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Abstract

The‘potenfial 'ofAspergillus niger Strain 4 pellets to remove lead (Pb™) from solution was determined. Aspergillus niger Strain

4-was cultured in Currie’s liquid medinm as mycelial pellets for S d. Pellets were washed in water, and some were dried before
exposure to varying concentrations of lead {Pb*) ion solutions. Various masses of dried mycelial material were exposed to different
I+ concentrations of Pb** solutions to determine the effect of biomass concentration on lead uptake. A mycelial biomass of
2mgmé’ was found to be optimal for Pb? uptake at all the lead concentrations tested. Drying of the mycelial pellets did not affect
the uptake of Pb**. Scanning electron microscopy and energy dispersive X-ray micro-analysis of the fungal biomass, indicated that
the lead was more or less evenly distributed within both the dried and undried mycelial pellets, and transmission electron

i

microscopy confirmed that lead was present in the cell surface layers of the hyphal strands, i.e. the mechanism of uptake was

¢ determined to be biosorption onto the cell surface layers. Aspergillus niger Strain 4 pellets show potential for use in the removal

of lead from industrial waste waters.

Introduction

Many heavy metals cause pollution in the environment and are
toxic to living organisms. Conventional methods, such as filtration,
chemical precipitation, ion exchange and electrolytic treatment,
are becoming increasingly expensive to operate, and also have
additional limitations (Wood, 1992). Micro-organisms have the
potential for use as an alternative method of heavy metal removal
from polluted waters and industrial effluents (Gadd and Griffiths,
1978).

Fungi are known to have good metal uptake systems (Gadd,
1986), with metabolism-independent biosorption being the most
efficient mechanism (Tobin et al., 1994). Biosorption has been
defined by Shumate and Strandberg (1985) as “a non-directed
physico-chemical interaction that may occur between metal
species and the cellular compounds of biological species”. This
may involve several chemical processes such as ion exchange,
adsorption, co-ordination and covalent bonding, with the cell
walls playing an important role, due to the presence of various
uptake sites containing electronegative, anionic and N-containing
groups (Tobin et al., 1994). Fungi often have greater tolerance
than bacteria and algae towards metals and other adverse external
conditions, such as low pH (Gadd, 1990). Some fungi produce
spherical mycelial pellets with high metal uptake capacities, for
example Aspergillus, Penicillium and Rhizopus species (Tobin et
al., 1994). Immobilised Rhizopus arrhizus was found to effect-
ively remove low concentrations of Cu® ions from aqueous
solutions (Zhou and Kiff, 1991), a Penicillium sp. isolated from
soil was found to accumulate large amounts of copper on the cell
surface (Mitani and Misic, 1991), and waste mycelium from
several industrial fermentation plants (A. niger, P. chrysogenum,
and Claviceps paspali) has been used to remove zinc ions from
aqueous solutions (Luef et al., 1991).

Biomass-related technologies will not necessarily replace
existing metal-ion removal treatments but may complement
these chemical treatment processes. A knowledge and
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understanding of the mechanisms controlling metal sorption by
micro-organisms will aid in the optimisation of metal recovery
processes (Fourest and Roux, 1992).

In this study, A. niger Strain 4 was cultured as submerged
mycelial pellets, and then exposed to heavy metal solutions of
Pb* to determine its metal uptake capacity over time. A. niger has
previously been shown to be capable of removing Cu, Cd, Au, Ag,
La and U from solution (Kapoor and Viraraghavan, 1995) but its
ability to remove Pb from solution, as well as the mechanism of
uptake, has not been demonstrated. Dried mycelial pellets were
also used to investigate the effect of biomass concentration on
metal uptake. Scanning and transmission electron microscopy
and energy dispersive X-ray micro-analysis were used to
investigate the uptake mechanism of the Pb* ions, i.e. whether
intracellular uptake or simple biosorption to the cell surfaces was
involved. A preliminary report on the ability of this fungus to take
up lead has been published (Meyer et al., 1994). The quantitative
and qualitative results obtained from a combination of these
techniques and atomic absorption spectrophotometry should
make it possible to determine the metal uptake potential of a
specific biomass and to calculate the amount of biomass required
to efficiently remove the metal ions present at known
concentrations in a given volume of effluent.

Experimental

A previously isolated and identified A. niger (Strain 4) (Meyer et
al., 1994) was used in all the experiments. Fungal pellets were
cultured in Currie’s liquid medium (Currie, 1917) for 5 d at 30°C
on a rotary shaker at 200 r-min'. The resultant fungal pellets were
washed twice in sterile distilled water, drained and weighed out
into 100 m¢ Erlenmeyer flasks. To obtain the exact dry mass (i.e.
50, 100, 200 and 500 mg) some of the pellets were dried in an oven
at 60°C under vacuum overnight before weighing. Aliquots (50
mé) of a lead nitrate solution (Pb* concentrations of 50, 100, 200
and 500 mg-£'), adjusted initially to approximately pH 4 with
1 M HCI and with no nutrients present, were added to each of the
flasks containing the dried and undried mycelial pellets. These
experiments were carried out in triplicate. The pellets were left
in contact with the metal solutions for 24 h on a rotary shaker (200
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r-min’') at 30°C. Liquid samples (1.5 m¢) for metal analysis were
taken immediately following exposure of the mycelium to the
metal solutions and 30, 60, 120 and 180 min and 24 h thereafter.
Samples were also taken from experimental controls which
contained no biomass.

Supernatant samples were analysed for residual (equilibrium)
metal concentration using a Varian AA-275 Series atomic
absorption spectrophotometer (AAS). Samples were diluted with
distilled water to a range suitable for AAS detection (standard
range of 2 mg-¢' to 20 mg-L"), and EDTA was added to obtain a
final concentration of 0.1 M to reduce interference.

The uptake of lead ions (q) by the biomass was calculated
from a metal mass balance (Holan et al., 1993) determined as
follows:

q = V(C-C)/1000M
where:

q is the metal uptake (mg Pb* g of dry biomass),

V is the volume of solution in the contact batch flask (mé),

C, and C, are the initial and final Pb* concentrations in

solution respectively (mg-£'),

M is the dry mass of the pellets (g).

Dried and undried mycelial pellet samples were prepared for
scanning electron microscopy as follows: fixed overnight in 3%
glutaraldehyde; washed in cacodylate buffer; dehydrated in an
alcohol series; and critical-point dried in a Hitachi HCP-2 CPD.
The samples were then mounted on carbon stubs with colloidal
graphite and carbon-coated before viewing. A Hitachi S-570
scanning electron microscope fitted with a Link eXL II EDX
system was used. Specimens in the SEM were tilted to an angle
of 15° towards the electron gun. The working distance in the
microscope was set at 15 mm and the accelerating voltage at 20
kV. Spectra showing which elements were present in the samples
were obtained after exposing the samples for 100 s under the
above microscopy conditions. A dot-mapping technique was also
used to map selected areas on the specimen for the presence of
lead. The site(s) of metal concentration were depicted as a white
area on the map.

Transmission electron micrographs were produced in a Jeol
100CX TEM and in a Philips CM120/STEM with a BioTWIN
objective lens, equipped with an EDAX energy dispersive X-ray
detector. Following glutaraldehyde fixation (3% (v/v) solution),
washing in 0.05 M cacodylate buffer, fixation in osmium tetroxide,
a second washing in 0.05 M cacodylate buffer, and ethanol
dehydration, the pellets from both the control and experimental
flasks were embedded in Spurr’s resin and polymerised at 70°C
for 16 h. Sections 100 to 150 nm thick were cut with an LKB
Ultrotome III ultramicrotome. The sections were not stained,
except for some control sections which were stained with uranyl
acetate. EDX investigations were carried out at 80 kV.

Results and discussion
EDX analyses

Lead uptake by the pre-grown fungus varied depending on the
initial metal concentration and the amount of biomass present.
Energy dispersive X-ray micro-analysis of the dried mycelial
pellets exposed to all selected concentrations of Pb* showed the
presence of the metal. The EDX spectrum obtained from a 500
mg fungal biomass sample exposed to 500 mg-£! Pb* for 24 h is
shown in Fig. 1. The various other elements also detected, viz.
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Figure 1
EDX spectrum of dried fungal pellets exposed for 24 h to
500 mg-t' Pb?*

Na, Cl, K and Ca (Fig. 1), are commonly found in fungal cells.

Undried pellets exposed to 100 and 200 mg-£' Pb** were also
analysed using the EDX dot mapping technique. Figure 2 is the
dot map obtained from an undried sample exposed to 100 mg-¢!
Pb?* for 24 h and indicates the presence of lead on and/or in the
hyphae of the mycelial pellet. The location of lead is distinguished
as the white dots on the map (Fig. 2A), which corresponds to the
mycelial strands of the pellet shown in the electron micrograph
(Fig. 2B). This technique does not show the precise location of
the Pb?* infon the mycelial strands as electrons are able to
penetrate into the hyphae. Hence, the actual mechanism of Pb?*-
uptake, i.e. biosorption onto the cell surface or intracellular
uptake cannot be determined by this method, but it allows for
simple preliminary investigations to determine whether a specific
clement is present and visualisation of its distribution. For
example, in the present study an even pattern of lead accumulation
is evident, and metal ions are not restricted to areas such as the
growing hyphal tips.

Effect of biomass concentration

Dried mycelial pellets were used to assess the effect of biomass
concentration on Pb>* uptake as the exact mass could be obtained. -
The 100 mg biomass samples exhibited the highest uptake of lead
with an average uptake of 36 mg Pb*-g' of dried mycelial
biomass, followed by the 200 mg biomass samples (Fig. 3). The
500 mg samples exhibited good Pb* uptake at the lower initial
Pb* concentrations. Little lead was taken up by the 50 mg
samples.

A similar effect was observed by Gadd and White (1989)
with thorium uptake by a Penicillium sp., A. niger, and Saccha-
romyces cerevisiae. They concluded that the decrease in uptake
at higher biomass concentration was probably due to interference
between binding sites and reduced mixing during exposure to the
métal-ion solutions (Gadd and White, 1989). The 50 mg sample
was too small to demonstrate significant uptake of Pb** ions, and
low biosorption of Pb** was observed. The biosorption isotherm
of the 500 mg samples was steep at the lower initial Pb**
concentrations and then flattened out, indicating that at the higher
lead concentrations, blocking of the active metal binding sites in
the presence of greater biomass was more pronounced than at the



Figure 2A-B
EDX dot map of part of a fungal pellet exposed to
100 mgt' Pb? for 24 h;
A. dot map indicating the presence of lead
B. scanning electron micrograph corresponding
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Biosorption isotherms of various biomass concentrations
of A. niger Strain 4 pellets exposed to Pb? solutions:
*50 mg, - 100 mg, x 200 mg, “500 mg. q = metal
uptake (mg Pb? g dry biomass); Cf = the final
concentration of Pb?* in solution

lower lead concentrations (Fig. 3). Although a greater percentage
of lead was removed by the greater masses of mycelium, not all
the active metal-binding sites were used, i.e. at higher biomass
concentrations (4 to 10 mg-m¢!) the uptake efficiency is reduced.

The metal/biosorbent ratio is enhanced when the biomass
concentration is reduced at a given metal concentration, and the
metal uptake per gram of biosorbent increases as long as the
biosorbent is not saturated (Fourest and Roux, 1992). This
suggests that an optimum biomass concentration needs to be
determined for each system to ensure maximum metal uptake
efficiency.

Effect of drying on the lead uptake potential of
Aspergillus niger (Strain 4) mycelium

When using killed cells it is important to remember that the
method employed to inactivate the biomass (heat or solvent) may
modify the surface properties of the biomass and thus affect its
metal-binding properties (Brown, 1991). When comparing the
uptake of lead by the dried and undried pellets, very little
difference in their metal uptake capabilities was observed (result
not shown). Drying at 60°C for 12 h apparently had no effect on
the metal adsorption sites on the surface of the fungal mycelium.

The Pb* uptake capacity of Penicillium digitatum was also
found to be unaffected by heat (100°C for 5 min) or any other
pretreatments, while the uptake of other metals was affected by
the various pretreatments (Galun et al., 1987).

Mechanism of Pb* uptake

Since scanning electron microscopy could not indicate the precise
location of the metal within/on the mycelial strands, transmission
electron microscopy investigations were carried out. Figure 4A
shows a cross-section through a typical hyphal strand (unstained)
which was not exposed to lead, i.e. a control. The cell wall is
visible and has no electron dense material associated with it.
Figure 4B shows a cross-section of a control hypha which was
stained with uranyl acetate. Staining served only to slightly
darken and define the cell membranes and therefore subsequent
samples were not stained.

A longitudinal section of a hypha exposed to lead for 24 h
(Fig. 5A) clearly shows the adsorption of the metal onto the cell
surface (compare to the control (Fig. 5B) which has no electron
dense material associated with it). The lead appears to adsorb to
the outer surface of the cell wall and to penetrate the wall fabric
to the cell membrane, but was not observed in the cytoplasm.

Lead uptake appeared to be progressive. Initially the metal
ions were adsorbed onto the outer surface of the cell wall (Fig.
6A) and then penetrated through the cell wall and collected at the
outer layer of the unit cell membrane (Fig. 6B). Some cells
showed penetration of the lead throughout the entire cell wall
layer (Fig. 6C). It was again observed that no metal ions pene-
trated the cell membrane, indicating that Pb* uptake was
independent of cell metabolism. This phenomenon was observed
evenin cells (Fig. 6D) where the membrane had pulled away from
the cell wall and the cytoplasm had collapsed inwards (see arrows
Fig. 6D). In all cases the intact mycelial pellets used were
immersed in the lead solutions for 24 h. However, actual metal
contact times of individual hyphae comprising the pellets could
notbe determined. Dead or non-growing biomass could, therefore,
be used to remove lead, and possibly other heavy metals, from
polluted waste waters.

A possible explanation for the lower proportion of lead
observed on the outer surface of the collapsed (older?) hyphal cell
(Fig. 6D) in comparison with that on the cell shown in Fig. 6C (a
younger cell?) in which the lead has penetrated into the entire cell
surface layer, could be the position of the respective hyphal
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Figure 4A-B
Transmission electron micrographs of sections through hyphal strands of A. niger Strain 4 which were
not exposed to lead
A. unstained control strand (W = cell wall)
B. uranyl acetate-stained control strand (W = cell wall; M = cell membrane)

Figure 5A-B
Transmission electron micrographs of longitudinal sections through a hyphal strand of A. niger Strain 4
A. exposed to 100 mgt’ Pb* (W = cell wall; M = cell membrane)
B. control not exposed to lead (W = cell wall; M = cell membrane
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Figure 6A-D
Transmission electron micrographs of cross-sections through hyphal strands of A. niger Strain 4 exposed to

100 mgt' Pb*

A. first stage of lead adsorption onto outer surface (arrows) of cell wall (W)

B. second stage of adsorption showing lead penetration through wall (W) to cell membrane (M)

C. third stage of adsorption showing lead saturation of the entire cell wall (W)

D. lead adsorption to an “older” cell with collapsed cell contents, arrows indicate lead adsorbed

to the outer surface of the shrunken cell membrane

strands within the pellet. The older hyphae would be found in the
centre of a pellet and would thus not be exposed to the same
amount of lead as the young hyphae in the outer regions of the
pellet. It has been reported that the outer layer of pellets of
Penicillium chrysogenum contains growing hyphae, while the
inner layer consists of hyphae showing signs of autolysis (Prosser
and Tough, 1991).

The diameters of individual hyphae varied within all the
pellets examined. It has been reported that mycelial pellets lack
uniformity, as both “young” apical regions and “older”, possibly
less active, distal regions are present within the pellets (Prosser
and Tough, 1991). Intracellular organelles were not visible in all
the hyphae examined. This may be due to differences in age and
location of the respective hyphal strands within the pellets
examined. X-ray energy dispersive micro-analysis confirmed

the presence of lead in the cell surface layers (Fig. 7). Other
elements are also indicated in this EDX spectrum (Fig. 7). The
nickel is from the grid and phosphorus, calcium and chlorine are
elements commonly found in fungal hyphae. No Pb* was
detected in the control samples which were not exposed to lead
(EDX spectrum not shown).

Transmission electron microscopy together with energy
dispersive X-ray micro-analysis showed that lead was adsorbed
onto the cell walls of the hyphal strands of A. niger Strain 4 (Figs.
6A to C). No electron dense areas were observed in the interior
of these hyphal strands, suggesting that under the present
experimental conditions intracellular uptake played little or no
role in the bioaccumulation of Pb** ions in A. niger Strain 4.

Transmission electron microscopy of thin sections of Rhizopus
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Conclusions
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