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Abstract

The assumptions behind the kinematic equations of flow are
presented together with a description of the applicability of the
equations to overland flow problems. Numerical methods of so-
lution of the one-dimensional and two-dimensional equations
are compared before selecting a backward-central explicit finite
difference scheme for a two-dimensional model. Efficiency and
stability of the numerical scheme is discussed and comparison
with results from an experimental catchment verifies the model.
The model is suited for analysis of sheet flow off two-dimen-
sional planes such as encountered in natural catchments. Typi-
cal output of the program in the form of graphical contour
plots, three-dimensional views, rainfall variation and hyeto-
graphs are presented.

Introduction

Existing means for estimating floods from specific catchments
are limited and based on simplified assumptions. Topography
and catchment surface characteristics are not accounted for in
unit hydrograph methods. Neither is catchment shape, infil-
tration variation or the effect of urbanization. Storm patterns
cannot be accounted for and the assumption of a rectangular
hyetograph over the entire catchment is often dangerous. The
effect of infiltration and storm variation in time and space can
be accounted for in the numerical model outlined in this paper.
Storms off abnormally steep or distorted catchments can be se-
vere and unpredictable unless the catchment is modelled. Pre-
vious modelling tools have been formidable. The differential
equations of motion would be extremely costly to solve nume-
rically. Alternative empirical methods such as Muskingum rout-
ing methods are simplistic and inaccurate. It is hoped that the
development of the present computer program will lead to ac-
ceptance of models as the only accurate and justified means of
assessing catchment storm runoff.

Basic Equations

The one-dimensional Kinematic equations are derived by sim-
plifving the Dynamic equations for the one-dimensional case
commonly known as the St. Venant equations. Derivations of
the St. Venant equations are obtained by applying the princi-
ples of conservation of mass and momentum eg. Chow (1959),
Yen (1973).

The St. Venant equations are:

- dy dq
continuity E + M =0 (1)
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where
X @ space axis along the direction of flow (m)
y : depth of water above the bed (m)
t : time (s)
'q : average discharge across a section per unit width
(m?/s)
v : average velocity across a section (m/s)
S, : bed slope
.S, : friction slope

The Kinematic continuity equation is identical to the cor-

. responding St. Venant equation with the addition of lateral in-

: flow while the dynamic equation in the case of the Kinematic

" equations is obtained by assuming that the bed slope is equal to

the friction slope. The one-dimensional Kinematic equations
thus become:

dy 9q
—_— + _— =1 3
3 x @)
s, =§, ()
- where
i = excess rainfall (m/s)

Equation (4) is the assumption for steady uniform flow. A
major simplification in the dynamic equations is thus possible.
' Due to this and the assumptions in deriving the dynamic equa-
i tion from the general Navier-Stokes equations (Yen, 1973) there
" are limitations on the applicability of the Kinematic equations.
The assumptions made in reducing the general equations of mo-
tion as derived by Yen (1973), to the St. Venant ones are: The
flow must be gradually varied i.e. no rapid changes in the flow
' cross sectional area, implying that fluid acceleration in all direc-
tions other than the direction of flow is negligib]e; the bed slope
must be smalli.e. © = sin © = tan O; velocity is uniformly dis-
tributed over any cross-sectional ?rea; pressure distribution
along a cross-section is hydrostatic; lateral inflow or outflow car-
ries no momentum; and in order to reduce the St. Venant equa-
tions to the Kinematic equations it is necessary to neglect the ef-
fect of space and time variation of velocity and depth in St. Ve-
nant’s equation of motion. These assumptions were shown to be
- satisfactory for overland flow in most cases (Lighthill and Whit-
ham, 1955; Overton and Meadows, 1976).




By assuming that the bed slope equals the friction slope
and by using any existing open-channel flow friction equation
we can express the discharge at any point and time as a function
of the water depth only as follows

q=ay” (5)

where o and m are parameters depending on the open-channel
flow friction equation used.

For example, for the Darcy-Weisbach equation:

a = (8gS/D% (6)
m :g (7)

for turbulent flow

where
g = acceleration due to gravity (m/s?)
f = Darcy-Weisbach friction coefficient

Unfortunately f is a function of the hydraulic radius, and
for low Reynolds numbers it is also a function of flow velocity
and fluid viscosity.

For the Manning-Strickler equation applicable to turbu-
lent flow with a rough boundary

o = gS)R/m e ®)
5

m = = 9
3 €)

where

k = equivalent to Nikuradse’s roughness.

Note that values of the constant in equation (8) have been
quoted by various authors as varying between 6,7 (Jaeger, 1956)
and 7,7 (Einstein and Barbarossa, 1952). The Manning-Strick-
ler equation is preferred to the Darcy equation as the friction co-
efficient is a unique function of the surface. Both the Darcy-
Weisbach and the Manning-Strickler equations are intended fo.
turbulent flow conditions. The transition between laminar and
turbulent flow is shown to be around Reynolds number of 500
(Woolhiser, 1977). where Reynolds number is defined as:

vR
Re = — 10
” (10)
where
v = average velocity across a section (m/s)
v = kinematic viscosity of water = 1,33x107®m?/s
R = hydraulic radius of section

For Reynolds number less than 500 laminar flow persists
and the Darcy-Weisbach equation is applicable. The resistance
coefficient is a function of Reynolds number as follows:

(1)

where K is a function of surface configuration and rainfall in-
tensity (Woolhiser, 1977).

For turbulent flow Shen and Li (1973) also discussed the
effect of rainfall on the friction coefficients used in the channel
formula. Using the Darcy-Weisbach friction formula for Rey-
nolds numbers greater than 2000 Shen and Li found that rain-
fall affected the friction coefficient by no more than 5%.

For the purposes of this model the Manning-Strickler
equation as well as the Darcy-Weisbach equation were used as
options for turbulent flow.

Two-dimensional kinematic equations

The kinematic equations can be written for the two-dimensional
case as follows. The continuity equation becomes

dy dq dq .

= + =2 o+ = = 1
3t x % e a2)
where

q, is the flow in the x direction (m?/s)
q, is the flow in the z direction (m?/s)

A proof of this equation can be found in Dronkers (1964).
For two-dimensional flow two equations of motion are required.
The relevant Kinematic equations become

5, =5, (13)
Sm, = S(l (14)
where

S, = bed slope in x direction

S = bed slope in z direction

S, = friction slope in x direction

S, = friction slope in z direction

2

By considering velocity as a vector which can be resolved
in two perpendicular directions one can extend the one-dimen-
sional flow equation (5) into two-dimensional flow. By squaring
both sides of equation (5) one obtains:

1
“ T3 (ay") (15)
q = Py (e y™P (16)
where
q =(q2+g)¥ (17)
and
o = o as a function of S
Q, = «a as a function of S

This idea for two dimensional flow was used by Orlob
{1972). It will be noticed that q, is always positive while q_ and q,
can be positive or negative as (o )? and (o )? are functions of S
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and S respectively. By using Manning-Strickler equations (8)
and (9) one can obtain:

q = l _‘gg.s‘”‘ 1075 (18)
. o WA 7

q . l ﬁ;&l_ 10/4 (19)
Z q oY

where q, is defined in equation (17).
Solution of equations

The present consideration lies in the solution of a set of non-
linear partial differential equations. Since analytical solutions
are not available numerical solutions are required. Considerable
literature exists on the solution of the St. Venant equations with
methods ranging from explicit finite difference schemes to finite
element methods.

The following condenses the basic thoughts behind the
methods of solution of the equations. An explicit finite differ-
ence scheme is then selected as it is known to be economical and
shown to be stable. The characteristic equations are considerred
first as they will demonstrate certain basic principles. By using
the method of characteristics one can show for the Kinematic
equations that:

49 _ & (20)
dy dt

and by assuming

'3% = amy™! (21)

it can be shown that

2 = (22)
< - (23)
- (S (24)
% = i /(dx/dt) (25)

Proof of this can be found in Overton and Meadows
(1976). Similarly for the St. Venant equations it was shown
(Henderson, 1966: Abbott, 1979) by assuming

dx

< = v=VE) (26)
that

d(v = 2 gy) _ qv

— L s, o - AL (27)
where
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= lateral inflow per unit length along the flow (m?/s)
cross-sectional area of channel (m?)

> 2
o

Equations (20) to (25) are called the characteristic Kine-
matic equations while equations (26) and (27) are called the
characteristic dynamic equations.

By using the method of characteristics on the St. Venant
equations it can be shown that a disturbance described by the
unsteady dynamic flow equations can be propagated with a ve-
locity v++/gy relative to the ground or ++/gy relative to the
flow. Since the dynamic equations have often been used to des-
cribe unsteady flow caused by a disturbance in an originally
steady flow this disturbance is seen in the form of a wave called a
dynamic wave. With the use of the Kinematic equations, how-
ever, the existence of a kinematic wave is not always obvious, as
in the case of the rainfall runoff relationship. The meaning of
the characteristic Kinematic equations is different for this case.

For example consider a point in space in the rainfall-run-
off situation. The water leaving the point is governed by the
open-channel friction formulae (i.e. equation (5)) and is usually
not equal to the water entering it from upstream points and
from the excess rainfall. To satisfy continuity the water dépth at
the point changes. All that the characteristic equations now
mean is that information about this abnormality in flow will be
propagated downstream at a speed of dx/dt relative to the
ground, given by equation (21). '

Since this happens at most points most of the time in a
normal catchment one cannot talk of travelling waves but of
continuity satisfying itself at all points all the time. These con-
siderations are important in the solution of the equations, par-
ticularly in the choice of a difference scheme and in defining
stability and accuracy criteria for the selected scheme.

Explicit finite difference schemes

Explicit finite difference schemes have been found by Ligget
and Woolhiser (1967) and Strelkoff (1970) to be economical and
efficient. The major problems accompanying them however are
those of stability and accuracy. An explicit finite difference
scheme was used in the model and was shown to be stable and
accurate enough. In the analysis the idea of propagating infor-
mation along characteristics from the Kinematic equations is us-
ed and some possible explicit finite difference schemes are com-
pared on this basis. Considerable effort was spent in seeking an
economical yet accurate and stable numerical scheme for the
solution of the two.dimensional equations. In fact many schemes
were attempted which proved unstable to varying degrees. The
scheme that finally satisfied accuracy and stability criteria is a
scheme that propagates information in a way similar to that sug-
gested by the Kinematic characteristic equations (21) to (25).
Before this is done the basic concepts of stability and accuracy
are summarised as they will be used in the analysis to follow.

Accuracy and stability of explicit difference schemes
General

The relevant terms will be defined in order to facilitate under-
standing of the interrelationship between stability and accuracy.
Many natural systems which are continuous functions can be
described by differential equations. If differential equations
cannot be solved mathematically one can resort to numerical
methods by approximating the differential equations with dif-



ference schemes. One usually assumes that the differential
equations represent the system exactly. This will be assumed in
the analysis to follow despite the fact that it has been noticed
that this is not necessarily the case and that a difference scheme
considerably different from the differential equations used to
describe a system, yields more accurate results than a difference
scheme similar to the differential equations when compared
with experimental results eg. Abbott (1974).

The difference between the differential equations and the
difference scheme approximating them is called a Truncation
error (Tr.)

i.e. Differential Equations = Difference Scheme + Tr (28)

The truncation error can be easily established using Tay-
lor’s expansion. There is also a difference in the solutions of the
two schemes which one calls the Error (E)

i.e. Solution of Differential Equations = Solution of Difference
Equations + E (29)

The exact value of the Error cannot really be obtained in
our case as we are unable to obtain the solution of the differen-
tial equation. We say that a difference scheme is consistent with
a set of Differential Equations if the Truncation error tends to
zero as the space and time increments tend to zero.

i.e. Consistent if hmit Tr = 0

Ax, At — 0 (30)

We say that the solution of the difference scheme is con-
vergent with the solution of the differential equations if the Er-
ror tends to zero as the space and time increments tend to zero.

i.e. Convergent if limit E = 0

Ax, At — 0 (31)

Numerical diffusion is the process in which the Error (E)
is formed. It is the development of the truncation error (Tr) to
the error (E) through the numerical technique used.

There are theories as to when convergence exists e.g. Lax’s
(1954) theory, proved by Richtmyer and Morton (1967) which
states that for linear equations with constant coefficients opera-
ting on uniformly continuous initial and boundary data the fol-
lowing theorem holds. Given a properly posed initial-value pro-
blem and a finite difference approximation to it that satisfies
the consistency conditions, stability is the necessary and suf-
ficient condition for convergence. This is however proved only
for linear equations and also according to Abbott (1979) it
breaks down when there are discontinuities-in flow.

Stability and accuracy criteria for an explicit
difference scheme

Since one is dealing with non-linear partial differential equa-
tions (p.d.e’s) there is no rigorous proof specifying stability cri-
teria. For linear p.d.e’s, however, stability analyses exist. Von
Neuman (1949) was first to devise a powerful technique for de-
termining stability criteria for linear p.d.e’s. This and other
similar techniques are useful in understanding a few basic prin-
ciples of stability but are outside the scope of this paper.

It was found that both stability and accuracy are influen-

solution 19 solution is
unstable stable
—

Accuracy of solution decreases
because of numerical diffusslon

If the éifference scheme is convergent
for a fixed(&x/Ar)the smaller Ax and
A&t the more accurate the solutien

@, (ax/,,)

Figure 1
Effect of values of Ax and At on stability and accuracy

ced by the values chosen for the space increment Ax and the
time increment At. We can best represent the effect of Ax and
At values on stability and accuracy in Fig. 1.

Ax RUSRAS S
——] represents a critical—= ratio to be de-
cr At

In Fig. 1 ~

termined later.
The main criteria therefore in the selection of Ax and At

values for a difference scheme are:

a) that the scheme shall proceed under stable conditions

. Ax ( Ax
i.e. — =\ —
It Nt Jer

Ax Ax C e o
b) have— as close to \ to minimize diffusion errors
At At Jer

and obtain optimal accuracy. -

c)  make sure that the difference scheme is convergient by
running the scheme with different Ax’s and At's and
comparing with analytical results in a simple case. Then
decrease the values of Ax and At to improve accuracy
bearing in mind that as this is done one increases compu-
ter time and core storage and thus running costs.

. Ox
Determining Ny

AX

( has been shown to be the speed of the wave, distur-
JAN gl . . -

bance or information as it is propagated. The principle of the

above criterion is illustrated in Fig. 2. In diagram (a) informa-
tion within the range i—1, i+ 1 is required by the true propa-
gated speeds while in diagram (b) information outsidei—1,i+1
range is required. Since information outside this range is not
propagated by the numerical scheme it cannot be found and
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NUMERICAL PROPAGATION LINES; SLOPE (8%/4;)
TRUE PROPAGATION LINES; SLOPE (dx/3)

Figure 2
Comparison of numerical and theoretical propagation of information

thus instability will result. (For further explanations see Stoker, :
(1957); Henderson, (1966)).
Therefore for stability

Ax dx '
N T a (82),

This is referred to as the “CFL condition™ after Courant
et al (1928).

However it has been noticed that even if we satisfy the’
CFL condition it is not necessarily true that the solution of our
difference scheme is stable (eg. by Lax, 1954; Richtmyer and
Morton, 1967; Abbott, 1974). There are two possibilities for this
to happen. There could be a physical discontinuity in the flow,
€g. a bore or a hydraulic jump. !

In terms of characteristics this implies the intersection of |
two or more characteristics. Theoretically this results in differ- .
ent values of flow properties for a fixed place and time. In a dif-
ference scheme with a fixed grid this theoretical multivaluedness

dx

fk
]
[

TN

1
(-)bx  rAx

i+l
Figure 3
The principle of weighted averages for information propagation
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does not exist and in the solution is present in the form of oscil-
lations. If the difference scheme tends to amplify these oscilla-
tions instability will occur. If however these oscillations get
damped stability will result and our scheme is referred to as a
dissipative difference scheme.

The difference scheme being used can also cause oscilla-
tions called parasitic waves. It has been noticed (e.g. by Abbott,
1974) that the parasitic waves do not only occur when a physical
discontinuity occurs but can arise out of the numericall proce-
dure used. Therefore certain difference schemes have been
found to produce parasitic waves while other do not, when con-
sidering the same physical problem.

There are two ways these problems can be overcome. If a
physical discontinuity exists it can be located, the Jaws govern-
ing the discontinuity can be applied, and our laws governing
continuous flow can be applied to each side. It is also possible to
adjust any difference scheme to dampen instead of amplifying
parasitic waves. The solutions obtained from these ‘dissipative
difference schemes’, are called ‘weak solutions’, as in this way
stability is obtained at the loss of accuracy (see Lax, 1954). Ab-
bott (1974) describes the dissipative schemes and the amount of
accuracy lost extensively.

If one considers the method of setting up a dissipative
scheme, it will also illustrate the principle of the weighted aver-
ages at a time interval of flow properties to transfer to the next
time interval.

Consider for example a difference scheme as shown in
Fig. 3 and the way information about depth (y) is propagated.
Depth at time t = k—1 is taken to be as

k—1
l’é(y i—1

wants to propagate the depth at point Q. Then interpolating
linearly between points A and B one must use depth at Q at time
t=Kk—las(l-ny '+ ryc L.

k—1

+ ¥i ) (see Fig. 3). Suppose now one

If one uses the fact that information is truly propagated at
a speed of dx/dt then the slope of line QP should be the value of
dx/dt at point Q (representing a point in space at a particular
time) denoted as (dx/dt)o_.

Therefore strictly speaking the value of r should be

- = (),

A dissipative difference scheme is one as described above
but with r chosen in such a way as to dampen oscillations. The
discrepancy between r chosen and r in equation (33) will result
in loss of accuracy in the solution of the difference scheme.

Ax
At

dx
dt

(33)

-Choosing an explicit difference scheme

The one dimensional Kinematic equations are employed to de-
monstrate the selected numerical scheme. Possible difference
schemes are used to solve these equations in problems which can
be solved with analytical methods. The analytical solutions are
then compared with results from the numerical solutions. The
difference schemes are evaluated on the basis of accuracy and
stability. As more complicated problems are considered some of
the difference schemes will be eliminated.

The different difference schemes are classified in terms of
the way they propagate information; i.e. in the way dq/3x and
dh/dt are defined, and are shown in Table 1. From the theory of



TABLE 1

DIFFERENT EXPLICIT DIFFERENCE SCHEMES

Difference Scheme

Discharge rate
Hat e =x1

Dgpth y at
t = k=1 (or t = k-2)

1.

Backward - Backward e.d.s.

(07" - &i0))

Ax

1

ryt:l + (1-r) y:_l

3.

Backward ~ Centr

1 e.d.s.

(‘hk‘l " qt:i)

4.

*
Backward - Central - Leap frog e.d.s.

(3,7 - ai7))

ax

Diffusive Scheme (Central)

( k-1 _ k-1
41 " 941
2ax

k-1, k-1
Vovgy t Y

7.

Unstable Scheme

Central)

k-1 _ k-1
(qul Y
2Ax

Leap-frog Scheme

*
{Central)

S

24x

*first time step done by diffusive scheme

INDEX

X point where flow properties are to be calculated

+ points used for calculating discharge at time t = k—1
0 points used for calculating depth at time t = k—1
e.d.s. explicit difference scheme

-

a)e

/(

=)

Kinematic equations caly the first four schemes should be con-
sidered as they are the only ones which propagate information in
the direction of flow as it happens in Kinematic theory.
However the other schemes will also be considered for com-
parison.

In the numerical solutions for scheme 2, in the definition
of r instead of using (dx/dt), one will use (dx/dt),,. This is only
done for simplicity and the effect it has on the results has been
considered by using an iterative scheme to determine the posi-
tion of Q. This is done by continuously adjusting y at Q. y is
found by using a linear interpolation between the space inter-
vals. The results obtained have no appreciable difference on the
results where (dx/dt) at B is used.

Problem 1

Consider the plane shown in Fig. 4 with constant slope and
roughness, of length L. Let i represent excess rainfall such that

i =0 fort <0
=i = constant for0 =t = ¢
=0 t <0

r

where t is the storm duration.

A complete analytical solution of this problem can be
found in the literature, e.g. Woolhiser and Ligget (1967); Over-
ton and Meadows (1976), and will not be repeated here. A com-
plete solution consists of depth and discharge variation at any
point with respect to time and depth profiles at all times.

Equilibrium state of catchment

Consider an arbitrary point on a plane. Water flowing towards
the point leaves it at the same rate with the result that dq/dx = 0
and the depth (y) increases linearly with time (t). However at the
origin (x = 0) water only leaves the point without any entering it
from upstream. Because of this flow deficiency a disturbance is
created at the origin propagating downstream with a velocity
dx/dt. When this disturbance reaches the downstream side of
the plane we will have a state of equilibrium i.e. ail the water
entering the plane will be leaving it. The time required for this

Excess rainfall

LA

it

——F
h
~q

So

Y
N

Figure 4
Problem 1: Plane with lateral inflow
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to happen is the time of equilibrium of the catchment (t ) and is
given by

I 1/m
te = im 1
(Xl(=

The depth of the water at the time of equilibrium (y ) is

(34)

given by

y, =it (35)
and the discharge at the time of equilibrium (q ) by

q. = iL (36)

For derivations of these equations see Overton and

Meadows (1976).

Numerical solutions of the problem using the
different explicit difference methods

The Kinematic equations (3) and (5) together with the
Manning-Strickler formula (8) and (9) were used. A constant
slope of 1:10 and a Nikuradse'’s roughness of 0,2 mm were con-
sidered. The space and time intervals (Ax and At respectively)
were chosen in such a way as to satisfy the CFL condition of
stability i.e.
e S <y,
A T de Vimax

wherey  was taken to be the ‘depth at the outlet at equilibrium
from equation (35).

The storm duration was taken to be approximately dou-
ble the time of equilibrium of the plane — obtained from
equation (34) — and the programs were run for approximately
four times the time to equilibrium.

Boundary conditions

There are two boundary conditions that can be used at the ori-
gin. One may assume that the depth at the origin is always zero
and that all the water entering the origin leaves it in the form of
discharge. This has been assumed in all existing theories. One
must then define

() - &
¥ =00 (38)
therefore
¢ =i lx/2 (39)

Ax/2 is used instead of AAx since the origin space interval is only
Ax/2. Programs using /Ax instead, showed no appreciable dif-
ference in their results.

One can also assume that the discharge at the origin is
controlled by the depth of water at the origin as assumed for the
rest of the points. For this case we must then use the same equa-
tions as with the other points. The effect of using the two dif:
ferent boundary conditions will be shown later.
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( dx
dt

Initial conditions

For the first time step it is assumed that the water depth at all
points — except at the origin in the case of the first boundary
condition — is given by

Al

y2 =1 At (40)

i

Schemes were run under both boundary conditions. A
subscript a is used to denote that the discharge at the origin is
the same as the excess rainfall and the subscript b denotes that
the discharge at the origin is a function of the water depth.

Analysis of results

The results from the numerical schemes were compared with the
analytical results as follows. Graphs were drawn comparing
depth and discharge variation with time at the outlet. Graphs
were also drawn comparing depth variation along the catch-
ment at different time intervals. The speed at which the distur-
bance was propagated in the numerical techniques was also
compared to the speed at which the disturbance should have
been propagated. This was done as follows:

The theoretical speed of the disturbance is given by the
relationship dx/dt = amy™ !. Along the path traced by this
characteristic the relationship dy/dx = i /amy™ ' holds (see
equations (21) and (25).

Solving equation (25) one obtains

(amy™ Ydy = i dx

Integrating: a(y—y )™ ' = i(x—x)
At the origin when disturbance occursy, = 0 and x = 0

Thus one obtains ay™ = 1 x (41)

As the disturbance travels it superimposes its height onto
the water profile with the result that equation (41) describes the
water profile at equilibrium. Numerically the water profile at
equilibrium is also obtained. Regarding « and i, as constant, a
hypothetical value of m is obtained. When this is used in equa-
tion (21) i.e. * = @my™ ! the numerical value of the speed of
the disturbance is obtained. This is compared with the theore-
tical wave speed denoted by the subscript th.

By using equations (21) and (41) i.e.

m

I
m

) = amy™ ' = ozm(—-i°X )
th o
m 1
m_ 1
. m
= o™ m 1.x

(i(_X) T

m 1

Q@ g

= a’'™m 1X
th e

( dx
dt

Table (2) summarises the results of all the difference
schemes.

(42)



TABLE 2
COMPARISON OF DISTURBANCE SPEEDS CAUSED BY DIFFERENT EXPLICIT DIFFERENCE
SCHEMES WITH THEORETICAL DISTURBANCE SPEEDS

Difference
Scheme

a: discharge at the origin equals excess b: discharge at the origin is a function of

Disturbance rainfall depth

speed ratios at

different space intervals la 2a 3a 4a 5a 6a 7a 1b 2b 3b 4b 5b 6b 7b

x = 0,0 = 23]
0,2 3,08 1,41 0,89 4 1,39 0,89 1,10 1,50 1,18 0,89 3 1,12 0,89 ;
0,4 2,73 1,44 0,94 2 1,23 0,94 1,04 1,72 1,30 0,94 i@ 0,98 094 <
0,6 2,50 1,43 0,96 = 1,17 90,96 1,02 1,78 1,34 0,96 = 0,95 096 d
0,8 2,35 1,44 0,97 § 1,13 0,97 1,01 1,80 1,36 0,97 § 0,95 0,97 %
1,0 2,24 1,44 0,98 < 1,11 0,99 1,01 1,80 1,38 0,98 < 0,95 0,98 =)
1,2 2,15 1,44 098 & 1,09 0,97 1,01 1,79 1,39 0,98 S 0,95 0,97
1,4 2,08 1,44 0,98 % 1,09 0,97 1,00 1,77 1,39 098 2z 096 0,98 5
1,6 2,02 1,44 0,99 1,08 1,00 1,00 1,75 1,40 0,99 o 0,97 0,99 2
1,8 1,97 1,44 0,99 E: 1,07 0,99 1,00 1,74 1,40 0,99 S 0,97 0,99 ‘;2
2,0 1,93 1,40 0,99 2 1,10 0,99 1,00 1,72 1,40 0,99 2 1,01 0,99

= =
~

Discharge at equijlibrium of =

numerical scheme/theoretical 0,28 0,48 1,02 0,85 1,05 1,02 0,35 0,52 1,03 1,00 1,03

Time of concentration

numerical scheme/theoretical 0,55 0,70 1,02 0,95 1,02 1,06 0,60 0,75 1,02 1,00 1,02

(approximate)

Stability of Results S S S U S SuU OS S S S U 0s SU OS

Index for stability

stable solution

unstable solution

unstable solution — however oscillations do not vary too much

oscillations inbetween successive points i.e. two solutions exist made out of each alternate point

wo e

S
U
Su
oS

Discussion of the results
Stability

Some of the schemes were found to be stable and some unstable,
the reason being the formation of parasitic waves in the
numerical techniques used. The use of the leap-frog method
(i.e. using information from 2 time steps before) in the back-
ward difference schemes results in total instability i.e. schemes
4a and 4b. The use of the leap-frog method in central difference
schemes, i.e. 7, results in point to point oscillation solutions os-
cillating from central value by an amount of +4% in 7a and
about 1009 in 7b. Scheme 6 was found to be unstable as well;
oscillations were not very big but the solution was still unstable.
This scheme is commonly known as the unstable scheme as it
was shown to be unstable when used with the dynamic equations
(Ligget and Woolhiser, 1967). Scheme 5 is commonly known as
the diffusive scheme. Its stability appears to depend ‘on the
boundary conditions. Using ‘a’ boundary conditions the scheme

is stable but while using ‘b’ boundary conditions oscillations are
noticed from point to point.

Even if some schemes are only slightly unstable they
should be eliminated as they cannot be trusted especiaily for
more complicated topography. Therefore one must eliminate
schemes 4a, 4b, 6a, 6b, 5b, 7a and 7b.

Accuracy

Apart from schemes 1 and 2 the remainder of the schemes are
very accurate. Their deviation from the correct solution is more
due to diffusion errors which can be minimised by choosing a
Ax/ I ratio closer to (dx/dt) .

The effect of using a weighted average of flow properties
at a time interval is shown by comparing the results of schemes
la and 2a and schemes 1b and 2b. Observe that by using this
technique the disturbance tends to travel at a constant speed.
Note however that in the other schemes the weighted average
technique does not apply.
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Figure 5
Problem 1: Disicharge variation at the origin

Boundary conditions

Discharge at the origin varies according to the boundary con-
dition used. A typical discharge versus time relationship at the
origin is shown in Fig. 5. It can be seen that there is no appre-
ciable difference when using either a or b boundary condition.
It can also be seen from Table 2 by comparing a with b results
thar an improvement is noticed in the results by using condition
b in schemes 1, 2 and 5 while no effect is seen in the other
schemes.

Summarising

Schemes 3a, 3b and 5a were the only schemes that yielded ac-
ceptable results.

I: excess rainfall

I

N

‘ba

+—0,6m*04m—%——| Om ——»

K =1,97x10" 1, 97x10"° |, 97x10™
S0=0, 02 0, 0, ol
@c=i2,9 28,7 9,1
le =1, 76x10™" 1,76x10" |, 76 X 10*
m =5/3 573 573
Metric units

Figure 6

Problem 2: Cascade of planes
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Problem 2
Cascade of planes
Consider three planes in sequence as shown in Fig. 6 with

.slopes, dimensions and roughness as shown,
As before let i represent excess rainfall such that

]

ifor0<t=u

0 otherwise

'i_is constant and evenly distributed over the catchment.
i

 Existing theory for cascade of planes

: Kibler and Woolhiser (1970) developed a Kinematic solution for
a cascade of planes. The time of equilibrium was shown to be
given by equation (43).

(43)

i where, when the Manning-Strickler formula is used, Yo is
given by:

i_ Fwm

f(xm — x" 1) x (T(z)- (44)
1

| 1
L
where subscript i refers to the ith plane
. p is the number of planes
: %, is the distance of the end of the ith plane from the origin
- L is the total length of the cascade
i Y is the volume of water stored on the plane
Subscript o refers to time infinity i.e. at equilibrium

The average depth of the water at the time of
equilibrium is equal to Y, while the discharge at equilibrium
is given by equation (3) where o is the « of the last plane.

Applying these formulae to our problem:

10.6
v _(1,76x10™) (0,615) (1,060,619
% 2,0 12,906 28,796
(2,016—1,019)
9,106
= 2,09 x 1073m
Seo 20,9 x 104
t Sy = = = == =119
¢ L 1 1,76 x 1074 s
g, =9,1x(20,9x10% = 31x10* m¥s.

where ¢ is the lagtime of the catchment as defined by Overton

* and Meadows (1976).

Numerical solutions

Numerical solutions were obtained using schemes 3a, $b and 5a.
Ax and At were chosen as described before to satisfy the CFL

. condition. The results and the theoretical solution are shown in
. Fig. 7. It can be seen that schemes 3a and 3b yielded identical
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results. Henceforth only schemes 8b and 5a are used. Both

Problem 2: Discharge variation at the outlet

schemes yielded satisfactory results.

Problem 3

Uneven slope summit

Consider a section as shown in Fig. 8 with properties as shown.

Let excess rainfall be as defined for problem 2.

The relative elevations of points were fed into the pro-

grams as input.

¥

i: Excess Rainfall

\ Y \

K =1,97XI07"m.
So = variable
le = 1, 76X10"m/s
Figure 8
Problem 3: Uneven cross-section

Theoretical results

The uneven topography is approximated to two planes as shown
in Fig. 9. The results are worked out as in problem one and are
shown in Figures 10 and 11 together with the numerical results.

qAl?/5.107%)

i : excess rainfall

W4
N\

S0=0,094
(=279
te =4,7

——0,85m.

S0=0,127
(=324
te =36

1,15m . ~>

ye=6,3.10, ye=8310°
qe=1,5.10 qe=2,0.10
metric units

Figure 9

Problem 3: Approximation of cross-section by planes

- T T

Y

—— = SCHEME 5a

2p SCHEME 3b <
— —— —BY PLANES
. 'l I —l 1
o 8 0 5
1(s)
Figure 10
Problem 3: Discharge variation at point A
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Contour plot of topography
Figure 11

Problem 3: Discharge variation at point B

Figure 13
Topography in 3-Dimensions
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Both methods seem quite accurate. They will be used in
the next section in the development of the 2-dimensional
scheme. Ideas employed in the compiling of the computer pro-
grams will also be used.

2-Dimensional model

The basic ideas developed in the previous sections together with
equations (12), (17), (18) and (19) were used to create a
2 dimensional kinematic flow routing model for overland flow.
A Newton-Raphson iterative technique was used in estimating
discharges. Typical outputs for a square 2x1 km catchment are
shown in Figs. 12 to 17. The program is flexible and can con-
sider spatial and time variation of all input parameters.

The difference scheme used is a development of the one-
dimensional 3b Backward Central explicit finite difference
scheme explained in previous sections. The use of a scheme
based on scheme 5a Diffusive scheme yielded unstable results.

Verification

The mathematical model was verified by using available data
from experimental catchments (Constantinides and Stephenson,
1981). The results for one of these catchments, the South Park-
ing Lot No. 1 (SPL1) at John Hopkins University documented
by Schaake (1965) is described here.

The catchment layout and storm data were obtained
from Harley et al., 1970, Grace et al., 1966, and Schaake
(1965). The catchment layout and the results from three dif-
ferent storms are shown in Figures 18 to 22.
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Runoff hydrograph at the outlet
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Excess rainfall variation with time over the catchment

Water depth variation at the outlet
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Water depth variation at ¢ = 8 min over the catchment
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Measured and computed discharge hydrographs from SPLI for storm

No. 7
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Measured and computed discharge hydrographs from SPL1 for storm
No. 9
Extension and scope of model Conclusions

The model results were also compared with results of other ex-
perimental catchments. The model was also compared with so-
lutions of existing two-dimensional runoff models obtained by
analytical solutions or by combinations of a number of one-di-
mensional flows.

The input to the model i.e. storm patterns, losses and
roughness is being studied so that the model can be used in
natural catchments. The model is also being adapted to account
for canalization, deviations and discontinuities so that it can be
used in urban catchments as well.

A model was developed for routing excess rainfall off two-di-
mensional planes using Kinematic equations. Numerical solu-
tions to the equations can be performed simply and economical-
ly using a backward-central finite difference scheme.

The model is suitable for natural catchments of various
shapes where the catchment characteristics such as elevation,
roughness and infiltration vary continuously. Temporal and
space variation of storms is also permitted, enabling the hydro-
logist to select the worst combination of storm movements for
design.
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The model is superior to empirical methods such as unit
hydrographs and black box methods as it accounts for input va-
riation usually assumed to be constant.

Coupled to a three dimensional plotting program the mo-
del provides a suitable method of visualizing the rainfall-runoff
process off varying topography. The model can readily be ex-
tended to allow for channels and ‘pans’. It is anticipated that
such models will provide a better understanding of the hydrolo-
gical runoff process.
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