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Introduction

Rainfall over Southern Africa is highly seasonal. Except for the
south-western Cape, the southern coastal regions and adjacent
interior, more than 80% of the annual rainfall occurs between
October and March (Tyson, 1986). Most of the austral summer
rainfall of South Africa is of convective origin. The intensity of
convection is regulated, apart from the diurnal heating of the
surface, by tropical easterly disturbances to the north and west-
erly disturbances to the south, and their interactions.

Sea-surface temperature variations are responsible for a large
portion of the rainfall variability of the austral summer rainfall
over Southern Africa. On a seasonal time-scale, the El Niño/
Southern Oscillation (ENSO) phenomenon (Zhang et al., 1997)
affects the atmospheric circulation outside the tropics (Philander,
1990), and Southern Africa tends to experience dry conditions
during warm ENSO events (Ropelewski and Halpert, 1987).

Sea-surface temperature anomalies of the oceans adjacent to
Southern Africa are also related to South African seasonal rainfall
(Nicholson and Entekhabi, 1987; Walker, 1989; 1990; Walker
and Lindesay, 1989; Mason, 1990; 1992; 1995; Mason et al.,
1994; Jury and Pathack, 1991; Jury et al., 1993; Landman, 1997).
Sea-surface temperature gradient intensity in both the far south-
western and south-eastern Atlantic Ocean varies closely in phase
with the annual rainfall totals of the summer rainfall region of
South Africa (Mason, 1990). However, the strongest rainfall/sea-
surface temperature association is in the central south Atlantic
(Mason, 1990; 1992). Areas of strong association between sea-
surface temperature and South African rainfall are located distant
from land in the tropical Indian Ocean east of 50°E (Walker,
1990), but with the strongest rainfall/sea-surface temperature
relation in the western equatorial Indian Ocean (Mason, 1990).

Rainfall/sea-surface temperature associations vary over the
summer rainfall season. The Arabian sea area, as well as the

equatorial Pacific Ocean present potential for prediction of
December rainfall. January rainfall has a poor association with
sea-surface temperatures, while the central equatorial Indian
Ocean shows very significant associations with February to
March rainfall (Pathack et al., 1993). In this study the sea-surface
temperature tendencies are incorporated in a statistical model to
make operational seasonal rainfall predictions for South Africa.

Data and methods

The sea-surface temperatures (4 consecutive 3-month seasonal
means), which are used as predictors in a statistically based
model are a combination of different data sets. Global Ocean
Global Atmosphere (GOGA) sea-surface temperature data (Pan
and Oort, 1990; Lau and Nath, 1994) of the global oceans between
about 45°N and 45°S (704 grid-points), are used as predictors of
rainfall over South Africa. The sea-surface temperature data set
has a resolution of 4.5°x7.5° latitude-longitude, and was obtained
for the period 1950 to 1985. Blended sea-surface temperature
data (Reynolds, 1988) have been obtained for the period 1985 to
1995. The blended (2° latitude-longitude) data are interpolated to
the GOGA grid, using cubic interpolation.

The original monthly rainfall data were obtained from the
Computing Centre for Water Research (CCWR), but have been
updated since 1996 using data supplied by the South African
Weather Bureau. Monthly data for 418 stations for the period
1961 to 1990 were used. Clustering was performed using Euclidian
distances and Ward’s minimum variance to obtain eight regions.
Figure 1 shows the geographical distribution of the rainfall
stations in the eight homogeneous rainfall regions, and is an
update of regions described by Mason (1998).

The prediction technique used here is called canonical corre-
lation analysis (CCA) (Glahn, 1968; Anderson, 1984; Barnett and
Preisendorfer, 1987; Graham et al., 1987a; b; Jackson, 1991;
Barnston, 1994; Barnston and Smith, 1996; Wilks, 1995). CCA
is a regression-based technique and at the top of the regression
modelling hierarchy (Barnett and Preisendorfer, 1987). CCA has
the ability to seek relationships between two sets of variables
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which vary in both time and space by identifying the optimum
linear combination between the two sets with maximum correla-
tion being produced. Model skill of a statistical method can be
considered to be a base-line skill level (Barnston et al., 1994;
Carson, 1998) that has to be outscored by more elaborate tech-
niques, such as general circulation models. If the ocean-atmos-
phere system contains adequate inherent predictability, dynamic
models should be able to outscore models that do not accommo-
date physical processes or non-linearity (Barnston et al., 1994),
such as the one evaluated here.

For this linear model, empirical orthogonal function analysis
(Anderson, 1984; Preisendorfer, 1988; Jolliffe, 1990; 1993;
Jackson, 1991; Johnston, 1992; Peixoto and Oort, 1992; Von
Storch and Navarra, 1995) is first performed on the rainfall and

sea-surface temperature sets. The number of principal compo-
nents retained account for about 70% and 80% of the variance
respectively. Only two CCA modes are retained in the prediction
equation.

The prediction scheme

The rainfall for December to March (DJFM) is predicted using
sea-surface temperature anomalies for each of the four preceding
three-month seasons:
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where i represents the current year. Similar schemes are used to
predict the same rainfall season for different leads and seasons.
Forecasts are made for three equi-probable categories of below-
normal (B), near-normal (N) and above-normal (A) rainfall. A
forecast is variance-adjusted by increasing its standard deviation
in order to account for extreme events (Ward and Folland, 1991).

When separate oceans carry unique climatic signals, signifi-
cant improvements in forecast skill should be attained by com-
bining the oceans in a single model (Barnett and Preisendorfer,
1987). Considering the oceans adjacent to Southern Africa and
the equatorial Pacific Ocean separately instead of the global set
of sea-surface temperatures, the model skill seems to be less
when only the first few empirical orthogonal functions (EOFs)
are included in the CCA process as opposed to using lower order
EOFs. Skill improves significantly when lower order EOFs are
included, suggesting that the climate signal from the individual
oceans are not included in the first few EOFs of global sea-surface
temperatures (SSTs), and are subsequently excluded from the
CCA prediction process described here.

Retroactive real-time validation is performed to make the
hindcast predictions, for example, to predict 1981/82 to 1983/84
the model is trained over the 1951 to 1980 period (30 years); to
predict 1984/85 to 1986/87 the model is trained over the 1951 to
1983 period (33 years), and so on, until the 42-year climate of
1951 to 1992 is used to train the model to predict the 1993/94 to
1995/96 seasons.

Figure 1
Geographical distributions of the rainfall stations and

the eight homogeneous regions of South Africa
(after Mason,1998)

TABLE 1
SUMMARY OF THE CATEGORICAL FORECASTS (“FOR” - LEFT) AND OBSERVATIONS (“OBS” - RIGHT) FOR

DJFM FOR THE 15-YEAR PERIOD OVER THE SUMMER RAINFALL REGIONS (A, B, C, F, G, H). EN = EL NIÑO YEARS;
 LN = LA NIÑA YEARS; A = ABOVE-NORMAL; N = NEAR-NORMAL; B = BELOW-NORMAL.
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Results

Table 1 gives a summary of the categorical forecasts for the
DJFM seasons for the 15 years of 1981/82 to 1995/96. Only
Regions A, B, C, F, G and H (Fig. 1) which receive their
maximum rainfall over the DJFM period are considered. Only the
results for the 0-month lead predictions are shown, but lag
simulations of 4 to 6 months lead show that the forecasts are still
statistically significant (95%) over the main maize-growing
regions. This substantial lead time confirms the utility of the
forecasts over this particular region.

Table 2 shows the number of hits and one- and two-category
misses. In order for the predictions to outscore chance the
percentage of perfect forecasts has to be at least 33%, less than
44% for one category missed, and less than 22% for two catego-
ries missed. These percentages are calculated from a contingency
table representing three equi-probable categories. Except for
region H which missed by one category, the forecasts are outscoring
chance.

Discussion

Table 2 suggests that the rainfall
of Regions C, F and H is pre-
dicted the most accurately, be-
cause they have the highest
number of correctly predicted cat-
egories (8 or 9) and the least
number of misses by two catego-
ries (less than 3). The predictions
during El Niño years are always
below-normal for the 15-year
period. For the three El Niño years (1982/83, 1986/87 and 1991/
92) the observed category was below-normal throughout, except
for Regions A and B of 1986/87, where near-normal rainfall was
observed. For La Niña years (1988/89 and 1995/96) predictions
are near-normal to above-normal with near-normal to above-
normal rainfall observed, but the forecast for 1995/96 underesti-
mated the rainfall.  About 40% of the forecasts made for non-
ENSO years are predicted correctly. False alarms (forecasts for
below-normal were made, but near-normal to above-normal
rainfall actually occurred) were made for the 1987/88 and 1990/
91 seasons. These two seasons were investigated in more detail
to find possible factors contributing to the inaccurate forecasts.

During February 1988 flooding occurred (Triegaardt et al.,
1991) over the central interior (Fig. 2; mainly Regions F and G in
Fig. 1). Short-term flooding events (2 to 5 d) cannot be predicted
on a seasonal time-scale of 2 to 6 months. If the rainfall measured
at Kimberley and Bloemfontein during 19 to 23 February 1988 is
removed from the seasonal total, then the observed category
would have been near-normal (Table 3). This indicates that the
forecasts would still have been out by one category even if no
flooding occurred, suggesting that sea-surface temperatures were
not the main control mechanism for this particular season’s
rainfall.

By investigating the Niño3.4 (mean sea-surface temperature
of the area between 170°W and 120°W, and 5°N to 5°S) anomaly
time series (Fig. 3) over the 15-year period it is indicated that
during these two seasons (1987/88 and 1990/91), although the
sea-surface temperatures were anomalously warm, the absence
of a distinct upward or downward trend is evident. Trends
(indicated by the arrows in Fig. 3) were evident during seasons
that had been predicted adequately. This suggests that anoma-

TABLE 2
NUMBER OF HITS AND MISSES DURING THE 15-YEAR

PERIOD. PERCENTAGE OF HITS AND MISSES IS
SHOWN IN BRACKETS.

Region Correctly 1 Category 2 Categories
forecast missed missed

A 7     (47%) 6     (40%) 2     (13%)
B 7     (47%) 5     (33%) 3     (20%)
C 9     (60%) 4     (27%) 2     (13%)
F 8     (53%) 5     (33%) 2     (13%)
G 6     (40%) 6     (40%) 3     (20%)
H 8     (53%) 7     (47%) 0      (0 %)

TABLE 3
RAINFALL AT KIMBERLEY AND BLOEMFONTAIN DURING THE DJFM SEASON OF 1987/88

DJFM normal Pred icted Observed Excluding
category rainfall flood

Kimberley 146 to 255 mm Below-normal 494 mm 242 mm
(Above-normal) (Near-normal)

Bloemfontein 212 to 353 mm Near-normal 693 mm 358 mm
(Above-normal) (Above-normal)

Figure 2
Rainfall (mm) during the Free State floods

(19 to 23 February 1988)
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lously warm (cold) sea-surface temperatures in the equatorial
Pacific Ocean may not be a sufficient condition for the model to
predict below-normal (above-normal) rainfall over South Africa
during DJFM. The model specifically uses short-term trends
(such as a warming equatorial Pacific) as predictor and not only
the current state (or amplitude) of the sea-surface temperature
anomalies. This partly explains the successful forecasts during
years of these observed trends.

From an analysis of the model skill, using Linear Error in
Probability Space (LEPS) scores (Potts et al., 1996) over the
period 1980 to 1995 (Fig. 4) it is found that skill scores over the
north-eastern part of the country are very poor, while the highest
skill scores are obtained over the western interior. The poor skill
scores in Region A may mainly be due to the scarcity of data in
the Lowveld regions.

TABLE 4
PERCENTAGE HITS
DURING NON-ENSO

YEARS

Region Percentage
 of years
 correctly
forecast

A 40 %
B 50 %
C 50 %
F 40 %
G 10 %
H 40 %

Conclusions

It is concluded that operational seasonal predictions using CCA
have potential and this method would have been able to accu-
rately predict rainfall anomalies during the EL Niño events of the
1980s and 1990s, especially during the 1982/83 and 1991/92
major events. During El Niño years, the forecasts are for below-
normal rainfall to occur, and below-normal to near-normal
rainfall was observed in all cases. Also, during La Niña years the
model successfully predicted near-normal to above-normal rain-
fall. It was also shown that forecast skill did better than chance,
thus indicating the potential of these forecasts if employed
operationally to alter decisions in planning processes. Its value is
further illustrated by non-ENSO years such as 1984/85, 1985/86,
1989/90 when rainfall for four out of the six regions was predicted
correctly. For 1992/93, rainfall for five out of the six regions was
predicted correctly, with the predicted rainfall for Region A only
one category out. It is expected that the model should at least be
successful in predicting the rainfall during ENSO years correctly
because it uses SSTs as the only predictor. In addition to predict-
ing rainfall during ENSO years successfully, the predictions
during non-ENSO years outscored chance (higher than 33%),
except for region G (Table 4).

The results of this study also suggest that a seasonal trend in
sea-surface temperatures may be a necessary requirement for the
model to successfully predict seasonal rainfall over South Africa.
Also, the model is incapable of considering short-term rainfall
variability, and cannot account for the role played by flooding
events such as the Free State floods of 1988.
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