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Abstract

A considerable diversity of opinion exists in the hydrological
literature as to the relative merits of sampling a random sequence
of extreme values either as a partial or annual maximum series.
Theoretical aspects of the two approaches are considered and
some practical criteria for model selection are given. The usual
partial series model is to combine a Poisson arrival rate of ex-
ceedances with the assumption that these are exponentially
distributed. The partial series are described as a censored process
and in addition deal with the case of Negative Binomial arrivals.
Attention is given to the distribution of storms in such a situation
to be drawn from a censoted log-Normal model and certain ad-
vantages are illustrated. The relative flexibility of the partial
series approach is also illustrated. One hundred one day storm se-
quences from South Africa and Namibia are investigated and
finally explicit algorithms are given with which to estimate the
parameters and compute the percentiles of the censored log-
Normal model.

Introduction

The search for a probability distribution that adequately
describes the random behaviour of a given sample of extreme
values to the joint satisfaction of the pure satistician on the one
hand and the applied scientist on the othet is an endeavour that
has spanned a massive body of literature which itself continues to
unify and generate a great variety of interesting topics. In the
field of asymptotic extteme value theory the major work is still
that of Gumbel (1958), although Galambos (1978) has brought
together in a single text many of the more recent theoretical ad-
vances. The applied scientist in his assessment of the risk of ex-
tremes in hydrology and meteorology has not relied totally on
asymptotic theory but has often turned to direct model fitting.
Obvious amongst such models ate, for example, the log-Normal
and log-Pearson type III whose density functions satisfy the
positive skew and heavy right tails characteristic of samples of an-
nual flood peak or rainfall maxima. A number of contemporary
studies have extended direct model fitting to compound distribu-
tions in cases where, for example, floods represent a mixture of
generating processes (Houghton, 1978; Sing and Sinclair, 1972;
Canfield ez @/., 1980).

Standard hydrological practice has been to estimate the
magunitude of the event with a mean recurrence interval expressed
in years. This is then defined as *‘the T year event’’ and is usually
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computed from a sample of annual maxima. The alternative to
sampling annual maxima is known as the partial duration series
in which all events above a prescribed level are selected.

Usually the exponential mode! of partial duration seties is
assumed. However, if a model is proposed for the complete pro-
cess, for example all floods or rainfall depths, then it can in a
truncated or censored form be applied to the analysis of the ex-
tremes or those events greater than the selection level. In other
words, an assumption about the complete distribution is used in
the analysis of the upper tail.

In the present work the theoretical aspects of these ap-
proaches to the analysis of partial duration series are explored and
some empirical comparisons made with alternative probabilistic
models and sampling procedures.

Theoretical Background
On the definition of the ‘‘T year event”’

The term “‘T year event’’ can be used to mean one of two dif-
ferent events. It can either be defined in the annual maximum
sense or in what we shall call here the naive sense. For the annual
maximum case let Q, be the random vatiable which describes the
biggest event, say a storm rainfall depth, within a particular year
and let F, be its distribution function, that is:

F,(q) = Probability {Q,£q) )
The T year event, q, (T), in the annual maximum sense is defined
as the solution to the equation.

F,(q.(T)) = 1 - 1/T, ie. (2)

4.0 = F'1 - UT) 3)

This event has, by definition, the following relative frequen-
cy interpretation: Suppose that storms are observed for n years
and that n, (T) is the number of years duting which the max-
imum storm exceeds q, (T}, then rl,l-{g n/n(T) = T. Note that

there will be years duting which more than one storm exceeds
q.(T), but even for such years n(T) is only incremented by one.
In other words, on average in one year out of T there is @ Jeast
one storm which exceeds q,(T).

For the definition of the T year event in the naive sense let
Q, be the random variable which desctibes a storm depth which



exceeds a given quantity, q, 2 0, and let F, be its distribution
function, that is:

F(q) = Probability {Q,£q} , q>q, 4
Suppose that there are an average of A, storms per year. Then the
T year event, q(T), in the naive sense is defined as the solution to
the equation:

F(q(T) = 1 ~ 1/(TA) , i.e. )

9,(T) = F; '(1 - 1/(TA,)) (6)
The relative frequency interpretation of q.(T) is different to
that of q,(T), being: Suppose that storms are observed for n years
and that n(T) is the number of storms which occur, then
lim n/ny(T) = T.

In this case every storm is counted. In other words: On
average, once in every T years there will be a storm which exceeds
q(T).

Which of the two events q,(T) or q(T) is to be preferred in
practice should depend on the use to which it is to be put. For the
type of distributions that are usually considered one has that

lim q(T)/q(T) = 1,

and so for sufficiently large T these two events are equivalent.

If one works with partial duration series it is simpler to
derive formulae for q(T) rather than for q,(T) and so q(T) would
be a more convenient definition of ‘T year event’’. However, it is
standard hydrological practice to regard q(T) as the “T year
event’’. It is therefore necessaty to detive the theoretical relation-
ship between q.(T) and q,(T). The main result on which the rela-
tionship is based is given in (7a) and (7b) below. It is proved, e.g.
in Todorovic and Zelenhasic (1970).

On some theoretical results relating to q,(T) and q,(T)
Assuming that storms occur independently, define p (m) as the
probability function of the number of storms in any year which
exceed q,, then

Q.<q,

F(q) = I p(m)E(q)"

with probability p.(0) (72)

forq>q, (7b)

A number of results can be derived from (7) assuming that
all random variables are independently distributed. Firstly, rela-
tionships between F,(q) and F (q) can be established. If the pro-
cess describing the arrival of storms is Poisson, i.e.

pPo(m) = AT exp (- A,)/m! m=0,1,2,...

then (7b) becomes:

R@= Z0ep(-A)E@m , q>q ¥
This sum converges and can be evaluated to:
Fi(q) = exp{-4,(1 - E(q)} v 9>q, 8

The Poisson distribution has the property that the mean is
equal to the variance. In some practical applications this condi-

tion is not met; in particular the variance can be much larger than
the mean. For such cases the negative Binomial distribution can
be used as an alternative to the Poisson, (see, e.g. Calenda ez &/.
(1977)): i.e.

1 Colo m1 =1 {
Po(m) = (1+c0A0)”c° (1+e0A0) m (0::_o 9

for which (7b) becomes:
Fq) = {(1 - a)/(1 - a, B}/ ©

where e, = {Var(m) - E(m)}/E(m)

» 429,

and

a, = eAJ(1 + eA,).

Having related the distribution functions of storm depths in
the annual maximum and naive senses one can now also relate,
for a given storm depth, the return petiod, T, in the annual max-
imum sense and the return period, T, in the naive sense.

From (3) and (6):
qW(T) = q(T,) = E ' (1 - U/T) = F;' (1 - 1/(TA,))
for which it follows that
T=(1-FE{f"'Q- 1T (10)

For Poisson artivals then, and recalling (8) we have

exp{-A(1 ~F[E;'(1 - 1/(TA)D}
exp{-1/T,}

E{F;'(1-1/(TA,)} =

Equation (10) therefore becomes:
T=[1-exp{-1T}! (11a)
Consequently T, in terms of T, for Poisson atrivals becomes:
T, = {I(T) - In(T - 1)}~! (11b)

Turning now to a consideration of negative Binomial arrivals,
F.(q) is given in (9), hence:

FAF; (1 ~ 1/(TA}

= {1 - a)/(1 - aF[F'(1 - L(TADD}®

= {(1 = a)/(1 = ag(1 = /(TAP

= (1 + ¢/T,) e
where a, has been replaced by (A, e,/(1 + A, ¢,)).
Equation (10) then becomes:

T={l-(Q1-e¢/T,) Yeo}-1 (12a)
Consequently T, in terms of T for negative Binomial arrivals is:

T, = {e,/[(1 - 1/T)"% - 1} (12b)
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On the distribution of exceedances

So far no assumptions have been made about the distribution of
the exceedances of q,. The above tesults hold for all F,. We now
consider two cases: the exponential and censored log-Normal
distribution and derive from these the T year event in the annual
maximum sense when the process of arrivals is Poisson. This
follows the usual hydrological practice of expressing q,(T) in
terms of q(T).

Exponentially distributed exceedances

The exponential probability function is defined by:

Fo(q) =1- CXP{‘(q - qo)/p} ’ q>qo (13)
We note that the scale parameter 8 does not have a subscript since
for any truncation level q,” > q, the exceedances are also ex-

ponentially disttibuted with the same parameter j.
Substituting (13) in (8) results in:

F(q) = exp{- A, exp(-(9-q,)/B)} , q>q, , or  (14a)

F(q) = exp{- exp(-(q-q,~Blnk,)/B)} , 4>q, (14b)
which we see to be the Gumbel or Extreme Value Type I distribu-
tion with parameters (q, + filod ) and §. Using (2) an event can
now be expressed in the annual maximum sense as

qT) = q, + Blad, + y(T) (15)
where y(T) = —Iln[-In(1 - 1/T)].
Censored log-Normal exceedances.
In this case
d((L —po) -
E(q) = ((In(q) - wo) - @) Lq>q, (16)

1 - &)

where @ is the distribution function of the standard normal ran-
dom variable.

For the same reasons as given above the patameters u and o
are not subscripted but €, is because of its dependence on ¢,

Substituting (16) in (8) results in:

O((In(q) - u)/0) — PE,),
1 - &) ’

Fa(q) = exp{— lo ’ q>qo (17)

The T year event in the annual maximum sense can now be found
by substituting (17) in equation (2). From this one obtains:

® ((In q(T)-u)lo) = (1-®(&)) In (1-1/T)/A, +1

= p, say.

(18)

Hence q(T) = exp {Z(p)o +u}
where Z(p) is the standard normal deviate corresponding to
Z=0"" and efficiently approximated by the functional approx-
imation given in Abramovitz and Stegun (1972, p 933) which is
given in the Appendix.
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The Poisson assumption for partial duration series

The above theoretical results for partial duration series with ex-
ceedances distributed either exponentially of as censored log-
Normal have assumed that the arrival process for such events is
Poisson. Under the Poisson assumption the number of events
q > q, is considered a random variable with mean and variance
A,. It is not a necessary condition that the mean rate of arrival be
constant within the year so long as whole yeats or multiples of
whole years are considered. Following Cunnane (1979) it is seen
that if the number of occurrences in successive years, designated
M,,M,,..., My have 2 mean M which is the estimate of 4., then
ash, becomles larger (A, > 5) the M; become notmally distributed
asN @, A, /2). Consequently:

(M, - A)/A, "2~ N(©o,1) , and

(19)

N .
igl (Ml - A0)2/)‘0 ~ XIz\I (20)
The so-called Fisher dispersion test statistic, d, is obtained by
replacing A, by its estimate M. Its distribution is still x* but with
one less degree of freedom:

N

d= X M- MP/M~R (21)
This statistic provides a2 means of statistically assessing whether
the number of exceedance events within a fixed time interval is
Poisson distributed.

Deviations from the Poisson distribution do occur as has
been shown in a number of hydrological studies (see, €.g. Cun-
nane, 1979). In particular the sample variance can be much larger
than the sample mean, i.e. the observed distribution is more
dispersed than is expected under the Poisson distribution. As
already mentioned such cases may be modelled using the
negative Binomial distribution. Formulae analogous to those
given in equations (13) to (18) can be derived for the negative
Binomial case without any essential difficulties.

On the application of partial duration series to n-day storm
depth

Preliminary

For the estimation of extreme storm risk the partial duration
series is easier to apply than it is to flood peak analysis. No objec-
tive definition of a flood exists although one could perhaps use
“bankfull”’ discharge. For rainfall, however, an event can be
defined as that for which precipitation depth exceeds a given
value and in the following study of n-day point rainfall extremes
we define a ‘‘rain day’’ as one during which 0,25 mm or more is
recorded.

With the process defined it is now necessary to choose a
truncation value q,. In order to preserve an equal range of data
for partial duration and annual maximum series for comparative
studies, q, is chosen as the minimum annual maximum event.
Consequently all n-day storm rainfalls above this value are initial-
ly chosen for analysis. However, to attempt to ensure in-
dependence between selected events all q > q,, are removed when
the gap between them is less than 4 days.

This somewhat arbitrary gap is based on a study of weather
cycle lengths by Gabriel and Neumann (1957) who found that
the modal length of dry/wet periods for Tel Aviv cannot be less
than 3 days and represents the average time of passage of the
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Figure 1
Location of 100 daily ramfall stations used in comparative studies.
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Figure 2
Distribution function and density function for various degrees of trunca-
tion of a normal probability model

weather generating process. To ensure that the assumption of in-
dependence is not grossly violated one can carry out a test of the

hypothesis that the serial correlation for the series is zero. A
suitable test is given in Box and Jenkins (1976).

One hundred rainfall stations wete chosen for the assessment
of the partial duration seties approach to storm risk estimation.
As far as possible the various climatic regions of South Africa and
Namibia are represented and the location of the gauges is shown

in Figure 1.

Maximum likelihood estimation of parameters

Exponentially distributed exceedances

Ifq,, qu - - ., q, ate independent random variables each having
the distribution function (13) and with g, assumed known then
the maximum likelihood estimator of § is: (Johnson and Kotz

1970).

B=0"Z(a-9)=3-9

Censored log-Normal exceedances

2)

Since for the study of rainfall exceedances it is simple to establish
the number of events less than q,, (n,), and the number greater
than q,, (0, = 0 ~ n,), then the maximum likelihood estimators
for p and o given by Cohen (1950) ate appropriate:

(1 - & (YE) - ENYE) - &) - vilvi =0

o=v/(YE)-8&) and fi=q,- 35§

~

where Y(§,) = {nz $ (Eo)}/{nl (&)}

ni
and Vk = ?1 (g - qo)K/nl

i

(23)
(24)
(25)

(26)

where ¢ (.) is the density of a standard random normal deviate. It
should be noted that this system of equations has two solutions
only one of which is correct, but the algorithm given in the Ap-
pendix converges to the cotrect one for all practical values of n,;
and n,. Since for rainfall data n, can be found the parameter
estimation procedure is for a censored model. In the truncated
case no information is available for the process below q, and the

. alternative maximum likelihood estimators for u and ¢ are to be

found in Cohen (1950) or Gupta (1952). Figure 2 shows the effect
of the degree of truncation (or censoring) on the density and
distribution function of the Normal model.

On the validity of the Poisson assumption

For the 100 sites shown in Figure 1 the validity of the Poisson

TABLE 1

PERCENTAGE NUMBER OF TIMES THAT THE POISSON
ASSUMPTION FOR ANNUAL DISTRIBUTION OF THE
EXCEEDANCES OF q, WAS REJECTED FOR n-day

RAINFALL DEPTHS (100 stations)
Duration (days)
Level of significance
1 2 3 7
> 10 55 29 17 2
>05 50 23 11 0
> 01 34 18 7 0
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assumption for the arrival of the exceedances of q,for 1, 2, 3, and
7 day rainfall totals was tested using the Fisher dispersion statistic
(21). The value of x* was estimated using the well-known Wilson-
Hilferty approximation. The results are shown in Table 1, with q,
the minimum annual maximum n-day rainfall.

It is apparent that the assumption becomes dubious as the
duration of storms decreases. For one day storms we don’t have a
Poisson process. This may be partially explained by the following
facts:

Firstly, selecting g, as the minimum annual maximum
results in every year having at least one storm, i.e. the sample

- distribution is truncated at zeto. Secondly M was often less than 5
which invalidates the approximations on which the critical values
of the test are based. Thirdly there is a distortion due to missing
observations. Fourthly the numbers of storms at the different sta-
tions are not independently distributed.

However, it is felt that the poorness of the Poisson model of
storm arrivals for durations of one day is not entirely explained by
these considerations and further causes are possibly evident. This
question is currently being investigated and preliminary results
indicate that even when the above distortions are removed the
process of storm arrivals in still not Poisson. This implies that at
least one of the conditions which are sufficient for the process to
be Poisson is not met.

Fitstly the function which determines the rate of arrivals is
not periodic, that is the weather changes. It appears that this
function is itself random rather than deterministic. Secondly the
assumption of independence is violated because the dependence
between storms can last for mote than the four day period in-
serted between the selected storms. A third possibility is that such
dependence is introduced by some large scale and slow moving
weather generating process, sea temperature for example. Finally
the four day gap may itself be the problem because even under
the Poisson assumptions the gap between storms can be smaller
than 4 days. However, very few events were removed ('2%)
although there was a tendency for more removals for those sta-

tions where the deviation from the Poisson distribution was most
marked.

The fact that the 7-day storm totals fitted the Poisson process
of arrivals improbably well gave some cause for concemn, but
checks revealed that the counts given in Table 1 are correct. The
fact that numbers of storms at the different stations are not in-
dependently distributed makes it difficult to establish precisely
how unlikely such a result may be. )

Cunnane (1979), in an analysis of British flood peak data,
found that the departure from the Poisson assumption is in the
direction of the variance being significantly greater than the
mean. For the considerable majority of the daily rainfall records
analysed herein this is also the case. Consequently, since for
negative Binomial arrivals E(m) < V(m), it may be ventured that
this may provide a more suitable model for the annual distribu-
tion of the exceedances of q,. Figure 3 shows two stations for
which the Poisson assumption was rejected at the 5% level. The
parameters of the negative Binomial distribution function were
computed using the maximum likelihood procedure given in
Johnson and Kotz (1969, p 132) and the values of ¢, so obtained
varied from e, = 0,015 at East London to e, = 0,73 at Walvis
Bay. We note that as e, — 0 the Binomial approaches the Poisson
distribution and departuses from zeso for the parameter e, were
almost totally explained by the aridity of the climate. This im-
plies that V(m) tends to increase relative to E(m) as mean annual
rainfall decreases, which is not a particulatly surprising result.
Thus the assumption of negative Binomial atrivals would have
advantage over that of a Poisson process only in the more arid
tegions. The Pretoria histogramme (Figute 3) appears suspiciously
bimodal which suggests that the rate of arrival of storms could
vary from year to year.

The relationship between T, the recurrence intetval in the
partial duration seties sense and T, the recurrence interval in the
annual maximum sense has been derived (Equations 11b and
12b). Figure 4 shows these relationships graphically and il-
lustrates that the interpretation of risk for a particular event only

18 1 PRETORIA 21 WALVIS BAY (SWA)
16 - A = 7x7 N M= 1'1
go = 24mm qo = 3mm
14 A e = 0,08 ~4 e = 0,73
POISSON
12 A ——.— NEGATIVE BINOMIAL 7
10 A —
8 .
AN
6 4 / ’ -
/ N
W /./ ! i
2 4 . N -
z N
f‘ T T T T 1 T 1 T T T T i) T ¥ T 1
0 2 [ 6 8 10 12 14 16
M
Figure 3

Empirical fit of Poisson and Negative Binomial models to storm arrival
rates at 4 truncation level equal to the minimum annual maximum
recorded historically.
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Figure 4
Relationship between recurrence interval (I) for events sampled from
partial and annual Series and arrival rates assumed Poisson and Negative
Binoneial.

becomes significantly different at recurrence intervals of $ years or
less. Where design criteria ate not therefore affected by relatively
minor events the Poisson assumption for the evaluation of storm
risk may be not unduly restrictive.

On the selection of q,

The truncation level q, should be selected with care because in
practice one has to fit F,. Although it is only necessary to fit the
tail of a truncated or censored distribution, q, should not be set
too high otherwise there will be insufficient data points for the
efficient estimation of F,. The accuracy of the estimation of the
required distribution could be improved by capitalizing on the
fact that for any truncation level greater than q,, the exceedances
will also have the required distribution. Consequently q, could
be kept as low as reasonably possible and the resulting sample us-
ed to estimate the parametets of the exceedance distribution. The
truncation level could then be raised to meet some of the other
assumptions which would otherwise be violated if q, were 100
low. However, one should be careful to balance improved ac-
curacy of estimation with the need for the model to fit over the
domain of real interest, that is the tail.

In the present study the selection of q, as equal to the
minimum annual maximum n-day rainfall for the 100 stations
gave a mean value of 4,4 one day storms per year. The South
African stations have a minimum record length of 40 years, those
for South West Africa/Namibia, 20 years. A comparison of the
value of T for a given estimate of q, using the partial duration
seties where 1, = E(m) and the annual exceedance series whete
A, = 1(i.e. the n” highest storm depths are taken where n’ is the
number of years of record) is shown in Figure 5. The results are
averaged for all 100 stations and show that the censored log-
Normal model is reasonably robust towards the value of A, whilst
the exponential model consistently gave a higher estimate of T for

each q, when A, = 1.

The above procedure has the advantage that it is easy to
automate which is essential if one is fitting models to a large
number of stations. If, howevert, one is fitting models to only a
few stations then it is feasible to select the appropriate truncation
value more carefully. One could plot all the rainfall depths on
suitable linearised graph paper and select as censoring point the
smallest value for which the fit reasonably conforms to the
lognormal distribution.

200 /

/
/ o
100 EXPONENTIAL ————/ 5%
50 ] MODEL /
/
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20 - T{YEARS) % LOG - NORMAL MODEL

//

2(:)1 10 H Vs
/
s
/
- v
/
’
//
V
T (YEARS]
T N T
2 5 0 20 S0 100 200
)\ =E(m)
o
Fgure 5

Mearn relationship (100 stations) between recurrence interval estimates
from partiel series assuming censored log-Normal and exponentially
distributed exceedances with Ay = 1 and Ay = E(m).
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Comparative studies — annual maximum and partial duration
series

The following empirical comparison of results in the estimation
of extreme storm risk is confined to the more practical aspects of
model choice. Since there is no theoretically sound reason for
choosing any model above another, one is forced, in a practical
situation, to assess the competing models in terms of empirical
measures of fit, viability of assumptions, computational ease and
accuracy and consistency of estimate with varying sample sizes.

For Southern African storm rainfall a number of estimation
problems were encountered with some well-known models of an-
nual maxima. For example, it was found that as a general model
the log-Pearson Type III distribution is unsuitable because in
almost half of the 100 cases considered the skew of the logarithms
of the data is negative and the distribution therefore has an upper
bound. This becomes a serious limitation when, as occutred, the
bound is lower than the maximum observed events. Further pro-
blems were encountered with the General Extreme Value
distribution with respect to the switch in boundedness depending
on whether the data is distributed as Type II or Type IIL
Meteorological consideration apart, the existence of an upper or
lower bound is purely a function of the skew of the data and
given the large sampling variance of this moment, intolerable
local variations in §,(T) arose. In fact for annual maxima the use
of extreme value theoty is not automatically justified and even in
the independent case convergence can be painfully slow.

Figures 6 and 7 show the petformance of selected annual and
partial duration series models in terms of comparative mean
magnitudes of §,(T) and in the case of annual models only an
empirical measure of fit. The log-Normal 2 and 3 parameter,
Gumbel and log-Gumbel models were fitted to the 100 series of
annual 1 day rainfall maxima by the maximum likelihood pro-
cedures given in Kite (1977). The Box-Cox transformation to not-
mality is detailed in Chander e# @/ (1978) and the fitting pro-
cedure for the mixture of two log-Normal models is given in Sing
and Sinclair (1972). The parameters of the exponential and cen-
sored log-Normal models of the partial duration series are
estimated by the maximum likelihood procedures given herein.
(Equations 23 and 24).

The most obvious feature of Figure 6 is the systematic and
considerable comparative ovetestimation of q,(T) by the log-
Gumbel model. The reason for this is the fact that the inherent
assumption of a linear relationship between the reduced variate
and the log-log (T/T - 1) function of recurrence interval does
not hold in log space. This error is considerably increased on ex-
ponentiation back into real space (Boughton, 1980; Pitman,
1980).

By virtue of being fitted to the data by a constrained op-
timisation procedure to minimize deviations from the empirical
Weibull plotting position, the mixture of two log-Normal models
provides a yardstick with which to assess the performance of the
competing models of annual maxima, that is if fit is to be the sole
criterion of assessment. If this is so then the 3 parameter log-
Normal and Box-Cox transformation to normality would appear
to provide the best alternative estimates of q,(T). This is not sur-
prising since both have an extra parameter over the log-Normal
and Gumbel models. However, the tail behaviour in the case of
the Box-Cox transformation may suggest overfitting and ex-
trapolation beyond the range of the data may not be wise.

Of the two partial duration series models the censored log-
Normal provides a mean estimate of q,(T) comparable to the best
fitting annual models. The exponential model appears far less
satisfactory. An investigation into the reasons for this confirmed
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Mean estimate of Q(T) with 2-parameter for log-normal model of annual
series as standard.

1. 2 Parameter log-Normal model of annual series.

2. censored log-Normal of partial series.
3. Box-Cox transformation to normality, annual series.
4. Log Gumbel model of annual series.
5. Gumbel model of annual series.
6. Log Pearson Type Il model of annual sertes.
7. Exponential model of partial series.
8. 3-Parameter log-Normal model of annual series.

the result found for British flood data (NERC, 1975), namely
that estimation of the scale parameter § is dominated by values
near to the threshold itself rather than by the larger values. Con-
sequently B is underestimated since it represents the mean
amount by which the selected values greater than §, exceed q.

An empirical measure of the goodness of fit of the annual
models can be achieved by calculating the mean deviation be-
tween the estimated and observed events for the same probability
of non-exceedance. This is then expressed as a percentage of the
mean annual event.

The mean deviation may thus be expressed as (Prasad,
1970).

K

D = (100/K) z_l | (Fc~F)E, | (27)
where F¢, F, and F,| represent the estimated, observed and mean
events respectively and K = 100. F, is calculated from the em-
pitical Weibull plotting position and the results were averaged
over 5% increments of non-exceedence. Figure 7 shows that the
log-Gumbe! model provides the worst fit on the average and the
mixture of two log-normal distributions the best by virtue of the
fitting procedure used. There seems little to choose between the
other annual models although the critetion conveys little insight
into their tail behaviour since there are relatively few observed
events with P > 99%.

A final and essentially pragmatic test of model performance
is to consider the variance of the estimates of q(T) in an obvious-
ly climatologically homogenous region. For this purpose 20 daily
rainfall records with N 2 40 years and within Pretoria municipal
boundary were chosen. Record lengths varied from 43 to 71 years,
q, (minimum annual maximum one day rainfall) from 18 to
34 mm and the maximum recorded event from 132 to 207 mm.
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Mean deviation (100 stations) between computed and observed events ex-
pressed as a percentage of the mean annudl event for annual models.
(G: Gumbel, LG: Log-Gumbel, BC: Box-Cox tranformation to normali-
ty, LN3: 3-parameter log-Normal, LN: log-Normal, 2LN2: mixture of 2
log-Normal models).

In terms of the coefficient of variation of §,(T) for vatious T
Figure 8 reveals that both partial duration series models provide
the greatest uniformity of estimate. Model inflexibility in the case
of the two parameter models of annual series no doubt accounts
for their providing greater consistency of estimate than the three
parameter models. It may not, however, be strictly legitimate to
make such compatisons as these ot indeed employ tests of fit in
order to assess models with different numbers of parameters.

39 BC

cv iy

T T T
2 5 10 20
T (YEARS)
Figure 8
Coefficients of variation of 20 estimates of the T year daily event in an
assumed homogenous storm region in Pretoria urban area from various
annudl and partial series models.

(EXP: Exponential model of partial series, TLN: Censored log-Normal
model of partial series).
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Discussion

If the substantiation of the hypothesis that a partial duration
series contains more information on extremes than the annual
seties is accepted then attention should be directed towards a
comparison of the statistical efficiency of partial series. Using
theoretical and expetimental arguments both Yevjevich and
Taesombut (1978) and Cunnane (1973) have concluded that for
A, > 1,5 the asymptotic sampling variance of §,(T) is much lower
for a partial duration than for the cotresponding annual series.
They confined their attention to exponential models but one
would suspect that for log-Normal models the figure may be
lower based on the following argument. For an exponential
model of annual series one estimates only one parameter (8) and
for the partial series, two (8, A,). Therefore the ratio of
parametets is 1:2. For the log-Normal case the ratio is 2:3, that is
u and ¢ against y, 0 and A,. The relative variation in §,(T) when
parameters are increased from one to two would be higher than
that when increased from two to three. However, this point
would require experimental substantiation.

Situations exist where the number of observations less than
q, is actually known. This information can be used to great effect,

particulatly in the analysis of extreme daily rainfalls, where the

degree of truncation is vety high (£ 90%). Cohen (1950) has
shown that the variance formulas for 0 and &, when the number
of unmeasured observations (n,) is known may be given by:

V(o) = o> W(&)/n, (28a)

VE) = w()/n, (28b)
and where n, is unknown by:

V(o) = o> W*(¢)/n, , and (292)

V(E) = wH&)/n, (29b)

The explicit forms of the weighting functions W, w, W* and
w* are given in Cohen (1950) and we will not repeat them here.
Figure 9 shows a plot of these functions and illustrates that even
for modest degrees of truncation by hydrometeorological stan-
dards the increased efficiency in parameter estimation by virtue
of knowledge of n, is quite substantial. This gain in efficiency is
illustrated for three South African one day rainfall records in
Table 2.

TABLE 2
COMPARATIVE VARIANCES OF § AND £ FOR A LOG-NORMAL
MODEL WITH n, KNOWN AND UNKNOWN
Pretoria Grahamstown Carnarvon
513/404 57/048A 166/238A
oy 536 494 172
n; 5176 8072 1134
(&) 0,896 0,939 0,838
£ 1,260 4 1,550 1 1,028 7
G 0,8713 1,014 7 0,808 3
V(6) 0,001 48 0,001 6 0,002 6
n; known
v 0,001 40 0,000 6 0,002 1
n; known
V() 0,023 37 0,037 5 0,057 4
ny unknown
v 0,205 2 0,245 0 0,423 3
ny unknown
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Weighting factors for estimates of parameter variance in a censored Jog-
Normal model of partial series with nz known or unknown (after Coben,
1950).

Although it would be difficult to theoretically justify the use
of any probabalistic model of a partial duration series, parameter
uncertainty can be reduced if the censored log-Normal model is
used. In the analysis of annual maxima it is precisely this aspect of
parameter uncertainty that is attracting most attention in con-
temporary studies with increasingly complex estimation pro-
cedures being recommended, based on an ever broadening base
of theoretical argument.

Partial duration series meanwhile are teceiving nothing like
the same attention yet this approach offers a far more flexible tool
than the simple assessment of tisk in the annual maximum sense.
Engineets and hydrologists appear tied to the concept of recut-
rence and ignore a considerable number of alternative and poten-
tially far more useful means of risk evaluation. For example, let
Qu(T) be the random variable describing the maximum storm
which will occur in the next T years and let F; be its distribution
function. As a simple case assume that the arrival of storms is
Poisson and that the exceedances are exponentially distributed.
Then using similar methods as shown above it can be shown that:
(30a)

Q.(M<Lq, with probability exp (- A,T)

Fq) = exp{-exp[q~ q,~ B la@, D))/} , q>q,
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Once the parameters have been estimated the complete
distribution of Q(T) is known. Given Q.(T) > q, the first two
moments are approximately: (because of 2 small probability that
r:0 storms occur):

EQu(T)) = q, + f(ln(A, T) + v) (31a)

V(Q,(T)) = f*n?i6 = 1,644 93 p? (31b)
where y = 0,57722 (Euler’s constant).
Now because the whole distribution of Q,(T) is known one
can give (a) the probability that the biggest storm in the next T
years will be greater than any given value, (b) for each given risk
the cortesponding maximum storm depth, and (c) the expected
value and variance of the biggest storm in the next T yeats.
Consider a further extension of the partial duration series
approach which could substitute for the common practice of com-
paring various competing models in terms of the asymptotic
sampling vatiance of §,(T). Instead we propose a fixed event
magnitude and compute the variance of T, the random variable
describing the intervals between storms. Given, say that storms
arrive according to a Poisson process, the interartival times be-
tween storms exceeding q, will be exponentially distributed. (We
suppose for the purpose of this argument that g, is selected suffi-
ciently large so that the effects of seasonality can be ignored.)
This distribucion of T is then given by:
E{t) = 1 - exp(-t/A,) (32)
where A is the average number of storms per year. The mean and
variance of T are 4, and A2, respectively. The variance of &, is A2/ n.
Consider the example of the Pretoria storm of 200 mm in
one day in January 1978. Conventional analysis (Adamson, 1981)
gives such a storm a recurrence interval of approximately 200
years. From data records, only one such storm occurred in 66
years, therefore from (32) A, = 66 with estimated variance 662/1
(!). The estimated distribution of T is exponential with parameter
66. Table 3 gives some of the percentage points for this disttibu-
tion.
In this example, with the information available, one can with
almost equal confidence estimate the return period of the
200 mm storm event to be either greater than 100 years or less
than 15 years! The purpose of the example, extreme as it may be,
is to illustrate the very limited amount of information on extreme
risk conveyed by the conventional concept of the recurrence inter-
val and the unjustified faith accorded to the concept for design

purposes.

TABLE 3
THE ESTIMATED DISTRIBUTION OF T FOR A 200 mm ONE
DAY STORM OVER PRETORIA FROM 66 YEARS OF

HISTORICAL DATA
P (tST) T
14% 10 year storm or less
20% 15 year storm or less
32% 25 year storm or less
45% 40 year storm or less
63% 66 year storm of less
78% 100 year storm or less
95% 200 year storm of less




Conclusions

The optimal assumed distribution for sequences of annual max-
ima or exceedances is probably an impossible objective to achieve
and certainly a theorectically watertight case for any model could
not be presented. If, for example, the partial duration series ap-
proach to extreme value analysis has any theoretical advantages
over the more usual annual maximum method then 1t certainly
would not be a straightforward task to prove it to be so. Attempts
based on faitly rigid assumptions are relevant only insofar as such
assumptions hold, which is rarely very far ar all. Monte Carlo ex-
periments ate sample bound and have yet to be carried out on a
scale such that any universally applicable conclusions can be
drawn. There is, however, 2 tendency for annual maxima and the
concept of recurrence interval to be accepted as the only yardstick
for the assessment of design risk while models ate applied with
little if any investigation of their suitability or theoretical
justification with respect to the problem at hand.

The ptesent wotk has illustrated some results relating partial
and annual series whete the arrival process is distributed as
Poisson and negative Binomial. The concept of recurrence inter-
val has been defined in the annual and naive sense and a clear
distinction made. An alternative to the usually adopted exponen-
tial distribution of exceedances is shown to be the censored log-
Normal and estimation procedures are given. Empirical com-
parative studies between the two models of partial duration series
and selected annual maximum models have shown the censored
log-Normal model to have certain advantages and based on these
it was chosen for a study of some 2 500 n-day rainfall records in
South Africa and South West Africa/Namibia. (Adamson,
1981).

Finally the flexibility of the partial duration approach to risk
analysis has been illustrated and some areas for further study
outlined with examples.
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Index of Notation

d Fisher disperson test statistic

exp Exponential function

E Expected value

¢ Parameter of negative Binomial distribution

F, Distribution function of the largest storm
within a year

F, Distribution function of storms exceeding q,

Fr Distribution function of the maximum storm
that will occur within the next T years

N Number of years

n Total number of rain days

n, Number of storms exceeding q,

n, n - n,

Probability function of the number of storms
exceeding q, in one year

P Probability

4(T) T year event: annual maximum sense

q.(T) T year event: naive sense

do Truncation level

po(m)

g, 1=1,2, ..., m, Exceedance Sesies

Q, Random variable describing the largest storm’
event within a year

Q, Random variable describing a storm which

exceeds q,
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Appendix

Random variable describing the largest storm
that will occur in the next T years
Recurrence interval (annual maximum sense)
Recurrence interval (naive sense)

Variance

Weighting functions for the censored log-
Normal distribution

Reduced Gumbel variate

Parameter of negative Binomial distribution
Scale parameter of exponential distribution
Euler’s constant = 0,57722

Standardized point of truncation

Mean number of storms per year

Mean

Standard deviation

Density function of a standard normal
variable

Distribution function of a standard normal
variable

= &7 (p)

Sample solution for a censored log-Normal model of partial

duration series

To illustrate estimation procedures for a singly censored log-
Normal model of a partial duration series, we consider the exam-
ple of point storm rainfalls at gauge 8/751, Swellendam (Lat. 34°
01', Long. 20° 26") for which there are 47 years of daily data
available. The solution provides estimates of the 2, 5, 10, 20, 50,
100 and 200 year one-day rainfall depths.

Step 1

a) Find maximum one day rainfall depth for each year.

(N = 47).

b) Find the minimum, g, of these maxima (q, = 33).
¢) Compute total number of days, n, for which rainfall depth
exceeds trace (0,25 mm). (n = 4 035).

d) Record the rainfall depths q,, q,, - ..

» 9n1 Which exceed q,,

where n; is the observed number of such events. Set
1, =0 - n. (n; = 205; n, = 3830).

e) Define a “‘storm day’’ as one upon which rainfall depth ex-
ceeds q, and compute the average number of storm days per
year. A, = (n/N). (A, = 4,361 702).

f) Compute:
51
v, = ngl (Ing; - Inq,)/n, (v, = 0,383 505)
n
v;= Z(lng-In Qo) /0, (v, = 0,261 102)
v o= v,/vi (v = 1,775 285)
Step 2

a) Setx, = Z([n, + 0,1]/n) and x, = Z(n,/n)

where the function Z is the inverse normal distribution func-

tion.

Define f(x) = [1 ~ x Y)]/Y(x)* - v
where  Y(x) = [n, $(x)]/[n; d(x)]

The values of Z, $ and ® can be found in standard tables or
from the algorithms given at the end of the Appendix. For
K=34...set

- f(xK)/{[f(xK) = fxg ) [xx — x4}

Xk+1 = X

- x| <107°¢

untl | xg¢,,

The estimated point of truncation, &,, is given by &, = x ., ,
(&, = 1,637 27).

b) Compute the estimates
5 = v/, (6 = 0,913 67)
p=1lnq, -6 (i = 2,000 58)
Step 3

For each recurrence interval, T (years), required set . . .

p=(1-0E)In(1~1/T)yK +1 ,

4T) = exp (u + 0 Z(p))

The computed estimates for this example are given in Table Al.

TABILE Al
T (years) p Z(p) (T) mm

2 0,991 930 2,406 102 67

5 0,997 402 2,794 938 95

10 0,998 773 3,029 294 118

20 0,999 403 3,240 421 143

50 0,999 765 3,497 184 181
100 0,999 883 3,679 215 213
200 0,999 942 3,852 947 250

The following approximations for ¢, @

and Z are from

Abtamovitz and Stegun (1972) pp. 932-933.

where

where

$(x) = (2m) 7% exp (- ¥12)
(x) = 1 - $(x)(bst + byt® + by’ + b’ + byt))
t = 1/(1 + bx) , b

b, = 0,319 381 530 ,
b, = 1,781477 937 , b,
bS

2,2316419
= 0,356 563 782
1,821 255 978

[}

o
N
{

= 1,330 274 429

Zp) =t = (¢, + gt + B)/(1 + dyt + d,i? + dyt?)

t = In(1/p)? . . ¢ = 2,515 517
¢, = 0,802 853 . = 0,010 328
d, = 1,432 788 . d, = 0,189 269
d; = 0,001 308
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