Alkalinity measurement: Part 1 - A 4 pH point titration method to determine the carbonate weak acid/base in an aqueous carbonate solution RE Moosbrugger, MC Wentzel*, GA Ekama and GvR Marais Department of Civil Engineering, University of Cape Town, Rondebosch 7700, South Africa #### **Abstract** Theory of a 4 pH point acid titration method is presented to measure the H_2CO_3 alkalinity and the total carbonate species (C_T) in aqueous solutions containing only the carbonate weak acid/base. The influence of a systematic pH measurement error (due to faulty calibration, residual liquid junction effect, temperature) on the calculation of C_T and H_2CO_3 alkalinity is examined, and methods presented to minimise the influence of the error. The influence of CO_2 loss during titration on C_T and H_2CO_3 alkalinity estimates is shown to be negligible provided the titration is completed within 10 min with gentle stirring. Comparative tests using the 4 pH point titration and First Gran Function methods, on aqueous NaHCO₃ solutions ranging from 10 to 50 mg/ ℓ as $CaCO_3$ gave closely equal results with r = 0.99. For NaHCO₃ solutions ranging from 100 to 1 750 mg/ ℓ as $CaCO_3$, the 4 pH point titration method has high accuracy, and a standard deviation of < 2 per cent. ### Introduction Reviewing weak acid/bases and pH control in anaerobic systems, Moosbrugger et al. (1993) identified the importance of measuring one parameter relating to the carbonate and one to the short-chain fatty acid (SCFA) weak acid/bases. Parameters identified for measurement were total species concentration (C_T) or $H_2CO_3^*$ alkalinity for the carbonate weak acid/base, and total species concentration for the SCFA weak acid/bases (A_T) . An evaluation of techniques available to measure these parameters indicated that: - For determination of C_T, inorganic carbon analysers are available. However, with this instrument C_T is very likely to be in error due to CO₂ loss on sampling anaerobic digester liquid. - The H₂CO₃* alkalinity has the merit that its reference specie is H₂CO₃* and hence CO₂ loss does not affect its value. For determination of H₂CO₃* alkalinity in solutions containing only the carbonate weak acid/base or mixtures of weak acid/bases, the Gran and Extended Gran methods respectively (Loewenthal et al., 1989) are available. Both Gran methods are relatively complex and tedious and for the Extended Gran method the required independent accurate determination of A_T is not a simple task. For routine monitoring, the Gran and the Extended Gran methods would not find ready application. - For determination of A_T distillation/titration, colorimetric and chromatographic methods are available. These methods are time-consuming and involve considerable analytical skill and/or expensive equipment. - For determination of C_T/H₂CO₃* alkalinity or A_T, or C_T/H₂CO₃* alkalinity and A_T, simplified titration methods are available. These methods are either too cumbersome, or provide only approximations of the parameters of interest. With the increased understanding of mixed weak acid/base chemistry (Loewenthal et al., 1989;1991), a study of the basic theory indicated that, by using an alternative approach, it should be possible to evaluate one or more weak acid/bases by a simple titration procedure. The development of this approach and the titration procedure is detailed in this series of papers, dealing with estimation of: Part 1 (this paper) - C_T/H₂CO₃* alkalinity in an aqueous solution containing only the carbonate weak acid base; Part 2 - C_T/H₂CO₃* alkalinity in an aqueous solution also containing other weak acid/bases of known concentration; and Part 3 - C_T/H₂CO₃* alkalinity and SCFA in an aqueous solution also containing other weak acid/bases of known concentration. ## **Theory** To completely characterise a weak acid/base in solution, the total species concentration and pH are required (Loewenthal and Marais, 1976). With the carbonate weak acid/base in solution, the practical difficulties in measuring total species concentration (C_T) have led to the development of a substitute parameter, "alkalinity" (Loewenthal and Marais, 1976; Loewenthal et al., 1989). Alkalinity is defined as the proton accepting capacity of the solution relative to a reference state; quantitatively the alkalinity equals the mass of H⁺ (or OH⁻) that must be added to titrate from the solution pH to the reference state pH (called the equivalence point), where the reference state pH is the pH established on addition of a reference species to pure water. For example, CO₂ reference species (equivalently H₂CO₃*) addition to pure water gives the H₂CO₃* equivalence point, and titration to this pH gives the H₂CO₃* alkalinity. However, measurement of alkalinity itself is not a simple task due to the problem of identifying the equivalence point in the titration. Techniques are available to overcome this problem (Gran and Extended Gran titrations, Loewenthal et al., 1989), but as noted earlier, these are complex and tedious. In general, a proton accepting capacity exists between any two pH points and quantitatively equals the mass of H^+ (or OH) ions that must be added to titrate from the one pH to the other. For a particular weak acid/base in solution, theoretically measurement of the proton accepting capacity between any two pH points allows the total species concentration to be determined. This approach has received little attention in the past. The theory for this approach now will be developed to determine C_T in an aqueous solution containing only the carbonate weak acid/base. ^{*}To whom all correspondence should be addressed. Received 5 February 1992; accepted in revised form 16 July 1992. #### Carbonate system equilibrium equations Following Loewenthal et al. (1989;1991) an aqueous solution containing only the carbonate weak acid/base constitutes the carbonate system. The carbonate system is made up of two subsystems, the carbonate subsystem and the water subsystem. The equilibrium equations defining the carbonate subsystem are: $$\frac{[CO_3^2] (H^+)}{[HCO_3^-]} = K_{ac2} f_m/f_d = K'_{ac2}$$ (2) $$C_T = [H_2CO_3^*] + [HCO_3^*] + [CO_3^2]$$ (3) The equilibrium equation defining the water subsystem is: $$(H^+)[OH^-] = K_w/f_m = K_w^+$$ (4) where: (H⁺), [H⁺] = hydrogen ion activity (measured via pH) and hydrogen ion concentration respectively (mol/ ℓ) K_{acl}, K'_{acl} = first thermodynamic and apparent dissociation constants respectively for the carbonate subsystem (mol/e) (Loewenthal et al., 1989) K_{ac2},K'_{ac2} = second thermodynamic and apparent dissociation constants respectively for the carbonate subsystem (mol/ℓ) (Loewenthal et al., 1989) K_w,K'_w = thermodynamic and apparent ionic product constants respectively for water subsystem (mol/ℓ)² (Loewenthal et al., 1989) f_m, f_d = mono- and divalent activity coefficients (determined from μ in the Davies equations, see Loewenthal et al., 1989) [H₂CO₃*] = sum of molecularly dissolved carbon dioxide [CO₂]_{aq}, and carbonic acid, [H₂CO₃], (mol/e), these two having a virtually fixed ratio with regard to each other thereby allowing expression in terms of the composite H₂CO₃* (Loewenthal et al., 1986) = molar mass and active mass (activity) respectively (mol/t) C_r = carbonate total species concentration (mol/t) # Relationship between carbonate system parameters #### System and subsystem alkalinities The carbonate system and subsystem alkalinities for the H₂CO₃* reference species are related as follows (Loewenthal et al., 1991): $$H_2CO_3^*$$ alkalinity = $[HCO_3] + 2[CO_3^*] + [OH] - [H^*]$ (5) = Alk $H_2CO_3^* + Alk H_2O$ (6) where: H₂CO₃* alkalinity = carbonate system alkalinity with H₂CO₃* as reference species Alk $$H_2CO_3$$ = carbonate subsystem alkalinity = $[HCO_3] + 2 [CO_3^2]$ Alk $$H_2O$$ = water subsystem alkalinity = $[OH^-] - [H^+]$ (8) (7) The species [HCO₃] and [CO $_3^2$] and hence Alk $H_2CO_3^*$ can be expressed as functions of C_T and pH, and Alk H_2O as a function ## HCO_3 as function of C_T and pH Rearranging Eq. (3): of pH, as follows: $$C_{T} = [HCO_{3}] \left[\frac{[H_{2}CO_{3}]}{[HCO_{3}]} + 1 + \frac{[CO_{3}^{2}]}{[HCO_{3}]} \right]$$ (9) Inserting Eqs. (1) and (2) in Eq. (9), letting $$A = \left[\frac{(H^{+})}{K_{\perp}^{+}} + 1 + \frac{K_{2}^{+}}{(H^{+})} \right]$$ (10) and solving for [HCO 3] gives: $$[HCO_3] = \frac{C_7}{A}$$ (11) CO_3^2 as a function of C_r and pH Rearranging Eq. (3): $$C_{T} = [CO_{3}^{2}] \left[\frac{[H_{2}CO_{3}] \quad [HCO_{3}]}{[HCO_{3}] \quad [CO_{2}^{2}]} + \frac{[HCO_{3}]}{[CO_{3}^{2}]} + 1 \right]$$ (12) Inserting Eqs. (1 and 2) in Eq (12), letting $$B = \left[\frac{(H^{+})^{2}}{K'_{1}K'_{2}} + \frac{(H^{+})}{K'_{2}} + 1 \right]$$ (13) and solving for [CO₃²] gives: $$[CO_3^2] = \frac{C_T}{B} \tag{14}$$ # Alk $H_2CO_3^*$ as a function of C_T and pH Substituting Eqs. (11) and (14) into Eq. (7) gives the carbonate subsystem alkalinity (Alk H_2CO_3 *) at any pH as a function of C_T and pH: $$Alk H2CO3 = \frac{C_T}{A} + 2 \frac{C_T}{B}$$ (15) ## Alk H,O as a function of pH From Eq. (8), the alkalinity contribution of the water subsystem (Alk H_2O) is: Alk $$H_2O = [OH^-] - [H^+]$$ (16) From Loewenthal et al. (1991) $$[H^+] = 10^{-pH}/f_m$$ (17) [OH·] = $$\frac{K'_{w}}{(H^{+})}$$ = $10^{pH-pK'_{w}}$ (18) where: $$pH = -log (H^{+})$$ $$pK'_{w} = -log K_{w}$$ From Eqs. (17) and (18), inserting for [H⁺] and [OH⁻] in Eq. (16): Alk H₂O = $$10^{pH \cdot pK'}_{w} - \frac{10^{pH}}{f_{m}}$$ (19) ### $H_2CO_3^*$ alkalinity in terms of C_T and pH Inserting in Eq. (6) for Alk H₂CO₃* and Alk H₂O from Eqs. (15) and (19) respectively: $$H_2CO_3$$ alkalinity = $\frac{C_T}{A} + 2 \frac{C_T}{B} + 10^{pH-pK_w} - \frac{10^{-pH}}{f_-}$ (20) ## Determination of C_T in a sample by titration between two pH points Equation (20) expresses the proton accepting capacity of the solution between the sample pH and the H₂CO₃*
reference state pH (i.e. H₂CO₃* alkalinity) in terms of C_T and pH. The problem is in the measurement of either C_T or H₂CO₃* alkalinity. It will now be shown that, provided there is no CO₂ loss from a sample during titration, C_T can be determined from the titration data between any two pH points. Then, knowing the initial pH of the sample, the state of the carbonate system (i.e. carbonate + water subsystems) is completely defined in the sample being titrated. Assume the sample is acid titrated between two pH points. Since H₂CO₃* alkalinity is defined as a proton accepting capacity, the addition of H⁺ will cause a decrease in H₂CO₃⁺ alkalinity. The mass of H⁺ required to titrate from the first pH point (pH₁) to the second pH point (pH₂) equals the decrease in the mass of H₂CO₃ alkalinity, or alternatively, the sum of the decreases in the masses of Alk H₂CO₃* and Alk H₂O. From this decrease in mass of H₂CO₃* alkalinity and the two pH points, C_T can be calculated as follows: The H₂CO₃* alkalinities before and after the titration are H₂CO₃* alk, and H₂CO₃* alk₂ respectively. The magnitude of the decrease in H₂CO₃* alkalinity (ΔH₂CO₃* alk_{1.2}) due to addition of the specific amount of H+ is therefore: $$\Delta H_2CO_3^* alk_{1,2} = H_2CO_3^* alk_1 - H_2CO_3^* alk_2$$ $$= \Delta Alk_{1,2} H_2CO_3^* + \Delta Alk_{1,2} H_2O$$ (21) (22) $$\Delta Alk_{12} H_{2}CO_{3}^{*} = Alk_{1}H_{2}CO_{3}^{*} - Alk_{2}H_{2}CO_{3}^{*}$$ (23) $$\Delta Alk_{1,2} H_2CO_3^* = Alk_1H_2CO_3^* - Alk_2H_2CO_3^*$$ $$\Delta Alk_{1,2}H_2O = Alk_1H_2O - Alk_2H_2O$$ (23) If Ca is the normality of the strong acid and V_{x1,2} the volume of strong acid added, the molar mass of H+ added to the sample is: Molar mass of H⁺ added = Ca $$V_{x1,2}$$ (25) The molar mass of H added in titrating from pH₁ to pH₂ equals the mass decrease in $H_2CO_3^*$ alkalinity ($\Delta MH_2CO_3^*$ alk_{1,2}): $$Ca V_{xl,2} = \Delta MH_2CO_3^* alk_{1,2}$$ (26) = $\Delta MAlk_{1,2} H_2CO_3^* + \Delta MAlk_{1,2}H_2O$ (27) Now the two terms in the right hand side of Eq. (27) need to be determined: $\Delta MAlk_{12}H_2CO_3$ The mass decrease (mol) in H₂CO₃ alkalinity on acid titration due to the carbonate subsystem can be written as: $$\Delta MAlk_{1,2}H_{2}CO_{3}^{*} = MAlk_{1}H_{2}CO_{3}^{*} - MAlk_{2}H_{2}CO_{3}^{*}$$ $$= V_{sl} Alk_{1}H_{2}CO_{3}^{*} - (V_{sl}+V_{xl,2}) Alk_{2}H_{2}CO_{3}^{*}$$ (28a) (28b) where: = the sample size at pH₁ (l) $V_{x1,2}$ = the volume of strong acid added to the sample from pH_1 to pH_2 (2) From Eq. (15), Alk₁H₂CO₃* and Alk₂H₂CO₃* can be expressed in terms of C_{T1} and pH₁, and C_{T2} and pH₂ respectively; inserting in Eq. (28b): $$\Delta MAlk_{1,2}H_2CO_3^* = V_{s1} C_{T1} \left(\frac{1}{A_1} + 2 \frac{1}{B_1} \right)$$ $$-(V_{s1} + V_{x1,2}) C_{T2} \left(\frac{1}{A_2} + 2 \frac{1}{B_2}\right)$$ (28c) In the titration, provided adequate precautions are taken to minimise CO2 loss, the mass of CT (MCT) in the sample remains constant and equals the masses of C_T at pH_1 (V_s C_{T1}) and pH_2 $[(V_{s1} + V_{x1,2}) C_{T2}]$ i.e. $$MC_T = (V_{s1} + V_{x1,2}) C_{T2} = V_{s1} C_{T1}$$ Rearranging Eq. (28c), and substituting: $$\Delta MAlk_{1,2}H_2CO_3^* = MC_T \left[\left(\frac{1}{A_1} + 2 \frac{1}{B_1} \right) - \left(\frac{1}{A_2} + 2 \frac{1}{B_2} \right) \right] (29)$$ where subscripts 1 and 2 refer to the condition at the first and second pH respectively. Letting $$X_{1,2} = \left(\frac{1}{A_1} + 2 \frac{1}{B_1} - \frac{1}{A_2} - 2 \frac{1}{B_2}\right)$$ (30) then Eq. (29) becomes $$\Delta MAlk_{1,2}H_2CO_3^* = MC_T X_{1,2}$$ (31) Note that MC_T is the total carbonate species mass in the sample provided adequate precautions are taken to minimise CO2 loss during titration. #### ΔMAlk H₂O The mass decrease of H₂CO₃ alkalinity due to the water subsystem is: $$\Delta MAlk_{1,2}H_2O = V_{s1}Alk_1H_2O - (V_{s1} + V_{x1,2})Alk_2H_2O$$ (32) From Eq. (19): $$\Delta MAlk_{1,2}H_2O = V_{sl} (10^{pH_1-pK'_w} - 10^{-pH_1}/f_m) -(V_{sl}+V_{xl,2}) (10^{pH_2-pK'_w} - 10^{-pH_2}/f_m)$$ (33) In Eq. (27), substitute for $\Delta MAlk_{1,2}H_2CO_3^*$ from Eq. (31) and solve for MC_T (mass of C_T in the sample): $$MC_T = (Ca V_{x12} - MAlk_{12}H_2O)/(X_{12})$$ (34a) From MC_T , the carbonate total species concentration in the initial sample can be calculated: $$C_{T} = MC_{T}/V_{s} \tag{34b}$$ where: C_T = sample carbonate total species concentration prior to titration (mol/ ℓ); very likely this C_T will not equal the *in situ* C_T due to loss/gain of CO_2 in sampling (see later) V_s = sample volume prior to titration (ℓ) Equations (34a) and (34b) are the fundamental ones to calculate the sample C_T from the titration results between any two pH points. The calculation algorithm is as follows: Calculate $\Delta MAlk_{L2}H_2O$ and X_{L2} from Eqs. (33) and (30) respectively utilising pH_1 , pH_2 , V_{sl} and $V_{xl,2}$. Insert in Eq. (34a) the term (Ca $V_{xl,2}$) which is obtained from the titration and is the measured molar mass of H^* required to change the pH from pH_1 to pH_2 , and calculate MC_T in the sample. From MC_T and V_s using Eq. (34b) calculate C_T . Knowing C_T and the initial pH of the sample (pH_0), the carbonate subsystem in the sample is completely defined. Since the carbonate subsystem in the sample is completely defined, the $H_2CO_3^*$ alkalinity for the sample can be calculated from C_T and pH_0 , via Eq. (20). Very likely the sample C_T will not be equal to the C_T in the *in situ* solution from which the sample was taken (e.g. underground water supply) due to loss/gain of CO_2 in sampling. The parameter $H_2CO_3^*$ alkalinity has the advantage in that it is not influenced by loss/gain of CO_2 (Loewenthal et al., 1986); accordingly, taking due account of any dilution, the sample $H_2CO_3^*$ alkalinity equals the *in situ* $H_2CO_3^*$ alkalinity (from where the sample was obtained). This provides the means to calculate the *in situ* C_T from C_T from C_T alkalinity and the *in situ* pH, by rearranging C_T (20). ## Errors in sample C_T determination Two potential sources of errors are of importance when carrying out a titration between two pH points: A systematic pH measurement error from poor calibration of the pH probe, residual liquid junction potential (caused by the difference in ionic strength and ionic constitution between the calibration solution and that of the sample when using a glass electrode), and other effects, Linder et al. (1984). Exchange of CO₂ during titration between the liquid and gas at the interface of the sample surface: Such exchange of CO₂ would cause a change in MC_T as the titration proceeds. From Eq. (29), calculation of MC_T is based on the assumption that MC_T in the sample remains constant at the two pH points. Consequently, the titration has to be carried out in a way that minimises exchange of CO₂. ## Effect of systematic pH errors on the C_T determination From Eq. (34a), a systematic error in pH will cause an error in calculation of the terms Δ MAlk_{1,2}H₂O and X_{1,2}. Between pH 7 and pH 4 the error induced in Δ MAlk_{1,2}H₂O is negligible because the buffer index of the water subsystem remains very small in this pH range (Moosbrugger et al., 1993). With regard to the error in X_{1,2}, this induces an error in Δ MAlk_{1,2}H₂CO₃* (Eq. 31) and gives rise to an error in calculation of MC_T (Eq. 34a). Accordingly, the effect of a systematic pH error on the calculation of Δ MAlk_{1,2}H₂CO₃* requires further investigation: From Eqs. (29) and (28a): $$\Delta MAlk_{1,2}H_2CO_3 = MC_T \left[\left(\frac{1}{A_1} + 2 \frac{1}{B_1} \right) - \left(\frac{1}{A_2} + 2 \frac{1}{B_2} \right) \right]$$ $$= \Delta MAlk_1H_2CO_3^* - \Delta MAlk_2H_2CO_3^* \qquad (35)$$ An error in $\Delta MAlk_{1,2}H_2CO_3^*$ arises from an error in either $MAlk_1H_2CO_3^*$ or $MAlk_2H_2CO_3^*$, or both of these terms. Hence, it is necessary to investigate the effect of a systematic pH error on the calculation of $MAlk\ H_2CO_3^*$ at any pH in the pH titration range. At any pH point $MAlk\ H_2CO_3^*$ can be written as: MAlk $$H_2CO_3^* = MC_T \left[\frac{1}{A} + 2 \frac{1}{B} \right]$$ (36) A deviation of the observed pH from its true value can be written as: $$\Delta pH = pH_{true} - pH_{obs}$$ (37) i.e. $$pH_{true} = pH_{obs} + \Delta pH$$ (38) Hence, MAlk H₂CO₃* can be expressed in terms of Eq. (36) for two cases: - at pH_{obs} giving MAlk H₂CO₃* (pH_{obs}) - at pH_{true} giving MAlk H₂CO₃* (pH_{true}) Subtracting these two alkalinities: $$\Delta MAlk H_2CO_3^* (\Delta pH) = MAlk H_2CO_3^* (pH_{obs})$$ $$- MAlk H_2CO_3^* (pH_{inte})$$ (39) where: MAlk H_2CO_3 (ΔpH) = error introduced in MAlk H_2CO_3 by an error in pH measurement, ΔpH For the purpose of demonstrating the effect of ΔpH on MAlk H_2CO_3 , in Fig. 1 $\Delta MAlk H_2CO_3$ (ΔpH) is shown plotted versus Figure 1 Theoretical error in MAlk H_2CO_3* (mass of Alk H_2CO_3* of sample) at any pH over the pH range 3,0 to 8,5 due to a systematic pH measurement error (Δ pH), Δ MAlk H_2CO_3* (Δ pH), calculated for a specific Δ pH = -0,04 with C_T and V_s equal to unity pH assuming MC_T (i.e. C_T and V_s) equal to unity and $\Delta pH = -0.04$ at temperature = 20° C, $\mu = 0.01$ to give pK $_{ac1}^{\prime} = 6.34$ (Loewenthal et al., 1989). The plot illustrates the following points: - The magnitude of ΔMAlk H₂CO₃* (ΔpH) is dependent on ΔpH, and on pH - The bell shaped curve has a maximum at pH = $pK'_{acl} = 6.34$ - ΔMAlk H₂CO₃* (ΔpH) decreases sharply on either side of pK'_{acl} - If $\Delta pH = 0$, then $\Delta MAlk H_2CO_3^* (\Delta pH) = 0$, and $MAlk H_2CO_3^*$ is at its true value - The shape and pH location of the ΔMAlk H₂CO₃* (ΔpH) curve is the same as for the buffer index curve (Moosbrugger et al., 1993). When titrating a sample between pH_1 and pH_2 ,
if the measured pH differs from the true pH, the error, ΔpH , at these two pH points respectively are not known. Hence, only MAlk₁H₂CO₃* (pH_{10bs}) and MAlk₂H₂CO₃* (pH_{20bs}) can be calculated. Assuming that the ΔpH is the same at pH₁ and pH₂ (i.e. a systematic pH error is present), both the MAlk H₂CO₃* (pH_{obs}) terms deviate from their respective true values as follows: $$\begin{split} MAlk_1 H_2 CO_3^* (pH_{1true}) &= MAlk_1 H_2 CO_3^* (pH_{1obs}) \\ &- \Delta MAlk_1 H_2 CO_3^* (\Delta pH) \end{split} \tag{40} \\ MAlk_2 H_2 CO_3^* (pH_{2true}) &= MAlk_2 H_2 CO_3^* (pH_{2obs}) \end{split}$$ $$MAlk2H2CO3 (pH2true) \approx MAlk2H2CO3 (pH2obs) -\Delta MAlk2H2CO3 (\Delta pH)$$ (41) In Eqs. (40) and (41) neither $\Delta MAlk_1H_2CO_3$ (ΔpH) nor $\Delta MAlk_2H_2CO_3$ (ΔpH) can be calculated. Hence, the titration points have to be chosen such that the effect of ΔpH on the calculation of $\Delta MAlk_{1,2}H_2CO_3^*$ is minimised. From Eq. (35) it can be seen that $MAlk_2H_2CO_3^*$ is subtracted from $MAlk_1H_2CO_3^*$ to calculate $MAlk_{1,2}H_2CO_3^*$ from which MC_T is finally obtained. Subtracting Eq. (40) and (41): $$\Delta MAlk_{1,2}H_{2}CO_{3}^{*} = MAlk_{1}H_{2}CO_{3}^{*} (pH_{1true})$$ $$- \Delta MAlk_{2}H_{2}CO_{3}^{*} (pH_{2true})$$ $$= \Delta MAlk_{1}H_{2}CO_{3}^{*} (pH_{1obs})$$ $$- \Delta MAlk_{2}H_{2}CO_{3}^{*} (pH_{2obs})$$ $$- \Delta MAlk_{1}H_{2}CO_{3}^{*} (\Delta pH)$$ $$+ \Delta MAlk_{2}H_{2}CO_{3}^{*} (\Delta pH)$$ (42) From Fig. 1, if pH_1 and pH_2 are chosen symmetrical around $pK'_{\alpha l}$ their respective $\Delta MAlk\ H_2CO_3$ * (ΔpH) values are equal, and, if inserted in Eq. (42), cancel out to give the correct $\Delta MAlk_{1,2}H_2CO_3$ *, and, consequently, also the correct MC_T . However, the value of $pK'_{\alpha l}$ changes with temperature and ionic strength (Loewenthal et al., 1989). To obtain a correct MC_T , theoretically it would be necessary first to determine the appropriate $pK'_{\alpha l}$ for the temperature and ionic strength of the solution, and then select pH_1 and pH_2 symmetrical around the $pK'_{\alpha l}$ value. From a practical point of view, such a procedure would not be viable. A solution to this problem is presented below. #### Estimate of systematic pH error Despite the fact that with a strictly symmetrical pH pair the estimate of MC_T and C_T may be error free, the estimate of $H_2CO_3^*$ alkalinity which is derived via Eq. (20) from the initial sample pH (pH_0) and C_T will not be error free, because pH_0 will contain the systematic pH error, $\Delta pH.$ It is necessary therefore to form an estimate of ΔpH ; then the initial pH can be corrected for ΔpH and $H_2CO_3^*$ alkalinity calculated more accurately. For a solution with temperature = 20° C and μ = 0,01 (i.e. pK'_{act} = 6,34, Loewenthal et al., 1989), consider a titration from any pH point, say pH₁ = 7,9, to pH₂ = 6,0 to pH₃ = 4,8. To determine Δ pH, its effect on the calculation of Δ MAlk_{1,2}H₂CO₃* from Eq. (42) is examined using the symmetrical pH pair (7,9;4,8) and the unsymmetrical pH pair (7,9;6,0) assuming MC_T unity. Symmetrical pH pair (7,9;4,8): Since ΔpH is unknown the terms $\Delta MAlk_1H_2CO_3^*$ (ΔpH) and $\Delta MAlk_2H_2CO_3^*$ (ΔpH) in Eq. (42) cannot be calculated. However, from Fig. 1 note that for this particular pH pair these two terms cancel out; from this it follows that $\Delta MAlk_{1,2}H_2CO_3^*$ for pH pair (7,9;4,8) theoretically is error free. From Eq. (31) for MC_T equal to unity, $\Delta MAlk_{1,2}H_2CO_3^*$ is equal to $X_{1,2}$. Hence for titration between pH pair (7,9;4,8), $X_{1,2}$ can be obtained error free (despite the fact that ΔpH is unknown) and, hence, an error free MC_T and C_T can be calculated via Eq. (34). Unsymmetrical pH pair (7,9;6,0): C_T can be obtained analogously to pH pair (7,9;4,8). In this case, however, the terms $\Delta MAlk_1H_2CO_3$ * (ΔpH) and $\Delta MAlk_2H_2CO_3$ * (ΔpH) do not cancel out in Eq. (42); this leads to an incorrect estimate of $X_{1,2}$ and, consequently, the MC_T and C_T calculated via this pH pair will contain an error due to ΔpH . From the above: (1) To eliminate the error in the calculation of MC_T the pH pair must be selected such that the terms $\Delta MAlk_1H_2CO_3^*$ (ΔpH) and $\Delta MAlk_2H_2CO_3^*$ (ΔpH) are equal and cancel out in Eq. (45); this was done by selecting a pH pair symmetrical around pK'_{ncl} (pH_1;pH_2). (2) If an estimate of ΔpH is required, we make use of the fact that ΔpH causes different MC_{τ} values (MC_{T1,2}; MC_{T1,3}) for the symmetrical pH pair (pH_1;pH_2 = 7,9;4,8 say) and the unsymmetrical pH pair (pH_1;pH_3 = 7,9;6,0 say) respectively. MC_{T1,2} represents the true MC_{\tau} value (to the first order of magnitude) because the effect of ΔpH cancels out. By adjusting the pH measurements and recalculating the MC_{\tau} values until MC_{T1,3} equals MC_{T1,2}, the difference between the observed pH and the adjusted (true) pH equals ΔpH . In the method above the pH pair (pH₁;pH₂) was strictly symmetrical about pK'acl. However, as noted earlier, pK'acl changes with temperature and ionic strength (Loewenthal et al., 1989) so that it would be necessary to determine pK'act and select the symmetrical pH pair each time a determination is made. This would seriously inhibit application of the method, for example, the titration may need to be done before the ionic strength (or TDS, see Loewenthal et al., 1989) data for calculating pK'acl are available. However, if an approximately symmetrical pH pair and a strongly unsymmetrical pH pair are selected in the titration, then with the ΔpH adjustment procedure described above applied to all the pH points, both $MC_{\scriptscriptstyle T1,2}$ and $MC_{\scriptscriptstyle T1,3}$ are adjusted until $MC_{T1,2} = MC_{T1,3} \rightarrow MC_{T(true)}$. Consequently, $(pH_1;pH_2)$ can be selected a priori symmetrical to some approximate pK'acl value. The pK_{act} values for 20°C could range from 6,3 to 6,4, or wider and $(pH_1;pH_2)$ can be selected symmetrical around any pK_{acl} value in this range, say 6,3. # Titration procedure From the above, the following procedure is used to estimate ΔpH , C_T and H_2CO_3 alkalinity: - Titrate the sample from its initial pH (pH₀) to three appropriately selected pH points pH₁, pH₂ and pH₃, such that pH pair (pH₁, pH₂) is approximately symmetrically located, and pH pair (pH₁, pH₃) is unsymmetrically located around pK'_{acl}. Via Eq. (34a) calculate MC_{T1,2} and MC_{T1,3} respectively for these two data pairs. (Optimal selection of pH points will be considered later). - Compare MC_{T1,2} and MC_{T1,3}; if different, pH₁, pH₂, pH₃ are all adjusted by ΔpH and the MC_T values again recalculated from Eq. (34). This is repeated by progressively changing ΔpH until MC_{T1,3} equals MC_{T1,2}. When MC_{T1,3} equals MC_{T1,2}, the adjusted pH values should closely equal their respective true pH values. The difference between the true and observed pH gives ΔpH, Eq. (37). - From MC_{T1,2} and the initial sample volume (V_s) calculate C_T using Eq. (34b). - With pH_o corrected for ΔpH, calculate the sample H₂CO₃* alkalinity from C_T (Eq. 20); taking due account of any dilution, the sample H₂CO₃* alkalinity equals the *in situ* H₂CO₃* alkalinity. - From the in situ H₂CO₃ alkalinity and the in situ pH corrected for ΔpH, calculate the in situ C_T if required, Eq. (20). This calculation procedure can be readily incorporated in a computer program with the measured pHs and titration data as input (Source code listing (Turbo Pascal) and executable file of a program are available from the Water Research Commission, PO Box 824, Pretoria, 0001, South Africa). #### Error due to CO₂ loss during titration The algorithm for calculating C_T and the H₂CO₃ alkalinity, set out above, assumes that the mass of C_T in the sample (MC_T) remains constant during titration, implying that there is no exchange of CO₂ between the sample being titrated and the atmosphere. Such CO₂ exchange depends primarily on the difference in partial pressure of CO₂ in the water and the air and on mixing conditions. Loss of CO2 from the sample decreases MC_T and from the basic theory of the carbonate system this gives rise to an increase in pH (Loewenthal and Marais, 1976), and vice versa for a gain in CO₂. Through Eq. (34), MC_T is linked to pH₁ and pH₂. If CO₂ is lost while titrating with a strong acid from pH₁ to pH₂, this will cause that pH₂ is attained with more titrant than if there was no CO₂ loss and will result in an error in calculation of MC_T (the calculated MC_T will show a higher value than the true value of the sample). There is no theoretical basis whereby this error can be minimised, only by following an appropriate experimental procedure. # **Experimental investigation** The objectives of the experimental investigation were to: - Verify experimentally the existence of a systematic pH measurement error - Quantify ∆pH - Investigate possible causes for ΔpH - Investigate the effect of CO₂ loss during titration - Select pH pairs for 4 pH point titration - Evaluate the accuracy and precision of the 4 pH point titration method. All experiments were done at 20°C and all titrations were on undiluted samples. ## Existence of systematic pH error To enquire experimentally into the existence of a systematic pH error a set of aqueous solutions with increasing concentrations of NaHCO₃ (250, 500, 750 and 1 000 mg/ ℓ as CaCO₃) were made up. Each concentration was titrated from the initial pH (approximately 8,3) to lower pH values, i.e. from 8,3 to 6,0; 5,8; 5,6; 5,4; 5,2; 5,0 and 4,8. Each test was repeated five times. The pH probe (GK 2401C combined glass electrode, Radiometer, Copenhagen) was
calibrated against Radiometer NBS buffers (0,05 M potassium hydrogen phthalate for pH 4,00 at 25°C; 0,0275 M disodium hydrogen phosphate and 0,025 M potassium dihydrogen phosphate for pH 7,00 at 25°C). For each titration 7 pH pairs were formed, i.e. (8,3; 6,0), (8,3; 5,8), (8,3; 5,6) etc. From each pH pair C_T and H_2CO_3 alkalinity values were determined, using Eqs. (34) and (20) respectively. When plotted against pH, the data for the different NaHCO₃ solutions all exhibited similar trends. Furthermore, the C_T and H_2CO_3 alkalinity plots for each NaHCO₃ concentration were virtually identical. Hence, for the purpose of illustration only the results for C_T of the NaHCO₃ solution of 1 000 mg/t as CaCO₃, μ = 0,02, are shown in Fig. 2. As the second (lower) pH of the titration decreases from 6,0 to 4,8 so the value of C_T decreases to approach the known (expected) value. Theoretically each of the pH pairs should have given the same C_T equal to the expected C_T . The deviation of the measured C_T from the expected value and the variation in measured C_T for different pH pairs was Error in determining C_T in aqueous solutions containing only the carbonate subsystem (made up NaHCO₃ solutions) using pH pairs (8,3; 6,0...4,8) for (1) without correcting for systematic pH measurement error, Δ pH, and, (2) correcting for an estimated systematic pH measurement error of Δ pH = -0,07. The first pH of all pH pairs, pH = 8,3 postulated to be due to a systematic error in the observed pH. On the basis that the errors in C_T had arisen from a systematic pH error, a pH correction factor, Δ pH, was applied to each pH of the pH titration set: Starting with Δ pH = -0,01, a new set of values for C_T and $H_2CO_3^*$ alkalinity was calculated; Δ pH was increased incrementally until all the C_T and $H_2CO_3^*$ alkalinity values were approximately equal. For the pH pairs in Fig. 2, with Δ pH = -0,07, the C_T values remained approximately constant and close to the expected C_T value. It was concluded that the error in C_T for each pH pair was due to some consistent error in the pH observation. #### Quantification of pH error In a previous section a theory was developed to quantify ΔpH from two pH pairs, one approximately symmetrical and one unsymmetrical around pK'_{acl}. In the titrations described in the section above the only approximately symmetrical pH pair is (8,3; 4,8) but a number of unsymmetrical pH pairs of (8,3; 6,0), (8,3; 5,8) (8,3; 5,6) etc. can be formed. From the symmetrical pH pair and for each of the unsymmetrical pH pairs, a ΔpH was derived, as set out in the theory described earlier. The results are given in Table 1. Clearly using the approximate symmetrical/unsymmetrical pH pair approach, ΔpH can be quantified and, correcting the measured pH values, all the sets of pH pairs give close estimates of the known added true C_T and H_2CO_3 alkalinity. The presence of the systematic pH error raises the question as to its cause. Great care had been taken in the calibration of the pH probe using NBS buffer solutions and in frequently renewing the buffer solution. Consequently, a pH measurement error from faulty calibration was unlikely. This left the possibility that the systematic pH error was caused by the residual liquid junction potential (RLJP). This possibility was investigated. #### pH error and residual liquid junction potential (RLJP) If the error in pH was due to a RLJP then, since the RLJP arises from a difference in ionic concentration and composition between two solutions, such a difference must have been present between the pH standard buffer solution and the sample. To investigate the RLJP effect, a stock solution of NaHCO3 in distilled water was made to give $C_T = H_2CO_3^*$ alkalinity = 1 000 mg/e (as CaCO₂). Five solutions of different ionic strength were made up by adding the following masses of NaCl: 0,0; 3,5; 7,0; 10,5 and 14 g NaCl/e, to different samples of the stock solution to give respective ionic strengths (μ) of the samples of 0,02, 0,09, 0,14, 0,20 and 0,26. Each sample was titrated from pH \approx 8,3 to pH \approx 5,4 and thereafter to pH \approx 4,8 and the approximately symmetrical pH pair (8,3; 4,8) and the unsymmetrical pH pair (8,3;5,4) were used to determine ΔpH , C_T and $H_2CO_3^*$ alkalinity. For each of the five solutions average ΔpH , and corrected C_T and H₂CO₃* alkalinity values were determined from three replicated tests; these are plotted in Fig. 3. The ΔpH adjusted C_T and $H_2CO_3^*$ alkalinity values do not change significantly with changing ionic | TABLE 1 | |---| | C ₁ , H ₂ CO ₃ * ALKALINITY AND ΔpH FOR APPROXIMATE SYMMETRICAL AND UNSYMMETRICAL pH PAIRS | | AROUND pK act FOR NaHCO ₃ SOLUTION (CT = H ₂ CO ₃ * ALKALINITY = 1 000 mg/t as CaCO ₃) | | Sym.
pH pair | Unsym.
pH pair | H ₂ CO ₃ * alk
(mg/t as CaCO ₃) | C _T
(mg/l as CaCO ₃) | ∆рН | |-----------------|-------------------|--|--|--------| | 8,38;4,82 | 8,38;5,98 | 1 000 | 994 | - 0,06 | | | ;5,78 | 1 003 | 997 | - 0,06 | | | ;5,59 | 1 004 | 998 | - 0,06 | | | ;5,38 | 1 004 | 998 | - 0,07 | | | ;5,20 | 1 004 | 998 | - 0,07 | | | ;5,01 | 1 003 | 998 | - 0,08 | Figure 3 Estimation of systematic pH measurement error, ΔpH , C_T and $H_2CO_3^*$ alkalinity at different levels of ionic strengths in aqueous NaHCO3 solutions (1 000 mg/l as CaCO3) also containing additions of 0, 3,5; 7,0; 10,5 and 14 g/l of NaC1 to give respective ionic strengths of the solutions of 0,02, 0,09, 0,14, 0,20 and 0,26; ΔpH was estimated using an approximately symmetrical and an unsymmetrical pH pair located around pK'_{acl} of the carbonate subsystem strength and deviate from their input values by less than two per cent. However, clearly ΔpH is influenced by the change in ionic strength of the sample due to addition of NaCl. The activity coefficients (f_m,f_d) required to obtain the pK'_{a cl} values at the different ionic strengths were calculated using the Davies equation in which the value of ionic strength (µ) was determined from $\mu = 0.5 \sum_{i} C_{i} Z_{i}^{2}$ (see Loewenthal et al., 1989). The Davies equation is valid for low salinity waters with TDS < 2 500 mg/e (Loewenthal et al., 1989). However, the solutions tested in this experiment exceeded this TDS limit, up to \pm 15 000 mg/e; this raised the possibility that the effect of ionic strength on ΔpH was due to misapplication of the Davies equation. Accordingly, ΔpH , C_T and $H_2CO_3^*$ alkalinity were recalculated using a more elaborate method to determine μ and the activity coefficients for medium salinity waters, i.e. taking into account ion pairing effects (Loewenthal and Marais, 1983). The resulting values of ΔpH, C_T and H₂CO₃* alkalinity were very close to those obtained using the activity coefficients derived for low salinity waters. It was concluded that there is little merit in including ion pairing effects in the calculation of the activity coefficients for medium salinity waters, that is, C_T and H₂CO₃* alkalinity can be derived accurately over a wide range of ionic strength values even when using the low salinity water approach to determine the activity coefficients for medium salinity waters. Clearly, the effect of μ on ΔpH was not due to the exclusion of ion pairing effects in calculating activity coefficients. That ΔpH changes monotonically with μ would implicate a RLJP. However, from this experiment it cannot be established if the estimated ΔpH is exclusively caused by the RLJP; other undefined factors may also have contributed to ΔpH . Hence, the results do not necessarily represent a quantitative analysis of the RLJP. # CO₂ loss during titration Loss of CO₂ from an aqueous solution containing the carbonate subsystem leads to an increase of the solution pH and a decrease in MC_T and accordingly C_T . It has been stated earlier that if CO_2 is lost during a titration with strong acid from, say, pH_1 to pH_2 , then C_T will be overestimated if this measured pH pair is used for its calculation. To investigate the effect of CO_2 loss from solution during titration on the calculation of C_T the following experiment was carried out: Twelve different Na_2CO_3 solutions were made up to provide a range of expected C_T values from 50 to 1 700 mg/ ℓ as $CaCO_3$. Each solution was titrated from its initial pH_0 ($pH \approx 11$) to $pH_1 \approx 8,3$ and then to $pH_2 \approx 4,8$. It was hypothesised that prolonged stirring at $pH_2 \approx 4,8$ would cause loss of CO_2 from the sample and consequently the second pH reading of the pH pair should increase. Each of the above Na₂CO₃ solutions was tested using the following procedure: Gentle stirring for 1 min at initial pH (pH₀ \approx 11) before recording the reading; titrating to pH₁ \approx 8,3 and recording of pH reading after 1 min of stirring; titrating to pH₂ \approx 4,8 where pH readings were recorded after 1, 10, 20 and 30 min of stirring. From the recorded pH readings the following pH data pairs were formed: pH-pair₁ (8,3; pH₂ after 1 min stirring); pH-pair₂ (8,3; pH₂ after 10 min stirring); pH-pair₃ (8,3; pH₂ after 20 min stirring) and pH-pair₄ (8,3; pH₂ after 30 min stirring). For each pH pair a C_T value was calculated, to give C_{T1} from pH-pair₄, C_{T2} from pH-pair₄, C_{T3} from pH-pair₃ and C_{T4} from pH-pair₄ respectively. In Fig. 4, the measured C_{T1} values (i.e. after 1 min stirring) for the different Na_2CO_3 solutions are plotted against their expected (known) values. The plot indicates that
C_{T1} closely equals the known C_T value, i.e. negligible CO_2 loss occurred at all concentrations of C_T with 1 min stirring. Therefore it was concluded that C_{T1} could serve as a basis to assess the effect of CO_2 loss under prolonged stirring conditions: By subtracting C_{T1} from C_{T2} , C_{T3} and C_{T4} three ΔC_T values were obtained (Fig. 5). From Figs. (4) and (5) the following conclusions were drawn: For all the tests, with gentle stirring for stirring periods of ≈ 1 min the effect of CO_2 loss on the calculation of C_τ is insignificant. From a practical point of view, only when the stirring times exceed 10 min would the effect of CO_2 loss on calculation of C_T become significant. ## Selection of pH data pairs for 4 pH point titration To provide the best estimate for C_T , titration data for a pH pair approximately symmetrical around $pK'_{acl} \approx 6,3 \ (pH_1;pH_2)$ and for a pH pair unsymmetrical around $pK'_{acl} \approx 6,3 \ (pH_1;pH_2)$ are required. In the section above, the approximately symmetrical pH pair selected was (8,3;4,8) and the unsymmetrical pair (8,3;5,4). In practice, the initial pH of the sample very likely will lie below 8,3 which means that the pH would have to be raised to 8,3 before the titration procedure could be commenced, clearly an undesirable requirement. To resolve this problem, the best practical symmetrical $(pH_1;pH_2)$ and unsymmetrical $(pH_1;pH_3)$ pH pairs need to be selected. From experience, for high sensitivity in estimating ΔpH : - pH₁, pH₂ and pH₃ should be covered by the pH buffer solutions used for calibration of the pH probe. - The difference between pH₂ and pH₃ should be sufficiently large to ensure that any difference in MC_{T1,2} and MC_{T1,3} (due to ΔpH) is shown up; pH₂ and pH₃ must differ by at least 0,6 pH units. - The lowest pH, pH₃ should not be less than about the H₂CO₃* equivalence point, say pH = 4,8. Figure 4 Comparison of calculated versus expected total carbonate species concentrations, C_T for aqueous Na_2CO_3 solutions; pH pair used for calculation (8,3; 4,8); stirring time of 1 min before taking pH reading at pH \approx 4,8 If pH₃ is selected at the lowest point of the pH range, i.e. at 4,8, then pH₂ will be at pH 4,8 + 0,6 = 5,4 which is the lowest possible value for pH₂. Hence, in order to establish a pH pair (pH₁;pH₂) equidistant about pK'_{acl} \approx 6,3, pH₁ will be located at approximately 7,2 (see Fig. 1) which is the highest possible value for pH₁. Alternatively, if pH₁ is selected at the lower limit, i.e. pH₁ \approx 6,3 + 0,4 = 6,7 the corresponding pH₂ is fixed at 5,9 and pH₃ should be located at 5,9 - 0,6 = 5,3. Accordingly, pH₁ is limited to the range of 6,7 and 7,2. These give the following limiting sets of titration ranges of pH values: • $$pH_1 = 6.7$$; $pH_2 = 5.9$ and $pH_3 = 5.3$; and • $pH_1 = 7.2$; $pH_2 = 5.4$ and $pH_3 = 4.8$. Once a set of pH values is selected from these ranges, the titration to each pH point can be $\pm~0,1$ pH units without introducing additional errors in the estimates provided the actual pH values and titration data are used. The titration from pH $_{\rm l}$ to pH $_{\rm 2}$ to pH $_{\rm 3}$ (actual values) supplies the data to obtain ΔpH and $C_{\rm T}$ of the titrated sample. Using ΔpH , the initial pH of the sample (pH $_{\rm O}$) is corrected and H $_{\rm 2}CO_{\rm 3}^*$ alkalinity calculated. In the above procedure, if $pH_0 < pH_1$ then for the titration the pH is first raised to pH_1 by adding a strong base; it is not necessary to know the normality of strong base added, but the Figure 5 Effect of CO_2 loss on calculation of total carbonate species concentration, C_T in titrating from $pH_1 = 8,3$ to $pH_2 = 4,8$ in 1 min, and thereafter recording pH_2 for different periods of stirring; delta C_T by subtracting results after 1 min stirring from all other results volume added must be recorded, to determine the sample volume at pH_1 for Eq. (33). If $pH_0 > pH_1$ then in effect the reverse applies, with reduction of pH to pH_1 first and then measured titration pH_1 to pH_2 to pH_3 . Here the same titrant can be used for lowering pH_0 to pH_1 and for the pH pairs titration. # Evaluation of accuracy and precision of the 4 pH point titration method The accuracy and precision of the 4 pH point method using the pH values (pH $_1$ = 6,7; pH $_2$ = 5,9; pH $_3$ = 5,3) was tested separately for low and high C_T/H_2CO_3 alkalinity concentration ranges. Test solutions were made with NaHCO $_3$ in distilled water so that theoretically $C_T = H_2CO_3$ alkalinity (both as CaCO $_3$). The 4 pH point method results were to be compared with the known (expected) values. # Low C_T/H_2CO_3 alkalinity concentration solutions At low $C_T/H_2CO_3^*$ alkalinity concentrations, the effects of impurities in the distilled water, particularly contamination by CO_2 , become important and may significantly influence pH_0 and C_T so that $C_T \neq H_2CO_3^*$ alkalinity. This will cause that comparison of the results from the 4 pH point method with the input values will show deviations. Accordingly, it was decided to compare the 4 pH point method results also with results using the Gran method, a method which is reputed to provide accurate estimates in pure carbonate systems of $H_2CO_3^*$ alkalinity and the (derived) C_T value down to very low concentrations. A set of NaHCO₃ solutions were made up in distilled water to give C_T Low concentrations of $H_2CO_3^*$ alkalinity and total carbonate species concentrations, C_T : Comparison of results obtained from Gran Function and 4 pH point titration methods on aqueous NaHCO₃ solutions for (a) C_T and (b) $H_2CO_3^*$ alkalinity Figure 7 Low concentrations of $H_2CO_3^*$ alkalinity and total carbonate species concentrations, C_T : Comparison of (a) C_T and (b) $H_2CO_3^*$ alkalinity measured by the Gran Function and 4 pH point titration methods with their respective expected values. The various aqueous solutions were made up from NaHCO $_3$ and distilled water H_2CO_3 alkalinity = 10, 20, 30, 40 and 50 mg/ ℓ (as CaCO₃). The solutions were tested using the complete first Gran Function method (Loewenthal et al., 1989), and the 4 pH point method. In Figs. 6a and 6b the results for C_T and H₂CO₃* alkalinity obtained from the Gran and 4 pH point titration methods are plotted against each other; evidently the two methods give values very close to each other (correlation coefficient = 0,99). In Fig. 7a and 7b the results for C_T and the H₂CO₃* alkalinity obtained from the Gran Function and 4 pH point titration method are plotted versus their respective expected values. Comparing the measured H₂CO₃ alkalinity with the expected values, the measured values for both 4 pH point titration and the Gran methods show errors less than two per cent of the expected values (Fig. 7b). With regard to C_T the results from both methods deviate from their respective expected values in that the measured values are consistently higher, by approximately 3 mg/e as CaCO₃ (Fig. 7a). Since the error in C_T is virtually the same in both methods and consistent for all C_T values, it is likely that a C_T additional to the NaHCO3 input was present in the sample, very likely through CO₂ contamination of the distilled water from contact with the air. That this was present is supported by noting that the initial pH values of the solutions ranged from 7,2 to 7,6 whereas the expected pH value for pure NaHCO3 in CO2 free water is about 8,3. ## High C_D , H_2CO_3 alkalinity concentration solutions A set of NaHCO $_3$ solutions were made up to give $C_T = H_2CO_3^*$ alkalinity = 100, 200, 300, 400 and 500 mg/ ℓ (as CaCO $_3$). C_T and $H_2CO_3^*$ alkalinity were estimated using only the 4 pH point method. These estimates were compared with their respective expected values; the small errors introduced by CO_2 contamination of the solutions became insignificant because of the high input concentrations of C_T and $H_2CO_3^*$ alkalinity so that cross checking with the Gran Function was not required. The measured results for C_T and $H_2CO_3^*$ alkalinity are plotted for each solution against their respective expected values, in Figs. 8 and 9. In all instances the measured average values of the various solutions, for both C_T and $H_2CO_3^*$ alkalinity, deviated by less than two per cent from their respective expected values. ### **Discussion** In this paper, a 4 pH point titration method is developed to determine the carbonate total species concentration (C_T) in a sample containing only the carbonate and water subsystems and to derive the H_2CO_3 alkalinity from C_T and the sample initial pH. The proposed method involves little, if any, extra effort over the conventional H₂CO₃* alkalinity titration to a selected pH endpoint (*Standard Methods*, 1984), but is free of the problem of endpoint identification/selection and has the advantage of providing an assessment of systematic pH measurement error. The estimate of systematic pH error enables reasonable estimates of C_T and H₂CO₃* alkalinity to be made even though the pH meter may be poorly calibrated. The indications are that the 4 pH point method has an accuracy near that of the Gran method (Gran, 1952), yet it is much simpler. The method should lend itself readily to automation. The 4 pH point method can be readily extended to measure C_T and H_2CO_3 alkalinity when non-carbonate weak acid/bases (e.g. phosphate, ammonium) also are present in solution at known concentrations (derived in the next paper of this series). High concentrations of total carbonate species concentration, C_T : Results derived from 4 pH point titration method for total carbonate species concentration, C_T : plotted versus their respective expected values; solutions made up with NaHCO3 and distilled water
Figure 9 High concentrations of H_2CO_3 * alkalinity: Results derived from 4 pH point titration method for H_2CO_3 * alkalinity plotted versus their respective expected values; solutions made up with NaHCO₃ and distilled water # Acknowledgements This research was supported jointly by the Foundation for Research Development and the Water Research Commission of South Africa and this paper is published with their permission. ## References - GRAN, G (1952) Determination of the equivalence point in potentiometric titrations. *The Analyst* 77 661. - LINDER, PW, TORRINGTON, RG and WILLIAMS, DR (1984) Analysis Using Glass Electrodes. Ed. Open University Press (Belfast) Ltd. - LOEWENTHAL, RE and MARAIS GvR (1976) Carbonate Chemistry of Aquatic Systems Theory and Application. Ann Arbor Science Publishers Inc., Michigan, USA. - I.OEWENTHAL, RE and MARAIS, GvR (1983) Carbonate Chemistry of Aquatic Systems Vol 2 - High Salinity Waters. Butterworth Publishers, Stoneham, MA 02180, USA. - LOEWENTHAL, RE, WIECHERS, HNS and MARAIS, GvR (1986) Softening and Stabilisation of Municipal Waters. Water Research Commission, P O Box 824, Pretoria 0001, South Africa. - LOEWENTHAL, RE, EKAMA, GA and MARAIS, GvR (1989) Mixed weak acid/base systems. Part I: Mixture characterisation. Water SA 15(1) 3-24. - LOEWENTHAL, RE, WENTZEL, MC, EKAMA, GA and MARAIS, GvR (1991) Mixed weak acid/base systems Part II: Dosing estimation, aqueous phase. *Water SA* 17(2) 107-122. - MOOSBRUGGER, RE, WENTZEL, MC, EKAMA, GA and MARAIS, GvR (1993) Weak acid/bases and pH control in anaerobic systems A review. *Water SA* 19(1) 1-10. - STANDARD METHODS (1984) Standard Methods for the Examination of Water and Wastewater (16th edn.). American Public Health Association, Washington DC, USA.