Climate modeling and downscaling:
A flying commentary with WRC at the centre
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A brief aside: this talk is not about climate change!

a) If you wish to discuss climate change, | am very
happy to talk with you in the appropriate context

b) Statements that climate change is a distraction,
debatable, or of little relevance, are irresponsible,
and have no foundation in the overwhelming body
of evidence supported by fundamental physics with
consistent signals across multiple lines of evidence.

c) Cycles in climate are, by definition, quantifiable.
The current historical change cannot be accounted

for by cycles.
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All models are “wrong” - they are not an

exact representation of reality
Climate models, hydrological models, vegetation
model, (your investment!) financial models,
health models, ecosystem models, etc., etc., are
imperfect, because they are reduced complexity

Models are useful to understand & predict systems

Models are absolutely central in
contemporary research
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FAQ 1.2, Figure 1. Schematic view of the components of the climate system, their processes and interactions.
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Climate models are built on fundamental physics




Mid-1970s Mid-1980s

Global Climate Models

“Clouds

The basis of (large scale)
projections

 Overview of climate change science
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Figure 1.2. The complenty of cimate models has increassd over the last fow decades. The additiona! physics ncorparated in $he models ars shown pictonally by the
different feafures of the modelled world.
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The (implied?) improvement of regional projections

IPCC AR4 WG1: Ch1
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How well do models do?
Observed Temperature change versus IPCC projections
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Early 1990’s: Weather forecasting modeling (SAWS)

Mid 1990’s: Early regional climate modeling (RCMs)
Early learning with statistical downscaling (SD)

Late 1990’s: Improved statistical downscaling
Explorations with global models
Increased confidence that robust results will emerge

Early 2000’s: Large project work with GCMs, RCMs, & SD
Emerging understanding of uncertainty and limits

Mid-late 2000’s: Increased understanding on model limits, model
development, new investigative lines on uncertainty / probability, and
multi-model ensemble analysis

Present: International collaboration on multi-model multi-method
analysis, advances in developing scale relevant messages
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Thus by wsing the ancialy mip ane represents the COy forced synaptic response of
the local climais within e context of the GOM climate samulaton. Figures 14- 16 shoo

the anomaly mps For the | man precipitation and semgp chang

4. Discmssion

4.1 Downscaling foctions

The dowsscsting functions show evident ability io represeni the regional climabe as &
fumction of synoptic scale forcing. The ANN represents the peneralintd response of
regpomal precipitation and empersiure io the curmest and antecedesd circulaticn fo the
extent that circalation alone i the dominant control, 1n this regard de aspects thet the
ANNS migs are the pesk events. Thus while the circulstion indicsies a given stae of
synopfic forcing, and hence the regional vilus For the dowsscaled varlable, there o siill
varalbiliy unasceounted for due 1o other features, for exesnple, smospheric wter vapour

Tonetheless, the ANN capiures the vemporal behasviour of the sysiem well. When
camsidering e seasonal mean values and their close resemblance to the cheerved data it is
apparen that the woireme positive and negative values missed by the ANN lead to fitde
bias im the mean, smd this at present tends 1o generate only a nommal under-prediction
A3 stach e downscaling can be scoepead a5 & vakid repr tican of regional cli
response io the larger stmaspheric sysbem.

The significance of these rewlts are importan in the conext of fumre climee change
wark for South Africa. While shis study & preliminary smd uses anly ong GOM
simulaton set, the validity of the approach is demonstrated and holds promise for furter
extiniion fo news Emulaisn dels sis from deflerent models. B doing &5 an ovalwitson
of model conserss berwesn model simalations may. be derived which s imporiem or

building a basis of credibikivy lor o particulas scenario’s imph

4.3 GUM controd siwulition

Application of the downscaling demoesiraies that the Genesis GCM v 102 simulates
pvBaiile seale foneing with reliable aceuracy as shown by the compesisos of the
downscaled values with respect o those derived from the chstned gircalation patiems.
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Figuee 14; 2xC0, - 1000, cinculption-predicted ancensly precpastion

Early project on statistical downscaling from a single GCM produced results (in
hindsight, wrong), but revealed valuable methodological understanding (and
with bad quality figures)
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WRC 806-1-01

UM Wind Stream Lines Wk Wind Stream Line
- ":|

Fignre 18: Comparison of surface wind vectars beewesn the UM and MMS for an instontaneous time slics,

Flaure 19: Compartson of surface streamlines berwsen the UM and MMS3 for an instantaneoas time slice.

Projects working with GCMs and nested RCMs were pivotal in catalyzing new
researcher capacity, building experiential knowledge, and led to insights into
the model limitations with simulating southern Africa climate (figures now at
least readable)
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Multi-institutional collaboration on seasonal forecasting opened possibilities
and raised expectations of major developments (but still no colour figures!)
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WRC 1154-1-04

(Colour figs!)

Large project teams use the models to explore fundamental dynamics of the
climate system, including feedbacks, scale dependencies, high resolution
simulations, multi-model responses, and extreme events
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WRC 1430-01-05

(Many colour figs!)

CLIMATE CHANGE AND WATER
RESOURCES IN SOUTHERN AFRICA

Studies on Scenarios, Impacts, Vulnerabilities
and Adaptation

R.E. Schulze
(Ed ity

With contributions by (in alphabatical order)
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Multi-institutional large project teams expand to more in-depth exploration of
coupling global models, downscaling, and impact models. This was a period

of a shift in the centre of gravity of research to explore coupling with impacts.
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144 GCM downscaled projections
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Extensive exploration of the emerging robust messages and their regional
eco-hydrological responses to South African climate using coupling of GCMs,

downscaling, and hydrological modeling
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Expansion of activities into diverse research areas, including exploring climate
information relevant to stakeholder’s decision-space, and digging into
fundamental physical process issues such as the role of aerosols.
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Questions we need to stop and
periodically ask

* Why model ... what is the imperative
behind this approach?

* What is our goal in modeling?
* Which are the current priority knowledge

gaps that relate to advancing the value of
our research?
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Why are we focusing on modeling?

Climate is now non-stationary ... a human-modulated
moving target! If we cannot predict, all we can do is react.

People Affected by Natural Disasters between 1971-2000
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Why are we focusing on this?

The changing dynamics are already beginning to exceed the
operating parameters of some social and physical systems.
Impact comes through exceeding thresholds.

LGP Change, 2000-205, HD B 1
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What are we trying to achieve with modeling

For a given spatial scale, variable, and application, the

prediction skill is a function of time scale
. Theoretical deterministic

results

— limit of predictability \
o o= Required skill of
- .
N . modelresults for T e
— 1 decision making &
O
)
Q N Actual skill
'-5 of current
QL model
—
ol

Daily 2-3 weeks Months Seasonal Decadal Century




The questions that producers of climate information
need to answer:

1. Is the message plausible: Does it fall within the
envelope of known possible variability?

2. Is the message defensible: On a regional scale, am |
able to explain the understanding in terms of physical
processes and dynamics?

3. Is the message actionable: at the time and space
scales of user decision making, can | defend decisions
based on the probabilistic climate information?
(Would | spend my own money?)
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Delivered
by science

Needed

by society

Data

Climate models, historical
observations, trends,
downscaling, projections, event
frequency, ...

Information
Measures of vulnerability and
risk, threshold exceedence,
combinatory impacts,
uncertainty and confidence,
regional scale variations, ...

\

Knowledge
Assessing options, understanding
consequences, evaluating
responses, informing decision
making, ...

A basis for action
Balance competing priorities,
strategic investments in
adaptation and mitigation, new
research avenues, coordination
of response frameworks, ...

Generated by models,
analyses, downscaling,
observations ...

We are not always sure
when we have “information”

Comes with close coupling
between science and society

Actions are risky, and takes
place within a multi-stressor
context

/' Climate System Analysis Group
University of Cape Town
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Downscaled rainfall change (11 GCMs, 2050 anomaly, SRES A2)

DJF median MAM median JUA median SON median

Multi-GCM
Median

“Best estimate?”




Observations Circulation GCM Downscaled
& the past predictions predictions predictions

°2 4 Regional Integration and Understanding A
O w

- C

© =

@ o / \

S ‘D : :

g~ Data products with Storylines and robust

= articulated uncertainty messages of anomalies

AN e

Contextualization
around real world
guestions

!

“User communities”

Integration in
application

Emerging understanding of how to building regional messages
Single model sources are dangerous Adapted from Hewison et al, 2010
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New approaches needed to find the value In
the explosion of multi-model data?

Consider the following combination:

GCM-a, ~2 deg resolution, 10 ensemble members

GCM-b, ~1 deg resolution, 5 ensemble members

GCM-c, ~2.5 deg resolution, 1 simulation

RCM-a 25 downscaling of 3 ensemble members from GCM-a

RCM-b 5km downscaling 1 ensemble member from GCM-b

Statstical downscaling to point scale of all ensemble
members from GCM-a and GCM-b

1. Which sources do you use, and according to what metric?

2. If you use only some sources, there will be contradictions
with other sources, how do you explain the contradiction?

3. If all sources are used, how do you combine multiple
models methods and resolutions?

s
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Communication: are we delivering
the relevant information?

Uptake of seasonal forecast per farm activity
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Land Planting crops  ofcrop purchase Planning sies money
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% respondents

From P. Johnston
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New unprecedented collaborative opportunities:
e.g. CMIP5 and CORDEX (multi-model and multi-method)
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The state of play, the related challenges:

* A strong capacity has been built; where does this
growth in scientific capacity find their career path?

* Clearer understanding of historical change; what is the
future of the observing network of measurements, and
the coordination, quality control, and sharing?

* Solid awareness on knowledge gaps; the relationship
between change and variability, and the advance in
methods, opens hew avenues to address emerging
grand-challenge questions.

* New established multi-institutional partnerships; A
new modality of team research needs new structures.
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Conclusion: we have moved substantially In
15 years; the need Is greater than ever

= Capacity exists

= Understanding of the
strengths and
weaknesses is clear

* The need for
predictability has
rapidly expanded

= The shift is from

T e T
opestion FACET, ael Y
application “ '

= The changing climate ¢
IS an imperative
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