

Water Research Commission 40 Year Celebration Conference Aug/Sept 2011

FOOD SAFETY AND IRRIGATION WATER

Trevor Britz & Gunnar Sigge

Food Science Stellenbosch University

Presentation

Projects

Reasons for research

Guidelines, Indicators + Index organisms

Sampling sites and produce

What have we found?

Microbial quality of selected SA rivers

Microbial quality of irrigated produce

Carry-over from water to produce

Linking water microbes to produce

Recommendations

WRC Projects

WRC K5/1773/4

Link between irrigation water quality and food safety.

Project Leader: Trevor Britz

Research Team: Gunnar Sigge, Natasha Potgieter, Maureen Taylor,

Elna Buys, Stefan Schmidt

WRC K5/1875/4

Link between water quality and safety of fruit and vegetables from farming to the processing stages and marketing.

Project Leader: Lise Korsten

Research Team: Bala Pillay, Maureen Taylor, Elna Buys

Research Consortium

Department Food Science, Stellenbosch University

Department of Microbiology and Plant Pathology, Pretoria University

Pathogenicity and Environmental Health Lab, Venda University

Department Food Science, Pretoria University

Department Medical Virology, Pretoria University & NHLS

Department Microbiology, KwaZulu Natal University

Reasons for research

Safety of the final agricultural product

Little known on national level of contribution of irrigation water to carry-over of pathogens to fresh produce

>4000 confirmed cases +823 cases of HUS 44 deaths

SOURCE = ??? (Specific *E.coli* isolated 10 years ago)

PRODUCE = cucumbers, lettuce, tomatoes, sprouts

ECONOMICAL IMPACT

compensation to farmers = EUR 227m

Situation

virulent pathogen + high risk food disaster

Escherichia coli

Free form in water

Presence in/on solids

Guidelines

WHO + EU guidelines for irrigation of crops to be eaten uncooked = <1000 faecal coliforms per 100 ml

DWA guidelines for irrigation water

- = <1000 faecal coliforms per 100 ml
- = >4000 high risk when irrigating crops that are eaten raw

DoH Contact should be avoided at >2000 *E.coli* per 100 ml water

Indicator organisms

presence indicates faecal pollution Coliforms, faecal coliforms, *E.coli*

Index organisms

evidence that related pathogen may be present Salmonella, Staphylococcus, Listeria, Enterococci, Cryptosporidium, Giardia

Virology

Hepatitis A, Norovirus GII + GI, Rotavirus, Sapovirus, Astrovirus, Mengovirus

Sampling Sites

Western Cape Province

Upper Berg, Eerste, Plankenburg, Mosselbank Rivers

Limpopo Province

Phadzima Nzelele, Nwanedi, Masisi Rivers

Mpumalanga Province

Crocodile, Loskopdam, Olifants, Wilge, Moses Rivers

Gauteng Province

Iscor, Klip River

North West Province

Hartbeespoort & Skeerpoort Rivers

KwaZulu Natal Province

Baynespruit, Msunduzi Rivers & Sobantu Township

Sources and Produce

SOURCES

rivers, irrigation water, community farms & gardens, subsistence farming, irrigation canals, workers gardens, gardens & bucket irrigation, small & large commercial, post-harvest produce, retail, markets, stalls, street markets

FRESH PRODUCE

grapes, pears, tomatoes, beans, peas, cabbage, broccoli, lettuce, spinach, rocket, cauliflower, strawberries, parsley, carrots

What have we found?

Microbial quality of selected SA rivers

Microbial quality of irrigated produce

<u>Coliforms</u> 0 – 1500 per 100 mL Faecal coliforms
0 - 500 per 100 mL

E.coli zero

Polluted river

Faecal coliforms
3 500 000 per 100 mL

E.coli 790 000 per 100 mL

What have we found?

River samples

Indicator organisms

coliforms, faecal coliforms, *E.coli*

(1000 to >4000000 cfu's per 100 ml) (97%)

Index organisms

Salmonella = present 84%

Staphylococcus = 0 - 15 000 cfu per ml (67%)

Enterococci = 0 - 1300 cfu per ml (71%)

Listeria = present 91%

Parasitic organisms

Cryptosporidium + Giardia = present 45%

<u>Viruses</u>HAV + Noro + Rota + Sapo + Astro

Incidence of Cryptosporidium and Giardia

Virological data from irrigation water and fresh produce

	Limpopo (n=20)	Mpumalanga (n=25)	Western Cape (n=64)
Norovirus GI	0%	0%	0%
Norovirus GII	10%	29%	19%
HAV	10%	18%	12%

CONTAMINATION ON IRRIGATED PRODUCE AT-HARVEST

		ACC	<u>Faecal</u>	E.coli	Salmonella	<u>Listeria</u>
MILE MAN	Lettuce	57000 970000000	400 5600000	ND 2600000	+	+
	Beans	64000 258000	12300 133000	ND 7900	+	+
	Peas	22000 795000	ND 1600000	ND 46000	+	+
	Tomatoes	10400 112000	500 640000	ND ND	+	+
	Cabbage	34000 2000000	ND 53000	ND 26000	+	+
	Broccoli	200 22000	ND 330	ND 330	+	+

LINKING MICROBES IN IRRIGATION WATER TO PRODUCE

<u>Organisms</u>	River H ₂ O	<u>Irrigation</u>	<u>Produce</u>	Retail
Aerobic sporeformers	X	X	X	X
Aerococcus viridans	X	X	X	
Faecal coliforms	X	X	X	X
E.coli	X	X	X	X
Enterobacter aerogenes	X	X	X	
Enterobacter cloacae	X	X	X	X
Enterococci	X			
Klebsiella pneumoniae	X	X	X	
Listeria innocua	X		X	X
Listeria grayi	X	X	X	
Listeria welshimeri	X	X		
Listeria monocytogenes	X	X	X	X
Salmonella enteritidis	X	X		X
Salmonella typhimurium	X	X	X	
Staphylococcus aureus	X	X	X	X

What else is present on fresh produce post-harvest?

<u>Pathogen</u>	<u>Produce</u>
E. coli	celery, lettuce, radishes, peas, beans, cabbage, sprouts, parsley, mixed-vegetables
Staphylococcus	lettuce, parsley, spring onions, spinach, peas, beans
Clostridium	mixed raw vegetables, cabbage, broccoli, tomatoes, lettuce
Listeria	cabbage, sprouts, lettuce, radishes, tomatoes, beans, peas, broccoli, cucumber, mixed-salads
Salmonella	sprouts, carrots, beans, tomatoes, spinach, strawberries, lettuce, cabbage, cauliflower
Shigella	lettuce, celery, parsley, beans, peas, onions, carrots
Bacillus	sprouts, lettuce, carrots, beans, lettuce, chili, parsley

Carry-over irrigation water to produce

Experimental design

15 day trial

Irrigated daily with water from Plankenburg -1

- Base-line value before first irrigation
- Daily sampling of beans (300g) and irrigation water
- Standard methods

LINKING

E.coli in Irrigation water and on fresh produce

E.coli patho-types

Inoculum size = 1 000 000 *E.coli* per ml (n=72) Produce = beans

GENERAL FINDINGS

Unacceptable microbial loads in most source waters

Unacceptable microbial levels on produce at-harvest

High counts on lettuce, cabbage, beans, after irrigation

Potential pathogens – in water and on irrigated produce

Evidence of build-up of microbial load after repeated irrigation

"Direct links" - microbes in irrigation water + irrigated produce

Concluding thoughts

Impacts on health, economics and trading status

Short term = safety evaluation of produce

= educate consumer (wash, disinfectants, etc)

= upgrade waste systems in informal settlements

= stricter enforcements

Medium term = construct "relative risk" concept

= evaluate treatment options

= how big is the problem?

Long term = upgrade treatment works

= increase capacity of treatment systems

= prevention

ACKNOWLEDGEMENTS

Water Research Commission

(Project funding)

Department of Agriculture, Forestry and Fisheries

(Co-funding) (Student support)

Dr Gerhard Backeberg

All Team Members
All post-graduate students

Thank you

These peaches are *E.coli* free