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Abstract

This paper is the last in a series of three which deals with numeric techniques for biological reaction systems. The dynamic problem involves
solving a set of coupled ordinary differential equations. A multirate technique based on Gear's approach is developed. The method incor-

porates a variable steplength facility.

Introduction

In practice the inputs to a biological system are unlikely to remain
constant. Because the influent to the system varies with time, the
mass balance equations describing the response of the system will
take the form of a set of differential equations incorporating
time-dependent terms [see Egs. (14) to (21) of Part 1 in the series,
for example.] This set of equations will define how the values of
the concentrations of each compound in each reactor (the state
variables) vary with time.

Solving the set of simultaneous differential equations is an
initial value problem. The magnitudes of the concentrations of
each compound in each reactor are specified as the initial condi-
tion, and thereafter the equations ate solved by integrating for-
ward in time. In this way, the changes in concentration in each
reactor can be tracked, subject to the vatiations in the influent
flow rate and concentrations. In certain circumstances, such as an
activated sludge system, the influent pattern of flow rate and
concentration is repeated closely from day to day i.e. a daily cyclic
basis. A useful facility, therefore, is to predict the steady state
cyclic response when it is assumed that the influent pattern is
repeated identically from day to day. Because the initial values
are only approximations, finding this solution will require in-
tegrating forward through perhaps many cycles until convergence
to the solution is attained. Convergence in this case requires that
the cyclic concentration response of each compound in each reac-
tor is identical from cycle to cycle, and the values at the start and
end of each cycle are the same.

The set of differential equations describing the response of a
biological system under dynamic conditions will contain non-
linear terms, as did the mass balance for the steady state case. The
task of finding the solution to such a set of non-linear ordinary
differential equations is certainly not unique to biological
systems. Many systems of interest to engineers and scientists are
described by non-linear differential equations. A multitude of
numerical integration techniques exists for the solution of these
sets of equations. Consequently, when faced with such a set of
equations, the problem in finding a numerical method is the
selection of an appropriate one from the many diverse methods
available.

This paper outlines the selection of an integration scheme
appropriate for the dynamics of biological reaction systems. In
the selection, the approach taken was to first establish 2 rudimen-
tary integration module which was then refined and improved. In
the process of refining the module, a greater understanding of
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the actual dynamics of the system was generated. Thus, through
an interactive process, the integration routine was gradually
tailored to better meet the demands of the biological system
under consideration. The chronological deveiopment of the in-
tegration module is presented here. Information concerning
general aspects of integration and the earlier versions of the
module are included as the detail facilitates develeping a broader
understanding of the dynamic problem.

General comments on using numerical integration
techniques

Because the exact solution to the set of differential equations is
not, in general, known and cannot be calculated analytically, a
numerical integration technique will be required to provide an
approximation to the solution. A common approach, which will
be the focus of this presentation, is to use a time-stepping or dif-
ference method which approximates the solution by its value at a
sequence of discrete points called the mesh points. Given a dif-
ferential equation y'(x) = 0, a difference method provides some
rule for approximating y at a point x_ (y (x,)) in terms of the
value of y at x__, and possibly at preceding points. Ideally, the
solution should be represented by its actual value at each mesh
point so that it can be approximated to high accuracy by inter-
polation between the mesh points. However, the exact solution
to the differential equation is not known, so it is always an ap-
proximation that is sought. Many techniques assume that the
mesh points are equally spaced. However, since the stepsize
seems to have an effect on the error introduced, it is usually possi-
ble to vary the mesh spacing to account for this. For the moment,
it will be assumed that the mesh spacing remains constant during
the stepping procedure.

The simple Euler method

The simplest stepping technique available is Euler’s rule. The
value of the dependent variable at one point is calculated by
straight line extrapolation from the previous point. Consider the
function y with

y(%) = gi = f(x,y) (1)
X

The value of y at x_,, = (x, + h) may be approximated by a
Taylor’s expansion. Truncating after the first two terms in the
series yields:

y(x, + hy=y(x,) + h- f(x .y(x,))

where h = steplength

2

The error in this approximation is described by the remaining
terms in the Taylor’s expansion:
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k. v (x,) + l;—?-y"'(xn) + ...

2! ®

and is called the local truncation error. A more detailed discus-
sion about the errors introduced by a stepping method, and the
resultant implications will be covered later.

Euler’s rule is usually formulated as:

Yne1 = VYo * hfn (4)
and in this form can be described as an explicit linear one-step
method of fitst order. '

Dahlquist and Bjorck (1974) provide an example to illustrate
the use of Euler’s formula for a single differential equation:
§X = ywithy(0) = 1

X
Euler’s rule gives the following:

Yn‘+l=Yn+h'Yn YO=1 (5)

Table 1 presents the results obtained by first computing the solu-
tion with h = 0,2 and then with h = 0,1, and compares these
with the exact solution. An examination of the Table reveals that
the error is approximately proportional to the stepsize. In other
words, if the etrot in the integration is to be halved, then the
stepsize will also need to be halved. This implies that, to attain
reasonable accuracy with Euler’s method, the stepsize chosen
needs to be small. This is an inherent weakness in using a first
order method.

Multistep methods and predictor-corrector pairs

Multistep methods present a distinct advantage over one-step
methods such as the first order Euler’s rule. These methods ex-
hibit improved accuracy and convergence characteristics,
although at the expense of requiring additional computation.
Recall that Euler’s method only required the value at one mesh
point to compute the value at the next. Multistep methods use
more than one value of the dependent variable to calculate the
equivalent information at the next time interval. Recall also that
Euler’s method was referred to as explicit; that is, y, , , occurs on-
ly on the left hand side of the equation and can be calculated
ditectly from the right-hand side values. Linear multistep
methods are generally implicit; that is, the unknown value occurs

on both sides of the equation and cannot be calculated directly.
These implicit methods in general entail a substantially greater
computational effort than do explicit methods. On the other
hand, implicit methods can be made more accurate than explicit
metnods and enjoy more favourable stability properties
(Lambert, 1974). In fact, these considerations so favour implicit
methods that explicit linear multistep methods are seldom used
on their own.

The following formula, the second order trapezoidal
method,

_ h

Yn+1 - Yn = _2_ [f(xn’Yn) + f(xn¢l’Yn+l)] (6)
is arr example of an implicit method, since y, , ,, which is to be
computed, appears implicitly on the right-hand side. If f is a
non-linear function, a non-linear system will need to be solved at
each step. This must be done by some iterative method, for ex-
ample, by the procedure:

_ h

Yos1 = 7 [f(xn'Yn) + f(xn+1’yn+1)] + Yo (7)
To solve Eq. (7), a reasonable initial estimate of y, , | can be ob-
tained using past values of y with, for example, Euler’s explicit
formula. In this context, the explicit formula is usually referred to
as the predictor, whilst the implicit formula of Eq. (6) is referred
to as the cotrector. Used in combination, these two equations
make up a procedure called a predictor-corrector method.
Lapidus and Seinfeld (1971) refer to a predictor-corrector method
that is used in this way as a PECE method, indicating that a
predicted value of y,,, is followed by a derivative evaluation,
y' ... and theny,, , is corrected and y', , , evaluated.

Termination of the integration step may be controlled in one
of two ways. The first consists of continuing the iterative scheme
suggested by Eq. (7) until the iterates have converged. In prac-
tice, this would usually involve comparing the difference between
two successive estimates of the solution to some preset tolerance.
Since each iteration corresponds to one application of the correc-
tor, this mode of operation of the predictor-corrector method is
referred to as correcting to convergence (Lambert, 1974). In this
mode, there is no way of telling in advance how many iterations
will be necessary and consequently how many function evalua-
tions will be required at each step.

EULER’S METHOD EXECUTED WITH THE TWO gﬁf’ELERElNT STEPSIZES (DAHLQUIST AND BJORCK, 1974).
Exact STEPSIZE

solution h =0, h =01
X, y(x,) Yn h-f, error Ya h-f error
0,0 1,000 1,000 0,200 0,000 1,000 0,100 0,000
0,1 1,105 1,100 1,110 -0,005
0,2 1,221 1,200 0,240 -0,021 1,210 0,121 -0,011
0,3 1,350 1,331 0,133 - 0,019
0,4 1,492 1,440 0,288 -0,052 1,464 0,146 -0,028
0,5 1,649 1,610 0,161 -0,039
0,6 1,822 1,728 -0,094 1,771 -0,051
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The second approach for terminating the integration step is
motivated by the desire to restrict the number of function evalua-
tions per step. The number of times, M, that the corrector is ap-
plied at each step is stipulated in advance. This approach is more
common than the method of correcting to convergence. This
mode of operation can be described as a PE(CE)™ method, where
the predicted y, , , and evaluated f | is followed by M correc-
tions and detivative evaluations.

Of the two approaches, Lapidus and Seinfeld (1971) recom-
mended the PE(CE)M method with M = 1 as being one of the
most successful means to apply these predictor-corrector for-
mulae. Using only a single application of the corrector formula
saves on the number of function evaluations required — only two
function evaluations are required per iteration.

Error control

Once 2 time-stepping method has been selected to carry out the
numetical integration procedure, the next stage is to evaluate the
accuracy of the solutions that it generates. For each step of the
difference procedure, some form of approximation is used to ob-
tain the next estimate of the solution. Thus, each step taken will
generate an associated error term. This is a natural consequence
of any approximation technique. Given that this error can never
be entirely eliminated, the best approach is to ensure that it is
continuously evaluated and maintained at acceptable levels. In
addition, the stepping procedure should be able to incorporate
adjustments to the relevant parameters as soon as the error begins
to accurnulate. It is the nature of this cumulative error that will
be decisive in the eventual success or failure of each step of the in-
tegration method.

Sources of error

In using a stepping or difference method to find the solution to a

differential equation, the solution that is eventually found will

nevet be exact. The difference between this solution and the ex-

act solution is the local error. Sources of error will include,

amongst others. (Dahlquist and Bjorck, 1974):

® the round-off error introduced by using finite precision
numbets; and

® the truncation error associated with the linear multistep
method used. This is the etror occurring when a limiting pro-
cess is truncated or broken off before the limiting value has
been reached.

Once the primary sources of error in a stepping method have
been identified, it is necessaty to be able to use this information
in such a way as to ensure that all errors are minimised as far as
possible. This will involve an assessment of how each of the ecror
terms affects the reliability of the method, which sources of etror
dominate and how a knowledge of the error can be used in main-
taining the accuracy of the stepping algorithm.

Estimating the local error

Dahlquist and Bjorck (1974) demonstrate that, for an integration
method of order p, the local etror is approximately bounded by:

(p+1)

I=|c B (8)

where 1_ = local error

order of the integration method

= stepsize

a constant specific to the integration method

=

= ple ]
il

o
(]

0

Dahlquist and Bjorck (1974) provide an alternative formulation
for a predictor-corrector method. They propose that the etror of
the predicted value can be expressed by a difference function us-
ing a constant, ¢', which is specific to the order of the predictor.
The difference between the predicted and the corrected values,
multiplied by c/(c' - c) is then an estimate of the local etror of the
corrected value:

= ——- (" - ¥9 ®)
(¢ -9
where ¢ = a constant specific to the order of the predic-
tor
¢' = a constant specific to the order of the corrector
y° = predicted value of y
y© = cotrected value of y

Percentage accuracy

An error tolerance must be selected to satisfy the dual re-
quirements of teliability and efficiency. If a very strict tolerance is
chosen, unnecessary computational effort will be expended in
order to meet its requirements. If the tolerance chosen is not suf-
ficiently stringent, it is possible that the effect of a cumulative er-
ror will eventually lead to instability of the method and jeopar-
dise its chances of successful convergence. In practise, it has been
found convenient to express this tolerance in terms of a ‘‘percen-
tage accuracy’’ where this percentage accuracy is defined in the
same way as a relative etror measurement. That is:

% ace = 1&=1 " YO . 09 (10)
Ye-1

where  y,, = current estimate of the value of the

variable

Yp-1) = Previous estimate of the value of the
variable

% acc = percentage accuracy

Defining the accuracy requirements in this way enables calcula-
tion of error tolerances that are independent of the absolute
magnitude of the variables involved. Consequently, the accuracy
specifications can be transformed into numerical language that is
equally significant for variables with very small or very large
magnitudes. This is an important consideration, especially for
bad scaling problems, such as those encountered in biological
systems. Practically, this is achieved with the use of an error
tolerance, €, which is defined in terms of the percentage accuracy
required and is the limiting value that the local error may reach
without jeopardising the success of the step. Once a percentage
accuracy is specified, this must be transformed into an € value
which applies to each variable. This can be achieved by firstly
reformulating Eq. (10) to give:

P _ ,C
% acc = X—P—y— 100 (11)
y

Given that, in the limiting situation,

€ = ln (12)
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a limiting value for € for each variable in a set of simultaneous
diffential equations may be derived by combining Egs. (9), (11)
and (12) as follows:

€=_—C
(¢ =9

_ __C . %acc-y" (13)
(c¢' - ¢ 100

-(yF - ¥9

Eq. (13) now provides a means of selecting an error tolerance for
cach variable which is based on a percentage accuracy require-
ment but which also incorporates a measure of the scale of the
variable involved, y¥. Eq. (13) is useful because it allows the user
to specify a completely general percentage accuracy requirement
for the integration module. This specification is then used to
calculate a separate € value for each component in the system.
This error tolerance can now be used as the basis for estimating
the next stepsize for each component.

Stepsize selection

For any efficient difference method for integration, an objective
is to use integration steps that are as large as possible, whilst
preserving the required accuracy. Once an estimate has been
made of the magnitude of the error generated at an integration
step, this estimate can be used to decide whether or not the most
recently computed value of the variable is acceptable. If the error
is found to be larger than a predetermined tolerance, the value
will be rejected and then recomputed using a smaller stepsize. If
the error is within the bounds prescribed, then the value will be
accepted and a larger step can be taken, in order to generate a
new estimate.

Ideally, the size of each new step should be selected so that it
reflects the magnitude of the error in the previous calculation. In
other words, if the value falls well within the prescribed error
bounds, a large increase in the steplength should be permitted. If
the error in the value is close to the tolerance, then the subse-
quent steplength should be allowed to increase, but not so
dramatically. It is suggested by Dahlquist and Bjorck (1974) that,
in order to maintain the local error below a given tolerance, the
new stepsize should satisfy the following condition:

(p+1)
¢, - {2 s0.€ (14)
2
where h' = new stepsize

© = a preset safety factor to account for the fact
that the error estimates are approximate
and based on experience from the
preceding interval (© = 1)

From Eq. (9):

(p+1)

L =c,- [l] (15)
2

Therefore, eliminating ¢, in Eq. (14) yields:

(p+1)
h = - [9 : e] (16)
1,

The usefulness of this formulation to determine the subsequent
stepsize rests on the fact that it incorporates the absolute
magnitude of the error generated by the previous step. This
means that the calculation of the next stepsize is based on a quan-
titative assessment of exactly how successful the previous step
was.

Dynamic behaviour of biological systems

The preceding sections have dealt with the selection of integra-
tion technique and steplength adjustment in general terms. This
information is now implemented for the simulation of biological
system behaviour under dynamic conditions. The discussion is
best introduced by considering a numerical example.

Consider the behaviour observed in an aerated batch reactor
into which heterotrophic organisms (Xz) and a readily
biodegradable soluble substrate (Sg) are introduced at time
t = 0. Assume that the initial concentrations are Xz, = 1000
g.m~? and S5, = 100 g.m 3 respectively. Assume also that the
behaviour in the batch reactor is governed by the model introduc-
ed earlier (Part 1 in the series) and that the kinetic and
stoichiometric constants are those used in the case studies (Part 2,
Table 1). At the start of the batch test, the changes in concentra-
tion of X and S; will be dominated by the growth process.
Organism decay will exert only a minor influence on Xg. The
rates of change of concentration at t = 0 will be:

For Xj;:
———dXB = i "——“—‘SSO Xpo = b-Xpo
dt |o (Ks + S50)
= 4.100 1000 - 0,62-1 000
(5 + 100)
= 3189,5gm™>3.d"!
For Sg:
dSg - _ ’I‘\‘ Sso X
— = — 43¢
dt |o Y (K + Sg0)
= —4 100 . 1 000

0,666 (5 + 100)

= -5720,0gm>.d-!

If these rates wete to persist unchanged, then the Sg concentra-
tion would be reduced by 100 per cent to zero after a period of 25
min; at this time the concentration of X, would be 1055,7
g-m3 je. only 5,5 per cent greater than the initial value. In
practice, this would not occur, as the growth rate decreases with
decreasing S; concentration, particularly once the S¢ concentra-
tion falls below 10 g-m™3. The actual progression of the batch
test over the initial period would be as shown in Fig. 1.

Let us now consider simulation of the batch test behaviour.
If, for example, the Euler rule were employed and 2 steplength of
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Figure 1
The progression of @ batch test showing the response of Sg and Xg.

30 min (0,5 h) were used, then the predicted concentration for Sg
att = 0,5 h would be:

S5

ds
Sso + —5 At
de |o
100 - 5 720,0 - &3
24

-19,2g-m™3

Clearly, this result is meaningless and much shorter steplengths
would be required, pethaps of the order of 1 min. In this case,
after the first minute, the predicted concentrations of Sg and X
would be:

Sg = 100 + (- 5 720,0) - 1/60
24
= 96,0 g-m 3 (i.e. a change of 4 per cent)
X, = 1/60

1000 + 3 189,5 - ——
24

1 002,2 (i.e. a change of 0,22 per cent)

Given that the percentage change of X is only one twentieth
that of Sg over the interval, it appears that the steplength of 1
min is unnecessarily short to track the changes in Xy with accep-
table accuracy. However, because the variables X and S are
coupled, the equations should strictly be integrated simulta-
neously. This implies that the steplength used for the integration
procedure will be limited by the maximum allowable size for the
rapidly changing S, and Xg will be tracked with ‘‘unnecessary’’
accuracy.

Gear (1984) noted that behaviour similar to the response in
the batch test is encountered in many engineering systems.
Although strictly these variables are coupled, he suggested that
the degree of coupling between the variables might not be
strong. Gear proposed that, if this is so, then the differential
equations for each of the variables may be integrated separately.
In the batch reactor example, Gear’s approach would mean that
longer steplengths could be used for integrating Xy than those
required for Sq. This offers the advantage of increased computa-
tional efficiency without compromising on accuracy re-
quirements.
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Implementing Gear’s multirate approach involves partition-
ing a system of equations into different groups, each of which is
governed by different dynamics. A group governed by ‘‘fast’’
dynamics would require short integration steps, whereas a group
exhibiting *‘slow’’ dynamics could be integrated using longer in-
tegration steps. Gear proposed a number of schemes to account
for the coupling between components with ‘‘fast’’ and ‘‘slow’’
dynamics.

The use of a multirate technique
Methods for handling the coupled equations

Consider a rwo-component system (one fast, one slow) which is
described by two coupled ordinary differential equations.
Assume that this system is integrated from t, to (t, + At) using
a stepsize h for the *‘fast’”” component and H for the ‘‘slow”’
component, whete H>hand H = th. This division is shown in
Fig. 2.

[ ol
[ H "
p— b ——|

L 1 1 Il J

(to+2h) (to+(r-Dh) (to+H)

to (to+h)

Figure 2
Schematic representation of small and large timesteps for a multirate in-
tegration technique.

At any point in the integration process, values of both the
“*slow”” and the *‘fast’’ variables will be required in order to com-
plete the next integration step. At (t, + h), the next integration
step for the ‘‘fast’”’ component to (t, + 2h) will require a
knowledge of the value of the ‘‘slow’’ compound at least at
(t, + h). If the “‘slow”’ compound is integrated first, then its
most recently computed value will be that at the end of the long
time interval, t, + H. If the “‘slow’” compound has not yet been
integrated, then the latest available value will be that at t;, the
beginning of the large time interval. In either case, an explicit
estimate of the value of the ‘‘slow’” compound at (t, + h) is not
available. The same problem will be encountered at (t, + 2h),
(t, + 3h), . . . etc. Estimation of the value of the *‘slow” com-
pound at these intermediate points (t, + h, t, + 2h, ..,
t, + (t=1h) is the crux of the problem of simultaneous
multirate integration.

Two approaches to solving the problem have been sug-
gested. The first approach (‘‘fastest first’’) integrates the *‘fast”’
compounds over (r — 1) steps of size h and then simultaneously
integrates the “‘fast’” and *‘slow’’ components to advance them
to the end of the interval using stepsizes h and H respectively. For
the small integration steps, values of the ‘‘slow’’ component are
obtained by extrapolation from previous values (i.e. at t, and
before) with a predictor-like formula. Gear (1984) notes that the
error incorporated into the method through this extrapolation
should be “‘of tolerable size’’. The disadvantage of this ‘‘fastest
first’’ approach, however, is the amount of storage space consum-
ed by the necessity to back up the ‘‘slow’” variables in case of an
integration step failure. If a step fails, and the ‘‘slow’’ variables
have not been stored, then they will need to be recalculated. The
effort involved in accomplishing this task is an additional
drawback to the “‘fastest first”” approach.
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The second approach (‘‘slowest first’’), which has been
recommended by Gear (1984) and is adopted in this study, in-
volves integrating the ‘‘slow’’ compounds to the end of the
largest timestep first. Interpolation techniques are then used to
obtain intermediate values for the *‘slow’” compounds at the
points (t, + h), (t, + 2h), . . ., (t, + (r - 1)h). This then allows
integration of the ‘‘fast’’ compounds in short steps from t, to
(t, + H). With this approach, the extrapolation of the ‘‘fast”’
variables to integrate the *‘slow’’ variables first will lead to large
errors in the extrapolated values because the extrapolation is over
many timesteps in the *‘fast’’ variables. Gear maintains that this
is mitigated by the fact that coupling from the ‘‘fast’’ values to
the “‘slow’’ values is generally small. This, in fact, is the basis for
the method. An important advantage of the ‘‘slowest first”
method is that, if a variable has to be backed up because of an in-
tegration failure in another variable, the backup is simply a
reduction of the size of the last step taken, and can be done pro-
vided that only one additional value is kept for all variables.

Partitioning of a system

Partitioning a system into categories having different dynamics is
an important consideration in the use of a multirate technique.
Various methods for automatic partitioning of the system have
been investigated (Gear, 1984; Orailoglu, 1983). These methods
have been found difficult to implement and expensive in terms
of computational time. Therefore, static partitioning, where the
division into categories is specified by the user prior to the in-
tegration, is generally applied.

A problem that arises in partitioning is what exactly defines
dynamics as ‘‘fast” or ‘‘slow’’? One possible answer is that
“fast’’ components exhibit a large differential term i.e. (dC/dt)
is large. Another possible solution would be that it is a rapidly
changing (dC/dt) term that indicates ‘‘fast’’ dynamics. Alter-
natively, pethaps the ratio (dC/dt)/ C is an appropriate measure
for reaction systems where the concentration C cannot dectease to
less than zero. The question does not appear to have been resolv-
ed in the literature and decisions as to the classification of com-
pounds are usually based on practical experience and knowledge
of the physical system.

Integration errors with a multirate technique

In choosing a time-stepping algorithm for the solution of the
dynamic problem, the question of error estimation and control is
a central one. Decisions as to whether or not concentration
vatiables are acceptable have to be based on some estimation of
how close these are to the actual solution. In using a multirate
technique to carry out the integration procedure, the contribu-
tion to the global error in the method may stem from a number
sources. For the “‘slowest first’’ technique, the sources of error in-
clude the round-off error and the local truncation etror described
carlier, as well as:

@ The error associated with the extrapolation of the ‘“‘fast’’ com-
ponents to allow integration of the ‘‘slow’’ components even
though the fast components have yet to be integrated.

® The error associated with the interpolation of the slower com-
ponents to allow integration of the ‘‘fast’’ components. The
intetpolation error depends on the method used, and is due to
two effects: firstly, the errors in the interpolation formula
itself and secondly, errors due to errors in the mesh values.
Gear (1984) notes that the errors in the interpolation formula
will be significantly less than those in an extrapolation for-
mula over the same interval.
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In controlling the error, Gear (1984) suggests ensuring that the
contributions from the interpolation and extrapolation are small
in compatison to the local truncation error term. The local error
term. can then be used to select the next stepsize on the basis of a
given error tolerance. An error tolerance term, €, can be
calculated for each component in each of the ‘‘fast’’ and *‘slow”’
groups. Once all the € values for all the components have been
computed, the largest € value for each group is chosen as the
limiting value. It is this limiting € that will determine the size of
the subsequent integration step for all the components in that

group.
Stepsize selection with a multirate technique

The concept of using a multirate method is to reduce computa-
tion in an integration problem by using different stepsizes for
groups of components with differing dynamics. Efficiency can be
increased further by using the longest possible stepsize within
each group.

Gear (1984) recommends an incremental approach for in-
tegration steplength adjustment that was used in the early stages
of the development of the integration module here. Very simply,
if the etror in any component in either the ‘‘fast’’ or ‘‘slow’
group is greater than the prescribed tolerance, then the value is
rejected and the next steplength for that group will be half the
size of the previous one. If the error is less than the prescribed
tolerance, then doubling of the next steplength is permitted.
These stepsize changes are subject to certain constraints and may
only take place at particular points in the integration scheme.
This is possibly the most simple approach that can be taken in
formulating some kind of dynamic relationship between error
magnitude and stepsize control. One of its major limitations is
that it makes no distinction between solution estimates that fall
well within the prescribed etror bounds and those that only just
satisfy the error criterion. This is a significant limitation because
the stability behaviour of the system is detrimentally affected by
the accumulation of errors in the calculated variables.

A possible approach to overcome the limitations of Gear’s
method for steplength adjustment, would be to use the variable
steplength adjustment method of Dahlquist and Bjorck (1974)
discussed earlier. This is justified because the local error term is
dominant.

Implementation of Gear’s multirate technique
p. q

The basis for developing and evaluating the multirate integration
technique was a continuation of the case study introduced in
Paper 1; that is, the single reactor plus settling tank problem bas-
ed on the limited IAWPRC model. Eqgs. (14) to (21) of Part 1 are
the set of differential equations and algebraic equations describ-
ing the system. Numerical values for the problem (reactor
volumes, kinetic constants, etc.) were the same as those used for
Case Study 1 in Part 2 (Tables 1 and 2).

To introduce the dynamic component, a square wave cyclic
input pattern was imposed on the system. In this scheme, the full
volume of feed for Case Study 1 in Part 2 was introduced into the
reactor at a constant rate but over a twelve-hour period in a
twenty-four-hour cycle. For the remaining twelve hours of the cy-
cle, there was no feed. That is, the system was subjected to a step
increase in flow rate and twelve hours later to a step decrease to
zero flow. This input pattern was selected because, in the region
of the step changes, it would provide a rigorous test of the in-
tegration method.

Thete are two requirements before a multirate integration

ISSN 0378-4738 = Water SA Vol. 14. No. 4. October 1988



technique can be initiated:

@ For an initial value problem such as this, a set of values for
each of the state variables at time t = 0 is required to initiate
the integration. In this case, the simulation program uses the
set of state variables which constitute the solution to the
steady state problem as initial values for the dynamic case.

® Implementing a multirate technique involves partitioning the

compounds into categoties with either ‘‘fast’”” or “‘slow’
dynamics. The model incorporates four compounds: three
particulate compounds (X, X;; and X;) and one soluble com-
pound (S). After investigating the nature of the dynamics of
each of these compounds, it was decided to classify X and X,
as “‘slow’’ and Sq as “‘fast’’.
In the case of X, it was found by trial that the dynamics ate
neither as ‘‘fast” as those of the soluble compound nor as
“‘slow’’ as those of the particulate compounds. In fact, it ap-
pears that, in certain circumstances, the behaviour of Xj
changes from **fast’”’ to ‘‘slow’’. Classifying the dynamics of
X as “‘slow’” and using long timesteps for its integration may
result in inaccuracies in the solution. On the other hand,
categorising it with the ‘‘fast’’ compounds in the system could
result in needless extra computational effort as a result of the
unnecessarily small timesteps being used at times when X ex-
hibits ‘‘slow’’ dynamics. As a result, thete seemed to be the
potential to incorporate this compound into some kind of in-
termediate category. Creating an additional category for
*‘intermediate’’ dynamics would thus have the advantage of
enabling the routine to cater specifically for this compound
and select an exactly appropriate stepsize for its integration.
One drawback of this apptoach, however, would be the extra
programming code required to extend the number of
categoties from two to three. If the whole purpose of a
multirate technique is to improve efficiency, then the added
complexity of accounting for the coupling between three
groups of variables would perhaps negate this objective at the
outset. On the other hand, the ultimate efficiency of the
technique depends on the appropriate partitioning of the
system. In viewing these alternatives, it was decided to main-
tain the simpler approach and restrict the number of divisions
to two. The effect of partitioning X with either the “‘fast” or
the “‘slow’’ group is discussed later.

The initial multirate scheme

Gear (1984) has recommended that as many of the parameters as
possible in a modern program code should be selected
automatically. Achieving this for an integration scheme does pre-
sent some difficulties particularly when implementing a multirate
technique. This is due to the large number of parameter choices
involved. As a result, the initial approach to the problem relied
on prior specification of a number of the variables in accordance

with the suggestions of Gear (1984):

@ The initial stepsize for the ‘‘slow’’ components, H, was set at
an arbitrary value to initiate the integration.

@ The ratio of the number of small steps to the number of large
steps was also specified and remained fixed throughout the in-
tegration.

@ Initially, the steplengths could only be increased or decreased
by a factor of two.

The *‘slowest first’’ technique recommended by Gear (1984) was
followed. A simple Euler formula was used for both the ‘‘slow’
and the ‘‘fast’’ integrations.

An obvious limitation of this initial approach is the fact that

the ettor is checked only at the end of every large time intetval. If
the errors in all the compounds are acceptable, only then can the
large timestep be doubled. If the error in any one of the com-
pounds is not within the limits prescribed, then the large
timestep is halved. Since the ratio of the number of ‘‘fast’’ to the
number of ‘‘slow’’ timesteps remains constant, halving the size
of the large timesteps also means halving the size of the small
timesteps which may not be necessary.

The manner in which steplengths were adjusted is a majot
inefficiency in the method. In practice, the error in the *‘fast’’
compounds was found to be both larger and to accumulate more
rapidly than that in the “‘slow’’ compounds. Allowing the ettor
in the “‘fast** compound to accumulate until the end of the large
timestep, besides being inefficient, also very often upset the suc-
cess of the step. In addition, with a fixed ratio of small to large
timesteps, the size of the large timestep often had to be un-
necessarily reduced in order for the small timestep to be suc-
cessful.

For this particular system, it was found that if an etror in any
component was petmitted to apptoach the error bound, it then
began to accumulate vety rapidly. Eventually this affected the
stability of the entire system. Consequently, the integration
module needs to be formulated in such a way that errors could be
evaluated as soon as any timestep, ‘‘fast’”’ or ‘‘slow”’, had been
completed. In addition, corrective action should be taken im-
mediately. The cost of such an evaluation process was considered
to be well worth it, as it was critical to the stability of the entire
system.

An improved version

In an attempt to overcome the limitations outlined above, two

refinements were incorporated in the algorithm:

@ Allowance was made for the small timestep (*‘fast”’ dynamics)

to vary independently of the large timestep (‘‘slow”
dynamics). This replaced the scheme of having a fixed
number of ‘‘fast’’ steps per ‘‘slow’” step. The error in the
““fast”’ step was now evaluated immediately, and the short
steplength doubled of halved as appropriate. With both the
“slow”’ (large) and *‘fast’” (small) timesteps being variable,
full advantage is taken of the different dynamics of the
system, Appropriate action is taken as soon as the etror reaches
unacceptable proportions. This improved vetsion implies that
the groups of ‘“‘fast’’ and ‘‘slow’’ compounds are being in-
tegrated independently, which is cotrect, as their different
dynamics suggest that they are only weakly coupled.
A restriction on the step adjustment procedure was that step
doubling could only take place at a synchronisation point in
the mesh. This was in accordance with the suggestion of Gear
(1984), who motivated that synchronisation of the ‘‘fast’’ and
“*slow’’ meshes is desirable to prevent unnecessaty interpola-
tions. In this synchronisation scheme, Gear recommends that
halving of a short step may take place at any time, but it may
only be doubled when (t—t;)/h is an even number, whete h
is the current stepsize. If this doubling procedure is followed,
then the end of 2 ‘‘fast’’ integration step will never fall
beyond the end of the ‘‘slow’’ step i.e. the steps will be syn-
chronised at the end of the “‘slow’’ step. This scheme requires
that (t-t,)/ h is an integer.

@ The simple Euler rule was replaced by a predictor-corrector
pait. The Euler formula was retained as the predictor, and the
second order trapezoidal rule was used as the corrector. With
this approach, the number of function evaluations would be
doubled at each integration step. However, it was hoped that
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the more sophisticated integration technique would allow
more than a doubling of the steplengths, thus giving an
overall increase in efficiency. The single application of the cot-
rector was in line with the recommendation of Lapidus and
Seinfeld (1971).

Two problems were apparent with this improved scheme. Firstly,

with both timesteps being variable, synchronisation of the

meshes is more difficult. Secondly, computational effort can be
wasted if the size of the error in the large timestep is not within
acceptable limits and the step fails. The error in the *‘slow’’ com-
pounds is only checked at the end of every large interval, which
means that the already completed computation for the *‘fast”’
compounds is wasted if the large timestep is unsuccessful.

To address these deficiencies, two additional modifications
wete proposed:

@ The first improvement in the integration method involved
removing the synchronisation constraint. Thus, doubling and
halving of “‘fast’” and “‘slow”’ steplengths could take place at
any point. In the case of the ‘‘fast’’ steps, if by doubling a
‘‘fast’’ step, it was found that the integration would move to
beyond the end of the curtent ‘‘slow’’ step, then a smaller
step would be taken to artive exactly at the end of the ‘‘slow’’
step i.e. truncating to ensure synchronisation. At the start of
the next “‘slow’’ integration step, the new ‘‘fast’’ steplength
would be based on the steplength calculated prior to trunca-
tion. This ensured relatively unlimited adjustment of the
““fast’’ steplengths within the ‘‘slow’’ steps. In the case of the
‘‘slow’” steps, truncation was only required where a “‘slow”’
step beyond a data storage point was attempted. In the new
scheme, the ‘‘slow’’ step was truncated in a similar manner as
for the “‘fast’’ step, to end at the data storage point.

® With the improved method, the problem of computational
effort ‘‘wasted’’ on the ‘‘fast’’ steps when the ‘‘slow’’ steps
failed still existed. In an attempt to overcome the wasted ef-
fort, a scheme of multiple cotrections was introduced into the
integration routine. In this scheme, Euler’s formula was used
to predict a value for the “‘slow’’ compound at the end of the
large timestep. The second order trapezoidal rule was im-
plemented as a cotrector for the ‘‘slow’’ compounds as before.
If the error in the ‘‘slow’’ compounds at the end of the inter-
val was found to be unacceptable, then the corrector was ap-
plied again in an attempt to improve the values and reduce
the error to within the tolerance. This procedure was
motivated by the fact that each correction offers the possibility
that the new estimate might be a sufficient improvement to
obviate the necessity to halve the steplength and re-perform
the calculations. Up to five cotrections were applied before the
step was abandoned, and the *‘slow’’ steplength reduced i.e.
from PE(CE)! to PE(CE)’.

In practice, the multiple correction procedute was not helpful. It
was found that the first application of the corrector gave a signifi-
“cant improvement on the value predicted by the Euler rule.
However, with repeated applications of the corrector, the im-
provement was small and the rate of convergence was very slow —
no benefit was derived in terms of efficiency.

A modified version of Gear’s multirate method
At this stage, a thorough assessment of the integration routine
based on Gear’s approach illuminated a major deficiency in its

operation. This was the fact that it did not account specifically for
the range of magnitudes of the error generated at each timestep.
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The size of each new steplength was only based on whether the
value generated at the previous step had satisfied or not satisfied
the error criterion. Errors that only just satisfied the error
tolerance were accepted and the following steplength was allowed
to double, where it would have been more appropriate to increase
the steplength by only a small amount. Doubling in this case
caused the error to accumulate and a subsequent step would then
fail.

The approach suggested by Dahlquist and Bjorck (1974) was
used to develop a more sophisticated algorithm which adjusted
the steplengths in a manner based on the absolute magnitude of
the error generated at the previous step. For the selected
predictor-cortector method (Euler/trapezoidal), Eq. (13) and Eq.
(16) were used to calculate the size of each new steplength. The
relevant constants for the Euler predictor and the trapezoidal cot-
rector are ¢ = 2 and ¢' = 12, respectively (Lambert, 1974).
Thus, Eq. (13) becomes

€ - 2 %accy’
(12-2) 100
- % acc-y’ (17)
500
Substituting in Eq. (16):
1U(p+1)
h = h. |2 %acy’ (18)
5001,
where  p = order of the method = 2
1, = local error (from Eq. (9))

After selecting appropriate values for © and % acc, it is now
possible to calculate a new stepsize, h', in such a way that it is ap-
propriate to the magnitude of the error generated at the previous
stepsize, h.

The algorithm for the final integration module is presented
in Appendix A.

Selection of integration parameters

Successful operation of the final multirate method was found to
be strongly influenced by the values specified for the parametets
of percentage accuracy (% acc) and the safety factor (©). The in-
tegration routine thus incorporated a facility for these parameters
to be selected by the user according to the specific requirements
of the system being analysed.

The effect of percentage accutacy

Once the accuracy requirement has been specified, the integra-
tion routine uses this value to calculate the limiting value of the
local error [ € in Eq. (13)]. Since € controls the selection of subse-
quent stepsizes, it exerts a significant effect on the computational
effort required to perform the integration.

Fig. 3 shows the effect of different accuracy specifications on
the behaviour of the ‘‘fast’’ variable Sy over a typical integration
petiod of an hour when the input to the system is held constant
and the integration is initiated at the solution i.e. the values of Sg
should remain constant. Three different accuracy requirements
were tested: 1,0%, 0,1% and 0,01% . The results ate presented
in Table 2.

When the percentage accuracy was specified as 1,0% the size
of the small timestep was, on average, 12 min long. Seven in-
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Figure 3
The effect of accuracy specifications on the bebavionr of the variable Ss.

TABLE 2
THE EFFECT OF ACCURACY SPECIFICATIONS ON THE
BEHAVIOUR OF THE STEPPING ROUTINE.

% accuracy Number of Number of Average
steps failures stepsize

0,01% 11 1 8,1 min
0,10 % 10 3 10,6 min
1,00 % 7 2 12,0 min

tegration steps were necessary to reach the end of the interval.
However, this includes two steps that were rejected when the ac-
curacy requirements wete not met. In addition, the response of
Ss was unstable, oscillating more erratically as the timesteps
became larger.

When the accuracy requirement was specified as 0 01%,
eleven steps were necessary to reach the end of the time interval,
the average steplength being 8 min. Only one of the steps failed
to satisfy the error tolerance and the response of the variable S
remained stable at all times. The price paid for the stability of thc
solution response is the necessity to use small steplengths
throughout the integration and thus increase the computational
effort expended. Examination of Fig. 3 shows that, for this case,
an accuracy requitement of 0,1% appears to meet the demands
of stability whilst at the same time not requiring an excessive
amount of computational effort, the average steplength being
10,6 min, with a very small oscillation in the response of S.

The effect of the safety factor, ©

Dahlquist and Bjorck (1974) recommend using a safety factor,
© = 0,8 to account for the fact that etror estimates are only ap-
proximations. To examine how the specification of this factor af-
fected the integration, three different values for © were selected
and tested in the integration problem outlined above. Fig. 4
shows the effect of the choice of ©® on the stepsizes petmitted.
When a small magnitude for © of 0,5 was specified, steplengths

greater than 16 min were never permitted, and were generally
much shorter. The average stepsize for the integration interval
was 8,3 min and 9 steps were required to reach the end of the in-
terval. Only one of these was unsuccessful (Table 3).

On the other hand, when a large © of 0,9 was specified,
steplengths were generally longer (average length 10,3 min) with
a largest steplength of 19,3 min. However, of the eleven steps re-
quired to reach the end of the interval, four were unsuccessful. In
the light of this, it would appear that some intermediate value of
© would offer the most favourable balance between the number
of steps required to complete the integration and the possibility
of each of these steps being successful. For the purposes of
simulation, a © value of 0,75 was selected as fulfilling thcsc re-
quirements most appropriately. v

TABIE 3
THE EFFECT OF THE SAFETY FACTOR ON THE BEHAVIOUR
OF THE STEPPING ROUTINE.
Safety factor Number of Number of Average
©) steps failures stepsize
0,50 9 1 8,3 min
0,75 10 3 10,6 min
0,90 i1 4 10,3 min

Final comments on partitioning in the multirate method
The effect of X as a ““fast’’ or “‘slow’’ component

As noted earlier, the dynamics of X, the particulate substrate,
were difficult to classify as either “‘fast’’ or ‘‘slow’’, and there was
a general indication that this compound should occupy some
“‘intermediate’’ category. However, as the creation of an addi-
tional class of compounds was not feasible, the effect of placing
this compound in either the “‘“fast’’ or “‘slow’’ categories was ex-
amined.

When X was classified as a “‘fast’” instead of a *‘slow"” com-
ponent, the sizes of both the *‘fast’’ and ‘‘slow”’ steps remained
unaffected. In the case of the *‘fast’’ steps, this is to be expected,
as it is Sg that is the “‘limiting’’ compound in the category and
which exerts the dominating influence over stepsize selection.
Classifying X asa *‘fast’’ component, however, means that com-
putational requirements are increased for this group, as X is now
being integrated using many small timesteps. That the size of the
“‘slow’’ steps did not increase when X was removed from the
group indicates in fact that X is appropriately grouped with the
“*slow’” compounds. This was because, even when X was includ-
ed in the “‘slow’’ categoty, it was observed that the errots in all
the “‘slow’’ components were consistently small enough to enable
the largest possible stepsize to be taken for each integration inter-
val (i.e. H = data storage interval).

From a number of simulations it was found that, even
though the dynamics of X were ‘‘faster’’ than those of the other
compounds in the ‘‘slow’’ category, they were not sufficiently
different to cause the error in the integration to increase
significantly. As such, when etrors at the end of each interval
were evaluated, the error in the component Xy was still suffi-
ciently small to allow the largest possible stepsize for subsequent
integration steps.
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Figure 4
The effect of the safety factor on the size of the small timestep.

A general comment on partitioning

Partitioning of the biological model has been done by comparing
the dynamics of each compound to the other compounds in the
model. Generally, this led to a division into soluble as ‘‘fast’’ and
particulate as “‘slow’’ components. A limitation with this ap-
proach, which is general to the multirate method, was identified
when simulating behaviour in systems with more than one reactor
where there were large differences in reactor size. To illustrate the
problem, consider the selector reactor configuration of Case
Study 2 in Part 2 of this series. In this configuration, the first
reactor volume was 1/32 that of the second. Obviously, shorter
stepsizes for the ‘‘slow”’ compounds are required in the small
reactor with the short retention time than in the larger reactor.
Similarly for the ‘‘fast’’ compounds in each reactor. However,
because one steplength is chosen for each group, the choice of the
stepsize is controlled by the variables in the small reactor. This
steplength may be unnecessarily small for the compounds in the
larger reactor. In fact, the situation could be encountered where,
for optimal multirate efficiency, stepsizes for *‘fast’’ compounds
in large reactors should be latger than stepsizes for ‘‘slow’’ com-
pounds in small reactors. This problem arises because partition-
ing is on the basis of the model and not on the basis of individual
compounds within the configuration of interest.
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The limitation above could be overcome if automatic or
dynamic partitioning were implemented. However, this possibili-
ty has already been excluded and the limitation had to be ac-
cepted. On the other hand, it was felt that generating the divi-
sion on the basis of the biological model generalised the method
and simplified its implementation considerably.

Conclusions

A multirate integration procedure has been found to be appro-
priate for biological systems. In these systems, the dynamics of
the different compounds clearly divide into two groups, a “‘fast’’
group requiring short integration steps and a ‘‘stow’’ group for
which the steps can be larger. Within each group, the range of
dynamics is small compared to the difference between the two
groups. A general guideline for partitioning a biological system is
that it appears that soluble compounds can be grouped as ‘‘fast’’
and particulate compounds as ‘‘slow’’.

Some specific considerations should be noted as regards im-
plementation of the multirate technique:
@ Partitioning of the system on the basis of the model alone can
lead to inefficiencies in the implementation of the multirate
technique. This is one of the few drawbacks of the method. In
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practice, partitioning on the basis of practical experience and
by ttial examination of the system was found to be the most
flexible approach.

@ A predictor-corrector method with only one application of the
cotrector as proposed by Lapidus and Seinfeld (1971) was
found to be particulatly suited to the dynamics of the system.

® The steplength adjustment procedure proposed by Dahiquist
and Bjorck (1974) has been found to be appropriate. The suc-
cess of this procedure rests on the fact that it always uses the
largest possible stepsize without allowing the errots to ac-
cumulate in the system. The method was found to be superior
to Gear’s method of steplength halving or doubling.

® Discretion should be exercised in the choice of parameters
such as percentage accuracy and the safety factor, ©.

Appendix A
The final multirate integtation algorithm

STAGE 1: Select the following parameters:
(1) initial values for the state variablesat t = 0
(ii) an initial stepsize, H, for the *‘slow’’ components
(iii) an initial stepsize, h, for the ‘‘fast”” components
(iv) a percentage accuracy requirement, % acc
(v) a value of the safety factor, ©
(vi) an integration interval for data storage
(vii) a stopping ctiterion for the 24 h cycle

STAGE 2: For cach of the “‘fast’’ and ‘‘slow’’ components,
calculate € from Eq. (13), using the initial values of
the state variables as the predicted values, y©:

=1 % accy"
5 100

For the “‘slow’’ compounds

STEP 1: Starting at T = t, and using the Euler formula, com-
pute values for the ‘‘slow’’ compounds at
T=1¢ + H
y(t, + H) = y(tp) + H-y'(ty)

For the ““fast’”’ compounds

Step 1: Starting at t = t; and using the Euler formula, compute
values for the “‘fast’’ compounds att = t, + h:

Y(to + h) = y(to) + h~y'(t0)

Step 2: Using straight line interpolation, find values for the
“‘slow”” compounds at (t, + h):

IY(to + h) = Y(to) + y‘(to)'(t "to)

Step 3: Starting at t = t, and using the trapezoidal rule, com-
pute corrected values for the ‘‘fast’” compounds at
t=1t, + h b
y(ty + h) = y(tp) + - (y'(tg) + y'(t; + h))

Step 4: Calculate an error term for each of the ‘‘fast” com-
ponents at (t, + h) using Eq. (9):
Set Error = | /€

Step 5: Find the largest value of the error term for the “‘fast”
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compdnents and use this to calculate the size of the next
step using Eq. (16):

L fee 1=/3h‘|-e -Ius
1, I_ErrorJ

Step 6: If, by taking this step, the end of the large timestep will
not be reached, then
(i) replace h by h'
(i) replace tby t + h
(iii) retutn to Szep I for the “‘fast’” components.
If, by taking this step, the integration moves to beyond
the end of the latge timestep, H, then replace h by
H - t to arrive exactly at the end of the slow interval,
H.
Having integrated to H for the fast compounds, con-
tinue to STEP 2 for the “‘slow’’ compounds.
STEP 2: Starting at T = t, and using the trapezoidal rule, com-
pute cotrected values for the “‘slow’”’ compounds at
T=1t, + H

y(t, + H) = y(t,) + zﬂ (7'(t;) + y'(& + H)-

Calculate an error term for each of the “‘slow’’ com-
ponents at (t, + H) using Eq. (9):
SetError = 1 /€

STEP 3:

Find the largest value of the error term for the “‘slow”
components and use this to calculate the size of the next
step using Eq. (16):

H = H[GGT:HI— e tlm
T

| LErro

STEP 4:

STEP 5: If, by taking this step, the end of the large timestep will
not be reached, then replace H by H' and return to
STEP 1 for the '‘slow’”’ components.
Repeat STEPS 1 fo 5 for the ‘‘slow’’ compounds until
the size of the next step to be taken will move the in-
tegration of the ‘‘slow’’ compounds to beyond the end
of the date storage interval.
Truncate the large timestep and use one that will atrive
exactly at the end of the intetval.
Continue to Stage 3 of the general algorithm.

STAGE 3: Store the values of all the state variables at the end of
the data storage interval. Repeat Stages 1 7o 3 of the
general algorithm until one 24 h cycle has been com-
pleted.

Check if the differences between the values for all
the state variables at the beginning and end of the
cycle are less than the stopping criterion.

If this is so, then terminate the integration.

If not, then replace the initial values of the state
variables with the most recent values.

Return to Stage 2 of the general algorithm.
Continue integrating until convetgence is achieved.
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