Forecasting of seasonal streamflows with Box-Jenkins models

HUYNH NGOC PHIEN AND CHUNG-TUNG TWU
Asian Institute of Technology, P.O. Box 2754, Bangkok 10501, Thasiland

Abstract ,
This paper deals with the application of the Box-Jenkins models
in forecasting seasonal (monthly) streamflows of the Mekong
River. Although seasonal models are readily available and have
been extensively used in the literature, standardization is in-
troduced to remove the seasonality of monthly streamflows
whereby the resulting series may be represented by non-seasonal
models which are much easier to identify, require less computa-
tional efforts and are simpler in the calculation of forecasts.
Moreover, the posterior possibility criterion is used in model
selection instead of the modified portmanteau statistic, which is
found to be indecisive in such situations.

Introduction

Planning and control of water resources systems have become in-
creasingly important in recent years. At the same time, attempts
have also been made to increase the efficiency of existing reser-
voirs, especially those with many purposes. All of them require
the use of inflow forecasts. If the reservoir undet consideration is
mainly for flood control, short-tetm forecasts would be sufficient.
In this case, except for the period with floods, the forecasting is
quite simple because the inflows duting those periods without
floods do not change much from day to day or hour to hour.
However, when one intends to make use of the water in the ex-
isting reservoir for planning work such as the planning of crop-
ping systems, the estimation of the irrigated areas of some crops
in the coming year, long-term forecasts are needed.

Forecasting of seasonal streamflows is a particular case of
long-term forecasting problem. In this case, forecasts with Jead
time ranging from one month to a year may be required.

In a recent survey, Phien (1983) summarized various techni-
ques which are likely to be useful in seasonal streamflow fore-
casting. They include regression analysis, conceptual models,
group method of data handling and what was termed as time
series analysis, in which only streamflow data are employed. In
this study, an attempt is made to evaluate the ability of the Box-
Jenkins method which is commonly believed to perform very well
in seasonal data. Moreover, besides following the seasonal models
developed by Box and Jenkins (1976), an effort is also made to
use the nonseasonal models after a suitable removal of the
seasonalities. Comparison of their performance can then be made
and conclusions are drawn.

Box-Jenkins models

Letx,, X,, . . -, Xy be a discrete time series measured at equal time
intervals. For example, if F;; denotes the streamflow in month j
(=1, ..., 12) of year i, then such a time seties can be obtained
by setting

F..

o t= 12(i-1)+j (1)

X(=

where the time interval is equal to one month. The most general
form of a time series known as the seasonal autoregressive in-
tegrated moving average (ARIMA) model can be written as (see
Box and Jenkins, 1976):

$(B) ®(B") {[(1 - B)'(1 -B)°x] - u} = 6(B)6(B")a,  (2)

where

Box-Cox transformed value of x,

discrete time

seasonal length, s = 12 for monthly flows

backward shift operator defined by

Bx: = x:—x

By = x_,

mean level of the time series, usually taken as the
average of v, where

v.= (1-B(1-B)P°%

(so that w, = v, - has a zero mean)
normally independently distributed white noise with
mean 0 and variance o?, commonly denoted as NID
(0, 02)

1 - ¢,B —... - ¢,BP: seasonal autoregressive (AR)
operator

V¢ : nonseasonal differencing operator of order d to
produce nonseasonal stationarity

1 - &P -...- ®B": scasonal AR operator of
order P

seasonal differencing operator of order D to produce
seasonal stationarity

1-6,B -...- 8.B%: nonseasonal moving average
(MA) operator

= 1 - 9B : scasonal MA operator

%
t
s
B

(3)

$®) =
(1-By =
®(B")
(1-B)P =

8(B)
o(B°)

Usually, both d and D take the values 0, 1 or 2. For the sta-
tionarity of the series w,, the roots of $(B) and ®(B°) must lie out-
side the unit circle. Likewise the roots of $(B) and ®(B*) must lie
outside the unit circle for the invertibility of the process. The
above general form is commonly denoted as (p,d. q) x (P,D,Q),.
The parameters $;, ..., $,(®,, ..., ®)and 6, ..., 6,(Oy, ...,
) are respectively the nonseasonal (seasonal) autoregressive and
moving average parameters of the model. When (P,D,Q) =
(0,0,0), the model is nonseasonal and is denoted by (p.d, q).

Model building

The model expressed by eq. 2 is very general. In order to arrive at
an appropriate selection, Box and Jenkins (1976) suggested a
three-stage procedure consisting of identification, estimation and
diagnostic checking.

Identification:

In the identification stage, a candidate model is selected. This
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means that a set of valuesof p, d, q, P, D and Q is chosen. Hipel
et al. (1977) discussed the use of autocorrelation function (ACF),
partial autocorrelation function (PACF), inverse autocorrelation
function (IACF) and inverse partial autocorrelation function
(IPACF) for model identification. Intetested readers should refer
to their work for more elaborated information. Recent develop-
ment includes the S-array (Gray ez @/., 1978) and the generalized
partial autocorrelation function (Woodward and Gray, 1981) as
additional tools for model identification. Different tools can sug-
gest different candidates. Fortunately, in modelling monthly
streamflows, the work of McKerchar and Delleur (1974), Tao and
Delleur (1976), Hipel e 4/. (1977) and McLeod ez @/. (1977) has
provided some typical guidances, and the selection of a suitable
candidate is not too difficult. Moreover, as will be seen later, the
selected model at this stage is just only tentative, one should not
place too much emphasis on such selection. For simplicity, the
ACF and PACF would be sufficient.

Estimation:

Once a tentative model has been selected, its parameters are
estimated. The most desirable estimates are provided by the
method of maximum likelihood which, however, due to com-
putational difficulties, has become available recently (Ansley,
1979). The likelihood function takes the form

03,07 | W) a (02)" " g(B) exp [ - ' S(B, W)/ 7] )
where
o2 = variance of the white noise
n =N-d-sD
W = vector with components W, W,, ..., W,
B = vectot of the unknown parametets
g(B) = afunction of the parameters but not of the w;.

An exact expression for the likelihood was given by Newbold
(1974) but the alternative form of Ansley (1979) is more suitable
for computation. If f denotes the maximum estimator of 8, the
maximum likelihood estimator of o? is obtained as

82 = S(B,W)/n (5)

Using the form provided by Ansley and the general procedure
described by Box and Jenkins (1976), the parameters of the ten-
tatively selected model can be estimated.

Diagnostic checking:

At this stage, one needs to check if the selected model is ade-
quate. There are several tools which may be utilized for this pur-
pose. However, the modified portmanteau statistic (Ljung and
Box, 1978) is commonly used. This statistic is computed as

U =n(n+2) él £(3)/(n - k) ©)

whete r(4) is the autocorrelation of the residuals, and

L  has a value from 15 to 25 for nonseasonal models
(L £ n/4), and a value of 4s for seasonal time series. This statistic
will asymptotically follow a chi-square distribution withv = L -
p - q - P - Q degrees of freedom. With a specified
significance level a, the adequacy of the selected model is rejected
if the computed value of U is greater than xX(v). It should be
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noted that the modified portmanteau statistic is recommended in
preference to the original portmanteau test of Box and Pierce
(1970), because the former approximates the asymptotic distribu-
tion much better for moderate values of n.

In recent years, the Akaike information criterion (AIC), pro-
posed by Akaike (1974), has been extensively used. This criterion
incorporates the parsimony criterion suggested by Box and
Jenkins (i.e. to use a model with as few parameters as possible) by
penalizing the inclusion of a large number of parameters. The
simplified and most commonly used form of the AIC is as
follows:

AIC = nlogd? + 2m )

where log denotes the natural logarithm as commonly used in
mathematics nowaday and m is the number of parameters involv-
ed in the model. When there are several competing models to
choose from, select the one that gives the minimum value of the
AIC. Even if it is commonly used, when viewed as an estimator of
the model order, the AIC was found to be inconsistent (Kashyap,
1980) in the sense that it does not pick up the true model.
Another selection critetion, known as the posterior possibility
criterion (PPC), was developed independently by Kashyap (1977)
and Schwarz (1978). The PPC can be expressed as follows:

PPC = nlog62 + mlogn (8)

According to the this critetion, one selects the model which
minimizes PPC. It is known that the PPC gives a consistent rule
for selecting the true model. With the use of the AIC or PPC, one
can avoid the requirement of choosing the significance level in
hypothesis testing. Cline (1981) suggested that m in egs. 7 and 8
be computed as follows:

m=p+q+P+Q+pp+gQ+1 ©)]

In this study, the PPC is used. However, the AIC and

modified portmanteau statistic are also computed in order to sup-
port the selection made by the PPC.

Forecasting

In this study, Box-Jenkins models are used to forecast monthly
streamflows. Among the three alternative forms provided by Box
and Jenkins (1976), the model expressed as a difference equation
and as an infinite sum of the white noise is useful in computing
the forecasts and forecast etrors, respectively.

Let h denote the forecast lead time. The minimum mean
squared error (MMSE) predictor %,(h) of w, ., made at t is obtain-
ed by taking the conditional expectation of w, ,, at time t. Using
the square brackets to signify conditional expectation, one can
write

[wt—j] = W j l =0,1,2,...

[w( ]] = VAV(()) J = 1,2,... 1
* ’ 0

(] = Wej = (1) = 0,12, (10)

[a.] =0 i=1,2,...

In other words, the w,_; (j = 0,1,2,...) which have already hap-
pened at instant t are left unchanged; the w,,; (j = 1,2,...)
which have not happened, ate replaced by their forecasts W(j);
the a,_; (j = 0,1,...) which have happened, are computed as
the forecast error w,_; — W,_;_,(1), while the a,,; (j = 1,2,...)

o




which have not yet happened, are replaced by zeroes. With this
rule and using the difference equation form, the forecasts can
easily be computed.

Now, writing the ARIMA model in an infinite order moving
average form:

Wieh = (at+h + W12, h +"'+wh-1at+1) (11)

+(Wha + Wpo2 g+
where the weights y can be computed by rewriting eq. 2 and by
equating the coefficients of a,,;:

Weon = {$(B) ®(B°)} ' 6(B) O(B) 2, (12)
The forecast etror at lead time h is then given by
e(h) = we.p - %(h)
= Bap t Widpor et Whord (13)
so that the MMSE is
V(h) = o} (1 + hzj w) (14)

In practice, 67 is replaced by 02 and the y; are computed from the

estimates of the model parameters. The approximate 1—¢ pro-
bability limits w,, ,( - ) and w, , p( +) for w,,;, will be given by

. bt L

Weon(®) = Wh) 2z, [1+ 2 wi]"5, (15)

where z,/, is the normal deviate exceeded by a portion /2. In this

study, ¢ is taken equal to 5%, thus the 95% confidence limits are
obtained by taking z,,, = 1,96.

Standardization

Phien and Balasuriya (1982) recommended the use of standar-
dization in order to render seasonal data nonseasonal. Let F, and
§; denote respectively the mean and standard deviation of flow in
monthj(j =1, ..., 12):

T
FE=T'3X Ei

I oy (16)
§ = [(T-1)" El F; - F,')Z] 2

with T being the length of record employed in years, then in
many cases,

x = (B; - B)S , t=12(i-1)+]j 17
may be conveniently represented by nonseasonal models. Doing
so introduces 24 parameters (F;, ..., F;; ; S;, ..., Spp) to the
parameters of the ARIMA model, but the resulting seties {x} is
much easier to model. The forecasts of F;, , ;, made at F, ;,, for
example, can be obtained as follows:

Fi+1.j = i:‘1,12(1') = Fj + Sj () (18)
where t = 12(1—1)+ 12 = 12i.

Likewise, the 1 -¢ probability limits for F;, ; ; are obtained by
replacing £(j) in eq. 18 by x,;(-) and x., ;(+), which are com-
puted according to eq. 15.

Data for the study
The Mekong River

The Mekong is an international river that starts at an elevation of
about 5 000 m in the snow-covered mountain ranges of Tang Ku
La on the great Tibet Plateain in Southwestern China. It flows
generally southward for about 1 600 km between the mountain
ranges of Yunnan province (China) and enters the peninsula at
the common border of China, Burma and Laos. From this border,
the river continues to flow to the south for an additional length of
2 400 km and discharges into the South China Sea. The lower
section of the river forms part of the boundaries between Burma
and Laos, between Thailand and Laos, flows across Kampuchea
and the South of Vietnam. The Lower Mekong Basin is shown in
Fig. 1 with the streamflow stations where data are employed.
These stations ate listed in Table 1 and the data were taken from
the Mekong Sectetariat whose main responsibilities are to develop
the water resources of the Lower Mekong Basin. For each station,
the last year of record is used for comparison between actual and
forecast values, while all the data prior to that year are used in
model building.

Preliminary data analysis

In this stage, the mean and standard deviation of the flow in each
month are computed. They ate collected in Table 2 for all the five
stations employed. From these computed values, the seasonalities
of monthly flows are obvious. In order to check the normality of
monthly flows, the skewness (Cs) and excess (Ex) coefficients are
computed. If, for a month,

| Cs | < 1,96 (6/T) " .
| Ex | < 1,96 (24/T)"2 (19)
where T is the length of record (in years), then the corresponding
monthly flow can be said to be normally distributed at the 5%
significance level. Inspection of the computed values of Cs and Ex
reveals that the streamflows in some months are not normally
distributed. However, according to the Box-Jenkins method,
monthly flows are not to be cut according to each month; instead,
they are arranged as shown in eq. 1 to form the time series of x,,
which is found to be approximately normally distributed. So no
transformation is needed for the data sets employed.

Data analysis
Use of raw data

First of all, monthly data are subject to Box-Jenkins modelling
without standardization. For illustrative purposes, station 4
(Pakse) is used.

Hdentification

As mentioned before, the ACF and PACF would be sufficient at
this stage. They are recommended and used because of their sim-
ple computation. The ACF (autocorrelation function) of monthly
streamflows at station 4 for the priod 1945-1979 in shown in Fig.
2, from which the 12-month petiodicity is cleatly seen. Since the
estimated autocorrelations at lags that are integer multiples of
seasonal length s =12 do not die out rapidly, seasonal differenc-
ing is needed to produce stationarity. Failure of other autocorrela-
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Figure 1 .
The Lower Mekong Basin with streamflow stasions where data are
employed.
TABLE 1
LIST OF STREAMFLOW STATIONS
. . Drainage Area Period of
Station Location (km?) Record Used
1 Luang Prabang 268 000 1950 ~ 1980
2 Vientiane 299 000 1946 - 1980
3 Thakhek 373 000 1946 - 1980
4 Pakse 545 000 1945 - 1980
5 Kratie 646 000 1945 — 1968(*)

(*) Data at this station were not available after 1968.
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TABLE 2
MEAN AND STANDARD DEVIATIONS OF MONTHLY STREAMFLOWS (m?/s) AT FIVE STATIONS UNDER CONSIDERATION

Month

Station
1 2 3 4 5 6 7 8 9 10 11 12

(1) 1624 1258 1038 10063 1436 3010 6151 10370 9074 5329 3529 2272

(1) Luang Prabang (i) 308 202 158 140 408 882 1645 2387 2177 1233 1065 608
(2) Vientiane () 1755 1391 1164 1169 1652 3431 6973 11902 11631 6831 4095 1509
() 312 202 267 285 427 968 1946 2584 2774 1514 1157 594

(3) Thakhek () 2319 1812 1475 1422 2300 6856 13130 20032 20349 11114 5694 3350
(i1) 343 244 193 214 639 2137 3259 3825 4123 2521 1223 576
(4) Pakse (i) 2800 2145 1740 1681 2847 9034 16940 26676 28659 16780 8432 4333
(i) 485 337 231 260 833 2973 4503 5548 5411 3968 1703 729
(5) Kuatie (1) 3621 2640 2088 1974 3684 11181 21297 33553 40136 24638 11848 5944
(i) 575 395 278 246 1188 3545 5466 6076 5776 5716 2435 1116

NOTES: MONTH 1 =January, ..., MONTH 12 = December
(1) Mean and (ii) standard deviation
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Figure 2

The autocorrelavion function of monthly flows at Pakse

TABLE 3 tions to dying out may imply that nonseasonal differencing is also

STANDARD DEVIATION OF THE DIFFERENCED SEQUENCE required. Table 3 shows the standard deviation of the process
after various differencing orders. It is seen that d=0and D=1

Order (d, D) Standard Deviation (m?/s) are desirable to yield the smallest value of the standard deviation.
However, d = 1 and D = 1 are also suspected because the standard

E?g; Z g;ii deviation of the resulting sequence is also quite close to the
(2:0) 7360.6 ptevious case. After differencing, the ACF and PACF of the series
(0,1) 41932 for d =0 and D = 1 are shown in Figs. 3 and 4, respectively. From
(1,1 4861,1 these figures and those with d =D = 1, the following models ate
21 79185 tentatively selected:

(0.2) 73159 y '

(1,2) 8 746,3

(2,2) 14 422,0 I (1,0,00x(1,1,1),, an (1,0,1)x(1,1,1),,

(Im (1,1,1)x(1,1,1),
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The autocorrelation function of differenced monthly flows (d=0, D=1)
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The partial autocorrelation function of differenced monthly flows (d=0,
D=1) at Pakse
TABLE 4 . .
PARAMETERS OF CANDIDATE MODELS FOR PAKSE Estimation
Model ¢ ] ¢ o o? At this stage, the parameters of all the possible models are

estimated. A simple scheme for parameter estimation may be car-

(gg 82291‘ ;g I (‘)‘538 o1 :g}gg ?g gggg gg gggg }; ried out using the Statistical Package of Social Science (SPSS)

(I 0,404 66 0,839 06 -0,175 00 —0,186 10 0,625 68

developed by Hull and Nie (1981). The values of the parameters
so computed are shown in Table 4. Since the value of the

na: not applicable nonseasonal moving average parameter 8 is quite small, model II

is almost the same as model I.

132
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Diagnostic checking

Having computed the model parameters, the statistics U, AIC
and PPC can readily be computed. Their values are collected in
Table 5. Again model 1l gives neatly the same values for these
statistics even though model I is the most suitable candidate for
station 4 (Pakse):

(1-0,38918B)(1 + 0,16562B'*)(1 - B**)x, = (1 - 0,85625B")a,
(20)
with 62 = 0,62217.

Remarks
® The mean of (1 - B'?)x, may be neglected, i.e. y=0.

@ All three models under consideration are adequate according
to the modified portmanteau statistic. The passimony criterion
(Box and Jenkins, 1976) selects model I also because it involves
the least number of parameters. It should be noted that this
criterion is difficult to apply in many situations where the
simplicity of the candidate models is not obviously seen. In
such situations, the AIC or PPC is more suitable.

TABLE 5
VALUES OF THE STATISTICS USED FOR DIAGNOSTIC CHECK
(PAKSE)
Model Uv) AIC PPC
I 0,121 (45) 8 876,2 8 896,5
11 0,141 (44) 8 877.9 8902,3
Il 0,177 (44) 8 884,6 8913,1
(v): degree of freedom of the U-statistic

Forecasting for 1980

The model of eq. 20 is now used to produce forecasts for monthly
streamflows in the year 1980, all made in December, 1979. The
forecasts are shown together with the observed flows in Fig. 5 in
which the lower 95% probability limits are plotted only when
they are positive.

40
38 @—@ : Actual Values
i O—  : Forecasts (Raw) f
O—0Q : Forecasts (Standardized)/
34F O-—-0 : upper & Lower Limits /p‘
( Raw) !
32 & &  Upper & Lower Limits ,/II
{ Standardized ) /
30 . /

Streamflow (100 m /s )

~

Month

Figure 5
Comparison between forecast and actual monthly flows at Pakse
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Remarks

® By the same procedure, the following (1,0,0) x (0,1,1),, is
reached for monthly streamflows at Vientiane (station 2):

(1-0,53416B)(1 - B)x, = (1 - 0,95000B'%)a, (21)

with 62 = 0,50430

® From eq. 14 and the fact that y; becomes zero after a few
values of i, the standard deviation of the forecast error becomes
constant after some lead times.

@ The forecasts can easily be updated. However, updating is not
undertaken in this study.

Use of standardized data

For seasonal data, it is quite difficult to arrive at a suitable model.
Several other models have also been attempted for Pakse and
Vientiane and only those which are good are reported in the
previous section. Since the monthly flows are approximately nor-
mally distributed, the mean and standard deviation are sufficient
to determine the marginal (normal) distribution in each month.
Consequently, more emphasis is placed upon these two statistics.
Romoval of seasonality is therefore achieved by standardization
(eq. 17) and the resulting series x, is to be represented by
nonseasonal models, ARIMA (p,d, q).

For each station, several candidate models are tested. Table
6 shows the computed values of the statistics U, AIC and PPC for
the models, which are most likely to be selected for each of the
five stations. From this table, the following models are selected:

TABLE 6
COMPUTED VALUES OF U, AIC AND PPC FOR
STANDARDIZED DATA
Model U) AIC PPC
——————— 1. Luang Prabang - - - — -~ — -
(1,1,1) 0,043 58 (13) -252,27 -240,61
(2,1,1) 0,042 53 (12) -249,52 -233,98
(1,1,2) 0,046 43 (12) -250,45 -234,91
———————— 2. Vientiane’ — - - - - - - ~
(1,0,1) 0,111 23 (13) ~281,37 -269,16
(2,0,1) 0,231 56 (12) ~286,52 -235,97
(1,0,2) 0,259 68 (12) -286,23 -234,91
———————— 3. Thakhek - - ---~- -~
(1,1,1) 0,046 17 (13) -172,51 -160,39
(3.1.1) 0,036 92 (11) -167,99 -147,79
————————— 4. Pakse — - — - — - - - ~
(1,1,1) 0,035 66 (13) -204,81 -188,03
(1,1,3) 0,028 61 (i1) -204,53 -184,19
————————— 5. Kratie - — = — - - — — —
(1,0,0) 0,033 46 (14) ~154,90 -147,66
(1,0,1) 0,100 01 (13) -152,90 ~142,04
(2,0,0) 0,099 19 (13) ~151,94 -141,08
(v): degree of freedom of the U-statistic
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1. Luang Prabang: ARIMA (1,1,1):

(1-0,50712B)(1-B) x, = 1-0,91892B) a, , (22)
52 = 0,51184
2. Vientiane: ARIMA (1,0,1):
(1+0,45994B) x, = (1-0,88661B) a, (23)
82 = 0,50071
3. Thakhek: ARIMA (1,1,1):
(1-0,47134B)(1 - B) x, = (1-0,95408B) a, , (24)
ol = 0,63995 :
4. Pakse: ARIMA (1,1,1):
(1-0,37964B)Y1-B)x, = (1-0,81210B) a, , (25)
82 = 0,62077
5. Kratie: ARIMA (1,0,0):
(1-0,63207B) x, = a, , (26)
52 = 0,54575
Remarks

@ For data at Vientiane, the AIC and PPC do not give the same
selection. According to the AIC, MODEL (2,0, 1) should be
chosen while the PPC suggests model (1,0, 1). As mentioned
before, the AIC does not give consistent order (Kashyap,
1980), the model shown in eq. 23 is selected according to the
PPC statistic.

® When d =0, nonseasonal ARIMA models reduce to auto-
regressive moving average models which are commonly
denoted by ARMA (p, q). For example, eq. 23 for standardized
data at Vientiane represents an ARMA (1,1). When q =0, AR-
MA models reduces to autoregressive models, denoted by AR
(p), and when p =0, they reduces to moving average models,
denoted by MA (q). For example, standardized monthly flows
at Kratie can be presented by an AR (1) model.

® The modified portmanteau statistic indicates that all the listed
models (in Table 6) are acceptable. It does not help in the
selection of the best model.

Comparison

In order to evaluate the performance of the two different .ap-
proaches which are based respectively on raw and standardized
data, the results obtained for Pakse and Vientiane are compared,
using the mean squared ertor (MSE) defined as
L (27)

11
MSE = 5 % (..
where i+ 1 denotes the year 1980, and F, , 1,j denotes the forecast
of the streamflow F, , | ; in month j, made at the end of 1979, i.e.

N

F

i+1,j

=Bl) L j=1.12
However, the results shown in Table 7 are inconclusive. The MSE
statistic indicates that standardization is better for Pakse while it
is worse for Vientiane. Besides the MSE, one can use some other
useful criteria. In this study, the mean absolute deviation
(MAD), mean relative error (MRE) and maximum relative etror
(RE,,,,) are also employed. These are defined as follows:



TABLE 7
COMPARISON OF FORECASTS FOR THE YEAR 1980 AT
PAKSE AND VIENTIANE
Statistics
Station
MSE MAD MRE  REmax (%)
Pakse (1) 7294968 1413,02 0,006 21,7
(i) 4368284 1198,58 —0,004 17,4
s (i) 892 067 759,75 0,002 51,2
Vientiane i 5126586 10475 0,120 33,6
Notes: (i) raw data
(ii) standardized data
1B .
MAD = ﬁigllFi+1,j - K.yl (28)
1 2F,, - F,
MRE = = 2 : 29
12 j=1 Fi+ 1 ( )
F,,.-F, .
RE pp = max 100 x | ——5——"21{ (%) (30)
i+l,j

From their computed values collected in Table 7, the MAD
and RE,, critetia consistently indicate that it would be better to
standardize monthly streamflows before the Box-Jenkins models
are attempted. Moreover, a comparison of the two approaches is
also made by plotting forecast and actual flows on the same
graph. Typical tesults are shown in Fig. 5 for Pakse. The perfor-
mance of the two approaches is almost identical. However, the
upper and lower probability limits provided by the case of stan-
dardized data seems to be more reasonable, because the
seasonalities are clearly reflected. Moreover, it is observed that the
actual flow in September 1980 was out of the probability limits
computed with raw data. This, to some extent, indicates that
they are not reliable. Finally, it is much simpler to work with
standardized data: appropriate models are easier to identify,
estimation of parametets requires less computational effort, and
forecasts are easier to compute. Consequently, standardization is
recommended as a tool ro remove the seasonality of monthly
stteamflows of the Mekong River so that nonseasonal Box-jenkins
models can be entertained.

Summary and Conclusions

In the present study, Box-Jenkins models were used to forecast
monthly streamflows of the Mekong River. The basic procedure
consisting of identification, estimation and diagnostic checking
werte briefly described. Instead of relying on the modified port-
manteau statistic, which is very less sensitive and is not useful for
model selection, the final models are selected according to the
posterior possibility criterion (PPC) whose selection is more
reliable than the Akaike information criterion (AIC). In fact,
both raw and standardized data were attempted. In the first case,
seasonal models were fitted and forecasting was made with the
resulting model; in the second situation, the data were treated to

be nonseasonal and ARIMA (p,d,q) models were employed.
Although the performance of models obtained with raw and
standardized data is almost identical, standardization is recom-
mended because it leads to simpler identification, easier
parameter estimation and simpler computation of forecasts. It
was observed that the forecasts for the months with peak
discharges are not very good. This indicates that other methods
should be tried. At present an attempt is being made to evaluate
the various possible techniques. Related results will soon be
reported.
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