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EXECUTIVE SUMMARY 

BACKGROUND 
There is a need for a suitable national waterlogging and salt-affected soil monitoring and 
evaluation system to monitor the impact of agriculture, mining, urban and industrial activities. 
In its absence, various ad hoc pieces of data, information, norms and standards that are 
constantly being collected will remain pieces of a large puzzle that is extremely difficult to 
incorporate into a holistic picture. 
 
No reliable secondary salinity, sodicity and waterlogging information is obtainable for South 
Africa, nor are there monitoring programmes to track the waterlogging and salt-affected 
status of soils on irrigation schemes. Reliable waterlogging, salinity and sodicity information 
is required for various agricultural and environmental studies on a provincial and national 
scale. Examples include the FAO’s Terrastat, Aquastat and LADA programmes, the 
International Commission of Irrigation and Drainage (ICID) and South Africa’s State of 
Environment reporting.   
 
Comprehensive and reliable sources of data, from which trends in constituents depicting the 
long-term sustainability of irrigated agriculture could be deduced, are lacking. It is evident 
from information available that the degree of degradation varies considerably between 
irrigation schemes and also over time within the same irrigation scheme. An increase in 
salinity and sodicity normally coincides with hydrologically dry years with below-average 
runoff and an increase in waterlogging occurs during hydrologically wet years. A review of 
about 3000 soil irrigation reports revealed that soils free of limitations for sustainable 
irrigation are limited in extent in South Africa. However, it appears that waterlogging, salinity 
and sodicity affects only 8-18% of the area under regular irrigation in South Africa (Nell & De 
Clercq, 2008). With the elevated soil salinity and sodicity levels expected to rise further in 
future, it will become increasingly necessary to monitor the situation on irrigation schemes 
and within irrigated lands in order to identify salt accumulation and waterlogging trends and 
associated potential problems timeously for remedial action to be taken. 
 
The operation and management of irrigation water must include proper monitoring and 
reduction of seepage and other water losses in the system, particularly if there is a 
component of recharge by raising water tables and cause salt-affected soils. Management-
related distribution losses (causing waterlogging that salinization conditions) on irrigation 
schemes are, among others, caused by inaccurate dam releases, faulty sluice gate control, 
inaccurate lag time calculations, errors in water requisition calculations and insufficient 
monitoring of canal end points (Benade, 1991), and over-irrigation. 
 
RATIONALE 

The high costs of measuring waterlogging and salt-affected soils on South African irrigation 
schemes, as well as inconsistencies in data collection and reporting methods, have resulted 
in incomplete and often contradictory information on the extent and distribution of salt-
affected and waterlogged soils. Since the late 1980s no national effort has been made to 
quantify the extent of waterlogging and salt accumulation across irrigation schemes in South 
Africa. Indications are that soil and water quality are declining and these problems are 
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actually escalating. To identify soils for drainage and reclamation, the extent of waterlogging 
and salt accumulation has to be determined. 
 
Major capital investment was made in irrigated areas in South Africa in the past. It is, 
therefore, important to monitor degradation and plan rehabilitation at farm and scheme level 
with reliable information. Sustainability of food production and infrastructure are potentially 
threatened if a reliable monitoring system is not in place for South African irrigation 
schemes. At this stage, waterlogging and the problem of salt-affected soils are based on 
intelligent guesses due to lack of recent validated data. 
 
National monitoring of waterlogging and salt accumulation is a high priority but currently no 
proven methodology is available to undertake this task. Therefore a methodological 
approach at appropriate scales has to be tested before application at national level can be 
implemented. 
 
AIMS 
AIM 1 
To develop and test a methodological approach for identification, classification and 
monitoring the extent and degree of waterlogging and salt accumulation at farm, irrigation 
scheme and national level. 
AIM 2 
To develop guidelines and make recommendations for application of the methodology to 
monitor the extent and degree of waterlogging and salt accumulation on irrigation schemes 
at a national level. 
AIM 3 
To make available soil maps in different digital formats for at least the ten largest irrigation 
schemes in South Africa and establish links to the AGIS website of the National Department 
of Agriculture (NDA)1. 
AIM 4 
To quantify the current level of waterlogging and salt accumulation and monitor changes 
over time at the appropriate scale on selected schemes. 
AIM 5 
To capture temporal and spatial data in a user-friendly geographical information database. 
 
METHODOLOGY 
Due to the costs involved in soil sampling and analysis, the only viable option for monitoring 
waterlogging and salt accumulation over large areas (i.e. irrigation scheme level) is to use 
existing soil maps (where available), terrain data and satellite imagery to identify areas 
where these processes are likely (or unlikely) to occur. By combining various sources of data 
and a priori knowledge, large areas can be eliminated from further consideration and specific 
areas can be highlighted as being potentially affected. 
 
An experimental approach was taken in developing a suitable methodology for quantifying 
and monitoring waterlogging and salt accumulation. Various sources of data and techniques 
were applied and compared to empirical (reference) data to determine their potential for 
monitoring waterlogging and salt accumulation.  

                                                 
1 During this project NDA became the Department of Agriculture, Forestry and Fisheries    
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The techniques were applied within three main strategies. The first approach attempted to 
use remote sensing to directly detect salt accumulation by studying the spectral 
characteristics of soils that are salt-affected. A satellite image with a very high spatial and 
spectral resolution was used for this experiment to reduce the influence of image resolution 
on the spectral, statistical and image classification techniques that were evaluated. The main 
aim of these experiments was to investigate the relationships between known affected areas 
(as determined using EC measurements) and a range of image features (bands and 
indices), with the purpose of determining whether these relationships can be used to 
accurately predict the spatial distribution of salt accumulation.  
 
The second strategy was to evaluate whether an indirect remote sensing approach can 
effectively be used to monitor salinity levels. In this approach vegetation response to saline 
conditions was investigated. Two different data sources were evaluated at two different (field 
and scheme) scales. The first series of experiments made use of a very high resolution (0.5 
m) WorldView-2 satellite image to detect changes in vegetation response to saline 
conditions within a single (lucerne) field. The influence of image resolution was also 
examined. The second series of experiments made use of high (2.5 m) resolution SPOT-5 
images. These experiments were carried out on a variety of crops in two dissimilar irrigation 
schemes (Vaalharts and Breede River), mainly to determine to what extent statistical and 
classification techniques are influenced by large variations in how different types of crops 
respond to saline conditions. 
 
The final set of experiments focussed on investigating the relationships between terrain data 
and waterlogging and salt accumulation in the Vaalharts and the Breede River study areas. 
A series of statistical analyses were carried out to find the continuous relationships between 
a large set of terrain features derived from three different digital elevation models (DEMs). 
Machine learning algorithms were also employed to model waterlogging and salt 
accumulation. 
 
Each experiment was assessed in terms of its accuracy and in the context of finding an 
operational solution to quantifying and monitoring waterlogging and salt accumulation at 
field, farm and irrigation scheme level at national scale. The techniques and data sources 
that showed potential were considered for incorporation in an operational solution. Some 
techniques were excluded from investigation based on the outcomes of the experiments. 
 
Three approaches to mapping waterlogged and salt-affected areas were identified as having 
potential for future application. The first is a modelling approach whereby hydrological, 
terrain and soil data is used to determine where waterlogging or salt accumulation is likely to 
occur. Another approach is to differentiate affected and unaffected soils by making use of 
remotely-sensed imagery (hyperspectral or multispectral) to analyse their spectral 
properties. This direct remote sensing method is consequently applied to exposed (bare) 
soil. The third approach, referred to as the indirect remote sensing approach, examines 
vegetation response (e.g. loss of biomass) to saline or waterlogged conditions. The latter 
approach mainly makes use of vegetation indices (VIs) derived from multispectral imagery. 
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RESULTS AND DISCUSSION 
 
All three of the above approaches were evaluated in this research. For the direct remote 
sensing approach, a WorldView-2 (WV2) satellite image was used to investigate if there are 
any spectral features of affected soils that can be used in their discrimination. The WV2 
image was ideal for this purpose as it had the highest possible spatial (0.5 m) and spectral (8 
bands) resolution available at the time of analysis (higher resolution imagery has since 
become available). Although such imagery is too expensive to be used for monitoring 
purposes over large areas, its use in this study contributed to the establishment of a “best 
case scenario”. Also, it enabled an investigation into how less expensive imagery (e.g. those 
offering only red, green, NIR bands) might perform in comparison. Statistical analyses as 
well as rule-based and supervised classification methods were evaluated. 
 
Experiments with the direct remote sensing approach showed that there were a number of 
statistically significant relationships between image features and salt accumulation, with 
NDSI1 being the best predictor. However, the use of WV2 imagery to identify salt-affected 
soils was found to be unreliable as all of the methods evaluated grossly overestimated salt 
accumulation. This was attributed to the inconsistencies in the visual appearance of salt-
affected soils as in many cases there was no visible evidence of salt accumulation (e.g. salt 
precipitation). Another factor that complicates the detection of salt accumulation when bare 
soils are observed using remote sensing is the disturbance caused by soil preparations (e.g. 
ploughing) as this can alter the soil surface and reflectance. But the main limitation of the 
direct approach is that a relatively small proportion of fields in irrigation schemes are bare at 
any given time during the year. The implication is that multiple analyses will be required to 
map an entire irrigation scheme. This would be costly, even with the use of less expensive 
satellite imagery. 
 
Field verifications of the various satellite images used were done at Vaalharts, Loskop: 
Olifants River, Vredendal: Olifants River, Makhathini, Sundays River, Tugela River, Limpopo 
River, Douglas: Vaal and Orange River irrigation schemes. Soil samples were taken at the 
observation points for analysis and quantification of the salt content. In the Lower Orange 
River the soil sampling points and areas identified as salt-affected and/or waterlogged with 
remote sensing by Volschenk et al. (2005) and Mashimbye (2005) were again visited to 
verify their findings. Historical soil maps and reports were also used to identify problematic 
areas and to compare the change in salt-affected and waterlogged soils over time. 
 
The indirect remote sensing approach was evaluated in the Vaalharts and Breede River 
study areas. The WV2 image of a lucerne field at Vaalharts was used for evaluating 
vegetation response to saline conditions. Several experiments were also carried out to 
investigate the impact of reduced spatial and spectral resolution of satellite imagery – 
effectively testing the hypothesis that very high spatial resolution imagery is required for 
monitoring salt accumulation and waterlogging in South African irrigation schemes.  A total 
of 445 WV2-derived spectral and spatial (texture) features were analysed at 0.5, 2, 6, 10, 15 
and 20 m resolutions to determine their potential for distinguishing between salt-affected and 
unaffected soils.  Regression analyses were carried out to investigate the relationships 
between the image features and EC values of 30 soil samples collected in the field.  The 
results showed that there are significant and strong continuous relationships between EC 
and several of the features considered and that the yellow band, as well as a number of VI 
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and texture features, produced the strongest models. Generally, the strength of these 
relationships diminished as the spatial resolution was reduced. Overall, the regression 
analysis and classification and regression tree (CART) results were very promising as they 
showed that VIs generated at 6 m and higher resolution can potentially be used. The results 
also suggested that high resolution texture features can potentially be used together with VIs 
for the indirect monitoring of salt-affected soils. Furthermore, the relatively high spectral 
resolution of the WV2 imagery is not critical as the VIs (based on red and NIR wavelengths 
only) performed relatively well compared to the performance of the individual bands. 
 
It was concluded that, due to its relatively high cost, the operational use of WV2 imagery for 
regular monitoring of large areas is not viable. The results show that slightly lower spatial 
and spectral resolution imagery might produce comparable results. Notable candidates are 
SPOT-5 (2.5 m panchromatic; 10 m multispectral), SPOT-6 (1.5 m panchromatic; 6 m 
multispectral), RapidEye (5 m multispectral) and Sentinel-2 (10 m multispectral) data.  
Although SPOT-5 will soon be decommissioned, its large archive of imagery will be very 
useful for change analyses where historical baselines are required. 
 
The models generated only considered soil samples collected in a cultivated field with a 
single crop. Given that crops differ in their response to saline conditions, an additional series 
of experiments were carried out to investigate how these variations will affect the results. 
These experiments were carried out in the Vaalharts and Breede River study areas using 
slightly lower resolution SPOT-5 imagery. It was found that the spectral responses of 
affected crops differed considerably between the two study areas and that none of the 
feature sets and/or classification algorithms stood out as being superior for monitoring salt 
accumulation on irrigation scheme level. Due to the large variations in how different crops 
respond to saline conditions, the classifications tended to produce many false positives. The 
accuracy levels also varied significantly according to training set size, which is problematic 
as the routine collection of large sets of soil samples is prohibitively expensive. 
 
The final set of experiments investigated the efficacy of elevation data and its derivatives for 
modelling salt accumulation at irrigation scheme level. Vaalharts and Breede River were 
again chosen as the study areas and the SRTM DEM, SUDEM and DSMs derived from 
high-resolution stereoscopic aerial photography were used as the primary data sources. 
Numerous derivatives were produced from the primary datasets and several terrain analysis 
methods were assessed. Two rule sets based on regression modelling and CART, as well 
as five supervised classifiers (NN, ML, SVM, DT and RF) were considered. The kNN 
supervised classifier was the most successful in differentiating salt-affected from unaffected 
soils in both study areas, but it was concluded that the use of elevation data and its 
derivatives to identify salt-affected soils is ineffective and unreliable. Most of the methods 
evaluated either underestimated or overestimated salt-accumulation or achieved low 
accuracies, especially for Breede River. The low spatial resolution and quality of the DEMs 
might have had a negative impact on the results and other elevation data sources, such as 
LiDAR, should be explored in future research. However, such data may be prohibitively 
expensive to acquire for large irrigation schemes. 
 
Many experiments were carried out during the course of this research project. This included 
the use of CART on all possible input data (satellite imagery, terrain derivatives, soil data), 
multi-temporal vegetation response monitoring, and object-based terrain analyses using 



viii 
 

high-resolution (2 m) DSMs. Not all of these experiments were successful, but they provided 
a better understanding of the complexities involved in monitoring salt accumulation and 
waterlogging in irrigation schemes. It became clear that image texture (heterogeneity) is an 
important feature for identifying areas that are likely salt-affected or waterlogged. The newly-
developed within-field anomaly detection (WFAD) method is based on the principle that 
heterogeneous areas are in many cases indicative of waterlogging or salt accumulation. 
Affected areas often stand out as being spectrally different compared to the rest of a field, 
either because of a reduction in biomass due to saline or saturated conditions (in cultivated 
fields) or due to specific species of vegetation occurring in fallow fields. Although such 
“anomalies” can be easily identified using visual interpretation of imagery, they are not easily 
extracted from remotely-sensed data. Traditional remote sensing techniques involve 
classifying individual pixels (cells) without taking topology (relationships between spatial 
entities) into consideration. The WFAD method was implemented and evaluated in all of the 
study areas. The results showed that, compared to the other methods evaluated, WFAD 
produced the most promising results for monitoring and quantification purposes. WFAD not 
only produced accurate (74.9% on average) results, but is also the most cost-effective 
technique as it can be applied on both vegetated and non-vegetated fields; requires no 
empirical data; makes use of freely-available imagery (SPOT-5); and has the potential to be 
fully automated. 
 
The WFAD method was used to quantify the extent of affected areas on nine irrigation 
schemes. On average, 3.3% of the areas considered were found to be affected. This 
estimate was adjusted to 6.27% by adding abandoned fields. Although WFAD is very 
successful in identifying salt-affected and waterlogged areas, one of its main limitations is 
that it cannot discriminate such areas from anomalies that are caused by other factors (e.g. 
drought, flooding, soil compaction, disease, inadequate fertilizer application). Based on the 
field surveys conducted in nine irrigation schemes, waterlogging and salt accumulation were 
the cause in 77.8% of cases. The WFAD method should consequently be regarded as a 
scoping mechanism that can direct attention to areas that are likely affected by salt 
accumulation and/or waterlogging. Such areas should preferably be visited to investigate the 
likely causes. 
 
If the figure of 6.27% of areas affected is applied to the 1.5 million hectares under irrigation 
in South Africa, the area that is salt-affected and waterlogged on South African irrigation 
schemes is 94 050 ha. The areas affected by waterlogged and salt-affected soils on the 
different irrigation schemes studied were: Vaalharts 849 ha (3.1%), Loskop 2 345 ha (5.7%), 
Tugela 2103 ha (7.4%), Limpopo River 564 ha (6.4%),  Makhathini 361 ha (7.8%), Olifants 
River 665 ha (5.6%), , Breede River 2215 ha (7.3%), Sundays River 741 ha (3.9%) and 
Douglas (Vaal and Orange Rivers) 2124 ha (9.1%). 
 
CONCLUSIONS 
In this project various data sources and methodologies for the identification of areas prone to 
salt accumulation and waterlogging were investigated. This includes land cover mapping, 
bare soil analysis (i.e. direct approach), multi-temporal crop condition monitoring (i.e. indirect 
approach), terrain analysis, within-field anomaly detection, and machine learning. 
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The occurrence of salt accumulation and waterlogging in generally small patches in South 
African irrigation schemes poses unique challenges and will require a robust modelling 
strategy. 
 
It is important to note that no model based on remotely-sensed data will ever replace in-field 
monitoring. The purpose of this study was to develop a method to detect potential areas of 
salt accumulation or waterlogging so that in-field monitoring can be performed. 
 
Various factors have to be considered when selecting a specific source of satellite imagery 
for a classification project. The spatial, spectral and temporal resolutions are important 
factors, as is cost. 
 
Despite the efforts of the science community, there is currently no robust model for 
accurately and consistently extracting soil water content or soil salinity from synthetic 
aperture radar (SAR) imagery. This science is very much still in an experimental phase, and 
most authors agree that great strides still need to be made before such an application can 
be operational. 

The direct and indirect remote sensing approaches show the most promise as they can be 
applied to high resolution, multispectral satellite imagery. Statistical methods such as 
regression, partial least squares regression and multi-regression have been shown to be 
successful in a number of studies and should be investigated further. Surprisingly little 
attention has been given to the use of modern image classification and machine learning 
algorithms (e.g. classification and regression trees, decision trees, support vector machines 
and random forest) for mapping waterlogged and salt-affected areas. Such algorithms are 
very effective for this purpose  – as demonstrated in this research – but they require 
sufficient in situ (soil samples) data that is often not available or expensive to collect. 
 
From the review of the literature it is clear that there is a large body of work that is focussed 
on finding practical solutions for monitoring waterlogging and salt accumulation. However, 
none of the methods stood out as being the ultimate solution, with each having some kind of 
limitation for operational application. It is consequently likely that the solution lies not in one 
technique but in a combination of methods. However, to find the best combination of 
methods for monitoring waterlogging and salt accumulation, each of the most promising 
techniques must be evaluated in a South African context to better understand their individual 
strengths and limitations. It is critical that the uncertainties in the outputs of the different 
techniques must be taken into consideration before they are incorporated into a modelling 
strategy. 
 
Due to the costs involved in soil sampling and analysis, the only viable option for monitoring 
waterlogging and salt accumulation over large areas (i.e. irrigation scheme level) is to use 
existing soil maps (where available), terrain data and satellite imagery to identify areas 
where these processes are likely (or unlikely) to occur. By combining various sources of data 
and a priori knowledge, large areas can be eliminated from further consideration.  
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RECOMMENDATIONS FOR FUTURE RESEARCH 

• South Africa must adopt standardized monitoring, assessments, modelling and 
mapping methodologies/procedures to improve the quantification and qualification of 
salt-affected and waterlogged soils on a scheme and national scale. 

• Viable permanent irrigated agriculture requires periodic information on salts and 
water tables. A network of representative monitoring points (benchmark soil sites) 
should therefore be established on irrigation schemes in conjunction with remote 
sensing. 

• Assessment and monitoring of salt-affected soils with remote sensing should include 
associated salts/metals, e.g. magnesium, iron, boron, manganese, chloride, etc. 

• Identify areas on existing irrigation schemes that were abandoned due to 
waterlogging and salt-affected soils using historical aerial photography and satellite 
images. Because the WFAD method only considers cultivated or fallow fields, it does 
not incorporate fields that have been abandoned due to salt accumulation or 
waterlogging. This exclusion can have a significant effect on the overall quantification 
of affected areas. 
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1 INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

There is a need for a suitable national waterlogging and salt accumulation monitoring and 
evaluation system, to monitor the impact of agriculture, mining, urban and industrial activities 
on South African irrigation schemes. In its absence, various ad hoc pieces of data, 
information, norms and standards that are constantly being collected will remain pieces of a 
large puzzle that is extremely difficult to incorporate into a holistic picture. 
 
No reliable secondary salinity, sodicity and waterlogging information is obtainable for South 
Africa, nor are there monitoring programmes to track the waterlogging and salt-affected 
status of soils on irrigation schemes. Reliable waterlogging, salinity and sodicity information 
is required for various agricultural and environmental studies on a provincial and national 
scale. Examples include the FAO’s Terrastat, Aquastat and LADA programmes, International 
Commission on Irrigation and Drainage (ICID) and South Africa’s State of Environment 
reporting. 
 
Theoretically all land could be irrigated provided the necessary financial resources and 
management skills, but the consequences of incorrect management or incorrect selection of 
irrigation areas can be disastrous, causing irrigation areas to become waterlogged and/or 
salt-affected, thus rendering them unfit for continued sustainable irrigation.  There is a lack of 
comprehensive and reliable sources of data from which trends in constituents depicting the 
long-term sustainability of irrigated agriculture could be deduced.  It is evident from 
information available that the degree of degradation varies considerably between irrigation 
schemes and also over time within the same irrigation scheme in South Africa.  An increase 
in salinity and sodicity normally coincide with hydrologically dry years with below-average 
runoff, and an increase in waterlogging during hydrologically wet years.  A review of about 3 
000 reports at the Agricultural Research Council – Institute for Soil, Climate and Water 
(ARC-ISCW) revealed that soils free of limitations for sustainable irrigation are limited in 
extent in South Africa. However, it appears that severe waterlogging, salinity and sodicity 
affects only 8-18% of the area under regular irrigation in the country Backeberg et al. (1996).  
With the elevated soil salinity and sodicity levels expected to rise in future, it will become 
increasingly necessary to monitor the situation on irrigation schemes and within irrigated 
lands in order to identify salt accumulation and waterlogging trends and associated potential 
problems timeously for remedial action to be taken. 
 
Conventionally, soil salinity has been measured by collecting in situ soil samples and 
analysing those samples in the laboratory to determine their solute concentrations or 
electrical conductivity. However, these methods are time-consuming and costly since dense 
sampling is required to adequately characterize the spatial variability of an area.  The 
detection of soil salinity and waterlogging are mostly time consuming, but remote sensing 
data and techniques offer more efficiently and economically rapid tools and techniques for 
monitoring and mapping soil salinity and waterlogging.  
 
Remote sensing can contribute a great deal to monitoring salt accumulation and 
waterlogging because of its ability to capture information at both spatial and temporal scales 
(Abbas et al., 2013). Bastiaanssen et al. (2000) states that remote sensing has the potential 
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to predict soil salinity, perform diagnosis and assess its impact. Compared to regular field 
surveys this ability can save labour, time and effort (Eldiery et al., 2005). Considering that 
there are no current programmes in place to monitor salt-affected areas in South Africa, 
remote sensing provides a promising alternative to regular field-based surveys. 
 

1.2 Aims 

AIM 1 
To develop and test a methodological approach for identification, classification and 
monitoring the extent and degree of waterlogging and salt accumulation at farm, irrigation 
scheme and national level. 
AIM 2 
To develop guidelines and make recommendations for application of the methodology to 
monitor the extent and degree of waterlogging and salt accumulation on irrigation schemes 
at a national level. 
AIM 3 
To make soil maps available in different digital formats for at least the ten largest irrigation 
schemes in South Africa and establish links to the AGIS website of the National Department 
of Agriculture, Forestry and Fisheries. 
AIM 4 
To quantify the current level of waterlogging and salt accumulation and monitor changes 
over time at the appropriate scale on selected schemes. 
AIM 5 
To capture temporal and spatial data in a user-friendly geographical information database. 
 

1.3 Structure of the report 

The introduction and objectives are presented in Chapter 1. A wide-ranging literature study, 
which includes review papers on South African irrigation schemes and definitions – because 
no universally accepted definitions exist for the various salt and waterlogging parameters – 
is provided in Chapter 2. The nine different study areas are detailed in Chapter 3. The 
reference data collection procedures and methodological framework are given in Chapter 4. 
The different remote sensing approaches (direct and indirect) and terrain analyses at 
irrigation scheme level are described in Chapter 5. Chapter 6 provides a detailed overview of 
within-field anomaly detection method, with an accuracy assessment and quantification of 
affected areas, whilst Chapter 7 discusses the role of Geographic Information Systems. 
Chapter 8 comprises a summary and conclusions.  Recommendations and areas for future 
research are given in Chapter 9. 
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2 LITERATURE REVIEW 

2.1 Salt accumulation 

There are many local names and terms for the different kinds of salt-affected soils in the 
world and it is difficult to find correlations, if any, between them. 
 
The term salinity has become so ambiguous that its usefulness at a scientific level has 
become seriously endangered. There is no universally accepted definition for saline soils 
because the definition depends on the discipline and the type of measurement (Fitzpatrick, 
2002). Soil scientists and geo-hydrologists, for example, distinguish between primary and 
secondary salinity; plant scientists use the distribution of salt-tolerant plant species and/or 
the approximate range of electrical conductivity (EC) levels to distinguish slightly, moderately 
or severely affected soils and/or plants; and scientists in other disciplines may use 
measurements of pH (>9), presence of sodium carbonate and high EC to distinguish 
between alkaline saline soils; while others use pH (<3.5) and the presence of sulphur and 
high EC to distinguish acid sulphate soils (Fitzpatrick, 2002). 
 
Hall & Du Plessis (1984) use the word mineralization – a term they prefer to salinization – 
and sometimes mineral content for salinity. They defined mineralization as the progressive 
accumulation of dissolved solids by surface water and groundwater in passing through the 
land phase of the hydrologic cycle. 
 
The traditional division between saline and non-saline soils in soil science has been set at a 
saturated electrical conductivity (ECe) of 400 mS/m. According to Bresler et al. (1982), the 
terminology committee of the Soil Science Society of America recommended that this limit 
be decreased to 200 mS/m because of the large number of crops and ornamentals which 
can be affected by salinity even in the saturated paste EC range of 200 to 400 mS/m. This 
recommendation was not accepted and they are still using the 400 mS/m value (SSSA, 
2007). 
 
An excessive accumulation of salts in the soil profile causes a decline in agricultural 
productivity. Soil salinity is the term used to designate a condition in which the soluble salt 
content of a soil reaches a level harmful to crops (Childs & Hanks, 1975). Soil salinity affects 
plants directly through the reduced osmotic potential of the soil solution and the toxicity of 
specific ions such as chloride and sodium. If the salts are primarily sodic salts, their 
accumulation increases the concentration of sodium ions in the soil’s exchange complex, 
which in turn affects soil properties and behaviour. Thus, salinity can also have indirect 
effects on plant growth through deleterious modification of such soil properties as swelling, 
porosity, water retention and permeability (Hillel, 1998). 
 
The salt tolerance thresholds for crops vary between species. Maas & Hoffman (1977) 
summarized previous published work and carried out a comprehensive review of crop salt 
tolerance data, which was subsequently updated by Maas (1990). Salt tolerance data has 
inherent uncertainties concerning plant responses to spatial and temporal variations in root 
zone salinity (Hopmans & Bristow, 2002; Meiri & Plaut, 1985). Different kinds of plants can 
be expected to react differently to total salt concentration and to the composition of the soil 
solution under different soil-water regimes and climatic conditions. According to Tanji (1990), 
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with the advent of new methods of irrigation and water management, the time has come for 
re-examination of salinity criteria, which ought to be based on dynamic (rather than static) 
concepts related to the movement as well as the state of water and salts in the soil. 
 
The historical criterion to distinguish between sodic and non-sodic conditions has been an 
exchangeable sodium percentage (ESP) equal to 15% or more of the soil cation exchange 
capacity (CEC). Because of numerous potential errors in traditional CEC and ESP 
determinations, however, there are many situations where measured ESP values may be 
seriously in error. As a result, and to lessen the time and expense of diagnosis, some 
practitioners use the sodium adsorption ratio of the saturation extract for sodic soil 
characterization. Although exchangeable sodium percentage and sodium adsorption ratio 
are not exactly equal numerically, a ratio of 15 has been maintained for the sake of 
convenience as the threshold between sodic and non-sodic (Bresler et al., 1982). However, 
this assumption is seriously in error for South African conditions as Nell (1991) established a 
2:1 relationship between ESP and sodium adsorption ratio for most South African conditions. 
Therefore, the problem of defining what characteristics a sodic soil should possess has not 
yet been resolved satisfactorily to give a universally accepted definition. In some literature 
(Agassi et al., 1985), the term sodic has even been applied to soils with low but no fixed 
ESP. In view of the continuous effect of sodium, from low to high levels, on soil behaviour, 
the establishment of a critical level of ESP or sodium adsorption ratio is very arbitrary and 
has caused considerable confusion. According to Sumner (1993), it would appear that the 
terms sodic and sodicity should become obsolete as their definition has become imprecise. 
Rather, soils should be described in terms of behaviour. 
 
The definition of alkalinity was previously also problematic because it was considered 
synonymous with sodicity. Alkalinity is mostly expressed as a soil pH value greater than 7. 
For a soil to have a pH >7 it must be calcareous (pH>8.3), dolomitic or sodic. The basic 
chemical definition of alkalinity is the sum of the bases that can be titrated with strong acid. 
 
Under irrigation, saline soils are formed primarily when high salinity water is used for 
irrigation. Soil salinity is determined by interaction between total dissolved solids (TDS) of 
irrigation water and leaching. Saline soils can, however, also be formed when salts from an 
elevated water table (which frequently form under irrigated land as a result of over-irrigation) 
are concentrated in the soil profile by surface evaporation. 
 
At the very first South African Irrigation Congress held in 1909, much concern was 
expressed at the extent of salt-affected soils and the sediment content of water supplies 
(Kanthach, 1909). At the National Irrigation Symposium 82 years later, Scotney & Van der 
Merwe (1991) had the same concerns and said that the long-term viability of soil and water 
resources is in jeopardy. Major threats to these resources result from, among others, salinity, 
sodicity and waterlogging. 
 
No data is available on a systematic survey or the monitoring of salt-affected soils on 
national scale for South African irrigation schemes. Backeberg et al. (1996) estimated that 
approximately 18% of the irrigated area in South Africa experiences some degree of 
detrimental effects caused by waterlogging and/or salt accumulation (Table 2.1). 
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Table 2.1  Estimated percentage of waterlogged or salt-affected irrigated land in the different 
provinces (Backeberg et al., 1996) 

Province 
Waterlogged or salt-affected 

Severely % Moderately % Total % 
Eastern Cape 6 13 19 
Free State 6 18 24 
Gauteng 5 15 20 
KwaZulu-Natal 5 9 14 
Mpumalanga 1 5 6 
Northern Cape 4 20 24 
Limpopo 12 14 26 
North West 3 5 8 
Western Cape 9 15 24 

 
Ghassemi et al. (1995) citing Van Pletsen (1989) stated that a survey of five major irrigation 
schemes indicated that, on average, 28% of irrigated land shows signs of either 
waterlogging or harmful high salt contents or both. Salt-affected and waterlogged figures of 
18-28% for South Africa seem unrealistic if compared to countries such as India, Pakistan, 
Iran and Egypt with known salt-affected and waterlogging problems. A figure of 10% or even 
less seems more realistic (Table 2.1 and Table 2.2). 
 

Table 2.2  Global estimate of secondary salinization in some of the world’s irrigated lands 
(Ghassemi et al., 1995) 

 
According to Görgens & Foster (1989), many of the serious salinity problems experienced in 
South Africa to date have occurred during, or as a result of, extreme climatic events. For 
example, the rapid rise in the salinity of water in the dams of the middle and lower Vaal 
catchment as well as certain dams in the Eastern Cape Province was directly related to the 
1979-84 drought, and the rise in the salinity of Lake Mentz (Darlington Dam) during 1975-78 
was a direct result of successively heavy seasonal rains in the Sundays River catchment. It 
should be noted that the salinization impact of extreme events is often more pronounced in 
systems where water utilization and human activity are the greatest (Ghassemi et al., 1995). 
In essence, an increase in salinity during drought conditions is primarily a result of the 

Country Irrigated area 
(Mha) 

Salt-affected land in 
irrigated area (Mha) 

Share of salt-affected to 
irrigated land (%) 

China 44.83 6.7 15.0 
India 42.10 7.0 16.6 
USA 18.10 4.2 23.0 
Pakistan 16.08 4.2 26.2 
Iran 5.74 1.7 30.0 
Thailand 4.00 0.4 10.0 
Egypt 2.69 0.9 33.0 
Australia 1.83 0.2 8.7 
Argentina 1.72 0.6 33.7 
South Africa 1.13 0.1 8.9 
World 227.11 45.4 20.0 
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shortage of dilution water which under normal circumstances is generally available to 
maintain salinities at non-problem levels. If dilution water shortages occur while the 
discharge of saline effluent remains relatively constant, then salinity levels will increase. 
 
Stream salinity caused by irrigation return flow occurs in several river systems in South 
Africa (Volschenk et al., 2005; Rose, 2002; Du Preez et al., 2000; Rossouw, 1997; Herold & 
Bailey, 1996; Moolman et al., 1983; Cass, 1980; Hall et al., 1980; Hall & Görgens, 1978). 
 

2.2 Waterlogging 

Waterlogging is the lowering in land productivity through the rise in groundwater close to the 
soil surface. Also included under this heading is the severe form, termed ponding, where the 
water table rises above the surface. Waterlogging is linked with secondary salt-affected 
soils, both being brought about by incorrect irrigation management. Waterlogging is 
characterized by too much water in the root zone and limits the oxygen availability. This 
causes anaerobic conditions and symptoms such as stunting, discolouration of foliage, 
defoliation, wilting and death in some cases (McGhie & Ryan, 2005). Van der Walt & Van 
Rooyen (1995) definition of waterlogging is: “Soil or land saturated with water, it may result 
from excessive rain, irrigation or seepage, coupled with inadequate drainage, and is 
detrimental to the growth of most crop plants”. 
 
A good irrigation management plan strives to apply sufficient water to meet crop water 
demand plus the leaching requirement without wastage. Salinity problems encountered in 
irrigated agriculture are very frequently associated with an uncontrolled water table, within 1-
2 m of the ground surface (FAO, 1985, 2002). 
 
Over-irrigation and leaking water supply canals that result in water seepage which promote 
water table formation and subsequent salinization, occur in many irrigation projects 
(Rhoades & Loveday, 1990). The leakage from canals and pipelines of the older irrigation 
schemes in South Africa often exceeds planning norms. The design norm for concrete-lined 
canal systems in South Africa is 1.9-l/s.1000 m-2 of wetted lining, compared to the design 
norm of 0.35 l/s.1000 m-2 as quoted by overseas authors. Research in South Africa has 
indicated losses varying from 12-27% from some concrete-lined canals and an average 
allowance of 25% for earthen canals. Leakage losses in excess of 30% out of an earthen 
canal have been measured in one case (Backeberg et al., 1996). 
 
Ninham Shand (1985) estimated that there were some 148 000 ha of waterlogged irrigated 
land in South Africa in 1975 and some 37 000 ha in 1980. The large waterlogged area in 
1975 is attributed to abnormally high rainfall during 1974-76. 
 
Table 2.3 provides a summary of an investigation carried out by Streutker (1982) and quoted 
by Ninham Shand (1985) and Ghassemi et al. (1995), concerning the occurrence of 
waterlogging in a number of irrigation schemes. It shows that of 135 868 ha of irrigated land 
in the surveyed schemes, some 11 946 ha or 9% of irrigated land were waterlogged. 
However, on a national level the percentage of waterlogged areas would be much lower 
because it seems that the most problematic schemes were selected for the survey. 
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Table 2.3  Occurrence of waterlogging in a number of South African irrigation schemes#.  
Irrigation scheme Irrigated area 

(ha) 
Waterlogged 

area 
(ha) 

Waterlogged 
(%) 

Year 

Oudtshoorn 1 900 50 26.31 1982 
Klaasvoogds 545 405 74.31 1982 
Hex River 5 000 40 0.80 1982 
Elgin 15 000 0 0 1982 
Olifants River (Western Cape) 12 000 200 16.67 1982 
Golden Valley 2 523 1 800 71.34 1980 
Douglas 1 200 512 48.61 1978 
Vaalharts (North Canal) 25 000 1 500 6.00 1977 
Riet River (B-Farms) 2 600 2 000 7.69 1974 
Hartbeespoort 22 000 154 0.70 1982 
Marico 4 600 135 2.93 1980 
Loskop 25 200 1 250 4.96 1980 
Pongola 9 200 2 300 25.00 1978 
Sterk River 2 500 600 24.00 1980 
Blyde River 6 600 1 000 15.15 1979 
Total 135 868 11 946 8.79  
#Adapted from Streutker (1982) 

Drainage of water from the soil profile is necessary to prevent excessive soil water 
conditions (waterlogging) in the root zone of crops, to control salinity and to ensure 
trafficability of fields for execution of farming activities. 
 
On some small-scale farming projects, waterlogging is common. Irrigation projects in South 
Africa for small-scale farming have been imposed, conceived and rehabilitated essentially on 
the basis of civil engineering and crop technology criteria, and without adequate knowledge 
of soil, environmental and socio-economic parameters. Nell (1997) found in the Nkomazi 
irrigation scheme for small-scale farmers that waterlogging, salinity and sodicity has reduced 
the agricultural productivity to such an extent, after just one year of irrigation, that 
reclamation of these soils has become essential for sustainable agriculture. Nell (2007) 
found that only 41% of the area investigated on the 30 irrigation schemes for small-scale 
farmers that form part of the RESIS project in the Limpopo Province can be regarded as 
irrigable, mainly because of very shallow effective depth and signs of wetness and 
waterlogging. This is an alarming percentage because the surveys were done on existing 
irrigation schemes. 
 

2.3 Ground-based methods for waterlogging and salt accumulation 
monitoring  

The aims of salt accumulation and waterlogging mapping and monitoring are to know 
temporal subtle salt accumulation and waterlogging differences in the landscape and to 
develop salt and waterlogging zones to help design management plans for sustainable use 
of soil resources.  In agriculture regions, salt accumulation and waterlogging varies widely 
vertically, horizontally, and temporally, depending on such conditions as variation in soil 
texture, plant growth, quality of irrigation water, hydraulic conductivity and irrigation and 
drainage systems in place. 
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Waterlogging and salt accumulation are difficult to map and monitor at field scales and larger 
spatial extents because of its spatial and temporal heterogeneity.  The optimum strategy for 
mapping waterlogged salt-affected soil depends on the scale and resources available.  
Users need to make best use of existing information and then integrate a range of the 
available mapping methods to that they best address their specific problem (Spies & 
Woodgate, 2005). 
 
Technological advances in recent years have revolutionized, soil salinity assessment.  
These revolutions have been in RS/GIS and development of a number of electromagnetic 
induction (EMI) instruments for providing reasonable in situ estimates of salinity (Corwin & 
Rhoades, 1982; Slavich, 1990).  The apparent electrical conductivity (ECa) measured by EMI 
can be rapidly measured on a second-by-second basis; therefore, data population is 
relatively large, and landscape or farming land can be covered more comprehensively in 
short time than by conventional survey tools and methods.   
 
A limitation in the use of conventional soil sampling/laboratory analysis methodology for 
characterizing the spatial variability of soil properties is the high labour requirement involved 
and high laboratory cost. Typically for farming applications, a grid of 100 by 100 metres is 
used (one sample per ha), which often is not intensive enough. According to Rhoades et al. 
(1999) the proper grid spacing depends on the variability of the property of interest, which, of 
course, is unknown at the outset. Thus, the proper locations to collect the samples and the 
number of samples required cannot easily be determined by the conventional approach. As 
a result, too few samples are frequently taken to properly characterize the variability that 
often exists in fields for prescription farming purposes. No cost effective, scientific approach 
for determining grid size has been developed using such grid-point methods. Thus, directed 
sampling and remote sensing techniques are being sought and advocated, in order to site 
optimum soil-test locations and to minimize sampling needs. But traditional methods of 
directed sampling and remote sensing often do not provide enough, or sufficiently 
quantitative, information about the various soil properties described above for the needs of 
prescription farming. 
 
According to Rhoades et al. (1999) there are three primary cost advantages associated with 
the mobilization of the various salinity survey instruments. The first advantage is the speed 
in which the survey process can be completed.  Mechanized systems can almost always be 
used to survey more land than hand held systems simply because of their increased travel 
speed. Second, mechanized systems can be used to collect significantly more survey data. 
Indeed, many of the commercial systems currently available can collect survey data in a 
nearly continuous fashion. And third, when hand held units are mounted or adapted into 
mobilized platforms, they tend to last longer. Rhoades et al. (1999) also indicate 
measurements of ECa and of geospatial position can be obtained rapidly with geophysical 
sensors and used to determine optimum soil-test sites.  Additionally, ECa can be used to 
infer a number of soil properties, besides salinity, that are useful to prescription farming 
purposes and thus to create much more detailed and affordable soil-property maps than 
those obtained by the use of conventional soil/grid-point sampling methods (Kachanoski et 
al., 1988; Lesch et al., 1992; Doolittle et al., 1994; Jayne, 1996). 
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Primary saline, sodic, and calcareous soils were mapped or described for South Africa in the 
past by Barnard et al. (2002), Ellis (1988), MacVicar (1972), Mountain (1967), Nell & 
Henning (2003), Nell (2010), Samadi et al. (1998), and Van der Merwe (1942). 
 

2.4 Remote sensing 
Remote sensing is the practice of deriving information about the Earth’s land and water 
surfaces using images acquired from an overhead perspective, by employing 
electromagnetic radiation in one or more regions of the electromagnetic spectrum, reflected 
or emitted from the Earth’s surface (Campbell, 2007). A distinction is made between the two 
main types of remotely-sensed data, namely those derived from passive and active sensors. 
 
Passive sensors mainly operate in the visible and the infrared regions of the electromagnetic 
spectrum. The visible spectrum contains those wavelengths of radiation that can be 
perceived by human vision, i.e. from violet to red light. Wavelengths longer than those of the 
visible spectrum (but shorter than those of microwave radiation) are termed infrared, and this 
spectrum can be subdivided into near-, mid- and far-infrared. The primary source of near- 
and mid-infrared radiation is the sun and they are reflected by the Earth’s surface like visible 
light. Hence, the near- and mid-infrared wavebands, together with the visible bands, are 
sometimes collectively known as the optical bands. Far-infrared radiation is emitted by the 
Earth’s surface in the form of heat, or thermal energy, and is sometimes known as thermal 
infrared radiation. Thermal infrared bands are generally less common in VIR sensors than 
visible and near- and mid-infrared bands (Campbell, 2002; Mather, 2004). 
 
The longest wavelengths commonly used in remote sensing fall within the microwave 
spectrum, in which solar irradiance is negligible although the Earth itself emits some 
microwave energy. However, this emitted energy is rarely measured in remote sensing as 
most microwave sensors are active sensors. Active sensors use their own energy to 
illuminate target objects and then measure the portion of energy reflected back to them, 
whereas passive sensors measure energy generated by an external source (usually the sun) 
(Campbell, 2002; Mather, 2004). Active microwave sensors are RADAR (radio detection and 
ranging) sensors. An imaging RADAR system consists of the following basic components: a 
transmitter, a receiver, an antenna array and a recorder. The transmitter transmits repetitive 
microwave pulses at a specific frequency through the antenna array, which controls the 
propagation of the electromagnetic wave through devices known as waveguides. Usually, 
the same antenna then receives the echo of the signal. This is then accepted by the 
receiver, which filters and amplifies it as required, and passes it on to the recorder 
(Campbell, 2002). 
 
2.4.1 Principles of EO using optical remote sensing 

In optical remote sensing the spectral characteristics of objects on the Earth’s surface are 
measured using a sensor and analysed to automatically or semi-automatically recognize 
objects. The spectral characteristics, or signatures, contain unique patterns of absorption 
and reflection at specific wavelengths. For instance, Figure 2.1 shows that clear water 
moderately reflects the blue, green and red wavelengths and strongly absorbs near-infrared 
(NIR) and longer wavelengths (Mather, 2004). 
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The spectral properties of most soil types show a consistent increase in reflectivity as 
wavelength increases in the visible and NIR portions of the spectrum (Jensen, 2007). 
Increasing soil moisture will result in a strong reduction in reflectance in all wavelengths, also 
the NIR region (Jensen, 2007). 
 
In actively photosynthesizing green leaves, reflection in the green wavelengths dominates 
with a strong absorption in the blue and red wavelengths (Buschmann et al., 2000). The 
overall reflectance from plant leaves increases sharply between 0.7 m and 1.2 m. These 
increases in the NIR wavelengths are unique to plants and are caused by the cell structure. 
As plant cover decreases and more soil is detected through the vegetation, the spectral 
curve changes to a typical soil spectral curve. This provides the basis for estimations of 
cover density from image data (Huete et al., 1985). 
 
The spectral profiles of water, soil and vegetation form the basis of many EO techniques. For 
instance, soils and vegetation are effectively discriminated by studying the relationship 
between the reflectance of objects in the red and NIR regions of the spectrum, while water’s 
low reflection in the NIR band is the basis of its discrimination from both soil and vegetation. 
These relationships are the focus of image classification procedures. 
 

 
Figure 2.1  Spectral profiles of water, soil and vegetation in relation to the visible, near-
infrared (NIR) and intermediate infrared regions of the electromagnetic spectrum (with 
Landsat 7 bands depicted in grey for reference) (SEOS 2014). 
 

2.4.2 Image classification approaches 

2.4.2.1 Unsupervised classification 

Unsupervised classification is defined by two distinct steps. The first step is the automatic 
classification of pixels into a user-specified number of image classes according to their 
spectral properties. The second step is the manual labelling of the classes, usually depicted 
in images as areas of homogeneity, according to real-world information (Campbell, 2007). 
Although the automated nature of the spectral delineation renders this classification method 
less user-intensive than others, it is not truly unsupervised. As Mather (2004) puts it, 
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unsupervised classification is a useful exploratory tool, where repeated unsupervised area 
delineations with different parameters allow a user to “get a feel” for which real-world 
(informational) classes are spectrally distinct and which are spectrally similar. This 
understanding of image features can inform the construction of the set of informational 
classes to be used in the classification, rendering unsupervised classification extremely 
useful where a priori information regarding the study area or the classification structure is 
unavailable or not pre-determined. Conversely, where a real-world class structure is already 
established it is rare that it will correspond with the automatically delineated spectral classes, 
resulting in the lowering of the accuracy of the outcome (Campbell, 2007). This is especially 
true for high-resolution imagery where features of interest commonly comprise multiple 
spectral classes shared by more than one information class. This is the primary 
disadvantage of unsupervised classification, and for this reason its use often has limited 
practical value. 
 

2.4.2.2 Supervised classification 

Supervised classification is defined by the application of a priori information of real-world 
informational classes to determine the identity of unknown image elements. Data for the 
real-world classes are acquired from an external source and entered into the classifier in the 
form of designated and labelled polygons termed “training areas” or “training data”. These 
training areas are used to generate statistical information regarding the spectral properties of 
each class, which is used by a classification algorithm to identify the class of unknown pixels 
(Mather, 2004; Campbell, 2007). Classification algorithms are widely varied, but are all 
designed to compare the features of each of the classes with those of an unknown pixel in 
geometric space, and assign a class based on the results of that comparison. The most 
widely used algorithm is the maximum likelihood (ML) classification algorithm, due to its 
ready accessibility, robustness, strong theoretical foundation, and high accuracies for a wide 
range of remote sensing applications (Bolstad & Lillisand, 1991; Brown de Colstoun et al., 
2003; Tseng et al., 2008). Because of these traits, a number of studies use ML as the 
benchmark with which to compare newly developed classification methods (Liu et al., 2002; 
Nangendo et al., 2007; Myburgh & Van Niekerk, 2013, 2014a). The ML classifier assumes 
the provided training data is normally distributed to determine the means and variances of 
the classes (Harris, 1987; Gibson & Power, 2000). The probabilities of each class are then 
determined from these estimates (Rees, 2001; Albert, 2002; Lillesand et al., 2004). Myburgh 
& Van Niekerk (2013) showed that the accuracy of the ML classifier decreases as the 
number of input features increases. 
 
Other popular classifiers used in remote sensing applications include k-nearest neighbour 
(kNN), support vector machines (SVM), decision trees (DT) and random forest (RF). The 
kNN algorithm is a simple distance-based classifier that labels each unknown pixel based on 
the labels of its k neighbouring known pixels (Cover & Hart, 1967; Gibson & Power, 2000). 
Although kNN is effective for classifying data that is not normally distributed, the method has 
the disadvantage of assuming equal importance (weight) of all features. Given that certain 
features may have higher priority for a particular target class, this assumption can produce 
incorrect class assignments and diffused clusters (Cunningham & Delany, 2007). To avoid 
ties (known pixels with identical spectral values) the value of k must be set to an odd value 
(Campbell, 2007). A value of k=1 is often used when a small set of training samples are 
available. 
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By focussing on the training samples (support vectors) close to the edge of the class 
descriptors, SVM determines the optimal separating hyperplane between classes that will 
minimize misclassifications (Novack et al., 2011). Kernels such as the radial basis function 
(RBF) are used to project samples non-linearly into a higher dimensional space so that the 
classifier can accommodate non-linear relationships (Li et al., 2010). SVM has been shown 
to be very effective for land cover mapping (Petropoulos et al., 2012; Lizarazo, 2008; Li et 
al., 2010). Myburgh & Van Niekerk (2013) demonstrated that SVM produces more accurate 
results than NN and ML using SPOT-5 imagery. See Vapnik (2000) and Huang et al. (2002) 
for a detailed explanation of the SVM algorithm. 
 
A decision tree (DT) is a non-parametric classifier that identifies relationships between a 
continuous response variable known as the dependent variable, and multiple, continuous 
variables known as the independent variables. DTs hierarchically split a dataset into 
increasingly homogeneous subsets known as nodes (Gomez et al., 2012; Lawrence & 
Wright, 2001; Pal & Mather, 2003; Punia et al., 2011; Novack et al. 2011). By recursively 
splitting the feature datasets, a leaf node with an associated class is assigned to the 
observation (Pal & Mather, 2003). According to Pal & Mather (2003) and Novack et al. 
(2011), because each node splits the feature space orthogonal to the axis of the selected 
feature, DT classifiers are less sensitive to errors in training data. Owing to DT’s ability to 
capture non-linear relationships, the input data does not have to be normally distributed 
(Gómez et al., 2012; Hladik & Alber, 2014). Each branch of the DT consists of divisions (or 
rules) of the most probable class and by applying these rules the most likely class will be 
assigned to a pixel (Lawrence & Wright, 2001). DT classifiers have been shown to be 
susceptible to model over-fitting – generating a model that is very effective in classifying the 
training data, but that is not transferable to other datasets. A pruning step involving cross-
validation is therefore required. Essentially the dataset is divided into subsets that are then 
validated against each other (Campbell, 2007; Lawrence & Wright, 2001). 
 
Several studies have demonstrated the utility of DTs for a range of remote sensing 
applications (Gomez et al., 2012; Hladik & Alber, 2014; Novack et al., 2011; Pal & Mather, 
2003; Punia et al., 2011). Pal & Mather (2003) showed that, although the performance of 
DTs increases with an increase in training dataset size (up to a certain point), they are also 
effective even with small training datasets. Novack et al. (2011) found that DTs produced 
more reliable and accurate results than SVM classifiers. 
 
Classification and regression tree (CART) (by Salford Systems) is an implementation of a DT 
classifier and provides an indication of the importance of each feature or variable provided 
as input. CART uses cross-validation to automatically prune the resulting DT and the user 
can interactively select from a list of the most appropriate trees based on a number of 
assessment measures. 
 
Random forest (RF) has been increasingly applied in remote sensing classifications (Duro et 
al., 2012; Gislason et al., 2006; Lawrence et al., 2006; Immitzer et al., 2012) and has also 
been shown to be superior to other classification techniques in a number of studies 
(Gislason et al., 2006; Lawrence et al., 2006; Rodriquez-Galiano et al., 2012a, 2012b; 
Novack et al., 2011). RF is considered an enhancement of DTs (Immitzer et al., 2012) as it 
generates multiple DTs by randomly selecting vector samples. A vote is cast by each of the 
generated DTs (Breiman, 2001; Bosch et al., 2007; Pal, 2005) and the most popular class is 
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assigned to the input variable (Breiman, 2001; Rodriquez-Galiano, 2012a). Because RF 
makes use of bagging (Breiman, 1996; and Rodriquez-Galiano, 2012a) to generate training 
sets, the classifier not very sensitivity to training set size (Rodriquez-Galiano, 2012a). 
 
RF requires two parameters to be set, namely the number of trees and the number of active 
(predictive) variables. Rodriquez-Galiano (2012a) showed stability in accuracy is achieved at 
100 trees. They also found that a small number of active variables is best as it reduces 
generalization error and correlations between trees. The number of trees and active 
variables has been shown by Duro et al. (2012) to have an insignificant impact on overall 
accuracy (OA). A more detailed discussion of the RF classifier can be found in Breiman 
(1996), Breiman (2001), Pal (2005) and Rodriquez-Galiano (2012a). 
 
Despite the advantages shown by supervised classification, it does have a number of 
drawbacks. The main disadvantage is the requirement for suitable training data. Poorly 
developed training areas result in weak classification accuracies, and thus training data must 
be meticulously prepared. This can be expensive in terms of both time and money, 
especially for projects of a wide extent that span multiple images (Albert, 2002). 
 

2.4.2.3 Rule-based (expert system) classification 

A rule-based (or expert system) classification applies a set of rules, defined based on a priori 
knowledge, on input data (e.g. images) to infer a classification result. The term “expert 
system” is used in many ways in remote sensing and it can represent a number of different 
techniques. Tsatsoulis (1993) defines the categories of expert systems as user-assistance 
systems, classifiers, low-level processing systems, data fusion systems and GIS 
applications. All pertain to different procedures in remote sensing analysis, but all are 
defined as “expert” in that they all employ artificial intelligence (AI) inference structures which 
use expert knowledge (Cohen & Shosheny, 2002). For this reason, expert systems are also 
known in the literature as knowledge-based systems. 
 
Various approaches have been proposed for the construction of rules. Rules are often 
created manually based on analyst experience, which is then essentially an expert system 
approach according to Chuvieco & Huete (2010). Supervised approaches where statistical 
procedures are used to infer the rules from training data are also commonly used. The 
statistical procedures used are known as learning algorithms (Friedl & Brodley, 1997; 
Chuvieco & Huete, 2010). Learning algorithms can be differentiated according to whether 
the set of algorithms used to estimate the splits at non-terminal nodes are uniform or 
heterogeneous and further, in the former case, whether a single variable is used for each 
split (univariate decision tree), or multiple variables (multivariate decision tree). If a 
heterogeneous set of algorithms is used, the tree is known as a hybrid decision tree. Such a 
tree can use various algorithms in different subtrees, potentially combining for example uni- 
or multivariate decision trees with parametric supervised classifiers (Friedl & Brodley, 1997). 
 
2.4.3 Geographical object-based image analysis 

Geographical object-based image analysis (GEOBIA) aims to delineate and classify 
meaningful spatial units in an integrated way (Lang, 2008). This can be contrasted with the 
more traditional pixel-based classification approaches which regard each pixel separately. It 
can be argued that a major limitation of pixel-based approaches is their disregarding of 
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spatial concepts (Blaschke et al., 2000). Lang (2008) states that in such approaches 
geographical features are characterized only by their spectral attributes or related statistical 
attributes such as texture. This statement arguably disregards alternative pixel-based 
classifiers which have the capacity to integrate ancillary data. Conversely, each image object 
in GEOBIA is aware of its context, neighbourhood and sub-objects. This means that 
geographical features can be characterized by their spatial, structural and hierarchical 
properties in addition to their spectral properties (Bock et al., 2005; Lang, 2008). 
Furthermore, objects offer additional spectral information that single pixels lack, including 
mean, median, minimum, maximum and variance values (Blaschke, 2010). Using objects as 
classification units rather than pixels reduces spectral variation within classes and removes 
the so-called “salt-and-pepper” effect (Liu & Xia, 2011). Also, the increased availability of fine 
spatial resolution satellite imagery has exposed further limitations of pixel-based techniques. 
For many applications the pixels of these images are significantly smaller than most objects 
of interest. In such cases it becomes more likely that most pixels will belong to the same 
classes as their neighbours (Blaschke et al., 2000; Lang, 2008). 
 
The building blocks of GEOBIA are termed segments (Blaschke, 2010). They are created 
through the process of segmentation which divides an image into non-overlapping objects 
(Chen et al., 2009). Before the advent of GEOBIA this process was seen as being separate 
from classification; images were first segmented and then classified. However, this workflow 
disregards the role of scale. Segmentation attempts to delineate objects which are both 
homogenous and semantically significant, but the scale at which an object obtains semantic 
significance is dependent on the class represented in that object. Often, objects created at 
different scales need to be considered within the same image in order to perform an effective 
classification. Therefore, GEOBIA is an iterative process rather than a linear one and it is 
inextricably linked to concepts of multi-scale analysis (Lang, 2008; Blaschke, 2010). 
 
The following sub-sections will first regard the various segmentation algorithms available and 
then briefly discuss how image classifiers can be applied in GEOBIA. 
 

2.4.3.1 Segmentation algorithms 

Segmenting an image into a given number of objects is a problem with a very large set of 
possible solutions (Blaschke et al., 2000) and various algorithms exist that attempt to arrive 
at effective segmentations. The following groups are distinguished: point-based, edge-based 
and region-based algorithms, as well as combined algorithms (Blaschke, 2010). 
 
Point-based approaches use global threshold values to identify groups of homogenous 
elements (pixels) throughout a scene. Segmentation is performed in two steps: firstly, the 
category in which each element falls relative to the given thresholds is identified, and 
secondly, all spatially connected elements falling in the same categories are grouped into 
regions. Threshold values can be static or dynamic (histogram-based). However, this 
approach is less suitable for remote sensing applications as spectral values for a given 
object will vary for different locations within a scene (Schiewe, 2002). 
 
In edge-based approaches, edges are regarded as object boundaries. They are identified 
through an edge-detection filter (e.g. a Sobel filter) and then transformed to object outlines 
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through a contour-generating algorithm. The main drawback of such approaches is their 
sensitivity to noise (Blaschke et al., 2000; Schiewe, 2002). 
 
Region-based approaches compare available elements (pixels or existing regions) with other 
elements in an image to determine whether they are similar. Two approaches are 
distinguished: region growing (bottom up) starts with seed pixels and grows into 
neighbouring elements, whereas region splitting (top down) starts with the entire scene and 
recursively splits it into smaller objects. Splitting algorithms can sometimes lead to over-
segmentation, as non-homogenous regions are split into a predetermined number of sub-
regions. However, some algorithms can remerge newly formed subregions if they are similar 
(Schiewe, 2002). One region-based approach that has been widely applied is the 
multiresolution segmentation (MRS) algorithm implemented in the widely-used GEOBIA 
software package eCognition (Trimble, 2011b). 
 
MRS is a pair-wise region-merging algorithm which can take pixels or existing objects as 
input. Input elements are merged into a set of objects in such a way that the average 
heterogeneity for the set is minimized, while the respective homogeneities of the objects are 
maximized. A mutual-best-fitting approach is used for merging. In this approach the 
neighbourhood of a given seed object is evaluated and its best-fitting neighbour is identified. 
The neighbourhood of that neighbour object is then evaluated and if the seed object is also 
the best-fitting neighbour of that object they are merged, if not that object becomes the new 
seed. A merge is only performed if its cost is less than a specified degree of fitting (this 
threshold is termed the scale factor in eCognition). The algorithm continues looping until no 
more merges are allowed. The degree of fitting is defined according to a spectral 
homogeneity measure and a shape homogeneity measure (Baatz & Schäpe, 2000; Trimble, 
2011a). eCognition allows one to specify homogeneity in terms of two parameters: shape 
and compactness. The shape criterion determines the degree of influence that object shape 
has compared to colour, while the compactness criterion determines the degree of influence 
that compactness has in comparison to smoothness. These values are specified as fractions 
of 1 (Trimble, 2011b). 
 

2.4.3.2 Classifiers in GEOBIA 

Several classifiers have been successfully applied to object-based classifications. Rule-
based expert systems feature prominently in the literature on GEOBIA. Lang (2008) lists 
rule-based classification as one of the two methodological pillars of GEOBIA, implying that 
no other classifier is true to the principles of the paradigm. As discussed in section 2.3.2.3, 
expert systems attempt to model the complex network of knowledge and experience that 
humans use to understand the information in an image, a network largely based on our 
perception of that image as a series of objects (Blaschke et al., 2000). Many of the wealth of 
additional features available in GEOBIA correspond to the features that enable us to 
understand such objects, making expert systems inherently suitable for GEOBIA. Several 
studies report good results when using expert systems in object-based classification. 
Whiteside & Ahmad (2005) found an object-based expert system to significantly outperform 
a pixel-based supervised classification in land cover classification, and Chen et al. (2009) 
found the same for an urban study using a combination of LIDAR and Quickbird data. Dragut 
& Blaschke (2006) showed that an object-based expert system can be successfully applied 
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to landform classification. Van der Sande et al. (2003) described an object-based expert 
system that performed well in a complex land cover classification for flood-risk assessment. 
 
Some limitations of rule-based expert systems have been noted. For instance, creating an 
effective rule base is complicated and takes a lot of time, and expert systems are adversely 
influenced by increasing dimensionality of data. For these reasons, various studies have 
applied either other alternative classification algorithms or traditional supervised algorithms 
to GEOBIA. Li et al. (2010) compared a SVM classifier to a nearest-neighbour supervised 
classifier for object-based classification and the SVM was found to be more accurate. 
Mallinis et al. (2008) compared a decision tree to a nearest-neighbour supervised 
classification and revealed the decision tree to produce a significant increase in accuracy. 
Straatsma & Baptist (2008) successfully used a linear discriminate analysis supervised 
classifier in an object-based classification for the purpose of floodplain roughness 
parameterization. Platt & Rapoza (2008), in a study evaluating different aspects of object-
based classification, found a maximum likelihood classifier to achieve a significantly higher 
user’s accuracy than a nearest-neighbour classifier, but a slightly lower producer’s accuracy. 
Yet, the nearest-neighbour classification could be significantly improved by integrating it with 
an expert system. Several studies have applied the principle where a nearest-neighbour (or 
other statistical) classification based on spectral values is combined with an expert system 
formalizing known spatial or structural relationships (Bock et al., 2005; Conchedda et al., 
2008). 
 
The GEOBIA paradigm can be applied to a large variety of data and has been shown to be 
effective in combining (fusing) disparate types (e.g. optical and radar) of data. The next 
section overviews synthetic aperture radar data. 
 
2.4.4 Synthetic aperture radar (SAR) 

Synthetic aperture radar (SAR) is a remote sensing technology that transmits microwave 
radiation towards the Earth’s surface and measures the amplitude and phase of the 
backscattered waves. In this respect it falls under “active” remote sensing. SAR sensors are 
side-looking, with commonly used sensors capable of producing radar waves at incidence 
angles of between 15° and 60°. 
 
SAR sensors are designed to transmit and receive vertically (V) and/or horizontally (H) 
polarized microwaves. This is normally denoted by a double-letter annotation, with the first 
letter indicating the polarization of the transmitted wave and the second letter indicating the 
polarization of the received wave. For example, a signal that was sent in a horizontal 
polarization but received in a vertical polarization would be denoted as HV. The four possible 
combination are then HH & VV (like-, or co-polarized) and HV & VH (cross-polarized). 
 
The microwave region of the electromagnetic spectrum is fairly broad, ranging from 0.3 to 
300 GHz. Generally, only frequencies between 1 and 12 GHz are used in microwave remote 
sensing and these relate to wavelengths between 2.5 and 30 cm through the formula: 
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 Equation 2.1 

where is the frequency; 

 is the speed of light; and 

 is wavelength. 

Similar to the assignment of wavelengths to bands in optical remote sensing (section 2.3.1), 
the microwave region can be broken up into different frequency/wavelength bands. 
Commonly used SAR bands together with their frequency and wavelength ranges are shown 
in Table 2.4. 
 
Table 2.4  Commonly used SAR bands including frequency and wavelength ranges 

Band Designator Frequency (GHz) Wavelength (cm) 
L band 1 to 2 30.0 to 15.0 
S band 2 to 4 15.0 to 7.5 
C band 4 to 8 7.5 to 3.8 
X band 8 to 12 3.8 to 2.5 

 
SAR imagery is constructed through complex processing employing the timing of raw radar 
echoes and signal reconstruction through the use of the Doppler effect (a process called 
“focusing”). The intensity of the returning echoes is called radar backscatter and each pixel 
in a SAR image therefore contains a backscatter value. Radar backscatter is computed 
using a metric known as the normalized radar cross-section to indicate the amount of 
backscattered energy per unit area, and is expressed by the scattering coefficient 0 or 
sigma-naught. Sigma-naught is usually expressed as decibels (dB). Typical values of 0 for 
natural surfaces range from +5 to -40 dB. These values would be very bright and very dark, 
respectively, on a SAR image. 
 
SAR backscatter ( 0) is influenced by a wide range of factors related to the sensor type, the 
imaging geometry and the ground conditions. The most influential factors are: 

• Surface roughness (as a function of wavelength) 
• Dielectric constant 
• Incidence angle 
• Wavelength 
• Polarization 
• Scattering mechanism 

 
As a general rule of thumb, SAR backscatter increases with increasing surface roughness 
and dielectric constant and decreases with increasing incidence angle. The interdependence 
of backscatter, surface roughness, incidence angle and wavelength is shown in Figure 2.2. 
 
The L-band response in Figure 2.2 indicates that higher backscatter is received from steeper 
incidence angles. It also shows that, at least for incidence angles larger than 10°, increases 
in surface roughness relate to increases in radar backscatter. Reading Figure 2.2 from left to 
right shows that the effect of incidence angle on backscatter becomes less pronounced as 
frequency increases (and wavelength decreases) from L-band to C-band to X-band. The 
sensitivity of radar backscatter to surface roughness also decreases. Comparing the X-band 
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with the L-band, it is clear that, generally, higher backscatter can be expected from images 
acquired with shorter wavelengths (X) than with longer wavelengths (L). 
 
The link between radar backscatter and soil water content is also well established and an 
example from Rombach & Mauser (1997) is shown in Figure 2.3. The graph shows the 
strong positive correlation between volumetric soil water content and the radar backscatter 
response. 
 

 
Figure 2.2  Relationship between backscatter, surface roughness, incidence angle and 
wavelength (adapted from Ulaby et al., 1986). 
 

 
Figure 2.3  Relationship between C-band backscatter and soil water content (from Rombach 
& Mauser, 1997). 
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2.4.4.1 The dielectric constant 

The dielectric constant ( ) (more correctly known as the complex permittivity) of a medium is 
a measure of how the medium responds to electromagnetic waves. It quantifies the 
resistance that is encountered when an electric field is formed in the material. Expressed as 
a complex value, the dielectric constant consists of a real ( ´) and an imaginary part ( ´´) 
and can be formulated as: 
 

 Equation 2.2 

where is the dielectric constant of an object; 

 is the real part and corresponds to the stored energy within the 
medium; and 

 is the imaginary part which is related to the dissipation of energy within 
the medium. 

 
The dielectric constant is a function of many variables, including frequency, temperature, 
volumetric soil water content, soil texture and salinity (Dobson et al., 1985; Hallikainen et al., 
1985). Furthermore, the different components ( ´ and ´´) of the dielectric component are 
sensitive to different variables. Most significantly, as the salinity of soil increases, the real 
component ´ decreases and the imaginary component ´´ increases. This relationship has 
been established by several authors (Dobson et al., 1985; Yun et al., 2003; Behari, 2005; 
Lasne et al., 2008) and is shown in Figure 2.4. Since the complex permittivity is not a 
measurable quantity, this value is approximated through modelling. 
 

 
 

Figure 2.4  Relationships between soil salinity (dS/m), soil water content and the real (red) 
and imaginary (green) parts of the dielectric constant (for an L-band case) (Lasne et al., 
2008). 
 

Figure 2.4 shows that as soil salinity (S) increases, there is a corresponding increase in 
imaginary part, ´´. The effect on ´, however, is minimal, with the real part only showing a 
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mild decrease in response to higher salinity levels. This established response of the 
imaginary part of the dielectric constant to salinity is the basis for current research on soil 
salinity retrieval algorithms. 
 
The strength of the correlation between ´´ and salinity is, however, subject to soil water 
content, frequency and soil texture. What is evident from Figure 2.4 is the increased 
sensitivity of the imaginary component to salinity in the presence of higher volumetric soil 
water content (Mv). As soil water content increases from 0 to 0.6, the slope of the green ´´ 
lines increases, showing that the effect of soil salinity on the dielectric constant is greatly 
increased in wet soils. 
The frequency-dependence of the salinity / ´´ relationship is shown in Figure 2.5. This 
graph shows the dramatic decrease of ´´ sensitivity to soil salinity as microwave frequency 
increases. In this figure, values ranging from a to h correspond to increasing levels of 
salinity, while keeping soil water content constant. 
 

 
 

Figure 2.5  Relationships between e’’, microwave frequency and soil salinity for soil 
containing 50% volumetric soil water content. The values a, b, c, d, e, f, g and h denote the 
% salinity (0, 5, 10, 20, 50, 100, 200 and saturated NaCl, respectively) (from Shao et al., 
2003). 
 

Finally soil bulk density, or compactness, affects the sensitivity of ´´ to salinity. Abdel-Razak 
Mohamed et al. (2003) showed that the effect of salinity on ´´ is smaller in finer textured soil 
(silty clay) than in a coarser textured soil (sandy loam). This effect is attributed to the effect 
of water on the dilution of salts, which increases its reaction as an electric conductor and 
consequently affects the dielectric permittivity of the soil. 
 
While the imaginary part of the dielectric constant has been shown (subject to different 
environmental variables) to be significantly more sensitive to soil salinity than the real part, 
soil water content strongly affects both the real and the imaginary parts (Yun et al., 2003). 
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This means that the dielectric constant as a whole is highly sensitive to changes in soil water 
content. The challenge in creating an algorithm for the extraction of soil salinity (as well as 
soil water content) from SAR imagery lies in relating the SAR backscatter ( 0) to the 
different components of the dielectric constant. 

2.4.4.2 SAR backscatter 

SAR backscatter is directly, but not linearly, impacted by changes in the dielectric constant 
(Bindlish & Barros, 2000).  Figure 2.6 shows the exponential relationship between 
backscatter (in dB) and the dielectric constant. 
 

 
Figure 2.6  Relationship between backscatter, dielectric constant and incidence angle for 
HH C-band data (from Bindlish & Barros, 2000). 
 
Since both soil water content and soil salinity are positively correlated with the dielectric 
constant, both of these factors impact the SAR backscatter response. Using RADARSAT-1 
backscatter, Shao et al. (2003) showed a 79% correlation between soil salinity and ´´, a 
70% correlation between backscatter and ´´ and a 69% correlation between backscatter 
and salinity. While backscatter is known to be strongly correlated with soil water content 
(Ulaby et al., 1978), Yun et al. (2003) found that the correlation between backscatter and ´ 
was only 0.27, concluding that ´´ might be the dominant factor in determining the 
backscatter response from the dielectric constant. 
 
Retrieval (also called inversion) of soil salinity and soil water content from SAR backscatter 
then rests on accurately modelling the effect of these parameters on the dielectric constant 
as a whole as well as extracting a value for the dielectric constant from the SAR backscatter 
intensity. During this process, the effects of surface roughness, incidence angle and 
wavelength need to be taken into account.  The next section provides an overview of the 
SAR and optical data that is available for EO. 
 
2.4.5 Sources of satellite imagery 

Various factors have to be considered when selecting a specific source of satellite imagery 
for a particular application (see Table 2.5). The spatial, spectral and temporal resolutions are 
important, as is cost. 
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Landsat and ASTER are by far the most popular sensors for scientific purposes mainly 
because archival data from these sensors are available free over the Internet. Landsat-8 
imagery has recently become freely available for download, opening up many new avenues 
for research. ASTER acquisitions are only done on request, which means that very few 
areas in South Africa are covered by recent data. Furthermore, since May 2008, ASTER’s 
shortwave infrared sensor (which acquires the most useful information for soil science) is no 
longer operational. 
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Apart from data accessibility issues, the relatively low spatial resolutions (30 m) of the 
Landsat and ASTER sensors makes them less suitable for monitoring waterlogging and salt 
accumulation, particularly in South Africa where the affected areas are often concentrated in 
very small (often less than 10 m in width) areas. Modern, very high resolution (VHR) sensors 
such as Ikonos, Quickbird, WorldView and GeoEye offer sub-metre spatial resolution (in 
panchromatic bands at least) and are consequently much more suitable for detecting 
affected areas. But compared to sensors with slightly lower spatial resolutions (e.g. SPOT-
5), the VHR sensors have smaller image footprints and are significantly more expensive. 
Archival SPOT-5 data is available free of charge for South African academic and research 
use, making it an ideal source of imagery for this research. It should be noted that the 
shortwave infrared band of SPOT-5 is resampled from 20 to 10 m upon retrieving the data 
from the sensor, so that it matches the other bands. Cubic convolution resampling is used. 
 
Table 2.6  Characteristics and estimated cost of data from currently available SAR sensors 

Sensor Bands Polarizations Spatial Resolution Estimated cost per km2

ERS-2 SAR 
(decommissioned) 

C VV 30 m $0.05 

Envisat ASAR 
(decommissioned) 

C VV; HH; VV+HH; HV+HH; 
VH+VV 

30 m $0.05 

RADARSAT-1 C HH Fine: 8 m; Std: 30 m; 
Wide swath: 30 m 

$1.41 (Fine) 
$0.35 (Std) 

$0.15 (Wide) 
RADARSAT-2 C HH; VV; HV; VH; HH+HV; 

VV+VH; HH+VV+HV+VH 
Single pol: 3 m, 10 m 
Dual pol: 10 m, ~28 m 

(depending on 
incidence angle) 

Quad pol: 10 m, ~28 
m 

$13.19 (3 m single-pol) 
$1.40 (10 m single-pol) 
$1.49 (10 m dual-pol) 

$0.35 (25 m single-pol) 
$0.37 (25 m dual-pol) 
$8.44 (any quad-pol) 

TerraSAR-X X HH; VV; HH+VV; HH+HV; 
VV+VH; HH+HV+VH+VV 

(designated missions only) 

1 m, 3 m or 16 m, 
depending on mode 

$85.30 (1 m single- or 
dual-pol) 

$42.65 (2 m single- or 
dual-pol) 

$1.57 (3 m   single- or 
dual-pol) 

$0.12 (16 m   single- or 
dual-pol) 

(Prices from Astrium) 
ALOS PALSAR 

(decommissioned) 
L HH; VV; HH+HV; VV+VH; 

HH+HV+VH+VV 
Single pol:  7-44 m 
Dual pol: 14-88 m 
Quad pol: 24-89 m 

$0.13 (Fine resolution) 
$0.32 (Polarimetric) 
(Prices from ALOS-

Pasco) 
COSMO-Skymed X HH, HV, VH, VV;  Spotlight: 1 m 

Stripmap Himage: 3-
30 m 

Stripmap PingPong: 
10-20 m 

ScanSAR Wide: 14-30 
m 

ScanSAR Huge: 14-
100 m 

$61.31 
$1.47 
$1.39 
$0.10 
$0.03 

 
Table 2.6 provides a list of commonly used SAR sensors, their characteristics and their 
estimated cost in 2012. While archived scenes for decommissioned sensors such as ERS-1, 
ERS-2, ENVISAT and ALOS are available, a monitoring system would need to employ 
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currently active satellites, preferably having high-resolution, fully-polarimetric (HH, HV, VH 
and VV) capabilities. The sensors currently fulfilling those specifications would be 
RADARSAT-2, TerraSAR-X and COSMO-Skymed. While prices in Table 2.6 are provided in 
US$ per km2, scenes covering between 100 and 1 000 km2 would be acquired for any one 
specific date and area. 
 

2.5 Terrain analysis and land component mapping 
Terrain analysis is the study of the nature, origin, morphological history and composition of 
landforms, the result of which is a landform or land component map. Land components can 
be mapped by studying topographical maps, interpreting aerial photographs (Speight, 1977) 
and making field measurements (Graff & Usery, 1993). Such terrain analysis techniques are 
considered to be an art without formal theory and often rely on the interpreter’s implicit 
terrain-related knowledge of the area being studied (Irvin et al., 1997). Such skill is the 
product of lengthy, expensive training and experience (Argialas, 1995). The subjective 
nature of terrain analysis is a major drawback because in most cases it is impossible to 
make any useful comparisons between land component maps produced by different analysts 
or even by the same analyst at different times (Speight, 1977). The interpretation and 
mapping of land components is extremely time-consuming, labour-intensive and expensive 
(Adediran et al., 2004) and is difficult to verify in the field owing to the fractal nature of 
topography (Hengl et al., 2004). Consequently, more objective and automated methods are 
needed to map land components. Computer analysis of geomorphometry is a convenient 
option. 
 
2.5.1 Digital elevation models and its derivatives 

Digital elevation models are essentially elevation rasters generated by interpolating the 
elevation of a given raster cell from nearby cells with known elevations. The known 
elevations are typically digitized from topographical maps, but they can also be surveyed 
elevations (including GPS measurements) obtained using photogrammetry or by processing 
radar or LIDAR (light detecting and ranging) data (Campbell, 2007; DeMers, 2009). A DEM 
records elevations of the Earth’s surface for each cell in a grid, hereby converting a 
continuous data variable to a discrete representation. This simple model is extremely 
versatile and highly efficient for computer analysis (Longley et al., 2002). 
 
Terrain analysis is usually performed on digital terrain models (DTMs) and not on digital 
surface models (DSMs) (see Figure 2.7). A DTM is a digital model of terrain elevation (i.e. 
ground positions), whereas a DSM represents the elevations of the ground and objects on 
the Earth’s surface (PCI Geomatics, 2012). A DSM, therefore, includes vegetation, buildings, 
etc., whereas a DTM only includes the topography of a region. It is important to note that a 
DTM and DSM can be stored as a DEM (raster) or a TIN (triangular irregular network). In 
this research, only the DEM formats for storing DTMs and DSMs were used. 
  



27 

 
Figure 2.7  Difference between digital terrain model (DTM) and digital surface model (DSM). 
 

Slope gradient is defined as the angle between the surface tangent and the horizontal and it 
controls the gravitational force available for geomorphic work (Van Niekerk & Schloms, 
2001). Slope gradient is especially useful for evaluating agricultural land uses as it imposes 
limitations on cultivation (Mitchell, 1991). Most governments, including South Africa’s, have 
laws that prevent agricultural developments on steep slopes (James, 2001). Slope gradient 
is also used in environmental modelling owing to the strong relationship between slope 
gradient and land cover (Pickup & Chewings, 1996; Hoersch et al., 2002; Adediran et al., 
2004). 
 
Slope aspect is the direction in which a slope faces and therefore determines its exposure to 
illumination from the sun. In the southern hemisphere, northern slopes receive more solar 
radiation than southern slopes, especially during winter. Slope aspect, in combination with 
gradient, determines the amount of solar radiation that reaches an area. It affects the 
temperature of the soil, the rate of temperature change, vegetation composition, 
evapotranspiration and other influences on soil properties (Irvin et al., 1997). Solar radiation 
is essential for plant development due to its role in photosynthesis, making it an important 
factor to consider in agricultural and forested land uses. 
 
Curvature is the rate of change of slope gradient over a given distance and is an indication 
of where surface runoff will accumulate or disperse. Because of the three-dimensional 
nature of terrain, slopes can curve in infinite directions. For hydrological analyses and soil-
landscape modelling it is useful to know whether an area is concave or convex along the 
slope direction (profile curvature) and/or perpendicular to the slope (plan curvature) (Irvin et 
al., 1997; Van Niekerk & Schloms, 2001). 
 
Owing to the developmental limits imposed by slope gradient, the effect of aspect on plant 
growth (Dendgiz et al., 2003) and the influence of curvature on hydrological and soil 
formation processes, it is essential that these two terrain derivatives are considered for 
modelling waterlogging and salt accumulation. Zhou & Liu (2004) showed that the accuracy 
of these derivatives is highly dependent on the quality of the DEM from which they are 
generated. Care should therefore be taken in the selection of an appropriate DEM. 
 
The spatial distribution of soil water content and groundwater flow often follows surface 
topography. The topographic wetness index (TWI), introduced by Beven & Kirkby (1979), 
can be derived from a DEM to determine where surface and sub-surface water may likely 
accumulate. TWI is defined by Sørensen et al. (2006) as: 
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 Equation 2.3 

where a is the local upslope area drainage through a certain point per 
contour length in m; and 

 is the local upslope of the ground surface. 

The upslope area per contour length (a) is defined as (Sorensen & Seibert, 2007): 

 Equation 2.4 

where is the upslope area in m2; and 

 is the contour length in m. 

 
By calculating soil wetness with TWI, large upslope areas will receive a high index value, 
whereas a low index value will be allocated to small upslope areas. Furthermore, a small 
index value will be calculated for steep locations, whereas gently sloped areas will receive a 
higher index value (Sorensen & Seibert, 2007). 
 
According to Sorensen & Seibert (2007) the resolution of the input DEM influences the 
resulting TWI in several ways, namely: 

• larger grid sizes results in the disappearance of fine-scale features, resulting in 
different patterns when TWI is calculated; 

• as grid resolution increases, the values for specific upslope area also increases; 
• at lower resolutions, Tan B  is more even, which means that gentle slopes were 

steeper and steeper slopes were less steep; 
• the estimation of upslope area is more affected by DEM resolution than that of slope; 
• for landscape analyses and modelling, lower resolution DEMs might be more useful; 

and 
• the optimal resolution for a particular study depends on which features are important 

to represent in the DEM. 
 
2.5.2 Land components and geomorphometry 

Land components are essentially subdivisions of landscapes and are frequently used in 
suitability analysis as a basic mapping unit (i.e. land unit). Although ‘landscape’ has been 
variously defined, it can be conceptualized in the terrain analysis context as a hierarchical 
collection of terrain forms comprising land regions, land systems, land forms, hillslopes, land 
components and land elements. 
 
A land element is the smallest practical terrain unit at a given scale of mapping. McDonald et 
al. (1984) suggest that such elements should not be less than 150 x 150 m in size (i.e. <2.25 
ha) at 1:50 000 scale, but can potentially be much larger in homogeneous landscapes. Land 
elements can be combined to form land components which are typically associated with 
ridge crests, fallfaces, midslopes, and footslopes (Argialas, 1995; Dymond et al., 1995). 
 
Hillslopes (also called profiles) are sequences of land components orientated in the slope 
direction (Figure 2.8). The sequences of components differ according to number and type. 
Fallfaces are, for instance, not present on low hills while midslopes are absent on mesas. 
Complex hillslopes can include multiple occurrences of a particular type of component. 
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Figure 2.8  Two hypothetical hillslopes, each consisting of a sequence of five land 
components (Van Niekerk & Schloms, 2001). 
 
Landforms (e.g. hills, mesas, escarpments) are essentially sequences of hillslopes arranged 
perpendicular to the slope direction and they are, in many cases, the main focus of terrain 
analysis. However, landforms have little value in land suitability analysis because land 
properties can vary considerably within a landform. In the southern hemisphere, 
temperatures will, for instance, be considerably higher on north-facing than on south-facing 
hillslopes, while soils will be deeper in channel beds than on crests. Land components are 
thus the most appropriate demarcations to use as the basis for suitability analysis. 
 
Geomorphometry, the numerical representation of topography, combines mathematics, 
engineering and computer science. In the past, geomorphometry concentrated on the 
geometry of terrain, but technical advances in computing, analytical algorithms, input-output 
devices and large sets of topographic data have shifted the focus to digital representation of 
terrain, process modelling and generalization (Adediran et al., 2004). 
 
Recently, the increasing availability of DEMs has promoted the use of computer technology 
for the calculation and discrimination of terrain properties. DEM-derived datasets such as 
slope, aspect, hydrographical pattern and shaded relief are being increasingly exploited in 
terrain analysis. These morphometric parameters are not only less prone to human error but 
can be used to objectively and quantitatively compare terrain units (Dymond et al., 1995; 
Giles & Franklin, 1998). 
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2.6 Existing geospatial methods for monitoring waterlogging and salt 
accumulation 

According to Zink (2000), the impact of salt accumulation can be reduced by sensible land 
and water management practices and by closely monitoring salt-affected areas. Monitoring 
involves identifying areas where salts concentrate and detecting the temporal and spatial 
changes in this occurrence (Zink, 2000). Salt accumulation is a dynamic process and remote 
sensing data can contribute a great deal to monitoring these processes, mainly because of 
its ability to capture information in both spatial and temporal scales (Abbas, 1999). 
Generally, remote sensing has the potential to predict soil salinity, performance diagnosis 
and impact assessment (Bastiaanssen et al., 2000). Compared to gathering field data, a 
remote sensing approach can save cost, time and effort (Eldiery, 2005). By integrating 
remotely-sensed data with GIS and spatial statistics, more accurate models can be 
developed to predict the distribution, presence and pattern of soil salinity (Kalkhan et al., 
2000). 
 
According to Farifteh et al. (2006), there are two types of indicators that can be used for 
detecting salt-affected soils, namely soil-related indicators and performance-orientated 
indicators. Soil-related indicators (i.e. direct methods) include white salt crusts, puffy soil, 
dark greasy surfaces, dehydrated cracks and coarser topsoil, while performance-orientated 
indicators (i.e. indirect methods) include spotty growth of crops, presence of dead trees, 
blue-green tinge and moisture stress. This is consistent with the view of Mougenot et al. 
(1993) that soil salinity can be detected from remotely-sensed data either directly on bare 
ground or indirectly through vegetation type and growth. The following sections will discuss 
these two remote sensing approaches to monitoring salt accumulation in more detail. 
 
2.6.1 Direct approach 

According to Elnaggar & Noller (2009) and Metternicht & Zinck (2003), salt-affected soils 
with salt encrustations at the surface are smoother than non-saline surfaces and cause high 
reflectance in the visible and the near-infrared (NIR) regions of the spectrum. Farifteh et al. 
(2006) found that the main factors influencing the spectral reflection of salt-affected soils are 
the: 

• quantity and mineralogy of salts, which determines the presence (or absence) of 
absorption bands in the spectrum (Metternicht & Zinck, 2003); 

• colour of the soil; and 
• surface roughness of the soil. 

 
A variety of remote sensing data have been used for identifying and monitoring salt-affected 
soils. Broadband (multispectral) remote sensing data are more frequently used for 
monitoring salt-affected soils, mainly because they are more readily available than narrow-
band (hyperspectral) data (Sharma & Bhargarva, 1988; Rao et al., 1995; Dwivedi, 1992; 
Verma et al., 1994). The following sections provide an overview of both approaches. 
Notwithstanding, multispectral sensors have been successful in distinguishing severely salt-
affected from non-affected soils (Farifteh et al., 2006; Weng et al., 2010). 
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2.6.1.1 Hyperspectral remote sensing 

Hyperspectral remote sensing has the ability to provide near-laboratory quality reflectance 
spectra for each pixel, allowing for the discrimination of subtle differences between materials 
and permitting investigation of phenomena and concepts that greatly extend the scope of 
traditional multispectral remote sensing (Campbell, 2007). Weng et al. (2010) developed a 
univariate regression model to estimate soil salt content using a soil salinity index 
constructed from continuum-removed reflectance at 2052 and 2203 nm. When applied to a 
Hyperion image, a moderate relationship between salt content and the index was achieved 
(R2= 0.627). Using partial least square regression (PLSR), Farifteh (2007) obtained 
prediction R2 values between 0.78 and 0.98. Mashimbye et al. (2012) showed that good 
predictions of salinity could be made with bagging PLSR using first derivative reflectance 
(FDR) (R2 = 0.85), PLSR using untransformed reflectance (R2 = 0.70), NDSI (R2= 0.65), and 
the untransformed individual band at 2257 nm (R2 = 0.60) predictive models. These results 
indicate that hyperspectral remote sensing holds much potential for mapping salt 
accumulation. However, the relative cost of this type of data is still prohibitive for mapping 
large areas. 
 

2.6.1.2 Multispectral remote sensing 

Multispectral imagery, such as WorldView-2 images, normally encompasses the visible, 
near-infrared (NIR) and the thermal regions of the electromagnetic spectrum. A multispectral 
sensor consists of multiple discrete spectral bands encompassing a great range of the 
electromagnetic spectrum (Lillesand et al., 2004). Multispectral remote sensing has been 
widely used to study salt-affected soils (Ben-Dor et al., 2001; Németh et al., 2006). 
 
Metternicht & Zinck (2003) found that an increase in soil salinity is masked by the blue band 
(450-510 nm), owing to the interference of these wavelengths with the ferric oxides within 
the soil. Several salinity indices (SI) have been developed to help identify salt-affected soils 
from multispectral imagery (Abbas, 2007). 

 Equation 2.5 

 Equation 2.6 

 Equation 2.7 

 Equation 2.8 

 Equation 2.9 

 Equation 2.10

where is the blue band; 

 is the green band;  

 is the red band; and 

 is the NIR band. 
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In addition, Abood et al. (2011) proposed several normalized difference salinity indices 
(NDSI) for WorldView-2 images. They are: 

    Equation 2.11 

    Equation 2.12 

    Equation 2.13 

    Equation 2.14 

    Equation 2.15 

    Equation 2.16 

where is the yellow band; 

 is the red band;  

 are the NIR bands; and 

 is the red-edge band. 

 
NDSI1 was found to effectively highlight salt-affected soils, mainly due to their high 
reflectance in the yellow band. NDSI2 and NDSI3 produced slightly better results, possibly a 
result of high reflectance from vegetation and low reflectance from moisture and water in the 
NIR2 band. NDSI4 and NDSI5 performed poorly, which was attributed to the low reflectance 
of salts in the red and RE bands. Overall, NDSI3 produced the most accurate results (Abood 
et al., 2011). 
 
Abood et al. (undated) used a random forest ensemble classification algorithm (Breiman, 
2001) to produce classified land cover images for all their proposed indices in an attempt to 
highlight salt-affected areas. The random forest is a non-parametric classification algorithm 
that consists of multiple decision trees. This regression approach can accommodate a large 
number of variables and predictors with a healthy execution time and a highly accurate 
output. 
 
Fernandez-Buces et al. (2006) proposed a combined spectral response index (COSRI), 
which is used to enunciate the combination of spectral responses of bare soil and 
vegetation. COSRI is defined as: 

     Equation 2.17 

where is the blue band; 

 is the green band;  

 is the red band; and 

 is the NIR; and 

 is the normalized difference vegetation index. 
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In the COSRI, vegetated areas are associated with high values due to their high reflectance 
in the NIR bands and low reflectance in the visible bands. Negative index values are 
indicative of clouds, water or salt-affected soils because they have high reflectance in the 
visible spectrum and low reflectance in the NIR bands. Small concentrations of salt on the 
surface will result in index values close to zero (Fernandez-Buces et al., 2006). 
 
Al-Khaier (2003) accurately (R2 = 0.86) detected salt-affected soils using a normalized 
salinity index on bare agricultural soils using ASTER bands 4 (near-infrared) and 5 
(shortwave infrared). The index was defined as: 

    Equation 2.18 

where is the shortwave-infrared band of the SPOT-5 sensor; and 

 NIR is the near-infrared band of the SPOT-5 sensor. 

 
According to Myers et al. (1970), the following issues complicate the detection of salt-
affected soils using remote sensing: 

• the pattern of salinity is generally very erratic in nature; 
• abrupt changes from unaffected to barren soil may occur over a lateral distance of a 

few metres; and 
• certain crops have a high salt-tolerance. 

 
In addition, Metternicht & Zinck (2003) state that the observation of salt accumulation is only 
possible when the soil water content is low. It is, therefore, advisable to obtain remotely-
sensed data at the end of the dry season. However, it is recognised that there will always be 
fields that are not bare, particularly in irrigation schemes where crops are rotated. 
 

2.6.1.3 Synthetic Aperture Radar 

While a large body of literature is devoted to the use of SAR for measuring soil water content 
(and by extension, waterlogging), very little research into the use of SAR for salt-affected soil 
has been done. Since these two phenomena have been shown to affect radar backscatter in 
different ways, they will be discussed separately here. 
 
SAR backscatter imagery has been extensively researched as a tool for mapping surface 
soil water content (Kasischke et al., 2003; Svoray & Shoshany, 2004; Western et al., 2004; 
Álvarez-Mozos et al., 2005; Holah et al., 2005; Zribi et al., 2005a, 2005b; D'Urso & 
Minacapilli, 2006; Turesson, 2006; Rahman et al., 2008; Engelbrecht, 2009; Gibson et al., 
2009). Generally, the approaches to this problem can be grouped as: 1) the use of 
regression or inversion models, 2) single-wavelength multi-temporal change detection 
approaches and 3) classifications using multiple wavelengths and multiple polarizations. 
 
The use of theoretical approaches (regression or inversion models) has seen much attention 
in literature, as the search for an accurate model of soil water content derivation from SAR 
backscatter intensified. While many authors quote “acceptable” results from these models, 
the variability of soil surface roughness, (together with the effect of vegetation biomass) 
remains the single biggest confounding factor of experimental models (Wagner & Pathe, 
2004; Moran et al., 2006). 
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Using a multi-temporal approach to soil water content retrieval seems to yield promising 
results (Moran et al., 2006). Researchers using this model typically employ a long time 
series of SAR imagery for the same area, using the same wavelength to measure the 
change in soil water content, rather than absolute soil water content. Generally it has been 
found that observing only temporal changes in radar backscatter, the effect of vegetation 
cover and surface roughness can be neglected ,if they can be assumed to remain constant 
throughout the observation period (Macelloni et al., 1999; Moeremans & Dautrebande, 2000; 
Moran et al., 2000; Wickel et al., 2001; Kelly et al., 2003; Mathieu et al., 2003). This 
approach assumes that changes in radar backscatter are only due to changes in surface 
condition. Without the ability to normalize differences due to sensor configuration, this 
approach is limited to the use of a single SAR sensor, with a fixed configuration (incidence 
angle, polarization, etc.) (Moran et al., 2006). 
 
The third approach employed in soil water content retrieval is the (semi-) empirical use of 
multiple wavelengths and multiple polarizations to map areas affected by high soil water 
content. Polarimetric decomposition separates the contribution of different scattering 
mechanisms to the radar backscatter, and research in this area aims at separating the 
contributions of surface roughness and soil water content (Allain et al., 2002; Hajnsek et al., 
2003). Different types of analyses on fully polarimetric data have been used with varying 
levels of success towards the mapping of soil water content (Western et al., 2004; Holah et 
al., 2005; D'Urso & Minacapilli, 2006). 
 
While waterlogging is logically expected to correspond to an increase in soil water content, 
very few authors apply SAR explicitly to mapping of waterlogging – and when they do, this is 
commonly referred to as “flooding and waterlogging”. The phenomenon of waterlogging is 
more complex than merely measuring an increase in soil water content, or identifying open 
stands of water (Csornai et al., 2004). In this regard, a handful of studies stand out which 
studied the complex nature of waterlogging. Kasischke et al. (2003) studied the hydrological 
patterns in Florida wetlands using C-band SAR. The authors showed that, while an increase 
in soil water content would lead to an increase in backscatter, inundation of the soil would 
lead to a drastic drop in backscatter, due to the specular reflection of microwave energy on 
water. As water depth increases, backscatter decreases. This is further complicated by the 
fact that standing biomass (crops) in a field reduces the sensitivity of backscatter to soil 
water content and that the double-bounce effect of crops standing in water could, in fact, 
increase the backscatter of inundated areas (Kasischke et al., 2003). 
 
Tswai (2011) also studied the use of fully polarimetric RADARSAT-2 SAR data on mapping 
of waterlogged areas in the Vaalharts irrigation scheme. The author employed polarimetric 
decomposition algorithms, specifically the Entropy/Anisotropy/Alpha (H-A- ) decomposition 
based on the Wishart Distribution (Pottier & Lee, 1999). Using known areas of waterlogging, 
the polarimetric decompositions could be classified and a map of waterlogged areas could 
be extracted, although no measure of accuracy is provided. The author points out the effect 
of very high rainfall prior to image acquisition which affected the results negatively. 
 
The published literature on direct salt-affected soil extraction based on SAR imagery is 
minimal. Similar to the research on soil water content, three groups of research approaches 
to soil salinity specifically can be distinguished: 1) modelling correlations between radar 
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backscatter and soil salinity, 2) mapping soil salinity through extraction of the dielectric 
constant and 3) mapping soil salinity by mapping which those factors related to it. 
 
The first category of research is devoted to increased understanding of the relationship 
between radar backscatter, the dielectric constant and soil salinity. These studies are aimed 
at creating models for salinity extraction, but do not attempt to map salinity to any degree of 
accuracy (Abdel-Razak et al., 2003; Yun et al., 2003; Behari, 2005; Aly et al., 2007; Lasne et 
al., 2008). Generally, the outlook regarding these models is bleak, and their ability to express 
the dependence between soil water content, soil salinity and the backscattering coefficient 
has been described as “weak” (Aly et al., 2007). 
 
The second category of research is devoted to applying these theoretical and empirical 
backscatter models to actual SAR imagery in an attempt to extract values of the dielectric 
constant from them. This can then be related to soil salinity (Taylor et al., 1996; Bell et al., 
2001). Conclusions reached from this avenue of research generally state that this approach 
can achieve good accuracies, but only under very specific conditions (normally the 
conditions for which the particular model was developed). They are therefore usually 
restricted to areas of uniform roughness, using a single wavelength and only for areas of 
high soil water content and a single land cover. 
 
The third category of research generally takes a broader approach to mapping soil salinity, 
including features such as surface roughness and vegetation. These studies attempt to map 
areas of saline soils using indicators of salinization. Metternicht (1998) used a fuzzy 
classification of L-band SAR imagery to identify general classes based on their surface 
roughness, vegetation cover, soil salinity and crusting. The author achieved a 80.7% 
classification accuracy using this method, although no Kappa value (Campbell, 2007) was 
provided and serious omission and commission errors overwhelmed some of the classes (up 
to 87% confusion). This was ascribed to the effect of surface roughness. Grissa et al. (2011) 
attempted to produce an empirical model for salinity mapping, citing the complicated nature 
of theoretical models. The authors generated an unvalidated soil salinity map, and admit that 
their model only describes cases of low salinity distribution. Finally, in an integrated study by 
Del Valle et al. (2009), object-based image analysis of multiple-wavelength and multiple-
polarization data was used to create salinity maps. Significant effort is employed to identify 
the correct combination of features to include, and these features are subjected to principal 
components analysis and multi-resolution segmentation. No classification is performed per 
se, but the segmentation is assessed for its accuracy. Accuracies based on four classes 
reached values of between 79.4% and 81.4%, with Kappa values ranging between 0.78 and 
0.80. This stands out as one of the only studies to provide reasonable results for salinity 
mapping. However, this study employed a very specific combination of datasets, specifically 
using SIR-C data, for which only archival datasets of a short time period in 1994 are 
available. This study, while significant, can therefore not be used as a model for a monitoring 
system using currently available sensors. 
 
Although research into the retrieval of soil water content and soil salinity data from SAR 
backscatter has been on-going for nearly three decades, no breakthroughs have been 
achieved. Researchers from both sides (moisture and salts) conclude that there are no 
robust, transferable retrieval algorithms currently available (Yun et al., 2003; Wagner & 
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Pathe, 2004). Much hope is being placed on the use of advanced new sensor types, 
including fully polarimetric datasets, full waveform LIDAR and polarimetric interferometry. 
 
In order for a waterlogging and soil salinization monitoring system to be viable it must be 
capable of identifying and quantifying the extent and severity of these phenomena. From the 
literature it can be seen that, should such a system be based on SAR, the following 
challenges will need to be overcome: 

• Finding a way to accurately and consistently extract soil water content and soil 
salinity data from SAR backscatter (something which has not been achieved yet). 

• Minimizing the effect of surface roughness. 
• Minimizing the effect of sensor configuration (incidence angle, wavelength, etc.). 
• Minimizing the effect of vegetation cover and vegetation change. 
• Minimizing the effect of variations in soil water content due to rainfall. 

 
In a South African context, two further concerns dominate, namely data availability and cost. 
As stated earlier, a monitoring system would need to employ currently active satellites, 
preferably having high-resolution, fully-polarimetric (HH, HV, VH and VV) capabilities. The 
sensors currently fulfilling those specifications would be RADARSAT-2, TerraSAR-X and 
COSMO-Skymed. Scenes covering between 100 and 1 000 km2 would need to be acquired 
for any one specific date and area. This, together with the fact that the use of several images 
are needed to account for variations in backscatter, would make a monitoring system based 
on spaceborne SAR observations prohibitively expensive. 
 
In conclusion, despite the efforts of the science community, there is currently no robust 
model for accurately and consistently extracting soil water content or soil salinity from SAR 
imagery. This science is very much still in an experimental phase, and most authors agree 
that great strides still need to be made before such an application can be operational. 
 
2.6.2 Terrain analyses 

In the previous section various remote sensing approaches for directly identifying and 
monitoring waterlogged and salt-affected areas were reviewed. According to Dwivedi (1997) 
and Dwivedi et al. (1999) the main limitation of such approaches is that subsurface 
processes do not directly influence the spectral response of the topsoil, which may make it 
difficult to map waterlogged or saline regions using a direct approach. A more robust 
approach may therefore be to make use of elevation data to model where waterlogging 
might occur. Elnaggar & Noller (2009) found a significant correlation between soil EC and 
elevation, slope and wetness indices. They also found that a 5 m DEM was able to more 
accurately identify important landforms consisting of saline soil than a 10 m DEM. Sulebak et 
al. (2000) found strong correlations between terrain data and soil moisture, with slope, 
aspect and profile curvature providing the best fit regression models (R2 = 0.8), while weaker 
correlations were found between soil moisture and wetness indices (R2 = 0.5). Sulebak et al. 
(2000) attributed this to the flatness of the terrain in their study area, which resulted in high 
wetness values throughout. Akramkhanov et al. (2011) found significant correlations 
between soil EC and environmental factors such as distance to drainage, profile curvature, 
slope and groundwater table depth. Weaker relationships were found with total dissolved 
solids in the soil. Stepwise multiple regression analysis was performed in both cases 
(Akramkhanov et al., 2011). 
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Furby et al. (2010) incorporated their multi-temporal approach with a conditional probability 
network (CPN). A CPN is a Bayesian network, which provides a computational framework to 
combine uncertain classified satellite image data from several growing seasons with 
landform data. The network can be represented as a graph, as shown in Figure 2.9, where 
the circles and rectangles represent the nodes of the graph. The overall accuracy for their 
land monitor project was 95%. 
 

 
Figure 2.9  Conditional probability network used by Furby et al. (2010) to combine multi-
temporal classification maps based on satellite images and landform data. 
 
Based on the literature it seems that terrain analyses hold much potential for modelling 
waterlogged and saline conditions. However, the availability of suitable elevation data is 
critical and will have to be investigated. 
 
2.6.3 Geostatistics and spatial modelling 

Geostatistics and spatial modelling are widely used for salt accumulation studies. According 
to Eldiery (2005), choosing the correct statistical method is very important for determining 
the quality of the results. Geostatistics is mainly used in interpolating soil salinization from 
soil sample analysis results. For instance, Mohamed et al. (2010) employed common kriging 
using 150 samples of known salinity as input data. This yielded a correlation coefficient of R2 
= 0.65. Aldakheel (2010) also found that ordinary kriging produces the best results when 
interpolating EC values. Douaoui (2011) used ordinary kriging and regression kriging to 
interpolate a salinity map. The output revealed a good correlation compared to the salinity 
map obtained using WorldView-2 data. They also found that the regression-kriging method 
produces high levels of accuracy in the spatial estimation of salinity. However, in some 
cases kriging cannot be used, particularly when input samples are clustered. Lobell et al. 
(2010) showed that relatively good results can be obtained by using spatial analysis of 
variance (spatial ANOVA). 
 
2.6.4 Indirect approach 

Plants usually require small quantities of salts (and nutrients) to carry out the complex 
metabolic processes involved in photosynthesis and respiration. Salts also play an important 
role in the movement of water between the soil and root. A concentration of salts around the 
root zone will consequently reduce the plant’s capability to take up water. This can lead to 
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dehydration and wilting of plant leaves and stems. The lack of water also limits the plants 
metabolic processes such as photosynthesis. This impact of salts is referred to as the 
osmotic effect. Salts can also have a toxic effect when the plant absorbs water to 
compensate for water loss during transpiration. If this process continues over a long period, 
the salt concentrations within the plant may become so high that it becomes toxic. 
 
Different plant species vary in their salt sensitivity or salt tolerance. Some plants are affected 
by low concentrations of salt, while others (halophytes) will tolerate high salt concentrations. 
A common symptom of the toxic effects of salts is that the leaf tips of plants turn yellow. In 
addition, waterlogging can have a negative effect on plant growth. Waterlogging is 
characterized by too much water in the root zone and limits the oxygen availability. This 
causes anaerobic conditions and symptoms such as stunting, discolouration of foliage, 
defoliation, wilting and death in some cases (McGhie & Ryan, 2005). 
 
The effect that waterlogging and salt accumulation have on plants (refer to Section 2.1) can 
be used to indirectly infer where these processes are occurring within fields. This section 
focuses on how remote sensing can be used to detect the possible salt stress effects of 
waterlogging and salt accumulation. 
 
Remote sensing indices are commonly used for mapping land cover/use, standing biomass 
and green leafy biomass (Abood et al., 2011). An index is formed from combinations of 
several spectral values that are added, divided or multiplied in a manner designed to yield a 
single value (Campbell, 2007). Vegetation indices (VIs) are the most popular and 
scientifically-proven tools for analyzing remote sensing data (Verstraete & Pinty, 1996; 
Ceccato et al., 2002). VIs attempt to measure biomass or vegetative vigour using the 
spectral response of different surface features (Campbell, 2007). The Normalized Difference 
Vegetation Index (NDVI) is the most common vegetation index used and is defined as: 

     Equation 2.19 

where is the reflectance in the near-infrared (NIR) band; and 

 is the reflectance in the red band. 

It should be noted that although NDVI is useful for a wide range of applications, it is very 
sensitive to soil background brightness (Huete, 1988; Bausch, 1993). In order to adjust the soil 
background brightness constraint inherent in the NDVI spectral index, Huete (1988) proposed 
using a soil-adjustment factor (L). This factor accounts for first-order, non-linear, differential 
NIR and red radiative transfer through a canopy (Jiang et al., 2008). The resulting soil-
adjusted vegetation index (SAVI) is defined as: 

       Equation 2.20 

where is the reflectance in the near-infrared (NIR) band; 

 is the reflectance in the red band; and 

 is the soil-adjustment factor. 

The soil-adjustment factor can vary from 0 to 1 depending on the amount of visible soil. The 
thicker the vegetation, the less soil is exposed and the lower the L value. However, 0.5 is a 
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reasonable approximation for the L value when the amount of soil scene is unknown 
(Koshal, 2010). SAVI provides better results than NDVI at low vegetation cover because of 
its ability to eliminate the soil background effect (Koshal, 2010). Modifications of the SAVI, in 
the form of MSAVI (Qi et al., 1994a) and MSAVI2 (Qi et al., 1994b), have also been 
developed. 
 
The Enhanced Vegetation Index (EVI) was developed to optimize the vegetation signal with 
improved sensitivity in high biomass regions and improved vegetation monitoring by 
disconnecting the canopy background signal and a reduction in atmospheric influences 
(Jiang et al., 2008). EVI is defined as: 

     Equation 2.21 

where is the reflectance in the near-infrared (NIR) band; 

 is the reflectance in the red band;  

 is the reflectance in the blue band; 

 is a gain factor; 

 is the soil-adjustment factor; and 

 are aerosol resistance coefficients. 

The values as adopted in the MODIS EVI algorithm are L = 1; C1 = 6; C2 = 7.5 and G = 2.5 
and are used as a de facto standard for other sensors as well. 
 
Many researchers have compared NDVI and soil salinity (Wiegand et al., 1994; Eldiery, 
2005; Tajgardan et al., 2007; Elnaggar & Noller, 2009; Lobell et al., 2010; Abood et al., 
2011). Elnaggar & Noller (2009) found no significant statistical correlation between Landsat-
derived NDVI and electrical conductivity (EC)2. The relatively low resolution of the Landsat 
imagery was offered as a possible explanation for this result. Aldakheel (2010) only found a 
weak, non-linear statistical correlation between Landsat-derived NDVI but noted that low 
NDVI values generally corresponded to high EC values, indicating that salinity had some 
impact on growth. Although Lobell et al. (2010) also found some correlation between EC 
values and MODIS-derived NDVI, the NDVI was bested by the EVI in the correlation with EC 
values. The results showed that the EVI nearly always provided a larger absolute correlation 
than the NDVI, which supports the notion that EVI represents a more robust measurement of 
vegetation condition than NDVI. Results using SAVI were very similar to those of NDVI 
(Alhammadi & Glenn, 2008). 
 
The use of normalized VIs for saline soil detection has been limited partly due to the spectral 
resolution of the multispectral sensors currently utilized (Metternicht & Zinck, 2003). Abood 
et al. (2011) took advantage of the new spectral bands and high spatial resolution of the 
WorldView-2 satellite to design six different NDVI and SAVI indices. The NDVI no. 3 index 
proved to be the best in distinguishing saline soils from non-saline soils. The index uses the 
WorldView-2 yellow band (585-625 nm). The NDVI no. 3 is defined as: 

                                                 
2 EC in this document refers in most cases to ECe  which relates to the electrical conductivity of the 
saturation extract of the soil. 
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Equation 2.22 

where is the reflectance of WorldView-2’s first near-infrared band; and 

 is the reflectance of WorldView-2’s yellow band.   

 
Abood et al. (2011) also developed six new SAVI indices to test the effect of a higher spatial 
resolution and additional spectral bands of the WorldView-2 satellite in the mapping of soil 
salinity. The yellow band proved again to be the most successful in distinguishing between 
heavy vegetated areas and saline soils. The adjusted SAVI index (SAVI no. 2) is defined as: 
 

 Equation 2.23 

where is the reflectance of WorldView-2’s first near-infrared band; and 

 is the reflectance of WorldView-2’s yellow band. 

 
SAVI no. 2 produced better results than the NDVI no. 3. Koshal (2010) also made use of VIs, 
mainly IRS-derived SAVI in detecting salt accumulation. The thresholds used in 
distinguishing the soil salinity are provided in Table 2.7. The results showed that the 
classified SAVI image was very useful for distinguishing between healthy crops and crops 
affected by severe salinity. He concluded that a combination of VIs and water indices (WIs) 
improves the assessment of salt-affected plants. 
 
Table 2.7  Soil-adjusted vegetation index (SAVI) values for various land cover classes 
(Koshal, 2010) 

No. Land cover classes Value range 
1 Crop affected by salinity (Severe/moderate salinity) 0.50-0.68 
2 Waterlogged area/canal 0-0.50 
3 Normal crop >0.68 
4 Settlement/fallow (sand dunes) <0.18 

 
Zhang et al. (2011) derived several VIs from the recorded hyperspectra and assessed their 
predictive power for salinity detection. A mixture of halophytes and salt-sensitive plants were 
studied. They suggested that the ambiguity of VIs may originate from the different spectral 
responses of various plants to salinity. This is because different species have different 
tolerance thresholds to stress (Lauchli & Luttge, 2002), implying that spectra gathered over a 
salt-affected area may have species-dependent thresholds. This also explains why 
inconsistent results are often found when using NDVI. 
 
The nine narrow band indices that were assessed are shown in Table 2.8, along with their 
potentials for estimating salinity within different vegetation species. Corn, cogon, grass and 
(to a lesser extent) cotton are the more saline sensitive species while reed, saltcedar, 
suaeda and aeluropus are more hylophytic in nature. It is clear that the selected VIs were 
not sensitive to all species, with an overall R2 of 0.28. However, when considering the 
individual results, the narrow band SAVI produced the best overall result. Better results were 
achieved for cotton, corn and cogon grass, which emphasises the difficulties of employing 
VIs on halophytic vegetation. 
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Table 2.8  Nine narrow band vegetation indices assessed along with their R2 values for each 
vegetation species (Lauchli & Luttge, 2002) 

 
Zhang et al. (2011) conducted a statistical analysis to identify salt-sensitive bands for various 
species. They identified seven band zones as the most sensitive to salt stress through partial 
least square. These bands range from the visible spectrum (395-410, 483-507, 632-697 nm) 
to the NIR spectrum (731-762, 813-868, 884-809, 913-930 nm). Of these, the NIR spectral 
regions in the red edge were found to be the most responsive to salt stress. However, they 
found that none of the VIs were sensitive enough to all species and that there was generally 
a weak relationship with soil salinity. Only the non-halophytes showed a relatively high 
relationship with salinity. A number of new SAVI-based salinity indices were consequently 
developed using 156 080 different band combinations. Linear regressions were used to test 
all of these indices. Four new salinity indices, called SASI1-4, were developed using this 
approach. SASI is defined as: 

   Equation 2.24

  

where = 0.5; and for 

  

  

  

  

 
The SASI indices showed superior results (Table 2.9) when compared to other VIs for all of 
the species because they were constructed by the most sensitive bands. 
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Table 2.9  Performance of SASI indices when compared to other VIs 

 
 
SASI3 and SASI4 are of particular interest because the band ranges of many popular 
sensors cover their adopted bands (Zhang et al., 2011). Examples of these are: bands 1 and 
2 of MODIS, bands 3 and 4 of Landsat TM and bands 2 and 3 of SPOT. 
 
From the literature it is evident that VIs produce valuable information for indirect detection of 
salt accumulation. However, Lenney et al. (1996) caution that crops with low density cover 
can easily be confused for crops affected by salt accumulation. They showed that this can 
be overcome by using a multi-temporal approach. The principle of this approach is that, if an 
area within a field is highlighted as being stressed (possibly due to salt accumulation) at 
multiple dates, it is unlikely that the cause of this stress is related to farming practices. Lobell 
et al. (2010) emphasize the importance of a multi-temporal approach and support the notion 
that factors other than salinity affecting vegetation tend to exhibit more variable spatial 
patterns from year to year. 
 
2.6.5 Biophysical approach 

The biophysical approach to salt accumulation mapping is based on detecting crop reaction 
to soil salinity through osmotic forces and increasing surface resistance due to stomatal 
closure. This method, proposed by Al-Khaier (2003), is based on surface resistance, which 
is the combined vapour flow of the transpiring crop and evaporating soil when the soil is not 
completely covered by a canopy. 
 
To calculate the surface resistance, Al-Khaier (2003) used the Penman-Monteith equation 
along with the SEBAL (Surface Energy Balance Algorithm for Land) algorithm developed by 
Bastiaanssen (1998). The Penman-Monteith equation is defined as: 
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Equation 2.25 

where is the actual evaporation determined by SEBAL;  

 is the slope of the saturated vapour pressure curve (mbar K-1); 

 is the moist air density (kg m-3); 

 is the air specific heat at constant pressure (J kg-1 K-1); 

 is the air vapour deficit from saturation (mbar); 

 is the aerodynamic resistance (S/m); and 

 is the surface resistance (S/m). 

 
Since the surface resistance is the only unknown variable, it could be solved from the 
inversion of the Penman-Monteith equation. Al-Khaier (2003) showed that the higher the 
surface resistance, the lower the osmotic pressure will be, and the lower the osmotic 
pressure, the higher the salinity will be. 
 
The result of the surface resistance map was promising. As shown in Figure 2.10, when the 
salinity of the soil is less than 7.7 dS.m-1 (770 mS/m) there is less correlation between the 
EC and rs values. However, between the values 7.7 and 27 dS.m-1 (770 and 2700 mS/m) 
the correlation between the EC and rs values is strong. This indicates that the more saline 
the soil is (the higher the EC value) the more difficult it is for the crop to obtain water from 
the soil, and thus the greater the surface resistance becomes (Al-Khaier, 2003). The overall 
correlation coefficient was R2 = 0.86, which indicates high correlation accuracy. It should be 
noted that the salinity levels in this experiment are significantly higher than what is normally 
encountered in South Africa, which means that this index will likely be less effective in local 
conditions. 

 

Figure 2.10  Result of the surface resistance map (Al-Khaier, 2003). 
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The main limitation of the biophysical approach to monitoring salt accumulation or 
waterlogging is its dependence on satellite imagery with a thermal band. Such data is 
restricted to medium to low resolution sensors (e.g. ASTER, Landsat, MODIS) which 
produce at best thermal images at a resolution of 100 m (Landsat 8). It is therefore very 
unlikely that the biophysical approach will pick up small (<10 m) variations in salt 
accumulation. 
 
2.6.6 Conclusions 

The previous sections reviewed the published literature on existing remote sensing and 
modelling methods for mapping and monitoring waterlogging and salt accumulation. The 
existing body of work can be summarized according to the data sources and the techniques 
used. The following conclusions can be drawn: 
 
Hyperspectral data is currently still prohibitively expensive and SAR-based approaches 
require multi-temporal datasets that are unlikely to be attainable for large areas. In a data-
scarce country such as South Africa, it seems that for the remote sensing techniques that 
rely on high resolution, multispectral satellite imagery such as those produced by SPOT-
5/6/7 hold the most potential, as such data is the most accessible and available at national 
level. The recent release of 30 m SRTM DEM elevation data of Africa may also be a very 
useful source of data for terrain analyses techniques. Other sources of elevation data 
include the 5 m resolution Stellenbosch University Digital Elevation Model (SUDEM) and the 
2 m resolution Stellenbosch University Digital Surface Model (SUDSM). The value of these 
datasets for modelling waterlogging and secondary salt accumulation needs to be 
investigated further. 
 
The direct and indirect remote sensing approaches show the most promise as they can be 
applied to high resolution, multispectral satellite imagery. Statistical methods such as 
regression, partial least squares regression and multi-regression have been shown to be 
successful in a number of studies and should be investigated further. Surprisingly little 
attention has been given to the use of modern image classification and machine learning 
algorithms (e.g. classification and regression trees, decision trees, support vector machines 
and random forest) for mapping waterlogged and salt-affected areas. Such applications will 
likely be very effective given their success in other remote sensing applications (e.g. land 
cover mapping). 
 
The review of the literature reflects a large body of work that is focussed on finding practical 
solutions for monitoring waterlogging and salt accumulation. However, none of the methods 
provided being the ultimate solution, with each having some kind of limitation for operational 
application. Most likely, that the solution does not lie in one technique but in a combination of 
methods. In order to find the best combination of methods for monitoring waterlogging and 
salt accumulation, each of the most promising techniques must be evaluated in a South 
African context to better understand their individual strengths and limitations. It is critical that 
the uncertainties in the outputs of the different techniques must be taken into consideration 
before they are incorporated into a modelling strategy.  
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2.7 Critical evaluation of remote sensing detecting salt-affected soils 

In the past decades, the use of remote sensing was widely investigated for collecting 
information on soil properties such as salinity (Farifteh, 2007). Considering the complexity of 
the salinization process and its influence on different soil properties (both physical and 
chemical), detecting salt-affected soils with remote sensing is not an easy task. The main 
limitations of remote sensing in salinity studies can be summarized as follows (Irons et al., 
1989; Csillag et al., 1993): 

• Variations in the reflectance spectra of soils cannot be attributed to a single soil 
property. 

• Remote sensing data do not contain information on the third dimension of the soil 
body (the profile and other subsurface properties). 

• Salinization is hidden at its inception and thus can often go undetected by remote 
sensing sensors. 

• Many of the salts diagnostic spectral signatures occur in water regions at around 
1400 and 1900 nm and are hence obscured by the presence of water. 

• In general, most absorption features indicative of salt minerals are in the far infrared, 
whereas spectral features in the visible, near and shortwave infrared (400-2500 nm) 
are very weak and limited. 

• Salt concentrations in soils need to be high to influence the soil reflectance. 
• Moisture content of soils and salts (depending on the types) have similar effects on 

soil reflectance spectra and causes large anomalies in predicting salinity levels from 
remotely-sensed data. 

 
2.8 Geographical information systems and agricultural geo-referenced 

information system 
A geographical information system (GIS) can be defined as a computer-enhanced 
information system that aids decision-making by referencing data to spatial or geographical 
co-ordinates (Schoolmaster & Marr, 1992). GIS-based information systems on land and 
water are world-wide becoming an integral component of institutionalized programmes for 
integrated natural resource planning, management, conservation and agricultural 
development. 
 
GIS is often used to support geomorphometry and land component mapping. The most 
common approach is to use GIS overlaying techniques to combine DEM derivatives such as 
slope and aspect to create unique, homogeneous morphological units (Adediran et al., 
2004). Classification is required to convert the continuous slope and aspect raster surfaces 
into regions (polygons). Once the slope and aspect rasters have been classified, they are 
usually converted to vector format and overlaid to create new polygons representing 
combinations of aspect and slope. The overlay operation is, in many cases, followed by a 
conflation operation to get rid of insignificantly small polygons. 
 
The use of overlay techniques to delineate morphological land units is simple, fast and can 
be done with standard GIS software. The problem with this technique is the way in which 
terrain is generalized during the classification process. Slope aspect is usually classified into 
nine standard aspect classes representing north, north-east, east, south-east, south, south-
west, west, north-west, and no aspect (level) (Dymond et al., 1995), while slope gradient is 
usually classified into a number of equal-interval classes. The effect of applying such 
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classification schemes over the entire extent of the slope gradient and aspect rasters (i.e. as 
a global raster operation) is that class breaks will not likely coincide with local terrain 
transitions. This is especially problematic for slope breaks because small transitions in slope 
gradient can have drastic effects on land properties such as soil and vegetation cover. 
 
Until recently, the analysis, storage, organization and presentation of spatial data have been 
the primary function of a GIS, but the rapid development of the object orientated 
programming genre and associated GIS components have broadened the capacity of the 
GIS suggests that to fulfil GIS potential as a suitable aid to environmental monitoring, the 
introduction of knowledge-based concepts and methods into GIS software should be 
encouraged. 
 
AGIS (Agricultural Geo-referenced Information System) was the official portal for the 
dissemination of data for the Department of Agriculture in South Africa. The vision of AGIS 
was: "Making South Africa's Agricultural information available on the Internet". AGIS went 
live in 1999 and was officially launched at the World Summit on Sustainable Development in 
2002. AGIS contains a large amount of information related to the environment and 
agriculture (Rust et al., 1999). The operational objective of AGIS was to increase the quality, 
efficiency and accountability of the decision-making processes. A schematic representation 
of AGIS is given in Figure 2.11. 
 

 
Figure 2.11  Schematic representation of AGIS. 
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The South African AGIS web application was developed in the ArcGIS Server environment. 
ArcGIS Server allows geographical data to be published online and provides web users with 
access to the data through the internet.  
 

2.9 Review papers on South African irrigation schemes 
Although old, the review papers of Scotney & Van der Merwe (1991), Du Plessis (1991), 
Schoeman & Van Deventer (2004) and Policy Proposal for Irrigated Agriculture in South 
Africa by Backeberg et al. (1996) are still relevant to salt-affected soil and waterlogging for 
South African irrigation schemes today. 
 
Schoeman & Van Deventer (2004) reviewed environmental impacts on soils due to 
agriculture. They point out that: 

• Due to elevated soil salinity levels expected in future, it would become increasingly 
necessary to monitor the situation on irrigation schemes in order to timeously identify 
salinization trends and potential problems. 

• There is a need for a suitable national environmental monitoring and evaluation 
system. In its absence, various ad hoc pieces of environmental data, information, 
norms and standards that are constantly being collected will remain pieces of a large 
puzzle and extremely difficult to incorporate into a holistic picture. 

• Despite its obvious advantages, irrigated agriculture continues to contribute to soil 
degradation in the form of salinization, sodicity, waterlogging, structural breakdown, 
crusting and compaction. Contributing causes are deteriorating water quality, low 
suitability of the soil, sub-optimal management, poor planning and the indirect 
consequences of economic pressures. 

 
The review of Scotney & Van der Merwe (1991) points out that: 

• Long-term viability of many irrigation schemes is in jeopardy. Studies suggest that 
the extent of soil degradation exceeds 10% of the total area irrigated. Many State 
schemes are being seriously threatened by the rapid decline in water quality. Little is 
known of the extent of degradation on private schemes but it is evident that the 
economic viability of many schemes is in doubt. 

• Growing competition for limited soil and water resources will force all industries, 
including agriculture, to meet the demands for maintaining higher standards of 
environmental quality. Farmers will need to appreciate that society will demand 
higher standards of resource management in future. 

• Positive steps are needed to counteract the continuing degradation of soil and water 
resources under irrigation. This implies acceptance of the ‘sustainability’ concept 
much debated and rhetorical. 

• The adverse effects of off-site damage to downstream consumers, including health 
hazards, are rarely appreciated. Deteriorating water quality, sedimentation and 
damage by flooding are all aspects of particular relevance to the long-term viability of 
irrigation schemes. 

• Understanding the interaction between soil properties and water quality is 
fundamental to reclaiming degraded land. 

• Water supply and quality are crucial issues for future irrigation development. 
Promoting water use efficiency, affecting control over water tables and preventing 
salinization are major needs. While much can be achieved through improved 
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management, special attention should be given to communal drainage networks, on-
farm drainage and preventing leakage. 

• Sub-optimal farm management and deficiencies in physical and financial planning, 
together with fragmented research and extension efforts, are important reasons for 
poor water use efficiency and resource degradation. Such limitations have persisted 
over many years. 

• Degradation should be approached on a ’prevention is better than cure ‘basis. 
However, properly planned drainage systems together with soil amelioration have 
proved highly successful in improving crop performance on degraded areas and 
should be encouraged. 

• The future poses many special challenges if long-term viability of irrigated land is to 
be safeguarded. Greatest among these is the need to match technology with the 
natural resource base and the managerial skills of the farmer. 

 
The review by Du Plessis (1991) concluded that: 

• Although waterlogging appears to be an incessant problem countrywide and even 
serious on some irrigation projects, the situation seems to be largely under control 
from a national perspective. 

• Salinization of both water and soil resources appears, on the other hand, to pose an 
increasing threat to sustainable irrigated agriculture. 

• Progress has been made with regard to understanding permeability problems and 
the factors that play a role. The implementation of the acquired knowledge in practice 
is, however, still mostly lacking. 

• No programme exists to determine the extent of waterlogged conditions on South 
African irrigation schemes on a regular basis. 

• Up to now soil salinization in South Africa seems to have been largely associated 
with shallow water tables. 

• Although there are obvious exceptions, soils generally appear to recover fairly rapidly 
from excess salinity after installation of drainage to remove the high water tables and 
allow the leaching of accumulated salts. The rapid recovery can probably be ascribed 
to the combined effect of soil selection criteria, over-irrigation with relatively low 
salinity water and the addition of gypsum where needed. 

• The salinity of irrigation water will increase in future and improved management of 
water applications will reduce over-irrigation. Under these conditions soil salinity is 
bound to rise and it will become increasingly important to control soil salinity and the 
negative effects it has on crop production. 

• With the elevated soil salinity levels expected to arise in future, it will become 
increasingly necessary to monitor the situation on irrigation schemes and within 
irrigated lands in order to identify salinization trends and potential problems timeously 
for remedial action to be taken. 

 
A number of aspects of the discussion paper Policy Proposal for Irrigated Agriculture in 
South Africa by Backeberg et al. (1996) are also relevant to salt-affected soil and 
waterlogging problems on South African Irrigation Schemes. They recommended that: 

• Rehabilitation of existing schemes should be prioritized above development of new 
schemes. 
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• Emphasis be placed on the prevention of deterioration in water quality and increasing 
health threats as caused by point and non-point pollution of water and protection of 
river ecosystems and the natural landscape in order to maintain biodiversity. 

• Better soils should receive priority for irrigation. 
• Environmental damage must be minimized through sustainable irrigation practices, 

and ecological and social responsibility must be developed among irrigators. 
• Water use should be moved from crops with low physical and economic water use 

efficiencies to those which perform better. 
• Water saving practices should be encouraged. 
• Very few small-scale farmer irrigation schemes have succeeded – a multi-disciplinary 

task team should investigate the cause of failure, make innovative changes and 
develop training programmes for both project managers and farmers. 

• National water resources development and irrigation policies and strategies must be 
reviewed and reformed to meet the objective of sustainable agricultural development 
in the small-scale farming sector. 
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3 STUDY AREAS 

3.1 Introduction 

The irrigation schemes were selected considering, amongst others the following factors: 
known problem areas regarding waterlogging and salt accumulation, availability of soil 
information, summer and winter rainfall, and inland and coastal areas to develop a 
methodology for identification, classification and monitoring the extent and degree of 
waterlogging and salt accumulation on South African Irrigation schemes.  The irrigation 
schemes selected for the study were in the following Water Management areas: Limpopo, 
Olifants, Pongola-Mtamvuna, Vaal, Orange, Breede-Gouritz and Berg-Olifants.  
 

3.2 Irrigation potential 
Irrigation potential maps were produced for Vaalharts, Loskop and Makhathini. Procedures 
for the assessment of land for irrigation development in South Africa were done according to 
Irrigation Planning Staff (1980), Hensley & Laker (1980), Bester & Liengme (1989), Dohse et 
al. (1991) and Nell (1991). 
 
The following irrigation classes were used to produce the irrigation potential maps: 

• Class 1 – Highly suitable for irrigation with few or no limitations or preconditions.  
Topography is flat, soils are well drained, of moderate permeability and are deep, 
medium textured with good available water-holding capacity. 

• Class 2 – Suitable for irrigation with slight limitations such as undulating topography, 
moderately well drained soils, moderately slow or moderately rapid permeability or 
moderate depth of soil. 

• Class 3 – Low suitability for irrigation with moderately severe limitations such as 
significantly rolling topography, imperfect or somewhat excessively drained soils, 
slow or rapid permeability, or shallow soils. 

• Class 4 – Not suitable for irrigation under most conditions with severe limitations. 
• Class 5 – Soils with severe limitations, not recommended at all, such as soils in 

natural waterways or in the river floodplain, soils presently eroded or soils showing 
the presence of any permanent or potential water table. 

 
Soils of irrigation classes 1 and 2 can be recommended for irrigation.  Soils of irrigation class 
3 is normally not recommended for large-scale irrigation development under average 
conditions, but small areas may be considered if they adjoin or are enclosed by areas of 
soils having  irrigation classes 1 and 2. 
 
Soil depth provides the volume of soil material for root development, water storage and 
nutrient uptake. Effective soil depth can be considered as the depth freely permeable to 
plant roots and water. The derived irrigation potential classes used in terms of soil depth are: 

• Class 1 – 900 to 1500 mm 
• Class 2 – 600 to 900 mm 
• Class 3 – 300 to 600 mm 
• Class 4 – 150 to 300 mm 
• Class 5 – 0 to 150 mm 
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The main criteria used to assign irrigation potential classes included soil depth and texture, 
whereas certain specified conditions rendered soils non-irrigable:  
 
Soils with more than 10% and less than 35% clay and without significant different textural 
layers are considered irrigable (irrigation class 1). Soils with distinct different textural layers, 
less than 10% clay and more than 35% clay were classified as irrigation class 3 or higher. 
 
Non-irrigable soils (irrigation class 5) were identified using the following criteria: 

• Soils in natural waterways 
• Soils in the floodplain of the river 
• Soils presently eroded 
• Soils showing the presence of any permanent or potential water table. 

 
3.3 Vaalharts Irrigation Scheme 

The Vaalharts irrigation scheme (Figure 3.1) is located on the border of the Northern Cape, 
North West and Free State provinces. Nearby towns include Jan Kempdorp, Hartswater and 
Pampierstad.  At 36 950 ha in size (Gerber, 2006), Vaalharts is the largest irrigation scheme 
in South Africa, but is relatively small in comparison to irrigation schemes in the United 
States, Canada, Australia, Sudan and Egypt. 
 

 
Figure 3.1  Vaalharts irrigation scheme. 
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Vaalharts was selected because it is the irrigation scheme in South Africa with the most 
available information and data (including digitized soil maps). Vaalharts is also known to 
have waterlogging problems, although an intensive drainage system is in place. Several 
waterlogging studies have been done on this scheme, which can be used as reference for 
this study. Waterlogging is a much bigger problem than salt accumulation at Vaalharts for 
two reasons: the good quality irrigation water (and good quality drainage water) and the fact 
that calcium is the dominant cation in the soil and water. 
 
The Vaalharts area is known for its sandy soils (Figure 3.2), which are prone to waterlogging 
and salinization as well as compaction (Maisela, 2007). Typically the soils in the scheme 
consist of 8% clay, 2% silt, 68% fine sand and 22% medium and coarse sand (Streutker, 
1977).  The main crops planted in the area are maize, wheat, barley, lucerne and 
groundnuts (Kruger et al., 2009).  These annual cash crops are mostly planted on a 
rotational basis.  Large areas were planted with permanent crops such as pecan nuts in the 
last 5 years.  The majority of the soils on the Vaalharts irrigation scheme are irrigation 
potential class 1 and class 2 soils (Figure 3.2). The scheme receives its irrigation water from 
the Vaal and Harts Rivers. The irrigation comprises mostly flood irrigation (45%), while pivot 
irrigation contributes up to 41% (Aurecon, 2010).  Vaalharts is situated at an altitude of 1175 
m above mean sea level and is known for its long warm summers and cold winters with 
occurrence of frost, hail and storms (Gerber, 2006). The area receives a mean annual 
rainfall of 450 mm with most (89%) of this precipitation occurring from October to April 
(Maisela, 2007). 
 

 
Figure 3.2  Irrigation potential of soils at Vaalharts. 
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3.4 Loskop Irrigation Scheme 

The Loskop Dam, built on the farms Loskop and Vergelegen, is situated in the Olifants River 
approximately 32 km south of Groblersdal in the Mpumalanga and Limpopo Provinces 
(Figure 3.3).  The largest part of the catchment area is situated on the Highveld plateau at an 
altitude of more than 1 500 m above mean sea level; the remaining part is on slopes of the 
plateau in the Lowveld.  The mean annual runoff is approximately 451 million m3. The 
catchment area of the dam is 12 300 km2 and at full supply level its surface area is 2 350 ha. 

 
Figure 3.3  Loskop irrigation scheme. 
 
In 1917 the first private dam was completed on the farm Rooikraal. Around 1925, after the 
successes of small irrigation schemes, the Hereford Irrigation Board was founded to supply 
irrigation water to an area of about 2 140 ha situated a few kilometres downstream of the 
present Loskop Dam. The early success of this scheme gave rise to a petition which resulted 
in studies of the Hereford Scheme, as well as in a soil and a topographical survey of the dam 
basin. This paved the way for the commencement of construction of the Loskop dam in 
1934.  
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Figure 3.4  Soil irrigation potential at Loskop. 
 
The original soil survey, done on a 1:12 000 scale by Van der Merwe (1934), was used for 
the planning of the Loskop irrigation scheme and base map for developing the irrigation 
potential map. Several hundred observations were made and samples were analysed during 
this soil survey.  The majority of the soils in the study area have a clay topsoil content of 
about 20% and a clay subsoil content of 28%. The effective depth is mostly between 400 
and 800 mm. The scheme is characterized by large areas of plinthic soils and other areas of 
very stony, shallow soil.  The southern section of the scheme has the highest irrigation 
potential, while the north-western section has the lowest irrigation potential. Waterlogging 
conditions (mostly perched/hanging water tables and natural fluctuating water tables) are 
common on the scheme. A large number of reports about waterlogging and “salinity” in the 
Loskop irrigation scheme have been made over the last 70 years which is indicative of the 
relatively low irrigation potential of the area. 
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The main crops grown on the Loskop irrigation scheme are citrus, table grapes, maize, 
wheat, soya bean, cotton, tobacco and groundnuts. 
 

3.5 Makhathini Irrigation Scheme 

The Makhathini Flats cover the floodplains on either side of the Pongola River, stretching 
from just below the Jozini Dam to the confluence of the Pongola and Usuthu River on the 
Mozambique border (Figure 3.5). The Makhathini Flats cover about 677 800 ha, of which 
106 000 ha have relatively high agriculture potential. At present only 3 900 ha are under 
irrigation, where 276 farmers are settled leasehold on individual plots (Engineering News, 
2002). 
 
The main crops planted in the area include sugarcane, maize, cotton and a variety of 
vegetables. 

 
Figure 3.5  Makhathini irrigation scheme. 
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The majority of the soils on the irrigation scheme are characterized by a relatively high silt 
and clay content (silt plus clay content between 20 and 45%) (Figure 3.6). The geology of 
the area is strongly influenced by recent marine deposition and the localized areas that are 
salt-affected can be directly associated with the geological material. 
 
The high silt plus clay content of the soil has a negative influence on the internal drainage 
capacity and the infiltration rate of the soils. Temporary perched water tables can be directly 
associated with the low infiltration and hydraulic conductivity of the soil. Poor project 
management (poor irrigation equipment and water works maintenance) and irrigation 
planning in the area are a major cause of localized waterlogging and salt accumulation 
(Figure 3.7). 
 

 
Figure 3.6  Soil irrigation potential at Makhathini. 
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Figure 3.7  Waterlogged and salt-affected soils on the marine sediments of the Makhathini 
flats.  

3.6 Olifants River Irrigation Scheme 

Olifants irrigation scheme (Figure 3.8) was selected because it is the biggest irrigation 
scheme in the winter rainfall region in South Africa. Economic activity in the Olifants River 
catchment is concentrated on commercial, irrigated agriculture with approximately 90% of 
the total water used for irrigated agriculture. 

 
Figure 3.8  Olifants irrigation scheme. 
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The Olifants irrigation scheme lies along the west coast of South Africa, beside the cold 
Benguela current of the Atlantic Ocean and is situated near the towns of Klawer, Vredendal, 
Lutzville and Koekenaap in the Western Cape Province. The Olifants River catchment is the 
second largest in South Africa, covering over 46 000 km2.  The river originates in the 
Cederberg mountain range 100 km north of Cape Town and enters the Atlantic Ocean near 
Strandfontein (Morant, 1984).   
 
The summer months, November to February, are very warm and dry, and are characterized 
by extremely high evaporation losses.  Climate is extreme, with summer temperatures 
reaching 45°C in the Vredendal/Koekenaap area. According to Rudman et al. (1978) the 
annual rainfall for Lutzville is 127 mm and for Klawer is 218 mm.  The study area receives 
winter rainfall, with almost all the rainfall between May and August.  The lowest temperatures 
in winter are 5-10°C.  Frost occurs in winter, but is rare. The highest temperatures in 
summer are mainly between 25 and 30°C, but it is not unusual to record temperatures above 
40°C. 
 
The main storage dam in the catchment area is the Clanwilliam Dam situated on the Olifants 
River (with a capacity of 127 million m3) upstream of the town of Clanwilliam. The irrigation 
scheme is serviced by an open concrete canal system. The main canals stretch over 280 km 
(60 km for secondary canals). The system operates on a ”just-in-time” basis, using a water 
demand scheduling system managed by the Lower Olifants River Water User Association. 
 
The majority of the irrigated area is found on alluvium and calcrete of Quaternary age, with 
soils of the Hutton, Oakleaf, Kimberley, Plooysburg and Gamoep soil forms dominant. 
Shallower soils are mostly associated with schist and limestone of the Gifberg Formation, 
Van Rhynsdorp Group. Shallow “dorbank” soils of the Garies form are common in the area, 
but have a relatively high irrigation potential after deep cultivation (Figure 3.9). 
 

 
Figure 3.9  Olifants River catchment soil types. 
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Waterlogging is a bigger problem than salt accumulation in the Olifants River catchment 
because some of the irrigation plots are located in the flood plain of the river and drainage of 
the higher lying terraces occurs to the lower terraces (Figures 3.10 and 3.11).  The highest 
concentration of salts is found west of Lutzville.  The majority of the salinity, sodicity and 
alkalinity surveys for the area were done between 1930 and 1950.  The use of good quality 
water of the Olifants River resulted in the leaching of harmful salts that were problematic in 
the past.   
 

 
Figure 3.10  Waterlogged and salt-affected soils near Vredendal. 
 

 
Figure 3.11  Terraces in the Olifants irrigation scheme. 
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3.7 Tugela River Irrigation Scheme 

The Tugela irrigation scheme (Figure 3.12) is characterized by a relatively high rainfall 
resulting in natural waterled conditions. Irrigation and dryland farming are intertwined. 
Farmers use water directly from the Thukela, Little Thukela and UMtshezi Rivers or the 
canals running therefrom. The Little Thukela supplies a canal in which gravity delivers 
irrigation water for approximately 10 km.  Over the last 30 years farming practices have 
changed from furrow irrigation (<30% water efficient) and overhead sprinkler irrigation (45-
55% water efficient) to an almost exclusive use of centre pivot systems (80-85% water 
efficient).  
 

 
Figure 3.12  Tugela irrigation scheme. 
 
No detailed soil survey is available for the study area.   However, the well-known study “Soils 
of the Tugela Basin” by Van Der Eyck et al. (1969), that forms the foundation of the current 
South African soil classification as done in the area. A large section of the study area falls 
within land type Ac437 (red-yellow apedal, freely drained soils), with a small south-eastern 
section in land type Ca115 (Plinthic catena: upland duplex and/or margilitic soils common). 
The geology of these land types consists mostly of shale, siltstone and mudstone of the 
Estcourt Formation, and unconsolidated layered sediments of the Masotcheni Formation 
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with small areas of dolerite and alluvial deposits. In land type Ac437 the dominant soil type 
consists of deep (800-1200 mm) Hutton soils which comprise 37% of the land type. These 
Hutton soils have 25-35% clay in the A-horizons and 30-50% in the B-horizons, with the 
texture ranges from clay loam to clay. Various sub-dominant soil forms also occur, including 
the deep Clovelly soil form (22% of land type with 20-35% clay), shallow Mispah and 
Glenrosa soil forms (11.6% of land type), deep Dundee and Oakleaf forms (8% of land type) 
and the medium depth Westleigh and Avalon soil forms (7% of land type). In the south-
eastern section of the study area, land type Ca115 consist of numerous soil types of which 
the dominant form is the medium depth Avalon soil form (24% of land type) with 28-35% clay 
in the A horizon and 30-50% clay in the B-horizons. These soils have textures ranging from 
fine sandy clay loam to clay and are characterized by Apedal B-horizons. The sub-dominant 
soil types are from the medium depth Longlands form (13% of land type), the shallow 
Westleigh form (11% of land type), soils from a duplex soil association, namely Swartland 
(6%) and Valsrivier (3%) soil forms, and patches of Estcourt (5%), Clovelly (4%), Cartref 
(3.5%) and Oakleaf (3%) soil forms (Stronkhorst et al., 2010). 
 
The study area falls within the Moist Tall Grassveld Bioclimatic Region of KwaZulu-Natal or, 
according to Mucina and Rutherford (2006), in the Northern KwaZulu-Natal Moist Grassland 
or KwaZulu-Natal Highland Thornveld. The area has an average annual rainfall of 840 mm, 
ranging between 710 and 1 120 mm. The mean annual temperature is 17 ºC with average 
maximum and minimum temperatures of 24 and 10 ºC, respectively. Frost is moderate with 
occasional severe frosts during winter. The study area mainly has summer rainfall during the 
months of August to May (Stronkhorst et al., 2010). Due to the relatively high rainfall, 
pastures is mostly only under supplementary irrigation. The relatively high rainfall and low 
evapotranspiration also result in natural waterlogging conditions in some clayey soils and in 
the lower lying terrain units. 
 
The geological history of the area has resulted in poor quality, shallow, steep, rocky and 
highly erodible soils in the south and east. Soils in the central and northern areas are less 
susceptible, partly because the topography tends to be undulating rather than broken or 
steep. A large portion of soils in the Winterton and Bergville areas, together with similar soils 
at Jozini, make up most of the Land Capability Class I soils that constitute only 2% of KZN 
soils. The irrigation potential of the soils is, however, considerably lower, because of the 
tendency of the soils to have shallow water tables. 
 

3.8 Breede River Irrigation Scheme 

The Breede River irrigation scheme is one of South Africa's primary vine and deciduous fruit 
growing areas. The greater portion of the irrigated lands, is situated in the middle part of the 
Breede River Valley between Worcester and Bonnievale (Figure 3.13). 
 
Irrigation in the valley began in the 18th century. As the valley lies in the winter rainfall region, 
most of the runoff occurs during the winter months, while water is mainly needed during the 
irrigation season between October and April. The Brandvlei Dam was built in 1922 to supply 
irrigation water for the middle part of the Breede River Valley. When the demand increased, 
the walls of the Brandvlei and Kwaggaskloof Dams were raised in 1983 to combine the two 
dams into the Greater Brandvlei Dam with full supply level capacities of 303.8 x 106 m3 and 
170.9 x 106 m3 respectively, i.e. a total of 474.7  x 106 m3 (Kirchner, 1995). 
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Figure 3.13  Breede River irrigation scheme. 
 
The Breede River originates in the Ceres Valley, approximately 100 km north-west of Cape 
Town, and flows in a south-easterly direction where it reaches the Indian Ocean after 320 
km at Witsand. The middle part of the valley lies between the Riviersonderend Mountains in 
the south and the Langeberg Mountains in the north. The mean annual rainfall measured in 
the area between 1966 and 1986 was 273 mm, while the A-pan evaporation reached about 
1790 mm per year (Kirchner, 1995). 
 
During the last 30 years, various research projects dealt with different aspects of and factors 
possibly contributing to the growing salt load in the river. The Water Research Commission 
took a very active role in the co-ordination and funding of these projects which aimed at the 
better understanding and quantification of the salinization processes in the Breede River 
(Bertram, 1989; Bester et al., 1990; Flugel, 1989a, 1989b; Greeff, 1989, 1990, 1991; Jolly, 
1990; Kienzle, 1988, 1989; Kienzle et al., 1990; Moolman & Weber, 1979; Moolman, 1982; 
Moolman et al., 1983; Ninham Shand, 1985). Zietsman et al. (1996) also did a study on the 
identification of irrigated land by means of satellite remote sensing in the Breede River 
valley. 
 
According to Lambrechts (1979), soils of the Hutton 22, Clovelly 22, Constantia 12, La Motte 
12 and Champagne 10 developed on quartzitic fold mountain ranges in the area. On 
pediments and valley floors the soils consist of: Clovelly 21/22, Constantia 11/12, La Motte 
11/12, Fernwood 32 and Champagne 11. In contrast, Glenrosa, Swartland, Sterkspruit, 
Estcourt and Kroonstad are likely on heavy-textured or duplex soils derived from granites 
and shales in the area (Figure 3.14). Alongside the Breede River some irrigation also occurs 
on Dundee, Oakleaf and Fernwood soils. 
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Figure 3.14  Breede River soil types. 
 
Groundwater encountered in some of the formations adjacent to the Breede River upstream 
of the Zanddrift and the Angora Canal off-takes is brackish or saline. One of the factors 
influencing the salinity of the water in the Breede River might therefore be a contribution 
from these formations (Bertram, 1989). Groundwater is encountered in rocks of all geological 
ages. With the exception of the alluvium, all aquifers are secondary aquifers, i.e., the 
groundwater moves primarily along faults, fractures and joints. Table Mountain Sandstone 
(TMS) which forms the mountain ranges is an important, if not the most important aquifer in 
the area. Because it consists of pure, fractured sandstone, TMS water has a low salt 
concentration and the aquifer has a comparatively high transmissivity. Where it is overlain by 
less permeable formations, it becomes confined and water may drain along joints, fractures 
and faults into overlying aquifers (Kirchner, 1995). 
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Figure 3.15  Visual evidence of secondary salt accumulation due to waterlogging in the 
Breede River valley. 
 

3.9 Sundays River Irrigation Scheme 

To secure water supply to the Sundays River Valley, water from the Orange River Project 
was linked to Darlington Dam in 1978. This water dilutes the salinated water from the 
Sundays River and therefore presents an immediate benefit by improving the water quality 
for citrus farming in the lower Sundays River Valley.  Approximately 25% of South Africa’s 
navel oranges and 50% of the country’s lemons are produced in the Sunday’s River valley. 
The area under irrigation is about 17 000 ha. 
 
The Sundays River irrigation area (Figure 3.16) has been subject to the problems of 
salinization and waterlogging of the soil under irrigation from as early as 1930 (Hartmann & 
Nell, 1993).  As far back as 1927 farm mismanagement was blamed for impaired drainage 
and declining soil quality (Shone, 1976).  In 1981 the problems of chlorosis, defoliation, die-
back, unseasonal fruit set, root disease, varying yields and quality deterioration among 
others led to an attempt to establish the causal factors. Physical characteristics of the soil 
were identified as responsible for poor soil drainage.  Management practices such as 
orchard traffic and extensive levelling increase soil compaction, and heavy irrigations then 
exacerbate the problem and retard gas exchange. These conditions need light frequent 
irrigation applications, and hence a finer resolution of control over the amount and timing of 
water applied. 
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Figure 3.16  Sundays River irrigation scheme. 
 
The soils in the Sundays River Valley are generally calcareous, being derived from 
transported materials and limestone. Weathering and soil formation appears largely to be in 
situ with slight influence of locally transported material on the steeper slopes (Figure 3.17). 
Soils are divided predominantly in two series of alluvial terraces: lower terraces in close 
proximately to the Sundays River and upper higher level terraces situated further away from 
the river.  The lower terrace soils are typically composed of deep, well drained, apedal to 
weakly structured loamy sands to sandy loams. The upper terrace soils are typically 
composed of shallow loamy sands overlying weakly to strongly structured sandy clay to 
sandy clay loams. The strongly structured soils typically exhibit signs of restricted internal 
drainage (Van der Merwe et al., 1989). They have been classified mainly in the Valsrivier soil 
form (Nell & Childs, 1992; Nell, 1993a, 1993b). 
 
The morphology of the Sundays River Valley area has been determined by the tectonic and 
drainage history of the region, which has resulted in a series of terraces developing in the 
Cretaceous rocks and river alluvium. Different terraces have been recognised, each 
consisting of an alluvial deposit overlying a boulder bed, which is thought to represent a 
former stream channel subsequently infilled by finer alluvium as the river migrated laterally 
(Ruddock, 1947). 
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Figure 3.17  Sundays River soil types. 
 
The Sundays River area falls within the transitional belt between the spring and winter 
rainfall maxima that exist to the north and south of the area, respectively (Stone, 1988). 
Consequently, rainfall occurs fairly evenly throughout the year, with slight maxima in spring 
and autumn. Average annual rainfall is between 300 and 400 mm, although extreme values 
ranging from 162 to 735 mm have been recorded (Schulze, 1965). Mean maximum daily 
temperatures range from 26°C in January to 19°C in July, and minima range from 15°C in 
January to 7°C in July. Extreme temperatures range from -4°C in winter to 42°C in summer 
(Schulze, 1965). Moisture loss through evaporation is high in the valley, with a mean 
monthly pan evaporation of 118 mm (Pearce, 1987). 
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Figure 3.18  Visual evidence of salt accumulation and waterlogging in the Sundays River 
irrigation scheme. 
  

3.10 Limpopo River Irrigation Scheme 

The Limpopo River irrigation scheme is located in the Limpopo Province and covers a total 
area of 8 538 ha.  The study area borders with Zimbabwe and Botswana and is west of 
Musina and east of Pontdrift (Figure 3.19). The Limpopo Water Management Area is the 
northern-most water management area in the country and represents part of the South 
African portion of the Limpopo Basin which is also shared by Botswana, Zimbabwe and 
Mozambique. 
 

 
Figure 3.19  Limpopo River irrigation area. 



68 

The majority of aquifers in southern Africa are associated with secondary porosity, the 
Limpopo River Basin features some of the few alluvial aquifers in the region, with subsurface 
flow of the Limpopo River and some of the tributaries providing groundwater to irrigation 
farmers, towns and mines along the main stem river during periods of low flow. The 
groundwater quality in the riverbed of the Limpopo River decrease with depth, with negative 
consequences, especially during dry periods.  According to Nell (1994, 1998) there is an 
increase in mineralization of the Limpopo River water from Pontdrift (median EC 74 mS/m) 
to Oosgrens (median EC 137 mS/m).  Salinity is especially problematic during the dry 
months, between August and November.  The area is a flat to undulating plain at an altitude 
of 250-650 m, falling away towards the Limpopo River. Paleo-drainage channels of the 
Limpopo River are the most prone to waterlogging and salt accumulation, especially in the 
Pontdrift area (Figure 3.20). 
 
The area is underlain mainly by gneiss and other igneous rocks of the Beit Bridge Complex, 
with some basalt of the Letaba Formation. The irrigated area are dominated by alluvial 
deposits of the Quaternary System. According to Botha et al. (1988), the soils alongside the 
river consist of a loamy sand texture and belong to the Vaalrivier Series (Oa33) or Letaba 
Series (Oa26) of the Oakleaf Form, which is relatively stable. Just outside the floodplain of 
the river, however, the soil is dominantly duplex (sandy topsoil and clayey subsoil which is 
prone to erosion) and belongs to the Lindley Series (Va41) of the Valsrivier Form with a 
sandy clay loam to sandy clay texture. The soils formed from alluvium are moderately deep 
to deep, dark brown, weakly structured, mainly calcareous, sandy clays and clays. The 
gneiss gives rise to shallow or moderately deep non-saline soils, mainly reddish-brown 
apedal, eutrophic to calcareous sandy loams with zones of lithosols. 

 
Figure 3.20  Waterlogging and salt precipitation in paleo drainage channels of the Limpopo 
River. 
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3.11 Vaal and Orange Rivers Irrigation Schemes near Douglas 

The Douglas Irrigation Scheme is located in the Northern Cape Province, about 100 km 
south-west of Kimberley. It covers a total area of 30 869 ha (Figure 3.21).  
 

 
 
Figure 3.21  Vaal and Orange Rivers irrigation areas near Douglas. 
 
The Douglas Weir on the lower Vaal River and the Orange-Riet Irrigation Scheme on the 
Riet River were built by the Department of Water Affairs specifically to provide irrigation 
water to farmers along the lower Vaal River and the Riet River downstream of Jacobsdal. 
However, farmers in the area have complained that the high salt content of the irrigation 
water is leading to yield losses and a gradual salinization of the soils. At present, both 
irrigation schemes are operated to be conservative with water, and only sufficient water is 
supplied to meet irrigation demands. This means that they are operated as closed systems 
and salts tend to accumulate in some parts of these schemes. As a result, high salinities are 
recorded in these areas. 
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The Douglas Weir together with the Louis Bosman Canal, and the old Orange-Riet 
Government Water Scheme together with the Orange-Riet Canal, are the two main water 
transfer and storage schemes in operation in the study area. Both these schemes involve 
the pumping of Orange River water into canals and the transfer of this water to irrigators 
along the Vaal and Riet Rivers, respectively (Moolman & Quibell, 1995). 
 
According to Armour (2002), 28% of the area is flood irrigated and 70% is sprinkler irrigated. 
The trend is towards conversion to centre pivot irrigation, which is a potential problem as it is 
difficult to leach for salinity management with centre pivot irrigation systems. In other areas 
where salinity is a problem, flood irrigation on laser-levelled lands seems to be the most 
efficient and effective. Most of the vineyards in the study region, which predominantly occur 
in Bucklands and Atherton, are irrigated with micro and drip irrigation systems. The larger 
farms which occur in Olierivier, Vaallus and New Bucklands predominantly have centre pivot 
irrigation systems. 
 
According to Nell (1995), 54% of the entire area under irrigation is situated on high irrigation 
potential (class 1) soils, whilst 12% is on medium (class 2) soils and 34% on poor (class 3) 
soils.  However, these soils are not evenly distributed throughout the system.  The Riet River 
Settlement is dominated by good soils (81%) while the soils along the Riet River are of 
mostly poorly (47%) and moderately (30%) suited for irrigation. Irrigation along the Riet River 
Arm is situated on predominantly medium (53%) and some poor soils (4%), while as much 
as 72% of the Bucklands and Atherton section is on poor soils.  Although only 43% of the 
farms along the Douglas Weir Basin are irrigating poor and medium soils, two-thirds of the 
Vaallus estates are situated on poorly suited for irrigation soils. 

 
Figure 3.22  Ponding in wheel rut on problematic duplex soils (Douglas). 
 
According to Moolman & Quibell (1995), water from the Orange River entering the Riet River 
and the Douglas Weir via the Orange-Riet and Louis Bosman canals is dominated by 
calcium and carbonate (CO3) ions, while the industrial and mining effluents from higher 
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upstream in the Vaal River produce water dominated by the sulphate (SO4) ion. When the 
water is used for irrigation, the calcium and carbonate ions tend accumulate in the soil.  
However, the sodium and chloride ions are more mobile and are thus, typically, the most 
common ions in irrigation return flows.  As a result of this the water in the Riet River 
becomes increasingly sodium chloride (NaCl) dominated downstream, as the volume of 
return flows becomes larger. Boron concentrations in the irrigation return flows are high, 
being highest in the lower reaches of the Riet River and in the region of Vaallus. Ninham 
Shand (1985) estimated that 512 ha out of 1 200 ha near Douglas were waterlogged. 
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4 REFERENCE DATA COLLECTION 

4.1 Methodological Framework  
Due to the costs involved in soil sampling and analysis, the only viable option for monitoring 
waterlogging and salt accumulation over large areas (i.e. irrigation scheme level) is to use 
existing soil maps (where available), terrain data and satellite imagery to identify areas 
where these processes are likely (or unlikely) to occur. By combining various sources of data 
and a priori knowledge, large areas can be eliminated from further consideration and specific 
areas can be highlighted as being potentially affected. 
 
An experimental approach was taken in developing a suitable methodology for quantifying 
and monitoring waterlogging and salt accumulation. Various sources of data and techniques 
were applied and compared to empirical (reference) data to determine their potential for 
monitoring waterlogging and salt accumulation (Chapter 6). The techniques were applied 
within three main strategies (Figure 4.1). 
 

 
Figure 4.1 Model development strategy 
 

The first approach attempted to use remote sensing to directly detect salt accumulation by 
studying the spectral characteristics of soils that are salt-affected. A satellite image with a 
very high spatial and spectral resolution was used for this experiment to reduce the influence 
of image resolution on the spectral, statistical and image classification techniques that were 
evaluated. The main aim of these experiments was to investigate the relationships between 
known affected areas (as determined using EC measurements) and a range of image 
features (bands and indices), with the purpose of determining whether these relationships 
can be used to accurately predict the spatial distribution of salt accumulation 
 

The second component of the methodological framework was to evaluate whether an 
indirect remote sensing approach can effectively be used to monitor salinity levels.  In this 
approach vegetation response to saline conditions was investigated.  Two different data 
sources were evaluated at two different scales (field and scheme). The first series of 
experiments made use of a very high resolution (0.5 m) WorldView-2 satellite image to 

Bare soil analyses (direct RS approach) 
Techniques: Spectral analyses; Statistical analyses; Supervised classification 

Data sources: VHR imagery 

Crop condition modelling (indirect RS approach) 
Techniques: Spectral analyses; Statistical analyses; Supervised classification 

Data sources: VHR imagery; DEMs; soil data 

Accuracy 

assessments 

Model 

development 

Within-field 
anomaly 
detection 

Terrain analysis 
Techniques: Statistical analyses; Rule-based and supervised classification 

Data sources: SRTM DEM; SUDEM 
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detect changes in vegetation response to saline conditions within a single (lucerne) field 
(section 5.2).  The influence of image resolution was also examined.  The second series of 
experiments made use of high (2.5 m) resolution SPOT-5 images. These experiments were 
carried out on a variety of crops in two dissimilar irrigation schemes (Vaalharts and Breede 
River), mainly to determine to what extent statistical and classification techniques are 
influenced by large variations in how different types of crops respond to saline conditions 
(section 5.3). 
 
The final set of experiments focussed on investigating the relationships between terrain data 
and waterlogging and salt accumulation in the Vaalharts and the Breede River study areas 
(section 5.4). A series of statistical analyses were carried out to find the continuous 
relationships between a large set of terrain features derived from three different DEMs. 
Machine learning algorithms were also employed to model waterlogging and salt 
accumulation. 
 
Each experiment was assessed in terms of its accuracy and in the context of finding an 
operational solution to quantifying and monitoring waterlogging and salt accumulation at 
field, farm and irrigation scheme level at national scale. The techniques and data sources 
that showed potential were considered for incorporation in an operational solution. Some 
techniques were excluded from investigation based on the outcomes of the experiments. 
 

Initially the principle of “conversion of evidence” was used for developing an operational 
solution. This strategy assumes that if a particular area is identified as being susceptible for 
salt accumulation by more than one of the model components, then that area will receive a 
higher overall susceptibility score than an area for which only one (or none) of the 
components registered a likelihood of waterlogging and salt accumulation. This is a common 
geographical information system (GIS) and multi-criteria decision making (MCDM) approach 
to spatial analysis. However, during the course of the study it became clear that this strategy 
is only sensible if the output of each component is of acceptable quality, as errors can easily 
be propagated. Also, the effort and cost of using multiple data sources and applying multiple 
approaches and techniques over large areas also needed to be taken into consideration in 
designing an operational solution. The “conversion of evidence” strategy was consequently 
abandoned in favour of a method that makes use of a single data source that is available at 
national level and that combines direct and indirect remote sensing methods. The resulting 
method, called within-field anomaly detection (WFAD), is discussed in detail in Chapter 6. 

4.2 Field survey 

Three field surveys were carried out to collect suitable reference data (ground truth) in the 
Vaalharts Irrigation Scheme (5th and the 8th June 2012; 12th and the 14th September 2012; 
and 2nd and the 5th April 2013), two field surveys were carried out in the Loskop Irrigation 
Scheme (9-11 January 2013; and 25-28 February 2013).  The Olifants River Irrigation 
Scheme near Vredendal was visited between the 5th and the 8th June 2013; Tugela Irrigation 
Scheme between Bergville and Winterton between 5th and 8th August 2013;  Breede River 
Irrigation Scheme between Worcester and Robertson between the 21st and 25th January 
2014; Sundays River Irrigation Scheme between Addo and Kirkwood between the 14th and 
19th January 2014; Limpopo River Irrigation Scheme between Mussina and Pontdrift 
between 30th July and the 4th August 2014; Makhathini Irrigation Scheme between the 16th 
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and 18th January 2013 and again between the 6th and 9th March 2013;  and the Vaal and 
Orange River Irrigation Scheme near Douglas between the 6th  and 9th August 2014.  
 
The survey was conducted using a hand auger to a depth of 1.2 m, or shallower if a 
restricting layer such as rock was encountered to determine the depth and watertable depth  
The soil was considered as waterlogged if the water table was shallower than 1.2 m. The 
position of the observation and verification points was determined by GPS. 
 

4.3 Laboratory analyses 
Soil samples were analysed in the laboratories of the ARC-ISCW and Nvirotek according to 
methods described by the Non-Affiliated Soil Analysis Work Committee (1991).  A saturation 
extract was prepared and the values for electrical conductivity (ECe), Na, Ca, Mg, (SAR) 
were determined. The soil was considered as saline if the ECe was higher than 400 mS/m.  
About 900 samples were analysed (Appendix B to Appendix G). 
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5 EXPERIMENTS TOWARDS AN OPERATIONAL SOLUTION FOR 
MONITORING SALT ACCUMULATION AND WATERLOGGING 

This chapter provides an overview of four series of experiments. The first set of experiments 
(section 5.1) focuses on the direct method and compares remotely-sensed multispectral 
imagery of bare soil with in situ data (soil analyses) to investigate whether such an approach 
can be used for operational salt accumulation monitoring in South African irrigation 
schemes. The next two sets of experiments focus on the indirect remote sensing approach. 
The first set concentrates on monitoring vegetation responses to saline conditions at field 
scale (section 5.2), while the second set focuses on the same approach but at scheme level 
(section 5.3). The fourth and final set of experiments investigates the relationships between 
affected areas and terrain data (section 5.4). 
 
The chapter concludes with a synthesis in which the strengths and weaknesses of each of 
the evaluated methods are discussed. Each method is also assessed in terms of its value for 
operational monitoring of salt accumulation and waterlogging at scheme level. Suggestions 
on how some of the limitations of the evaluated techniques can be addressed are also 
made. 
 

5.1 Remote sensing direct approach: Bare soil analyses at sub-scheme level3 
As explained in Section 2.5.1.2, salt-affected soils have higher reflectance values in the 
visible and near-infrared (NIR) regions of the electromagnetic spectrum and that salt-
affected soils with visible surface salt encrustations are smoother than non-saline surfaces 
and cause high reflectance in the visible and the NIR regions of the spectrum. The colour 
and the surface roughness of salt-affected soils influence their spectral properties, but 
increased moisture, ferric oxides and clay decreases reflectance and makes it difficult to 
identify salt-affected soils (Metternicht & Zinck, 2003). These findings led to the development 
of several salinity indices (SIs) calculated from image bands which have been shown to be 
effective in discriminating saline soils from unaffected soils (Fernandez-Buces et al., 2006; 
Abbas & Khan, 2007; Abood et al., 2011; Abbas et al., 2013). 
 
Most studies that investigated the use of remote sensing methods for detecting and 
monitoring salt-affected areas were carried out using medium resolution, multispectral 
imagery such as those acquired by Landsat (30 m), ASTER (15 m) or SPOT-5 (10 m). A 
notable exception is Abood et al. (2011) who made use of very high resolution (VHR) 
WorldView-2 imagery for detecting salt-affected soils in Mesopotamia using normalized 
difference salinity indices (NDSIs) and random forest (RF) supervised classification. The 
results were very promising and given that salt-accumulation in South Africa usually occurs 
in small patches, VHR imagery also holds much potential for detecting and delineating such 
areas. 
 
The aim of this component of the research was to evaluate the use of WorldView-2 (WV2) 
imagery for mapping salt accumulation in conditions where salt accumulation is relatively 
moderate. The study expands on the work by Abood et al. (2011) by evaluating both 
                                                 
3. The content of this section was adapted from the MSc thesis of Divan Vermeulen and an article that 
was submitted for publication in a scientific journal. 
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supervised and rule set classification approaches. The rule sets are based on three 
methods, viz. 1) Jeffries-Matusita (JM) distance, 2) regression modelling, and 3) 
classification and regression trees (CART), while five supervised classification algorithms, 
viz. 1) k-nearest neighbour (kNN), 2) maximum likelihood (ML), 3) support vector machine 
(SVM), 4) decision tree (DT) and 5) RF are assessed. 
 
5.1.1 Study area and data collection 

The analyses were conducted in a 100 km2 section of the Vaalharts study area (Figure 5.1). 
A WV2 image, captured on 23 May 2012, was used. The image has a spatial resolution of 
0.50 m (0.46 m at nadir) for the panchromatic band and 2 m (1.84 m at nadir) for the 
multispectral bands (DigitalGlobe, 2015). WV2 was chosen because it offered the highest 
combination of spatial and spectral resolution at the time. The sensor provides eight 
multispectral bands, namely coastal blue (CB), blue, green, yellow, red, red edge (RE), near-
infrared1 (NIR1) and NIR2 (DigitalGlobe, 2015). 
 
A total of 51 in situ soil samples were collected during two field surveys which took place 
from June to September 2012. A clustered, random sampling scheme was used. Soil 
samples were collected along transects or in regular grids in six sampling sites (Figure 5.1). 
 
5.1.2 Image pre-processing 

Pre-processing refers to those operations that are preliminary to the main analysis and 
typically includes radiometric calibration, atmospheric correction of the digital numbers, and 
geometric rectification (Campbell, 2002; Lillesand et al., 2004). 
 
Twelve ground control points (GCPs) collected during the field survey and the 5 m resolution 
Stellenbosch University digital elevation model (SUDEM) (Van Niekerk, 2012) were used to 
orthorectify the WV2 image. The ATCOR-2 model was used for radiometric and atmospheric 
corrections (Richter, 2011). All pre-processing operations were performed by making use of 
PCI Geomatica 2013 software. 
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Figure 5.1  Location of the six sample collection sites within the Vaalharts irrigation scheme 
and WorldView-2 image. 
 
5.1.3 Feature set development 

A feature set comprising 68 input variables was considered for differentiating salt-affected 
from unaffected areas (Table 5.1). All of the WV2 bands and several SIs developed 
specifically for the direct detection of salt-affected soil (Abbas & Khan, 2007; Abbas et al., 
2013; Abood et al., 2011; Fernandez-Buces et al., 2006; Khan et al., 2005; Setia et al., 2013; 
Sidike et al., 2014) were included in the feature set. They are: 
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where  S1 to S6 are the proposed SIs; 
  Blue is the blue and CB bands; 
  Green is the green and yellow bands; 
  Red is the red and RE bands; and 
  NIR is the NIR1 and NIR2 bands. 
 
In a comparison of SIs, Abbas & Khan (2007) found S3 to have the highest correlation with 
observed soil EC, while Abbas et al. (2013) found that S4 provides better results. The 
normalized difference salinity index (NDSI) has been successfully employed in several 
studies (Abood et al., 2011; Iqbal, 2011; Khan et al., 2005). The index uses the red and NIR 
regions of the spectrum and can be calculated as follows: 
 

      Equation 5.1 
 
Table 5.1  Features considered for the direct analysis 

Type Features # of 
features 

Spectral features Mean CB, blue, green, yellow, red, RE, NIR1, NIR2 8 
Salinity indices Mean S1, S2, S3, S4, S5, S6, NDSI1, NDSI2, NDSI3, 

NDSI4, NDSI5, NDSI6, COSRI1, COSRI2, COSRI3, 
COSRI4, COSRI5, COSRI6, COSRI7, COSRI8 

14 

Salinity indices (S1, 
S2, S3, S4, S5, S6) 
modified for WV2 

bands 

Mean S1a, S1b, S1c, S1d, S2a, S2b, S2c, S2d, S3a, 
S3b, S3c, S3d, S4a, S4b, S4c, S4d, S5a, S5b, 

S5c, S5d, S6a, S6b, S6c, S6d 

24 

Texture features 
(3×3; 5×5; 7×7) 

GLCM 
Histogram 

Contrast, entropy, homogeneity, variance 
Energy, entropy, variance 

21 

Image 
transformations 

Mean PCA1 1 

 
Abood et al. (2011) proposed several variations of the NDSI based on selected WV2 bands. 
The six NDSI indices included in our feature set are: 

 
 

 
 

 
 

where  Yellow is the yellow band; 
  Red is the red band; 
  RE is the red-edge (RE) band; and 
  NIR1 and NIR2 are the NIR bands. 
 
Abood et al. (2011) found that the high soil reflectance in the visible bands (especially in the 
yellow band) makes NDSI1 useful in delineating salt-affected soils, but that NDSI2 provided 
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better results due to the relatively low reflectance of wet soils and water in the NIR2 band. 
NDSI4 and NDSI5 performed poorly, which was attributed to the low reflectance of salts in 
the red and RE bands. 
 
Fernandez-Buces et al. (2006) proposed a combined spectral response index (COSRI) to 
enunciate the combination of spectral responses of bare soil and vegetation. COSRI is 
defined as: 

     Equation 5.2 
 
Vegetated areas will result in large CORSI values due to high reflectance in the NIR bands 
and low reflectance in the visible bands, whereas negative index values will be yielded for 
clouds, water or salt-affected soils which have high reflectance values in the visible spectrum 
and low reflectance values with the NIR bands. Small concentrations of salt on the surface 
will result in index values close to zero (Fernandez-Buces et al., 2006). Wang et al. (2013) 
found COSRI to provide a good estimate of measured soil EC values (R2 = 0.72). 
 
For the purposes of this study, COSRI was modified for WV2 imagery. The CORSI based 
indices included in our feature set are: 

 
 

 
 

 
 
 
 

where  CB is the coastal blue band; 
  Blue is the blue band; 
  Green is the green band; 
  Red is the red band; 
  RE is the red edge band; 
  NIR1 and NIR2 are the NIR bands; and 

NDVI is the normalized difference vegetation index. 
 
Texture measures contain information on the spatial distribution of tonal variations, where 
tone is based on the varying shades of grey of cells in an image (Haralick et al., 1973). 
Baraldi & Parmiggiani (1995) define texture as the visual effect that is produced by the 
spatial distribution of tonal variations over relatively small areas, while Irons & Petersen 
(1981) describe tone as the brightness or darkness of a surface. Texture has been found to 
be useful for many remote sensing applications (Cai et al., 2010; Haralick et al., 1973; 
Odindi & Mhangara, 2013) including salt accommodation monitoring. Cai et al. (2010) 
classified salt-affected soils by making use of a SVM classifier and texture features. Results 
showed an improved overall accuracy (OA) with the inclusion of a single texture measure, 
but the best results were achieved by including a combination of several texture measures. 
The mean, variance and homogeneity texture measures were found to provide the best 
results for mapping soil salinity. Puissant et al. (2005) found that window sizes larger than 
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7×7 will contribute less to the separation of classes and that homogeneity is the optimal 
texture measure for remote sensing classifications. 
 
A principal component analysis (PCA) was performed on the multispectral WV2 bands to 
condense most (96%) of the spectral variance into a single component (Campbell, 2002). 
The resulting first principal component (PCA1) was included in the feature set and used as 
input to the texture measures. Texture measures were also carried out on the panchromatic 
band and each of the multispectral bands. This combination of input variables allowed the 
texture calculations to be assessed at all possible spatial and spectral resolutions offered by 
the WV2 image. Texture measures based on histogram statistics and second-order statistics 
computed from grey level co-occurrence matrices (GLCM) (Clausi, 2002; Haralick et al., 
1973) were evaluated. The histogram measures considered were energy, entropy and 
variance; the GLCM measures were contrast, entropy, homogeneity and variance. Three 
window sizes, namely 3×3, 5×5 and 7×7, were used for generating the texture measures. 
PCI Geomatica 2013 software was used to perform all the texture calculations. 
 
5.1.4 Separability analysis 

Feature selection has been shown to improve classification accuracies (Lu & Weng, 2007;  
Myburgh & Van Niekerk, 2013), especially when the number of training sets is 
disproportionally to the number of features (Myburgh & Van Niekerk, 2014a; Oommen et al., 
2008; Pal & Mather, 2004). The JM distance measure, as implemented in the SEaTH 
(SEparability and THresholds) software package (Nussbaum et al., 2006), was used to score 
the features according to class separation. The algorithm firstly identifies features that have 
the best separability between classes, and secondly the threshold of separation for each 
feature is determined (Gao et al., 2011; Heumann, 2011; Nussbaum et al., 2006). The JM 
distance is calculated as (Nussbaum et al., 2006): 
 

        Equation 5.3 
 
where  J is the JM distance; and 
  B is the Bhattacharya distance. 
 
The Bhattacharya distance (B) is the mean and standard deviation of the training samples of 
the two classes (Bhattacharya, 1943). The resulting J value ranges from 0 to 2, where J = 0 
indicates that the two classes are completely correlated and therefore inseparable, while J = 
2 indicates that the two classes are completely uncorrelated and separable. Lower values of 
J will consequently produce more classification errors (Gao et al., 2011; Heumann, 2011; 
Nussbaum et al., 2006). According to Nussbaum et al. (2006), Heumann (2011) and Odindi 
& Mhangara (2013), a J value of 2 indicates excellent intra-class separation; a value equal to 
or greater than 1.9 good separation; and a value below 1.7 indicates poor separation. J 
values less than 1 suggest a requirement for new training data (Heumann, 2011; Nussbaum 
et al., 2006). 
 
A limitation of the JM distance is the assumption that sample values within classes are 
normally distributed. In cases where this is not true, the threshold value might be 
substantially different, but the separability measure is still likely to be valid (Gao et al., 2011). 
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A more detailed discussion on the JM distance can be found in Nussbaum et al. (2006), Gao 
et al. (2011), Heumann (2011) and Odindi & Mhangara (2013). 
 
Each of the features in Table 5.1 was included in the separability analysis. Two classification 
schemes, namely a binary and a senary (six-class) scheme, were used for the separability 
analysis. The binary scheme is based on the quantitative soil EC measurements only and 
consists of a salt-affected (EC 400 mS/m) and an unaffected (EC <400 mS/m) class, while 
the senary scheme combines the soil EC measurements and the high, low or absent 
qualitative expression of visible salt accumulation manifestations (i.e. evidence of salt 
precipitation) on the soil surface at each sample location. The motivation for including the 
qualitative expressions was to better understand the importance of surface salt accumulation 
manifestations in distinguishing salt-affected soil from unaffected soil. The conjecture was 
that, because only the reflection of the soil surface can be observed using multispectral 
imagery, soils with visible manifestations of salt accumulation will be easier to discriminate 
from unaffected soils with no such manifestations. The features which provided the highest 
class separation (J value) and the accompanying threshold values were used to develop a 
set of rules which were then implemented in the eCognition 8.9 software package. 
 
5.1.5 Statistical modelling 

Regression analyses were used to analyze the statistical relationship between the measured 
soil EC and the spectral bands, SIs and texture measures. This was accomplished with IBM 
SPSS v20.0 software. Linear, logarithmic, inverse, quadratic, cubic, power and exponential 
regression models were employed. Stepwise multiple regression and partial least squares 
(PLS) regressions were also carried out. The latter has been shown to be very effective for 
salt accumulation modelling using spectral data (Mashimbye et al., 2012) as it reduces a 
large number of measured collinear spectral variables to a few non-correlated latent 
variables. This is done by utilizing a bilinear calibration method and using data compression 
(Cho et al., 2007; Hansen & Schjoerring, 2003; Mashimbye et al., 2012). A linear relationship 
is specified between a set of dependent variables and predictor variables, thereby extracting 
the orthogonal predictor variables and accounting for as much of the variation of the 
dependent variables as possible (Cho et al., 2007; Mashimbye et al., 2012). 
 
5.1.6 Supervised classification 

A supervised classification approach uses samples of known identity to classify pixels of 
unknown identity (Campbell, 2002; Rees, 2001). The classifiers considered in this study 
were kNN, ML, SVM, DT and RF. The kNN algorithm assigns a class to a pixel according to 
the k nearest trained pixels (Cover & Hart, 1967; Gibson & Power, 2000). It is therefore 
recommended to set k to be an odd value, so as to avoid ties (Campbell, 2002). The kNN 
algorithm is effective in classifying data that is not normally distributed, but assigns equal 
weight to all features even though some features are often more important than others. This 
can result in incorrect class assignments, especially if the input features were not carefully 
selected or if the samples do not adequate represent the target class (Cunningham & 
Delany, 2007). 
 
The ML classifier makes use of training data to estimate the means and variances of the 
classes by assuming the training data is normally distributed (Gibson & Power, 2000; Harris, 
1987). These estimates are then used to determine the probabilities for each class (Albert, 
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2002; Lillesand et al., 2004; Rees, 2001). According to Campbell (2007), ML is very sensitive 
to the quality of the training data and a decrease in accuracy has been observed with an 
increase in input features (Myburgh & Van Niekerk, 2013). 
 
The efficiency of SVM classifiers for remote sensing applications has been demonstrated by 
Lizarazo (2008), Li et al. (2010) and Petropoulos et al. (2012). Myburgh & Van Niekerk 
(2013) showed that SVM produces more accurate results than NN and ML for land cover 
mapping using SPOT-5 imagery. SVM determines the optimal separating hyperplane 
between classes (Novack et al., 2011) by focussing on the training samples close to the 
edge (support vector) of the class descriptors (Lizarazo, 2008; Tzotsos & Argialas, 2006). In 
cases where the relationship between classes and features are non-linear, the radial basis 
function (RBF) kernel is often applied (Li et al., 2010). See Vapnik (2000) and Huang et al. 
(2002) for a detailed mathematical formulation of SVM. 
 
A DT identifies relationships between multiple response (dependent) variables and an 
independent variable. DTs hierarchically split a dataset into increasingly homogeneous 
subsets known as nodes (Gómez et al., 2012; Novack et al., 2011; Pal & Mather, 2003; 
Punia et al., 2011). The algorithm reaches a leaf node by recursively partitioning the feature 
data. When a leaf node is reached, the class associated with the node is assigned to the 
observation (Pal & Mather, 2003). Each DT node is limited to a split in feature space 
orthogonal to the axis of the selected feature (Novack et al., 2011; Pal & Mather, 2003). 
Because DT classifiers capture non-linear relationships between variables, the data does not 
have to be normally distributed. It is also resistant to errors in the training data (Gómez et al., 
2012; Hladik & Alber, 2014). Each branch of the DT consists of divisions (or rules) of the 
most probable class. The most likely class of a pixel can therefore be classified by applying 
these rules (Lawrence & Wright, 2001). Some implementations of DTs also provide an 
indication of the importance of each feature. According to Campbell (2007) and Lawrence & 
Wright (2001), DTs often over-fit models and a pruning step is required. This involves cross-
validation during which the data is divided into subsets and results from some subsets are 
validated against other subsets (Campbell, 2002; Lawrence & Wright, 2001). 
 
Recently there has been a notable increase in the application of the RF classifier for remote 
sensing applications (Duro et al., 2012; Gislason et al., 2006; Immitzer et al., 2012; 
Lawrence et al., 2006) and it has been shown to be effective for many classification tasks 
(Lawrence & Wright, 2001; Gislason et al., 2006; Novack et al., 2011; Rodriquez-Galiano et 
al., 2012a, 2012b). RF is an ensemble classifier based on DTs, where each DT is generated 
using a random vector sampled independently from the input vector. Each DT casts a vote 
(Bosch et al., 2007; Breiman, 2001; Pal, 2005) and contributes to the assignment of the most 
popular class to the independent variable (Breiman, 2001; Rodriquez-Galiano et al., 2012a). 
The RF classifier requires two parameters: the number of trees and the number of active 
(predictive) variables. Rodriguez-Galiano et al. (2012a) found that stability in accuracy is 
achieved at 100 trees and that a small number of split variables are preferable to reduce 
generalization error and correlation between trees. They also found that RF has a low 
sensitivity (even lower than DT classifiers) to the training set size. This is attributed to the 
use of bagging during training dataset and feature selection (Breiman, 1996; Rodriquez-
Galiano et al., 2012a). Duro et al. (2012) showed that the number of trees and the number of 
variables considered at each split have an insignificant effect on OA. A more detailed 
discussion on the RF classifier can be found in Breiman (1996), Breiman (2001), Pal (2005) 
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and Rodriguez-Galiano et al. (2012a). Novack et al. (2011) demonstrated that RF is superior 
to DTs (Rodriquez-Galiano et al., 2012b) and SVM, while Immitzer et al. (2012) successfully 
applied RF for classifying WV2 imagery. 
 
The kNN, SVM, DT and RF classifications were performed within eCognition 8.9, which 
makes use of OpenCV implementations of the classifiers (Bradski, 2000). ENVI 5.0 was 
used to apply the ML classifier. A pixel-based approach was followed during the 
classifications to avoid distorting the values of the training features. A k value of 1, 3 and 5 
was used for the kNN classifications. Odd values were used to avoid ties (Campbell, 2002). 
The radial basis function was chosen as the kernel type for the SVM classifier, as 
recommended by Hsu et al. (2010). The maximum number of trees for the RF classifier was 
set to 100. The number of active variables, which is the number of randomly selected 
features used to find the best splits at each node, was set to eCognition’s 3. Default 
parameters were used for the ML and DT classifiers. 
 
Thirty-one (60%) of the soil samples were used for classifier training, whilst 20 (40%) were 
kept for accuracy assessment. Vegetated areas were excluded from the analyses by using 
an NDVI threshold of 0.35. 
 
5.1.7 Accuracy assessment 

Maps were created form the rule-based and supervised classification outputs to identify 
problem areas within the study area. Confusion matrices were used to calculate the OA, 
producer accuracy and user accuracy. The Kappa coefficient and the receiver operating 
characteristic (ROC) curve were also calculated to show whether the accuracies were by 
chance. 
 
5.1.8 Results 

The result (Fig.5.2) of the analyses of samples representing bare soil are shown in Fig.5.2. 
The majority (60.8%) of the samples were salt-affected, but this is not a true reflection of the 
salt accumulation levels in the scheme as the sampling sites were specifically selected to 
include salt-affected areas. The 2:3 balance between salt-affected and unaffected samples 
was considered suitable for classifier training and accuracy assessment purposes. 
 
Salt accumulation does not occur continuously (Fig.5.3), but is concentrated in relatively 
small patches that would be difficult to detect using medium (e.g. Landsat 8) or even high 
(SPOT-5) resolution imagery. 
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Figure 5.2  EC values of soil samples collected during the June and September field 
surveys. 

 

Figure 5.3  Examples of salt precipitation patches in the study area at Vaalharts. 
 
The result (Table  5.2) when the visual evidence of salt precipitation was combined with the 
measured EC values to classify the field observations into a senary classification scheme 
(Table  5.2).  None of the soil samples that showed clear evidence of salt accumulation were 
found to have EC values of less than 400 mS/m, resulting in class B1 (unaffected, high salt 
precipitation) to be empty. There were only eight (15%) cases of salt-affected soils with high 
(clearly visible) salt precipitation. Most (75%) of the salt-affected soils had no or very little 
evidence of salt precipitation. For classes A2 and B2 the level of salt precipitation was 
judged (in the field) to be too low to be clearly noticeable on satellite imagery, but the 
relatively high number of cases (20%) in B2 (unaffected, low salt precipitation) will likely lead 
to some confusion in discriminating salt-affected from unaffected areas. Similarly, the lack of 
any visual cues of salt accumulation in classes A3 and B3 (of which there are 10 and 9 
cases, respectively) is expected to also reduce classification accuracy. 
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Table 5.2  Senary scheme classes provided as input for the JM distance measures 
Topsoil condition Salt-affected (ECe 400 mS/m) 

(n = 32) 
Unaffected (ECe <400 mS/m) 

(n = 19) 
High salt precipitation A1 (n = 8) B1 (n = 0) 
Low salt precipitation A2 (n = 14) B2 (n = 10) 
No salt precipitation A3 (n = 10) B3 (n = 9) 

 

5.1.8.1 Spectral profiles and separability analysis results 

The binary and senary scheme spectral profiles in Figure 5.4 compare the percentage 
reflectance of salt-affected and unaffected soils in each of the WV2 bands. The spectral 
properties of salt-affected and unaffected soils (Figure 5.4(a)) are very similar in the CB and 
blue bands, with more noticeable differences in the remaining bands. In contrast to Rao et 
al. (1995), Metternicht & Zinck (2003), Abbas & Khan (2007) and Elnaggar & Noller (2009), 
salt-affected soils had lower reflectance values in the longer wavelengths (510-690 nm) of 
the visible spectrum for the binary scheme profile. This was not the case for the senary 
scheme profile (Figure 5.4(b)), where soils with clear evidence of salt precipitation (class A1) 
produced noticeably higher reflectance values than the other classes, especially in the RE, 
NIR1 and NIR2 bands. Conversely, salt-affected soil with little evidence of salt precipitation 
(class A2) consistently recorded lower reflectance values than the other classes. Salt-
affected soils with no evidence of salt precipitation (class A3) recorded reflectance values 
less than the unaffected classes in all bands except NIR1 and NIR2. The standard deviation 
error bars shown in the binary scheme profile show that there is much overlap between the 
recorded reflectance values of samples, which will make it difficult to distinguish salt-affected 
from unaffected soils based solely on the spectral characteristics. This was confirmed when 
separability was quantified using the JM measure. The highest JM value was achieved in 
band 4 (J = 0.38), indicating that the classes are not separable using an individual band. 
 

Figure 5.4  Spectral profiles of salt-affected and unaffected soils for the (a) binary and (b) 
senary classification schemes as extracted from the WorldView-2 Image. 

 

Better separability was achieved when multiple bands were combined as SIs. Of all the SIs 
evaluated, NDSI3 produced the highest separability between the salt-affected and unaffected 
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classes, with a J value of 0.91 for the binary classification scheme. However, this 
separability is still relatively low and is unlikely to produce an accurate classification. 

Table 5.3 lists the highest J values obtained for each of the five classes when visible 
evidence of salt accumulation was combined with the EC-based classification. Class pairs 
A1~B2 (J = 1.75), A2~B2 (J = 1.73) and A1~A2 (J = 1.65) achieved the highest separability 
using NDSI1, NDSI2 and NIR2 respectively. The other class combinations all attained 
separability scores of less than 1.50. Classes A2 (salt-affected, low salt precipitation) and A3 
(salt-affected, no salt precipitation) were the most difficult to separate (J = 0.89). Classes A3 
(salt-affected, no salt precipitation) and B3 (unaffected, no salt precipitation) received the 
second lowest J value (0.93) as no visual evidence of salt accumulation on the soil surface 
was present. Generally, the J values decrease with a reduction in salt precipitation levels. 
 
None of the features considered in the JM separability analysis of the senary classification 
scheme stood out as being the most successful in separating the classes, although the 
NDSI-based indices produced the best separability on four occasions. Texture features, 
especially histogram-based entropy, were found to be the best discriminators on three 
occasions. 
 
The features and thresholds identified by the JM separability analysis were implemented as 
image classification rules to produce a map of salt-affected and unaffected areas. Separate 
rule sets were created for the binary and the senary classification schemes. 
 
Table 5.3  Best JM distance results for the senary scheme 

Class 1 Class 2 Feature J Threshold 

A1 B2 NDSI1 1.75 -0.23 

A2 B2 NDSI2 1.73 -0.24 

A1 A2 NIR2 1.65 24.47 

A1 B3 COSRI3 1.48 0.07 

A2 B3 Entropy (Histogram – 7×7) 1.47 5.6 

B2 A3 NDSI2 1.20 -0.23 

A1 A3 Contrast (GLCM – 7×7) 1.18 0.13 

B2 B3 Entropy (Histogram – 5×5) 1.03 4.63 

A3 B3 NDSI3 0.93 -0.20 

A2 A3 S3 0.89 -0.51 
 

5.1.8.2 Regression modelling 

Table 5.4 shows the results of the regression modelling of EC measurements and the 
individual WV2 image bands, SIs and texture measures. For the sake of brevity, only 
features that achieved an R2 of 0.40 or more in any of the models are included in the table. 
None of the WV2 bands or texture measures met this requirement. The best fit was achieved 
by NDSI1 (R2 = 0.64, p <0.001), with the cubic model providing the best description of this 
relationship. 
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Table 5.4  Regression models with strongest relationship between EC and WorldView-2 
features 

Salinity 
Index 

Goodness-to-fit (R2) per regression model a 

Linear Logarithmic Inverse Quadratic Cubic Power Exponential 

NDSI1 0.26 - 0.27 0.47 0.64 - 0.34 

NDSI2 0.23 - 0.30 0.45 0.49 - 0.34 

NDSI3 0.18* - 0.39 0.56 0.56 - 0.25 

NDSI4 0.16* - 0.27 0.41 0.41 - 0.25 

COSRI1 0.19 0.28 0.33 0.43 0.43 0.38 0.28 

COSRI2 0.23 0.30 0.33 0.42 0.43 0.41 0.33 

COSRI3 0.24 0.31 0.34 0.44 0.51 0.41 0.32 

COSRI4 0.27 0.32 0.35 0.42 0.48 0.43 0.37 

COSRI5 0.19 0.29 0.34 0.43 0.43 0.40 0.28 

COSRI6 0.22 0.30 0.34 0.43 0.43 0.42 0.33 

COSRI7 0.24 0.32 0.35 0.46 0.49 0.42 0.33 

COSRI8 0.27 0.33 0.35 0.44 0.47 0.44 0.37 
  a All results were significant at 0.001 level, except for those indicated with * which were significant at 0.01 level. 
 
The results from the stepwise regression analyses showed that the NIR2 band was the first 
variable to be taken into account (R2 = 0.39, p <0.001), followed by COSRI8 and COSRI1. 
The resulting model produced a R2 of 0.51 (p <0.001). The best PLS regression model had a 
goodness of fit of 0.39 (R2) and took 38 variables into account. 
 
The cubic model in Table 5.4 that best described this relationship between soil EC and 
NDSI1 is formulated as: 
 

     Equation5.4 
 
where  EC is the predicted soil EC 
  x the raster (e.g. NDSI1) containing the calculated index 
  b0 = 9746.258 
  b1 = 161093.441 
  b2 = 753892.151 and 
  b3 = 907884.290. 
 
Figure 5.5 compares this model to the calculated NDSI1 and measured soil EC (mS/m) 
values. Samples with an NDSI1 value greater than -0.23 were in most cases found to be 
associated with unaffected soils, with a sharp increase in salinity observed when NDSI1 
dropped below -0.25 (Figure 5.5 (a)). Two outliers (labelled A and B in Figure 5.5(a)) were 
identified and removed, resulting in a slight improvement in the goodness-to-fit (R2 = 0.68; p 
<0.001) of the model. Figure 5.5(b) shows that 20 (77%) of the samples with NDSI1 values 
greater than -0.23 had EC measurements less than 400 mS/m (unaffected). 
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Figure 5.5  Relationship between NDSI1 and measured soil EC. 
 
A threshold value of 400 mS/m was applied to the regression model to produce a 
classification of salt-affected and unaffected areas. NDSI1 values larger than this threshold 
were classed as salt-affected. A rule set was created from these results and applied in 
eCognition 8.9. 
 

5.1.8.3 CART rule set 

The CART analysis identified a single feature as primary splitter, namely NDSI1. Low NDSI1 
values ( -0.22) were shown to mostly consist of salt-affected samples. High values (>-0.22) 
were classed as unaffected. A rule set was created from these results and applied in 
eCognition 8.9. 
 

5.1.8.4 Classification results 

The accuracy assessment results of the classifications, based on an independent set of 
reference samples (40% of the samples collected), are shown in Table 5.5. The highest 
accuracy (OA = 90%; Kappa = 0.8; AUROC = 0.9) was achieved by the SVM classifier. 
However, the algorithm classified an unrealistically small percentage (0.023%) of the study 
area as salt-affected, indicating that the SVM algorithm was unable to provide a meaningful 
result, most likely due to training data over-fitting. The SVM results were consequently 
excluded from further evaluation. The rule set based on the NDSI1 threshold that was 
obtained from the CART analysis produced the most realistic and accurate classification with 
an OA of 80%, Kappa of 0.6 and AUROC of 0.8. The salt-affected class recorded a very high 
user’s accuracy (90%), but the producer’s accuracy (PA) was lower (75%). The opposite 
was true for the unaffected class, which scored a high (87.5%) PA and a low (70%) user’s 
accuracy (UA) and 77% of the study area was classified as being salt-affected. 
 
Both the JM distance binary and senary scheme rule-based classifications achieved an OA 
of 75%, with the binary scheme attaining a slightly higher Kappa (0.51) and AUROC (076). A 
much higher PA for the salt-affected class was achieved with the senary scheme (83.3%) 
than the binary scheme (66.7%). The reverse is true of the UA for the salt-affected class, 
with the binary scheme (88.9%) outperforming the senary scheme (76.9%). The rule-based 
classification of the NDSI1 regression model achieved an OA of 75% and AUROC of 0.74, 
with a high PA (83.3%) and a UA (76.9%) for the salt-affected class. The relatively low 
Kappa of 0.47 suggests a high agreement by chance. 
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The kNN supervised algorithm attained an OA of 80%, Kappa of 0.58 and AUROC of 0.79, 
which is only marginally lower than the CART rule-based classification. The DT resulted in 
an OA of 75% and AUROC of 0.76, although the Kappa of 0.51 indicates a high agreement 
by chance. RF performed slightly better with an OA of 80%, AUROC of 0.79 and Kappa of 
0.58, with NDSI1 being the most important variable. The worst-performing supervised 
classifier was ML, which achieved an OA of 70%. The low Kappa (0.35) and AUROC (0.69) 
indicate a very high agreement by chance (Evangelista, 2006; Garrett & Viera, 2005; 
Johnson et al., 2012).  
 
The % salt-affected column in Table 5.5 shows that all the methods, apart from SVM, 
classified the majority of the study area as being salt-affected. This suggests that there was 
a general overestimation of salt-affected soils as the level of salt accumulation in the study 
area is known to be moderate. The overestimation of salt-affected soils is also evident in 
Figure 5.6 and Figure 5.7, which show the maps produced from the rule-based and 
supervised classification approaches respectively. Based on local knowledge, the JM 
distance binary scheme approach (Figure 5.6(b)) seems to be the most realistic 
representation of salt accumulation in the study area (52.3% salt-affected). Overestimation 
of salt-affected areas was highest for the ML classification (86.8%) (Figure 5.7(d)). The 
maps produced from the NDSI1 cubic regression model (Figure 5.6(c)) and CART analysis 
(Figure 5.6(d)) are almost identical as NDSI1 was used in both cases. Only small differences 
are evident in the maps produced by the kNN (Figure 5.7(a)) and DT (Figure 5.7(b)) 
supervised classifiers, while RF (Figure 5.7(c)) classified fewer fields as salt-affected. 
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Figure 5.6  Maps produced from the rule-based (a) JM distance senary scheme, (b) JM 
distance binary scheme, and (c) NDSI1 cubic regression model, and (d) CART. 
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Figure 5.7  Maps produced from the (a) kNN, (b) DT, (c) RF and (d) ML supervised 
classifiers. 
 

5.1.9 Discussion 

Notable differences in the spectral properties of salt-affected and unaffected soils were 
recorded in the Green, Yellow, Red, RE, NIR1 and NIR2 bands (Fig. 5.4). In contrast to the 
findings of Rao et al. (1995), Metternicht & Zinck (2003) and Elnaggar & Noller (2009), salt-
affected soils generally had a lower reflectance in the visible region of the electromagnetic 
spectrum. This discrepancy is attributed to the relatively low levels of salt precipitation 
occurring in the study area. Soils with salt precipitation have high reflectance values in the 
visible and NIR regions of the electromagnetic spectrum (Elnaggar & Noller, 2009; 
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Metternicht & Zinck, 2003; Rao et al., 1995), but in this study only 25% of the samples 
representing salt-affected soils had sufficiently high levels of salt precipitation for detection 
using satellite imagery (class A1). Other salt-affected soils (classes A2 and A3) generally 
appeared smooth and dark as salt accumulation in the study area often coincides with 
waterlogging and the reflection values of wet soils are generally lower in the visible and NIR 
spectra (Metternicht & Zinck, 2003). 
 
Salt-affected soils with clear evidence of salt precipitation (class A1) were relatively well 
differentiated from unaffected soils (class B2) using the NDSI1. NDSI1 also produced a 
regression model with a moderately strong fit (R2 = 0.64, p <0.001), although the OA of the 
resulting model was relatively low (75%) compared to some of the other classifiers. When 
plotted it was observed that the relationship between NDSI1 and EC is erratic when salinity 
levels are high and that the model generally overestimated EC. 
 
The highest accuracies (80%) were recorded using the kNN, CART and RF classifiers. Most 
(63%) of the soil samples collected during the field surveys were salt-affected and this slight 
imbalance (2:3) could have had a negative effect on the classifiers. The kNN classifier is 
relatively insensitive to unbalanced training data as it only considers the closest known 
values for classification purposes. RF’s use of bagging also makes it less sensitive to 
skewed or unbalanced training datasets when compared to DTs (Breiman, 2001; Johnson et 
al., 2012). Although techniques such as over- and under-sampling have been proposed to 
improve the accuracies of supervised classifiers when unbalanced training datasets are 
used (Chawla et al., 2004; Ganganwar, 2012; Seiffert et al., 2010), they were not 
implemented in this study as such methods are usually needed for very skewed (e.g. 1:20) 
training data (Johnson et al., 2012). Under-sampling also discards potentially important data, 
while over-sampling can result in over-fitting (Chawla et al., 2004; Ganganwar, 2012). A 
more likely reason for the relatively poor performance of many of the supervised classifiers is 
the confusion caused by the spectral variation of salt-affected soils, the relatively small 
sample set and the large number of features (68) considered. RF has been shown to 
perform well under such conditions (Breiman, 1996; Rodriquez-Galiano et al., 2012a). 
 
Another factor that complicates the detection of salt accumulation when bare soils are 
observed using remote sensing is the disturbance caused by soil preparations (e.g. 
ploughing), as this can alter the soil surface and reflectance. Vaalharts is a highly dynamic 
irrigation scheme in which crops are rotated throughout the year. Many of the fields visited 
during the survey were recently ploughed in preparation for planting. This would also have 
had an effect on classification accuracy. 
 
All the methods classified most of the study area as being salt-affected. Salt-affected areas 
are also in most cases portrayed by the classifiers as large, continuous areas. This is, 
however, not a realistic result as salt accumulation in the study area was observed to occur 
in small patches (Fig.5.3).  From this finding we conclude that the classifiers generally 
overestimated salt-affected areas, most likely owing to the confusion between salt-affected 
soils with no evidence of salt precipitation (A3) and unaffected soils with some evidence of 
precipitation (B2). 
 
Compared to other VHR sensors, the spectral resolution of the WV2 sensor is high, but is 
limited to the visible and NIR region of the electromagnetic spectrum. Using hyperspectral 
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data on South African soils, Mashimbye et al. (2012) found that the 2257 nm band in the 
shortwave infrared (SWIR) region of the electromagnetic spectrum correlated the strongest 
with salt-affected soils. The addition of a SWIR (1195-2365 nm) band to the recently-
launched WorldView-3 sensor consequently holds much potential for salt accumulation 
monitoring using multispectral imagery. 
 
5.1.10 Conclusion 

This component of the research evaluated the use of VHR (WV2) imagery for modelling and 
mapping salt-accumulation by observing bare soils. In addition to the WV2 image bands, the 
first PCA component, a number of texture measures and several SIs were also considered 
as possible predictor variables. Three rule sets based on regression modelling, the JM 
separability measure and CART, as well as five supervised classifiers (NN, ML, SVM, DT 
and RF), were evaluated. The results demonstrated that the rule based on the JM distance 
measure was the most accurate in differentiating salt-affected and unaffected soils. Overall, 
NDSI1 was the best predictor of salt accumulation as it featured in the separability analysis, 
regression modelling, CART and RF classifiers. 
 
It is concluded that the use of WV2 imagery to identify salt-affected soils is not reliable 
enough for operational purposes as all of the methods evaluated overestimated salt 
accumulation. The inconsistencies in the visual appearance of salt-affected soils are more 
likely the reason for the misclassifications. VHR imagery with a SWIR band (e.g. WorldView-
3) might produce better results, but it is unlikely that it will overcome all of the limitations of 
the direct approach (i.e. detecting salt accumulation by observing bare soils). Indirect 
detection methods (e.g. vegetation stress monitoring, hydrological modelling) that take sub-
surface conditions into consideration might produce better results. Ideally a combination of 
direct and indirect methods should be used. Clearly, more research is needed before such 
methods can be operationalized for detecting and monitoring salt accumulation in irrigated 
areas. 
 

5.2 Remote sensing indirect approach: Vegetation monitoring at field level4 

Several studies have successfully applied the indirect approach to monitor plant stress 
caused by salt accumulation (Abood et al., 2011; Fernández-Buces et al., 2006; Lenney et 
al., 1996; Lobell et al., 2010; Peñuelas et al., 1997; Wiegand et al., 1994; Zhang et al., 
2011). All of these studies relied on VIs (e.g. NDVI, EVI and SAVI). However, poor farming 
practices and soil preparation can also lead to poor VI responses, which can easily be 
mistaken for saline conditions (Furby et al., 2010). Another limitation of the use of VIs for 
detecting areas affected by salt accumulation is the negative impact of bare ground 
backscatter/noise, especially during the early stages of growth (Dehni & Lounis, 2012; 
Douaoui et al., 2006). Very few applications of very high resolution (VHR) imagery for salt 
accumulation monitoring exist. Notable exceptions are Abood et al. (2011) and Douaoui & El 
Ghadiri (2015) who used 2 m resolution WorldView-2 (WV2) imagery, and Eldiery et al. 
(2005) who used 4 m resolution Ikonos imagery. However, none of these studies 
investigated the value of spatial features (such as texture measures) for the identification of 
salt-affected areas. Also, VHR imagery has, to our knowledge, never been used for 

                                                 
4The content of this section was adapted from the MSc thesis of Jascha Muller and an article that was 
submitted for publication in a scientific journal. 
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monitoring salt accumulation in South Africa. The primary aim of this section is thus to 
evaluate the use of VHR satellite imagery, specifically WV2, to identify suitable spectral and 
spatial features for the identification of salt accumulation in a cultivated field. A secondary 
aim is to improve the understanding of the importance of spatial resolution for detecting salt-
affected areas with small spatial extents (i.e. in early stages of deterioration), so that such 
areas can be proactively identified and managed. These objectives will be evaluated by 
analysing the WV2 derived features at six different spatial resolutions. Regression modelling, 
classification and regression tree (CART) analysis will be used. The results are interpreted in 
the context of finding the best image features and optimal spatial resolution for 
predicting/identifying salt-affected areas in a South African irrigation system. 
 
5.2.1 Study area 

A 2.8 ha irrigated lucerne field in the Vaalharts irrigation scheme was chosen as the study 
site (Figure 5.8). The selected field is supplied with flood irrigation to supplement the rainfall. 
Lucerne was targeted for this study because it is moderately sensitive to saline conditions 
and starts wilting when electric conductivity (EC) persists at levels above 200 mS/m (Hanson 
et al., 2006). For this study, a single crop was selected so as to eliminate the complexities 
associated with multiple crop types which have varied spectral properties and tolerances to 
salt accumulation (Hanson et al., 2006; Zhang et al., 2011). 

 

Figure 5.8   Study site location within the Vaalharts irrigation scheme. 
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5.2.2 Data collection and preparation 

The WV2 image described in section 5.1.1 was used in this component of the research. At 
the time of capture, the WV2 sensor offered higher spectral and spatial resolution compared 
to other VHR sensors, with eight 2 m resolution relatively narrow bands in the visible and 
near infrared spectral range (see Table 2.5). The Pansharp algorithm as implemented in PCI 
Geomatica software was used to increase the 2 m spatial resolution of the multispectral data 
to 0.5 m. The fusion of multispectral and panchromatic images is an effective technique for 
optimizing the spatial and spectral resolution of images (González-Audícana et al., 2004). 
The Pansharp algorithm has been shown to preserve most of the spectral characteristics of 
the multispectral data in the resulting pansharpened image. 
 
To evaluate the effect of spatial resolution on the identification of salt-affected areas, the 
original 2 m multispectral bands were down-sampled to 6, 10, 15 and 20 m resolution using 
the mean aggregate function in ArcMap 10.1. These resolutions were chosen as they 
represent the resolutions of common sensors (SPOT-6/7, Sentinel-2, ASTER, CBERS-4, 
IRS). The WV2 image was thus represented by six different spatial resolutions: 0.5, 2, 6, 10, 
15 and 20 m. 
 
A field survey was carried out to collect suitable training data. A total of 30 soil samples in 
the lucerne field were collected. 
 
5.2.3 Feature set development 

5.2.3.1 Vegetation indices (VIs) 

VIs are the most popular and scientifically-proven remote sensing features for monitoring 
biomass and vegetation vigour (Campbell, 2007). VIs that have been successfully used for 
mapping salt-affected areas include the normalized difference vegetation index (NDVI) 
(Abood et al., 2011; Dehni & Lounis, 2012; Fernandez-Buces et al., 2006; Koshal, 2010; 
Lenney et al., 1996; Leone et al., 2007; Lobell et al., 2010; Peñuelas et al., 1997; Turhan et 
al., 2008; Wiegand et al., 1994; Wu et al., 2008; Zhang et al., 2011), soil-adjusted vegetation 
index (SAVI) (Abood et al., 2011; Alhammadi & Glenn, 2008; Allbed et al., 2014; Koshal, 
2010; Zhang et al., 2011) and enhanced vegetation index (EVI) (Lobell et al., 2010). NDVI is 
defined as: 

 
Equation 5.5 

 
where N is the reflectance in the near-infrared (NIR) band and R is the reflectance in the red 
band. Although NDVI is useful for a wide range of applications, it is very sensitive to soil 
background brightness (Huete, 1988; Bausch, 1993). Huete (1988) proposed using a soil-
adjustment factor (L) to reduce soil background brightness. This factor accounts for first-
order, non-linear, differential NIR and red radiative transfer through a canopy (Jiang et al., 
2008). The resulting SAVI is defined as: 

   Equation 5.6 
 

where N is the reflectance in the NIR band, R is the reflectance in the red band and L is the 
soil-adjustment factor. L can vary from 0 to 1 depending on the amount of visible soil. Lower 
L values with increases in vegetation cover are needed as less soil is exposed. A value of 
0.5 is a reasonable approximation for L when the amount of visible soil is unknown (Koshal, 
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2010). SAVI provides better results at low vegetation cover than NDVI because of its ability 
to reduce the soil background effect (Koshal, 2010). 
 
The relatively low spectral resolution of VHR sensors has limited the development of other 
salt-affected soil detection VIs (Metternicht & Zinck, 2003). Abood et al. (2011) took 
advantage of the additional spectral bands and high spatial resolution of the WV2 imagery to 
evaluate six adaptations of the NDVI and SAVI indices. Most of the indices that proved to be 
the most successful in distinguishing salt-affected areas utilized the yellow band, specifically 
NDVI no. 3 (3) and SAVI no.2 (4): 

 
 Equation 5.7 

 
where NIR1 is the reflectance of the WorldView-2’s first near-infrared band and Y is the 
reflectance of the WorldView-2’s yellow band. 
 

 Equation 5. 8
 
where NIR1 is the reflectance of the WorldView-2’s first near-infrared band and Y is the 
reflectance of the WorldView-2’s yellow band. The enhanced vegetation index (EVI) was 
developed to optimize the vegetation signal with improved sensitivity in high biomass 
regions. It also improves vegetation monitoring by disconnecting the canopy background 
signal and reducing atmospheric influences (Jiang et al., 2008). EVI is defined as: 
 

 Equation 5.9
 
where N is the reflectance in the NIR band, R is the reflectance in the red band, B is the 
reflectance in the blue band, G is a gain factor, L is the soil-adjustment factor and C1 and C2 
are aerosol resistance coefficients. The parameters, as adopted in the MODIS EVI 
algorithm, are L =1; C1 = 6; C2 = 7.5 and G = 2.5, and are used as a de facto standard for 
other sensors. All WV2 derived VIs were produced by performing raster calculations in 
ArcMap 10.1. 
 

5.2.3.2 Image texture  

There is no consensus on a definition for image texture as the meaning seems to vary 
according to the particular application. For the purposes of this study it is defined as the 
variation in reflectance from pixel to pixel in a small neighbourhood (Russ, 1999). The 
observation of image texture is determined by two factors, namely the scale of variation and 
the scale of observation (Mather & Magaly, 2011). Howari (2003) noted that salt-affected 
soils tend to have uneven (‘spotty’) vegetation growth, which suggests a scale of variation. In 
this study we manipulate the scale of observation by resampling the WV2 image to six 
spatial resolution levels (0.5, 2, 6, 10, 15 and 20 m). 
 
A total of 25 texture measurements were considered in this study (Table 5.6). The 
measurements were based on relative frequency distribution statistics (Conners & Harlow, 
1980; Haralick, 1979; Haralick et al., 1973) and histogram statistics (Dekker, 2003). The red, 
NIR and panchromatic bands were used as input for each of the algorithms considered, 
resulting in a total of 325 texture features. The panchromatic band was selected because it 
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provides the highest resolution (0.5 m), while the red and NIR1 bands were selected 
because of their well-known sensitivity to vegetation variations. 
 
Table 5.6  Algorithms used for texture feature generation 

# Neighbourhood-based texture algorithms (A) Histogram-based texture algorithms (B)

1 Homogeneity Mean 

2 Contrast Median 

3 Dissimilarity Mean deviation from mean 

4 Mean Mean deviation from median 

5 Variance Mean Euclidean distance 

6 Entropy Variance 

7 Angular second moment Coefficient of variation 

8 Correlation Skewness 

9 GLDV angular second moment Kurtosis 

10 GLDV entropy Energy 

11 GLDV mean Entropy 

12 GLDV contrast Weighted-rank fill ratio 

13 Inverse difference  
Key: GLDV =Grey level difference vector 
 

5.2.3.3 Principal component analysis (PCA) image transform 

Campbell (2007) describes PCA as the process of identifying the optimum linear 
combinations of the original image layers that accounts for most of the variation in pixel 
values. PCA is widely used in salinity detection (Abbas et al., 2013; Dehni & Lounis, 2012; 
Dwivedi et al., 2001; Eldiery et al., 2005; Khan et al., 2001; Tajgardan et al., 2007). In this 
study only the first two components were included in the feature dataset as they accounted 
for more than 99% of the variation. These components were generated for all six spatial 
levels resulting in a total of 12 features. 
 
Table 5.7 provides a summary of the 445 features that were considered in the regression 
and CART analyses. The feature set consists of the 8 WV2 bands, 10 VIs, 25 texture 
features and 2 PCA components for each of the six spatial resolution sets. 
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Table 5.7  Summary of features considered for each of the six feature sets (spatial 
resolution scenarios) with NIR2 band 

Type Feature Number 

Bands 

Coastal Blue 

8x6=48 

Blue 

Green 

Yellow 

Red 

Read Edge 

NIR1 

NIR2 

VIs 

NDVI & NDVI* 

10x6=60 

SAVI & SAVI* 

EVI & EVI* 

NDVI no 3 & NDVI* no3 

SAVI no 2 & SAVI* no 2 

PCA 
PCA band 1 

2x6=12 
PCA band 2 

Texture 

Homogeneity (A) 

(2x25x6)+25=325 

Contrast (A) 

Dissimilarity (A) 

Mean (A) 

Variance (A) 

Entropy (A) 

Angular second moment (A) 

Correlation (A) 

GLDV angular second moment (A) 

GLDV entropy (A) 

GLDV mean (A) 

GLDV contrast (A) 
Inverse difference (A) 

Mean (B) 

Median (B) 

Mean deviation from mean (B) 

Mean deviation from median(B) 

Mean Euclidean distance (B) 

Variance (B) 

Coefficient of variation (B) 

Skewness (B) 

Kurtosis (B) 

Energy (B 

Entropy (B) 

Weighted-rank fill ratio (B) 

Total 445 
* 



100 

5.2.4 Spectral, statistical and CART analyses 

According to Hick & Russell (1990) and Zhang et al. (2011), salt-affected areas have a 
higher reflectance in the red band and a lower reflectance in the NIR region. This is due to 
the decline in vegetation vigour in the presence of high levels of salts. A spectral analysis 
was carried out to investigate to what extent salt-affected areas can be differentiated using 
the bands of the WV2 image. The first step was to plot the spectral responses of vegetation 
in salt-affected and unaffected areas on a graph to allow a visual interpretation of the two 
profiles. The original 2 m multispectral bands were used as input in the spectral analysis. 
 
The statistical relationships between the image features and salt-affected areas were then 
explored by regression analyses. The WV2-derived features were specified as independent 
variables, while the measured EC values were specified as the dependent variable. 
Stepwise linear regression, partial least squares (PLS) regression and curve estimation 
regression were carried out in IBM SPSS (version 21) software. The curve estimations 
tested the fit between the EC values and the dependent variables for various models (linear, 
logarithmic, inverse, quadratic, cubic, compound, power, s-curve, growth, exponential and 
logistic). The R2 values produced by the regression analyses were used to compare the 
models as they quantify the variation explained by the model and consequently provide a 
good estimate of the overall predictive power of the model and the nature of the relationship 
between the input variables (Field, 2006). 
 
A classification and regression tree (CART), as implemented in the Salford Predictive 
Modeller software suite, was carried out to better understand the relationships between 
measured EC and the image features. CART has been shown to be a robust decision tree 
(DT) classifier and was designed for data mining and predictive modelling purposes 
(Laliberte et al., 2007; Myburgh & Van Niekerk, 2013; Steinberg & Golovnya, 2007; Yu et al., 
2006). CART produces a number of classification trees from which it generates a variable 
importance list (VIL) based on best relative errors and receiver operating characteristics 
(ROC) values (a.k.a. area under the curve or AUC). The best relative error (BRE) describes 
the relationship between classification errors and tree size with 0 representing no error and 1 
indicating random guessing. A tree with a ROC value of 0.5 and lower is considered to have 
poor predicative power, while a tree with a ROC value of 0.7 or higher is likely to produce a 
good classification (Steinberg & Golovnya, 2007). The VIL summarizes the contribution of a 
specific feature to the overall tree when all nodes are examined. It contains the primary 
splitters (the feature that was used to split a node) and surrogate splitters (a back-up feature 
that could be used when a primary splitter is missing). The VIL therefore acknowledges the 
influence of variables whose significance is hidden by other variables in the process of tree 
building (Steinberg & Golovnya, 2007). In contrast to regression analysis, which investigates 
the continuous relationships between variables, CART can examine both continuous and 
categorical data. CART results in a crisp classification (e.g. salt-affected or unaffected) 
rather than a continuous model that is fuzzy in nature and difficult to interpret. 
 
Unlike many other “black box” supervised classifiers, CART is transparent as the 
contribution of specific features to the classification result can be visualized and inspected. 
In addition, the decision tree that CART produces can be used to generate a rule set which 
can be manipulated or modified to accommodate certain conditions. It can also be 
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transferred to other regions, which makes it ideal for developing a salt accumulation 
monitoring solution. 
 
5.2.5 Results and discussion 

The spectral responses of vegetation in salt-affected and unaffected areas based on the 
WV2 bands are shown in Figure 5.9. The reflectance of the salt-affected areas in the red 
band is higher than that of unaffected areas. This suggests that the vegetation in salt-
affected areas is growing less vigorously. However, the difference between salt-affected and 
unaffected responses in the NIR band is very small, which contradicts the findings of Wang 
et al. (2002), Tilley et al. (2007) and Zhang et al. (2011). A likely explanation for this is the 
influence of background soil. Lucerne has a small canopy cover and background features 
(e.g. bare ground and salt encrustations) are more likely to be exposed when plant wilting 
occurs. During the field survey some salt precipitation was observed in salt-affected areas 
and since salt encrustations have high reflectance in the NIR spectrum (Abood et al., 2011; 
Elnaggar & Noller, 2009; Iqbal, 2011; Khan et al., 2005; Metternicht & Zinck, 2003; Setia et 
al., 2013; Sidike et al., 2014), this could have contributed to the relatively high reflectance in 
this band. Nevertheless, the relatively large difference in reflectance in the red band 
suggests that a VI that makes use of the ratio between the red and NIR bands has the 
potential to distinguish between salt-affected and unaffected areas. However, the relatively 
high standard deviations (as indicated by the error bars in Figure 5.9) show that such an 
approach will not be successful in all cases. 
 

 
Figure 5.9 Spectral profiles of salt-affected and unaffected soils (error bars represent one 
standard deviation). 
 
The regression results of models that produced the best R2 values for each spatial resolution 
scenario are shown in Table 5.8. A strong relationship between the yellow band and EC 
values was observed, with R2 values of 0.7261, 0.6915 and 0.7311 at 0.5, 2 and 6 m 
resolutions, respectively. This is attributed to the absorption of yellow light by vegetation 
(Zhang et al., 2011) and the high reflectance of yellow wavelengths by salt precipitation on 
exposed soils (Abood et al., 2011; Elnaggar & Noller, 2009; Iqbal, 2011; Khan et al., 2005; 
Metternicht & Zinck, 2003; Setia et al., 2013; Sidike et al., 2014). The S-curve that models 
this relationship is shown Figure 5.10(a). Despite the high R2, it is clear from Figure 5.10(a) 
that the model becomes less reliable as EC increases. Considering the variability in radiance 
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between images, it is also unlikely that the use of a model based on a single band will be 
robust enough for the operational identification of salt-affected areas in large irrigation 
schemes covered by multiple images. The transferability of this model to other areas is 
consequently questionable. VIs have been shown to be more robust and transferable as it 
makes use of relative measures such as band ratios (Asrar et al., 1984; Bannari et al., 
1995). Figure 5.10 shows that some of the VIs that were considered in the regression 
analyses also produced relatively strong models. Figure 5.10(b), for instance, shows that the 
relationship between EVI (with NIR2 band) and EC at 6m resolution can be described using 
a compound curve with relatively strong predictive power (R2 = 0.7045). 
 
The VIs that make use of the yellow band (Equations 5.7 & 5.8) generally performed best 
when compared with the normal NDVI and SAVI indices (Equations 5.5 & 5.6). This is 
consistent with Abood et al. (2011) who found that the detection of salt-affected areas 
improved when the WV2 red band was substituted with the yellow band in the generation of 
VIs. The differences in R2 between the yellow and second NIR band indices compared to the 
standard VIs, however, were statistically insignificant in this study. Only minor differences in 
R2 values of the VI-based models were observed between 0.5 and 6 m spatial resolutions 
after which the R2 value dropped significantly (Figure 5.10). This suggests that the greater 
spectral resolution of the WV2 image is superfluous in the creation of VIs. 
 
Of all the texture features evaluated, B12 produced the strongest model at 0.5 m (R2 = 
0.766). The texture-based regression model outperformed the spectral-based models at all 
resolution scenarios except at 6 m. Figure 5.10(c) plots the relationship between the textures 
measure B12 and measured EC at 0.5 m resolution. This result is encouraging as texture 
measures are a spatial measurement relative to the size of its kernel only and thus 
theoretically less affected by radiometric variations. Texture should therefore produce 
models that are more robust and transferable. 
 
The reduction of spatial resolution generally had a detrimental effect on the regression 
models, with most significant decreases between 6 and 10 m resolutions (mean R2 of 0.7045 
and 0.6007, respectively) and between 10 and 15 m resolutions (mean R2 of 0.6007 and 
0.4887, respectively). The pansharpening of the 2 m multispectral bands to 0.5 m improved 
the models based on the spectral and textural features, while the VI-based models were 
highly comparable to those generated from the original 2 m multispectral data. 
 
The relatively poor performance of the models (Table 5.8) generated from 10 m and lower is 
attributed to the limited extents of salt-affected areas, as observed during the field surveys. 
This finding suggests that spatial resolutions of 6 m or higher are required. For texture-based 
models, the highest possible resolution should be used (preferably 0.5 m). 
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The VIL results, as determined by CART, are summarized in Table 5.9. Of the 445 features, 
the VIs dominated the classification tree and, in contrast to the regression analysis, the 
texture features had no significant influence. From Figure 5.11 it is clear that CART 
produced a relatively good classification (ROC = 0.875; BRE = 0.278) although the 
classification tree only has one main splitter (NDVI no. 3 at 0.5 m resolution). Based on the 
VIL results, any of the VIs with 100% variable importance can be used with their specified 
split value to reproduce the same result (Table 5.9). 
 
The features identified in Table 5.9 are all of 0.5 m spatial resolution, indicating the positive 
influence of pansharpening on the results. This result suggests that when a more precise 
(crisp) delineation between unaffected and salt-affected areas is needed, the higher 
resolution VIs are most effective. This is likely because a VI at 0.5 m resolution can 
accommodate a finer delineating line than, for instance, a VI at 6 m. 
 
Table 5.9  Variable importance list of 445 features and split values 

Feature % Importance Split values 

EVI 0.5 m 100 0.31630 

SAVI 0.5 m 100 0.64892 

NDVI 0.5 m 100 0.43633 

SAVI no. 2 0.5 m 100 0.63730 

NDVI no. 3 0.5 m 100 0.428574 

Band 5 0.5 m 89 16.39065 

 

 
Figure 5.11  CART classification tree and descriptive statistics 
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More work is needed to determine to what extent the CART models can be transferred to 
other areas, as “over-fitting” (i.e. producing high accuracies on specific training data while 
failing to produce similar accuracies on other data) is a well-known limitation of decision tree 
classifiers (Schaffer, 1993). The performance of other machine-learning classifiers such as 
k-nearest neighbour (kNN), support vector machines (SVM), and random forests (RF) should 
also be evaluated. 
 
5.2.6 Conclusions 

In this section, 445 WV2-derived spectral and spatial (texture) features were analysed at 0.5, 
2, 6, 10, 15 and 20 m resolutions to determine their potential for distinguishing between salt-
affected and unaffected soils in an irrigated lucerne field. Regression analyses were carried 
out to investigate the relationships between the image features and EC values of 30 soil 
samples collected in the field. The results showed that there are significant and strong 
continuous relationships between EC and several of the features considered and that the 
yellow band, as well as a number of VI and texture features, produced the strongest models. 
Generally, the strength of these relationships diminished as the spatial resolution was 
reduced. 
 
CART was used to better understand the importance of specific features for producing a 
categorical (i.e. crisp) output. The CART analysis identified VIs as the most important 
variables at the highest resolution of 0.5 m. 
 
Overall, the regression analysis and CART results are very promising as they show that VIs 
generated at 6 m and higher resolution can potentially be used for the identification of salt 
accumulation in South African irrigation schemes. The results also suggest that high 
resolution texture features can potentially be used together with VIs for the indirect 
monitoring of salt-affected soils. Furthermore, the relatively high spectral resolution of the 
WV2 imagery is not critical as the VIs (based on red and NIR wavelengths only) performed 
relatively well compared to the performance of the individual bands. 
 
Due to its relatively high cost, the operational use of WV2 imagery for regular monitoring of 
large areas is not viable. The results show that slightly lower spatial and spectral resolution 
imagery might produce comparable results. Notable candidates are SPOT-5 (2.5 m 
panchromatic; 10 m multispectral), SPOT-6 (1.5 m panchromatic; 6 m multispectral), 
RapidEye (5 m multispectral) and Sentinel-2 (10 m multispectral) data. Although SPOT-5 will 
soon be decommissioned, its large archive of imagery will be very useful for change 
analyses where historical baselines are required. 
 
The models generated in this study only considered soil samples collected in a cultivated 
field with a single crop. It is well known that crops differ in their response to saline conditions 
and more work is needed to investigate how these variations will affect remote sensing 
methods. Plant stress observed with satellite imagery might also be the result of factors 
unrelated to salt accumulation (e.g. irrigation and fertilization). Such factors will have to be 
taken into consideration in a monitoring system. One possible solution is to make use of 
multi-temporal imagery to identify areas within fields that are consistently under stress. More 
work is, however, needed to investigate the value of such approaches for the identification of 
salt-affected areas in irrigated areas. 
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5.3 Remote sensing indirect approach: Vegetation monitoring at scheme 
level5 

The models generated in the experiments of the previous section only considered soil 
samples collected in a cultivated field with a single crop. Given that crops differ in their 
response to saline conditions, an additional series of experiments were carried out in this 
section to investigate how these variations will affect the results. These experiments were 
carried out in the Vaalharts and Breede River study areas using slightly lower resolution 
SPOT-5 imagery. In addition to the image features assessed in section 5.2, soil and terrain 
data was also included in the analyses. 
 
5.3.1 Study areas, data collection and pre-processing 

Two study areas, namely Vaalharts and Breede River were selected for this component of 
the study (Figure 5.12). 
 

 
Figure 5.12  Vaalharts and Breede River study area map. 
 

Image data from the time of maximum growth is optimal for indirectly discriminating between 
saline and non-saline conditions (Furby et al., 1995, 2010; Hick & Russell, 1990). Two 
SPOT-5 satellite images, dated 27 April 2012 (Vaalharts) and 16 January 2013 (Breede 
River), were acquired from the South African National Space Agency (SANSA). Although 
SPOT-5 imagery has limited spectral resolution (Table 2.5) it contains the red and near 
                                                 
5The content of this section was adapted from the MSc thesis of Jascha Muller and an article that was 
submitted for publication in a scientific journal. 
. 
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infrared (NIR) bands required for the generation of most VIs. Based on the findings in 
section 5.2, the 2.5 and 10 m spatial resolutions of the SPOT-5 panchromatic and 
multispectral images, respectively, were considered to be adequate, particularly if the 
multispectral images are pansharpened (fused) to 2.5 m. The fusion of multispectral and 
panchromatic images has been shown to be an effective technique to optimize the spatial 
and spectral resolution of images (González-Audícana et al., 2004). 
 
Geometric and radiometric corrections of all images were done using the software package 
PCI Geomatica (version 2013 SP2). A north-orientated implementation of the Gauss 
conform coordinate system (also known as the LO coordinate system), with central 
meridians 25º E and 19º E for Vaalharts and Breede River, respectively, was used. Nearest 
neighbour resampling was employed during orthorectification to preserve the original digital 
numbers (DN) (Campbell, 2007; Lillesand et al., 2004). Radiometric corrections were carried 
out using the ATCOR 2 mathematical model which converted the DNs into percentage 
reflectances. The Pansharp algorithm, as implemented in Geomatica, has been shown to 
preserve most of the spectral characteristics of the multispectral data in the resulting 
pansharpened image and was used to increase the 10 m resolution SPOT-5 multispectral 
data to 2.5 m. 
 
A number of field surveys were carried out to collect suitable in situ data. Different sampling 
approaches were used to accommodate accessibility restrictions (e.g. canal systems and 
fencing). An attempt was made to include sites that represented as much as possible 
variation in terms of salt accumulation, soil types and crop types. A total of 69 and 48 
samples were collected for Vaalharts and Breede River, respectively.  Soil samples were 
collected by means of a soil auger and analysed for the electrical conductivity (ECe) in a 
laboratory using the saturated paste technique. Differential GPS coordinates (10 cm 
accuracy), notes on the visual appearance of the immediate area, and in some cases 
photographs were also captured. 
 

5.3.2 Feature set development 

5.3.2.1 Vegetation indices 

In addition to NDVI, SAVI and EVI-2 (see section 5.2.3.1), the general vegetation moisture 
index (GVMI) was also considered in this study as it optimizes the retrieval of vegetation 
water content and minimizes the disturbing effects of geophysical and atmospheric effects 
(Ceccato et al., 2002). GVMI makes use of the shortwave infrared band (SWIR) which 
distinguishes between variations in vegetation water content (Ceccato et al., 2002). GVMI is 
defined as: 

 

 

Equation 5.10
 

where N is the reflectance in the NIR band and S is the reflectance in the SWIR band. 
 

5.3.2.2 Image transformations 

Two image transformations, namely PCA (see section 5.2.3.3) and intensity, hue and 
saturation (IHS) transformation, were considered in this study. The IHS (Carper, 1990) 
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transform is a spectral domain procedure that transforms three image bands to IHS space. 
The three bands chosen as input to the IHS transform were red, green and NIR. 
 

5.3.2.3 Image texture features 

Image texture features, which can be described as a high local brightness variation from 
pixel to pixel in a small neighbourhood (Russ, 1999) of the different spectral bands, were 
considered as indirect indicators of salt accumulation. The observation of image texture is 
determined by two factors, namely the scale of variation and the scale of observation 
(Mather & Magaly, 2011). Spotty growth of vegetation due to salt accumulation (Howari, 
2003) suggests a potential scale of variation. Given the relatively small extents of salt-
affected areas in the study areas, the finest scale of observation (a 3x3 kernel) was used. 
Histex algorithms, as implemented in PCI Geomatica software, were implemented for 
processing first order histogram based texture layers for each of the four spectral bands and 
the first principal component (Dekker, 2003). 
 

5.3.2.4 Soil/terrain indicator features 

According to García Rodríguez et al. (2007) and Jenkin (1981), salts are more dominant in 
specific sediments and in particular landforms.  Nussbaum et al. (2006), Furby et al. (1995) 
and McFarlane et al. (2004) used a digital elevation model (DEM) to evaluate terrain 
characteristics (e.g. height above streamline, relative height in a sub-catchment and 
landform position) that may influence the accumulation of salts. For this study soil type data 
for the study areas was acquired from the Agricultural Research Council (ARC) and a 2 m 
resolution DEM was generated using unrectified aerial imagery of 2009 and Geomatica 2013 
software. The DEM and field boundaries were combined to derive relative height per field. 
The assumption was that salt accumulation will most likely occur in lower lying areas within 
fields. 
 
Table 5.10 provides a summary of the 78 indirect indicator features considered for analysis.  
The feature set consists of the four SPOT-5 bands; four VIs, 12 image texture 
measurements per spectral band, the two principal components, three IHS image transforms 
and five features relating to soil and terrain. 
 
5.3.3 Model building 

A land cover classification and field boundary data obtained from the Department of 
Agriculture, Forestry and Fisheries (DAFF) was used to exclude non-cultivated areas (e.g. 
non-agricultural land uses and fallow fields) from the analyses. Given that increased 
reflectance in the visible and reduced reflectance in the NIR spectra has been shown to be 
consistent in the vegetation responses to salt stress (Hick & Russell, 1990; Tilley et al., 
2007; Wang et al., 2002; Zhang et al., 2011), a spectral reflectance analysis was done to 
illustrate the effect of salt accumulation on vegetation growth in each study area. The 
samples collected during the field surveys were used to extract the reflectance values from 
the pansharpened image bands to create the profiles. 
 
Regression analyses were carried out to investigate the statistical relationships between the 
indirect indicator features and salt-affected areas, mainly to provide a basis for comparison 
with the supervised classification results. The indirect indicator features (Table 5.10) were 
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used as the independent variables, while measured EC values were defined as the 
dependent variable. Stepwise linear regression (SLR), partial least squares (PLS) regression 
and curve estimation regression were carried out using IBM SPSS (version 21) software. 
The curve estimations tested the fit between the EC values and the independent variables 
for various models (linear, logarithmic, inverse, quadratic, cubic, compound, power, s-curve, 
growth, exponential and logistic). The R2 value was used to interpret the overall fit of the 
regression model and the size of the relationship between the two variables. 
 
Table 5.10  Indirect indicator feature sets considered 
 

Type Feature Total 

Spectral bands 

Green 

4 Red 
NIR 

SWIR 

VIs 

NDVI 

4 SAVI 
EVI2 
GVMI 

Texture 

Energy 

60 

Entropy 
Kurtosis 

Mean Deviance 
Mean Deviance Median 

Mean Euclidean distance 
Mean 

Median 
Normalized Coefficient 

Skewness 
Variance 

Weight rank fill 

Image transformations 

PCA band 1 

5 
PCA band 2 

Intensity 
Hue 

Saturation 

Soils Soil type and/or 2 Irrigation potential 

Terrain 
Height 

3 Slope 
Relative height deviation 

Total number of features 78 
 

The regression analyses were followed by a series of categorical (binary) supervised 
classifications using the indirect indicator features as input. For this purpose, the EC values 
of the samples were split into two distinct classes (salt-affected and unaffected) using a 
threshold of 400 mS/m in accordance with the Soil Science Society of America (Bresler et 
al., 1982; SSSA, 2007). Samples with EC values equal or higher than this threshold were 
regarded as being salt-affected while all samples with lower EC values were classified as 
being unaffected. 
 
Because it is known that some classifiers are sensitive to high feature dimensionality, the 
CART and RF algorithms, as implemented in the Salford Predictive Modeller Software Suite, 
were used to identify the most important indirect indicators of salt accumulation at scheme 
level. CART is a robust decision tree classifier designed for data mining and predictive 
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modelling while RF as defined by Breiman (2001) is an ensemble of unpruned CART-like 
tree classifiers. Unlike CART and other common DT classifiers, RF is less sensitive to over 
fitting (Breiman, 2001) and has been shown to be an effective feature selection tool. 
Although it has been shown that the use of CART and RF is not ideal for selecting features 
when dissimilar classifiers (e.g. ML, SVM, NN) are used, many examples exist where these 
algorithms have successfully been implemented for feature dimensionality reduction (Cutler 
et al., 2007; Gislason et al., 2006; Laliberte et al., 2007; Yu et al., 2006; Myburgh & Van 
Niekerk, 2013). 
 
All the features in Table 5.10 were used as predictor variables in the feature selection 
process. The resulting VILs summarize the contribution of a particular feature to the 
classification success and give recognition to the variables whose significance is hidden by 
other variables in the process of tree building (Steinberg & Golovnya, 2007). The VIL’s 
essential function is to reduce the feature dimensionality and computational requirement 
while preserving the overall accuracy of the classification (Laliberte et al., 2007; Yu et al., 
2006). 
 
The supervised classifications were carried out in an object based image analysis (OBIA) 
paradigm. The main advantage of an OBIA approach is that the feature values at each 
surveyed point and its immediate neighbourhood are considered during the training and 
classifying process (Blaschke & Strobl, 2001; Flanders et al., 2003; Hay & Castilla, 2008). 
Objects were generated using the multi-resolution image segmentation algorithm as 
implemented in eCognition software. The same set of objects was used for each supervised 
classification implementation. Each of the six supervised classifiers was trained separately 
using different feature sets (see section 5.3.4.4). The classifiers were trained using 60% of 
the reference data, while the rest was used for accuracy assessment purposes. The training 
and accuracy assessment sample sets were kept consistent for all the classifiers. 

Six supervised classification algorithms (Table 5.11) were evaluated. Customized software 
developed in C++ using libSVM and OpenCV libraries was used for this purpose (Myburgh & 
Van Niekerk, 2014a). SVM is known for its superior results in classification accuracy when 
compared to less sophisticated (e.g. MLC and NN) classifiers (Mountrakis et al., 2011; 
Myburgh & Van Niekerk, 2013, 2014b; Pal & Mather, 2005; Tzotsos & Argialas, 2008). RF 
(aka Random Trees) is a relatively new classifier in the field of remote sensing and has been 
shown to compare well, and even outperform SVM (Bosch et al., 2007; Novack et al., 2011; 
Pal, 2005). 
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Table 5.11  Supervised classifiers considered and their implementations 

Classifier Library 

Support Vector Machine (SVM1) Libsvm 3.2 (Chang & Lin, 2011) 

 Support Vector Machine  (SVM2) OpenCV 2.4.10 (Bradski, 2000) 

Nearest Neighbour (NN) OpenCV 2.4.10 

Maximum likelihood classification (MLC) OpenCV 2.4.10 

Decision Trees (DT) OpenCV 2.4.10 

Random Forest (RF) OpenCV 2.4.10 

 

5.3.4 Results and discussion 

5.3.4.1 Spectral analysis 

Figure 5.13 shows the spectral profiles of salt-affected and unaffected crops in the Vaalharts 
irrigation scheme. Compared to healthy crops, salt-affected crops generally have higher 
reflectance in the blue to red region of the electromagnetic spectrum, while reflectance is 
lower in the near and shortwave infrared regions. This suggests that vegetation in salt-
affected areas experiences weaker growth (vegetation vigour) than in unaffected soils. This 
result is in accordance with the findings of Hick & Russell (1990), Tilley et al. (2007), Wang 
et al. (2002) and Zhang et al. (2011) and demonstrates that VIs that make use of the ratio 
between the red and NIR bands have the potential to distinguish between salt-affected and 
unaffected crops in Vaalharts. However, the relatively high standard deviation in the NIR 
region (indicated by error bars in Figure 5.13) suggests that an approach using VIs only 
might not be successful in all cases. 
 

 
 
Figure 5.13  Spectral profiles of salt-affected (n = 19) and unaffected (n = 50) soils as 
extracted from the SPOT-5 image (Vaalharts) with standard deviation error bars. 
 
The spectral profiles of the samples taken in the Breede River irrigation scheme (Figure 
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reflectance in all the bands. This is most likely due to the presence of background soil 
reflectance, as the predominant crops in Breede River are wine grapes and pruning fruit 
trees which are planted in rows and separated by bare soil for easy access during 
harvesting. In addition, visible salt encrustations on bare soil are known to have high 
reflectance in the visible and NIR regions (Abood et al., 2011; Elnaggar & Noller, 2009; 
Iqbal, 2011; Khan et al., 2005; Metternicht & Zinck, 2003; Rao et al., 1995; Setia et al., 2013; 
Sidike et al., 2014), which may further contribute to the atypical shape of the salt-affected 
profile in Figure 5.14. This result suggests that VIs will be less effective for differentiating 
between salt-affected and unaffected crops in the Breede River irrigation scheme and that 
other image features such as intensity, principal components, or even the image bands 
themselves, may provide better discrimination of these classes. 
 

 
Figure 5.14  Spectral profiles of salt-affected (n = 23) and unaffected (n = 25) soils as 
extracted from the SPOT-5 image (Breede River) with standard deviation error bars. 
 

5.3.4.2 Regression modelling 

A series of regression modelling procedures were carried out to identify the individual or 
combinations of image, soil and terrain features that best relate to salinity levels (as 
represented by EC). For both study areas, none of the singular (curve fit) and multiple linear 
regression models (SLR, PLS) produced any significant results and none of the 78 features 
paired with the EC values produced a model with an R2 value greater than 0.4. A likely 
explanation for the poor performance of the regression modelling in this study is that 
different crops have varying tolerances to saline conditions (Hanson et al., 2006; Zhang et 
al., 2011). Hanson et al. (2006) compiled a database of crop types and their “maximum root 
zone salinity at which 100% yield occurs” (Threshold A) and a “reduction in relative yield per 
increase in soil salinity” (Slope B) rates. The figures of A and B for the dominant crops 
planted in the two selected irrigation schemes are listed in Table 5.12. The table also 
includes a qualitative rating for each crop type, based on the interpretation of A and B. 
Apricots are the most intolerant to high levels of salt accumulation, with a relatively low 
threshold value (A = 160) and steep slope (B = 24), while barley is the least sensitive to 
saline conditions (A = 800; B = 5). In general, the tolerances of the dominant crops produced 
in Vaalharts are more variable, with A having a standard deviation of 244 mS/m compared to 
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40 mS/m in the Breede River. There is consequently a substantial difference in salt tolerance 
levels of the crops produced in the two irrigation schemes. 
 
Better results would likely have been obtained if each individual crop type were considered 
independently. However, this would require accurate crop type data, which is often not 
routinely available at scheme level. Also, the different growth stages of crops (even of the 
same type) planted at different times and in separate fields is also a source of variation and 
probably had a negative impact on the success of regression models. 
 
Table 5.12  Salinity threshold and slope values for a 100% yield potential of dominant crops 
in the Vaalharts and Breede River irrigation schemes 

Crop type 100% Yield (A) mS/m Slope (B) Classification 

Vaalharts 

Maize 170 12 Moderately intolerant 

Wheat 600 7.1 Moderately tolerant 

Lucerne 200 7.3 Moderately intolerant 

Groundnuts 320 29 Moderately intolerant 

Breede River 

Grapes 150 9.6 Moderately intolerant 

Peaches 170 21 Intolerant 

Apricots 160 24 Intolerant 

Tomatoes 250 9.9 Moderately intolerant 

 

5.3.4.3 Feature selection  

It is clear from the VIL in Table 5.13 that VIs played an important role in the CART and RF 
analyses of Vaalharts, confirming the observations made in Figure 5.13. Texture measures 
also featured strongly in this irrigation scheme. 
 
Table 5.13  Variable importance list for Vaalharts 

CART Random Forest 

Feature Importance 
% Feature Importance 

% 

EVI2 100 Histex, Variance algorithm; Red 
layer 100 

Histex, Median algorithm; NIR layer 59 SAVI 90 

SAVI 52 Histex, Median algorithm, NIR layer 83 

NDVI 52 NDVI 82 

Histex, Energy algorithm; NIR layer 45 GVMI 77 

Histex, Mean algorithm; NIR layer 45 Histex, Mean deviation algorithm; 
Red layer 74 

 

All of the important indirect indicators of salt accumulation in Breede River relate to texture 
measures (Table 5.14). Although it was expected (based on the spectral profiles in Figure 
514) that VIs will not feature as strongly as in Vaalharts, the strong influence of texture over 
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other features (e.g. intensity and principle components) was unforeseen. At closer inspection 
it was determined that the importance of texture measures can be attributed to the woody 
vines and orchards that make up the majority of the crops in the Breede River irrigation 
scheme. Because these crops are planted in rows, they are characterized by high levels of 
image texture. A reduction in biomass caused by saline conditions results in a dramatic 
reduction in texture as it increases reflectance from the soil background and thereby reduces 
the contrast between the planted and unplanted rows. This effect is amplified by the 
relatively low root zone salt tolerance threshold (A) and high deterioration slope (B) of these 
crops (Table 5.12) which can lead to rapid reductions in biomass under saline conditions. 
 
Table 5.14  Variable importance list for Breede River 

CART Random Forest 

Feature Importance 
% Feature Importance 

% 

Histex, Mean euclidean distance 
algorithm; PCA layer 100 Histex, Mean deviation algorithm; 

PCA layer 100 

Histex, Mean Euclidean distance 
algorithm; Red layer 90 Histex, Variance algorithm; PCA 

layer 83 

Histex, Mean Euclidean distance 
algorithm; Green layer 89 Histex, Mean Euclidean distance 

algorithm; PCA layer 76 

Histex, Mean Euclidean distance 
algorithm; SWIR layer 80 Histex, Mean Euclidean distance 

algorithm; Green layer 72 

Histex, Variance algorithm; Red 
layer 80 Histex, Mean Euclidean distance 

algorithm; Red layer 68 

Histex, Variance algorithm; Green 
layer 79 Histex, Mean deviation algorithm, 

Red layer 66 

 
5.3.4.4 Supervised Classification 

Each of the six supervised classifiers were applied to different sets of input features (Table 
5.15), namely: all the features (Feature Set A); only the spectral bands (Feature Set B); only 
the VIs (Feature Set C); only the texture measures (Feature Set D); and a combination of the 
image transformations, soils and terrain features (Feature Set E). Two additional feature sets 
(F and G), representing the first six features of the VILs generated by CART and RF 
respectively, were also used as separate inputs to the classifiers. 
 
The mean overall accuracy (OA) and Kappa coefficient (KC) for each feature set are listed in 
Table 5.15 and Table 5.16 for Vaalharts and Breede River, respectively. 
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In Vaalharts, Feature Set E (image transforms, terrain and soil data) produced the best 
classification result with a mean OA and KC of 81.3% and 0.597, respectively (Table 5.15). 
Both feature selection strategies (CART and RF) were not very effective, with Feature Set F 
(CART VIL) and Feature Set G (RF VIL) producing substantially lower accuracies (OA = 
80.4% and 82.2%, respectively) when the full set of features were included as input to the 
classification algorithms (OA = 85.6). It might be that the feature selection process was too 
aggressive and that more than six features should have been included in the VIL. Also, the 
relatively high accuracy achieved when using the full feature set supports the findings of 
Myburgh and Van Niekerk (2014b), who showed that most of the classifiers considered (in 
particular SVM, DT and RF) are relatively insensitive to the so-called “curse of 
dimensionality”. Nevertheless, the best classification result for Vaalharts was when the DT 
classifier was applied on Feature Set G (RF VIL), achieving an overall accuracy of 92.9%. 
 
On average, the most successful classifier in Vaalharts was RF, with a mean OA of 79.8% 
(Table 5.15). To our knowledge, RF has never been applied for identifying salt accumulation 
and this result suggests that this classifier holds much potential for this purpose. The 
relatively good performance of RF is attributed to their abilities to produce accurate 
classifications with limited training data (Ham et al., 2005; Mountrakis et al., 2011). RF is 
also non-parametric and consequently has the ability to perform well with data that is not 
normally distributed, as was the case in this study. 
 
In the Breede River study area feature Set D (texture measures) was the most successful 
set of features, producing a mean OA and KC of 84.6% and 0.693, respectively (Table 5.16). 
Very similar accuracies were achieved when the original bands (Feature Set A) were used 
as input (OA = 84.4; KC = 0.691). Feature Set C (VIs) produced the poorest classification 
results in the Breede River area. This result was anticipated given the spectral profiles of the 
classes shown in Figure 5.14. Unexpectedly, Feature Set E, containing the image 
transformations (e.g. PCA and IHS), soil and height data, also produced relatively poor 
results. Although Figure 5.14 shows that salt-affected areas generally have higher 
reflectance responses in all bands, it seems that this relationship is not consistent 
(supported by the large standard deviations in Figure 5.14) and that the classifiers were 
unable to successfully separate the classes using image transformation features such as 
intensity and principal components.  On average, SVM1, NN and ML produced the best 
classifications with a mean OA of 83.3% (Table 5.15), but the best classification result 
(91.6%) was achieved using the SVM1 classifier on the texture measures (Feature Set D). 
Generally, higher accuracies were achieved in Vaalharts than in Breede River. This was 
unexpected given the higher level of crop complexity in Vaalharts. The most likely 
explanation is the larger training dataset used for Vaalharts compared to Breede River as 
Myburgh and Van Niekerk (2014a) showed that training set size has a significant effect on 
classifier accuracies. More work is needed to determine the optimal number of samples 
required for achieving acceptable results. 
 
Figures 5.15 to 5.18 show classification results for detailed areas within each of the irrigation 
schemes. Generally the agreement between the in situ data and the classification results is 
good (Figures 5.15 and 5.16), but based on extensive interpretations of the mapped results 
and inputs from local experts it was determined that the classifiers seem to overestimate 
salt-affected areas. For instance, the misclassifications in Figures 5.16 and 5.18 are mainly 
attributed to the difference in vegetation response between different crop types. Poor 
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farming practices such as inadequate soil preparation or other soil related issues (e.g. soil 
compaction) can further lead to such misclassifications. 

 
Figure 5.15  RF classification result using Feature Set C in two detail areas (a and b) within 
the Vaalharts irrigation scheme showing some misclassifications due to differences in 
vegetation response to saline conditions. False colour image combination: 2-1-3. 
 

 
Figure 5.16  RF classification result using Feature Set C in two detail areas (a and b) within 
the Vaalharts irrigation scheme showing examples of over-classification of salt-affected 
areas 
  

A 

B

A 
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Figure 5.17 Two examples (a & b) of inaccurate delineations of affected areas in the Breede 
River irrigation scheme when the SVM classifier was used on the texture feature set (D). 
 

 
Figure 5.18  Two examples of over-classification of salt-affected areas in the Breede River 
irrigation scheme when the SVM classifier is applied to the texture feature set  

A 

B
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A key finding of this study is that none of the feature sets and/or classification algorithms 
stood out as being superior for monitoring salt accumulation on irrigation scheme level. Due 
to the large variations in how different crops respond to saline conditions, the classifications 
tended to produce many false positives (over-classification). The accuracy levels also varied 
significantly according to training set size, which is problematic as the routine collection of 
large sets of soil samples is prohibitively expensive. This suggests that supervised 
classification methods can at best be used as a scoping mechanism for identifying salt 
accumulation in cultivated fields and that more work is needed to find more cost-effective 
solutions that can be applied for operational monitoring of salt accumulation in large, 
complex irrigation schemes. 
 
One approach to overcome some of the limitations of supervised classification is to shift the 
focus from scheme level to field level. If each field (planted with a single crop type) can be 
evaluated relative to itself it would reduce the temporal and spatial variances of crop types 
and their salinity tolerances. Instead of using a supervised approach, an expert system 
approach to identify patches within fields that have significantly different spectral properties 
(compared to the rest of the field) would remove the need for training samples. Furthermore, 
a multi-temporal approach would help determine whether an area within a field is 
consistently experiencing poor vegetation growth. According to Furby et al. (1995), 
persistently poor vegetation cover over multiple growing seasons is more likely to be caused 
by salt accumulation than poor farming practices (Lenney et al., 1996). More work is needed 
to evaluate such an approach. 
 

5.3.4.5 Conclusions 

In this study a number of indirect indicators were examined for identifying areas in cultivated 
fields affected by salt accumulation at irrigation scheme level. Given that such areas tend to 
occur in small patches within fields, 2.5 m pansharpened SPOT-5 high resolution satellite 
imagery was evaluated in two distinctly different South African irrigation schemes (Vaalharts 
and Breede River). 
 
A series of regression analyses were carried out to evaluate the continuous relationships 
between the surveyed in situ salinity levels (represented by EC) and 78 different geospatial 
features. The results showed that all the resulting regression models were insignificant, most 
likely due to the high levels of variation in the spectral responses of different crops types at 
different growing stages, coupled with their individual tolerances to saline conditions 
(Hanson et al., 2006; Zhang et al., 2011). A categorical, supervised classification approach 
to identifying salt-affected areas was also evaluated. CART and RF were used to reduce the 
dimensionality of the full feature set to two feature subsets, each containing the six most 
important features. Four other subsets of features (image bands; VIs; texture; image 
transformations, soil and terrain) were also used as input to six different classification 
algorithms (ML, NN, RF, DT and two implementations of SVM). The results showed that DT 
using the RF VIL as input (Feature Set G) produced the best result in Vaalharts (OA = 
92.9%; KC = 0.854), while SVM1, using texture measures as input, produced the best result 
in Breede River (OA = 91.6%; KC = 0.81). The high levels of accuracy achieved suggest that 
supervised classification of image features (especially texture and VIs) holds much potential 
for monitoring salt accumulation in agricultural areas. However, based on visual 
interpretations of the results and inputs from local experts, it was determined that the 
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classifications tend to overestimate salt-affected areas in both irrigation schemes and that 
the outputs can at best be used as a scoping mechanism for monitoring salt accumulation. 
More work, possibly using an expert system, multi-temporal approach at individual field level, 
is needed to find robust solutions for routine monitoring of salt accumulation in large complex 
irrigation schemes. 
 

5.4 Terrain analyses at scheme level 
The aim of the terrain analysis component was to evaluate the use of machine-learning 
algorithms and terrain data for mapping waterlogged and salt-affected areas in irrigated 
fields. Separability analysis (Jeffries-Matusita (JM) distance), statistical modelling 
(regression), classifications and regression trees (CART) and several classifiers were 
compared to determine the terrain features that best relate to affected soils. The classifiers 
encompassed the k-nearest neighbour (kNN), maximum likelihood (ML), support vector 
machine (SVM), decision tree (DT) and random forest (RF) classifiers. Several candidate 
features were derived from the elevation datasets, including aspect, slope, channel network 
base level, closed depressions, cross-sectional curvature, longitudinal curvature, LS factor, 
valley depth, vertical distance to channel network, flow accumulation, downslope distance 
gradient, real surface area, terrain ruggedness index, terrain surface texture, topographic 
position index, topographic wetness index (TWI), SAGA wetness index (SWI) and height 
above nearest drainage (HAND). The methods and features were evaluated in the Vaalharts 
and Breede River study areas (section 5.3.1). 
 

5.4.1 Study areas 

Two study areas, namely the Vaalharts and Breede River irrigation schemes were selected 
for this component of the study. 
 
5.4.2 Data collection and preparation 

5.4.2.1 Digital elevation models (DEMs) 

The 5 m resolution Stellenbosch University DEM (SUDEM), developed by the Centre for 
Geographical Analysis (CGA), was acquired for each of the study areas. This DEM was 
developed using large-scale, error-corrected (1:10 000) contours, spot heights and the 30 m 
Shuttle Radar Topography Mission (SRTM) DEM as input (Van Niekerk, 2015). A 
combination of interpolation algorithms (e.g. the ANUDEM and Spline tools in ArcGIS 
software) as well as a newly-developed fusion algorithm was used to generate the SUDEM. 
The 30 m resolution Shuttle Radar Topography Mission (SRTM) DEM was also acquired for 
the study areas. 
 

5.4.2.2 Stereoscopic aerial image collection 

Stereo aerial photographs were acquired from the Chief Directorate: National Geo-spatial 
Information (CD: NGI) of South Africa in 12-bit true colour (RGB) format. Table 5.17 shows a 
summary of the acquired stereoscopic aerial photographs. The latest available photographs 
for the two study areas were captured in 2010. The photographs have a spatial resolution of 
0.5 m and consist of three multispectral bands, namely blue, green and red. In total, 489 
aerial photographs were acquired for Vaalharts and 1145 for Breede River. 
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Table 5.17  Details of aerial photographs obtained 
Irrigation scheme Blocks Capturing date Number of RGB 

photographs 
Coordinate 

system 
Vaalharts 2724D 2010 489 Lo25 
Breede River 3319C 

3319D 
2010 615 

530 
Lo19 

 

5.4.2.3 Digital surface model (DSM) generation 

The stereoscopic aerial photographs were used to extract the DSM at a spatial resolution of 
2 m for both study areas. This is possible as a displacement of objects is noted from one 
image to another when two or more satellite images or aerial photographs are captured of 
the same area from different perspectives. This is known as the stereoscopic parallax, which 
increases as the distance between the object and the observation point increases, allowing 
for distance or height measurements (Zomer et al., 2002; Fabris & Pesci, 2005; Campbell, 
2007; Stal et al., 2013). PCI Geomatica 2013 was used to extract the DSMs from the 
stereoscopic aerial photographs. 
 
Several software packages are available for extracting DSMs from remotely-sensed, stereo 
imagery. ERDAS Imagine 2011, PCI Geomatica 2012 and Inpho were quantitatively and 
qualitatively compared. The results showed that the DSMs generated using PCI Geomatica 
2012 were superior to the other software considered. The updated version of PCI Geomatica 
2012, namely PCI Geomatica 2013, was used in this study. This version produced much 
more detailed and accurate DSMs than in previous reports. 
 
Capturing of ground control points (GCPs) was not required as triangulation information was 
obtained from CD: NGI. DEMs have been successfully extracted from both stereo aerial 
photographs (Fabris & Pesci, 2005; Stal et al., 2013) and stereo satellite imagery (Zhang & 
Fraser, 2008; Zhang & Gruen, 2006), producing high precision even in mountainous terrain 
(Zomer et al., 2002). Highest accuracies are usually found within open rural areas (Zhang & 
Fraser, 2008), with the largest errors found in tree, shadow and building covered areas 
(Zhang & Gruen, 2006; Zhang & Fraser, 2008; Stal et al., 2013). 
 

5.4.2.4 Feature set development 

A feature set consisting of 24 input variables derived from the SRTM DEM, SUDEM and a 
DSM were considered for differentiating salt-affected or water logged soils from unaffected 
soils (Table 5.18), producing a total of 72 terrain variables. 
 
For processing purposes the high resolution SUDEM (5 m) and DSM (2 m) were down-
sampled to 20 m. Vaze et al. (2010) showed that reducing the spatial resolution of a DEM 
(from 1-25 m) improved terrain analyses accuracies. Thompson et al. (2001) and found that 
by reducing DEM horizontal resolution, a smoother, less defined landscape with reduced 
curvatures and moderate slope gradients was produced. This is of particular importance in 
this study as groundwater flow tends to follow general topographic patterns and will therefore 
depend less on small-scale variations (Sorensen & Seibert, 2007). Although a reduction in 
the spatial resolution has been shown to have a negative effect on wetness indices, 
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especially on the calculation of the upslope area (Sorensen & Seibert, 2007), the 20 m 
resolution of the down-sampled DEM was still relatively high compared to other studies. 
 
Table 5.18  Features considered in the analyses 

Type Features # of features 
Elevation SUDEM, SRTM DEM, stereoscopic aerial’s DSM 3 
Hydrology Channel network base level, closed depressions, LS-factor, valley 

depth, vertical distance to channel network, catchment area, slope 
limited flow accumulation 

7 

Morphometry Aspect, slope, convergence index, cross-sectional curvature, 
longitudinal curvature, relative slope position, mid-slope position, 
normalized height, slope height, standardized height, downslope 
distance gradient, real surface area, terrain ruggedness index, 

terrain surface texture, topographic position index 

15 

WIs Topographic wetness index, SAGA wetness index 2 
 
Several terrain features were evaluated for mapping salt-affected or waterlogged areas. This 
included the topographic wetness index (TWI) (Beven & Kirby, 1979; Grabs et al., 2009; 
Sorensen et al., 2006), height above nearest drainage (HAND) (Renno et al., 2008) and 
several terrain analysis (hydrology and morphometry) approaches provided by the software 
package known as the System for Automated Geoscientific Analyses (SAGA). Terrain 
analysis calculations performed within SAGA included aspect, slope, channel network base 
level (CNBL), closed depressions, cross-sectional curvature, longitudinal curvature, LS 
factor, valley depth, vertical distance to channel network (VDTCN), flow accumulation, 
downslope distance gradient, real surface area, terrain ruggedness index, terrain surface 
texture, topographic position index, TWI and the SAGA wetness index (SWI) (Böhner et al., 
2002). More information on the functionality of SAGA can be found in Böhner et al. (2002, 
2008). 
 
Several studies have shown a strong relationship between soil EC and terrain variables, 
especially wetness indices (Elnaggar & Noller, 2009; Jafari et al., 2012; Taghizadeh-
Mehrjardi et al., 2014). Sulebak et al. (2000) found that slope, profile curvature and aspect 
have the highest correlations with soil moisture (Thompson et al., 2001). 
 
Several studies have applied and evaluated the utility of wetness indices (WIs) (Grabs et al., 
2009; Sorensen et al., 2006). Two WIs were evaluated for this study, namely TWI and SWI. 
TWI is the most commonly applied topographic index and is defined as (Beven & Kirkby, 
1979): 

         Equation 5.11 
 
where   is the upslope area per contour length; and 
  tanß is the local slope of the ground surface. 
 
The result from this calculation assigns high values to large upslope areas, which are 
expected to have high water availability, and low values to small upslope areas. Steep 
locations will be better drained and therefore receive small index values, whereas gently 
sloped areas will consist of higher index values (Sorensen & Seibert, 2007). TWI also 
assumes that the groundwater table is represented by the slope of the ground surface, and 
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that precipitation and hydraulic conductivity are expected to be uniform across the study 
area (Sorensen & Seibert, 2007). 
 
The SWI is a modified TWI and makes use of a modified catchment area calculation which 
does not treat the flow as a thin film. The resulting SWI calculation assigns a more realistic 
soil wetness value to grid cells situated in valley floor with a small vertical distance to a 
channel (Böhner et al., 2002). 
 
The HAND model, first proposed by Renno et al. (2008), normalizes DEMs according to the 
distribution to vertical distances relative to the drainage channels (Renno et al., 2008; Nobre 
et al., 2011). The first step in the two-step process is to create a hydrologically coherent 
DEM, define flow paths and delineate the channel network. The second step makes use of 
the drainage network and the local drainage directions to produce a nearest drainage map 
(Renno et al., 2008; Nobre et al., 2011). A more detailed description on the workings of the 
HAND model can be found in Renno et al. (2008) and Nobre et al. (2011). The HAND 
hydrological model has been successfully used to classify terrain attributes related to local 
soil water conditions (e.g. water table depth, waterlogging) (Renno et al., 2008; Nobre et al., 
2011) and watershed mapping (Cuartas et al., 2012). 
 

5.4.2.5 Separability analysis 

Feature selection methods can improve the accuracy of image classifications (Myburgh & 
Van Niekerk, 2013; Lu & Weng, 2007). This is especially true when the number of features is 
disproportional high compared to the number of training samples (Myburgh & Van Niekerk, 
2013; Pal & Mather, 2005; Oommen et al., 2008). The SEaTH (SEparability and THresholds) 
software package was employed to select the most important terrain features. This makes 
use of the Jeffries-Matusita (JM) distance to identify the best features for class separation 
(Nussbaum et al., 2006). The JM distance is defined as (Nussbaum et al., 2006): 
 

        Equation 5.12 
 
where  J is the JM distance; and 
  B is the Bhattacharya distance. 
 
The Bhattacharya distance (B) is the mean and standard deviation of the training samples of 
the two classes (Bhattacharya, 1943). The J value can range from 0 to 2; J = 2 shows that 
two classes are separable due to being completely uncorrelated, whilst completely 
correlated classes will produce a low J value (J = 0). Therefore, the lower the value of J the 
higher the number of misclassified objects will be Nussbaum et al., 2006; Gao et. al., 2011; 
Heumann, 2011). According to Nussbaum et al. (2006) and Heumann (2011), a J value less 
than 1 indicates a requirement for new training data. A J value less than 1.7 shows poor 
separability and greater than 1.9 shows good separation between classes. A J value of 2 
indicates perfect intra-class separation (Nussbaum et al., 2006). 
 
SEaTH first identifies the features that provide the highest separability between classes and 
then establishes a threshold value that best separates each of the classes (Nussbaum et al., 
2006, Gao et al., 2011; Heumann, 2011). Because the JM distance assumes that the sample 
values are normally distributed within classes, the threshold value might be substantially 
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different when the sample values are not normally distributed, but the separability measure 
may still be valid (Gao et al., 2011). A more detailed discussion on the JM distance 
measures can be found in Nussbaum et al. (2006). 
 

5.4.2.6 Statistical modelling 

Regression analyses were carried out using IBM SPSS v20.0 to statistically analyze the 
relationship between soil EC and the terrain features. Linear, logarithmic, inverse, quadratic, 
cubic, power and exponential regression models were implemented. Stepwise multiple 
regression and partial least squares (PLS) analyses were also performed. Stepwise multiple 
regression fits an observed dependent variable using a linear combination of independent 
variable by simultaneously removing unimportant variables. PLS regression reduces a large 
number of measured collinear spectral variables to a few non-correlated latent variables by 
utilizing a bilinear calibration method using data compression (Hansen & Schoerring, 2003). 
A linear relationship is specified between a set of dependent variables and predictor 
variables, thereby extracting the orthogonal predictor variables accounting for as much of the 
variation of the dependent variables as possible (Cho et al., 2007). 
 

5.4.2.7 Supervised classification 

Supervised classification, which is the process of using samples of known identity to classify 
cases of unknown identity (Campbell, 2007; Rees, 2001), was also evaluated. Several 
classifiers were considered, including the kNN, ML, SVM, DT and RF (see section 2.3.2.2). 
A total of 125 soil samples were used for training the classifiers in the Vaalharts study area, 
while 43 soil samples were used for Breede River classifications. A total of 50 and 20 
samples were kept aside for determining the accuracy of the classifications in the Vaalharts 
and Breede River study areas, respectively. 
 
The kNN, SVM, DT and RF classifications were performed within eCognition 8.9, which 
makes use of OpenCV implementations of the classifiers (Bradski, 2000). ML was applied in 
ENVI 5.0. A pixel-based approach was followed during the classifications to avoid distorting 
the values of the training features. To avoid ties with the kNN classifier, only odd numbers 
were applied (Campbell, 2007). This included a k value of one, three and five. The number 
of active variables for RF, which is the number of randomly selected features used to find the 
best splits at each node, was set to three. The number of trees was set to 100. As 
recommended by Hsu et al. (2010), the kernel type was set to the radial basis function for 
the SVM classifier. Default parameters were applied for the ML and DT classifiers. 
 

5.4.2.8 Accuracy assessment 

Maps were created from the rule-based and supervised classifications to identify affected 
areas within the study areas. Confusion matrices were used to calculate the overall accuracy 
(OA), producer accuracy (PA) and user accuracy (UA). The Kappa coefficient (KC) and the 
receiver operating characteristic (ROC) curve were also calculated. 
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5.4.3 Results 

5.4.3.1 Separability analysis results 

The gradient dataset derived from the SUDEM attained the highest relationship (J = 0.36) to 
EC in the Vaalharts study area. Given that the J value is much lower than the required 1.8, 
this result indicates that the relationship is poor or that the training data was not insufficient 
(Nussbaum et al., 2006; Heumann, 2011). Although separability improved in the Breede 
River using the flow accumulation raster derived from the SUDEM, the resulting J value of 
1.27 was still not high enough to expect a good classification. From the separability analysis 
results it was concluded that a classification involving a simple threshold approach will not 
produce an accurate classification in either study area. 
 

5.4.3.2 Regression modelling 

Slope height derived from the SRTM DEM (30 m) produced the best regression model (R2 = 
0.711, p <0.01) in the Vaalharts study area. The resulting cubic model is defined as: 
 

     Equation 5.12 
 
where  EC is the predicted soil EC; 
  x is the slope height derived from the SRTM DEM; 
  b0 = 5188.408; b1 = 0.0; b2 = -961.625; and b3 = 155.546. 
 
Figure 5.19 compares this model to the slope height dataset derived from SRTM DEM and 
measured soil EC (mS/m) values. A large proportion (85.8%) of unaffected samples have a 
slope height less than 4 m. 
 

 
 
Figure 5.19  Cubic relationship between slope height and soil ECe in the Vaalharts study 
area. 
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Multistep and PLS regression was also performed on all features, but did not improve the 
results. The regression modelling in the Breede River study area did not produce good 
results, with a cubic model of the vertical distance to channel network (VDTCN) dataset, 
derived from the SUDEM, achieving the best fit (R2 = 0.153, p <0.05).  
 
The best model generated for each of the study areas was implemented and a threshold of 
400 mS/m was used to discriminate between salt-affected and unaffected areas. The 
resulting maps were included in the classification accuracy assessments. 
 

5.4.3.3 CART rule sets 

Figure 5.20 shows the optimal tree from the CART analysis for Vaalharts. Each of the 
features included as splitters were derived from the SUDEM, namely mid-slope position 
(MSP), valley depth and channel network base level (CNBL). Low MSP values ( 0.73) were 
classed as salt-affected, with high valley depth values (>1.69) classed as unaffected. The 
final split was performed on the CNBL feature with a threshold value of 1107.82. High values 
were classed as salt-affected (>1107.82) and low values as unaffected ( 1107.82). 
 

 
Figure 5.20   Decision tree produced from the CART analysis for Vaalharts  
 
The resulting CART tree for Breede River is shown in Figure 5.21. As with Vaalharts, the 
features derived from the SUDEM showed the most promising results. LS-factor, slope 
height, aspect, cross-sectional curvature (CSC) and CNBL were included as splitters in the 
resulting tree. Low LS-factor (>0.23) and slope height values ( 3.16) were classed as 
unaffected, while low aspect values ( 0.24) were classed as salt-affected. CSC values less 
than or equal to zero were classed as unaffected. The final split classed high CNBL values 
(>196.23) as unaffected and low CNBL values ( 196.23) as salt-affected.  The CART trees 
were implemented as rule sets and included in the classification results. 
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Figure 5.21  Decision tree produced from the CART analysis for Breede River.  
 

5.4.3.4 Classification results 

Table 5.19 summarizes the accuracy assessment results of the classifications. The ML 
algorithm is excluded as it produced erratic results, most likely due to the large number of 
features considered. The kNN (k = 1) classifier achieved the highest accuracy for both 
Vaalharts (OA = 92%; Kappa = 0.84; AUROC = 0.93) and Breede River (OA = 75%; Kappa 
= 0.50; AUROC = 0.75). However, the relatively high proportions of the study areas that 
were classified as being salt-affected (19.8% and 33.1% in Vaalharts and Breede River, 
respectively) suggest that the classifier overestimates affected areas. 
 
Although the rule-based classification of the slope height (SRTM) regression model for 
Vaalharts achieved an OA of 68%, the low KC of 0.36 suggests that there is a high 
agreement by chance and that the classification is not robust. Similar results (OA = 70%; 
Kappa = 0.40; AUROC = 0.74) were achieved for the VDTCN (SUDEM) regression model in 
the Breede River study area. The CART rule-based classification achieved the lowest 
accuracy (OA = 66%) in Vaalharts, and performed only marginally better in the Breede River 
study area (OA = 50%). The DT classifier produced the poorest classification (OA = 35%) in 
the Breede River, but in Vaalharts performed on par with most of the other classifiers (OA = 
72%). The high proportion of the area that was classified as being salt-affected (68.3%) is, 
however, unrealistic. 
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RF was one of the better classifiers, achieving an OA of 80% and 65% for Vaalharts and 
Breede River, respectively. High accuracies were recorded for the Vaalharts SVM 
classification (OA = 84%; Kappa = 0.68; AUROC = 0.88), scoring a perfect UA (100%) and a 
low PA (68%) for the salt-affected class. However, the classifier suffered from over-fitting as 
only 0.01% of Vaalharts was highlighted as being salt-affected. An even smaller proportion 
was labelled as affected in Breede River. 
 
Figure 5.22 provides a spatial representation of the best rule-based (slope height regression 
model) and best supervised (kNN) classifications in the Vaalharts study area. The first 
observation is that there is very little agreement between the two results. The classified 
regression model produced large continuous affected areas, while the affected areas in the 
kNN result are generally much smaller and discrete. The slope height regression model 
classified 42.2% of the Vaalharts study area as being salt-affected, while the kNN classifier 
labelled a much smaller proportion (19.8%) as affected. Based on the field surveys and 
expert knowledge, the kNN result is a more realistic representation of salt accumulation 
conditions in the study area. 
 

 
Figure 5.22  (a) Rule-based classification of the slope height regression model and (b) 
supervised kNN (k = 1) classification maps of Vaalharts. 
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Table 5.20  Error matrix produced from the kNN classification for Vaalharts 

 
The confusion (error) matrix of the kNN classifier results in Vaalharts (Table 5.20) reveals 
that, of the 50 samples, only four salt-affected samples were incorrectly classified as 
unaffected, while all the samples that were classified as salt-affected were verified as being 
salt-affected. 
Similar observations were made in the Breede River study area (Figure 5.23), where the 
VDTCN regression model based on the SUDEM classified salt-affected areas as large 
continuous regions covering 49.1% of the study area. As with Vaalharts, the kNN classifier 
mostly labelled small patches as salt-affected, although some large sections in the western 
parts of the scheme were also delineated. A total of 33.1% of the Breede River study area 
was classified as salt-affected. 
 

 Confirmed as 
salt-affected 

Confirmed as 
unaffected Total User’s 

accuracy (%) 
Classified as salt-affected 21 0 21 100 
Classified as unaffected 4 25 29 86.2 

Total 25 25 50  
Producer’s accuracy (%) 84 100  92% 

 Kappa 0.84 
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Figure 5.23  (a) Rule-based classification of the VDTCN regression model and (b) 
supervised kNN (k = 1) classification maps of Breede River. 
The kNN classifier achieved a substantially lower overall accuracy (75%) in the Breede River 
study area (Table 5.21) and the relatively low Kappa coefficient of 0.50 suggests high 
agreement by chance (Garrett & Viera, 2005), most likely due to the small number of 
samples (20) used for accuracy assessment. 
 
Table 5.21  Error matrix produced from the kNN classification for Breede River. 

 Confirmed as 
salt-affected 

Confirmed as 
unaffected 

Total User’s 
accuracy (%) 

Classified as salt-affected 7 2 9 77.8 
Classified as unaffected 3 8 11 72.7 

Total 10 10 20  
Producer’s accuracy (%) 70 80  75% 

 Kappa 0.50 
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5.4.4 Discussion 

The terrain features derived from the DTMs performed better than those extracted from the 
DSMs. This finding is attributed to the influence of land cover features (e.g. vegetation), 
particularly in the Breede River study area where the crops are mainly perennial and woody 
(e.g. fruit trees and vineyards). Better results may have been obtained with LiDAR data, 
which has the ability to penetrate foliage. 
 
The SRTM DEM produced better results in Vaalharts, while the SUDEM was generally more 
successful in Breede River in establishing relationships between terrain features and salt 
accumulation. The main difference between the SUDEM and SRTM DEM is that the former 
incorporates contours, but in flat terrain such as Vaalharts, the horizontal distances between 
contours are large and will consequently not provide any significant value. Also, the higher 
resolution of the SUDEM will not have much benefit in flat terrain. 
 
The rule-based classifications that were performed on the regression models did not 
produce meaningful results. This is attributed to the large number of contributing factors to 
salt accumulation and the large variations in the samples that were collected. CART also 
performed poorly, but has the advantage of providing a set of rules (decision tree) that can 
be interpreted, modified and transferred to other areas. However, CART and other DT 
classifiers are known to be susceptible to over-fitting, which can reduce their transferability. 
 
Generally the classification results were better in the Vaalharts study area (mean OA = 77%) 
compared to Breede River (mean OA = 57.5%). The terrain in the Breede River is more 
complex and this may have contributed to the lower accuracies, but it is more likely that the 
higher accuracies in Vaalharts were due to the larger set of training data used. This result 
highlights the main disadvantage of supervised classifiers. Although they generally produce 
accurate results (compared to regression modelling), the results are heavily dependent on 
the size and quality of the training data. The routine collection of large sets of training (and 
reference) data for operational monitoring of salt accumulation at national level is not viable. 
Another drawback of supervised classifiers (DTs being an exception) is that they are “black 
box” techniques, meaning that the classification cannot be replicated in other study areas 
without collecting a new set of training data. 
 
It is important to note that salt accumulation, as represented by EC, is measured on a ratio 
scale. The accuracy assessments in this component of the research were performed on 
crisp categorical (salt-affected and unaffected) outputs using 400 mS/m as a threshold. The 
classification results might have been significantly different if another threshold (e.g. 410 
mS/m) was used. The fuzzy nature of salt accumulation is consequently not well addressed 
when using classification approaches and the uncertainties of such results should be taken 
into consideration when the data is interpreted. 
 

5.4.5 Conclusion 

This section evaluated the use of elevation data and its derivatives for modelling salt 
accumulation. The SRTM DEM, SUDEM and DSMs derived from high-resolution 
stereoscopic aerial photography were used as the primary data sources. Numerous 
derivatives were produced from the primary datasets and several terrain analysis methods 
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were assessed. Two rule sets based on regression modelling and CART, as well as five 
supervised classifiers (NN, ML, SVM, DT and RF) were considered. The kNN supervised 
classifier was the most successful in differentiating salt-affected from unaffected soils in both 
study areas. 
 
From the results of this section it can be concluded that the use of elevation data and its 
derivatives to identify salt-affected soils is ineffective and unreliable. Most of the methods 
evaluated either underestimated or overestimated salt accumulation or achieved low 
accuracies, especially for Breede River. The low spatial resolution and quality of the DEMs 
might have had a negative impact on the results and other elevation data sources, such as 
LiDAR, should be explored in future research. However, such data may be prohibitively 
expensive to acquire for large irrigation schemes. Another contributing factor to the poor 
performance of this approach was the exclusion of artificial drainage in the modelling 
process. 
 

5.5 Multi-temporal object-based image analysis 
The previous four sections demonstrated that both the direct and indirect methods for 
identifying waterlogged and salt-affected soils have limitations. Farming practices such as 
tillage and irrigation compromise the spectral properties of soils and salt crusts and the 
dynamic nature of irrigation schemes limits the application of a direct detection of affected 
areas (Zhang et al., 2011). Hydrophytic grasses and weeds can also create spectral 
confusion in waterlogged areas (Dwivedi & Sreenivas, 1998). In an indirect approach, poor 
vegetation responses related to factors other than soil salinity or waterlogging (e.g. poor 
farming practices or soil compaction) can cause confusion. Because different crop types 
have varying tolerances to salt accumulation, a single model will not be able to sufficiently 
discriminate between affected areas on an irrigation scheme with a large variety of crop 
types (Zhang et al., 2011; Gratton & Handson, 2006). The occurrence of salt accumulation 
and waterlogging in generally small patches in South African irrigation schemes poses 
additional challenges and will require a robust modelling strategy. This section describes a 
geographical object-based image analysis (GEOBIA) approach that makes use of delineated 
field boundaries and multi-temporal high resolution (SPOT-5) imagery to identify potential 
salt-affected or waterlogged areas. This approach was applied in the Vaalharts and Loskop 
irrigation schemes to produce maps of areas that are likely to be affected. The resulting 
maps were quantitatively compared to reference data collected during several field surveys. 
 

5.6 Synthesis 
This chapter evaluated a range of remote sensing and terrain analysis techniques for 
identifying waterlogged and salt-affected areas. Some of the techniques produced very 
promising results. 
 
The experiments showed that the direct approach (bare soil analysis) produced meaningful 
results, in particular when normalized difference salinity indexes are derived from very high 
resolution WorldView-2 imagery. However, the approach: 

• is only effective when visible evidence of salt accumulation (e.g. salt precipitation) is 
present on the soil surface; and 

• can only be used if the soil is entirely bare (i.e. directly after cultivation) as the 
presence of vegetation confuses the statistical models and classifiers. 
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Given the dynamic nature of irrigation schemes, only a small number of fields are bare at 
any given time, which means that multiple analyses will be required to monitor a particular 
area. The acquisition of multi-temporal imagery (especially very high resolution imagery) will 
be prohibitively expensive for operational monitoring purposes. 
 
Section 5.2 demonstrated how an indirect approach that monitors the response of a single 
crop to salt accumulation can address some of the limitations of the direct approach. Very 
strong statistical relationships (R2>0.7) were found between salinity (EC) levels and the 
vegetation indices and texture measures that were derived from a very high resolution 
WorldView-2 image. The main advantages of using vegetation response as an indicator for 
detecting salt accumulation and waterlogging are that: 

• it can be employed any time during the growing season (but preferably when crops 
are mature); and 

• it takes sub-surface (root zone) conditions into consideration. 
 
However, the vegetation response monitoring approach is not without limitations. The main 
drawback is that crops respond differently to saline conditions. Section 5.3 showed that 
when multiple crops are monitored at scheme level no significant statistical relationships 
(regression models) between the indirect indicators and salt-accumulation levels could be 
determined. The machine-learning algorithms (specifically SVM, NN and RF) were less 
sensitive to these variations, but their ability to differentiate between affected and unaffected 
crops relies on large training (in situ) datasets, which are expensive to routinely collect over 
large areas. 
 
The terrain analysis experiments (section 5.4) showed that there are generally very weak 
statistical relationships between terrain derivatives and salinity levels. Better results may be 
achieved using very high resolution digital terrain (e.g. LiDAR) data, but such data was not 
available for any of the study areas. Some of the machine-learning classifiers (particularly 
kNN) performed well according to the accuracy assessments, but the results were not 
consistent in the two study areas. Moreover, supervised classifiers’ reliance on training data 
makes them less suitable for operational purposes. Rule-based classification approaches 
have been shown to be more cost-effective for application in large areas as they do not rely 
on in situ data and are consequently more transferable. The next chapter explains how rule-
based classification was used to develop a method for monitoring salt accumulation and 
waterlogging at field, farm and scheme level.   
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6 WITHIN-FIELD ANOMALY DETECTION6 

Chapter 5 demonstrated that both the direct and indirect methods for identifying waterlogged 
and salt-affected soils have limitations. Farming practices such as tillage and irrigation 
compromise the spectral properties of soils and salt crusts and the dynamic nature of 
irrigation schemes limits the application of a direct detection of affected areas (Zhang et al., 
2011). Hydrophytic grasses and weeds can also create spectral confusion in waterlogged 
areas (Dwivedi & Sreenivas, 1998). In an indirect approach, poor vegetation related to 
factors other than soil salinity or waterlogging (e.g. poor farming practices or soil 
compaction) can cause confusion. Because different crop types have varying tolerances to 
salt accumulation, a single model will not be able to sufficiently discriminate between 
affected areas on an irrigation scheme with a large variety of crop types (Zhang et al., 2011; 
Gratton & Hanson, 2006). The occurrence of salt accumulation and waterlogging in generally 
small patches in South African irrigation schemes poses additional challenges and will 
require a robust modelling strategy. This chapter describes a geographical object-based 
image analysis (GEOBIA) approach that makes use of delineated field boundaries and multi-
temporal high resolution (SPOT-5) imagery to identify potential salt-affected or waterlogged 
areas. The within-field anomaly detection (WFAD) method was applied to nine different 
irrigation schemes across South Africa to produce maps of areas that are likely to be 
affected. The resulting maps were quantitatively compared to reference data collected during 
several field surveys. The results of the accuracy assessments are discussed and 
interpreted in the context of operational monitoring of waterlogging and salt accumulation at 
field, farm and irrigation scheme level. The results were also used to quantify the extent of 
waterlogging and salt accumulation in the schemes considered. 
 

6.1 Study areas 

Nine irrigation schemes were selected for this component of the study, namely Vaalharts 
irrigation scheme, Loskop irrigation scheme, Makhathini irrigation scheme, Tugela River, 
Olifants River, Breede River, Sundays River, Limpopo River and the Orange and Vaal Rivers 
near Douglas. 
 

6.2 Data collection and preparation 

Bi-annual SPOT-5 scenes covering all or large parts of nine irrigation schemes were 
acquired from the South African National Space Agency (SANSA). A scene consists of a 
SPOT-5 multispectral and corresponding panchromatic image. Multiple scenes were 
required in some of the irrigation schemes (Table 6.1). With a multispectral resolution of 10 
m (see Table 2.5), SPOT-5 imagery is regarded as high resolution imagery compared to the 
very high resolution (multispectral resolution <5 m) imagery provided by Quickbird, Ikonos 
and WorldView-2 (as used in sections 5.1 and 5.2). SPOT-5 imagery is, however, available 
at a higher temporal resolution and reduced cost and is consequently a cost-effective 
solution for covering extensive areas. Although the spectral resolution of SPOT-5 imagery 
(see section 2.3.5) is less than the WorldView-2 imagery, it contains the most important 
bands for the creation of VIs. Section 5.2 showed that such imagery holds much potential for 

                                                 
6 The content of this section was adapted from the MSc thesis of Jascha Muller. 
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identifying salt accumulation and waterlogging, especially when the multispectral data is 
sharpened to its panchromatic resolution of 2.5 m. 
 
Table 6.1  SPOT-5 scenes acquired for the study areas 

Irrigation scheme Scene dates K/J 

Vaalharts 27 April 2012;  
20 Feb 2011 

127-406 
127-406 

Loskop 30 Sept 2012; 
 3 June 2012; 
 18 May 2012; 
 15 June 2011 
; 5 May 2011;  
17 Aug 2011 

135-400 
135-400 
134-400 
135-400 
135-400 
134-400 

Makhathini 26 July 2012; 
 2 Aug 2011 

142-405 
142-405 

Tugela River 22 March 2012; 
 1 Aug 2011 

137-408 
137-408 

Olifants River 26 Jan 2013; 
 10 April; 2012 

116-413 
116-413 

Breede River 16 Jan 2013; 
 26 Feb 2013; 

 26 March 2012; 
 11 Dec 2012 

120-418 
119-417 
120-418 
119-417 

Sundays River 18 Feb 2013; 
 12 April 2012 

132-417 
132-417 

Limpopo River 23 Feb 2013; 
 12 March 2012 

133-394 
133-394 

Douglas 16 April 2013; 
13 Aug 2013;  

126-408 
126-408 

 
Geometric and radiometric corrections of all images were carried out using the software 
package PCI Geomatica (v 2013 SP2). All necessary resampling during pre-processing was 
done using the nearest neighbour method to preserve the original digital numbers (DNs) 
(Lillesand et al., 2004; Campbell, 2007). A north-oriented implementation of the Gauss 
conform coordinate system (also known as the LO coordinate system), with the central 
meridian adjusted for each scheme, was used. The software ATCOR 2, which is based on 
the MODTRAN algorithm, was used to convert the DNs into percentage surface reflectance. 
 
Image fusion (see section 5.2) was performed to increase the spatial resolution of the 
multispectral bands. The fusion of multispectral and panchromatic images is an effective 
technique to optimize the spatial and spectral resolution of the images (Gonzales- et al., 
2004). PCI Geomatica’s algorithm Pansharp has been shown to preserve most of the 
spectral characteristics of the multispectral data in the resulting pansharpened image 
(Zhang, 2002; 2004). Pansharp was used to increase all the 10 m multispectral data to a 2.5 
m resolution. 
 
Reference data collected during several fields’ surveys (section 4.2) was used for accuracy 
assessment. 
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6.3 A geographical object-based image analysis (GEOBIA) approach to 
detecting anomalies within fields 

The challenge with using remote sensing for identifying and delineating waterlogged and 
salt-affected areas is that they are local manifestations and can only be differentiated from 
unaffected areas by taking its context (surrounding area) into consideration. For instance, an 
affected area within a wheat field will have very different spectral properties to an affected 
area in a vineyard, while the latter will have a very different spectral response compared to 
an affected area within a bare/fallow field. Section 5.2 demonstrated that advanced machine-
learning classifiers can overcome these variations to some extent, but only if a sufficiently 
large set of in situ data is available. This data needs to be collected within the area of 
interest as close as possible to the date when the imagery was acquired. Given the high 
costs associated with field surveys and soil analyses, an alternative method is needed that 
does not rely on in situ data. 
 
The WFAD technique is based on the principle that heterogeneous areas are in many cases 
indicative of waterlogging or salt accumulation. Affected areas often stand out as being 
spectrally different compared to the rest of a field, either because of a reduction in biomass 
due to saline or saturated conditions (in cultivated fields) or due to specific species of 
vegetation occurring in fallow fields. Although such “anomalies” can be easily identified using 
visual interpretation of imagery, they are not easily extracted from remotely-sensed data. 
Traditional remote sensing techniques involve classifying individual pixels (cells) without 
taking topology (relationships between spatial entities) into consideration. Section 2.3.3 
explained that the incorporation of contextual information is one of the key strengths of 
GEOBIA as objects (groups of pixels that are spectrally similar) can be compared to 
surrounding (neighbour) or encompassing (parent) objects. Object-based image analysis 
mimics higher order logic, similar to human visual interpretation, to identify useful shapes, 
sizes and textures from spatial data (Campbell, 2007). 
 
GEOBIA is employed in the WFAD technique to consider the spectral variations within each 
field individually, thereby eliminating the impact of varying spectral characteristics of affected 
areas of different crop types as fields are normally planted with the same crop. The WFAD 
method was implemented using eCognition Developer (v9) software. The following sub-
sections overview each of the steps in the procedure. 
 
6.3.1 Step 1: Image segmentation 

The first step in the WFAD technique is to delineate suitable objects that can be used as 
primary entities for image classification and analysis. As explained in section 2.3.3.1, image 
objects (or segments) are spectrally similar features (polygons) and are generated using an 
image segmentation algorithm. The multi-resolution segmentation (MRS) algorithm was 
used to generate a unique hierarchical segmentation of each study area. Hierarchical 
segmentation structures consist of more than one level of segmentation that share inherent 
properties. 
 
The DAFF field boundaries vector layer that was manually improved was used as the parent 
segmentation layer for each irrigation scheme. Below the parent level the MRS algorithm 
was used to generate the child layer consisting of finer, more detailed objects (Figure 7.1). 



139 

Due to the hierarchal structure, the child objects inherit the properties of the parent objects 
so that each child object can be related to its corresponding parent. 
 

 
Figure 6.1  Hierarchical segmentation process. 
 
6.3.2 Step 2: Anomaly detection 

The second step in the WFAD method was to classify the child objects within each field into 
anomalies and non-anomalies. A rule-based classification approach was implemented for 
this purpose. As explained in section 2.3.2.3, a rule-based (expert system) approach has the 
advantage of making use of a set of instructions (rules) to classify images. Rules can be 
based on empirical data or can be constructed based on expert knowledge. Another 
advantage of the rule-based approach is that rules can be developed on observable 
differences and changes within the data and can progressively be applied and refined while 
maintaining full control in the time of the classification process (Lucas et al., 2007). 
 
A rule set was developed to first classify the field (parent) objects as vegetated or 
bare/fallow. The spectral response of each child object was then compared to the mean 
spectral response of its relative parent object. If there was a substantial difference between 
the child object and the relative parent object, the child object was identified as an anomaly 
(Figure 6.2). 
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Figure 6.2  The anomaly detection classification compares the spectral response of each (a) 
child against its respective (b) parent to identify (c) objects that are substantially different in 
terms of spectral response. 
 

For vegetated fields, mean NDVI was employed for calculating spectral responses. Mean 
NDVI was calculated for each parent and child object and a suitable mean difference (MD) 
threshold was used to identify anomalies. MD is defined as: 
 

        Equation 6.1 

where  MSRc is the mean spectral response (e.g. NDVI) of a child object and the MSRp is 
the mean spectral response of the relative parent object.  A positive MD threshold was 
implemented to identify a child object with a substantially higher MSR compared to the 
relative parent object. A negative MD threshold identifies a child object with a substantially 
lower MSR compared to the relative parent object. Only negative MD thresholds were used 
in vegetated fields as these highlight areas experiencing vegetation stress. A positive MD 
threshold in a vegetated field would indicate an area with relatively high biomass, which is 
generally not associated with salt accumulation or waterlogging. 
 
To identify anomalies in bare/fallow fields, NDVI and a brightness ratio (Br) were used to 
calculate the MSR, where: 
 

       Equation 6.2 
 
Salinity indices were not considered due to the absence a blue band in SPOT-5 imagery. 
The SWIR band was excluded for calculating Br because of its lower (20 m) resolution. Both 
negative and positive MD thresholds were used for fallow fields owing to the wide range of 

(a) (b)

(c) 
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possible indicators of waterlogging and salt accumulation. Indicators that were targeted in 
the WFAD technique included low reflectance values in all bands due to waterlogging 
(Dwivedi & Sreenivas, 1998); high reflectance in the visible and near-infrared regions due to 
salt encrustations (Metternicht & Zinck, 2003); and occasional vegetation response in fallow 
fields due to hydrophytic vegetation occurring in waterlogged areas (Dwivedi & Sreenivas, 
1998). 
 
6.3.3 Step 3: Multi-temporal analysis 

During the field surveys it was observed that not all anomalies were related to salt 
accumulation or waterlogging. Some of the anomalies were, for instance, found to be caused 
by poor farming practices (e.g. insufficient irrigation, inadequate fertilizer, over-application of 
pesticides). To reduce this effect, anomalies were detected for multiple (at least two) 
seasons. The assumption was that the impact of poor farming practices will likely be 
temporary, and that areas within fields that are persistently identified as being anomalies are 
most likely caused by other factors such as salt accumulation or waterlogging (Lobell et al., 
2010; Furby et al., 1995; Lenney et al., 1996). 
 
The multi-temporal analysis was implemented by overlaying the anomaly layers of two or 
more seasons. Anomalies that only occurred in one season were discarded from further 
consideration. 
 

6.4 Accuracy assessment 
The accuracy of the WFAD method was assessed by visiting predefined locations within 
each study area (see section 4.1 for an overview of the field surveys). The observations 
made in the field and from the laboratory analyses (section 4.2) were used to determine how 
successful the WFAD technique was in identifying affected areas. Confusion (error) matrices 
were created to quantify the errors of omission (unidentified affected areas), errors of 
commission (falsely identified areas) and overall accuracy. 
 

6.5 Incorporating abandoned fields 
Because the WFAD method only considers cultivated or fallow fields, it does not incorporate 
fields that have been abandoned due to salt accumulation or waterlogging. Because this 
exclusion can have a significant effect on the overall quantification of affected areas, 
abandoned fields were manually identified using visual image interpretations. Where 
available, historical irrigation scheme maps were also employed in the identification process. 
The abandoned fields were added to the set of anomalies. 
 

6.6 Quantification of affected areas 
The multi-temporal analysis was very successful in reducing the number of “false positives”, 
i.e. anomalies that are unrelated to waterlogging or salt accumulation. However, many false 
positives still remained after applying this correction and an additional step was needed to 
take this into account during the quantification process. An anomaly ratio (Ar), describing the 
ratio between the number of anomalies caused by salt accumulation and waterlogging and 
those caused by other factors, was consequently introduced. Ar is defined as: 
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        Equation 6.3 

 
where Asw represents the number of anomalies that were verified during the field surveys to 
be related to salt accumulation or waterlogging and Ao represents the number of anomalies 
that were found to be related to other factors. 
 
The resulting Ar ranges between 0 and 1, with a value of 1 indicating that all anomalies were 
affected. A unique Ar value was calculated for each of the irrigation schemes. 
 
To determine the percentage of an irrigated scheme that is affected by waterlogging or salt 
accumulation, the following equation was used: 
 

              Equation 6.4 
 

 
where Areaanomalies represents the total area (ha) of the identified anomalies and Areatotal 
represents the total area (ha) of fields in the study area. The most recent extent of the 
anomalies was used for the area calculations. This procedure was repeated for each of the 
nine study areas. 
 

6.7 Results 
Table 6.2 summarizes the results of the WFAD method for the nine study areas in which it 
was applied. The results for each study area are discussed in the following sub-sections. 
Appendix A shows the confusion matrices generated during the accuracy assessment of the 
WFAD method. 
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6.7.1 Vaalharts, Loskop and Makhathini Irrigation Schemes 

The WFAD technique was initially developed in the Vaalharts irrigation scheme and 
evaluated at Loskop and Makhathini. The findings were used to improve the procedure for 
implementation in subsequent study areas. Generally the WFAD method produced good 
results at Vaalharts (Figure 6.3) as there is generally a strong relationship between 
heterogeneous areas and high EC values (Figure 6.3d). This is supported by the two 
photographs (Figure 6.4) taken in the anomaly delineated in Figure 6.3a. The owner of the 
particular farm also confirmed that the highlighted areas are known to be salt-affected and 
frequently waterlogged. 
 

 
Figure 6.3  Examples of areas at Vaalharts where within-field anomalies were detected for 
the period 2010-2012. 

(a) (b)

(d) (c) 
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Figure 6.4 Two areas visited during the field survey at Vaalharts that showed clear evidence 
of (a) salt accumulation and (b) waterlogging. 
 

Figure 6.5 shows an example of a heterogeneous patch in a ploughed field that was 
delineated by the WFAD technique, illustrating the potential of this methodology for the 
application to both bare and vegetated areas. This specific affected area was not identified 
by any of the other methods evaluated in Chapter 5 which suggests that the WFAD method 
is more effective for highlighting areas that may potentially be affected by waterlogging or 
salt accumulation. 
 

 
Figure 6.5  Example of a heterogeneous area that was identified in a ploughed field at 
Vaalharts. 
 
The evaluation of the WFAD technique at Vaalharts highlighted some limitations as a 
number of inconsistencies were noticed (Figure 6.6), mostly related to the accuracy of the 
field boundaries GIS data obtained from DAFF. In Figure 6.6a, it is clear that the digitized 
field boundaries do not perfectly match the actual field boundaries. Some areas on the 

(a) (b) 
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edges of fields were consequently highlighted as being heterogeneous (affected). This was 
rectified in subsequent study areas by improving the quality of the shapefile through manual 
editing. More research is needed to develop semi-automated remote sensing procedures to 
reduce the required human inputs of such corrections. 
  

 
 
Figure 6.6  Inconsistencies as a result of mismatching field boundaries at Vaalharts. 
 
Fields planted with multiple crop types also caused false positives. For example, the 
anomaly marked with “A” in Figure 6.6b contains two different crops and due to their 
differences in spectral response this area was falsely identified as being an anomaly. Such 
errors can also be rectified by editing the field boundaries so that each “field” contains only a 
single crop. In spite of these limitations, the WFAD method was very successful in 
highlighting areas in Vaalharts that may potentially be affected by salt accumulation and/or 
waterlogging. 
 
Table 6.2 shows that the WFAD technique achieved an overall accuracy (OA) of 71.6. The 
accuracy assessment of the WFAD technique results in Vaalharts showed that only 6 out of 
the 40 (15%) of the anomalies that were visited during the field verification were incorrect 

A 

B 
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(i.e. should not have been mapped as anomalies as there was no evidence of salt 
accumulation, waterlogging or any other factors that may impact production. Of the 40 
anomalies visited, 11 (27.5%) were verified as being anomalies, but were judged to have 
been caused by factors unrelated to salt accumulation or waterlogging. This percentage was 
used for calculating the anomaly ratio (Ar) (see section 6.6). Using this as a correction factor, 
the total affected area in the Vaalharts study area was estimated to be 414.7 ha (1.57%). By 
adding abandoned fields (see section 6.5), the total affected area was adjusted to 848.9 ha 
(3.14%). 
 
Better accuracies were achieved in the Loskop study area, with an overall accuracy of 
82.2%. In total 887.1 ha (2.28%) were identified as being potentially affected (anomalies), of 
which 71.6% were confirmed to be salt-affected or waterlogged. A large number of 
abandoned fields were also identified, which increased the affected area to 2344.7 ha 
(5.74%). Figure 6.7 shows examples of anomalies detected in the Loskop study area. It is 
clear that some of the detected anomalies in Figure 6.7a are slightly smaller than the actual 
affected areas. This is most likely because the area was less affected in the earlier image 
used for the temporal analyses. 
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Figure 6.7  Examples of anomalies detected at Loskop. 
 
Applying the WFAD method in the Makhathini irrigation scheme was challenging as it has 
very small fields which made accurate field boundary delineation difficult using the 2.5 m 
resolution pan-sharpened SPOT-5 images (Figure 6.8). In addition, the dominant crop is 
sugarcane, which has a medium to high tolerance to waterlogging and a medium tolerance 
to salts (Kahlown et al., 1998). In spite of these factors, the WFAD managed to achieve an 
overall anomaly detection accuracy of 80.4%. Only 71.4% of the anomalies visited were 
found to have been caused by waterlogging or salt accumulation. Based on these findings it 
was estimated that 138.5 ha (3.21%) of the Makhathini study area is affected by 
waterlogging or salt accumulation. This increased to 361.1 ha (7.81%) when abandoned 
fields were added. 
 

A 

B 

C 
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Figure 6.8  Examples of anomalies detected in small fields at Makhathini. 
6.7.2 Olifants River 

The within-field anomaly detection was applied to a 11 284 ha area within Olifants River 
irrigation scheme. Figures 6.9 and 6.10 show some examples of anomalies that were 
detected. The anomalies were generally less defined than at Vaalharts, Loskop and 
Makhathini and the transitions between affected and unaffected areas were more gradual. 
This is likely owing to the fact that the area is dominated by perennial crops (vineyards) 
which are dormant during the winter months. 
 

A 

B 

C 
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Figure 6.9  Examples of large anomalies detected at Olifants River Irrigation Scheme 
(Vredendal) that were confirmed to be related to waterlogging. 

A 

B 
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Figure 6.10  Examples of small anomalies detected at Olifants River that were confirmed to 
be related to waterlogging. 
 

A total area of 223.6 ha (1.99%) was identified as being anomalies, but only 70.2% were 
verified to be affected by salt accumulation or waterlogging. A large number of abandoned 
fields were identified, which inflated the estimation to 665.9 ha (5.58%). Some lower lying 
areas were abandoned due to waterlogging problems in the past, but at present more 
efficient irrigation systems and practices and the installation of drainage structures reduced 
some of the problems that occurred in the past. 
 

A 

B 
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6.7.3 Tugela River 

Of the 27 384 ha Tugela River study area, a total of 2032 ha (7.4%) were identified as 
anomalies (examples shown in Figure 7.11). The overall accuracy of the anomaly detection 
was 78.3% and 72.7% of the confirmed anomalies were affected by waterlogging. Figure 
7.12 shows that even small patches of affected areas were successfully identified. Contour 
farming in the past had resulted in concentration of runoff water in specific areas. 
 

 
 

Figure 6.11  Examples of large anomalies detected at Tugela River that were confirmed to 
be related to waterlogging. 

A 

B 
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Figure 6.12  Examples of small anomalies detected at Tugela River that were confirmed to 
be related to waterlogging. 
 

6.7.4 Breede River 

The WFAD method was applied to a 29 129 ha area within the Breede River irrigation 
scheme and a total area of 1396.8 ha (7.34%) was identified as being potentially affected by 

A 

B 
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waterlogging or salt accumulation (i.e. anomalies). Table 6.2 shows that 76.5% of the 
anomalies were correctly classified and 77.3% of the verified anomalies were observed to be 
affected by salt accumulation or waterlogging. 
 
An intensive and clustered sampling approach was adopted for Breede River to improve the 
verification of the delineation of anomalies. Figures 6.13 and 6.14 show examples of where 
the WFAD technique successfully identified and delineated salt-affected areas. It is clear that 
the measured EC relates very well with the boundaries of the identified anomalies. However, 
the precision of delineations depends on the crop type in which the anomaly is identified as 
the transitions between affected and unaffected areas vary according to crop types. Yields of 
peaches and grapes, for instance, are affected when the root zone salinity reaches 170 and 
150 mS/m, respectively, and are consequently rated sensitive to moderately sensitive to 
saline conditions (Grattan & Hanson, 2006). The transitions between affected and unaffected 
areas will therefore be less gradual for these crops, but for less sensitive crops such as 
lucerne the automated demarcation of anomalies was observed to be less accurate. These 
variances in sensitivity can only be determined through sufficient field verification. 
 

 
Figure 6.13  Examples of large anomalies detected at Breede River that were confirmed to 
be related to waterlogging and/or salt accumulation. 
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Figure 6.14  Examples of small anomalies detected at Breede River that were confirmed to 
be related to waterlogging and/or salt accumulation. 
 

6.7.5 Sundays River 

Even small patches of affected areas in the Sundays River irrigation scheme were 
successfully highlighted using the WFAD technique (Figure 6.15). However, the intricate 
grids of roads that are present in many fields complicated the detection process as some 
roads were incorrectly classified as being anomalies (Figure 6.16). This resulted in a slight 
overestimation of salt-affected or waterlogged areas. Such errors can, however, be reduced 
by manually removing the roads from consideration, but this will be a very time consuming 
task for large areas. Automated methods should be investigated in future research. 
 

A 

B 
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Figure 6.15  Examples of anomalies detected at Sundays River that were confirmed to be 
related to waterlogging and/or salt accumulation. 
 

The WFAD method was applied to an area of 18 608 ha within the Sundays River irrigation 
scheme, of which 528.2 ha (2.84%) were identified as being anomalies. Table 6.2 shows 
that the overall accuracy of the anomaly detection was 80.4%. Almost all (95%) of the 
anomalies were confirmed to be affected by salt accumulation or waterlogging. 
 

A 
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Figure 6.16  Examples of roads at Sundays River that were incorrectly identified as 
anomalies (i.e. false positives). 
 

6.7.6 Limpopo River 

Figure 6.17 shows examples of salt-affected areas that were successfully identified and 
delineated with the WFAD technique. It is clear that the boundaries of the identified areas 
relate well to the extent of the verified affected areas. Figure 6.17a and b show a highly 
heterogeneous area that was classified as an anomaly. During the field survey it was 
observed that the soil in this area was washed away during a flood and was levelled with 
transported soil. Such anomalies are consequently false positives as they are not salt-
affected or waterlogged. This example demonstrates that the WFAD method is very 
sensitive to anomalies caused by flood events and should preferably not be implemented in 
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areas that were recently damaged by flooding. Outside flooded areas the WFAD performed 
relatively well (Figure 6.17c and d), especially in woody croplands (Figure 6.17e and f). 
 

 
Figure 6.17  Examples of large anomalies detected at Pontdrift that were confirmed to be 
related to flooding, waterlogging and/or salt accumulation. 
  

A 

B 

C 



159 

The Limpopo River study area was 8681 ha in size and a total of 468.1 ha (5.39%) were 
identified as anomalies. Table 6.2 shows that the overall accuracy of the anomaly detection 
was 61%. The relatively low overall accuracy can partly be attributed to false positives due to 
flood damage. Several areas affected by salt accumulation went undetected, most likely 
because the flooding temporarily reduced salt accumulation and has since increased. The 
imagery used in the WFAD technique was from 2012 and 2013 (more recent imagery was 
unavailable), while the field survey was carried out during 2015. It is thus very likely that 
temporal changes had a negative effect on the accuracy assessment. The 77.5% proportion 
of the anomalies in the Limpopo River that are affected by salt accumulation or waterlogging 
(Ar) closely matched those of the Breede River study area (77.3%). 
 

6.7.7 Douglas (Vaal and Orange Rivers) 

Figure 6.18a and e show examples of where large anomalies within two pivot fields were 
confirmed to be salt-affected. The WFAD method was also very affective in identifying areas 
that are waterlogged (Figure 6.18c). 
 
As with the Limpopo River, a number of false positives (anomalies that were not affected) 
also occurred. In Figure 6.19a, for instance, a large anomaly was detected, but no evidence 
of salt accumulation or waterlogging was found during the field survey (see T1). The WFAD 
technique works on the assumption that an anomaly is a relatively small (<50%) part of a 
field. In this case the majority of the field was under stressed conditions (a result of a 
combination of salt accumulation and drought) which resulted in the healthy part to be 
classified as being an anomaly. Other anomalies in the same field were, however, confirmed 
to be affected (see T2). Errors such as those at T1 are very rare and are relatively easy to 
identify using a quick qualitative assessment of the results. However, a solution to 
automatically correct such errors needs to be investigated in future research. 
 
Figure 6.19c shows another example of drought stress that resulted in a false positive. In 
some cases, anomalies were detected but were not large enough to adequately cover the 
affected area (see Figure 6.19e for an example). This is because some of the areas were 
not consistently under stress over the period of analysis (2012 and 2013). The addition of 
images of 2014 would probably have prevented such errors. 
 
As with the Limpopo River, flood damage contributed to a large number of false positives. 
Figure 6.20 shows some examples of areas affected by the 2011 flood. Figure 6.20a-c show 
areas that were covered in water in January 2011, while Figure 6.20d-f depict areas when 
the water receded by July 2011. Most of the surveyed points fall within the flooded areas. 
This may have had a significant effect on the relatively low accuracy of WFAD in these 
areas. Much of the secondary salt concentrations of the last decade were likely leached out 
during the floods, only to resurface due to capillary movement of the primary salts in the 
system. The timing of field visits are consequently critical. Some areas remained 
waterlogged after the flood as is the case in Figure 6.20a and d and Figure 6.20b and e 
which show roughly the same trend. 
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Figure 6.18  Examples of large anomalies detected at Douglas that were confirmed to be 
related to salt accumulation or waterlogging. 
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Figure 6.19  Examples of false positives at Douglas. 
 
The WFAD method was applied to a 22 748 ha area within the Douglas irrigation scheme. A 
total area of 1483.3 ha (6.52%) was identified as being potentially affected by waterlogging 
or salt accumulation. Table 6.2 shows that the overall accuracy of the classification was 
66.7%, with a Kappa coefficient of 0.39. The main reason for the relatively low accuracy is 
the large number (13) of salt-affected areas that were not picked up as anomalies. This 
resulted in a salt accumulation producer’s accuracy of only 62%. As with the Limpopo River 
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this can be partly attributed to the effects of the 2011 flood (Figure 6.20) which likely reduced 
the salt accumulation for a period (2011-2012), after which it increased through 2013 and 
2014. Given that the field verification was carried out in 2014, the salt accumulation is 
probably higher than that detected using 2012-2013 imagery. This result demonstrates the 
dynamic nature of salt accumulation and waterlogging and the importance of regular (at least 
once a year) monitoring. It is noteworthy that 91.9% of the confirmed anomalies were 
affected by waterlogging or salt accumulation, which indicates that WFAD holds much 
potential for monitoring irrigation schemes (such as Douglas) that are dominated by annual 
crops. 
 

 
Figure 6.20  Flood damage at Douglas as exposed by images from (a-c) January 2011 and 
(d-f) July 2011. 

A D 
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6.8 Discussion 
Compared to the other methods evaluated, the WFAD technique produced the most 
promising results for monitoring and quantification purposes. The mean overall accuracy of 
the technique was 74.9% (Table 6.2). Although this may seem modest compared to some of 
the other techniques evaluated in Chapter 6, it should be noted that, in contrast to those 
techniques, the WFAD method: 

• was applied in nine irrigation schemes, consisting of a wide range of crop types and 
conditions; 

• was applied in both vegetated and non-vegetated fields; 
• required no empirical data for model building purposes; and 
• has the potential to be fully automated. 

 
The latter two advantages of the WFAD technique are probably the most noteworthy as they 
relate directly to the cost-effectiveness of the methodology. The implication of not needing 
any empirical data for model building is that it can be used for routine monitoring without 
having to collect and analyse large quantities of soil samples. All the information required by 
the WFAD technique is acquired from satellite imagery. Although some of the processing 
steps still need to be streamlined and improved (particularly the field boundary delineation), 
the WFAD technique has the potential to be fully automated. Once this is done, the only 
costs involved would be to acquire the satellite imagery. With the recent renewal of the 
agreement between the South African National Space Agency (SANSA) and Airbus Defence 
and Space (owner of the SPOT-5/6/7 constellation) it is likely that suitable imagery for use in 
the WFAD method will remain freely available for South African applications. The recent 
successful launch of the Sentinel-2 satellite by the European Space Agency (ESA) will also 
increase the availability of free multispectral imagery. Together these sources of imagery will 
increase the temporal resolution of available data and enable frequent monitoring of salt 
accumulation and waterlogging at very low cost. 
 
Although the WFAD technique is very successful in identifying salt-affected and waterlogged 
areas, one of its main limitations is that it cannot discriminate such areas from anomalies 
that are caused by other factors (e.g. drought, flooding, soil compaction, disease, inadequate 
fertilizer application). WFAD should consequently be regarded as a scoping mechanism that 
can direct attention to areas that are likely to be affected by salt accumulation and/or 
waterlogging. Such areas should preferably be visited to investigate the likely causes. 
However, this “limitation” of the WFAD technique can also be regarded as a strength as it 
can be used for monitoring other factors such as within-field drought and flood damage, 
disease outbreaks, over-application of pesticides, inadequate fertilization, soil compaction 
and faulty irrigation infrastructure. 
 
Based on the field surveys conducted in nine irrigation schemes, waterlogging and salt 
accumulation was the cause in 77.8% of the cases (see mean Ar in Table 6.2). This anomaly 
ratio was calculated for each study area and used to estimate the total affected areas. On 
average, 3.3% of the areas considered were found to be affected. This was adjusted to 5.8% 
by adding abandoned fields. However, it should be noted that this quantification is probably 
an underestimation of the actual affected area since the majority of the anomalies identified 
by the WFAD technique represent crops that have been severely affected (to the extent of 
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loss of biomass) for two consecutive seasons. Consequently WFAD cannot (in its current 
form) detect sudden increases in salt accumulation or waterlogging. 
 
Another implication of the WFAD technique’s reliance on crop health is that it does not take 
a crop’s tolerance to saline conditions into consideration. All anomalies are assumed to have 
the same level of salt accumulation. This is not the case in reality as Table 6.12 showed that 
an anomaly within a barley field (A = 800 mS/m) will likely have higher levels of accumulated 
salts than an anomaly in a vineyard (A = 150 mS/m). The crop type should therefore be 
taken into consideration when interpreting the results of the WFAD method. 
 
In spite of these limitations, WFAD is a robust and cost-effective technique for identifying 
areas that are potentially affected by salt accumulation and/or waterlogging. 
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7 AGRICULTURAL GEO-REFERENCED INFORMATION SYSTEM 

The aim was to report on the capturing of temporal and spatial data in a geographical 
information system (GIS) database and establish links to the Agricultural Geo-referenced 
Information System (AGIS) of DAFF. Unfortunately this was not possible because AGIS has 
not been properly functional for more than 6 years. Stellenbosch University was contacted to 
develop a prototype web application, because they have already produced the remote 
sensing maps and also have the majority of the other soil and irrigation potential maps from 
ARC-ISCW.  
 
The spatial application server used for AGIS was ArcIMS, which is a product developed by 
ESRI but is no longer supported by them. AGIS had run on an application server called 
Appache Tomcat and was using Informix with the Spatial Data Blade extension for spatial 
operations. All this runs on an operating system that was developed by Sun Micro Systems 
called Solaris. The fact that AGIS would still be using very old technology to run on probably 
accounts for its poor functionality. 
 
Modern GIS has moved into all sorts of directions. ESRI has released a few versions of 
ArcGIS Server since ArcIMS was discontinued. ArcGIS Server has made it possible for 
users to create functionality such as mapping, geometry and caching services. It gives tools 
to the administrator to optimize performance best suited to deliver maps speedily, thus 
making it very interactive. ESRI has also released developer tools for developers to create 
mapping applications seamlessly to plug into any development environment they see fit. 
 
The open source industry has constantly contributed to products such as spatial databases 
like PostGIS that runs on top of PostGre SQL. All this has moved GIS systems in a direction 
that has inspired the masses. Therefore one has to remember that staying competitive in a 
market that is evolving rapidly, where cloud computing is growing and performance tuning 
becomes easier, much work is needed for AGIS to be considered with the leading players. 
Farmers and other stakeholders have over the years become dependent on AGIS to provide 
them with various kinds of agricultural information. However, because of the current 
unavailability of AGIS there is still a long road ahead to firstly revive it and then make 
it relevant. 
 
The current DAFF website (http://www.daff.gov.za/daffweb3/) is quite basic and the scientific 
information very rudimentary, especially related to agricultural information 
(http://www.daff.gov.za/ daffweb3/Resource-Centre). In contrast, the Western Cape 
Department of Agriculture’s CapeFarmMapper is a web mapping application that provides 
functionality to query agricultural, natural resource, farm and erven cadastre in the Western 
Cape, as well as to create geographical point, line and polygon features on a spatial 
interface. Other features include calculation of distances and areas, editing features and 
importing/exporting KML/KMZ files. The OpenLayers API is used to display and manipulate 
the spatial data and several base map options are available for overlaying the spatial layers 
(http://www.elsenburg.com/bulletin-board/capefarmmapper). 
 
The web application was developed in the ArcGIS Server environment. ArcGIS Server 
allows geographical data to be published online and provides web users with access to the 
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data through the Internet. The functionality of the prototype was developed (programmed) 
using HTML5 and JavaScript. HTML5, the latest revision of the Hypertext Mark-up Language 
(HTML) standard, is a mark-up language used for displaying content on the World Wide 
Web. HTML5 improves on previous versions of the language through support of additional 
multimedia and provides consistent compatibility with various web browsers. HTML5 also 
allows for the easy integration of JavaScript: a browser-based scripting language that can be 
used to programmatically control the behaviour of web content. Together, HTML5 and 
JavaScript provide a powerful platform for the development of content-rich, dynamic and 
interactive web applications. Extended geographical functionality was obtained through 
ArcGIS API for JavaScript. The geospatial data (feature classes and raster datasets) are 
maintained in an ArcSDE enterprise geodatabase and published online as a map service 
with ArcGIS Server. 
 
Data collected during this project were loaded into the geodatabase for demonstration 
purposes. It includes three point feature classes (the sampled soil data), a polygon feature 
class (soil types of the area) and four raster datasets (aerial photography, SPOT-5 imagery, 
WorldView-2 imagery, and a digital surface model). The application displays the locations of 
soil samples classified as either Salt-affected or Unaffected according to their measured EC. 
 
Discussions are currently taking place with DAFF to make the information from this project 
available on a new web platform. 
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8 CONCLUSIONS AND RECOMMENDATIONS 

The main aim of this research was to develop and test a methodological approach for 
identification, classification and monitoring the extent and degree of waterlogging and salt 
accumulation at farm, irrigation scheme and national level. 
 
The research agenda was to first carry out a comprehensive literature review, the first 
component of which focussed on gaining a better understanding of the waterlogging and salt 
accumulation processes. The second component of the literature review concentrated on the 
availability of data and existing techniques for monitoring waterlogging and salt accumulation 
over large areas. It was determined that data with a high spatial resolution would be 
essential, given that affected areas in South Africa are often small in extent. It was 
concluded that the use of synthetic aperture radar (SAR) is not viable given the cost and 
availability of such data in South Africa. Also, despite the efforts of the scientific community, 
there is currently no robust model for accurately and consistently extracting soil water 
content or soil salinity from SAR imagery. This science is still very much in an experimental 
phase, and most authors agree that great strides still need to be made before such an 
application can be operational. In contrast, there is a relatively large body of work on the use 
of hyperspectral imagery for detecting salt-affected soils, but such data is even more difficult 
to obtain in South Africa. From a data availability point of view, multispectral satellite imagery 
seems to be the most viable source of information for monitoring salt accumulation and 
waterlogging over large areas. Digital elevation models (DEMs) were also identified as a 
potential source of valuable information. 
 
Three approaches to mapping waterlogged and salt-affected areas were identified as 
potential solutions. The first is a modelling approach whereby hydrological, terrain and soil 
data is used to determine where waterlogging or salt accumulation is likely to occur. Another 
approach is to differentiate affected and unaffected soils by making use of remotely-sensed 
imagery (hyperspectral or multispectral) to analyse their spectral properties. This direct 
remote sensing method is consequently applied to exposed (bare) soil. The third approach, 
referred to as the indirect remote sensing approach, examines vegetation response (e.g. 
loss of biomass) to saline or waterlogged conditions. The latter approach mainly makes use 
of VIs derived from multispectral imagery. 
 
All three of these approaches were evaluated in this research. For the direct remote sensing 
approach, a WorldView-2 (WV2) satellite image was used to investigate if there are any 
spectral features of affected soils that can be used in their discrimination. The WV2 image 
was ideal for this purpose as it had the highest possible spatial (0.5 m) and spectral (8 
bands) resolution. Although such imagery is too expensive to be used for monitoring 
purposes over large areas, its use in this study contributed to the establishment of a “best 
case scenario”. Also, it enabled an investigation into how less expensive imagery (e.g. that 
offering only red, green, NIR bands) might perform in comparison. Statistical analyses as 
well as rule-based and supervised classification methods were evaluated. 
 
Experiments with the direct remote sensing approach showed that there were a number of 
statistically significant relationships between image features and salt accumulation, with 
NDSI1 being the best predictor. However, the use of WV2 imagery to identify salt-affected 
soils was found to be unreliable as all of the methods evaluated grossly overestimated salt 
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accumulation. This was attributed to inconsistencies in the visual appearance of salt-affected 
soils as in many cases there was no visible evidence of salt accumulation (e.g. salt 
precipitation). Another factor that complicates the detection of salt accumulation when bare 
soils are observed using remote sensing is the disturbance caused by soil preparations (e.g. 
ploughing) as this can alter the soil surface and reflectance. The main limitation of the direct 
approach is that a relatively small proportion of fields in irrigation schemes are bare at any 
given time during the year. The implication is that multiple analyses will be required to map 
an entire irrigation scheme. This will be costly, even with the use of less expensive satellite 
imagery. 
 
The indirect remote sensing approach was evaluated in the Vaalharts and Breede River 
study areas. The WV2 image of a lucerne field at Vaalharts was used for evaluating 
vegetation response to saline conditions. Several experiments were also carried out to 
investigate the impact of reduced spatial and spectral resolution of satellite imagery – 
effectively testing the hypothesis that very high spatial resolution imagery is required for 
monitoring salt accumulation and waterlogging in South African irrigation schemes. A total of 
445 WV2-derived spectral and spatial (texture) features were analysed at 0.5, 2, 6, 10, 15 
and 20 m resolutions to determine their potential for distinguishing between salt-affected and 
unaffected soils. Regression analyses were carried out to investigate the relationships 
between the image features and electrical conductivity (EC) values of 30 soil samples 
collected in the field. The results showed that there are significant and strong continuous 
relationships between EC and several of the features considered and that the yellow band, 
as well as a number of vegetation indices (VIs) and texture features, produced the strongest 
models. Generally, the strength of these relationships diminished as the spatial resolution 
was reduced. Overall, the regression analysis and CART results were very promising as 
they show that VIs generated at 6 m and higher resolution can potentially be used. The 
results also suggest that high resolution texture features can potentially be used together 
with VIs for the indirect monitoring of salt-affected soils. Furthermore, the relatively high 
spectral resolution of the WV2 imagery is not critical as the VIs (based on red and NIR 
wavelengths only) performed relatively well compared to the performance of the individual 
bands. 
 
It was concluded that, due to its relatively high cost, the operational use of WV2 imagery for 
regular monitoring of large areas is not viable. The results show that slightly lower spatial 
and spectral resolution imagery might produce comparable results. Notable candidates are 
SPOT-5 (2.5 m panchromatic; 10 m multispectral), SPOT-6 (1.5 m panchromatic; 6 m 
multispectral), RapidEye (5 m multispectral) and Sentinel-2 (10 m multispectral) data. 
Although SPOT-5 will soon be decommissioned, its large archive of imagery will be very 
useful for change analyses where historical baselines are required. 
 
The models generated in the experiments only considered soil samples collected in a 
cultivated field with a single crop. Given that crops differ in their response to saline 
conditions, an additional series of experiments was carried out to investigate how these 
variations will affect the results. These experiments were done in the Vaalharts and Breede 
River study areas using slightly lower resolution SPOT-5 imagery. In addition to the image 
features assessed in section 5.2, soil and terrain data was also included in the analyses. It 
was found that the spectral responses of affected crops differed considerably between the 
two study areas and that none of the feature sets and/or classification algorithms stood out 
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as being superior for monitoring salt accumulation on irrigation scheme level. Due to the 
large variations in how different crops respond to saline conditions, the classifications tended 
to produce many false positives (over-classification). The accuracy levels also varied 
significantly according to training set size, which is problematic as the routine collection of 
large sets of soil samples is prohibitively expensive. 
 
The final set of experiments investigated the efficacy of elevation data and its derivatives for 
modelling salt accumulation at irrigation scheme level. Vaalharts and Breede River were 
again chosen as the study areas and the SRTM DEM, SUDEM and DSMs derived from 
high-resolution stereoscopic aerial photography were used as the primary data sources. 
Numerous derivatives were produced from the primary datasets and several terrain analysis 
methods were assessed. Two rule sets based on regression modelling and CART, as well 
as five supervised classifiers (NN, ML, SVM, DT and RF) were considered. The kNN 
supervised classifier was the most successful in differentiating salt-affected from unaffected 
soils in both study areas, but it was concluded that the use of elevation data and its 
derivatives to identify salt-affected soils is ineffective and unreliable. Most of the methods 
evaluated either underestimated or overestimated salt accumulation or achieved low 
accuracies, especially for Breede River. The low spatial resolution and quality of the DEMs 
might have had a negative impact on the results and other elevation data sources, such as 
LiDAR, should be explored in future research. However, such data may be prohibitively 
expensive to acquire for large irrigation schemes. 
 
A selection of the more successful experiments are discussed and explained, but many 
other experiments were carried out during the course of this research project. These 
included the use of CART on all possible input data (satellite imagery, terrain derivatives, soil 
data), multi-temporal vegetation response monitoring, and object-based terrain analyses 
using high-resolution (2m) DSMs (which was evaluated in most of the study areas). These 
experiments were unsuccessful and discussions thereof were excluded from this report in 
the interest of brevity. 
 
Both the successful and unsuccessful experiments provided a better understanding of the 
complexities involved in monitoring salt accumulation and waterlogging in irrigation 
schemes. It became clear that image texture (heterogeneity) is an important feature for 
identifying areas that are likely to be salt-affected or waterlogged. The newly-developed 
within-field anomaly detection (WFAD) method) is based on the principle that heterogeneous 
areas are in many cases indicative of waterlogging or salt accumulation. Affected areas 
often stand out as being spectrally different compared to the rest of a field, either because of 
a reduction in biomass due to saline or saturated conditions (in cultivated fields) or due to 
specific species of vegetation occurring in fallow fields. Although such “anomalies” can be 
easily identified using visual interpretation of imagery, they are not easily extracted from 
remotely-sensed data. Traditional remote sensing techniques involve classifying individual 
pixels (cells) without taking topology (relationships between spatial entities) into 
consideration. The WFAD method was implemented and evaluated in all of the study areas. 
The results showed that, compared to the other methods evaluated, WFAD produced the 
most promising results for monitoring and quantification purposes. The technique not only 
produced accurate (74.9% on average) results, but is also cost-effective as it can be applied 
on both vegetated and non-vegetated fields; requires no empirical data; makes use of freely-
available imagery (SPOT-5); and has the potential to be fully automated. 
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The WFAD technique was used to quantify the extent of affected areas on nine irrigation 
schemes. On average, 3.3% of the areas considered were found to be affected. This 
estimate was adjusted to 6.27% by adding abandoned fields. Although the WFAD technique 
is very successful in identifying salt-affected and waterlogged areas, one of its main 
limitations is that it cannot discriminate such areas from anomalies that are caused by other 
factors (e.g. drought, flooding, soil compaction, disease, inadequate fertilizer application). 
Based on the field surveys conducted in nine irrigation schemes, waterlogging and/or salt 
accumulation was the cause in 77.8% of the cases (see mean Ar in Table 6.2). The WFAD 
method should consequently be regarded as a scoping mechanism that can direct attention 
to areas that are likely to be affected by salt accumulation and/or waterlogging. Such areas 
should preferably be visited to investigate the actual causes. 
 
Based on the results of this study it is recommended that the WFAD technique be 
operationalized for routine monitoring of salt accumulation and waterlogging. Its ability to 
accurately identify potentially affected areas and its reliance on data that is readably 
available (e.g. SPOT-5 imagery) are its main strengths. The main drawback of the WFAD 
method is that it relies heavily on manual inputs (e.g. digitizing of field boundaries and crop 
types) and requires considerable effort to implement (e.g. image acquisition, pre-processing, 
segmentation and classification), especially when imagery of more than two seasons are 
used and when large areas need to be covered. More research is needed to improve the 
efficiency of the workflow and to automate as many as possible of the steps so that the 
technique can be cost-effectively carried out on a regular basis and for large areas. The 
technique should also be extended so that multiple images with different extents and 
resolutions (e.g. SPOT-5/6/7 and Sentinel-2) can be analysed. 
 
The anomaly maps produced by the WFAD technique should be updated on a regular (at 
least annual) basis. By doing so, a historical record of anomalies and crop conditions can be 
accrued and used to identify abnormal conditions as soon as they occur. Such abnormal 
conditions can then be brought to the attention of the farmer. 
 
For the WFAD method to become an operational tool in the proactive management of salt 
accumulation and waterlogging, the detected anomalies must be made available to all 
stakeholders (e.g. farmers, extension officers, agribusinesses) in a timely and cost-effective 
manner. Ideally the information should be delivered through a web-based service that is 
simple, intuitive and easy to use 
 
From previous studies it appears that severe waterlogging, salinity and sodicity affects 8-
18% of the area under regular irrigation in South Africa (Backeberg et al., 1996).  Ghassemi 
et al. (1995) citing Van Pletsen (1989) stated that a survey of five major irrigation schemes in 
South Africa indicated that, on average, 28% of irrigated land shows signs of either 
waterlogging or harmful high salt contents or both. Salt-affected and waterlogged figures of 
18-28% for South Africa seem unrealistic if compared to the current study of 6.27% (Table 
8.1).  If the figure of 6.27% of areas affected is applied to the 1.5 million hectares under 
irrigation in South Africa, the area that is salt-affected and waterlogged on South African 
irrigation schemes is 94 050 ha. The areas affected by waterlogged and salt-affected soils 
on the different irrigation schemes studied were: Vaalharts 849 ha (3.1%), Loskop 2 345 ha 
(5.7%), Tugela 2103 ha (7.4%), Limpopo River 564 ha (6.4%),  Makhathini 361 ha (7.8%), 
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Olifants River 665 ha (5.6%), , Breede River 2215 ha (7.3%), Sundays River 741 ha (3.9%) 
and Douglas (Vaal and Orange Rivers) 2124 ha (9.1%). 
 
Table 8.1  Summary of the areas affected by salt accumulation and waterlogging 

Study Area Affected Adjusted 

Name ha ha* ha % ha % 

Vaalharts 26434 27033 414.7 1.57 848.9 3.14 

Loskop 38831 40867 887.1 2.28 2344.7 5.74 

Makhathini 4312 4624 138.5 3.21 361.1 7.81 

Olifants River 11284 11911 224.6 1.99 664.9 5.58 

Tugela River 27384 28244 1477.3 5.39 2102.8 7.44 

Breede River 29129 30188 1396.8 4.8 2215.3 7.34 

Sundays River 18608 18832 528.2 2.84 740.5 3.93 

Limpopo River  8681 8805 468.1 5.39 564.0 6.40 

Douglas 22748 23445 1483.3 6.52 2124.0 9.06 

MEAN 20823 21550 779.8 3.78 1329.6 6.27 

* Area adjusted by adding abandoned fields 
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9 PROPOSALS FOR FUTURE RESEARCH AND TECHNOLOGY 
EXCHANGE 

Formation, movement and accumulation of salts and water have a substantial influence on 
several aspects of soils, mainly on their physical, chemical and biological properties. There 
are five basic tools for salt accumulation and waterlogging assessments: (i) remote sensing 
and GIS, (ii) conventional soil analyses and watertable depth measurement, (iii) geophysical 
methods, (iv) salt and waterlogging modelling, and (v) morphological and micro chemical 
assessment from field to sub microscopic levels. 
 
Salt accumulation and waterlogging are characterized by their evolution in both time and 
space. Therefore, the use of traditional methods (laboratory analysis and field surveys) for 
their monitoring are insufficient and unsuited to the rate of evolution of these phenomena. 
These methods are also costly, especially for implementation over large areas. In contrast, 
optical satellite imagery have been shown to be effective for mapping and continuously 
monitoring of the progression of this phenomena.    
 
Viable permanent irrigated agriculture requires periodic information on salts and watertables 
on a regional, national, scheme and farm levels for decision making and managing 
purposes.    It is important to know where salt accumulation and waterlogging occur, so that 
the extent and further risk of increased salt accumulation and waterlogging can be 
contained. 
 
A monitoring network to record spatial and temporal changes in salt accumulation and 
waterlogging on irrigation schemes are almost non-existing in South Africa.  South Africa 
must have standardized monitoring, assessments, modelling and mapping methodologies/ 
procedures to improve the quantification and qualification of salt-affected and waterlogged 
soils on especially a scheme and national scale.  A network of representative monitoring 
points (benchmark soil sites) should therefore be established on irrigation schemes in 
conjunction with remote sensing.  Assessment and monitoring of salt-affected soils with 
remote sensing should include associated salts/metals, e.g. magnesium, boron, nitrates, etc. 
in order to potentially explain observed anomalies.  The lead organizations to establish a 
salt-affected soils and waterlogging monitoring network on South African irrigation schemes 
are mainly the responsibility of the agricultural provincial departments, together with DAFF, 
DEA and DAWS.   
 
Remote sensing can provide useful information for large-area water and salt balances and 
identification of parameters such as evapotranspiration, rainfall distribution, interception 
losses, and crop types and intensities that can be used as indirect measures of salt 
accumulation and waterlogging and as evidence for direct estimates. 
 
The possibility to integrate remote sensing, geophysical surveys, and solute modelling, 
needs to be further explored.  More accurate estimation of waterlogging and salt affected 
soils and wider applications can be expected from such an integrated approach. 
 
Further studies are required in order to determine the calibrating coefficients that can be 
used to eliminate the background spectra caused by soil moisture contents. In this regard, 
there are various techniques and data that need to be explored, especially the potential of 
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ground-penetrating radar (GPR), LiDAR, and high-resolution thermal infrared (TIR) data. A 
third area that still needs research is related to selecting an optimal integration technique. 
Effective methods of technology transfer need to be developed to ensure that irrigation 
farmers adopt a best practices approach with respect to irrigation and salt management.  
 
It is recommended that the WFAD technique be operationalized for routine monitoring of salt 
accumulation and waterlogging. Its ability to accurately identify potentially affected areas and 
its reliance on data that is readably available.  More research is needed to improve the 
efficiency of the workflow and to automate as many as possible of the steps so that the 
technique can be cost-effectively carried out on a regular basis and for large areas. The 
technique should also be extended so that multiple images with different extents and 
resolutions (e.g. SPOT-5/6/7 and Sentinel-2) can be analysed.  The anomaly maps 
produced by the WFAD technique should be updated on a regular (at least annual) basis. By 
doing so, a historical record of anomalies and crop conditions can be accrued and used to 
identify abnormal conditions as soon as they occur. Such abnormal conditions can then be 
brought to the attention of the farmer. 
 
For the WFAD method to become an operational tool in the proactive management of salt 
accumulation and waterlogging, the detected anomalies must be made available to all 
stakeholders (e.g. farmers, extension officers, agribusinesses) in a timely and cost-effective 
manner. Ideally the information should be delivered through a web-based service that is 
simple, intuitive and easy to use 
 
The identification of areas on existing irrigation schemes that were abandoned due to 
waterlogging and salt-affected soils using historical aerial photography and satellite images 
are also necessary as the WFAD method only considers cultivated or fallow fields, it does 
not incorporate fields that have been abandoned due to salt accumulation or waterlogging. 
This exclusion can have a significant effect on the overall quantification of affected areas. 
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APPENDIX: A 

Confusion matrices generated during the accuracy assessment of the within-field anomaly 
detection (WFAD) method. 
 
Vaalharts irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  18  0 6 24 75 

Anomaly   0 8  0 8 100 

Not 
Anomaly  

11 3 24 38 63.2 

Totals 29 11 30 70   

Producer's 
62.1 72.73 80     accuracy 

(%) 

 
Overall 

accuracy 
71.64   

   

 
Kappa 0.58 

    
 

Loskop irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  35 0  5 40 87.5 

Anomaly   0 14 0  14 100 

Not 
Anomaly  

8 3 25 36 69.5 

Totals 43 17 30 90    

Producer's 
81.4 82.4 83.3     accuracy 

(%) 

 
Overall 

accuracy 
82.20   

   

 
Kappa 0.72 

    

 
 
Makhathini irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  25  0 6 31 80.7 

Anomaly   0 12 0  12 100 

Not 
Anomaly  

5  0 8 13 61.54 

Totals 30 12 14 56   

Producer's 
83.3 100 57.14     accuracy 

(%) 

 
Overall 

accuracy 
80.4   

   

 
Kappa 0.672 

    
 

 
 
Tugela River irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  43  0 10 53 81.13 

Anomaly  0  15  0 15 100 

Not 
Anomaly  

5  3 7 15 46.67 

Totals 48 18 17 83   

Producer's 
89.58 83.33 41.18     accuracy 

(%) 

 
Overall 

accuracy 
78.3   

   

 
Kappa 0.6 

    

 
 
Olifants River irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  34 0 13 47 72.34 

Anomaly  0 17 0 17 100 

Not 
Anomaly  

6 0 12 18 66.67 

Totals 40 17 25 82   

Producer's 
85 100 48     accuracy 

(%) 

 
Overall 

accuracy 
76.8   

   

 
Kappa 0.6 

    
 

 
 
Breede River irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  26 0 5 31 83.87 

Anomaly  0 4 0 4 100 

Not 
Anomaly  

8 7 35 50 70 

Totals 34 11 40 85   

Producer's 
76.47 36.36 87.5     accuracy 

(%) 

 
Overall 

accuracy 
76.5   

   

 
Kappa 0.58 
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Sundays River irrigation scheme 
Pr

ed
ic

te
d 

da
ta

 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  15 0 3 18 83.33 

Anomaly  0 1 0 1 100 

Not 
Anomaly  

7 0 25 32 78.13 

Totals 22 1 28 51   

Producer's 
68.18 100 89.29     accuracy 

(%) 

 
Overall 

accuracy 
80.4   

   

 
Kappa 0.6 

    
 

Limpopo River irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  14 0 11 25 56 

Anomaly  0 7 0 7 100 

Not 
Anomaly  

17 2 26 45 57.78 

Totals 31 9 37 77   

Producer's 
45.16 77.78 70.27     accuracy 

(%) 

 
Overall 

accuracy 
61.0   

   

 
Kappa 0.326 

    

 
 
Douglas irrigation scheme 

Pr
ed

ic
te

d 
da

ta
 

Field verification data 

  
Salt-

affected\Waterlogged  
Stressed Unaffected Total 

User's 

accuracy 
(%) 

Anomaly  21 0 9 30 70 

Anomaly  0 3 0 3 100 

Not 
Anomaly  

13 0 20 33 60.61 

Totals 34 3 29 66   

Producer's 
61.76 100 68.97     accuracy 

(%) 

 
Overall 

accuracy 
66.7   

   

 
Kappa 0.387 
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