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Executive summary 

Big Data analytics is a novel and innovative package of tools and methods used to 
analyse and transform large volumes of heterogeneous data into information. Big Data 
is the term used to describe these vast collections of heterogeneous, multidimensional 
datasets generated by various sources, such as sensors, connected devices, computer 
simulations, satellite observations, research missions, ground-based monitoring, social 
media, and business transactions to name a few. In the groundwater discipline Big Data 
can provide new methods of information discovery, that can support efforts of 
sustainable groundwater management. However, the application of Big Data analytics 
is particularly nascent in the groundwater discipline. The data in the groundwater 
discipline is challenging to integrate and analyses. This is largely due to differences in 
spatial and temporal scale, the multi-dimensionality of various datasets, and the 
complexity of the natural systems. Big Data analytics can play a role in addressing these 
complexities, by transforming large groundwater datasets into actionable information 
to improve groundwater management. 

Thus, the purpose of this research is to investigate the use of Big Data analytics to 
integrate, match and model groundwater data, especially at a local scale, to improve 
sustainable groundwater management. A case study application is undertaken, with a 
focus on transboundary aquifers in the Southern African Development Community 
(SADC). These aquifers are vital water resources for region, but their sustainable 
management is hindered, in part due to a lack of relevant groundwater data. The unique 
challenges experienced in SADC provide an opportunity to test Big Data analytics in data 
scarce regions, by augmenting the data gaps with new sources of data. 

A transboundary aquifer (TBA) analytics framework was designed to provide a 
methodical approach to the application of Big Data analytics to support groundwater 
management. The main components of the framework include case study area 
selection, establishment and selection of various groundwater management scenarios 
and a set of sustainability indicators, collection and ingestion of relevant data to support 
the groundwater management scenario, the integration and modelling of sustainability 
indicators using Big Data analytics to better inform local groundwater management. In 
addition, downscaling and merging data of different spatial resolutions are included in 
the framework. 

In modern Big Data environment, the computing resources required to store and analyse 
vast amounts of groundwater data, is generally beyond the capabilities of standard 
computing machines. Therefore, this research presented an architecture for a novel Big 
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Data platform to facilitate the collection, storage, processing, analyses, and information 
delivery of groundwater Big Data. The architecture proposes a multi-layered approach, 
with a “data sources” layers which constitute the physical layer where all raw data are 
located, a data collection/identification layer which identifies and acquires data, a 
middleware layer which is dedicated to the storage and analysis of the data, and the 
application layer where applications related to different analysis and groundwater 
management scenarios are implemented. This type of architecture was designed to be 
deployed either as a stand-alone system, that is housed at an organization’s premises, 
or a federated cloud computing infrastructure, where resources are shared amongst 
federation members. The latter is preferred due to the shared resources, fault tolerance 
handling (federated systems limit total system failure), and data sharing capabilities.  

Two case study areas were chosen to explore the applications of Big Data analytics to 
groundwater management: The Zeerust/Lobatse/Ramotswa Dolomite aquifers of 
Botswana and South Africa, and the Shire Valley Alluvial Transboundary aquifer in 
Malawi and Mozambique. The status quo of the TBAs was discussed within the context 
of undesirable results, based on a set of groundwater management scenarios adapted 
from the California Department of Water Resources. From this, the scenario of chronic 
lowering of groundwater levels was investigated using Big Data analytics. 

Relevant data considered important to the understanding of groundwater levels in the 
aquifer were collected from various remote sensing and land surface model sources. 
This includes hydroclimatic variables such as precipitation and evapotranspiration, as 
well as aquifer properties, such as aquifer type and groundwater storage changes. In 
total 9 predictor variables were chosen to model a single predictant variable, namely 
groundwater levels, using Big Data analytics. The data was pre-processed into a set of 
comparable variables with consistent temporal and spatial resolution. 30-day 
groundwater level changes were calculated (predictant). The regional scale data were 
integrated with the local data, where raster values were converted to tabular data and 
appended to the groundwater level change records.  

In this research, we applied a machine learning approach to model and predict 
groundwater level changes across the study areas. Specifically, we relied on a Gradient 
Boosting Decision Tree (GBDT) to develop a generalised machine learning model to 
predict 30-day groundwater level changes at ~5 x 5 km resolution across the study areas. 
Through a process of model training, validation, and testing, a GBDT model was 
developed for the Ramotswa aquifer that predicted 30-day groundwater level changes 
with a mean absolute error of ~17.8 cm. Unfortunately, for the Shire Valley TBA, 
sufficient data series was only available for a single borehole, where monthly 
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groundwater level changes were predicted with a mean absolute error of 34.6 cm. The 
model for the Ramotswa aquifer was then used to predict monthly groundwater level 
changes at ~5 x 5 km. The results revealed significant groundwater level declines across 
the study area between 2002 and 2019.  

The results illustrate the potential for Big Data analytics to provide information on 
chronic lowering of groundwater levels in the study area. However, concerns regarding 
model performance in terms of predicting extreme values are still present, as well as 
issues regarding effective model training. This is a consequence of aquifer processes 
such as abstraction and episodic events that could not be accounted for. Nonetheless 
the results suggest that additional data and the inclusion of features such as abstraction 
may improve model performance.  
 
Overall, the use of Big Data analytics to support groundwater management in the SADC 
region has potential uses. However, the data need to be readily available and at a 
sufficient level to develop machine learning models. In many cases, various Big Data 
sources can be augmented and integrated to improve data availability, but in situ 
observation are still required to validate model performance. Beyond this, challenges 
associated with the collection and processing of large datasets can be expected, and 
they need to be overcome. Finally, the data, tools and information need to be packaged 
into forms that facilitate decision making on the ground.  
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1. Introduction and background 
 

1.1. The Big Data Analytics and Transboundary Water Collaboration for 
Southern Africa 

 
This research project, managed by the Water Research Commission (WRC) of South 
Africa, is part of a series of four projects under the Big Data Analytics and Transboundary 
Water Collaboration for Southern Africa, bringing together key stakeholders in Water 
and Big Data sectors.  
 
The Collaboration was first conceptualised in 2014 during the African Leaders Forum in 
Washington D.C., between United States Agency for International Development (USAID) 
Global Development Lab and IBM Africa Research, which had opened its first hub in 
Nairobi (Kenya) in 2013, followed by the Johannesburg Lab in 2015. Since the early 
2000s, the regional USAID mission for Southern Africa had been intensifying its regional 
support for transboundary water systems with both the Ramotswa Aquifer Project, 
involving Botswana and South Africa and the Resilience in the Limpopo River Basin 
Program (currently in its second phase with the Resilient Waters Programme, covering 
the entire Southern Africa region, with a focus on the Limpopo and Okavango River 
Systems). As part of this process, USAID had also been engaging with the Southern 
African Development Community (SADC): Groundwater Management Institute (GMI) 
and the Department of Science and Innovation of South Africa to support knowledge 
and technological advancement in the region. The focus of this multi-agency 
collaboration was agreed as Big Data Analytics and Transboundary Water. On April 3, 
2017, the partners met with a multi-stakeholder regional group in a dynamic “Idea Jam” 
hosted by the IBM Africa Research Lab in Johannesburg. The objective was twofold:  
 
 To answer the broad question “how best can big data analytics be used to 

enhance transboundary water management”, and  
 To identity the research questions, which would have guided the projects. 

 
Requiring the collaboration of at least five high profile government agencies and private 
institutions, it took over one year to move from the Idea Jam to the launch of the Call 
for Proposals in August 2018, and the awarding of the four research projects in January 
2019. 
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1.1.1. The Collaboration: its partners and objectives 
 
Currently, the Collaboration has seven partners, with a joint function for USAID Global 
Development Lab, Water Office, and Southern African Mission. The partners each 
contributed to the development of the research projects based on own technical and 
funding capacity (Figure 1). The total funds provided by the Funding Partners to research 
directly amount to USD $ 500,000 (40%, 40%, 20%). IBM Africa contributed with the 
provision of the venue in Johannesburg, ad hoc, but more importantly, by sponsoring 
the internship programme to the five candidates from the research projects.  
 

 
Figure 1: Collaboration partners & functions 
 
The WRC is primarily tasked to oversee the financial and implementation management 
of the four research projects, as well as final reporting. The Sustainable Water 
Partnership (SWP) was called in by USAID in 2018 to act as the overarching Programme 
Coordinator, tasked with providing relation management, overall objective 
achievement, direction, and positioning for the Collaboration in the region, and the 
fostering of a Community of Practice.  
 
The United States Geological Survey (USGS), IBM Research and SWP provided three sets 
of online training on issues pertaining to the focal topics of the Collaboration, which are 
now available on the Collaboration YouTube channel. 
 
The Collaboration partners defined the objectives for this first phase of action (Table 1). 
However, the long-term vision is to create a Community of Practice (CoP) for research 

Funding 
partners

Department of Science and 
Innovation 

USAID GDL & 
Water

SADC-GMI

Supporting 
partners

IBM Africa Lab

USAID Southern 
Africa Mission

USGS

Managing 
partners

Water Research 
Commission

Sustainable 
Water 

Partnership
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and innovation on Big Data for Water Security, building on the multi-donor environment 
which has proven successful.  
 
Table 1: Collaboration goals and objectives 
 

Goals Objectives 
Enhance current understanding of shared 
groundwater resources 

Improve transboundary groundwater 
management and collaboration 

Provide big data skills development, capacity 
building and networking opportunities for 
Southern African researchers and their students 

To foster multi-agency collaborative funding 
opportunities 

To promote innovative thinking and application 
of Big Data Analytics to the Transboundary Water 
sector for integrated decision-making 

To plant the seed for a growing community of 
pioneers in the use of Big Data Analytics for the 
study and management of Transboundary Water 
Aquifers 

 

1.1.2. Research projects: funding and training 
 
The four projects were awarded between December 2018 and January 2019, with a 
focus on a secondary river basin in the region: the Ramotswa, part of the Limpopo River 
Basin, spanning Botswana and South Africa. All the lead institutions of the project teams 
have partnered, see Figure 2, with Botswana government and private institutions, as 
well as other leaders in previous water programmes in the area, such as UN-IGRAC1 
(partner of Team 1) and IWMI2, implementers of the Ramotswa 2 USAID Project.  
 

 
1 International Groundwater Resources Assessment Centre of the United Nations 
2 International Water Management Institute 



 

pg. 4 
 

 
Figure 2: Title of the four thematic areas and projects 
 
Despite working independently to address own project topics, the four research teams 
have progressively worked together to provide better integration for their outcomes. 
This process was led by the SWP in respect of providing a communication forum for the 
team leaders but was enhanced by the Internship Programme. The IBM mentors created 
a dedicated team and engaged the interns as individuals, as well as a group to help each 
other resolve new questions in coding and Machine Learning. 
 

1.1.3. The future prospects 
 
As the current phase is coming to an end with the closing of the four research projects, 
the Collaboration partners are already identifying new opportunities to build on the 
lessons learnt and address the gaps recognised in this preliminary work, enhance the 
partnership to include national and regional government stakeholders, as well as new 
funding partners.  
 
The focus of the Collaboration will remain the nexus between Big Data Analytics and 
(Transboundary) Water Security, recognising the inter-relatedness of successful water 
management in both national and shared aquifers to both human development and 
environmental goals. 

T1: Consolidation of data and application of big data tools to enhance national and 
transboundary data sets in Southern Africa that support decision-making for security of water 
resources.

•Umvoto Africa, University of Botswana, other global

T2: Consolidation of data and application of big data tools to enhance national and 
transboundary data sets in Southern Africa that support decision-making for security of water 
resources.

•Witwatersrand University, Geological Services of Botswana, DWS

T3: Localizing transboundary data sets in Southern African: A case study approach

•University of the Western Cape, CSIR, L2K2 Consultants

T4: Groundwater secure transboundary systems

•Delta-H Groundwater Systems and Institute for Groundwater Studies
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1.2. Theme interaction and integration 
 
A CoP approach towards theme interaction and integration was adopted. Through the 
practice, the theme leaders shared information and developed knowledge resulting 
from joint activities and discussions. This included: 
 
 Meetings: Biweekly meetings, Reference Group meetings 
 Data and information sharing: 

 Theme 1: Provided data pertaining to the Ramotswa TBA, which 
included depth to groundwater levels, GIS vector and raster layers, and 
other attribute data 

 Theme 4: Provided depth to groundwater level data for monitoring 
stations on the South African side of the Ramotswa TBA 

 Workshops: Closing Workshop of the RAMOTSWA 2 Project, Data Storage 
Solution Workshop Online series 

 Webinars and training: USGS Technical Webinar Series; Big Data for Water 
Security: Scalable Geospatiotemporal Data Integration & Systems; SWP & IUCN 
Webinar Series on Transboundary Water Governance for Water Security 

 Conferences: 2nd SADC-GMI; Conference; 2019 Groundwater Division 
Conference: Conservation, Demand & Surety; 3rd SADC-GMI Conference 

 Internship: A handful of young scientists from various research institutes, of 
which Zaheed Gaffoor (PhD candidate) was one, were chosen to participate in 
an internship under the mentorship of IBM Research Africa. IBM Research 
Africa represents a technical and training partner in the Transboundary Water 
Collaboration for Southern Africa and is a world class data science and artificial 
intelligence research institute with a proven track record in Big Data analytics 
(BDAs). The skills transfer learning during the internship included: 
 Python coding and scripting skills 
 Machine learning implementation 
 Application programming interface (API) interfacing 
 General data science skills (ingestion, pre-processing, exploration, 

etc.) 
 Various analysis outputs (e.g. maps, datasets, and figures) 
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1.3. Motivation 

Groundwater of sufficient quantity and good quality is vital to the socio-economic 
development aims of Member States of the Southern African Development Community 
(SADC). In the SADC there are groundwater resources that transcend national 
boundaries, known as transboundary aquifer systems (TBAs). The TBAs are associated 
with important aquifers making them crucial for the strengthening of water and 
international cooperation among the Member States of SADC. 
 
Conventional groundwater data such as from in-situ monitoring programs, historical 
reports, and computer simulations, have long been the source of information to support 
groundwater decision-making. However, recent assessment of the state of groundwater 
data in the SADC-region by the SADC-GMI revealed many constraints including limited 
human resources, equipment and financial capacity for collection, analysis, 
management, retrieval, and sharing of data; inconsistencies in data collection and 
routine quality control; data storage in different formats and difficulty in data access, 
use or interpretation (SADC-GMI et al., 2019a, b). Advances in remote sensing missions, 
atmospheric and land surface models, social media, and other internet-related 
platforms provide new sources of data for groundwater (Figure 3).  
 

 
 

Figure 3:  Sources of big data 
 
The issue with remote sensing data and computer-based models is that the spatial 
resolution is more suited for regional or global studies whereas groundwater-related 
investigations are mostly needed at the local level. For local groundwater management 



 

pg. 7 
 

in the SADC, the data must be downscaled to a finer spatial resolution. To this end, this 
project explores the use of BDAs to harmonise the data sources and link models and 
data of different scales to support groundwater decision-making in the TBAs of the SADC 
at the local level. 
 

1.4. Aims and objectives 
 
The research was funded by the BDAs and Transboundary Water Collaboration for 
Southern Africa (section 1.1) and carried out by the University of the Western Cape 
(UWC) in partnership with the CSIR entitled “Localising transboundary data sets in 
Southern Africa: A case study approach.” The specific aims of the study were to: 
 
 Select case study area(s) where there are active transboundary data sets in 

addition to reliable local data sets and identify which data elements are of high 
value for joint decision-making 

 Identify and prioritize data parameters critical for local decision-making by 
developing a matrix for various management scenarios (exploitation, 
protection, forecasting) 

 Match, integrate and model local data with regional data (data from official and 
nonofficial sources) 

 Integrate and downscale datasets for finer scale decision making using big data 
tools 

 Extrapolate to similar settings (e.g. geology, climate, aquifers) 
 Evaluate and test whether big data tools can model local data results at the 

transboundary level 
 Identify and assess important problems/issues regarding transboundary water 

systems and their management 
 

1.5. Project team 
 
To ensure a multi-disciplinary project team for the full scope of the research, UWC 
(through its Institute for Water Studies and Department of Computing Sciences), CSIR 
and L2K2 Consultants (Pty) Ltd have joined forces to form the research team led by UWC. 
Capacity building is a vital component to fulfil the project objectives and the students 
that contributed to the project included: 
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 Zaheed Gaffoor (PhD): Assessing the feasibility of Big Data analytics to support 
local groundwater decision making 

 Gift Wanangwa (PhD): A validation study on using BDA in decision-making for 
managing transboundary alluvial aquifer: A case study of the Shire Valley 
aquifer in Malawi 

 Lutho Ntantiso (MSc): Federated Machine Learning for Modelling 
Transboundary Datasets in the Southern African Region 

 

1.6. Report structure 
 
Chapter 1 provides the introduction and background to the study. This chapter provides 
a summary of the transboundary collaboration and an overview of theme interaction 
and integration. The aims and objectives of the project are discussed, and the project 
team affiliations introduced with a list of students that contributed to the project. 
 
BDAs and its applicability to support local groundwater management in the Southern 
African Development Community is discussed in Chapter 2. The chapter reflects on the 
current knowledge regarding the application of BDAs in the groundwater sciences. BDAs 
contribution to groundwater management was found to be two-fold. Firstly, BDAs can 
address issues of data scarcity by consolidating data available from different sources, 
both traditional and unconventional. Secondly, BDAs can transform data into usable 
information that can support groundwater management, especially at a local scale. 
 
The methodology for the research included case study area selection, scenario 
development, federated cloud storage infrastructure development and downscaling 
regional to local scale in TBAs using BDAs tools. This is discussed in Chapter 3 which 
introduces the Transboundary Analytics Framework. Using the Transboundary Aquifer 
Analytics Framework, a holistic approach is applied that provides integration of the 
various objectives of this research. 
 
Chapter 4 introduces a multi-layered architecture for big data processing aiming at 
collecting different types of data in order and applying different BDA to the data to get 
useful insights which can be used by water researchers and decision makers for the 
understanding, management, and enhancement of water resources. 
 
To model local data and regional data in an integrated manner, a machine learning 
approach was applied. This is discussed in Chapter 5. The machine learning model relies 
on a set of predictor variables (regional scale hydroclimatic variables, e.g. groundwater 
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storage, precipitation, run-off), to predict a predictant (local scale variable such as depth 
to water level). This required a significant amount of data to be collected and pre-
processed as discussed in Chapter 5. 
 
Chapter 6 describes the set-up and execution of a machine learning algorithm that was 
used to model groundwater level changes in the case study areas. A gradient boosting 
decision tree machine learning model was developed and implemented in the case study 
areas. The model was designed, trained, and calibrated to predict groundwater level 
changes based on a set of hydroclimatic, land surface and hydrogeological variables. 
 
Chapter 7 provide reflections on the learning and profiling opportunities linked to the 
project. 
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2. Literature review  
 

2.1. Introduction 
 
This chapter is based on a paper that was published in Water (Gaffoor et al., 2020). BDA 
describes the use of advanced and traditional analytical techniques to leverage vast 
quantities of heterogeneous data, in order to provide valuable insights that can be used 
to propel optimization, development and knowledge discovery (Kitchin and McArdle, 
2016; Adamala, 2017). To date, the surge of data from online social media activities, 
internet activities, business transactions, scientific missions, digitization, and sensor 
technologies, among many others, benefit many industries in understanding their 
operational environment. Collectively these data are referred to as big data.  
 
The earth sciences discipline, like many other scientific disciplines, has been driven into 
the big data era with the advancement of sensor technologies, such as remote sensing, 
that continually collect new data (Guo, 2017). This has paved the way for the 
introduction of data-driven approaches in the earth science discipline. It is not a surprise 
that in recent times the potential for big data to support knowledge discovery in the 
hydrogeological discipline has become apparent (Adamala, 2017). For example: 
 
 Chalh et al. (2015) showcased the use of the big data open platform to support 

water resource management in the Foum Tillich watershed, Morocco. The 
platform utilizes several tools such as stochastic models, simulations, hydraulic 
and hydrological models, high performance computing, grid computing, 
decision support tools, big data analysis systems, communication and diffusion 
systems, database management, geographic information system (GIS) and 
knowledge-based expert systems to extract information from a variety of 
heterogeneous datasets. Through decision support tools such as hypsometrical 
approach, users can understand the impacts of various future management 
scenarios  

 Lee et al. (2019) demonstrated the potential of BDAs to mapping groundwater 
potential in Goyang-si, South Korea, by combining data from borehole-pumping 
activities and satellite-based earth observation data 

 
In fact, recent interest in BDAs has spurred a special section in Water Resources 
Research focusing entirely on the application of BDAs in hydrological research (Water 
Resources Research, 2020). Nonetheless, applications of big data are still very incipient 
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in the discipline of hydrogeology. As such, the range of applicability of big data in the 
hydrogeological field has not been fully explored. The aim of this chapter is to highlight 
the potential role BDAs and big data can play in supporting groundwater management 
in SADC.  
 

2.2. Big data: concepts and role in groundwater science 
 

2.2.1. Defining big data 
 
Big data are referred to as collections of very huge datasets with a great diversity of 
types that makes it difficult to be collected, stored and analysed by conventional tools 
and techniques (Chen et al., 2014; Ylijoki and Porras, 2016). Big data have a few 
characteristics that separate them from generally large datasets. These characteristics 
are recognized as the Vs of big data (Gandomi and Haider, 2015): 
 
 Volume – big data consist of enormous quantities of data, generally beyond a 

threshold of one terabyte, however this change with time, sector, data types 
and use case  

 Velocity – big data are generated at an exceptionally high rate, such that the 
volume of big data increases rapidly over time 

 Variety – big data are composed of a variety of different data types from a 
variety of sources 

 
The three Vs (volume, velocity and variety) are the commonly defined features of big 
data, which were first coined by (Laney, 2001). Since then, industry experts have added 
additional Vs to define big data: 
 
 IBM added veracity – which describes the inherent inaccuracy and uncertainty 

present in most large datasets and complex datasets  (Zikopoulos et al., 2012) 
 SAS introduced variability & complexity – which describe the ever changing 

nature of big data over time with respect to velocity and variety (Gandomi and 
Haider, 2015; Lee, 2017)  

 Oracle introduced value as an additional V – which stipulates that big data must 
contain new knowledge or improve operational efficiency for them to have any 
meaning in terms of financial investment (Gandomi and Haider, 2015; Lee, 
2017). This value is usually achieved using analytics which transforms the raw 
data into useful information 
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For SADC groundwater to realize the value of big data, thought must be given to 
understanding the Vs in the context of groundwater big data in Southern Africa, as well 
as the analytics required to turn these data into useful information for groundwater 
management. 
 
Big data types play a role in how big data are managed from data to information. They 
can be broadly categorized into structured and unstructured data (Gandomi and Haider, 
2015). Structured data are any type of data that can easily be stored, categorized, and 
referenced in tabular form. The main tool to store, access and query this type of data is 
through relational databases, making them easily readable by machines (Lee, 2017). For 
example, conventional hydrological data generated through in situ monitoring 
commonly constitute point information that can easily be captured in relational 
databases and conventional spreadsheets. This is typical of structured data. 
 
On the other hand, text, video, audio, and images are examples of unstructured data. 
These lack higher structural organization and are not easily stored in relational 
databases (Lee, 2017). For example, videos of a flooding events or social media posts 
related to various aspects of water and groundwater, constitute unstructured data 
relevant to groundwater. In addition, remote-sensing images constitute unstructured 
data, but the meta-data attached to the image is structured (Guo, 2017; Wang et al., 
2019). Unstructured data are particularly difficult for machine programs to extract 
information from, at least with traditional techniques. Semi-structured data have some 
form of structure; however, these tend to be very irregular and often heterogeneous, 
which makes categorization challenging. Emails and XML files fall into the semi-
structured data type (Gandomi and Haider, 2015; Lee, 2017; Lin et al., 2018). 
 

2.2.2.  Sources and nature of big data in groundwater sciences 
 
A common awareness among data scientists is that not all big data are the same and 
that the structure and nature of big data and how we analyse them depend on the 
domain (Guo, 2017). For example, geospatial data differ from text data (such as from 
social media posts) and the techniques and tools used to collect, store and analyse each 
of these types of data will be different (Chen et al., 2014). The result is that one needs 
to fully understand the specificities of the relevant data sources and what information 
is required from these data before appropriate big data tools, techniques and analytics 
can be applied. 
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Data in the groundwater domain has not been static. Over the years, groundwater 
scientists have explored various sources to collect groundwater data. Table 2 illustrates 
these sources of data relevant to groundwater. Table 2 includes the traditional sources 
of groundwater data such as in situ observations or hydrogeological maps, as well as 
modern data sources such as remote sensing, social media, or Internet of things (IoT). 
Individually, some of these sources may not have the characteristics of big data, but 
when harnessed together they provide some substantial opportunities for knowledge 
discovery. Large scale data assimilation models are one example of such systems that 
incorporate data from different sources, such as field activities, remote sensing, and 
computer simulations. However, at the moment they do not ingest data from 
unconventional big data sources, such as social media (Zhang and Moore, 2014). 
 
Table 2: Sources of data in the groundwater domain from a big data context. 
 

Source Description Characteristics 
Field activities Data generated from field activities such as 

monitoring, drilling, and pumping activities 
Structured data format 
Limited coverage (spatially and 
temporally) 
Local 

Historical Legacy reports, maps, and documents Unstructured 
Local or regional 
Text or images 

Remote sensing Satellite, airborne or groundwater-based 
earth observation 

Unstructured and structured 
Multidimensional 
Voluminous 
Regional 

Computer 
simulation 

Data generated through computer-based 
models 

Unstructured and structured 
Multidimensional 
Voluminous 
Regional 

Social media 
and the web 

Data available on webpages and social 
media post 

Unstructured 
Textual, images, videos, or audio 
Multidimensional 
Heterogeneous 
Voluminous 
Local 

Internet of 
Things 

Data available from connected devices Unstructured and structured 
Heterogeneous 
Multidimensional 
Local 
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2.3. Methods in Big Data Analytics 
 
The value of big data is truly realized when it is transformed into useful information. BDA 
covers a comprehensive package of advanced analytical, statistical, mathematical and 
graphic methods that can be used to transform the data into useful information 
(Russom, 2011).  
 
According to (Russom, 2011), BDAs is advanced analytics operating on big data. Many of 
the tools and techniques employed in BDAs, such as machine learning, have been 
available for many years (Watson, 2014). It is only recently, with the surge in big data, 
that the value of these advanced analytical techniques has been realized. Compared to 
traditional analytics approaches, advanced analytical techniques perform well when 
dealing with very large, heterogeneous datasets, requiring less data pre-processing, as 
shown in Table 3 (Tsai et al., 2015). For example, machine learning can work on both 
structured and unstructured data, while traditional analytics works well only on 
structured data. One of the major differences between traditional analytics and BDAs is 
the processing platforms required. Big data generally require parallel processing 
methods to effectively analyse these large datasets. BDAs methods are designed to 
operate over multiple distributed processors, whereas traditional analytics methods are 
generally designed to operate on single machines (Tsai et al., 2015). Traditional 
analytical methods are only efficient when significant sampling and dimensional 
reduction methods (e.g. principal component analysis, genetic algorithm) are used to 
reduce data size. In addition, traditional analytics are not suited for parallel processing 
frameworks. BDAs together with traditional analytics may allow us to leverage various 
sources and types of groundwater big data, turning them into useful information for a 
groundwater manager to use. 
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Table 3: Traditional analytics vs BDAs 
 

 Traditional Analytics Big Data Analytics 
Focus Descriptive analytics and 

diagnosis analytics 
Predictive analysis and prescriptive 
analytics 

Datasets Limited datasets with structured 
data. 
Adoption of simple data models 

Large scale datasets with more types 
of data. Adoption of complex data 
models 

Analysis Looks to what happened and 
why? 

Provides new insights and forecasts 

Processing Generally capable of being run on 
a single machine (centralized 
processing) 

Requires parallel processing across 
multiple machines (distributed 
processing) 

Source: adapted from (Tsai et al., 2015; Almeida, 2018) 

 
Generally, BDAs include traditional analytics such as data mining, statistical analysis, SQL 
queries (Structured Query Language queries) and data visualization, which work well on 
structured data. Advanced analytical techniques such as natural language processing, 
text analytics, video analytics, audio analytics, artificial intelligence and machine 
learning work well with heterogeneous unstructured data (Russom, 2011; Gandomi and 
Haider, 2015). An assemblage of these techniques is usually used to turn raw big data 
into information. For example, in shale analytics, a combination of data mining, machine 
learning, artificial intelligence, correlation analysis and pattern recognition is used to 
extract information from text reports, sensor data and geophysical surveys from 
thousands of existing well operations. This information is then used to predict the 
success of new well operations (Mohaghegh et al., 2017). In this case, the combination 
of analytics is uniquely designed to extract value from the types of data present in shale 
gas operations. To leverage big data in groundwater in SADC, a similar set of unique 
analytical operations is needed to extract information from the types of data expected. 
It is also important to note that the type of analytics required should address the 
problem being investigated. 
 
The spectrum of BDA techniques is vast and an explanation of all these techniques is 
beyond the scope of this study. However, understanding the role various BDAs play in 
deriving information from data are key to derive the knowledge required to improve 
decision-making. For example, Table 4 presents a summary of common BDA techniques 
and the typical methods they include. These techniques can be used for a myriad of tasks 
such as extracting information from text data (text analytics), video files (video analytics) 
and audio data (audio analytics) and even geospatial data (Gandomi and Haider, 2015). 
Hence, data collected from citizen science initiatives, remote-sensing data, social media 
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data and conventional hydrological data can be turned into useful information for 
advancing understanding in groundwater management. 
 
Generally, the role of BDAs is to understand historical events or observations 
(descriptive analytics), what will occur based on historical observation (predictive 
analytics) and what is the best solution under uncertainty (prescriptive analytics) (Sun 
and Huo, 2019). Translating this to a groundwater context allows us to understand what 
the fundamental interrelation and operation of various hydrogeological processes are 
based on current data (descriptive analytics), using this knowledge to predict future 
groundwater scenarios (predictive analytics) and then understanding what the best 
actions are going forward (prescriptive analytics). This is where the paradigm shifts 
towards emphasis on data-driven solutions, allowing our analysis to be prescribed by 
trends in the data rather than theory. 
 
Table 4: Summary of BDA techniques 
 

Techniques Description Examples of Computational Methods 
Statistics Collection, organization, and 

interpretation data 
Descriptive statistics, regression, 
correlation, factor analysis, clustering, 
hypothesis testing, probabilistic statistics 

Data mining The process of extracting new 
information, such as patterns, from 
large datasets 

SQL queries, machine-learning, statistics, 
feature selection 

Artificial 
intelligence 
(AI) 

The role of developing computer 
systems that imitate, amplify, and 
automate intelligent behaviour of 
human beings 

Statistical learning, optimization methods, 
deep learning 

Machine 
learning 

Subset of AI, concerned with using 
self-learning computer algorithms 
to recognize features in empirical 
data 

Artificial neural networks, support vector 
machine, random forest, k-means 
clustering, natural language processing 

Uncertainty 
analysis 

Techniques used to quantify and 
handle uncertainty in big data 

Data cleaning, probability theory, Bayesian 
theory, Shannon’s entropy, rough set 
theory, fuzzy set theory 

Visualization The use of graphic means to 
represent large datasets 

Tables, graphs, images, feature extraction, 
geometric modelling 

Source: (Gandomi and Haider, 2015; Ali et al., 2016; Hariri et al., 2019) 
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2.4. Big Data Analytics frameworks and platforms 

Big data platforms are enterprise scale solutions used to facilitate the use of big data to 
meet a specific industry need. They are generally a collection of hardware and software 
layers, built upon a specific big data processing framework (Chapter 4). The function of 
modern big data platforms is to leverage big data. This is achieved through a process of 
data acquisition, data storage and pre-processing, data transformation through 
analytics and information dissemination (Becker et al., 2016). Figure 4 illustrates a 
general reference framework for big data, which includes the typical features or 
components required for any big data platform. 
 

 
Source: adapted from Jony et al. (2016); Faroukhi et al. (2020) 

 
Figure 4: BDAs value chain 
 
Data acquisition revolves around connecting to relevant data sources, determine 
individual data products and ingestion mechanisms. Here, one must consider the type 
of data being collected (e.g. structured versus unstructured), access and usage protocols 
for the various sources, the volumes of data required (which influences how data will be 
transmitted from the source to the processing location) and meta-data generation 
(Nasser and Tariq, 2015). For example, the size of some data products makes it 
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impractical to retrieve data from the sources repeatedly for analytical queries. In this 
case, it may be more advantages to ingest entire datasets and store on local systems. 
The complexities associated with data collection make the data itself an important 
component of any big data platform. 
 
Data pre-processing focuses on addressing the quality and uncertainty in the data, as 
well as the conversion of unstructured data to structured data. The purpose of this 
component is to create analysis-ready datasets. In this step, one must consider the type 
of data required for analytical operations, data cleaning protocols that are necessary, 
the uncertainty of the data and the post-processing algorithms that can be applied to 
improve accuracy in the raw data. The caveats (i.e. limitations and inaccuracies) of 
individual datasets will be important in this step (Padgavankar and Gupta, 2014). Once 
the data have been pre-processed, then data storage can take place. This requires 
knowledge on how data are to be curated, the type of data being stored (i.e. structured, 
or unstructured), the processing environment required, meta-data and the indexing 
paradigm. For example, in the Earth Science domain data will most certainly be 
geospatial in nature, indexing the data along temporal and spatial dimension would 
support faster and more versatile analytical operations (Alarabi et al., 2018). 
 
Figure 4 also illustrates how the value of big data increases across the value chain. BDA 
plays an important role in the value chain, leveraging big data in driving the knowledge 
discovery process, as we move from raw data to useful information. In this component, 
many of the analytical methods described in Section 2.3 will be useful. However, 
developing data-driven modelling through machine learning and artificial intelligence is 
perhaps the current status quo in terms of extracting value from the data. Descriptive, 
predictive, and prescriptive analytical models, if feasible, can provide additional tools to 
support groundwater management. For example, descriptive and predictive models 
may allow simulation of current and future groundwater conditions, while prescriptive 
models may allow determination of the impact of various management decisions. 
Finally, usable information must be disseminated in the form of maps, figures, and tables 
(etc.). This information can be usable as it is or it can be incorporated into decision 
support systems, early warning systems or dashboards to facilitate decisions (Figure 4). 
 
Addressing some of the challenges facing groundwater management in SADC may 
require a holistic solution such as a big data platform. For example, the disparate nature 
of groundwater big data could be centralized, the application of analytics could be 
simplified with built-in methods and functions, and the information could easily be 
accessed through web-based services. Hence, big data frameworks and platforms that 
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can be used to implement a big data approach in support of sustainable groundwater 
management in SADC are reviewed below. 
 
Many of the data sources described in section 2.2.2 house their data in large data 
warehouses or centres, which are distributed across the globe. These data centres can 
be accessed through various web-based platforms, such as Earth Explorer3, EarthData4, 
ESA Earth Online5. For example, most data generated by NASA missions get stored in 
distributed active archive centres across the United States, which can be accessed 
through various web-based platforms and software (Blumenfeld, 2018). However, 
navigating, extracting and processing vast amounts of remote-sensing data from various 
data sources to apply to a specific objective, such as to support groundwater 
management in SADC region, can be technically challenging (Cui et al., 2018). Often, 
specialist skills and tools are required to properly integrate and use the vast volumes of 
groundwater big data available. 
 
To address some of these challenges, many agencies have developed special platforms 
that can be used to leverage these big data. The Australian Geoscience Data Cube 
(AGDC) is an example of a purpose-built big data platform that focuses on leveraging 
remote-sensing big data, particularly Landsat, for Australian geoscience applications 
(Lewis et al., 2017). Hence, the platforms, data collection, storage and analysis features 
are tailored toward managing geo-spatial remote-sensing data. For example, data 
ingestion and pre-processing components focus largely on refining incoming raw data 
into analysis-ready products before data storage, using standard techniques. Data 
storage follows a multidimensional data array format with geospatial indexing (Data 
Cube). The architecture for this system is supported by the National Computational 
Infrastructure (NCI) Facility and their high-performance computing framework. 
 
EarthServer is a geospatial big data platform that is more generalized and interoperable, 
by focusing development on open geospatial data standards, such as those provided by 
the Open Geospatial Consortium (OGC) (Baumann et al., 2016). The platform is 
supported by the Rasdaman framework, which is an array-based, fully implemented 
parallel storage and processing platform. The platform allows various front-end 
applications to be attached for specific use cases. 
 

 
3 https://earthexplorer.usgs.gov/ 
4 https://earthdata.nasa.gov/ 
5 https://earth.esa.int/web/guest/data-access 
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geospatial big data platform (Klein et al., 2015; Lu et al., 2016). Its focus is largely on 
facilitating and simplifying the collection, integration, pre-processing, storage, retrieval, 
and analysis of heterogeneous spatial data. Data are collected and pre-processed into 
analysis-ready products, indexed, and stored along a common geo-spatial grid. 
Frameworks such as Hadoop and HBase support the storage and processing. Unlike the 
other platforms that focus on raster data, PAIRS provide facility for unstructured data 
types such as from IoT and social media. The unstructured data are transformed and 
stored alongside the raster data. 
 
The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration 
focusing on the sharing of climate-related data (Cinquini et al., 2014). The design of the 
ESGF is based on geographical independent data nodes that are built on common 
infrastructure. The nodes adopt common federation protocols and APIs (Application 
Programming Interfaces) that facilitate peer-peer communication and transfer of data. 
Now the ESGF is not an analytics platform, instead focusing on data indexing and data 
access. 
 
Besides the aforementioned big data platforms, there are a number of big data 
geospatial frameworks that can be implemented as geospatial big data processing 
solutions. These include ST-Hadoop (Alarabi et al., 2018), SpatialHadoop (Eldawy and 
Mokbel, 2015), Hadoop-GIS (Aji et al., 2013), GeoWave (Whitby et al., 2017) and 
GeoSpark (Yu et al., 2015), among others. These frameworks facilitate the distributed or 
parallel processing of geospatial big data. 
 

2.5. Challenges in applying Big Data to groundwater management 
 
According to (Sivarajah et al., 2017), there are numerous challenges that are faced by 
experts when trying to implement BDAs, but these can be divided into three broad 
categories:  
 
 Data challenges relate to the nature of big data itself (e.g. volume, velocity and 

variety, etc.) 
 Process challenges relate to how to capture, integrate and transform data, how 

to select the right model for analysis and how to provide the results 
 Management challenges cover issues such as privacy, governance, 

institutionalization, security, among others.  
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These challenges are further exacerbated by the technological limitations of current 
information systems (Fan et al., 2014).  
 
Like all other domains, big data in groundwater within SADC region are expected to have 
considerable volume, velocity, and variety. For example, the data for a 10° × 10° tile from 
MODIS Evapotranspiration dataset for the SADC region can be as large as 20 GB. 
Multiplying by additional variables and additional tiles needed to model a groundwater 
management scenario across the entire SADC region would result in the dataset growing 
rapidly. The technological requirements to store and process such large heterogeneous 
volumes of data often require dedicated systems beyond the capabilities of 
conventional desktop systems (Fan et al., 2014). In this instance, technologies such as 
parallel processing infrastructure and clustered computing systems have come to the 
fore (Fan et al., 2014). However, the computational capabilities of many SADC member 
states may not be advanced enough to facilitate big data approaches. Furthermore, an 
obvious bottleneck when ingesting huge volumes of data are the high network speed 
required to move and process big data (Bonner et al., 2017). This requirement is often 
lacking in less developed African regions and may even be non-existent in rural regions. 
 
Lastly, big data management challenges are experienced within a SADC context, 
especially when dealing with transboundary aquifers. The transparency of data sharing 
across international boundaries is not always welcomed by individual states. Data 
ownership and data access is often restricted to certain individual or institutions and 
come with many caveats for their use (Pietersen and Beekman, 2016). This is certainly 
the case when security issues are present with sharing or use of data. The institutional 
barriers may become a roadblock. Furthermore, management practices employed by 
member states are not always aligned with each other (Pietersen and Beekman, 2016). 
The consequence is that the decisions taken based on the data may be contradicting 
within transboundary aquifers, ultimately affecting the sustainable management of 
groundwater. 
 

2.6. Conclusion 
 
Groundwater science is generating increasing amounts of data from scientific 
experiments, sensor arrays, monitoring programs, remote sensing – even social media. 
Increasing attention is being paid to leveraging these vast volumes of data for new 
knowledge discovery in groundwater. Improving sustainable groundwater management 
in SADC is one use case where big data and BDAs may be useful. BDAs contribution to 
groundwater management can be two-fold. Firstly, BDAs can address issues of data 
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scarcity by consolidating data available from different sources, both traditional and 
unconventional. Secondly, BDAs can transform data into usable information that can 
support groundwater management, especially at a local scale. The consensus in the 
literature is that BDAs techniques and methods provide benefits beyond traditional 
analytics, when dealing with large heterogeneous datasets and are particularly useful 
when performing data-driven modelling. Advanced analytics such as machine learning 
have shown a promising insight when modelling groundwater processes. However, the 
choice of data and the choice of analytical techniques to achieve the analysis goal is 
critical to ensure data integrity and accuracy along the life cycle of the data. Proper 
management of data and analytical processes is imperative in this case. 
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3. Methodology 
 

3.1. Introduction 
 
The methodology for our research includes case study area selection, scenario 
development, federated cloud storage infrastructure development and downscaling 
regional to local scale in TBAs using BDA tools (Figure 5). The application of BDA tools 
will facilitate understanding of complex systems that traditional methods cannot reveal 
or provide insights leading to improved understanding of groundwater resources. 
 

 
 
Figure 5: Transboundary aquifer analytics framework 
 

3.1.1.  Case study area selection 

The Zeerust/Lobatse/Ramotswa Dolomite6 Basin Aquifer and the Shire Valley Alluvial 
Aquifer have been selected as case study areas. The karstic dolomite aquifer straddles 

 
6 During the proposal and scoping phase of the study it was decided to select the Zeerust / Ramotswa /Lobatse dolomite basin 
aquifer, as the case study area for the application of TBA analytics framework. This choice as influenced by the availability of data 
compared to other TBAs and the extent of previous works in the aquifer. Following the initial data exploration phase, it was realised 
that the Ramotswa aquifer was not of great enough areal extent to allow sufficient coverage of remote sensing regional data. This 
is particularly true for GRACE data, which has a resolution of 110 kilometre (km) (or 1o x 1o). In addition, the inadequate temporal 
and spatial coverage of the in-situ data record limits the applications of various BDA techniques. In order to address the 
abovementioned issues, the case study area was expanded to include the dolomite aquifers extending into the North-West and 
Gauteng provinces of South Africa. 
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the international border between Botswana and South Africa and extends into the 
Northwest and Gauteng Provinces of South Africa (Figure 6). Issues related to the 
dolomite aquifer include decreasing groundwater levels, reduction in groundwater 
storage, nitrate and faecal pollution, sinkhole formation due to dewatering and 
disappearance of spring flow (CSIR, 2003; DWAF, 2006; Altchenko et al., 2017; Baqa, 
2017; Modisha, 2017; Cobbing, 2018; Cobbing and de Wit, 2018; Pietersen et al., 2018; 
Nijsten et al., 2018). The Shire Valley Alluvial Aquifer covers parts of Malawi and 
Mozambique. The alluvial aquifer has high salinity, fluoride and nitrate concentration 
levels which constitute a significant risk to the health of the consumer (van Weert et al., 
2009; Monjerezi et al., 2011; Pavelic et al. ,2012; Grimason et al., 2013a).  
 

3.1.2. Groundwater management scenarios 
 
The status quo of the TBAs was discussed within the context of undesirable results, 
which include one or more of the following effects (CDWR, 2017; Kiparsky et al., 2017; 
Niles and Hammond Wagner, 2019): 
 
 Chronic lowering of groundwater levels indicating a significant and 

unreasonable depletion of supply if continued over the planning and 
implementation horizon. 

 Significant and unreasonable reduction of groundwater storage. 
 Significant and unreasonable seawater intrusion. 
 Significant and unreasonable degraded water quality, including the migration 

of contaminant plumes that impair water supplies. 
 Significant and unreasonable land subsidence that substantially interferes with 

surface land uses. 
 Depletions of interconnected surface water that have significant and 

unreasonable adverse impacts on beneficial uses of the surface water. 
 

These are the common groundwater management scenarios, that can be expected 
when ensuring sustainable management of an aquifer. From this set of indicators, 
chronic lowering of groundwater levels was selected as a use case scenario to apply the 
downscaling and machine learning modelling. 
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3.1.3. Federated cloud storage infrastructure development 
 

The federated cloud storage infrastructure links or federates independent local cloud 
storages together into a digital pool (Kurze et al., 2011) that enables sharing of 
computational and storage resources amongst federation members. Through cloud 
federation, a decentralised network of resources is distributed across multiple 
platforms, which increases fault tolerance over the network infrastructure. This allows 
continual operation of the system in the event of failure in some components of the 
system. A federated cloud storage infrastructure housed within a Big Data architecture 
has benefits in collecting, storing, transforming, analysing, and disseminating large, 
complex, multisource, and heterogeneous data sets (Figure 14). 
 

3.1.4. Downscaling and modelling 
 

This downscaling involved selection of potential predictors and predictants based on 
local groundwater management scenario (chronic lowering of groundwater levels), 
selection of datasets pertaining to potential predictors, development of machine 
learning models by training and validation, prediction of relevant data parameters using 
the best identified and calibrated model.  
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Figure 6: Map of the case study areas in brown (The Ramotswa study area includes the 
dolomites of the Malmani subgroup extending into South Africa) 

3.2. Data Providers 
 
There are two main challenges affecting data collection and storage of groundwater 
data. The first challenge is that collecting data from field activities is generally sporadic. 
For example, field monitoring data collection has been limited by the number and 
distribution of sampling sites having generally decreased over the years. This has 
manifested into a generally sparsely populated (both temporally and spatially) data 
records. Secondly, data storage is disparate, and in various formats. For example, some 
countries store data in centralised databases, while others only store data on 
spreadsheets or in hardcopy form. These challenges affect data retrieval, sharing and 
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analysis ultimately affecting groundwater management. At present, the surge of data 
from online social media activity, internet activity, business transactions, scientific 
missions, digitization, and sensor technologies, amongst many others, can benefit 
groundwater management (Figure 3).  
 
The following is a list of ground-based observation datasets included in the analysis: 
 
 South African Department of Water and Sanitation Hydstra database is an 

archive for data collected via the hydrological monitoring networks. It includes 
data related to surface water gauging stations, rainfall gauging stations and 
groundwater monitoring stations. Hence it includes both groundwater level 
and groundwater chemistry data. For the purpose of analysis, the depths to 
groundwater level data were extracted from the Hydstra database. 

 South African Department of Water and Sanitation National Groundwater 
Archive (NGA) is a database for various groundwater-related data and 
information. This database includes data from drilling activities (e.g. borehole 
construction details, lithology intersections, water strikes), data related to 
aquifer properties (e.g. yield, depth to water level, hydrogeochemistry) and 
various metadata related to boreholes and other groundwater sites (e.g. spring 
chemistry, geosites name and location), amongst much more. The following 
data were extracted from NGA database: depth to groundwater level and 
names and location for geosites in the study area. 

 Ramotswa Information Management System which is a database and 
information management platform with hydrological data and research related 
to the Zeerust/Ramotswa/Lobatse dolomite basin aquifer. It includes data 
collected from groundwater monitoring stations, surface water data, 
groundwater geophysical exploration, population demographics, 
administrative data, and socio-economic data, amongst many others. The 
following is a list of data used from this database: depth to groundwater level 
and borehole identifiers. 

 
Remote sensing data have global coverage, higher temporal resolution, and covers a 
wide set of hydrological parameters, including groundwater (Elbeih, 2015). This makes 
the use of remote sensing data applications particularly useful in data scarce regions 
such as the SADC.  
 
Earth observation missions using remote sensing applications, particularly through 
satellites started in the late 1950s with the launch of the Sputnik 1 satellite  
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(Tatem et al., 2009). Since then, many more missions have taken place, leading to an 
array of satellites, which now collect information relevant to studying various 
components of the hydrological cycle (Table 5). For example, the Gravity Recovery and 
Climate Experiment (GRACE) has been collecting terrestrial water storage data since 
2002 (NASA, 2002). GRACE can indirectly be used to infer groundwater storage changes, 
making it a useful data source for groundwater investigations in the SADC Region (van 
der Gun, 2012; Chen and Wang, 2018).  
 
Table 5: Various remote sensing missions collecting hydrological earth observation data 
 

Mission Agency Hydrological 
application 

Spatial 
resolution 
(km) 

Temporal 
resolution 
(day) 

Soil moisture and 
ocean salinity (SMOS) 

European Space Agency 
(ESA) 

Soil moisture 36 3 

Global precipitation 
measurement (GPM) 

National Aeronautics and 
Space Administration 
(NASA)/ Japan Aerospace 
Exploration Agency 
(JAXA) 

Precipitation 5 0.125 

Soil moisture active 
and passive (SMAP) 

NASA Soil moisture 36 3 

Gravity recovery and 
climate experiment 
(GRACE) 

NASA Gravity field 
(groundwater) 

110 30 

GRACE-FO NASA Gravity field 
(groundwater) 

180 30 

Sentinel-1a ESA Soil moisture 0.1-0.005 12 
Sentinel-1b ESA Soil moisture 0.1-0.005 12 
Sentinel-2A ESA Vegetation/ 

Land Cover/ 
Irrigated Area 

0.02 10 

Sentinel-2B ESA Vegetation/ 
Land Cover/ 
Irrigated Area 

0.02 10 

Sentinel-3A ESA Vegetation/ 
Land Cover/ 
Irrigated Area 

0.3 2 

Proba-V ESA Vegetation/ 
Land Cover/ 
Irrigated Area 

0.35 2 
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Mission Agency Hydrological 
application 

Spatial 
resolution 
(km) 

Temporal 
resolution 
(day) 

Fengyun China Land surface 
Temp/ NDVI/ 
Soil moisture 

25-1000 Daily to 
monthly 

Haiyang serial 
satellites 

China 
   

Terra/MODIS 
(moderate-resolution 
imaging 
spectroradiometer) 

NASA Evapotranspirati
on/ Vegetation/ 
Land Cover/ 
Irrigated Area  

0.250-1 1 

Aqua/MODIS 
(moderate-resolution 
imaging 
spectroradiometer) 

NASA Evapotranspirati
on/ Vegetation/ 
Land Cover/ 
Irrigated Area 

0.250-1 1 

LANDSAT 8 United States Geological 
Survey (USGS) 

Evapotranspirati
on/ Vegetation/ 
Land Cover/ 
Irrigated Area 

0.5 1 

Tropical Rainfall 
Measuring Mission 
(TRMM) 

NASA/JAXA Precipitation 
(tropics and 
subtropics) 

  

ICESat  NASA Vegetation and 
topography 

various various 

ICESat 2 NASA Vegetation and 
topography 

various various 

Suomi/VIIRS NASA/ National Oceanic 
and Atmospheric 
Administration (NOAA) 

Evapotranspirati
on 

0.5 1 

GCOM-W/AMSR2 ESA/JAXA Soil moisture/ 
Precipitation 

15-50 
 

 
These missions generate large volumes of data. For instance, the SMAP missions can 
generate 458 Gigabytes of data daily (Chen and Wang, 2018). Most of these data is open 
source and can easily be accessed by the public.  
 

3.3. Case Study overview – Dolomite Aquifer  
 
The Dolomite Aquifer forms a geologically connected and regionally extensive formation 
of predominantly carbonate and chert sequence of rocks (Figure 7). The carbonate rocks 
are the main source of groundwater for local populations and irrigation activities in the 
region. 
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Figure 7: Topographical map of the study area 
 

3.3.1. Hydrology and Topography 
 
The Dolomite Aquifer underlies parts of the Limpopo River Basin in the north sections, 
and parts of the Orange River Basin to the south (Figure 7). Several perennial and non-
perennial surface water drainage systems exist, some of which are important sources of 
irrigation water (Cobbing et al., 2016). Groundwater drainage emanates as springs, that 
feed surface water flows, in topographical lows (Wiegmans et al., 2013). There are no 
regional scale water bodies. The topography can be described as slightly undulating 
plain, with slight hills and ravines. In some places the land surface is almost flat. There 
are no major escarpments in the study area.  
 

3.3.2. Geology and Hydrogeology 
 
The study area is underlain by several geological formations (Figure 8). The oldest rocks 
are composed of basement granitic rocks, possibly of the Kaapvaal Craton, and other 
Achaean granitic intrusions (CGS, 2008). Following the development of the Kaapvaal 
Craton, a period of andesitic flows, coupled with erosion and deposition, formed the 
Dominion Group (Bumby et al., 2012). Overlying this, chronologically, are the thick 
sedimentary marine and fluvial deposits of the Witwatersrand Supergroup. These 
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deposits were formed circa 2.98 to 2.78 Ga, in what is believed to be first a passive 
margin basin, followed by an evolution into a foreland basin, due to orogenic activity 
(Koglin et al., 2010). Directly overlying the Witwatersrand Supergroup are the thick 
deposits of volcanic rocks of the Ventersdorp Supergroup (Bumby et al., 2012). 
Following this are the deposits of the Transvaal Supergroup. The Transvaal Supergroup 
is composed predominantly of carbonates rocks, in the lower sequences, and 
sedimentary layers in the upper sequences. It is believed to have formed circa 2,7 Ga, in 
a shallow marine environment (Manzi et al., 2013; Cobbing et al., 2016). In the study 
area, these rocks are overlain by the deposits of the Karoo Supergroup. The Karoo 
supergroups deposits are predominately argillaceous deposits, that formed circa 300 
Ma in a retro-arc foreland basin (Cairncross, 2001; Catuneanu et al., 2005). The presence 
of numerous igneous intrusions, such as the Post-Transvaal Diabase and Karoo Dolerite, 
as well as large scale tectonics events have significantly deformed the region. There are 
a number of Quaternary Alluvial and Chert layers that exist as surficial deposits in the 
study area. 

 
Figure 8: Simplified geology of the study area 
 
The major geological unit outcropping in the study area are the rocks of the Transvaal 
Supergroup. More specifically, those of the Malmani Subgroup. The Malmani Subgroup 
presents the most favourable aquifers in the study area. While the rocks of the 
Witwatersrand and Karoo Supergroups are classified as fractured and low permeability 
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aquifers, the Malmani subgroup has undergone extensive karstic weathering to expose 
joints and conduits in the rock as highly permeable sources of groundwater (Cobbing et 
al., 2016).  
 
However, the presence of dolerite dykes, faults, and geologic contacts, partition the 
study area into almost distinct aquifer units or “compartments” (Figure 9). According to 
(Cobbing et al., 2016) a number of studies have identified and classified compartments 
into resource assessment units, while in the Ramotswa aquifer section, work by 
(Altchenko et al., 2017), identified a 13 compartments:  
 
 Groundwater Management Area (GMAs): which are based on hydrological 

drainage boundaries, such as quaternary catchments. These form the larger 
divisions in the study area. 

 Groundwater Management Units (GMUs: which are based on hydrological 
drainage boundaries, hydrogeological features, such as aquifer boundaries and 
water levels, and other hydrological features, to identify hydrogeologically 
connected zones. 

 GUAs (or GRUs): which are based on hydrogeological, hydrological and 
ecological criteria, for the purpose of defining units of analysis (Wiegmans et 
al., 2013). 

 
These dykes are considered impermeable, however, it is known that groundwater 
connection through surface and near surface drainage between compartments can 
occur (Cobbing et al., 2016). This feature can sometimes be expressed as springs that 
form near compartment boundaries, and that can decant into neighbouring 
compartments.   
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Figure 9: Hydrological compartments of the study area 
 

3.3.3. Groundwater Levels
 
The study area has extensive groundwater level data records, compared to other regions 
in Southern Africa. While an extensive analysis of groundwater levels was not 
undertaken in the study area, there are a number of reports that have highlighted 
features of the groundwater level (Wiegmans et al., 2013; Cobbing et al., 2016). One of 
the consequences of the compartmentalization is the large disparity between 
groundwater levels from adjacent compartments. While the groundwater levels within 
a compartment are said to be more uniform, and flat. In most cases the groundwater 
level follows the topography (Cobbing et al., 2016).  
 

3.3.4. Groundwater Use 
 
On the South African side, the dolomitic aquifers of the North West are one of the most 
utilized aquifers in the country. They provide water for the region’s agricultural 
activities, as well as providing fresh water to several towns in the region. In addition, 
The Molopo Eye, which is a high yielding spring, is part of large scale domestic water 
supply scheme for the town of Mafikeng (Cobbing et al., 2016). While, on the Botswana 
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side there are a number of wellfields that are used for both domestic and industrial fresh 
water supply.
 

3.3.5. Groundwater Quality 
 
Limited information is available regarding the regional aspects of groundwater quality 
in the aquifer. However, (Cobbing, 2018) reported that the dolomites in the North West 
and Gauteng region are generally classified as having a good water quality, with some 
localities even being described as having a pristine groundwater quality. However, on 
the Botswana side, Altchenko et al. (2017) reported serious issues of nitrate 
contamination related to pit latrines and waste water treatment works.  
 

3.4. Case Study overview – Shire Aquifer 
 
The Shire Valley Alluvial Aquifer (Shire Valley TBA) is a transboundary alluvial aquifer 
situated on the southern border of Malawi and central Mozambique (Altchenko and 
Villholth, 2013). The aquifer is situated in the Shire River sub-basin, which is part of the 
Zambezi River Basin, and has an aerial extent of roughly 5,454 km2. The Shire Valley 
Alluvial Aquifer is an important fresh water resource in the region (Chairuca et al., 2019). 
 

 
Figure 10: Topographical map of the Shire Valley TBA 
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3.4.1. Hydrology and Topography 
 
The Shire Valley TBA is situated in a topographical low, relative to surrounding areas. As 
the name suggest, this can be described as a valley system, bordered on the east and 
west by prominent escarpments, such as the Thyolo escarpments (Grimason et al., 
2013b). In the north-east of Figure 10, the topography increases in elevation, forming 
distinctive peaks that are almost 3,000 m high. As mentioned, the Shire Valley Alluvial 
aquifer is part of the Shire River Sub-basin, which is one of the most important 
contributors of surface run-off to the Zambezi River (Chairuca et al., 2019). The main 
hydrological feature in the basin includes the Shire River, which originates as the main 
outflow of Lake Malawi to the north. The Shire River flows south through the Shire 
Valley, before discharging into the Zambezi River.  
 

3.4.2. Geology and Hydrogeology 
 
Pre-Cambrian geology of the region is primarily concerned with a number of crustal 
development events, that perhaps are part of the formation of the  Gondwana 
supercontinent (Chairuca et al., 2019). Post-Cambrian can be characterized by the break 
of Gondwana, which created deep troughs during rifting. These troughs where then 
filled with Karoo age sediments, which outcrop today (Figure 11) (Chairuca et al., 2019). 
The main geological influence on the region is the East African Rift System, which is the 
major north-south trending continental rift system formed during the Miocene 
(Monjerezi et al., 2011). The continental extension, and crustal faulting caused by the 
rift system has created a number rift valleys, which are horst and graben style tectonic 
basins, bordered by uplifted crustal blocks (Wood and Guth, 2020). These features are 
the major control on Post-Karoo sedimentation in region.  
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Figure 11: Simplified geology of the Shire River Basin (Chairuca et al., 2019) 
 
The Shire Valley and the Shire Valley Alluvial Aquifer occur at the southernmost tip of 
the western branch of the East African Rift System. The Shire Valley TBA is composed of 
a thick sequence of Quaternary aged deposits of unconsolidated, clays, silts, sands and 
gravels (Chairuca et al., 2019). This can be seen in Figure 11 as the southern outcropping 
of alluvium. This aquifer can be described as a highly yielding, unconfined aquifer. The 
thick sediments provide large storage capacity for groundwater. Although rainfall in the 
Shire Valley TBA is low relative to surrounding regions, the high recharge capacity of the 
aquifer, make the aquifer a favourable target for groundwater exploration (Chairuca et 
al., 2019)  
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3.4.3. Groundwater Levels 
 
Groundwater levels in the aquifer are generally close to the surface. In areas close to 
surface water bodies, the groundwater level is shallow (5-10 m). However, in general 
the depth to groundwater ranges from 10-30 m. The limited time-series datasets 
available for the aquifer prohibits an extensive review of the groundwater levels. 
However, there are situations of significant groundwater level decline in parts of the 
aquifer (Chairuca et al., 2019).   
 

3.4.4. Groundwater Use 
 
Groundwater is the main fresh water source for majority of the rural population in the 
Shire Valley Basin. Groundwater is also extensively used for agricultural watering 
(Chairuca et al., 2019). Groundwater extraction through shallow boreholes and open 
wells occurs extensively throughout the valley, while deeper boreholes are becoming 
more prevalent in recent times. Although handpumps are the main mechanism for 
groundwater extraction, motorised pumps are employed by farmers.  
 

3.4.5. Groundwater Quality 
 
In the Shire Valley TBA, the groundwater quality suffers from a large degree of 
salinization (Monjerezi and Ngongondo, 2012; Grimason et al., 2013b). In some parts of 
the aquifer the salinity has rendered the groundwater unusable. While this is true for 
parts of the aquifer on the Malawi side, on the Mozambique side much fresher 
groundwater quality has been reported (Chairuca et al., 2019). The exact extent of the 
salinization is not fully known, however it is believed to be caused by evaporites forming 
near the surface, as well as water rock interaction (Monjerezi and Ngongondo, 2012). 
Besides salinization there are issues for nitrate contamination as a result of informal 
sanitation practices. In addition, there are further concerns of excessive fluoride, 
arsenic, iron, and manganese concentration in the groundwater in the aquifer.  
 

3.5. Conclusion 
 
The methodology outlined in this section reflects the current knowledge regarding the 
application of BDAs in the groundwater sciences. Using the Transboundary Aquifer 
Analytics Framework, a holistic approach is applied that provides integration of the 
various objectives on this research. The Framework provides a view of a typical 
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application from problem identification, through data collection, data analysis and 
finally improved management decisions. At its essence, the framework is a conceptual 
understanding of the various components required to match, integrate and model local 
data with regional data, for the specific purpose of improving groundwater management 
decisions.  
 
To demonstrate the use of the framework, it is applied to a SADC setting, where two 
case study areas were chosen. The Dolomitic aquifers of the Ramotswa and NW Gauteng 
region, provide an opportunity to test the methodology in a karstic aquifer, complicated 
by geological and hydrogeological discontinuities. While with the Shire Valley TBA, the 
methodology can be tested in an unconfined unconsolidated aquifer, with limited data 
coverage on a local scale. Together they can provide valuable insights into the applicable 
of Big Data and BDAs in groundwater. 
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4. Big data processing architecture 
 

4.1. Introduction 
 
Transboundary aquifers information systems are assumed to use data from different 
sources (Figure 3). The processing of the aquifers data will benefit from high 
performance computing (HPC) infrastructures which are able to store the massive 
datasets collected from the different groundwater data sources and meet the diverse 
processing requirements demanded from groundwater management applications. At its 
onset, HPC was commonly associated with scientific computing for scientific research 
using supercomputers and computer clusters. Nowadays, HPC has evolved toward the 
relatively more recent cloud computing model that builds on decades of research in 
virtualization, distributed computing, utility computing, networking, web and software 
service to provide mainly three services to users: Software as a Service (SaaS), Platform 
as a Service (PaaS) and Infrastructure as a Service (IaaS). Traditional IT services are 
delivered on premises and managed by the organization. They include networking, 
storage, servers, virtualization and operating system, Middleware, Runtime, Data and 
Applications.  As presented in Figure 13, the services which are moved from the 
organization to be delivered by a third party cloud provider include i) networking, 
storage, servers, virtualization and operating system for the IaaS model ii) networking, 
storage, servers, virtualization and operating system, Middleware and Runtime for the 
PaaS model and iii)  all the services including networking, storage, servers, virtualization 
and operating system, Middleware, Runtime, Data and Applications  SaaS model.  
 
Cloud technologies have become the technologies of choice for solving large scale 
data/compute intensive problems as they present undeniable advantages over 
traditional HPC. These include through the concept of moving computation to data, a 
more data-centred approach to parallel computing, and better quality of services 
provided by these technologies. This evolution led to the emergence of new ecosystems 
suitable to accommodate Big Data applications’ requirements such as i) Cloudera with 
the Hadoop and Spark systems which are suitable for batch and streaming processing 
respectively ii) Amazon Ec2, iii) Microsoft Azure, iv) Google App Engine and v) many 
other emerging systems from niche areas. Some of the advantages of these emerging 
ecosystems include on-demand self-service, broad network access, resource pooling, 
rapid elasticity, and measured service.  Many of these ecosystems are equipped with 
technologies of the fourth industrial revolution, including BDA tools in order to provide 
decision support to geo-physicists, hydrologists and other stakeholders in water 
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research projects while meeting i) the economic constraints related to the acquisition of 
equipment and software and affordability of human expertise, ii) the engineering 
constraints related to the feasibility of the data processing solutions with existing/future 
technologies and  iii) transboundary constraints associated to country ownership of both 
data and water resources. However, only a few African countries which are involved in 
transboundary aquifers research can afford world-class HPC processing infrastructures 
and building such facilities is often time consuming thus discouraging for multiple 
deployments. 
 

4.2. A multi-layered architecture 
 

 
Figure 12: Big data architecture 
 
The different processes which are involved in TBA analytics applications range from 
information collection through data acquisition, transport of the information close to its 
processing place and its processing to get useful insights from the information collected, 
to visualization of the results and utilization of these results in different water-related 
applications. The implementation of these different processes will follow a multi-layer 
architecture including four main layers: 
 
 A “data sources” which constitutes the physical layer where all data sources are 

located. These include data collected from wireless sensor and IoT devices, 
Web-scraped data and transboundary data collected from satellites, geophysics 
and other sources.  
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 A Data collection/Identification layer that consists of a layer that captures all 
information related to the data sources and processes involved with the 
acquisition and identification of data sources.  

 A middleware layer that consists of an interface between users/consumers of 
the data and the lower layers that capture, identify and move data close to the 
user in the middleware layer. It is a layer often referred to as adaptation layer 
where the information collected from the lower layers is stored and processed 
to meet the demands of the users’ applications for the system. It is at this layer 
that BDA is performed to get insight into the massive datasets collected from 
the data sources.  

 The application layer is where different applications related to different 
research questions are defined and implemented users’ demands. In 
groundwater research, some of these applications may involve ground water 
level reduction, ground water storage reduction, saline water intrusion, water 
quality degradation and many other groundwater management applications.  

 
The big data infrastructure proposed in this work is an implementation of the big data 
architecture depicted by Figure 12 where a complete workflow and the different 
components and processes of such a workflow are revealed.  
 
Two different but complementary models have been considered for this work: 
 
 Standalone model (Figure 13) where each organization handles its storage and 

processing tasks in isolation on its premise if it is endowed with the necessary 
resources but with possibility of exchanging data and results with other 
organizations 

 Federated platform (Figure 14) that involves communication between 
organization using a cooperative model where data can be stored anywhere 
and processes can be run anyway in the federation to achieve a common goal. 

 
Two deployment models are proposed for the federated platform: a centralized 
deployment with CSIR hosting the workflows and data of the different organizations by 
meeting their storage and processing demands and a hybrid deployment where 
software containers are used to move the processing to the data residing in different 
organizations’ data repositories. Thus, meeting transboundary collaboration 
requirements. While for non-constrained data requirements, CSIR plays the role of data 
storage and processing unit and archiving. While the centralized model with CSIR being 
the storage and processing infrastructure for all organizations has the advantage of 
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rapid deployment, the hybrid model implementation is a more complex and time-
consuming distributed process that should be phased in different deployment steps to 
enable a clean and robust implementation with the right security support for both data 
and groundwater management resources. 
 

 
Figure 13: Standalone Model 
 
The architecture depicted by Figure 13 reveals different key components that need to 
be present in the big data infrastructure: 
 
 Integrated data sources emerging from interactive data generators and 

integrated data, remote sensing data and data resulting from applications are 
used as input to the big data infrastructure  

 A Datawarehouse consisting of a distributed file system with possibly of using 
both SQL and NoSQL databases and storing data on a blockchain from where it 
is read for processing 

 A cluster for the distributed file system 
 A data processing referred to as data access comprising stream processing, 

batch processing, archiving and exportation of data 
 A data consumption module where different analytics are used to analyse and 

visualise the data received from the processing module.  
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Figure 14: Federated Cloud Infrastructure 
 
Figure 14 depicts the main building blocks of a federated cloud infrastructure called 
Water-Flow designed for groundwater research data processing. Water-Flow is a built 
around docker-based microservices architecture where i) each pipeline and element is 
self-contained and ii) scheduling is performed by routed job queues for more than a 
million Jobs/sec. it can be deployed as a federated and modular cloud infrastructure 
with  
 
 Data consisting of satellite images or from other sources are stored on your 

company server, at home, at one of the big cloud providers or a local data 
centre you trust. 

 Modularity revealed by host components hosted wherever needed and even 
separately. 

 Standardization and expandability expressed by the linkage of any computing 
task. 

 Openness revealed by a system which is 100% Open Source and community 
focused. 
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Figure 15: Processing pipeline 
 
Figure 15 depicts Water-Flow processing pipeline that reveals how requests for 
processing data (here represented by satellite images but can be expanded to other 
datasets) submitted by client applications are processed in different stations/steps and 
how the results are sent back to client applications.  
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Figure 16: Scheduling capability 
 
Figure 16 reveals the scheduling capability of the proposed Water-Flow platform where 
incoming jobs are routed to one of the pipelines where they are queued before being 
pulled by different docker containers for processing. Some of the key features of our 
processing pipeline include: 
 
 Implementation of a control (management plane) plane which is used to find 

and allocate processing resources for the client tasks and route these tasks to 
where they should be processed in the cloud federation  

 Implementation of a data plane (processing plane) which is used to manage 
data and execute tasks on the data.  

 Separation of functionalities between the control and data plane by having the 
control plane managed by the Celery task queue system with the RabbitMQ 
lightweight communication protocol while the data plane is managed by a 
combination of a container-based docker environment with the TensorFlow 
and SciKit-Learn libraries to provide distributed capabilities in the processing of 
machine learning algorithms 
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Note that “Celery” is an open-source asynchronous task queue (or job queue) system, 
which is used in production systems, for instance Instagram, to process millions of tasks 
every day. It is built around a distributed message passing model used to support task 
scheduling with focus on real time operations. It is based on execution units, called tasks, 
which are executed concurrently on one or more worker nodes using multiprocessing, 
the concurrent networking library for python called eventlet or the coroutine-based 
python networking library gevent which was inspired by eventlet but features a more 
consistent API, a simpler implementation and better performance. These libraries 
enable tasks to be executed asynchronously (in the background) or synchronously (wait 
until ready).  While Celery is written in Python, the protocol can be implemented in any 
language and operate with other languages using webhooks. Different Celery clients 
exist for different programming languages/environments including RCelery for Ruby, a 
PHP client, a Go client, and a Node.js client. While different message brokers are 
recommended for Celery and different databases are supported, we have adopted for 
this work RabbitMQ as message broker and MongoDB and CouchDB as database 
systems for Water-Flow. 
 

4.3. Integration into ilifu and the national big data infrastructure 
 
Ilifu is an infrastructure for data-intensive research partly funded by the Department of 
Science and Innovation (DSI) with the expectation of enabling South African researchers 
to be world leaders in the strategic science domains of astronomy and bioinformatics. 
The project is operated by a consortium of universities and research organisations in the 
Western and Northern Cape. It is a regional node in the national data infrastructure 
created to support the National Integrated Cyberinfrastructure System of South Africa 
(NICIS). The Ilifu partners have further developed scalable systems for cloud-based 
provisioning of data-centric resources, and have prototyped a tiered, federated cloud 
infrastructure with consortium partners and external collaborators. The goals of the Ilifu 
project are to i) provide a new model for provisioning of data-intensive research 
infrastructure to researchers ii) federate cloud systems to create a common eResearch 
cyberinfrastructure system and iii) demonstrate cloud-based solutions for strategic 
projects in astronomy and bioinformatics. 
 
Hydrological research involves massive datasets collected from different sources and 
requires data intensive processes which can be handled by the Ilifu project’s 
infrastructure and hence extend the initial mission and goals of the project initially 
intended only to astronomy and bioinformatics to data intensive hydrological research. 
The project is an opportunity to pilot such extension by implementing a phased 
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integration of the models and data produced by different organizations into the Ilifu 
infrastructure. While some of the organizations might have their own on-premises 
infrastructure capable of storing and processing all data related to the project, some 
other research groups might need to migrate all or part of their work to the Ilifu 
infrastructure following one of the four service migration models: 
 
 “Archiving-as-a-Service (AaaS)” where all IT services which are traditionally 

managed on-premises are still kept on-premises but data is replicated on the 
Ilifu infrastructure for archiving and sharing/exchange with other interested 
groundwater research and management organizations. The services which are 
traditionally managed on-premises include: 
 Applications 
 Data  
 Runtime 
 Middleware  
 Operating System 
 Virtualization 
 Servers  
 Storage  
 Networking 

 SaaS where all the services traditionally managed on-premises are migrated to 
the Ilifu infrastructure to be delivered as a service to the groundwater research 
and management organizations. These include:   
 Applications 
 Data  
 Runtime 
 Middleware  
 Operating System 
 Virtualization 
 Servers  
 Storage  
 Networking 

 IaaS where some services such as Applications, Data, Runtime and Middleware 
are still managed by the groundwater research and management organizations 
while the Operating system, Virtualization Servers, Storage and Networking are 
migrated to the Ilifu infrastructure to be delivered as a service to the various 
stakeholders. 
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 PaaS where many of the services including Runtime, Middleware, Operating 
System, Virtualization, Servers and Networking are migrated to the Ilifu 
infrastructure to be delivered as a service to various organizations while only 
Applications and Data are managed by relevant stakeholders.  

 
The integration proposed above is in line with the main design principles behind the Ilifu 
project as it is based on i) a similar federation model and ii) data intensive processing 
principles. To the best of our knowledge, Ilifu is also based on a hybrid 
container/virtualization HPC principle which are compatible with the proposed big data 
infrastructure above. This will speed up the integration of the Big Data and 
Transboundary Water Collaboration research into Ilifu. 

The current specifications of the ilifu platform include: 

 
 110 x compute nodes, 32 CPUs, 256 GB RAM 
 2 x compute nodes, 32 CPUs, 512 GB RAM 
 4 x GPU nodes, 32 CPUs, 256 GB RAM, 2 x Tesla P100 16 GB GPU 
 400 TB BeeGFS storage 
 2.9 PB CephFS storage 

Two user interaction and processing environments can be used to access the ilifu 
resources: 

 
 SLURM batch scheduler 
 JupyterLab 

SLURM is a batch scheduler and job manager that allows multiple data processing tasks 
to run using script files. JupyterLab is an interactive coding and processing environment. 
It operates through the use of notebooks, which can display data, code, as well as 
information output. The analytical work conducted for this research was conducted 
using the JupyterLab environment in ilifu. A unique user workspace was provided for our 
research team, under the pseudonym “Transboundary Water Management”. In 
addition, a specialised container/kernel (container for software packages) was setup to 
provide the software requirements for our data analysis. This container is available to 
all users. Currently, the ilifu platform is only configured to operate via one of the two 
processing environments. As such additional work will be required to implement a Big 
Data decision support system that is envisaged by this research. 
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4.4. Conclusion 
 
The big data infrastructure proposed in this research is based on a multi-layer 
architecture aiming at collecting different types of data in order and applying different 
big data analytics to the data to get useful insights which will be used by water 
researchers and decision makers for the understanding, management and enhancement 
of water resources.  Such an infrastructure could be implemented using either (a) a 
standalone model with data storage and processing localised in a centralized location or 
(b) a federated model with data storage and processing distributed in many locations. 
The ilifu project, which is the current Big Data processing environment hosted in NICIS 
provides access to a tiered and federated HPC cloud infrastructure. The ilifu platform 
was utilized to perform the data analysis and modelling in this research, allowing us 
resources beyond the capabilities of desktop machines. It is expected that with time, the 
project will migrate to a federated model which provides specific applications in the 
context of sustainable groundwater management. This will allow more flexibility upon 
data growth and fits better for a transboundary, multi-organization context. 
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5. Data processing to match, integrate and model local data 
with regional data 

 

5.1. Introduction 
 
To model local data and regional data in an integrated manner, a machine learning 
approach is applied. The machine learning model relies on a set of predictor variables 
(regional scale hydroclimatic variables, e.g. groundwater storage, precipitation, run-off), 
to predict a predictant (local scale variable such as depth to water level). The approach 
used in this case can be used to generate high resolution maps of regional groundwater 
parameters, such as groundwater level changes, from remote sensed hydro-climatic 
variables (Seyoum et al., 2019).  
 
All data were acquired from publicly available satellites, modelled, and in-situ based 
observations. In addition, predictor variable importance was also analysed in this study. 
The following section describes the data used as well as methods employed to produce 
high resolution groundwater level maps. These maps provide the information to inspect 
possible issues of chronic lowering of groundwater levels. In each section details of any 
pre-processing of data that has been performed is included. 
 

5.2. Data 
 
A set of 9 hydroclimatic parameters are chosen as predictors variables (groundwater 
storage anomaly, soil moisture, evapotranspiration, precipitation, run-off, land surface 
temperature, land cover, aquifer type and the aquifer compartments), to predict a single 
predictant variable (groundwater level changes). These variables are considered major 
hydrological and hydrogeological components affecting the terrestrial water system in 
the study area. The variables are aggregated into a number of features used in the 
machine learning model (section 5.4). In the case of the Shire Valley Aquifer, land cover, 
aquifer type and aquifer compartments are not included, due to a lack of data, and or 
being statistically irrelevant features. 
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5.2.1. GRACE derived terrestrial water storage anomaly 
 
The GRACE Tellus mission represents a breakthrough in our ability to measure and 
monitor changes in Earth’s cryosphere, hydrosphere, and oceanographic components7. 
The GRACE Tellus mission consists of twin satellites measuring changes in Earth’s gravity 
field. GRACE and GRACE-FO level-1 instrument data is fed to three processing centres 
NASA’s Jet Propulsion Laboratory (JPL), GeoforschungsZentrum Potsdam (GFZ), and 
Center for Space Research at University of Texas (CSR). These three processing centres 
are responsible for delivering GRACE level-2 and level-3 data products. This includes 
monthly changes in terrestrial water storage ( TWS), based on gravitation field 
anomalies from land mass changes (Wahr et al., 1998)8. Each centre relies on various 
post-processing algorithms to derive monthly gravity field changes (Level-2) and 
monthly terrestrial water storage changes (Level-3). The results are three different 
solutions for GRACE derived terrestrial water storage changes (Sakumura et al., 2014).  
 
Currently there are two major level-1 post-processing derivatives representing 
terrestrial water storage changes: 
 
 Spherical harmonics-based solutions 
 Mass concentration blocks (mascon) based solution 

 
The spherical harmonics version relies on resolving earth gravity field using a set 
spherical harmonic (Stokes) coefficient at approximately monthly intervals, complete to 
degree and order 1208 (Swenson and Wahr, 2006; Swenson et al., 2008). However, the 
spherical harmonic versions are beset by issues of signal/noise ratio at short 
wavelengths, and correlated errors, amongst others. This requires additional post-
processing adjustment such as applying spatial smoothing filters, as well as the 
application of de-striping filters. The mascon version on the other hand relies on surface 
spherical cap mascons to directly estimate mass variations from the inter satellite range-
rate measurements (Watkins et al., 2015). The signal loss for the mascon version is 
considered negligible, hence requiring no post-processing. For this reason, the mascon 
version is preferred. 
 

 
7 https://grace.jpl.nasa.gov/ 
8 Spherical harmonics are used to solved geodesic functions on spherical surface. In this case the stokes 
coefficients and their required settings are used to resolve the anisotropy from the GRACE satellite data. 
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The native resolution of GRACE data is close to 3ox3o, However, Level-3 GRACE derived 
terrestrial water storage anomalies are provided as latitude and longitude gridded 
products at various resolutions. The spherical harmonics version has a resolution of 
1ox1o. The mascon version is provided on a global 0.25ox0.25o grid, with ocean signals 
masked.  No optional gain factors need to be applied to these data.  In this application 
we extract latest mascon version, Release 06 version 02 of GRACE and GRACE-FO  
level-3 monthly terrestrial water storage anomalies, for April 2002-March 2020, from 
the Center for Space Research at University of Texas9 (Save et al., 2016).  
 

5.2.2. GLDAS NOAH derived terrestrial water storage anomaly 
 

water column – water stored as groundwater, soil moisture, canopy water storage, 
snow-water storage and surface water bodies (Rodell et al., 2007). To extract the 
groundwater signal, the various terrestrial water storage components must be removed 
from the GRACE signal (Rodell et al., 2007). The Global Land Data Assimilation System 
(GLDAS) in combination with land surface modelling is designed to provide optimal fields 
of land surface fluxes, through using remote sensing and ground-based observations 
(Rodell et al., 2004). The GLDAS provide data on various land surface states such as 
evapotranspiration, soil moisture, land surface energy fluxes to name a few. There are 
5 land-surface model derivatives of GLDAS, Noah, CLM, VIC, Mosaic, and Catchment land 
surface models. Together the various models provide data on land surface states as 1o 
or 0.25o gridded data products at 3 hourly, daily or monthly intervals from 1948-present. 
  
In this application GLDAS TWS variables: soil moisture (SM), canopy water storage (CW), 
and snow water equivalent thickness (SWE), were extracted from the model. The data 
represent monthly averages from April 2002-March 2020 for on 0.25ox0.25o grid10. 
 

5.2.3. ECMWF ERA5-Land soil moisture data 
 
ERA5-Land is the latest generation reanalysis dataset developed through advanced land 
surface modelling, by the European Centre for Medium Weather Forecasts (ECMWF). 
ERA5-Land typically provides data for various land surface states, including single level 
atmospheric variables such as, precipitation and skin temperature. The ERA5-Land is 

 
9http://download.csr.utexas.edu/outgoing/grace/RL06_mascons/CSR_GRACE_GRACEFO_RL06_Mascons
_all-corrections_v02.nc 
10 https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS 
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decoupled from the atmosphere and is run as a single simulation using atmospheric 
forcing.  
 
The ERA-land component provides data at a 9 km resolution over land surfaces, as global 
gridded data product. Data extend from 1981 to presents, at an hourly temporal 
resolution. Soil moisture plays a key role in the terrestrial water budget. Here we extract 
soil moisture data for a total of 4 layers (0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm), 
extending from January 2000-December 2019 at an hourly interval11. The units of 
measure for this parameter are stored as m3/m3. 
 

5.2.4. ECMWF ERA5-Land run-off data 
 
Water from falling precipitation, snow melt, or from surface water-groundwater 
interactions either enters the ground to be stored in soil moisture and groundwater or 
otherwise drains away to become run-off. Run-off drains away either over the surface 
(surface-runoff) or as shallow sub-surface flow (sub-surface run-off). The ECMWF ERA5-
Land reanalysis dataset provides global run-off data as gridded 9 km data products. Here 
we extract an aggregated total run-off data (sum of surface and sub-surface run-off), for 
the study area, from January 2000-December 2019 at an hourly interval12. The units of 
measure for this parameter are stored as m.  
 

5.2.5. ECMWF ERA 5 precipitation data 
 
Precipitation either as liquid water or frozen, generally provide the main flux in-terms of 
recharge to many aquifers. The ECMWF ERA5-Land reanalysis dataset provides global 
total precipitation as gridded 9 km data products. Here we extract total precipitation 
data for the study area, from January 2000-December 2019 at an hourly interval. The 
units of measure for this parameter are stored as m. 

 
11 Data downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 
12 Data downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 
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5.2.6. ECMWF ERA 5 evapotranspiration data 
 
Many hydrological systems lose water through processes of evaporation, or 
transpiration. The ECMWF ERA5-Land reanalysis dataset provides global gridded 9 km 
data products on various evaporation and transpiration components of the terrestrial 
water budget including, evaporation from bare soil, evaporation from open water 
surfaces, evaporation from the top of canopy, evaporation from vegetation 
transpiration. Here we extract total evaporation product (evapotranspiration) for the 
study area, from January 2000-December 2019 at an hourly interval. The units of 
measure for this parameter are stored as m. 
 

5.2.7. In-situ groundwater level measurements 
 

5.2.7.1. Dolomite Aquifer 
 
In the absence of relatively abundant local or in-situ groundwater storage 
measurements, in-situ (well-based) groundwater level observations are used as the 
target (predictant) variable. Groundwater monitoring efforts in the study area have 
generated groundwater level observations extending back towards 1938 till current. 
Here were extract a regional set of depth to groundwater level data from the South 
African National Department of Water and Sanitation’s Hydstra database, as well as the 
Ramotswa Information Management System for the study area. The data include 
observation from 1938-2019, from a total of 1480 boreholes. Figure 17 displays the 
distribution of boreholes in the Ramotswa TBA. As can be seen this region benefits with 
relatively abundant distribution of groundwater level monitoring points compared to 
other SADC aquifers.  
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Figure 17: Groundwater level monitoring points within the Dolomite Aquifer 
 

5.2.7.2. Shire Alluvial Aquifer 
 
Figure 18 displays the distribution of water level monitoring points in the Shire Alluvial 
Valley TBA. In contrast to the Ramotswa there are only 3 boreholes which have sufficient 
time series data. Additionally, these boreholes are all based on the Malawi side of the 
aquifer. The time series includes a limited number of observations, starting from 2009 
and ending in 2013. Only a single borehole has data that extends until 2019. The data 
was acquired from the Malawi Ministry of Forestry and Natural Resources. 
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Figure 18: Groundwater level monitoring points within the Shire Valley TBA 
 

5.2.8. Aquifer compartments 
 
One important hydrogeological characteristic of the study area is the partitioning of the 
aquifer into hydrological and hydrogeological discontinuous compartment, as explained 
in section 3.3.2. These features play an important part in the hydrodynamics of the 
aquifer, and so their influence is included in the model. In the case of the Dolomite 
Aquifers, the GRU compartment feature is removed from further analysis, as spatial 
representation of this data across the study is limited.  It must also be stated that this 
feature is not relevant to the Shire Valley TBA.  
 

5.2.9. Aquifer type 
 
In addition to the above aquifer compartments, aquifer type is also considered an 
important feature in understanding the hydrodynamics of the aquifer. The aquifer type 
data is extracted from the SADC hydrogeology map (SADC, 2010). In the case of the Shire 
Valley TBA, this feature has not been included. The applicability of isotropic data will 
have low importance on the prediction in this case. 
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5.2.10. Land cover 
 
Land cover plays an influential role in the recharge attributes of various aquifers. In this 
application, land cover data is extracted from the European Space Agency (ESA) Climate 
Change Initiative (CCI) Land Cover datasets 13. The data are provided as 300 m 
resolution, yearly gridded data products. In this case the latest land cover grid (2018), is 
used to represent the land cover for the study area. In the case of the Shire Valley TBA, 
this feature has not been included. The applicability of isotropic data will have low 
importance on the prediction in this case. 
 

5.3. Pre-processing 
 
Several pre-processing steps are necessary to convert the data described above into 
comparative features that can be related to one another, and that can be used to 
develop the machine learning model. The following section describes in detail the pre-
processing of the raw data. Table 6 summarises the pre-processing outcomes, showing 
the original raw data and the final processed form. It must be stated that all data were 
converted to units of centimetres for convenient comparison, where applicable.  
 
Table 6: Parameters and pre-processing results 
 
Data Original temporal 

and spatial 
resolution 

Original units Final temporal 
and spatial 
resolution 

Final units 

Soil moisture  1 hourly, 0,1ox0.1o m3/m3 Daily, 0,1ox0.1o Centimetres, 
mean daily  

Precipitation 1 hourly, 0,1ox0.1o metres Daily, 0,1ox0.1o Centimetres, 
cumulative  

Run-off 1 hourly, 0,1ox0.1o metres Daily, 0,1ox0.1o Centimetres, 
cumulative 

Evapotranspiration 1 hourly, 0,1ox0.1o metres Daily, 0,1ox0.1o Centimetres, 
cumulative 

Land surface 
temperature 

1 hourly, 0,1ox0.1o Kelvin Daily, 0,1ox0.1o Kelvin, mean 
daily 

GRACE TWS Monthly, 
0,25ox0,25o 

Centimetres, 
terrestrial water 
storage anomaly 

Monthly, 
0,1ox0,1o 

Centimetres, 
groundwater 
storage anomaly 

 
13https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview 
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Data Original temporal 
and spatial 
resolution 

Original units Final temporal 
and spatial 
resolution 

Final units 

GLDAS TWS Monthly, 
0,25ox0,25o 

kg/m2, various 
terrestrial water 
storage 
variables 

Monthly, 
0,25ox0,25o 

Centimetres, 
total terrestrial 
water storage 

Groundwater levels Various, N/A metres, depth to 
groundwater 

30-day, N/A Centimetre, 
groundwater 
level anomaly 

Compartments 
(Ramotswa only) 

N/A N/A N/A N/A 

Aquifer type 
(Ramotswa only) 

N/A N/A N/A N/A 

Land cover (Ramotswa 
only) 

Yearly, 300x300 m N/A N/A 2018, 300x300 m 

 

5.3.1. GRACE data  
 
The following is a description of the pre-processing steps conducted to extract the 
GRACE TWS into GRACE groundwater storage anomaly ( GWS). Due to inconsistencies 
in satellite data collection, GRACE data typically have a number of missing observations 
in the time series. There are 216 months in the observation period (2002/04-2020/03), 
while data exist for only 184 months. Gaps in the data were filled by substituting the 
monthly mean. Firstly, the observations were grouped according to calendar month, and 
the mean for each group (calendar month) was calculated. These values were 
substituted for the corresponding missing months in the time series. Figure 19 displays 
the net change (i.e. cumulative change) in the GRACE-derived terrestrial water storage 
anomaly for the Ramotswa TBA. These data suggest a maximum decrease in total water 
storage for the study area of 92,28 cm, compared to the baseline period (2004-2009). 
Figure 20 displays the net change (i.e. cumulative change) in the GRACE-derived 
terrestrial water storage anomaly for the Shire Valley TBA. In this case there appears to 
be an increase in terrestrial water storage in the southern parts of the aquifer while the 
northern parts indicate an overall decrease in terrestrial water storage. 
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Figure 19: Net GRACE-derived terrestrial water storage anomaly 2002-2020 for the Dolomite aquifer 

 
Figure 20:  Net GRACE-derived terrestrial water storage anomaly 2002-2020 for the Shire Valley TBA 
 
For the GLDAS TWS, the data are presented in units of kg/m2. All the units were 

units, which 
is in cm. Thereafter the individual components (SM, SWE, CW) were aggregated, by 
summation. This value reflects the land surface component of the total terrestrial water 
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budget. However, GRACE data reflect anomalies relative to a mean baseline period 
(2004-2009). For the GLDAS TWS data to be compatible to the GRACE data, anomalies 
must be calculated relative to this same baseline period. Firstly, the mean GLDAS TWS 
value was calculated for the months between 2004 and 2009. This mean value is then 
subtracted from each monthly time-step in the GLDAS TWS timeseries. This new value 

to the baseline period. Figure 21 displays the net change 
in the GLDAS-based terrestrial water storage anomaly for the Dolomites aquifer. This 
suggests a large maximum decrease of 1056.89 cm in surface and near surface water 
content, compared to the baseline (2004-2009).  
 

 
Figure 21: Net GLDAS-based terrestrial water storage anomaly 2002-2020 for the Dolomite aquifer 
 
Figure 22 displays the net change in the GLDAS-based terrestrial water storage anomaly 
for the Shire Valley TBA. The data indicate an overall decrease in surface and near 
surface water content, compared to the baseline. 
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Figure 22: Net GLDAS-based terrestrial water storage anomaly 2002-2020 for the Shire Valley TBA 
 
In 
terrestrial water components must be removed from the model. In this case a water 
mass balance approach was used (Rodell et al., 2007): – 
CW). For every time 

water storage and biomass can have an effect (Rodell et al., 2007). However, these 
components are not included in the model. Figure 23 displays the net GRACE-derived 
groundwater storage anomaly for the Ramotswa/NW Dolomites. This suggests an 
overall gain in groundwater storage, compared to the baseline period (2004-2009). 
While Figure 24 displays the net GRACE-derived groundwater storage anomaly of the 
Shire Valley TBA. Here there is an overall increase in groundwater storage compared to 
the baseline period. 
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Figure 23: Net GRACE-derived groundwater storage anomaly 2002-2020 for the Dolomite Aquifer 

 
Figure 24: Net GRACE-derived groundwater storage anomaly 2002-2020 for the Shire Valley TBA 
 
Finally, -gridded from a resolution of 0,25o x 0,25o to a 
resolution of 0,1o x 0.1o. This is done to match the resolution of the land surface variables 
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provided by ERA5. This task is accomplished using a bilinear interpolation method (Miro 
and Famiglietti, 2018). 
 

5.3.2. Groundwater level data 
 

5.3.2.1. Dolomite Aquifer 
 
The depth to groundwater level (GWL) data were aggregated into daily values using the 
mean. Next, GWL data were cleaned using a z-score function to remove outliers beyond 
2 standard deviations away from the mean. In addition, any borehole that only had less 
than two records was removed from the dataset. Thereafter boreholes outside the study 
area boundary were removed. Thereafter the 28-32-day groundwater level changes 
were calculated for every observation, where possible. The average groundwater level 
change between the 28-32-day series is set as the 30-day groundwater level change for 
each observation in the record. The final dataset contained approximately 35 000  
30-day groundwater level changes. 
 

5.3.2.2. Shire Alluvial Aquifer TBA 
 
Due to the lack of available depth to groundwater level data in the Shire Valley TBA, the 
pre-processing applied to the Dolomite Aquifer could not be applied to the Shire Valley 
TBA. Instead, the data were first aggregated into monthly mean depth to groundwater 
levels. Gaps in the time-series were filled in using a linear interpolation. Thereafter the 
monthly change in groundwater levels was calculated.  
 

5.4. Data aggregation and integration 
 
In order to match and integrate local data with regional data, the above 30-day 
groundwater level change data are used to extract data from the regional datasets into 
a table that represents a set of features for machine learning application. For example, 
for every groundwater level change record, the corresponding soil moisture anomaly, 
cumulative evapotranspiration, GRACE groundwater storage anomaly, cumulative 
precipitation, and cumulative run-off for the preceding 30, 60 and 90 days is calculated 
and appended to each groundwater level change record. Here the borehole locations 
are used to extract data from the underlying pixel value. Although it is challenging to 
account for probable lag times regarding the recharge response in groundwater levels, 
the inclusion of an extended aggregation period up to 90 days may allow for this. Table 
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7 provides a breakdown of the features aggregated during this process. While Figures 
23-37 display examples of each predictor used in the machine learning model. 
 
Table 7: Breakdown of the features generated through the data aggregation algorithm 
 

Features Description 
tprecip_30  Total precipitation 30 days before record 
tprecip_60  Total precipitation 60 days before record 
tprecip_90  Total precipitation 90 days before record 
tevap_30 Total evapotranspiration 30 days before record 
tevap_60 Total evapotranspiration 60 days before record 
tevap_90 Total evapotranspiration 90 days before record 
tro_30 Total runoff 30 days before record 
tro_60 Total runoff 60 days before record 
tro_90 Total runoff 90 days before record 
sma_30 30-day average soil moisture  
sma_60 60-day average soil moisture 
sma_90 90-day average soil moisture 
lst_30 30-day average land surface temperature 
lst_60 60-day average land surface temperature 
lst_90 90-day average land surface temperature 
ggwsa Mean GRACE groundwater storage changes 30 days before record  
aqtype_code Aquifer type code 
gma_code GMA compartment code 
gmu_code GMU compartment code 
lc_code Land cover code 
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Figure 25: Mean annual total precipitation for the Dolomite aquifers14 

 
Figure 26: Mean annual total precipitation for the Shire Valley TBA 

 
14 The units for figure 23-34 are in centimetres. Care should be taken when comparing model variables with observations, because 

observations are often local to a particular point in space and time, rather than representing averages over a model grid box and 
model time step. 
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Figure 27: Mean annual total evapotranspiration for the Dolomite aquifers (negative sign indicates 

upward flux) 
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Figure 28: Mean annual total evapotranspiration for the Shire Valley TBA (negative sign indicates 

upward flux) 

 
Figure 29: Mean annual total run-off for the Dolomite aquifers 
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Figure 30: Mean annual total run-off for the Shire Valley TBA 

 
Figure 31: Mean soil moisture content up to soil depth of 298 cm for the Dolomite aquifers 
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Figure 32: Mean soil moisture content up to soil depth of 298 cm for the Shire Valley TBA 

 
Figure 33: Mean land surface temperature for the Dolomite aquifers 
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Figure 34: Mean land surface temperature for the Shire Valley TBA 

 
Figure 35: Net re-gridded GRACE-derived groundwater storage anomaly 2002-2019 for the Dolomites 

aquifers 
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Figure 36: Net re-gridded GRACE-derived groundwater storage anomaly 2002-2019 for the Shire Valley 

TBA 

 
Figure 37: Aquifer compartments classified as GMAs (Cobbing et al., 2016) 
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Figure 38: Aquifer types (SADC, 2010) 

 
Figure 39: Land cover for the study area (legend see Appendix 1) 
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5.5. Conclusion 
 
During this research, a significant amount of data was collected and pre-processed. The 
data originate from various sources and are stored in a number of different formats. This 
is even more true for local scale data, such as in-situ groundwater observations. The 
regional scale data on the other hand are more well organized and are encoded and 
stored according to internationally recognized standards. The regional scale data are 
also more easily acquired, due to being publicly available via web-based platforms. 
Compared to in-situ groundwater data, which in many cases requires communication 
with relevant authorities and data providers, before being approved for sharing.  
 
Pre-processing of data into analysis ready datasets require a significant amount of time. 
This is largely due to the inconsistencies in data storage formats. In particular, the way 
in-situ groundwater observations are stored and shared are significantly different from 
one data provider to the next. For example, the typical storage mechanism for in-situ 
groundwater observations is in spreadsheets and table. However, the format of these 
tables tends to be completely different from one data provider to the next. Tables thus 
require editing before data can be collated together. In some cases, the editing must be 
done manually, one table at a time.  
 
Beyond the initially editing, the data goes through a transformation processes that is 
designed to convert the data into a set of analysis ready features. This component is 
specific to the use case and will differ depending on the application. In terms of this 
application, critical thought had to be given to the feature engineering phase, the 
purpose of which is to provide a set of features for machine learning. It is imperative 
that the features be based on hydrogeological understanding of the aquifer. For 
example, the groundwater level changes were used to understand the response to 
various hydroclimatic features. Also, the use of 30-, 60- and 90-day changes were 
included to account for the possible lag times between recharge and groundwater level 
responses.  
 
In its entirety the data collections and pre-processing are perhaps the most time-
consuming portion of any BDAs applications.  
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6. Application of machine learning algorithm to case study 
areas 

 

6.1. Introduction 
 
In the previous section the sourcing and pre-processing of the relevant data used in this 
study was described. The following sections describe the set-up and execution of a 
machine learning algorithm that is used to model groundwater level changes in the case 
study areas. The information generated from the model will allow inspection of the 
selected groundwater management scenario. In this case, chronic lowering of 
groundwater levels.  
 

6.2. Machine learning algorithm 
 
In this study we used a decision tree-based learning algorithm, implemented within a 
gradient boosting framework (Ke et al., 2017). Gradient Boosting Decision Trees (GBDT) 
are popular machine learning algorithms, that can be used for regression, classification, 
and ranking. Decision trees have advantages of being easy to interpret, handle missing 
values, not influenced by outliers, do not need a priori information, and can handle 
irrelevant features (Seyoum et al., 2019). In addition, these models are highly efficient 
and accurate (Ke et al., 2017). Modern decision trees are simple supervised tree-like 
models that rely on a set of decisions (branches) based on conditions (nodes) that end 
up qualifying/predicting an outcome (leaf) (Gupta, 2017). Figure 40 illustrates a simple 
decision tree, in which we determine whether an individual will survive or not on board 
a sinking Titanic. Here three features or attributes are used to reach an outcome: 
gender, age, and number of spouses or child on-board. Technically speaking decision 
tree models partition a predictor space (dataset space) into rectangular subspaces, 
based on conditional probability of the outcomes of decisions from given conditions, 
using the training data (Elith et al., 2008; Leonard, 2017). In regression tree models each 
subspace or region is fit with constant, such as the mean response for observations in 
that region (Elith et al., 2008). The tree grows (new leaves forming) as new conditions 
are met and decisions are made to reach an eventual prediction or rather a terminal 
node. The outcome in most cases is generally the predictant data (i.e. label data). 
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Figure 40: Example of a decision tree used to determine if a passenger onboard the Titanic will live or 

die based on probabilities within the covariant space  (Gupta, 2017) 
 
Instead of a single decision tree model, a gradient boosting relies on fitting many 
decision trees to the data, and then combining them in an ensemble fashion to produce 
a robust model. Typically, successive models are built using the residual errors of the 
preceding model, adjusting to further reduce the residual error as boosting progresses 
(Elith et al., 2008; Seyoum et al.. 2019). Unlike other ensemble methods (bagging, 
stacking and model averaging), boosting relies on successive iterations, where the 
overall accuracy is improved by reducing the gradient of a loss function (measure of 
predictive performance) at successive iterations (Schapire, 2003). In our 
implementation of GBDT we rely on a model put forward by (Ke et al., 2017), that uses 
histogram-based approach to find node points in the predictor space, as well as using a 
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) method 
to reduce data instances. In addition, trees are grown leaf-wise, instead of depth-wise. 
The implementation is executed using the LightGBM module15 in a python environment. 
 

 
15 https://lightgbm.readthedocs.io/en/latest/# 
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6.3. Model design 
 

6.3.1.  Model design Dolomite aquifer 
 
In this study we implement a GBDT framework, to develop a generalised decision tree 
model that can be used to compute the 30-day groundwater level change at any locality 
in the study area based on a set of input variables (Table 7). The process to achieve this 
involves reducing the boreholes that have over 1000 records by random sampling of 
1000 records.  Thereafter the data is randomly split into training, validation and test sets 
along the borehole identity axis. Essentially this ensures that the model is set-up to train 
on the entire time-series from a set of boreholes and validate on another set of 
boreholes. In addition, the data is anonymised by removing the borehole identity 
attribute. These processes ensure that the training data is more generalized and not 
specific to an individual borehole.  

 
Repeated iterations of model training are done based on different random splitting and 
machine learning trails, to ensure repeated model runs during training are robust, and 
consistent. This means that the model should train the same regardless of which 
boreholes are involved in training and which are involved in validation. The aim of this 
is to ensure consistent predictive powers across all boreholes, akin to a more 
generalized model of the aquifer. We then test the results on a test set initially removed 
from the training phase.  
 
Model hyperparameter tuning was also incorporated in the model design. This involved 
the use of Scikit-Learns GridSearchCV function to perform a grid search of the optimal 
parameter settings for the GBDT model. In this case, a fourfold cross-validation for each 
of the 16128 possible combinations of parameters were run to ascertain the optimal 
parameters. Finally, the model with lowest prediction score is selected, and used to 
predict the groundwater level change at the centre node of a predefined prediction grid 
(Figure 41). The grid has a resolution of 0.5ox0.5o (~5km). Firstly, a monthly time-series 
(2002-2019) is populated with data from the predictor variables as set out in Table 7. 
Thereafter the corresponding groundwater level change is predicted using the features 
and model with the lowest mean absolute error. Finally, the results are validated using 
change in observed depth to groundwater level data. 
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Figure 41: Grid centre nodes used as prediction points for application of the trained model 
 

6.3.2.  Model design Shire Alluvial Aquifer 
 
Due to the lack of available data, there are a limited number of model setups that can 
be applied in the case of the Shire Valley alluvial aquifer. Only a single borehole, Ngabu 
(Figure 18), provided a long enough time-series. Unlike with the Dolomites Aquifer, here 
the groundwater levels were aggregated into monthly values, and the difference in 
groundwater levels between the months calculated. The GBDT is set up to predict 
monthly groundwater level changes, using the features presented in Table 6. The 
dataset is split into a training, validation and test set along the time-series (i.e. the first 
80 months are used as the training set, the next 30 months are used as the validation 
set, while the remaining 22 months are used as a test set). 
 

6.4. Results 
 

6.4.1. Model results Dolomite Aquifer
 
A total of 100 model runs were conducted, with each run representing a different 
random splitting of the dataset in training and validation sets (testing sets removed 
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beforehand) (Appendix 2). Table 7 indicates the results of the ten best iterations of this 
process. The mean absolute errors for the training and test phase are shown. In this case 
the training score is used to rank the model runs. As can be seen model run 16 produces 
the best results, at least in terms of lowest mean absolute error. For this model the MAE 
is roughly 18 cm. In general, this means that on average the model is predicting the 
groundwater level change with an error of 18 cm. (Seyoum et al., 2019) report similar 
MAE for their experiment. All the runs display a large difference in mean absolute error 
from training to testing evaluations. As well as displaying large differences between 
subsequent model runs. This is not ideal, as it suggests that the randomization during 
splitting of training and testing is not generating consistent covariance amongst feature 
during subsequent runs. This would result in different covariant subspaces being created 
during training on each successive model. However, it must also be noted that there is 
a marked improvement compared to previous reported results (Deliverable 4: Lessons 
learnt from case studies). This can be seen in the mean score for all 100 models, which 
is significantly lower than in previous reports. 
 
Table 8: Score for the top ten model runs (Score=Mean Absolute Error, units=cm) 
 

Model No. Training score Testing score 

16 17,848946 26,740144 

41 19,069898 25,916309 

21 21,944976 25,505946 

89 22,018323 26,304860 

47 22,405129 26,273599 

2 22,464920 29,883113 

17 22,533392 25,710877 

40 23,624674 25,152207 

90 23,669164 28,685849 

32 24,494933 25,539539 

Mean score (all 100 models) 33,206389 
 

27,552611 

 
In-addition to the above table the Figures 40-42 display the predicted vs true values, for 
the training, validation, and test dataset, respectively. In this case the results are based 
on the top ranked model (model 16). Here it can be seen that the model struggles to 
effectively predict outliers or rather extreme values in the dataset. In-addition the plots 
illustrate that the model is making repeatedly similar predictions (linear artifacts of the 
data points). This may in-turn be affecting the overall MAE. This may also be a 
consequence of the categorization of the data into aquifer compartments, or the 
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possibility that the model is not training effectively. These results are consistent across 
the training, validation and testing sets.
 

 
Figure 42: Scatter plot of predicted vs true values for the training set 
 

 
Figure 43: Scatter plot of predicted vs true values for the valid set 
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Figure 44: Scatter plot of predicted vs true values for the test set 
 

6.4.2. Model results Shire Alluvial Aquifer 
 
For the single Ngabu borehole, the model training and validation produced a mean 
absolute error of 34,5799 cm. During the training process the model fails to learn 
effectively, instead perhaps memorizing the training data. This is reflected in the training 
where the model fails to significantly improve the MAE through successive iterations. 
Figure 45 illustrates the predicted vs true values for the training dataset. Figure 46 
displays the predicted vs true values for the validation dataset. In this case the predicted 
values have a higher degree of error. The model also does not accurately predict 
extreme values. 
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Figure 45: Scatter plot of predicted vs true values for the training dataset 
 

 
Figure 46: Scatter plot of predicted vs true values for the validation dataset
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Figure 47:  Scatter plot of predicted vs true values for the test dataset 
 

6.4.3. Feature importance Dolomite Aquifer 

As stated, the feature importance during model runs was also investigated. Appendix 3 
displays the feature importance for the top ten model runs. Figure 48 displays the 
feature important with the top model iteration (model 16). Here it can be seen that the 
30-day average land surface temperature has the highest influence on the prediction of 
groundwater level change. While the GRACE derived groundwater storage is considered 
the 2nd most influential feature. Theoretically groundwater storage change is 
proportional to groundwater level changes. Depending on the model run, either GRACE 
GWS or Land surface temperature are considered the most influential feature. In 
general, it also appears that the aquifer compartments play a large role in the prediction, 
as suggested previously. In most cases the hydroclimatic variables such as precipitation 
and evapotranspiration have a lower influence on the prediction. In general, also the  
30- and 90-day features appear to have greater influence than the 60-day features. 
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Figure 48: Feature importance for model #16 
 

6.4.4.  Feature importance Shire Alluvial Aquifer 
 
Figure 49 shows the feature importance of the model. For this model in the Shire Valley 
TBA, the most influential predictor is the 30-day cumulative evapotranspiration, with 
the precipitation and soil moisture also influencing the prediction. The size of the 
training data limits the iterative training process, with is reflected in the fact that not all 
the features are considered. This may be a consequence of the model hyper parameter 
settings, where the trees are set up with a small number or leaves containing a limited 
number of data points.  
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Figure 49: Feature importance for the GBDT model in the Shire Valley TBA 
 

6.4.5.  Downscaling grid results Dolomite Aquifer 
 
Here we use the top ranked model (model 16) to generate a set of monthly groundwater 
level change maps from April 2002-November 2019.  Appendix 4 contains a set of 
triennial net groundwater level change as predicted by the model. While a rasterized 
version of the net modelled groundwater level change across the entire time-series is 
displayed in Figure 50. Based on the results, it can be suggested that groundwater level 
is significantly lower compared to the start of the study period (2002). In-fact when 
grouped into 3-year cumulative values, there has been a consistent negative change in 
groundwater levels across the study area. Significant decreases are predicted in the 
Ramotswa sections, as well as in the middle and southern outcroppings of the 
dolomites.  
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Figure 50: Net modelled groundwater level anomaly for the study area 2002-2019 (cm) 
 

6.4.6.  Validation of Dolomite Aquifer 
 
To validate the modelled groundwater level changes, a sample of boreholes are chosen 
to compare observed groundwater level changes against predicted changes. Firstly, the 
time series of boreholes are aggregated into mean monthly groundwater level values. 
Thereafter only boreholes that have more than 150 records were retained for further 
analysis. Data gaps for months without data were filled using a linear interpolation 
approach. The difference between monthly groundwater levels was then calculated. 
Lastly, outliers are removed from the monthly validation dataset, as was done with pre-
processing of water level data for model development. 
  
The mean absolute error between the predicted groundwater level change and the 
observed groundwater level change is calculated at 17,181 cm. Even while extreme 
values are removed from the validation dataset, the model fails to accurately predict 
extreme values that still remain in monthly groundwater level changes (Figures 49-51). 
However, it must be pointed out that comparing a gridded product to point data is not 
expected to yield exact matches. Perhaps a more representative approach is to calculate 
the average observed groundwater level change per grid cell, to avoid the effects of 
outliers.  
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Figure 51: Borehole with low mean absolute error 
 

 
Figure 52: Borehole with the highest mean absolute error 
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Figure 53: Borehole in the Ramotswa section of the aquifer 
 
Figure 54 displays the rasterized mean absolute error across the study area. There is an 
overall, low mean absolute error across the study area, with only regions in the east and 
small portion in the centre of the study area displaying large mean absolute errors. In 
addition, the regions that display large decreases in groundwater levels coincide with 
regions with the low overall mean absolute error. This suggests that indeed significant 
groundwater level declines have occurred in parts of the aquifer. It further highlights the 
need for investigations into boreholes in the east of the study area indicating rather 
extreme changes in groundwater level month on month. 
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Figure 54: Map of the mean absolute error across the study area. Boreholes used in the validation of 

the mode are also shown. 
 

6.5. Conclusion 
 
A gradient boosting decision tree machine learning model was developed and 
implemented in the case study areas. The model was designed, trained and calibrated 
to predict groundwater level changes based on a set of hydroclimatic, land surface and 
hydrogeological variables. In addition, by training and validating on different sets of 
boreholes, the model is robust in terms of spatial distribution. Hence, it can be applied 
to various localities within the aquifer. The model, once calibrated and tested, produces 
a MAE of ~18 cm. When compared to results of other studies such as (Seyoum et al., 
2019), the results appear to be in-line. However, when comparing the true values vs 
predicted values, there are issues with predicting extreme values, as the model tends to 
under-predict extreme values. This may be a result of the non-linearity associated with 
extreme episodic events, as well as the impacts associated with abstraction, which are 
not included in the model. In addition, the inherent limitations associated with the 
temporal and spatial distribution of the groundwater level datasets in capturing the 
aquifer system, reduces the effectiveness of the model in real world scenarios (i.e. the 
model can only perform as well as the data allow). None the less, in the current state 
the model has provided information on the lowering of groundwater levels, suggesting 
that indeed there is potential to its application in groundwater management scenarios.  
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In this regard, further experimentation and analysis is required, with additional 
refinement of the model to ensure robustness and accuracy in real world deployment.  
 
Feature importance was also evaluated in this application. Out of all the features used, 
the GRACE-derived groundwater storage anomaly, the soil moisture and the land 
surface temperature are the most important features in terms of predicting 
groundwater levels. This implies a greater connection between these variables’ 
response to groundwater levels. This highlights the importance of GRACE data in 
understanding regional groundwater levels, and that GRACE also can play a role in 
modelling local groundwater level changes. 
 
Finally, the calibrated and validated model was applied to a typical real-world scenario, 
which in this case is the production of high-resolution groundwater level change maps 
in the Dolomites Aquifer. The validation of these maps produced a MAE of ~ 17 cm. In 
some cases, the model incorrectly predicted the direction of change (i.e. an increase vs 
a decrease in groundwater levels). While in general the MAE for majority of the 
boreholes is relatively low, there are a number of boreholes with large prediction errors 
that are skewing the overall MAE. It must however be noted that the validation of the 
maps was done with point data compared to the gridded maps. It may be more 
appropriate to validate against average groundwater level changes per grid cell. 
 
For the Shire Valley TBA, a machine learning model was developed for a single borehole 
(Ngabu). The model was setup to predict the monthly groundwater level changes based 
on the selected features. In this case the limited spatial and temporal distribution 
prevents a similar application as in the Ramotswa/NW Dolomites. The model can thus 
be only used to predict groundwater level change for the Ngabu borehole. However, the 
limited data prevents the model from being tested. In conclusion it is difficult to assess 
the validity and potential usefulness of this model, and the regional scale data that is 
used to develop the model. 
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7. Reflections on the learning opportunities linked to the 
project 

 

7.1. Challenges encountered 
 
The following is a list of lessons learnt during the processing and application of this work. 
This lessons not only focus on the specific methods, but also within the greater context 
of the project. 
 
 Large datasets are challenging to manipulate on standard desktop machines. 

For example, the data used in this application (just covering the study area) 
totals approximately 17-18 GB. This requires an equivalently sized machine 
memory allotment to process. Techniques such as chucking, parallel 
processing, and blocked algorithms can be used to overcome this challenge. 
However, this is just a fraction of data available for SADC. Drawing value from 
these data will require resources beyond single machines.  

 Data cleaning and validation is an important step during pre-processing. The 
data products available are not always in a “ready-to-use” format. The presence 
of outliers, duplicate values, inappropriate fill values in raster and meta-data 
affect the analysis results if not properly accounted for.  

 The data from remote sensing and simulated data from models are not always 
robust across time and space. Many caveats exist for specific datasets that must 
be accounted for. GRACE data are plagued by errors during post-processing of 
Level-1 data. This includes instrument issues, satellite technical issues and 
analysis errors. In addition, resolving the Earth’s mass changes is not a perfect 
science. For example, higher latitudes, the effects of coastlines and regions of 
extensive de-glaciation must be analysed with care. In this context GRACE data 
do not perfectly represent the parameter being observed. The same can be said 
of modelled data, like GLDAS, which have issues of misrepresenting inter-
annual changes in land surface states.  

 The resolution of GRACE data influences the validity of small-scale 
investigations. The native resolution of GRACE is close to 300 km. The finer 
resolution products mentioned in this report are produced through resampling, 
provided by the data creators. Hence, attempting to analyse small scale signals 
in GRACE groundwater storage introduces additional uncertainty into the 
model. 
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 Machine learning models are only as good as the data that are fed into them. 
Data pre-processing and validation are fundamental steps, to ensure model 
representativeness and accuracy. This process often requires more time than 
the design and development of the machine learning model itself.  
 This could be the cause of modelling errors in the above analysis. 

Specifically, the data aggregation step may be flawed considering 
archetypal lag times in recharge responses. That is not adjusted for 
during this step. 

 It is thus apparent that more care and effort is needed to improve the 
quality and quantity of data both on the ground and from other big 
data sources. 

 The machine learning models developed in this research are unambiguous. 
Meaning that they are designed to provide predictions on a single target 
variable or predictant. In this case, they can only be used to predict 30-day 
groundwater level changes in the respective study area. They cannot be 
generalized to model other properties of the aquifer.  

 

7.2. Project Recommendations 
 

7.2.1. Policy and transboundary aquifer management scenarios 
 
Groundwater depletion has increased considerably in major aquifer systems of the 
world. Continuing groundwater over-exploitation in such regions is unsustainable over 
multiple generations. In addition, climate variability and change influence groundwater 
systems both directly through changes in replenishment by recharge and indirectly 
through changes in groundwater use. There is an expectation of increased occurrence 
of extreme hydrological events requiring the need to develop improved adaptive 
capacity to flooding and drought. 
 
The TBAs of the SADC are associated with ‘high-importance’ aquifers making them 
crucial to improve water security and international cooperation among SADC Member 
States. Most investigations, however, have focussed on regional understanding of TBAs, 
but as far as groundwater is concerned, management and operational decisions are 
made at national and local levels which are more useful for sustainable management of 
the resource. Using BDA, the various sources of data and information can be integrated 
to produce new knowledge on local groundwater conditions. This would allow more 
informed decision-making.  
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Firstly, it is essential to conceptualize the purpose of BDAs. This will facilitate deciding 
on areal domain, time periods, what data to use as well as the methodological approach. 
The conceptualization involves the identification of the common problems occurring in 
the transboundary aquifer and the definition of sustainability goals. The following 
recommendations are made: 
 
 For sustainable groundwater management, sustainability indicators are 

recommended based on the California Department of Water Resources (2017) 
– namely the effects caused by groundwater conditions occurring throughout 
the transboundary aquifer that, when significant and unreasonable, become 
undesirable results. The undesirable effects are listed in Table 9. 

 Response to undesirable results implies adopting quantitative metrics and 
setting minimum thresholds. Minimum thresholds need to be quantified to 
represent the groundwater conditions causing an undesirable result(s) in the 
basin, similar to the Resource Quality Objectives as defined in the National 
Water Act (1998). Metrics and thresholds are site-specific, and they must be 
established through local studies and stakeholder engagement. 

 Establishing minimum thresholds for groundwater levels at a given 
representative monitoring site needs to take into consideration historical 
groundwater conditions in the basin, the average, minimum, and maximum 
borehole depths of municipal, agricultural, and domestic boreholes, and the 
potential impacts of changing groundwater levels on groundwater dependent 
ecosystems. 

 
Table 9:  Undesirable effects in transboundary aquifers and associated metrics. 
 

Undesirable impacts Sustainability and threshold metrics 
Chronic lowering of groundwater levels indicating 
a significant and unreasonable depletion of supply 

Groundwater level 
Volume and rate of abstraction 

Significant and unreasonable reduction of 
groundwater storage 

Total volume of groundwater storage 

Significant and unreasonable seawater intrusion 
(or saline intrusion) 

Chloride concentration isocontour 
Groundwater level 

Significant and unreasonable degraded water 
quality, including the migration of contaminant 
plumes that impair water supplies 

Migration of plumes 
Isocontour of contaminants 

Significant and unreasonable land subsidence that 
substantially interferes with surface land uses 

Rate and extent of land subsidence 
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Undesirable impacts Sustainability and threshold metrics 
Depletions of interconnected surface water that 
have significant and unreasonable adverse 
impacts on beneficial uses of the surface water 

Volume and rate of surface water depletion 

 

7.2.2. Recommendations on Big Data infrastructure 
 
To extract usable information from the variety of sources of information to the benefit 
of researchers, water managers and decision-makers, these data need to be processed 
through capable Big Data platforms, transformed into useful information, and packaged 
into tools that facilitate interpretation and decision-making on the ground. The 
following are proposed recommendations that can be implemented to develop a Big 
Data platform that can support data driven applications of sustainable groundwater 
management in SADC. Recommendations are summarized related to the BDAs 
infrastructure, the hardware and software requirements as well database and storage 
requirements. 
 
 The TBA analytics architecture presented in Figure 12 proposes the integration 

of many structured and unstructured data and sources by designing and 
implementing local clouds for storing local data sets and interconnecting these 
local clouds through a federated cloud infrastructure designed to present to 
the users a unified view of a transboundary database management scheme. 
Tools that are required for this operation include: i) data ingestion operators 
for ingesting data in multiple formats and curating the data in a data lake; ii) 
data transformation operators to validate data and apply complex 
transformation; iii) feature extractors or query tools to facilitate the retrieval of 
data. 

 A federated cloud storage infrastructure linking independent local cloud 
storages and databases is recommended because it can provide access to data 
providers through publish-subscriptions services that by-pass the need for local 
data storage and overcome the limitations associated with client-server service 
models 

 Two deployment models are proposed for the federated platform: a centralized 
deployment with CSIR hosting the workflows of the different research groups 
and meeting their storage and processing demands, and a hybrid deployment 
where i) software containers are used to move the processing to the data 
residing in different research groups’ data repositories, thus meeting 
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transboundary requirements while ii) for non-constrained data requirements, 
CSIR plays the role of data storage and processing unit and archiving. 

 The volume of data and information produced by novel technologies makes it 
essential to develop database and storage facilities. This is particularly true for 
Earth observation data where users are facing challenges of exponentially 
growing data archives due to the increasing number of sensors and products 
that are making available layers of information at increasingly fine space 
resolution and at higher frequency (Lewis et al., 2017). 

 The nature of data, often unstructured, includes different sources and formats, 
such as web-portals, web-based geographic information system (GIS) tools, 
password protected portals, cloud storage, portable storage devices, hardcopy 
maps, theses, reports, newsletters, documents, videos and podcasts (Hu et al., 
2014). This makes it also imperative to develop database and storage facilities 
that can manage heterogeneous datasets. It should also allow easy access and 
provide user-friendly meta-data content. 

 
The hardware and software requirements for a TBA project may be associated with 
providing two different services models or a combination of both: i) infrastructure as a 
service model of service delivery (Table 10) ii) a platform as a service (Table 11). 
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Table 10:  Infrastructure As A Service – Compute Modules 
 

SN Type Description Specification Quantity 
1 General 

Purpose 
General day-to-day 
use, low end 

Small scale ARM like Processors: 1 to 
16 vCPU cores, 2 to 32GiB Memory, 
10Gbps Network, EBS storage.  
 

15 

  General day-to-day 
use but high end 

Intel like Processors: 2-64 vCPU, 8-
258GiB Memory, up to 10Gbps 
Network, dedicated EBS storage 
 

10 

2 Compute 
Optimized 

High performance 
computing 

Intel Xeon E5 v3 like Processors, 2-36 
vCPU, 3 to 60GiB Memory, EBS 
storage 
 

10 

3 Accelerated 
Computing  

Machine Learning 
& Gaming 
optimized 

1-8 Nvidia GPUs, 8-96 vCPU, 61-
768GiB Memory, 16-256 GPU 
Memory, up to 100Gbps Network, 
dedicated EBS storage 

5 

4 Storage 
Optimized   

NoSQL db, data 
warehousing 

Intel Xeon E5 v4 like Processors: 2-72 
vCPU, 15-512 GiB Memory, 1x 475GB 
to 8x 2TB SSD storage, up to 25Gbps 
network 
 

10 

    50 
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Table 11:  Platform As A Service (set of Open-source tools) – Operating System: Debian-based (Free) 
 

SN Description Installed / Available Tools 
1 IoT RabbitMQ, Mosquitto, Arduino, Node-RED, M2MLabs, ThingsBoard 
2 Machine Learning Weka, Scikit, TensorFlow,  
3 Big Data Apache Kafka,  
4 Database MongoDB, MySQL, MariaDB, PostgreSQL, Apache Hive 
5 Analytics Tableau, PowerBI, Apache Spark 
6 NLP Semantria, Trackur 
7 Programming Eclipse IDE, VSCode, Python, Java, R, MatLab/Octave 
8 Web Development Joomla, WordPress, CSS, HTML, JavaScript, PHP, Apache Cordova  
9 App Servers XAMP/WAMP, Apache Hadoop, JDK 
10 Others Docker, Cloudera, Kubernetes, OpenStack Suite 

 
The processing of such large volumes of aquifers’ data can benefit from existing high-
performance computing (HPC) infrastructures which are able to store massive datasets 
collected from different water data sources and meet the diverse processing 
requirements demanded from water applications. At its onset, HPC was commonly 
associated with scientific computing for scientific research using super-computers and 
computer clusters. Nowadays, HPC has evolved toward the relatively more recent cloud 
computing model that builds on decades of research in virtualization, distributed 
computing, utility computing, networking, web and software service. 
 
Cloud technologies have become the technologies of choice for solving large scale 
data/compute intensive problems as they present undeniable advantages over 
traditional HPC. However, only a few African countries which are involved in TBAs 
research can afford world-class processing infrastructures and building such facilities is 
often time consuming thus discouraging for multiple deployments. It is therefore 
necessary to strengthen the capabilities in SADC countries to make use of these 
technological opportunities. 
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7.2.3. Recommendations on applications of Big Data Analytics 
 
During this project, research was conducted to test and demonstrate the application of 
BDAs at two case study sites, namely the Zeerust/Lobatse/Ramotswa Dolomite Basin 
Aquifer and the Shire Valley Alluvial Aquifer. The main focus of the project was to apply 
BDAs primarily for the purpose of downscaling big data (spatial and time series) to the 
level where local decisions can be taken on water resource assessment, planning and 
management. Several recommendations emanated from the case studies are 
summarized below for the data pre-processing, machine learning development and 
application, and decision-making phases. 
 

7.2.3.1. Data and processing 
 
 Site selection and area domain are crucial in order to make use of sources and 

data in a consistent manner. Satellite-derived information (e.g. Gravity 
Recovery and Climate Experiment GRACE data) can be expected to be at much 
coarser resolution than data collected on the ground for the purpose of 
localized groundwater management. Pre-processing is therefore required. 

 The size of the investigated aquifers must be consistent in relation to the 
regional data used. For example, in the Ramotswa case study, it was realized 
that the aquifer was not of great enough areal extent to allow sufficient 
coverage of remote sensing regional data (GRACE data at a resolution of 110 
km, or 1o x 1o). In order to overcome this limitation, the case study area was 
expanded to include the dolomite aquifers extending into the North-West and 
Gauteng provinces of South Africa. 

 A wealth of large-scale data and information has been recently generated 
thanks to novel technologies such as satellite remote sensing and Global 
Circulation Models (GCM). This information is generally available in spatial 
format and with time series that span up to a few decades. Time series are often 
available for near-real time analysis and decision-making. This is highly valuable 
especially for areas were in situ information is scarce, however the spatial 
resolution is often too coarse for applications to localized water management 
(e.g. wellfields and individual boreholes). It is therefore recommended that 
BDAs methodologies and approaches make use of the opportunity to add value 
to these novel technologies and available large-scale datasets. 

 Large scale data are stored in commonly used NetCDF (.nc extension) or HDF5 
formats. These are multidimensional data storage containers, capable of 
storing different types of data. Data need to be extracted from these storage 
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containers to be plotted in a GIS environment. The process can be automated 
by writing scripts using common programming languages, e.g. Python. 

 Processing large volumes of data may require appropriate machine memory 
allotments. Techniques such as chucking, parallel processing, and blocked 
algorithms can be used to overcome this challenge.  

 One of the most important concepts when collecting and analysing Big Data is 
dealing with the uncertainty. Machine learning models are only as good as the 
data that are fed into it. Possible sources of uncertainty are: 
 Missing data, poor data capturing, measurement errors 
 Inherent errors to raw data (e.g. sensor, satellite, instrumental errors) 
 Large, highly heterogeneous, multi-dimensional datasets 

(unstructured, inconsistent, incomplete, and noisy data) 
 The scaling factors used to reduce signal loss in GRACE data in the post-

processing phase 
 Extraction and re-sampling to render consistency between datasets at 

different spatial resolution 
 Data aggregation may be flawed considering archetypal lag times in 

recharge responses 
 Possible means of reducing uncertainties are: 

 Selection of proper techniques when dealing with Big Data 
 Data pre-processing, cleaning and validation are fundamental steps, 

often requiring more time than the design of the model itself 
 Traditional methods are outlier detection, removal of duplicates, 

missing data detection, handling and unifying datasets, ranges check 
 More complex techniques that can be employed are Probability theory, 

Bayesian theory, Shannon’s entropy, Rough set theory, Fuzzy set theory. 
 A pre-processing stage is required for ground data (local scale). This consists in 

formatting data, combining data from different sources (e.g. in spreadsheets), 
removing duplicates and missing records, and data quality control. Proper care 
must be taken to ensure the quality of data is adequate. 

 Data cleaning and quality control are an important step during pre-processing 
of regional scale datasets as well. The data products available are not always in 
a “ready-to-use” format. The presence of outliers, duplicate values, 
inappropriate fill values in raster files affect the analysis results if not properly 
accounted for. 

 Substantial pre-processing is required in order to render consistency to the 
different sources of data: 
 Data need to be consistent in terms of spatial and temporal resolution 
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 Missing data are likely to occur and appropriate methodologies need to 
be applied for data patching or removal of missing records 

 Realistic limits and constraints need to be set in order make optimal use 
of existing data and information (e.g. omit monitoring points that have 
too little data; set realistic periods of groundwater level response to 
rainfall events, etc.) 

 Consistency in units needs to be checked. 
 Sufficient ground data (both spatial and temporal) are required in order to train 

models and algorithms as predictive tools for the specific application and 
problems to be solved. Efforts must be made to ensure the amount of data on 
groundwater is increased spatially and temporally. To this end, modern smart 
sensor technologies, and IoT devices are encouraged. 

 

7.2.3.2. Application of Big Data analytics 
 
A large basket of BDAs techniques is available that can be used to solve specific 
problems. These are presented in Table 11. 
 
Table 12: Summary classification of BDAs techniques 
 

Techniques Examples of computational methods 
Statistics Descriptive statistics, Regression, Correlation, Factor analysis, Clustering, 

Hypothesis testing, Probabilistic statistics 

Data mining SQL queries, Machine Learning, Statistics, Feature selection 

Artificial intelligence 
(AI) 

Statistical learning, Optimization methods, Deep learning 

Machine learning 
(subset of AI) 

Artificial neural networks, Support vector machine, Random forest, K mean 
clustering, Natural language processing 

Uncertainty analysis Data cleaning, Probability theory, Bayesian theory, Shannon’s entropy, 
Rough set theory, Fuzzy set theory 

Visualization Tables, Graphs, Images, Feature extraction, Geometric modelling 

 
 BDAs can be specifically applied to address downscaling of regional data for 

catchment scale management. A large number of approaches, tools and 
techniques were reviewed in the literature. Amongst the approaches, dynamic 
and statistical approaches were considered: 
 Statistical approaches were traditionally preferred as they are less 

complex to develop and because of low computational costs 
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 Dynamic approaches provide more mechanistic and physically-sound 
results and they are better suited to describe non-linear relationships 
between variables in complex systems (Deliverable 2b of the project), 
but are complex to develop, requiring high computational resources 

 BDAs can be categorised as statistical approach with the advantage of 
being able to model non-linear relationships and handle large streams 
of heterogeneous data 

 Unsupervised machine learning algorithms are better suited for grouping and 
classifying, whereas supervised machine learning algorithms are an excellent 
predictive (regression) tool. Supervised machine learning algorithms are 
therefore recommended for downscaling applications. 

 Literature has shown that many machine learning algorithms can be applied to 
downscaling of regional datasets. The most appropriate downscaling 
techniques were selected based on the literature review and discussions with 
IBM Africa. In the particular case study of this project, the machine learning 
algorithm chosen for downscaling regional groundwater data was the Gradient 
Boosting Decision Trees (GBDT).  

 For downscaling regional groundwater data, machine learning methods such as 
the Gradient Boosting Decision Trees (GBDT) can be used. GBDT are versatile 
algorithms that can be used for regression, classification and ranking. Decision 
trees have advantages of being easy to interpret, they handle missing values, 
they are not influenced by outliers, they do not need a priori information, and 
they can handle irrelevant features. In addition, these models are highly 
efficient and accurate. 

 The implementation of GBDT can be executed using the LightGBM module16 in 
a Python environment (other languages are also available). 

 Feature engineer is a critical step in the development of a machine learning 
model. Feature engineering is a formulation of a set of input and output 
features (predictors and predictants, respectively). Data need to be converted 
to sets of features that can accurately predict the output feature (predictant).  

 Groundwater levels are expected to be the most common predictant in relation 
to sustainable groundwater management. However, depending on the 
problem-solving application, predictants can also be groundwater quality, land 
subsidence or other variables. National databases such as the National 
Groundwater Archive are common sources of this information. 

 
16 https://lightgbm.readthedocs.io/en/latest/# 
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 In this case study application, the recommended predictors in downscaling 
regional data for groundwater level modelling are summarized in Table 12. 

 It is useful to develop a baseline model, e.g. relationship between precipitation 
(predictor) and groundwater level (predictant), and subsequently add 
incrementally the various input variables to assess the sensitivity of 
groundwater level to each predictor. 

 Proper care must be taken during the interpretation of machine learning model 
development and application. It is not always as easy as selecting based on 
training or validation score. Additional scrutiny of the training process and 
model performance results are required to ensure models are rigid and 
applicable.  

 When datasets contain a limited number of samples, it is recommended to use 
a pixel-based rather than a sample-based approach, and consider several pixels 
as an input to predict the future value of a groundwater variable pixel 

 
Table 13: Summary of recommended predictors for case study area used in this project (independent 

variables, model inputs), and sources of information. 
 

Independent 
variable 
(predictor) 

Source 

Precipitation ECMWF ERA5-Land 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 

Groundwater 
storage anomaly 

Release 06 version 03 of GRACE Tellus mission and GRACE-FO Level-3 monthly 
land surface mass changes based on spherical 
harmonics, https://podaac.jpl.nasa.gov/GRACE?sections=about%2Bdata 
GLDAS NOAH, 
https://podaac-
tools.jpl.nasa.gov/drive/files/allData/tellus/L3/gldas_monthly/netcdfRelease 5 
version 4 NCAR CLM scaling factors for the spherical harmonics to reduce the 
signal loss during pre-processing caused by filtering data to remove noise and 
correlated errors. 

Evapotranspiration ECMWF ERA5-Land, 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 

Soil moisture ECMWF ERA5-Land, 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 

Run-off ECMWF ERA5-Land, 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 



 

pg. 102 
 

Independent 
variable 
(predictor) 

Source 

Land surface 
temperature 

ECMWF ERA5-Land, 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
land?tab=overview 

Aquifer 
compartments 

Based on hydrogeological boundaries 

Aquifer type SADC Hydrogeology map (2010) 
Landcover ESA Climate Change Institute Land Cover product, 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-
cover?tab=overview 

Dependant 
variable 
(predictant) 

Source 

Groundwater level 
anomalies 

Groundwater level data, RIMS, HYDSTRA 

 

7.2.4. Decision-making 
 
The main purpose of BDAs is to transform large volumes of heterogeneous data into 
usable information and knowledge to support decision-making by water managers on 
the ground. Decision-making tools need to be tailored according to users’ needs, 
especially at local scale, in the form of dashboards, early warning systems, maps, graphs, 
tables, web- and other user-friendly applications. The huge amount of data does not 
make it viable to analyse data manually. This is a limitation in terms of near-real time 
decision-making. It is therefore recommended to automate, where possible, the results 
relevant to some decisions in order to promote and facilitate near-real time decision-
making.  

7.3. Further research recommendations and conclusion 
 
Some requirements for further research are: 
 
 Groundwater level simulation using BDAs and remote sensing has been 

documented. However, groundwater quality analysis using BDAs and remote 
sensing has not been explored. It is recommended that further research 
addresses this gap. For example, groundwater quality is known to be 
dependent on various land and sub-surface activities (e.g. land use, mining and 
geology). BDAs and remote sensing could help in better understanding and 
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managing these linkages. In addition, predictive analytics can be used to map 
and to predict groundwater quality in 3 dimensions, using in situ data and 
machine learning algorithms (Ransom et al., 2017).  

 Many of the uncertainties in the analytical results are driven by inconsistencies 
in spatial and temporal resolution of ancillary data as well as errors in the 
various pre-processing and post-processing steps to render data spatially 
consistent. Future investments in transboundary contexts should take into 
consideration spatial and temporal resolutions required in data collection to 
solve specific problems. 

 The technological requirements to store and process large heterogeneous 
volumes of data often require dedicated systems beyond the capabilities of 
conventional desktop systems. This is particularly a problem in many SADC 
Member States that do not have the computational capabilities to facilitate Big 
Data approaches.  Furthermore, ingesting huge volumes of data has 
implications with the network speed required to move and process Big Data. 
High performance computing (HPC) infrastructures and the design of federated 
platforms is therefore fundamental in extracting the best value from BDAs. 

 The transparency of data sharing across international boundaries is not always 
common amongst individual states. Data ownership and data access is often 
restricted to certain individuals or institutions. The institutional barriers and 
management practices employed by member states are not always aligned 
with each other. The consequence is that this can ultimately affect the 
sustainable management of groundwater. Management challenges cover 
issues such as privacy, governance, institutionalization, security, among others, 
and this need to be addressed a priori. 

 In South Africa, comprehensive and integrated groundwater-related databases 
at national level (that encompass different scales with additional added-value 
of Internet-based tools for data processing, interpretation and groundwater 
management support) do not exist. The development of a centralized data 
repository would be highly beneficial based on the recommendation of the 
National Water Security Framework (2019) and the Data Storage Solution 
Online Workshops that took place on 20-24 April 2020. The benefits of such 
repository would be two-fold: 
 To collate existing groundwater-related information into a centralized 

repository that would be easy to access, generate and extract valuable 
information in support of a quick response in groundwater 
management 
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 To develop tailor-made computerized tools and software to add value 
to the existing information and support decisions in groundwater 
management and planning 

 Such data repository would require a strong involvement of data scientists, 
geohydrologists and potential users of the information since its inception. 
Much of the design should be based on the users’ needs. In particular, the 
development of value-adding functionalities such as dashboards, early warning 
systems and visualization tools tailor-made to specific problems, users and 
transboundary aquifers would be highly advantageous. 
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Appendix 1: Legend for land cover map 
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Appendix 2: Table of mean absolute errors for all model runs 
 

Model No. Training score Testing score 
16 17,848946 26,740144 
41 19,069898 25,916309 
21 21,944976 25,505946 
89 22,018323 26,304860 
47 22,405129 26,273599 
2 22,464920 29,883113 

17 22,533392 25,710877 
40 23,624674 25,152207 
90 23,669164 28,685849 
32 24,494933 25,539539 
56 24,565496 26,250806 
59 24,713275 26,474276 
75 25,135341 25,413766 
30 25,202213 26,673129 
63 25,277708 28,552989 
0 25,826891 30,254467 

65 25,916797 29,236090 
37 26,130676 25,655081 
24 26,525331 27,707772 
77 26,619471 26,711580 
29 26,773775 27,910805 
39 26,991959 25,797266 
15 27,030893 26,496871 
43 27,118175 29,696530 

100 27,501247 28,236069 
86 27,848208 25,696593 
4 27,889247 26,711192 

14 27,942828 29,141449 
87 28,021943 26,610208 
88 28,234004 26,316298 
31 28,324220 25,502928 
85 28,352378 26,445886 
27 28,468128 29,666193 
5 28,644791 27,888238 

95 28,831406 26,017404 
62 29,124826 26,411477 
44 29,145013 29,937435 
84 29,374263 27,624600 
23 30,092430 28,519709 
76 30,215790 25,676533 
69 30,555003 28,462353 
51 30,914281 27,804763 
19 31,312477 27,083782 
54 31,557019 25,998050 
61 31,915258 29,101971 
57 31,984579 25,373199 
79 32,011243 29,603712 
82 32,165766 30,977532 
11 32,315520 28,321670 
94 32,656596 28,670207 
18 32,795368 26,218912 
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Model No. Training score Testing score 
28 33,320437 33,355326 
25 33,505135 26,719099 
71 33,695243 28,036191 
9 34,315373 27,997933 

91 34,334866 28,842793 
72 34,513080 25,353502 
33 34,625607 28,925912 
60 34,744977 31,913824 
67 34,958223 28,993225 
8 35,139224 29,064702 
6 35,261152 27,464458 
1 35,343800 29,389803 

92 36,123219 28,647168 
96 36,292218 28,986263 
64 36,306192 28,251349 
26 36,619845 26,322898 
50 36,853506 29,259121 
45 36,968243 27,287602 
70 36,973009 28,231565 
97 37,030195 27,930289 
98 37,213935 27,919437 
7 37,328470 28,036410 

36 37,761582 26,026738 
12 38,707984 30,271429 
13 39,013492 32,319562 
34 39,661979 28,642646 
81 40,343670 25,345343 
38 40,933082 27,517918 
55 41,193410 25,788522 
80 42,001618 26,347467 
74 42,419811 29,044834 
46 42,493109 26,207590 
48 43,005858 27,159635 
68 43,608749 26,520068 
78 43,753281 29,660488 
73 43,916673 29,054615 
20 44,396021 25,521243 
3 45,721230 28,370919 

99 46,976839 25,578834 
22 47,360974 28,006448 
83 48,504386 25,181396 
49 48,788778 25,439512 
42 49,757235 26,091757 
35 49,808832 29,342935 
10 50,596474 26,156514 
93 53,138890 28,951393 
52 54,778764 27,789299 
66 55,245309 25,046291 
58 56,263872 28,561853 
53 60,911358 28,648473 

Mean error 33,20638932 
 

27,552611 
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Appendix 3: Model feature importance (top ten models only) 
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Appendix 4: Triennial net groundwater level change maps 
(2003-2019)  
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Change in groundwater level 2009-2011 
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Change in groundwater level 2015-2017 
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