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 Executive Summary - i 

Executive Summary 

___________________________________ 

 

What is the background to this research? 

 

A valuable measure of the country’s potentially available water resources is through rainfall 

measurements.  These measurements help with the quantitative definition of drought and 

possible climatic change, besides providing information for the design of structures such as 

spillways, bridges, culverts, channels, storm-water drains etc.  On-line measurements of 

rainfall can help reduce the potential damage of floods; the calculations of runoff from flood-

producing storms can be projected into the future to forecast flows in sensitive areas in flood-

plains near rivers and through water-bodies stored behind dams. 

 

Traditionally, rainfall measurement has been made using 120mm and 200mm diameter rain-

gauges scattered randomly over the country.  In South Africa the largest proportion of these 

were (and still are) read by volunteer observers at 8:00am each day and the daily totals 

collected by the South African Weather Bureau (SAWB).  There was a time (1950) when 

4500 or more such gauges were “live” on any particular day, but the number of daily read 

raingauges has dropped to 1750 in 1999 with less than 600 of these reporting daily for the 

public good; the numbers are still diminishing. 

 

There is thus a need for remote sensing of rainfall using radar and satellite imagery.  These 

technically advanced, relatively recent innovations provide detailed information about rain-

rates over large areas in sequences of images which are typically at 5 minute intervals from 

radar and 30 minute intervals from satellite platforms.  They thus have the potential to provide 

detailed information (in space and time) of rain rates which can be used in many applications.  
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What did the research programme originally set out to achieve? 

 

The contractual objectives were: 

1. To provide a means of describing rainfields in both time and space by means of fractals. 

2. To facilitate the modelling of rainfields with economical mathematical descriptors. 

3. To use the project as a means of enhancing collaboration between institutions in the 

KwaZulu Natal region. 

The first of these objectives was modified from using fractals to Gaussian Random Fields, 

with better effect, and has been achieved successfully with the alternative approach. The 

second objective has been achieved if one interprets the words "with economical" as 

"parsimoniously with a small number of", as was originally intended. The third objective was 

achieved in a different sense than was originally intended, because although little 

collaboration initially developed in KwaZulu Natal proper, other than through the 

participation of the University of Zululand in the steering committee, the collaboration 

between researchers in Civil Engineering at Natal University and in the Bethlehem 

Precipitation Research Programme has become strong.  

 

Why model rainfall measured by radar in space-time? 

 

Increasing demands are being made on our meagre water resources and because there is 

greater population pressure causing invasion of high-risk flood-prone areas, there is an 

increased need for more detailed information about the spatial and temporal distribution of 

rainfall to assist with flood warning and mitigation. 

 

In general the purpose of modelling is two-fold: to summarise complex physical processes in 

a descriptive or mathematical way with as few parameters as possible (parsimony) and to gain 

as deep an understanding of the phenomena as is possible, relevant and cost effective under 

the circumstances (insight). 

 

The reason for modelling the rainfall process is to provide as much parsimony and insight as 

is reasonable, so that possible future scenarios can be artificially generated to conduct “what-

if” investigations.  Because of the relatively recent advent of remote sensing of rainfall in 

South Africa, the radar-records are quite short (3 to 5 years) and do not provide, in 

themselves, an objective basis for some aspects of decision-making.  However there is a 
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relatively large archive of data collected from daily read rain gauges which are too sparse, in 

many instances to provide the spatial detail required in some analyses/studies but give the 

information needed to quantify the variability of the rainfall processes over a long time-base.  

It is therefore prudent and desirable to marry the long-term (but poor spatial) information in 

the archive of daily rain-gauge records with the finely detailed (but short) records obtained 

from radar. 

 

What happened to the Fractals? 

 

Fractal models have been proposed as appropriate candidates for modelling rainfields 

because, by their construction, they preserve certain statistical properties, amongst them self-

similarity, scaling etc.  The mathematics is difficult and the models used (in particular the 

multiplicative models) have had the tendency to produce “blocky” rainfields which are 

distinguishable from typical radar measured rainfields and not easily manipulated to give a 

movement of the rainfield. By contrast, the approach adopted here was to use the KISS 

principle, employing standard statistical analysis methods (yet exploiting what had been 

discovered about scaling fields in the search for appropriate fractal models) to craft a 

parsimonious, robust, adaptable, feasible model which is statistically correct and visually 

realistic when compared to typical radar images of areal rainfall.  The outcome is a model 

which is relatively easy to understand, fit and apply, without becoming entangled in the 

thicket of arcane terminology which tends to make the subject of fractals unapproachable to 

all but the intrepid. 

 

Why the “String-of Beads” model? 

 

Rainfall events (storms, showers, light rain etc) are patchy in space and patchy in time but are 

(in a wide sense) “wet”. The time between rainfall events (when it is not raining on a given 

area) is evidently “dry”. Modelling the space-time process of rainfall over an area for a few 

days, months or years thus consists of defining the process of alternating wet and dry periods 

and modelling the time-series structure.  This is a one-dimensional process in time.  Once the 

rain starts falling on the area during a wet period, the spatial as well as the temporal behaviour 

of the rainfall phenomenon is of paramount interest:   
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• how does the rain cover the area?   

• how quickly do storm cells grow and decay?   

• what is the speed and direction of the storm?   

are some of the questions that demand answers. 

   

The wet process is thus a three-dimensional one in two space dimensions (over the area) and 

time.  The one-dimensional wet/dry process can be thought of as the “string” on which the 

three-dimensional process of the evolution of the rainfall event, the “bead”, is threaded. 

 

How is the model fitted to the data? 

 

The one-dimensional “string” describing the wet/dry process is defined by the sequence of 

wet and dry days on an area as specified by the rain gauge records.  This process can be 

thought of as the alternation of three types of “climate” (or weather) occurring on the days of 

the observed record.  The types are dry, scattered rain (usually caused by convective storms) 

and general rain (usually caused by stratiform, large systems).  The distinction is a matter of 

convenience because there are days when the weather is a mixture of convective and 

stratiform clouds producing rain.  This process is modelled by a three-state Markov chain 

which was thoroughly validated as a good model in WRC contract No. 550 conducted by 

Pegram and Seed (Report No. 550/1/98). 

 

The three-dimensional space-time “bead” of a given rain event is defined by a sequence of 

images called Constant Altitude Plan Position Indicators (CAPPIs) which are derived from 

weather radar measurements.  These images are sampled at approximately 5-minute intervals.  

Where more than 3% of the area covered by the CAPPI records rainfall above 1mm/hr, the 

image is classified as wet, otherwise the image is part of the “dry” time.  Each CAPPI image 

is analysed to extract three parameters characterising its 9000 or more data points. This 

parsimonious use of parameterisation was one of the objectives of the original contract. These 

statistics  (σ, β and μ) are stored for use in the simulation/generation process. 

 

How is a sequence of storms generated? 

 

In generation, the process of analysis is reversed.  First a plausible sequence of climate-type is 

generated.  When (for example) a scattered rainday is encountered, a length of storm is 

randomly generated (usually between 2 and 4 hours in the late afternoon) and a reasonable set 
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of values for the parameters σ, β and μ chosen.  The rainfall event is then produced by power-

law filtering (in the complex domain) some Fourier transformed white noise, which is then 

reverse transformed, scaled and exponentiated to produce a sequence of CAPPI images. These 

are manipulated to provide realistic velocities of the storm-cells across the design area. 

 

Does the model work well? 

 

The answer is that it does with surprising facility and veracity.  The sequence of images of 

CAPPIs generated for a wet period, not only have the right statistics and clustering behaviour, 

they are visually indistinguishable from the real images they mimic. This may seem like a 

quaint comment, but the production of images which look like the "real thing" is very 

important for the end user. 

 

How could the model be used in practice? 

 

In order for the model to realise its potential usefulness in application, a link must be formed 

between the parameterisation of the model and the statistics of raingauges recording one day 

totals in a region of interest. The proportion of raingauges recording rain on a particular day 

within a circle of diameter 130km (which should contain about 50 raingauges) is a good 

indicator of the Wetted Area Ratio, which is likely to have a close link with the parameters of 

the String of Beads model. The follow-on project (K5/1010) will investigate these links and 

allow the model to be widely applied.  
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The String of Beads model 

_______________________________________ 

 

 1.  INTRODUCTION 

Rainfall modelling has been a source of great interest in recent years and there have been a 

vast number of models proposed which vary in complexity from simple stochastic models 

through to highly complex, physically based models which attempt to model the micro-

physical behaviour of clouds. The choice of the rainfall model will depend on its application. 

The model which is proposed in this study is designed to be used for real time rainfall 

simulation as seen by radar. It will find application in the simulation of rainfall for urban 

drainage control systems, large catchment flood control and water resources management or 

any other model that requires a detailed rainfall simulation in space-time. For reasons which 

will become apparent later in this report, it will be referred to as the String of Beads model. 

 

1.1 Some relevant literature 

The String of Beads model has been developed using ideas from a variety of existing models 

which are cited in the text of the report. It is perhaps appropriate at this point to present a brief 

review of some of the work which was particularly pertinent to the development of the String 

of Beads model.  

 

A brief history of radar and radar meteorology was presented by Austin (1998) at an advanced 

study course on Radar Hydrology for Real Time Flood Forecasting held at the University of 

Bristol in 1998. Austin (1998) explains how radar was developed first by the allied forces as a 

military tool in World War 2 used to predict German air raids on Britain. Rainfall was 

observed as a nuisance on these early images and techniques were developed to distinguish 

aircraft from rainfall. Only after the war, it was realised that rainfall intensity could actually 

be measured by radar and so was born the science of radar meteorology. Early research in this 

field was focussed on the relationship between radar reflectivity and rainfall rate leading up to 

the well known Marshall-Palmer relationship published in 1948. Research has continued in 

this area and numerous improvements to the measurement of rainfall using radar have 

culminated in the modern weather radar. 
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Prior to the invention of radar in the mid 1930's, rainfall was mainly modelled as a point 

process based on raingauge data and various forms of interpolation between gauges were used 

to give an estimate of the rainfall over an area. With the advent of radar, the true space-time 

structure of the rainfall field was revealed and this sparked an interest in more realistic 

modelling techniques amongst both the hydrological and meteorological communities. Until 

recently, many of these techniques have been limited by the available computing power but as 

processors have been improved more elaborate space-time rainfall models have emerged. A 

general review of the more recent advances in rainfall modelling is given by Foufoula-

Georgiou and Krajewski  (1995) who consider the submissions to U.S. journals during the 

period 1991-1994. Foufoula-Georgiou and Krajewski (1995) divide rainfall models into two 

main categories, stochastic and dynamic models. They define dynamic models as being based 

on a set of partial differential equations describing conservation of mass, momentum and 

energy. This type of model belongs to the realm of cloud physicists and meteorologists and 

was not considered in this study since the String of Beads model is aimed more at the 

Hydrological community who are interested in the statistics of rainfields rather that the four 

dimensional (three space and one time) physical behaviour of clouds.  

 

This leaves the stochastic models. Foufoula-Georgiou and Krajewski (1995) report how the 

trend in rainfall modelling has shifted towards models which are based on concepts of scale 

invariance which assumes that the stochastic structure of the rainfall field is independent of 

scale. This assumption has been shown to be true over a wide range of scales (Gupta and 

Waymire, 1990) and it lends itself to modelling through the use of multifractal algorithms 

such as the discrete random cascade and the multiplicative random cascade. Models of this 

type have been proposed by Schertzer and Lovejoy (1987), Over and Gupta (1994) and 

Menabde et al. (1997) amongst others, but although statistically sound, the rainfield images 

produced by these models have the unfortunate property of appearing blocky. In spite of this, 

a great deal of work has been done on the parameterisation and calibration of these models 

and to date, they are arguably the best statistical descriptors of the rainfall field.  

 

Menabde et al. (1997) use a discrete random cascade to generate a field with the desired 

statistical structure which they then power law filter, thereby removing some of the blockiness 

and resulting in a more realistic looking rainfield. An alternative to this approach would be to 

simply generate a random field based on a suitable probability distribution and then power 

law filter the field to achieve the desired spatial correlation structure. This is the approach that 
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was used by Bell (1987) for the simulation of satellite rainfall intensity data. He found that the 

lognormal distribution was a good descriptor of the marginal distribution of rainfall intensities 

on a field and this was confirmed by Crane (1990). The approach by Bell (1987) was simply 

to generate a Gaussian random field, power law filter it to achieve the desired spatial 

correlation structure and then exponentiate the field to obtain a spatially correlated, 

lognormally distributed field. These fields are convincing in appearance and possess a 

reasonable statistical structure.  

 

In his work on fluid turbulence, Taylor (1938) hypothesised that the correlation of a point 

with itself in time (i.e. at a fixed point in space) was related to the correlation of that point 

with its neighbours in space (i.e. at a fixed time) through some velocity vector. This 

hypothesis is discussed with reference to the space-time structure of rainfall intensity fields by 

Gupta and Waymire (1987) and by Crane (1990). If Taylor's hypothesis is assumed to be true, 

the approach adopted by Bell (1987) for the simulation of two dimensional fields can be 

simply extended into three dimensional space-time by using a power law filter which defines 

the temporal correlation structure as a vector multiple of the average spatial correlation 

structure. 

 

The algorithm used to generate these three dimensional fields makes use of the Fast Fourier 

Transform thereby reducing the computational effort and making it possible to generate a 

large number of fields in a short space of time. In his paper, Bell (1987) points out that 

opposite edges of the Fourier filtered images behave as if they are joined and this property 

can be easily exploited to introduce an overall advection of the rainfield. This gives the 

Fourier filtered images an upper hand when compared to generating correlated, lognormally 

distributed fields through the use of other algorithms such as the Turning Bands method 

(Matheron, 1973) which is described for example, by Bras and Rodriguez-Iturbe (1985). 

Bell's (1987) process produces a finite sequence of images which are correlated in both space 

and time and which incorporate an advection characteristic. However, it would not be feasible 

to simulate long periods of data through the use of this process alone, since the computational 

effort and data storage requirements would soon become unworkable.  

 

An additional source of information with regards to the temporal structure of rainfall can be 

obtained through the use of raingauges and a variety of approaches have been proposed which 

mimic the behaviour of raingauge time series data. These include models such as the 
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Neymann-Scott shot noise model proposed by Cowpertwait (1994) and the daily climate 

model proposed by Pegram and Seed (1998). Pegram and Seed (1998) make use of daily 

raingauge data to classify the type of rainfall experienced during a day over a chosen area. 

They then use a three state Markov chain to simulate sequences of raindays throughout the 

year for that chosen area. Cowpertwait (1994) adopts an interesting approach to modelling a 

high resolution time series of rainfall intensity data by considering  the duration of an event 

and the event arrival as two separate random processes. His concept can be used on a larger 

temporal scale by employing the daily climate model proposed by Pegram and Seed (1998) to 

model the type of rainfall and its arrival, whilst using power law filtering approach adopted by 

Bell (1987) to model the high resolution behaviour of the event. This is the essence of the 

String of Beads model which will be discussed in this report. 

 

1.2 An introduction to the String of Beads model. 

The String of Beads model is defined by a small number of parameters and is based on the 

combination of a modest data archive of rainfall intensity images measured by radar and a 

large archive of data collected from a daily raingauge network. It is a phenomenological 

model which is designed to run on a fast modern personal computer and provides a realistic 

simulated random rainfall scenario. It can be used for real-time simulation of a rainfall event 

or sequence of events over any number of years.  

 

Radar and raingauge data for this study were supplied by members of the Bethlehem 

Precipitation Research Programme. The weather radar rainfall data were provided in a pre-

processed, compressed file format and prior to any analysis being undertaken, it was 

necessary to convert it into an uncompressed format which is easy to manipulate and interpret. 

The process of extracting the raw data and converting it into a common image file format is 

discussed in detail in Appendix A - Radar and raingauge data. Other issues which are 

discussed in that appendix are data quality, data storage and data visualisation.  

 

With the data in a common, uncompressed image file format, the radar rainfall images can be 

viewed in almost any Windows based graphics program. These images are referred to as 

Constant Altitude Plan Position Indicators (CAPPIs) and they are an instantaneous, two 

dimensional, best estimate of rainfall intensity at a constant altitude (2km) above the ground. 

The CAPPIs used in this study cover an area of 200km x 200km centred on the MRL5 radar 
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near Bethlehem, at a resolution of 1km x 1km and are recorded at five minute intervals.  

Additional information regarding the configuration of the radar is given in Appendix A. 

 

The raingauge network database is used to develop a model for the climatic behaviour which 

defines the type of rainfall on any day in the year. This Daily Climate Model was developed 

in a previous study by Pegram and Seed (1998) and is incorporated into the String of Beads 

model almost without modification. The definition of their daily climate model is paraphrased 

in the report and the full set of periodic transition probability curves are included in the 

Appendix B.  

 

The weather radar database is used to develop a model for the high resolution space-time 

behaviour of the rainfall events by first analysing the CAPPI data and then using a technique 

known as power-law filtering of Gaussian noise to simulate sequences of CAPPIs. To 

improve the readability of the report, the theory used in the analysis and simulation processes 

is only briefly explained in the main report and more comprehensive discussions are provided 

in Appendices C and D. The daily climate model and the high resolution space-time model 

are combined to form the String of Beads model. 

 

The two main modes of operation of the String of Beads model are described and a three-

dimensional (two space and one time) random simulated rainfall event is generated and 

analysed as a means of model verification. The Generalised Structure Function, will be used 

to test the validity of the simulated CAPPIs and the results will be presented and discussed. It 

will be demonstrated that the String of Beads model simulates rainfall realistically and 

without obvious bias. Finally, animated images of the model output are included on the 

compact disk (refer to Appendix G) which accompanies this report. 

 

2. A STOCHASTIC SPACE-TIME MODEL OF RAINFALL 

The "String of Beads" model is a stochastic space-time model of rainfall. It does not attempt 

to explain or reproduce the physical behaviour of clouds or rainfall. It is a phenomenological 

model which is based on the statistics of data collected by raingauges and from radar rainfall 

images at a constant altitude. 

 

Radar can provide good quantitative rainfall estimates over a large area and at a high spatial 

and temporal resolution and for this reason it is becoming increasingly popular in 
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hydrological applications. The "String of Beads" model can provide a realistic simulated 

rainfall scenario which can be used for real-time simulation of a rainfall event or sequence of 

events. The output of the model is in the form of a sequence of animated images (each pixel a 

numerical value of rainfall intensity) that behaves like a visualisation of a storm of several 

hours (or days) duration as seen by radar in space and time.  

 

3. THE STRING OF BEADS CONCEPT 

The concept of the String of Beads model is similar to the Neymann-Scott shot noise model 

(Cowpertwait, 1994) in that it models each rainfall event and its inter-arrival time separately. 

The event inter-arrival time is a one dimensional process which is modelled as described in 

Section 6. Although the rainfall event is actually a four dimensional process (three space and 

one time), it has been simplified to a three dimensional process in the String of Beads model 

by analysing and simulating 2km CAPPIs rather than the sequence of full volume scans. The 

process of modelling the rainfall event is described in Section 9 and involves the power-law 

filtering of Gaussian noise. The one dimensional event inter-arrival time can be thought of as 

a string and the three dimensional rainfall event as a bead on the string as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Each bead in the model is a sequence in time of sequential CAPPIs at five minute intervals in 

the case of a scattered rainday, or at thirty minute intervals in the case of a general rainday. 

The time interval is adjusted in this way to account for the fact that a general rainfall event is 

less volatile than a scattered event and can therefore be modelled using a lower temporal 

resolution. In order to preserve disk storage space, it is important to exploit this lower 

volatility because general rainfall events can last for days, whereas scattered rainfall events 

usually only last a few hours. The number of CAPPIs in a bead therefore varies according to 

the duration and type of the rainfall event.  

Figure 1 - An illustration of the String of Beads concept 
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4. DATA PROVIDED BY THE SOUTH AFRICAN WEATHER BUREAU 

An area of great strategic interest in terms of water resources and flood control in South 

Africa is the catchment of the Vaal Dam (38 505 km2) which provides most of the stored 

water for Johannesburg and Pretoria and the surrounding areas. The Vaal catchment is 

monitored by two radars shown in Figure 2, a C-band at Ermelo and an S-band 20km  

north west of Bethlehem. The rainfall in the catchment is also monitored by a network of 

daily raingauges maintained by local volunteers, and a good network of tipping bucket 

raingauges on a sub catchment of 4 500km2 which is maintained by the South African 

Weather Bureau (SAWB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The daily raingauge data for this region extends over approximately 80 years and the network 

of tipping bucket raingauges has recorded data for approximately 6 years. The MRL-5 S-band 

radar was installed near Bethlehem by the Water Research Commission in 1994 and 

continuous rainfall data during the wet summer months (November to April) are available 

from this radar from January 1995. Data from the C-band  radar at Ermelo are available from 

Figure 2 - Coverage of the Bethlehem and Ermelo Radars 
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January 1998. Both radars are configured to do a full volume scan every 5 minutes starting 

with a base scan at an elevation of 1.5 degrees and finishing with an elevation of 55 degrees 

as discussed in Appendix A. 

 

A basic assumption made in the development of the model is that the data received from the 

radar provides a reasonably accurate representation of what actually reaches the ground. In 

general, rainfall data measured by radar are subject to a wide variety of systematic errors such 

as bright band, attenuation, ground clutter and anomalous propagation. These effects are 

briefly discussed in Appendix A, although they are only rarely observed in the data received 

from the SAWB at Bethlehem. Apart from the Maluti Mountains in Lesotho, the terrain 

surrounding the Bethlehem radar is quite flat and there is therefore very little ground clutter 

and the rainfields tend to be reasonably homogeneous. The effect of attenuation is kept to a 

minimum by using an S-Band radar. Due to the high summer temperatures (wet season), the 

bright band is usually at or above the 2km level. A large proportion of the rainfall experienced 

in Bethlehem is convective in which case the bright band is not well defined and does not 

present a problem. The Z-R relationship Z = 200R1.6 given by Marshall and Palmer (1948) is 

used to convert reflectivity to rainfall rate. As methods are developed to improve the 

measurement of rainfall using radar providing improved data sets, the model will be better 

able to simulate real rainfields.  

 

5. QUANTITATIVE LIMITS OF THE RADAR DATA 

The data received are in the form of 200 x 200km images of instantaneous rain rate at 8bit 

precision (one byte per pixel) which gives a possible range of any integer value of rainfall 

intensity between 0 and 255mm/h. The base scan of the Bethlehem radar is at an elevation of 

1.5 above the horizontal so that the range at which the base scan exceeds an altitude of 2km 

above ground level is 67km. Data recorded beyond this range are useful only for qualitative 

analysis of the weather system since these are usually within or above the melting layer. It is 

convenient in the analysis to use a radius of 64km as it is an integer power of two, a 

requirement for the Fast Fourier Transform whose use will be discussed in Section 7. CAPPIs 

are plotted as an average rainfall intensity at the centre of a pixel which represents an area 

which is 1km square in a horizontal plane (usually at an altitude of 2km above the ground).  
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In the data-sets available to date, the radar did not record any reflections received within a 

14km radius of itself although this "hole" will be eliminated in future recordings. For the 

purposes of the analysis, CAPPIs are masked as shown in Figure 3 so that only data within the 

3/4 doughnut shaped sample area of 9128 km2, are considered.   

 

6. MODELLING THE SEASONAL DAILY RAINFALL DISTRIBUTION 

One of the benefits of radar data is that, when it comes to local application, the image gives 

very good spatial information that cannot be achieved using raingauges. However, the MRL5 

S-Band radar has only been operational in Bethlehem for the past four years compared to 

nearly a century of daily raingauge recording. In order to include the daily climate variation in 

the model, it is necessary to make use of the information that is available from the network of 

raingauges recording daily totals in the area.  

 

In the context of the String of Beads model, the daily climate is defined as the type of rain 

experienced on a particular day. Three states are considered in the model and they are dry, 

scattered and general raindays. Pegram and Seed (1998) analysed a 30 year collection of up 

to 330 daily read raingauges in the 200 kilometre square centred on Bethlehem. The minimum 

number of reporting gauges within the square at any time was 150. They used a three state 

 

100 

200 km 

Figure 3 - Masking the raw CAPPI data to eliminate ground clutter and data 

recorded at an altitude in excess of 2km. 
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Markov Chain with parameters varying periodically over a year to model the temporal 

behaviour of the daily climate in the Bethlehem area. In this section, the parameters of their 

model will be redefined in terms of radar data and their methodology will be explained. 

 

6.1. Definition of the three states of rainday 

To define the Markov chain climate model, a definition of the states of the model is first 

required. Pegram et al. (1997) and Pegram and Seed (1998) used the three states defined in 

Table 1 in their analysis of the daily raingauge data. 

Table 1 - Daily weather classification for raingauge network (Pegram and Seed, 1998) 

State Description Definition 

1 Dry < 3% gauges report rain 

2 Scattered > 3% gauges report rain but  

< 50% gauges report rain in excess of 5mm 

3 General > 50% gauges report rain in excess of 5mm 

 

The definition of these states was based on a classification given by Court (1979) who 

attempted to find a correlation between seedable cloud formations (cumulus development, 

cloud tops colder that -5OC, with no hail) and the fraction of raingauges in the area reporting 

rain. Scattered raindays are considered seedable. This classification was modified for CAPPI 

data and adopted for the String of Beads model to give the three states shown in Table 2. The 

mean wet area of Table 2 is the ensemble average of the Wetted Area Ratios (WAR, defined 

as the fraction of the CAPPI which experiences a rainfall intensity in excess of 1mm/h) of all 

of the CAPPIs recorded on the day. 

Table 2 - Daily weather classification for radar CAPPIs 

State Description Definition 

0 Dry mean wet area < 3% 

1 Scattered 3% < mean wet area < 50% 

2 General 50% < mean wet area 
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6.2. The three state Markov chain 

The Markov chain is a statistical means of switching between the three states of rainday 

defined in Table 2. It works on the assumption that the type of rainfall experienced on a 

particular day is dependent on both the season and the type of rainfall experienced for some 

time prior to that day. For instance, general rainfall in South Africa is usually caused by a 

large weather system which moves across the country and dissipates over a period of one or 

two days. For this reason, given that the state of rainday in a sequence is general, the 

probability of the following day being general or scattered is relatively high when compared 

to the probability of the following day being dry. These are known as the transition 

probabilities. 

 

It is conceivable that the state of a particular day is dependent on the state of two or more days 

prior as experienced in other daily rainfall models (e.g. Woolhiser and Pegram (1979), and 

Zucchini and Adamson (1984)). Pegram and Seed (1998) made use of the Akaike Information 

Criterion (as defined for a Markov chain and used by Pegram (1980)) to test this possibility, 

but found that the simple lag-one Markov chain was the most suitable descriptor of the 

observed data. 

 

If the states of the lag-one Markov Chain are numbered 0, 1, 2 as shown in Table 2, the 

transition probabilities become: 

 

p
i j

 (t) = probability [given that the state is i , the state of the next day will be j ]   (i, j = 0,1,2) 

 

These transition probabilities can be assembled into a transition probability matrix of the 

form: 

 

 

 

 

 

 

Since the total of each row is constrained to unity, six transition probabilities suffice to define 

the Markov chain. The transition probabilities were estimated for each week in the year and 

were fitted with a two harmonic Fourier series to give a periodic relationship for the transition 
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probabilities. An example of the Fourier fit to one of the nine transition probabilities is given 

in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The full set of periodic transition probability curves for the Bethlehem area, calculated by 

Pegram and Seed (1998), are included in Appendix B. The points represent the weekly 

sampled transition probabilities from the 30 year collection of up to 330 daily read raingauges 

in the 200 kilometre square centred on Bethlehem. The line which has been fitted to these 

points is the two-harmonic Fourier fit. Pegram and Seed (1998) investigated the possibility of 

using higher order Fourier approximations, but found that in most cases this did not 

significantly improve the fit.  

 

The rainfall experienced in Bethlehem in February is mainly comprised of afternoon 

convective rainfall caused by high summer temperatures on the ground. These convective 

events would usually be classified as scattered in terms of the three states defined in Table 2. 

The marginal distribution of the states changes slowly with time, so is approximately given by 

solving the homogeneous equation  


T
P = 

T
  

 

1998 

     0.52      0.47       0.01 

     0.07      0.85       0.08 

     0.01      0.62       0.37 

Figure 4 - The development of the transition matrix for the three-state 

Markov chain by fitting a Fourier series to 30 years of  raingauge data. 
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yielding  

   
T
 =   [0.12 0.78 0.10] 

 

This means that the probability of a randomly chosen day in February being a scattered 

rainday is 78%. The probability of a randomly chosen day in February being a general 

rainday is 10%. Being the peak of the rainy season in Bethlehem, it is unlikely (12%) to 

observe a dry day in February.  

 

The monthly transition probability matrices used in the String of Beads model are constructed 

from the curves using the method illustrated in Figure 4. A summary is given in Table 3 of the 

transition probabilities which make up the transition probability matrices for each month. As 

shown in Appendix B, the general to anything transition probabilities are independent of the 

season. 

 

Table 3 - Summary of monthly transition probabilities which make up the monthly 

transition probability matrices used in the String of Beads model. 

 

Month 

Monthly Transition Probabilities 

Dry to… Scattered to … General to … 

Dry Scat Gen Dry Scat Gen Dry Scat Gen 

Jan 0.49 0.49 0.02 0.06 0.86 0.08 0.01 0.62 0.37 

Feb 0.52 0.47 0.01 0.07 0.85 0.08 0.01 0.62 0.37 

Mar 0.61 0.38 0.01 0.10 0.82 0.08 0.01 0.62 0.37 

Apr 0.74 0.26 0.00 0.21 0.72 0.07 0.01 0.62 0.37 

May 0.85 0.15 0.00 0.33 0.61 0.06 0.01 0.62 0.37 

Jun 0.92 0.08 0.00 0.43 0.52 0.05 0.01 0.62 0.37 

Jul 0.94 0.06 0.00 0.44 0.52 0.04 0.01 0.62 0.37 

Aug 0.92 0.08 0.00 0.38 0.57 0.05 0.01 0.62 0.37 

Sep 0.86 0.14 0.00 0.29 0.65 0.06 0.01 0.62 0.37 

Oct 0.73 0.26 0.01 0.19 0.73 0.08 0.01 0.62 0.37 

Nov 0.59 0.40 0.01 0.12 0.79 0.09 0.01 0.62 0.37 

Dec 0.52 0.48 0.00 0.07 0.83 0.10 0.01 0.62 0.37 

 

The String of Beads model makes direct use of these relationships to generate a sequence of 

rainfall events. The probabilities in the rows of the transition matrix can be arranged in 
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cumulative form and must obviously sum to unity. Given that the current state is dry for 

example, a uniformly distributed pseudo-random number R(0,1) is generated using the pseudo 

random number generator of Appendix D. For a uniformly distributed number R(0,1) less 

than that shown in row D, column D as 0.52 (Figure 4), will result in the state of the next day 

being dry. Similarly, if 0.52< R(0,1) < 0.99 (the last number being the sum of the transition 

probabilities in columns D and S) a scattered rainday will follow and R(0,1) > 0.99 would 

give a general rainday. The row of the transition matrix which is used for the calculation of 

the following rainday will then depend on the new state. This is computationally very fast and 

very simple to program.  

 

6.3.  Daily climate model validation 

The climate model described by this three state Markov chain was carefully validated using 

statistical tests described in Pegram and Seed (1998). Briefly, they generated 100 30-year 

simulations and compared the statistics of those simulations to the 30-year historical sequence 

obtained from the raingauge network. Amongst the statistics that were compared were: 

• The mean and standard deviation of the number of each rainday type observed in each 

month 

• Frequency distributions of run-lengths of each of the three rainday types observed in each 

month. 

 

The results of these two tests are particularly pertinent to the String of Beads model as they 

measure the ability of the model to replicate the sequence of rainday types. They indicated 

that: 

• The mean number of each rainday type observed in each month was closely simulated by 

the model.  

• During the dry months, the standard deviations of the number of dry days in a month of 

the simulated sequence were smaller than observed in the historical sequence. 

• During the wet months, the standard deviations of the number of scattered days in a 

month of the simulated sequence were smaller than observed in the historical sequence. 

• The standard deviation of the number of general raindays in a month was reproduced well 

throughout the year. 

• The run lengths (number of consecutive days all of a given type) were very well mimicked 

by the model for the dry, scattered and general states. 
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Although this model does have its limitations in terms of reproducing the standard deviations 

of the number of dry and scattered raindays observed in some months, this could possibly be 

rectified by introducing a noise term into the appropriate transition probabilities. In its current 

state of development, the String of Beads model uses the transition probabilities of Table 3 

without any random variation.  

 

7. RAINFALL EVENT ANALYSIS 

Having established an effective means of analysing and modelling the daily climate the 

following approach was applied to the rainfall events measured by radar. The first step was to 

devise a way of measuring and classifying a masked CAPPI (see Figure 3) using as few 

statistics as possible. The two parameter lognormal distribution has been used effectively in 

describing the marginal distribution of rainfall rates over an area as estimated by satellite 

(Bell, 1987) and by radar (Crane, 1990) and following their example, this distribution was 

applied to the radar CAPPI data obtained from the South African Weather Bureau. 

 

7.1. The lognormal distribution applied to CAPPI data 

Since the radar data received from the SAWB is in integer format in the range 0 to 255mm/h, 

it was necessary to use an algorithm for fitting the lognormal distribution for grouped data 

which is described by Aitchison and Brown (1957). The formal definition and the distribution 

properties are discussed in Appendix C. The multi-dimensional downhill simplex method of 

Nelder and Mead (1965) as given by Press et al. (1992) was used to maximise the log 

likelihood function L shown in equation (1) with respect to the parameters  and   for each 

CAPPI. 
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where  i  = 1, 2, …, 255 , 

 yi = log (rainfall rate i mm/h ) 

 ni = number of pixels in the masked CAPPI recording a rainfall rate of i mm/h 

  = the mean of the logs of the rainfall rates in the CAPPI 

  = the standard deviation of the logs of the rainfall rates in the CAPPI. 
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To illustrate the effectiveness of the lognormal distribution in describing the marginal 

distribution of the rainfall intensities on a CAPPI, five examples are given in Figure 5, each 

with a different type of weather system. The parameters m and s given in Figure 5 are the 

most likely estimators of  and   of equation (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Illustration of the types of rainfall observed in Bethlehem 
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The observed histogram of rainfall intensity and the expected histogram which corresponds to 

the maximum likelihood approximation of the lognormal distribution for each of the five 

CAPPIs of Figure 5, are plotted in Figures 6 to 10. To enable the critical examination of the 

fit, the histograms are plotted with a logarithmic abscissa and the final bin is lumped for the 

most intense 0.25% of the number of pixels on the CAPPI. The labels on the ordinate axis 

represent the lower limit of the bin (for grouped data) so that the first bin which is labelled 

0mm/h includes all rainfall rates between 0 and 1mm/h. 

 

Figure 5a shows a free convective system with isolated convective cells which are less than 

15km in diameter. Due to the large proportion of the CAPPI with rainfall between 0 and 

1mm/h (bin 0), a low m is observed, however the high rainfall intensities experienced within 

the convective cells results in a high s parameter. The expected and observed histograms for 

this CAPPI are plotted in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b shows a free convective system with large isolated convective stormcells which are 

of the order of 20km in diameter. The result is an intermediate m parameter combined with a 

high s parameter. The histograms for this CAPPI are plotted in Figure 7. 

 

Figure 6 - Expected and observed histograms for CAPPI S1996-035237 

depicted in Figure 5a 
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Figure 5c shows a weather system which is between a free convective and a series of forced 

convective systems with a characteristic high s parameter and a reasonably high m parameter. 

The most intense rainfall rate on this CAPPI is 85mm/h. The histograms for this CAPPI are 

plotted in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Expected and observed histograms for CAPPI S1996-035358 

depicted in Figure 5b 

Figure 8 - Expected and observed histograms for CAPPI S1996-035671 

depicted in Figure 5c 
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Figure 5d shows a forced convective weather system. The main convective cell is 

approximately 50km in diameter and the most intense rainfall experienced on the CAPPI is 

75mm/h. The statistics reveal high m and low s parameters when compared to the other types 

of weather system depicted in Figure 5. The expected and observed histograms for this 

CAPPI are plotted in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5e shows a typical stratiform weather system with widespread rainfall of low intensity. 

Due to almost complete coverage of the sample area with an almost constant rainfall rate, this 

type of rainfall gives rise to very high m and very low s values. The maximum intensity 

experienced on this CAPPI is 30mm/h, however less than 0.25% of the sample area 

experiences intensities above 15mm/h. The expected and observed histograms for this CAPPI 

are plotted in Figure 10.  

 

The concentric rings which can be clearly observed in Figure 5e are due to the projection 

technique used to extract the CAPPI data from the volume scan data as discussed in  

Appendix A. The fact that the rainfall intensity appears to increase with radius (and therefore 

altitude) over the width of each ring also suggests the presence of the melting layer (discussed 

in Appendix A) at an altitude of approximately 2km. 

Figure 9 - Expected and observed histograms for CAPPI S1996-034491 

depicted in Figure 5d 
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In all of the cases considered in Figures 6 to 10, the lognormal distribution appears to 

approximate the observed distribution well. Although the observed and expected histograms 

sometimes differ markedly for a particular intensity of rainfall at the tail end (higher rainfall 

intensities) it is important to note that these differences are of the order of 10 pixels out of a 

total of 9128. Similar fits are obtained by extracting the combined histogram of an entire 

sequence of CAPPIs. 

 

7.2. The spatial correlation structure of CAPPI data 

While the marginal distribution of the rainfall rates is described by two parameters,  and  of 

the lognormal distribution, a third parameter space describes the spatial correlation structure 

and hence the clustering behaviour of the pixels. For this the two dimensional power spectrum 

is used. After  and  have been estimated the image is normalised using the log transform, 

standardised (shifted by  and scaled by  ) and then transformed into Fourier space using the 

Fast Fourier Transform routine as described by Press et al (1992). The Fourier Transform 

(defined in Appendix C) of a real image is a complex valued image. The modulus of the 

complex number on each pixel is then squared to give the real valued, two dimensional power 

spectrum. This is illustrated in Appendix C for the one-dimensional case. For a masked 

CAPPI, the two dimensional power spectrum takes on the general shape shown in Figure 11. 

 

Figure 10 - Expected and observed histograms for CAPPI S1996-034802 

depicted in Figure 5e 
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The left hand image of Figure 11 shows a three dimensional oblique view of the power 

spectrum illustrating its draped nature. The right hand image serves to illustrate the skew 

symmetry of the spectrum which is exploited in order to find an average gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

Due to this symmetry, half of the spectrum can be discarded. The remaining half is folded in 

half and then averaged to achieve a quarter conical shaped surface in three dimensional log 

space. The surface is then averaged radially, pivoting about the remaining corner, to obtain 

the radially averaged, two dimensional power spectrum an example of which is given in 

Figure 12. The straight line illustrates the power law relationship between the spectral density 

P and the wavenumber w for some constant c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 - Radially averaged two dimensional power spectrum 
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The gradient (space )  of the radially averaged, two-dimensional power spectrum is estimated 

by least squares and defines the averaged spatial correlation of the CAPPI in all directions - 

the field is assumed to be homogeneous in this sense. This methodology was adapted from the 

work of Menabde et al. (1997). Typical values of space for CAPPI data vary between 2.30 and 

2.90 indicating non-stationarity in the statistics of the rainfields. As is the case in Figure 12, 

almost all of the CAPPIs encountered in the SAWB records are scaling in the sense that their 

radially averaged log-spectra are well approximated by a straight line.  

 

With reference to Figure 5, a forced convective weather system as shown in Figure 5d  

would tend to have a relatively steep gradient (high space) due to its highly variant nature 

concentrating more power in the lower wave numbers. By contrast, a stratiform event  

(Figure 5e) is far less variable and will tend to have a shallow gradient (low space) , that 

describes a more even distribution of power over the range of wave numbers. Free convective 

events (Figure 5a) have a large proportion of the CAPPI with zero rainfall making the field 

relatively smooth with steep "spikes" of highly variant convective rainfall which results in a 

power spectrum whose gradient is between that of the forced convective and stratiform 

(intermediate space ) cases. Although some correlation between the space  parameter and the 

type of weather can be recognised in the data, the range of observed space  values is small and 

it is difficult to visually distinguish two images with the same  and   that have space  values 

at either end of the typical range. It could therefore be argued that the average space  should be 

kept at a constant value for all types of CAPPI. 

 

7.3. The temporal correlation structure of CAPPI data 

The measurement of the exponent of the power spectrum in time (time) is not a trivial 

exercise as weather systems are usually moving and this has the effect of reducing the 

correlation in time when sampling a single pixel. The time exponent is therefore dependent on 

the velocity of the weather system and space. Furthermore, the time exponent is dependent on 

the resolution of the CAPPI, because the correlation in time for a large sample area is 

considerably stronger than that for a small sample area. It is therefore difficult to relate the 

time parameter for a radar data set to that of a raingauge data set.  

 



 String of Beads model - 23 

In the CAPPI data considered so far, it appears that for a spatial resolution of 1km2 and at a 

temporal resolution of one CAPPI every 5 minutes, space  time. In other words, for a typical 

rainfall event sampled at this spatial and temporal resolution, a pixel appears to have a similar 

correlation with its neighbours in space, to the correlation with itself in time. This was 

hypothesised by Taylor (1938) and is discussed with reference to the space-time structure of 

rainfall intensity fields by Gupta and Waymire (1987) and by Crane (1990). Another 

qualitative observation that was made is that with a spatial resolution of 1km2 and a sampling 

interval beyond 120 minutes two consecutive CAPPIs appear to be almost uncorrelated. 

 

A somewhat naïve, pragmatic approach to this problem was adopted for the String of Beads 

model by assuming a linear relationship which decays from time = space for a temporal 

resolution of one CAPPI every 5 minutes, down to time =   for a temporal resolution of one 

CAPPI every 120 minutes (only applies to CAPPI data with a spatial resolution of 1km2). The 

decision to model the time dependence in this way was an operational one based on 

qualitative observation of the data. Further investigation is required in order to quantify this 

parameter and it will be adjusted in a subsequent study once the process of extensive 

validation has begun. A possibly fruitful approach is that suggested by Bell (1987) who uses a 

Fourier series to approximate the time dependent structure by allowing the lagged correlation 

of the Fourier coefficients to decay exponentially in time. He achieves this by letting the 

coefficients satisfy Markov equations in time (Jenkins and Watts, 1968). 

 

8. ANALYSIS OF A REAL EVENT 

The event analysed in this section was nearly two days long and occurred in February 1996. It 

contributed to formidable flood event at the Vaal Dam. It was chosen for analysis due to the 

wide variety of rainfall types which were experienced within the 42 hour period, ranging from 

scattered thundershowers through to large scale stratiform rainfall with intense convective 

cells. Figure 13 shows the development of the estimates of the statistics of each CAPPI, , 

space and , in time. The fourth statistic, the Wetted Area Ratio (WAR), is plotted on a 

separate axis and represents the percentage of the sample area which received rainfall in 

excess of the wet/dry threshold of 1mm/h. 
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Three main points are evident in Figure 13. First, the gradient of the two dimensional power 

spectrum space  remains reasonably constant between 2 and 3 following the extent and type of 

rainfall on the CAPPI as discussed in the previous section. Second, the mean of the pixel logs 

() is very strongly correlated with the WAR since the logarithm of any value between 0 and 

1 is negative and a CAPPI which is mostly dry (rainfall rates between 0 and 1mm/h) will have 

a low WAR and a correspondingly more negative . Third,  and   (the mean and standard 

deviation of the logs) are negatively correlated. This makes sense in terms of the observed 

behaviour of rainfall since the more general type of rainfall (stratiform rainfall) tends to be of 

a reasonably constant (low) intensity over a large area and will therefore have a low   and 

relatively high . In contrast to this, the more scattered types of rainfall (free convective 

rainfall) tend to be highly variable in intensity (large ) but tend to cover a small proportion 

of the total area (low ). The two exceptions to this behaviour are encountered with either a 

large forced convective event in which both the  and   parameters are high, or alternatively 

with very light scattered showers (usually in the early or late stages of a free convective event) 

in which both  and   are low. The negatively correlated relationship is confirmed in Figure 

14 in which the sampled   values are plotted against  for the 512 CAPPIs in the 42 hour 

event. 
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Figure 13 - The behaviour of ,  and  in time over a real 42 hour event 
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The best fit regression line is plotted in Figure 14 and it is clear that  and  fall within well 

defined boundaries on either side of this line. Three other major rainfall events (a total of 

2500 CAPPIs) were analysed in a similar way and they all produced very similar results and 

characteristics to those presented for the 42 hour event analysed here. Graphs for the entire 

month's data, similar to that presented in Figures 13 and 14, are included in Appendix F. 

 

9. MODELLING A SIMPLE RAINFALL EVENT 

The process of analysis outlined in the Section 7 described a rainfall event (bead) by first 

breaking it down into individual masked CAPPIs and then extracting the histogram of the logs 

of the pixel values in order to find the best possible lognormal distribution which would 

describe the marginal distribution of the pixels. Each masked CAPPI was then normalised and 

the gradient of the radially averaged power spectrum was measured. In this way it is possible 

to describe a CAPPI in terms of three statistics. A simple rainfall event, that is one with a 

reasonably constant , space  and , can be modelled by simply reversing this process starting 

with the desired , space and  and using a technique similar to that described by Wilson, 

Schertzer and Lovejoy (1991). The technique involves the power law filtering of a Gaussian 

noise field and is described in detail in Appendix E. For a single isolated CAPPI, the statistics 

can be reproduced very well in a simulated image using this technique.  
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Given the set of parameters , space  and , the first step in the process is to generate a three 

dimensional field of normally distributed, real valued, random noise in a parallelepiped of size 

(2
n

x 2
n

x 2
t
) pixels where n and t are integer values. The integer n will determine the size of 

the rainfield and t will determine the number of CAPPIs that will be produced. The field is 

then transformed into Fourier space, power-law filtered with exponent space in space and  

time (= c. space  for some suitably chosen constant c) in time and back transformed to give a 

real valued three-dimensional field of correlated, normally distributed noise. The field is then 

scaled and shifted to achieve the required mean  and standard deviation   and finally 

exponentiated to give a log-normally distributed field of correlated Gaussian noise with 

statistical descriptors , space , time  and . The three-dimensional field is then "sliced up" in 

time into its individual CAPPIs which will each have a unique distribution of rainfall. These 

can then be assembled into an animated image after the work of Brenier (1990) and as such 

they simulate a simple rainfall event of 2
t
 CAPPIs each 2

n
x 2

n
 in size.  

 

For general rainfall it is often not necessary to model the event to temporal resolution as high 

as 5 minutes, in which case it is possible to increase the time interval between CAPPIs to 15, 

30 or even 60 minute intervals and to reduce the correlation in time (time parameter) 

accordingly. This saves on computer memory requirements and hard disk storage space, two 

precious resources when working on a personal computer. A three-dimensional field of size 

128 x 128 x 256 (1 day event at 5 min resolution) requires approximately 70MB of RAM to 

compute the double precision (8 byte) complex array.  

 

A well known property of Fourier filtered images is their wrapped nature. This can be 

exploited in order to build in the advection of the field by cutting off the one edge of the 

image and pasting it onto its opposite edge as show in Figure 15. In this way the storm can be 

made to drift with any velocity provided that the distance moved by the storm between time 

steps is small compared to the size of the CAPPI. 

 

The final stage of the modelling process for a simple rainfall event is to discard the edges so 

that the wrapped nature of the CAPPIs is no longer obvious. The approach suggested by Bell 

(1987) was to use only a quarter of the artificial image for simulation, thereby minimising the 

correlation between the opposite edges. However, since the filter decays exponentially from a 

point, it is very difficult to detect any relationship between the opposite edges of a simulated 
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CAPPI after discarding a border as small as 1/16
th of its width. This is illustrated in the right 

hand image of Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the simple Fourier filtered event will also wrap in time, it is also necessary to discard 

the first or last few CAPPIs in the generated sequence, in order to avoid the scenario in which 

the first and last images of the event are too similar. 

 

10. MODELLING A COMPLEX RAINFALL EVENT 

In many cases the simple rainfall event model presented in Section 9 is all that is required 

when modelling monthly rainfall scenarios, but the String of Beads Model can be used to 

simulate far more complex events, such as the one whose sampled parameters are presented in 

Figure 13, where the parameters are varying over a wide range. Such an event may be 

modelled as a series of simple events with shifting means, which merge into each other to 

form one large, complex rainfall event. The event to be modelled is divided into discrete time 

blocks i of duration T i containing values of   which are randomly scattered about a constant 

value  i  which is calculated over each time block. The corresponding standard deviation ( i ) 

is then calculated from the regression line shown in Figure 14. A series of sub-events are then 

generated, each of duration (T i + ), where  is the duration of the overlap of a sub-event with 

Figure 15 - The method used to simulate storm advection. The trimmed image 

shows that Fourier wrapping is not obvious if the edges are discarded. 

Edges Trimmed 
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the next consecutive sub-event. The transition from one sub-event to the next (duration  ) is 

achieved by linearly fading out the old sub-event whilst fading in the new one. This has the 

effect of smoothing the transition between sub-events and eliminating the abrupt change that 

would be observed if two independent sub-events of length T i and T i +1 were simply placed 

one after the other.  

 

The computational effort required to model a complex rainfall event is less than that for a 

large simple event of the same n and t, because the complex event has the advantage of using 

a series of short Fourier transforms which can be computed very quickly. This is a direct 

result of the fact that the computational effort of the Fast Fourier Transform is proportional to 

(n2t ).log 2 (n2t), so that if a three dimensional field is sliced into m blocks of length s (so  

that t = ms), the effort is proportional to (n2t).log 2 (n2s). A simulated complex event based on 

the statistics of the one presented in Figure 13 will be generated and analysed in Section 12.4. 

 

11. MONTHLY SIMULATED RAINFALL 

Combining the methodologies for modelling the seasonal daily rainfall distribution and a 

simple rainfall event presented in Sections 6 and 9, it is possible to simulate monthly rainfall 

in three dimensions. This is the essence of the String of Beads model.  

 

As an example, consider the month of February in Bethlehem, South Africa. The appropriate 

probability transition matrix is shown in Figure 4 and it can be used to generate a random 

sequence of daily rainfall types for Bethlehem during February as described in Section 6.2. 

With the 3 possible states defined in Table 5.2, there are 328 possible rainday sequences for 

this 28 day month, one of which could be: 

 

 

 

where  

 G is a general rainday 

 S is a scattered rainday 

 D is a dry day. 

 

Each scattered rainfall event is considered independent of the events either side of it, as these 

tend to be the isolated convective thundershowers that occur during the hot summer 

G S S D S S S S S S S S D S G G G S G G G S S S G S S S 
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afternoons. The duration of these scattered events (in hours) is modelled as an exponentially 

distributed random number with a mean of 1.5 hours. Scattered rainfall events are modelled at 

a fine temporal resolution of 5 minutes. 

 

Sequential general rainfall events, such as the two 3-day general events in the scenario shown 

above, are treated as a single event, as these are large systems which persist throughout the 

night and into the following day. Their duration is measured in days as run length of general 

raindays which is automatically accounted for by the Markov chain as discussed in  

Section 6.3. They are modelled at a coarse temporal resolution of 30 minutes. 

 

Since the median of the lognormal distribution is at x = e and the WAR is defined as the 

percentage of the catchment with rainfall intensity of 1mm/h or greater, a general event has  

 > 0 (WAR > 50%) and a scattered event has  < 0  (WAR < 50%). The analysis of over 

2500 wet CAPPIs for this month has shown that the marginal distribution of  can be 

approximated by the trapezoidal distribution of Figure 16. Using this distribution, a random 

value of  i  (where  i  is the average of the  values for all the CAPPIs in the event,  i  > 0 

for the general event or  i  < 0 for the scattered event) is generated for each event. Its 

corresponding  i  is calculated from the relationship  i = -2.2 i  + 1.4, defined by a 

regression line similar to that shown in Figure 14, but calculated for 2500 CAPPIs rather than 

only 512 CAPPIs. Based on the analysis of these 2500 CAPPIs (refer to Appendix F), the 

mean value of space for each event is randomly chosen between 2.4 and 2.7. The value for 

time is taken to be equal to space for the five minute resolution events and as 0.8 x space for 

the thirty minute resolution events as discussed in Section 7.3. 
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Once the duration and the parameters  i , space, time and  i  have been chosen for each 

independent event, sequences of artificial CAPPIs for each event are generated as described in 

Section 9. Since the number of CAPPIs in the sequence must be an integer power of 2 for the 

Fast Fourier Transform, the length of the bead is taken as the smallest integer power of 2 

which is greater than the required event duration. Any excess CAPPIs are then discarded 

thereby ensuring that the sequence does not wrap in time. The first and last few CAPPIs of 

each independent event (approximately 10 CAPPIs for the scattered events and 15 CAPPIs 

for the general events) are then linearly faded to a dry state using a simple scalar multiplier in 

order to give the impression of a gradual change in weather. If a more refined monthly rainfall 

scenario is required the event arrival is modelled in the same way, but the simple rainfall 

events of Section 9 are replaced by the complex rainfall events of Section 10. The analysis of 

a simulated complex event is described in Section 12.4. 

 

12. MODEL VERIFICATION 

The purpose of model verification is to confirm that the statistics of the model output match 

those used as input. It will be shown in this section that the String of Beads model is capable 

of reproducing statistically unbiased simulations of CAPPI data which look and behave like 

real data. Due consideration is given to the effects of data precision and CAPPI masking on 

the measured statistics. Finally, a complex simulated event based on the event analysed in 

Section 8 is generated and then analysed as if it were real data. The analysis is presented in 

the same format as that of Section 8 to facilitate easy comparison between the real and 

simulated events. 

 

12.1 The effect of data precision on the power spectrum 

Simulated CAPPIs are generated using double precision (8 byte) pixels and then re-sampled 

as integer precision (1 byte) pixels to save computer hard disk space as discussed in  

Appendix A. The effect of this truncation of the continuous variable of rainfall intensity is to 

flatten the gradient of the power spectrum. This is due to the fact that when using integer data 

the Fourier coefficients are fitted to a stepped function rather than a smooth function and this 

shifts more of the total power into the high frequency coefficients.  

 

The effect is illustrated in Figures 17 and 18 in which six CAPPIs were generated at double 

precision (32 bit) using the String of Beads model (all with  = 1 and  = 0) with different 

space varying from 0.5 to 3.0. The power spectra of these six CAPPIs were measured, first 
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using the full 32 bit precision and then using the truncated 8 bit precision pixels. Figure 17 

compares the input exponent in to the output exponent out for the 32 bit fields and Figure 18 

compares the input exponent in to the output exponent out for the 8 bit fields. 
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Figure 17 - Comparison of input space to the output space for 32 bit fields 

Figure 18 - Comparison of input space to the output  space for 8 bit fields 
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The regression line of Figure 17 has a gradient very close to unity, clearly indicating that the 

input exponent is reproduced well for the entire range of  in the case of the double precision 

simulation and there is no obvious bias when sampling the power spectrum in this case. 

 

Figure 18 shows that when sampling the power spectrum from this simulation of an 8-bit 

CAPPI, the exponent of the power spectrum is biased by a factor of 0.8. Therefore it can be 

deduced that a space exponent measured from an 8 bit CAPPI should be increased by 25% to 

obtain its equivalent 32 bit value to be used as input to the String of Beads model. 

 

12.2 The effect of the 3/4 doughnut mask on the power spectrum 

In the case of real data, not all of the pixels within the 128x128 pixel square represent the 

rainfall rate at that pixel. Some of the image is masked out (set to zero) in order to eliminate 

ground clutter and data recorded above an altitude in excess of 2km above ground level as 

discussed in Section 5. The effect of this mask on the gradient of the power spectrum appears 

to be very small when considering a space value which varies over a large range. To illustrate 

this point, the six CAPPIs (8 bit) used in Section 12.1 to demonstrate the effect of truncating 

the data to 8 bit precision, were re-analysed using the 3/4 doughnut mask. The results of this 

analysis are presented in Figure 19. 
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Figure 19 - Comparison of input space to output space for masked 8 bit fields 
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Comparing the slopes of the lines in Figures 18 and 19 there is very little difference between 

these two graphs. This suggests that the mask has little effect on space. In the case of 

measured (integer) data the space (masked) value was found to vary between 2.0 and 3.0. 

Over this short range it is difficult to confirm the conclusions drawn from a comparison of 

Figures 18 and 19. 200 simulated CAPPIs were generated and analysed first with and then 

without a mask and the comparison of the estimates of the  values is presented in Figure 20. 

In most cases the values of unmasked are closely approximated by masked. The points appear to 

cluster evenly about the line masked = unmasked, thereby indicating that no obvious bias is 

introduced by the process of sampling the masked field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results presented in Sections 12.1 and this one, clearly show that although the spatial 

structure of the pixels (defined by ), cannot be reproduced exactly for an individual CAPPI, 

when considering the statistics of a sequence of CAPPIs, it is approximated without statistical 

bias by the model.  
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Figure 20 - masked versus unmasked for 200 simulated (8-bit) CAPPIs 



 String of Beads model - 34 

12.3 Effect of data precision on the verification of  and  

When operating the String of Beads model in double precision, the statistics of any real 

CAPPI can be reproduced exactly in a double precision simulated CAPPI. The modification 

of the CAPPI data to integer precision alters the marginal distribution of the pixels slightly 

and this causes difficulties when attempting to verify the performance of the model using the 

integer data. Furthermore, the parameters  and   cannot be measured exactly and are only 

estimates of the parameters of the underlying continuous distribution of rainfall intensities as 

discussed in Section 7. In spite of this, the String of Beads model does produce CAPPIs in 

integer precision which can be verified to have good, statistically unbiased estimates of these 

parameters.  

 

To demonstrate the unbiased nature of the model output, five individual CAPPIs were 

simulated using the measured estimates of , space and  obtained from the analysis of the 

five real CAPPIs which were presented in Figure 5 of Section 7.1. Since the original data are 

in masked integer format, the measured space parameter was increased by 25% to account for 

the flattening of the power spectrum gradient as discussed in Sections 12.1 and 12.2. The 

simulated CAPPIs are shown in Figure 21 for qualitative comparison with those of Figure 5 

. 

Qualitatively, the simulated CAPPIs of Figure 21 all appear to have a similar nature to their 

corresponding real CAPPIs of Figure 5. Real and Simulated CAPPIs (integer precision) were 

analysed using the same method and a comparison of the parameters of the two sets is given 

in Table 4. 

Table 4 - Verification of , space and  parameters estimated from the simulated integer 

precision CAPPIs of Figure 21.  

Simulated 

CAPPI 

 space  

Input Output Input Output Input Output 

Figure 21a 2.669 2.633 2.073 2.146 -4.085 -3.939 

Figure 21b 2.174 2.466 2.361 2.336 -1.673 -2.009 

Figure 21c 1.928 2.305 2.567 2.467 -0.868 -1.249 

Figure 21d 1.804 1.934 2.618 2.819 0.014 -0.046 

Figure 21e 0.894 0.885 2.122 2.117 0.944 0.941 
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A point of interest in Table 4 is the accuracy with which the String of Beads model 

reproduces the space parameter of integer data when the input is increased by 25% as 

discussed previously. In most cases the  and   parameters are reproduced reasonably well 

Figure 21 - Simulated CAPPIs generated using the statistics 

estimated from the real CAPPIs presented in Figure 5 
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when using integer precision and this is confirmed in Figure 22 in which the relationship 

between the model input is compared to its output and a least squares approximation is given 

for each of the three parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In all three cases the regression lines plotted in Figure 22 have nearly unit gradient thereby 

demonstrating the unbiased nature of the output of the String of Beads model. Figure 22 also 

serves to illustrate the typical range of values that is assumed by each parameter. 

 

It is perhaps worth repeating at this point that the original five CAPPIs of Figure 5 were 

selected from the radar data set as representative of the wide variety of rainfall types observed 

by the MRL5 radar at Bethlehem. The quality of the images of the five CAPPIs modelled in 

Figure 21 is a typical representation of what can be expected from the String of Beads model. 

 

Sections 12.1 through 12.3 have addressed the main problems encountered during the 

verification of the String of Beads model. The causes of these problems have been identified 

and wherever possible a solution has been proposed and tested. With these points in mind, a 

42 hour simulated complex event was generated and the results of the analysis are presented 

in Section 12.4. 
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Figure 22 - Verification of the parameters of the String of Beads model as 

applied to integer precision CAPPI data 
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12.4 Analysis of a simulated complex event 

Based on the analysis of the 42 hour rainfall event observed in February 1996 and presented 

in Section 8, a simulated complex event was generated as described in the Section 10 and then 

analysed to extract its statistics as a means of model verification. For the simulation, a 

constant discrete time block T = 2 hours 40 minutes (32 consecutive CAPPIs) was adopted for 

each sub-event with an overlap of  = 1 hour 20 minutes (16 CAPPIs). The average mean for 

each sub-event  i  was calculated over time intervals of 1 hour 20 minutes from Figure 13, 

and the corresponding standard deviation  i  for each sub-event was calculated from the 

regression line given in Figure 14.  

 

The resulting sequence of simulated CAPPIs is included with this document as an animated 

image on compact disk (refer to Appendix G) which can be compared to a similar animated 

image of the real event as seen by the MRL5 radar in Bethlehem. Some CAPPIs have been 

taken directly from the two sequences at time intervals of 4 hours and these are presented in 

Figures 23 (a), (b) and (c). 
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Figure 23 (a) - Selected CAPPIs from the real sequence (top) analysed in 

Section 8  and the simulated sequence (bottom), at 4 hour intervals 
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Figures 23(a), (b) and (c) show how the storm builds from nothing at t = 0 (not shown) 

through scattered showers and peaks at t = 12h with general, light rainfall. This decays into 

scattered, isolated rainfall within 4 hours (t = 16h) and then gradually builds to a more general 

event at t = 28h before decaying again to nothing at t = 40h (again not shown). 

Figure 23(c) - Selected CAPPIs from the real sequence (top) analysed in 

Section 8  and the simulated sequence (bottom), at 4 hour intervals 

Figure 23(b) - Selected CAPPIs from the real sequence (top) analysed in 

Section 8  and the simulated sequence (bottom), at 4 hour intervals 
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This sequence of rainfall events also illustrates the ability of the String of Beads Model to 

model different kinds of rainfall. For both scattered and general rainfall the simulated images 

have a realistic distribution of rain. Storm cells are of reasonable size and random shape and 

the wet/dry interface has the right "roughness". When seen as an animated sequence, the 

storms move, grow and decay in a realistic manner. The most noticeable difference in the 

characteristics of the real and simulated images are the "flaws" observed in the real data such 

as the concentric rings which can be observed at time steps t = 12 and t = 28. This is an 

artefact of using the projection technique of CAPPI calculation as discussed in Appendix A. 

 

Figure 24 shows a typical example of a single real, double precision CAPPI and its simulated 

partner. The real CAPPI was analysed to obtain the three statistics , space and  which were 

used as input for the String of Beads model to produce the simulated image which was then 

analysed in the same manner.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The marginal distributions of the two images are identical through the reverse of the process 

of standardisation as is the case with all CAPPIs simulated in double precision. The wetted 

area ratios of the two images are very similar, as would be expected for two images with such 

similar marginal distributions. There is a small difference in the gradients  space of the 

radially averaged power spectra. This gradient cannot be matched exactly for simulated 

CAPPIs due to the effects of data precision and CAPPI masking as discussed in Sections 12.1 

and 12.2 respectively.  

 

Real Image 
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WAR = 61.6 % 

Figure 24 - Comparison of a real CAPPI to its simulated equivalent 
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When compared to the statistical signature of the real event of Figure 13 and 14, similar 

trends can be observed in the signature of the simulated event shown in Figures 25 and 26. 

Apart from a few isolated CAPPIs, the statistics , space and  all have a similar range to the 

real event and their trends and relationships to each other are reproduced reasonably well. Due 

to the fact that each sub-event has statistics chosen independently of its neighbours, 

discontinuities are clearly evident in the plot of the Wetted Area Ratio for the simulated event. 

This could be improved by more smoothing of the short duration (1 hour 20 minute) sub-

events and in the extreme case, the statistics of each CAPPI could be reproduced individually 

and smoothed to give an almost identical set of curves to those produced in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The line plotted on Figure 26 is the regression line of Figure 14. Comparing the two series of 

Figure 26,   and   of the simulated event are more tightly grouped around the regression 

line than is observed in the real event. There was no noise added to  when computing it from 

the regression line, any variability is the direct consequence of the randomisation procedure 

used in generating white noise in the bead. There are more CAPPIs with relatively low   and 

high  in the simulated event. These differences are a result of taking an average  for each 

sub-event used in the simulation and thereby averaging out CAPPIs of extreme . By 

reducing the duration of the sub-events the simulated event could be forced to resemble the 

Complex simulated event - , ,  and Wet Area Ratio
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Figure 25 - The behaviour of , space and  in time over a simulated 42 hour event. 

To be compared to that of the real event of Figure 13 
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real event more closely. An alternative would be to fit a time series to the means process 

although this might be an over elaborate route to follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analyses presented in Section 12.4 verify the ability of the String of Beads model to 

reproduce statistically unbiased CAPPIs with any required , space and . The simulated 

CAPPIs have been demonstrated to be realistic in appearance and when considered as a 

sequence in time their statistics behave in a similar manner to that of real CAPPIs. What 

remains is to validate the output of the model using an independent test and this process is 

described in Section 13. 

 

13. SIMULATED CAPPI VALIDATION  

Unlike the two dimensional power spectrum and the lognormal distributions, the Generalised 

Structure Function was not used to determine the input parameters of the String of Beads 

Model, and therefore serves as a useful validation test of the simulated CAPPIs. It was 

developed for use in the field of fluid turbulence and has become a widely used technique for 

multifractal fields since the work of Anselmet et al. (1984). Its use is appropriate in the 

analysis of a non-stationary field of dimension D where  > D. When D = 2 dimensions (as is 

the case in individual CAPPIs),  > 2 indicates that ordinary correlation analysis is 

inappropriate. Almost without exception, the values of  estimated from real data were greater 

than 2 as seen in Figures 13 and 25. 

Figure 26 -  vs  for CAPPIs in a simulated 42 hour event. To be 

compared to the real event of Figure 14 
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Since the Generalised Structure Function only makes use of the data sampled from within the 

3/4 doughnut shaped sample area for its calculation (as explained in Appendix C) in both the 

real and simulated cases, the mask has no effect when comparing the GSF of two CAPPIs. 

The precision of the data however, does effect the shape of the GSF and this will be addressed 

in Section 13.1 before using it to validate the spatial structure of the CAPPI data in  

Section 13.2. 

 

13.1 The effect of data precision on the Generalised Structure Function 

Most of the CAPPI data analysed in this study were supplied at 8 bit precision and could 

assume any integer value of rainfall intensity between 0 and 255 mm/h. This presents a 

problem when calculating the Generalised Structure Function. The Generalised Structure 

Function Gq(l) is defined in Equation 2 on a non-negative scalar random field R(x) as being 

the ensemble average of the qth power of the absolute differences of the R values a distance l 

apart. That is 

 Gq(l) =    
q

xRlxR )()(


−+       (2) 

 

Equation 2 suggests that for a continuous variable R(x), the absolute difference between any 

two pixel intensities can assume any real, positive value z. That is 

   )()( xRlxR −+  = z,   z,  z  0.  (3) 

In the case of double precision data, the z values of Equation 3 assume small non-zero values 

for small values of l, and this leads to a small Gq(l). As q tends to zero, Gq(l) tends to unity 

and the function gradient (q) tends gradually to zero. That is to say that 

if  z  0, 1lim
0
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q

q
z  ,  
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00

==
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=
→

q
q

       (5) 

 

Conversely, as l increases, larger absolute differences will be encountered and the Gq(l) will 

gradually increase for any given q  0. A higher power of q will lead to a greater Gq(l) and 

therefore a steeper function gradient (q).  
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This is not the case when R(x) can only assume integer values. The absolute difference 

between two integers must also be an integer value. This introduces zero values of z and the 

shape of the structure function is different from when it is calculated with full precision. 

Figures 27 and 28 show the gradients of the structure function for a CAPPI. Figure 27 was 

calculated for a double precision CAPPI and Figure 28 for the same CAPPI stored in integer 

precision. 
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Figure 27 - Gradients of the GSF for a double precision CAPPI 

Figure 28 - Gradients of the GSF for an integer precision CAPPI to be 

compared with Figure 27 
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The explanation for the difference lies in the fact that the distribution of rainfall on a CAPPI is 

severely skewed towards the lower values (mostly below 2mm/h as shown in 7.1) and it 

stands to reason that the distribution of the absolute differences of rainfall intensities on the 

CAPPI will tend to be even more skewed towards the lower values. In addition, the sampled 

correlation of the intensity of a pixel with its closest neighbour is very high (usually  

above 0.99). The combination of these two conditions leads to the fact that for low values of l 

it is rare to observe an absolute difference of rainfall intensity in excess of 1mm/h. However, 

as l increases, the correlation between the two pixel intensities is reduced and there is a better 

chance of encountering a larger absolute difference between them. This is illustrated in  

Figure 29.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The horizontal bars in Figure 29 represent l values of 8 and 32 used to calculate the GSF in 

the simple one-dimensional example plotted in double precision as the dark grey series, and in 

integer precision as the light grey series. The vertical bars represent the corresponding z 

values for the double precision case. Even on the steepest part of the curve, the largest value 

of z that is experienced for an l value of 8 is approximately 2.5. On the same section of the 

curve a z value of 4.9 can be obtained when using an l value of 32. 

 

Figure 29 - Choice of larger l corresponds to a greater chance of observing 

a large absolute difference (z) 
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When working with integer values of rainfall intensity on the same series of data (plotted as 

the light grey series in Figure 29), a large proportion of the observed absolute differences (z) 

are zero. For a sample of N points containing m zero values  

 

N

mN
lGz q

q

q

q

)(
)(limlim

00

−
==

→→

  (6) 

 

since 00 =
q

 and 11 =
q

 for all q (defining 0
0 

= 0), and the ratio ( N - m ) / N is strictly 

less than one. In the case where m = 0, Equation 6 reduces to Equation 4.  

 

With reference to Equation 3, the smaller the value of l, the more z = 0 will be observed and 

consequently, the smaller will be the limit of Equation 6. Conversely, a larger value of l will 

produce fewer z = 0 and therefore a higher Gq(l) will be calculated. This shows that when 

analysing data in which the absolute differences z can assume a value of zero, Gq(l) will 

increase with increasing l even when q = 0. The only cases in which (0) can be zero are if the 

rainfield is either entirely zero or entirely non-zero. The result of this is that when calculating 

the structure function for integer precision CAPPI data, the gradient (0) will be finite and 

positive as shown in Figure 28. 

 

13.2 Comparison of the GSF for real and simulated CAPPIs 

The  (q) ~ q functions of the real and simulated double precision CAPPIs which were shown 

in Figure 24, are given in Figure 30.  

 

 

 

 

 

 

 

 

 

 

 Figure 30 - GSF Exponent for Real and Simulated CAPPIs of Figure 24 
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The two sampled  (q) functions compare reasonably well out to a range of q = 5. A 

difference appears at the lower end of the curve near the origin. In the simulated case  

the function plots nicely through the origin as expected, however in the real case the function 

appears to be discontinuous near the origin. This is an artefact of the radar data received from 

Bethlehem which is recorded to a precision of 0.1 dBZ. The truncation of the data in this way 

causes the introduction of some zero values and consequently the  (q) function to bend 

upwards at low values of q, with a discontinuity at the  (q) axis as explained in Section 13.1. 

This effect becomes more severe as the precision of the data is reduced.  

 

Menabde et al (1999) show that for a two dimensional non-stationary random field, the 

gradient  space, of the radially averaged, two dimensional power spectrum (one of the three 

parameters of the String of Beads model) is related to G2(l) by Equation 7. 

   G2(l)  l 
 - D

          (7) 

 

Which implies that when D = 2 (as is the case for CAPPI data): 

      = 2 + (2) 
 

Figure 30 gives values of  (2) equal to 0.80 and 0.91 respectively, implying a real of 2.80 

and a simulated of 2.91. These compare quite well to the measured values of 2.51 and 2.88 

presented in Figure 24.  

 

The validity of comparing the spatial structure of two integer precision CAPPIs using the 

Generalised Structure Function is questionable but is done here nevertheless for the five 

CAPPIs of Figure 5 and their simulated equivalents of Figure 21.  Plots of the gradients of the 

Generalised Structure Functions for these 10 CAPPIs are presented in pairs of real and 

simulated CAPPIs in Figures 31 through to 35. 
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Figure 31 - Comparison of the GSF gradients of the real and simulated 

integer precision CAPPIs 

Figure 32 - Comparison of the GSF gradients of the real and simulated 

integer precision CAPPIs 
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Figure 33 - Comparison of the GSF gradients of the real and simulated 

integer precision CAPPIs 

Figure 34 - Comparison of the GSF gradients of the real and simulated 

integer precision CAPPIs 
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The (q) functions plotted in Figures 31 through to 35 suggest that the Generalised Structure 

Function is better approximated for a higher Wetted Area Ratio or for a lower number of zero 

values. The worst case is presented in Figure 31 for the CAPPI 035237 which has the lowest 

WAR and the best case is that of Figure 35 for CAPPI 034802 which has the highest. Apart 

from Figure 31, the (q) functions are reasonably well approximated up to a q value of 1.0 but 

get progressively worse for the higher order moments. 

 

When considering the integer precision radar data that has been analysed in this study, it is 

not possible to draw any firm conclusions regarding the spatial structure of the simulated 

(integer) CAPPIs by the use of the Generalised Structure Function. With the limited amount 

of double precision radar data analysed thus far, the String of Beads model appears to perform 

well when simulating double precision CAPPIs, but this needs to be confirmed by additional 

analysis. With the introduction of the MDV data storage format early in 1999, all radar data 

obtained from the Bethlehem Weather Bureau will be stored to a precision of 0.1dBZ and it is 

intended to use this data to further validate and improve the String of Beads model in a 

follow-on study, under WRC contract K5/1010. 

 

Figure 35 - Comparison of the GSF gradients of the real and simulated 

integer precision CAPPIs 

Comparison of the Generalised Structure Functions of Real 

and Simulated CAPPI data (S1996-034802)

0

0.5

1

1.5

2

0 1 2 3 4 5

q


(q

) 
  

Simulated

Real



 String of Beads model - 50 

14. LIMITATIONS OF THE STRING OF BEADS MODEL 

A limitation of the String of Beads Model is that it produces rainfields which are statistically 

homogeneous in space-time. Simulating orographic effects on the rain field has not yet been 

explored in this model. A second limitation is that the mechanism used to drift the storm 

across the image, Fourier wrapping, demands that the entire weather system in the image 

move with the same velocity (not necessarily constant). This does not always happen in real 

rainfall, particularly when considering convective activity over a large area. Although the 

String of Beads Model has been designed to run on a personal computer, the routines used for 

analysis are RAM and CPU intensive. This is not a serious limitation for any good modern 

computer and will become even less of an issue as more powerful computers are made 

available. Typically, on a Pentium II 266 with 128MB RAM, simulation of a month's rainfall 

takes approximately 30 minutes. Analysis of the month's rainfall (if required) will take 

approximately 2 hours. This could be improved by using more efficient optimisation routines 

or bigger computing power. 

 

15. CONCLUSIONS 

In the context of other rainfall models, the String of Beads Model is a simple, effective means 

of simulating two dimensional rainfall fields as measured by radar. It can provide a credible 

sequence of artificial CAPPIs of instantaneous rainfall intensity which have the correct 

marginal distribution and clustering behaviour. When viewed as an animated image, the storm 

cells in the simulated sequence of CAPPIs grow, decay and translate realistically. The model 

is specified by few parameters and can be used to model simple rainfall events of reasonably 

constant ,  and  or it can be used to create detailed design storms. It can provide a possible 

random rainfall scenario for any time period based on the analysed data. Due to the scaling 

nature of rainfall over a wide range of space and time, large or small areas can be modelled 

equally well. Finally, the model is designed to run on a personal computer in order to avoid 

the need for specialised computing equipment. 
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16. RECOMMENDATIONS 

In its current state the String of Beads model is in an early state of development. Additional 

work is required in the validation of the model and in the linking of the radar data to 

raingauge data for use in areas not covered by radar. If the model is to be useful in the 

management of water resources outside of the study area, additional radar data will need to be 

obtained from other radars in the country. These data would then be analysed in order to 

calibrate the model for use in any region of South Africa. With the standardisation of the radar 

data storage format into MDV file format, the String of Beads model will also need to be 

adapted to perform analysis on these data. Lastly, although much of the operational core of 

the String of Beads model is complete, a considerable amount of work is required in the 

development of the user interface if it is to be used outside of an academic environment.  
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Appendix A - Radar and Raingauge Data 

 

A.1 INTRODUCTION 

The beauty of radar data is that it lends itself to the communication of rainfall intensity over a 

large area through the use of images thereby exploiting the ability of the human mind to 

qualitatively assess the data much faster, and often with far greater accuracy, than can be done 

by computer program. If poorly managed, the large volumes of data can be extremely 

cumbersome and lead to problems in computer disk storage space. It is therefore essential to 

briefly outline the processes used in this study to store, manipulate and display the radar data. 

In this appendix, the configuration of the MRL-5 weather radar is discussed and the 

conversion of its raw data to Cartesian co-ordinates at a constant altitude, that is the 

generation of CAPPIs, is explained. The quality of the radar data and some of the difficulties 

experienced when measuring rainfall using radar are considered. Finally, the methods used to 

store and to display the CAPPI data in an informative format, are presented. 

 

A.2 THE MRL-5 WEATHER RADAR AT BETHLEHEM 

A photograph of the MRL-5 Radar is given in Figure A.1. The radar dome is mounted on top 

of a semi-mobile control centre. The data are transmitted via radio link to the offices of the 

Weather Bureau in Bethlehem which are roughly 20 km south east of the radar site. The radar 

is powered by an uninterruptable power supply (UPS) to ensure that the data set is not 

corrupted in the event of an electricity failure which is most likely to occur during a thunder 

storm. It is a combined S-band (10 centimetre wavelength) and X-band (3 centimetre 

wavelength) weather radar. The S-band radar requires a larger, more expensive antenna but is 

less prone to errors due to attenuation and is therefore a better choice when measuring rainfall 

intensity at long range. The X-band radar data is not considered in this study. In S-band mode, 

the MRL-5 is configured to perform a full volume scan starting with a base scan at an 

elevation of 1.5 and incrementing in elevation in 18 increasing steps to its final elevation  

of 55.  
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With an antenna 4,5 meters in diameter, the beam width of the S-band radar is 1.5. Data is 

collected in 600m bins along the beam. Data analysed to date records its first 600m bin echo 

at a range of 14km from the radar, resulting in a characteristic hole at the centre of the 

CAPPIs. The MRL-5 has recently been reconfigured so that the first bin is at a range of 600m 

and future CAPPIs will record rainfall everywhere within a 150km radius of the radar. The 

MRL-5 completes one volume scan every 4.5 minutes.  

 

A.3 SOURCES OF ERROR IN RAINFALL MEASUREMENT USING RADAR 

A basic assumption made in the development of the model is that the data received from the 

radar is a reasonably accurate representation of what actually reaches the ground. Radar 

measures rainfall by sending out an intense electromagnetic pulse, and then listening to the 

echoes of the pulse as minute parts of it are reflected back to the antenna off the raindrops. 

Being an electromagnetic wave, the pulse propagates in a reasonably straight line from the 

antenna and knowing the speed of light in air, the range of the raindrops can be computed by 

measuring the time between the pulse and the echo. This process is subject to a wide variety 

of systematic errors and these will be discussed briefly with reference to the conditions in 

Bethlehem.  

 

Figure A.1 - Photograph of the radar 
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A.3.1 Ground clutter and beam blocking 

Ground clutter is caused by the radar beam or the side lobes of the radar beam colliding with 

the ground at some point and the result is a strong echo which could be interpreted as an 

intense rainfall cell on a CAPPI. In a sequence of CAPPIs this is easily visually distinguished 

from rainfall due to the fact that it is stationary. The use of Doppler radar is one of the 

methods of eliminating the effects of ground clutter but this results in a much slower scan 

speed and consequently a much lower temporal resolution. Where the core of the radar beam 

strikes a large fixed object, the beam is said to be blocked and rainfall beyond that point will 

not be recorded by the radar. In mountainous areas ground clutter presents a major problem in 

the measurement of rainfall using radar. Apart from the Maluti Mountains in Lesotho, the 

terrain surrounding the Bethlehem radar is quite flat and there is therefore very little ground 

clutter and the rainfields tend to be reasonably homogeneous. A CAPPI altitude of 2km above 

ground level ensures that the effects of ground clutter are minimal, whilst the rainfall passing 

through that level is thought to be a reasonable representation of what actually reaches the 

ground (ignoring the effects of evaporation and updraughts). 

 

A.3.2 Bright band 

The so called bright band is a band of high reflectivity which is usually at a reasonably 

constant altitude and corresponds to the melting layer in a cloud. When viewed by radar, snow 

and ice crystals have a reflectivity which is approximately 4 times lower than that of water. 

Consequently, the radar will tend to under estimate the rainfall on the ground when looking 

above the bright band. As snow and ice crystals pass through the melting layer en route to the 

ground, they begin to melt and become coated in a thin layer of water. This results in a very 

high reflectivity as the radar sees very large drops of rainfall. On a CAPPI this is seen as a 

ring of high reflectivity or rainfall intensity centred on the radar. When viewed with a 

vertically pointing radar this is seen as a band of high reflectivity. Research is underway at the 

University of Natal (Pegram and Mittermaier, 1998) in an attempt to predict the rainfall 

reaching ground level using the vertical reflectivity profile.  

 

Due to the high summer temperatures experienced during the wet season in South Africa, the 

bright band is usually at or above the 2km level. A large proportion of the rainfall experienced 

in Bethlehem is convective in which case the bright band is not well defined and therefore 

does not present a problem.  
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A.3.3 Beam Attenuation 

As the radar beam strikes any object, a small part of the beam is reflected back to the receiver, 

some is scattered and the remaining (slightly weaker) part continues in its original direction. 

The radar beam becomes weaker as its range from the radar increases. When passing through 

an intense storm cell, it is possible in extreme cases for the beam to become so weak that 

rainfall falling beyond the cell is significantly under estimated. This is known as beam 

attenuation. Since the longer wavelength radars are more powerful and suffer from less 

Raleigh scattering, the effects of attenuation are kept to a minimum by using an S-Band radar. 

 

A.3.4 Anomalous propagation 

When calculating the three dimensional position corresponding to the reflectivity recorded by 

the radar, it is assumed that the radar beam has propagated in a straight line from the radar to 

the target and back again. This is not always the case. Being an electromagnetic wave, the 

radar beam is bent by a change in density of the medium through which it is travelling. A 

simple analogy can be drawn to a straight stick when it is partly immersed in water. To the 

person holding the stick, it appears to be bent at the air-water interface. Changes in air density 

are experienced with the approach of a weather front and in extreme cases, a temperature 

inversion can cause the radar beam to be bent to such an extent that it strikes the ground. Part 

of the reflected beam will follow the same path back to the receiver and will be observed as a 

point of high reflectivity. This is difficult to identify in a CAPPI as it is not observed in a 

fixed location. In these extreme cases the beam will be blocked at the point of intersection 

with the ground and will be difficult to distinguish from beam attenuation. More information 

is required in this case, either from ground based stations or from satellite images. These 

extreme cases of anomalous propagation are very rare in the data collected at Bethlehem. 

 

A.3.5 The Z-R relationship 

Much research has been done on the relationship between the observed reflectivity (Z) and the 

rainfall rate (R) recorded on the ground. The Z-R relationship Z = 200R1.6 given by Marshall 

and Palmer (1948) is used to convert reflectivity to rainfall rate for the Bethlehem data. 

Various refinements of this relationship have been proposed, 69 of which are quoted by 

Battan (1973). It has been shown (Uijlenhoet, 1998) that the Marshall-Palmer relationship is 

very close to the mean of the 69 relationships referred to by Battan (1973). An important point 

to note is that the measurement of rainfall intensity by any of the known methods is by no 
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means infallible and at best a reasonable estimate will be achieved. The use of the Marshall-

Palmer relationship seems to be a reasonable one.  

 

In spite of the possible sources of error, the weather radar data received from the Bethlehem 

Weather Bureau is of excellent quality and will only improve as better methods of rainfall 

estimation are developed. 

 

A.4 METHODS OF CAPPI EXTRACTION FROM VOLUME SCAN DATA 

The CAPPIs considered in this study have been extracted from the volume scan data in one of 

two ways. The first is that used by Seed (1994) which involves simply projecting the nearest 

bin of radar data (shown as bold lines in Figure A.2) onto a horizontal plane (shown as a 

dashed line) at a chosen altitude which was taken as 2 kilometres for this study.  

 

 

 

 

 

 

 

 

 

 

This method is a very fast and simple way to generate CAPPIs, however it has the 

disadvantage of having discontinuities in rainfall rate at the jump from one beam to the next. 

This effect is observed in the CAPPI of Figure A.3. Most of the CAPPIs analysed in this 

study were extracted from volume scan data in this way. 

 

2km 

Radar 

Figure A.2 - Creating CAPPIs from volume scan data using the projection 

technique of Seed (1992) 
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A better method of extracting CAPPIs from volume scan data is that suggested by 

Mittermaier and Terblanche (1997). The algorithm is incorporated into a more comprehensive 

system of radar signal processing known as the DISPLACE system (Terblanche, 1996). It 

involves the interpolation between eight radar bins at two levels to achieve a weighted 

average reflectivity at a point (x, y, z) in Cartesian space. This point corresponds to a point  

( r, ,  ) in spherical co-ordinates and the relationships between the two frames of reference 

are defined by the four equations (A.1) through to (A.4). 

 

   r = )( 222 zyx ++     (A.1) 

 

    = 








y

x
arctan      (A.2) 

Figure A.3 - 200km x 200km  CAPPI generated from 

volume scan data using the projection technique 

(Mittermaier and Terblanche, 1997). 
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where a is the standard compensating tropospheric beam refraction factor of 4/3 (Battan, 1973) 

and D is the approximate diameter of the Earth. Finally, 

    = 








r

zharcsin      (A.4) 

 

For each chosen Cartesian grid point, the eight closest radar grid points are identified (four on 

the elevation cone above the point and four on the cone below). This is illustrated in  

Figure A.4. Mittermaier and Terblanche (1997) explain that since the radar grid points do not 

necessarily match the Cartesian grid points, weighting factors reflecting these differences are 

calculated to allow for linear interpolation from the eight surrounding spherical data grid 

points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 - Illustration of Cartesian point and the eight surrounding 

radar data points used in DISPLACE averaging to extract CAPPIs 

from volume scan data (Mittermaier and Terblanche, 1997). 
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Figure A.4 illustrates that for each Cartesian point, six weighting factors have to be 

calculated, two for the slant range (r1 and r2), two for the azimuth (az1 and az2) and two for 

the elevation (el1 and el2). The reflectivity at the point (x, y, z) is then calculated by taking the 

weighted average of consecutive bins (ri , ri+1) in the ratio (r2 : r1), thus reducing eight points 

to four which surround (x, y, z) in a vertical plane. These four points are then averaged in 

azimuth in the ratio (az1 : az2) to give an average reflectivity directly above and directly below 

the point in Cartesian space. Finally, the reflectivity of the point above and the point below 

the point (x, y, z) are averaged in elevation (el1 : el2) to give the weighted average reflectivity 

at (x, y, z). The result of this process is a far smoother CAPPI which does not exhibit the 

concentric rings observed in CAPPIs calculated using the projection technique. An example 

of the DISPLACE type of CAPPI, extracted from the same raw radar data as that used to 

generate the CAPPI of Figure (A.3), is given in Figure (A.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 - 200km x 200km  CAPPI generated from 

volume scan data using the DISPLACE averaging 

technique (Mittermaier and Terblanche, 1997). 



 Appendix A - 60 

Data received beyond a range of 67 km from the radar is not used in the generation of 2km 

CAPPIs when using this technique since the altitude of the base scan exceeds 2km at that 

range. Although the DISPLACE method is clearly a more thorough approach to CAPPI 

generation, it is a relatively new technique in South Africa and has only recently been 

implemented in the radar data received from the Bethlehem Weather Bureau. Consequently 

only a small proportion of the analysis was performed on this type of CAPPI. 

 

A.5 DATA STORAGE CONSIDERATIONS 

Raw radar reflectivity data in dBZ was processed by the Bethlehem Weather Bureau to a 

precision of 0.1dBZ and made available for analysis in one of two main formats. In the first, 

reflectivity data (dBZ) is stored uncompressed as a continuous array of 40000 integers per 

CAPPI, at 16 bit integer precision. To maintain the precision of 0.1dBZ, reflectivity was 

multiplied by 10 prior to being stored as an integer so that an integer of 253 would represent 

an average reflectivity for that pixel of 25.3dBZ, for example. Data are stored row-wise (West 

to East), top to bottom (North to South), so that every 200th integer in the array is at the 

beginning of the next row located 1km South of its predecessor. This method of data storage 

is extremely inefficient as it requires roughly 78kB (1kB = 1024 bytes, 1 byte = 8 bits) of disk 

storage space per CAPPI, or 22MB of disk storage space per day if a temporal resolution of 5 

minutes is assumed. Due to limitations of disk storage space on the personal computer, very 

few CAPPIs of this nature were analysed in this study. 

 

A far more efficient method of data storage is achieved by first converting the reflectivity data 

to rainfall intensity data and then truncating the data to an 8 bit integer. The result of this 

process is that the pixel intensities can only assume integer values between 0 and 255 

inclusive. Most of the CAPPI data analysed in this study were supplied in this format. The 

conversion to 8 bit precision results in any rainfall rate below 1mm/h being truncated to 

0mm/h. Although some detail is lost in the truncation process, a saving in disk space of 50% 

is achieved so that the data for one day can be stored uncompressed using 11MB. 

  

Under prevailing South African conditions, a large proportion (usually more than 50%) of a 

typical CAPPI is either dry or experiencing a rainfall rate less than 1mm/h at any instant in 

time so that the array of integers will usually contain a large proportion of zero values. This is 

due to the fact that a lot of the rainfall experienced in South Africa is in the form of isolated 

thundershowers. The storage method adopted by Seed (1992) exploits this fact and stores 
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CAPPIs as a sequence of short non-zero arrays. Each non-zero array is preceded by a 32 bit 

integer address corresponding to the position of the first non-zero pixel in the 40000 pixel 

array, and a 16 bit integer length corresponding to the number of consecutive pixels before the 

next zero. This same principle is extended to a large file format (*.ima file) which stores all 

the CAPPIs for a day and uses an index file (*.ind file) to locate the start of each new CAPPI 

in the *.ima file. In this way, data storage is typically reduced by approximately 60% 

depending on the extent of the rainfall recorded on the CAPPI and the amount of disk storage 

space required for a day's radar data is approximately 4.5MB. All data analysed in this study 

is included in this format on compact disk (Refer to Appendix G). 

  

Furthermore, when considering the quantitative limits of the data discussed in  

Section 5, there is no need to store data beyond a range of 64km from the radar. Since it is 

convenient to store data as a rectangular or square image, the stored data is reduced to an 

array of 16384 bytes per CAPPI or 4.5MB per day in an uncompressed format. In addition, 

Section 5 showed that only a sample area of 9128 pixels (out of the 16384 pixels in a 128 x 

128 pixel CAPPI) is considered in this analysis. If no information is required outside of the 3/4 

doughnut mask (as is the case when analysing CAPPI data), pixels located outside of the 

mask can be set to zero and the Seed compression algorithm (conversion to *.ima and *.ind 

file) can be applied, thereby reducing the amount of disk storage space to a mere 1.5MB for a 

typical day's rainfall. This represents an overall saving of 93% in disk storage space which is 

an important consideration when operating on a personal computer. 

 

These two methods of data storage have recently been replaced by the MDV format used in 

the TITAN software (Dixon and Wiener, 1993) and this is soon to become the standard 

compressed format used for storing radar data in the South African Weather Bureau. No data 

stored in this format has been included in this study. The MDV format is an extremely 

efficient method of storing radar data. The TITAN software has the option of converting the 

reflectivity data (in MDV file format) into an uncompressed ASCII or binary file which can 

then be analysed in the same manner as the other data used in this study. 

 

A.6 CONVERTING BINARY DATA INTO IMAGES 

In order to view the CAPPI data as an image it was necessary to first select an image file 

format and for the purposes of this study the 256 colour Windows Bitmap was chosen as 

being the most suitable. There are several reasons for this choice the first being that it is an 
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uncompressed, simple file format which makes it easy to manipulate during the analysis 

process. Since the 256 colour bitmap also uses one byte per pixel, the raw data can be stored 

as an image without any loss of precision. Almost any Windows based graphics software will 

display, edit and convert the bitmap into any other desired image format. This makes it easily 

portable and accessible to most computers. The indexed colour palette is also readily edited in 

most simple graphics programs to give a different viewpoint without any manipulation of the 

data. The binary structure of the bitmap will be explained by simple example in section A.6.1. 

 

A.6.1 The binary file structure of the Windows bitmap 

In order to illustrate the binary structure of the Bitmap, it is convenient to discuss the structure 

of a small 16 colour bitmap, an example of which is given in Figure A.6 - each small square 

represents a single pixel on the image. The principles are the same for 16 and 256 colour 

bitmaps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A bitmap file consists of an identifying string, a definition of rectangular size (image height 

and width in pixels), a colour palette and finally a continuous array of numbers which refer to 

the colour palette index. The colour palette defines and indexes each of the colours in the 

image in terms of the three primary colours of light (viz. Red, Green and Blue) at 24 bit 

precision or one byte per primary colour. The size of the 256 colour palette is 1078 bytes 
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Figure A.6 - Example of 32 x 32 pixel, 16 colour bitmap 
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compared to 118 bytes for the 16 colour palette and the array of data which follows the palette 

is at 8 bit precision for the 256 colour bitmap as opposed to 4 bit precision for the 16 colour 

bitmap. For the bitmap shown in Figure A.6, the binary file is given in Figure A.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each pair of hexadecimal numbers is an 8 bit BYTE. The first column represents the byte 

address in the bitmap file. The file is identified by four characters 42 4D 76 02, the first three 

of which represent the ASCII characters BMv. The image width and height are defined by 

two 32 bit integers as is the number of colours in the colour palette. This structure is very 

similar for a 256 colour bitmap, the main difference being that the number of colours would 

be shown as HEX 100 which is the decimal equivalent of 256.  

Image Width 

File Identification Image Height 

Number of colours 16 Colour, 

 24 Bit Palette 

Figure A.7 - Binary structure of 16 colour bitmap example of Figure A.6 

address 
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After the number of colours is declared, the next byte in the file is the NULL character, 

followed by the 24 bit Blue-Green-Red definition of the first colour (Colour 0) which in this 

case is FF FF FF or White. The 24 bit definition of each colour in the palette is separated by 

the NULL character. The last character before the image data, character 000076 is the NULL 

character which is then followed by the index value of the colour of the pixel to be drawn in 

the bottom left hand corner of the rectangular image. In this example, since the image is a 16 

colour bitmap, this index is the first 4 bits of the next byte - Colour 0 which is White in this 

case. The bitmap is drawn row-wise from the bottom left hand corner up to the top right. 

Since there are 32 pixels in each row of the bitmap of Figure A.7, there are 64 consecutive 4 

bit zeros before the start of the next colour (Colour 1). 

 

A.6.2 Selecting the colour palette for displaying a CAPPI 

Since the colour palette is a fixed size and format for a 256 colour bitmap, it is possible to 

change the way in which the image is displayed by simply redefining the colour palette in the 

binary file. As explained in section A.6.1, this is done by altering the mixture of primary 

colours (RGB) in each of the 256 indices.  

 

Manipulating the colour palette in binary is an extremely laborious process. A shortcut is to 

read a single CAPPI into any good graphics package and edit the palette using the tools 

provided in the graphics package. Once a satisfactory palette has been defined for the CAPPI, 

it should be saved as a new 256 colour bitmap. In order to change the palettes of a series of 

CAPPIs, a very simple program can be written which opens the image with the newly defined 

palette and copies the first 1078 bytes into a buffer. Each CAPPI in the series is then opened 

in turn and the first 1078 bytes of the file is over written with the contents of the buffer. 

Figure A.8 shows an image which is drawn using four different colour palettes. 
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All palettes in Figure A.8 have a range of 0-100mm/h, but the left hand images are drawn to a 

linear scale and the right hand images are drawn to a logarithmic scale.  

 

In linear greyscale (Figure A.8a) it is very difficult to visualise the structure of the CAPPI 

because the human eye is not able to distinguish between the neighbouring intensities in the 

palette. Figure A.8a serves to illustrate a poor definition of colour palette. The logarithmic 

greyscale (Figure A.8b) provides a better picture of the CAPPI structure, but is still not able to 

convey the detail of the CAPPI structure, particularly at the higher rainfall intensities. Figure 

A.8b was found to be the best choice of palette when limited to greyscale. 

Figure A.8a - Linear grey palette 

Figure A.8c - Linear RGB palette Figure A.8d - log2 RGB palette 
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Figure A.8 - The use of four different colour palettes to display a CAPPI 

100 

0 

80 

20 

40 

60 

Figure A.8b - log2 grey palette 
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The use of colour proved to be far superior to greyscale in the communication of CAPPI 

structure. The linear Red-Green-Blue (RGB) palette of Figure A.8c provides an image which 

gives a clear idea of the distribution of rainfall intensity on a CAPPI and is particularly useful 

when considering the structure of less intense storm cells in the CAPPI. The logarithmic RGB 

palette of Figure A.8d better describes the structure of the more intense storm cells on the 

CAPPI although intuitively it gives the impression of a very intense weather system. When 

qualitatively comparing CAPPIs, they should be viewed using both these palettes. 

 

A.7 CAPPI IMAGE FILE NOMENCLATURE 

A point of great importance when dealing with a large number of image files is that they 

should have sensible nomenclature. During analysis it is necessary to open and close each file 

in turn so that if this process is to be automated the number of characters in the file name 

should be constant. Another point to note is that it is far easier to reference a file by number 

than by letter. The file nomenclature that was adopted for the data was: 

First character - S, C or X (the type of radar) 

Second to fifth characters - the year (four characters for 2000 compliance) 

Sixth character - the dash character 

Seventh to twelfth characters - number of minutes from the start of the year  

(Six numerical characters are needed as  

there are 527040 minutes in a leap year.) 

 Followed by the four character extension .bmp 

 

An example of an image filename could be: 

    S1996-034591.bmp 

which would be a bitmap image of a CAPPI, recorded with an S-band radar in the 34591st 

minute of the year 1996.  

 

Since the numbers 0 to 9 are ASCII characters 48 to 57 respectively, the next image in the 

sequence can be automatically referenced by simply incrementing the right-most character in 

the file pointer (before the .bmp extension) and testing to see if it is greater than 57. If it is 

greater than 57, set it to character 48 (zero) and increment the character to its left. 
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A.8  SUMMARY 

This appendix has served to explain the process involved in radar data collection, storage, 

interpretation and manipulation. It is acknowledged that rainfall measurement by radar is by 

no means perfect, however it is able to give a good representation of the rainfall in real time 

over a large area and at a high spatial and temporal resolution. The techniques that have been 

outlined are easily taken for granted, but they are essential to the data visualisation, modelling 

and analysis processes. 
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Appendix B - Transition Probability Curves 

 

B.1 INTRODUCTION 

The full set of periodic transition probability curves for the Bethlehem area, calculated by 

Pegram and Seed (1998), are included in Figures 5.2 to 5.10. The points represent the weekly 

sampled transition probabilities from the 30 year collection of up to 330 daily read raingauges 

in the 200 kilometre square centred on Bethlehem. The line which has been fitted to these 

points is the two-harmonic Fourier fit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 - Probability of a dry day following a dry day 
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Transition Probability Curve - Pegram and Seed (1998) 

Figure B.2 - Probability of a scattered rainday following a dry day 
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Transition Probability Curve - Pegram and Seed (1998) 
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Figure B.3 - Probability of a general rainday following a dry day 
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Figure B.4 - Probability of a dry day following a scattered rainday 

Figure B.5 - Prob. of a scattered rainday following a scattered rainday 
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Figure B.6 - Prob. of a general rainday following a scattered rainday 
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Figure B.7 - Probability of a dry day following a general rainday 
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Figure B.8 - Prob. of a scattered rainday following a general rainday 
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In their discussion, Pegram and Seed (1998) point out that Figures B.7, B.8 and B.9 exhibit no 

recognisable trend and it is therefore reasonable to keep the general-to-anything transition 

probabilities constant throughout the year. Note the change in vertical scale on Figures B3 and 

B7 illustrating the rarity of a General rainday following a Dry day and vice-versa. 

 

Figure B.9 - Prob. of a general rainday following a general rainday 

      Measured       Fourier Fit 

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Weeks

P
r
o
b

a
b

il
it

y
.

Transition Probability Curve - Pegram and Seed (1998) 



 Appendix C - 72 

Appendix C - Tools for Data Analysis 

 

C.1 INTRODUCTION 

The Lognormal distribution, the Fourier Transform and the Generalised Structure Function 

are defined and the method of calculation of their parameters is discussed. These are the tools 

used in the development and verification of the output of the String of Beads model and in the 

case of the Generalised Structure Function, the validation of the spatial correlation structure 

of the simulated CAPPIs.. 

 

C.2 THE TWO PARAMETER LOGNORMAL DISTRIBUTION 

A variate is considered to be lognormally distributed if the logarithms of the variate are 

described by the Normal Distribution. The formal definition and properties of the two 

parameter lognormal distribution are described by Aitchison and Brown (1957) and 

paraphrased here for completeness and clarity of exposition.  

 

Using their notation, consider a positive variate X (0<x<) such that Y = logX is normally 

distributed with mean y and variance  y
2 . To simplify the notation, the y subscript will be 

dropped and the parameters y and  y
2  will be written as  and  2  respectively. X is then 

said to be lognormally distributed, or X is a -variate written as X is (,  2 )  and 

correspondingly Y is N(,  2 ) . The distribution of X is therefore specified by the two 

parameters  and  2 . Clearly X must be positive and non-zero as the transformation Y = 

logX is not defined for zero or negative X. The distribution functions of X and Y are then 

given by ( x  | ,  2 )  and N( y  | ,  2 )  respectively so that  

 

   ( x  | ,  2 )  =  P{X  x}   (C.1) 

and    N( y  | ,  2 )  =  P{Y  y}    (C.2) 

 

where P{X   x} and P{Y   y} represent the probabilities that X   x  and Y   y.  
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The two parameters of the lognormal distribution  and  2  are related to the mean x and 

standard deviation  x  of the untransformed X -variate by the equations: 

 

   x = exp( + 1/2  2 )     (C.3) 

    x  = exp(2 +  2 ) (exp( 2 )  - 1)  (C.4) 

and the median is at x = exp(). 

 

C.2.1 Estimation of the parameters  and  2  

Given a sample Sn of data consisting of n observations described by the real numbers  

{x1, x2, …xn} sampled from (  ,  2 ) a method is required for measuring the parameters m 

and s2 , the most likely estimators of the parameters  and  2 . This is achieved by finding the 

maximum value of the Likelihood function of the sample given as: 
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  (C.5) 

 

from which the maximum likelihood estimators m and s2 are found to be: 
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Equations C.6 and C.7 can be used explicitly to find the maximum likelihood estimation of 

the parameters for continuous data sets (i.e. data sets in which each xn is given to its full 

precision). Radar data can be recorded to any precision, but at the expense of processing time 

and data storage space. The rainfall data analysed in this study were mostly at 8 bit precision 

(i.e. any integer value between 0 and 255 mm/h) and it was therefore necessary to adopt a 

slightly different approach when estimating the parameters of the continuous lognormal 

distribution of rainfall intensity on a CAPPI. In this case, the method of maximum likelihood 

is applied for grouped data, where the observations are considered to be grouped into 256 
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bins of even interval 1mm/h. Supposing that the interval i is (xi-1, xi) for i = 1, 2, …,256 and 

that ni of the total n observations fall within the ith interval, then the likelihood of the sample 

is proportional to 

  − −
i

n

ii
i

xx ),|(),|( 2
1

2    (C.8) 

 

and the log likelihood function L is thus 
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for i = 1, 2, 3, …,256 where yi = log xi and for CAPPI data, 

     yi = log (rainfall rate i mm/h ) 

     ni = number of pixels in the masked CAPPI recording a rainfall rate of i mm/h 

 

The maximum value of Equation C.9 can be found changing its sign and using a function 

minimisation routine such as the Downhill Simplex method devised by Nelder and Mead 

(1965) the algorithm for which is given by Press et al. (1992).  

 

C.2.2 The nature of the lognormal distribution 

The lognormal distribution is positively skew and it has been demonstrated in  

Section 7.1 that the marginal distribution of CAPPI data is also positively skew. That is to say 

that the skewness given by Equation C.10 is positive valued and therefore the distribution has 

an asymmetric tail which extends towards the more positive x.  
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   (C.10) 

where mx and sx are given by Equation C.3 and C.4 for the continuous case. 

 

Figure (C.1) compares the frequency curves of two distributions, N(0,1) and (0,1) 

illustrating the positive skewness of the latter and the positions of its mean, median and mode. 

In the case of the standard normal distribution N(0,1) the mean, median and mode coincide at 

zero and the skewness is zero. 
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The lognormal distribution is very flexible in so far as it is able to assume a wide variety of 

shapes depending on the ratio of its parameters  and . This is illustrated in Figures (C.2) 

and (C.3) in which the effects of varying  whilst maintaining a constant  , and vice-versa, 

are depicted.  
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Figure C.2 - The effect on the shape of the lognormal distribution of 
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The higher the value of the parameter   in relation to , the more skew is the distribution. 

This kind of flexibility is essential when fitting a distribution to rainfall intensity data on a 

CAPPI. The distribution of rainfall intensities for a stratiform event (general rain of low 

intensity) will be very different from that of an intense forced convective system (large 

convective storm cells which are of the order of 50km in diameter) which in turn will be very 

different from that of a free convective system (isolated thunderstorms of the order of 10km in 

diameter). 

 

C.2.3 Goodness of fit 

In spite of its good appearance, the two parameter lognormal fit is not perfect and a problem 

lies not in the tail of the fit, but in the first bin of the data (0 - 1mm/h). By fitting a simple two 

parameter lognormal distribution, it is assumed that the entire CAPPI is experiencing rainfall 

although in some parts of the CAPPI it is extremely light. This is not in fact the case, as parts 

of the CAPPI are actually dry. Owing to the integer nature of the data, these dry pixels are 

included in the first bin of the histogram. The result is that the number of pixels in the first bin 

is erroneously high and the skewness of the distribution of the rainfall intensities appears 

greater than it really is. The effect of this phenomenon is most clearly seen when examining 

Probability density functions for various lognormal distributions 

Figure C.3 - The effect on the shape of the lognormal distribution of 

increasing  whilst maintaining a constant  
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the differences between the expected and observed histograms as shown in Figure C.4 in 

which the number of pixels in the second bin (1 - 2mm/h) is clearly over-estimated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical examination of Figures 6 to 10 (Section 7.1) will also show this trend. For this reason, 

many of the fitted distributions will fail the well known Chi-square test. This problem was 

discovered too late in the study to repeat all of the analysis, however a possible solution 

(untested to date) is proposed here. At this stage the modelling process has been shown to be 

valid, and refinements will be dependent on a follow-on study.  

 

A small modification to the methods presented thus far should improve the estimation of the 

parameters of the distribution although it has not yet been tested. CAPPI data are provided in 

integer format between 0 and 255mm/h. This does not give any information regarding the 

distribution of rainfall intensity between 0 and 1mm/h, therefore there is no way to distinguish 

between areas of light rainfall and areas that are dry. The methods given thus far assume that 

the entire CAPPI is experiencing rainfall, although it is very light in some parts of the CAPPI. 

Consider the complete set of n pixels arranged into 256 groups (or bins). The first group of 

the CAPPI data comprises all rainrates 0   i < 1 including n0 points which are dry (i = 0) and 

n1 points which are experiencing very light rainfall (0 < i < 1mm/h). The remaining points n2 

all experience rainfall rates 1  i  255mm/h. The points n0 are not defined on the lognormal 

distribution and are shown as a vertical pole at 0mm/h. Figure C.5 depicts a mixed frequency 
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Figure C.4 - Errors of fit of the lognormal distribution 
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diagram with a pole of values at zero, the remaining n1+n2  points being distributed 

continuously on the positive part of the real line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clearly, 

n = n0 + n1 + n2     (C.11) 

 

therefore, n1  must lie in the interval 

 

   0 < n1 < n - n2      (C.12) 

 

Since the function maximisation routine used in the parameter estimation algorithm is 

unconstrained, it is necessary to make use of the logit transform in order to express Equation 

C.12 in the unconstrained form of C.13. 
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where q is a dummy variable  (- < q < ) such that, once it has been defined, n1 can be 

found from it by reversing the transform as shown in Equation C.14: 

 

n2 

n1 

n0 

0 1 2 3 4 5 6 7 8mm/h 

Figure C.5 - Mixed frequency diagram of rainfall intensity on a CAPPI 
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Thus q can be added as an extra variable in the log likelihood function which is passed to the 

function maximisation routine, thereby improving the estimation of the parameters  and  2  

and statistically defining the boundary between areas of the CAPPI which are receiving 

rainfall and those that are not. 

 

C.3 THE FOURIER TRANSFORM AND POWER SPECTRUM 

A mathematical transform is simply a procedure whereby a function is transformed into 

another domain which may have some convenient properties that can simplify the 

manipulation of the function. A common example is the Log Transform where any positive, 

non-zero number can be expressed in terms of its logarithm. In the log domain, multiplication 

of positive numbers is replaced by the addition of their logarithms. Addition is a much 

simpler operation than multiplication and this transformation can save a great deal of time 

when multiplying large numbers by hand. Of course the transformation has no real value 

without an inverse to transform the logarithm back into the natural domain and this role is 

played by the Exponential Transform. 

 

The Fourier transform is an essential ingredient in both the analysis and the modelling 

processes due to the fact that it can be calculated quickly for a large field of data through the 

use of the Fast Fourier Transform.  

 

C.3.1 The Continuous Fourier Transform in one dimension 

Although the transform is not used in this form in the String of Beads model, this is the 

simplest case of the Fourier Transform and will serve to illustrate some of the properties of 

the Fourier Transform and how it can be applied to one dimensional data. A concise general 

development of this theory is given by Press et al. (1992) and the relevant sections are 

paraphrased in this section. 

 

Analogous to the Log Transform, the Fourier Transform transforms a function, or a sequence 

of numbers in the case of the Discrete Fourier Transform, from the time domain into the 

frequency domain. The procedure which defines the Fourier Transform from a function of a 
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complex variable t in the time domain h(t) to its corresponding function in the frequency 

domain H(f) is defined by Equation C.15. 

 


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 is a complex multiplier which can be represented as  
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

sincos ie
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+=   where  = 2ft  

 

The inverse transform, from the frequency domain into the time domain is given by Equation 

C.16. 
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C.3.2 The Discrete Fourier Transform in one dimension 

Rainfall data measured by radar are obtained in discrete space-time intervals and it is 

therefore necessary to extend this theory to its discrete form. Following Press et al. (1992), 

consider the case of a sample set containing N consecutive values in the time domain hk (  

h ( t k ) , k = 0, 1, 2, …, N-1  , where t k = k and  is the sampling interval). Assuming that N 

is even as will be the case in CAPPI data, with N numbers of input, no more than N 

independent numbers of output will be produced so that the Fourier Transform H(f) need only 

be estimated for the discrete values of fn where  


=

N

n
fn ,   

2
,...,

2

NN
n −=    (C.17) 

 

The extreme values of n in Equation C.17 correspond to the lower and upper limits of the 

Nyquist critical frequency ( fc ) range. The Fourier Transform for frequencies beyond these 

limits cannot be calculated due to the fact that critical sampling of a sine wave is two sample 

points per cycle. It can be shown that the discrete form of Equation C.15 is given by 



 Appendix C - 81 

 

==
−

=

1

0

/...2.)(
N

k

Nnki
knn ehHfH 

   (C.18) 

 

Where Hn is the Discrete Fourier Transform of the N points hk. The Discrete Fourier 

Transform maps N complex numbers (hk 's) in the time domain onto N complex numbers  

(Hn 's) in the frequency domain independently of the time interval between the sampled 

points. The inverse of the Discrete Fourier Transform is calculated using Equation C.19 

which will recover exactly the hk 's from the Hn 's . 
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C.3.3 The Fast Fourier Transform 

The Fast Fourier Transform is a method of computing the Discrete Fourier Transform using 

fewer calculations. The data sets used in the development of the String of Beads model are 

extremely large and it therefore becomes important to consider the computational efficiency 

of the algorithm used to extract the Fourier Transform. It has been shown that for a sample of 

N points, the computational effort required for the Fourier Transform is proportional to N 2  

calculations. The computational effort for the Fast Fourier Transform algorithm is 

proportional to N.log2 N calculations. To illustrate the significance of this saving,  consider 

the case in which the simulation of a 40 hour rainfall event is required at 5 minute intervals 

and 128x128 spatial resolution. The saving in computational effort is of the order of 320 000 

times which means the difference between 1 minute and 220 days on a modern computer. 

 

The derivation of the Decimation in Time Fast Fourier Transform algorithm is covered in 

many texts (Kuc (1988), for example) and will not be repeated here. It takes advantage of 

certain symmetries in the transform by splitting the sequence hk into two half sequences, even 

indexed hk(even) and odd indexed hk(odd), which are independently transformed and added 

together. Since 4N2 real valued multiplications are required to compute an N point Discrete 

Fourier Transform, 4(N/2)2 are required for each of the half sequences hk(even) and hk(odd), or 

a total of 2N2 for both. The two half sequences can themselves be split into two half 
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sequences again reducing the multiplication count. Decimation can continue until N = 1. It is 

for this reason that the sequence to be transformed must be an integer power of 2 in length. A 

sequence of arbitrary length should be padded with zeros to achieve this condition. 

 

C.3.4 The Fast Fourier Transform in two or more dimensions 

Consider a complex valued function h( k1 , k2 ) defined on a two dimensional space where k1 

= 0,1,…, N1 -1 and k2 = 0,1,…, N2 -1, its complex valued two dimensional discrete Fourier 

Transform H( n1 , n2 ) is given by Equation (C.20). 
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This can be rearranged in the form of Equation (C.21). 
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In this way the two dimensional transform can be computed by taking sequential one 

dimensional Fast Fourier Transforms on each index of the original function (in this case 1 and 

2). The inverse transform h( k1 , k2 ) for the two dimensional case is given by: 
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The theory presented here for the two dimensional case can be shown to extend to multi-

dimensional space. Efficient programming of this algorithm is not a trivial exercise. The 

routine given by Press et al. (1992) was used for this study. 

 

C.3.5  Estimating the power spectrum using the FFT 

Given a one dimensional sample of N complex valued points (where N is an integer power of 

two) in the time domain hk  (where k = 0, 1, …, N-1), the one dimensional power spectrum is 

proportional to | Hn | 
2, where the Hn (n = - N/2, …, N/2) are defined by Equation C.18 and 
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represent the corresponding sequence in the frequency domain. That is to say that in order to 

estimate the power spectrum of a sequence of N complex valued points hk, the sequence is 

transformed into Fourier space via the FFT to get the transformed complex valued sequence 

Hn and the power spectral density P(fn) corresponding to each frequency (fn) is obtained by 

squaring the Hn term.  

 

C.3.6 Some properties of power spectra 

An example of a one-dimensional real valued sequence and its power spectrum is given in 

Figure C.6. The Fourier Transform of a real valued sequence hk is a complex valued sequence 

in which Hn (n = - N/2, …, N/2) is the complex conjugate of H-n . Since the absolute values of a 

complex number and its complex conjugate are equal, only half of the power spectrum is 

plotted (i.e. | Hn | 
2, where (n = 0, …, N/2)). Although it is only a one-dimensional example, the 

sequence has some properties similar to those observed in CAPPI data. Firstly, all the points 

are positive, real numbers and the sequence appears to have a strong auto-correlation. This is 

also the case in CAPPI data and the result of this property is that the pixels on the CAPPI 

have a definite clustered appearance. The second point is the power-law relationship between 

the frequency and the power spectral density - the logarithm of the power is proportional to 

the logarithm of the frequency as shown in Equation C.23. 

 

    log P(fn) ~ log fn     (C.23) 

which implies that 

    P(fn) ~ fn  
-

      (C.24) 

 

for some exponent . A random field will exhibit scaling properties in its statistical moments 

if the power spectrum of the field takes the form of Equation C.24. This in turn means that the 

spatial correlation on the image is uniquely defined by a single parameter. In the extreme case 

where  = 0, the data in the sequence are completely uncorrelated with each other and this 

would indicate a pure noise process. Conversely a high value of  would indicate a highly 

correlated sequence. Finally, a  value greater than the dimension of the sequence indicates a 

non-stationary underlying process in the sense that it does not have a fixed mean value. The  

exponent of the example presented in Figure C.6 has a value of 1.93 and since the original 

process is one-dimensional it is likely to have been sampled from a non-stationary process.  
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The ideas presented for the one dimensional case in Sections C.3.5 and C.3.6 can easily be 

extended to multi-dimensional space, the only difficulty being that n-dimensional space 

produces a corresponding n-dimensional power spectrum which becomes difficult to visualise 

and interpret. 
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Figure C.6 - Example of a 1-D real sequence and its power spectrum 
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C.4 THE GENERALISED STRUCTURE FUNCTION 

Although the gradient of the radially averaged two dimensional power spectrum () is a 

sufficient descriptor of the spatial correlation structure of the rainfall intensities on a CAPPI, 

an important tool for validating the modelling procedure is through the use of the so called 

Generalised Structure Function. This has become a widely used technique in multifractal 

fields since the work of Anselmet et al. (1984). A concise description of this technique with 

specific reference to rainfall fields is given by Menabde et al. (1999). Paraphrasing their work, 

the Generalised Structure Function Gq(l) is defined on a non-negative scalar random field 

R(x) as being the ensemble average of the qth power of the absolute differences of the R values 

a distance l apart. That is 

 Gq(l) =    
q

xRlxR )()(


−+       (C.25) 

 

In addition, the non-stationary random field is called multiaffine (Benzi et al., 1993) if Gq(l) 

satisfies the condition: 

  Gq(l)  l  (q)          (C.26) 

 

where l = | l


| and  (q) is some non-linear function of q. For the case in which q = 2, (2) is 

related to , the gradient of power spectrum, by Equation C.27. 

     = D + (2)     (C.27) 

 

where D is the dimension of the data (D = 2 for CAPPI data). 

 

For the purposes of this study, the generalised structure function of Equation C.25 was 

approximated for CAPPI data in the two principle directions (north-south and east-west) and 

for 6 discrete values of l chosen to be 1, 2, 4, 8, 16, 32 and 64. Since both points R(x) and  

R(x + l) of Equation C.25 are required to be within the unmasked region of the CAPPI, 

significant areas of the CAPPI do not contribute to the calculation of the structure function for 

the larger values of l. This is illustrated in Figure C.7. The area shown in yellow represents 

the area of the CAPPI which contributes to the calculation of the structure function in both the 

east-west and the north-south directions. Areas shown in red and green represent regions of 

the CAPPI which contribute to the structure function in only the east-west and the north-south 

directions respectively. Regions shown in black do not contribute to the calculation of the 

structure function. The image on the left shows the case in which l = 64 and the image on the 

right when l = 16. 
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Less than 75% of the CAPPI is used to calculate the structure function in the case where l = 

64. In comparison, the entire CAPPI is used for the case when l = 16 and more than 98% of 

the CAPPI is used in both the north-south and east-west directions. Consequently the 

behaviour of the structure function at high values of l is dependent on the distribution of 

rainfall on the CAPPI and is somewhat erratic. An example of a structure function is plotted 

in Figure C.8. 
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Figure C.7 - Areas contributing to GSF calculation for different values of l 

Figure C.8 - Typical example of Structure Function for a real CAPPI 
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For a chosen l, beginning in the north-west corner of the CAPPI, the position of the first point 

R(x, y) (x, y = 0,1,…,127) was first checked to ensure that it fell within the limits of the 3/4 

doughnut sample area. Next the position of the point R((x + l), y) was checked in a similar 

fashion. If both R(x, y) and R((x + l), y) were found to be within the limits of the sample area, 

their absolute difference was calculated which was then raised to various powers q and stored 

in a table. This process was then repeated in the north-south direction. The ensemble average 

of the absolute differences in intensity raised to a power q for all pairs of pixels a distance l 

apart was then calculated for selected values of q.  

 

The Generalised Structure Function is defined for all q  0 and has been plotted with 

logarithmic axes in Figure C.8 for discrete values of l/l0 up to 64, and discrete values of q up 

to 3.0. For values of q less than 3.0 and l/l0 less than 16 the function, log Gq(l) versus log (l/l0) 

is approximately linear for a given q. In addition, the gradients (q) of the linear 

approximations appear to be a function of increasing q. These observations in real rainfields 

suggest the multiaffine behaviour defined in Equation C.26 and can be expressed in the form 

of Equation C.28. 

 

     log Gq(l)  (q).log l    (C.28) 

 

The gradients (q) of Equation C.28 are obtained by fitting power law relationships by least 

squares in the linear space of Gq(l) ~ l/l0. These can be plotted for discrete values of q and an 

example of such a plot is given in Figure C.9 for the six values of q shown in Figure C.8. 

According to the relationship defined in Equation C.27 for a two dimensional field, the (2) = 

0.678 shown in Figure C.9 should correspond to a  of 2.678. The measured  for this CAPPI 

was found to be 2.692. 



 Appendix C - 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the power spectrum and the marginal distribution, the Generalised Structure Function 

is not used to determine the input parameters ( ,  and ) of the String of Beads model and it 

therefore serves as a useful validation test for the model output. 
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Figure C.9 - Gradients of the Generalised Structure Function presented for 

a real CAPPI 
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Appendix D - Random Number Generation 

 

D.1 INTRODUCTION 

The object of the String of Beads model is to generate a realistic pseudo-random rainfall 

scenario in space-time. One of the key ingredients in the model is a good uniformly 

distributed pseudo-random number generator. Such generators commonly available range 

from reasonable to awful. The purpose of this appendix is to revisit this well worn topic and 

indicate the care taken to ensure that the simulations of the String of Beads model do not 

suffer from a poor generator. Two algorithms are presented in this appendix; the first is an 

efficient and portable pseudo-random number generator (Wichmann and Hill, 1982); the 

second is to transform a sequence of uniformly distributed random numbers into a white noise 

sequence using, the percentage points of the normal distribution (Beasley and Springer, 

1985). A quantitative measure of the quality of output for both algorithms is given. 

 

D.2  PSEUDO-RANDOM NUMBER GENERATION 

Rainfall, like many other natural phenomena, can be effectively modelled as a random 

process. The randomness of the sequence of pseudo-random numbers produced by the random 

number generator is of great importance in the simulation process. Algorithms which are built 

into the compiler software cannot always be relied upon to produce sufficiently random 

numbers and for this reason one devised by Wichmann and Hill (1982), was adopted to 

generate uniformly distributed random noise. 

 

Strictly speaking, the sequences of uniformly distributed numbers used are pseudo-random 

and make use of an algorithm which calculates a number based on the previous number in the 

sequence. This ensures that any generated sequence of random numbers can be repeated when 

necessary by initialising the algorithm with the same seed. Obviously the random number 

generator should not refer to the time or date or any other volatile variable for its initial seed if 

the sequence is to be reproducible.  

 

Several factors were considered in the selection of the pseudo-random number generator. The 

algorithm needed to be portable in the sense that it should be machine independent. Routines 

which make use of low-level commands such as bit shifts and other binary arithmetic, rely on 

a format of data storage which is specific to the computer operating system, the programming 

language and the brand of compiler. If the routine is to be portable these low-level commands 
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should be avoided. The randomness of the original uniformly distributed sequence is of great 

significance in the model. Simulation of the rainfall for a single day at 128x128 pixel, five 

minute resolution requires 5 million random numbers. The consequences of using a poor 

random number generator would be that patterns would soon become apparent in the 

simulated rainfields. Another important factor considered in the selection of the algorithm was 

the speed or efficiency. An algorithm which involves too many arithmetic operations would 

result in a very slow program when generating long sequences of numbers.  

 

D.2.1 The multiplicative congruential generator  

The method chosen was that suggested by Wichmann and Hill (1982) who make use of a 

combination of three multiplicative congruential generators. The algorithm AS 183 is 

published in Applied Statistics Algorithms (Griffiths and Hill, 1995). Uniformly distributed 

random number generation is discussed at length by Knuth (1969) and his description of the 

linear congruential generator is outlined here. The multiplicative congruential sequence is a 

special case of the linear congruential sequence (Xn) defined by Equation D.1. 

 

Xn+1 = (a.Xn +c) mod m,   n  0.   (D.1) 

 

where 

 X0  is the starting value or seed; X0  0 

 a  is the multiplier;  a  0 

 c is the increment;  c  0 

 m is the modulus;  m > X0 ,   m > a,   m > c 

 

and the "mod" function is the remainder when a number is divided by a divisor. 

 

It can be shown that all such sequences will eventually repeat themselves for a large enough n 

known as the period. A larger period implies a more random sequence of numbers. The 

choice of these four parameters is critical to the period of the sequence and an example given 

by Knuth (1969) of a poor choice of parameters is when X0 = a = c = 7, m = 10. In this case 

the second value of the sequence (X1) would be calculated as 

 

  X1  =  (7.7 + 7) mod 10  

=  56 mod 10  

=  6 
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and the entire sequence Xn would be  

 

  Xn =  7, 6, 9, 0, 7, 6, 9, 0, 7, 6, 9, 0 …  (n  0) 

 

This sequence has a period of length 4 and is therefore not useful as a random number 

generator.  

 

For the special case in which c = 0, the number generation is slightly faster with a small 

sacrifice in the length of the period. This is often referred to as the multiplicative congruential 

method and is the only case that will be considered in this document. Equation D.1 then 

reduces to Equation D.2. 

 

Xn+1 = a.Xn mod m,   n  0.   (D.2) 

 

The modulus m should be chosen as a large number since the period can never have a value 

larger than m. Furthermore, if m is a prime number the maximum period possible is (m - 1) 

and this can be achieved provided that two conditions are satisfied. These are 

(1) X0 is relatively prime to m 

(2) a is a primitive root of m 

 

If m is chosen as a prime number then X0 will automatically be prime relative to m.  

 

The number x is said to be a primitive root of m if there exists an integer value k which 

satisfies the relationship given in Equation D.3. 

 

   xk mod m = 1     (D.3) 

 

At least one solution (x) to Equation D.3 exists for all prime numbers m.  

 

As previously mentioned, Wichmann and Hill (1982) make use of three multiplicative 

congruential generators each of which uses a prime number for its modulus and a 

corresponding primitive root for its multiplier. The modulus and its corresponding multiplier 

for each of the generators are listed as 
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    modulus  multiplier 

  (1)    30269      171 

  (2)    30307      172 

  (3)    30323      170 

 

Although the sum of n independent rectangular distributions will tend to a normality as n 

tends to infinity, the fractional part of a sum of rectangular distributions will remain 

rectangular for all n. This property is exploited by Wichmann and Hill (1982) in order to 

compensate for imperfections in the randomness of the individual generators. Each generator 

is seeded with an initial value between 1 and 30000, X10 , X20 , X30 respectively. The results of 

the three generators X1n , X2n , X3n are then added and the fractional part of the sum is taken as 

the uniformly distributed pseudo-random number R(0,1).  

 

Wichmann and Hill (1982) claim that since each generator has a period of 1 less than its 

prime modulus, the periods are all of even length and therefore have a common factor of 2 but 

no other common factors exist for the values chosen. For this reason the three generators are 

not completely independent but the results have been well tested and perform very well. Due 

to the common factor of 2 in the periods of the generators, they have a combined period of 

one quarter of the product of the individual periods. That is a period exceeding 6.95 x 1012. 

Considering that 5 x 106 random numbers are required for a single day's simulation at 128 

x128 pixel, 5 minute resolution, about 3800 years of simulated rainfall data of a continuous 

wet period could be generated before the pseudo random sequence starts to repeat itself and a 

cyclic behaviour might possibly be observed in the CAPPIs.  

 

D.2.2 Percentage points of the normal distribution 

The String of Beads model makes use of normally distributed random noise in the generation 

of artificial CAPPIs. Having established an effective means of generating uniformly 

distributed random noise, the next step is to transform it into normally distributed  noise by 

means of an inverse normal transformation.  
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The normal distribution for given mean  and standard deviation  is defined by  

Equation D.4.  
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The variable x is normally distributed, with mean  and variance  2 and this is written as x ~ 

N(,  2). In the standard normal case  = 0 and   = 1 and this equation reduces to (D.5). 
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Equation D.5 describes the well known bell-shaped probability density function which can be 

represented in the cumulative form of Figure D.1 which is described by Equation D.6.  
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where p is the probability that a randomly chosen number x is less than a chosen xp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1 - Cumulative frequency curve for the Standard Normal distribution 
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A uniformly distributed random variate Y ~ U(0,1) can be converted to a standard normally 

distributed random variate X ~ N(0,1) by setting Y = p in Equation D.6 and solving for X = xp. 

Equation D.6 has no known solution and must therefore be approximated.  

 

A good approximation is given by Beasley and Springer (1977) and published as AS111 in 

Applied Statistics Algorithms (Griffiths and Hill, 1995). Paraphrasing from that text, the 

routine replaces the p of Equation D.6 by a dummy variable q = p - 0.5 and then compares |q| 

with 0.42. If |q|  0.42, xp is obtained through the rational approximation of Equation D.7. 

   xp  =  q.A(q2)/B(q2)     (D.7) 

 

where A and B are polynomials of degrees 3 and 4 respectively. If |q| > 0.42, another dummy 

variable r = { ln(0.5-|q |)} is introduced and xp is calculated from a different rational 

approximation given by Equation D.8. 

xp  = C(r)/D(r)     (D.8) 

where C and D are polynomials of degrees 3 and 2 respectively, and the sign is taken to be 

that of q. They claim that in the absence of rounding error, the xp calculated for a given p will 

correspond to a true value p' which will satisfy the relationship 

 

   | p' - p | <  2-31 

 

In the presence of rounding error, they claim an accuracy which will satisfy the relationship 

   | p' - p | <   

Where  is of the order of 20 times the value of the smallest digit in the mantissa. The routine 

was re-written in the C programming language using 64 bit double precision with an 11 bit 

exponent and a 52 bit mantissa, the remaining bit used for sign. In this case the value of  

would be 20 x 2-52 which is much less than 2-31 so rounding error can be neglected in this case 

and the algorithm is used to its full potential. 
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Appendix E - Power-law Filtering 

 

E.1 INTRODUCTION 

The method of simulating sequences of CAPPIs presented in this section are based on the 

work of Bell (1987), Brenier (1990) and Wilson et al. (1991). Bell (1987) used the technique 

of power-law filtering of a Gaussian noise field to simulate rainfields in three dimensional 

space-time (two space and one time) as viewed by satellite. This idea was used by Brenier 

(1990) and Wilson et al. (1991) to produce a sequence of CAPPIs in time which were 

assembled into an animated image and published on video. CAPPI sequence simulation in the 

String of Beads model is done using a modified version of their techniques and this will be 

illustrated first in the simple one-dimensional case and then extended into two and three 

dimensions. 

 

E.2 ONE-DIMENSIONAL POWER-LAW FILTERING 

It was shown in Section 7 that three parameters , space and  are required to describe the 

spatial distribution of rainfall on a CAPPI.  and  are the mean and standard deviation of the 

pixel logs respectively, whilst space is the gradient of the radially averaged two-dimensional 

power spectrum. Any pure noise process is uncorrelated and therefore has a  of zero.  

 

By power-law filtering a field of random data it is possible to increase the correlation of the 

data from zero to any desired level . This is done by transforming the sequence into Fourier 

space via the Fast Fourier Transform, multiplying (pointwise) the transformed sequence by a 

filter function, and then back transforming into natural space. In the one-dimensional case, the 

power-law filter is defined in one-dimensional, complex valued Fourier space, as a distance 

function which decays exponentially (with exponent /2 ) from the first frequency to the 

Nyquist critical frequency and is then reflected about that point. The scalar coefficients of a 

typical filter are plotted in Figure E.1. 
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As an illustration of the power-law filtering process, consider the one-dimensional sequence 

of 256 standard, normally distributed, real valued random numbers plotted in Figure E.2. 

 

 

 

 

 

 

 

 

 

 

 

This real valued sequence can be transformed into Fourier space via the FFT to produce a 

sequence of 256 complex valued numbers comprised of 128 pairs of random complex 

conjugates. Next, each complex valued member of the transformed sequence is multiplied by 

its corresponding scalar filter function coefficient at that point. The real and imaginary 

components of the product of the transformed sequence and its scalar multiplier, are plotted 

separately in Figure E.3. The conjugate symmetry of this power-law filtered sequence is 

illustrated by the fact that the real component of the sequence is symmetrical about the 

Figure E.2- Sequence of standard, normally distributed random numbers 

Figure E.1 - Plot of scalar coefficients for a typical power-law filter 
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Nyquist frequency (128), whilst the imaginary component exhibits skew symmetry about the 

Nyquist frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the Inverse Fast Fourier Transform, the sequence of complex numbers in Fourier space 

shown in Figure E.3 can then be back-transformed into natural space to yield the 

corresponding sequence of real valued, normally distributed random numbers which now 

have a correlation structure defined by . The sequence can then be scaled and shifted to 

Figure E.3 - Real and imaginary components of the product of the scalar 

filter of Figure E.1 and the complex valued, Fourier transformed sequence 

of random noise 

-10

-5

0

5

10

15

0 32 64 96 128 160 192 224 256

Real Component

-10

-5

0

5

10

15

0 32 64 96 128 160 192 224 256

Imaginary Component



 Appendix E - 98 

achieve the required marginal distribution with parameters  and . For the purposes of this 

example,  and   values of 0 and 1 respectively were chosen and the resulting sequence is 

plotted in Figure E.4. 

 

 

 

 

 

 

 

 

 

 

 

 

The sequence of numbers plotted in Figure E.4 has the same marginal distribution as that of 

Figure E.2, however the spatial correlation has been introduced by power-law filtering the 

sequence and thereby increasing the  parameter from 0 in Figure E.2, to 1.9 in Figure E.4. 

Since this sequence is normally distributed N(, ) , the conversion to a lognormal 

distribution (, )  is achieved by exponentiating each element in the sequence. The result is 

a real valued sequence of positive numbers, plotted in Figure E.5, with marginal distribution 

(, ) and a spatial correlation defined by .  

 

 

 

 

 

 

 

 

 

 

 

Figure E.4 - Power-law filtered (Exponent  = 1.9) sequence of the 

standard, normally distributed  random noise given in Figure E.2 

Figure E.5 - Lognormally distributed, power-law filtered white noise 
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By varying the  parameter, it is possible to alter the spatial correlation in the filtered 

sequence. A higher exponent in the filter results in a smoother sequence. This is due to the 

fact that there is more power in the lower frequency Fourier coefficients and therefore a much 

higher correlation between any point in the sequence and its immediate neighbours. Figure 

E.6 is a plot of a sequence which was generated using the set of white noise plotted in Figure 

E.2, but with a  parameter of 3.0 as opposed to the value of 1.9 used to produce the sequence 

plotted in Figure E.5. The two sequences have been scaled and shifted so that they have 

identical marginal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures E.5 and E.6 are plotted to the same scale and illustrate how the higher exponent 

power-law filter smoothes out the extreme points in the sequence. The wrapped nature of the 

Fourier filtered sequence can be seen by the fact that both generated sequences finish with the 

intensity with which they began. This property of Fourier filtered sequences is exploited in 

Section 9.  

 

The power spectra of these two sequences are plotted in Figures E.7 and E.8 and least squares 

approximations of their gradients have been calculated. The gradients of 1.928 and 3.028 are 

very close to the intended values of 1.900 and 3.000. The additional 0.028 is due to the fact 

that the original noise process is not absolutely pure and prior to any filtering had a spectral 

gradient of 0.028. 

Figure E.6 - Lognormally distributed, power-law filtered white noise, the 

greater  parameter produces a smoother sequence 
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All of the properties and methods presented here for the one-dimensional case, readily extend 

into two and three space, however it becomes increasingly difficult to visualise the shape of 

the power spectrum, filter function and random field as the dimension of the problem 

increases. 

 

Figure E.7 - Power spectrum for sequence plotted in Figure E.4 

Figure E.8 - Power spectrum for sequence plotted in Figure E.5 
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E.3 TWO DIMENSIONAL POWER-LAW FILTERING 

Following the format adopted for the one dimensional case in Section E.2, consider two two-

dimensional fields generated using the same technique presented for the one-dimensional 

case, only using the two-dimensional Fast Fourier Transform on a two-dimensional field. 

With reference to Figure E.9, the field on the left was generated using a space exponent of 2.0 

in both x and y directions and the field on the right was generated using a space exponent of 

3.0 in both directions. The two fields were generated using the same set of white noise and 

have the same marginal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As was observed in the one-dimensional case, the higher  exponent in the filter produces a 

smoother image with a lower maximum intensity. The Fourier wrapping is evident in both the 

x and y directions of both images. The radially averaged two-dimensional power spectra of 

these two fields are plotted in Figures E.10 and E.11 and least squares approximations of their 

gradients have been calculated. The gradients of 2.049 and 2.939 are very close to the 

intended values of 2.000 and 3.000. The difference between the calculated values and the 

intended values are again due to the fact that the original noise process is imperfect and in 

addition, the data used to compute the power spectra are sampled from within the limits of the 

3/4 doughnut mask which was discussed in Section 5. The errors in estimation of the power 

spectrum due to the use of the mask and integer precision data are discussed in detail in 

Section 12. 

Figure E.9 - Comparison of two two-dimensional power-law filtered fields 

128 pixels 
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Figure E.10 - Averaged power spectrum for left hand image of Figure E.8 

 

Figure E.11 -Averaged power spectrum for right hand image of Figure E.8 
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The two spectra shown in Figures E.10 and E.11 are plotted up to a wavenumber of 64 since 

the original images were a size of 128 x 128 pixels. Due to the averaging processes about the 

Nyquist frequency and about the apex, the power spectra are of a much smoother nature than 

those seen in the one dimensional cases of Section E.1, however, the basic properties 

observed in the one-dimensional case are preserved in the two-dimensional case and beyond. 

That is, the simulated fields are scaling, non-stationary random fields, with a lognormal 

distribution (  ,  )  and a correlation structure defined by a single parameter  .  
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Appendix F - , ,  and WAR plots for February 1996 

 

The Graphs which are presented in this appendix are all plotted to the same scale so that they 

can be easily compared. The software designed to analyse these data first tests to see if there 

is a Wetted Area Ratio in excess of 1% before attempting to fit a lognormal distribution and 

extract the power spectrum. Only if the WAR is found to be greater than 1% will the CAPPI 

be analysed for the three parameters ,  and . This condition was deliberately built into the 

analysis software to avoid wasting unnecessary time searching for a maximum likelihood 

solution on a dry CAPPI. The function minimisation routine converges to a solution 

considerably quicker for a wet CAPPI than for a dry CAPPI. For WAR values under 1%, the 

routine can take several minutes to find a solution for a single CAPPI, whereas for CAPPIs 

with a WAR in excess of 10% it will usually converge to a solution within a second. The 

WAR is plotted for all 3000 CAPPIs in Figures F.1 to F.6 and ,  and  are plotted only for 

the 2500 CAPPIs with a WAR above 1%. 

 

Additional plots in this appendix are the relationships between  and  parameters  

(Figure F.7) and between the  and  parameters (Figure F.8). Clearly the  versus , exhibits 

a relationship similar to that presented in Figure 14, and the regression line which is plotted 

on this figure is that used in the String of Beads model when calculating the  from a given . 
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, ,  and WAR for 500 consecutive CAPPIs
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Figure F.1 - Analysis of CAPPIs 0 - 500 of February 1996 
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Figure F.2 - Analysis of CAPPIs 500 - 1000 of February 1996 
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, ,  and WAR for 500 consecutive CAPPIs
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Figure F.3 - Analysis of CAPPIs 1000 - 1500 of February 1996 
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Figure F.4 - Analysis of CAPPIs 1500 - 2000 of February 1996 
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, ,  and WAR for 500 consecutive CAPPIs
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Figure F.5 - Analysis of CAPPIs 2000 - 2500 of February 1996 
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Figure F.6 - Analysis of CAPPIs 2500 - 3000 of February 1996 
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The final plot (Figure F.8) in this appendix for the 2500 wet CAPPIs illustrates that there is no 

significant relationship between the  and  statistics and consequently no relationship 

between the  and  statistics of a CAPPI. This shows that the clustering behaviour of the 

pixels as defined by  is independent of the marginal distribution defined by  and . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vs  for 2500 CAPPIs
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Figure F.7 -  versus  plot for 2500 wet CAPPIs of February 1996 
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Figure F.8 -  versus  plot for 2500 wet CAPPIs of February 1996 

illustrating that there is no obvious relationship between the marginal 

distribution and the clustering behaviour 
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Appendix G - Instructions for the use of the Compact Disk 

 

The Compact Disk which accompanies this report is available on request at cost of 

reproduction (Approximately R20) from the Water Research Commission. It requires a 

Windows 95 or Windows NT (version 4.0 or later) operating system for viewing on a 

personal computer. The user should run the program using the built in Windows Explorer. 

There are several directories on the disk, each of which contains a brief text file explaining its 

contents.  

 

G.1 ANIMATED RAINFALL SEQUENCES 

The only directory referred to in the text of the report is that containing the animated 

sequences of CAPPI images and has been named Animation. This directory contains an 

executable file entitled Setup.exe. To execute the file, double-click on it with the mouse. In 

three interactive steps, the program will set up a MS PowerPoint presentation in the 

temporary directory of the computer hard drive. First, the program will prompt the user to 

select a file in which to extract the presentation. The directory C:\Temp is suggested as the 

most suitable. The program will take about 1 minute to install the presentation into the 

selected directory and once it has completed the installation, it will display a warning that the 

presentation will not run on Windows 3.1 - select the OK button. Finally, the program will 

prompt the user to choose whether or not to run the presentation immediately - select the Yes 

button. The presentation will begin with a brief slide instructing the user of three basic 

navigation commands, using the left and right mouse button.  

 

The presentation consists of 6 brief slides, two of which contain animated images. The 

animation is started by moving the mouse pointer over the image, at which point it will 

convert to a Hypertext pointer (the Hand), and selecting the image with a single click of the 

left mouse button. In the case where there are two animated images on one slide (Slide 

number 4) both animated images can be run at the same time by starting one image and then 

immediately starting the second. This is a useful way to compare the real sequence to the 

simulated one. The third animation is of the entire sequence of CAPPI data for February 

1996. This image runs for 8 minutes 30 seconds and contains a lot of dry time. There is no 

need to view the entire sequence, it is included for completeness of exposition. 
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G.2 EXTRA INFORMATION 

The compact disk contains five extra directories of information which contain files which may 

be of interest to the reader. The contents of each are briefly described to assist in the 

navigation of the Compact Disk. 

 

C Source Code contains the source code which can be compiled and run on the Microsoft 

Visual C++ compiler. The program entitled Analyser is used to analyse a sequence of 

CAPPIs for their ,  and  and their WAR. The program entitled Cropper reads in a 

200x200 pixel CAPPI, crops the inner 128x128 pixels and applies the 3/4 doughnut 

mask to the CAPPI. Cubicbead generates a single rainfall event of any required 

average ,  and . ExtractIMA program used to extract the bitmaps from the original 

data, and an illustration of the binary file structure of the compressed *.ima format is 

included in this file. Finally, StrFunction reads a single 128x128 pixel CAPPI and 

extracts the data needed to plot the Generalised Structure Function. 

 

C++ Source Code also contains source code which can be compiled and run on the Microsoft 

Visual C++ compiler. SBM is the simple String of Beads model configured to simulate 

the rainfall for a 28 day February in Bethlehem. 

 

CAPPIs contains the data that was analysed in this study. There are several sub directories to 

this directory, the first of which contains the original 200x200 CAPPI data. The 

remaining subdirectories contain CAPPIs in a masked bitmap format. The data is 

divided into 4 sub-events and an *.avi video clip is included for each. This can be 

viewed in most modern computers by double-clicking on it. The sequences are the 

same as that presented in the MS PowerPoint Presentation. 

 

SB_Presentation contains a PowerPoint presentation of a joint paper by GGS Pegram and 

AN Clothier. It was first presented at the 4th International Symposium on Hydrologic 

Applications of Weather Radar in San Diego, California, USA 5th - 9th April 1998 and 

again at the fall AGU meeting in San Francisco, December 1998. This presentation 

can be viewed by following the instructions given in Section G.1. 
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