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Abstract .

! out on a full’scale HRAP at Ein Karem, near Jerusalem, and

. two laboratory-scale models of the same pond. Dispersion coef-

In order to define an appropriate mathematical model for the
flow and mixing characteristics of a high-rate algae pond, im
pulse-response tests were carried out on an experimental pond :
located at Ein Karem, near Jerusalem, at Reynolds number = .
10°, and on two scale models of the same pond, at 2 000 < Re i
< 20 000. Each pond consisted of a continuous rectangular !
channel with seven 180° bends, and was mechanically recircu- :
lated.
It was demonstrated that this type of pond is well charac-

terised by either a dispersed-plug-flow model with dispersion |

numbers in the range 0,003 to 0,017, or by a tanks-in-series |
model. Dispersion intensities were correlated by a modified dis-
persion number for depth:width ratios in the range 0,18 to 0,76.

Introduction

An oxidation pond constitutes a well-established low-cost
wastewater treatment process which combines the growth of
algae with the purification of domestic sewage. The pond pro-
vides a symbiotic environment in which algae produce the oxy-
gen required by aerobic microorganisms to convert organic mat-
ter into carbon dioxide, which, in turn, is used by the algae as ;
substrate during photosynthesis. Oxidation ponds usually de- ;
pend on diffusion and slow convection to transfer CO, and O,
between the algae, generally growing near the surface, and the
decaying sludge near the bottom of the pond. Interest in
speeding up the process, particularly for the purpose of max- i
imizing the production of protein-rich algae, has ied to the de- |
velopment of the high-rate algae pond (HRAP), where transferx
of CO, and O, is enhanced by mechanical agitation.

The HRAP conventionally takes the form of a continuous
channel equipped with an aerator-mixer to provide the!
necessary circulation. A typical design, which has been used in'
California (Oswald, 1969) and Israel (Shelef, Schwarz and,
Schechter, 1973), is illustrated in Figure 1. Since mixing results:
in the suspension of sediments, light penetration is reduced and’
the optimum depth for the HRAP is about 400 mm as compared;
to 3 m for an oxidation pond.

The effectiveness of the HRAP as a means of wastewater:
treatment or of algal protein production depends not only upon:
the complex kinetic interrelationships between the concentra-
tions of algae, bacteria, oxygen and the various substrates in the!
system, but also upon the nature of the flow and the quality of,
mixing in the process. A study of the mixing characteristics of
the physical reaction system is therefore a necessary prerequisite
to the development of a realistic dynamic model for the process.
This paper presents the results of such an investigation carried

! ficients under various operating conditions were determined by
: fitting the results of tracer studies to a dispersed-plug-flow

model of the continuous channel system.

Modelling of a Reaction System

The two simplest ideal models for describing flow conditions in
a reaction system are:

1. plug flow, where no mixing takes place in the
longitudinal direction but perfect mixing is assumed over
the cross-section of the flow channel, and

complete mixing, where the contents of the reactor are
perfectly mixed, so that the composition of the exit
stream is identical to that of the fluid within the reactor.

Real reactors do not achieve these idealised flow condi-
tions. In order to allow for intermediate situations, the concepts
of plug flow with superimposed longitudinal dispersion, or of a
number of completely stirred tanks in series, are employed. If
necessary, further sophistication may be attained by considering
diffusion in two dimensions, or by introducing side capacitan-
ces, dead volumes, short-circuiting, etc.

The choice of an appropriate flow model may be made by
determining the age history of each element of fluid as it passes
through the reactor. This information, termed the residence
time distribution (RTD) may be obtained by stimulus response
techniques whereby a varying tracer concentration is imposed at
the inlet and the corresponding response measured at the exit of
A suitable mathematical representation of the
systern is then developed by matching the characteristics of the
experimental time those of the
mathematical model (Danckwerts, 1953; Levenspiel, 1972).

E(t), the residence time distribution function, is defined
as the response of a system to a unit impulse of tracer material

the reactor.
residence curve with

applied to the input. The most important parameters by which
the RTD is characterised are (see Nomenclature):

1. The mean, viz., the first moment of the RTD about zero
time:
Teo= J®CE@Ode (1)

For closed systems, where all the material injected even-
tually appears at the outlet, it follows by material balance
that T, is equal to the mean residence time, T.
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Figure 1
Scale model used in experimental studies, tllustrating layout of high-
rate algae pond.
For dimensions refer to Table 1.
2. The variance, viz., the second moment of the RTD about  ring in the longitudinal direction. The latter is analogous to
the mean: molecular diffusion and the rate of dispersion is proportional to
the concentration gradient in the direction of flow. The effects
ot = os *® (t—T P E() dt = J ® 2 E(t) dt — ®.o (2) of both turbulent mixing and radial velocity gradients are thus

Moments of higher order may also be employed, but they
often suffer from inaccuracies if the response curve has a long
tail. If necessary, this problem may be alleviated by fitting an
appropriate equation to the trailing portion (Gomezplata &
Brown, 1968).

The quantities determined above are utilised to evaluate
the parameters employed in the mathematical model. As
pointed out by Clements (1969), however, a more critical assess-
ment of the suitability of the model chosen demands that the ac-
tual time response curve be matched against the predicted im-
pulse response of the model. In this case model parameters
would be evaluated by an appropriate curve-fitting technique.

In experiments where the test input pulse to the system is
not a perfect impulse function, stimulus response techniques
may still be applied, provided that the shape of the input pulse
is recorded. The moments of the RTD are then obtained by sub-
tracting the values computed for the input signal from those ob-
tained for the output (Bischoff and Levenspiel, 1962). The
predicted response to a non-ideal pulse may be calculated by the
use of the convolution integral:

c, =1 c ()Et-—r)dr)

where C(t) is the tracer concentration and E(t), the RTD,
represents the impulse response of the mathematical model.

The Dispersed Plug Flow Model
In this model, which has been extensively treated in the litera-

ture (Wen and Fan, 1975), the flow pattern is described as basic
plug flow, together with a superimposed diffusion process occur-

lumped into a single longitudinal dispersion coefficient, D.
In dimensionless form, the differential equation
representing longitudinal dispersed plug flow without reaction is

360) _ D ¥CO)  3(O) @
i[S] ~ ubL 9% 0z

The group (D/uL) is referred to as the longitudinal dispersion
number, P.

The solution to this equation for an impulse input of
tracer material at z = 0 depends on the boundary conditions at
the points of injection and measurement. Two types of boun-
dary condition have been extensively studied (Wehner & Wil-
helm, 1956; Van der Laan, 1958; Wen and Fan, 1975), viz., the
“closed vessel” condition, where no diffusion is possible in the
negative direction at the inlet or in the positive direction at the
outlet, and the “open vessel” condition, where the flow pattern
is undisturbed at the injection and monitoring points.

The impulse response for the undisturbed or “open
vessel” case can be derived analytically and is given by
Levenspiel and Smith (1957) as

E©O) = TE(t) = —— ex {_ 1-0)y° } (5)
2 y7Po P 4PO

From this equation, T, and o” may be derived as:

T/E= 14+ 2P i (6a)

/U= 2P + 8P% (6b)
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In the case of a recirculating system, the tracer will be
recorded as it flows past the measuring point at the end of the
first cycle, the second cycle, etc. The output is obtained by sum-
ming the contribution from each pass (Harrell & Perona, 1968):

By~ T — 1 o f_ 629"
E(©) j 2JxPoO P { 4PO } -

The “closed vessel” condition, where no material is allow-
ed to diffuse beyond the boundaries of the system, has been
handled by decreasing the diffusion coefficient, D, to zero, in
some acceptable fashion, at z < 0 and z = L (Pearson, 1959;
Choi and Perlmutter, 1976), This approach leads to solutions
for the impulse response which are considerably more complex
than equation (5) (Wen and Fan, 1975). In any but very short
systems, however, or ones with relatively large dispersion num-
bers, the amount of material that would diffuse out through the
ends of the system and hence influence the system response, is
insignificant. Bearing in mind, also, that the dispersed plug flow
model is only an approximation of the true flow situation in the
first place, undue sophistication in the mathematical solution is
not justified. For a system with a large length-to-diameter ratio,
such as the HRAP, only the “open vessel” version of the dis-
persed plug flow model need be considered.

The Tanks-in-Series Model
An alternative representation for deviations from ideal flow is

that of N equal-sized cornpletely mixed tanks in series. The im-
pulse response (Levenspiel, 1972) for this model is

N (NO)!

= T = L eNe (8)
E(©) T E(t) N1, €
whileT, = v .o (9a)
and o%/T = I/N ... .. (9b)
For a recirculating system,
: (NOyN!
E©) = NeMO (10)
i GN-Tt

If either of the above two models represent the system
equally well, it may be seen from equations (6b) and (9b) that
the relationship between the dispersion number and the number
of tanks in series is

1/N = 2P + 8P?

Experimental

Tracer studies were carried out in an experimental HRAP treat-
ing domestic sewage, located at Ein Karem, near Jerusalem
(Shelef, Schwarz and Schechter, 1973), as well as on two labora-
tory-scale models of this pond. Both scale models satisfied the
criterion of geometric similarity with the Ein Karem pond and
comprised a meandering channel with seven 180° bends and

TABLE 1
DIMENSIONS OF ALGAL PONDS
(Refer to Figure 1)
Small Large Full-scale
model model pond
(Ein Karem)
W, mm 65,5 130,5 1200
X, m 1,14 2,29 20,3
Y, m 0,64 1,18 12,5
Z, m 1,25 2,47 22,5
\
| Liquid depth, mm 2050 2462 380
Total length of
| flow path, m 9,44 18,84* 171,0
] *10,00 m in case of shortened flow path

located upstream of the outlet prevented vortexing and thus
javoided cavitation in the centrifugal pump used for recircula-
‘tion. A 10% sodium chloride solution was used as tracer and
;two 10 x 10 mm stainless steel electrodes were positioned in the
discharge line from the pump to measure the change in conduc-
‘tivity of the recirculating water. Conductivity was recorded by
/measuring the phase change of a 1 kHz signal, rectifying,
, digitising to an accuracy of 1 in 1024, and printing the resulting
signal at predetermined time intervals of 14 to 2 seconds. Cali-
‘bration of the measuring system showed a linear relationship
;between printed voltages and NaCl concentration.
Each pond was operated as a closed recirculating system.

’ Since flow only occurs under the influence of a liquid gradient,
i the model had to be inclined sideways to maintain a constant
' depth in the channels. Tracer tests were carried out by rapidly
injecting about 4 — 10 ml of 109 NaCl into the pump suction at

the pond outlet and recording the resulting trace for 3 to 5
, cycles. In order to record the response with maximum sensitivi-
1 ty, the recording of the initial impulse was allowed to go off-
scale. Its height was subsequently estimated by matching the
. area under the curve for the first pass.
: The main variables investigated were the depth of liquid
: in the channel and the liquid flow rate, covering the Reynolds
¢ number range 2 500 < Re < 20 000 and depth:width ratios
' between 0,18 and 0,76. In order to evaluate the influence of
i total length of the flow path on dispersion, a number of tests
" were also carried out on a “shortened” version of the larger
; pond, where the length of the flow path was ap};}_oximately
- halved by positioning the exit port in the fifth ¢hannel from the
inlet. The effect of channel width was examined by tests on the
- two scale models, one of which was half the size of the other, as
: well as on the full-scale pond at Ein Karem. Two tests were car-
' ried out on the latter, at Re = 10° and h/W = 0,32, by injec-

ting a fluorescein tracer and measuring outlet concentrations on
; samples collected immediately after the paddle aerator.

| Results

one 90° bend as illustrated in Figure 1. Dimensions are givenin '

Table 1.
In the scale models, a liquid distributor was positioned at

the inlet to the pond to ensure even flow. A flow-straightener
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~ A typical set of output data is shown in Figure 2. For clarity not
- all data points are included. These experimental readings were
processed to obtain approximate values for mean residence



time, variance and dispersion number by numerical integration
from pulse to pulse in accordance with equations (1), (2) and
(6). Parameters such as these, which are obtained by integration
of a global response curve, do not, however, tell us how well the
chosen model represents the detailed system response. These
parameters were therefore only used as starting values in an op-
timum search procedure, whereby the observed response was
compared to the analytical impulse response, using a least-
squares error criterion. The solid line in Figure 2 illustrates the
quality of the fit obtained to the dispersed plug flow model as
described by equation (7). Although minor deviations are
noticeable, broad agreement between experimental data and
the mathematical model is demonstrated.

Dispersion numbers obtained in these tests were all in the
range 0,003 to 0,017. Such low values confirm the expectation
that the plug flow model might be a good representation of the
system and that the “open vessel” solution of the diffusion equa-
tion may be employed.

Some of the deviations exhibited in Figure 2 may un-
doubtedly be ascribed to the fact that the exact shape of the in-
put disturbance could not be accurately recorded, and that a
perfect impulse was accordingly assumed in the solution shown
in Figure 2. The problem of non-ideality of the input pulse may
be overcome, however, by noting that the output from any cycle
serves as the input to the succeeding cycle, and thus the second
pulse may be used to predict the shape of the third pulse, and so
on, by application of the convolution integral, equation (3).

Figure 3 shows the result of employing this technique, using
response data as input to predict the output response of the pro-
cess by convolution. The tracer concentration has been nor-
malised with respect to the final steady-state concentration ex-
pected, viz.

“1
C ==—

= §Tcya

The first, imperfectly recorded, pulse is not shown. Since
the second peak serves as input to the convolution, the predic-
tion is only available from the third peak onwards. On the basis
of the very good agreement obtained between prediction and ex-
periment, it is clear that the dispersed plug flow model provides
an excellent representation of the experimental system.

Similar investigations may be made to evaluate the ef-
fectiveness of the tanks-in-series model as an alternative mathe-
matical description of the system. Computation showed that the
best-fit tanks-in-series response curve agreed very closely with
that of the dispersion model. As an example of the agreement
obtained between model parameters, the data in Figure 2 give N
= 95 as the best fit to the tanks-in-series model, in comparison
with N = 91 which is obtained when the best-fit dispersion
number is converted by equation (11). Because of the good
agreement between the two models, it is concluded that either
number-of-tanks or dispersion number may be employed to
characterise flow conditions. The latter will be used in this

paper.

TRACER CONCENTRATION
(Arbitrary units)

LARGER SCALE MODEL

9630
0,31

Re
h/W

[} 200
TIME.

400

600 800

seconds

Figure 2
Reponse of HRAP to injection of tracer. ® Data (Not all data points

shown);

Impulse response of dispersed plug flow model, eq. (7).

P = 0,0051, T = 200s.
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Quality of fit of dispersed plug flow model to experimental data, as cal-
culated by convolution integral. (Not all data points shown.)

Dispersion Numbers

For turbulent flow in full tubes, dispersion may be represented ,
(Levenspiel, 1958) by expressing the dispersion intensity, de-
fined by |

D _D L (13) !
ud ulL ;

d s

as a function of Reynolds number. Wen and Fan (1975) propos-
ed the following empirical correlation for Re > 2 000:

1 3,0 x 107

= + L e
D/ud Re*! Re*

This relationship is presented in Figure 4, together with the ex- '
perimental results for HRAP channel flow. Values of the
longitudinal dispersion number, D/uL, were determined from
pulse test data by the method of least-squares fitting, using the -
impulse response of equation (7) in conjunction with the con- ‘
volution integral. The diameter, d, required in equation (13):
has been taken as 4 times the hydraulic radius, i.e. :

d = 4hW/(2h + W)

Fair agreement is shown between the experimental values for,
the HRAP and the equation for pipe flow, but it is evident that :
the data are influenced by the depth of liquid in the channel. |

i
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This suggests that a further factor should be included in the cor-
relation to account for the shape of the channel cross-section.

As an example of the use of a shape factor, the dispersion
data are plotted as (D/ud)(h/W) in Figure 5, with the pipe flow
equation left unchanged. An immediate improvement in the
correlation is observed, although the rectangular channel data
now deviate from those of pipe flow. It should be pointed out
that these experiments only covered the range 0,18 < h/W <
0.76 and the indicated trend may not be valid beyond this
range. The data points for the full-scale pond at Ein Karem are
seen to lie somewhat above the trend suggested by the other
data. These runs may have been influenced by non-ideal injec-
tion and sampling, as discussed by Levenspiel and Turner
(1970). On the other hand, it is interesting to note that Cassell
and Perona (1969) reported that dispersion intensity in coiled
tubular reactors passed through a minimum at a Re of about
40 000. The dashed line in Figure 5 follows such a trend, but
further experimental work will be needed to confirm this
tendency.

Conclusions

In considering values of the dispersion intensity obtained in rec-
tangular channels (Figure 4), it is clear that the hydraulic dia-
meter alone does not completely account for the effect of chan-
nel shape on dispersion. Channels with relatively thin liquid
layers appear to give larger amounts of dispersion, and multipli-
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Correlation for dispersion intensity in rectangular channels, for 0,18 <
h/W < 0,76.
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cation by the factor h/W improves the correlation (Figure 5) tor
the tests reported here. This simple geometric ratio may not be
appropriate at larger height:width ratios, where channels be-
come very narrow, but a more general correlation must await
further experimental results. The correlating  factor
(D/ud)(h/W) appears to be reasonable in the range 0,18 <«
h/W < 0,76, and Figure 5 thus provides a means of estimating
the dispersion intensity in a typical high-rate algae pond.

The linear flow velocity utilised in a HRAP wil depend
on the operating characteristics desired: high flow rates wiil give

- series), without appreciable loss in computational accuracy.

Another point of interest is the time required to disperse

: (mix) a pulse input of material into the circulating fluid. “Mix-

ing time” may be defined as the time required for the concen-

; tration anywhere within the system to reach and deviate by no

rnore than a given fraction, 7, from the final concentration. In a
study of mixing in long tanks by recirculation, Harrell and

i Perona (1968) determined the mixing time, based on equation
i (7), for various values of y. Computed results were shown to fol-
" low a logarithmic trend of the form

better mixing, while low flow rates would reduce suspension of j

sediment from the pond floor and thus allow better light utili-
sation throughout the pond depth. The latter condition would
invalidate the assumption of complete cross-sectional mixing in-
herent in the dispersion model. In this study a good fit was ob-
tained with the dispersed plug flow model for all Reynolds num-
bers in the turbulent region and it is considered that good ver-

log(t_/T) = constant — log P,

' for P less than 0,04 Similarly, Khang and Levenspiel (1976)
. considered recirculation in a series of mixed tanks, and propos-

! ed the following equation for the amplitude of the cyclic system

i concentration for large N:

tical mixing was obtained. In contrast, results at low Re were |

not reproducible. Conclusions based on the dispersion model =, _
tA = 2exp

should therefore be valid as long as the flow is turbulent.

The major reason for studying dispersion in a HRAP is to |

obtain a mathematical description of the reaction system,
together with the appropriate parameters, for use in simulation
studies of bacterial and algal kinetics. It has been shown in this

study that either the dispersed plug flow model or the tanks-in-
series model may be employed in this instance. Figure 5 shows |
that the variation in the correlated dispersion intensity
parameter over the range of Reynolds numbers investigated is !
! Excellent agreement is obtained between equation (18) and the

relatively small. For a pond with the physical dimensions of the
HRAP at Ein Karem, the longitudinal dispersion number will
vary from 0,012 to 0,004 over the turbulent flow range. In terms
of a number of equally-sized, completely mixed tanks in series,

(_

~ If equation (11) is substituted and the second-order term in P ig-

nored, mixing time for small P will be given by

—1In(y/2)
[ = ——————
/T 4 x*P

computed results of Harrell and-Perona. By using equation (18),
together with average values of the mixing intensity group from®

- Figure 5 (dashed line), a relationship for mixing time in a high-
equation (11) shows that 40 to 123 tanks will be required for |
modelling purposes. In practice the authors found that these |
numbers may be substantially reduced (to about 10— 25 tanks in |

rate algae pond may be developed, as shown in Figure 6. From
this Figure, a typical mixing time in the Ein Karem pond, at Re
= 10°, may be determined as

1,0
0,5 =] 7 <
/ \\
~f~ N
i',i //f - ™~ N
=l il ‘//”/// ‘\#‘\\\
/ . N
x = ]z / / /V \\\
=T
5% ///
10% ~
0,1
1 03 S 1 0‘ S 1 0:

REYNOLDS NUMBER

Figure 6
Time required for mixing by recirculation in q high-rate algae pond.
Y = Approach to complete mixing.
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/ 025h/w 14,7
t /t = 0,25—— =
m d/L ’

for a 5% approach to uniformity. In this case it would take 14,7

cycles of circulation for a tracer input to be uniformly dispersed
(within 5%) throughout the HRAP.

Nomenclature

C = tracer concentration at inlet or outlet

G = final steady-state concentration

d = diameter. In case of a rectangular channel, defined as
4hW/(2h + W)

D = longitudinal dispersion coefficient

E = impulse response, i.e., response of outlet concentra-

tion to an impulse distcurbance at input
= depth of liquid in channel
= length of flow path between points of measurement
number of equal-sized mixed tanks in series
longitudinal dispersion number, D/ul
e = Reynolds number, du/»
time

TZ- T
It

~ o
[l

= mixing time, i.e. time to reach and stay within a frac-
tion, v, of final concentration

= mean residence time, L/u

= time integral defined by equation (1)

= mean bulk velocity

= width of flow channel

3

=~
=

= distance variable
= fractional approach to final concentration

o= N g=
|

= normalised time, t/ T
= kinematic viscosity

e

= variance, defined by equation (2)

N Qoow

= integration variable
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