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EXECUTIVE SUMMARY 
 
BACKGROUND 
Increased knowledge of the potential risks associated to exposure to per- and polyfluoroalkyl substances 
(PFASs) in the environment has led to higher demand of its monitoring in waters resources. PFASs are 
synthetic chemicals used in textiles, packaging, papers, carpets and building and construction materials. Other 
usage includes, but not limited to, cosmetic formulation, insecticides, paints, non-stick cookware, firefighting 
foams, hydraulic fluids, waxes and others. Their widespread usage is because of their unique thermal stability 
and excellent surfactant capacity. During usage or disposal of products treated with PFASs, these chemicals 
can be released from products into the environment. Other routes of releases into the environment include, 
among others, during production, military and firefighting operations, discharge of treated effluent and sludge, 
as well as leachate from landfills. The presence of polyfluoroalkyl substances (PFASs) in water resources is 
of concern because water treatment processes do not effectively remove these chemicals. Additionally, these 
chemicals are bio-accumulative, persistent, have long range transport characteristics as well as toxic. Their 
presence in the environment, particularly water, therefore, needs to be monitored. 
 
PROJECT AIMS 
 The overall aims of the project were to: 

1. Monitor the concentrations of legacy and emerging PFASs in different water sources in pre-selected 
cities and towns from all the nine provinces in South Africa; 

2. Use appropriate model to identify the PFASs sources and assess the amounts of pollution by resolving 
the measured mixture of chemical species into the contributions from the individual source types; 

3. Develop a nationwide database on PFASs concentrations in different water sources from different 
parts of the country, and  

4. Apply a test battery of bioassays covering a range of endpoints commonly responsive to drinking water 
to monitor water quality of source and drinking water. 
 

To achieve the aforementioned aims, it was necessary to first develop, optimize, and validate an analytical 
method to determine the presence and concentrations of PFASs in various water sources in South Africa. 
Thus, the current report (Volume I) only addresses aspects related to the development, optimisation and 
validation of methods for the detection and quantification of PFASs in water samples.   
 
The results obtained under Aims 1-4 are presented in Volumes II and III of this set of reports. 
 
DETECTION AND QUANTIFICATION OF PFASs IN WATER  
Targeted and non-targeted approaches were employed in this nationwide PFASs monitoring initiative. The 
targeted analysis approach provides an unparalleled level of specificity and sensitivity for the quantitative 
analysis. However, for new and emerging compounds, this approach may not be effective in detecting species 
that may be of interest, regardless of their chemistry or concentration. Non-targeted analysis leverages the 
power of high-resolution modern mass spectrometers to analyse both targeted and undiscovered chemicals. 
 
For non-targeted analysis of PFASs, water samples collected from the Gauteng province of South Africa in 
clean high-density polyethylene bottles were used. Gauteng province water samples were used as a 
benchmark for identifying and detecting PFASs in water samples as this province is the most industrialized 
compared to the others in the country. Native PFASs standards and isotopically labelled internal 
(MPFDA_13C2, MPFHxA_13C2 and M2PFOA_13C2) and surrogate (MPFNA) standards (50 mg/L in methanol), 
purchased from Wellington Laboratories (Guelph, Ontario, Canada) were used for instrument calibration, limit 
of detection (LOD), limit of Quantification (LOQ), recovery tests and multiple reaction monitoring (MRM). Water 
extraction method was developed using Milli-Q water. Solid Phase Extraction (SPE) USEPA Method 537.1 
was employed in the extraction of PFASs from water samples. After extraction, the extracts were reconstituted 
to 1 mL and internal standard M2PFOA_13C2, MPFDA_13C2, and MPFHxA_13C2, prior instrument analysis. 
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Analysis was conducted using Chromatograph TripleTOF 6600, SCIEX with Luna Omega 3 μm polar C18 
100Å LC column 100 x 2.1 mm, Phenomenex, flow rate of 0.50 mL/min; and 2 mM ammonium acetate, 0.1% 
formic acid and 100% methanol for mobile phases A and B respectively. 
 
For the targeted analysis of PFASs in water, the methods described above for non-targeted analyses were 
also used for targeted analysis, albeit with differences in instrumental analysis. The extracts after reconstitution 
and addition of internal standards were analysed using Liquid Chromatography tandem mass spectrometry 
(Shimadzu LC-MS 8030 triple quadrupole system, Tokyo, Japan). Following the identification of emerging 
PFASs compounds using non-targeted analysis, more PFASs standards including the sulphonates and alcohol 
telomers were added to the pool.  Four chromatographic methods were developed to ensure good separation 
of PFASs compounds. These methods are: 

 Method A – This method consisted of the following analytes: MPFNA, PFUdA, PFHxA, PFPeA, 4:2 
FTS, 6:2 FTS, 8:2 FTS, PFHpA, PFNA, PFDoA, PFODA and PFHxDA; 

 Method B – This method consisted of the following analytes; MPFUdA, MPFHxS, L-PFBS, L-PFHxS, 
L-PFOS, PFHpS, PFOA, and L-PFDS;   

 Method C – This method consisted of the following analytes; FHEA, 6:2 FTS, FOET and FHET, and 
 Method D – This method only catered for PFBA.  

 
For all 4 methods, multiple reaction monitoring (MRM) chromatograms and calibration curves with 10 points of 
final concentrations ranging from 1-2000 ng/L for all PFASs analytes were created from diluting a stock solution 
of 50 mg/L of individual PFASs in methanol.   
 
Validation of the methods developed was determined using the spiking method. Further validation was also 
conducted using Certified Reference Material, i.e. PFASs in drinking water reference samples (CRM IRMM-
428). Field blanks were prepared during sample collection following the same procedure used for 
environmental samples. During the analyses of samples, solvent and laboratory blanks were prepared and 
analysed in between samples after every tenth sample to avoid carry over and a 100 ng/L standard was 
analysed after every 20th sample in the batch.  
 
SUMMARY AND CONCLUSIONS 
All isomers calibration curves showed linearity, based on correlation coefficients (r) and correlation of 
determination (r2) that were greater than 0.99 with good precision of the internal standard. The chromatograms 
were well separated. The percentage recoveries of the labelled surrogate standards were within the acceptable 
range of 50-150 ng/L. Calibration curves for PFUdA, PFDoA, PFHxA, PFNA, PFPeA, PFBA, MPFNA, 4:2 FTS, 
6:2 FTS, 8:2 FTS, FHET, FHEA and FOET ranged from 1-1000 ng/L, while that of L-PFBS, L-PFOS, PFOA, 
L-PFHpS, and L-PFHxS ranged from 100-1000 ng/L and that of MPFUdA, MPFHxS, L-PFDS, PFODA and 
PFHxDA ranged from 100-2000 ng/L were maintained. Furthermore, the LOD and LOQ values that ranged 
from 0.0033-0.29 and 0.018-0.67 ng/L respectively.  
 
Based on these results, the following can be concluded: 

 Non-targeted and targeted analytical methods for identification and quantification of PFASs in various 
water sources were successfully developed;  

 The developed method was optimized and validated using spiking method and certified reference 
material; 

 The developed method was applied to extract PFASs from the following water sample types; 
wastewater, drinking water, groundwater (boreholes), surface water (rivers and dams), bottled water 
and rainwater. 

 High percentage recoveries obtained indicated high accuracy and sensitivity of the developed method  
 Both grab and passive sampling approaches can be used for PFASs monitoring in water environments 
 Both analytical measurements and multivariate analyses are necessary to establish an understanding 

of the sources, levels, transport and fate of PFAS compounds within water environments. 
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CHAPTER 1: BACKGROUND 

1.1 INTRODUCTION 

Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals used in textiles, packaging, papers, 
carpets and building and construction materials. They are used in cosmetic formulation, insecticides, paints, 
firefighting foams, hydraulic fluids and waxes. Their widespread usage is because of their unique thermal 
stability and excellent surfactant capacity. During usage or disposal of products treated with PFASs, these 
chemicals can leach into the environment. They can also be released during production, military and firefighting 
operations, discharge of treated effluent and sludge, as well as landfill leachates. 
 
The presence of PFASs in source waters is, in most cases, not removed by conventional water treatment 
processes due to the design and treatment processes. Water users and consumers can, therefore, be exposed 
unintentionally to PFASs with their concomitant toxic effects in such instances. It is for these reasons that 
monitoring of PFASs in South African source waters are particularly important. Conducting a large-scale 
monitoring programme that would provide a nationwide inventory of the concentrations of PFASs in South 
Africa source waters is a step in the right direction to safeguard public health. In addition, this exercise would 
contribute towards critically reviewing the current drinking water guidelines in order to address the challenges 
that may be posed by the presence of PFASs in South African source waters. Data generated on PFASs will 
contribute towards the National Toxicant Monitoring Programme (NTMP). 
 
The design of monitoring the occurrence of chemicals of emerging concern such as PFASs compounds is 
particularly complex. Consequently, efforts were geared towards devising cost-effective means of monitoring 
of such pollutants. Development of a testable analytical method ensures that the results generated from any 
analysis is reliable and accurate. Therefore, it was deemed necessary to 1) develop appropriate and testable 
analytical method to determine the presence and concentrations of PFSAs in various water sources and 2) 
optimize and validate the method before sample collection, treatment and analysis. Generally, analytical 
method development involves the use of analyte standards in order to determine analytical instrument 
response to the analyte standards. In this report, the analytical method was developed using PFASs standards 
for both calibration and multiple reaction monitoring.  
 
Pre-treatment and extraction methods were also optimized because they have a great impact on the 
determination of PFASs in different matrices. Depending on the type of sample, centrifugation and filtration 
methods, sample pre-treatment was applied in some of the samples, particularly samples from wastewater 
treatment plants in order to minimize blockage in the subsequent extraction process and in the instrument. 
 
Two approaches were employed in this nationwide PFASs monitoring programme namely, targeted and non-
targeted. Targeted provides an unparalleled level of specificity and sensitivity for the quantitative analysis. 
However, for new and emerging compounds, this approach is not effective in detecting species that may be of 
interest, regardless of their chemistry or concentration. Non-targeted analysis leverages the power of high-
resolution modern mass spectrometers to analyse both targeted and undiscovered chemicals. 

1.2 PROJECT AIMS 

 The objectives of the overall project were to: 
1. Monitor the concentrations of legacy and emerging PFASs in different water sources in pre-selected 

cities and towns from all the nine provinces in South Africa; 
2. Use appropriate model to identify the PFASs sources and assess the amounts of pollution by resolving 

the measured mixture of chemical species into the contributions from the individual source types;  
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3. Develop a nationwide database on PFASs concentrations in different water sources from different 
parts of the country and  

4. Apply a test battery of bioassays covering a range of endpoints commonly responsive to drinking water 
to monitor water quality of source and drinking water. 

1.3 SCOPE OF THIS REPORT 

To achieve the aforementioned aims, it was necessary to first develop, optimize, and validate an analytical 
method to determine the presence and concentrations of PFASs in various water sources in South Africa. 
Thus, the current report (Volume I) only addresses aspects related to the development, optimisation and 
validation of methods for water sample extraction and analysis for the detection and quantification of PFASs.   
 
The results obtained under Aims 1-4 are presented in Volumes II and III of this set of reports. 
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CHAPTER 2: A REVIEW OF PER- AND POLYFLUOROALKYL 
SUBSTANCES  

2.1 CLASSIFICATION OF PER- AND POLYFLUOROALKYL SUBSTANCES 

As the start of the third industrial revolution ushered in the use of technology and many other forms of digital 
advancements in the 1950s, so did the manufacturing trade discover its own breakthrough in the use of new 
chemicals for various lucrative commercial applications (Kissa, 2001). Per- and/or polyfluoroalkyl substances 
became the ground-breaking new chemicals that were widely popular for the various uses with which they 
could be applied (Smart, 1994).  
 
The term PFASs refers to perfluoroalkyl and polyfluoroalkyl substances, a large group of manmade chemicals 
with the distinguishing structure of a chain of carbon atoms (forming an ‘alkyl’) that has at least one fluorine 
atom bound to a carbon. Perfluoroalkyl substances are fully fluorinated molecules in which every hydrogen 
atom bonded to a carbon in the alkane backbone (carbon chain) is replaced by a fluorine atom, except for the 
carbon at one end of the chain that has a charged functional group attached. The carbon-fluorine bond is 
extremely strong and renders these chemicals highly resistant to complete degradation. The basic chemical 

the perfluoroalkyl chain t The general 
chemical structures of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) 
bear the functional groups -COOH and -SO3H respectively. The chemical structures of commonly detected 
perfluoroalkyl substances, including perfluorooctane sulfonic acid (PFOS), perfluorooctane carboxylic acid 
(PFOA), perfluohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) are all presented in Figure 
2-1 to 2-6.  
 

 
 

Figure 2.1: Chemical structure of perfluorooctanoic acid (PFOA) 
 
 

 

Figure 2.2: Chemical structure of perfluorooctanoic acid (PFOS) 
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Figure 2.3: Chemical structure of perfluorooctanoic acid (PFNA) 

 

   

Figure 2.4: Chemical structure of perfluorooctanoic acid (PFBA) 
 

 

Figure 2.5: Chemical structure of perfluorooctanoic acid (PFDA) 

 

 

Figure 2.6: Chemical structure of perfluorooctanoic acid (PFHxS) 

 

PFOA and PFOS make up the so-called C8 compounds and they have been the most extensively produced 
and studied PFAS homologues. Perfluoroalkyl acids (PFAAs) are some of the most basic PFASs molecules 
and are essentially non-degradable. PFAAs contain three major groups on the basis of the functional group at 
the end of the carbon chain: perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) 
and perfluoroalkyl phosphonates (PFPAs) or perfluoroalkyl phosphinates (PFPiAs).  
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Polyfluoroalkyl substances differ from perfluoroalkyl substances by the degree of fluorine substitution in the 
alkane backbone: at least one carbon must not be bound to a fluorine atom and at least two carbons must be 
fully fluorinated. The fluorotelomer substances are a subset of polyfluoroalkyl substances because they are 
oligomers with low molecular weight produced by a telomerisation reaction. Some important examples of 
fluorotelomer substances are fluorotelomer alcohol (FTOH) and perfluorooctane sulfonamidoethanol (FOSE).  
 
Since polyfluoroalkyl substances have a carbon that is lacking fluorine substitution, this weaker bond increases 
potential for degradation (Buck et al., 2011). For example, FTOH and FOSE can be transformed biologically 
or abiotically to PFOA and PFOS. In addition, PFASs can also exist as polymers. These PFASs polymers are 
large molecules formed by joining many identical small PFAS monomers. Current information indicates that 
the non-polymer PFASs constitute the greatest risk for environmental contamination and toxicity, although 
some PFASs polymers can be degradable to basic PFASs. 

2.2 SYNTHESIS OF PER- AND POLYFLUOROALKYL SUBSTANCES  

According to Lehmler (2005), PFOA, PFOS, and other PFASs are man-made chemicals that are primarily 
produced by two methods namely Simons Electrochemical Fluorination and Telomerization of 
tetratfluroethylene as shown in Equations 2.1 and 2.2. 
 

Cn H2n+1 COCl + (2n+2) HF               Cn F2n+1 COF + HCl + by products                     (eq. 2.1) 
 

Cn H2n+1 SO2Cl + (2n+2) HF               Cn F2n+1 COF + HCl + by products                     (eq. 2.2) 
 
The Simons Electrochemical Fluorination process is based on the fluorination of different fluorinated organic 
compounds such as alkanesulfonyl acid chloride (equation 2.1), carboxylic acid chloride (equation 2.2) in the 
presence of anhydrous hydrogen fluoride (Loganathan and Lam, 2012). An electrical current fuels these 
reactions causing all the hydrogen atoms on the carbon backbone to be replaced by fluorine atoms (Lau et al., 
2007). The resulting products yielded are perfluorinated sulfonyl and carbonyl fluorides and compounds such 
as perfluorooctane sulfonyl fluoride (POSF, C8F17SO2F). Fluorinated molecules of various carbon chain 
lengths and a mixture of linear, branched, and cyclic isomers are produced during this process, as 
fragmentation and rearrangement of the carbon skeleton can occur. The telomerization of tetrafluoroethylene 
(TFE) method involves units that yields straight-chain alcohols (F(CF2CF2)nCH2CH2OH) that can be converted 
into final products for commercial application. The process involves the fluoroiodination of TFE in the presence 
of telogens to produce pentafluoroiodoethane (Equation 2.3), which is then reacted with TFEs and yields a 
mixture of perfluoroalkyl iodides (Equation 2.4). PFCAs are then produced through the oxidation of 
pentafluoroiodoethane and perfluoroalkyl iodides (Equation 2.5) are produced by the reaction of pefluoroalkyl 
iodides with ethylene (Loganathan and Lam, 2012). 
 

5CF2 - CF2 + 2I2 + IF5                 5F (CF2CF2) I    (eq. 2.3) 
 

F (CF2CF2) I + nCF2 - CF2                       F (CF2CF2)n+1 I   (eq. 2.4) 
 

F (CF2CF2)n I + CH2                  F(CF2CF2)n+1 CH2CH2I   (eq. 2.5) 
 
 
The iodides can then be converted to other intermediates (e.g. alcohols) to produce PFASs. Thus, PFASs 
found in the environment are composed of a family of target compounds as well as by-products of various 
chain lengths and isomers (Lau et al., 2007). The large-scale production, consumption and adverse effects in 
human health made PFOS and PFOA the most important representatives of the group of PFASs, which 
resulted to their being phased out in 2000 by 3M Company (Lindstrom et al., 2011). In addition, the production 
of PFOS and other perfluorooctyl products was phased out in the USA and Europe in 2000-2002 (OECD, 
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2002), but production has continued in other countries (Wang et al., 2009), because of the great demand on 
high-performance materials (Zushi et al
regulations because they are bioaccumulative and toxic (OECD, 2002). 

2.3 PROPERTIES OF PER- AND POLYFLUOROALKYL SUBSTANCES  

2.3.1 Chemical and physical properties 

The strength of the carbon/fluorine bond makes the molecules chemically very stable and highly resistant to 
biological degradation. Per- and polyfluoroalkyl substances (PFASs) are highly persistent to natural 
degradation due to the high electronegativity of fluorine. They are also resistant to heat and hydrolysis 
(Taniyasu et al., 2013). Per- and polyfluoroalkyl substances (PFASs) are all anthropogenic organic chemicals 
(Kissa, 2001; Lindstrom et al., 2011). Some of their properties include water, oil and grease repellency. Due 
to the carboxylic or sulfonic acid groups, PFASs have high water solubility and can be transported across long 
distances via water (Yamashita et al., 2005; Ahrens, 2011). Per- and polyfluoroalkyl substances (PFASs) 
bioaccumulate and biomagnify (Martin et al., 2003) and some studies have confirmed toxic and 
bioaccumulative effects of two representative PFASs namely, PFOS and PFOA (Lau et al., 2007; EPA, 2009). 
PFASs are highly persistent due to their resistance to photolysis, pyrolysis and biotransformation (Kissa, 2001). 
Due to their persistence and abiotic degradation properties, they are used widely in industrial and commercial 
applications (OECD, 2002, OECD, 2005; Washburn et al, 2005; Fromme et al, 2009). 

2.3.2 Transport of PFASs 

PFASs can travel long distances in air and water current due to their chemical structure. The aquatic 
ecosystem has been found to be an important and major medium for PFASs transportation, since these 
chemicals have been found often detected in environmental waters and strongly proved to accumulate in 
aquatic biotas (Prevedouros et al., 2006). Rivers are an important pathway for transport of contaminants from 
land to oceans, and PFASs levels in rivers are up to thousands of ngL-1 (Skutlarek et al., 2006). 

2.4  APPLICATIONS OF PER- AND POLYFLUOROALKYL SUBSTANCES  

PFASs are man-made chemicals which have been commercially produced since the 1960s (Ahrens et al., 
2015). A number of perfluorinated compounds have been used for household and industrial applications. 
These applications can be separated into three categories as follows:  

2.4.1 Surface Treatment Applications 

Surface treatment applications provide soil, oil and water resistance to personal apparel and home furnishings 
(OECD, 2002). The applications are used for the protection of apparel and leather, fabric/upholstery and 
carpet. Industries that use these applications include textile mills, leather tanneries, finishers, fibre producers 
and carpet manufactures. 

2.4.2 Paper Protection Applications 

Paper protection applications provide grease, oil and water resistance to paper and paperboard as part of 
sizing agent information (OECD, 2002). The applications are used in food contact applications that include 
plates, food containers, bags and wraps and non-food contact applications such as folding cartons, containers, 
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carbonless forms and masking papers. Industries that use these applications include paper mills, 
manufacturers of bags, wraps and other products from paper and paperboard. 

2.4.3 Performance Chemical Applications 

Performance chemical applications are specialized industrial, commercial and consumer applications. These 
applications are used in firefighting foams, mining and oil well surfactants, acid mist suppressants for metal 
plating, electronic etching baths, photolithography, electronic chemicals, hydraulic fluid additives, alkaline 
cleaners, floor polishes, photographic films, denture cleaners, shampoos, chemical intermediates, coating 
additives, carpet cleaners and as an insecticide in bait stations (3M Company, 2000). 

2.5 DETECTION AND QUANTIFICATION OF PER- AND POLYFLUOROALKYL 
SUBSTANCES  

2.5.1 Overview  

Careful attention and precautionary measures are taken when it comes to the determination of PFASs, from 
sample collection; sample preparation until sample analysis. Since PFASs can potentially adsorb to the surface 
of the glassware and can be found in commonly used laboratory supplies and equipment, such as PTFE 
products, liquid chromatograph solvent lines, methanol, aluminium foil, and solid phase extraction (SPE) 
sample transfer lines. Therefore, PFAS standards; extracts; samples should not come into contact with any 
glass containers or pipettes and polypropylene containers should be used instead. The materials need to be 
routinely demonstrated to be free of interferences through laboratory reagent blanks (USEPA 2009). During 
samples collection, water samples are collected in clean polypropylene (PP) bottles rinsed with methanol and 
sediments in polypropylene plastic bags (Wang et al., 2011). 

2.5.2 Water sample preparation for PFASs 

A wide variety of SPE methods have been reported for the sample extraction and clean-up of water samples 
and columns such as C18, Oasis HLB and weak anion exchange (WAX) have been used (van Leeuwen and 
Boer, 2007). Taniyashu et al. (2005) evaluated the Oasis HLB and Oasis Wax columns for the extraction of 
PFASs and the recoveries found were between 70-100% for most of the compounds, short-chain PFCAs were 
efficiently trapped by the Oasis Wax column, and recoveries for long- 11) were less than 70% 
on both columns. From Taniyashu et al. (2005) findings, both columns were found to be comparable. 
Yamashita et al. (2004) also developed a very sensitive method for seven PFASs using Oasis HLB column for 
seawater samples, but the method was found to be less accurate compared to the method developed by 
Taniyashu et al. (2005) (van Leeuwen and Boer, 2007).  
 
Gonzalez-Barreiro et al. (2006) optimized two extraction methods, an SPE and liquid-liquid extraction (LLE) 
method for the analysis of eleven PFASs by LC-ESI-MS-MS. For SPE, several cartridges were tested and 
because all of them resulted in similar recoveries the C18 cartridge was selected due to its low costs. In addition, 
acidic conditions (pH 4) for PFCAs with carbon chains more than 10 and basic conditions (pH 11) for PFOA, 
PFNA, PFDA, PFDS and PFOSA were used (Gonzalez-Barreiro et al., 2006). However, long-chain PFASs 
could not be extracted with the SPE methods. A liquid-liquid extraction (LLE) method was then optimized, with 
three solvents tested, namely, n-hexane, MTBE and trichloromethane (TCM), methyl tert-butyl ether (MTBE) 
was the best extraction solvent selected (Gonzalez-Barreiro et al., 2006). Recoveries for PFCAs with carbon 

-93% (Gonzalez-Barreiro et al., 2006). Short-
chain PFCAs, however, could not be extracted by this method making it less efficient compared to SPE method 
(van Leeuwen and Boer, 2007). 
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Due to the efficiency of solid phase extraction (SPE), it is the widely used extraction method to extract PFASs 
and was used in the current project for the extraction of water samples. The extraction procedure followed in 
this project was as described by Wang et al. (2011). Briefly an aliquot of water sample is passed through 
thoroughly rinsed sample transfer lines and preconditioned SPE cartridge. The cartridge is preconditioned with 
a selection of solvents such as acetonitrile, methanol followed by ultra-pure water. The samples are allowed 
to pass through at a rate of one drop a second; the analytes of interest are then trapped on the SPE cartridge 
while the water goes through to waste. After all the sample has passed through, the cartridge is vacuum dried 
for one hour and the analytes are eluted. During the elution stage, an amount of a selected solvent is poured 
onto the cartridge to elute the target compounds and collected in a particular size PP tube usually 10 mL or 15 
mL. Then the eluate is reduced to 1 mL under a gentle stream of nitrogen gas and transferred into a vial for 
analysis.   

2.5.3 Analysis of PFASs with LC-MS 

Liquid Chromatography-Mass Spectrometer (LC-MS) replaced Gas Chromatography-Mass Spectrometer 
(GC-MS) for the determination of PFASs because of its higher sensitivity (Dufková et al., 2012) and omission 
of multiple derivatization steps (Shafique et al., 2017). Yamashita et al. (2004) developed a method for the 
analysis of PFASs at parts per quadrillion levels in seawater using liquid chromatography tandem mass 
spectrometry. Major sources of background contamination of PFOA were found in LC tubing and internal LC 
parts in study. These parts were then replaced with stainless steel, which significantly decreased the 
contamination. In addition, LOQs in the low pg L-1 range were achieved and the method deemed suitable for 
samples containing very low PFASs levels.  
 
LC coupled to ion-trap MS-MS, ToF-HRMS, and quadrupole MS-MS which are types of mass spectrometers 
were compared by Berger et al. (2004) for the determination of PFASs. Time of flight- High Resolution Mass 
Spectrometry (ToF-HRMS) was found to the superior methodology with high selectivity and optimal sensitivity 
in the study. Wille et al. (2010) also validated an analytical method for the determination of PFASs in surface, 
sea and sewage water using LC coupled to ToF-MS. The method was reported to have resulted in a highly 
selective MS-technique for the detection of PFASs in complex aqueous matrices, which confirmed Berger et 
al. (2004) findings. However, due to the low distribution of the instrument in analytical laboratories, quadrupole 
MS-MS is used most frequently (Jahnke and Berger, 2009). 

2.5.4 Analysis of PFASs using GC 

According to Shafique et al. (2017) per- and polyfluoroalkyl substances, particularly PFCAs cannot be 
determined by GC directly. However, to be able to determine PFCAs using a GC, derivatisation is required to 
convert the polar functional group to a non-polar derivative prior to injection in GC (Shafique et al., 2017). 
Usually esters are used as the derivatives and a number of reagents can be used to react with PFCAs for the 
derivatisation such as diazomethane (CH2N2), propyl chloroformate (PCF) in the presence of pyridine and 
propanol at pH 2.5 and 2,4-Difluoroanilides. The derived compounds are then injected into the GC column 
where they are separated according to their boiling points and vapour pressures. Various detectors such as 
FID; ECD; EI-MS; NCI-MS and NCI-MS2 are used after separation to determine the PFCA concentrations in 
the sample. 
 
GC-NCI-MS is one of the mostly used methods to analyse PFASs. Dufková et al. (2012) developed a GC-NCI-
MS method for the determination of ultra-trace concentrations of perfluoroalkyl carboxylic acids in river water. 
The method employed sample pre-treatment by SPE followed by a derivatisation procedure, which involved 
mixing the PFCAs dissolved in acetonitrile with isobutylchloroformate (IBCF) and pyridine forming isobutyl 
esters. The isobutyl esters were then extracted for the determination of the PFCAs by GC-NCI-MS. The method 
was applied to river samples and concentrations in the pg mL-1 order of units were obtained. The method was 
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reported to exhibit low detection limits, comparable results with those of LC-MS-MS instrumentation and 
sensitivity increased with increasing length of analyte chain.  
 
However, due to the major drawbacks associated with the use of this method to determine PFASs such as, 
small range of analytes, long analysis time and laborious derivatization prior to chromatographic separation 
not much studies use GC for analysis of PFASs (Shafique et al., 2017). 

2.6 SUMMARY 

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have garnered significant 
attention due to their widespread presence in the environment and potential health risks. Monitoring PFAS in 
water is crucial for understanding their sources and extent of contamination, as well as for protecting public 
health. Below are some of the important considerations for monitoring PFASs in water: 

 Sampling: Samples from various water sources, including groundwater, surface water, and drinking 
water supplies should be collected, and sampling locations should be strategically chosen to assess 
potential contamination sources. 

 Sample Preparation: Before analysis, water samples are typically filtered to remove particulate matter, 
and in other instances, the pH may need to be adjusted to ensure accurate measurements. Solid-
phase extraction (SPE) or liquid-liquid extraction (LLE) techniques are often employed to concentrate 
PFAS from large water volumes. 

 Detection and quantification: Several methods can be used for the detection and quantification of 
PFASs in water. Liquid Chromatography-Mass Spectrometry (LC-MS) is one of the most commonly 
used methods for PFAS detection and quantification. It involves separating PFAS compounds based 
on their chemical properties and then quantifying them using mass spectrometry. Gas 
Chromatography-Mass Spectrometry (GC-MS) is used for specific PFAS compounds, particularly 
volatile ones. It separates and identifies these compounds based on their vaporization and ionization 
properties. High-Performance Liquid Chromatography (HPLC) is typically used in tandem with mass 
spectrometry or other detectors to analyse specific PFAS compounds by separating them based on 
their chemical properties. To quantify PFAS concentrations accurately, standards of known PFAS 
concentrations are used to calibrate the analytical instruments. 

 Quality Control: Rigorous quality control procedures are essential to ensure the reliability and accuracy 
of the results. This includes the use of blank samples, duplicates, and certified reference materials for 
validation. 

 Data Analysis: Once the PFAS content in water samples is measured, data analysis is conducted to 
determine the concentration of each individual PFAS compound present. The results are often 
reported in nanograms per litre (ng/L) or parts per trillion (ppt). 

 Reporting: The final results are reported to relevant authorities and stakeholders, such as 
environmental agencies, water treatment plants, and the public. Where available, action levels or 
regulatory limits are used to assess the potential risks associated with detected PFAS levels. 

 
Detection and quantification of PFAS in water are crucial for understanding the extent of contamination and 
protecting public health. As our understanding of PFAS and their effects continues to evolve, so too will the 
methods and technologies for their analysis. Ongoing research is exploring new and innovative technologies 
for PFAS detection, including biosensors and advanced mass spectrometry techniques, to enhance sensitivity 
and reduce analysis time.  
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CHAPTER 3: DEVELOPMENT, OPTIMISATION AND 
VALIDATION OF AN LC-MS METHOD FOR THE ANALYSIS 

OF PFASS IN WATER  

3.1 INTRODUCTION 

Development of a testable LC-MS method ensures that the results generated from any analysis is reliable and 
accurate. Therefore, it was deemed necessary to 1) develop appropriate and testable analytical method to 
determine the presence and concentrations of PFASs in various water sources and 2) optimize and validate 
the method before sample collection, treatment and analysis. In the current project, LC-MS triple quadrupole 
system instrumentation was used after sample extraction to analyse the target analytes. The instrumentation 
was chosen because triple quadrupole mass spectrometer plays very important role in trace analysis of 
complex matrices such as residual pesticide in foods, contaminants in environment, drug concentration in 
blood and screening of abused drugs (Shimadzu, 2013).  
 
LC-MS delivers the fastest MRM acquisition times available today and works with the most challenging 
samples, delivering robust and high-sensitivity detection using ESI, APCI or our dual probe ionization interface. 
It also provides unmatched qualitative and quantitative analysis, increased productivity, and accelerated 
workflows for high throughput data analysis (Shimadzu, 2013). In addition, the use of LC-MS does not require 
the multiple derivatisation steps required with the use of GC-MS which saves time during sample preparation. 
The use of LC-MS also solves the problem experienced with GC-MS with the analysis of perfluorinated 
sulfonates as these compounds do not form stable, volatile derivatives, making analysis using GC-MS difficult 
(Saito et al., 2004).  

3.2 LC-MS/MS METHOD DEVELOPMENT AND OPTIMISATION FOR HIGH 
CONCENTRATION SAMPLES  

Developing an LC-MS method for the analysis of PFASs involves several critical steps to ensure accurate and 
precise results. This is because samples with a high concentration of PFAs can lead to issues like ion 
suppression, detector saturation, and increased noise, and thus optimizing the method is crucial. The key 
elements involved in the optimisation of the LC-MS method for high concentration samples are detailed in the 
sub-sections below. 

3.2.1 Selection of PFAS Standards for Calibration 

For the purposes of this study, twenty-eight (28) PFASs standards were purchased in methanol from 
Wellington Laboratories (Ontario, Canada). These standards included legacy and emerging PFASs, as well 
as labelled PFASs internal standards (Table 3.1). Calibration curves were prepared by diluting a stock solution 
of 2000 ng/mL of PFASs mixture in methanol. A 10-point calibration curve was constructed with ranges from 
0.1-
response/slope of calibration curve, respectively.  
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Table 3.1: PFAS standards for LC-MS method development for high concentrations  
Name of compound Acronym 

MPFHxA_13C2 MPFHxA_13C2 
MPFNA_13C5 MPFNA_13C5 
MPFDA_13C2 MPFDA_13C2 
Sodium perfluoro-1-hexanesulfonate L-PFHxS 
Perfluoro-n-dodecanoic acid PFDoA 
Perfluoro-n-heptanoic acid PFHpA 
Perfluoro-n-hexanoic acid PFHxA 
Perfluoro-n-hexadecanoic acid PFHxDA 
Perfluoro-n-nonanoic acid PFNA 
Perfluoro-n-octadecanoic acid PFODA 
Perfluoro-n-pentanoic acid PFPeA 
Perfluoro-n-tetradecanoic acid PFTeDA 
Perfluoro-n-tridecanoic acid PFTrDA 
Perfluoro-n-undecanoic acid PFUdA 
Potassium perfluoro-1-butanesulfonate L-PFBS 
Sodium perfluoro-1-decanesulfonate L-PFDS 
Sodium perfluoro-1-heptanesulfonate L-PFHpS 
Sodium perfluoro-1-nonanesulfonate L-PFNS 
Sodium perfluoro-1-octanesulfonate L-PFOS 
Perfluoro-n-butanoic acid PFBA 
Perfluoro-n-decanoic acid PFDA 
Perfluoro-n-octanoic acid PFOA 
Sodiumperfluoro-1-dodecanesulfonate L-PFDoS 
Sodium perfluoro-1-pentanesulfonate L-PFPeS 

Labelled PFAS internal standards 
perfluoro-n-[1,2-13C2] octanoic acid  M2PFOA 

perfluoro-n-[1,2-13C2] decanoic acid  MPFDA 
perfluoro-n-[1,2-13C2] hexanoic acid  MPFHxA 

Surrogate standards 
perfluoro-n-[1,2,3,4, 5-13C5] nonanoic acid MPFNA 

 

3.2.2 Optimization of Chromatographic and Mass Spectrometry Conditions 

LC-MS-MS grade water, methanol, acetonitrile and ammonium acetate were purchased from Sigma-Aldrich 
(Aston Manor, South Africa). LC-MS grade water, methanol and ammonium acetate were purchased from 
Sigma-Aldrich (Aston Manor, South Africa). Supelco ENVI-18™ SPE cartridges (500 mg, 6 mL) were 
purchased from Sigma-Aldrich (Aston Manor, South Africa). 
 
Multiple Reaction Monitoring (MRM) transitions were optimized using Flow Injection Analysis (FIA) for all 
compounds, bypassing the analytical column. A high concentration standard of 1000 ng/L containing a mixture 
of all the PFASs compounds was used for optimization of MRM conditions. The mixture was then run under 
optimized LC-MS/MS conditions times to obtain retention times of each method analyte.  
 
Ten microlitre (10 μL) of the standards were injected and analysed using the Liquid Chromatography tandem 
mass spectrometry (Shimadzu LC-MS 8030 triple quadrupole system, Tokyo, Japan). The instrument was 
equipped with an electrospray ionization (ESI) source and the target compounds were separated on an 
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InertSustain C18 (3 μm, 2.1 i.d. x 150 mm) HPLC column (Tokyo, Japan). The instrument conditions for 
targeted analysis of PFASs on LC-MS-8030 triple quadrupole system and the non-targeted analysis of PFASs 
using TripleTOF 6600, SCIEX are shown in Tables 3.2 and 3.3, respectively. The quantitation of the target 
compounds was based on internal standard method calibration with concentrations ranging from 1.0-1000 
ng/L. An R2=0.99 was achieved in all the calibrations with good precision of the internal standard. The method 
was then applied to spiked water samples.  
 

Table 3.2: Instrument conditions for the targeted analysis of PFASs  
LC-MS/MS instrument Shimadzu, LC-MS-8030 triple quadrupole system 
Analytical column Kinetex® 2.6 μm XB-C18 100 Å, LC Column 50 x 4.6 mm 

Column temperature 40°C 

Injection volume 10.00 μL 
Flow rate 0.3000 mL/min 
Mobile Phases A 20 mM Ammonium Acetate 

B 50:50 Methanol: Acetonitrile  

Gradient conditions 
Time (min) 
1 
4 
7 
12 

 
  

% Mobile phase B 
20 
90 
20 
0 

Acquisition time 12 min 

 
Table 3.3: Instrument conditions for non-target PFASs identification using TOF-MSW  

Instrument name TripleTOF 6600, SCIEX 
Analytical column Luna Omega 3 μm polar C18 100Å  LC column 100 x 2.1 mm, 

Phenomenex 
Column temperature 40°C 

Injection volume 10.00 μL 
Flow rate 0.50 mL/min 
Mobile Phases A 2 mM Ammonium Acetate, 0.1% Formic Acid 

B 100% Methanol 

Gradient conditions 
 
Time (min) 
1 
16 
20 
26  

 
 
 

 
% Mobile phase B 
5.0 
95 
5.0 
0 

Acquisition  Information Dependent Acquisition  

Acquisition time 26 min 
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3.2.3 Chromatogram of standards

Figure 3.1 shows the chromatogram of overlaid peaks of mixed PFASs standard solution at 10 ng/mL.

Figure 3.1: Chromatogram of overlaid peaks of mixed PFASs standard solution at 10 ng/mL
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3.2.4 Instrument method development and optimization

The calibration curves and total ion chromatography (TIC) of the internal standards and surrogate are shown in Figures 3.2 to 3.4; and the target compounds in Figures 
3.5 to 3.22. All isomers calibration curves showed linearity, based on correlation coefficients (R) and correlation of determination (R2) that were greater than 0.99 with 
good precision of the internal standard.

Figure 3.2: Perfluoro-n-[1,2-13C2] hexanoic acid (MPFHxA_13C2) calibration curve (left) and total ion chromatograph (TIC) (right). 
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Figure 3.3: Perfluoro-n-[1,2-13C2] decanoic acid (MPFDA_13C2) calibration curve (left) and TIC (right). 
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Figure 3.4: Perfluoro-n-[1,2-13C2] octanoic acid M2PFOA calibration curve (left) and TIC (right). 

0,0 25,0 50,0 75,0 100,0 125,0 150,0 175,0 Conc.
0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

3250000

3500000

Area

7,00 7,25 7,50 7,75 8,00 8,25 8,50 8,75 9,00 9,25 9,50 9,75 10,00 10,25 10,50 10,75

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000



______________________________________________________________________________________
1 

      

Figure 3.5: Perfluoro-n-nonanesulfonic acid (PFNA) with TIC (left) and calibration (right).

Figure 3.6: Total ion chromatogram (left) and calibration (right) for LPFHxS).
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Figure 3.7: Total ion chromatogram (left) and calibration (right) for PFDoA

  

Figure 3.8: Total ion chromatogram (left) and calibration (right) for PFHpA.
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Figure 3.9: Total ion chromatogram (left) and calibration (right) for PFHxA.

Figure 3.10: Total ion chromatogram (left) and calibration (right) for PFHxDA.
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Figure 3.11: Total ion chromatogram (left) and calibration (right) for PFNA.

Figure 3.12: Total ion chromatogram (left) and calibration (right) for PFPeA.
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Figure 3.13: Total ion chromatogram (left) and calibration (right) for PFTeDA.

Figure 3.14: Total ion chromatogram (left) and calibration (right) for PFTrDA.
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Figure 3.15: Total ion chromatogram (left) and calibration (right) for PFUdA.

Figure 3.16: Total ion chromatogram (left) and calibration (right) for L-PFBS.
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Figure 3.17: Total ion chromatogram (left) and calibration (right) for L-PFHpS.

Figure 3.18: Total ion chromatogram (left) and calibration (right) for L-PFDS.
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Figure 3.19: Total ion chromatogram (left) and calibration (right) for L-PFOS.

                                                                                                            

Figure 3.20: Total ion chromatogram (left) and calibration (right) for PFOA.
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Figure 3.21: Total ion chromatogram (left) and calibration (right) for PFBA. 

Figure 3.22: Total ion chromatogram (left) and calibration (right) for PFODA. 
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3.2.5 Multiple reaction monitoring (MRM) 

During the MRM selection, a full scan of ions was done. Ions corresponding to the compounds of interest were 
targeted followed by the fragmentation of the targeted ions producing a range of daughter ions. The ions 
corresponding to the compounds of interest were then selected and isolated from other ions within the mass 
spectrometer to quantitate the method. The multiple reaction monitoring results are shown in Table 3.4. 
 

Table 3.4: MRM of precursor and product ions 
Compounds Abbreviation Precursor 

ion  (m/z) 
Product 
ion (m/z)  

Retention 
time (min) 

MPFHxA 13C2 MPFHxA 13C2 315.00 269.95 
 

6.46 

MPFNA 13C5 MPFNA 13C5 467.90 423.00 
 

7.51 

MPFDA 13C2 MPFDA 13C2 514.90 469.95 
 

7.76 

Sodium perfluoro-1-hexanesulfonate L-PFHxS 399.00 79.95 7.06 

Perfluoro-n-dodecanoic acid PFDoA 613.00 568.90 8.33 
Perfluoro-n-heptanoic acid PFHpA 363.00 319.00 6.88 
Perfluoro-n-hexanoic acid PFHxA 313.00 269.00 6.49 
Perfluoro-n-hexadecanoic acid PFHxDA 813.00 768.95 9.43 
Perfluoro-n-nonanoic acid PFNA 463.00 418.95 7.50 
Perfluoro-n-octadecanoic acid PFODA 913.00 868.90 9.97 
Perfluoro-n-pentanoic acid PFPeA 263.00 219.05 5.96 
Perfluoro-n-tetradecanoic acid PFTeDA 713.00 668.90 8.87 
Perfluoro-n-tridecanoic acid PFTrDA 663.00 618.90 8.60 
Perfluoro-n-undecanoic acid PFUdA 563.00 518.95 8.04 
Potassium perfluoro-1-butanesulfonate L-PFBS 299.00 80.10 6.34 
Sodium perfluoro-1-decanesulfonate L-PFDS 599.00 80.20 8.13 
Sodium perfluoro-1-heptanesulfonate L-PFHpS 449.00 80.10 7.34 
Sodium perfluoro-1-nonanesulfonate L-PFNS 549.00 80.15 7.87 
M2PFOA M2PFOA 414.80 369.90 7.20 
Sodium perfluoro-1-octanesulfonate L-PFOS 499.00 80.15 7.60 
Perfluoro-n-butanoic acid PFBA 213.00 169.05 4.34 
Perfluoro-n-decanoic acid PFDA 513.00 468.90 7.777 
Perfluoro-n-octanoic acid PFOA 413.00 368.95 7.186 
Sodiumperfluoro-1-dodecanesulfonate L-PFDoS 699.00 80.20 8.675 
Sodium perfluoro-1-pentanesulfonate L-PFPeS 349.00 79.90 6.754 

 

3.2.6 Limit of detection (LOD) and Limit of quantification (LOQ) 

The LOD and LOQ are shown in Table 3.5, and accordingly, the LOD and LOQ values ranged from 0.005-
0.395 and 0.016-1.197 ng/L respectively. 
 

Table 3.5: LOD and LOQ values (ng/L) of the targeted standards 
COMPOUND LOD LOQ 

L-PFPeS 0.046 0.139 
PFOA 0.005 0.016 
PFDA 0.016 0.048 
PFBA 0.012 0.036 

L-PFOS 0.395 1.19 
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COMPOUND LOD LOQ 
L-PFHpS 0.020 0.063 
L-PFDS 0.008 0.026 
L-PFBS 0.023 0.070 

L-PFdUA 0.015 0.047 
PFTrDA 0.056 0.171 
PFTeDA 0.286 0.868 
PFPeA 0.067 0.204 
PFNA 0.025 0.076 

PFODA 0.034 0.106 
L-PFHxDA 0.178 0.541 

PFHxA 0.015 0.046 
PFHpA 0.039 0.120 
PFDoA 0.097 0.290 
PFHxS 0.202 0.613 

 

3.3 LC-MS/MS METHOD DEVELOPMENT AND OPTIMISATION FOR LOW 
CONCENTRATION SAMPLES  

Analysis of low PFASs concentration samples with LC-MS can present challenges related to signal-to-noise 
ratios and detection limits, and requires specific considerations to maximize sensitivity and accuracy. Analysis 
of PFASs in different environmental matrices requires developing a suitable analytical method due to their 
occurrence at lower concentrations. The method should be optimized in a sense that LC and MS/MS conditions 
meet the highest sensitivity and throughput for the analysis of analytes of interest. For the purpose of this 
project, LC-MS/MS (LCMS-8030, Shimadzu), was optimized and used. The key elements involved in the 
optimisation of the LC-MS method for low concentration samples are detailed in the sub-sections below. 

3.3.1 Selection of PFAS Standards for Calibration 

Table 3.6 shows the list of PFAS standards used for LC-MS method development for low concentrations. Fifty 
milligram per litre (50 mg/L (in methanol) individual native standards (1.2 mL) of PFUdA, PFHxA, PFPeA, 4:2 
FTS, 8:2 FTS, PFHpA, PFNA, PFDoA, PFODA, PFHxDA, L-PFBS, L-PFHxS, L-PFOS, PFHpS, PFOA,  
L-PFDS, FHEA, 6:2 FTS, FOET, FHET and PFBA and isotopically labelled internal standards (MPFDA_13C2, 
MPFHxA_13C2 and M2PFOA) and surrogate standards (MPFNA, MPFUdA, and MPFHxS) standard were 
purchased from Wellington Laboratories (Guelph, Ontario, Canada). LC-MS Ultrapure Methanol and 
Acetonitrile were purchased from Aqualytic (Pty) Ltd, and ammonium acetate and ammonium formate were 
purchased from Sigma Aldrich Ltd. LC grade water was purchased from Labchem (Pty) Ltd.). Calibration 
curves were created from diluting a stock solution of 50 mg/L of individual PFASs in methanol. A 10-point 
calibration curve was constructed with ranges from 1-2000 ng/L for all PFASs analytes. Calibration curve for 
PFUdA, PFDoA, PFHxA, PFNA, PFPeA, PFBA, MPFNA, 4:2 FTS, 6:2 FTS, 8:2 FTS, FHET, FHEA and FOET 
ranged from 1-1000 ng/L, while that of L-PFBS, L-PFOS, PFOA, L-PFHpS, and L-PFHxS ranged from 100-
1000 ng/L and that of MPFUdA, MPFHxS, L-PFDS, PFODA and PFHxDA ranged from 100-2000 ng/L. The 
Limit of Detection (LOD) was set as instrument detection limit, and this was different for each compound. 
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Table 3.6: PFAS standards for LC-MS method development for low concentrations 
Name of compound Acronym 

Sodium 1H,1H,2H,2H-perfluorohexane sulfonate(4:2) 4:2 FTS 
Sodium 1H,1H,2H,2H-perfluorodecane sulfonate(8:2) 8:2 FTS 
Sodium 1H,1H,2H,2H-perfluorooctane sulfonate(6:2) 6:2 FTS 
2-Perfluorohexyl ethanoic acid (6:2) FHEA 
2-Perfluorooctyl ethanol (8:2) FOET 
2-Perfluorohexyl ethanol (6:2) FHET 
Sodium perfluoro-1-hexanesulfonate L-PFHxS 
Perfluoro-n-dodecanoic acid PFDoA 
Perfluoro-n-heptanoic acid PFHpA 
Perfluoro-n-hexanoic acid PFHxA 
Perfluoro-n-hexadecanoic acid PFHxDA 
Perfluoro-n-nonanoic acid PFNA 
Perfluoro-n-octadecanoic acid PFODA 
Perfluoro-n-pentanoic acid PFPeA 
Perfluoro-n-undecanoic acid PFUdA 
Potassium perfluoro-1-butanesulfonate L-PFBS 
Sodium perfluoro-1-decanesulfonate L-PFDS 
Sodium perfluoro-1-heptanesulfonate L-PFHpS 
Sodium perfluoro-1-octanesulfonate L-PFOS 
Perfluoro-n-butanoic acid PFBA 
Perfluoro-n-octanoic acid PFOA 

Isotopically labelled internal standards 
perfluoro-n-[1,2-13C2] octanoic acid  M2PFOA 

MPFHxA_13C2 MPFHxA_13C2 
MPFDA_13C2 MPFDA_13C2 

Surrogate standards 
perfluoro-n-[1,2,3,4, 5-13C5] nonanoic acid MPFNA 
perfluoro-n-[1,2-13C2]undecanoic Acid MPFUdA 
sodium perfluoro-1-hexane[18O2]sulfonate MPFHxS 

 

3.3.2 Optimization of Chromatographic and Mass Spectrometry Conditions 

Multiple Reaction Monitoring (MRM) transitions were optimized using Flow Injection Analysis (FIA) for all 
compounds, bypassing the analytical column. High concentration standards of 1000 ng/L containing a mixture 
of all the PFASs compounds was used for optimization of MRM conditions. The mixture was then analysed 
under optimized LC-MS/MS conditions to obtain retention times of each method analyte. Due to the high 
variations in the Kow values of the standards, the separation of all the standards using a single method was 
extremely poor. Therefore, it was necessary to develop four different methods that can ensure good separation 
of the standards, and these are shown in Table 3.7.  

 Method A consisted of the following analystes: MPFNA, PFUdA, PFHxA, PFPeA, 4:2 FTS, 8:2 FTS, 
PFHpA, PFNA, PFDoA, PFODA and PFHxDA  

 Method B comprised MPFUdA, MPFHxS, L-PFBS, L-PFHxS, L-PFOS, PFHpS, PFOA, and L-PFDS.  
 Method C included FHEA, 6:2 FTS, FOET and FHET, and  
 Method D catered for PFBA.  
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Table 3.7: Instrument and optimization conditions for targeted analysis of PFASs 
LC-MS/MS instrument Shimadzu, LCMS-8030 
Analytical column Kinetex 2.6 um Polar C18 100 A LC Column 100 x 2.1 mm, Unit 
Column temperature 40°C 
Injection volume 10.00 μL 
Flow rate 0.3000 mL/min 
____________________________________________________________________________________ 

Method A 
Mobile Phases A: 10 mM Ammonium Formate  

B: 20:80 Methanol: Acetonitrile 
                                                      Gradient Conditions 

Time (min) Mobile Phase B (%) 
1 45 
3 50 
4 60 

4.5 70 
5 65 

5.5 68 
6 80 

7.5 70 
10 0 
16 Stop 

____________________________________________________________________________________ 
Method B 

Mobile Phases A: 10 mM Ammonium Formate  
B: 50:50 Methanol: Acetonitrile 

                                                Gradient conditions 
Time (min) Mobile Phase B (%) 

1 
 

4 20 
6.5 55 
7 75 

7.2 95 
9 0 

10 20 
12 Stop 

___________________________________________________________________________________ 
Method C 

Mobile Phases A: 20 mM Ammonium Acetate  
B: 95:5 Methanol: Water 

                                                  Gradient Conditions 
Time (Min) Mobile Phase B (%) 

1 20 
2 75 
3 85 
4 70 
6 95 

7.5 100 
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10 90 
16 Stop  

____________________________________________________________________________________ 
Method D 

Mobile Phases A: 10 mM Ammonium Formate  
B: 20:80 Methanol: Acetonitrile 

                                                      Gradient Conditions 
Time (Min) Mobile Phase B (%) 

1 20 
2 55 

3.5 70 
4 0 
5 Stop 

 

3.3.3 Chromatogram of standards 

Figures 3.23 to 3.26, corresponding to methods A to D, show the chromatograms of overlaid peaks of mixed 
PFASs standard solutions. 
 

 
 

Figure 3.23: Chromatogram of mixed standards (method A). 
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Figure 3.24: Chromatogram of mixed standards (method B)

Figure 3.25: Chromatogram of mixed standards (method C)

Figure 3.26: Chromatogram of PFBA standard (method D)
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3.3.4 Instrument method development and optimization

The calibration curves and total ion chromatography (TIC) of the internal standards and surrogate are shown 
in Figures 3.27 to 3.31; and the target compounds in Figures 3.32 to 3.51. All isomers calibration curves 
showed linearity, based on correlation coefficients (R) and correlation of determination (R2) that were greater 
than 0.99 with good precision of the internal standard.

                                                            
Figure 3.27: Perfluoro-n-[1,2-13C2] hexanoic acid (MPFHxA_13C2) calibration curve (left) and TIC (right)

                         

Figure 3.28: Perfluoro-n-[1,2-13C2] decanoic acid (MPFDA_13C2) calibration curve (left) and TIC (right)
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Figure 3.29: Perfluoro-n-[1,2-13C2] octanoic acid M2PFOA calibration curve (left) and TIC (right)

Figure 3.30: Perfluoro-n-nonanesulfonic acid (PFNA) with TIC (left) and calibration (right).

                                                                                                                  
Figure 3.31: Total ion chromatogram (left) and calibration (right) for MPFUdA.
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Figure 3.32: Total ion chromatogram (left) and calibration (right) for PFODA

                                 

Figure 3.33: Total ion chromatogram (left) and calibration (right) for PFHpA. 

Figure 3.34: Total ion chromatogram (left) and calibration (right) for PFHxA. 
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Figure 3.35: Total ion chromatogram (left) and calibration (right) for PFHxDA

Figure 3.36: Total ion chromatogram (left) and calibration (right) for PFNA.

Figure 3.37: Total ion chromatogram (left) and calibration (right) for PFPeA
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Figure 3.38: Total ion chromatogram (left) and calibration (right) for 4:2 FTS. 

Figure 3.39: Total ion chromatogram (left) and calibration (right) for 8:2 FTS. 

       

Figure 3.40: Total ion chromatogram (left) and calibration (right) for PFHxS. 
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Figure 3.41: Total ion chromatogram (left) and calibration (right) for L-PFBS. 

Figure 3.42: Total ion chromatogram (left) and calibration (right) for L-PFHpS. 

          

Figure 3.43: Total ion chromatogram (left) and calibration (right) for L-PFDS. 
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Figure 3.44: Total ion chromatogram (left) and calibration (right) for L-PFOS. 

         
                                                                                                            

Figure 3.45: Total ion chromatogram (left) and calibration (right) for PFOA. 

Figure 3.46: Total ion chromatogram (left) and calibration (right) for PFBA. 
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Figure 3.47: Total ion chromatogram (left) and calibration (right) for PFDoA. 

                                   

Figure 3.48: Total ion chromatogram (left) and calibration (right) for FHEA. 

Figure 3.49: Total ion chromatogram (left) and calibration (right) for 6:2 FTS. 
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Figure 3.50: Total ion chromatogram (left) and calibration (right) for FOET. 

Figure 3.51: Total ion chromatogram (left) and calibration (right) for FHET. 

3.3.5 Multiple reaction monitoring (MRM)

During the MRM selection, a full scan of ions was done. Ions corresponding to the compounds of interest were 
targeted followed by the fragmentation of the targeted ions producing a range of daughter ions. The ions 
corresponding to the compounds of interest were then selected and isolated from other ions within the mass 
spectrometer to quantitate the method. The multiple reaction monitoring results are shown in Table 3.8. 
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Table 3.8: MRM of precursor and product ions 
Compounds Abbreviation Precursor 

ion (m/z) 
Product 
ion (m/z) 

Retention  
time (min) 

Perfluoro-n-[1,2,3,4,5-13C5] nonanoic 
acid MPFNA 467.90 423.00 

4.4 

Perfluoroundecanoic acid_13C2 MPFUdA 565.00 520.00 8.10 
Sodium perfluoro-1-
hexane[18O2]sulfonate 

MPFHxS 403.00 83.95 6.60 

Perfluoro-n-undecanoic acid PFUdA 563.00 518.95 5.72 
Perfluoro-n-hexanoic acid PFHxA 313.00 269.00 3.43 
Perfluoro-n-pentanoic acid PFPeA 263.00 219.05 3.03 
Sodium 1H,1H,2H,2H-perfluorohexane 
Sulfonate 

4:2 FTS 327.00 307.05 3.33 

Sodium 1H,1H,2H,2H-perfluorodecane 
Sulfonate 

8:2 FTS 526.90 80.95 4.70 

Perfluoro-n-heptanoic acid PFHpA 363.00 319.00 3.72 
Perfluoro-n-nonanoic acid PFNA 463.00 418.95 4.40 
Potassium perfluoro-1-butanesulfonate L-PFBS 299.00 80.10 5.24 
Sodium perfluoro-1-hexanesulfonate L-PFHxS 399.00 79.95 6.54 
Sodium perfluoro-1-octanesulfonate L-PFOS 499.00 80.15 7.39 
Sodium perfluoro-1-heptanesulfonate PFHpS 449.00 80.10 6.98 

 
 

Perfluoro-n-octanoic acid PFOA 413.00 368.95 6.73 
 

 
Perfluoro-n-dodecanoic acid PFDoA 613.00 568.90 6.46  
Perfluoro-n-octadecanoic acid PFODA 913.00 868.90 9.25 

 
 

Sodium perfluoro-1-decanesulfonate L-PFDS 599.00 80.20 8.34 
 

 
Perfluoro-n-hexadecanoic acid PFHxDA 813.00 768.95 8.13  
2-Perfluorohexyl ethanoic acid (6:2) FHEA 376.90 292.90 5.05 

 
 

Sodium 1H,1H,2H,2H-perfluorooctane 
Sulfonate 

6:2 FTS 426.90 426.90 5.23   

8:2 fluorotelomer alcohol FOET 463.00 216.90 14.953   
6:2 fluorotelomer alcohol FHET 363.10 280.95 10.288   
Perfluoro-n-butanoic acid PFBA 213.00 169.05 4.328   
Perfluoro-n-[1,2-13C2] hexanoic acid MPFHxA_13C2 315.00 269.95 3.36 5.56 4.36 
Perfluoro-n-[1,2-13C2] decanoic acid MPFDA_13C2 514.90 469.95 4.99 6.70 5.14 
Perfluoro-n-1 2-13C2 octanoic acid M2PFOA 414.80 369.90 3.99 7.62 5.18 

 

3.3.6 Limit of detection (LOD) and Limit of quantification (LOQ) 

The LOD and LOQ are shown in Table 3.9 values range from 0.0033-0.29 and 0.018-0.67 ng/L, respectively. 
 

Table 3.9: LOD and LOQ values (ng/L) of the targeted standards 
Analytes LOD (ng/L) LOQ (ng/L) 

MPFNA 0.040 0.12 
MPFUdA 0.080 0.27 
MPFHxS 0.039 0.12 
PFUdA 0.0059 0.018 
PFHxA 0.0033 0.010 
PFPeA 0.034 0.10 
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Analytes LOD (ng/L) LOQ (ng/L) 
4:2 FTS 0.032 0.10 
8:2 FTS 0.033 0.099 
PFHpA 0.017 0.051 
PFNA 0.016 0.050 

L-PFBS 0.029 0.089 
L-PFHxS 0.010 0.030 
L-PFOS 0.034 0.10 
PFHpS 0.046 0.14 
PFOA 0.025 0.077 
PFDoA 0.22 0.67 
PFODA 0.21 0.65 
L-PFDS 0.032 0.097 
PFHxDA 0.62 1.9 

FHEA 0.29 0.87 
6:2 FTS 0.083 0.25 
FOET 0.037 0.11 
FHET 0.0089 0.027 
PFBA 0.013 0.040 

 

3.4 METHOD VALIDATION 

3.4.1 Overview 

Spiked water samples were used for method validation to assess the performance of the LC-MS method, 
evaluate its accuracy, and determine its limits of detection and quantification. This validation step helps confirm 
that the method can produce reliable results when applied to real environmental samples. This is because 
environmental samples can be complex, with various interfering compounds present. As such, when 
developing an LC-MS method for environmental analysis, it's crucial to assess and mitigate matrix effects. In 
this study, water samples were spiked with surrogate standards of interest (see Table 3.1 and 3.4) at known 
concentrations and then analysed using the developed methods to observe how matrix components affect 
analyte detection and quantification. 

3.4.2 Water Samples Collection 

Water samples were collected from all the nine provinces in South Africa in clean high-density polyethylene 
bottles from various water sources, wastewater treatment plant, rivers and tap water. After collection, the 
samples were kept in ice and transported to the Environmental-Analytical Research in Chemistry laboratory at 
Tshwane University of Technology, Pretoria.  

3.4.3 Water Samples Extraction 

Prior to extraction, 1.2 mL of spiking surrogate standards was added to 200 mL of both water and wastewater 
samples, including blanks, to make a resulting concentration of 200 ng/L, before passing the solutions through 
SPE. For wastewater, samples were first filtered using a 0.45 μm glass fibre filter on a vacuum filtration unit 
before SPE extraction in order to remove suspended matter which tends to block the cartridges if not removed. 
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The SPE SupelcoTM Envi18 cartridges purchased from SIGMA Aldrich Ltd were used for extraction of PFASs.  
Cartridges were first conditioned by 5 mL of LC-grade methanol followed by 5 mL of ultra-pure water. Without 
allowing the cartridges to dry, samples were passed through the cartridges under a vacuum flow rate of 10-15 
mL/min. Thereafter, the sample bottles were rinsed with 7 mL of ultra-pure water and the rinse water of each 
sample was passed through the cartridge.  The cartridges were then allowed to dry under vacuum for an 1 h.  
 
During elution step, sample bottles were rinsed using 10.00 mL of methanol and analytes eluted from the 
cartridge by pulling the 10.00 mL of methanol through the sample transfer tubes and cartridges. The solvent 
was allowed to exit the cartridge under the force of gravity.  The solvent extract was then concentrated under 
the gentle steam of nitrogen with an aid of sonication at temperatures between 60-70°C.  One millimetre of 
methanol was then added to the dried sample extract and vortexed for 1 min. The reconstituted extract was 
then transferred to a 2 mL centrifuge tubes, and the extract centrifuged for 5 min. A 950 μL of the extract and 
a 50.00 μL of 1000 ng/L of internal standard were added to an autosampler vial. A 10.00 μL of the samples 
was then injected to the LC-MS/MS. 

3.4.4 Quantification of PFAs Concentrations using Targeted Analysis 

The chromatographic conditions developed were used to calculate the final concentrations of PFASs in the 

water samples using the following formula:  

Anat/AIS x 1/RRT   x  MIS/SS            (Equation 3.1) 
 
where: Anat = area of surrogate standard; Ais = area of internal standard; MIS = mass of internal standard (ng); 
RRF = slope or gradient in the calibration curves; SS = sample size (mL). 
 
The RRF is obtained when the ratio of response for the unit amount of the contaminant of interest to the 
response of the IS and is expressed in equation below: 
                                                   

RRF=  ANAT/AIS   ×  CIS/CNAT               (Equation 3.2) 
 
where: ANAT is peak area of the native (13C2) compound; AIS is the peak area of the internal standard in the 
standard. CNAT is the concentration of the native standard; CIS is the internal standard concentration. 

3.4.5 Identification of Emerging and Legacy PFASs using Non-targeted Analysis 

For non-target identification of PFASs, the MS acquisition was performed and operated in a full-scan TOF-MS 
using Information Dependent Acquisition (IDA). Figure 3.52  depicts the general workflow employed in 
identifying PFASs compounds in water samples. The IDA method consisted of the survey scan type (TOF-MS) 
that was a full-scan mass spectrum between m/z 100-950 and the information dependent acquisition type 
(MS/MS), a product ion scan in which the system selects ions automatically without any ion predefined by the 
user.  
 
Both the full-scan TOF-MS and MS/MS mode through IDA were operated within a single-run analysis. The 
workflow used in this study involved suspect screening and considered evidence reported in the literature to 
identify legacy and emerging PFASs in different water samples, and such evidence was based on the actual 

and retention times.  
 
As an example, Figure 3.53 shows the XIC, MS and MS/MS chromatograms of PFOA which showed 100% 
library score. 
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Figure 3.52: General schematic workflow for non-target PFAS by TOF-MS.

Figure 3.53: PFOA, measured in A 1000 ng/L standard with a library score of 100.0%. (a) Shows an 
extracted ion chromatography at RT 12.466 min. (b) Shows m/z = 412.9668 for [M-H]- and 

monoisotopic mass of 413.9695 for [M-H+1]-. (c) Shows fragments observed with m/z 118.9935, 
168.9901, 218.9671 and 368.9766.

Full scan

Prospective PFASs feature 
identification (mass defect filtering; 

diagnostic fragments)

Molecular formular 
assignment

Structural 
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Standard comparison
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3.4.6 Quality assurance and method validation 

Field blanks were prepared during sample collection following the same procedure used for environmental 
samples to ensure there was no contamination during sample preparation. During the analyses of samples, 
solvent and laboratory blanks were prepared and analysed in between samples after every tenth sample to 
avoid carry over and a 100 ng/L standard was analysed after every 20th sample in the batch. The percentage 
relative standard deviation (%RSD) was then calculated to determine the precision of the method. The water 
and blanks samples were spiked with the surrogate standard and the recoveries of each sample calculated. 
Samples from each matrix groups, including procedural blanks, were used for validation of the optimized 
method. Each sample matrix, spiked and unspiked, were prepared in quadruple and samples were spiked with 
analytes (low, high and medium concentrations) of interest within-day to check for recoveries and relative 
standard deviation (%RSD). A total of 12 procedural blanks were treated in the same manner as the samples. 
Analyte recoveries were determined from each matrix groups. Recoveries for spiked blanks ranged from  
67.5-116.1%. Additionally, Certified Reference Material (European Commission – Joint Centre Institute for 
Reference Materials and measurements Retieseweg 111, B-2440 Geel (Belgium) (CRM IRMM-428) was used 
for further validation of the extraction method. Before use, the CRM was re-homogenised by using 
ultrasonication for 10 min under room temperature. A 100 mL aliquo was subsampled immediately after 
shaking the CRM. The extraction procedure used for sample extraction described in Section in 3.4.3 was 
followed. Shown in Table 3.10 are the mean percentage recoveries of PFASs in procedural blanks at low, 
medium and high spikes.  
 

Table 3.10: Percentage recoveries of PFASs in procedural blanks 
Procedural blanks (n = 4) 

Target 
analytes 

Low spike (5 ng/L)  Medium spike (800 ng/L) High spike (1600 ng/L) 
Mean%Rec. %RSD Mean %Rec. %RSD Mean %Rec. %RSD 

PFNA 106.5 5.94 83.6 15.7 116.1 2.3 
PFudA 82.6 3.57 99.2 24.4 71.7 2.9 
8:2 FTS 103.0 0.46 101.0 2.0 86.4 1.6 
PFHpA 113.8 14.99 94.2 14.2 98.1 9.7 
4:2 FTS 97.6 20.42 89.2 1.9 85.9 14.4 
PFDoA 97.3 17.81 94.2 2.5 95.6 11.9 
PFHxA 93.2 21.37 90.9 23.0 95.8 2.16 
PFPeA 73.9 13.27 83.4 6.0 86.4 5.6 
PFODA 115.4 1.75 73.5 6.8 97.2 0.0 
PFBA 104.8 9.74 102.0 13.8 81.9 1.7 
PFHxDA 77.5 4.74 77.0 6.6 78.7 0.5 
FHET 124.7 3.52 97. 16.5 88.6 2.5 
FOET 126.1 1.52 104.3 6.4 94.8 7.4 
6:2 FTS 102.7 23.50 110.5 1.0 89.9 7.9 
FHEA 116.6 2.75 76.3 3.3 80.1 0.3 
PFDS 109.7 22.03 88.7 30.3 86.2 17.1 
PFBS 67.5 14.60 103.5 2.8 80.7 4.1 
PFHxS 120.5 3.60 97.2 13.2 100.9 6.1 
PFOS 107.1 23.08 77.2 3.2 98.3 6.2 
PFHps 75.7 3.79 94.5 11.4 90.7 12.4 
PFOA 85.0 3.09 105.1 16.1 92.3 1.9 
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The mean percentage recoveries ranged from 67.5-120.5, 76.3-110.5 and 71.7-116.1 at low, medium and high 
spiking concentrations respectively. These ranges are within the acceptable range of 50-150 percentage 
recovery. The percentage relative standard deviations are, in most instances below the acceptable value of 
20% except the values for 6:2 FTS (23.50), PFDS (22.03) and PFOS (23.08) all at low spiking concentrations; 
PFDS (30.3) and PFHxA (23.0) at medium concentrations. 
 
The recoveries observed for drinking, surface and borehole water samples ranged from 69.0-117.1% with 
%RSD <30% (Table 3.11).  For surface water samples, PFDoA exhibited the lowest analyte recoveries of 
51.4%. The observed low recovery of PFDoA may have originated from adsorption of PFDoA on solid surfaces 
since a number of the surface water had some suspended solids. Analyte recoveries observed for borehole 
samples ranged from 70.0-144.0%. The recoveries of PFASs in influent and effluent of drinking water treatment 
plant (DWTPs) and these ranged from 59.1-130.1% (Table 3.12).  
 
Table 3.13 shows the recoveries of PFASs from wastewater treatment plants (WWTPs) samples. As can be 
seen in Table 3.13, the recoveries ranged within the acceptable range of 50-150%.  However, lower recoveries 
of 43.3% and 48.8% in the effluent and influent respectively at high spikes were observed for PFDoA. Percent 

d influent samples at %RSD of 32.5% and 
37.0% respectively, both at low spike. With the exception of PFDoA, high recoveries of other PFASs from the 
water samples were observed and these high recoveries validated the extraction method used in the present 
study. However, certified reference material (CRM) has been order and this will be used for further validation 
of the extraction method. 
 
Table 3.14 shows the recoveries of PFASs compounds in the certified reference water samples. The 
percentage recoveries and uncertainty range from 78-112% and 0.7-1.7 ng/L respectively. The observed 
instrument concentrations are generally close to or slightly higher than the certified reference values. The high 
recoveries obtained with the spiking methods as well as the CRM validate the method used in quantifying 
PFASs compounds in the water samples. 



  

______________________________________________________________________________________ 
31 

Table 3.11: Percentage recoveries of spiked PFASs standards from drinking, surface and borehole water samples 
Target 
analytes 

Drinking water (n =4)                              Surface water (n=4)                                  Borehole (n=4) 

Low spike (5 
ng/L) 

Medium spike (800 
ng/L) 

High spike (1600 
ng/L) 

Low spike (5 
ng/L) 

Medium spike 
(800 ng/L) 

High spike (1600 
ng/L) 

Low spike (5 
ng/L) 

Medium spike High spike 

Mean 
%Rec
. 

%RS
D 

Mean 
%Rec. 

%RSD Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

Mean 
%Rec. 

%RS
D 

PFNA 76.0 3.3 100.3 10.5 109.6 7.3 84.0 5.5 85.1 8.0 72.0 3.3 93.9 10.9 100.5 9.2 89.0 3.2 

PFudA 102.7 15.0 98.8 7.4 104.3 10.7 85.2 20.7 57.1 0.9 77.8 2.0 111.3 16.2 98.6 1.8 83.7 0.1 

8:2 FTS 80.9 16.8 98.6 2.2 90.5 23.9 91.0 18.3 87.3 3.3 84.1 1.2 109.1 1.2 101.1 2.1 101.1 1.0 

PFHpA 100.5 16.8 68.8 1.4 91.2 6.4 85.5 13.1 77.9 1.2 81.6 2.2 96.2 4.2 83.0 11.8 100.0 3.2 

4:2 FTS 117.1 8.4 82.4 4.2 83.6 2.4 113.4 7.5 83.4 2.9 88.1 8.3 110.1 7.9 105.6 2.6 92.0 7.3 

PFDoA 104.1 28.5 87.0 18.8 92.0 9.4 51.4 11.8 72.5 2.0 96.7 7.4 135.7 5.8 85.1 1.3 87.6 6.1 

PFHxA 101.1 1.4 106.4 5.3 89.0 5.0 86.7 14.4 91.8 15.0 99.5 6.2 123.0 6.0 91.1 12.7 102.7 2.1 

PFPeA 108.2 5.2 89.1 3.3 74.6 0.4 98.8 1.1 74.7 10.3 88.8 19.1 123.5 5.3 90.4 17.3 91.1 6.3 

PFODA 69.0 0.5 85.9 9.1 83.4 16.7 128.6 6.3 99.9 10.5 83.1 16.5 106.6 0.6 94.4 12.4 98.5 0.4 

PFBA 101.6 18.7 88.5 8.7 71.0 1.5 98.0 22.0 102.2 7.3 83.8 2.0 80.2 26.0 105.2 4.0 70.0 2.1 

PFHxDA 102.5 13.6 77.1 6.7 69.6 1.2 97.6 23.3 77.4 1.7 83.5 23.3 82.5 27.1 104.9 22.7 70.2 1.3 

FHET 105.1 9.8 98.7 10.7 86.4 1.0 108.1 16.5 100.8 9.4 75.8 4.2 88.0 25.9 108.8 12.9 94.3 7.3 

FOET 106.0 12.4 95.4 13.7 90.1 17.4 116.4 7.4 80.6 0.6 86.0 1.7 78.0 3.5 99.6 6.4 96.3 0.5 

6:2 FTS 70.9 9.6 85.9 6.3 69.8 0.7 94.4 3.1 83.9 8.7 92.3 6.4 117.5 6.1 85.4 9.2 93.6 10.6 

FHEA 75.2 26.6 76.3 1.4 88.4 12.9 114.3 4.1 90.7 7.5 96.5 13.6 144.0 6.8 119.6 2.6 99.7 1.1 

PFDS 106.2 6.4 80.8 6.0 80.2 20.3 103.1 2.8 83.2 8.5 98.0 16.2 84.8 3.2 93.3 0.2 83.1 2.1 

PFBS 84.1 5.6 108.9 7.3 90.1 4.1 119.4 4.8 92.9 3.5 89.5 15.1 106.5 6.6 89.1 10.1 80.7 3.3 

PFHxS 90.3 17.1 88.2 7.4 78.0 8.2 116.5 16.3 95.6 9.9 89.7 9.1 106.3 10.2 88.5 12.0 85.4 6.4 

PFOS 100.9 5.5 99.4 5.3 80.3 2.4 74.8 17.8 82.4 4.9 91.9 0.7 93.4 8.2 105.1 6.5 100.7 0.4 

PFHps 109.7 1.6 84.7 11.6 72.7 15.1 103.6 24.5 96.4 1.1 98.8 2.8 100.6 1.8 103.4 8.6 97.2 4.1 

PFOA 91.8 8.9 93.1 17.8 92.4 6.9 73.5 3.7 93.5 3.3 88.3 23.8 106.7 24.6 95.2 4.9 86.4 4.5 

 

 

  



  

______________________________________________________________________________________ 
32 

Table 3.12: Percentage recoveries of spiked PFASs standards from drinking water influent and effluent samples 
Target 
analytes 

DWTP-Influent DWTP-Effluent 

Low spike  Medium spike High spike Low spike  Medium spike High spike 

Mean %Rec. %RSD Mean 
 %Rec. 

%RSD Mean %Rec. %RSD Mean %Rec. %RSD Mean %Rec. %RSD Mean %Rec. %RSD 

PFNA 124.4 19.7 97.5 17.7 108.7 6.8 66.5 9.9 92.5 12.3 102.8 7.8 

PFudA 92.9 10.7 72.5 11.7 60.1 8.6 110.7 3.1 105.9 0.3 93.2 2.1 

8:2 FTS 79.8 13.1 93.2 3.6 94.5 7.4 78.6 33.5 103.1 2.6 107.6 3.3 

PFHpA 105.3 2.4 67.8 0.7 78.7 11.8 128.6 12.2 70.1 3.5 85.0 7.1 

4:2 FTS 124.7 1.1 108.7 2.9 74.0 2.1 111.1 15.9 90.8 5.4 84.9 13.0 

PFDoA 130.1 15.1 88.4 4.6 101.2 15.4 93.9 0.1 113.3 3.6 103.2 11.2 

PFHxA 103.2 26.6 74.9 12.9 104.4 8.1 106.4 6.2 107.9 0.1 102.9 8.6 

PFPeA 63.5 26.8 78.8 1.7 75.3 6.6 70.3 20.1 76.9 4.8 94.6 10.7 

PFODA 77.4 5.5 70.3 17.5 79.2 7.6 64.3 2.1 83.5 0.1 76.8 10.7 

PFBA 93.6 19.3 84.9 20.2 96.9 5.2 104.8 3.5 80.2 4.2 84.0 12.1 

PFHxDA 73.7 3.3 88.0 6.4 122.8 3.9 119.1 8.3 91.5 6.4 85.1 10.8 

FHET 104.2 25.7 103.9 3.7 88.0 4.2 88.7 27.6 74.8 15.2 97.2 11.1 

FOET 127.8 22.1 95.0 7.3 76.3 11.4 112.1 3.5 91.2 1.8 80.6 0.0 

6:2 FTS 110.9 2.4 75.5 2.6 73.5 1.7 98.5 19.4 93.6 1.1 80.8 3.7 

FHEA 125.0 1.8 108.5 6.7 91.6 24.9 112.8 7.2 83.6 8.0 86.2 12.3 

PFDS 78.8 24.7 66.8 3.9 89.1 28.4 101.9 13.8 68.0 0.4 88.2 14.4 

PFBS 115.2 6.7 92.4 9.2 105.5 4.3 94.2 29.9 90.8 3.1 83.9 2.1 

PFHxS 116.2 6.3 107.5 5.4 91.4 4.0 110.2 10.6 89.5 14.4 89.1 9.0 

PFOS 124.7 5.1 67.8 12.9 93.5 4.3 97.4 27.8 77.4 0.1 91.5 22.8 

PFHps 101.0 16.9 85.9 2.6 97.5 3.9 92.5 30.4 91.2 3.8 93.8 25.2 

PFOA 108.4 2.8 93.4 10.6 84.0 7.8 59.3 15.9 94.6 5.6 83.5 14.9 
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Table 3.13: Percentage recoveries of spiked PFASs standards from wastewater influent and effluent samples 
Target 

analytes 
WWTP-Effluent                                                   WWTP- influent 

Low spike (5 ng/L) Medium spike (800 ng/L) High spike (1600 ng/L) Low spike (5 ng/L) Medium spike (800 
ng/L) 

High spike (1600 ng/L) 
 

Mean 
 %Rec. 

%RSD Mean  
%Rec. 

%RSD Mean  
%Rec. 

%RSD Mean 
%Rec 

%RSD Mean  
%Rec 

%RSD Mean  
%Rec. 

%RSD 

PFNA 94.5 25.5 95.6 16.9 84.6 0.1 100.4 1.3 107.6 13.0 78.0 4.1 

PFudA 71.5 20.1 96.0 2.1 92.2 20.8 93.0 4.1 71.3 2.7 50.4 11.2 

8:2 FTS 84.4 20.2 80.2 13.7 83.9 3.3 80.6 29.7 107.7 1.0 108.3 2.5 

PFHpA 71.8 2.5 80.1 19.2 89.1 21.4 116.1 20.0 92.3 19.3 82.6 19.6 

4:2 FTS 123.0 4.5 109.5 3.0 69.4 5.5 100.5 5.1 95.9 3.9 93.5 25.9 

PFDoA 95.7 23.1 100.1 15.3 43.3 2.5 86.0 8.7 79.1 5.0 48.8 24.9 

PFHxA 99.5 32.5 104.4 5.0 100.0 1.4 110.4 13.8 111.5 3.6 98.8 5.2 

PFPeA 113.1 19.8 99.2 4.9 93.2 11.6 128.6 9.8 95.0 4.3 77.9 8.3 

PFODA 58.5 4.3 81.3 25.0 78.9 8.9 84.4 37.0 75.4 0.0 76.8 14.9 

PFBA 72.2 22.1 87.8 3.8 83.0 2.9 111.5 5.2 93.3 28.9 86.6 1.5 

PFHxDA 109.7 9.0 69.9 9.3 79.1 19.4 106.0 14.6 76.3 0.7 73.4 14.9 

FHET 95.2 21.9 95.3 5.5 87.7 7.2 83.4 19.0 101.0 0.1 96.8 19.6 

FOET 105.0 1.8 90.9 5.5 71.0 16.3 83.4 19.0 101.0 0.1 96.8 19.6 

6:2 FTS 98.9 2.4 95.6 4.8 96.1 14.1 87.1 3.4 104.2 12.4 104.7 10.0 

FHEA 87.2 21.4 87.0 2.6 93.8 13.5 109.9 25.7 98.3 2.0 82.5 13.0 

PFDS 78.0 4.6 86.4 12.0 81.3 7.1 87.6 13.1 110.7 8.4 101.5 7.4 

PFBS 123.6 2.3 94.3 15.0 80.9 8.7 83.7 20.0 78.0 3.9 107.6 6.9 

PFHxS 81.8 18.3 94.1 10.2 98.6 19.4 96.3 1.9 100.8 3.9 101.6 0.4 

PFOS 93.3 12.4 79.7 9.9 94.7 0.4 82.1 10.1 76.8 11.7 80.2 4.7 

PFHps 96.4 10.8 91.4 18.0 99.0 5.1 90.5 5.8 95.8 10.2 80.6 0.9 

PFOA 111.8 3.2 99.6 5.8 102.0 2.2 79.5 20.9 99.5 12.5 84.4 2.6 
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Table 3.14: Certified reference material recoveries (CRM IRMM-428)  

Certified value 
concentration 
(ng/L) 

Uncertainty 
concentration  (Certified 
value) (ng/L) 

Instrument 
concentration 
(ng/L) 

%RSD %Recovery 

PFBS 5.5 1.4       5.4±1.1   19.5     98 
PFHxS 3.6 1.0       4.0±0.7   17.6     112 
PFOS 9.6 1.7      11.6±0.7    6.0    121 
PFPeA 4.0 1.0       3.1±0.5   15.5     78 
PFHxA 7.4 1.0       8.2±1.0   12.5     110 
PFHpA 3.7 0.7       3.5±0.4   10.5     97 
PFNA 3.9 1.4       4.2±0.5   12.0     109 

 
 
 
 
 
  



  

______________________________________________________________________________________ 
35 

CHAPTER 4: CONCLUSIONS  

4.1 CONCLUSIONS 

All isomers calibration curves showed linearity, based on correlation coefficients (r) and correlation of 
determination (r2) that were greater than 0.99 with good precision of the internal standard. The chromatograms 
were well separated. The percentage recoveries of the labelled surrogate standards were within the acceptable 
range of 50-150 ng/L. Calibration curves for PFUdA, PFDoA, PFHxA, PFNA, PFPeA, PFBA, MPFNA, 4:2 FTS, 
6:2 FTS, 8:2 FTS, FHET, FHEA and FOET ranged from 1-1000 ng/L, while that of L-PFBS, L-PFOS, PFOA, L-
PFHpS, and L-PFHxS ranged from 100-1000 ng/L and that of MPFUdA, MPFHxS, L-PFDS, PFODA and 
PFHxDA ranged from 100-2000 ng/L were maintained. Furthermore, the LOD and LOQ values that ranged from 
0.0033-0.29 and 0.018-0.67 ng/L respectively. Based on these results, the following can be concluded: 

 Non-targeted and targeted analytical methods for identification and quantification of PFASs in various 
water sources were successfully developed;  

 The developed method was optimized and validated using spiking method and certified reference 
material; 

 The developed method was applied to extract PFASs from the following water sample types; 
wastewater, drinking water, groundwater (boreholes), surface water (rivers and dams), bottled water 
and rainwater. 

 High percentage recoveries obtained indicated high accuracy and sensitivity of the developed method  
 Both grab and passive sampling approaches can be used for PFASs monitoring in water environments 
 Both analytical measurements and multivariate analyses are necessary to establish an understanding 

of the sources, levels, transport and fate of PFAS compounds within water environments.  
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