	152.9	324.4									
170	2350.0	2380 0				259.5	254.2	275.1	250.1	214.0	201.5	354.4									
CALCUL	ATIONS:	85555																			
								FLOW DEPT	HS												
								UE	US	DS	DE										
			Die	fance meas	sured downst	ream within th	e flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	sicie	end	6 m	7 m			v _c =					
Boar, erg	Quar	Q [I/b]	Y ₁	y,	Ye	Y1	Y4	Yes	You	Fos.	You	Ye	Yr.	В	B-b _p	2g(ye-yes)**	Querry	05.75-6	Fr_4m	Fr_DS	Fr_DE
13.3	0.012835	12.8				46.9	43.5	61.1	45.2	33.6	19.6	54.0	-147.0	0.609	0.552	0.77	0.014230	0.90	0.74	1.20	2.45
78.3	0.031104	31.2				82.7	79.0	102.9	82.3	01.4	45.3	79.6	-147.0	0.639	0.552	0.93	0.031498	0.96	0.74	1.19	1.69
212.5	0.051389	51.4				112.4	108.3	134.4	115.9	91.4	72.8	95.8	-147.0	0.609	0.552	0.95	0.047648	1.08	0.76	1.08	1.37
405.0	0.070945	70.9				136.6	133.7	161.9	139.5	115.3	100.2	147.5	-147.0	0.539	0.552	0.98	0.062441	1 14	0.76	1.05	1.17
655.0	0.090222	90.2				161.9	158.9	189.8	164.4	137.3	123.6	108.2	-547.0	0.509	0.552	1.04	0.078677	1.15	0.75	1.03	1.09
970.0	0.109794	109.8				183.6	175.2	215.1	185 B	156.3	143.3	130.5	-147.0	0.539	0.552	1.10	0.094613	1.16	0.78	1.03	1.06
1385.0	0.131195	131.2				207.7	196.9	237.3	208.5	176.4	163.3	153.8	-147.0	0.009	0.552	1.12	0.108523	1.21	0.79	1.03	1.04
1820.0	0.150393	150.4				230.8	222.1	255.6	254.0	199.5	186.7	176.9	-147.0	0.609	0.552	1.07	0.118062	1.27	0.75	0.96	0:98
2365.0	0.171439	171.4				246.0	238.7	275.1	296 D	217.4	205.3	206.9	-147.0	0.609	0.552	1.09	0.130409	1.31	0.77	0.98	0.97

MODEL PIER, bp = 32 mm_MEDIUM_10Degrees_DROWNED Q's

DATAS Saturday, 12 August 2000

Name 1	hani	4 m	UE upstream end	US upstream side	DS downstream side	DE downstream and	6 m	7 m
		15.5					147.5	147.0
650.0	645.0	199.3	204.6	195.1	174.4	155.4	347.1	
650.0	645.0	215.8	217.0	209.9	194.1	187.8	360.6	
650.0	645.0	232.9	232.4	227.1	214.6	211.3	377.4	
650.0	645.0	250.0	249.3	242.6	233.3	230.1	395.4	
650.0	645.0	267.4	266.3	250.8	262.1	250.8	413.5	
			UE	US	D/S	DE		
			upstream.	upstream	downstream	downstream		
han,t.	h _{man_2}	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	us	DS	DE		
			wpstream	upstream	downstream	downstream		
Name of	Dogs. J	4 m	end	side	side	end	6 m	7 m

			à	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLAN PUSH PUSH PUSH PUSH	7 00000 4 00000 8 000000
			ž	00000	7 as 6000 6000 6000 6000 6000	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			2	0.522	PANA BNUM BNUM BNUM BNUM BNUM	5 00000 8 2 8 4 6
				23222	861/4 861/4 861/4 861/4	28888
				0.074480 0.074480 0.071177 0.072112	Quest BVIMS BVIMS BVIMS BVIMS BVIMS	Q _{mery} 0.10250 0.09647 0.096748 0.096744
			No.	000000000000000000000000000000000000000	PROMINE PROMIN	29(5)a-75ol/55 0.62 0.62 0.62 0.62 0.62
			1	0 562 0 562 0 562 0 562 0 562	8-4-4 0.552	8-4- 0 552 0 552 0 552 0 552 0 552
			.	0000 0000 0000 0000 0000	800 0 000 0 000 0 0 0 0 0 0 0 0 0 0 0 0	m (600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
811111111111111111111111111111111111111		8888	E .	3470 3470 3470 3470	7 m y y v -147.0	7 m 74 7 147 0 147 0 147 0
147.0	147.0	78.0	FLOW DEPTHS	213.1 223.9 247.9 247.9	# \$4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	204.8 204.8 206.7 206.7 206.7 206.7
347.3 389.2 412.3 446.2 446.2	6.03 2.03	6 m 404.5 400.1 475.4 404.2 513.0	8	2702 1916 2746 2746 2746 2746 2746	7 to 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	216.5 278.5 259.0 285.0 285.0 285.0 285.5 301.3 DE downstream
214.6 235.1 275.0 275.6 297.5	down three and and	DE downstream end 278.8 9 278.4 297.3 322.5 340.5	DS doentfream side	27.6 197.5 27.8 27.6 27.6 27.6 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	146 74 34 34 34 34 34 34 34 34 34 34 34 34 34	222 6 222 6 242 8 245 8 266 8 266 8 504 4 05 60eeeffsam
222 3 242 4 263 4 263 4 301 0	D3 downstream side	08 side 265 3 265 4 205 4 305 9 305 8 305 8	US upstream side	211.2 221.1.2 220.9 20.0 20.0 0	A CCCCC R	No. 245.3 245.3 242.8 280.9 289.2 314.8 UB upstream
244.0 261.5 279.6 297.9 313.5	US upperham side	US spelinean skip 250.1 271.3 228.3 247.0 263.8		2046 2170 2324 2033 2033 2063	Year Year 000 000 000 000 000 000	257 5 259 1 259 5 259 5 255 5 302 5 319 1 UE
287.5 288.1 286.5 302.5 319.1	UE upsificam and and	UE upothnem and 382 5 321 0 337 5 351 9 370 0	11 -	2003 2045 2045 2045	# % 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	235 5 236 2 207 8 204 0
45.5 251.0 265.7 263.8 303.3 319.5	25	4m 2016 2016 2010 2010 2002	1	88888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O [M] 123 6 123 6 123 6 128 6 128 6
0.0527 0.0527 0.0527 0.0527 0.0527	2 :::::	23160	a company	0.098/704 0.098/704 0.098/704 0.098/704	0.000000	Que 0.128964 0.128964 0.128964 0.128964
1340.0 1340.0 1340.0	2 00000	2200 0 2220 0 2220 0 2220 0 2220 0 2220 0		2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	00000	1336 0 1330 0 1300 0 1300 0

	2	5	5	5	3	5					L	7	5			
	FP.	BMD	200	200	SN8	ENG				11	9.0	0.5	0.4	0.4	0.43	
	Fr. 200	000	000	00.0	000	000				Fr. an	0.64	0.57	0.52	0.47	0.43	
	Fr. de	BNUMB	MUNICIPAL	MACON	BRUING	MALINE				Pr. sa	190	0.55	0.50	0.46	0.43	
	100000	MACHINE	SP4CRA	and the	SP4,040	and the				10.578,611	135	120	1.28	1.33	1.29	1.29
	Opening	BNOAR	BNOAB	BNOAR	BNUAR	BNOAS				Quant	0.125236	0.131579	0.132569	0.127663	0.131107	
*	29thur Yeal	POLINE	MACAN.	SP4,040	SP4, No	804.340			* 54	29thur Yeal	0.85	0.63	0.78	0.70	990	
	8-9,	0.552	0.552	0.552	0.552	0.552				8.6,	0.552	0.552	0.552	0.552	0.552	
	6	0.609	609.0	0.609	0.609	0.609				6	0.609	0.009	0.000	0.000	0.609	
7 10	1,6	-147.0	-147.0	-147.0	.147.0	-147.0			7 m	ii.	-147.0	147.0	-147.0	-347.0	-147.0	
E e	ž.	-147.5	-147.5	-147.5	-147.5	-147.5			E	ž	277.3	301.6	307.9	346.7	365.5	
pue	You	3.6	3.8	3.8	3.8	3.8	90	downstream	end	Non	2007	282.2	301.7	326.3	344.3	
epis	For	3.4	3.4	3.4	3.4	3.4	80	downstream	side	Yes	200.6	200.6	300.3	329.1	348.9	
appa	Yes	13	1.3	1.3	13	1.3	95	patream	side	Yes	294.4	312.5	329.5	346.3	365.0	
gu#	7.00	0.0	00	0.0	0.0	0.0	3	upstream s	gue.	You	302.5	321.0	337.5	351.9	3700	
Ē	¥4	-15.5	.15.5	115.5	9.81	-15.5			ij	No.	276.1	206.9	315.5	333.7	362.3	
	0 [11]	00	0.0	0.0	0.0	0.0				O IN	169.6	169.6	369.6	109.6	159.6	
	0	0.000000	0.000000	0.000000	0.000000	0.000000				O.es	0.100017	0.169617	0.169617	0.169617	0.169617	
	Process.	00	0.0	0.0	0.0	0.0				Bear, my	2315.0	2315.0	2315.0	2375.0	2315.0	

MODEL PIER, bp = 32 mm_MEDIUM_15Degrees_NORMAL Q's

OK

								opacream	opsercam	CHOME LOCAL GROWN	COMMISSION.										
0	None, 1	hour, i	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			Geometric p	roperties:				
ed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0								
10	14.5	14.5				61.3	60.7	61.3	45.4	34.0	15.0	206.5				D=	31.5	men			
30	73.0	73.0				97.4	95.6	96.1	57.8	61.5	40.8	217.6				L, =	178	men.			
50	200.0	290.0				130.0	129.9	126.4	126.4	91.9	65.0	215.0				Zn =	0.8	men.			
70	397.0	392.0				154.4	150.6	149.6	152.8	115.8	92.4	232.0				Za *	1.3	mm			
90	650.0	650.0				180.6	179.1	174.0	150.9	141.5	121.5	250.8				20.0	3.4	mm			
110	970.0	965.0				204.6	202.2	197.3	205.5	165.3	145.1	272.2				Z ₀ *	3.6	7900			
130	1350.0	1330.0				225.0	221.3	290.5	229.3	185.4	166.8	295.3									
150	1830.0	1830.0				249.5	242.2	238.9	251.0	204.5	185.1	323.8									
170	2300 0	2310.0				271.3	265.0	248.0	273.9	224.5	205.5	341.7									
CALCULA	THONS:	NO. OF THE																			
	31,240,40							FLOW DEPT	HS												
								UE	US	DS	DE										
			Die	fance meas	ured downstr	eam within the	e flume	upstream	upstream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	nide	end	6 m	7 00			¥2 **					
h _{mar_my}	Que	Q [l/s]	Fe	y,	y ₂	Yı	Уu	Yor	Yes	You	Yes	Ti .	y.	В	B-b _p	2g(yor You)**	Quarry	SECULIA .	Fr_4m	Fr_DS	Fr_DE
14.5	0.013424	13.4				47.8	45.2	61.3	49.7	37.4	18.8	59.0	-147.0	0.639	0.539	0.54	0.010871	1.23	6.73	1.10	2.72
	0.030120	30.1				83.9	80.1	96.1	89.0	64.9	44.6	70.1	-147.0	0.639	0.539	0.72	0.025322	1.19	0.70	1.08	1.68
209.5	0.051025	51.0				116.5	114.4	126.4	127.7	95.3	71.8	67.5	-147.0	0.609	0.539	0.63	0.042533	1.20	0.69	1.03	1.36
384.5	0.070019	70.0				140.9	135.1	149.6	154.0	119.1	96.2	84.5	-147.0	0.609	0.539	0.86	0.055062	1.27	0.74	1.01	1.23
650.0	0.089877	89.9				167.1	163.6	174.0	182.2	144.9	125.3	103.3	-347.0	0.609	0.539	0.88	0.009053	1.30	0.71	0.96	1.06
967.5	0.109653	109.7				191.1	186.7	197.3	206.8	108.6	150.0	124.7	-947.0	0.609	0.539	0.89	0.081250	1.35	0.71	0.94	0.99
1340.0	0.129046	129.0				211.5	205 8	210.5	230.5	155.8	170.6	147.8	-147.0	0.609	0.539	0.93	0.094910	1.36	0.72	0.93	0.96
1830 0	0.150806	150.8				236.0	226.7	238.9	254.0	207.9	189.0	176.3	-547 D	0.609	0.539	0.96	0.109523	1.35	0.73	0.94	0.96
2305.0	0.169250	169.2				257.8	249.5	248.0	296.0	227.9	209.3	194.2	-147.0	0.609	0.539	1.18	0.144678	1.17	0.71	0.92	0.93

MODEL PIER, bp = 32 mm_MEDIUM_15Degrees_DROWNED Q's

DATA: Friday, 11 August 2000

DATA: Friday, 11 August 2000

			UE	US upstream	DS downstream	DE: downstream		
Property 1	N _{man_i}	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
655.0	630.0	196.5	187.9	202.1	172.9	158.9	341.5	
655.0	630.0	213.9	205.1	214.5	191.0	163.8	358.3	
655.0	630.0	232.5	226.0	229.9	211.1	204.6	376.5	
655.0	630.0	249.9	244.0	244.6	230.3	224.4	394.5	
655.D	630.0	267.1	262.7	261.0	248.6	243 3	411.3	
			UE	us	05	DE		
			upstream	upstream	downstream	downstream		
Post, 1	Person, 2	4 m	end	side	side	end	6 m	7 m
		18.5					147.5	147,4
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
	hear, r	4 m	end	side	side	end	6 m	7 m

				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Franchise PRUM PRUM PRUM PRUM	0.61 0.61 0.45 0.42 0.39
				0.55 0.55 0.47 0.41	7 8000000000000000000000000000000000000	77 as 0 055 0 055 0 042 0 042
				000	A STATE OF S	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
				22895	N14 N14 N14 N14 N14	22222
				0,072542 0,077628 0,068103 0,068141	Open RFUAR RFUAR RFUAR RFUAR	0.00042 0.00042 0.10042 0.10103 0.100940
			ž	20/0/or Yeal 0.76 0.86 0.86 0.84 0.54	PACIN PACIN PACIN PACIN PACIN PACIN PACIN	7g/vg 7 ₁₀ /vg 7 ₁₀ /
				0.529 0.529 0.529 0.529 0.529	48 0 538 0 538 0 538 0 538	8.45 0.558 0.558 0.558 0.558 0.558
				6000 6000 6000 6000 6000 6000 6000 600	800 0 800 0 800 0 800 0	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			e .	747.0 147.0 147.0 147.0	# 4 10 0 14 10 0 14 10 0 14 10 0 14 10 0 14 10 0 14 10	e v 151 0 0 151 0 0 151 0 0 151 0 0 151 0 0 151 0 0 151 0 0 151 0 0 151
147.0	15 N	78.0 747.0	FLOW DEPTHS	7 1940 290 200 201 201 201	8 w 2 c c c c c c c c c c c c c c c c c c	5 m 7
147.3 380.5 408.1 408.2 445.8	6 m 147.5	6 m 147.8 424.3 444.8 470.3 497.2 508.4	1 2	You 162.7 167.6 208.5 228.2 247.1	944 138 138 138 138 106	downsheam end 204 2 208 7 200 8 201 6 200 7 DE
204.4 225.9 247.0 287.8 285.9	downstream and and	DE doemstream and 243.0 2743.0 2755.5 205.5 3 334.6 3 334.6 5	ps downstream side	200 8 200 8 200 8 200 8 200 8	914 134 34 34 34 35 55	doenstream side 754 243.0 243.0 262.1 281.9 281.9 288.9 05
218.8 226.8 256.8 278.5 285.5	DS downstream side	200 6 278 6 278 6 290 8 319 3	US side	74 203 4 215 8 230 2 245 9 245 9	Y 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	255 0 270 5 201 9 301 9 318 8
253.8 299.3 284.8 300.6 317.5	upatreen side	US side 803.0 303.0 315.5 303.1 340.5 368.5	5			Par 2013 2013 2013 2013 2016 2016 UE
231.3 255.1 276.3 297.6 396.4	H de pe	Mary 100 Mar		74 163 0 217 0 234 4 251 6	* * * * * * * * * * * * * * * * * * *	200 J
15.5 248.2 285.8 284.4 301.5 321.2	£ 25	4 m 16.5 296.6 310.5 347.7 366.2	NACO NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	0 [M] 100 4 100 4 100 4 100 4
1375.0 1375.0 1375.0 1375.0	2 00000	2330 0 2330 0 2330 0 2330 0	THOMS	0.082357 0.082357 0.082357 0.082357	0000000	Q ₄₀ 0.130364 0.130364 0.130364 0.130364
0.000.1 0.000.1 0.000.1 0.000.1	1 00000	23200 23300 23300 23300 23300 23300	28	0425 0425 0425 0425 0425	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1367 5 1367 5 1367 5 1367 5 1367 5

			4 10	emd	side	side	end	5 m	7 cm			Vc =					
Ploan mg	Que	Q [W]	Y+	You	You	Yes	Yor	ye.	71	8	B-b _p	2g(you You)18	Queen	Market	Fr_en	Fr.on	Fr.an
0.0	0.0000000	0.0	-15.5	0.0	1.3	3.4	3.8	-147.5	-147.0	0.609	0.539	ANUM	#NUME	#NUM!	#P4E,15.00	0.00	MNUME
0.0	0.0000000	0.0	-15.5	0.0	1.3	3.4	3.8	-147.5	-147 D	0.609	0.539	RNUME	WINDS	BNUM	MINUTE.	0.00	MNUME
0.0	0.000000	0.0	-15.5	0.0	1.3	3.4	3.8	-147.5	-147.0	0.609	0.539	MNUM	WHILIAM	BNUBB	MALINE.	0.00	MNUM
0.0	0.000000	0.0	-15.5	0.0	1.3	3.4	3.8	-147.5	-147.0	0.609	0.539	RNUME	ATRIANE.	BTNL/BAT	WHILE PARTY	0.00	MNUM
0.0	0.000000	0.0	-15.5	0.0	1.3	3.4	3.8	-147.5	-147.0	0.009	0.539	MINUM	MATERIA	ENUM	STATE	0.00	MUM
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	bred	side	side	end	5 m	T en			w _e =					
Boan, mg	Ques	Q [IN]	y-4	You	Yes	You	You	74	y.,	8	B-b _p	2g(you you)**	Query	256/25/23	Fr. an	Fr_pe	Fr_on
2325.0	0.169983	170.0	279.9	201.3	334.3	264.0	245.8	276.8	-147.0	0.609	0.539	0.92	0.130479	1.30	0.60	0.66	0.61
2325.0	0.169983	170.0	295.0	304.1	316.8	262.0	268.1	297.3	-147.0	0.609	0.539	0.86	0.130115	1.31	0.56	0.60	0.55
2325.0	0.169983	170.0	317.3	328.0	334.4	303.1	289.3	322.8	-147.0	0.600	0.539	0.81	0.133141	1.28	0.50	0.53	0.49
2325.0	0.169983	170.0	332.2	343.5	350.8	322.1	309.1	343.7	-147 0	0.609	0.539	0.78	0.135883	1.25	0.47	0.49	0.44
2325.0	0.169963	170.0	350.7	362.3	367.0	340.6	329.5	360.9	-147.0	0.609	0.539	0.75	0.138407	1.23	0.43	0.45	0.41
														1.28			

MODEL PIER, bp = 32 mm_LONG_5Degrees_NORMAL Q's

OK

		August 2						UE	US upstream	DS downstream	DE										
Q	Pinan 1	Boun P	0 m	1 m	2 m	3 m	4 m	end	side	side	and	6 m	7 m			Geometric p	roperties:				
d levels	Trial I	11/20, 2	12.5	10.5	15.0	13.5	15.5			4134	*****	147.5	147.0			Оволичено р	operies.				
10	12.0	12.0		18.5	122	57.1	56.1	57.6	37.750	22.625	16.250	193.500	141.6			D =	31.5	mer			
30	74.0	73.0				94.3	92.8	102.3	74.080	44.250	42.125	243.800				t., -		mm			
50	199.0	200.0				122.6	120.3	135.5	105.500	70.250	63.500	239.300				Z4 "		mm			
70	400.0	402.5				148.5	147.5	168.0	125.000	91.750	88.750	291,500				Za *		me			
90	655.0	660.0				172.8	170.9	198.0	150 000	114.250	111.625	255.300						mo			
110	955 G	960.0				194.1	187.D	220.6								20 *					
	1360 D	1360.0					209.6	245.3	168.750	132 125	130,125	276.400				20 *	4.1	mm			
130	1825.0	1830.0				210.2	231.9	267.4	190.375	151.625	151.000	326.700									
170	2350.0	2350.0				254.2	248.5	288.0	222.375	186.250	191 000	351.300									
CCUL	TIONS:	100000																			
								FLOW DEPT	HS												
								FLOW DEPT	HS US	06	DE										
			Dis	tance mean	ured downstr	eam within the		FLOW DEPT UE upstream	us	DS Sownstream	DE downstream										
			Disc 0 m	tance meas	ared downstr	earn within the		UE	us			6 m	7 m			v.*					
W. 17	Q _{on}	ajvaj					Rume	UE upstream end Yus	US upstream	downstream	downstream	6 m	7 m		B-b _p	v; * 2g(ya-7ca)**	Q _{pavy}	/52 Air	Fr_4m	Fr_DS	
12.0	0.012212	Q [I/s]	0 m		2 m	3 m y ₁ 43 6	Rume 4 m 74 40 S	UE upstream end Yus 57.6	US upstream side For 38.6	flownstream side Yze 26.3	downstream end You 20.3	¥6.0	-147.0	0.609	0.560	2g(yur-You)** 0.82	0.012139	1.01	0.76	1.63	
12.0 73.5	0.012212	Q [Uu] 12.2 30.2	0 m		2 m	3 m y ₁ 43 6 80 8	Rume 4 m 74 40 6 77 3	UE upstream and Yus 57.6 102.3	US upstream s side F/s 38.6 74.9	side Yas 26.3 47.9	downstream end You 20.3 46.2	96 3	91 -147.0 -147.0	0.609	0.560	2 g(yue-you) ^{6 1} 0.82 1.06	0.012139 0.028546	1.01	0.76	1.63	
12:0 73:5 99:5	0.012212 0.030223 0.049793	Q [U ₆] 12.2 30.2 49.8	0 m		2 m	3 m y ₁ 43 6 80 8 109.1	Flume 4 m y ₄ 40 5 77 3 104.8	UE upstream end Yus 57.6 102.3 135.5	US upstream side For 38 6 74 9 106 3	flownstream side Yes 26.3 47.9 73.9	downstream end You 20.3 46.2 67.6	96.3 96.3	71 -147.0 -147.0 -147.0	0 509 0 539 0 609	0.560 0.560 0.560	2g(yus-yos) ⁶¹ 0.82 1.06 1.13	0.012139 0.028546 0.046728	1.01 1.06 1.07	0.76 0.74 0.77	1.63 1.64 1.41	
2.0 3.5 99.5 01.3	0.012212 0.030223 0.049793 0.070616	Q [I/4] 12.2 30.2 49.8 70.6	0 m		2 m	3 m y ₁ 43.6 80.8 109.1 135.0	Flurne 4 m y ₄ 40 5 77 3 104 8 132 9	UE upstream end You 57.6 102.3 135.5 168.0	US upstream : side For 38.6 74.9 106.3 125.8	flownstream side Yes 26.3 47.9 73.9 95.4	downstream end You 20.3 46.2 67.6 92.8	96.3 96.3 91.8 144.0	71 -147.0 -147.0 -147.0 -147.0	0.509 0.509 0.509	0.560 0.560 0.560 0.560	2 g(yor-You) ^{6 1} 0.82 1.06 1.13 1.22	0.012139 0.028546 0.046728 0.065236	1.01 1.06 1.07 1.08	0.70 0.74 0.77 0.77	1.63 1.64 1.41 1.37	
2.0 3.5 99.5 91.3 57.5	0.012212 0.030223 0.049793 0.070616 0.090394	Q [J/s] 12.2 30.2 49.8 70.6 90.4	0 m		2 m	3 m y ₁ 43.6 80.8 109.1 135.0 159.3	Flores 4 m y-4 40 6 77 3 104 8 132 0 155 4	UE upstream end You 57.6 102.3 135.5 168.0 198.0	US upstream / side Fire 38 6 74 9 106 3 125 8 150 8	flownstream side You 26.3 47.9 73.9 95.4 117.9	downstream and You 20.3 46.2 67.6 92.8 115.7	96.3 96.3 91.8 144.0 107.8	7: -147.0 -147.0 -147.0 -147.0 -147.0	0 509 0 509 0 509 0 509 0 509	0.560 0.560 0.560 0.560	2g(y _{ce} -y _{co}) ^{6 1} 0.82 1.06 1.13 1.22 1.26	0.012139 0.028546 0.048728 0.095236 0.084511	1.01 1.06 1.07 1.08 1.07	0.76 0.74 0.77 0.77 0.77	1.63 1.64 1.41 1.37 1.27	
73.5 99.5 01.3 67.5	0.012212 0.030223 0.049793 0.070616 0.090354 0.106084	Q [J/s] 12.2 30.2 49.8 70.6 90.4 109.1	0 m		2 m	3 m y ₂ 43.6 60.8 109.1 135.0 159.3 180.6	Rome 4 m 34 40 6 77 3 104 8 132 9 155 4 171.5	UE upstream end You 57.6 102.3 135.5 168.0 158.0 220.6	US upstream : side For 38 6 74 9 106 3 125 8 150 8 169 6	flownstream side You 26.3 47.9 73.9 95.4 117.9 135.6	downstream and You 20.3 46.2 67.6 52.8 115.7 134.2	76 46 0 96 3 91 8 144 0 107 8 128 0	71 -147.0 -147.0 -147.0 -147.0 -147.0 -147.0	0 509 0 509 0 509 0 509 0 509 0 509	0.560 0.560 0.560 0.560 0.560	2gtyu-you) ⁶¹ 0.82 1.06 1.13 1.22 1.28 1.32	0.012139 0.028546 0.046728 0.065236 0.084511 0.100058	1.01 1.06 1.07 1.08 1.07 1.09	G 76 G 74 G 77 G 77 G 77 G 81	1.63 1.64 1.41 1.37 1.27 1.27	
	0.012212 0.030223 0.049793 0.070616 0.090394	Q [J/s] 12.2 30.2 49.8 70.6 90.4	0 m		2 m	3 m y ₁ 43.6 80.8 109.1 135.0 159.3	Flores 4 m y-4 40 6 77 3 104 8 132 0 155 4	UE upstream end You 57.6 102.3 135.5 168.0 198.0	US upstream / side Fire 38 6 74 9 106 3 125 8 150 8	flownstream side You 26.3 47.9 73.9 95.4 117.9	downstream and You 20.3 46.2 67.6 92.8 115.7	96.3 96.3 91.8 144.0 107.8	7: -147.0 -147.0 -147.0 -147.0 -147.0	0 509 0 509 0 509 0 509 0 509	0.560 0.560 0.560 0.560	2g(y _{ce} -y _{co}) ^{6 1} 0.82 1.06 1.13 1.22 1.26	0.012139 0.028546 0.048728 0.095236 0.084511	1.01 1.06 1.07 1.08 1.07	0.76 0.74 0.77 0.77 0.77	1.63 1.64 1.41 1.37 1.27	

MODEL PIER, bp = 32 mm_LONG_5Degrees_DROWNED Q's

DATAS: Friday, 11 August 2000

			UE	US	DS downstream	DE downstream		
Post, I	None P	4 m	emd	side	side	end	6 m	7 m
		15.5					747.5	147.4
630.0	620.0	184.9	213.3	169.8	143.8	142.1	333.6	
630.0	620.0	203.3	214.4	192.8	174.1	172.3	352.1	
630.0	820.0	221.3	225.3	213.1	199.9	199.1	367.0	
630 0	620.0	240.2	243.8	231.1	222.0	222.5	369.9	
630.0	620.0	259.8	260.6	249.6	242.1	242.8	406.2	
			WE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Bound !	Down P	4 m	bend	side	side	end	6 m	7 m
		15.5					147.5	147.6
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Down, 1	Nager, 2	4 m	and	side	side	end	6 m	7 m

		75.5					147.5	147.0									
1375.0	1380.0	229.2	256.3	215.6	189.5	191.6	364.5										
1375.0	1380 0	250.7	268.6	237.6	218.4	216.9	393.8										
1375.0	1380 D	270.0	279.8	259.3	241.1	241.6	418.2										
1375.0	1380.0	289.0	298.1	279.9	265.1	264.6	436.1										
1375.0	1380.0	307.9	314.3	299.B	296.8	206.9	452.6										
			UE	US	DS	DE											
	Program 2	4 m	end		downstream	downstream	6 m	7									
Pour t	Prac.)	15.5	616	side	\$100	end	147.5	147.0	i								
0.0	0.0	10.0					147.3	247.0									
0.0	0.0																
0.0	0.0																
0.0	0.0																
0.0	0.0																
			UE	US	DS	DE											
	h	4 m	and		downstream		0										
Piner, 1	h _{ree,2}	15.5	eno	side	side	end	147.5	7 m	1								
2325.0	2330.0	270.0	335.5	253.8	217 8	223.4	423.8	147.0									
2325.0	2330 0	296.0	339.5	271.5	245.5	247.3	421.8										
2325 0	2330.0	309.4	325.1	300.3	274.1	274.9	450 6										
2325.0	2330.0	328.2	345.1	318.5	258.1	298.9	474.9										
2325.0	2330.0	349.2	336.5	341.0	323.5	324.6	496.9										
CALCU	LATIONS:	WITH THE	1														
							FL	OW DEPT	HS								
				UE	US	03	DE										
				upstream			downstream										
			4 m	end	side	side	end	6 m	7 mm			W; **					
Bear, eq.	Que	O [l/s]	y,	Yes	Yun	You	Fox	Ye	7:	В	B-b _p	2gtrue Yeal 15	Q _{rusy}	\$100k46	Fr_der	Fr_pe	Fr_an
625.0	0.088132	59.1	109.4	213.3	170.6	143.4	146.2	186.1	-147.0	0.609	0.560	1.10	0.096207	0.92	0.66	0.82	0.58
625.0	0.088132	88.1	187.8	214.4	193.6	177.8	176.3	204.6	-147.0	0.609	0.560	0.89	0.088202	1.00	0.57	0.62	0.50
625.0	0.088132	88.1	205.8	225.3	213.9	203.5	203.2	219.5	-147.0	0.609	0.560	0.70	0.080000	1.10	0.49	0.50	0.45
625.0 625.0	0.088132	88.1	244.7	263.8	231.9	225.7	226.6 246.8	242.4	147.0	0.509	0.560	0.65	0.081915	1.08	0.43	0.43	0.39
959.0	0.088135	88.1	244.3	250.6	250.4	245.8	246.0	250.7	140.0	0.000	0.560	0.60	0.085055	1.07	0.38	0.38	0.35
				UE	US	DS	DE										
				upviream		downstream	downstream										
			4 m	end	side	side	end	6 m	7 m			v _c =					
Post sig	Qualit	Q [lin]	y.	You	Yes	You	You	ye.	Ye	8	B-b _p	Zg(Yue Yes) 25	Q _{rawy}	7545kB2	Fr_en	Fr_04	Fr_su
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	+147.5	-147.0	0.609	0.560	MUM	WHILINE	ANUM	KNUM	0.00	MNUM
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.560	MATTER STATE	MARINE	ANUM	BINUM	0.00	BNUM
0.0	0.000000	0.0	-15.5	0.0	8.0	3.7	4.1	147.5	147.0	0.609	0.560	MATERIA.	MNUME	RNUM	8140,000	0.00	8942,048
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0 -147.0	0.609	0.560	MATERIA	MNUME	MILIM	BYAUM!	0.00	1945,755
0.0	0.000000	0.0	-15.5	0.0	0.8	37	4.1	-147.5	-147.0	0.609	0.560	MICH	MACINE	RNUM	810,367	0.00	870,731
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	5 m	7 m			v _c =					
Bran, ag	Que	Q [6/s]	y.,	For	Yes	You	You	94	y.	В	B-b _p	20(Yue-Yes) 22	Q _{rawy}	SINKS.	Fr_en	Fr_24	Fr. so
1377.5	0.130839	130.8	213.7	256.3	216.4	193.2	195.7	217.0	-147.0	0.609	0.560	1.14	0.123534	1.06	0.59	0.81	0.68
1377.5	0.130839	130.6	235.2	268.6	238.4	222.0	221.0	246.3	-147.0	0.609	0.560	0.99	0.123097	1.08	0.60	0.66	0.56
1377.5	0.130839	130.8	254.5	279.6	250 1	244.5	245.7	270.7	-547.0	0.609	0.560	0.87	0.118948	1,10	0.53	0.57	0.49
	0.130839	130.8	273.5	296.1	250.7	268.6	268.7	288.6	-547.0	0.609	0.560	0.80	0.120415	1.09	0.48	0.49	0.44
1377.5	0.130839	130.8	292.4	314.3	300.6	290.4	290.6	305.1	-147.0	0.609	0.560	0.73	0.118749	1.10	0.43	0.44	0.41
				UE	US	DS	D€										
				upstream i	upstream	downstream	downstream										

			4 m	end	side	side	end	6 m	7 en			v _c =					
Programs	Quet	Q [lin]	y.	You	Yes	You	Yor	Ye	y,	8	B-b _p	20(Yut-You)" "	Qracy	outlie.	Ff.an	Fr_20	Fr_an
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.509	0.590	WHILM	#11JA#	#NUM	MINUSE.	0.00	67-8-75-81
0.0	0.000000	0.0	-15.5	0.0	0.6	3.7	4.1	-147.5	-147.0	0.609	0.560	MNUM	MYSULA	#RYL/MIT	MINUSE.	0.00	MINE THAT
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147 D	0.609	0.580	MNUM	WHILIAM	WHILM	ATMLIBE.	0.00	WEST, TAR.
0.0	0.000000	0.0	-15.5	0.0	0.6	3.7	4.1	-147.5	-147.0	0.609	0.560	MINLIME	MINUSE	MINLIME	WHILEIT	0.00	MENTALITATE
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.560	MINISTER	BNUME	BNUMB	BNUME	0.00	MATERIAL STATE
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	and	side	side	end	6 m	7 m			vc =					
Power, any	Quete	Q [lin]	y.	You	Yes	You	You	Ye	91	8	B-b,	A	Querry	512E-02	Fr.40	Fr_24	Fr_an
2327.5	0.170074	170.1	254.5	305.5	254.6	221.4	227.5	276.3	-147.0	0.609	0.560	1.31	0:162462	1.05	0.69	0.86	0.61
2327.5	0.170074	170 1	270.5	309.5	272.3	249.2	251.3	274.3	-147.0	0.609	0.560	1.12	0.156015	1.09	0.63	0.72	0.62
2327.5	0.170074	170.1	293.9	325.1	301.1	277.8	279.0	363.1	-147.0	0.609	0.500	1.00	0.155160	1.10	0.56	0.61	0.53
2327.5	0.170074	170.1	3/12.7	345.1	319.3	301.8	303.0	327.4	-147.0	0.609	0.560	0.96	0.961771	1.05	0.51	0.54	0.48
2327.5	0.170074	179.1	333.7	336.5	341.8	327.2	328.7	349.4	-147.0	0.609	0.560	0.50	0.091291	1.86	0.46	0.48	0.43
														1.12			

0.96

MODEL PIER, bp = 32 mm_LONG_10Degrees_NORMAL Q's

OK

DATA:	hursday.	10 Augus	st 2000					UE	US	DS	DE				
								ups/ream.	upstream :	downstream	downstream				
0	Bear t	Bear 2	0 m	1 m	2 m	3 m	4 m	end	side	skilo	need	6 m	7 m	Geometric	properties:
bed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0		
10	9.0	9.0				56.1	54.6	44.4	39.3	28.5	16.0	101.5		D =	31.5 mm
30	75.5	77.0				97.9	97.1	101.0	85.8	57.5	43.0	225.0		L, =	222 mm
50	202.5	202.5				127.7	127.3	132.4	130.4	83.3	63.8	213.2		₹4.0	0.4 mm
70	390.0	391.0				154.1	150.5	160.5	140.8	108.8	87.3	230.6		Z0 =	0.8 mm
90	660.0	665 D				181.8	179.7	188.8	175.9	135.0	115.8	252.0		ZC =	3.7 mm
110	970.0	965.0				203.9	200.5	210.1	197.9	157.0	138.6	271.5		Z ₀ =	4.1 mm
130	1375.0	1370.0				225.1	219.5	232.8	222.1	177.5	160.5	293.8			
150	1820.0	1800.0				247.0	240.5	251.0	242.0	193.5	177.0	315.0			
170	2300.0	2350.0				270.1	264.5	265.1	267.4	296.3	201.5	335.8			

CALCULATIONS

2325.0 0.199963

FLOW DEPTHS UE US DS DE Distance measured downstream within the flume upstream upstream downstream downstream 1 m 2 m 3 m side end 7 m ve = $2\phi(y_{\rm on},y_{\rm on})^{1.5}$ B-b, Fr DS Fr DE 42.6 84.4 32.2 61.2 47.1 -147.0 1.95 0.609 0.544 0.47 1.08 0.72 76.3 0.000763 30.8 81.6 101.0 86.6 77.5 -147.00.609 0.544 0.75 0.024959 1.23 0.69 202.5 0.050166 114.2 111.5 132.4 131.2 85.9 67.8 0.045669 1.10 0.70 1.15 1.49 50.2 65.7 -147.00.609 0.544 0.97 390.5 0.069663 140.6 135.0 160.5 149.6 112.4 91.3 63.1 -147.00.609 0.544 0.89 0.054466 1.28 0.74 1.08 1.32 1.34 662.5 0.090737 90.7 158.3 164.2 158.8 176.7 138.7 1198 104.5 -147.0 0.609 0.544 0.90 0.067909 0.71 1.03 1.15 967.5 0.109653 109.7 110.4 185.0 2101 198.7 160.7 142.8 124.0 -147.0 0.609 0.544 0.90 0.079685 1.39 0.72 1.00 1.06 0.99 1372.5 0.130602 130.6 211.6 204.0 232.8 222.9 181.2 -147.0 1.41 1.03 164.6 146.3 0.609 0.544 0.94 0.092665 0.74 1.01 1010.0 0.149960 150.0 234.3 225.0 251.0 242.0 197.2 181.1 -147.0 0.609 0.544 0.08 0.105005 1.43 0.74 1.02

205.6

188.3

-147.0

0.609

0.544

1.25

0.149297

1.14

0.72

MODEL PIER, bp = 32 mm_LONG_10Degrees_DROWNED Q's

256.6

249.0

265.1

296.0

219.9

DATA: Thursday, 10 August 2000

170.0

			UE		D5 downstream	DE. downstream		
Power 1	Power 2	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
645.0	645.0	196.6	193.8	197.3	168.3	152.8	342.5	
645.0	645.0	212.9	205.2	211.3	187.5	179.0	358.6	
645.D	645 D	229.3	227.5	226.0	208.9	204.0	374.9	
645.0	645.0	248.1	244.4	241.8	228.8	225.0	392.0	
645.0	645.0	264.3	263.1	257.9	247.5	245.0	410.0	
			UE	US	DS	DE.		
			upstream	ups/ream	downstream	downstream		
Name of	Name ?	4 m	end	side	side	ered	6 m	7 m
		15.5					147.5	147.6
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	us	DS	DE		
			upstream	upstream	downstream	downstream		
Roger 1	Ploan 2	4 m	and	side	side	end	6 m	7 m

				7,45 0.55 0.45 0.45 0.25 0.25	P. Section of the sec	7. 20.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F 000000	F 3 8 8 8 8
				2 2 2 2 2 2 2 3 8 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	Print Politic Politic Politic	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
				22223	PUAN PUAN PUAN PUAN PUAN	55555
				0 0071973 0 0071873 0 0067873 0 0064524 0 0059539	Query SPAJAS SPAJAS SPAJAS SPAJAS	Query 0 0599400 0 059746 0 0567707 0 057707
			,	20th-year 0.76 0.59 0.51 0.51	2gha Yushi RALM RALM RALM RALM RALM	24thar Tool 1 0 50 0 60 0 60 0 60 0 50
				4 3 3 3 3 3 5	4.22222	4,320,000
				0 0000 0 0000 0 0000 0 0000 0 0000 0 0000	8 0000 0 0000 0 0000 0 0000 0	a 0000 0 0000 0 0000 0 0 0000 0 0 0000 0
			g 2	7 147 0 147 0 147 0 147 0 147 0 147	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 m 7 147.0 147.0 147.0 147.0 147.0 147.0
	7.0	- F	FLOW DEPTHS	74 271.1 271.1 201.1 201.5 201.5	# x 2000000	7 284 7 284 7 284 7 281 8 318 3
392.2 472.2 446.3 466.3	6m 147.5	6 m 424 d 424 d 424 d 425 d 42	1 1	764 195.3 208.1 208.1 208.1 208.1	2 4 5 5 5 5 5 E	237.5 237.5 283.6 283.6 283.6 283.6 283.6 283.6 283.6 283.6 283.6
214.0 235.4 279.0 279.0	DE downstream end	DE downstraam and 255 5 255 5 205 8 20 8 20 8 20 8 20 8 2	DS downstream side	74 1719 1912 2725 2724 2724	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 2 200 20
224.5 243.8 264.5 264.5 301.5	DS commercement wide	266 5 200 0 346 3 346 3	US gebrehm side	768 1 212 1 226 8 242 6 258 7 US	\$ 200000 S	166 270 7 287 3 203 3 319 3 3
256.8 286.5 286.5 382.5 316.5	US upstream side	US side 304.0 320.5 337.8 354.5 370.4	UE upstream end			245.3 279.0
248.3 279.0 278.4 388.4 389.3	opelisan end	UK applement 200.0 311.3 300.4 300.4 300.4		7 1813 2138 2326 2468	₹ ~ 55 55 55 55 55 55 55 55 55 55 55 55 55	7 7 2810 7 2810 2810 2810 2810 2810 2810 2810 2810
256.2 296.2 297.8 304.8 304.8	E 22	4m 16.5 200.0 305.8 303.2 303.3 303.3		0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000	0 [W] 1100.2 1100.2 1300.2 1300.2
1370 0 1370 0 1370 0 1370 0	j	22100 22100 22100 22100 22100 22100 22100		Quer 0.009531 0.009531 0.009531 0.009531	9	Que) 0.130244 0.130244 0.130244 0.130244
0.0801 0.0801 0.0801 0.0801	2 00000	Page 1 Page 2 2310 0 23		Most Pig 045.0 045.0 045.0 045.0 045.0	30000	1365 0 1365 0 1365 0 1365 0 1365 0

			4 m	end	side	side	end	6 m	7 es			V _C =					
hour, eq.	Q.m	Q [Ve]	y.,	Yor	Yes	You	You	y _k	y,	В	B-b,	20(yes-Yes) 11	Q _{nexy}	ordered to	Fr. 44	Fr_21	Fr_an
0.0	6.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.544	MNUM	MINISTER	RNUM	919,930	0.00	RIVLIM
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.544	BINLIME	MNUNE	#NUM!	WINDOW	0.00	MENUTAL .
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.544	BTVL/MI	MNUNE	MNUM	WINDS	0.00	MINUME
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.544	BENLINE	MNUME	RNUM	WHILES	0.00	MNUME
0.0	0.000000	0.0	-15.5	0.0	0.8	3.7	4.1	-147.5	-147.0	0.609	0.544	MINUM	MNUM	MUM	PAUL	0.00	MILIME
				UE	US	DS	DE										
				upstream	upstream	downstream	downstream										
			4 m	end	side	side	end	5 m	7 m			V _C =					
Boar my	Quete	Q [Us]	y.	You	Yes	You	You	y ₄	y,	В	B-b,	2g(yos-You)11	Query	01/25/20	Fr_an	Ft_24	Fr_am
2310.0	0.199433	109.4	283.3	290 D	304.8	270.2	259.6	277.3	-147.0	0.609	0.544	0.86	0.126797	1.34	0.59	0.63	0.61
2310.0	0.199433	109.4	301.3	311.3	321.3	293.9	286.1	304.0	-147.0	0.009	0.544	0.78	0.124067	1.37	0.54	0.56	0.53
2310.0	0.169433	109.4	320.3	329.6	338.6	312.5	306.8	326.3	-147.D	0.509	0.544	0.76	0.129050	1.31	0.49	0.51	0.47
2310.0	0.199433	109.4	337.7	350.4	355.3	334.7	329.0	347.9	-147.0	0.609	0.544	0.69	0.124770	1.30	0.45	0.46	0.43
2310.0	0.169433	169.4	354.8	368 D	371.2	351.9	347.7	369.0	-147.D	0.609	0.544	0.67	0.127379	1.33	0.42	0.43	0.40
														1.34			

MODEL PIER, bp = 32 mm_LONG_15Degrees_NORMAL Q's

OK

DATA:	Tuesday.	8 August	2000					UE	us	DS.	DE										
								upstream	upstream	downstream	downstream										
Q	Proper, 1	Property.	0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7			Geometric p	roperties:				
ed levels			12.5	10.5	15.0	13.5	15.5					147.5	147.0								
10	11.0	11.0				59.7	59.2	57.6	47.3	34.0	16.0	205.8				D =	31.5	me			
30	68.5	58.5				98.2	97.8	93.4	90.8	61.3	36.3	205.2				L, =	222	mm.			
50	200.0	200.0				133.5	132.5	122.3	130.8	90.0	64.5	211.5				24 =	0.4	mm			
70	405.0	410.0				163.4	163.2	141.5	166.0	117.8	89.8	231.2				20 "	8.0	mm			
93	650.0	645.0				189.1	188.5	162.1	193.8	142.3	114.8	246.8				Z _C =		mm			
110	975.0	970.0				213.6	213.2	178.0	217.8	167.0	140.5	268.9				z ₀ =		mm			
130	1360 0	1360.0				237.0	234.2	190.5	244.0	166.6	963.8	289.5				-					
150	1840.0	1840.0				258.2	255.9	204.3	271.5	211.8	187.5	312.2									
170	2350.0	2400.0				282.5	276.2	217.1	296.5	232.8	208.0	335.6									
SALCUL	ATIONS:	PERMIT																			
		-						FLOW DEPT	HES												
								UE	us	DS	DE										
			Dis	Sance meas	sured downstr	ream within th	e Burne	upstream	upetream	downstream	downstream										
			0 m	1 m	2 m	3 m	4 m	end	side	side	end	6 m	7 m			v; =					
Post, eq.	Ques	Q [Ve]	Ys.	y1	Ye	¥1	¥4	Yus	Yun	You	You	Th	Ye	8	B-b _p	2g(yor You)"*	Quarry	ARTHUR.	Fr_4m	Fr_DS	Fr_J
11.0	0.011692	11.7				46.2	43.7	57.6	46.1	38.4	20.1	58.3	-147.0	0.609	0.526	0.50	0.010213	1.14	0.63	0.94	2.1
68.5	0.029177	29.2				84.7	82.3	93.4	91.6	64.9	42.3	57.7	-147.0	0.039	0.528	0.77	0.026254	1.11	0.65	1.07	1.7
200.0	0.049855	49.9				120.0	117.0	122.3	131.6	93.7	68.6	64.0	-947.0	0.609	0.526	0.90	0.044436	1.12	0.65	1.05	1.4
407.5	0.071163	71.2				149.9	147.7	141.5	166 8	121.4	63.8	83.7	-947.0	0.609	0.528	0.98	0.062628	1 14	0.66	1.02	1.3
647.5	0.089704	199.7				175.6	173.0	162.1	194.6	145.9	110.6	99.3	-947.0	0.009	0.528	1.01	0.077738	1.15	0.65	0.97	1.1
400 6	O LONGINE	4 040 40				Districts of	4000	4 THE 45	0.000	4 Ten 18				-					-		-

144.6

167.8

191.6

212.1

121.4

142.0

164.7

158.1

-547.0

-147.0

147.0

-147.0

0.639

0.609

0.609

0.009

0.528

0.528

0.528

0.528

1.00

1.05

1.09

1.11

0.090266

0.106150

0.123547

0.138596

1.22

1.22

1.24

0.67

0.67

0.68

0.93

0.92

0.90

1.05

0.99

0.92

MODEL PIER, bp = 32 mm_LONG_15Degrees_DROWNED Q's

200.1

223.5

244.7

269.0

167.7

218.7

240.4

260.7

178.0

190.5

204.5

217.1

218.6

244 B 272 3

296 D

170.7

192.4

215.4

235.4

DATA: Tuesday, 8 August 2000

0.109935

0.151217

1360.0 0 130006

2375.0 0.171801

109.9

130.0

151.2

171.8

972.5

1840.0

			UE. upstream	US upstream	DS downstream	DE downstream		
Breen, t	Property.	4 m	end	side	side	end	6 m	7 m
		15.5					147.5	147.0
650 0	545.0	205.8	173.0	208.5	172.3	154.8	343.5	343.6
650 0	645.0	222.9	202.0	221.8	196 D	186.3	365.0	363.0
650.0	645.D	240.8	224.8	237.5	216.8	210.0	382.5	382.1
650.0	645.0	257.1	245.3	253.5	236.3	230.3	309.8	398.9
850.0	645.0	274.5	262.6	209.3	253.5	249.5	417.8	418.0
			UE	US	DS	DE		
			upstream	upstream	downstream	downstream		
h _{man, 1}	Brean, 2	4 m	end	aide	side	end	6 m	7 m
		15.5					147.5	147.0
0.0	D O							
0.0	0.0							
0.0	0.0							
0.0	0.0							
0.0	0.0							
			UE	US	DIS	DE		
			upstream	upstream	downstream	downstream		
Francis	B _{man_2}	4 m	end	side	nista	end	6 m	7 m

				20000	From Market and American Ameri	P.
				2000 2000 2000 2000 2000 2000 2000 200	188888	7 2000 2000 2000 2000 2000 2000 2000 20
				200000	PLAN BUJA BUJA BUJA BUJA	482838
				19881	PRIM PRIM PRIM PRIM PRIM PRIM	88888
				0.075538 0.075538 0.075538 0.074598	Query NVM NVM NVM NVM	Quest 0.111090 0.111690 0.111890 0.111890
			1	2017-a-10-1 0-85 0-72 0-54 0-56 0-56	Pic * Paul** PHUM PHUM PHUM PHUM PHUM PHUM PHUM PHUM	20(% - %) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				4 8050 8050 8050	4.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9	0.528 0.528 0.528 0.528 0.528
				8 0.000 0.000 0.000 0.000 0.000	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800 0 600 0 600 0 600 0
			E E	236.0 235.1 235.1 271.0	7 m y 47.0 147.0 147.0 147.0 147.0	7 m 286.5 286.5 286.5 286.5 326.5 326.5
487.5 411.5 451.5 471.5 471.5		547.0 441.0 461.4 475.8 595.0 595.8	FLOW DEPTHS	200 2 200 3 200 3 200 3 200 3	E 4 5 5 5 5 5	248.1 248.1 268.6 268.6 308.6 321.5
147.5 205.6 614.1 432.1 471.6 6.8	:	426 6 453 9 477 8 488 0 5 89 0		758.2 190.3 274.1 25.6 25.6 25.6	Sown Minama Sow of the sound of	flow rate am end 9 m 2 20 d 20 d 20 d 20 d 20 d 20 d 20 d 20
215.3 234.5 256.5 278.0 278.0 278.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6	DE downth van	273 5 273 5 314 5 314 5	DS downstream side	750 1750 2704 2705 2772	down the side side side side side side side sid	downstram side 73 233.4 233.7 233.9 237.9 335.2 05 05 05emetram
229.8 247.0 246.3 284.3 302.5 03 downstram side	DS downdram	272 5 283 8 308 0 328 8 345 5	US upstream side	760 2003 2004 2004 2004 2004	white was a second of the seco	upstream side Yes 2016 2016 2013 3131 3273 US
270.8 282.8 286.5 312.3 336.5 US upstream side	Upperforman	300.3 338.6 388.8 389.3 380.0		744 1730 2020 2248 2453 2453		28.1 29.1 29.1 29.1 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4
216.1 246.1 274.0 297.8 329.4 UE upsthream end	The state of the s	254.3 312.3 338.8 30.9		207.4 207.4 201.6 201.6 201.6	# X 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2464 2464 2817 279.7 279.7 274.4
15.5 204.9 277.2 206.2 206.2 322.0 322.0 4.m	1	100 200 200 300 300 300 300 300		0 (Ms) 89.7 89.7 89.7 89.7	900000	101.0 101.0 101.0 101.0 101.0
13750 13750 13750 13750	00000	2336 0 2336 0 2336 0 2336 0 2336 0		0.088004 0.088004 0.088004 0.088004 0.088004	0.000000 0.000000 0.000000 0.000000 0.000000	0,000 0,1000 0,1000 0,1000 0,1000 0,1000 0,1000
1385.0 1385.0 1385.0 1385.0 1385.0	00000	2200 2300 2300 2300 2300 2300 2300 2300 2300 2300		547.5 547.5 547.5 647.5 647.5	900000	1380.0 1380.0 1380.0 1380.0 1380.0

à	DAI ING	SPULMS	BALLAN	BNUMB	BNUM				Fr. as	0.57	0.83	0.47	0.43	0.36	
4	000	000	000	000	0.00				Fr. 24	0.61	950	0.51	0.47	0.43	
4	100.00	SPILING	BNUMB	BNUMB	BACHE				Fr. an	ı					
	NI NI	BNUMB	BALINE	WALLE	SPAINS				STATE OF	1.20	117	1.16	1.15	1.11	1.17
0	BALLING	MUM	BALIM	BAUM	BNUM				0	0.141736	0.145007	0.148536	0.147325	0.152581	
No. of Soil	SPUSA!	BNOW	BACAN	894.340	801.00			# ² #	Zgirar Yeal"	0.87	950	0.85	0.84	0.83	
á	0.538	0.528	0.528	0.528	0.528				8-0,	0.528	0.528	0.528	0.528	0.528	
	0.609	0.609	0.609	0.609	0.609					0.609	0.609	0.609	0.609	0.609	
E ;	-147.0	-147.0	.147.0	-147.0	-147.0			7 80	ú	294.0	314.4	3/28 8	363.0	369.8	
E ,	-147.5	-147.5	147.5	-147.5	-147.5			8	ž	2001	306.4	330.3	360.5	371.5	
pun ,	4.1	4.1	4.1	4.1	4.1	DE	downstream	pue	Yes	259.1	277.6	238.6	318.6	343.6	
og J	3.7	3.7	3.7	3.7	3.7	De	downstream	side	300	276.2	293.4	312.7	332.4	349.2	
a ida	0.8	9.0	9.0	9.0	0.8	sn.	upatraam	side	Yes	321.1	334.8	349.6	305.1	380.8	
bud.	0.0	0.0	0.0	0.0	0.0	3	upstream	pue	Yes	254.3	279.3	312.3	338.8	363.9	
E s	18.8	.15.5	-15.5	-15.5	-15.5			E	1,6	294.3	308.8	3286	3638	302.6	
MIIO	00	0.0	00	0.0	0.0				O [M]	170.0	170.0	1700	170.0	170.0	
0	0 000000	0.000000	0.000000	0.000000	0.000000				Q.es	0.169983	0.160983	0 169983	0.169983	0.1699363	
1	00	0.0	00	0.0	0.0				Breas, mag	2325.0	2325.0	2305.0	2325.0	2325.0	

APPENDIX C

FIELD TESTS

C1. INTRODUCTION

Following on the promising results of laboratory studies on discharge measurements in terms of pressure differences at bridge piers, it was decided to perform full-scale field tests on a real bridge during the year 2000. These tests were undertaken primarily by Mr GC Cloete, as a final year civil engineering student at Stellenbosch University, who also is and was an employee of the Department of Water Affairs and Forestry (DWAF). The tests were made possible by the generous support received from the provision of measuring instruments and manpower. This test contains an abbreviated summary of the contents of Mr Cloete's unpublished final year thesis report titled "Hoogyloeimeting in Riviere met behulp van Drukmeting by Brugpylers.

C2. BRIDGE SELECTION

In order to be able to perform prototype tests, a suitable bridge had to be identified. The following requirements were set:

- Flow velocities at the bridge had to be greater than 2 m/s in order to generate large enough pressure differences for accurate measurement.
- A pier was to be selected within the main river channel where the highest flow velocities occur.
- For comparing with model results a pier with parallel sides and rounded ends, both upstream and downstream was preferable.
- Uniform flow conditions should prevail both upstream and downstream of the bridge with flow lines parallel to the pier direction.
- High flow discharges, which were independently determined, were required for comparison.
- A number of bridges in the proximity of Worcester were considered and the "White Bridge" across the Breede River near Ceres was eventually selected as being the most suitable for testing purposes. This bridge was far from ideal, it was believed that if the approach could work here, it should be applicable on a large number of other bridges.

C3. PRESSURE DIFFERENCES AND DISCHARGE CALCULATIONS

STS pressure gauges, which are presently being used by DWAF, were installed at 4 positions on a pier of the "White Bridge"

0 - 3 m measuring plates

Pressure gauges installed at centres of circles

Photo 3.1: White Bridge: Positions of pressure gauges

The pressure differences, which were recorded, were translated into approach velocities by means of the Pitot principle. However allowance had to be made for the particular shape of the pier. This was done by building a model of the pier and determining a correction factor (C_D) which represents the ratio:

True Discharge
Apparent Discharge

With the apparent discharges being calculated from the pressure difference without allowance for the particular pier shape. For non-drowned flow conditions, the value of C_D varied from about 0,90 to about 0,98, indicating that even without a correction factor, the discharge may be calculated with an accuracy of at least 10%.

In the case of drowned flow conditions, the C_D value varied more, from about 0,75 to about 0,93. The steady pattern and the limited variability found in C_D values indicate that once these values are determined it will be possible to determine oncoming flow velocities at piers with a high degree of accuracy.

Velocities do however vary across river sections and velocities measured at individual piers therefore have to be converted into local values for the section as a whole for the calculation of discharges.

In the case of the "White Bridge" stream flow measurements had been undertaken which reflected the variations in velocity across the section. The velocity variations were also analysed in terms of techniques used in backwater calculations. Fair agreement was obtained.

C4. FINAL RESULTS

Peak discharges which were measured at the gauging station just upstream of the "White Bridge" were compared with values calculated from pressure differences measured at the pier and pier discharge coefficients determined in the laboratory.

The following discharges (m3/5) were obtained:

Date (2000)	Lower Gauges	Upper Gauges	DWAF Gauging Station			
14-07	57	-	43,3			
15-07	62	-	47,4			
18-07	208	207	202			

02-08	56	-	42
31-08	65	-	54
02-09	119	128	118
02-09	204	215	202
03-09	202	213	200
03-09	174	181	170

The results are very encouraging. There is good agreement between the discharges measured at the gauging station and those calculated from pressure differences. What is also important is that the results for the two pairs of pressure gauges agree so well given the complicated shape of the bridge pier.

C5. CONCLUSIONS AND RECOMMENDATIONS

The combined results of model studies and field tests prove that differences in pressures measured against bridge piers can be used to measure discharges in rivers. Given the limited costs involved, even if laboratory calibration is involved, as opposed to the high costs of measuring weirs capable of measuring high flows, this method deserves serious consideration for application and further development.

