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Abstract

Four statistical tests for goodness of fit are applied to fifty sets of
South African annual flood peak maxima with a minimum pe-
riod of record of twenty five years. Five statistical models are
proposed of which two are shown to provide equally acceptable
results in terms of the criterion of gocdness of fit. However, it is
shown that this criterion does not imply similarity of perform-
ance since estimates of events for predefined return periods
are, on the average, widely divergent and particularly at the up-
per tails of the two favoured models. It is further shown that the
Extreme Value Type 1 (Gumbel) distribution should be dis-
couraged as a vehicle for the statistical analysis of South African

flood data. Finally some comparisons are made between South

African and British data.

Introduction

Central to the design of hydraulic structures and river works is
the concept of the design flood, and it is the task of the analyti-
cal hydrologist to provide the engineer with an estimate of the
frequency and risk associated with a particular extreme dis-
charge. Thus, if a2 dam spillway is designed to pass the one in
two hundred year event then the hydrologist faces the problem
of estimating that flood which will occur once, on the average,
every two hundred years. Since such problems involve elements
of uncertainty the sciences of probability and statistics are in-
voked for they are concerned with such phenomena in which ex-
tract prediction is practically impossible. A probabilistic model
must be fitted to the sample of flood data at a site in order to
theoretically specify the unknown population properties.
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In additicn to graphical methods there are three basic ob-
jective methods of fitting probability distributions to data sam-
ples, namely moments, least squares and maximum likelihood.
Of these, the method of moments is the most mathematically
tractable although not the most statistically elegant. Compara-
tive studies of the relative efficiencies of the methods are given
by Lowery and Nash (1970), Matalas et al. (1973) and Bobee
and Robitaille (1977) for example.

Each method of fitting has its own protagonists, although
for three paraineter models there is general agreement that
maximum likelihood provides the most statistically efficient re-
sults. However, this method can be computationally daunting
and requires weighty excursions into the esoteric fields of ab-
stract mathemztics (Matalas & Wallis 1973). Consequently for
routine analysis moments estimators are to be preferred since a
balance must te struck between the statistically efficient, the
tractable, and the comprehensible. Certainly, improved
moments estim:tors are available (Sangal and Biswas 1970) and
if they are combined with a quantitative statement about their
fallibility then there seems to be little reason not to recommend
their applicaticn in general practice.

Perhaps the most contentious aspect of the statistical
analysis of flootls is exactly which distribution is THE BEST.
In other words which model best fits the data. It is towards this
debate that a contribution is made in this paper.

Selected Models

A basic reason behind many studies of probability models of
floods and thei - relative performances in terms of fit, is to arrive
at some form >f procedural standardization. However, floods



are generated by a considerable variety of meteorological phe-
nomena from tropical cyclones to spring snowmelt and it is this
causal non-homogeneity which compounds the problem of find-
ing the most efficient mode! for general practice. Kite (1975)
addresses the problem as follows:

‘There is no general agreement amongst hydrologists as to

which of the various theoretical ‘distributions available

should be used. Benson (1968) has also indicated that the
present state of the art is such that no general agreement
has been reached as to preferable techniques and no stan-
dards have been established for design purposes. As ex-
amples of this divergence of choice: Spence (1973) com-
pared the fit of the Normal, log-Normal, type 1 Extremal
and log type 1 Extremal distributions to annual maxi-
mum flows on the Canadian Prairies and found that the

log-Normal was the best fitting: Cruff and Rantz (1965)

compared six probability distributions in California and

found that the Pearson type 3 was the most desirable. In
other studies, Santos (1970) has found the log-Normal
distribution better than the Pearson type 3, and Gumbel

(1966) has explained as follows: “It seems that the rivers

know the (extreme value) theory. It remains to convince

the engineers .... of the validity of this analysis”. Benson

(1962) has found in a study of 100 long term flood records

that no one type of frequency distribution gives consis-

tently better results. In short, no one distribution is ac-
ceptable to all hydrologists.’

To add to the apparent confusion the American Water
Resources Council, reported on by Benson (1968) concluded
that: ‘The log-Pearson type 3 distribution has been selected as
the base method, with provisions for departures from the base
method where justified.” The British Flood Studies Report
(1975) favours the General Extreme Value (GEV) distribution, a

universal form of the extreme value distributions types 1, 2 and -

3, attributable to Jenkinson (1955).

In South Africa there exists no recommended procedure
for the statistical analysis of floods and indeed little light has
been shed on the performance of the various models in respect
of the considerable amount of data available.

The distributions selected for study are given below in
terms of their probability density functions.

Two parameter log-Normal distribution (LN2)

z =Inx (1)
1
g.2T

where u, and o, are the mean and standard deviation of In x.

fz) = e #l(z — w)/o.] @)

Three parameter log-Normal distribution (LN3)

z = In(x — x,) (3) |
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where g, and o, are the mean and standard deviation of In
(x—%,), X, being the lower bound.

flx) = e— % [(In(x—x,) —p.)/ 0.]2 (4)

Log-Pearson type 3 distribution (LP3)

z=Inx (5)
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f(z) = (6)
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where 3 and 7y are scale and shape parameters respectively, and
z, a location parameter.

Extreme Value type 1 distribution (EV1)

fx) =2 exp [—(y-w/a—e 70

where ‘0’ and ‘o’ are location and scale parameters respectively.

Extreme Value type 2 distribution (EV2)

f(x2) =71x i1 —%EK] VK ~1  — [1- K(xru)/a]l/x
(8)

where ‘w’ and ‘@’ are as defined above and ‘K’ is a shape
parameter.

All models were fitted by the method of moments as given
in the British Flood Studies Report (1975) and discussed with ex-
amples of South African data by Adamson (1978). Fifty South
African data sets were so fitted to the above models, they have a
minimum length of record of 25 years, a mean record length of
46 years and span 2 317 years. No tests of homogeneity were ap-
plied largely because the correction of the effects of dams, ur-
banization, improved land drainage, channel improvements,
vegetation changes and improvements to hydrometric structures
and ratings would have provided a massive study in itself. Be-
sides the purpose of the exercise is to gain a general insight into
the relative performance of the proposed models as applied to
floods in South Africa rather than present the evidence for a me-
thodological edict.

Tests of fit

The usual vehicles for testing hypotheses that a sample has been
drawn from a specified population are tests of goodness of fit.
However, whatever means are used to recommend a model, be
they statistical, empirical, or computational attractiveness, they
are generally subject to censure. Goodness of fit is a necessary
but not a sufficient condition for acceptance, it can illustrate
the non-acceptability of a proposed model and provide consi-
derable insight into its relative adequacy. Kite (1975) puts the
problem as follows:

‘If goodness of fit were the only criterion, then high order
polynomials would often provide a much better fit than
any of the standard distributions, and yet this method is
not used because there is no hydrologic justification. The
most important criteria in the selection of a distribution
are that there be a sound theory describing the phenome-
non and that the distribution abstract the maximum in-
formation from the data by using proper estimation tech-
niques.’

A number of prominent methods are available for the
testing of goodness of fit, the Chi-square and Kolmogorov-Smir-
nov tests being the most widely used in practice. The other tests
available are less well documented and lack a complete statisti-
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cal theory. Of these the Anderson-Darling and Cramer-von
Mises tests have found some application in hydrology (Cicioni et
al., 1973) and are selected for use here.

The Chi-square and Kolmogorov-Smirnov tests are dealt
with in considerable detail in almost every standard introduc-
tory text on statistics, e.g. Kirkpatrick (1974). Methods for com-
puting class intervals for the Chi-square test and critical values
of the Kolmogorov-Smirnov statistic in addition to basic compu-
tations are given by Adamson (1978) using samples of South
African annual floodpeak maxima.

The Anderson-Darling test uses the actual observations
without grouping and, most importantly for hypothesis testing
and goodness of fit using flood data, it is sensitive to discrepan-
cies at the tails of the distribution rather than near the median.
In addition, the test can be weighted to accentuate the differen-
ces between the empirical and cumulative probability densities
where it is desired to have particular sensitivity. The theoretical
derivation of the test criterion is given by Anderson and Darling
(1954), and it is defined by:

wi=n 7[EQ - QI - ¥ - (FQ) - dFQ) Q)

where E(Q) and F(Q) are the empirical and theoretical cumu-
lative distribution functions respectively and ¥ is a non-nega-
tive weight function which in this discussion is set to unity. A
more convenient form for computation is given by:

n
W?l:—nf—}—l);_l(%—l)[]nu,-+ln(1—un Y 1)
e

where ‘In’ is the natural logarithm and u; = F(Q)). If WZis too
large then the particular hypothesis under investigation is re-
jected. Asymptotic significance points are given by Anderson
and Darling (1954).

The Cramer-von Mises test is similar to the Anderson
Darling test and has similar characteristics. The test statistic is
defined by:

nw? = FIEQ - FQ P - dFQ) (a1

which reduces to:

nw? = 17120 + E_ [u — (2 — D/2n) P2 (12)
1

1
with definitions as before.

The theoretical development of the test statistic is given
by Anderson and Darling (1952) from which critical values of

2

nw? are also available.

Test Results

Tables 1 to 4 show the number of times out of 50 that the select-
ed distributions were rejected using the four goodness of fit tests
referred to above.

The most obvious point to be drawn from the analysis is
that the LN2 and LP3 models provide the best overall fit. The
LN3 moadel is less well favoured, no doubt a consequence of a
poor estimate of the lower bound which is probably directly at-
tributable to the sample error inherent in the skew coefficient.
(Sangal and Biswas, 1970.)

The EV1 distribution, as expected, is found to be a most
unsuitable model for the analysis of South African flood data.
This model has an implied skew coefficient of 1,14 and the fur-
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TABLE 1
NUMBER OF TIMES OUT OF 50 THAT DISTRIBU-
TIONS WERE REJECTED BY THE x* TEST

Significance
level LN2 LN3 LP3 EV1 EV2
0,10 11 32 14 42 43
0,05 8 30 11 42 39
0,01 5 24 4 35 29
TABLE 2

NUMBER OF TIMES OUT OF 50 THAT DISTRI-
BUTIONS WERE REJECTED BY THE KOLMO-
GOROV-SMIRNOV TEST

Significance
level LN2 LN3 LP3 EV1 EV2
0,10 1 11 3 26 22
0,05 0 6 0 23 18
0,01 0 4 0 13 15
TABLE 3

NUMBER. OF TIMES OUT OF 50 THAT DIS-
TRIBUTIONS WERE REJECTED BY THE
ANDERSON-DARLING TEST

Significance ’
level LN2 LN3 LP3 EV1 EV2
0,10 0 16 0 27 18
0,05 0 10 .0 22 17
0,01 0 4 0 12 10
TABLE 4

NUMBEF. OF TIMES OUT OF 50 THAT DIS-
' TRIBUTIONS WERE REJECTED BY THE
CRAMER-VON MISES TEST

Significance
level LN2 LN3 LP3 EV1 EV2
0,10 0 14 0 26 18
0,05 0 7 0 20 16
0,01 0 2 0 12 8

ther the departure of sample skew from this value the less effi-
cient the model becomes. Figure 1, shows a histogram of the
skew coefficien s of forty two of the fifty samples investigated.
These have a rean of 2,25 and most data sets have a skew con-
siderably in excess of 1,14, implying that the EV1 (Gumbel) will
considerably urderestimate a flood event for a particular return
period. Despite: this the EV1 distribution has reached such a
level of popularity in hydrology that, as Van Montfort (1970)
puts it, the est mation of extreme probabilities seems more in-
fluenced by thz choice of distribution than by the data itself.
Rarely when tte EV1 distribution is used is there any statistical
support for the choice. As an example the South African
Weather Bureiu (1974) published extreme value data that has
been fitted to the EV1 distribution with no test criterion or jus-
tification at al . (Adamson, 1977.)
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Frequency of skew coefficients for 42 South African data sets of annual
flood maxima (N > 30)

Surprisingly perhaps, the EV2 distribution is rejected as a
potential model far more times than one might expect for such a
flexible distribution. The reason possibly lies with the fact that
moment estimators are particularly inefficient and/or the tests
of fit are overly influenced by the fact that the lower 37% of a
data sample are not distributed as extreme values at all (Jenkin-
son, 1969).

The performance of the individual tests is interesting.
The Kolmogorov-Smirnov, Anderson-Darling and Cramer-von
Mises tests are comparable in the number of rejections at each
significance level, whilst the x? test rejects a much higher
number of cases at all levels. Although the LN2 and LP3 models
are conclusively shown to perform better than the others, at
least in.terms of the test criteria used, the X% test is obviously
over discriminatory when compared to alternative tests of fit.
The reason is suggested to lie in the loss of information in the
grouping of the data which possibly becomes critical for sample
sizes of less than n = 40.
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Mean of 50 moment estimates of Q(T) expressed as a percentage of the
mean for the LN2 distributions
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Comparative performance of models

The real area of interest in the relative merits of models fitted to
maxima lies in the fit at the upper tail, and in 1957 Moran
wrote:

‘In the first place the form of the distribution of floods is
not known and any distribution used must be guessed.
This may have a considerable effect since the part of the
distribution we are interested in is well away from the part
where the observations provide some information about
the shape. It is therefore easy to construct two different
distributions both of which fit the observations closely but
for which the tails are of quite different shape. This dif-
ficulty cannot be surmounted, but we can try to fit several
different distributions and see how the choice affects the
result. It would also be desirable to use some measure of
goodness of fit on the fitted distributions.’

The point made in this quote is quite evident for the
South African data so far analysed, for apparently the LN2 and
LP3 distributions are equally successful models on the evidence
of goodness of fit, but they behave quite differently at the upper
tails. This is shown plainly in Figure 2, where the mean estimate
for each model and for all fifty samples is expressed as a per-
centage of the mean estimate using the LN2 distribution. Figure
2 is summarized in Table 5.

From this analysis, with the LNZ as the standard, it is evi-
dent that, on the average:
(1) The LP3 model gives significantly higher estimates of
floods for return periods in excess of 100 years than the
other models. The model is particularly sensitive to high
outliers and the sample error in the skew coefficient.
More conservative estimates will result if some attempt is
made to correct this error.
(2)  As expected, the EV1 model is far from satisfactory,
grossly underestimating flood peaks with return periods
greater than 100 years.

The LN3 and EV2 models are broadly comparable in re-
sults, both giving slightly higher estimates than the LN2

(3

model for the more commonly occuring events and lower
estimates, on the average, for the rarer maxima.

These results emphasise that the criterion of goodness of °

fit does not imply similarity of performance, particularly in the
upper tails where sampling variability is inevitably at its highest.

South African flood data are in fact characterised by par-
ticularly long upper tails in the samples analysed to date; in
other words the range of annual floodpeak maxima is much
greater than, for example, that which may be expected in a
temperate region. To illustrate this point Q/Q was calculated
for each station and the whole assemblage of 2 317 values for
the fifty stations were fitted by moments to the EV2 and LN2
models. The results are compared with a similar curve available
for 420 stations in the United Kingdom and presented in the
British Flood Studies Report (Volume 1 (1975) p.149). The
results are tabulated in Table 6 and plotted in Figure 3.

It is immediately apparent that the ratio between the
mean of a sample of flood data and the estimate of the 7-year
flood is much higher in South African than in Britain. This is to
be expected for a largely semi-arid country with distinct wet and
dry seasons where the intensity-duration-frequency structure of
flood generating storms is quite different and where there is in-
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TABLE 5
MEAN OF 5) MOMENT ESTIMATES OF Q(T) EX-
PRESSED AS .\ PERCENTAGE OF THE MEAN OF 50
. FITTED LN2 DISTRIBUTIONS
Return Period: T (years)
Distri-

buton 2 5 10 20 50 100 200 500 1000

LNZ 106 10 100 100 100 100 100 100 100

LN3 105 11] 108 104 99 95 91 85 85

LP3 96 101 104 108 114 115 126 185 150

EVl 115 12} 114 105 94 86 79 70 67

EVZ 109 11 109 105 99 94 91 86 85
TABLE 6

RELATIONSHIP BETWEEN Q/Q AND T (YEARS)
AFTER FITTING THE LN2 AND EV2 TO 50 SOUTH
AFRICAN STATIONS AND FITTING THE EV2 TO 420

BRITISH STATIONS

Distribution T (years)
2 5 10 20 25 50 100 200 500 1000

South Africa

LN2 0,6 1,4 21 30 — 44 57 7,3 9,6 11,7

EV2 0,7 1,6 23 31 — 43 54 6,6 84 10,1
Great Britain

EV2 09 12 15 — 1,9 22 26 3,1 358 44

TABLE 7
COMPARATIVE STATISTICS FOR Q/0
Mean Standard Skew Coefficient
deviation of variation

South Africa — 1,19 3,40 1,20
Great Britain — — 3,54 0,44

- evitably a larger range in antecedent catchment conditions from

‘saturated’ to ‘parched’. In short the range of sample floods at a
site, as defined by their coefficient of variation, is particularly
great as is evillenced in Table 7 where the basic statistics of
Q/Q are compared for South Africa and Great Britain.

These results predicate that high outliers are the rule
rather than tte exception in South African samples of flood
data. Consequently those distributions which are particularly
sensitive to high outliers, such as the LP3% model, must be used
with singular caution and some objective attempt must be made
to correct the sample error in the estimate of the skew coeffi-
cient. Furthennore, whatever the model used the most refined
moments estimators must be invoked, since a failure to do so is
tantamount tc throwing away a significant portion of the in-
formation con:ained in the sample.
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Region curve based on all S.A. records (50) and all British records (420)

Conclusions

(D

@

(3

4)

The Gumbel (EV1) distribution should be discouraged as

"a means of statistical annual flood peak analysis in South

Africa as the implied skew of 1,14 is a limitation that gives
estimates that are generally too low.

The log-Noi1mal 2-parameter and log-Pearson type 3 mo-
dels, on the evidence of statistical methods of fit alone,
provide the ‘best’ models.

The log-Pearson type 3 model gives much higher esti-
mates, on the average, for return periods greater than 100

years than the log-Normal 2-parameter model.

On the average the log-Normal 3-parameter and Extreme

(%)

Value type 2 models, when fitted by moments give similar
results.

Two parameter models have the limitation of a fixed
skew, for example the Extreme Value type 1. However,
the log-Normal 2-parameter model when fitted by
moments has the versatility to overcome this limitation.
(Chow, 1954.)

Finally, on the evidence it is difficult to make any recom-

mendations for standard practice in South Africa. The insight
gained in this investigation has been of a general nature. For

routine analysis moment estimators, with suitable corrections,

are attractive and the log-Normal 2-parameter model is evi-
denced as worthy of consideration. This said, the process of cog-
nition in hydrology must combine the statistical evidence with
sound engineering judgement.
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