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Abstract

This paper is primarily concerned with the application of a direct
search technique to optimise the parameters of a mixture of two
log-normal distributions in a hydrological field where data are
distributed according to a mixing of component distributions.
Such data plot on probability paper as a zig-zag curve and
although sampled as a single phenomenon two or more separate
populations are evident. In the analysis of tiver water quality it is
reasonable to expect that samples taken in the dry season will be
distributed according to a different mean and variance to those
taken in the wet season. The procedures examined herein allow
the decomposition of the data into its component distributions
and the consequent estimation of the seasonal parameters
associated with river water quality. A number of examples and
results are shown and the computer programs used, including
those routines for plotting the data, are available along with test
data and results.

Introduction

Many sets of earth-science data plot on probability paper as zig-
zag curves (Tannet, 1958) and are commonly modelled using the
Pearson Type I or Type IV distribution. Such data samples are
generally drawn from a mixture of two or more component
distributions and the result is designated a ‘‘compound’ or
“‘mixed’’ distribution. These models are pertinent to many prac-
tical situations in sedimentology, geomorphology, meteorology
and hydrology. For example, the distribution of particle sizes in a
sediment sample will depend on the clastic properties of the
source rocks so that a number of distributions of grain size will be
evident from a single sieve analysis. Pottet (1958) and Ashkanazy
and Weeks (1975) have observed a mixture of random variables
in the distribution of floods generated by various types of synop-
tic situation and snowmelt. Even the components of the
hyposomettic curve of the earth have been analysed using a com-
pound distribution (Tanner, 1962).

Compound normal disttibutions have accounted for most of
the work in the dissection of mixed distribution phenomena.
Other mixtures of continuous disttibutions have been widely
studied in the statistical literature but of these only 2 compound
extreme value model has been applied to earth-science data, in
fact to non-homogenous flood data. (Canfield, ez &/, 1980). Mix-
tures of discrete distributions such as the compound Poisson
could for example be fruitful in the analysis of the atrivals of ex-
tremes where the extremes themelves, such as storm depths, are
distributed according to a mixture of components.

Hawkins (1974) has distinguished between mixed distribu-
tion and mixed variable phenomena. The former fall into the
‘‘either-or’’ category in the sense that the data sample originates
from a number of discrete soutces. For example, floods may be

generated by rainfall events ot snowmelt, extreme rainfalls may
be initiated by warm fronts or cold fronts ot convection. The mix-
ed variable phenomenon is rather more complex and involves a
measurement of components already in a combined state. In
other words each member of the sample reflects a mixture of
sources as opposed the total sample reflecting a mixture of
sources. The carbonate content of streamflow, for example,
reflects the balance between ground and surface runoff and the
contribution of the carbonate content of each.

The statistical implications of the distinction are that dif-
ferent moment estimators should be used in the decomposition
of the mixtures. Although water quality should generally be
viewed as a mixed variable phenomenon it is felt that the mixed
distribution approach offers much promise in the efficient
estimation of percentiles, in the separation of seasonal com-
ponents and in the physical interpretation of the annual cycle of
parameter values. Additionally, the method of fitting proposed
herein largely circumvents the statistical ordinances which a more
theoretical and less workable approach might imply.

Existence of Mixed Distributions in Water Quality Data

Streamflow quality when expressed in terms of concentrations
will, over time, reflect variations and trends in physical and man-
made processes which to a greater or lesser degree will manifest
themselves in the distribution of the sample. Thus, whilst sampl-
ed as a single phenomenon a number of distinct populations will
be evident to which definite associations can be ascribed. For ex-
ample, dilution effects in the flood season will imply that the
data are distributed according to a different mean and variance
than in the dry season when concentrations of certain ions may be
higher as a consequence of the greater relative contributions of
ground-water discharge. Irrigation practices in certain seasons
may be reflected in 2 distinct population type, with return flows
associated with leaching resulting in seasonally high values of
salts. Effluent discharge may be seasonal and spillage or flushing
from dams may be used to control and dilute pollutants. Such
practices and catchment processes will elicit an effect upon the
total sample of streamflow quality which will be heterogenous and
can be thought of as drawn from a mixture of a number of
relatively simple distributions. Although it may be straightfor-
ward to propose on physical grounds the number of separate
distributions in the mixture, statistical considerations limit such
mixtures to two ot three, beyond which parameter estimation
becomes less and less feasible without massive sample sizes. Even
moment estimators for a two distribution model ate dubious for
sample sizes of less than 1 000 without prior knowledge of the
parameters. (Hawkins, 1974).

Mixed distribution phenomena are most easily identified
when plotted on log-probability paper using some empirical plot-
ting position such as Weibull (rank/(N+ 1)). ‘‘Dog-legs’’ and
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" zig-zags are evident with generally straight lines between them.

Figure 1 shows three such plots for chloride, TDS and hardness
samples, two populations being evident for the TDS sample and
three for those of chloride and hardness. Obviously, one cannot
fit a single model to such data without recourse to the more
esoteric members of the Pearson or Beta family of distributions
with their associated fiendish estimators. Besides, the fact that
the mixture of models has physical significance, supports the ap-
proach of attempting to decompose the data into its component
distributions, thus providing some insight into the causative
physical processes.

Plots and fits of 2 mixture of two log-normal models to a
considerable number of water quality samples drawn from rivers
and dams throughout South Africa have suggested such a model
to be perfectly adequate in characterizing the probabalistic struc-
ture of water quality data as well as providing a possible means of
interpreting the parameters and their seasonal variation.

Theory: The Mixed Log-Normal Model

The distribution of a mixture of two log-Normal distributions
may be written as:

B =t Fyf) 4 (1= ) By oo (1)
where

FJx):W _oJFexp [—("—%‘21 B @)
and

Ex) =#W)% Jexp [_g%z)z} B 3)

with x the log transformed data, o a proportionality factor and
K1, By, Oy, 0, the parameters or the means and standard devia-
tions of the component distributions. Furthermore, o + (1 — o) =1
and « is non-negative. The first non-central and the first five cen-
tral moments of (1) are given by Cohen (1967) and equations
linking the two disttibution parameters with the mixed distribu-
tion parameters are (Singh, 1979):

pmap (1= py oo

0" = a0+ (1 - )0 4 o1 - )ity — o)’

v=[30(1 - a)(n, - u)(o; _ o)
+ofl —a)(1-20)(p, — p)’]/ 0

where p, o and v are the mean standard deviation and skewness
of (1).

Generally, since five parameters need to be estimated from
the sample, the first five sample moments are required. In water
quality analysis and for hydrological data as a whole sample re-
quitements for the confident estimation of such high order
moments are rarely, if ever, available. Thus the nonic polynomial
solution detived by Pearson (1894) and circumvented by Cohen
(1967) for more practical applications are not applicable in the
present study unless some a-ptiori assumptions are made about
the parameters. Graphical analogue techniques used by Tung
(1966) in the analysis of chromatograms are far too slow and com-
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Figure 1
Examples of the mixed distribution of water quality criteria from natural
streams: H7M04 - Huis River at Barrydale (TDS, mg/f); A2Mi12—
Crocodile River at Kalkheuwel (Chloride, mg/l); G1M11— Watervals
River at Watervalsberg (mg/! CaCO,).

plex for routine hydrological analysis, nor are they particularly ac-
curate.

Singh (1968) and Singh and Sinclair (1972) proposed that
the distribution of monthly flows and of annual flood peak maxi-
ma may be composed of a mixture of two log-normal distribu-
tions. ‘‘Optimal’’ values of the five parametets were obtained by
minimising £(AZ)? using equations (4) and (5) as constraints,
where AZ is the observed Z minus the fitted Z and Z is the stan-
dard normal deviate. This is the scheme followed here where
observed Z is computed via the Weibuli plotting position and fit-
ted Z from equation (1) given a set of parameter estimates. These
are then ‘optimised’ in terms of L(AZ)* using a direct search
algotithm.

Explicitly we seek a constrained minimisation of the sum -

£(AZ)*=E{Z(P= %—H) —Z(a. Fy(x) — (1-a). Fy()) .. (7)

given initial estimates of o, p,, g, 0, and ;. The possibility that
the optimisation procedure converges to a local minimum rather
than an absolute one was investigated by varying the initial
parameter estimates between a range of values. For example, o
was initialised at 0,01 and 0,99 with no effect on the final “‘op-
timal’’ solution. However, such routines are prone to con-
vergence to local minima and the present application of a direct
search technique should always be complimented by a plot of the
data and the computed probability model to ensure that the solu-
tion is a realistic one. Such numerical optimisation techniques
could also be used to compute the maximum likelihood
estimators of the parameters, either by the maximisation of the
likelihood, subject to the constraints of equations (4) and (5) or
one could maximise the likelihood without constraints and obtain
estimates of all five parameters simultaneously. The stability of
such maximum likelihood estimators, required sample sizes and



comparison of the results with those derived in this report con-
stiture a purely statistical piece of tesearch and such results will be
reported separately.

Verification of Model and Fitting Procedure

To illustrate the practical application of the mixed model of water
quality criteria some two hundred samples of hardness, TDS con-
tent, chloride and sodium ion concentrations were investigated
and plots made to assess petformance and fit. Streamflow and
reservoir data were considered with sample sizes ranging from 100
to 1 000. Agreement between observed and expected probability
was found to be generally most satisfactory within the range of
percentiles of hydrological interest. Below the 10% and above the
90% non-exceedence probabilities, which may be considered ex-
tremes, the results should be treated with caution, although a
plot of the results soon reveals any flaws in the fit. The firting
procedure can, however, be easily weighted to provide a *‘best-
fit’’ over any particular range of the data sample.

Figure 2 shows the distributions and associated frequency
densities computed for the samples given in Figure 1. The log-
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Fgure 2
Fit of mixture of two log-normal distributions to the data of Figure 1 with
associated decomposed log-normal distributions (F, Fy).

normal distributions that have been decomposed from the
original mixture are shown as F, and F,. It is apparent that plots
such as these can provide a considerable insight into the structure
of such samples. The TDS data show a bimodal frequency density
with the higher concentrations asymptotically approaching the
log-normal distribution F, (6,009; 0,335) and the lower concen-
trations the log-normal distribution F, (4,565, 0,629). The
seasonal association of the two distributions can easily be
established by further inspection of the data.

The distribution of the hardness sample is rather more com-
plex with the high and low values asymptotically distributed as
F, (1,859; 1,024). The mid-range values have very low variance
and are log-Normally distributed as F; (1,954; 0,224). Again, the
physical or seasonal association of the distributions could easily be
investigated.

Robustness of the Mixed Log-Normal Model

Essentially the mixture of two log-normal distributions is a five
parameter model for which, if classical moments estimators were
used for parameter estimation would not provide a patticularly
stable result given the requirement of high order sample moment
estimates. The fitting procedure recommended here, however,
merely requires the estimation of the mean and variance directly
from the sample, which then provide the constraints (equations
(4) and (5)) for the optimization procedure. The virtue of this lies
in the apparent robustness of the model given various sample
sizes. Figure 3 shows the effect on petcentile estimates of pro-
gressive sample size reduction. The total number of TDS samples
available is 1000 but these are distributed rather erratically
throughout the history of the water quality station (c.f. Figure 4).
Sampling progressed from random to weekly to regular daily
analyses. The imposition of an increasing daily gap between
selected analyses apparently affects the percentile estimates to a
reasonably small degree, the difference between no gap and a 10
day gap being only about 8% for the estimate of the 50%
percentile. Comparable results have been achieved for a number
of stations and quality criteria.
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Figure 3
C2M22. Vaal River At Baalkfontein. Effect on estimates of 50% and 90%
Dbercentiles for progressive sample size reduction.
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Figure 5
Application of the outputs from program system to assess the geography
of the quality of South African surface water storage.
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Computer Program and Plotter Routines

A system of programs and plotter subroutines has been designed
to fit the mixture of log-normal distributions to water quality
data and plot the resuits and sampling history. Two illustrative
examples are shown in Figure 4. The water quality data bank
available to the Directorate of Water Affairs is accessed directly
and can provide data at any number of selected monitoring sta-
tions. Files of required quality criteria are then automatically
created. For example, TDS is regressed upon electrical conductivi-
ty to extend a file where the latter is available when no TDS
analysis was actually performed. The results of this operation are
listed along with the plotted output. A direct search algorithm
“‘optimises’’ the fit of the mixed distribution after sample mean
and variance have been estimated and finally the input files to
the plot routines are created.

The plot sequence is divided into two parts, namely that
which gives the empirical and theoretical probabilities and those
which provide the frequency density, sampling history,
moments, percentiles and additional comments. All graphs and
chronologies are automatically scaled and the fit of a single log-
normal model to the sample is shown with the frequency density
for comparative putposes. All programs are in FORTRAN IV and
the plot routines designed for a CALCOMP flat-bed plotter.
Print-outs with sample input and output are available upon re-
quest.

Processing times obviously vary with sample size. For 500
analyses the direct search algorithm for parameter estimation
takes 1 min 40 s for 500 iterations. Total plot-time for the result is
less than 5 min.

Potential Applications

An immediate and obvious application of the model is in the
estimation and mapping of percentiles of quality criteria for dams

and river monitoring stations. An example is shown in Figure 5

for South African surface storage where sample sizes ranged from
50 upwards and the gap between selected analyses was 23 days, or
the mean gap between dated analyses. Dams, however, tend to
be rather more conservative than rivers in terms of the range and
variance of conservative quality criteria and any reasonable
change in the gap between selected analyses elicits little effect on
the overall result.

For the illustrative study of the geographical variability of
catchment TDS and chloride concentrations shown in Figure 6, a
3 day gap was used.

The physical significance of the mixed model has been sug-
gested earlier and plots such as those shown in Figure 2 certainly
provide insight into the distribution and physical association of
the data with-various seasons, irrigation practices or dam opera-
tion. There is no doubt that such plots should be an essential part
of preliminary data analysis and may provide indications of
subsequent fruitful directions of investigation.

A potential and possibly important application of such a
mixed model lies in the interpretation of the annual cycle of
parameter estimates. Singh (1968) certainly provides convincing
evidence that physical reasoning may be attached to the varia-
tions over the year of ,, y,, 0, and o, in the analysis of monthly
streamflows where the seasonal variability of the parameters is
associated with the relative contributions of base and surface
runoff to the total monthly volume. Attempts to interptet the
seasonality of water quality in a similar way did not, however,
meet with such success that any ccriident physical reasoning

— e _adbin
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Figure 6
Application of the outputs from the program system to the mapping of
catchment TDS and chloride content.

could be attempted. The data records as yet available in South
Africa are too short to permit such monthly analyses. An outline
study, however, is shown in Figure 7 for station C2M22 which
provided the largest data base currently available (1 000
analyses). The monthly variation of TDS concentrations is shown
to peak in December followed by a sudden fall and then a steady
rise through the dry season. The 90% percentile is relatively
unsteady as a consequence of extreme concentrations which
would be expected to occur during very low flows. Such an an-
nual cycle iilustrates the effects of controlled flushing and natural
spill from Vaal Dam causing a sudden dilution of TDS concentra-
tions during January, February and March. The slow rise reflects
decteasing releases and natural flows and consequent concentra-
tion effects.

The parameter estimates for the 12 models, one for each
month, show some interesting results but sampling variance is
also evident there being only 6 years of data available and an
average of 80 samples attached to each model. The means
noticeably play little or no role in controling the diversity of the
distribution function from month to month, this being effected
by the variances and proportionality factor. There is evidence of a
serial relationship and seasonality in the magnitudes of g,, 0, and
a. They are apparently not random. The cycle of o, may be
associated with a higher variance in the upper quantiles of con-
centrations during the low flow season with the reverse being true
for 0,. The behaviour of « generally indicates the relative impor-
tance of F, and therefore o, during the low flow season.

Although this example is far from ideal it has served to il-
lustrate the potential for the physical interpretation of parameter
estimates and certainly once larger data bases become available
such studies could prove rewarding.
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Figure 7
C2M22. Vaal River at Baalkfontein. Annual cycle of TDS percentiles and
associated parameters of the mixed log-normal model.
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Conclusions

The analysis of data suspected to be drawn from a mixture of
component distributions is shown to be a feasible and relatively
straightforward proposition. The estimation procedures recom-
mended for a mixture of two log-normal models are workable,
robust and approptiate to the analysis of water quality data. The
model efficiently reflects the probabalistic structure of the con-
centrations of vatious ions and salts and is shown to have poten-
tial in the physical interpretation of the mixture and its
parametets. Combined with automatic fitting and plotting
algorithms such a scheme is felt to provide a useful addition to
the presentation of data drawn from burgeoning data banks.

Acknowledgement

This paper is published with the permission of the Manager:
Scientific Services, Directorate of Water Affairs, Department of
Environment Affairs and Fisheries.

References

ASHKANASY, N.M. and WEEKS, W.D. (1975) Flood frequency
distribution in a catchment subject to two rainfall producing

mechanisms. Hydrology Symposium, Armidale, NSW, Australia.
May 18-21 Institute of Engineers, Sydney, pp. 153-167.

CANFIELD, R.V.; OLSEN, D.R.; HAWKINS, R.H. and CHEN, T.L.
(1980) Use of extreme value theory in estimating flood peaks from
mixed populations. Hydraulics and Hydrology Series, UWRL/H-
80/01. College of Engineering. Utah State University, Logan, Utah.

COHEN, A.C. (1967) Estimation in mixtutes of two Normal distribu-
tions. Technometrics. 9 (1) 15-28.

HAWKINS, R.H. (1974) A note on mixed distributions in Hydrology.
Proceedings of Symposium on Statistical Hydrology. USDA. Ag.
Res. Service, Misc. Pub. No 1275. Washington D.C., pp. 336-344.

PEARSON, K. (1894) Conttibutions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society 185
71-110.

POTTER, W.D. (1958) Upper and lower frequency curves for peak rates
of runoff. Transactions American Geophysical Union. 39 100-105.

SINGH, K.P. (1968) Hydrologic distributions resulting from mixed
populations. Proceeding IASH. Symposium. The use of Analog and
Digital Computers in Hydrology. Vol. II. Tucson Arizona. IAHS
publication No 81. p. 671-681.

SINGH, K.P. (1979) Comment on Birth of a Parent: The Wakeby
distribution for modelling flood flows. By J.C. Houghton. Wazer
Resources Research 15 (5) 1285-1288.

SINGH, K.P. and SINCLAIR, R.A. (1972) Two-distribution method for
flood frequency analysis. Jowrnal. Hydraulics Division. American
Soctety of Civil Engineers 98 (HY1) 29-44.

TANNER, W_F. (1958) The zig-zag nature of Type I and Type IV curves.
Journal of Sedimentary Perrology 28 372-375.

TANNER, W.F. (1962) Components of the hypsomettic curve of the
earth. Journal of Geophysical Research 67 (7) 2841-2843.

TUNG, L.H. (1966) Method of calculating molecular weight distribution
function from Gel Permeation Chromatograms. Journal of Applied
Polymer Science 10 375-385.

8 Water SA Vol. 9. No. 1. January 1983

o __



