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Abstract

The kinematic approximation to the equations of flow facilitates
analysis of overland flow. When used in conjunction with a head
loss equation such as that of Manning and Strickler, the equa-
tions can be solved for specific cases. Here the equations are
solved together with an empirical equation for the rainfall
intensity-duration relationship. Using two assumptions for
losses, generalized equations are developed for time of concen-
tration for overland flow. The peak runoff rate is thus derived
and the results compared with those derived by conventional
methods. Regional parameters are presented for South African
conditions enabling concentration times and peak runoffs for
various locations and risks to be read off charts. The effect of ur-
banization and canalization on the peak runoff is discussed.

Introduction

Considerable work has been done in South Africa on rainfall
patterns for small areas, in particular that by the Hydrological
Research Unit of the University of the Witwatersrand (Midgley
and Pitman, 1978), Schulze (1978), Schwartz and Culligan
(1976), Van Heerden (1978) and Van Wyk and Midgley (1966).
The studies centre on rainfall data collected and analyzed by the
Weather Bureau (1974). The rainfall data for various stations in
the Republic have been analyzed to yield depth of precipitation
versus storm duration and return period. The form of the results
varies with the analysis and the mathematical distribution se-
lected but essentially the intensity of precipitation decreases
with storm duration for any selected recurrence interval or re-
turn period. It is this fact which results in non-linearity be-
tween catchment area and peak runoff rate. Thus the time of
concentration, or time to peak, for any catchment is a function
of the catchment size amongst other things. So it is apparent
that the larger the catchment, other factors remaining constant,
the longer will be the storm duration resulting in maximum run-
off, even though intensity of rainfall is bound to decline the
longer the storm duration.’

The popular method of assessing peak runoff from small
catchments (less than 15 m?) is the so-called Rational Method.
The time of concentration is estimated from an empirical equa-
tion and the storm with duration equal to the concentration
time is selected as the design storm. The intensity of preci-
pitation corresponding to that duration and return period is
then multiplied by an empirical coefficient (C) to yield a runoff
rate per unit area of catchment.

The technique is an oversimplification of the true runoff
process which depends on many factors other than those indi-
cated above, i.e.

() The time-intensity pattern of the storm and its movement
in space.

(if)  The form and magnitude of losses, i.e. infiltration, dis-
persion, storage, etc.

(iii) The concentration time of a catchment depends on its

characteristics, such as slope, shape, roughness and per-

meability.

(ivy The concentration time is also dependent on the rate of
runoff. The time to peak shortens as the intensity of the
storm increases.

(v)  The degree of urbanization and the alterations made to
the catchment characteristics by man affect the runoff
process. These include paving of permeable areas, there-
by increasing the volume of runoff and reducing fric-
tional resistance, and so increasing the speed of runoff.
Canalization and construction of storm-water drains also
accelerates the runoff process. The resulting shorter con-
centration time corresponds to more intense storms and
higher runoff rates.

(vi) Construction of storage in the catchment could attenuate
the peak runoff rate and reduce total volume of runoff.
(vi)) The longer the storm duration the greater the losses but
the lower the final rate of loss.
(viil) Antecedent moisture conditions affect infiltration losses.
A hydrodynamic analysis of the runoff process would
overcome the shortcomings of the Rational Method, but would
be complicated and expensive. Many modern computer simu-
lation program packages e.g. SWMM (Metcalf and Eddy, 1971)
were developed for use in such circumstances. The use of these
programs is recommended for major projects to confirm a pre-
liminary design and to facilitate stormwater management.

An approximation to the rigorous St. Venant hydrody-
namic equations may, however, be made for most cases of over-
land flow. The simplified equations are termed the kinematic
equations. The resulting simplifications enable the runoff pro-
cess to be analyzed mathematically. The techniques developed
by Woolhiser and Liggett (1967) and others, enable analytical
solutions, which can readily be generalized, to be achieved. This -
article employs these techniques to determine concentration
times for various catchment surfaces. Dimensionless charts are
produced to facilitate design. Concentration times, peak runoffs
and the effect of canalization may be studied with the assistance
of the charts. By rendering the results dimensionless, they may
be applied globally, although the specific rainfall figures apply
only to South African conditions. It is necessary to assume a rec-
tangular catchment and uniform storm distribution. Numerical
techniques must be employed for non-uniform and time-varying
storms (Stephenson, 1980).
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An attraction of the kinematic approach is that all the va-
riables are physically measurable. No empirical factors are re-
quired. The slope, roughness and length of catchment are all
measureable, although an approximate equation for friction
gradient is employed. The infiltration and initial losses are still
difficult to assess, but theU.S. Soil Conservation Service (1972)
has given guidelines.

Charts presented here are for uniform infiltration or an
initial surface storage. A combination of these will approximate
to a diminishing loss with time i.e. a decay in loss rate.

Equations of Motion

The one-dimensional continuity equation may be written as fol-

lows:
dy dq _ . _ .
ot + x i—f=1 say, (1)

where y is the flow depth, t is time, q is the discharge per unit
width in the x-direction, i is the precipitation rate and f the in-
filtration rate. It is assumed that the flow plane or channel is
reasonably wide (y < b), the bottom slope is moderately small so
that © =~ sin © = tan O, and the velocity distribution coeffi-

cient is unity (Eagleson, 1970). The equation applies equally to -

flow in a wide channel or over a uniform flood plane. The mo-
mentum equation for similar conditions is

v dv dy .
vax+ o +gax—g(SD—Sf)—(1—f)v/y (2)

where v is the flow velocity, g is gravitational acceleration, S, is
the bed slope and S; the energy gradient. Equation (1) may be
simplified further for cases of overland flow. Inflow, change in
depth and inertia terms are negligible in comparison with bot-
tom slope and the equation may be approximated by the equa-
uon

S, = S/ (\3)

This form of the momentum equation with the inertia terms
neglected and the continuity equation (1) comprise the
kinematic equations. Any non-uniformity will manifest itself on-
ly in the continuity equation.

The friction gradient may be calculated with the aid of
the Manning equation which in SI units is

N
3 .2
M 5 ()
or
ERE
3 2

For turbulent flow the roughness factor n is a function of the ab-
solute roughness k, and in dimensionless form it may be expres-
sed as

1
= K/7, 148 (6)
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‘Therefore

1
q= u‘ifrﬁy = 7,7y~/Sgy (y/k)é (7N

This equation is termed the Manning-Strickler equation. It is
dimensionally horiogeneous and does not suffer the drawback
of the Manning ec uation, the form of which is dependent on the
units employed.

The kinematic equations can be employed to derive an
equation for the concentration time of a catchment. When rain
falls at a uniform rate over a plane catchment, the depth at any
point will gradually increase until an equilibrium is reached.
The depth will also increase down the catchment, being a max-
imum at the mouth or discharge end, where the equilibrium
flow will be a m: ximum, namely (i —~ f)L. per unit width where
L is the catchment length. )

Consider a1 element of water which starts at the top end of
the catchment zt the beginning of a storm. As it flows towards
the mouth the depth increases due to the net rain, so that the
depth of the element at any time t is

y = Lt (8

where i, is the excess rainfall rate i — f. By the time the element
from the furthest point has reached the mouth the system will be
in equilibrium. Then the discharge rate at the mouth will equal
the net rainfal rate, or

q = iL (9)

where L is the catchment length and q is the discharge per unit
width of catctiment. Now from (7)

1 3
y = (qk/7,7- [Sg)’

(10)
1 3
At equilibriwn, y = (i,Lk°/7,7 4/Sg)’ (11)
1 23
So from (8) t. = (Lk%/7,7 \/Sg i’y (12)

A more rigoious proof of (12) is given by Overton and Meadows
(1976).

t. is referred to as the concentration time of the catch-
ment. It wil. be observed that it is a function of the catchment
characterist' cs as well as the rate of excess rain i,. It is therefore
necessary to solve for time of concentration as a function of ex-
cess rainfall rate, which in turn is a function of storm duration
for any locality and return period. The rain is assumed uniform
in time and space, but the losses may not be. Initial storage may
absorb some of the rain and infiltration may vary with time and
antecedent conditions. Horton (1939) proposed an exponential-
ly decreasing infiltration. Various infiltration models have been
proposed, ind Overton and Meadows (1976) used the U.S. Sail
Conservati>n Service uniform loss relationships for an analytical
solution for runoff from catchments in Tennessee.

In tae following, two simplistic loss models are employed
in deriviny; analytically the concentration times and runoff for-
rectangular catchments. One model assumes all the losses to oc-
cur at the beginning of the storm, as would occur for catchment
storage. The other model assumes a uniform rate of loss for the
entire storm duration. Combinations of the two types of loss may
be interpnlated between the two extremes, which are plotted on
accompaying charts.
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Storm Intensity — Duration Relationships
and Solution for Time of Concentration

For any particular locality and recurrence interval, there is a
statistical relationship between storm duration and intensity.
Analysis of storms through the world (Overton and Meadows,
1976) and in South Africa in particular, indicate that the storm
intensity may be predicted with reasonable accuracy with an
equation of the form

a
b + t4

(13)

where t, is the storm duration, and a is a function of the locality
and return period.

The peak runoff is found to occur for a storm duration
equal to the concentration time of the basin. With this in mind,
it is possible to solve (12) and (13) for various cases. The total
depth of loss is s, in the same units as ti, where i is the rainfall
rate and t is time.

Case I — Uniform loss rate

For a uniform loss rate over the entire storm duration,s,/t,,

i =1 —s,/ty (14)
Substituting i from (13) into (14) and (14) into (12) yields
1 3
(LK%/7,7+/Sg)°
t. = S 2
a v 5
: 15
(57 o C ) (15)
_ F
) 1 U 3
5
— 1
(55 C o ) (16)
1 23
where F = (Lk5/7,7+/Sg a%)® ')
is the catchment retardation factor and
U =s,/a (18)

U is defined as the infiltration factor. Eq. 16 cannot be solved
explicitly for t. so the equation was solved for F as a function of
t. and U for various values of b. The results are summarized in
Figs. 2 and 3 from which the concentration time may be read
knowing the catchment characteristics, namely length L, ab-
solute roughness k, slope S, storm characteristic a and uniform
infiltration loss s,. Unless the storm duration is known, it may
be difficult to assess s,. In many cases the infiltration rate, (s./ta)
is known instead of the total volume lost, and the dashed lines
on Figs. 2 and 3 may therefore be of more use in estimating con-
centration times.

The maximum storm runoff rate may be evaluated from
the equation

a Sy

Iy = (19)

b+t ta

which is plotted in Figs. 6 and 7 in dimensionless terms
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witht; = t.

evaluated from Figs. 2 and 3. Subscript e refers to excess rain
and p to that corresponding to peak runoff rate. It will be
observed that the maximum rate of runoff per unit area does
not occur for small smooth basins, except for no losses. For real
losses represented by U there is some basin configuration re-
presented by F which results in a higher rate of runoff per unit
area. This is because for any U the rate of loss reduces with in-
creasing F and hence increasing t., and this effect predominates
over the lower storm intensity. On the other hand for short
storms, the rate of loss would have to be high to produce a cer-
tain U, hence the rate of runoff is affected.

Case II — Initial loss

If all the storm input is initially absorbed or taken up in filling
depression storage, runoff will not commence till the storage is
full. If the storage or loss volume is s; per unit area, then the
time till runoff commences is

t; = S,‘/i (20)
For peak runoff,
1 3
Lk8/7,7/5g)°
o =t = AK/TINSE @1)
a 5
( b + t,,)
2
Thereforety = F(b + t,)° + I(b + tJ) (22)

where 1 is the initial retention factor.

This equation was solved for F for various t, and 1 and the
results are plotted in Figs. 4 and 5 for various values of b. It will
be noted that the resulting storm durations for peak runoff are
invariably higher for initial losses than for uniform losses.

1t sill be observéed from Figs. 6 and 7 however, that the
peak runoff rate is higher for initial loss than for uniform loss.
For no loss both theories yield identical results as would be ex-
pected while for increasing losses the results diverge. The peak
runoff per unit area for case I1, however, occurs for the smallest,
smoothest and steepest catchment.

For losses comprising a combination of initial storage and
uniform infiltration, Figs. 2 to 7 may be interpolated, taking
note that each line for a particular loss function is drawn as-
suming the other type of loss is zero.

Parameters for South African Conditions

Rainfall intensity — duration — frequency
relationships for South Africa

Various hydrologists have proposed rainfall intensity — dura-
tion relationships of the form

a

®+ o @3

where a, b and ¢ are constants for any particular station and
return period. Overton and Meadows (1976) found c values of
approximately unity, whereas the Hydrological Research Unit
(Midgley and Pitman, 1978) indicate values of the order of 0,8.
The sensitivity to ¢ is low however, and a value of unity was
found by the author to produce results within acceptable accu-
racy for South African conditions. A value of 1 was similarly
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found by Overton (1976) to apply in Tennessee. Thus the in-
tensity i in mm/h is given by

a
b+ t4 @4
where t, is the storm duration and b is a constant (both in
hours). The value of b was found to be approximately 0,4 h for
inland and 0,5 h for coastal regions in South Africa. Using these
figures, values of a in millimetres may be calculated from the
following equations

For inland regions a = 74 (0,325 + 0,001 35 x MAP)N  (25)
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a factor for return period and values from the Report HRU 2/78
(Midgley and Pitman, 1978) are listed below:

Return period, years 2 5 10 20 50 100

N 0,47 0,64 0,81 1,00 1,30 1,60
The above relationships apply to storms with durations of be-
tween 0,1 and 2 h.

Surface losses

The losses to be deducted from precipitation include inter-
ception on vegetation and roofs, evapotranspiration, depression
storage and infiltration. The remaining losses may be divided
into initial retention and a time-dependent infiltration.

The loss function is really a function of many variables,
including antecedent moisture conditions and ground cover. In-
filtration is time-dependent and an exponential decay curve was
proposed by Horton (1939), Holton (1961), Overton and Mea-
dows (1976) and others. The infiltration typically reduces from
an initial rate of about 50 mm/h down to 10 mm/h over a
period of about an hour. The rates, especially the terminal loss
rate, will be higher for coarse sands than for clays.

The time-decaying loss rate could be approximated by an
initial loss plus a uniform loss over the duration of the storm.
Values of initial and uniform losses used in the United States are
tabulated in Table 1. The mean uniform loss rates are averages
for storms of 80 minute duration, and the initial losses include
the initial 10 minute rapid infiltration or saturation amount.

In the case of ploughed lands, and other especially ab-
sorptive surfaces an additional initial loss of up to 10 mm or
more may be included. Allowance must also be made for re-
duced losses from covered areas (paved or roofed). The values
should be used with caution for South African conditions until
more appropriate data are available.

TABLE 1
SURFACE LOSSES

Uniform infil-
tration rate

Initial loss (mm)

{(mm/h)
Surface Infiltration
Retentis
Paved upto 1 - 0
Clay ” 5 20 2 -5
Loam ? 5 30 5 - 15
Sandy soil " 5 40 15 — 25
Dense vegetation vo12 —
TABLE 2
ABSOLUTE ROUGHNESS, k (mm)
Concrete lined storm drains 0,5
Concrete paving 1
Gravel 5
Lawn, turf 20
Weeds 50
Ploughed land 150
Boulders and rubble 500
Dense vegetation 1 000+
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Roughness

The form of dr:ig equation preferred (7) is dimensionally homo-
geneous. By including the absolute roughness as a variable, it
loses the empiricism of the Manning equation. In fact the drag
effect is very insensitive to the roughness, as it is raised to the
power of 1/6. ~"hus any inaccuracy in selecting k is masked by
the equation. It is preferable to overestimate k as the drag equa-
tion tends to predict too rapid flow concentration unless this is
done. This is d'1e to the tortuosity of th~ flow path over rough
surfaces. In fac: the original form of the Manning equation and
the Strickler ap yroximation for the roughness were never inten-
ded for overland flow where the depth ‘of flow is comparable
with the roughness and Reynolds numbers are of the order of
1 000. Table 2 may be used as a guide for surface roughness k.

The length of drainage path and slope influence the con-
centration time more than the roughness. Runoff follows a cir-
cuitous path over natural land and the ground slope along the
flow path is therefore flatter than the net slope. A similar lag oc-
curs with runofi’ from roofs (2 to 5 min lag). Allowance should
be made for these effects in establishing the retardation factor
F.

— overland flow

Channel

Figure 9
Rectangu.ar catchment with central collection channel

Example

The example ill istrates the use of the design charts for deter-
mining design s:orm duration, peak runoff and the effect of
canalization. The use of consistent units in the equations should
be noted:

Calculate the peak 20-year runoff from a catchment be-
fore and after th: installation of a drainage channel. The catch-
ment is 500 m wide and 2 000 m long with a uniform slope of
1/500, and an effective absolute roughness of 10 mm before de-
velopment. A 3 11 wide channel with an effective roughness of 1
mm will be consiructed. The depression storage over the catch-
ment may be taken as 10 mm and the infiltration as 20 mm for
the soil conditions present. Neglect overland flow time for the
purposes of the cxample.

The 20 year storm factor a for the station is 90 mm and
the time factor t is 0,5 h.

For the or ginal catchment the retardation factor

1
2 (00 x 0,01° 0.8 )
Z = 151 S!:j
7,74/,8/500 0,09

F =



30/90 =
0,333

Uniform retention factor for total loss U = s,/a =

Initial retention factor for total loss I = s;/a = 30/90 = 0,333

It will be observed that the total loss is taken in each case.
This is because each line in Figs. 2 to 7 is drawn assuming the
other loss is zero.

Interpolating between these lines in Figs. 3 and 5 (one
third of the way from the U = 0,33 to the I = 0,33 line), storm
duration = 2,3 h and from Fig. 7, i.,/a = 0,27/h. The peak ex-
cess runoff is therefore i,, = 0,27 x 90 = 24,3 mm/h. The peak
rate of runoff is 24,3 x 500 x 2 000/3 600 x 1 000 = 6,75 m3/s.
The value of C in the rational formula is

i ' : h
iep _ 243 mm/ ~ 065
24,3 + 30/2,3

i, + s/aty

It should be noted that owing to the non-linearity of the
equations, when uniform and initial losses are interpolated, the
storm precipitation calculated from the storm duration from
Fig. 7 and the equationi = a/(b + t,) does not necessarily quite
equal the total of excess runoff and losses.

With the construction of the channel a’ = (500/3) x 0,09

=15
: 0.6
2 000 x 0,001° :

=155

F becomes {: z
7,74/9,8/500 153

The peak runoff thus becomes 0,45 x 90 x 500 x 2 000/3 600 x
1 000 = 11,25 m¥/s and storm duration = 0,33 h. It is very in-
accurate to interpolate between values of U and I on Fig. 7 for
low F though. In fact U would be less for the smaller duration
(even negligible in this case) so I becomes 10/90 = 0,11 and
runoff would become 1,46 x 90 x 500 x 2 000/3 600 x 1 000 =
36,5 m3/s.

Effect of Canalization

It is evident from (15) and (21) that the rate of overland flow per
unit width affects the concentration time. The higher the runoff
rate, and consequently the greater the depth of flow, the faster
will be the time of concentration. It follows that if the overland
flow is concentrated in a channel down the catchment, the con-
centration time will similarly be reduced. This is assuming the
overland flow time to the channel is negligible. The conse-
quence of this is that the effective storm duration is reduced so
that the intensity of precipitation is increased and the peak dis-
charge rate is magnified.

The effect on peak discharge rate of a rectangular cross
section channel of uniform width down a long rectangular plan
catchment may be studied from previous results. Fig. 9 illus-
trates the catchment considered. Neglect side effects of the
channel (i.e. y € w). Then the catchment storm factor a should
be multiplied by W/w where W is the catchment width and w is
the channel width, to obtain an effective a’. The catchment re-
tention factor s/a remains the same since it represents a pro-
portional loss (both loss s per unit area and a increase in the pro-
portion W/w). It will be observed from Figs. 2 and 3 that con-
centration time reduces as F is reduced due to the higher a’, and
from Figs. 6 and 7, peak runoff increases in most cases, due to
smaller F.

Conclusions regarding the effect of urbanization

The effect of urbanization has the following effects on the run-
off process:

()  Losses are reduced due to paved and covered areas
replacing soil and vegetation.

(ii)  Infiltration is reduced and losses tend to be more in the
way of initial losses (storage or retention). Initial losses do
not reduce excess runoff as much as the same loss spread
over the duration of the storm.

Effective catchment storm factor is increased by canali-
zation, with the result that concentration times are re-
duced. Peak runoff is thereby increased for any location
and. recurrence interval.

(iii)

(ivy Roughness is reduced so that concentration is faster. This
has the same effect as eliminating temporary surface
storage.
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