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Abstract

The theory of runs has been used for the analysis of hydrological
data with regard to the wet and drought indicators, which are
appropriately represented by the runs characteristics, viz. the
wet and drought periods, the positive and negative run-sums. In
this study, the effect of skewness and dependence of annual
flows on these characteristics is first investigated, and a model
for monthly sequence generation is proposed. Application to ac-
tual data indicates that the proposed model can reproduce the
runs characteristics of historical monthly flows.

Introduction

The theory of runs has proven to be very useful in the analysis of
wet and dry characteristics of hydrological data since Yevjevich
(1967) attempted to use it in providing an objective approach to
drought investigations. It can also be used for other purposes as
pointed out by Salazar and Jevjevich (1975), and Phien (1982).
Because of its usefulness, many investigations have been carried
out in order to find out the runs characteristics for diverse pro-

the runs characteristics, and (b) propose a model for monthly
streamflow generation which incorporates the preservation of
the runs characteristic; of historical data.

Definition of Runs Characteristics

Let {Xk, k=1, ..., n} denote a sequence of random variables
and x a given value. Let Y, be defined as

Y, =X, —x (1)

then Y, is called a surglusif Y, > 0 (i.e. X, > x,) and a deficit
if Y, = 0(ie X = ¢). Arun made up of m successive sur-
pluses is called a positée run of length m, and a run of n succes-
sive deficits is called :. negative run of length n (Fig. 1). For
hydrological sequences, a positive run-length is referred to as a
wet period, denoted by N and a negative run-length a dry or
drought period, denot:d by N,,. Corresponding to a wet period,
there is a positive run-sum S which is the cumulative excess of
Y, > 0 for that duration (m):

cesses. However, the results obtained so far are still very limited. m m
As a continuing effort, the present study aims to (a) investigate S = L Y, = I (X-x) (2
the effect of skewness and dependence of stationary processes on k=1 k=1
Y S
L3
4 > o N‘ k
LE hJ 1
N,

Figure 1
Definition sketch of runs characteristics
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Likewise, corresponding to a drought period of length n, there is
a negative run-sum D, which is the cumulative deficit of Yk <90
for that duration:

o)
il
[aoli=1

Y, 3)
1

k

The positive run-sum S and the negative run-sum D re-
present the severity for wet and drought events, respectively
(Dracup et al., 1980). The stochastic nature of hydrological
events induces that of the variables N, N, S and D. Thus it is
appropriate to treat them in the framework of stochastic proces-
ses. :

In this study, both annual and monthly streamflow se-
quences are considered. For annual streamflows, {X ] may be
treated as a stationary process, for which, the truncation level x
is set equal to a constant. For monthly streamflows, periodicities
exist, and it is convenient to express X, as follows:

X, = Q. k=121) + )

wherej=1, ...,12andi=1, ..., L(the length of record in years,
for example). The truncation level should vary with j, and it is
convenient to define

x,() = o, ' (5)

where o is a positive constant, and Q. is the mean flow in month
g, i.e.

L
T Q, (®)

The sketch in Fig. 1 remains applicable for
Y, =X, —x() = Q; — o (7

With a wide variety of applications of the theory of runs given in
the aforementioned references, the statistical properties of the
runs characteristics Nw, Nd, S and D are of important interest.
In the following the annual sequence is first considered where
the effect of skewness and dependence of X, on the runs charac-
teristics is investigated; and then the monthly sequence is treat-
ed in the context of streamflow generation schemes.

Annual Streamflow Sequences

Annual streamflows may be independent or dependent. For in-
dependent flows, analytical results have been made available
quite extensively (Phien, 1981), but for dependent sequences,
very few results have been obtained.

Independent Sequences
General Considerations

Independent annual (rainfall or runoff) sequences are common-
ly found to be fitted by the normal, lognormal or gamma distri-
butions (Markovic, 1965). For independent sequences, the wet
and dry periods can be obtained using the resuit of Feller (1957)
as follows:

P(N, =m)=qp™',m =12, .. (8)

P(Ndzn):pq"”,n= 1,2,... (9)

where

oo X
p= S f(x)dsxandq = 1-p = s f(x) dx (10)
X, -0
f(x) being the probability density function of the X, (treated as
identically and independently distributed randomnu variables).
Let denote the random variable representing all the X, by X;

X, = {X if X >.xo (an
0, otherwise

and

Y, =X, =X, (12)

then the expected value of the positive run-sum S can be obtain-
ed as:

E(S) = [E(X),) — %,}/q = E(Y.)/q (13)
Explicit formulas for the first four moments of X. for the nor-
mal, lognormal and gamma distributions have been given by
Phien (1982). Some of them will be used later when the effect of

skewness is considered.
Similarly, define

0if X > x
= { L8] (14)
Xif X = x_
and
V.=  Xo—x (15)

then the expected value of the negative run-sum can be shown
to be:

E(D) = [E(X-)-x )/p = E(Y-)/p (16)

Important Remarks

When the truncation level X is the median of X, thenp = q =
V% and egs. 8 and 9 reduce to:

p(N,=m) = ()" = P(N,=m)

Thus the wet and drought periods have the same distribution.
When the truncation level x is equal to the mean of X, it
will be shown that the expected values of S and D are of the
same magnitude, regardless of the distribution of X.
It follows from eq. 13 that .
o«
E(S) = (pq)™? x (x-x ) f(x) dx (17)
By relating the probability density function of X to X in the
same way as that of X to X (Phien, 1982) one obtains:

BD) = (payt | (xx) i) dx (18)

Thus
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E(S) + E(D) = (pq)™ Si: (x-x ) f(x) dx (19)

Now if x_ = E(x), the integra} in eq. 19 vanishes, and conse:
quently:
E(S) = —E(D) (20)

This result would have been thought to be valid only for sym-
metrical distributions such as the normal distribution. But from
the derivation, no assumption is made on f(x); in other words,
eq. 20 holds true for any distribution.

Effect of Skewness
Foir the normal distribution,

f(x) = [o(2m)"]exp[— Y {(x-p)/a}?], - < x < o
where y and ¢ are the mean and standard deviation, respective-

ly. In this case, the expected value of S can be obtained using
the result provided by Phien (1982) as:

E(S) = (u-x)/q + oexp(-¢2/2)/[pq(27)%] (21)
where

t, = (x-u)o (22)
Similarly,

E(D) = (u-x)/p — oexp(~%/2)/[pq(2m)*] (23)
Note that in this case,

l-p = q = 2! ;tm exp(— 2/2)dt = &(t ) (24)

where @ is the distribution function of standard normal va-
riables. This function has been tabulated and can be approx-
imately computed using the formulas given by Abramowitz and
Stegun (1964).

To see the effect of the skewness on the expected values of
$ and D, the gamma distribution is employed, because of the
availability of models for dependent gamma variables, as will be
seen later.

In this case,

f(x) = [bT(a)]"! x*! exp(~x/b) , x > 0

where a and b are the shape and scale parameters, respectively
and I is the gamma function defined by

.
I'(a) = 50 xa 1 ex dx

The expected values of S and D can be obtained as:

E(S) = (ab-x )/q + X2 exp(-x /b)/[pq b*! I'(a)] (25)
and
E(D) = (ab-x )/p — x2 exp(-x /b)/[pq b>! T'(a)} (26)

The computation of the expected values of S and D involves that
of the incomplete gamma function, because
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X .
1-p = [b* I'(a)]? SO“ x*! a2’ dx

q=
! S Yoot d (27)
= —— ey
(@) Jo y y
where y = x /b. Although the value of the integral in eq. 30

can be obtained f1om existing tables (Pearson, 1965), it is more
convenient to con pute it by using the recently developed algo-
rithms of Gautschi (1979) and Lau (1980).

Having obtained the expressions for comnputing the ex-
pected values of ‘he positive and negative run-sums, one can
readily investigat:: the eifect of the skewness on these expected
values. In Table 1, both the normal and gamma distributions
have a constant riean equal to 5,0 m3/s, and varying standard
deviation which i; represented by the values of ¢ for the normal
distribution. The parameters and skewness coefficient of the
gamma distributicn are computed using the following equation:

= u¥/0%,b = ¥/pu,Cs = 2a% (28)

TABLE 1
PARAMETERS AND SKEWNESS COEFFICIENT OF
THE NORMAL AND GAMMA DISTRIBUTIONS

EMPLOYED
Normal* /. 5,00 5,00 5,00 5,00 5,00
i 2,10 2,20 2,30 2,40 2,50
1 5,669 5,165 4,726 4,340 4,0
Gamma > 0,882 0,968 1,068 1,152 1,250
Cs 0,840 0,880 0,920 0,960 1,0

*Skewness = 0

Their values ars also collected in Table 1. It is seen that with a
given mean, tie skewness coefficient of this distribution in-
creases as the standard deviation increases. This means that
when the fluciuation of observed data; for example, is high,
their distributi>n becomes more skewed to the left.

The expected values of S and D are computed at various
values of the truncation level x , expressed as
X, = ap : (29)
where « is a :onstant, varying from 0,8 to 1,2 in the present
work. Results of this computation are collected in Table 2. In-
spection of th:se tabulated values reveals the following:

® As o (hence x ) increases, the expected value of S decreases
and that o’ D increases. This is obvious from the definition of
S and D.

® When « := 0,8 — 1,2, the expected values of S and D in-
crease with the standard deviation for the norma) distribu-
tion, or with the skewness coefficient for the gamma distribu-
tion.

® For o < |, with the same mean and standard deviation, the
expected values of S and D for the normal distribution
(Cs = 0) are greater than those for the gamma distribution
(Cs > 0). The reverse is true for @ = 1.



TABLE 2
EXPECTED VALUES OF POSITIVE AND NEGATIVE RUN-SUMS

0,8 0,9

o I aIn D I
(1)6,61, 1,44 4,61 2,54

(2)6,69 2,13 4,76 2,69

Normal (3)6,78 2,27 4,90 2,84
(4)6,87 2,41 5,05 2,99

(5)6,98 2,55 5,20 3,15

(1)5,97 1,61 4,32 2,30

(2)6,02 1,72 4,45 2,44

Gamma (3)6,08 1,83 4,59 2,58
(4)6,16 1,94 4,72 2,72

(5)6,23 2,06 4,86 2,86

Notes (1) and (II): Values of E(S) and E(-D), respectively.
(1) — (5): for o = 2,10; 2,20; 2,30; 2,40 and 2,50, respectively.

1,0 1,1 1,2

@) & (I @I an I (In
3,35 2,54 4,61 1,99 6.61
3.51 2,69 4,76 2,13 6.69
3,67 2,84 4,90 2.97 6,78
3,83 2,99 3,05 2 41 6,87
3,99 3,15 5,20 2,55 6,98
3,34 2,75 4,91 2,33 7,30
3,50 2,89 5,07 2,48 7.41
3,66 3,06 5,23 2,64 7.5%
3,82 3,22 5,39 2,80 7,65
3,98 3,38 5,56 2,97 7,78

Dependent Sequences
General Considerations

Analytical results are available only for the first order Markov
model of normal variables. Let r denote the conditional proba-
bility:

r=PX, >x | X  >x) (30)
then the distribution of the wet period was given by Sen (1976)
as:

P(N =m) = (1-0)r™' ,m=1,2, .. (31)
Although Sen (1976) obtained this result for normal variables, it
can be shown easily by following the same reasoning as that used
by Sen, that eq. 31 remains valid for any (first-order) Markov
process. Moreover, the same procedure can also be used to show
that the distribution of the drought period for any Markov pro-
cess is given by

P(N,=n) = g™ .n=1,2 ... (32)
where

s=PX, =x |X  =x) (33)
It follows from egs. 31 and 32 that

E(N) = 1/(1-1) (34)
and

E(N,) = 1/(1-s) (35)

The reason for referring to normal variables may be due to the
popularity of models for them. Now several models for non-

normal variables have been proposed (see Phatarfod, 1976;
Gaver and Lewis, 1980; Lawrance and Lewis, 1980), and thus
the validity of eqs. 31, 32, 34 and 35 should be noted.

Remarks

For Markov processes, the expected values of the wet and
drought periods are equal when the truncation level is equal to
the median of the X, treated as identically distributed variables.
This is obvious because it is always true that
s = 1-p(1-r)/q (36)
When p=q, eq. 36 reduces to s=r, and in view of eqs. 34 and
%5, one obtains

E(N)) = KN
As for the case of independent sequences, the expected
values of S and D have the same magnitude if x is equal to the
mean of the X, . This result may be reached as follows. From the
general formula given by Sen (1977):

E(S) = E(Y.E(N )

and from eqs. 12 and 34: one obtains

E(S) = [E(X4)-x] (1-1) (37)
Similarly, the following expression can also be reached:
E(D) = [E(X-3)-x 1/(1-s). (38)

The dependence structure of X, has no effect on the expected
value of X, and hence of X, so that one can still write:

E(X.)-x = (1/p) S:o (x-x ). f(x)dx

o
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Likewise,

X
E(X)-x, = (1/q) s oo (X7%,) f(x)dx

Thus:
i 1 5 ) 1 3"‘0

E(S) + E(D) = —— « (x-x )f(x)dx + -—) »m(x-x“)f(x)dx

p(l-1) o q{1-s

In view of eq. 36, this can be rewritten as:

5 oo
oo (x-x Yf(x)dx

ES) + ED) = — (39)
p(l-1)
Now, if x = p the integral in eq. 39 vanishes, giving:
E(S) = -E(D) (40)

Effect of Dependence

The effect of the dependence structure of the {X,} on the runs
characteristics has been considered by Sen (1976, 1977) for Mar-
kov normal sequences. In this study, that effect is investigated
for non-normal processes. Although several models have been
proposed for dependent gamma sequences as summarized by
Phatarfod (1976), their practical use remains to be limited
chiefly because of the difficulty involved in their generation
scheme. More recently, Gaver and Lewis (1980) have devised a
simple way for generating Markov sequences from the exponen-
tial distribution (treated herein as a special case of the gamma
distribution). It is as follows:

For O = g < 1, the Markov sequence of X, is formed by taking:

Owpe

X, =X, .+
Kk - @80 {Ekwpl-g

(41)

where the Ek k = 1, 2, ... are independent exponential variables
with parameter N > 0, and wp stands for “with probability”.
The model of eq. 41 can be suitably referred to as the first order
exponential autoregressive model denoted by EAR(1), because
the serial correlation of lag h satisfies the equation:

e, = ¢ h=012 ..

It can be verified that X, has an exponential distribution with
parameter A, i.e.:

1
f(x) :Ke"‘”‘ , x>0

This distribution is just a special case of the gamma
distribution where a=1 and b=A\. In this case, one can easily
show that:

E(X.) = N + x_ exp(-x /\)/p
But since
o
P= ), f(x)dx = exp(-x_ /N),

one obtains:

E(X) =\ + x,
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Thus
E(S) = M (1-1) (42)
Similarly, the expected value of X_is
E(X) = N — x(p/q)
and
A-x x (p/
E(D) = x, x(p/q) = (\x_/q)/(1-5)
which can be rewritten as:
A-3
ED) = ——¢ (43)
p(1-7)

For example, if x_is equal to the mean of the X, i.e. x = ),
then

AN
q — o
p(1-1)

E(S) + E(D) = % +

8,0
70k
6,0
5,0
4,0

3,0

20 2

—

1,0

o

1 ] |

0,8 1.0 1,2

-

0,0
0.4

0,6 1.4

Figure 2 )
Expected value of posi ive run-sum of dependent exponential variables



which is been proven to hold true for any sequence in eq. 40.

The expressions for the expected values of the runs cha-
racteristics are quite simple, yet their computation is not simple
because of the involvement of r and s.

In order to see the effect of the dependence structure of
flows on the runs characteristics, a Monte Carlo simulation has
been carried out instead of an analytical derivation. The results
for the expected value of the positive run sum are shown in
Fig. 2 for the case X = 1. It is seen that E(S) is an increasing
function of @, and a decreasing function of & (or x ). Thus the
dependence of annual flows increases the volume of cumulative
surplus water.

Monthly Streamflow Generation

In this part of the study, a model is proposed for the generation
of monthly streamflows incorporating the preservation of the
historical runs characteristics. For a general consideration of
monthly streamflow models see Phien and Ruksasilp (1981).
First of all, the Method of Fragments (Svanidze, 1969,
1980) has been found to be capable of reproducing the mean,
standard deviation, skewness coefficient, and correlation of
monthly streamflow sequences. The definition of segments in
this method indicates that the whole structure of monthly histo-
rical data is not interfered, hence its capability of preservation
of the historical record in terms of whatever the statistics
employed is expected. However, the Method of Fragments re-
quires the use of a suitable model for producing annual flows
which are to be disaggregated into monthly values by selecting
the appropriate segment (Srikanthan and McMahon, 1980). To
generate annual flows, the first-order autoregressive AR(1)
model is extensively used. The flow in year h + 1 is expressed as:
q,,, —# = e(qp) + o(l-ed)%t, | (44)
where pi, ¢ are respectively the mean and standard deviation of
annual flows, g is the correlation of annual flows, and 4 is a
random variable of zero mean, unit variance, and skewness
coefficient y, given by
_ 3 3/
v, = ¥(1-@*)(1-¢%) 2 (45)
7 being the skewness coefficient of annual flows.

However the annual values generated by the AR(1) model
often underestimate the longest drought of historical data, as
pointed out by Mandelbrot and Wallis (1968). To overcome this
shortcoming, an additional correlation is built when needed by
using the scheme of Jackson (1975), where annual flows are clas-

- sified into those in wet and drought periods. For a selected trun-
cation level, the following transition matrix is obtained:

P = l-¢c ¢
. d 1-d

where

¢ = P (flow in wet state | flow in drought state), and

d = P (flow in drought state | flow in wet state).

This mechanism introduces a correlation coefficient g given by
Jackson (1975) as

0, = Acd (1-c-d)(ny-pp)?/(c+d) (46)

where py and o; (or u, and 0;) are respectively the mean and
standard deviation of flows in drought (or wet) state, and

A = [do + d(p-p1)? + co} + c(p-p)?)? (47
where p is the overall mean of annual flows, i.e.
p = (dpy + cpp)/(ctd) (48)

Assume that the flow q, in the hth year is of type i (i =1 for flows
in drought state, i=2 for flows in wet state), and that the state
transition mechanism determines that the next flow q, _, is of
type j (j=1, 2), then one computes q, ., by the equation
Ghir = & + o Q(qh'/“i)/oi + Gj(l'Qz)% L (49)
With this mechanism, the correlation coefficient between suc-
cessive flows becomes (Jackson, 1975);
¢ = g, + eAl(1-0)dof + Zedaye, + (1-d)co] (50)
The random component t,__ , in eq. 49 was assumed to be a stan-
dard normal variable by Jackson. However, to make the proce-
dure more general, it can have a skewness coefficient vy different
from zero. It is then very easy to show that

= (vov.03N1-62)" /2 (51)
v = (re9(1-e%)
when q, is in state i and q, _ , is in state j (i,j=1,2).

Instead of using Jackson’s procedure for classification of

flows into the drought and wet states, in this study, the trunca-

tion level equal to the mean g was employed. The procedure for
generating annual flows is then summarized as follows:

® Estimate c and d by the maximum likelihood method, using
the equations:

¢ = fip/(fn 1), d = £5,/(f5 +13)

where fl is the number of transitions from state i to state j in
the historical data (i, j = 1, 2).

@ Compute ¢ according to eq. 50. If ¢’ < @, annual values are
generated according to the AR(1) model in eq. 44. If ¢ >
0, they are generated according to eq. 49.

® Annual values are then disaggregated into monthly values
using the corresponding segment, according to the sugges-
tion of Srikanthan and McMahon (1980). When a negative
flow occurs in the generated annual sequence, it is neglected.

To evaluate the reproduction of the runs characteristics
of historical monthly streamflows by the proposed model,
several sets of actual data were employed. They are shown in
Table 3. Even though they were run at different truncation
levels expressed by « in eq. 5, only the results for o = 1,0 are col-
lected in Tables 4 and 5 (to save space) for the means and stan-
dard deviations of the runs characteristics, respectively. These
simulated results are obtained as the average values of the res-
pective statistics from 50 generated sequences each having the
same length as the historical data. Inspection of Tables 4 and 5
leads to the following observations:

® The wet and drought periods, on average, last for less than 6
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months in all zases. Their standard deviations (Table 5) are
larger than o nearly equal to their means (Table 4), in-
TABLE 3 dicating that these periods fluctuate very much.
LIST OF STATIONS WHERE DATA WERE
EMPLOYED ® Both the mezns and standard deviations of the wet and
Sta-  River Location Length and period drought periods are repr.oduced very satisfactorily by the
tion of record proposed metliod. The historical and generated values are
almost the sane in all cases.
S1 Mekong Vientiane, Laos 59 (1914 — 1972)
§2  Meckong Pamong Dam, Laos 62 (1913 — 1974) ® Both the mean and standard deviation of the positive run
53 Mekong  Stung Treng, Ca.mb()d‘a 35 (1934 — 1968) sum are also r¢ produced. The differences between historical
S4 Mekong Mukdahan, Thailand 44 (1925 — 1968) and generated val ligibl
S5 Ping Nawarat Bridge, g ated values are ncghgible.
Thailand 54 (1921 — 1974) o
$6 Loire Montejean, France 102 (1863 — 1964) ® Although the aistorical and generated values are not very
$7 Penob- close for the negative run sum (mean and standard devia-
scot West Enfield, U.S.A. 62 (1962 — 1964) tion). the reprcduction of this characteristic may still be con-
S8  Colorado Lees Ferry, U.S.A. 54 (1911 — 1964) sidered acceptible, because the relative error is less than
10% for the mean in all cases, and for the standard deviation
in most cases.
TABLE 4
MEANS OF RUNS CHARACTERISTICS
Wet Period Drought Period Positive Run Sum Negative Run Sum
Station (months) (months) (m*mor th/s) (m*month/s)
QO (2) (1 2) o)) 2) oy (2)
S1 4,36 4,36 5,03 5,03 3 887,5 3 887,4 % 93%9,3 4 365,6
S2 4,20 4,17 4,82 4,82 39958 3 995,7 39476 3 834.8
53 3,38 3,38 3,23 3,23 7 825,2 7 825,1 77029 8 206,5
S4 4,26 4,29 4,32 4,41 5 904,8 5 956,2 5 809,56 - 5512,0
S5 3,08 3,08 4,54 4,54 84,9 84,8 84,9 87,9
Sé 3,07 3,07 4,68 4,68 1439,8 1437,2 1 439,7 1 461,1
S7 2,59 2,60 4,11 4,11 350,9 350,9 350,9 372,9
S8 3,20 3,20 3,97 3,97 637,9 637,9 645,0 652,0
Note (1) from historical data.
(2) from 50 generated sequences.
TABLE 5
STANDARD DEVIATIONS OF RUNS CHARACTERISTICS
Wet Period Drought Period Positive Run Sum Negative Run Sum
Station ($)) (2) (nH (2) a1 (2) I 2)
S1 5,28 ' 5,28 5,34 5,34 6 000,4 6 000,4 6 627,83 16 691,6
52 5,18 5,18 5,19 5,19 6 265,2 6 265,3 6 773,6 6911,6
S3 3,51 ' 3,47 3,30 3,30 10 510,4 10 510,4 11 5975 9 206,5
S4 4,57 4,59 4,63 4,41 8 387.3 8 3425 9 022,0 '8 150,4
S5 3,91 ) 3,91 5,53 5,53 159,2 158,1 1297 145,4
S6 3,01 3,01 4,72 4,72 2 029,2 2 029,1 1 960,9 2084,9
S7 2,49 2,49 3,85 3,85 460,1 460,2 446,8 4124
58 3,12 3,12 5,51 5,501 1075,1 1075,1 1492,9 1536,9
Notes (1) from historical data.
{2) from 50 generated sequences.
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From the last three observations the proposed method can
be said to be capable of reproducing the runs characteristics of
historical monthly streamflows.

Summary and Conclusions

The present study comprises two parts. In the first part, the ef-
fect of skewness and dependence of annual flows on the runs
characteristics was investigated, and a model for monthly
streamflow generation was proposed in the remaining part.

It was shown analytically that the expected values of the
positive and negative run sums have the same magnitude when
the truncation level is equal to the mean of the stationary (an-
nual) process involved, regardless of the underlying distribution
of its elements.

Application of the proposed model to actual data in-
dicates that it can satisfactorily reproduce the runs characteris-
tics of historical monthly streamflows. This, together with the
fact that the method of fragments — which constitutes the
essential part of the proposed method — is capable of reproduc-
ing all statistics of monthly streamflows as claimed by many re-
searchers (see Svanidze, 1980 and references therein) suggests
that the proposed method should be considered as a suitable
scheme for the generation of monthly streamflows.
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