

6 November 2012

Bridging the skills gap: a tool for the development of sound catchment management strategies and water distribution plans

Tanya Lane-Visser, Jonty Smithers and Willem de Clerq International Conference on Fresh Water Governance for Sustainable Development

The skills gap

 In the National Water Act (Act 36 of 1998), provision was made for the creation of nineteen Catchment Management Agencies (CMAs) spanning the country.

The skills gap

- This has subsequently been revised to 9 CMAs as the success rate of initiation is very low.
- Their main function:
 - To allocate water resources fairly amongst stakeholders
- This move has been referred to as the decentralisation of control with regards to water management.
- It has inadvertently created a skills shortage:
 - A lack of skilled personnel available to serve as Water Managers on the CMA governing boards and to develop the Catchment Management Strategies (CMSs).
 - Skills shortage in terms of translating a CMS into an actual water distribution plan.
- The question begs: how can South Africa make up for this skills gap quickly and efficiently?

The decision: water allocation

- The Water Act says:
 - water is a limited and valuable resource which belongs to no single South African; rather, it belongs to all the people of South Africa.
- The goal of water management in South Africa must be to distribute it in a way which is equally beneficial to all South Africans.
- The Act clearly specifies that public participation is a critical element to achieving its goals.

The decision: water allocation

- The Human Reserve
 - water for drinking, food preparation, personal hygiene and other essential activities.
- The Ecological Reserve
 - water which is necessary to protect the ecosystems surrounding the water resource, both currently and in the future.
- The Reserve is a right to water set out in the Water Act and must be met before any other water is allocated from the resource.

The decision: water allocation

Bearing this in mind, how do you physically allocate the available water amongst the many water users who demand it?

The current approach

The Water Priority Matrix:

Demand distribution at required assurance of supply (%)				
User description	Assurance of supply			
	99.5%	99%	98%	95%
Losses	100	-	-	-
Wet industry	70	10	10	10
Dry Industry	70	15	5	10
Domestic	40	20	20	20
Environment	50	25	-	25
Irrigation	5	25	-	70
Priority class	High	Medium high	Medium low	Low

(Summerton, 2009)

- Helps to determine priority for water allocation, but provides no guidance on allocation volumes.
- Becomes stale and as a result outdated very easily
- Formally only demand is considered as allocation criteria

The current approach

- Decision support system based on penalty functions.
 - Allocate a penalty level for each water user
 - Applied for each unit of water desired by the user not received
 - Goal is to minimise total penalty incurred

- Penalties assigned by analyst only. (De Jager, 2011)
- Often not considering the full scope of externalities when determining penalty levels.

Problems with these approaches

- No fixed policy on how this decision is made.
- Allocation generally made based on the experience and expertise(?) of the authorities involved.
 - Highly subjective.
 - Often dependent on skills that don't exist.
 - He who shouts the loudest is served first. (Inequitable)
 - Not comprehensive.

• Current water supply levels of fifteen of the nineteen WMAs are known to exceed sustainable levels.

Specification of improved approach

- ☐ Assignment must be objective.
- ☐ Must be able to consider multiple criteria.
- ☐ Must be repeatable.
- ☐ Must require low skill levels.
- Must represent multiple stakeholders' interests fairly.

Optimisation modelling

Objective function
Subject to
Constraints

$$Max Z_1 = (C_{1,1}) * (W_1) + (C_{1,2}) * (W_2) + \cdots + (C_{1,n}) * (W_n)$$

$$Max Z_2 = (C_{2,1}) * (W_1) + (C_{2,2}) * (W_2) + \cdots + (C_{2,n}) * (W_n)$$

$$Max Z_k = (C_{k,1}) * (W_1) + (C_{k,2}) * (W_2) + \cdots + (C_{k,n}) * (W_n)$$

where

$$W_j = (1.00) * (W_{j,1}) + (0.995) * (W_{j,2}) + (0.900) * (W_{j,3}) + (0.950) * (W_{j,4})$$

Subject to:

$$\sum_{i=1}^{k} W_{j,a} \leq WMax_{a} \text{ for all assurances } a \in \{1, 2, 3, 4\}$$

 $W_{j,a} \geq 0 \ for \ all \ \ water \ users \ j \ \in \{1,2,\ldots,k\} \ and \ assurances \ a \in \{1,2,3,4\}.$

$$\sum_{a=1}^{4} W_{j,a} \leq D_{j} \text{ for all water users } j \in \{1, 2, ..., k\}$$

$$\sum_{a=1}^{4} W_{j,a} \ge M_j \text{ for all water users } j \in \{1, 2, \dots, k\}$$

The objective function

$$Max \; Z_1 = (C_{1,1}) * (W_1) + \left(C_{1,2}\right) * (W_2) + \cdots + \left(C_{1,n}\right) * (W_n)$$

- Maximise BENEFIT over all users per criterion
- C_{ij} = water user performance criterion score for objective *i* and water user *j*

X

- W_i = total water allocated to water user j
- More water will be allocated to users scoring higher on the criterion.
- This is repeated for each criterion.

The objective function

- Risk (water assurance levels) not accounted for.
- Expand W_j to W_{j,a}

$$W_j = (1.00)*(W_{j,1}) + (0.995)*(W_{j,2}) + (0.900)*(W_{j,3}) + (0.950)*(W_{j,4}) \\$$

- $W_{j,a}$ = water allocated to user j at assurance a
- This forces the model to allocate water at higher assurances to users who score better in terms of the proposed criteria.

Assurance of supply

• The Water Resource Yield Model (WRYM) developed by Basson et al. (1994) is used to determine what amount of water can feasibly be drawn or abstracted from a catchment and at what level of assurance this water can be abstracted.

 Using this, a profile of the catchment can be put together showing the amount of water available at

each level of assurance.

When the well

Finding C_{ij} in this study

Not the focal point of study.

Suggested stakeholder workshops to replace this and obtain application specific objectives.

The triple bottom line approach adopted:

Environ-

Economy

Society

- 2. Environmental measures indication of how sustainable and environmentally friendly the water user is.
- Social measures indication of how socially responsible the water user is.

Finding C_{ij} in this study

- The Global Reporting Initiative (GRI) was established in 1997 by organisations from the Coalition for Environmentally Responsible Economies (CERES).
- From the comprehensive list of criteria put forward by the GRI, a shortlist of 26 potential criteria was compiled.
- This shortlist was presented to six leading academics in the field of sustainability:
 - Asked to select three water user performance criteria in each of the three broad categories which they deemed were most indicative of the performance of the water user.
 - Criteria had to be measurable and viable.

Finding C_{ij} in this study

Broad Field	Reference	Description	Percentage of total score
	LA1	Total workforce size.	25%
Economic EC8 Support		Economic value generated through infrastructure investments and services provided primarily for public benefit through commercial, in-kind, or probono engagement.	22%
	01	Strategic importance of the water user, as defined by government.	28%
EN9		Number of water sources significantly affected by withdrawal of water.	31%
Environmental	EN22	Total mass of waste discharged.	17%
	EN30	Total environmental protection expenditures and investments.	17%
LA7		Rates of injury, occupational diseases, lost days, and absenteeism.	26%
Social	LA10	Average hours of training per year per employee.	21%
	SO1	Percentage of operations with implemented local community engagement, impact assessments, and development programs.	35%

The multiple objective function

- In total there are 9 criteria considered -> 9 objectives
- While these objectives may be conflicting, none of them can be neglected.
 - It is unacceptable to allocate water such that the ecosystem surrounding a water source is irreparably damaged, even if this allocation would lead to high economic growth.
- Each objective must be optimised separately, rather than aggregating all water user performance criteria into a single objective function.
- Each objective is treated as equally important.

Constraints

1. No more water may be allocated than is available.

$$\sum_{j=1}^k W_{j,a} \leq \text{WMax}_a \text{ for all assurances } a \in \{1,2,3,4\}$$

2. Less than zero water cannot be allocated.

 $W_{j,a} \ge 0$ for all water users $j \in \{1,2,...,k\}$ and assurances $a \in \{1,2,3,4\}$.

Constraints

- 3. Each water user should not be allocated more water than they desire.
 - Prohibits the algorithm from simply allocating all available water to the superior water user, even though that water user may have no use for that amount of water.

$$\sum_{a=1}^{4} W_{j,a} \leq D_{j} \text{ for all water users } j \in \{1, 2, \dots, k\}$$

 D_j refers to water desired by user j

Constraints

- 4. Each water user must be allocated at least the water specified as minimum amount.
 - Caters for compulsory water allocations, such as the Reserve.

$$\sum_{a=1}^{4} W_{j,a} \ge M_j \text{ for all water users } j \in \{1, 2, ..., k\}$$

 M_j refers to the compulsory allocation to user j

Model output - volume/user/assurance

Water allocation					
Assurance	100%	99.5%	99.0%	95%	
User 1	X ^{1,100%}	X ^{1,99.5%}	X ^{1,99%}	X ^{1,95%}	
User 2	X ^{2,100%}	X ^{2,99.5%}	X ^{2,99%}	X ^{2,95%}	
:	:	:	:	:	
User n	X ^{n,100%}	X ^{n,99.5%}	X ^{n,99%}	X ^{n,95%}	

MOO solution approach

- Exact optimisation methods generate solutions which are optimal and guaranteed.
- Approximate optimisation methods strive to generate near-optimal solutions in a practical manner, but cannot guarantee their optimality.
- Based on the variable scale and complexity of the model, approximate methods are more appropriate for this model.
- Also, when the intended user is borne in mind, approximate solvers are better suited towards stand alone software application development.
- Multi-Objective Tabu Search Algorithm used
 - by Jaeggi, Parks, Kipouros and Clarkson (2008) of the Engineering Design
 Centre at the University of Cambridge

Pareto dominance

 A candidate solution A is said to Pareto dominate another solution B if it is at least as good as B in terms of all objectives, and better than B in at least one

objective.

(Luke, 2010)

 The Pareto-dominant set is made up of solutions each of which are not dominated by the other solutions in the set.

Model validation

- Scenario 1 is an extremely simple, two water user problem where User 1 is superior in all water user performance criteria to User 2.
- We know the demands of User 1 should be met before beginning to fulfil the demands of User 2.
- Given that the amount of water desired by User 1 is greater than the total water which is available, the best possible water allocation should involve allocating all available water to User 1.

Results:

- A single dominating solution was returned, rather than a set of Pareto dominant solutions.
- The metaheuristic converged on the optimal solutions with regards to the chosen water user performance criteria in all 100 replications.
- It works!

Model implementation

- 4 water users competing for limited water resources, none of whom clearly dominate the other users.
- Loosely based on the situation in the Mgeni catchment in KwaZulu-Natal, South Africa.

Available water (million m³/month)				
Assurance	100%	99.50% 99.00%		95%
Available Water	75.4	2.6	10.4	17.4

Additional constraints (million m³/month)			
	Desired Amount Minimu		
Urban Use	37.30	1.3	
Environmental Use	3.11	2.3	
Industrial Use	21.77	0	
Irrigation	65.32	0	

Water allocation (million m³/month)					
Assurance	100%	99.50%	99%	95%	
Urban Use	25	0	4	8	
Environmental Use	3	0	0	0	
Industrial Use	17	1	1	2	
Irrigation	30	1	5	7	

Results

Comparison to Penalty System

Conclusion

This project proposes a system where:

- Decisions makers look at all of the effects their decisions have.
- It encourages accountability, objectivity and repeatability of decisions.
- Decisions are based on "facts" rather than individual preferences or biases.
- Ability to emphasise job creation or other strategically important goals.
- Equitable allocation is done.
- The interface between the model and user is very simple.

MODEL SPECIFICATIONS:

- Assignment must be objective.
- ✓ Must be able to consider multiple criteria.
- ✓ Must be repeatable.
- Must require low skill levels.
- Must represent multiple stakeholders' interests fairly.

Conclusion

- This tool makes complex techniques available for use by water managers who may not have the skills or training to use these techniques themselves.
- It can thus empower these water managers to perform better.
- The participative approach in objective formulation and the model's ability to handle this complexity encourages water users to act in a responsible manner.
- It is hoped that this study can play at least a small role in guiding South Africa to a better future by improving the allocation of our scarce and limited water resources.

