

AGRICULTURAL NON-POINT SOURCE POLLUTION: MODELLING & ECONOMICS

André Görgens (Editor)

Simon Lorentz (Presenter)

Research context

 Agricultural activities well recognised as a contributor to surface & groundwater pollution in particular catchments

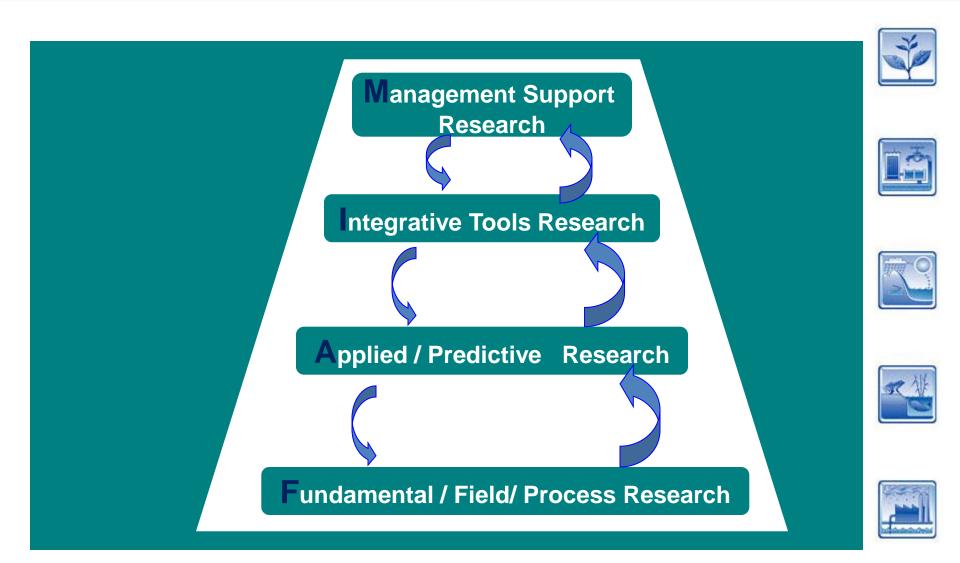
 <u>Point sources</u>: feed-lots, fruit processing factories, wine cellars, agricultural waste stockpiles

 Non-Point sources: inter-connected function of fertilizing & crop rotation & tillage & drainage & pesticide & riparian/ wetland practices, etc....

Economics of both agricultural pollution impacts and their control measures...??

Research context (cont.)

In 2005, WRC commissioned a widely-consulted "Knowledge-and-Gaps Synthesis", regarding agriculturally-related water pollution, eventually captured in two extensive WRC Reports


 In 2006, WRC commissioned a solicited research project of duration 6 years, based on a TOR formulated ito priorities formulated during the prior "Synthesis"

Conceptual research structure: FAIM

Research foci and scales

Focus pollutants: Nutrients (N & P);
 Sediments; selected Pesticides

 Scale for N & P & S – observed and simulated Field-scale processes as well as Catchmentscale dynamics and connectivities

Scale for Pesticides – Field-scale DSS

Details of research teams & their foci

 UP & UFS – Nutrients & Crop Production: Field-Scale Process Monitoring & Modelling

 UKZN – Nutrients, Sediments & Crop Production: Catchment-Scale Monitoring & Modelling

 ARC – Nutrients & Sediments: Catchment-Scale Modelling

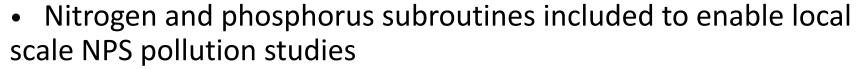
 UFS – Economics of Agricultural Pollution Control Management

UWC / CSIR – Pesticides: Field-Scale Monitoring
 & Decision Support System

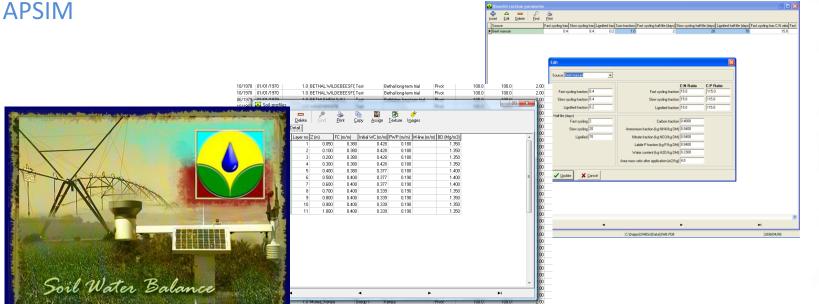
 Aurecon - Conceptual Project Leadership & Administrative/ Financial Management

Field-Scale Nutrient Modelling Team

Michael van der Laan, John Annandale and Chris du Preez



Soil Water Balance (SWB-Sci) model



- Mechanistic, generic crop model
 - Originally developed as a real-time irrigation scheduling tool
 - Layered, cascading soil water balance

Algorithms mostly adapted from existing models CropSyst, Gleams, SWAT,

Suggested equations for the estimation of labile P pool size for South African soils

ions R ²
0.86
0.80
0.84
0.71
0.35
0.90

Simulating draining and resident soil water nitrate concentrations

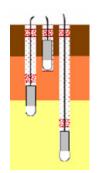
Incomplete solute mixing accounted for using the approach developed by Corwin et al. 1991

$$[Solute]_{mob} = \frac{SoluteMass_{layer} \times F_{mix}}{\theta_{layer} \times d_{layer} \times \rho_{w}}$$

[Solute]_{mob} = mobile soil water phase solute concentration

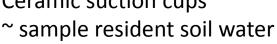
 $SoluteMass_{layer}$ = mass of solute in layer F_{mix} = solute mixing fraction

 θ_{laver} = volumetric water content of layer


 $d_{laver} = depth of layer$

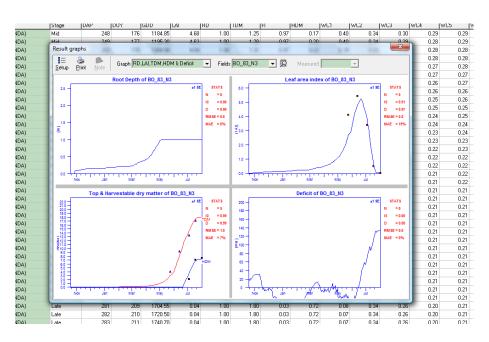
 $\rho_{\rm w}$ = density of water

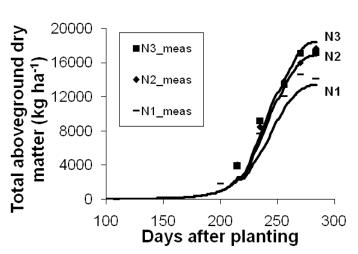
Tested using active and passive soil water samplers in a large drainage lysimeter facility

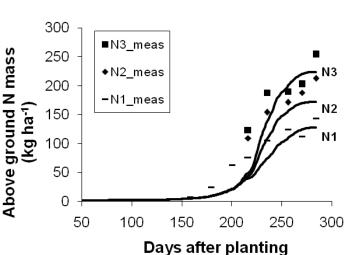

Wetting front detectors ~ sample draining soil water

Ceramic suction cups

NO₃⁻ concentrations (0-30 cm)







Further testing using historical datasets from South Africa, the Netherlands and Kenya

Catchment-scale model parameterisation

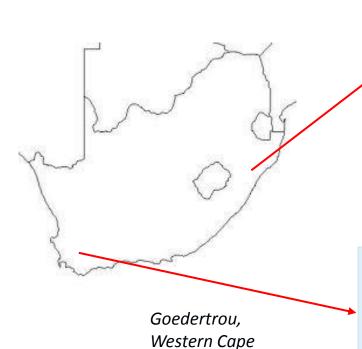
•Guidelines for catchment scale
model parameterisation
developed

- •Makes use of information from land-type maps (1:250 000)
- •e.g. Grouping of South African soils as slightly weathered, highly weathered or calcareous

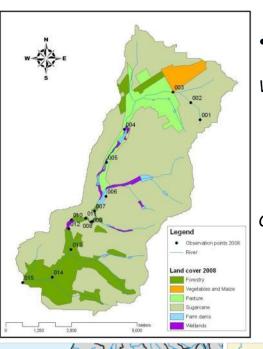
Soil form				
Group 1	Group 2	Group 3	Group 4	
Kranskop	Arcadia	Katspruit	Champagen	
Magwa	Inhoek	Fernwood	Nomanci	
Inanda	Milkwood		Sterkspruit	
Avalon	Mispah		Estcourt	
Pinedene	Rensburg		Kroonstad	
Glencoe	Willowbrook		Constantia	
Clovelly	Bonheim		Shepstone	
Bainsvlei	Tambankulu		Houwhoek	
Hutton	Mayo		Lamotte	
Shortlands	Swartland		Cartref	
	Valsrivier		Wasbank	
	Vilafontes		Longlands	
	Oakleaf		Westleigh	
	Glenrosa		Dundee	

Catchment-Scale Modelling Team

Simon Lorentz, David Clark and Julius Kollongei



Catchment-Scale Sediments and Nutrients



Wartburg, **KZN Midlands**

 Catchment scale model development and simulation

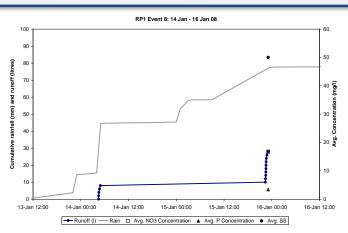
• Different climate zones

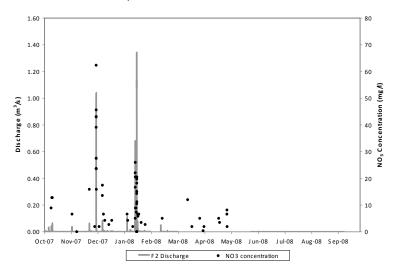
Wartburg:

Summer rainfall 740mm/a Sugar, forestry Well-poorly drained soils

Goedertrou:

Winter rain 330mm/a Dryland winter wheat Sandy clay loam- Clay loam


Multi-scale observation



- Local scale, runoff plots
- Field scale, flumes

Nitrogen N mass balance per ha per annum

Removed

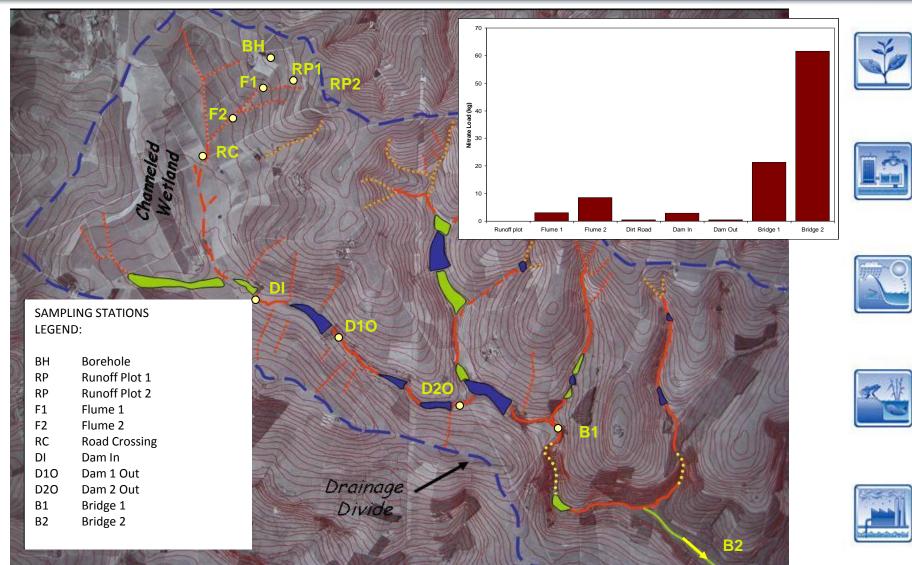
Runoff

Soil store 34kg

Percolation

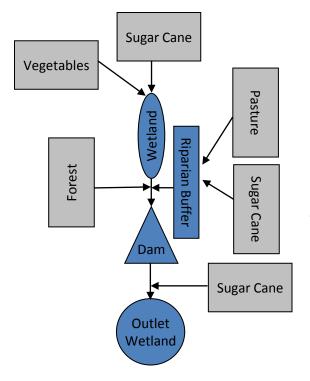
11kg

24kg



Catchment scale, rated section - grab sampling

Nutrient and sediment connectivity



ACRU-NP Model Development

 Water quality connectivity and controls

 Input parameter derivation from Land Types

> Crop response to water and nutrient stress

2

UpFac

0 0.10.20.30.40.50.60.70.80.9 1

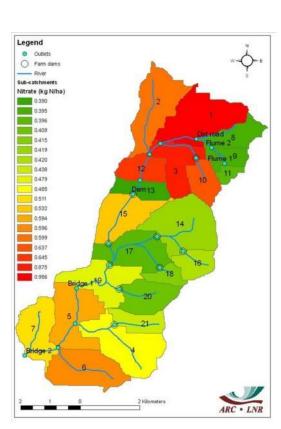
Uptake-N/Demand-N ratio

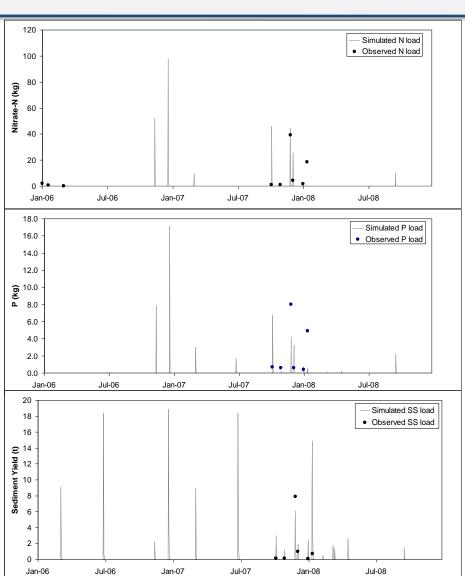
SĖN

1.5

0.5

N-Uptake Factor





Modelling Results

SWAT: N loads

Flume 2 ACRU-NP : NO₃

Phosphorus

Suspended solids

Catchment-scale nutrients and sediments

Conclusions

F

Scaled observations quantify connectivity and controls

• ACRU-NP development, including influence of controls, aids nutrient management and identifies hotspots.

Recommendations

Testing nutrient stress and crop yield,

• Study migration of organic P

 Detailed observation of control features and hillslope connectivity

Pesticide Task Team

Nebo Jovanovic

Aims and approach

Identification of primary processes, state-of-theart in modelling and knowledge gaps

 Data collection to support integrated modelling at different scales

Development of an expert system for pesticides

Fundamental processes

Primary processes with associated variables, their mechanisms and factors

Overland flow and pesticide transport

Vertical water and pesticide fluxes

Preferential flow

Throughflow and pesticide transport

Pesticide plant uptake

Pesticide properties

- Volatilization
 - Sorption
 - Persistence

Field research

Data collection of water and pollutant fluxes in the hydrological system

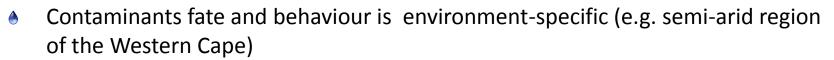
Weather

Crop yields

Soil water content and chemistry

- Overland flow and runoff quantity and quality
- Drainage (leaching) and groundwater levels and quality

Pesticides, sediments, nutrients in the environmental compartments



 Sediment chemistry: Interactions between pesticides, sediment and nutrients

Main outcomes of data collection

Large variations in contaminant fluxes and loads

- Cropping systems determine practices: type of pesticides, fertilizers, tillage etc.
- Overland flow was between 4 and 19% of annual rainfall, depending on vegetation, soil type, slope and orientation

 Pesticide degradation was enhanced by high temperature and transport retarded by low rainfall and sorption

Fluxes of pesticides, N and P dependent on rainfall/runoff and timing of application: e.g. 0.24 and 3.65 kg ha⁻¹ a⁻¹ of NO₃⁻

- Fluxes of sediments dependent on rainfall/runoff, slope and vegetation: e.g.
 0.02 and 0.85 Mg ha⁻¹ a⁻¹
- Nutrients and pesticides are sorbed on sediments
 - Depending on sediment size (e.g. 5 and 15 μm silt)
 - Origin and history of sediment transport in catchments
 - Size of mobilized sediments depends on soil texture and slope, and not on rainfall and overland flow volumes

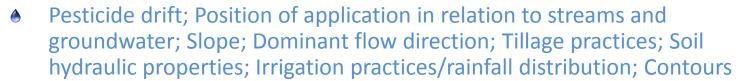
Pesticide modelling

Screening of field models

- Screening of field models
 - FIRST, GENEEC, HYDRUS-2D, PELMO, PESTAN, PRZM, SWAP, SWAT and VS2DT
- Difficulties in model application
 - Complexity of the soil-plant-atmosphere system
 - Large amount and intensity of input data required
 - Large number of chemicals available on the market with specific properties
 - Lack of knowledge on pesticide behaviour and toxicity
 - Spatial and temporal uncertainties

Alternative

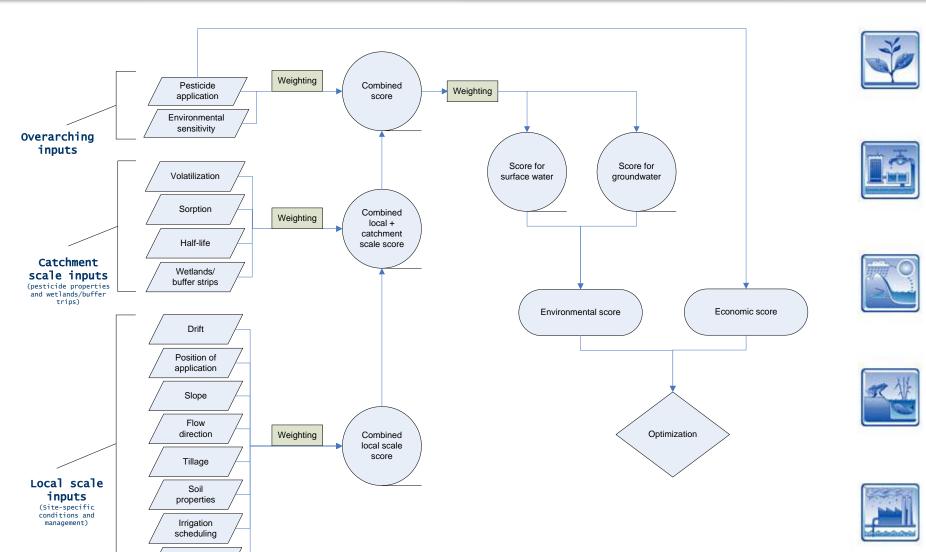
Expert systems: interactive computer programmes that include quantitative informational databases and qualitative knowledge, experience and judgment to support decision- and policy-making


Development of an expert system for modelling the fate of pesticides

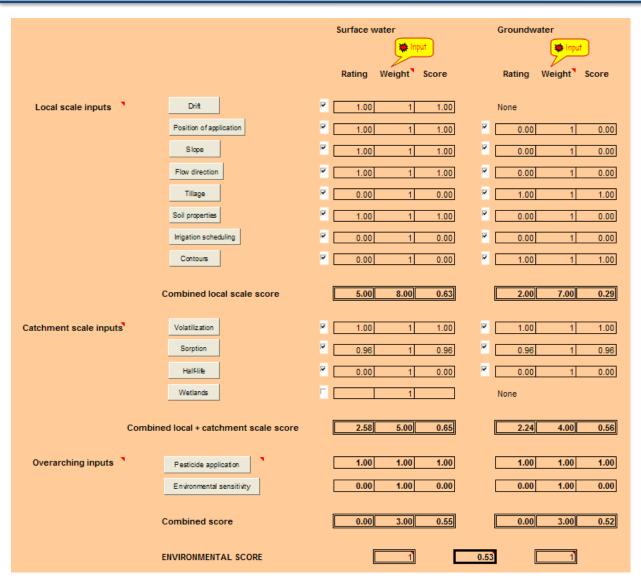
PestEX: Environmental performance index to assess the mobility of pesticides and their potential for landing up in a water resource

- Excel-based calculator
- Main factors:

- Pesticide application; Sensitivity of the receiving water resource
- Factor score: Rating x weighting, fuzzy logic normalization
- Novelty inclusions:
 - Mitigation/management practices
 - Combination of different scales
 - Environmental costs (pollution abatement cost)



Flow diagram of PestEX



Contours

Main menu of PestEX

Purpose:

 Comparative analyses of different chemicals

- Sensitivity analyses
- Minimization of costs

Potential users:

 Scientific community, farmers, pesticide consultants, regulatory authority

Main lessons learned and recommendations for further research

Lessons learned

- Research Design
 - Monitoring all components of the catchment system
 - Detection of target spectrum of pesticides at key locations to identify priority species to be monitored
- Approaches to scaling
 - Intensive monitoring at local/field scale of water and nutrient fluxes to inform distributed hydrological models
 - Determination of transfer coefficients
- Interfacing Management Needs and Scientific Realities
 - Scenarios modelling with a participatory approach to recommend the most environmentally and economically acceptable practices

Recommendations for further research

- Lack of data: Need for monitoring programmes and ecotoxicological studies
- Need for a soil quality research programme
- Integrated pest management or alternative methods of pest control

Economics Task Team

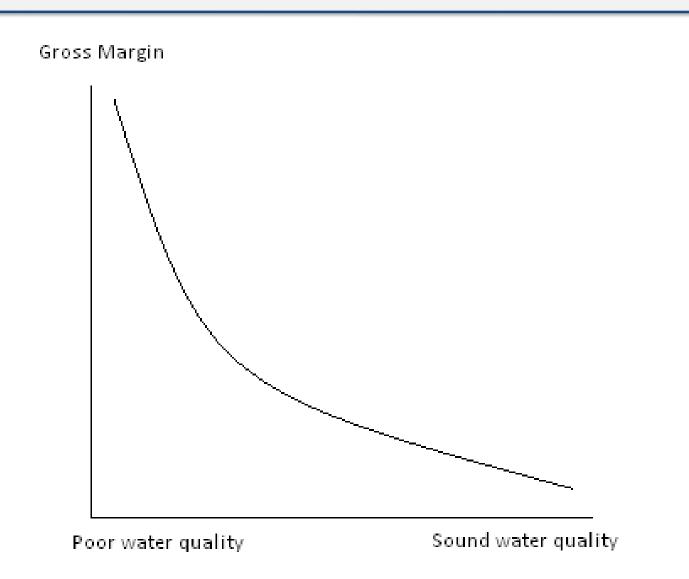
Nicky Matthews & Bennie Grové

Economic decision-making criteria

MB = MC

- Marginal benefit additional benefit of producing one more unit of output
- Marginal cost additional cost of producing one more unit of output

- No market exists for the environment
 - Difficult to determine benefits of an action


- Agricultural NPS pollution
 - Economic-environmental trade-off

Economic-environmental trade-off

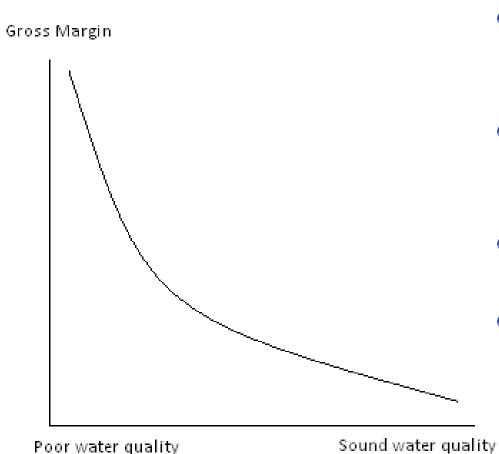
Economic-environmental trade-off

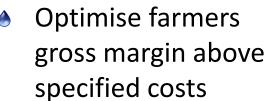
Pollution is an externality

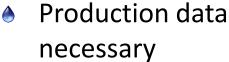
Need to internalise the costs

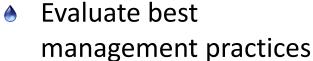
How do we internalise the cost of an externality

Command and Control


- Pollution "tax"
- Incentive based regulation (permits)

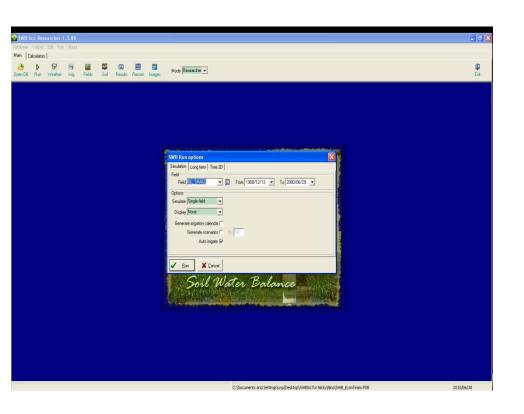



Modelling tradeoffs



 Use optimisation model to determine trade-off curves

- Fertiliser regime
- Cultivation practices



Use of crop production modelling: SWB_Sci Model and ACRU_NP Model

- SWB_Sci is a crop growth model developed for irrigation purposes
 - Nutrient subroutines added
 - Used for field-scale modelling
- ACRU_NP is a agrohydrological model with added nutrient routines
 - Used at catchmentscale

Lessons learned

Linkages with crop modellers is important to ensure the success of a NPS project

A modeller's work is never done

Have to weigh the benefit of improving the simulation and economic models with the cost of improving the models

