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Abstract

General circulation models generally provide underestimates of the seasonal forecastability of the atmaosphere as a result of their
inability to simulate adequately the atmospheric response to sea-surface temperature anomalies and because of their éxaggeration
of the effects of the chaotic behaviour of the atmosphere. As a result, statistical forecast models will continue to provide a useful
supplement to the dynamic models, although there is a need for the statistical models to capture explicitly the non-linear behaviour
of the ocean-atmosphere system. Of concern, however, is the observation that forecast skill in many areas of the world appears to
have decreased since the late 1980s. Carefnl validation of this possibility is required for South Africa.

Introduction

Because of the high degree of inter-annual rainfall variability in
the Southern African region, skilful seasonal forecasts could
greatly assist in planning policies for the amelioration of drought
and flood conditions (Vogel, 1994). Partly in response to the
devastating effects of the 1991/92 drought in Southern Africa, the
South African Weather Bureau (SAWB) and a number of re-
search groups in the South African universities have begun to
release seasonal rainfall forecasts in the last few years (Mason et
al., 1996). In October 1994, at the initiative of the SAWB, the
South African Long-lead Forecast Forum (SALFF) was founded
with the purpose of developing and co-ordinating the seasonal
forecasting capabilities of the country. Mason et al. (1996)
presented a review of the prospects for the further development
of the capabilities for Southern Africa, concluding that there are
good prospects for improving seasonal forecast skill and lead-
times over most of the region. Much of the predictability of
rainfall over Southern Africa is attributable to variability in the
tropical atmospheric circulation, which responds directly to
boundary forcing such as sea-surface temperature anomalies,
including El Nifio events. As a result, highest forecast skills are
obtainable for the peak rainfall months December to February
over the summer rainfall region. In this review, an update of
international developments in seasonal forecasting since the
Mason et al. (1996) review is presented and implications for
forecasting capabilities in Southern Africa are discussed.

Developments in seasonal forecasting using
statistical methods

Estimating the potential predictability of the
atmosphere

The potential for predicting atmospheric variability beyond the
two-week limit of numerical weather forecasting arises for two
reasons. Firstly, certain features of the large-scale components of
the atmosphere may have greater predictability than the synoptic
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conditions, which tend to display a higher degree of chaotic
behaviour. The large-scale atmospheric components, such as
westerly waves, may have some influence on the probability of
individual synoptic weather patterns, thus making probabilistic
forecasts of general conditions beyond two weeks possible. A
second source of potential predictability of the atmosphere comes
from the influence of more slowly evolving boundary conditions
such as sea-surface temperatures, snow cover and soil moisture.
These boundary conditions can have an important influence on
the overlying atmospheric circulation.

Estimates of the potential predictability of the atmosphere
have been made using general circulation model (GCM) output.
The atmospheric modelling intercomparison project (AMIP) has
provided an opportunity for estimating potential predictability
from boundary-ldyer forcing, specifically from sea-surface tem-
peratures. The project involved the GCM-simulation of atmos-
pheric variability for the 10-year period 1979 to 1988 using
observed sea-surface temperatures for the same period. The
simulated ensemble variability for the AMIP period could then be
compared with the ensemble variability of control runs, using
unvarying climatological sea-surface temperatures (Dix and Hunt,
1995). If sea-surface temperatures do provide a source of atmos-
pheric predictability then the correlations between individual
GCM AMIP experiments, differing only in their initial condi-
tions, should be significant. In Fig. 1 the average correlations
between three ensembles are represented for the CSIRO nine-
level GCM (Dix and Hunt, 1995). The results confirm that most
predictability lies within 20° of the equator, and particularly in
areas where rainfall is predominantly from a single well-organ-
ised quasi-permanent circulation system, such as the Inter-
Tropical Convergence Zone (Hastenrath, 1995). Tropical sea-
surface temperatures are the main source of predictability, even
within the mid-latitudes (Lau and Nath, 1994). Unfortunately,
even within the tropics, estimated potential predictability is
disproportionately small over the land area (Dix and Hunt, 1995)
(Fig. 1), including over Southern Africa (Harrison, 1996).

Sea-surface temperatures are generally prescribed in general
circulation models to provide forecasts of the state of the atmos-
phere with lead-times of about one to five or six months. For lead-
times of about two weeks to one month, extended-range numeri-
cal weather forecasts are provided (Palmer and Anderson, 1994),
which are based on attempts to model the evolution of the
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Figure 1 .
Average correlations of time series of monthly rainfall anomalies at each
grid point between three CSIRO 9-level model AMIP runs. The three runs
differ only in their initial conditions (after Dix and Hunt, 1995). High
correlations indicate areas with a reproducible atmospheric response to
sea-surface temperature forcing.
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Figure 2
Time-averaged ratios of nine-member ensemble variability to the model’s climatological
variability for December-February precipitation (after Stern and Miyakoda, 1995). Areas
with ratios of less than 0.7 are shaded. Low values of the ratio indicate areas with a
reproducible atmospheric response from different initial conditions.

atmosphere from one regime to the next, given the initial condi-
tions of the atmosphere (Shukla, 1981; Legras and Ghil, 1985;
Roads, 1985; Murphy, 1988; Tribbia and Baumhefner, 1988).
The initial conditions are important because of the chaotic nature
of the atmosphere, especially in the mid-latitudes (Dix and Hunt,
1995; Peng et al., 1995). Predictability from initial conditions can
be identified by the ratio of ensemble variability to climatological
seasonal variability (a normalised measure of spread of ensemble
forecasts) (Stern and Miyakoda, 1995). Smaller values of the
ratio give an indication of high levels of predictability since the
consensus among the ensemble members is relatively good.
Again most predictability lies within 20° of the equator, with
some occasional potential predictability in the extra-tropics
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(Stern and Miyakoda, 1995) (Fig. 2).

Until recently, the effects of initial conditions have not been
considered of great importance in seasonal forecasting. The
initial conditions were thought to become unimportant after a few
weeks when the influence of boundary conditions on preferred
weather regimes was supposed to become dominant. In seasonal
forecasting a set of ensemble forecasts is usually obtained by
producing separate forecasts with slightly different initial condi-
tions and the ensemble mean or probability density function of
the ensemble members is then calculated. By obtaining additional
ensemble sets for which the initial conditions are fundamentally
different compared to those of the other sets, the persistence of the
effects of initial conditions can be tested. It has been shown that



differences in the ensemble means become statistically insignifi-
cant only after a few months (Barnett, 1995), suggesting that
seasonal forecasts with lead-times of even up to three months
may need to take account of the current state of the atmosphere.

Problems with general circulation model seasonal
predictions

Statistical forecasting methods often seem to perform better than
GCM estimates of maximum potential skill, but because of
systematic errors the GCMs are probably underestimating pre-
dictability. The predictability of the atmosphere is underesti-
mated partly because of inadequate/incorrect simulated responses
to sea-surface temperature anomalies (Latif et al., 1994). For
example, most models simulated a weak atmospheric response to
the 1982-1983 Ei Nifio-Southern Oscillation (ENSO) event in the
AMIP experiment (Smith, 1995), including in the Southern
African region (Joubert, 1996), because the modelled tropical
convection response to positive sea-surface temperature anoma-
lies is generally too weak (Mo and Wang, 1995).

Systematic model errors result in an exaggeration of the
importance of atmospheric chaos (Dix and Hunt, 1995), which
again is responsible for underestimates of potential predictabil-
ity. Ensemble forecasting to some extent resolves this problem
because the ensemble reduces the influence of the model’s
random internal variability on the forecast and indicates the
climate state to which the atmosphere has the greatest probability
of tending toward (Palmer and Anderson, 1994; Kumar and
Hoerling, 1995). Ensemble forecasting does not, however, ac-
count for the possibility that model systematic errors are regime
dependent. The time-mean model errors for warm and cold ENSO
events have been shown to be different and to differ from the
time-mean error of a 10-year control integration (Mo and Wang,
1995). The correction of a forecast by adjusting for time-mean
model systematic errors is therefore invalid. Ensemble forecasts
produced using different forecasting models, possibly with dif-
ferent forecast skills, have been recommended to reduce the
problem of model systematic errors (Vislocky and Fritsch, 1995).
The development of a number of separate GCM seasonal fore-
casting capabilities within southern Africa should therefore be
encouraged. In addition, GCM forecasts should be used in
conjunction with statistical methods at least until the dynamic
models can respond more realistically to sea-surface temperature
anomalies.

Developments in seasonal forecasting using
statistical methods

Effects of non-linearity on forecast skill

Despite the inherent problems with GCM seasonal forecasts, in
theory, they should provide higher forecast skills than statistical
methods because of the non-linearity of the ocean atmosphere
system (Zhang and McPhaden, 1995) and because of the impor-
tance of soil-moisture and other boundary layer feedbacks. Both
the non-linearity of the climate system and the feedback proc-
esses can be explicitly captured by the dynamical models (Smith,
1995). Non-linear interactions between the atmosphere and the
oceans are exceptionally difficult to reproduce in a statistical
model. One potential solution is to use neural networks, which
are, in effect, highly complex non-linear regression models. A
neural network model has been used for hindcasting December-
February rainfall over the Highveld of South Africa (Hastenrath

et al., 1995). Predictors used were the Southern Oscillation Index,
the Quasi-biennial Oscillation, Indian Ocean equatorial winds
and sea-surface temperatures, most of which have been tested
using simpler statistical models with linear constraints. The
neural network model was found to produce skill levels that are
considerably higher than those obtainable from linear regression
techniques (62 per cent of the variance compared to 30 per cent)
and linear discriminant analysis methods with identical predic-
tors (cf. Allen and Le Marshall, 1994; Sansom, 1995). The results
highlight the importance of using non-linear statistical methods
when forecasting Southern African rainfall. Current statistical
methodologies used by members of the SALFF are all linear,
except for the quadratic discriminant analysis model used by the
Climatology Research Group, University of the Witwatersrand,
which provides only a simple departure from the linearity con-
straint (Mason, 1995a).

The importance of optimal time-averaging

The need to identify the optimal averaging period for which
seasonal forecasts are produced has been emphasised (Barnston,
1994). In the short term, the internal variability of the atmosphere
is relatively large and so, on time scales of less than about one
month, the influence of boundary conditions is unimportant. The
averaging of forecasts over longer periods improves predictabil-
ity because of the decreased influence of internal variability
associated with synoptic events or relatively high-frequency
events such as the Madden-Julian Oscillation (Barnston, 1994).
Time averaging aims to minimise the influence of individual
synoptic events on the statistics of the forecast period. At the
other extreme, predictive skill can decrease if the averaging
period is too long because of the seasonal dependence of the
atmospheric response to boundary-layer forcing (Kumar and
Hoerling, 1995). In Southern Africa, the only attention that has
been paid to the problem of defining optimal forecast periods is
to divide the summer season into the early, mainly temperate half
and the later, tropical half. A more careful definition of optimal
forecast periods may be warranted.

Two-tiered forecasting

It is evident from Fig. 1 that globally the highest predictability is
over the equatorial Pacific Ocean and reflects the high predict-
ability of the ENSO phenomenon. Predictability is high through-
out the tropics largely because of the direct response of the
tropical atmosphere to sea-surface temperature forcing. A two-
tiered forecasting approach has been proposed to take full advan-
tage of the predictability obtainable from sea temperatures in the
tropics: forecasted sea-surface temperatures are used as an input
to the atmospheric forecasting model (Bengtsson et al., 1993). In
particular, the method allows use to be made of the high forecast
skill of Pacific Ocean sea temperatures and potentially of fore-
casts of sea-surface temperatures in the Atlantic and Indian
oceans (Latif and Barnett, 1995). Currently, most seasonal fore-
casting models (dynamic and statistical) make use of real-time or
near real-time data only. Rainfall over Southern Africa shows
strong associations with sea-surface temperatures in a number of
areas (Mason, 1995b), most notably the equatorial Indian Ocean
(Jury and Pathack, 1991), which the operational forecasts are
largely based upon (Mason et al., 1996). Some progress has been
made by the Research Group for Statistical Climate Studies at the
SAWB in initial attempts to forecast Indian Ocean sea-surface
temperatures using statistical methods (Landman, 1995). Further
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research to forecast sea-surface temperatures around southern
Africa would be beneficial, but requires an improved understand-
ing of the complexities of ocean-atmosphere interaction in the
region.

Seasonal forecasting of the atmosphere in
temperate latitudes

The importance of initial conditions is of greatest significance in
the mid-latitudes where the atmosphere does not always respond
in a consistent manner to boundary-layer forcing (Dix and Hunt,
1995; Peng et al., 1995). As a result, there is apparently no
statistically significant extra-tropical response in the northern
hemisphere to ENSO events, except in the zonal flow of the
subtropics (Harzallah and Sadourny, 1995; Hoerling et al., 1995;
cf. Graham and Barnett, 1995). However, strengthened zonal
flows are evident in individual ENSO years, resuiting in large
amplitude stationary wave anomalies, that are generally long-
lived, and that are typical of the Pacific-North America (PNA)
pattern (Hoerling et al., 1995). Selective interaction with ENSO
events also occurs within the tropics, for example with the Asian
monsoon (Annamalai, 1995; Webster, 1995), but is generally
more evident in the temperate atmosphere. The high degree of
internal temperate atmospheric variability is an additional reason
why statistically significant mid-latitude responses to boundary-
layer forcing are difficult to identify. Climate extremes can occur
even in the absence of forcing, and general circulation models
have successfully simulated extremes from climatological sea-
surface temperatures (Barnett, 1995). For example, the PNA
pattern can occur even in the absence of ENSO forcing (Deser and
Blackmon, 1995; Harzallah and Sadourny, 1995).

Despite the chaotic nature of the mid-latitude atmosphere,
some statistical predictability, with lead-times of up to 6 months,
has been claimed for the Pacific-North America sector. Forecast
skill is greatest in January to April and is largely a result of
tropical sea-surface temperature forcing in the Pacific Ocean
(Barnston, 1994; Graham and Barnett, 1995). The fact that ENSO
events tend to reach full maturity during the boreal winter is
partly responsible for the seasonal dependence of ENSO-related
forecast skill in the northern hemisphere mid-latitudes. Of greater
importance, however, is the fact that the northern Hadley cell
overlies the tropical sea-surface temperature anomalies at this
time of year. A secondary predictability maximum is evident for
the warm season and is partly a result of the atmospheric response
to long-lived episodes of sea-surface temperature anomalies in
the tropical oceans around the world (Barnston, 1994). In addi-
tion, weaker westerly winds during the summer help to prolong
positive sea-surface temperature anomalies because of a decrease
in evaporative cooling and less turbulent mixing with cooler
subsurface waters (Webster, 1982). The prolongation of sea-
surface temperature anomalies in summer contribuies to the
secondary predictability maximum.

Although the atmosphere in the mid-latitudes can respond
with large anomalies to the boundary-layer, the signal to noise
ratio is weak and the response is not always predictable. Standard
methods of analysis of observational data, such as correlation or
composite analysis, and of general circulation mode! sensitivity
test output, such as comparison of means, are therefore unlikely
10 identify statistically significant responses in the mid-latitude
atmosphere to sea-surface temperature anomalies. These results
have important implications for seasonal forecasting in Southern
Africa. Although some efforts have been made to identify a mid-
latitude response to tropical sea-surface temperature anomalies
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such as El Nifio events (see Tyson, 1986 for a review of early
research; Jury et al., 1994), the statistical significance will
inevitably be difficult to prove and it should be born in mind that
more than one mode of response may be detectable. Further, a
response in the southern hemisphere is likely to be strongest when
the southern Hadley cell overlies the tropical sea-surface tem-
perature anomalies, which occurs during the austral winter and at
a time when El Nifio has not usually reached maturity. A southern
hemispheric response with similar significance to the PNA
pattern is therefore unlikely and would occur during the winter
months when most of the Southern African region experiences
dry conditions. Although significant correlations have been
identified between winter rainfall over South Africa and the
Southern Oscillation Index (Mason and Lindesay, 1993), the
rainfall data are highly skewed. Results based on Pearson’s
product moment correlation coefficient must therefore be ap-
proached with caution. Nevertheless, there may be some useful
potential for predicting wintertime temperatures and rainfall over
the winter and all-seasons rainfall regions. Three-month tem-
perature forecasts have been released by the South African
Weather Bureau Research since March 1996 (South African
Weather Bureau, 1996), but it is too early to give an impression
of the operational forecast skill.

Inter-decadal changes in predictability

A decrease in the performance of statistical and dynamical
seasonal forecasting models for the 1990s has been observed
(Hastenrath, 1995). For example, forecasts of North Atlantic
storm frequencies were exceptionally accurate up until 1989, but
have since deteriorated. A decrease in the success of Indian
monsoon forecasts since the 1980s has also been observed, as
well as a worsening of the performance of the Cane-Zebiak
model. The recent apparent decrease in predictability is partly the
result of inter-decadal variability in the ocean-atmosphere system
(Graham, 1994; Allan et al., 1995; Wang, 1995), but also empha-
sises the importance of identifying robust predictors (Singh et al.,
1995) and of the need for careful cross-validation of forecast
methodologies. The rather disappointing performance of opera-
tional forecasts produced for Southern Africa during the 1990s,
compared to hindcast skills obtained over training periods, may
be a reflection of the decrease in skill observed elsewhere.

Summary and recommendations

Increasingly, general circulation models are being used to pro-
duce operational or experimental seasonal and extended-range
weather forecasts. These dynamic models, however, generally
suggest that there is only weak predictability of the atmosphere.
Normalised measures of ensemble variability suggest that, al-
though initial conditions provide some predictability of the
atmosphere with lead-times of about two weeks to beyond one
month, most of this predictability is for the tropical atmosphere.
Similar sensitivity experiments using general circulation models
again provide disappointing estimates of atmospheric predict-
ability from sea-surface temperatures with lead-times of a few
months. The results suggest that only limited success can be
achieved in the development of seasonal and extended-range
forecasting capabilities. There are, however, a number of limita-
tions in the use of dynamic models. The most severe restriction
is that model limitations and systematic errors result in
underestimations of the predictability of the ocean-atmosphere
system, especially outside of the tropics. Ensemble averaging



resolves this over-chaotic behaviour of the models only to an
extent. An assessment of the potential predictability of the
atmosphere as estimated by the NMC and COLA models, used in
operational one-month forecasts released by the South African
Weather Bureau, would be useful for an assessment of the
confidence that can be placed in the forecasts.

Because of the poor performance of general circulation
models in forecasting the atmosphere with lead-times of more
than two weeks, there is a continued need for statistical forecasts.
There are, however, some severe limitations in the statistical
models currently used to provide seasonal forecasts of rainfall
over Southern Africa. The most severe restriction is the failure to
take adequate account of the non-linear behaviour of the ocean-
atmosphere system. It has been shown that significant improve-
ments in forecast skill for Southern Africa are obtainable when
non-linear models have been used.

International research has indicated the need for optimal
time-averaging when producing seasonal forecasts. There is a
trade-off between exaggerating the influence of individual syn-
optic systems in the shorter time-averaged periods and encoun-
tering problems of the seasonal dependence of rainfall predictors
in longer periods. Longer lead-times than those currently used
may be obtainable for summer rainfall in the second half of the
season when the tropical atmosphere generally has a stronger
influence. At other times of the year, improved skill may be
obtained by reducing the period of the forecast. It may be
additionally possible to improve forecast skill and/or lead-times
by using forecasted rather than observed sea-surface tempera-
tures in the models currently used.

Probably of greatest concern is the observation that seasonal
forecast skill in many areas of the world appears to have de-
creased since about the beginning of the decade. It is quite
possible that a similar trend is evident for South Africa. Careful
validation of this possibility is required and an update of the
training periods for the statistical forecasts currently produced by
SALFF members would be necessary. It is possible that changes
in the global atmospheric circulation have affected the forecast
skill obtainable from currently used predictors; improvements in
skill may be obtainable if the forecast models are updated.
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